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In the first part of this work,we recall the basic principles of the Alcubierre warp drive space-time
within the extrinsic curvature formalism. In the created singular region, we consider a hollow ob-
ject that carries a charged current all around its external shape which interacts with an electromag-
netic potential. As a result, this comoving object placed inside the region will follow a Finslerian
geodesic. This allows to re-define a new lapse function that contains the potential-charge interact-
ing term which can be chosen arbitrarily large, in order to lower the energy density required for
sustaining the space-time distortion. Ultimately, this new lapse function is adjusted so as to keep
the warp drive energy tensor positive thus always satisfying the famous energy conditions. In the
second part, we apply this result to the Gödel curves following our previous publication whereby it
was shown that Gödel’s metric is a physical model not bound to any astrophysical representation.
In this perspective, we suggest a possible mode of time travel.

Notations

Space-time Greek indices α, β run from 0, 1, 2, 3.
Spatial Latin indices a, b run from 1, 2, 3.
Space-time signature is: +2 (Part I) and −2 (Part II).

PART I

1 The warp drive metric

1.1 The (3 + 1) formalism or ADM technique

Arnowitt, Deser and Misner (ADM) suggested a technique
which leads to decompose the space-time into a family of
spacelike hypersurfaces and parametrized by the value of an
arbitrarily chosen time coordinate x0 [1]. This foliation dis-
plays a proper time element dt between two nearby hypersur-
faces labeled x0 = const, x0 + dx0 = const and the proper
time element cdτ must be proportional to dx0, thus we write:

cdτ = N (xα, x0) dx0, (1.1)

where, according to the ADM terminology, N is called the
lapse function.

Let us now evaluate the 3-vector whose spatial coordi-
nates xa are lying in the hypersurface x0 = const and which
is normal to it, on the second hypersurface x0 + dx0 = const,
where these coordinates now become Nadx0. The vector Na

is called the shift vector. The 4-metric tensor covariant com-
ponents are

(gαβ)ADM =

 −N2 − NaNb g
ab Nb

Na gab

 . (1.2)

The line element corresponding to the hypersurfaces separa-
tion is therefore written as

(ds2)ADM =

= −N2 (dx0)2 + gab (Nadx0 + dxa)(Nbdx0 + dxb) =

= (−N2 + NaNa)(dx0)2 + 2Nb dx0dxb + gab dxadxb,

(1.3)

where gab is the 3-metric of the hypersurfaces. The con-
travariant components of the ADM metric tensor are

(gαβ)ADM =


−

1
N2

Nb

N2

Na

N2 gab −
NaNb

N2

 . (1.4)

As a result, the hypersurfaces have a unit time-like normal
with contravariant components:

uα = N−1 (1,−Na) . (1.5)

If the universe is approximated to a Minkowski space
within an orthonormal coordinates frame of reference and
where the fundamental 3-tensor satisfies gab = δab, the metric
(1.3) becomes

ds2 = −(N2 − NaNa) c2dt2 + 2Nadx cdt + dxadxb (1.6)

or, in another notation,

ds2 = −N2dt2 + (dx + Na cdt)2 + dy2 + dz2. (1.6bis)

The Einstein action can be written in terms of the metric
tensor (gαβ)ADM as [2]

S ADM =

∫
cdt

∫
N

(
(3)R − Ka

b Kb
a + K2

) √
(3)g dx3 +

+ boundary terms,

where Ka
a Kb

b = K2, and (3)R is the 3-Ricci scalar and stands
for the intrinsic curvature of the hypersurface

x0 = const,
√

(3)g =
√

det ‖gab‖ ↔

√
−(4)g = N

√
(3)g

so that
Kab = (2N)−1(−Na;b − Na;b + ∂0 gab) (1.7)
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represents the extrinsic curvature, and as such describes the
manner in which the hypersurface x0 = const is embedded
in the surrounding space-time. The rate of change of the 3-
metric tensor gab with respect to the time label can be decom-
posed into “normal” and “tangential” contributions:

