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Fractional Degrees of Freedom in Statistics
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The concept of observation and presentation of the count (reference) results in an inter-
val form is considered. The transition to interval measurements is achieved by use of
the total reduced number of measurements (number of degrees of freedom) as a sample
parameter, which allows the use of non-integer (fractional) powers of freedom in the
calculation of the estimates of static parameters and criteria values. The replacement
of single measurements with interval measurements at their same quantities in all cases
reduces the accuracy of statistical parameters estimates.

Introduction

Currently, there are known applications of fractional powers
in statistics [1]. However, the use of different methods of
data processing, in particular for small samples [2] and for
processing with the use of methods similar to the method of
group accounting arguments [3], allows to broaden their use
in calculations.

The concept of observation

According to [4], observation is the experimental basis of sci-
entific research. Observed results are most often recorded in
the form of meanings of the measured values or their counts.
For static methods of measurement, the result is a single num-
ber. With dynamic methods, it is possible to record the mea-
sured value in time as the implementation of a random (non-
random) process. In the latter case, the results of measure-
ments often are the evaluations of the process parameters. In
both cases, statistical stability is a prerequisite, which in par-
ticular consists, in the approximation, with a sufficiently large
number of observations∗ to the probability of a given value.
In all cases, if the measurement of the value is repeated many
times, the result is a statistical distribution series correspond-
ing to any distribution law, which may be associated with the
error of the measuring system or instrument.

Each single measurement (count), as well as their totality,
gives an empirical distribution, which is described in the form
of a histogram, statistical series, empirical distribution func-
tion, etc. In this case, along with the above, it is necessary to
specify the number of measurements, i.e. empirical descrip-
tion requires specifying the number of experiments (sample
size) on the basis of which it is obtained. We will refer to the
number of measurements, on the basis of which the empirical
description of the distribution law is obtained, as the number
of degrees of freedom. However, there are measured values,
which, by their nature, initially have a form corresponding to
a certain distribution law [5]. In this case, the measured value
is set not by a value, which is constant or changing in time,
but by an area at each point of which it can be located with a

∗The ratio of the number of observations of a particular value to the total
number of observations.

certain probability. This allows each measurement to match
the area of the measured value with the law of its distribution.

The area of determination of the value can be set with
one or more than one interval, see Fig. 1. One dimension
gives the area and the value of the parameters’ estimates of
the distribution law.

Interval measurements

Let us consider the basic prerequisites for using intervals as
measurement results.

The possibility to express numerical values of quantities
in the form of intervals is used in the theory of intervals [6].
The basic idea of interval analysis is that you can work with
intervals as with plain numbers. Common operations such
as addition, subtraction, multiplication and division, as well
as set theory operations such as intersection and union, are
quite applicable to them. Interval operations are described by
a ratio:

A@B = { x@y|x ∈ A, y ∈ B } , (1)

where @ is one of the operations {+, −, ∗, /, ∪, ∩}, while
A, B are intervals.

Fig. 1: Types of areas for determining the measurement value: a —
one observation — a single numerical value; b — one observation
— a set of intervals of numerical values, including those that are not
limited to the left or to the right; c — one observation — a set of
intervals strictly limited to the left and to the right; d — one obser-
vation — one interval of numerical values with one border to the left
and one to the right.
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A single (real) number can be viewed as that an interval
having a definition domain and the law of distribution in the
form of a certain event probability:

P (a ∈ [a, a]) = 1, a = [a, a] , (2)

i.e. just one numerical value is sufficient for the description
of the measured value.

Let us consider the measurement process of the diameter
of a bearing ring as an example of a measurement that has
a definition area of one interval. The measurement of the
radius of the hole or the outer diameter (done with sufficiently
accurate instruments) relative to the calculated center of the
bearing ring gives the dependence of the radius to the point
on the circumference surface of the hole or the outer diameter
in the form of a realization of a random process that can be
described by a random function like follows:

