
Issue 2 (July) PROGRESS IN PHYSICS Volume 15 (2019)

A Mathematical Definition of “Simplify”

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209. E-mail: cafeinst@msn.com

Even though every mathematician knows intuitively what it means to “simplify” a math-
ematical expression, there is still no universally accepted rigorous mathematical defi-
nition of “simplify”. In this paper, we shall give a simple and plausible definition of
“simplify” in terms of the computational complexity of integer functions. We shall also
use this definition to show that there is no deterministic and exact algorithm which can
compute the permanent of an n × n matrix in o(2n) time.

1 Introduction

In 2013, the author asked the following quesiton titled “Is
there a ‘mathematical’ definition of ‘simplify’?” on the pop-
ular mathematics website MathOverflow.net [1]:

“Every mathematician knows what
‘simplify’ means, at least intuitively.
Otherwise, he or she wouldn’t have made
it through high school algebra, where
one learns to ‘simplify’ expressions like
x(y + x) + x2(y + 1 + x) + 3(x + 3). But
is there an accepted rigorous ‘mathe-
matical’ definition of ‘simplify’ not just
for algebraic expressions but for general
expressions, which could involve anything,
like transcendental functions or recursive
functions? If not, then why? I would think
that computer algebra uses this idea.”

The answers there indicated that even though every math-
ematician knows intuitively what “simplify” means, there is
still no universally accepted definition of “simplify”. In fact,
one of the answers (by Henry Cohn) indicated that “In full
generality, there provably isn’t any method for complete sim-
plification”. (He was referring to elementary functions of a
real variable.) In this paper, we shall give a simple and plau-
sible definition of “simplify” in terms of the computational
complexity of integer functions. We shall also use this defini-
tion to show that there is no deterministic and exact algorithm
which can compute the permanent of an n × n matrix in o(2n)
time.

2 A definition of “simplify”

Consider the following definition of “simplify”:

Definition: An algebraic expression (recursive or non-recur-
sive) for a function f : Z → Z cannot be simplified if there
is no other algebraic expression for f which can be computed
faster.

For example, the expression xw+yz+xz+yw can be simplified
to (x + y)(w + z), since computing (x + y)(w + z) takes only

one multiplication and two additions, while computing xw +

yz + xz + yw takes four multiplications and three additions.
And we can also see clearly that the expression (x + y)(w+ z)
cannot be simplified.

As another example, let f : Z → Z be the function
which satisfies the recursive formula, f (n) = f (n− 1) + 1 and
f (0) = 0. This recursive formula can be simplified to f (n) =

n, since computing the recursive formula for f takes Θ(n)
time, while computing the formula f (n) = n is trivial. And
the formula f (n) = n clearly cannot be simplified.

And let f : N → N be the function which satisfies the
recursive formula, f (n) = f (n − 1) + f (n − 2) and f (1) =

f (2) = 1, the Fibonacci sequence. This recursive formula
can be simplified, since it is possible to prove that f (n) equals
φn/
√

5 rounded to the nearest integer, where φ = (1 +
√

5)/2,
which can be computed exponentially faster than the recur-
sive formula can be computed [4].

3 Computing the permanent of a matrix

Let A = (ai j) be a matrix of integers. The permanent of A is
defined as:

perm(A) =
∑
σ ∈ S n

n∏
i=1

aiσ(i),

where S n is the symmetric group [5]. The fastest known de-
terministic and exact algorithm which computes the perma-
nent of a matrix was first published in 1963 and has a running-
time of Θ∗(2n) [3]. It is still considered an open problem by
the mathematics and computer science community whether
this time can be beaten. Now consider the following theorem
and proof, which we shall discuss afterwards:

Theorem: There is no deterministic and exact algorithm
which can compute the permanent of an n × n matrix in o(2n)
time.

Proof: For any row i, the permanent of matrix A satisfies the
recursive formula

perm(A) =

n∑
j=1

ai j · perm(A#
i j)

Craig Alan Feinstein. A Mathematical Definition of “Simplify” 75



Volume 15 (2019) PROGRESS IN PHYSICS Issue 2 (July)

and perm([a11]) = a11, where A#
i j is the (n−1)× (n−1) matrix

that results from removing the i-th row and the j-th column
from A. This formula cannot be simplified, so the fastest al-
gorithm for computing the permanent of a matrix is to apply
this recursive formula to matrix A. Since this involves recur-
sively evaluating the permanent of Θ(2n) submatrices of A,
each corresponding to a subset of the n columns of A, we ob-
tain a lower bound of Θ(2n) for the worst-case running-time
of any deterministic and exact algorithm that computes the
permanent of a matrix. �

At first, this proof makes sense intuitively, but if one thinks
about it a little more, one might become skeptical, since one
could argue the same for the determinant of a matrix, that
there is no deterministic and exact algorithm which can com-
pute the determinant of an n × n matrix in o(2n) time (which
is known to be false) - for any row i, the determinant satisfies
the recursive formula

det(A) =

n∑
j=1

(−1)i+ jai j · det(A#
i j)

and det([a11]) = a11, which is almost the same as the recursive
formula for the permanent of a matrix.