— The normal change is proportional to the extrinsic cur-
vature 2Kab/N of the hypersurface;

— The tangential change is given by the Lie derivative of
gab along the shift vector Na, namely:

LN gab = 2N(a;b) . (1.8)

With the choice of Na = 0, we have a particular coordinate
frame called normal coordinates according to (1.5) which is
called an Eulerian gauge. Inspection shows that

Kab = −ua;b (1.9)

which is sometimes called the second fundamental form of
the 3-space. Six of the ten Einstein equations imply for Ka

b to
evolve according to

∂Ka
b

c∂t
+ LN Ka

b = ∇a∇b N +

+ N
[
Ra

b + Ka
a Ka

b + 4π (T −C) δa
b − 8πT a

b

]
,

(1.10)

C = Tαβ uαuβ, (1.11)

where C is the matter energy density in the rest frame of nor-
mal congruence (time-like vector field) with T = T a

a . Using
the Gauss-Codazzi relations [3] one can express the Einstein
tensor as a function of both the intrinsic and extrinsic cur-
vatures. It is convenient here to introduce the 3-momentum
current density Ia =− uc T c

a . So the remaining four equations
finally form the so-called constraint equations

H =
1
2

(
(3)R − Ka

b Kb
a + K2

)
− 8πC = 0 , (1.12)

Hb = ∇a

(
Ka

b − K δa
b

)
− 8πIb = 0 . (1.13)

Therefore, another way of writing (1.11) eventually leads
to the formula

C =
1

16π

(
(3)R − KabKab + K2

)
. (1.14)

1.2 Salient features of Alcubierre’s theory

1.2.1 The Alcubierre metric

In 1994, M. Alcubierre showed that an arbitrary large velocity
(superluminal) can be achieved by building a so-called space-
time warped region (bubble-like region) progressing along the
x-direction which is a time-like trajectory, without violating
the law of relativity [4]. Inside the bubble, the proper time el-
ement dτ is equal to the coordinate time dt which is also the

proper time of a distant observer, so any object in the bubble
does not suffer any time dilation as it moves. Outside and
inside the bubble, space-time remains flat. In the classical in-
terpretation, the warp drive requires contraction of the front
space, and expansion behind the same bubble in the chosen
direction, quite in analogy to the inflationary phase of the ex-
panding universe.

In terms of the ADM formalism, the Alcubierre metric is
defined from a flat space-time, while the lapse function and
the shift functions are chosen as

N = 1

N1 = −vs(t) f (rs, t)

N2 = N3 = 0

 . (1.15)

Next, we define

rs(t) =

√
(x − xs(t))2 + y2 + z2 (1.16)

as the distance outward from the center of a spaceship placed
in the bubble, variable until RB, which is the radius of the bub-
ble. With respect to a distant observer, the apparent velocity
of the ship (thus the bubble), is given by:

vs(t) =
dxs(t)

dt
, (1.17)

where xs(t) is the trajectory of the bubble along the x-direct-
ion. Such a region is transported forward with respect to
distant observers, along the x-direction, and any spacecraft
placed at rest inside, has no local velocity, but always moves
along a time-like curve, regardless of vs(t). We then have the
line element of the Alcubierre metric

(ds2)AL = −c2dt2 +
[
dx − vs f (rs, t) cdt

]2
+ dy2 + dz2, (1.18)

dτ = dt , (1.19)

Inside the spacecraft, the occupants will never suffer ac-
celeration and so it is not difficult to show that the 4-velocity
of a distant observer called Eulerian observer [5], has the fol-
lowing components:

(uα)E = {c, vs c f (rs, t), 0, 0} , (1.20)

(uα)E = {−c, 0, 0, 0} . (1.21)

The Eulerian observer is a special type of observer which
refers to the Eulerian gauge defined above but with N1 , 0,
and as such, it follows time-like geodesic orthogonal to eu-
clidean hypersurfaces. This observer starts out just inside the
bubble shell at its first equator with zero initial velocity. Once
during his stay inside the bubble, this observer travels along a
time-like curve: x = xs(t) with a constant velocity nearing the
ship’s velocity: vs = dxs/dt. The Eulerian observer’s velocity
will always be less than the bubble’s velocity unless rs = 0,
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i.e., when this observer is at the center of the spaceship lo-
cated inside. After reaching the second region’s equator, this
observer decelerates and is left at rest while going out at the
rear edge of the bubble.