R = X (α) , (3)

where 0 6 α 6 2π is the bearing ring angle of rotation.
Accurate lab instruments such as circular gauges allow us

to fully record the kind of realization of a random process.
Obviously, when such a record exists, it can be processed by
well known methods of the theory of random processes. In
production conditions, the use of precision instruments is im-
practical. The control devices used allow to quite precisely
measure the diameter of a bearing ring. During the rotation
of the bearing ring it is also possible to determine the max-
imum and minimum values of the diameter of the bearing.
If we limit ourselves to only two of these values, then actu-
ally we come to a case of two independent observations. The
information that there are other numerical values of the diam-
eter, between these two values, becomes thus lost. For a more
complete explanation of the essense of the observation, it is
proposed to consider the considered measurement process as
a single observation in the form of one interval, Fig. 1, d. The
value of the measured diameter has a description in the form
of a statistical series at a given interval:

P̂ ( d : d ∈ [dmin, dmax]) , (4)

where d is the value of the bearing ring diameter.
With an interval measurement, however, there are two de-

grees of freedom: the measurements of one and the other
border of the interval. However, these two dimensions are
considered together over the interval. For example, one di-
mension is a border, and the other is the interval value it-
self, that is, there is a relationship: for the first dimension,
the entire numerical axis is available, and the second dimen-
sion describes the area of the finite length bound to the first
measurement. The availability of the entire numerical axis
here must be understood as a possibility to represent the first
measurement only by selecting the initial value of the refer-
ence point by any number, including almost infinity. For the

interval, whatever we choose as the reference point, its value
remains constant. From this we can assume that the specified
relationship as if reduces the number of degrees of freedom
of choice of numerical values for the interval measurement.
We can assume that it is less than two, but more than one. In-
terval measurement generally gives the values of the borders
of intervals and parameters or their estimates of the distribu-
tion law. This can be described by displaying the interval in
parameters’ values:

G : [ ai bi ]
P
−→

{
β j : j = 1, . . . , k

}
, (5)

where G displays the set of numerical values of the interval
measurement in the values of parameters or their estimates of
the probability distribution law; ai, bi are borders of the i-th
interval; P is the law of distribution of values of a random
variable from the interval; β j is the value or estimate of a
parameter of the distribution law.

It should be noted that the borders of the interval can be
displayed in the parameters of the distribution law explicitly
(for example, the boundaries of the interval in the case of the
law of equal probability density) or indirectly as the area of
definition of this law.

One of the options for describing the distribution law P
is the probability density. By the given probability density or
histogram it is possible to calculate or to estimate the param-
eters of the distribution law. The previously declared com-
monality for the interval and for one number (2) allows these
calculations to be applied for one number obtained during the
measurement. Let us illustrate this by calculating the disper-
sion of a single observation.

Calculation of the dispersion estimation of one observa-
tion by known relations [1] can be performed by the formula:

σ̂2
x =

n∑
i=1

(xi − mx)2

n
=

(x − mx)2

1
if mx is known, (6)

where mx is the mathematical expectation; x is the numerical
value of the dimension.

For one number from the interval with coinciding borders,
formula (6) is valid, because the mathematical expectation
does not require an evaluation, but is equal to the number it-
self. The value of the dispersion estimate in this case is zero.
This clearly indicates the non-randomness of the interval rep-
resentation of the same number, i.e., the specific meaning of
the measured value does not have a random component — it
is a non-random value.

Calculation of the dispersion estimate for an interval mea-
surement in the extreme case can be performed as that for two
independent observations by formulas:

σ̂2
x =

(b − mx)2 + (a − mx)2

1
, if mx is unknown, (7)

σ̂2
x =

(b − mx)2 + (a − mx)2

2
, if mx is known. (8)
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It can be assumed that the value of the dispersion estimate
for the interval for each case, due to the lower value of the de-
grees of freedom, should exceed the values given by formulas
(7) and (8). In addition, within the interval, the measured nu-
merical values of the value are determined by its distribution
law. If we choose as the basic one the law of equal probability
density (EPD), then we lead the rest of the distributions to it
by changing the value of the interval on the basis of equality
of the entropy value.

Let us define the given number of measurements (degrees
of freedom) for an interval measurement in the form of:

ri = 1 + ∆i , 1 > |∆i| > 0; (9)

where

∆i =


+∆is, boundaries are given from experience;
−∆is, one boundary is given by the researcher;
−1, boundaries are given randomly.

