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The nuclear superdeformed bands in A∼ 190, A∼ 130 mass regions have been system-
atically analyzed by using the perturbed SU(3) limit of the interacting boson model. The
g-bosons have been taken into consideration and the SU(3) symmetry is perturbed by in-
troducing an interaction holding the SO(5) symmetry. A four parameters simple analytic
formula for the eigenvalue equation has been derived. The spin determines of the stud-
ied superdeformed (SD) bands are considered from our previous works. The improved
model parameters for each nucleus have been determined by operating a computer sim-
ulated search program so as to obtain a minimum root mean square divergence of the
evaluating gamma ray transition energies and the observed ones. With these adopted
model parameters the transition energies Eγ, the rotational frequencies ~ω, the kine-
matic J(1) and dynamic J(2) moments of inertia have calculated and are in accordance
with experimental data. The behavior of J(1) and J(2) as a function of ~ω have been
studied. The calculated Eγ have been used to investigate the anomalous ∆I = 2 stag-
gering by considering the five point formula of Cederwall staggering parameter which
represent the finite deviation calculation to the fourth order derivative of the transition
energies at a determined spin.

1 Introduction

It was known that the interacting boson model (IBM) [1] with
s and d bosons (sdIBM) is successful in studying the spectro-
scopic properties of low-lying collective states in heavy and
medium nuclei. This simple sdIBM allows the utilization of
the algebraic symmetries for approaching different type of nu-
clear spectra, known as dunamical symmetries U(5), SU(3)
and O(6) which geometrically describe vibrational, axially
deformed and gamma soft nuclei respectively. These three
symmetry limits form a Casten triangle [2], that represent the
nuclear phase diagram [3]. Transitions of shape phase be-
tween these vertices of Casten triangle were widely calcu-
lated along several isotopic chains [4–10]. Extended version
of IBM where one includes the g-bosons in addition to s and
d bosons to account for hexadecapole deformation of the nu-
cleus is receiving a considerable attension of several research
groups [11,12]. This hexadecapole deformation is the second
most important mulitipolarity in the description of nuclear
properties in addition to the quadrupole deformation. An in-
terest in this multipolarity is increased by the observation of
the ∆I = 2 energy staggering of superdeformed rotational
bands (SDRB’s) in some nuclei [13, 14], where nuclear spins
with rotational sequences splitting by two may divide into
two branches. Several theoretical attempts were made for the
possible explanation of this ∆I = 2 staggering phenomenon
[15–25]. To describe the dynamical symmetries of nuclear
states consisting of spdf bosons, it was found [26, 27] that
one must begin with a supersymmetric group chain U(15,10)

and ending at O(3) due to conservation of angular momen-
tum passing through SU(3) limit of the sdg IBM which is a
reasonable starting point to describe SD states in IBM [28].
The sdg IBM is well adopted for study of starting deformed
and SD nuclei [15, 16, 26] there is seven different limits of
SU(15) [29]. These limits can be splitted into two sets, the
first set consists of the three limits which include only partial
mixing between the bosons, however the second set consists
of four limits which include a mixing of all bosons. If we con-
sider the case of two s, d or g bosons, then the possible angu-
lar momenta are L = 03, 24, 3, 44, 5, 62, 8 where the exponent
indicates the multiplicity. The L = 3, 5 states are pure dg con-
figurations while the L = 8 states is pure g2. All other states
however are mixtures of s, d and g bosons. The difficulty with
performing sdg IBM computations for normal deformed and
superdeformed nuclei that have boson numbers N = 12 − 16
is that the core is too large, and the numerical methods (diag-
onalization) of the Hamiltonian is not possible. It was proved
that the mathematical properties of the SU(5)sdg can be de-
scribe the deformed nuclei [30] because by using the intrin-
sic coherent states [11] the potential energy surface (PES)
of the SU(5)sdg limit displays two minima. Since SDRB’s
are known in the second minimum of the potential well, this
property was used [31] to justify an applications of SU(5)sdg

