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A Wave Representation for Massless Neutrino Oscillations:
The Weak Interaction Transmutes the Wave Function
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There are solutions of the Klein-Gordon equation for the massless neutrino that pro-
duce massless neutrino oscillation of flavor. These solutions serve as a counterexample
to Pontecorvo, Maki, Nakagawa, and Sakata theory for neutrino oscillation of flavor,
which implies neutrinos must have mass contrary to the standard model. We show that
the wave function for the massless antineutrino for an inverse β decay (IBD) is a su-
perposition of two independent solutions of the Klein-Gordon equation. One solution
represents the latent incident wave upon an IBD. The other solution represents the latent
reflected wave from the IBD. This superposition renders a compound modulated wave
function with regard to amplitude and phase modulations. This compound modulation
is shown to facilitate neutrino oscillation that may be massless and, therefore, consistent
with the standard model. Extra to a massless counterexample, the weak interaction is
shown to transmute the wave function during an IBD by changing the amounts of the
latent incident and latent reflected wave functions that are allocated to the superposition.

1 Introduction

The Pontecorvo, Maki, Nakagawa, and Sakata (PMNS) the-
ory for oscillation of neutrino (ν) flavor implies that the neu-
trino has a finite mass in contrast to the standard model [1]–
[4]. PMNS theory, which was developed in the mid-twentieth
century in the absence of a contending theory, soon became
preeminent regarding neutrino oscillations including its im-
plication that the neutrino must have a finite mass in order
to oscillate. A counterexample to PMNS theory now exists:
the quantum trajectory representation of quantum mechan-
ics had predicted in 2017 that massless neutrino oscillation is
an alternative possibility that is consistent with the standard
model [5]. However, the quantum trajectory representation
is presently arcane, for it is couched in a quantum Hamilton-
Jacobi formulation [5]–[17]. As a result, PMNS theory has
maintained its preeminence on neutrino oscillation. A way to
overcome this preeminence is to describe massless neutrino
oscillation in the more familiar wave function representation,
which would be more accessible to a much broader audience.
Our objective in this paper is to provide such.

A wave function representation that is a counterexample
to PMNS theory is attainable. This theoretical counterexam-
ple renders massless neutrino oscillation while also showing
that PMNS theory is not the exclusive explanation of neu-
trino oscillation. In this paper, we show that there are math-
ematical solutions of wave equations, which to the best of
our knowledge have been used only a few times [18]–[23] to
describe wave phenomena, and which invite further investiga-
tion. We study massless neutrino oscillation with these math-
ematical solutions of the Klein-Gordon equation for a mass-
less antineutrino. This mathematical solution is synthesized
by the superpositional principle from two independent solu-
tions of the Klein-Gordon equation for an antineutrino before

encountering a charged current interaction. The two solutions
are the latent incident solution and the latent reflected solu-
tion. The “quantum action” of the Klein-Gordon equation is
composed of both independent solutions of the Klein-Gordon
equation [14] and can be seen as the order ~0 term of the
quantum action of QFT.

Extra to the initial goal of adducing a massless counterex-
ample, the behavior of the synthesized solution also gives in-
sight into the weak interaction (weak force). A byproduct
of this investigation shows that the weak interaction with-
out causing any exchange of energy can transmute the Klein-
Gordon solution from a synthesized solution to a plane-wave
solution.

The particular charged current interaction that we exam-
ine herein is the inverse beta decay (IBD) where [24]

νe + p
W+ boson exchange
−−−−−−−−−−−−−−−−−→ e+ + n, (1)

in which the antineutrino ν participates as an electron antineu-
trino νe. The wave function for ν is specified by ψ. When νe

arrives at the point qb ready for IBD absorbtion in (1), its ψ is
assumed in this ab initio calculation to be then a traveling
complex-exponential plane wave exp(ikq) with wave num-
ber k, in cartesian coordinate q, and tacitly with amplitude 1.
While the ab initio calculation develops flavor oscillations for
a massless ν, the conventional terminology “neutrino oscilla-
tion” is retained for referencing the oscillation phenomenon
herein.

An outline of the rest of this paper follows. In §2 we de-
velop a model by an ab initio computation for massless neu-
trino oscillation for an IBD. The wave function for the neu-
trino is synthesized from the latent solutions for the incident
and reflected wave functions by the superpositional princi-
ple. The latent incident and latent reflected wave functions are
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traveling complex-exponential plane waves that are indepen-
dent one-dimensional solutions of the Klein-Gordon equa-
tion. This synthesized solution is shown to be compoundly
modulated with regard to amplitude and phase. This com-
pound modulation induces periodic nonuniform propagation
that in turn facilitates neutrino oscillation. The amplitude
and phase modulations are individually analyzed. We ap-
ply the same modulation analyses to the wave function’s spa-
tial derivative. In this wave function representation for mass-
less oscillation, the weak interaction changes the synthesized
wave function to a traveling complex-exponential plane-wave
solution, which is then ready for absorption by the IBD pro-
cess. In §3, we examine selected didactic examples. The ex-
amples show that the individual contributions of phase mod-
ulation and amplitude modulation complement each other.
Where one modulation is at a peak, the other is at a null. The
examples also show that the compound modulations of the
wave function and its derivative supplement each other. That
is where the amplitude modulation increases dilation in one, it
decreases it in the other. And where phase modulation rotates
the phase of one clockwise, it rotates the other’s phase coun-
terclockwise. In §4 a brief discussion is presented. Together,
the complementing and supplementing are shown to facilitate
periodic nonuniform propagation that permits massless neu-
trino oscillation. Findings and conclusions are presented in
§5.

2 Ab initio calculation

The one-dimensional stationary Klein-Gordon equation
(SKGE) for an antineutrino with mass m and for the Cartesian
dimension q is a second-order, linear, homogeneous ordinary
differential equation given by [25]

−~2c2 ∂
2ψ(q)
∂q2 +

(
m2c4 − E2

)
ψ(q) = 0 (2)

where ~ is Plank’s constant, c is speed of light and E is energy.
As such, the superpositional principle applies to the SKGE’s
solutions. The inertial reference frame for describing ψ of (2)
is the frame for which the target proton of the IBD is at rest.
This makes E dependent on the dynamics of the target pro-
ton. The threshold energy for executing an IBD is Ethreshold =

1.806 MeV for νe and progressively greater for the analogous
charged current interactions for νµ and ντ. Herein, it is always
assumed the ν has energy greater than the threshold energy.
The notation ψ denotes that the wave function of the antineu-
trino is a solution of (2) but does not specify whether it is unis-
pectral, ψ = exp(ikq), or bispectral ψ2. Eq. (2) remains well
posed should m = 0 in agreement with the standard model.
Studying the case m = 0 is sufficient to render a massless
counterexample to PMNS. For antineutrino energy E and nil
mass, a set of independent solutions sufficient to solve (2)
may be given by {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} where the
wave number k = E/(~c).

