
Issue 3 (July) PROGRESS IN PHYSICS Volume 14 (2018)

The Planck Vacuum Physics Behind the Huygens Principle and
the Propagator Theory for the Schrödinger Electron

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA
E-mail: wcdaywitt@me.com

This paper reviews a small portion of the quantum-electrodynamic propagator model
as viewed from the Planck vacuum (PV) theory. The nonrelativistic calculations sug-
gest that the degenerate collection of Planck-particle cores (that pervade the invisible,
negative-energy vacuum state) is responsible for the Huygens principle, the propagator
theory, and the Feynman diagrams.

1 Introduction

The theoretical foundation [1–3] of the PV theory rests upon
the unification of the Einstein, Newton, and Coulomb super-
forces:
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where the ratio c4/G is the curvature superforce that appears
in the Einstein field equations. G is Newton’s gravitational
constant, c is the speed of light, m∗ and r∗ are the Planck mass
and length respectively [4, p. 1234], and e∗ is the massless
bare charge. The fine structure constant is given by the ratio
α = e2/e2

∗, where (−e) is the observed electronic charge.
The two particle/PV coupling forces
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the electron core (−e∗,m) and the Planck-particle core
(−e∗,m∗) exert on the PV state, along with their coupling con-
stants

Fc(rc) = 0 and F∗(r∗) = 0 (3)

and the resulting Compton radii

rc =
e2
∗

mc2 and r∗ =
e2
∗

m∗c2 (4)

lead to the important string of Compton relations

rcmc2 = r∗m∗c2 = e2
∗ (= c~) (5)

for the electron and Planck-particle cores, where ~ is the re-
duced Planck constant. The electron and Planck-particle
masses are m and m∗ respectively. To reiterate, the equa-
tions in (2) represent the forces the free electron and Planck-
particle cores exert on the PV space, a space that is itself per-
vaded by a degenerate collection of Planck-particle cores [5].

The Planck constant is a secondary constant whose struc-
ture can take different forms, e.g.

~ [erg sec] = rcmc = r∗m∗c =

(
e2
∗

r∗

)
t∗ = m∗c2t∗ (6)

that are employed throughout the following text, where t∗ (=
r∗/c) is the Planck time [4, p. 1234].

Furthermore, the energy and momentum operators ex-
pressed as

Ê = i~
∂

∂t
= i (m∗c2) t∗

∂

∂t
= i (m∗c2) r∗

∂

c∂t
(7)

and

c p̂ = −i c ~∇ = −i (m∗c2) r∗ ∇ = −i (mc2) rc ∇ (8)

will be used freely in what follows.
Section 2 re-examines the Schrödinger equation in light of

the PV theory, the calculations concluding that the pervaded
vacuum state is the source of the scattering in the propagator
theory. Section 3 presents a nonrelativistic look at the Huy-
gens principle and the propagator theory for the electron core.

2 Schrödinger equation

The inhomogeneous Schrödinger equation, where H = H0+V
is the Hamiltonian operator, can be expressed as(

i~
∂

∂t
− H

)
ψ(x, t) = 0 . (9)

The free-space Hamiltonian is H0 and V is some position and
time-dependent potential that is assumed to slowly vanish in
the remote past (t → −∞) and in the remote future (t → +∞).
In free space V = 0 and (9) becomes(

i~
∂

∂t
− H0

)
φ(x, t) = 0 . (10)

For t′ > t, the formal solution to (9) or (10) takes the
form [6]

ψ(x, t′) = T exp
[
−i

∫ t′

t
dt
′′

H(t′′)/~
]
ψ(x, t) (11)

where T is the time-ordering operator whose details are unim-
portant here (see Appendix A). What is important is the de-
composition of ~ (= m∗c2t∗) in the exponent of (11), leading
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From the perspective of the PV theory, the normalization of
dt
′′

by the Planck time t∗ and H by the Planck-particle mass
energy m∗c2 strongly suggest that the scattering in the quan-
tum-electrodynamic propagator theory is caused by the
Planck-particle cores that pervade the vacuum state. This
conclusion will be reinforced by the calculations to follow.

The normalized Hamiltonian operator H0 can be
expressed as

H0
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“p2/2m”
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=
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m∗c2 = −
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2

(13)

where the equalities in (5) are used. Then the normalized
Schrödinger equation becomes

ir∗
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2

φ = 0 (14)

or (
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2

)
φ = 0 (15)

where t∗ (= r∗/c) is the Planck time and the equations are di-
mensionless. The dimensionless aspect of the equations here
and in what follows will help in recognizing the relationship
between the Huygens principle and the propagator formalism.

The normalized inhomogeneous equation (9) becomes(
it∗
∂

∂t
+

rcr∗∇2

2

)
ψ =

V
m∗c2 ψ (16)

where again the equation is dimensionless.

