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Using the recently developed mathematical apparatus of the theory of universal kine-
matic sets, we prove that the hypothesis of the existence of material objects and inertial
reference frames moving with superluminal velocities in the general case does not lead
to the violation of the principle of causality, that is, to a possibility of the returning to the
own past. This result is obtained as the corollary of the abstract theorem on irreversibil-
ity, which gives the sufficient condition of time irreversibility for universal kinematic
sets.

1 Introduction

Subject of constructing the theory of super-light movement,
had been posed in the papers [1, 2] more than 50 years ago.
Despite the fact that on today tachyons (ie objects moving at
a velocity greater than the velocity of light) are not experi-
mentally detected, this subject remains being actual.

It is well known that among physicists it is popular the be-
lief that the hypothesis of the existence of tachyons leads to
temporal paradoxes, connected with the possibility of chang-
ing the own past. Conditions of appearing these time para-
doxes were carefully analyzed in [3]. It should be noted, that
in [3] superluminal motion is allowed only for particles or
signals whereas superluminal motion for reference frames is
forbidden. This fact does not give the possibility to bind the
own time with tachyon particle, and, therefore to determine
real direction of motion of the particle. In the paper [4] for
tachyon particles the own reference frames are axiomatically
introduced only for the case of one space dimension. Such
approach allows to determine real direction of motion of the
tachyon particle by more correct way, and so to obtain more
precise results.

In particular, in the paper [4] it was shown, that the hy-
pothesis of existence of material objects, moving with the
velocity, greater than the velocity of light, does not lead to
formal possibility of returning to the own past in general.
Meanwhile in the papers of E. Recami, V. Olkhovsky and
R. Goldoni [5–7], and and later in the papers of S. Medvedev
[8] as well as J. Hill and B. Cox [9] the generalized Lorentz
transforms for superluminal reference frames are deduced
in the case of three-dimension space of geometric variables.
In the paper [10] it was proven, that the above generalized
Lorentz transforms may be easy introduced for the more gen-
eral case of arbitrary (in particular infinity) dimension of the
space of geometric variables.

Further, in [11], using theory of kinematic changeable
sets, on the basis of the transformations [10], the mathemat-
ically strict models of kinematics, allowing the superluminal
motion for particles as well as for inertial reference frames,
had been constructed. Thus, the tachyon kinematics in the
sense of E.Recami, V. Olkhovsky and R. Goldoni are surely

mathematically strict objects. But, these kinematics are im-
possible to analyze on the subject of time irreversibility (that
is on existence the formal possibility of returning to the own
past), using the results of the paper [4], because in [4] com-
plete, multidimensional superluminal reference frames are
missing.

Moreover, it can be proved, that the axiom “AxSameFu-
ture” from [4, subsection 2.1] for these tachyon kinematics is
not satisfied. The paper [12] 1 is based on more general math-
ematical apparatus in comparison with the paper [4], namely
on mathematical apparatus of the theory of kinematic change-
able sets. In [12] the strict definitions of time reversibility
and time irreversibility for universal kinematics were given,
moreover in this paper it was proven, that all tachyon kine-
matics, constructed in the paper [11], are time reversible in
principle. In connection with the last fact the following ques-
tion arises:

Is it possible to build the certainly time-irreversible uni-
versal kinematics, which allows for reference frames moving
with any speed other than the speed of light, using the gen-
eralized Lorentz-Poincare transformations in terms of E. Re-
cami, V. Olkhovsky and R. Goldoni?

In the present paper we prove the abstract theorem on
non-returning for universal kinematics and, using this theo-
rem, we give the positive answer on the last question.

For further understanding of this paper the main concepts
and denotation system of the theories of changeable sets,
kinematic sets and universal kinematics, are needed. These
theories were developed in [11, 13–17]. Some of these pa-
pers were published in Ukrainian. That is why, for the con-
venience of readers, main results of these papers were “con-
verted” into English and collected in the preprint [18], where
one can find the most complete and detailed explanation of
these theories. Hence, we refer to [18] all readers who are
not familiar with the essential concepts. So, during citation
of needed main results we sometimes will give the dual refer-
ence of these results (in one of the papers [11, 13–17] as well
as in [18]).

1 Note, that main results of the paper [12] were announced in [19].
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2 Elementary-time states and changeable systems of
universal kinematics

Definition 1. Let F be any universal kinematics 1, l ∈
Lk (F ) be any reference frame of F and ω ∈ Bs(l) be any
elementary-time state in the reference frame l. The set

ω{l,F } = {(m, ⟨!m← l⟩ω) |m ∈ Lk (F )}

(where (x, y) is the ordered pair, composed of x and y) is
called by elementary-time state of the universal kinematics
F , generated by ω in the reference frame l.

Remark 1. In the case, where the universal kinematics F is
known in advance, we use the abbreviated denotation ω{l} in-
stead of the denotation ω{l,F }.

Assertion 1. Let F be any universal kinematics and l,m ∈
Lk (F ). Then for arbitrary elementary-time states ω ∈ Bs(l)
and ω1 ∈ Bs(m) the following assertions are equivalent:

1) ω{l} = ω{m}1 ; 2) ω1 = ⟨!m← l⟩ω.

Proof. 1. First, we prove, that statement 2) leads to the state-
ment 1). Consider any ω ∈ Bs(l) and ω1 ∈ Bs(m) such that
ω1 = ⟨!m← l⟩ω. Applying Definition 1 and [18, Property
1.12.1(3)] 2, we deduce

ω{m}1 = {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )} =
= {(p, ⟨! p←m⟩ ⟨!m← l⟩ω) | p ∈ Lk (F )} =
= {(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} = ω{l}.

2. Inversely, suppose, that ω ∈ Bs(l), ω1 ∈ Bs(m) and
ω{l} = ω{m}1 . Then, by Definition 1, we have

{(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} =
= {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )} . (1)

According to [18, Property 1.12.1(1)], we have, ⟨! l← l⟩ω =
ω. Hence, in accordance with (1), for element (l, ω) =
(l, ⟨! l← l⟩ω) ∈ {(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} we obtain the
correlation, (l, ω) ∈ {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )}. There-
fore, there exists the reference frame p0 ∈ Lk (F ) such that
(l, ω) = (p0, ⟨! p0←m⟩ω1). Hence we deduce l = p0, as
well ω = ⟨! p0←m⟩ω1 = ⟨! l←m⟩ω1. So, based on [18,
Properties 1.12.1(1,3)], we conclude, ω1 = ⟨!m←m⟩ω1 =

⟨!m← l⟩ ⟨! l←m⟩ω1 = ⟨!m← l⟩ω. □

The next corollary follows from Assertion 1.

Corollary 1. Let F be any universal kinematics. Then for
every l,m ∈ Lk (F ) and ω ∈ Bs(l) the following equality
holds:

ω{l} = (⟨!m← l⟩ω){m} .
1 Definition of universal kinematics can be found in [11, page 89] or [18,

page 156].
2 Reference to Property 1.12.1(3) means reference to the item 3 from the

group of properties “Properties 1.12.1”.

Assertion 2. Let F be any universal kinematics. Then the
set

Bs [l,F ] =
{
ω{l,F } | ω ∈ Bs(l)

}
(2)

does not depend of the reference frame l ∈ Lk (F ) (ie ∀l,m ∈
Lk (F ) Bs [l,F ] = Bs [m,F ]).

