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In this article we propose a dynamic quantum state tomography model for qutrits sub-
ject to laser cooling. We prove that one can reduce the number of distinct measurement
setups required for state reconstruction by employing the stroboscopic approach. The
results are in line with current advances in quantum tomography where there is a strong
tendency to investigate the optimal criteria for state reconstruction. We believe that the
stroboscopic approach can be considered an efficient tool for density matrix identifica-
tion since it allows to determine the minimal number of distinct observables needed for
quantum state tomography.

1 Introduction

The term quantum tomography is used in reference to a wide
variety of methods which aim to reconstruct the accurate rep-
resentation of a quantum system by performing a series of
measurements. Mathematically, the complete knowledge ab-
out the state of a quantum system can be encoded in, for ex-
ample, the density operator, the wavefunction or the Wigner
function. In this article we discuss the problem of the density
matrix reconstruction.

One of the most fundamental approaches to quantum state
tomography, the so-called static tomography model, enables
to reconstruct the density matrix of a quantum system pro-
vided one can measure N2 − 1 distinct observables (where
N = dimH). Any density matrix can be decomposed in the
basis of SU(N) generators in such a way that the coefficients
correspond to the mean values of the operators [1]. This
approach has been excessively studied in many papers and
books, such as [2, 3]. However, there is a significant disad-
vantage connected with this method. In a laboratory one usu-
ally is not able to define N2 − 1 distinct physical quantities
that could be measured.

The most important property that all tomography mod-
els should possess is practicability, which means that a the-
oretical model should have a potential to be implemented in
an experiment in the future. Therefore, when dealing with
quantum state tomography we should bear in mind the lim-
itations related to laboratory reality. For this reason, in this
article we employ the stroboscopic approach to quantum to-
mography, which for the first time was proposed by Andrzej
Jamiolkowski in [4]. Later it was developed in other research
papers such as [5] and [6]. In order to get a broad perspective
one may also refer to a very well-written review paper [7].
Recently some new results concerning the stroboscopic ap-
proach has been presented in [8, 9].

The stroboscopic tomography concentrates on determin-
ing the optimal criteria for quantum tomography of open sys-
tems. The main goal of this method is to reduce the number
of distinct observables required for quantum tomography by

utilizing knowledge about time evolution of the system. The
data for the density matrix reconstruction is provided by mean
values of some hermitian operators {Q1, . . . ,Qr}, where nat-
urally Qi = Q∗i . The set of observables is not informationally
complete, which means that a single measurement of each
operator does not provide sufficient information for quantum
state reconstruction.

The underlying principle behind the stroboscopic appro-
ach claims that if one has the knowledge about the evolution
of the system, each observable can be measured repeatedly
at a certain number of time instants. Naturally, each indi-
vidual measurement is performed over a distinct copy of the
system since we do not consider the collapse of the quantum
state caused by measurements. Therefore, we assume that our
source can prepare a large sample of systems in the identical
(but unknown) quantum state.

In the stroboscopic approach to quantum tomography the
fundamental question that we are interested in concerns the
minimal number of distinct observables required for quantum
state reconstruction. One can recall the theorem concerning
the minimal number of observables [5].

Theorem 1. For a quantum system with dynamics given by a
master equation of the form [10, 11]:

ρ̇(t) = L[ρ(t)] , (1)

one can calculate the minimal number of distinct observables
for quantum tomography from the formula:

η := max
λ∈σ(L)

{dim Ker(L − λI)} , (2)

where by σ(L) one should understand the spectrum of the
operator L.

The linear operator L that appears in (1) shall be called
the generator of evolution. The number η is usually referred
to as the index of cyclicity of a quantum system.

The theorem 1 means that for any linear generator L there
exists a set of observables {Q1, . . . ,Qη} such that their ex-
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pectation values determine the initial density matrix. Con-
sequently, they also determine the complete trajectory of the
state (one can compute the density matrix at any time instant).

If we denote the number of required measurements of
each observable from the set {Q1, ...,Qη} by Mi for i = 1, . . . ,
η, then one can also recall the theorem on the upper limit of
moments of measurement [6].

Theorem 2. In order to provide sufficient data for the density
matrix reconstruction the number of times that each observ-
able from the set {Q1, ...,Qη} should be measured satisfies the
inequality:

Mi ≤ deg µ(L) , (3)

where by µ(L) we denote the minimal polynomial of L.

