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Algebra of Discrete Symmetries in the Extended Poincaré Group
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We begin with the comprehensive review of the basics of the Lorentz, (extended)
Poincaré Groups and O(3,2) and O(4,1). On the basis of the Gelfand-Tsetlin-Sokolik-
Silagadze research [1-3], we investigate the definitions of the discrete symmetry oper-
ators both on the classical level, and in the secondary-quantization scheme. We study
physical content within several bases: light-front form formulation, helicity basis, an-
gular momentum basis, on several practical examples. The conclusion is that we have
ambiguities in the definitions of the corresponding operators P, C; T, which lead to dif-
ferent physical consequences.
Talk presented at the LXII Congreso Nacional de Fı́sica. 6–11/10/2019. Villahermosa,
Tab., México.

1 The standard definitions

The Lorentz Group conserves the interval ds2 = dxµdxµ in
the 4-space with respect to (pseudo) Euclidean rotations. The
Poincaré Group includes translations in the Minkowski space.
The extended Poincaré Group includes discrete transforma-
tions, the unitary C, P, and the antiunitary T in quantum field
theory (QFT). The P is the space inversion: x0 → x0, x→ −x.
The T is the time reversal: x0 → −x0, x → x. The C is the
electric charge conjugation. It is related to the PT operation:
x0 → −x0, x → −x. The interval is also conserved under
these operations. In QFT, the eigenvalues of the combined
CPT are also invariants.

While [4] presented the derivation method to obtain the
field operator ab initio, we define the field operator [5, 6] in
the pseudo-Euclidean metrics as follows:

Ψ(x) =
∑

h

∫
d3p

(2π)32Ep[
uh(p)ah(p)e−ip·x + vh(p)b†h(p)e+ip·x

]
.

(1)

Hence, the Dirac equation is:[
iγµ∂µ − m

]
Ψ(x) = 0 . (2)

At least, 3 methods of its derivation exist [7–9]:

• the Dirac method (the Hamiltonian should be linear in
∂/∂xi, and be compatible with E2

p − p2c2 = m2c4);

• the Sakurai one (based on the equation (Ep−σ ·p)(Ep +

σ · p) φ = m2φ);

• the Ryder one (the relation between 2-spinors at rest is
φR(0) = ±φL(0) and boosts).

It has solutions of positive energies and negative energies.
The latter are reinterpreted as the antiparticles.

Ep =

√
p2 + m2, c = ~ = 1, gµν = diag{1,−1,−1,−1} .

The solutions in the momentum representation are: uh(p) =

column(φh
R(p), φh

L(p)). Next,

uh =

(
exp(+σ ·ϕ) φh

R(0)
exp(−σ ·ϕ) φh

L(0)

)
, vh(p) = γ5uh(p) , (3)

where cosh(ϕ) = Ep/m, sinh(ϕ) = |p|/m, ϕ̂ = p/|p|, and h is
the polarization index. It is shown that the parity operator can
be chosen as

P = eiαsγ0R, γ0 =

(
0 1
1 0

)
, (4)

because[
iγµ∂′µ − m

]
Ψ(xµ

′

) = 0 , (change of variables) , (5)

where
Ψ(xµ

′

) = AΨ(xµ) , (linearity) . (6)

These conditions can be satisfied by the γ0 matrix in the Weyl
basis. R can be chosen

R ≡ (θ → π − θ, φ→ π + φ, r → r) .

For fermions, it is well known that a particle and an antipar-
ticle have opposite eigenvalues of the parity operator in this
(1/2, 0) ⊕ (0, 1/2) representation of the Lorentz Group. In
QFT we should have:

UPψ(x)U†P = eiαsγ0ψ(x′) . (7)

So,
UPah(p)U†P = e+iαs ah(p′) ,

UPbh(p)U†P = −e−iαs bh(p′) .
(8)

The operator UP can be constructed in the usual way, see [5]
and [6]. The charge operator interchanges the particle and the
antiparticle. For example, in the Dirac case on the classical
level:

u↑ → −v↓, u↓ → +v↑ , v↑ → +u↓, v↓ → −u↑ . (9)
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Thus, we can write, thanks to E. Wigner:

C1/2 = eiαc

(
0 iΘ
−iΘ 0

)
K , Θ =

(
0 −1
1 0

)
= −iσ2 . (10)

In QFT, we should have:

UCψ(x)U†C = eiαcCψ†(x) . (11)

So [5],

UCah(p)U†C = e+iαc bh(p) , UCbh(p)U†C = e−iαc ah(p) . (12)

See however [11], where two possibilities for the charge con-
jugation operator have been proposed.