The Eulerian observer’s velocity is needed to evaluate the
energy density required to create the bubble.(see below) The
function f (rs, t) is so defined as to cause space-time to con-
tract on the forward edge and equally expanding on the trail-
ing edge of the bubble as stated above. This is easily verified
by using the expansion of the volume elements θ = (uα)E;α
given by

θ =
vs d f

(dx)AL
. (1.22)

1.2.2 The Alcubierre function

The function f (rs, t) is often referred to as a top hat function
and Alcubierre originally chose the following form

f (rs, t) =
tanh {σ(rs + RB)} − tanh {σ(rs − RB)}

2 tanh {σRB}
, (1.23)

where RB > 0 is the radius of the bubble, and σ is a bump pa-
rameter which can be used to “tune” the wall thickness of the
bubble. The larger this parameter, the greater the contained
energy density, for its shell thickness decreases. Moreover the
absolute increase of σ means a faster approach of the condi-
tion

lim f (rs, t) = 1, for rs ∈ (−RB,RB) , otherwise σ→ ∞.

In the ADM formalism the expansion scalar is shown to
be

θ = ∂1N1 = −Trace Kab , (1.24)

which, with (1.13), becomes

θ = vs
d f
drs

xs

rs
. (1.24bis)

Note that the Natàrio warp drive evades the problem of
contraction/expansion, by imposing the divergence free con-
straint to the shift vector ∇[v2

s f 2(rs, t)] = 0 [6].
Obviously, the shape of the function f induces both a

volume contraction and expansion ahead and behind of the
bubble. Let us now write down the Alcubierre metric in the
equivalent form

(ds2)Al = −
[
1 − v2

s f 2(rs, t)
]

c2dt2 −

− 2vs f cdt dx + dx2 + dy2 + dz2,
(1.25)

which puts in evidence the covariant components of the met-
ric tensor

(g00)Al = −[1 − v2
s f 2(rs, t)]

(g01)Al = (g10)Al = −vs f (rs, t)

(g11)Al = (g22)Al = (g33)Al = 1

 . (1.26)

1.2.3 Energy conditions

With the components (1.26), the Einstein-Alcubierre tensor is
written

(Gαβ)Al = (Rαβ)Al −
1
2

(gαβ)Al R , (1.27)

(Tαβ)Al =
c4

8π
(Gαβ)Al . (1.28)

The weak energy condition (WEC) stipulates [7] that we
must always have

CAl = (Tαβ)Al (uα)E (uβ)E > 0 (1.29)

From (1.14) we see that there in the Alcubierre space-time
(3)R = 0. Thus we get

CAl =
1

16π

(
K2 − KabKab

)
, (1.30)

CAl =
1

16π

[
(∂1N1)2 − (∂1N1)2 −

− 2 (∂2N1)2 − 2 (∂3N1)2
]
,

(1.31)

(T 00)Al (u0)E (u0)E = (T 00)Al =

−
c4

32π
v2

s

(∂ f
∂y

)2

+

(
∂ f
∂z

)2 < 0 .
(1.32)

By taking into account the form of (1.23) we find the en-
ergy density:

(T 00)Al = −
c4

32π
(vs)2

(
d f
drs

)2
y2 + z2

r2
s

. (1.33)

This expression is unfortunately negative as measured by
the Eulerian observer, and therefore it violates the weak en-
ergy conditions.