3 Electron-core propagator

Roughly speaking, the Huygens principle states that every
point on a wavefront is itself the source of a spherical wavelet.
In the present context, the Huygens principle takes the form
[7, eqn. 6.29]
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∫

d3x
G0(x′, t′; x, t)

~
φ(x, t) for t′ > t

φ(x′, t′) = i
∫

d3x
G0(x′, t′; x, t)

(m∗c2)t∗
φ(x, t) (17)

and

ψ(x′, t′) = i
∫

d3x
G(x′, t′; x, t)

~
ψ(x, t) for t′ > t

ψ(x′, t′) = i
∫

d3x
G(x′, t′; x, t)
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where the Green function propagators G0 and G have the
units “erg-sec per unit volume”. In the present paper, equa-
tions (17) and (18) are associated with what are defined as
internal- and external-scattering processes respectively. The
internal scattering refers to the free electron φ(x, t) scattering
off the pervaded PV space. The external scattering refers to
the electron ψ(x, t) scattering off the pervaded PV space with
an external potential V(x, t) perturbing that space. It will be
seen in what follows that the units “erg-sec per unit volume”
almost define the “pervaded vacuum space”.

Now begins the calculation of the wave function ψ result-
ing from the continuous interaction of the free-electron wave
function φ with the perturbed vacuum state. The calculation
will not be carried to completion, but only far enough (equa-
tion (25)) to suggest that the wave scattering takes place be-
tween φ and the pervaded vacuum space. Furthermore, many
of the details in the following calculations based on reference
[7] are unimportant to the present needs; so the calculations
are heavily referenced in case the reader is interested in those
details.

For t = ∆t1 [7, eqn. 6.30](
it∗
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)
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and (
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∂
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2

)
ψ(x1, t1) = 0 (20)

for t , ∆t1. Equation (19) refers to an external scattering as
defined above.

The new wave function due to the external perturbation V
in (19) can be expressed as [7, eqn. 6.31]

ψ(x1, t1) = φ(x1, t1) + ∆ψ(x1, t1) (21)

so the Schrödinger equation yields (using (15) for φ)(
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2

2

)
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=
V(x1, t1)

m∗c2

[
φ(x1, t1) + ∆ψ(x1, t1)

]
.

(22)

It can be shown that the second terms on the left and right
sides of (22) can be dropped [7, eqn.6.35], leading to

it∗
∂

∂t1
∆ψ(x1, t1) =

V(x1, t1)
m∗c2 φ(x1, t1) (23)

which to first order in ∆t1 yields

∆ψ(x1, t1 + ∆t1) = −i
V(x1, t1)

m∗c2 φ(x1, t1)
∆t1
t∗

(24)

where the differential ∆ψ(x1, t1) coming from the approxima-
tion is ignored compared to the φ(x1, t1) on the right side of
(24).

For two consecrative time periods ∆t1∆t2, with an infi-
nite past [where ψ(x′) → φ(x′)], it can be argued that [7,
eqn. 6.43]
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Fig. 1: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with no external scattering.

Fig. 2: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with one external scattering at
(x1, t1).
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where the obvious notations (x) ≡ (x, t) and φ(2) ≡ φ(x2) are
used. The four terms in (25) represent respectively the prop-
agation from (x, t) to (x′, t′): a) as a free particle with no ex-
ternal scatterings; b) with one scattering at (x1, t1); c) with
one scattering at (x2, t2); and d) with a double scattering at
(x1, t1) and (x2, t2) in succession. The representations of these
scatterings in Figures 1-4 are called Feynman diagrams [7,
eqn. 6.43], where the horizontal axis represents space and the
vertical axis represents time.

Fig. 3: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with one external scattering at
(x2, t2).

Fig. 4: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with a double external scattering
at (x1, t1) and (x2, t2).

4 Conclusions and comments

A close examination of the previous calculations strongly
suggests that the PV theory, which envisions a vacuum space
pervaded by a degenerate collection of Planck-particle cores,
provides a fundamental explanation for the Huygens princi-
ple and the scattering associated with the quantum-electro-
dynamic propagator formalism.

The retarded Green function G+
0 associated with the Green

function G0(x′, t′; x, t) in equation (17) and in Figure 1 is
given by the equations [7, eqn. 6.60](

i~
∂

∂t′
− H0(x′)

)
G+

0 (x′; x)
~

= δ3(x′ − x)δ(t′ − t) (26)

for t′ > t and G+
0 (x′; x) = 0 for t′ < t, where x′ = (x′, t′) and

x = (x, t); or(
it∗

∂

∂t′
+ rcr∗∇2

x′

)
G+

0 (x′; x) = δ3(x′ − x)[t∗δ(t′ − t)] (27)

where the parenthesis on the left and the bracket on the right
of (27) are dimensionless.
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Appendix A: Time-ordering operator T

The time-ordering operator [6] is defined by

T exp
[
−i

∫ t′

t
dt
′′

H(t′′)/~
]
≡ (A1)

∞∑
n=0

1
n!

(
−i
~

)n ∫ t′

t
dt1· · ·

∫ tn−1

t
dtnH(t1) . . .H(tn) (A2)

=

∞∑
n=0

(−i)n

n!

∫ t′

t

dt1
t∗
· · ·

∫ tn−1

t

dtn
t∗

H(t1)
m∗c2 . . .

H(tn)
m∗c2 (A3)

where the final equality comes from the decomposition of the
Planck constant, ~ = m∗c2t∗, in (A2).
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