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From the Geometry of the FLRW to the Gravitational Dynamics
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The approach when the scale factor that describes the expansion of space, being its
pure geometrical property, is derived from the dynamical (the Friedman) equations is
questioned. The opposite path when the geometry determines the dynamics is more
consistent, but not vice versa. Starting from the FLRW, the equivalent form of the metric
in static coordinates is proposed. Based of few models for a(t) the corresponding static
metrics are derived. Further dynamics and the analogue of the Friedman equations can
be obtained as consequence. The embedding of the FLRW geometry into the higher-
dimensional Minkowski space as the hypersurface can be considered as the base for
the model. The deceleration parameter for the Schwarzschild-de Sitter (SdS) case is
reviewed based on such approach.

1 Introduction

In recent author’s work [5] the hydrodynamic model of spher-
ically symmetric gravitational field was reviewed. As it was
shown the gravitational metrics can be modelled by expand-
ing parcels of the fluid based on the respective functions of
the volume change with time in co-moving frame. As it has
explicit similarity with the space expansion, the present at-
tempt is to use the geometrical approach to describe spher-
ically symmetric gravitational filed starting from the FLRW
metric.

2 The FLRW metric

Let’s consider the static pseudo-Minkowski coordinates with
the observer M at rest in the center. The static spherical co-
ordinates are to be denoted as t, r, θ, φ, where r is coordinate
distance to the observer P who is at rest, but is attached to
the point of expanding space. The co-moving coordinates are
given as T,R, θ, φ, where R is co-moving distance (from M
to P). Respectively, time T is measured by the observer P.
If space expands, the point P, attached to it, moves in the
static coordinate system, so as observed by M, the motion of
P represents the function of coordinate distance r(t). The cor-
respondence between the static coordinate and the co-moving
distance is given by

r = Ra (1)

where a(T ) is the scale factor. Then the proper velocity mea-
sured by the observed P,∗

v =
dr
dT

=
dR
dT

a + R
da
dT

(2)

and point P is at rest in its reference frame, so the first term is
identically zero therefore

v = Rȧ . (3)

∗This is not coordinate velocity. This velocity is ratio of coordinate dis-
tance change to time measured in co-moving observer’s clock.

Using (1) then

v =
dr
dT

= r(T )
ȧ
a
. (4)

This expression provides the velocity of the space motion due
to its expansion or the velocity of the reference frame attached
to point P in the static coordinate system where r is the coor-
dinate distance.

The Friedmann–Lemaı̂tre–Robertson–Walker (FLRW)
metric in the spatially flat case (k = 0) is given by

ds2 = −c2dT 2 + a(T )2
(
dR2 + R2dΩ2

)
(5)

where dΩ2 = sin2 θdφ2 + dθ2 and a(T ) is the scale factor. The
metric is written explicitly in comoving coordinates, attached
to the point of expanding space. Using (1) we may write

dr = ȧRdT + adR

from which

dR =
dr
a
− v

dT
a
.

Substituting it into the FLRW metric (5) leads to

ds2 = −c2
(
1 −

v2

c2

)
dT 2 − 2vdTdr + dr2 + r2dΩ2 (6)

which is the Gullstrand-Painlevé form of the metric which
is spatially flat and describes co-moving observer in its free
float with velocity v. The transformation of time coordinate
T from co-moving to fixed frame of reference t is given by

dT = dt −
v

c2

(
1 −

v2

c2

)−1

dr . (7)

The substitution of this expression into (6) leads to the re-
spective static metric

ds2 = −c2
(
1 −

v2

c2

)
dt2 +

(
1 −

v2

c2

)−1

dr2 + r2dΩ2 (8)
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where velocity v is to be determined from (4). The velocity
v is called the river velocity in [2, 4] and the shift in ADM
formalism. Importantly, the metric (8) is equivalent to the
FLRW, but written in the static coordinate systems of the ob-
server M. Such form of the metric is known, starting from
Lenz and Sommerfeld [11] and used in the river model of
black holes and similar analogous models [3,4] for the spher-
ically symmetric gravitational field.

The proposed approach starts from a certain function for
the scale factor a(T ), and then the solution of the equation
(4) provides the velocity v(r) resulting in the corresponding
metric in static coordinate system based on (8).

As it was stressed in the author’s previous work [5], the
sign of the velocity v does not play a role, as it comes to the
metric as squared value. In the present approach the value
of the velocity as given in (4) is obviously positive (ȧ > 0)
and as coordinate center is placed in the center point of M the
velocity is radial and directed outwards.

3 The case of the de Sitter metric

The easiest case to demonstrate the proposed approach is the
de Sitter metric. The starting point is a(T ) = eH0T , or equiva-
lently, the constancy of the Hubble constant with time

H0 =
ȧ
a
. (9)

Then using (4) gives
v = rH0 . (10)

And substitution into (8) leads to

ds2 = −

1 − H2
0r2

c2

 c2dt2 +

1 − H2
0r2

c2

−1

dr2 + r2dΩ2 (11)

which is the de Sitter metric as expected.

