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The twin universes hypothesis was initially proposed by A. D. Sakharov followed by
several astrophysicists in order to explain some unsolved questions mainly the current
dark matter issue. However, no one could provide a physical justification as to the origin
and existence of the second universe. We show here that general relativity formally
yields two coupled field equations exhibiting an opposite sign, which lends support
to Sakharov’s conjecture. To this end, we use Cartan’s calculus, in order to derive
the differential form of Einstein’s field equations. This procedure readily leads to a
particular representation whereby the Einstein’s field equation is classically inferred
from the “Landau-Lifshitz superpotential”. Since this superpotential is a fourth rank
tensor (density-like), a second field equation naturally arises from the derivation, a result
which has been so far totally obscured and overlooked in all classical treatments.

Notations

Space-time Greek indices α, β run from 0, 1, 2, 3 for local
coordinates.
Space-time Latin indices a, b run from 0, 1, 2, 3 for a general
basis.
Space-time signature is −2.
Einstein’s constant is denoted by κ.
We assume here that c = 1.

1 Differential calculus

1.1 The field equations in GR (short overview)

In General Relativity, the line element on the 4-dimensional
pseudo-Riemannian manifold (M, g) is given by the interval
ds2 = gab dxadxb. By varying the action S = LE d4x with
respect to gab where the Lagrangian density is given by

LE = gab √−g
({

e
ab

} {
d
de

}
−

{
d
ae

} {
e
bd

})
, (1)

one infers the symmetric Einstein tensor

Gab = Rab −
1
2
gab R , (2)

where, as is well-known,

Rbc = ∂a

{
a
bc

}
− ∂c

{
a
ba

}
+

{
d
bc

} {
a
da

}
−

{
d
ba

} {
a
dc

}
(3)

is the (symmetric) Ricci tensor whose contraction gives the
curvature scalar R, and

{
e
ab

}
denote the Christoffel symbols of

the second kind.
The source free field equations are

Gab = Rab −
1
2
gab R + Λ gab = 0 , (4)

where Λ is usually called the cosmological constant. The sec-
ond rank tensor Gab is symmetric and is only function of the
metric tensor components gab and their first and second order

derivatives. Due to the Bianchi’s identities the Einstein tensor
is conceptually conserved

∇a Ga
b = 0 , (5)

where ∇a is the Riemann covariant derivative.
When a massive source is present, the field equations be-

come
Gab = Rab −

1
2
gab (R − 2Λ) = κTab . (6)

If ρ is the matter density, Tab is here the tensor describing
the pressure of a free fluid

Tab = ρ ua ub . (7)

1.2 The general structures on a manifold

Let us now consider a 4-manifold M referred to a vector basis
eα. A locally defined set of four linearly independent vector
fields, determined by the dual basis θ β of the local coordinates

θ β = a βa dxa (8)

is called a tetrad field or vierbein [1].
On this manifold, it is well known that the connection

coefficients Γ
γ
αβ can be decomposed in the most general sense

as
Γ
γ
αβ =

{
γ
αβ

}
+ Kγ

αβ + (Γ γ
αβ)S , (9)

where Kγ
αβ is the contorsion tensor which is built from the

torsion tensor T γ
αβ = 1

2 (Γ γ
[βα] − Γ

γ
αβ), and

(Γ γ
αβ)S =

1
2
gγµ

(
Dβ gαµ + Dα gβµ − Dµ gαβ

)
(10)

is the segment connection formed with the general covariant
derivatives of the metric tensor (denoted here by D instead of
the Riemann symbol ∇)

Dγ gαβ = ∂γ gαβ − Γαγβ − Γβγα , 0 . (11)
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The connection (Γ γ
αβ)S characterizes a particular property

of the manifold related to a second type of structure, called
the segment curvature. This additional curvature results from
the variation of the parallel transported vector around a small
closed path.

In a dual basis θ α, the following 2-forms can be associated
with any parallel transported vector along the closed path:

— a rotation curvature form

Ωα
β =

1
2

Rα
βγδ θ

γ ∧ θ δ, (12)

— a torsion form

Ωα =
1
2

Tα
γδ θ

γ ∧ θ δ, (13)

— a segment curvature form

Ω = −
1
2

Rα
αγδ θ

γ ∧ θ δ. (14)

These are the maximum admissible mathematical struc-
tures defining a general manifold.

1.3 The Cartan structure equations

We now introduce the Cartan procedure. This is a powerful
coordinate calculus extensively used in the foregoing.