2 Reducing the energy density

2.1 A new configuration

Inside this bubble a spacecraft is engineered with a surround-
ing “shell” of thickness, Re − Ri, where Re is the outer radius,
and Ri the inner radius. Now, let us consider a fluid of density
ρ carrying a charge µ which fills this shell. By applying an
electromagnetic field with a 4-potential Aα inside the shell,
the whole spacecraft surrounded by the charge density will
follow a specific Finslerian geodesic [8] provided the ratio
µ/ρ remains constant all along the trajectory

dsshell = ds +
µ

ρ
Aα dxα, (2.1)

where ds =
√
ηαβ dxαdxβ.

Therefore we may write the metric (neglecting the non-
quadratic term)

(ds2)shell = ds2 +

(
µ

ρ
Aα dxα

)2

. (2.2)
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Now, the shell containing the charge µ which is acted
upon by the potential Aα, must be included in the formula-
tion of the metric (1.25). This can be achieved in a manner
not too dissimilar to the one chosen in [9, 10]. First we have
for the time component of the interaction term

µ

ρ
iA0 dx0 =

µ

ρ
Φ cdt , (2.3)

where Φ is the scalar potential. The metric tensor time com-
ponent in (2.2) becomes

g00 = −

(
1 +

µ

ρ
Φ

)2

. (2.4)

The remaining spatial components (µ/ρ)Aadxa can be ne-
glected if the 3-velocity of the global charges carrier (space-
craft) is low, since in this case the 3-density current is equal
to ja = µva ≈ 0. Hence, the metric (2.2) would reduce to

ds2 = −

(
1 +

µ

ρ
Φ

)2

+ dz2 + dx2 + dy2. (2.5)

In the framework of the Alcubierre metric, the spaceship
shell is part of the warp drive bubble and as such the interac-
tion term should be a function of rs, RB, σ, and the thickness
(Re − Ri) but not the speed vs.

Therefore we are led to define the lapse function as

N =
√

1 + iS 2 , (2.6)

where

S =
1
2

{
1 + tanh

[
σ(rs + Re)2

]}− aΦµ
ρ . (2.7)

The dimensionless factor a delimits the shell thickness

a = (Re − Ri)−1
∫ Re

Ri

dR , (2.7bis)

and (2.7) is verified from the center of the spacecraft location
to the ext. bubble wall Re, where f = 1.

The Alcubierre metric (1.25) can then be re-written as

ds2 = −
[
N2 − v2

s f 2(rs)
]

c2dt2 −

− 2vs f (rs) cdt dx + dz2 + dx2 + dy2.
(2.8)

From the internal radius Ri throughout the spacecraft inte-
rior, there is no charge, and we see that the space is Minkow-
skian so that the spacecraft and its occupants will never suffer
any tidal forces nor time dilation as per (1.10bis).

From the metric (2.8), it is now easy to infer the Eulerian
observer’s velocity components. We have

c2 = −c2
(
N2 − v2

s f 2
) ( dt

dτ

)2

− 2vs f c
dt
dτ

uE + u2
E . (2.9)

The Eulerian observer travels along the geodesic where
he “sees”

dt
dτ

= N−1, (2.10)

which yields

0 = u2
E − 2vs f cN−1uE + v2

s f 2 c2N−2 (2.11)

and finally we obtain

uE = vs f cN−1, (2.12)

(uµ)E =
{
cN−1, vs f cN−1, 0, 0

}
, (2.13)

(uµ)E = {−cN, 0, 0, 0} . (2.14)

2.2 The energy required for the propulsion

If we insert N into (1.30), the formula

CAl = (u0)E (u0)E T 00 (2.15)

yields the new energy density requirement

T 00 = −
c4

32π
v2

s(y2 + z2)
N4r2

s

(
d f
drs

)2

. (2.16)

Now, recalling the form (2.6) for N, we have

N4 =
(
1 + iS 2

)2
< 0 . (2.17)

Thus the energy conditions T 00 > 0 are obviously always
satisfied. Therefore we may choose the factor N (thereby S )
arbitrarily large so as to substantially reduce the required en-
ergy density for the ship frame.

