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We have developed the relevant setup and studied a possibility of the influence on the
radioactive decay by an external impulsive electromagnetic field. It is shown that such
action can result not only in a change in the rate of decay (rate of counting of gamma-
quanta), but also in a clear variation of the statistical properties of the series of suc-
cessive measurements of the counting rate such as the appearance of periodicities and
hyperrandom properties. It is found that the excitation of a system of radioactive nuclei
induced by the external influence disappears approximately in 4-6 days.

1 Introduction

We will describe our attempt to find a possibility to affect
parameters of the radioactive decay with the help of an im-
pulsive electromagnetic field. As is known, at the radioac-
tive decay, the number of decays per unit time is a random
variable which is described by the Poisson distribution [1].
Hence, from the viewpoint of the statistical analysis, the prob-
lem of search for the signs of changes after some treatment of
a radioactive specimen can be reformulated as a problem of
changes in the statistical properties of samples which are the
records of the results of measurements before and after the
treatment.

It should be emphasized that we intend to seek the weak
changes which can be only precursors of the changes seen
by naked eye (hence, of those possessing a practical signifi-
cance). From the viewpoint of the dominant theory, the rate
of radioactive decay cannot be affected at all (see [2]). While
experimentally determining the influence of some factor, the
researchers try to find, as a rule, the changes in the counting
rate at least on the level of the statistical effects. We pose the
problem in a more general form: to seek the differences be-
tween samples which can or cannot be reduced to a change in
the mean counting rate.

The sought signs can be the periodic variations in a count-
ing rate or the appearance of irregular “splashes” of the inten-
sity or other irregularities leading to that the series of mea-
surements of the counting rate cease to be random in the sense
of mathematical statistics. In this case, a change in the form
of a distribution function (loss of the Poisson property) can
be only one of the possible sought signs.

The radioactive decay can be considered as an example of
the process (if the radioactive half-life is much more than the
time of measurements), for which the long series of measure-
ments of its parameters is considered to be stationary in the
sense of mathematical statistics, i.e. its statistical parameters
do not vary with time. For comparison, we can indicate exam-

ples of other natural processes without the property of station-
arity such as the noise of the ocean, where ships move from
time to time near a detector of noises. The problem of the
analysis of such data was considered, for example, in [3,4].

In the present work, we will analyze changes in the decay
statistics for signals of the rate of counting of gamma-quanta
from radioactive specimens after the action of an impulsive
electromagnetic field onto them.

2 Data and methods of their analysis

We will examine a possibility to influence the process of ra-
dioactive decay by external impulsive electromagnetic field.
The setup generating the electromagnetic impulses that act on
a radioactive specimen will be called a driver for simplicity.
In order to use the statistical methods of analysis, we need the
long series of regular measurements of the rate of decay. Such
series were recorded with the use of a dosimeter-radiometer
“Pul’s” aimed at the remote radiation control. The device was
produced at the small joint-stock enterprise “Opyt”, includes
a detector on the basis of Nal(T1), and allowed us to execute
every-second measurements with the record of results into a
memory unit.

We analyzed the results of measurements of a specimen
treated with a driver during February—May in 2018 in the
city of Chornobyl’. As a specimen, we took monazite sand,
i.e. we measured and analyzed the summary signal (gamma-
radiation) from decay products of 2>2Th. First, before the
treatment of the specimen with a driver, we carried out the
measurements of the counting rate for several days. Later on,
we compared those data with the results obtained after the
action of a driver onto the specimen.

In the analysis of the statistical properties of the measured
signals, we used the statistical theory of hyperrandom phe-
nomena [5]. This theory is based on the hypothesis that the
results of measurements of natural processes are not indepen-
dent and identically distributed. Hence, they do not obey the
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basic preconditions for the application of well-known meth-
ods of mathematical statistics. In other words, the basic as-
sertion of the theory of hyperrandomness consists in that the
process under study can undergo the action of external influ-
ences, which induces, respectively, changes in the statistics
of a signal. This is manifested in the loss of the statistical
stability by data, i.e. the results of measurements become de-
pendent on the time. However, it can turn out that very long
series of measurements should be made for such changes to
be revealed.

