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Kinetic Theory: Flatlining of Polyatomic Gases
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By redefining a gas’ kinetic energy as translational plus rotational, an alternative ki-
netic theory was disclosed by this author that was a superior fit with empirical findings
than the accepted kinetic theory. This alternative kinetic theory’s fit for monatomic,
diatomic and triatomic gases is exceptional, however the same cannot be said of large
polyatomic gases. Accordingly, a new consideration called “flatlining” is proposed in
order to explain the discrepancy between theory and the known empirical finding for
heat capacities of large polyatomic gases.

1 Introduction

Traditionally accepted kinetic theory is based upon equiparti-
tion and degrees of freedom [1,2,3]. Mathematically speaking
equipartition uses the concept that a gaseous molecule with
n′′ atoms has 3n′′ degrees of freedom (f ), [4,5] i.e.:

f = 3n′′. (1)

This leads to the isometric molar heat capacity (Cv) for
large polyatomic gases being

Cv =
3
2

n′′R (2)

where n” signifies the polyatomic number i.e. the number of
atoms in each gas molecule. Numerous explanations for tra-
ditional kinetic theory’s failure in properly describing empir-
ically determined heat capacities, have been proposed [1,6-
10]. Interestingly, Einstein thought that such failures in ex-
plaining empirical findings demonstrated the need for quan-
tum theory [11-12].

This author proposed a new alternative kinetic theory [1].
The basis of this alternative theory was that the surrounding
walls molecule’s mean vibrational energy, as defined by (kT),
is continually pumped onto the gaseous molecules that they
surround. Where (k) is Boltzmann’s constant and (T) is the
absolute temperature.

After numerous impacts between the gaseous molecules
and walls, the above pumping results in the total kinetic en-
ergy (EkT (t,r)) of an N-molecule monatomic gas being defined
by [1]:

EkT (t,r) =
3
2

NkT. (3)

Traditional kinetic theory considers that the kinetic en-
ergy as defined by eqn (3) represents purely translational en-
ergy.

In terms of this author’s alternative kinetic theory, the
above stated total kinetic energy consists of the gas’ transla-
tional plus its rotational energy [1]. Interestingly, this author’s
theory is a superior fit with various heat capacities studies for
gases [1,13-18], when compared to accepted theory.

In order to better understand, consider that you hit a tennis
ball with a suitable racquet. If the ball impacts the racquet’s
face at a 90 degree angle then the ball will have significant
translational energy in comparison to any rotational energy.

Conversely, if the ball impacts the racquet at an acute an-
gle, although the same force is imparted onto that ball, the
ball’s rotational energy can be significant in comparison to its
translational energy. The point becomes, that both the trans-
lational and rotational energy, are due to the same impact [1].

Now apply the above macroscopic considerations to the
microscopic world. When vibrating wall molecules pump
their mean vibrational energy onto the gas molecules that they
surround it, it only makes sense that this results in both trans-
lational and rotational energy of the gas [1].

This author also pointed out that all kinetic theory only
holds for sufficiently dilute gases because the predominate en-
ergy exchange is due to gas-wall molecule collisions, where
wall molecules that act as massive energy pumps, i.e. gas
molecules tend to take on the wall’s energy with every gas-
wall collision [1]. However this would not necessarily be
the case for gases that are not sufficiently dilute i.e. gases
where inter-gas molecular collisions are the dominate inter-
action [1].

This author has further asserted [1,19,20] that inter-gas
molecular collisions tend to obey conservation of momentum,
rather than adhere to kinetic theory. And, when inter-gas col-
lisions dominate over gas-wall collisions then kinetic theory,
the ideal gas law, Avogadro’s hypothesis, Maxwell’s distribu-
tions/velocities etc. all start to lose their validity [1].

For a system of diatomic gas molecules, the wall mole-
cules still pass the same mean kinetic energy onto the di-
atomic gas molecule’s center of mass with each collision.
Therefore the diatomic gas’ kinetic energy is still defined by
eqn (3) [1].