The incident antineutrino is assumed to propagate in the
+q direction toward the target proton of an IBD, while any
reflection from an IBD would propagate in the −q direction.
The solution ψ = exp(ikq) is a unispectral wave function with
one spectral component, +k (the solution of the homogeneous
SKGE is defined to within a constant in phase). Its derivative
∂qψ = ikψ is also unispectral and is displaced in phase from
ψ1 by a constant π/2 radians. The amplitude of ∂qψ relative
to that of ψ is multiplied by the factor k. Thus, the unispectral
ψ(q) displays uniform rectilinear motion, which presents a
constant relationship

∂qψ
/
ψ = ∂q ln(ψ) = ik (3)

to any encountered current interactions. The constant charac-
ter of (3) is expected, for ψ(q) is an exponential of the linear
variable q. Uniform rectilinear propagation precludes flavor
oscillations.

Let the incident antineutrino to an IBD have a bispectral
wave function ψ2 with spectral components given by wave
numbers {+k,−k}. We can synthesize a bispectral ψ2 by the
superpositional principal from the set {exp(+ikq), exp(−ikq)}
of independent solutions for the SKGE. The incident bispec-
tral ψ2 may be presented in a few representative forms as [5]

ψ2 =

bispectral solution of SKGE by superpositional principle︷                                  ︸︸                                  ︷
α exp(+ikq)︸        ︷︷        ︸

latent incident wave

+ β exp(−ikq)︸        ︷︷        ︸
latent reflected wave

(4)

= (α − β) exp(ikq)︸              ︷︷              ︸
traveling wave

+ 2β cos(kq)︸      ︷︷      ︸
standing wave

= (α + β) cos(kq) + i(α − β) sin(kq)︸                                     ︷︷                                     ︸
coherent standing waves

(5)

= Aψ exp(i Pψ),︸          ︷︷          ︸
compoundly modulated traveling wave

(6)

where all forms (4)–(6) are solutions of the SKGE. In (6), ψ2
is compoundly modulated for its amplitude Aψ and phase Pψ

are modulated as given by

Aψ =

amplitude modulation︷                              ︸︸                              ︷
[α2 + β2 + 2αβ cos(2kq)]1/2

and

Pψ =

phase modulation [5]︷                      ︸︸                      ︷
arctan

(
α − β

α + β
tan(kq)

)
.

Eqs. (4)–(6) for the antineutrino’s wave function are all
representations of a wave function synthesized by the super-
positional principle. As such, each individual equation of (4)
through (6) represents a synthesized solution of the SKGE
consistent with the orthodox interpretation of quantum me-
chanics. The coefficients α and β respectively specify the
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amplitudes for the latent incident and reflected waves asso-
ciated with an IBD. Propagation of the latent incident wave
in the +q direction implies that α2 > β2. The coefficients α
and β are normalized by

α2 − β2 = 1 (7)

consistent with one νe in (1) for an IBD (it is also the normal-
ization used in the quantum trajectory representation). Know-
ing the value of one coefficient implies knowing the value of
the other by normalization, (7). If the conditions α > 1 and
0 < β2 = α2 − 1 exist, then bispectral propagation in the
+q direction follows. The bispectral propagation for ν con-
sistent with (4)–(6) is nonuniform, albeit still rectilinear, in
the +q direction. As such, ψ2(q) may also be considered to
be the wave function synthesized by the superposition of the
latent incident wave and the the latent reflected wave upon
each other. Note that herein the coefficients could have been
expressed hyperbolically by α = cosh(γ) and β = sinh(γ)
consistent with (7).

For completeness, if the incident and reflected waves were
neither latent nor superimposed, then the wave function rep-
resentation would be in a two-dimensional space {qincident,
qreflected} given by

ψ(qincident, qreflected) = α exp(+ikqincident)

+ β exp(−ikqreflected),

which is not equivalent to ψ2(q) of (4)–(6). Eqs. (4)–(6) in-
dividually show the superpositioning to describe ψsuperimposed
in one-dimensional space by a single independent variable
q. Also for completeness, a literature search for “reflected
neutrinos” on the web has found nothing for reflected neutri-
nos from charged current interactions per se but did find an
unpublished report regarding reflections of antique neutrinos
from the big bang [26].

Let us examine the compoundly modulated traveling wa-
ve (6) in special situations for didactic reasons. Should β =

0, then the amplitude Aψ and phase Pψ would respectively
become

Aψ

∣∣∣
β=0 = [α2 + β2 + 2αβ cos(2kq)]1/2|β=0 = α|β=0 = 1 (8)

and

Pψ

∣∣∣
β=0 = arctan

(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
β=0

= kq. (9)

Then, (6) would represent unispectral propagation as expec-
ted. Next, we consider the case (|β| = α) < {0 ≤ β2 = α2 −

1} and in violation of the normalization (7). Nevertheless,
|β| = α is a limit point for β → ∞. Should ±β = ∞ (i.e.
where a latent total reflection would preempt any IBD), then
the amplitude would reduce to trigonometric identities with
scaling factor 2α given by [27]

Aψ

∣∣∣
β=α

= 2α
(

1 + cos(2kq)
2

)1/2

= 2α cos(kq) (10)

and

Aψ

∣∣∣
−β=α

= 2α
(

1 − cos(2kq)
2

)1/2

= 2α sin(kq) (11)

consistent with (5). The corresponding phase would be

Pψ

∣∣∣
β=α

= arctan
(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
β=α

= 0 (12)

and

Pψ|−β=α = arctan
(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
−β=α

=
π

2
(13)

also consistent with (5). Then, in either case and consistent
with (4), (6) would represent a scaled standing cosine wave
for β = α and a scaled standing sine wave for −β = α. Stand-
ing waves, while mathematically permitted, would have rel-
ativistic issues in addition to the aforementioned total reflec-
tion issue. Thus, the representation for the wave function (6)
covers all solutions of physical interest of (2) propagating in
the +q direction with normalization α2 − β2 = 1 (7).

