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In this paper, away from the intricate mathematics and philosophy presented in our ear-
lier work [1], we demonstrate that well within Riemann geometry, Maxwell’s electrody-
namic source-free field equations [2] are indeed susceptible to a geometric description
by the metric tensor, provided: (1) the non-linear term of the Riemann curvature tensor
is assumed to vanish identically, and (2) the electromagnetic four-vector field Aµ obeys
the gauge condition Aα∂αAµ. We strongly believe that this demonstration is important
for physics because if the electromagnetic force can be given a geometric description,
this most certainly will lead to the opening of new pathways for incorporating the grav-
itational force into such a scheme.

Truth is ever to be found in simplicity, and not

in the multiplicity and confusion of things.

Sir Isaac Newton (1642-1727)

1 Introduction

As far as prevailing wisdom is concerned, there is only one
Force of Nature that is described geometrically and this is
the force of gravity and its geometric description was handed
down to us by Albert Einstein [3] in his intellectual master-
piece – the General Theory of Relativity (GTR). By geometric
description, we here mean the ability of the force in question
to submit to a metric description in a manner redolent or akin
to the force of gravity in Einstein [3]’s GTR, where the grav-
itational force is described by the metric tensor gµν. In turn,
the metric tensor gµν evolves and is governed by the laws gov-
erning Riemann Geometry (RG).

Given our opening statement, the question naturally sug-
gests itself: Can Maxwell’s electromagnetic force be given a
geometric description? Our answer to this question is that
with the proviso that the:

1. Riemann curvature tensor is linearized, i.e. ΓλδσΓδµν −

ΓλδνΓ
δ
µσ ≡ 0, and the metric tensor gµν is decomposed

into a product of the components of a four-vector, i.e.
gµν = AµAν,

2. Electromagnetic four-vector field Aµ obeys the gauge
condition Aα∂αAµ,

then, one can successfully give a geometric description of
Maxwell’s [2] source-free field equations.

Herein, we have for clarity’s sake removed most of the
intricate mathematics and philosophy (found in [1]) so that
our reader(s) will have a much greater appreciation of our on-
going work. We here only deal with the Riemann tensor and
its identities and from that only, we demonstrate that a de-
composed metric (gµν = AµAν) can successfully lead one to
the source-free Maxwell’s equation [2]. This we believe is

something that will provoke our reader(s) into thinking fur-
ther (than meet the eye) by asking about the possibility of do-
ing the same for the source-coupled field equations. Not only
will this provoke the reader(s) into thinking about the pos-
sibility of a geometrically derived source-coupled Maxwell’s
equation [2], but of the possibility of a unity between gravita-
tion, electricity and possibly the other two forces of Nature –
the weak and strong nuclear forces.

Lastly, this article is organised as follows: in §2, we pres-
ent the Riemann tensor and in addition to this, we introduce a
gauge condition that linearises this tensor. In §3, we present
the metric tensor in its decomposed form and some of the nec-
essary gauge conditions. In §4, we write down the affine con-
nection in terms of the decomposed metric tensor and from
this exercise, we show that the Maxwellian electrodynamic
tensor can be harnessed. In §5, we delve onto the main task of
the day whereby we derive the Maxwellian source-free field
equations purely from the Riemann tensor and lastly, in §6,
we present a general discussion.

2 Riemann curvature tensor

From the view point of tensors, the Riemann curvature tensor
Rλ
µσν has two components to it – i.e. the linear and non-linear

parts which are themselves tensors. That is to say:

Rλ
µσν =

R̂λµσν︷         ︸︸         ︷
Γλµν,σ − Γλµσ,ν

linear terms
+

R̆λµσν︷              ︸︸              ︷
ΓλδσΓδµν − ΓλδνΓ

δ
µσ

non−linear terms
= R̂λ

µσν + R̆λ
µσν , (1)

where R̂λ
µσν and R̆λ

µσν are the linear and non-linear compo-
nents of the Riemann curvature tensor and these are defined
as follows:

R̂λ
µσν = Γλµν,σ − Γλµσ,ν , (2a)

R̆λ
µσν = ΓλδσΓδµν − ΓλδνΓ

δ
µσ . (2b)
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Because Rλ
µσν and R̂λ

µσν are tensors, it directly follows that
R̆λ
µσν is a tensor too. If, as proposed in [1], we are to choose as

a natural gauge condition on our desired spacetime the condi-
tion R̆λ

µσν = 0, then, in any subsequent system of coordinates
and/or reference frame, this condition will hold because R̆λ

µσν

is a tensor. What we now have is a linear Riemann world. In-
sofar as computations are concerned, such a world is certainly
much easier to deal with. Besides this, one is able to obtain
exact solutions from the resultant field equations. Whether or
not this is the world that we live in, we can only compare our
final results with what obtains in Nature.

3 Decomposition of the metric tensor

As is well known, the metric tensor gµν of RG has a total of
sixteen components and as a result of the symmetry in its µν-
indices, i.e. gµν = gνµ, it has ten independent components.
Starting in [4], we realised that the number of independent
terms can be reduced from ten to four by way of casting this
metric as a product of a four-vector Aµ, i.e.

gµν = AµAν . (3)

With the metric now written in this manner, we where able to
write down a curved spacetime Dirac equation [4] using the
same approach used by Dirac to arrive at the Dirac equation.

This four-vector Aµ is assumed to have unit magnitude
throughout all of spacetime, i.e.

AαAα = 1 . (4)

In [1], we have called this condition (4), the Normalization
Gauge Condition (NGC). Differentiating this NGC with re-
spect to: xµ, we obtain the following corollary condition:

Aα∂µAα = 0. (5)

As will be seen in §5, this corollary condition (5) and the
NGC, are necessary for the derivation that we shall carry out.

Apart from the NGC (4) and its corollary (5), we will also
need the following condition for our derivation, i.e.

Aα∂αAµ = 0 . (6)

At present, we have no ready natural justification for this con-
dition, i.e. where it originates from, except that it is a neces-
sary condition for our derivation.

4 Recomposition of the affine connection

The Christoffel three-symbol [5] (affine connection) is given
by:

Γλµν =
1
2

(
∂νgλµ + ∂µgλν − ∂

λgµν
)
. (7)

Under the new decomposition of the metric given in (3), this
affine connection can be recomposed or redefined by substi-
tuting the decomposed metric tensor. So doing, we obtain:

Γλµν =
1
2

[
∂ν

(
AλAµ

)
+ ∂µ

(
AλAν

)
− ∂λ

(
AµAν

)]
. (8)

Differentiating the terms of the metric in (8), we will have:

Γλµν =
1
2

(
Aλ∂νAµ︸  ︷︷  ︸

Term I

+ Aµ∂νAλ︸  ︷︷  ︸
Term II

+ Aλ∂µAν︸  ︷︷  ︸
Term III

+ Aν∂µAλ︸  ︷︷  ︸
Term IV

−

− Aν∂
λAµ︸  ︷︷  ︸

Term V

− Aµ∂
λAν︸  ︷︷  ︸

Term VII

)
.

(9)

Rearranging the differentiated terms of the metric tensor la-
belled in (9) above as: Term I, II, III, etc, we will have:

Γλµν =
1
2

[(
Aµ∂νAλ︸  ︷︷  ︸
Term II

− Aµ∂
λAν︸  ︷︷  ︸

Term VII

)
+

+
(

Aν∂µAλ︸  ︷︷  ︸
Term IV

− Aν∂
λAµ︸  ︷︷  ︸

Term V

)
+

(
Aλ∂νAµ︸  ︷︷  ︸

Term I

+ Aλ∂µAν︸  ︷︷  ︸
Term III

)]
.