The diatomic gas molecule’s vibrational energy would be
related to the absorption and/or emission of its surrounding
blackbody/thermal radiation at temperature (T). The vibra-
tional energy (Ev) of an N-molecule diatomic gas in a closed
system becomes [1]

Ev = NkT. (4)
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And the total energy (Etot) for an N molecule diatomic
gas becomes [1]

Etot = EkT (t,r) + Ev =
3
2

NkT + NkT =
5
2

NkT. (5)

Similarly, for N molecules of n”-polyatomic gas, the total
vibrational energy is [1]

Ev = (n′′ − 1)NkT. (6)

And, the total energy (Etot) for the polyatomic gas mole-
cule becomes [1]:

Etot = EkT (t,r) + Ev =
3
2

NkT + (n′′ − 1)NkT. (7)

Hence,

Etot =

(
n′′ +

1
2

)
NkT. (8)

Dividing both sides by temperature and rewriting in terms
of per mole: (N=6.022×1023), equation (8) becomes [1]:

Etot

T
= Nk

(
n′′ +

1
2

)
= R

(
n′′ +

1
2

)
. (9)

For most temperature regimes, the heat capacity of gases
remains fairly constant, hence equation (9) can be rewritten
in terms of the isometric molar heat capacity (Cv) [1], i.e.

Cv = R
(
n′′ +

1
2

)
. (10)

The difference between molar isobaric heat capacity (Cp)
and molar isometric heat capacity (Cv) for gases is the ideal
gas constant (R). Therefore, a gas’s isobaric heat capacity Cp

becomes

Cp = R
(
n′′ +

1
2

)
. (11)

Interestingly this author realized that the above difference
between molar heat capacities allows for a relationship be-
tween the ideal gas constant (R) and the ability of a mole of
gas molecules to do work against a gravitational field [1, 20-
21], as a function of temperature.

Based upon equations (10) and (11) the gas’s molar spe-
cific heats were plotted against its polyatomic number (n”) as
is shown by Fig. 1 and compared to the traditional accepted
values for large polyatomic gases as given by eqn (2). Note
the empirical data used in plotting Fig. 1 can be found in the
Tables (1) and (2) provided in this author’s previous paper [1]
concerning kinetic theory.

Moreover, there was a discrepancy, between our model
and empirical findings for relatively large polyatomic gases.
It becomes a goal of this paper to provide a plausible explana-
tion for the moderate discrepancy between this author’s plots
based upon equations (10) and (11) and the accepted empiri-
cal findings for large polyatomic molecules i.e. those whose
polyatomic number is greater than four (n”> 4).

Fig. 1: Empirical versus theoretical heat capacities.

2 Flatlining

Why does the discrepancy exist for n”> 4? Let us consider
that the gas molecule’s size influences the exchange of kinetic
energy (translational plus rotational) with the wall molecule’s
vibrational energy. How do we model this?

Consider the small monatomic gas molecule hitting the
wall at location C, in Fig 2. Here the wall molecule is mov-
ing outward from the wall thus instantly imparting momen-
tum, hence pumping its kinetic energy onto the gas molecule
during the collision.

Next consider the gas molecule hitting the wall at location
B. The wall molecule and gas molecule are initially mov-
ing in the same direction, i.e. both into the wall. However,
since the wall molecule is vibrating at a very high frequency
then within a fraction of a nanosecond, the wall molecule
will start moving in the opposite direction. At this point the
wall molecule imparts its momentum hence imposes kinetic
energy (translational plus rotational) onto the impacting gas
molecule.

Understandably, small gas molecules will tend to interact
cleanly with the wall molecules, i.e. the significantly larger
vibrating wall molecules cleanly pumps/imposes their mean
vibrational energy directly onto the much smaller gas molecu-
les. Seemingly, this is not the case for larger mole-cules. Per-
haps vibrating wall molecules simply cannot clean-ly pump
kinetic energy onto the larger gas molecules.

It can be envisioned that elongated linear gas molecules
and/or large gas molecules tend to “flatline” against the wall,
as is illustrated in Fig 2 at location A. The implication be-
ing that such large and/or elongated gas molecules tend to
strike two or more (several) vibrating wall molecules at an in-
stant, when some wall molecules are moving inwards, while
their neighboring wall molecules are moving outwards, with
respect to the wall as a whole. Note: The motions of the
molecules are indicated by the arrows in Fig. 2.

Clearly the above should alter the dynamics of any kine-
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Fig. 2: Shows an elongated linear gas molecule flatlining against a
wall at location A and the relative motions of the wall’s molecules
or atoms plus the relative motions of the gas’ atoms. Also shown are
smaller gas molecules hitting the wall at locations B and C.

matic energy exchange! The expectation is that a large poly-
atomic gas molecule’s mean kinetic energy would no longer
be simply defined in terms of the vibrating wall molecule’s
mean energy! Furthermore, the expectation is that polyatomic
gases still interact with any surrounding blackbody/thermal
radiation, thus continually striving for thermal equilibrium.