If the neutrino and antineutrino are considered to form a
Majorana pair of particles (an unsettled question), then the
wave functions for the neutrino and antineutrino would be
complex conjugates of each other. Under the Majorana hy-
pothesis, the latent reflected wave β exp(−ikq) in (4) would
be the wave function for a neutrino with amplitude β. In this
case, (6) would represent the superposition of the wave func-
tions of the Majorana neutrino and antineutrino upon each
other. This is consistent with Pontecorvo’s proposal [28] that
a mixed particle consisting of part antineutrino and part neu-
trino may exist. Furthermore, the set of independent solu-
tions {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} = {ψ, ψ} that solve the
SKGE, form a pair of Majorana solutions that are sufficient
to solve the SKGE. Any solution, e.g. (4)–(6), of the SKGE
formed from this pair by the superpositional principle would
itself have a Majorana partner that would also be its com-
plex conjugate. While the wave functions given by (4)–(6)
are Pontecorvo “mixed” solutions [28], they are still speci-
fied herein as ψs of the ν as determined by the directional
characteristic (+q) of the latent incident wave.

Let us briefly discuss how this ab initio calculation de-
scribes the evolution of the bispectral ψ2 during consumma-
tion of an IBD. The weak interaction is not a “force” per
se. It does not cause an energy exchange among its partici-
pants. Rather, for purposes of this paper, it enables beta decay
where a neutron decays into a proton, electron, and neutrino,
which is the inverse of an IBD (1). Let us consider that the
weak interaction occurs in a black box over the short range
of the weak interaction between qa, where the antineutrino
initially encounters the weak interaction, and qb where the
antineutrino is absorbed by the target proton. The short range
of the weak interaction is given by qb − qa ≈ 10−18 m, a
value much smaller than the radius of the proton. Within the
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black box qa < q < qb, the same set of independent solutions
{exp(+ikq), exp(−ikq)}, which are sufficient to solve (2), are
used to describe ψ2 while it is subject to the forceless weak in-
teraction that precludes any energy exchange. In the absence
of an energy exchange, the wave number k remains a con-
stant in (4)–(6) during νe’s transit of the black box from qa to
qb. But the coefficients {α, β} are changed! During the transit
of νe from qa to qb in this ab initio calculation, the forceless
weak interaction by W+ exchange smoothly changes coeffi-
cients {α, β}|qa → {1, 0}|qb while continuously maintaining the
normalization α2 − β2 = 1 of (7). In other words, the coef-
ficients while inside the black box boundaries become vari-
ables {α(q), β(q)}qa≤q≤qb that are explicitly still subject to the
normalization

α2(q) − β2(q) = 1, qa ≤ q ≤ qb,

which is consistent with (7). A smooth transition of the coeffi-
cients from {α(qa), β(qa} to {1, 0}|qb with C1 continuity would
be sufficient to maintain C1 continuity of the νe’s wave func-
tion as it evolves, during its transit of the black box with
constant E and wave number k, from a bispectral ψ2(qa) to a
unispectral exp(ikqb) ready to be absorbed. At qb, the output
transmitted wave function of the black box will have become
a unispectral wave function as given by

ψ2(qa) = α(qa) exp(ikqa) + β(qa) exp(−ikqa)

= [1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)

q→qb, ∴ β(q)→0
−−−−−−−−−−−−→ exp(ikqb), qa ≤ q ≤ qb

(14)

under the influence of the exchange of the W+ boson between
the proton and antineutrino. In the extended black box, a pro-
visional form for β(q) with C1 continuity during the transmu-
tation of ψ from ψ2(qa) to exp(ikqb) in (14) is offered by

β(q) =
β(qa)

2

[
1 + cos

(
q − qa

qb − qa
π

)]
, qa ≤ q ≤ qb.

Again, no energy is exchanged between the proton and
antineutrino by the W+ boson exchange. (If the transmitted
wave function at qb had not been unispectral exp(ikq), then
its initial values at qa would have been flavor incompatible
ν(qa) , νe(qa), which would have preempted an IBD. Con-
summated IBDs are rare events.) The transmitted unispec-
tral wave function exp(ikq) is the wave function for νe in (1).
The normalization α2 − β2 = 1 (7) specifies that the value of
the amplitude of the transmitted unispectral wave function is
1, consistent with the assumptions for νe’s wave function for
(1). The transmitted unispectral νe is compatible with being
absorbed by the proton consistent with (1). The function of
the black box in the IBD process (to change the input bispec-
tral wave function to an output unispectral wave function of
amplitude 1 in a forceless manner for νe’s E never changes)
has been completed with the νe positioned at qb, ready to be

absorbed with the target proton. The W+ boson exchange
has now been completed. The IBD carries on. The IBD
completes consummation consistent with (1) where its par-
ent particles, the proton and the unispectral antineutrino, are
absorbed, and the IBD emits its daughter products, a positron
and a neutron. The latent transmission coefficient T and re-
flective coefficient R of the black box for the weak interaction
process are the expected

T =
α2 − β2

α2 =
1
α2 and R =

β2

α2 , (15)

where the coefficients {α, β} are their pre-weak interaction
values.

Flavor compatibility for an IBD is determined by the bou-
ndary conditions {ψ, ∂qψ} at the black box’s input barrier in-
terface qa. The black box in this ab initio calculation ren-
ders a transmitted unispectral wave function exp(ikq), if and
only if ψ2 has proper IBD initial values for the black box,
{ψ, ∂qψ}q=qa .

Future research may refine the aforementioned descrip-
tion of the evolution of the antineutrino’s wave function in
the black box. If so, the principle of superposition of the
wave functions of the latent incident and the latent reflected
waves could still describe a generalized (14). For example,
future research may find that the transmitted wave function
of energy E from the black box should have coefficients {(1 +

β2
b)1/2, βb}|q=qb with β > 0 for IBD absorption of the antineu-

trino. For a successful IBD, the black box model of the weak
force would then transmute the incident wave function de-
scribed by

[1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)
q→qb, ∴ β(q)→βb
−−−−−−−−−−−−−→

(1 + β2
b)1/2 exp(ikqb) + βb exp(−ikqb)

(16)

where qa < q ≤ qb. This generalizes (14) and would still
describe a counterexample permitting massless neutrino os-
cillation. Eqs. (14) and (16) are analogous to the invariance
of the Schwarzian derivative under a Möbius transformation
in the quantum trajectory representation [14], [29].