The value ∆is can be determined by formula:

∆is =


1

1 + 1/his
, at bi, ai , 0;

0, at bi, ai = 0;
(10)

where
his =

bi − ai
1
2 | ai + bi |

is choosen for the EPD law and

his =
(bi − ai) Hx

HEPD

∣∣∣ M [
X[a,b]

] ∣∣∣
is choosen for any other law of the distribution of x along the
interval [ai, bi];

Hx = M
[
log P

(
X = x j ∈ [ai bi]

)]
=

−

n∑
j=1

P
(
X = x j

)
log P

(
X = x j

)
is chosen if the given measured value is discreet∗;

Hx = M
[
log P ( f (x))

]
= −

∫ bi

ai

f (x) logc f (x) dx

is taken at c < (bi − ai) if the measured value is continuous
(relative entropy);

HEPD = log n[a,b]

if the discrete measured value is distributed equally possible
within the interval, where n[a,b] is the number of equally pos-
sible states in the interval;

HEPD = logc (bi − ai)
∗The given relations for determination of H# are similar to entropy for-

mulas, and for the case of discrete measured values exactly coincide with
them.

if within the interval the measured value is distributed accord-
ing to the EPD law;

M
[
X[a, b]

]
is the mathematical expectation of the measured value in the
interval [ai, bi].

The total reduced number of measurements, the value for
the calculation of statistical parameters for the sample, is
equal to:

nr =

n∑
i=1

ri . (11)

This assumes that, when creating a statistical series of dis-
tributions or histograms, each interval dimension must have
its own share proportional to the value of ri. If it is 0, this
dimension is ignored. If it differs from zero, then this con-
tribution, as the number of measurements (experiments), is
equal to its value.

Formulas for calculation of the main estimates of statisti-
cal parameters for one, i-interval measurement, in the case of
the EPD law for the measured value within the interval, have
the form:

m̂xi =
bi + ai

2
; (12)

σ̂2
ri

=

(
bi − m̂xi

)2
+

(
ai − m̂xi

)2

ri − 1
=

(bi − ai)2

2 (ri − 1)
. (13)

Example. With a rectangular contribution (EPD), let us
define by formula (13) the estimate of the variance in the in-
terval of an i-th observation for different ratios of the value
of the interval and the values of its mathematical expectation,
see Table 1.

Left bor-
der of the
interval,

ai

Right bor-
der of the
interval,

bi

Math. ex-
pectation
estimate,

m̂xi

Reduced no.
of measure-
ments, ri

Estim.
variance,
σ̂2

ri
(13)

−4 4 0 2 32

−3 5 1 1.889 36

−2 6 2 1.8 40

−1 7 3 1.727 44

0 8 4 1.667 48

1 9 5 1.615 52

2 10 6 1.571 56
. . . . . . . . . . . . . . .

30 38 34 1.190 168

Table 1: Dispersion (variance) estimation via the given number of
measurements.

Analysis of Table 1 shows that in the symmetric interval
(the case when the estimate of the mathematical expectation
is 0), the variance estimate coincides with the value calcu-
lated by formula (7) for two unit measurements. As the value
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of mathematical expectation increases, the variance value in-
creases due to the reduction of the reduced number of mea-
surements, which can be taken as the number of degrees of
freedom of the resulting measurement.

Taking into account the above, a single measurement can
be considered as an interval measurement when the interval is
equal to the rounding error of the instrument readings. In this
case, a fairly small relative error gives the reduced number of
measurements equal to 1.

Contributions method

To process the results of a small sample in the evaluation of
the distribution laws, the contribution method is used [2, 6].
This approach allows us to obtain a paradoxical result: due to
the empirical selection of the width of the interval of a rectan-
gular or other contribution, the accuracy of the assessment in-
creases. The paradox is that, by coarsening the measurement
results (the numbers are replaced by fixed-width intervals),
the accuracy of statistical parameters is allegedly improved.