Proof. Consider arbitrary l,m ∈ Lk (F ). Using Corollary 1,
we have

Bs [l,F ] =
{
ω{l} | ω ∈ Bs(l)

}
=

=
{
(⟨!m← l⟩ω){m} | ω ∈ Bs(l)

}
.

Hence, according to [18, Corollary 1.12.6], we obtain

Bs [l,F ] =
{
(⟨!m← l⟩ω){m} | ω ∈ Bs(l)

}
=

=
{
ω{m}1 | ω1 ∈ Bs(m)

}
= Bs [m,F ] . □

Definition 2. Let F be any universal kinematics.

1. The set Bs(F ) = Bs [l,F ] (∀ l ∈ Lk (F )) is called by
the set of all elementary-time states of F .

2. Any subset Â ⊆ Bs(F ) is called by the (common)
changeable system of the universal kinematics F .

Assertion 3. Let F be any universal kinematics and l ∈
Lk (F ) be any reference frame of F . Then for every ele-
ment ω̂ ∈ Bs(F ) only one element ω0 ∈ Bs(l) exists such, that
ω̂ = ω{l}0 .

Proof. Consider any l ∈ Lk (F ) and ω̂ ∈ Bs(F ). By Defini-
tion 2 and Assertion 2 (formula (2)), we have

Bs(F ) = Bs [l,F ] =
{
ω{l} | ω ∈ Bs(l)

}
.

So, since ω̂ ∈ Bs(F ), the element ω0 ∈ Bs(l) must exist such
that the following equality is performed:

ω̂ = ω{l}0 . (3)

Let us prove that such element ω0 is unique. Assume that
ω̂ = ω{l}1 , where ω1 ∈ Bs(l). Then, from the equality (3) we
deduce, ω{l}0 = ω

{l}
1 . Hence, according to Assertion 1 and [18,

Property 1.12.1(1)], we obtain, ω1 = ⟨! l← l⟩ω0 = ω0. □

Definition 3. Let F be any universal kinematics, ω̂ ∈ Bs(F )
be any elementary-time state of F and l ∈ Lk (F ) be any
reference frame of F . Elementary-time state ω ∈ Bs(l) is
named by image of elementary-time state ω̂ in the reference
frame l if and only if ω̂ = ω{l}.

In accordance with Assertion 3, every elementary-time
state ω̂ ∈ Bs(F ) always has only one image in any reference
frame l ∈ Lk (F ). Image of elementary-time state ω̂ ∈ Bs(F )
in the reference frame l ∈ Lk (Z) will be denoted via ω̂{l,F }
(in the cases, where the universal kinematics F is known in
advance, we use the abbreviated denotation ω̂{l}).
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Thus, according to Definition 3, for arbitrary ω̂ ∈ Bs(F )
the following equality holds:(

ω̂{l}
){l}
= ω̂. (4)

From the other hand, if for any reference frame l ∈ Lk (F )
and any fixed elementary-time state ω ∈ Bs(l), we denote
ω̂ := ω{l}, then by Definition 3, we will receive, ω = ω̂{l}.
Therefore we have:(

ω{l}
)
{l}
= ω (∀l ∈ Lk (F ) ∀ω ∈ Bs(l)) . (5)

From equalities (4) and (5) we deduce the following
corollary:

Corollary 2. Let F be any universal kinematics and l ∈
Lk (F ) be any reference frame of F . Then:

1. The mapping (·){l} is bijection from Bs(l) onto Bs(F ).
2. The mapping (·){l} is bijection from Bs(F ) onto Bs(l).
3. The mapping (·){l} is inverse to the mapping (·){l}.

Assertion 4. Let F be any universal kinematics and l,m ∈
Lk (F ) be any reference frames F . Then the following state-
ments are performed:

1. For every ω̂ ∈ Bs(F ) the equality ω̂{m} = ⟨!m← l⟩ ω̂{l}
holds.

2. For each ω ∈ Bs(l) the equality
(
ω{l}

)
{m}
= ⟨!m← l⟩ω

is true.

Proof. 1) Chose any ω̂ ∈ Bs(F ). Applying Corollary 1 to the
elementary-time state ω̂{l} ∈ Bs(l) and using equality (4), we
obtain (⟨!m← l⟩ ω̂{l}){m} = (

ω̂{l}
){l}
= ω̂.

Thence, using equality (5), we have

ω̂{m} =
((⟨!m← l⟩ ω̂{l}){m}){m} = ⟨!m← l⟩ ω̂{l}.

2) Consider any ω ∈ Bs(l). Applying Corollary 1 as well
as equality (5), we deliver(

ω{l}
)
{m}
=

(
(⟨!m← l⟩ω){m}

)
{m}
= ⟨!m← l⟩ω. □

Let F be any universal kinematics. The set Â{l,F } ={
ω̂{l,F } | ω̂ ∈ Â

}
is called image of changeable system Â ⊆

Bs(F ) in the reference frame l ∈ Lk (F ).
Any changeable system A ⊆ Bs(l) in the reference frame

l ∈ Lk (F ) always generates the (common) changeable sys-
tem A{l,F } :=

{
ω{l,F } | ω ∈ A

}
⊆ Bs(F ).

Remark 2. In the cases, where universal kinematics F is
known in advance, we use the abbreviated denotations Â{l}
and A{l} instead of Â{l,F } and A{l,F } (correspondingly).

Applying equalities (4) and (5), we obtain the equalities:(
Â{l}

){l}
= Â and

(
A{l}

)
{l}
= A

(for arbitrary universal kinematics F , reference frame l ∈
Lk (F ) and changeable systems Â ⊆ Bs(F ) as well A ⊆
Bs(l)).

3 Chain paths of universal kinematics and definition of
time irreversibility

Definition 4. Let F be any universal kinematics. Change-
able system Â ⊆ Bs(F ) is called piecewise chain change-
able system if and only if there exist the sequences of change-
able systems Â1, · · · , Ân ⊆ Bs(F ) and reference frames
l1, · · · , ln ∈ Lk (F ) (n ∈ N) satisfying the following condi-
tions:

(a)
(
Âk

)
{lk}
∈ Ll (lk)

(
∀k ∈ 1, n

)
, 1 where definition of

set Ll (lk) = Ll ((lk )̂ ) can be found in [18, pages
63, 88, 156];

(b)
∪n

k=1 Âk = Â,

and, moreover, in the case n ≥ 2 the following additional
conditions are satisfied:

(c) Âk ∩ Âk+1 , ∅
(
∀k ∈ 1, n − 1

)
;

(d) For each k ∈ 1, n − 1 and arbitrary ω1 ∈
(
Âk \ Âk+1

)
{lk}

,

ω2 ∈
(
Âk ∩ Âk+1

)
{lk}

the inequality tm (ω1) <lk tm (ω2)
holds.

(e) For every k ∈ 2, n and arbitrary ω1 ∈
(
Âk−1 ∩ Âk

)
{lk}

,

ω2 ∈
(
Âk \ Âk−1

)
{lk}

the inequality tm (ω1) <lk tm (ω2)
is performed.

In this case the ordered composition A =(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
will be named by the chain

path of universal kinematics F .

Definition 5. Let F be any universal kinematics.