Chirality and helicity are the same for massless leptons
propagating with speed c. The quantum measure of helic-
ity, normalized over a cycle of nonuniform propagation, for
a massless antineutrino before encountering the black box,
q < qa, would by (4)–(6) be α2−β2 = 1, which is also the nor-
malization (7). Upon completing the transit of the black box
at qb, the antineutrino, with ψ = exp(ikqb), would still have
the helicity value of 1 conserving helicity (chirality). Thus,
the interaction of the massless antineutrino with the black box
would be reflectionless. This is consistent with (14) and (16).
The concept of superimposing a latent reflected wave and the
latent incident wave upon each other to achieve reflectionless
transmission had initially been applied to an acoustical ana-
logue [20].

146 Edward R. Floyd. A Wave Representation for Massless Neutrino Oscillations



Issue 2 (October) PROGRESS IN PHYSICS Volume 16 (2020)

The representation of ψ2 by (6) may be derived from the
trigonometric form of (5) by using either Bohm’s scheme for
complex wave functions to render ψ2’s amplitude and phase
[30] or by vector analysis. The amplitude Aψ = [α2 + β2 +

2αβ cos(2kq)]1/2 is recognized as a re-expressed law of cosi-
nes where the exterior angle argument 2kq is the supplement
of π − 2kq or

Aψ = [α2 + β2 − 2αβ cos(π − 2kq)]1/2︸                                   ︷︷                                   ︸
law of cosines

= [α2 + β2 + 2αβ cos(2kq)]1/2︸                              ︷︷                              ︸
law of cosines for exterior angles

.

For completeness, the phase is established [30] by Pψ(q) =

arctan{=[ψ(q)]/<[ψ(q)]}, which by (5) renders

Pψ = arctan
(
α − β

α + β
tan(kq)

)
. (17)

Also for completeness, the phase is related to the quantum
Hamilton’s characteristic function (quantum reduced action)
W by Pψ = W/~ [7], [10], [14]. The W has been shown
to change values monotonically [14] implying that Pψ also
behaves monotonically.

The bispectral ψ2 as represented by (6) exhibits the su-
perposition of the latent incident and reflected wave func-
tions upon each other that are described by functions of q
(4). The superposition induces a compound modulation in
ψ2, which in turn induces nonuniform rectilinear propagation
for massless neutrinos as shown in §3. PMNS theory achieves
nonuniform rectilinear propagation in one dimension by su-
perimposing three different masseigenstates within the neu-
trino [1]–[4]. Application of Eq. (6)-like representations have
been made to study step barriers [18] and tunneling [19].

Before an IBD, q ≤ qa, the nonuniform propagation of
the compoundly modulated ψ2(q) with q can be examined
more closely by considering the phase and amplitude mod-
ulations separately. The phase modulation may be described
by the phase displacement between the phase of the bispec-
tral ψ2 given by (6) and the phase kq of the corresponding
unispectral wave function exp(ikq), which propagates recti-
linearly with uniform motion. This phase displacement is a
rotational displacement in complex ψ-space between ψ2(q)
and the unispectral exp(ikq). The phase displacement due to
phase modulation Pmψ may be expressed in units of radians
as a function of phase kq, also in units of radians, as given by

Pmψ = arctan
(
α − β

α + β
tan(kq)

)
− kq, q ≤ qa (18)

where kq, which is also the phase of unispectral exp(ikq), is
not restricted to its principal value.

The derivative of phase with respect to q, for the bispec-

tral wave function (6) is given by [5]

∂ arctan
(
α−β
α+β

tan(kq)
)

∂q
=

(α2 − β2)k
α2 + β2 + 2αβ cos(2kq)

=
k

α2 + β2 + 2αβ cos(2kq)
.

(19)

Eq. (19) for the bispectral wave function exhibits nonuniform
phase propagation that is periodic in q. The derivative of
phase with respect to q remains positive definite for the de-
nominator on the right side of (19) is always positive for
all q by the Schwarzian inequality. Meanwhile, the corre-
sponding derivative of phase for the unispectral wave func-
tion exp(ikq) is ik, which is constant and manifests uniform
rectilinear propagation. For completeness in the quantum tra-
jectory representation, the derivative of phase with regard to q
renders the conjugate momentum ∂qW divided by ~ [8]–[14].

The relative amplitude dilation Amψ due to amplitude mo-
dulation Aψ of (6) or (8), relative to (α2 + β2)1/2, is defined to
be a dimensionless variable that is a function of phase kq and
given by

Amψ ≡
[α2 + β2 + 2αβ cos(2kq)]1/2 − (α2 + β2)1/2

(α2 + β2)1/2

=

[
1 +

2αβ cos(2kq)
α2 + β2

]1/2

− 1, q ≤ qa.

(20)

Any finite β = (α2 − 1)1/2 is sufficient to cause ψ2 to generate
nonuniform rectilinear motion consistent with the compound
modulation implied by (18) and (20).

As the wave function ψ2 for the antineutrino must be C1

continuous until absorbed in anIBD, thebehavior of itsderiva-
tive ∂qψ2 must also be considered. If the dividend of ∂qψ2 / ψ2
were a constant or independent of q, then neutrino oscillation
would not be supported as previously noted. From (4)–(6),
the derivative of the bispectral wave function ∂qψ2 is given
by

∂qψ2 = ik[α exp(ikq) − β exp(−ikq)]

= k[(α − β) cos(kq) − i(α + β) sin(kq)] exp(iπ/2)

= k [α2 + β2 − 2αβ cos(2kq)]1/2︸                              ︷︷                              ︸
law of cosines

× exp
[
i arctan

(
α + β

α − β
tan(kq)

)
+ i

π

2

]
.

(21)

A difference between (4)–(6) for ψ2 and (21) for ∂qψ2 is the
change of the sign of β and the phase shift π/2. A finite β by
(4) and (21) ensures that

∂qψ2(q)

ψ2(q)
= ik

(
α exp(ikq) − β exp(−ikq)
α exp(ikq) + β exp(−ikq)

)
(22)

would be a variable of q in contrast to the unispectral case
(3). The bispectral ψ2(kq) propagates in a nonuniform manner
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that facilitates neutrino oscillation without the need for mass-
eigenstates of PMNS theory.