Let us first define the connection forms

Γα
β =

{
α
γβ

}
θ γ. (15)

The first Cartan structure equation is related to the torsion
by [2, p. 40]

Ωα =
1
2

Tα
γδ θ

γ ∧ θ δ = dθ α + Γα
γ ∧ θ

γ . (16)

and the second Cartan structure equation is [2, p. 42]

Ωα
β =

1
2

Rα
βγδ θ

γ ∧ θ δ = dΓα
β + Γα

γ ∧ Γ
β
γ . (17)

and Rα
βγδ are here the components of the curvature tensor in

the most general sense.
Within the Riemannian framework alone (torsion free),

Rα
βγδ reduces to the Riemann curvature tensor components

and the first structure equation (16) becomes

dθ α = −Γα
γ ∧ θ

γ. (18)

We shall now define the absolute exterior differential D of
a tensor valued p-form of type (r, s)

(Dφ)i1... ir
j1... js

= dφi1... ir
j1... js

+ Γ
i1
k ∧ φ

k i1... ir
j1... js

+ . . . − Γ k
j1 ∧ φ

i1... ir
k j2... js

− . . .

As a simple example, the Bianchi identities can be simply
written with the exterior differential as

DΩα = Ωα
β ∧ θ

β (1st Bianchi identity),

DΩα
β = 0 (2nd Bianchi identity).

2 The differential Einstein equations

2.1 The Einstein action

We first recall the definition of the Hodge star operator for an
oriented n-dimensional pseudo-Riemannian manifold (M, g),
wherein the volume element is determined by g

η =
√
−g θ 0 ∧ θ 1 ∧ θ 2 ∧ θ 3.

Let Λk(E) be the subspace of completely antisymmetric
multilinear forms on the real vector space E. The Hodge star
operator * is a linear isomorphism Λk(M)→ Λn−k(M), where
k 6 n. If { θ 0, θ 1, θ 2, θ 3} is an oriented basis of 1-forms, this
operator is defined by
∗(θ i1 ∧ θ i2 ∧ . . . θ ik ) =

=

√
−g

(n − k)!
ε j1... jn g

j1i1 . . . g jk ik θ jk+1 ∧ . . . ∧ θ jn .

With this preparation, the Einstein action simply reads
∗R = R η . (19)

To show this, we express this action in terms of tetrads. With
η µν = ∗(θ µ ∧ θ ν) and taking into account (17) we have

ηβγ ∧Ω βγ =
1
2
ηβγ R βγ

µν θ
µ∧ θ ν,

∗(θ µ∧ θ ν) =
1
2
ηβγσρ g

βγθσ∧ θ ρ,

i.e., we have

ηβγ =
1
2
ηβγσρ θ

σ ∧ θ ρ. (20)

Thus, we have

ηβγ ∧ θ
µ∧ θν =

1
2
ηβγσρ θ

σ∧ θ ρ∧ θ µ∧ θ ν = (δµβ δ
ν
γ − δ

µ
γ δ

ν
β) η ,

ηβγ ∧Ω βγ =
1
2

(δµβ δ
ν
γ − δ

µ
γ δ

ν
β) R βγ

µν η = R η = ∗R .

Taking also into account (20), we compute the absolute
exterior differential Dηβγ = 1

2 D(ηβγσρ θσ∧ θ ρ). In an ortho-
normal frame ηβγσρ is constant and D ηβγσρ = 0. This mani-
fests the fact that in the Riemannian framework (metric con-
nection), orthonormality is preserved under parallel transfer.
Therefore, Dηβγ = ηβγσρ Dθσ∧ θ ρ.

Now, keeping in mind that the basis θσ is a tensor 1-form
of the type (1,0), the first structure equation reads

Dθσ = Ωσ,

Dηβγ = ηβγσρ Ωσ∧ θ ρ = Ωσ∧ ηβγσ .

The latter equation is zero for the Riemannian connection
D ηβγ = 0. In the same way, we can show that

Dη βγα = dη βγα + Γ
β
δ ∧ η

δγ
α + Γα

δ ∧ η
βδ
α − Γ δ

α ∧ η
βγ
δ = 0 (21)

with η βγα = ∗(θ β∧ θ γ∧ θα) (all indices are raised or lowered
with gαβ from g = gαβ θ

α ⊗ θ β).
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2.2 The Einstein field equations

From (20), we infer that

ηβγδ = ηβγδλ θ
λ. (22)

Under the variation δθ β of the orthonormal tetrad fields
θ β, we have

δ (ηβγ ∧Ω βγ) = δηβγ ∧Ω βγ + ηβγδ ∧ δΩ
βγδ.

Now, using (20) and (22) yields

δηβγ =
1
2
δ (ηβγδλ θ δ∧ θ λ) = δθ δ∧ ηβγδ .