The higher the charge and the potential, the lower the
energy requirement.

In the closed volume V of the spacecraft shell one can
inject a flow of electrons according to the constant ratios

µ

ρ
=

∑
V e∑
V m

. (2.18)

We see that the leptonic lightweight would have the ca-
pacity to lower the negative energy even further. The splitting
shell-inner part of the spacecraft frame, is really the hallmark
of the theory here: it implies that the proper time τ of the
inner part of the spacecraft is not affected by the term N.

PART II

In “The Time Machine” (1895), the novel by H. G. Wells, an
English scientist constructs a machine which allows him to
travel back and forth in time. The history of fascinating idea
of time travel can be traced back to Kurt Gödel who found
a solution of Einstein’s field equations that contains closed
time-like curves (CTCs) [11]. Those make it theoretically
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feasible to go on journey into one’s own past. In our previ-
ous publication [12], we formally demonstrated that Gödel’s
model was not just a mere (speculative) cosmological model
as is was always accepted, but an ordinary metric with own
physical properties.

Upon these results we develop here the bases for a possi-
ble time travel mode of displacement.

3 Reformulation of Gödel’s metric (reminder)

The classical Gödel line element is generically given by the
interval

ds2 = a2
(
dx2

0 − dx2
1 + dx2

2
e2x1

2
− dx2

3 + 2ex1 dx0 dx2

)
(3.1)

or, equivalently,

ds2 = a2
[
−dx2

1 − dx2
3 − dx2

2
e2x1

2
+ (ex1 dx2 + dx0)2

]
, (3.2)

where a > 0 is a constant.
In our theory, we assumed that a is slightly space-time

variable and we set
a2 = e2U . (3.3)

As a result, the Gödel metric tensor components are confor-
mal to the real Gödel metric tensor gµν

(gµν)′ = e2Ugµν , (gµν)′ = e−2Ugµν. (3.4)

The exact Gödel metric reads now

(ds2)′ = e2U
[
dx2

0 − dx2
1 + dx2

2
e2x1

2
−

− dx2
3 + 2ex1 (dx0 dx2)

]
.

(3.5)

This implies that this metric is a solution of the field equa-
tions describing a peculiar perfect fluid [13–15]

Gµβ = κ
[
(ρ + P)uµuβ − Pgµβ

]
. (3.6)

The model is likened to a fluid in rotation with mass den-
sity ρ and pressure P. The positive scalar U is shown to be:

U(xµ) =

∫
dP
ρ + P

. (3.7)

From (3.4) and (3.6) one formally infers that the flow lines
of matter of the fluid follow conformal geodesics given by

s′ =

∫
eUds . (3.8)

The hallmark of the theory is the substitution (3.3): the
Gödel space-time is no longer the representation of a cosmo-
logical model but it is relegated to the rank of an ordinary
metric where its physical properties could allow for a possi-
ble replication.

4 Closed time-like curves

With Gödel one defines new coordinates (t, r, φ) which in the
reformulated version lead to the line element

ds2 = 4e2U
[
dt2

G − dr2 + (sinh4 r − sinh2 r) dφ2 +

+ 2
√

2 sinh2 r dφ dt
]
.

(4.1)

This metric exhibits the rotational symmetry of the solu-
tion about the chosen Gödel tG-time axis where r = 0 or-
thogonal to the hyperplane (x, y, z), since we clearly see that
the spatial components of the metric tensor and its covariant
derivative do not depend on f . For r > 0, we have 0 6 φ 6 2π.
If a curve rG is defined by sinh4 r = 1, that is

rG = ln
(
1 +
√

2
)
, (4.2)

the circle r > ln (1 +
√

2), i.e. (sinh4 r − sinh2 r) > 0 in the
“hyperplane” tG = 0, is a closed time-like curve (which is not
a geodesic line!). Here rG is referred to as the Gödel radius.