There is an alternative expression for ∂qψ2(kq) that con-
veniently shows its relation to ψ(kq − π/2). This relation is
shown by (4) and (21) to be

∂qψ2(kq) = ik[α exp(ikq) − β exp(−ikq)]

= k{α exp[i(kq + π/2)] + β exp[−i(kq + π/2)]}

= k ψ2(kq + π/2).

(23)

Eq. (23) can be generalized to

∂qψ2(kq) = kψ2(kq + n1π),

n1 = ±1/2, ±3/2, ±5/2, · · · .
(24)

where n1 is bound by the antineutrino’s creation point and the
point qa where an IBD commences. The bispectral derivative
∂qψ2 by (21)–(24), like ∂qψ1, is also a solution of the SKGE.

The derivative of the bispectral wave function is com-
poundly modulated. Its amplitude Aψ

′ and phase Pψ
′ are re-

spectively given by

Aψ
′ = k[α2 + β2 − 2αβ cos(2kq)]1/2, q ≤ qa (25)

and

Pψ
′ = arctan

(
α + β

α − β
tan(kq)

)
+
π

2
, q ≤ qa. (26)

Its relative amplitude dilation Amψ
′ due to amplitude mod-

ulation and its phase displacement (a rotation) due to phase
modulation Pmψ

′ for ∂qψ2(kq) are given respectively by

Amψ
′ = k

[
1 −

2αβ cos(2kq)
α2 + β2

]1/2

− k, q ≤ qa (27)

and

Pmψ
′ = arctan

(
α + β

α − β
tan(kq)

)
− kq, q ≤ qa. (28)

The dilations and rotations of (27) and (28) for ∂qψ2(kq)
are analogous to those for ψ2, (20) and (18)respectively. Whi-
le ∂qψ2(kq) has compound modulation with the same period
(oscillation cycle) as that of the associated ψ2(kq), the of di-
lations and rotations differ by being out of phase, cf. (6) and
(21)–(28). The relative amplitude dilation and phase rotation
of ∂qψ2(kq) are opposite to those of ψ2(kq). This is desirable
for flavor oscillation.

Let us now examine the measurement of momentum p
for the bispectral antineutrino. The applicable quantum mo-
mentum operator herein is ~i ∂q. The orthodox measurement
of momentum of the bispectral ψ2 with box normalization is

over one repetitive cycle. This box length is π/k. The mo-
mentum of ψ2, using (4), (7) and (21), is given by

p =

∫ π/k
0 ψ

†

2 (q) ~i ∂qψ2(q) dq∫ π/k
0 ψ

†

2 (q)ψ2(q) dq

= ~
k
∫ π/k

0 [α2 − β2 + 2αβ sin(2kq)] dq∫ π/k
0 [α2 + β2 + 2αβ cos(2kq)] dq

= ~
(α2 − β2)π

(α2 + β2)π/k
=

~k
α2 + β2 .

(29)

An orthodox measurement of momentum of the bispectral an-
tineutrino (29) is a constant and positive definite, i.e. p > 0,
in the direction of latent incident wave (4). This is consistent
with the quantum trajectory representation where the quan-
tum reduced actionW changes monotonically [14].

Let us extend our examination of p to find under what
conditions [α2 − β2 + 2αβ sin(2kq)], the integrand in the nu-
merator in (29), becomes negative over any portions of its
repetitive cycle. The particular point of interest for investiga-
tion is q = 3π/(4k) where the integrand becomes

[α2 − β2 + 2αβ sin(2kq)]q=3π/(4k) =

=1︷  ︸︸  ︷
α2 − β2 −2αβ. (30)

For |β| sufficiently small, (30) would be positive; sufficiently
large, negative. The |β| for which (30) is nil marks the upper
bound where [α2 − β2 + 2αβ sin(2kq)], the integrand, is never
negative. Because −β2 is a negative quantity, the Schwarz
inequality is not applicable to (30). The right side of (30)
becomes nil for

2αβ = 1. (31)

The particular values of α and |β| that satisfy both Eqs. (7)
and (31) are identified by αthreshold and |βthreshold|. The thresh-
old coefficients separate α, |β|-space into two domains: one
where the integrand is always positive-definite; the other, not
always positive consistent with the value of sin(2kq) in (29).
Eq. (7) for normalization, α2 − β2 = 1, and (31) are sufficient
to resolve αthreshold and |βthreshold| by algebraic means. The so-
lutions for the threshold coefficients are

{αthreshold, βthreshold} =

{(
21/2+1

2

)1/2
,
(

21/2−1
2

)1/2
}
. (32)

The logic relationship

α < / > αthreshold ⇐⇒ |β| < / > |βthreshold|

between α and β follows. If |β| < |βthreshold|, then the integrand
ψ
†

2 (q) (~/i)∂q ψ2(q) of (29) would always be positive (in the
direction of the latent incident wave of (4)) for all q through-
out the repetitive oscillation cycle. If |β| > |βthreshold|, then for
some q, but not a preponderance of q of the repetitive oscilla-
tion cycle, the integrand ψ

†
(~/i)∂q ψ2 would be negative (in
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Fig. 1: The phase displacement due to phase modulation Pmψ as a
function of kq over a Riemann sheet for selected values of F. Both
Pmψ and kq are exhibited in units of radians.

the direction of the latent reflected wave of (4)). Nevertheless,
even if |β| > |βthreshold|, the orthodox measure for momentum
would still remain valid, for (29) yields positive momentum
as α2 − β2 = 1 > 0.

3 Examples

Let us now illustrate with didactic examples how a bispectral
wave function facilitates massless flavor oscillation. We con-
sider the contributions of phase and amplitude modulations
separately. These contributions are examined for the selected
cases given by

(α, β) = (1, 0), (4/151/2, 1/151/2), (2/31/2, 1/31/2),

(4/71/2, 3/71/2).
(33)

These cases are compliant with normalization α2 − β2 = 1
(7). The selected cases may be identified for convenience by
the fraction F ≡ β/α = (α2 − 1)1/2/α = β/(1 − β2)1/2. Also,
F is related to the reflection coefficient (15) for F = R1/2.
The fractions F for the selected cases with respect to (33) are
given by

F = 0, 1/4, 1/2, 3/4. (34)

Comparisons of the effects of either phase or amplitude
modulations among the selected cases of F are developed as
a function of phase kq measured in radians.