limit in SD states. The group SU(3) which relates to the rep-
resentations [ f1, f2, f3] through λ = f1 − f2 and µ = f1 − f3 is
very important in studying the axial symmetric SDRB’s. The
one boson state belongs to the (λ, µ) = (4, 0) representation
while the two bosons states belongs to (7,0), (4,2), (0,4) rep-
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resentation. To appear the ∆I = 2 staggering, the SU(3) must
be broken down by adding the SO(5)sdg symmetry as a pertur-
bation. The aim of this work is to use this perturbed SU(3) of
sdgIBM to investigate the main properties of superdeformed
rotational bands in different nuclei and especially exhibit the
∆I = 2 staggering in their transition energies.

2 Outline of the model

The states of SD bands can be classified in framework of su-
persymmetric group chain as:

U(m, n) ⊃ UB(m) ⊗ UF(n) ⊃ ... ⊃ S OB+F(3) ⊗ S UF(ǹ) ⊃ O(3)
↓ ↓ ↓ ↓ ↓ ↓

[N] [NB]m [NF]n L S I

The notation under those of groups are the corresponding
irreducible (irrep) representation. The particles total number
N = NF + NB with NF and NB the fermion and boson num-
bers respectively. L is the effective core angular momentum
and S is the total pseuduspin and I is the total spin of the nu-
cleus. m is determined by the constituent of bosons, while
n is determined by the single particle configuration of the
fermions and ǹ is the total pseudospin. Since the bosons to
describe positive parity SD states should be s, d, g bosons
[17, 20, 22] and p,f bosons are essential to show negative par-
ity states [27], the space spanned by the single boson states is∑
`(2` + 1) = 1 + 3 + 5 + 7 + 9 = 25 dimensions. So that, we

have the group chain for the boson part
Usdgp f (25) ⊃ Usdg(15) ⊗ Up f (10) ⊃ S Usdg(3) ⊗ S Up f (3) ⊃ S U(3) ⊃ O(3)

↓ ↓ ↓ ↓ ↓ ↓ ↓

[NB] [Nsdg] [Np f ] (λ, µ)sdg (λ, µ)p f (λ, µ) I

The law-lying positive parity states are from the Nsdg bosons
only, while negative parity states are one pf boson coupled
states with Nsdg = N − 1 sdg bosons. There are also negative
parity states formed by coupling odd number of pf bosons
with residual sdg bosons and states of positive parity formed
by even number of pf bosons with the sdg bosons. Here
NB = Nsdg + Np f with Nsdg = 0, 1, 2, ....,N physically N is
the number of positive parity bosons. All the irres can be
determined with the branching rules [14] of the irres reduc-
tion. The reductionS U(3)sdg⊗S U(3)p f ⊃ S U(3) can be done
in standard Young diagram method [10] and the reduction
S U(3) ⊃ O(3) is the Elliott rule [11]. We notice that for the
positive parity states the results of the sdgIBM are still valid.
The interaction Hamiltonian of the nucleus corresponding to
the above chain takes the form

H = εC1[U(15)] + kC2[S U(3)] + cC2[O(3)] (1)

in which Ck[G] is the k-order Casimir operator of the group
G. The energy of the states can be formulated as

E(I) = E0 + εN + k[λ2 + µ2 + λµ + 3λ + 3µ]
+CI(I + 1) (2)

the C2 [O(3)] operator gives the rotational structure. In
varaible moment of inertia model [32], the moment of iner-
tia is spin dependent, such that as I increases, the moment
of inertia increase due to the antipairing effect. Therefore,
Hamiltonian equation (1) can be written as

H = εC1[U(15)] + kC2[S U(3)]

+C0
C2[O(3)]