When using the formalism published in the work [2], the
proposed estimation formula for the method of contributions
for the probability density is:

f̃ (x) =

n∑
i=1

ri · pi (x, ai, bi)

n∑
i=1

ri

, (14)

where n is the number of observations; pi (x, ai, bi) is a gen-
eralized record of the empirical component of the distribution
density associated with the interval of i-th observation (hav-
ing all the properties of the distribution density), describes
the law of distribution of measurements in the interval. Un-
like the work [2], empiricism is limited by the choice of the
distribution law in the interval. And there are two options:

1. The distribution law is the same for all intervals;
2. For each interval, its own law of distribution is picked.

For the case of the EPD law in the interval we have:

pi (x, ai, bi) =
1

bi − ai
, ai 6 x 6 bi . (15)

The work [7] presents a formula which uses the method
of contributions for the empirical component of density esti-
mation in the form of:

f ∗N (x) = C (ρ)
N∑

i=1

µi ψi (ρ, x) , (16)

where the ρ parameter is equal to half of the contribution in-
terval, ρ = bi−ai

2 = const, that is, the interval in all dimensions
is the same;

C (ρ) =


ρ∫
−ρ

ψi (ρ, x) dx


−1

, (17)

the amplitude ensures the equality of each contribution 1;
µi = 1/N is weight (the ratio for norming density estimation);
and also

ψi (ρ, x) =

 1, xi − ρ 6 x 6 xi + ρ ;
0, for others x.

(18)

Let us consider the use of formulas (14) and (16) for Ex-
ample 2.1 from the work [7].

Example 2.1 [7]. As a result of measurement of param-
eter X of three products after adjustment of the equipment,
the following results were obtained: 6.0; 6.4; 6.6. Let us es-
timate the empirical density that characterizes the quality of
the equipment setup.

Some assumptions must be made to calculate by (16). Let
us suppose that. Let us suppose that µi = 1/N = 1/3 = 0.3.

Then by formula (17)

C (ρ) =


0,3∫
−0,3

ψi (ρ, x) dx


−1

=
1

0.6
≈ 1.67.

Summing the kernels (contributions) ψi (ρ, x) for all i =

1, 2, 3 with amplitudes of 1.67 and weights 1/3, we obtain

f ∗N (x) =


0.56, 5.7 6 x < 6.1;
1.11, 6.1 6 x < 6.7;
0.56, 6.7 6 x 6 6.9;

(19)

(see Fig. 2):

Fig. 2: Empirical estimates of the probability density, Example 2.1.

Using formula (14), the example data can be interpreted
as follows: three intervals are used as input: [5.7; 6.3], [6.1;
6.7], [6.3; 6.9]. The length of each interval is equal to 0.6.
The distribution law within the interval is EPD. The distribu-
tion density is equal to:

pi (x, ai, bi) = 1/0.6; ai 6 x 6 bi . (20)
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Reduced number, ri

N/N
i/o

Left
border
of the
interv.,

ai

Right
border
of the
interv.,

bi

Math.
expec-
tated
estim.,

m̂xi

Both
borders
are expe-
rim.,

rie

One bor-
der is set
by the re-
searcher,

rip

1 5.7 6.3 6 1.091 0.909

2 6.1 6.7 6.4 1.086 0.914

3 6.3 6.9 6.6 1.083 0.917

Total: 3.26 2.74

Table 2: The reduced number of measurements by intervals, Exam-
ple 2.1.

The calculated numerical values according to formula (9)
of the given numbers of measurements for each the interval
are shown in Table 2.

The total number of measurements calculated by formula
(11) is equal to:

nre

n∑
i=1

rie = 3.26

if all parameters of the interval are obtained experimentally
(experimental data);

nrp

n∑
i=1

rip = 2.74

if one of the interval’s limits is specified by the researcher (a
priori data).

Hence, the estimated values for the probability density
(14) with account of contributions (18) look like these:

f̃re (x) = ∆re
f 1 + ∆re

f 2 + ∆re
f 3 for experimental data, (21)

f̃rp (x) = ∆
rp
f 1 + ∆

rp
f 2 + ∆

rp
f 3 for a priori data, (22)

f̃mv (x) = ∆mv
f 1 + ∆mv

f 2 + ∆mv
f 3 for a small sampling, (23)

where

∆re
f 1 = 0.558, ∆re

f 2 = 0.555, ∆re
f 3 = 0.554;

∆
rp
f 1 = 0.553, ∆

rp
f 2 = 0.556, ∆

rp
f 3 = 0.558;

∆mv
f 1 = 0.556, ∆mv

f 2 = 0.556, ∆mv
f 3 = 0.556;

are contribution of the intervals, while i is the interval num-
ber,

∆#
f i =

 ∆hi , ai 6 x 6 bi;
0, ai > x > bi;

is a contribution of the i-th interval under # (here re means
“experimental”, rp means “a priori”, mv means “calculated
by data method” [7]);