(a) Changeable system A ⊆ Bs(l) is refereed to as
geometrically-stationary in the reference frame l ∈
Lk (F ) if and only if A ∈ Ll(l) and for arbitrary
ω1, ω2 ∈ A the equality bs

(
Q⟨l⟩ (ω1)

)
= bs

(
Q⟨l⟩ (ω2)

)
holds.

(b) The set of all geometrically-stationary changeable sys-
tems in the reference frame l is denoted via Lg(l,F ). In
the cases, where the universal kinematics F is known
in advance, we use the abbreviated denotation Lg(l).

(c) The chain path A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
in F (n ∈

N) is called by piecewise geometrically-stationary if
and only if ∀k ∈ 1, n

(
Âk

)
{lk}
∈ Lg (lk).

From the physical point of view piecewise geometrically-
stationary chain path may be interpreted as process of “va-
grancy” of observer (or some material particle or signal),
which moves by means of “jumping” from previous reference
frame to the next frame with a finite number of times.

Definition 6. Let F be any universal kinematics and let A =(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
be arbitrary chain path in F .

1 Further we denote via m, n (m, n ∈ N, m ≤ n) the set m, n = {m, · · · , n}.
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1. Element ω̂s ∈ Bs(F ) is called by start element of the
path A , if and only if ω̂s ∈ Â1 and for every ω̂ ∈ Â1
the inequality tm

(
(ω̂s){l1}

)
≤l1 tm

(
ω̂{l1}

)
is performed.

2. Element ω̂ f ∈ Bs(F ) is called by final element of the
path A , if and only if ω̂ f ∈ Ân and for every ω̂ ∈ Ân

the inequality tm
(
ω̂{ln}

) ≤ln tm
((
ω̂ f

)
{ln}

)
holds.

3. The chain path A , which owns (at least one) start
element and (at least one) final element, is called by
closed.

Assertion 5. Any chain path A of arbitrary universal kine-
maticsF can not have more, than one start element and more,
than one final element.

Proof. (a) Let ω̂s, ω̂x be two start elements of the chain
path A =

(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
. Then, by Definition

6, we have ω̂s, ω̂x ∈ Â1, tm
(
(ω̂s){l1}

)
≤l1 tm

(
(ω̂x){l1}

)
and

tm
(
(ω̂x){l1}

)
≤l1 tm

(
(ω̂s){l1}

)
. Therefore we get

tm
(
(ω̂s){l1}

)
= tm

(
(ω̂x){l1}

)
. (6)

Since ω̂s, ω̂x ∈ Â1, then (ω̂s){l1} , (ω̂x){l1} ∈
(
Â1

)
{l1}

, where,
in accordance with Definition 4 (subitem (a)), we have,(
Â1

)
{l1}
∈ Ll (l1). That is, according to [18, Assertion 1.7.5

(item 1)],
(
Â1

)
{l1}

is a function from Tm (l1) into Bs (l1). So,
using equality ω = (tm (ω) , bs (ω)) (ω ∈ Bs (l1)) as well as
formula (6), we obtain

bs
(
(ω̂s){l1}

)
=

(
Â1

)
{l1}

(
tm

(
(ω̂s){l1}

))
=

=
(
Â1

)
{l1}

(
tm

(
(ω̂x){l1}

))
= bs

(
(ω̂x){l1}

)
.

Using the last equality and equality (6), we deduce, (ω̂s){l1} =(
tm

(
(ω̂s){l1}

)
, bs

(
(ω̂s){l1}

))
=

(
tm

(
(ω̂x){l1}

)
, bs

(
(ω̂x){l1}

))
=

(ω̂x){l1}. Hence, according to formula (4), we deliver ω̂s =(
(ω̂s){l1}

){l1}
=

(
(ω̂x){l1}

){l1}
= ω̂x.

(c) Similarly it can be proven that the chain path A can
not have more, than one final element. □

Further the start element of the chain path A of the uni-
versal kinematics F will be denoted via po (A ,F ), or via
po (A ). The final element of the chain path A will be de-
noted via ki (A ,F ), or via ki (A ). Where the denotations
po (A ) and ki (A ) are used in the cases when they do not
cause misunderstanding. Thus, for every closed chain path
A both start and final elements (po (A ) and ki (A )) always
exist.

Definition 7. Closed chain path A of universal kinemat-
ics F is refereed to as geometrically-cyclic in the refer-
ence frame l ∈ Lk (F ) if and only if bs

(
Q⟨l⟩

(
po (A ){l}

))
=

bs
(
Q⟨l⟩

(
ki (A ){l}

))
.

Definition 8. Universal kinematics F is called time irre-
versible if and only if for every reference frame l ∈ Lk (F )
and for each chain path A , geometrically-cyclic in the frame
l and piecewise geometrically-stationary in F , it is performed
the inequality tm

(
po (A ){l}

)
≤l tm

(
ki (A ){l}

)
.

Universal kinematics F is called time reversible if and
only if it is not time irreversible.

The physical sense of time irreversibility notion is that in
time irreversible kinematics there is not any process or object
which returns to the begin of the own path at the past, moving
by means of “jumping” from previous reference frame to the
next frame. So, there are not temporal paradoxes in these
kinematics.

4 Direction of time between reference frames of univer-
sal kinematics

For formulation main theorem we need some notions, con-
nected with direction of time between reference frames.

Definition 9. Let F be any universal kinematics.
1. We say that reference frame m ∈ Lk (F ) is time-

nonnegative relatively the reference frame l ∈ Lk (F )
(in the universal kinematics F ) (denotation is m ⇑F
l) if and only if for arbitrary w1,w2 ∈ Mk (l) such
that bs (w1) = bs (w2) and tm (w1) ≤l tm (w2)
it is performed the inequality, tm ([m← l] w1) ≤m
tm ([m← l] w2).

2. We say that reference frame m ∈ Lk (F ) is time-
positive in F relatively the reference frame l ∈ Lk (F )
(denotation is m ⇑+F l) if and only if for arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and
tm (w1) <l tm (w2) it is performed the inequality,
tm ([m← l] w1) <m tm ([m← l] w2).

3. We say that reference frame m ∈ Lk (F ) is time-
nonpositive in F relatively the reference frame l ∈
Lk (F ) (denotation is m ⇓F l) if and only if for ar-
bitrary w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2)
and tm (w1) ≤l tm (w2) it is performed the inequality,
tm ([m← l] w1) ≥m tm ([m← l] w2).

4. We say that reference frame m ∈ Lk (F ) is time-
negative in F relatively the reference frame l ∈ Lk (F )
(denotation is m ⇓−F l) if and only if for arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and
tm (w1) <l tm (w2) it is performed the inequality,
tm ([m← l] w1) >m tm ([m← l] w2).

5. The universal kinematics F is named by weakly time-
positive if and only if there exist at least one reference
frame l0 ∈ Lk (F ) such that the correlation l0 ⇑+F l
holds for every reference frame l ∈ Lk (F ).

Remark 3. Apart from weak time-positivity we can introduce
other, more strong, form of time-positivity. We say that uni-
versal kinematics F is time-positive if and only if for arbi-
trary reference frames l,m ∈ Lk (F ) the correlation l ⇑+F m
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holds. It is not hard to prove that every kinematics of kind
F = UP (H,B, c) (connected with classical special relativity
and introduced in [11] and [18, Section 24]) is time-positive.

Assertion 6. For arbitrary reference frames l,m ∈ Lk (F )
of any universal kinematics F the following statements are
performed.