(10)

From (10), we can now write the Christoffel as follows:

Γλµν =
1
2

(
AµFλ

ν + AνFλ
µ + AλHµν

)
, (11)

where:

Fµν = ∂µAν − ∂νAµ , (12a)
Hµν = ∂µAν + ∂νAµ . (12b)

The object Fµν in (12a) can easily be identified with Max-
well’s electromagnetic field tensor [2] while the object Hµν is
a new object which may appear to be unrelated to Maxwell’s
electromagnetic field tensor [2]. As will be seen in the next
section where we are going to derive the electrodynamic sour-
ce-free field equations, this seemingly unrelated object Hµν is
what shall lead us to our desideratum.

Now, on the corollary to the NGC, i.e. (5) and (6), an
application of these to (12), leads to the following corollary
gauge conditions:

AαFαν = AαFνα = 0 , (13a)
AαHαν = AαHνα = 0 . (13b)

The above completes the necessary package of conditions
needed to derive Maxwell’s source-free field equations.

We shall now make a further reduction in the symbols by
writing the affine connection as follows:

Γλµν = Fλ
µν + Hλ

µν , (14)

where:

Fλ
µν =

1
2

(
AµFλ

ν + AνFλ
µ

)
, (15a)

Hλ
µν =

1
2

AλHµν . (15b)

With the affine connection written as we have written it in
(14), we can now write the linear Riemann tensor as follows:

Rλ
µσν = Fλ

µσν + Hλ
µσν , (16)
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where the new curvature tensors Fλ
µσν and Hλ

µσν are such that:

Fλ
µσν = ∂σFλ

µν − ∂νF
λ
µσ , (17a)

Hλ
µσν = ∂σHλ

µν − ∂νH
λ
µσ . (17b)

We are now ready to demonstrate that deeply embedded in
the Riemann metric under the present metric decomposition
(3), are the Maxwell source-free field equations [2].

5 Derivation

We know that the Riemann tensor satisfies the following first
Bianchi identity:

Rλ
µσν + Rλ

νµσ + Rλ
σνµ ≡ 0 . (18)

Multiplying this identity (18) throughout by Aγ, and then con-
tracting the γλ-indices of the resulting tensor, i.e. γ = λ = α,
(19) will reduce to:

AαRα
µσν + AαRα

νµσ + AαRα
σνµ ≡ 0 . (19)

From the decomposition of Rλ
µσν into the curvature tensors

Fλ
µσν and Hλ

µσν given in (16), it follows that we can decompose
(19) into two corresponding parts as follows:(

AαFα
µσν + AαFα

νµσ + AαFα
σνµ

)
+

+
(
AαHα

µσν + AαHα
νµσ + AαHα

σνµ

)
≡ 0 .

(20)

In our calculation of (19), we shall first compute:

AαFα
µσν + AαFα

νµσ + AαFα
σνµ ,

followed by:

AαHα
µσν + AαHα

νµσ + AαHα
σνµ .

5.1 Part I

We know that:

2Fλ
µσν =

(
∂σAµFλ

ν + Aµ∂σFλ
ν + ∂σAνFλ

µ + Aν∂σFλ
µ

)
−

(
∂νAµFλ

σ + Aµ∂νFλ
σ + ∂νAσFλ

µ + Aσ∂νFλ
µ

)
.

(21)

Multiplying Fλ
µσν by Aγ, and then contracting the γλ-indices

of the resulting tensor, i.e. γ = λ = α, and taking into account
the gauge condition AαFα

µ = 0, (21) will reduce to:

2AαFα
µσν =

(
AαAµ∂σFα

ν − AαAµ∂νFα
σ

)
+

+
(
AαAν∂σFα

µ − AαAσ∂νFα
µ

)
.