The value F = 0 represents a unispectral wave function,
which precludes massless flavor oscillation. The unispec-
tral F = 0 is still included for comparison to the bispectral
Fs where F = 1/4, 1/2, 3/4. For comparison, the value
Fthreshold for 2αβ = 1 with normalization α2 − β2 = 1, which
establishes F’s upper bound for no reversals of sign of the

integrand ψ
†

2 (~/i)∂q ψ2 as a function of q (32) is given by

Fthreshold =
βthreshold

αthreshold
=

(
21/2 − 1
21/2 + 1

)1/2

= 21/2 − 1

=
1

21/2 + 1
= 0.41421356 · · · .

We first consider phase modulation. The phase displace-
ments Pmψ of (18) as a function of kq, where kq is also the
phase of ψ, are exhibited for the various values of F on Fig. 1
over the extended Riemann sheet π/2 ≤ kq ≤ 3π/2 of the
arc tangent function on the right side of (6). The phase dura-
tion of the Riemann sheet is consistent with box normaliza-
tion of ψ2. Each extended Riemann sheet specifies an oscil-
lation cycle. Fig. 1 exhibits one cycle for phase modulation
Pmψ over a Riemann sheet. The cycle of Pmψ for bispec-
tral Fs has one concave segment and one convex segment.
The cycle is repetitive over other Riemann sheets. As ex-
pected, a Pmψ for the unispectral F renders the horizontal
straight line Pmψ = 0. Thus, the unispectral case prohibits
phase modulation, which does not facilitate flavor oscilla-
tion. The absolute value of Pmψ for kq , π/2, π, 3π/2
is shown on Fig. 1 to increase with increasing F. At kq =

π/2, π, 3π/2, the phase difference Pmψ = 0 for all F. These
points kq = π/2, π, 3π/2 for F , 0, are inflection points of
Pmψ with nil curvature, which are between Pmψ’s alternat-
ing concave and convex segments. At these inflection points,
|Pmψ(q)| attains its maximum slope (rate of change with kq).
Had Fig. 1 included the standing-wave case where F = 1,
then, consistent with (10) and (11), it would have generated a
straight line from Pmψ (kq) = (π/2, π/2) to (−π/2, 3/π/2) on
an extended Fig. 1. Had the cases F = −1/4, −1/2, −3/4
been examined instead (e.g. the values of F for the anal-
ogous phase differences for ∂qψ2 would be negative), then
Fig. 1 would have changed its exhibition of the antisymmet-
ric phase modulation from the first-and-third (upper/left-and-
lower/right) quadrants to the second-and-fourth of Fig. 1. The
phase modulation Pmψ is antisymmetric within the Riemann
sheet for

Pmψ (π − kq) = −Pmψ (π + kq), 0 < q < π/2.

Each extended Riemann sheet contains one cycle of Pmψ for
the bispectral ψ2.

For the amplitude modulation, Amψ is examined for F =

0, 1/4, 1/2, 3/4. Again, F = 0 represents the unispectral
case, which does not support flavor oscillation. The ampli-
tude modulations are exhibited on Fig. 2. Positive differences
on Fig. 2 represent a dilation that is an expansion; negative
differences, a contraction. The absolute values of Amψ for
kq , 3π/4, π/4 are shown on Fig. 2 to increase with increas-
ing F. In Fig. 2, Amψ for bispectral F is symmetric with its
convex segments disjointed on the Riemann sheet. In compar-
ing Figs. 1 and 2 for bispectral F = 1/4, 1/2, 3/4, either the
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Fig. 2: The relative amplitude dilation Amψ as a function of kq over
a Riemann sheet for selected values of F. Amψ is dimensionless,
and kq is exhibited in units of radians.

Fig. 3: The relative amplitude dilations due Amψ and Amψ ′ as func-
tions of kq over a Riemann sheet for F = 1/2. For an unbiased
Amψ

′ , k = 1 to facilitate comparison to dimensionless Amψ. The
amplitude modulations are dimensionless, and kq is exhibited in
units of radians.

Pmψ or the Amψ has an extremum where the other is nil. This
ensures that at least one type of modulation of ψ2 is changing
for all q on the extended Riemann sheet π/2 ≤ kq ≤ 3π/2. A
local maximum rate of change of a modulation occurs at its
zero-crossings where the modulation has inflection points be-
tween concave and convex segments as shown by Figs. 1 and
2. The greater (lesser) rate of change of modulation implies
the greater (lesser) opportunity for flavor oscillation. The
modulation extrema, where the rate of change of a particular
modulation is nil, are isolated phase (kq) points where that
particular modulation does not contribute to neutrino oscilla-
tion.

A comparison between the amplitude modulation Amψ of
the bispectral ψ2 (6) and the amplitude modulation Amψ

′ of
the associated bispectral ∂qψ2 (21) are presented in Fig. 3 for
the particular values F = 1/2, and k = 1. As Amψ

′ by (25) has
a linear factor k while Amψ does not, the choice k = 1 makes

Fig. 3 unbiased. The amplitude modulations Amψ and Amψ
′

exhibit the same repetitive periodicity but are displaced in
phase (kq) by the constant π/2 radians. This kq displacement
increases the opportunity for neutrino oscillation for Amψ(kq)
is positive (negative) where Amψ

′ (kq) is negative (positive).
The ratio of amplitudes of ∂qψ2(kq) relative to ψ2(kq) by (6)
and (21) is given as a function of phase (kq) in fractional form
by

∣∣∣∂qψ2(kq)
∣∣∣ :

∣∣∣ψ2(kq)
∣∣∣ ∣∣∣∂qψ2(kq)

∣∣∣∣∣∣ψ2(kq)
∣∣∣ =

Aψ
′ (kq)

Aψ(kq)︸                      ︷︷                      ︸
fractional form

)

= k

︷                               ︸︸                               ︷(
α2 + β2 − 2αβ cos(2kq)
α2 + β2 + 2αβ cos(2kq)

)1/2

.