Hence, applying the varied second structure equation

δΩ βγ = d δΓ βγ + δΓ
β
η ∧ Γ ηγ + Γ

β
η ∧ δΓ

ηγ,

we obtain

δ (ηβγ∧Ω βγ) = δθ δ∧ (ηβγδ ∧Ω βγ) + d (ηβγ ∧ δΓ βγ)−

− dηβγ ∧ δΓ βγ + ηβγ ∧ (δΓ β
η ∧ Γ ηγ + Γ

β
η ∧ δΓ

ηγ) ,
(23)

and from the second line we extract dηβγ + ηβγ ∧ (Γ η
γ + Γβη),

which is just Dηβγ.
However, we know that Dηβγ = 0, and finally, the varied

Einstein action is

δ (ηβγ ∧Ω βγ) = δθ β∧ (ηβγδ ∧Ω γδ) + d (ηβγ ∧ δΓ βγ) +

+ (exact differential).
(24)

The global Lagrangian densityL in the presence of matter
is written as

L = −
1

2κ
∗R +Lmatter .

Setting up ∗Tβ as the energy-momentum 3-form for bare
matter we have the Lagrangian density for the varied matter

δLmatter = − δθ β ∧ ∗Tβ

and taking into account (24), the global variation is

δL = − δθ β∧

(
1

2κ
ηβγδ ∧Ω γδ + ∗Tβ

)
+ (exact differential).

We eventually arrive at the field equations in the differen-
tial form

−
1
2
ηβγδ ∧Ω γδ = κ ∗Tβ , (25)

where Tα is related to the energy-momentum tensor Tαβ by
Tα = Tαβ θ β.

In the same manner, we can obtain Gα = Gαβ θ
β for the

Einstein tensor Gαβ (see Appendix A).

2.3 The energy-momentum tensor

It is well known however, that Gαβ is intrinsically conserved
while the massive tensor Tαβ is not. This is because the grav-
itational field is not included in Tαβ. To restore conservation
for the energy-momentum tensor, we start by reformulating
(25) in the form

−
1
2

Ωβγ ∧ η
βγ
α = κ ∗Tα . (25bis)

Then, we use the second structure equation under the follow-
ing form

Ωβγ = dΓβγ − Γµβ ∧ Γ
µ
γ (26)

so that we obtain

dΓβγ ∧ η
βγ
α = d(Γβγ ∧ η

βγ
α) + Γβγ ∧ η

βγ
α . (27)

Then, using (21) in (26), we infer

dΓβγ ∧ η
βγ
α = d (Γβγ ∧ η

βγ
α) +

+ Γβγ ∧ (−Γ
β
δ ∧ η

δγ
α − Γ

γ
δ ∧ η

βδ
α + Γ δ

α ∧ η
βγ
δ) .

(28)

Adding the second contribution of (26) to (28), we obtain
the Einstein field equations in a new form, which is

−
1
2

d(Γβγ ∧ η
βγ
α) = κ (∗Tα + ∗tα) , (29)

where we denote

∗tα = −
1

2κ
Γβγ ∧ (Γδα ∧ η βγδ − Γ

γ
δ ∧ η

βδ
α) , (30)

and the quantity ∗tα is interpreted as the energy-momentum
(pseudo-tensor) of the gravitational field generated by this
distributed matter.

Equation (29) readily implies the conservation law

d (∗Tα + ∗tα) = 0 . (31)

Writing
tα = tαβ θ β , (32)

we see that tαβ describes the gravitational field, which can be
expressed, for example, by the Einstein-Dirac pseudo-tensor
[3, p. 61].

From (30) we verify that tαβ is not symmetric. To cor-
rect this problem, we shall not apply the Belinfante symmetri-
zation procedure [4]. Instead, we will modify the field differ-
ential equations. We first revert to the field equations (25) in
which we insert ηαβγ = ηαβγδ θδ. With (26) this yields

−
1
2
ηαβγδ θδ ∧ (dΓβγ − Γµβ ∧ Γ

µ
γ ) = κ ∗T α (33)

leading to

−
1
2
ηαβγδ d(Γβγ ∧ θδ) = κ (∗T α + ∗t α) , (34)
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where

∗t α = −
1
2
κ ηαβγδ(Γµβ ∧ Γ

µ
γ ∧ θδ − Γβγ ∧ Γµδ ∧ θ

µ) . (35)

We see that ∗t α is unaffected by the exterior product terms
in the bracket, therefore tαβ is now symmetric. In that case,
we idendify ∗t α with the Landau-Lifshitz 3-form ∗t αL−L, which
yields the corresponding pseudo-tensor t αβL−L.