1) If m ⇑+F l, then m ⇑F l.
2) If m ⇓−F l, then m ⇓F l.

Proof. 1) Indeed, let l,m ∈ Lk (F ) and m ⇑+F l. Then
for every w1,w2 ∈ Mk (l) such, that bs (w1) = bs (w2) and
tm (w1) ≤l tm (w2), we deduce the following:

(a) In the case tm (w1) <l tm (w2), by Definition 9, item
2, we get, tm ([m← l] w1) <m tm ([m← l] w2).

(b) In the case tm (w1) = tm (w2), we have w1 =

(tm (w1) , bs (w1)) = (tm (w2) , bs (w2)) = w2, and so
tm ([m← l] w1) = tm ([m← l] w2).

2) Second item of this Assertion can be proven similarly.
□

5 Theorem of Non-Returning

Theorem 1. Any weakly time-positive universal kinematics
F is time irreversible.

To prove Theorem 1 we need a few auxiliary assertions.

Assertion 7. Let Â ⊆ Bs(F ) be changeable system of univer-
sal kinematics F such, that Â{l0} ∈ Lg (l0) for some reference
frame l0 ∈ Lk (F ). Let l ∈ Lk (F ) be reference frame, satis-
fying condition l ⇑F l0.

Then for arbitrary ω̂1, ω̂2 ∈ Â the inequality
tm

(
(ω̂1){l0}

)
≤l0 tm

(
(ω̂2){l0}

)
assures the the inequality

tm
(
(ω̂1){l}

)
≤l tm

(
(ω̂2){l}

)
.

Proof. Suppose that, under conditions of the assertion, we
have ω̂1, ω̂2 ∈ Â and tm

(
(ω̂1){l0}

)
≤l0 tm

(
(ω̂2){l0}

)
. Accord-

ing to Definition of Minkowski coordinates (see [11, formula
(2)] or [18, formula (2.3)]), we have tm (ω) = tm

(
Q⟨l0⟩(ω)

)
(∀ω ∈ Bs (l0)). So, we get

tm
(
Q⟨l0⟩

(
(ω̂1){l0}

))
≤l0 tm

(
Q⟨l0⟩

(
(ω̂2){l0}

))
. (7)

Since (ω̂1){l0} , (ω̂2){l0} ∈ Â{l0} (where Â{l0} ∈ Lg (l0)) then, by
Definition 5 (items (a),(b)), we have

bs
(
Q⟨l0⟩

(
(ω̂1){l0}

))
= bs

(
Q⟨l0⟩

(
(ω̂2){l0}

))
. (8)

Taking into account that l ⇑F l0 and using Definition 9 (item
1) as well as formulas (7), (8), we get the inequality:

tm
(
[l← l0] Q⟨l0⟩

(
(ω̂1){l0}

))
≤l tm

(
[l← l0] Q⟨l0⟩

(
(ω̂2){l0}

))
.

Thence, using [18, formula (3.2)], we obtain

tm
(
Q⟨l⟩

(
⟨! l← l0⟩ (ω̂1){l0}

))
≤l

≤l tm
(
Q⟨l⟩

(
⟨! l← l0⟩ (ω̂2){l0}

))
.

Applying the last inequality as well as Assertion 4, we deduce
the inequality:

tm
(
Q⟨l⟩

(
(ω̂1){l}

))
≤l tm

(
Q⟨l⟩

(
(ω̂2){l}

))
. (9)

According to Definition of Minkowski coordinates (see [11,
formula (2)] or [18, formula (2.3)]), for every ω ∈ Bs(l) we
have the equality tm

(
Q⟨l⟩(ω)

)
= tm (ω). That is why from the

inequality (9) it follows the desired inequality tm
(
(ω̂1){l}

)
≤l

tm
(
(ω̂2){l}

)
. □

Assertion 8. Let, A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Â n, l n

))
(n ∈ N)

be closed, piecewise geometrically-stationary chain path of
universal kinematics F and l ∈ Lk (F ) be reference frame
such that l ⇑F l i for every i ∈ 1, n. Then for arbitrary ω̂ ∈ Â
the following inequality holds:

tm
(
po (A ){l}

)
≤l tm

(
ω̂{l}

) ≤l tm
(
ki (A ){l}

)
. (10)

Proof. Let F be universal kinematics and A =(
Â,

(
Â1, l1

)
, · · · ,

(
Â n, l n

))
(n ∈ N) be closed, piecewise

geometrically-stationary chain path of F . Let, l ∈ Lk (F ) be
reference frame such that l ⇑F l i (∀ i ∈ 1, n).

1) First we prove that for any ω̂ ∈ Â it holds the inequal-
ity:

tm
(
po (A ){l}

)
≤l tm

(
ω̂{l}

)
. (11)

By Definition 4 (item (b)), Â =
∪n

k=1 Âk. So, it is sufficient to
prove the inequality (11) for the cases ω̂ ∈ Âk (k ∈ 1, n).

1.a) First we prove the inequality (11) for ω̂ ∈ Â1. Ac-
cording to Definition 6 (item 1), for ω̂ ∈ Â1 we obtain that
po (A ) ∈ Â1 and

tm
(
po (A ){l1}

)
≤l1 tm

(
ω̂{l1}

)
. (12)

According to the above, we have ω̂ ∈ Â1 and po (A ) ∈ Â1.
Moreover, by Definition 5 (item (c)), we get,

(
Â1

)
{l1}
∈

Lg (l1). By conditions of Assertion, we have, l ⇑F l1. So,
in accordance with Assertion 7, the correlation (12) stipulates
the inequality tm

(
po (A ){l}

)
≤l tm

(
ω̂{l}

)
. Hence, in the case

ω̂ ∈ Â1, the inequality (11) has been proven. Moreover, the
last inequality has been proven for all ω̂ ∈ Â in the case n = 1.
So, further we consider, that n > 1.

1.b) Assume, that inequality (11) is performed for all
ω̂ ∈ Âk−1, where k ∈ 2, n. And, let us prove, that then this
inequality is true for each ω̂ ∈ Âk.

In the case ω̂ ∈ Âk ∩ Âk−1 the inequality (11) is true in
accordance with inductive hypothesis. Hence, it remains to
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prove the last inequality for every ω̂ ∈ Âk \ Âk−1. According
to item (c) of Definition 4, we have Âk ∩ Âk−1 , ∅. Hence, at
least one element η̂ ∈ Âk ∩ Âk−1 exists. Since,

η̂ ∈ Âk ∩ Âk−1 and ω̂ ∈ Âk \ Âk−1, (13)

then we get η̂{lk} ∈
(
Âk ∩ Âk−1

)
{lk}

, ω̂{lk} ∈
(
Âk \ Âk−1

)
{lk}

.
Therefore, according to item (e) of Definition 4, we deliver

tm
(
η̂{lk}

) ≤lk tm
(
ω̂{lk}

)
. (14)

According to (13), we have η̂, ω̂ ∈ Âk, where, by item (c) of
Definition 5,

(
Âk

)
{lk}
∈ Lg (lk). Since l ⇑F lk, then taking into

account inequality (14) and Assertion 7 we deduce

tm
(
η̂{l}

) ≤l tm
(
ω̂{l}

)
. (15)

According to (13), we have η̂ ∈ Âk−1. So, by inductive hy-
pothesis, we deliver

tm
(
po (A ){l}

)
≤l tm

(
η̂{l}

)
. (16)

Inequalities (15) and (16) assure inequality (11).
Thus, by Principle of mathematical induction, inequality

(11) is true for arbitrary ω̂ ∈ ∪n
k=1 Âk = Â.