(22)

Writing AαAµ = gαµ, AαAν = gαν and AαAσ = gασ, we will
have:

2AαFα
µσν =

(
gαµ∂σFα

ν − gαµ∂νFα
σ

)
+

+
(
gαν∂σFα

µ − gασ∂νFα
µ

)
,

(23)

hence, lowering the indices in (23) where applicable, we will
have:

2AαFα
µσν =

(
∂σFµν − ∂νFµσ

)
+

(
∂σFνµ − ∂νFσµ

)
. (24)

Using in (24) the antisymmetry property of the electromag-
netic field tensor, namely Fνµ = −Fµν and Fσµ = −Fµσ, we
will have:

2AαFα
µσν = 0 ⇒ AαFα

µσν = 0 , (25)

hence:
AαFα

µσν + AαFα
νµσ + AαFα

σνµ = 0 . (26)

Next, we need to calculate AαHα
µσν + AαHα

νµσ + AαHα
σνµ.

5.2 Part II

We know that:

2Hλ
µσν =

(
Aλ∂σHµν − Aλ∂νHµσ

)
+

+
(
Hµν∂σAλ − Hµσ∂νAλ

)
.

(27)

Multiplying Hλ
µσν by Aγ, and then contracting the γλ-indices

of the resulting tensor, i.e. γ = λ = α, (27) will reduce to:

2AαHα
µσν =

(
AαAα∂σHµν − AαAα∂νHµσ

)
+

+
(
HµνAα∂σAα − HµσAα∂νAα

)
.

(28)

From the normalization gauge (AαAα = 1), and the corollary
of this gauge, namely Aα∂µAα = 0, (28) reduces to:

2AαHα
µσν = ∂σHµν − ∂νHµσ = ∂σFνµ + ∂νFµσ , (29)

hence:

2AαHα
µσν = ∂σFνµ + ∂νFµσ , 0 , (30a)

2AαHα
νµσ = ∂µFσν + ∂σFνµ , 0 , (30b)

2AαHα
σνµ = ∂νFµσ + ∂µFσν , 0 . (30c)

From (30), it is clear that:

AαHα
µσν + AαHα

νµσ + AαHα
σνµ =

= ∂µFσν + ∂νFµσ + ∂σFνµ.
(31)

Now, we can put everything together.

5.3 Summary

Putting everything together, i.e. (19), (26) and (31), we will
have:

AαRα
µσν + AαRα

νµσ + AαRα
σνµ =

= 0 +
(
∂µFσν + ∂νFµσ + ∂σFνµ

)
≡ 0 ,

(32)

hence:
∂µFσν + ∂νFµσ + ∂σFνµ ≡ 0 . (33)

Of course, (33) is indeed Maxwell’s source-free field equa-
tions [2].
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6 Discussion

Given a linearized Riemann curvature tensor, we have herein
demonstrated, in clear and no uncertain terms, the conditions
under which Maxwell’s electrodynamic source-free field equ-
ations [2] are readily susceptible to a geometric description by
a metric tensor in much the same way that the force of gravity
is described by the metric tensor in Einstein’s GTR [3]. This
description has come at the following cost:

1. A decomposed metric gµν = AµAν. This reduces the
number of independent fields from ten to four. In accor-
dance with Occam’s Razor, this is a welcome develop-
ment in any theory, especially if the new theory does
not destroy the old but enriches and engenders it.

2. A linearised (i.e. ΓλδσΓδµν − ΓλδνΓ
δ
µσ ≡ 0) Riemann cur-

vature tensor. This eliminates the computational com-
plexity that ensues from these non-linear terms.

3. A normalization (i.e. AαAα = 1) gauge on the four-
vector. A corollary to this normalization gauge is that
Aα∂µAα = 0.

4. Introduction of an extra exo-gauge condition to the me-
tric four-vector, i.e. Aα∂αAµ = 0.

Having demonstrated the susceptibilityof Maxwell [2]’s sour-
ce-free field equation to a geometric description, the value of
this work is that it indicates that Maxwell’s equations [2] may
very well be embedded deep inside the labyrinth of Riemann
geometry. In addition to this, we strongly believe that this
work is important for physics because if the electromagnetic
force can be given a geometric description, this most certainly
will lead to the opening of new pathways for incorporating the
gravitational force into such a scheme.
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