However, there is a big difference between the two recur-
sive formulas: There are negative signs in the formula for the
determinant, so it is not inconceivable that one might be able
to cancel most of its terms out, if one is clever. And in fact this
is the reason why it is possible to compute the determinant of
a matrix in polynomial-time: If one performs elementary row
operations on matrix A with pivot a11 , 0, converting it to a
matrix B with zeroes in the last n−1 entries of column 1, then
the determinant of A will equal the determinant of B and we
will also obtain a simpler formula for the determinant:

det(A) = a11 · det(B#
11).

This trick ultimately leads to a polynomial-time algorithm for
computing the determinant of a matrix, if one applies it recur-
sively to the matrix B#

11, exchanging rows when necessary.
However, in the case of the permanent of a matrix, no

trick like this is possible, since there are only positive signs
in its formula. To gain some insight as to why this is so,
consider the following analogy: Suppose we want to sub-
tract two large positive numbers with a tiny difference, say
a = 12, 345, 678, 907 and b = 12, 345, 678, 903. One could
compute a minus b by applying the normal subtraction pro-
cedure that one learns in elementary school to each digit of
these two numbers, but one does not have to do this; if we let
c = 12, 345, 678, 900, then we will obtain the same answer
by computing (a − c) minus (b − c), which amounts to sub-
tracting only the last digits of each number, 7 minus 3. But
there are no short-cuts like this for adding a and b, since none
of their digits can be cancelled out. And for this same reason,
it is possible to cancel out lots of terms in the formula for the

determinant but not in the formula for the permanent, as the
elementary row operations which are performed on matrix A
when computing its determinant via the algorithm described
above are analogous to subtracting c from both a and b.

But then one might ask, “The proof above said ‘This for-
mula cannot be simplified’. But how can I be sure of this?”
The answer to this question is that we know that the above
recursive formula for the permanent cannot be simplified, be-
cause we have tried every possible way to simplify it and saw
that each way fails: To be specific, we tried to multiply the
factors, ai j and perm(A#

i j), of the summands together, but we
failed since the two factors are completely independent from
one another. And we tried adding the summands together, but
we also failed since the factors ai j found in each summand
are completely independent from one another and are also
completely independent from each perm(A#

i j); furthermore,
we found that since perm(A#

i j) is different in each term, it is
impossible to use the distributive law to decrease the compu-
tational complexity of the recursive expression. And finally,
we noticed that the row choice of i is irrelevant in the recur-
sive formula for the permanent, so no choice of i is better
than any other choice. What other things are there to try that
could possibly make the expression simpler? Nothing, since
we have already considered every mathematical operation in
the recursive formula for the permanent. Therefore, the re-
cursive formula for the permanent cannot be simplified, i.e.,
it has the best computational complexity of any algebraic ex-
pression for the permanent of a matrix.

This type of reasoning is not new or foreign; it is essen-
tially the same type of reasoning that a high school math
student uses to simplify algebraic expressions. Also note
that only if one is careful in one’s analysis and considers ev-
ery possible way to simplify an algebraic expression can one
prove that an algebraic expression indeed cannot be simpli-
fied; merely claiming that an algebraic expression cannot be
simplified does not make it so. But sometimes it is so obvious
that an algebraic expression cannot be simplified that writing
down a full explanation of this is unnecessary. Also, it turns
out that one can use similar reasoning to prove that there is no
deterministic and exact algorithm which solves the Traveling
Salesman Problem in polynomial-time [2].

4 Conclusion

While everyone in the mathematics community understands
intuitively what “simplify” in mathematics means, there is
still no universal definition of “simplify”. In this paper, we
have defined “simplify” in terms of the computational com-
plexity of an integer function and have shown that this defi-
nition can be used to prove that there is no deterministic and
exact algorithm which can compute the permanent of an n×n
matrix in o(2n) time.

Submitted on May 11, 2019

76 Craig Alan Feinstein. A Mathematical Definition of “Simplify”



Issue 2 (July) PROGRESS IN PHYSICS Volume 15 (2019)

References
1. Feinstein C.A. Is there a ‘mathematical’ definition of ‘simplify’?

https://mathoverflow.net/q/126519/7089

2. Feinstein C.A. The Computational Complexity of the Traveling Sales-
man Problem. Global Journal of Computer Science and Technology,
2011, v. 11, Issue 23, 1–2.
https://arxiv.org/abs/cs/0611082

3. Ryser H.J. Combinatorial Mathematics. Carus Math. Monograph No.
14, 1963.

4. Fibonacci Number. MathWorld — A Wolfram Web Resource.
http://mathworld.wolfram.com/FibonacciNumber.html

5. Permanent. MathWorld — A Wolfram Web Resource.
http://mathworld.wolfram.com/Permanent.html

Craig Alan Feinstein. A Mathematical Definition of “Simplify” 77