Consider that the primary energy exchange is between
large polyatomic gases and their surroundings is with their
surrounding blackbody/thermal radiation. The total energy
(Etot) imparted onto the gas molecule becomes the purely vi-
brational energy as defined by eqn (6). Accordingly:

Etot

T
= (n′′ − 1)Nk. (12)

Based upon eqn (12), the expected isometric molar heat
capacity becomes:

Cv = (n′′ − 1)R. (13)

The graph for eqn. (13) is shown on Fig. 1; based upon
Cv = 0 when n”=1, and Cv= 19×8.314 =158.00 when n”=20.
The fit for the isometric molar heat capacity (Cv) based upon
eqn. (10) was very good, if not exceptional, for monatomic
through triatomic gases (n”< or = 4) but not so much larger
polyatomic gases i.e. n”> 4. Certainly eqn (13) is a better fit
for the larger polyatomic gases than eqn. (10) was but the fit
is only fairly good at best!

Reconsider what all might be happening. As previously
stated, flatlining implies that large polyatomic gas’ kinetic en-
ergy is no longer defined/controlled by the pumping of the
wall molecule’s vibrational energy onto the them. Remember
by kinetic energy herein we mean the gas’ translational plus
rotational energy. In such a situation it becomes cumbersome
to infer any net direction of energy flow being exchanged dur-
ing collisions.

As previously stated, this author [1] understands that a
limitation for the isometric molar heat capacity being defined
by eqn (10) was the gas being sufficiently dilute, i.e. dilute
enough that gas-wall molecule collisions are dominate in
comparision to inter-gas molecule collisions. Part of the rea-
soning being that inter gas molecule collisions will obey con-
servation of momentum but not necessarily conservation of

energy [1] i.e. inter-gas collisions tend to be inelastic. With
further modelling this may help explain what is witnessed.

This author’s insight that inter-gas collisions may gen-
erally be inelastic requires that radiation is given off during
such collisions thus enabling inelastic collisions to adhere to
conservation of energy [1]. Such collision induced radiation,
whether it be considered as part of the system’s blackbody
and/or thermal energy, becomes part of the system being in
thermal equilibrium i.e. the walls adsorb as much radiation
energy as they emit.

The above is not to say that the walls and/or polyatomic
gases necessarily emit the identical spectrum that they ad-
sorb! It is, however to say that the total rate of energy of
emission approximates that of the adsorption! Note; the to-
tal energy associated with radiation, whether it is blackbody,
thermal or otherwise, can often be considered as insignificant,
when compared to the energy associated with kinematics of
matter. This is not saying that it can simply be ignored as is
too often traditionally done in thermodynamics!

It should also be stated that large polyatomic gases will
have large cross-sectional areas hence the concept of being
sufficiently dilute may require higher mean molecular vol-
umes in the gaseous state i.e. relatively low pressures.

Can we now claim that large polyatomic gas molecules
tend to attain their kinetic energy from inter-gas collisions
that obey conservation of momentum? No we cannot! How-
ever our expectation becomes that large polyatomic gases will
not have the specified kinetic energies that smaller gases pos-
sess.

To further emphasize; the conceptualization of small gas-
es having their kinetic energy pumped into to them by sur-
rounding vibrating wall molecules, does not necessitate that
gas-wall molecules collisions are elastic. On the contrary, it
just implies that the gas’ mean kinetic energy is driven into
them via numerous collisions with wall molecules.

3 Addressing traditional dogma

As previously stated traditional kinetic theory is based upon
equipartition and degrees of freedom arguments. We can go
back further and acknowledge that for most of us, our learn-
ing started with considering a gas molecule’s momentum and
that momentum is conserved in elastic wall-gas molecule col-
lisions.

The main problem with the above approach being that
elastic collisions are a rarity i.e. it is rare to have a colli-
sion where both momentum and kinetic energy are conserved.
The one simple exception being the case of two balls of equal
mass colliding, with the second ball being stationary before
the collision and that second ball then attains all the kinetic
energy from the first ball, after the collision, i.e. first ball is
stationary after the collision.

Rather than address the elephant in the room, traditional
kinetic theory simply considered that all collisions are elastic,
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as well as, the gas molecule leaves the wall with the same
magnitude of momentum as it has prior to hitting the wall.
Realizing that walls impose their energetics onto the dilute
gas implies that traditional teaching may have put the cart
ahead of the horse!

Certainly considering all collisions as being elastic avoids
having to contemplate the various frequencies of radiation
that would be associated with inelastic collisions. And when
in equilibrium; since the mean kinetic energy of the gas mole-
cules is constant then yes the mean magnitude of momentum
remains constant but this is no longer a requirement for an
elastic gas-wall collision!