The circle of radius rG is a light-like curve, where the light
cones are tangential to the hyperplane (x, y, z) of zero tG. Pho-
tons trajectories reaching this radius are closing up, therefore
rG constitutes a chronal horizon beyond which an observer
located at the origin (r = 0) cannot detect them. The follow-
ing quantity corresponds to rG, it is (ds2)′ = e2Uds2 = 0 with
e2U , 0.

For r > rG the light cone opens up and tips over un-
til its future part reaches the negative values of tG. In this
an achronal domain, any closed curve is a time-like curve.
The conformal line s′ =

∫
eUds, the integral of which is per-

formed over the curve length is always a time-like geodesic
provided the following transformation is applied

t = tG + tanh
(

r − rG

rG

) √
x2 + y2 , (4.3)

where r− rG measures the distance from the Gödel radius on-
ward. So long as r < rG, then t coincides with the Gödel time
axis tG. When r > rG, then tG = 0 and the time coordinate t
becomes space-like as viewed from within the Gödel space-
time. The Gödel space coordinates should then be trans-
formed as follows

x (resp. y, z) = xG − (xG + xN) tanh
(

r − rG

rG

)
. (4.4)

For r < rG, x (resp. y, z) coincides with the Gödel space-
time coordinates xG (resp. yG, zG) of the hyperplane (x, y, z).
For r > rG, x (resp. y, z) coincides with a new coordinate
xN (resp. yN, zN) distinct from xG (resp. yG, zG).

5 Time displacement mode

5.1 Creating a “bubble” along a Gödel curve

As we demonstrated, the conformal factor e2U is not related
to the hypothetical cosmological constant Λ.
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It is therefore possible to adjust the factor U in order to
create a pressureless singularity within the new Gödel space-
time. In the following such a singular region is likened to the
warp drive “bubble” which is bound to move along a Gödel
curve.

The bubble follows the trajectory xs(t) where the time co-
ordinate t satisfies here (4.3). Therefore for R 6 RB, the bub-
ble is assumed to be ruled by the new Alcubierre metric (2.8)
expressed with the signature −2

ds2 =
(
N2 − v2

s f 2
)

c2dt2 − 2vs f (rs) cdt dx−

− dz2 − dx2 − dy2.
(5.1)

This space-time is thus regarded as globally hyperbolic
and the bubble will never know whether it moves along a
CTC. As a result,the bubble is seen by a specific observer (see
below) as being transported forward along the x-direction
tangent to a CTC beyond the Gödel radius rG. In the absence
of charge outside of the bubble (R > RB → ∞), there is f = 0
and we retrieve Gödel’s metric (2.1).

5.2 Gödel chronal horizon

At the origin of the coordinate system, the axis of the light
cone is orthogonal to the (x, y, z) hyperplane as described
above by the metric (2.1). The circle of radius rG is a light-
like curve, where the light cones are tangential to the plane
of constant (or zero) t and photons trajectories reaching this
radius are closing up, therefore rG constitutes a chronal hori-
zon. Such an horizon is a special type of the Cauchy horizon
beyond which an observer located at the origin (r = 0) cannot
detect them. With increasing r > rG the light cones continue
to keel over and their opening angles widen until their fu-
ture parts reach the negative values of t. In this an achronal
domain, any closed curve is a time-like curve. As a result,
the bubble follows a reversed chronological sequence with
respect to the coordinate t.

The bubble moves backwards in time and travels into the
past of a specific observer resting at r = 0 whose proper time
satisfies τ = t. After regressing, once r < rG, the bubble
can return to the original causal domain at the departing co-
ordinate time t, thus slightly aging with respect to the rest
observer depending on its trip own time duration.