The theorem 2 gives the upper boundary concerning the
number of measurements of each single observable. One can
notice that the ability to compute the minimal polynomial of
the generator L is crucial in order to determine the upper limit
for the number of measurements. Naturally, another problem
relates to the choice of the time instants. Some considerations
about this issue can be found in [6].

In the next section the theorems concerning the strobo-
scopic tomography shall be applied to three-level quantum
systems with the evolution known as laser cooling. This ar-
ticle brings substantial advancement to the field of quantum
state tomography. In [8] the author introduced optimal crite-
ria for quantum tomography of qubits. In the current work we
proceed towards higher dimensional Hilbert space. We prove
that the stroboscopic tomography can be an effective method
of state reconstruction for qutrits provided one knows how the
system evolves.

2 Quantum tomography schemes for three-level systems
subject to laser cooling

2.1 Static approach to quantum tomography of qutrits

In case of three-level quantum systems one would naturally
employ the Gell-Mann matrices in order to decompose any
density matrix. We follow the original notation from [12]
and therefore, the Gell-Mann matrices shall be denoted by
{λ1, λ2, . . . , λ8}. They have the following forms:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,
λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1
√

3

1 0 0
0 1 0
0 0 −2

 .

The Gell-Mann matrices are the generators of the SU(3)
group. They are the generalization of the Pauli operators
for three-level systems. They have some algebraic properties
which are useful for quantum state tomography, i.e.:

λi = λ∗i , Tr λi = 0 and Tr λiλ j = 2δi j . (4)

For three-level quantum systems the initial density matrix
ρ(0) ∈ S(H) can be decomposed in the basis of the Gell-
Mann matrices [1]:

ρ(0) =
1
3
I3 +

1
2

8∑
i=1

〈λi〉λi , (5)

where 〈λi〉 is the expectation value of the observable λi. Math-
ematically, it can be computed as 〈λi〉 = Tr{λiρ(0)}.

If one would like to directly apply this decomposition in
order to reconstruct the density matrix, one would have to
know the mean values of eight distinct observables {λ1, λ2,
. . . , λ8}. Such data would be necessary to complete the for-
mula for ρ(0). This approach to quantum tomography, which
does not take advantage of the knowledge about evolution,
shall be referred to as the static approach. This scheme ap-
pears impractical since one is not able to define eight distinct
physical quantities. This observation justifies the need for
more economic approach which aims to decrease the number
of distinct observables.

2.2 Dynamic approach to quantum state tomography of
qutrits

Laser cooling is a very widely investigated topic in modern
Physics, e.g. [13, 14]. A lot of attention has been paid to dif-
ferent aspects of this problem. In particular, one may refer
to applications of atoms subject to laser cooling in quantum
information encoding [15]. In this paper we search for a link
between laser cooling and quantum state tomography.

An example often studied in the area of laser spectroscopy
is a quantum system subject to laser cooling with three energy
levels (dimH = 3) [16]. The evolution of the density matrix
of such a three-level system is given by a master equation of
the form:

dρ(t)
dt

= −i[H(t), ρ(t)]+

+ γ1

(
E1ρ(t)E∗1 −

1
2
{E∗1E1, ρ(t)}

)
+

+ γ2

(
E2ρ(t)E∗2 −

1
2
{E∗2E2, ρ(t)}

)
,

(6)

where E1 = |1〉 〈2| and E2 = |3〉 〈2|. The vectors {|1〉 , |2〉 , |3〉}
denote the standard basis inH .

This kind of dynamics appears when the excited state |2〉
decays spontaneously into two ground states |1〉 and |3〉 with
corresponding decoherence rates γ1 and γ3.
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Moreover in this analysis we take H(t) = [0], where [0]
denotes a 3−dimensional matrix with all entries equal 0. This
assumption means that we shall analyze only the Lindbladian
part of the evolution equation.

In case of a three-level open quantum system with dynam-
ics given by the master equation from (6) we can formulate
and prove a theorem which provides the minimal number of
distinct observables required for quantum tomography.

Theorem 3. For a quantum system subject to laser cooling
according to (6) there exists four distinct observables such
that their average values (measured at selected time instants
over different copies of the system) suffice to determine the
initial density matrix ρ(0).

Proof. Based on the method of matrix vectorization [8, 17],
the dissipative part of the generator of evolution (6) can be
explicitly expressed as a matrix:

L = γ1

(
E1 ⊗ E1 −

1
2

(
I9 ⊗ ET

1 E1 + ET
1 E1 ⊗ I9

))
+

+ γ2

(
E2 ⊗ E2 −

1
2

(
I9 ⊗ ET

2 E2 + ET
2 E2 ⊗ I9

))
.