The situation is no more complicated if it is considered
that a dilute gas in thermal equilibrium requires that all of the
following three states remain related to the same temperature
(T). Basically, as previously stated by this author [1]:

1. The walls are in thermal equilibrium with the enclosed
radiation i.e. blackbody, thermal or otherwise.

2. The gas’ translational plus rotational energy is pumped
into the gas by the more massive vibrating wall
molecules.

3. The gas’ vibrational energies are in thermal equilib-
rium with the enclosed radiation i.e. blackbody, ther-
mal or otherwise.

Remember: Part of this radiation surrounding the gas
molecules will now be a result of the various inelastic inter-
molecular collisions.

4 Atmospheric gases

At first glance considering that walls impose/pump their vi-
brational energy onto relatively small gases’ kinetic energy,
may feel counter-intuitive in part because gases are routinely
put into, and/or removed from containers without any real
noticeable temperature changes. However, if we realize that
the above does not necessarily hold for enclosed larger poly-
atomic gases and that such gases generally obtain their vibra-
tional energy from the surrounding blackbody/thermal radia-
tion, then the mean energetics of such gases will not change
significantly by placing them into, nor removing them from
enclosures.

Certainly small gas molecules in our atmosphere will hit
the Earth’s rough surface and have a certain amount of their
kinetic energy pumped/imposed upon them in various inelas-
tic collisions with Earth’s surface. Even so, for atmospheric
gases inter-gas collisions still should dominate.

Next consider the collision of a small gas molecule with
a larger polyatomic gas. The expectation becomes that the
larger gas molecule will behave as a massive wall molecule
does, i.e. the large polyatomic gas molecule will use its vi-
brational energies to pump/impose some fairly well-defined
mean kinetic energy (translational plus rotational) onto the
colliding small gas molecules.

5 Other proofs for inelastic collisions

There is more proof to inelastic intermolecular collisions than
just the awkwardness of the mathematical justification for
elastic intermolecular collisions. Some examples being:

1. Viscous dissipation i.e. heat being generated by gases
squeezed through a valve.

2. Natural P-T relationships i.e. temperature increases
with increasing pressure.

3. Joule’s weight experiment i.e. Although designed to
demonstrate a correlation between work and energy,
what it really shows is that imposed increases to a liq-
uid’s flow (due to the paddles attached to weights) re-
sulted in increased intermolecular friction, which gen-
erated heat.

All of the above is readily explained in terms of inelastic
intermolecular collisions, but all are not so readily explain-
able in terms of traditional understandings.

6 Conclusions

This author’s previous conclusion [1]; kinetic theory needs
to be redrafted based upon the previous understanding that a
gas’ kinetic energy has both translational and rotational com-
ponents that are pumped/imposed onto them due to the same
wall molecule’s vibrational energy. Moreover, it seemingly
holds for most small gaseous molecules i.e. gas’ whose poly-
atomic number is 4 or less.

For larger polyatomic gases, flatlining helps explain what
is witnessed. Specifically flatlining means that larger poly-
atomic gases tend to strike two or more vibrating wall mole-
cules at some instant. Therefore any kinetic energy transfer
between impacting gas molecule and vibrating wall molecule,
is not clean. Moreover it becomes awkward to even determine
what direction the net flow of energy exchange actually goes,
assuming that there is any actual a net energy exchange!

This certainly improves the fit between accepted empiri-
cal findings for large polyatomic gases and the kinetic theory
as previously proposed [1], combined with what is currently
described herein, by this author.

Interestingly, it can be contemplated that atmospheric
gases will tend to follow similar dynamics where large poly-
atomic gases adsorb surrounding radiation (blackbody and/or
thermal) thus increasing their vibrational energy. This vi-
brational energy is then pumped/imposed onto any small gas
molecules that collide with the larger polyatomic gases.

Furthermore, we asserted that most inter-molecular col-
lisons probably are inelastic. In which case radiation (ther-
mal, blackbody or otherwise) will be a byproduct of such col-
lisions, and as such must be considered as part of a system’s
state, whether or not, that system is in thermal equilibrium.
And this does alter our consideration of thermal equilbrium!

The overall implication being that traditional theorists un-
wittingly put the cart ahead of the horse by beginning the
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teaching of kinetic theory in terms of gas molecule’s momen-
tum and elastic collisions. This ignores the fact that elastic
collisions are rare hence may be an unnecessary, illogical, un-
realistic, conceptualization when applied to kinetic theory!

Submitted on February 12, 2018
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