The time reversal operator is antiunitary (see Wigner and
[4]). Let us remind that the operator of hermitian conjugation
does not act on c-numbers on the left side of (13) below. This
fact is connected with the properties of an antiunitary opera-

tor:
[
V

T
λA(V

T
)−1

]†
=

[
λ∗V

T
A(V

T
)−1

]†
= λ

[
V

T
A†(V

T
)−1

]
.

[
V

T

[1/2]Ψ(xµ)(V
T

[1/2])
−1

]†
= S (T ) Ψ†(x′′

µ

) . (13)

We can see that C and P anticommute in the Dirac case:

{C, P}+ = 0 , P2 = 1 ,C2 = 1 , (14)

and (CPT ) = ±1. However, we present the opposite case
later, where (CPT ) = ±i, which is related to the commutation
(anticommutation) of the C and P operators.

The table on p. 157 of [5] gives us the properties of the
scalar, 4-vector, tensor, axial-vector and pseudoscalar under
these transformations in the case of the “Dirac-like parity”
definitions. However, see the next Section.

2 Anomalous representations of the inversion group

The previous Section perfectly describes the CPT properties
of the charged fermions. Nevertheless, the authors of [1,2,10]
proposed another class of representations of the full Lorentz
Group long ago. As it was shown recently, it may be ap-
plied to the (anti)bosons of the opposite parities, and to the
(anti)fermions of undefined parities. The latter are not the
eigenstates of the parity operator, but they are the eigenstates
of the charge-conjugate operator. Gelfand, Tsetlin and Soko-
lik noted that there exist representations of the full Lorentz
Group of the anomalous parity. Originally, this concept was
intended to be applied to explain the decay of K−mesons.

The examples are: one can note that in the (1/2, 1/2) rep-
resentation (or for xµ) the operators of the space inversion
(t01), the time reversal (t10) and the combined space-time in-
version (t11) are commutative. They form the inversion group
together with the unit element. Let us search the projec-
tive representations of the Lorentz group combined with the
discrete group. As opposed to the usual case, t01t10 = t11,

t10t11 = t01, t01t11 = t10, for instance, one can drop the con-
dition of commutativity, and one can form the projective rep-
resentation with T10T01 = −T11, or T11T11 = −1, see the full
table in [1]. They noted that there are two normal-parity (in
their notation) and two anomalous parity representations for
(bi)spinors. Then, they extended the concept of the anoma-
lous parity to any representation of the proper Lorentz Group
characterized by the numbers (k0, k1) and (−k0, k1)∗. When

[Ti′k′ ,Ti′′k′′ ]+ = 0 , (15)

this is the case of the anomalous parity (later, this was con-
firmed by Nigam and Foldy [12]). G. Sokolik noted that this
concept is related to the concept of the 5-D representations of
the proper orthogonal group with pseudo-Euclidean metrics.
For example,

T10 ∼ H54 = exp(iπI54/2) ,
T11 ∼ H43H21 = exp(iπI43) exp(iπI21) , (16)
T01 = T11T10 .

T10, T01, T11 leave invariant the extended 8-component Dirac
equation only (compare with [13] and [14]):

Γµ∂
µψ + mψ = 0 , Γµ =

(
γµ 0
0 −γµ

)
. (17)

They claimed relations to the concepts (known in that time):

• istopic spin;
• fusion theory;
• the non-linear Heisenberg theory

were mentioned. The corresponding matrix representations
of the anomalous-parity representations have been presented:

T01 =

(
0 I
I 0

)
, T10 =

(
0 −I
I 0

)
, T11 =

(
I 0
0 −I

)
, (18)

and

T01 =

(
0 −iI
iI 0

)
, T10 =

(
0 iI
iI 0

)
, T11 =

(
I 0
0 −I

)
. (19)

Later Wigner [10] repeated their results in the Istanbul School
lectures (1962), and Silagadze [3] rediscovered and applied
this possibility in 1992. The conclusion of these papers is: we
noted that both new versions of the representations of the full
Lorentz Group (commuting spinor and anticommuting boson
representations) lead to the doubling of the dimensionality of
the ψ−function.

3 The self/anti-self charge conjugate states

The content of this Section contains the material of [11]. The
conclusions are: we have constructed another explicit exam-
ple of the BWW-GTS theory. The matter of physical dy-
namics connected with this mathematical construct should be
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solved in the future, dependent on what gauge interactions
with potential fields we introduce [14] and what experimen-
tal setup we choose.
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