(7)

Taking into account the fact that the vectors {|1〉 , |2〉 , |3〉}
constitute the standard basis, the matrix form of the quantum
generator L can be obtained:

L =



0 0 0 0 γ1 0 0 0 0
0 −Γ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −Γ 0 0 0 0 0
0 0 0 0 −2Γ 0 0 0 0
0 0 0 0 0 −Γ 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −Γ 0
0 0 0 0 γ2 0 0 0 0


, (8)

where Γ = 1
2 (γ1 + γ2).

Having the matrix form of the generator of evolution L,
one can calculate its eigenvalues:

σ(L) = {0, 0, 0, 0,−2Γ,−Γ,−Γ,−Γ,−Γ} . (9)

Since in this case the operator L is not self-adjoint, the
algebraic multiplicity of an eigenvalue does not have to be
equal to its geometric multiplicity. But one can quickly de-
termine that there are four linearly independent eigenvectors
that correspond to the eigenvalue 0. Therefore, we can find
the index of cyclicity for the operator in question:

η = max
λ∈σ(L)

{dim Ker(L − λI9)} = 4 , (10)

which means that we need exactly four distinct observables
to perform quantum tomography of the analyzed system. �

One can instantly notice that if the static approach was
applied to three-level laser cooling, one would have to mea-
sure 8 distinct observables whereas in the dynamic approach
4 observables suffice to perform quantum tomography. If one
thinks of potential applications in experiments, then our result
means that one would have to prepare 4 different experimen-
tal setups instead of 8. This observation demonstrates that
the stroboscopic approach has an advantage over the static
approach because it is more economic when it comes to the
number of distinct kinds of measurement.

The next issue that we are interested in is the minimal
polynomial for the operator L. Assuming that this polynomial
has the monic form, i.e.:

d3L
3 + d2L

2 + d1L + d0I = 0 , (11)

one can get :

d3 = 1, d2 =
3
2

(γ1 + γ2), d1 =
1
2

(γ1 + γ2)2, d0 = 0 . (12)

Thus, we see that deg µ(L) = 3. This means that each ob-
servable should be measured at most at three different time
instants. One can conclude that, since we need 8 independent
pieces of information to reconstruct the initial density matrix,
not every observable will be measured the maximum number
of times. To provide a precise answer to the question concern-
ing the algebraic structure of the observables and the choice
of time instants, we shall accept additional assumptions con-
cerning the generator of evolution.

Let us consider a special case of the generator of evolu-
tion defined in (8) such that γ1 = 1/4 and γ2 = 3/4. For this
specific generator, we can formulate a theorem.

Theorem 4. The initial density matrix ρ(0) of a three-level
system subject to laser cooling can be reconstructed from the
mean values of four observables of the form:

Q1 =

1 0 0
0 −1 1 + i
0 1 − i 0

 , Q2 =

 0 0 1 + i
0 0 0

1 − i 0 0

 ,
Q3 =


0 1 0
1 1

√
3

0
0 0 − 2

√
3

 , Q4 =

 0 i 0
−i 0 0
0 0 0

 ,
(13)

where the mean values of Q1 and Q2 are measured at 3 dis-
tinct time instants and the observables Q3 and Q4 once at
t = 0.

Proof. According to the assumptions of the stroboscopic to-
mography, the information that one can obtain from an ex-
periment is encoded in the mean values of some observables,
which mathematically can be written as:

mi(t j) = Tr{Qiρ(t j)} , (14)

where ρ(t j) = exp(Lt j)[ρ(0)].
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One is aware that exp(Lt j) can be decomposed as:

exp(Lt) = α0(t)I9 + α1(t)L + α2(t)L2 , (15)

where the functions {α0(t), α1(t), α2(t)} are linearly indepen-
dent. In order to determine these functions, we need to em-
ploy the minimal polynomial of L and then solve a system of
differential equations [6, 8]. Having done the necessary com-
putations, one gets:

α0(t) = 1
α1(t) = e−t − 4e−

1
2 t + 3

α2(t) = 2e−t − 4e−
1
2 t + 2 .

(16)

Since one is able to decompose exp(Lt j) in the basis of
three operators {I9,L,L2} due to linearity of the matrix trace
we get:

mi(t j) = α0(t j)Tr{Qiρ(0)} + α1(t j)Tr{QiL[ρ(0)]}+

+ α2(t j)Tr{QiL
2[ρ(0)]} .