(35)

On the extended Riemann sheet π/2 ≤ kq ≤ 3π/2, the ratio
Aψ

′ (kq) : Aψ(kq) for F = 1/2 by (33)–(35) has maxima of
3k at kq = π/2, 3π/2; has a minimum of k/3 at kq = π; and
equals k at kq = 3π/4, 5π/4 in accordance with (35). The
values of the extrema of ratio in fractional form (35) may be
generalized and are given on this extended Riemann sheet by

Aψ
′ (kq)

Aψ(kq)

∣∣∣∣
maximum

= k
α + β

α − β
at kq =

π

2
,

3π
2

and
Aψ

′ (kq)

Aψ(kq)

∣∣∣∣
minimum

= k
α − β

α + β
at kq = π.

The nature of (35) implies that its logarithmic presentation
would exhibit for unbiased k = 1 a periodic antisymmetry
within the extended Riemann sheet {π/2 ≤ kq ≤ 3π/2} given
by

ln
Aψ

′ (kq)

Aψ(kq)

 = − ln
Aψ

′ (kq ± π/2)

Aψ(kq ± π/2)

 , for k = 1.

The variation of the ratio (35) is one of the factors that facil-
itate flavor oscillation. On the other hand, the corresponding
ratio for the unispectral case (F = 0) is the constant k for all
q.

A comparison of (9) and (26) shows the relationship be-
tween Pψ(kq) and Pψ

′ (kq) is that the sign of β has changed
(also the sign of the associated F would change). Therefore
Pψ

′ (kq)−π/2 and Pψ(kq) are a half-cycle out of phase. While
the undulations of Pψ

′ and Pψ when summed are in oppo-
sition, their difference is reinforced. Their changing differ-
ence is another factor enabling flavor oscillation. The rel-
ative phase difference 4Pψ

′
,ψ(kq) in radians between Pmψ

′

and Pmψ is reinforced for they are out of phase as shown by

4Pψ
′
,ψ(kq) = Pψ

′ (kq) − Pψ(kq)

= Pψ(kq + π/2) + π/2 − Pψ(kq).
(36)
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Fig. 4: The Phase difference 4Pψ
′
,ψ(kq) as a function of kq over a

Riemann sheet for F = 0, 1/2. Both 4Pψ
′
,ψ(kq) and kq are exhib-

ited in units of radians.

The relative phase difference 4Pψ
′
,ψ(kq) is exhibited on Fig. 4

for F = 1/2 and F = 0 (the unispectral case). For the bis-
pectral case, Fig. 4 also exhibits coherent reinforcement of
the undulations of Pψ

′ and Pψ of 4Pψ
′
,ψ(kq) consistent with

(23). Larger undulations increase the opportunity for flavor
oscillations.

The two factors, the ratio of amplitudes and the phase dif-
ference, describe the relative relationship between ∂qψ and ψ
as a function of phase kq. The ratio of amplitudes (35) and the
phase difference of Fig. 4 each complete one cycle on an ex-
tended Riemann sheet, e.g. π/2 < kq < 3π/2. However, their
respective extrema are displaced by a quarter cycle π/4 from
each other. The phase difference 4Pψ

′
,ψ(kq) has extrema on

the extended Riemann sheet at kq = 3π/4, 5π/4 while the
ratio Aψ

′ : Aψ(kq) has extrema at kq = π/2, π, 3π/2. Where
one factor has an extremum at some particular kq, the other
factor has an inflection point there. And where one factor
has an inflection point, the other has an extremum. A local
extremum for a factor implies that the factor has a local nil
in facilitating flavor oscillation while the other factor having
an inflection point implies a local peak in facilitating flavor
oscillation. Furthermore, where one factor’s support for fla-
vor oscillation decreases, the other factor’s support increases.
Thus, the two factors complement each other to ensure that
the bispectral antineutrino can facilitate possible flavor oscil-
lation for some interaction throughout its repetitive cycle.

Both phase and amplitude modulations exhibit the same
kq periodicity on Figs. 1–4. This may be shown by trigonom-
etry for the general situation. Periodicity of phase modulation
(19) is consistent with the extended Riemann sheet of the arc
tangent,

(2n − 1)π/2 ≤ kq ≤ (2n + 1)π/2, n = 0,±1,±2, · · · .

Hence, Pmψ (kq) = Pmψ (kq + π). Periodicity of amplitude
modulation (20) is consistent with the argument 2kq of the
cosine term in the law of cosines completing its cycle 2π.

Periodicity of Amψ is also given by

Amψ (kq) = Amψ (kq + nπ), n = ±1,±2,±3, · · · .

For completeness, the quantum trajectory representation also
has the same kq periodicity [5].

4 Discussion

Compound modulation makes ∂qψ2 / ψ2 a periodic variable
in phase kq and spatially periodic for a given k. The phase
and amplitude modulations complement each other for they
are a quarter-cycle out of phase with each other as shown by
Figs. 1 and 2. The modulations of ψ2 and ∂qψ2 supplement
each other. The amplitude modulation induces continuous di-
lations with respect to phase kq of the ∂qψ2(q) and ψ2(q) dif-
ferently by (25) and (8) respectively. The dilations of ∂qψ2(q)
and ψ2(q) are opposed: where one is an expansion; the other
is a contraction. These amplitude modulations being in op-
position increase the amount of dilation (either expansion or
contraction) of the ratio

∣∣∣∂qψ2(kq)
∣∣∣ :

∣∣∣ψ2(kq)
∣∣∣ with respect to

phase kq as exhibited by (35) and Fig. 3. This increases the
opportunity for neutrino oscillation. Meanwhile, phase mod-
ulation induces continuous rotations with respect to phase
kq of Pmψ(q) (18) and Pmψ

′ (q) (28). These rotational dis-
placements are opposed: where one rotation is clockwise; the
other, counterclockwise. This opposition in rotations enlarges
4Pψ

′
,ψ(kq) as exhibited by (36) and Fig. 4. This opposition

between the behavior of ψ2(q) and its derivative is typical
of well behaved functions undergoing periodic motion. Note
that either phase or amplitude modulation, by itself, could fa-
cilitate neutrino oscillation of the bispectral antineutrino. To-
gether, they increase the opportunity for oscillation.

The transmutation of coefficients {α, β} → {1, 0} of (14)
by the weak interaction nulls out the compound modulation
of νe’s wave function without any exchange of energy. This
is shown for phase modulation on Fig. 1 and for amplitude
modulation on Fig. 2 where modulation effects decrease with
decreasing absolute values of |F| and are completely nulled at
|F| = 0.