2) Now we are aiming to prove, that for any ω̂ ∈ Â it
holds the inequality:

tm
(
ω̂{l}

) ≤l tm
(
ki (A ){l}

)
. (17)

2.a) First we prove the inequality (17) for ω ∈ Ân. Ac-
cording to Definition 6 (item 2), for ω̂ ∈ Ân we obtain that
ki (A ) ∈ Ân and

tm
(
ω̂{ln}

) ≤ln tm
(
ki (A ){ln}

)
. (18)

According to the above, we have ω̂ ∈ Ân and ki (A ) ∈ Ân.
Moreover, by Definition 5 (item (c)), we get

(
Ân

)
{ln}
∈ Lg (ln).

By conditions of Assertion, we have l ⇑F ln. So, in accor-
dance with Assertion 7, the correlation (18) stipulates the in-
equality (17). Hence, in the case ω̂ ∈ Ân, the inequality (17) is
proven. Moreover, the last inequality is proven for all ω̂ ∈ Â
in the case n = 1. So, further we consider, that n > 1.

2.b) Assume, that inequality (17) is performed for all ω̂ ∈
Âk+1, where k ∈ 1, n − 1. And, let us prove, that then this
inequality is true for each ω̂ ∈ Âk.

In the case ω ∈ Âk ∩ Âk+1 the inequality (17) is true in
accordance with inductive hypothesis. Hence, it remains to
prove the last inequality for every ω̂ ∈ Âk \ Âk+1. According
to item (c) of Definition 4, we have Âk ∩ Âk+1 , ∅. Hence, at
least one element η̂ ∈ Âk ∩ Âk+1 exists. Taking into account
that

η̂ ∈ Âk ∩ Âk+1 and ω̂ ∈ Âk \ Âk+1, (19)

we get η̂{lk} ∈
(
Âk ∩ Âk+1

)
{lk}

, ω̂{lk} ∈
(
Âk \ Âk+1

)
{lk}

. There-
fore, according to item (d) of Definition 4, we deliver

tm
(
ω̂{lk}

) ≤lk tm
(
η̂{lk}

)
. (20)

According to (19), we have η̂, ω̂ ∈ Âk, where
(
Âk

)
{lk}
∈ Lg (lk)

by item (c) of Definition 5. Since l ⇑F lk then, taking into
account inequality (20) and Assertion 7, we deduce

tm
(
ω̂{l}

) ≤l tm
(
η̂{l}

)
. (21)

According to (19), we have η̂ ∈ Âk+1. So, by inductive hy-
pothesis, we deliver

tm
(
η̂{l}

) ≤l tm
(
ki (A ){l}

)
. (22)

Inequalities (21) and (22) assure inequality (17). Thus,
by Principle of mathematical induction, inequality (17) is true
for arbitrary ω̂ ∈ ∪n

k=1 Âk = Â.

Inequality (10) follows from (11) and (17). □

Proof of Theorem 1. LetF be weakly time-positive universal
kinematics. Then, by Definition 9, there exists the reference
frame l0 ∈ Lk (F ) such that

∀m ∈ Lk (F ) l0 ⇑+F m . (23)

Let A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
(n ∈ N) be piecewise

geometrically-stationary chain path in F and, moreover, A
is geometrically-cyclic relatively some reference frame l ∈
Lk (F ). By Definition 7, A is closed chain path. According
to Assertion 6, correlation (23) leads to the correlation l0 ⇑F
lk (∀k ∈ 1, n). Hence, applying Assertion 8, we ensure

tm
(
po (A ){l0}

)
≤l0 tm

(
ki (A ){l0}

)
. (24)

Assume, that tm
(
ki (A ){l}

)
<l tm

(
po (A ){l}

)
. Then, by Defi-

nition of Minkowski coordinates (see [11, formula (2)] or [18,
formula (2.3)]), we obtain

tm
(
Q⟨l⟩

(
ki (A ){l}

))
<l tm

(
Q⟨l⟩

(
po (A ){l}

))
. (25)

Since the path A is geometrically-cyclic relatively the refer-
ence frame l, then, by Definition 7, we have

bs
(
Q⟨l⟩

(
po (A ){l}

))
= bs

(
Q⟨l⟩

(
ki (A ){l}

))
. (26)

Since (in accordance with (23)) l0 ⇑+F l, then, by Definition
9 (item 2), from the correlations (25), and (26), we get the
inequality:

tm
(
[l0← l] Q⟨l⟩

(
ki (A ){l}

))
<l0

<l0 tm
(
[l0← l] Q⟨l⟩

(
po (A ){l}

))
.
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Thence, using [18, formula (3.2)] , we deduce the inequality:

tm
(
Q⟨l0⟩

(
⟨! l0← l⟩ ki (A ){l}

))
<l0

<l0 tm
(
Q⟨l0⟩

(
⟨! l0← l⟩ po (A ){l}

))
.

Taking into account Assertion 4, the last inequality
can be reduced to the form, tm

(
Q⟨l0⟩

(
ki (A ){l0}

))
<l0

tm
(
Q⟨l0⟩

(
po (A ){l0}

))
, and, by Definition of Minkowski co-

ordinates (see [11, formula (2)] or [18, formula (2.3)])), we
assure

tm
(
ki (A ){l0}

)
<l0 tm

(
po (A ){l0}

)
.

But, the last inequality contradicts to the correlation
(24). Therefore, hypothesis affirming, that tm

(
ki (A ){l}

)
<l

tm
(
po (A ){l}

)
is false. Consequently we have

tm
(
po (A ){l}

)
≤l tm

(
ki (A ){l}

)
. (27)

Thus, for each reference frame l ∈ Lk (F ) and for each
chain path A , geometrically-cyclic in the frame l and piece-
wise geometrically-stationary in F , it holds the inequality
(27). So, by Definition 8, kinematics F is time irreversible,
which must be proved. □

6 Certainly time irreversibility. Strengthened version of
theorem of non-returning

Recall, that in the papers [17, Definition 6], [18, Definition
3.25.2] the notion of equivalence of universal kinematics rel-
atively coordinate transform had been introduced. According
to these papers, we denote equivalent relatively coordinate
transform kinematics F1 and F2 via F1 [≡]F2.

Definition 10. We say that universal kinematics F is cer-
tainly time irreversible if and only if arbitrary universal kine-
matics F1 such, that F [≡]F1 is time irreversible. In the op-
posite case we will say that universal kinematics F is condi-
tionally time reversible.

Since, according to [17, Assertion 3] (see also [18, Asser-
tion 3.25.1]), for each universal kinematicsF it is fulfilled the
correlation F [≡]F , then we receive the following Corollary
from Definition 10:

Corollary 3. Any certainly time irreversible universal kine-
matics F is time irreversible.

The physical sense of certain time irreversibility notion is
that in certainly time irreversible kinematics temporal para-
doxes are impossible basically, that is there is not potential
possibility to affect the own past by means of “traveling” and
“jumping” between reference frames. Whereas, in time ir-
reversible, but conditionally time reversible kinematics such
potential possibility exists, but it is not realized in the scenario
of evolution, acting in this kinematics.