1 + f1C2[O(3)] + f2(C2[O(3)])2
(3)

where the terms with f1 and f2 take into account many-body
interactions which induce antipairing driving and pairing
damping effects on the moment of inertia. The energy of the
state I in a band considering only the relative excitation of the
states in a rotational band is given by

E(I) = C0
I(I + 1)

1 + f1[(I + 1)I] + f2[(I + 1)I]2 (4)

To describe the superdeformed rotational bands, we break
SU(3) symmetry by adding the symmetry S Osdg(5) as a per-
turbation to the Hamiltonian. Therefore, the excited energy
of the state of positive parity with spin I in SD band is thus
given by

E(I) = B[τ1(τ1 + 3) + τ2(τ2 + 1)]

+
C0

1 + f1[(I + 1)I] + f2[(I + 1)I]2 I(I + 1) (5)

The (τ1, τ2) is the irrep of SO(5) group. In practical τ1, τ2
being fixed with the branching rules of the irrep reduction
as [21–24]

(τ1, τ2) = ( I
2 , 0) if I = 4k, 4k + 1 (k = 0, 1, 2, ...)

(τ1, τ2) = ( I
2 − 1, 2) if I = 4k + 2, 4k + 3 (k = 0, 1, 2, ..)

3 Analysis of ∆I = 2 staggering in transition energies in
SD bands

In framework of collective model [33], the rotational
frequency ~ω, the kinematic moment of inertia (J(1)) and the
dynamic moment of inertia (J(2)) calculated from γ-ray tran-
sition energies for SDRB’s are given from the following def-
initions

~ω =
1
4

[
Eγ(I + 2→ I) + Eγ(I → I − 2)

]
(MeV) (6)

J(2) =
4

Eγ(I + 2→ I) − Eγ(I → I − 2)
(~2MeV−1)

(7)

J(1) =
2I − 1

Eγ(I → I − 2)
(~2MeV (−1))

(8)
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Table 1: The adopted best model parameters C0, B, f1, f2 obtained from the fitting procedure for the studied SD bands. The bandhead spin
I0 and the experimental lowest transition energy Eγ(I0 + 2→ I0) for each SD is also given.

SD band I0 C0 B f1 f2 Eγ

(~) ~−2 keV keV ~−2 ~−4 (keV)
194Tl(SD1) 14 0.503298E+01 0.18912E-02 0.326365E-03 -0.34134E-03 268.00
194Tl(SD3) 12 0.522016E0+1 0.37473E-01 0.401374E-04 -0.39907E-08 240.50
194Tl(SD5) 10 0.492810E+01 0.36833E-01 0.307779E-04 -0.42746E-08 187.90
130Ce(SD2) 24 0.909181E+01 -0.34824E-02 0.171564E-04 -0.50224E-08 841.00
132Ce(SD1) 30 0.647195E+01 -0.13947E-01 -0.299066E-04 0.34647E-10 808.55
132Nd(SD1) 40 0.419310E+01 0.16107E-01 -0.547523E-04 -0.11468E-10 797.00
136Sm(SD1) 30 0.640396E+01 0.51834E-03 -0.111011E-03 0.17709E-07 888.00

Fig. 1: The calculated results of the kinematic J(1) (open circles) and
dynamic J(2) (solid curves) moments of inertia plotted as a function
of rotational frequency ~ω for the studied SD bands and the compar-
ison with experimental data for J(2) (closed circles with error bars)

Fig. 2: The calculated ∆I = 2 staggering quantity ∆4Eγ obtained by
the five point formula as a function of spin for the studied SD bands.
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The anomalous ∆I = 2 staggering phenomenon was
found in several SD bands [17,18]. Sequences of states which
are differing by four units of angular momentum displace rel-
ative to each other was shown in superdeformed rotational
bands. That is, the SD band can be seen as two sequences of
cases with values of spin I + 4n and I + 4n + 2(n = 1, 2, 3, ...),
respectively. This is commonly called ∆I = 4 bifurcation, be-
cause the bands divide into two branches with levels differing
in spin by 4~. To explore this ∆I = 2 staggering, the devia-
tion of the γ−ray energies from a smooth reference ∆4Eγ(I)
was determined by Cederwall [12], by calculating the finite
difference approximation of the fourth order derivation of the
γ−ray energies Eγ at a given spin I by