(17)

If by L∗ we shall denote the dual operator to L, then by
changing the perspective from the Schrödinger picture to the
Heisenberg representation we can obtain:

mi(t j) = α0(t j)Tr{Qiρ(0)} + α1(t j)Tr{L∗[Qi]ρ(0)}+

+ α2(t j)Tr{(L∗)2[Qi]ρ(0)} .
(18)

This means that if the mean value of the observable Q1
is measured at three distinct time instants, one gets a matrix
equation:m1(t1)
m1(t2)
m1(t3)

 =

α0(t1) α1(t1) α2(t1)
α0(t2) α1(t2) α2(t2)
α0(t3) α1(t3) α2(t3)


 Tr{Q1ρ(0)}

Tr{L∗[Q1]ρ(0)}
Tr{(L∗)2[Q1]ρ(0)}

 (19)

Since the functions {α0(t), α1(t), α2(t)} are linearly inde-
pendent one can agree that if we select three different non-
zero time instants such that t1 , t2 , t3, then the matrix
[αk(t j)] must be invertible. It implies that the measurement
results {m1(t1),m1(t2),m1(t3)} can be translated into a set of
scalar products:{

Tr{Q1ρ(0)},Tr{L∗[Q1]ρ(0)},Tr{(L∗)2[Q1]ρ(0)
}
.

The very same measurement procedure, which must re-
sult in a matrix equation analogous to (19), can be performed
for the observable Q2. Triple measurement of Q2 at distinct
time instants yields a set of the scalar products:{

Tr{Q2ρ(0)},Tr{L∗[Q2]ρ(0)},Tr{(L∗)2[Q2]ρ(0)
}
.

Finally, a single measurement of the average value of Q3
and Q4 at time instant t = 0 provides another two scalar prod-
ucts: {Tr{Q3ρ(0)},Tr{Q4ρ(0)}.

One can check numerically that the operators:{
I3,Q1,L

∗[Q1], (L∗)2[Q1],Q2,L
∗[Q2], (L∗)2[Q2],Q3,Q4

}
constitute a spanning set (they are all linearly independent),
which means that they span the space B∗(H).

The spanning criterion is the necessary and sufficient con-
dition for the ability to reconstruct the initial density matrix
of a qutrit subject to laser cooling. This condition is satisfied
for the observables defined in the theorem 4, which can be
observed numerically by using the software Mathematica 11.

In other words, the operators:{
I3,Q1,L

∗[Q1], (L∗)2[Q1],Q2,L
∗[Q2], (L∗)2[Q2],Q3,Q4

}
constitute a quorum, i.e. they span the space to which ρ(0)
belongs. Therefore, the scalar products that one can calculate
from the measurement results can be considered a complete
set of information. Thus, the measurement procedure, which
utilizes only 4 distinct kinds of measurement, provides 8 in-
dependent pieces of information which are sufficient for the
density matrix reconstruction. �

The theorems 3 and 4 provide a complete description of
the quantum tomography scheme. One knows exactly what
steps should be taken in order to compute the unknown den-
sity matrix.

The results are in accord with current trends in quantum
state tomography where a lot of attention is paid to the meth-
ods which aim to reduce the experimental effort, e.g. [18,19].
If one can access the knowledge about dynamics of the sys-
tem encoded in the generator of evolution, it seems more con-
venient to perform repeatedly the same kind of measurement
(over distinct copies of the system) rather than develop a large
number of different experimental setups.

3 Summary

In this paper we presented a complete quantum tomography
model for qutrits subject to laser cooling. The stroboscopic
approach was applied to determine the optimal criteria for
density matrix reconstruction. It was demonstrated that one
can reduce the number of distinct observables by 50% pro-
vided the knowledge about evolution is applied. The alge-
braic structure of the observables was presented along with a
detailed description of the scheme. Dynamic methods of state
reconstruction appear to be very practical since they allow to
retrieve the initial density matrix in the most economical way,
by minimizing the number of distinct measurement setups.

The article indicates a link between quantum state tomog-
raphy and laser cooling. Both topics play a substantial role in
the field of quantum communication. The ability to recon-
struct the quantum state from measurements is crucial to de-
termine the efficiency of quantum communication protocols.
Whereas atoms subject to laser cooling are often utilized to
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encode quantum information. The dynamic quantum tomog-
raphy scheme presented in this article combines these two
lines of research.

The current work can be extended in the future research
by studying the problem of quantum state tomography for
systems subject to laser cooling with more than three en-
ergy levels. This task requires advanced algebraic methods
to study the spectrum of the generator of evolution as well as
to determine its minimal polynomial.

Received on March 4, 2020
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