Assertion 9. Let universal kinematics F be weakly time-
positive. Then every universal kinematics F1 such that
F1 [≡]F is weakly time-positive also.

Proof. Let F be weakly time-positive universal kinematics
and F1 [≡]F . Recall, that in [18, Definition 3.27.3] for every
reference frame m ∈ Lk (F ) it was introduced the reference
frame m ⇂F1 , related with m in the universal kinematics F1:

m ⇂F1 := lkind(m) (F1) . (28)

Since kinematics F is weakly time-positive then, by Defini-
tion 9, the reference frame l0 ∈ Lk (F ) exists such that for
each reference frame l ∈ Lk (F ) the correlation l0 ⇑+F l holds.
Denote:

l
(1)
0 := l0 ⇂F1 .

Let us consider any reference frame l(1) ∈ Lk (F1). Denote:
l := l(1) ⇂F ∈ Lk (F ). Then, according to [18, Properties
3.27.1] and formula (28), we have

l
(1) = l ⇂F1= lkind(l) (F1) .

Hence, taking into account [18, Definition 3.25.2 (item 2)],
formula (28) and [18, Property 3.25.1(1)], we get

Mk
(
l

(1)
0 ;F1

)
= Mk

(
lkind(l0) (F1) ;F1

)
=

= Mk
(
lkind(l0) (F ) ;F )

= Mk (l0;F ) ;

Mk
(
l
(1);F1

)
= Mk (l;F ) . (29)

Similarly applying [18, Definition 3.25.2 (item 2)] we ensure
the equalities:

Tm
(
l

(1)
0

)
= Tm (l0) ; Tm

(
l
(1)

)
= Tm (l) (30)

(where (in accordance with [18, Subsection 6.3]) Tm(m) =
(Tm (m) ,≤m) (∀m ∈ Lk (F ) ∪ Lk (F1))). Moreover, ac-
cording to [18, Property 3.25.1(1) and Definition 3.25.2
(item 3)], we obtain

[l0← l, F ] =
[
lkind(l0) (F )← lkind(l) (F ) , F ]

=

=
[
lkind(l0) (F1)← lkind(l) (F1) , F1

]
=

=
[
l0 ⇂F1 ← l ⇂F1 , F1

]
=

[
l

(1)
0 ← l

(1), F1

]
. (31)

Taking into account (29), let us consider any ele-
ments w1,w2 ∈ Mk

(
l(1);F1

)
= Mk (l;F ) such

that bs (w1) = bs (w2) and tm (w1) <l(1) tm (w2).
Then, in accordance with (30), we obtain the inequal-
ity tm (w1) <l tm (w2). Since (as it was mentioned be-
fore) l0 ⇑+F l, then, by Definition 9 (item 2), we ob-
tain the inequality tm ([l0← l, F ] w1) <l0 tm ([l0← l, F ] w2).
Thence, using (31) and (30), we ensure the inequality,
tm

([
l
(1)
0 ← l(1), F1

]
w1

)
<
l
(1)
0

tm
([
l
(1)
0 ← l(1), F1

]
w2

)
. By Def-

inition 9 (item 2), taking into account the arbitrariness of
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choice elements w1,w2 ∈ Mk
(
l(1);F1

)
such, that bs (w1) =

bs (w2) and tm (w1) <l(1) tm (w2), we obtain the correlation
l
(1)
0 ⇑+F1

l(1) (for every reference frame l(1) ∈ Lk (F1)). Hence,
by Definition 9, kinematics F1 is weakly time-positive. □

Applying Assertion 9 as well as Theorem 1, we obtain
the following (strengthened) variant of Theorem of Non-
Returning:

Theorem 2. Any weakly time-positive universal kinematics
F is certainly time irreversible.

7 Example of certainly time irreversible tachyon
kinematics

In this section we build the certainly time-irreversible uni-
versal kinematics, which allows for reference frames moving
with any speed other than the speed of light, using the gen-
eralized Lorentz-Poincare transformations in terms of E. Re-
cami, V. Olkhovsky and R. Goldoni.

Let (H, ∥·∥ , ⟨·, ·⟩) be a Hilbert space over the real field
such, that dim (H) ≥ 1, where dim (H) is dimension of the
space H. Emphasize, that the condition dim(H) ≥ 1 should
be interpreted in a way that the space H may be infinite-
dimensional. Let L (H) be the space of (homogeneous) lin-
ear continuous operators over the space H. Denote by L× (H)
the space of all operators of affine transformations over the
space H, that is L× (H) =

{
A[a] | A ∈ L (H) , a ∈ H}, where

A[a]x = Ax + a, x ∈ H. The Minkowski space over the
Hilbert space H is defined as the Hilbert space M (H) =
R × H = {(t, x) | t ∈ R, x ∈ H}, equipped by the inner product
and norm: ⟨w1,w2⟩ = ⟨w1,w2⟩M(H) = t1t2 + ⟨x1, x2⟩, ∥w1∥ =
∥w1∥M(H) =

(
t2
1 + ∥x1∥2

)1/2
(where wi = (ti, xi) ∈ M (H) ,

i ∈ {1, 2}) ( [10, 18]). In the spaceM (H) we select the next
subspaces: H0 := {(t, 0) | t ∈ R}, H1 := {(0, x) | x ∈ H} with 0
being zero vector. Then,M (H) = H0⊕H1,where ⊕means the
orthogonal sum of subspaces. Denote: e0 := (1, 0) ∈ M (H).
Introduce the orthogonal projectors on the subspaces H1 and
H0:

Xw = (0, x) ∈ H1; T̂w = (t, 0) = T (w) e0 ∈ H0,

where T (w) = t (w = (t, x) ∈ M (H)) .

Let B1 (H1) be the unit sphere in the space H1 (B1 (H1) =
{x ∈ H1 | ∥x∥ = 1}). Any vector n ∈ B1 (H1) generates the fol-
lowing orthogonal projectors, acting inM (H):

X1 [n] w = ⟨n,w⟩n (w ∈ M (H));
X⊥1 [n] = X − X1 [n] .

Recall, that an operator U ∈ L (H) is referred to as unitary on
H, if and only if ∃U−1 ∈ L (H) and ∀ x ∈ H ∥Ux∥ = ∥x∥. Let
U (H1) be the set of all unitary operators over the space H1.

Fix some real number c such, that 0 < c < ∞. Denote:

PT
∓
fin (H, c) :=Wλ,c [s,n, J; a]

∣∣∣∣∣∣∣∣∣∣∣
λ ∈ [0,∞) \ {c},
s = sign (c − λ),
J ∈ U (H1) , n ∈ B1 (H1) ,
a ∈ M (H)

 , (32)

where Wλ,c [s,n, J; a] ∈ L× (M (H)) (λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1), n ∈ B1 (H1), a ∈ M (H)) are operators
of generalized Lorentz-Poincare Transformations in the sense
of E. Recami, V. Olkhovsky and R. Goldoni, introduced in
[10, 11, 18]:

Wλ,c [s,n, J; a]w =Wλ,c [s,n, J] (w + a), where

Wλ,c [s,n, J]w =

(
sT (w) − λc2 ⟨n,w⟩

)
√∣∣∣1 − λ2

c2

∣∣∣ e0+

+ J

λT (w) − s ⟨n,w⟩√∣∣∣1 − λ2

c2

∣∣∣ n + X⊥1 [n] w

 . (33)

According to [18, 20], every operator of kind Wλ,c [s,n, J; a]
belongs to Pk (H), where Pk (H) is the set of all operators
S ∈ L× (M (H)), which have the continuous inverse operator
S−1 ∈ L× (M (H)). Using results of the papers [18, 20], we
can calculate the operators, inverse to the operators of kind
Wλ,c [s,n, J] and Wλ,c [s, n, J; a].