The periodic, nonuniform propagation by a massless an-
tineutrino results in flavor oscillations where the antineutrino
in a particular phase (kq) segment within an oscillation cy-
cle may execute a flavor-compatible current interaction with
C1 continuity of its wave function. Future work may show
that these segments for various flavors {νe, νµ, ντ} may be dis-
jointed, and the segments for the flavors may not densely fill
the oscillation cycle.

Should the segments for the active flavors {νe, νµ, ντ} not
densely fill the oscillation cycle, then the voids of the oscil-
lation cycle would be locations where the antineutrino is in-
active and would behave as the elusive sterile antineutrino
νs [31], [32]. By precept, the sterile antineutrino was hy-
pothesized to be subject only to gravity and explicitly not to
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the weak interaction. The MiniBooNE Collaboration has re-
cently inferred its existence from experiment [31], but such
existence has not yet been independently confirmed by other
ongoing experiments [32]. As the hypothetical sterile an-
tineutrino would not partake in charged current interactions,
the voids in the oscillation cycle could manifest the existence
of this hypothetical sterile antineutrino. This hypothetical
sterile antineutrino, by (2)–(6), could be massless and have
a bispectral wave function. As this hypothetical bispectral
sterile antineutrino could propagate nonuniformly, it would
oscillate in flavor to become an active antineutrino {νe, νµ, ντ}.
Flavor oscillation of the sterile antineutrino would imply that
it would have the same right handedness of the active antineu-
trinos. Again, this support for the existence of the sterile an-
tineutrino is predicated on the existence of voids in the oscil-
lation cycle.

The orthodox measurement of the momentum operator
~
i ∂q acting on a bispectral antineutrino over a box length,
which is consistent with an oscillation cycle, has been shown
by (29) to give a finite positive momentum in the direction of
the latent incident wave (4). An IBD event is a good way to
observe antineutrinos for the antineutrino reacts only to grav-
ity and the weak interaction. Observed momentum, in prin-
ciple, need not be averaged over a box length. Should future
work find that box normalization is too coarse, then restrict-
ing the absolute value of β to |β| ≤ |βthreshold| = [(21/2−1)/2]1/2

(32) would maintain positive momentum for the bispectral
antineutrino throughout the oscillation cycle, i.e.

ψ
†

2 (q)
~

i
∂qψ2(q) > 0

by (30)–(32) for all q within the box normalization.
Future work may also show that the different charged or

neutral current interactions may scramble the flavors. In other
words, the antineutrino flavors may be interaction dependent
where the values of ψ and ∂qψ for some given E at a point
q0 may specify an antineutrino of a particular flavor for an
interaction while concurrently at q0 also specifying a differ-
ent flavor associated with another different interaction. This
would cause the segments for the various flavors of the oscil-
lation cycle to overlap.

Future work may also yield a better understandingofIBDs
and the weak force. Nevertheless, the concept of a bispec-
tral wave function representation should be robust enough to
adjust assumptions and still facilitate flavor oscillation by a
massless antineutrino.

5 Findings and conclusions

The principal finding is the existence of a wave function rep-
resentation for massless neutrino oscillation of flavor, which
is a counterexample to PMNS theory’s finding that m > 0.
The wave function representation for m = 0 is compatible
with an orthodox interpretation of the bispectral wave func-
tion, ψ2. One spectral component represents the embedded

latent incident wave function for an IBD; the other, the em-
bedded latent reflected wave function. Such a bispectral wave
function is capable of flavor oscillations without any need for
mass-eigenstates, which confirms that PMNS theory is not
the exclusive theory for neutrino oscillation. Once created, a
bispectral, massless antineutrino, with super-threshold energy
(E > 1.806 MeV), has the possibility by flavor oscillation to
initiate an IBD.

The co-principal finding, which is extra to the massless
oscillation finding, is that the forceless weak interaction for
this oscillation model transmutes the wave function of the an-
tineutrino from bispectral to unispectral. There is no energy
exchange during the transmutation for the weak interaction is
forceless. In general, the weak interaction can transmute the
wave function to a different superposition of its set of inde-
pendent solutions without any exchange of energy.

The first secondary finding is that flavor oscillations are
compatible with classifying neutrinos to be Majorana leptons.

The second secondary finding is that the elusive sterile
neutrino may be just where the antineutrino is in a location,
q, in the oscillation cycle where its values {ψ2, ∂qψ2}|q are in-
compatible initial values for initiating a current interaction of
any flavor there (sterile is not a flavor). This finding is predi-
cated upon the existence of such a location in the oscillation
cycle.

The third secondary finding establishes a relationship be-
tween the amplitude β of the latent embedded reflected wave
and the opportunity to observe negative momentum,
i.e., ψ

†

2 (q) ~i ∂qψ2(q) < 0. There exists a βthreshold for which,

if |β| < |βthreshold|, then ψ
†

2 (q) ~i ∂qψ2(q) > 0 for all q before an
IBD. For cases of super-threshold |β|, the orthodox quantum
measurement of momentum over one repetitive box length
would still yield positive momentum (29).

The fourth secondary finding confirms the similar pre-
diction for massless neutrino oscillation by the less familiar
quantum trajectory representation of quantum mechanics [5].
This finding also substantiates that wave mechanics and quan-
tum trajectories are equivalent for free particles [7], [33]. In
addition, incisive insights rendered by the wave function rep-
resentation complement those of the trajectory representation
to substantiate massless neutrino oscillation.

A tertiary finding supports Pontecorvo’s suggestion [28]
that a neutrino may be composed of a mixture of neutrino and
antineutrino components.

In conclusion, massless neutrino oscillation implies the
validity of the standard model to consider neutrinos to be
massless.

A co-conclusion is that the forceless weak interaction pre-
pares the antineutrino for interaction with other particles by
transmuting the antineutrino’s wave function. The transmu-
tation changes the wave function in this ab initio calculation
from a bispectral wave function to a unispectral wave func-
tion exp(ikq) without an exchange of energy. Conversely, the

152 Edward R. Floyd. A Wave Representation for Massless Neutrino Oscillations



Issue 2 (October) PROGRESS IN PHYSICS Volume 16 (2020)

wave function of the antineutrino manifests the effects of the
forceless weak interaction by a change in the superposition of
its independent solutions for a given energy.

A secondary conclusion is the confirmation of the similar
prediction of the validity of the standard model by the quan-
tum trajectory representation, which substantiates that such a
prediction is not an anomaly of the quantum trajectory repre-
sentation.
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