∆4Ere f
γ (I) = 1

16

[
Eγ(I − 4) − 4Eγ(I − 2)

+6Eγ(I) − 4Eγ(I + 2) + Eγ(I + 4)
] (9)

with Eγ(I) = Eγ(I)− Eγ(I − 2). The formula (9) contains five
energies of consecutive transition and is denoted by the five
point formula.

4 Numerical calculations and discussion

For each band of our studied SDRB’s, the spin of the band-
head I0 is taken from our previous works [19–25]. The model
parameters C0, B, f1, f2 are determined by using a computer
simulated search program in order to obtain a minimum root-
mean square (rms) deviation of the calculated transition ener-
gies Ecal

γ (I) from the experimental one Eexp
γ (I), we employed

the common definition of χ

χ =
1
N

√√√ N∑
i=1

∣∣∣∣∣∣Eexp
γ (Ii) − Ecal

γ (Ii)

δEexp
γ (Ii)

∣∣∣∣∣∣
2

(10)

where N is the number of the data points entering into the
fitting procedure and δEexp

γ (Ii) are the experimental errors in
γ−ray energies. Table(1) shows the predicted bandhead spins
and the best values of the model parameters C0, B, f1, f2 for
each band. Also indicated in Table(1) are the lowest γ−ray
transition energies Eγ(I + 2 → I0). Using the adopted model
parameters, the transition energies Eγ, rotational frequencies
~ω, the kinematic J(1) and dynamic J(2) moments of inertia
of our selected SD bands are obtained. A very good agree-
ment between the calculated and the experimental values is
obtained which gives good support to the model. The kine-
matic J(1) and dynamic J(2) moments of inertia are plotted as
a function of rotational frequency ~ω in Figure(1) compared
to the experimental ones. In A∼190 mass region, J(1) val-
ues are found to be smaller than J(2) and J(2) exhibits a grad-
ual increases with increasing ~ω, while in A∼130 the values
of J(2) are smaller than that the corresponding values of J(1)

for all ranges of frequencies and J(2) mostly decrease with
a great deal of variation from nucleus to nucleus. Another
result in the present work is the observation of a ∆I = 2 stag-
gering effect in γ−ray energies Eγ(I + 2 → I) in the studied

SDRB’s. The the staggering pattern is illustrated in Figure(2)
where the staggering parameters ∆4Eγ(I) introduced by Ced-
erwall et al [14] defined as the fourth derivative of Eγ are
presented as a function of rotational frequency ~ω. A signifi-
cant zigzag has been observed the resulting numerical values
for each band are listed in Tables(2 and 3).

5 Conclusion

The SDRB’s namely 194Tl(SD1, SD3, SD5), 130Ce(SD1),
132Nd and 136Sm(SD1) are studied in the version of the per-
turbed SU(3) limit of sdgIBM with supersymmetry scheme
including many body interaction. The bandhead spins are
taken from our previous works while the model parameters
are adjusted by fitting procedure in order to minimize the rel-
ative root mean square deviation between experimental tran-
sition energies Eexp

γ and the calculated ones Ecal
γ . Excellent

agreement are given which gives good support to the pro-
posed model. Rotational frequencies, kinematic J(1) and dy-
namic J(2) moments of inertia are calculated and the evolu-
tion of J(1) and J(2) with ~ω are studied. The calculated Eγ

are used to investigate the occurrence of a ∆I = 2 stagger-
ing effect in the studied SDRB’s by using the fourth order
derivative of the γ−ray transition energies. A large amplitude
staggering pattern is found in all the studied SDRB’s.
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