Lemma 1. For arbitrary c ∈ (0,∞), λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1) and n ∈ B1 (H1) the following equality
holds:(

Wλ,c [s,n, J]
)−1
=

=Wλ,c

[
s sign (c − λ), sign (c − λ)Jn, J−1

]
. (34)

Proof. Consider arbitrary 0 < c < ∞, λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1) and n ∈ B1 (H1). According to [10, page
143] or [18, formula (2.86)], operator Wλ,c [s,n, J] may be
represented in the form:

Wλ,c [s,n, J] = Uθ,c [s,n, J] , (35)

where

θ =
1 − λc√∣∣∣1 − λ2

c2

∣∣∣
(
λ = c

1 − θ |θ|
1 + θ |θ|

)
, −1 ≤ θ ≤ 1.

Hence, according to [20, Corollary 5.1] or [18, Corollary
2.18.3], we obtain, that

(
Wλ,c [s,n, J]

)−1 ∈ L (M (H)), and
moreover:(

Wλ,c [s,n, J]
)−1
=

(
Uθ,c [s,n, J]

)−1
=

= Uθs,c

[
sθ, sθJn, J−1

]
, (36)

where sθ = S(s, θ) =

1, s, θ > 0
−1, s < 0 or θ < 0.
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In the case s = 1 we have, sθ = sign θ = sign
 1− λc√∣∣∣∣1− λ2c2

∣∣∣∣
 =

sign (c−λ). Hence, in this case, using (36) and (35), we obtain(
Wλ,c [s,n, J]

)−1
= Uθ,c

[
sθ, sθJn, J−1

]
=

=Wλ,c

[
sθ, sθJn, J−1

]
=

=Wλ,c

[
sign (c − λ), sign (c − λ)Jn, J−1

]
(s = 1). (37)

Now we consider the case s = −1 (θs = θ−1). Applying
(36) and [18, formula (2.90)], in this case we deduce(

Wλ,c [s,n, J]
)−1
= Uθ−1,c

[
sθ, sθJn, J−1

]
=

= Uθ,c
[
sθsign θ,−sθ

(
sign θ

)
Jn, J−1

]
=

= Uθ,c
[
−sign θ,

(
sign θ

)
Jn, J−1

]
=

= Uθ,c
[
−sign (c − λ), sign (c − λ)Jn, J−1

]
=

=Wλ,c

[
−sign (c − λ), sign (c − λ)Jn, J−1

]
(s = −1). (38)

Taking into account (37) and (38) in the both cases we obtain
(34). □

Using Lemma 1, we obtain the following corollary.

Corollary 4. For arbitrary c ∈ (0,∞), λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1), n ∈ B1 (H1) and a ∈ M (H) the following
equality is fulfilled:(

Wλ,c [s,n, J; a]
)−1 w =

=Wλ,c

[
s sign (c − λ), sign (c − λ)Jn, J−1

]
w − a

(w ∈ M (H)) .

Let B be any base changeable set such, that Bs(B) ⊆ H
and Tm(B) = (R,≤), where ≤ is the standard order in the field
of real numbers R. Denote:

UPT
∓
fin (H,B, c) := Ku

(
PT

∓
fin (H, c) ,B; H

)
, (39)

where the denotation Ku (·, ·; ·) is introduced in [11], [18,
page 166]. From [18, Assertion 2.17.5] it follows, that in the
case dim (H) = 3 universal kinematics UPT∓fin (H,B, c) may
be considered as tachyon extension of kinematics of classical
special relativity, which allows for reference frames moving
with arbitrary speed other than the speed of light.

According to [18, Property 3.23.1(1)], the set
Lk

(
UPT∓fin (H,B, c)

)
of all reference frames of univer-

sal kinematics UPT∓fin (H,B, c), defined by (39), can be
represented in the form:

Lk
(
UPT

∓
fin (H,B, c)

)
=

=
{
(U,U [B,Tm(B)]) | U ∈ PT∓fin (H, c)

}
=

=
{
(U,U [B]) | U ∈ PT∓fin (H, c)

}
. (40)

In accordance with [18, Corollary 2.19.5], subclass of opera-
tors

P+ (H, c) =

=

Wλ,c [s,n, J; a]

∣∣∣∣∣∣∣∣
λ ∈ [0, c), s = 1,
J ∈ U (H1) ,
n ∈ B1 (H1) , a ∈ M (H)

 ⊆
⊆ PT∓fin (H, c)

is group of operators over the space M (H). So, the iden-
tity operator IM(H)w = w (∀w ∈ M (H)) belongs to the class
PT

∓
fin (H, c). Hence, in accordance with (40), we may define

the following reference frame:

l0,B : =
(
IM(H), IM(H) [B]

)
=

=
(
IM(H),B

) ∈ Lk
(
UPT

∓
fin (H,B, c)

)
(41)

(recall, that, according to [18, Remark 1.11.3], IM(H) [B] =
B).

Lemma 2. For each reference frame l ∈
Lk

(
UPT∓fin (H,B, c)

)
the following correlation holds:

l0,B ⇑+UPT∓fin(H,B,c) l.

Proof. Consider any reference frame l ∈
Lk (UPT∓ (H,B, c)). According to (40) and (32), frame l can
be represented in the form:

l = (U,U [B]) , where (42)
U =Wλ,c

[
sign (c − λ),n, J; a

]
, (43)

0 ≤ λ < +∞, λ , c,

n ∈ B1 (H1) , J ∈ U (H1) , a ∈ M (H) .

Applying [18, Properties 3.23.1(3,4,7)] as well (42), (43),
(41) and Corollary 4 we obtain

Tm (l) = Tm
(
l0,B

)
= Tm(B) = (R,≤) ; (44)

Mk (l) = Mk
(
l0,B

)
= Tm(B) × H =

= R × H =M (H) ;[
l0,B← l

]
w = IM(H)U−1w =

=
(
Wλ,c

[
sign (c − λ), n, J; a

])−1 w =

=Wλ,c

[(
sign (c − λ))2 , sign (c − λ)Jn, J−1

]
w − a =

=Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w − a (45)

(w ∈ Mk (l) =M (H)) .

Now we consider any w1,w2 ∈ Mk (l) =M (H) such that
bs (w1) = bs (w2) and tm (w1) <l tm (w2). According to (44),
inequality tm (w1) <l tm (w2) is equivalent to the inequality
tm (w1) < tm (w2). From the equality bs (w1) = bs (w2) it
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follows that

X (w2 − w1) =
= X (tm (w2) − tm (w1) , bs (w2) − bs (w1)) =

= (0, bs (w2) − bs (w1)) = 0.