∆hi =
ri#

n# · (bi − ai)

Reduced number, ri

N/N
i/o

Left
border
of the
interv.,

ai

Right
border
of the
interv.,

bi

Math.
expec-
tated
estim.,

m̂xi

Both
borders
are expe-
rim.,

rie

One bor-
der is set
by the re-
searcher,

rip

1 5.56 6.44 6 1.128 0.872

2 5.96 6.84 6.4 1.121 0.879

3 6.16 7.04 6.6 1.118 0.882

4 5.0 7.2 6.1 1.265 0.735

Total: 4.631 3.369

Table 3: The reduced number of measurements by intervals of Ex-
ample 2.2.

Contribution height:

Interv. no. Experim. data A priori data Small sampl.

1 0.277 0.294 0.284

2 0.275 0.297 0.284

3 0.274 0.298 0.284

4 0.124 0.099 0.114

Table 4: Height of contributions for Example 2.2.

is the height of the i-th contribution; nmv = 3 is number of
intervals; rimv = 1 is the value of the method contribution [7].

The graphs of probability density estimation for depen-
dencies (21–23) are shown in Fig. 2.

Let us also consider Example 2.2 [7], in which, along with
the intervals of Example 2.1, an interval different from the
others by length is included.

Example 2.2 [7]. Let us assume that in the conditions
of Example 2.1 there is a priori information in the form of
an interval [5.0; 7.2]. Let us calculate the estimates of the
probability density. The length of the interval for readings
6.0; 6.4 and 6.6 is calculated [7] equal to 0.88, i.e. ρ = 0.44.

The given numbers of measurements (9) for each the in-
terval are shown in Table 3.

The estimated probability density values in this case is:

f̃re (x) =

4∑
i=1

∆re
f i for experimental data, (24)

f̃rp (x) =

4∑
i=1

∆
rp
f i for a priori data, (25)

f̃mv (x) =

4∑
i=1

∆mv
f i for small sample contributions. (26)

The heights of contributions for the intervals are shown in
Table 4.

Probability density estimates for dependencies (24–26)
are shown in Fig. 3.
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Fig. 3: Empirical estimates of probability density of Example 2.2.

Types of
data

Measure-
ment char-
acteristics

Esti-
mates

Examples

2.1 2.2

Discrete Borders of
the interval

n — 5
ME — 6.24
D — 0.668

Discrete Average va-
lues of the
intervals

n 3 4
ME 6.333 6.275
D 0.093 0.076

Interval Experimen-
tal

nr 3.26 4.631
ME 6.333 6.269
D 0.133 0.272

Interval A priori nr 2.74 3.369
ME 6.334 6.283
D 0.145 0.279

Small sam-
ples

n 3 4
ME 6.333 6.275
D 0.138 0.275

Table 5: The reduced number of measurements by intervals of Ex-
ample 2.2. The following designations are used here: ME — the
mathematical expectation, D — the dispersion (variance), n — the
number of experiments or intervals (for a single measurement, when
the borders of the interval coincide, the number of intervals is equal
to 1), nr — the total given number of measurements.

Results

The reduced estimates of probability densities, Fig. 2 and
Fig. 3, can be used in practical applications only when spec-
ifying for each of them the number of observations (exper-
iments), which can be considered as the number of degrees
of freedom, see formula (11) for the reduced number of mea-

surements. In work [7] the number of experiments is equal to
the number of intervals. The results of mathematical expec-
tation and variance estimates for Examples 2.1 and 2.2, with
taking different approaches into account (determination of the
number of experiments as the number of intervals, or the use
of the reduced number of measurements instead) are given in
Table 5.

Analysis of the results displayed in Table 5 allows us to
make the main conclusion: replacement of single measure-
ments with interval measurements at the same numbers in all
cases reduces the accuracy of estimates of statistical param-
eters. This follows from the fact that single measurements,
rather than interval measurements, have the lowest variance.
The application of interval measurements allows to expand
the possibilities of statistical processing of measuring infor-
mation. It is essential to use as a sample parameter the to-
tal reduced number of measurements (number of degrees of
freedom), which allows the use of non-integer (fractional) de-
grees of freedom in the calculation of estimates of static pa-
rameters and criteria values.

Submitted on May 17, 2018
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