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In this article we propose a new approach to quantum measurement in reference to the
stroboscopic tomography. Generally, in the stroboscopic approach it is assumed that
the information about the quantum system is encoded in the mean values of certain
hermitian operators Q1, ...,Qr and each of them can be measured more than once. The
main goal of the stroboscopic tomography is to determine under which conditions one is
able to reconstruct the initial density matrix ρ(0) on the basis of the measurement results
〈Qi〉t j . In this paper we propose to treat every complex matrix as a measurable operator.
This generalized approach to quantum measurement may bring some improvement into
the models of stroboscopic tomography.

1 Introduction

In this paper by H we shall denote the Hilbert space and we
shall assume that dimH = n < ∞. By B(H) we shall de-
note the complex vector space of all bounded linear opera-
tors in H . The space B(H) is isomorphic with the space of
all complex matrices that shall be represented by Mn(C). Fi-
nally, B∗(H) shall refer to the real vector space of all hermi-
tian (self-adjoint) operators on H . The elements of B∗(H)
shall be called observables.

The term quantum state tomography refers to a wide va-
riety of methods and approaches which aim to reconstruct the
accurate representation of a quantum system by performing
a series a measurements. Among many different approaches
to quantum tomography, one can especially mention the so-
called static model of tomography, which requires n2−1 mea-
surements of different observables taken at time instant t = 0
(see more in [1–3]). A paper published in 2011 initiated an-
other approach to quantum tomography which is based on
weak measurement. The paper revealed that the wave func-
tion of a pure state can be measured in a direct way [4]. Fur-
ther papers proved that this approach can be generalized also
for mixed state identification [5].

In this paper we follow yet another approach to quantum
tomography – the so-called stroboscopic tomography which
originated in 1983 in the article [6]. Subsequently, the ap-
proach was developed in other papers, such as [7–9]. The
assumption that lies at the very foundation of this method
claims that the evolution of an open quantum system can be
expressed by a master equation of the form

ρ̇(t) = L[ρ(t)], (1)

where the operator L is called the generator of evolution and
its most general form have been introduced in [10]. In or-
der to determine the initial density matrix ρ(0) one assumes
to have a set of identically prepared quantum systems which
evolve according to the master equation with the generator L.
Each system can be measured only once, because any mea-
surement, generally, influences the state.

The other underlying assumption connected with the stro-
boscopic approach is that the knowledge about the quantum
system is provided by mean values of certain observables
{Q1, ...,Qr} (obviously Q∗i = Qi) such that r < n2 − 1. These
mean values are mathematically expressed as

〈Qi〉t = Tr(Qi ρ(t)) (2)

and are assumed to be achievable from an experiment. If we
additionally assume that the knowledge about the evolution
enables us to perform measurements at different time instants
t1, ..., tg, we get from an experiment a matrix of data [〈Qi〉t j ],
where i = 1, ..., r and j = 1, ..., g. The fundamental question
of the stroboscopic tomography that one asks is: whether the
matrix of experimental data is sufficient to reconstruct the ini-
tial density matrix ρ(0). Other problems relate to the minimal
number of observables and time instants, the properties of the
observables and the choice of time instants. In general the
conditions under which it is possible to reconstruct the initial
state have been determined and can be found in [6–8].

Compared with the static model of tomography, the stro-
boscopic approach makes it possible to decrease significantly
the number of different observables that are necessary to per-
form quantum state tomography. From the experimental point
of view, it means that in the static model one needs to prepare
n2−1 different experimental systems (e.g. for dimH = 4 one
would need to measure 15 different quantities), which seems
rather unrealistic. Therefore, the stroboscopic approach ap-
pears to have an advantage over the static model as it aims to
reduce the number of distinct observables.

2 Generalized observables and measurement results

According to one of the most fundamental concepts of quan-
tum mechanics, to every physical quantity we can assign a
hermitian operator which is called an observable. Thus, when
talking about measurements in the context of the stroboscopic
tomography, we consider mean values of certain hermitian
operators [6]. In general, any hermitian operator can be de-
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composed according to the spectral theorem:

Q =
∑

i

λiPi. (3)

where Pi is the projector onto the eigenspace of Q with the
eigenvalue λi [11]. Physically speaking, the possible results
of measurement correspond to the eigenvalues of Q, whereas
the probability of getting the result λi (upon measuring the
state ρ) can be expressed as:

pi = Tr(Pi ρ). (4)

Finally, we can compute the expectation value of Q as:

〈Q〉 =
∑

i

λi pi = Tr(Q ρ), (5)

which gives the famous formula for the mean value of any
observable.

In other words, any observable is associated with a pro-
jective measurement, which stems from the spectral theorem.
The main goal of this section is to prove that this approach
to measurement can be generalized in such a way that any
complex matrix A ∈ Mn(C) can be considered a measurable
operator.

We shall formulate and employ the following theorem.

Theorem 1. (Hermitian decomposition of a complex matrix)
For any matrix A ∈ Mn(C) there exist two matrices Q, R ∈
B∗(H) such that the matrix A can be decomposed as

A = Q + i R. (6)

Proof. Let us first denote A = [ai j] and since in general ai j ∈

C we can put
ai j = Re ai j + i Im ai j. (7)

Moreover we can denote Q = [qi j] and R = [ri j]. Then we
shall define the entries of the matrices Q and R in the way:

qi j :=
Re ai j + Re a ji

2
+ i

Im ai j − Im a ji

2
, (8)

ri j :=
Im ai j + Im a ji

2
+ i

Re a ji − Re ai j

2
. (9)

One can easily notice that qi j = q ji and ri j = r ji. Therefore
Q,R ∈ B∗(H).