4 The case of the Schwarzschild metric

Let’s now assume that

a(T ) ∝ T 2/3 . (12)

Then, using (4), it follows that

v(r) =
c1

r1/2 (13)

where c1 - is an integration constant. Then the substitution
into (8) leads to the form the Schwarzschild metric with pre-
cision by constant c1. In order to determine the meaning of
the integration constant, it is required to normalize (12), for
example in such way that a(0) = 1

a = (ωT + 1)2/3 (14)

where ω is some constant. Then it would imply

r = r0 (ωT + 1)2/3 (15)

where r0 is the initial coordinate distance at time T = 0. Then
the velocity

v =
2
3

ω2r3
0

r

1/2

. (16)

The equation shows that the integration constant in (13) sho-
uld have correspondence to the initial volume and therefore
to the central mass, if one introduces a density in the equa-
tion. Proposed boundary conditions allow to put the scale
factor function in direct relation with the particle mass and to
remove the initial singularity.

Interestingly from (13) and (1) the scale factor in terms
of the coordinate distance is simply r = r0a. From that, us-
ing (1), the co-moving distance is R = r0. As expected, the
scale factor a changes with time instead of the co-moving
distance R which remains constant and always equals to its
initial value in the static coordinates.

5 The Schwarzschild-de Sitter (SdS) metric

As suggested in [10] the scale factor that describes current
Universe expansion within the frame of standard model of
the cosmology has following form

a(T ) = sinh
(

3
2

H0T
)2/3

. (17)

This corresponds (differing by factor of 2) to proposed in the
hyperbolic model [5]∗

a (T ) = (cosh(3H0T ) − 1)1/3 . (18)

Then using (4)

v =
dr
dT

= r0
H0 sinh (3H0T )

(cosh(3H0T ) − 1)2/3 (19)

from which

r(T ) = r0 (cosh (3H0T ) − 1)1/3 (20)

where r0 is integration constant with dimension of length. Ex-
pressing hyperbolic sine from this and substitution into (19)
leads to

v =

H2
0r2 +

2r3
0H2

0

r

1/2

. (21)

Exact determination of the constant r0 for the volume can be
found in [5]. It was suggested that such volume can be as-
sociated with the mass via the fluid density. The substitution
into (8) leads to the SdS metric

ds2 = −

1 − 2Gm
c2r

−
H2

0r2

c2

 c2dt2+

+

1 − 2Gm
c2r

−
H2

0r2

c2

−1

dr2 + r2dΩ2 .

(22)

∗Obviously the presented approach has direct correspondence to the
cited author’s fluid model via V̇ ∝ a2ȧ and V(t) ∝ a3.
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6 The embedding the FLRW geometry

The embedding of the de Sitter geometry in the pseudo-Eucli-
dian five-dimensional space is well known and was obtained
by Robertson [7, 8]. This corresponds to embedding of the
spatially flat FLRW metric with a(t) = eH0t. However, as
demonstrated in [9] and reviewed in [1] the generalization
of the FLRW metric (k = 0) embedding is possible via re-
construction of the respective curve and the Minkowski five-
dimensional metric is

t′ =
1
2

∫
ȧ2 − 1

ȧ
dT , r′ =

1
2

∫
ȧ2 + 1

ȧ
dT ,

and x′ = x y′ = y x′ = z .

(23)

The embedding of the FLRWmetric with the hyperbolic func-
tion as (17) was reviewed in [6], however it was concluded
that the integral has no analytical expression.

7 On the deceleration parameter for the SdS metric

Presented approach provides a simple way to determine the
deceleration parameter

q0 = −
äa
ȧ2 . (24)

And as
α = äR v = ȧR r = Ra (25)

then for the SdS metric using the deceleration parameter can
be expressed via coordinate distance as

q0 =
Gm − H2

0r3

2Gm + H2
0r3

. (26)

In case of mass m is uniformly distributed within a sphere and
if the density is expressed in terms of ΩM = ρ/ρcrit then the
deceleration parameter is

q0 =
1
2

ΩM − 2
ΩM + 1

. (27)

In case of ΩM = 0.27 it gives the deceleration parameter q0 =

−0.68 which is close to the observed value. As example the
equation results in q0 = −1 for empty the de Sitter Universe,
and q0 = −0.4 in case of ΩM = 1.

8 The Friedman equations

In the frame of present approach the dynamical Friedman
equations appear as a result of the original scale factor func-
tion. In general case, as the resulting metric provides us with
the values for acceleration α(r) and the velocity v(r) and with
use of (25) the Friedman equations are derived. In case of
the SdS metric, the first Friedman equation can be directly
obtained from the result (21)( ȧ

a

)2
= H2

0

[
1 +

2
a3

]
. (28)

In the reverse way it obviously would reproduce (17). In case
of uniformly distributed matter it has following form( ȧ

a

)2
= H2

0 (1 + 2ΩM) . (29)

The second Friedman equation is from (21)
ä
a

= H2
0

[
1 −

1
a3

]
(30)

or for uniformly distributed matter in terms of ΩM

ä
a

= H2
0

[
−

1
2

ΩM + 1
]
. (31)

Another types of functions a(t) can be proposed and in that
way would originate different dynamical equations that could
be analysed for its compliance with the cosmological obser-
vations.

9 Conclusions

The spatial expansion phenomena is considered as the space
flow. The curvature of space-time in the static four-dimensio-
nal coordinate systems emerges as the consequence of such
motion. Then the dynamics and the physical forces are de-
rived from the resulting metric. The scale factor being the
primary property of space should have the fundamental sig-
nificance (instead of being secondary consequence of the dy-
namical equations). Because of the reviewed boundary condi-
tions the scale factor may originate on the elementary particle
level and can be a key for understanding the origin of grav-
ity. The function for a(t) that results in the SdS metric was
reviewed, the deceleration parameter is determined (27) and
the result is close to the observed value.
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