The main distinction of the hyperrandom data from the
standard random numbers which are independent and iden-
tically distributed consists in that the variance of the former
does not decrease, as the number of measurements increases
(increase in the size of a sample). On the contrary, starting
from some number of measurements, the variance of hyper-
random data increases [3,4]. Such effect can be a conse-
quence of the tendency to a change in the mean, the autocor-
related function, efc during the measurement. (We emphasize
once more that the similar changes in a sample can have the
statistical character and can be invisible for naked eye.)

The formulas for the analysis of hyperrandom data can be
found in [5,6]. We now indicate only the principle of such
analysis. Let us have the sample of the results of measure-
ments X with size N: X = (x1, x2,...xy) is a regular tempo-
ral series of the results of measurements. We accentuate that
the series is ordered in the meaning that the elements of the
series should not be permuted. We are interested in the de-
pendence of its parameters on the size of a sample, i.e. on the
time. For this purpose, we calculate the accumulated means,
i.e. the means for the first two, three, efc elements of the input
series. As a result, we get a new first-order series of data in
the form of accumulated means YV = (Y,, Y», ... Yy), where
Y, = % 2y xi(n =1, N), with its mean my, = % 22\1:1 Y,. Then
we can repeat the procedure and form the series of higher or-
ders Y@, Y3 ete.

The object of our analysis is the function, being the un-
biased variance of fluctuations from the accumulated mean,
o N .

DYN = Nl_l Zn:l Y, - mYN)Z-

As the quantitative measure of one of the hyperrandom
properties, specifically, the statistical instability of a series of
data, we take the coefficient yy characterizing the absolute

M[Dy, ] .
NDYY;’ , where M[x] is the

operator of mathematical expectation.

level of statistical instability: yy =

To have a possibility to compare different samples with
one another, the units of statistical instability are introduced
in the theory. For the coefficient yy, the role of a unit of sta-
tistical instability of measurements is played by the quantity
yon Which corresponds to the noncorrelated series of read-
ings with constant variance D,, = D, and zero mathematical
expectation at a fixed value of N. The coefficient yy is given

by the formula
N+1 2 N1
= Cy - , where Cy= Y —.
YNE NN Y T N Vet Zn

n=1

Using the unit of measurements gy, we introduce the ra-
tio hy = % i.e. the coefficient characterizing the absolute
level of statistical instability in units of ygy. These coeffi-
cients are dimensionless. The degree of hyperrandomness fy
of the analyzed data will be considered in what follows.

We note that though the hyperrandom properties of our
data are manifested undoubtedly (see below), the derivation
of the quantitative estimates of the degree of hyperrandom-
ness is not a simple matter. We clarify this point by the exam-
ple. Let us deal with a really random stationary process, so
that its signal has no signs of the hyperrandomness. At some
time moment, let a quite short external influence arise (the du-
ration of the external action is assumed to be much less than
the time of observations). It causes an increase in the mean
and, respectively, to the appearance of the hyperrandomness.
After some time period, the signal again becomes random and
stationary.

Hence, the sample as a temporal signal can be partitioned
into three parts. The midsection is hyperrandom, and the be-
ginning and the end are normal stationary signals. In this
situation, the sample has, on the whole, hyperrandom proper-
ties. But the results of calculations for each of the three parts
separately will give different results.

In real situations, the information about the very fact of
the external influence (treatment by a driver) can be unknown.
Hence, we should consider the problem of determination of
changes in the statistics of a series, the problem of analysis
of the dynamics of those changes in time, and the problem
of searching for the time, when the driver acts. If, for exam-
ple, the aftereffect is present and varies in time, we can say
nothing about the time moment of the transition of the sam-
ple into the third part, even if we are based on the analysis of
the whole series. Moreover, the very fact of such transitions
should be studied. We reformulate this problem as follows:
Are there some regularities of changes in the hyperrandom-
ness indicating the action of a driver and can we determine,
for example, the characteristic time of relaxation of the “hy-
perrandomness state” arisen due to the action of a driver?

In view of the above discussion, we need to analyze the
separate parts of samples with the purpose to find the distinc-
tions between them and to establish the optimum size of such
subsamples. To make it, we chose a “window” of a definite
size, i.e. we set the size of a subsample. With such window,
we scan the whole series of measurements. For each “win-
dow”, we calculated the necessary parameters.