Furthermore, one can check that

qi j + iri j =
Re ai j + Re a ji

2
+ i

Im ai j − Im a ji

2
+

+ i
Im ai j + Im a ji

2
+

Re ai j − Re a ji

2
= ai j,

(10)

which implies that
A = Q + i R. (11)

�

The above theorem states that every complex matrix A ∈
Mn(C) can be uniquely decomposed into two hermitian ma-
trices. In other words, every complex matrix can be regarded
as a pair of observables (hermitian matrices), i.e.

A→ (Q1,Q2), where Q1,Q2 ∈ B∗(H). (12)

Since in general any observable is considered measurable,
therefore, any complex matrix can also be considered a mea-
surable operator.

In this paper it has been proven that for any A ∈ Mn(C)
there exist two observables Q1,Q2 ∈ B∗(H) such that

A = Q1 + i Q2. (13)

If we generalize the idea of quantum measurement, we
can define the mean value of any operator A ∈ Mn measured
upon a quantum system characterized by a density matrix
ρ(t). Such a quantity, denoted by 〈A〉t, shall be defined in
the following way:

〈A〉t := Tr[Aρ(t)] = Tr
[
(Q1 + i Q2)ρ(t)

]
. (14)

Taking into account the fact that trace is linear, one obtains

〈A〉t = Tr[Q1ρ(t)] + i Tr[Q2ρ(t)], (15)

which can be equivalently presented as

〈A〉t = 〈Q1〉t + i 〈Q2〉t. (16)

One can observe that if we generalize the idea of quantum
measurement in such a way that we treat any complex matrix
A ∈ Mn(C) as a measurable operator, the mean value of A is
a complex number such that its real and imaginary parts are
mean values of the observables Q1,Q2 which appear in the
hermitian decomposition of A. Therefore, the measurement
of any complex operator A can be understood as the mea-
surement of two physical quantities that are mathematically
represented by the hermitian matrices Q1,Q2.

3 Connection with the stroboscopic tomography

When considering problems in the stroboscopic tomography,
one needs to bear in mind the necessary condition that the
set of observables Q1,Q2, ...,Qr has to satisfy so that an open
quantum system with dynamics given by (1) will be recon-
structible.

Theorem 2. An open quantum system with evolution given by
Eq. 1 is (Q1, ...Qr)-reconstructible if and only if the operators
Qi satisfy the condition [6, 7]

r⊕
i=0

Kµ(L,Qi) = B∗(H), (17)

where
⊕

refers to the Minkowski sum, µ is the degree of the
minimal polynomial of L and Kµ(L,Qi) denotes the Krylov
subspace which standard definition reads:

Kµ(L,Qi) := Span{Qi,L
∗Qi, (L∗)2Qi, ..., (L∗)µ−1Qi}. (18)
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In reference to this condition for observability of a quan-
tum system we can propose the following theorem.

Theorem 3. Assume that the set of hermitian matrices de-
noted by {λ1, λ2, ..., λn2 } constitutes a basis in the space of all
hermitian operators B∗(H), where n = dimH . Then they
also constitute a basis in the space of all linear operators
Mn(C).

Proof. Taking into account the assumption, one can write:

∀Q∈B∗(H) ∃α1,...,αn2∈R Q =

n2∑
k=1

αkλk. (19)

Then from the theorem on hermitian decomposition of a com-
plex matrix it follows that ∀A∈Mn(C) ∃Q,R∈B∗(H) such that the
matrix A can be decomposed as

A = Q + i R. (20)

Assuming that Q has such decomposition as in (19) and tak-
ing R in the analogous form:

R =

n2∑
k=1

βkλk, βk ∈ R, (21)

matrix A can be represented as

A =

n2∑
k=1

αkλk + i

 n2∑
k=1

βkλk

 , (22)

which can be transformed into the form

A =

n2∑
k=1

(αk + iβl) λk. (23)

Finally, the matrix A can be decomposed as

A =

n2∑
k=1

zkλk, (24)

where zk ∈ C and zk = αk + iβk.
From (24) one can easily draw the conclusion that the set of
matrices {λ1, λ2, ..., λn2 } is a basis inMN(C). �

The link between the above theorem and the stroboscopic
tomography is that in (17), which expresses the necessary
condition for observability, on the right hand side you can
put either B∗(H) or B(H). On the basis of theorem 3 one can
conclude that if certain operators span one of these spaces,
they also have to span the other.

4 Summary

In this paper it has been proved that any complex matrix A ∈
Mn(C) can be uniquely determined by two hermitian matrices

(i.e. observables). In general, mean values of hermitian ma-
trices can be obtained from an experiment (based on projec-
tive measurement). Thus, from this observation one can con-
clude that any complex matrix can be regarded as a measur-
able operator. The measurement of a complex matrix should
be understood as the measurement of the mean values of two
observables which determine the complex operator. The mea-
surement result of a complex matrix is then a complex num-
ber which real and imaginary parts are obtained from an ex-
periment. Further research is planned to investigate whether
the generalized approach to measurable operators can im-
prove the models of the stroboscopic tomography.
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