Concluding remarks

Without going into details of a sound engineering, we have
just briefly sketched the basic principle of the existing theory
using electromagnetism and charged current to suit the warp
drive propulsion. Our approach heavily relies on a specific
configuration describing a spacecraft located inside a warp
drive bubble, which certainly deserves further scrutiny. In
order to avoid an additional heavy treatment of the warp drive
subject we have skipped some of the important aspects of the
topic, as for example the causally separation of the bubble
center to the outer edge of the bubble wall and beyond.

For further rigorous studies of classical warp drive phys-
ics, one can refer to [16–19]. Unlike our concept all of these
theories rely on negative energy contributions also referred
to as “exotic energy” or “exotic matter” [20]. Such form of
energy has never been detected so far, although its theoret-
ical production based on a L. de Broglie’s publication [21]
has been suggested in [22]. By introducing a “complex” po-
tential, our warp drive concept does not require any form of
exotic matter.

As a space-time short-cut Morris, Thorne et al. [23] de-
rived a specific static wormhole comparable to the Einstein-
Rosen-bridge. Combining two wormholes with a distorted
one the authors could produce a time lag which would act as
a time machine. Of particular interest is the recent paper pub-
lished by Tippett and Tsang [24] where the Alcubierre warp
is applied to a CTC. Like in our theory, a bubble of curva-
ture travels along a closed trajectory and is ruled by a Rindler
geometry. At any rate Exotic matter is still required.

Natàrio investigated an “optimal time travel” in the Gödel
universe for a particle bound to accelerate along a CTC [25].
For this purpose, the well known Rocket Equation trajecto-
ries in general relativity are here applied to a CTC. Natàrio
however keeps the factor a = 1 (and the cosmological con-
stant Λ = − 1

2 ), which necessarily restricts again this field of
research to a finely tuned universe space-time. In contrast to
all those attempts and related theories, the model we suggest
here is derived from a reformulated Gödel metric that exhibits
consistent physical properties which are known to exist. Be-
cause of this reformulation, new physical conditions render
plausible a system which may accommodate a potential time
machine.

The basic engineering we presented in here, pre-suppose
a high level of technological accuracy, which is far from being
reached by today’s knowledge.

Billions of billions of distant galaxies must certainly har-
bour quite a great number of inhabitable worlds where ad-
vanced civilizations have certainly developed capabilities to
allow for such interstellar propulsion modes. Indeed, our uni-
verse is 13.7 billion years old compared to the 4 billion years
of our (marginal) Earth. Given this scale, an evolution dif-
ference of just one million years only between us and other
extraterrestrial forms of thinking beings, is not unrealistic,
and it implicitly means an incredible exponential degree of
superior knowledge which is certainly beyond our common
understanding.

Submitted on June 5, 2022
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Patrick Marquet. Gödel Time Travel With Warp Drive Propulsion 87



Volume 18 (2022) PROGRESS IN PHYSICS Issue 1 (April)

3. Wald R. General Relativity. University of Chicago Press, 1984.

4. Alcubierre M. The warp drive: hyper fast travel within General Rela-
tivity. Classical and Quantum Gravity, 1994, v. 11, L73–L77.

5. Marquet P. The generalized warp drive concept in the EGR theory. The
Abraham Zelmanov Journal, 2009, v. 2, 261–287.

6. Natario J. Warp drive with zero expansion. arXiv: 0110086v3 [gr-qc]
(2002).

7. Hawking S.W., Ellis G.F.R. The Large Scale Structure of Space-Time.
Cambridge University Press, 1973.

8. Marquet P. Geodesics and Finslerian equations in the EGR theory. The
Abraham Zelmanov Journal, 2010, v. 3, 90–100.

9. Loup F., Waite D., Halerewicz E.Jr. Reduced total energy requirements
for a modified Alcubierre warp drive spacetime. arXiv: 01070975v1
[gr-qc] (2001).

10. Loup F., Waite D., Held R., Halerewicz E.Jr., Stabno M., Kuntzman
M., Sims R. A causally connected superluminal warp drive spacetime.
arXiv: 0202021v1 [gr-qc] (2002).
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