Thence, using (45) and (33) we deduce

tm
([
l0,B← l

]
w2

) − tm
([
l0,B← l

]
w1

)
=

= tm
([
l0,B← l

]
w2 −

[
l0,B← l

]
w1

)
=

= tm
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w2−

−Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w1

)
=

= tm
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
(w2 − w1)

)
=

= T
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
(w2 − w1)

)
=

=
T (w2 − w1) − λc2

⟨
sign (c − λ)Jn,w2 − w1

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1) − λc2

⟨
sign (c − λ)XJn,w2 − w1

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1) − λc2

⟨
sign (c − λ)Jn,X (w2 − w1)

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1)√∣∣∣1 − λ2

c2

∣∣∣ = T
(w2) − T (w1)√∣∣∣1 − λ2

c2

∣∣∣ > 0

Therefore, tm
([
l0,B← l

]
w1

)
< tm

([
l0,B← l

]
w2

)
, ie, accord-

ing to (44), we have, tm
([
l0,B← l

]
w1

)
<l0,B tm

([
l0,B← l

]
w2

)
.

Thus, for arbitrary w1,w2 ∈ Mk (l) = M (H) such, that
bs (w1) = bs (w2) and tm (w1) <l tm (w2) it is true the in-
equality tm

([
l0,B← l

]
w1

)
<l0,B tm

([
l0,B← l

]
w2

)
. And, tak-

ing into account Definition 9 (item 2), we have seen, that
l0,B ⇑+UPT∓fin(H,B,c) l. □

Corollary 5. Every universal kinematics of kind
UPT∓fin (H,B, c) (0 < c < ∞) is certainly time irreversible.

Proof. According to Lemma 2 and Definition 9 (item 5),
kinematics of kind UPT∓fin (H,B, c) (0 < c < ∞) is
weakly time-positive. Hence, by Theorem 2, kinematics
UPT∓fin (H,B, c) is certainly time irreversible. □

Remark 4. Kinematics of kind UPT∓fin (H,B, c) (0 < c < ∞)
is weakly time-positive, but it is not time-positive. Similarly
to Lemma 2 it can be proved, that for any (superluminal) ref-
erence frame of kind:

l = (U,U [B]) ∈ Lk
(
UPT

∓
fin (H,B, c)

)
, where

U =Wλ,c
[
sign (c − λ),n, J; a

]
=Wλ,c [−1,n, J; a] ,

c < λ < +∞, n ∈ B1 (H1) , J ∈ U (H1) , a ∈ M (H)

the correlation l ⇓−
UPT∓fin(H,B,c) l0,B is true despite the fact that

l0,B ⇑+UPT∓fin(H,B,c) l (according to Lemma 2).

Remark 5. It is easy to see that the binary relation ⇑+F is re-
flexive on the set Lk (F ) of all reference frames of arbitrary
universal kinematics F . From Remark 4 it follows that in
the general case this relation is not symmetric. Using the re-
sults of [10, Section 7, paragraph 4] it can be proven that this
relation is not transitive in the general case.

8 On the physical interpretation of main result

The aim of this section is to explain main Theorem 2 in the
physical language. We can imagine, that any universal kine-
matics F is some abstract “world”, which not necessarily co-
incides with the our. In every such “world” F there exists
the fixed for this “world” set of reference frames Lk (F ). We
reach the agreement that for any reference frame l ∈ Lk (F )
the arrows of the clock, fixed in the frame l are rotating clock-
wise relatively the frame l. We say, that the reference frame
m ∈ Lk (F ) is time-positive relatively the reference frame
l ∈ Lk (F ) (ie m ⇑+F l) if and only if the observer in the ref-
erence frame m (fixed relatively m) observes that the arrows
of the clock, fixed in the frame l are rotating clockwise in the
frame m as well (cf. Definition 9, item 2). We abandon the
physical question, how can the observer in m “see” the clock,
fixed in the other frame l. From the mathematical point of
view, the possibility of observation the clock, attached to an-
other reference frame, is guaranteed by existence of univer-
sal coordinate transform between every two reference frames
(see definition of universal kinematics in [11,18]). According
to Remark 5, the binary relation ⇑+F always is reflexive, but,
in the general case, it is not symmetric and is not transitive on
the set Lk (F ) of all reference frames of the “world” F .

We also suppose, that in the “world” F the interframe
voyagers can exist. Such voyagers may move from one refer-
ence frame to the another frame, passing near them (similarly
as, standing near the tram track, we can jump into the tram,
passing near us).

From the physical point of view Theorem 2 asserts, that
if in the “world” F there exists at least one reference frame
l0 ∈ Lk (F ), which is time-positive relatively the every frame
l ∈ Lk (F ), then in this “world” the temporal paradoxes,
connected with the possibility of the returning to the own
past are impossible. This means, that any interframe voy-
ager, starting in some reference frame l in some fixed point x
can not finish its travel in the frame l and in the point x at the
past time.

9 Conclusions

1. According to Corollary 5, kinematics of kind
UPT∓fin (H,B, c) (in the case dim (H) = 3) gives the
example of certainly time-irreversible tachyon exten-
sion of kinematics of classical special relativity, which
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allows for reference frames moving with arbitrary ve-
locity other than the velocity of light. Thus, the main
conclusion of Theorem 2 is the following:
In the general case the hypothesis of existence of mate-
rial objects and inertial reference frames, moving with
the velocity, greater than the velocity of light, does not
lead to temporal paradoxes, connected with existence
of formal possibility of returning to the own past.

2. In [9] authors have deduced two variants of generalized
superluminal Lorentz transforms for the case, when
two inertial frames are moving along the common x-
axis:

t′ =
t − vxc2√(
v
c

)2 − 1
, x′ =

x − vt√(
v
c

)2 − 1
,
y′ = y,

z′ = z,
(46)

where v ∈ R, |v| > c (see [9, formula (3.16)]) and:

t′ =
−t + vxc2√(
v
c

)2 − 1
, x′ =

−x + vt√(
v
c

)2 − 1
,
y′ = y,

z′ = z
(47)

(see [9, formula (3.18)]). Transforms (46) are partic-
ular cases of the transforms of kind (33) for the case,
where dim (H) = 3, λ > c and s = 1, whereas trans-
forms (47) belong to the transforms of kind (33) for
the case, where dim (H) = 3, λ > c and s = −1.
If we chose in (33) the value s = 1 for subluminal
as well as superluminal diapason, we obtain the class
of operators PT+ (H, c), defined in [13, 18] and based
on this class of operators universal kinematics of kind
UPT (H,B, c). According to results, announced in [19]
and published in [12], this kinematics is conditionally
time reversible 1. But, if we chose in (33) the value
s = 1 for subluminal diapason and value s = −1 for
superluminal diapason, we reach the class of operators
PT

∓
fin (H, c), defined in (32) and based on this class of

operators universal kinematics of kind UPT∓fin (H,B, c).
According to Corollary 5, kinematics UPT∓fin (H,B, c)
is certainly time irreversible. Thus we can formulate
the following conclusion, concerning two variants of
superluminal Lorentz transforms, deduced in [9]:
From the standpoint of time-irreversibility, transforms
(47) or [9, formula (3.18)] are more suitable for repre-
sentation of the tachyon continuation of Einstein’s spe-
cial theory of relativity than (46) or [9, formula (3.16)].

Main results of this paper had been announced in [19].

Received on September 19, 2017
1 In fact, class of operators PT+ (H, c) contains apart from operators of

kind (33) (with s = 1) also operators, corresponding tachyon inertial refer-
ence frames with infinite velocities. However, using results of the paper [12],
it is not hard to deduce that the “subkinematics” of kinematics UPT (H,B, c),
which includes only all reference frames from UPT (H,B, c) with finite ve-
locities, also is conditionally time reversible.
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