3 Results and discussion

As was indicated, the hyperrandomness by its nature arises
at a change in time of some parameters of the process such
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Fig. 1: Analysis for hyperrandomness of a series of measurements
during 13 days from 14.02.2018 to 26.02.2018 (prior to the treat-
ment). There is the sign of the hyperrandomness, which is revealed
as an increase in Ay after approximately 5000-8000 min of measure-
ments.

as, in particular, the solitary short-time splashes. The statis-
tical characteristics of a series calculated before the splash
can be changed after it. If the duration of the action of a
driver is from several minutes up to several hours, it can be
considered a short-time influence against the background of
measurements during several days.

One of the tasks of the present work is the search for the
time of relaxation of a signal after the action of a driver, which
is reduced to the analysis of short segments of the entire se-
ries. In Fig. 1, we present the results of a test for the hyper-
randomness. We took a sufficiently long-time (13 days) series
of measurements before the action of a driver in order to esti-
mate the order of long-time changes.

In each of the figures below, the upper plot is the input se-
ries of data; the middle plot presents a variation in time of the
accumulated variance; and the lower plot shows the param-
eter iy which characterizes the degree of hyperrandomness.
The results of calculation of the hyperrandomness parameter
are accompanied by the analysis of whether such result can
be formed accidentally. It is a reasonable question, because
we analyze the series of random numbers. For this purpose,
we generated a computer-created sample of random numbers
with the same parameters (mean and variance), as those of the
experimental series. For such model sample with the same
programs, we made analysis for hyperrandomness. This pro-
cedure was repeated several times for the sake of reliability,
and the results were drawn on one figure. In the presence of
a noticeable hyperrandomness, the experimental curve must
be outside the zone, where the curves for model samples are
placed. This zone for the model series of random numbers is
shown in the lower plot by dotted lines.

As is seen in Fig. 1, the series manifests some hyperran-

domness during 13 days before the treatment. It starts to re-
veal itself after approximately 5—6 days of measurements.

Then, on 27.02.2018, we executed the treatment of the
specimen with a driver (impulsive electromagnetic field).

In Fig. 2, we present the results of analysis for the hyper-
randomness of a series of measurements before and after the
action of a driver. We recall that our purposes are to register
the time of a manifestation of the action of a driver and to de-
termine the temporal changes of the signs of such action. We
analyzed the subsamples 4 days in duration. In other words,
we analyzed a part of the series 4 days in duration, then the
“window” was shifted by one day, and so on. Hence, the
subsamples were overlapped during 3 days in order to more
or less reliably notice the times of changes in the degree of
hyperrandomness.

In view of Fig.2, we can formulate the following main
results:

1. After the action of a driver, the rate of counting of
gamma-quanta somewhat increased.

2. In the analyzed series, the hyperrandomness was not
observed practically for 4 days (accepted size of a scan-
ning “window”) before the treatment: the variance de-
creased, as the size of a sample increased.

3. After the action of a driver on 27.02.2018, we observe
a sharp increase in the hyperrandomness. The vari-

ance starts to grow already approximately in 1200 min
(20 h).

4. This effect of hyperrandomness practically disappeared
on 04.03.2018 (in 4-5 days) to the level of noises.

4 Conclusions

1. We have revealed that, under the action of electromag-
netic impulses, the statistics of the radioactive decay is
changed.

2. It is found that, after the action of a driver, the pro-
cess of decay became hyperrandom. This means that
its characteristic such as the accumulated variance in-
creases in time, rather than decreases. In turn, this
means that the process of decay stops to be stationary.

3. This forced nonstationarity was observed during ap-
proximately 5 days. Then the process of decay returns
to the stationary mode (experimental curve in Fig. 2f is
located in the zone of random values).

4. Such time of existence of the aftereffect (tens of hours),
which is much more than the characteristic time of the
evolution of a separate nucleus, is, most probably, the
experimental confirmation of the theories (see [7-10])
that assert that the radioactive decay is a collective pro-
cess in the system of correlated nuclei. From this po-
sition, we may assert that the quantitative estimates of
the process of relaxation of a system of nuclei are made
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Fig. 2: Analysis for hyperrandomness: the series of successive overlapping subsamples from 28.02.2018 to 03.03.2018. The measurement
at once after the treatment which occurred 27.02.2018. After the action of a driver, the hyperrandomness appeared: an increase in the
variance and in /4 is clearly seen. On the fifth day, the hyperrandomness drops to the level of random noises.
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for the first time. The determined time of the relaxation
has the order of hours.
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