3 The 4th rank tensor equation

3.1 The first set of Einstein’s field equations

Multiply (34) by
√
−g. Then, taking ηαβγδ =− 1

2
√
−g εαβγδ

into account, we find a new form for the field equations

− d (
√
−g ηαβγδ Γβγ ∧ θδ) = 2κ

√
−g (∗T α + ∗t αL−L) (36)

or
d (
√
−gΓ βγ ∧ ηαβγ) = 2

√
−g (∗T α + ∗t αL−L) . (37)

From these equations follows immediately the differential
conservation law

d
[√
−g (∗T α + ∗t αL−L)

]
= 0 . (38)

A tedious calculation eventually shows that

d (
√
−g Γ βγ∧ ηαβγ) =

1
√
−g

H αβνγ
, βγ ην , (39)

where
H αβνγ = − g (gανg βγ − g βνg γα) (40)

is the “Landau-Lifshitz superpotential” [5, eq. 101.2]. There-
fore the field equations read here

H αβνγ
, βγ = 2κ

[
−g (T αν + t ανL−L)

]
. (41)

Explicitly, we have

H αβνγ
, βγ = ∂β

{
∂γ [−g (gανg βγ − g βνg γα)]

}
. (42)

Remark: It is essential to note that the quantities t ανL−L do
not represent a true tensor. Indeed, the gravitational field can
be transformed away at any point and its energy is not local-
izable. This is why the left hand side of (41) and (42) exhibits
ordinary derivatives instead of covariant ones.

The 4th rank tensor H αβνγ
, βγ can be regarded as a special

choice of Rαν — the Ricci tensor, where all first derivatives
of the metric tensor cancel out at this given point.

The Landau-Lifshitz pseudo-tensor has the form

(−g) t ανL−L =
1

2κ

{
#gαν, λ

#g
λµ
, µ −

#gαλ, λ
#g
νµ
, µ +

+
1
2
gανgλµ

#gλθ, ρ
#g
ρµ
, θ + gµλ g

θρ #gαλ, θ
#g
νµ
, ρ −

−
(
gαλgµθ

#gνθ, ρ
#g
µρ
, λ + gνλgµθ

#gαθ, ρ
#g
µρ
, λ

)
+

+
1
8

(2gαλgνµ − gανgλµ)(2gθρgδτ − gρδ gθτ) #gθτ, λ
#g
ρδ
, µ

}
,

(43)

where #gαν =
√
−g gαν.

When velocities are low and the gravitational field is weak
(42) reduces to

H 0 i 0 j
, i j = ∂i

{
∂ j [−g (g00g i j − g i 0g j 0)]

}
, (44)

where i, j, . . . = 1, 2, 3 are the spatial indices. We can write
this equation in mixed indices by lowering one of the space
indices

H 0 0 j
i , i j = ∂i ∂ j (−gg00δ

j
i ) . (45)

When i = j, the Newton law is retrieved through the weak
potential g00 = 1 + 2ψ as (45) reduces to the Laplacian

∂i ∂i g
00 = ∆ψ , (46)

so that we obtain the well-known Poisson equation

∆ψ = Gρ ,

where G is Newton’s constant.
Therefore, at the Newtonian approximation, we can write

the generalized Poisson equation, which has the form

H 0 i 0 j
, i j = 2κ

√
−g (T 00 + t00

L−L) , (47)

where the Newtonian pseudo-tensor t00
L−L reads

(−g) t00
L−L =

1
2κ

{
#g00

, k
#gkn

, n −
#g0k

, k
#g0n

, n +

+
1
2
g00gkn

#gkr
, l

#gln
, r + gnk g

rl #g0k
, r

#g0k
, l −

−
(
g0kgnr

#g0r
, l

#gnl
, k + g0kgnr

#g0r
, l

#gnl
, k

)
+

+
1
8

(2g0kg0n − g00gkn)(2grl gsm − gls grm) #grm
, k

#gls
, n

}
.

(48)

Unlike the classical Newtonian theory, the static bare
mass density generally produces a gravitational field, which
is described by t00

L−L at the considered point.
Remark: A slightly variable cosmological term L term

induces a stress energy tensor of vacuum which restores a
conserved property of the r.h.s. of equation (6) thus avoiding
the use of the ill-defined gravitational field pseudo-tensor as
shown in [6, 7].

3.2 The second set of Einstein’s field equations

The second rank tensor field equations have been inferred
from a fourth rank tensor density like. It is then natural to
consider a second set of field equations which is contained in
the former.

A close inspection of the “Landau-Lifshitz superpoten-
tial” (40) leads to the obvious choice for this second field
equation

d (
√
−gΓ γα ∧ η

β
γα) =

1
√
−g

H αβνγ
, γα ην , (49)

H αβνγ
, γα = 2κ

√
−g (T βν + t βνL−L). (50)
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Note that (41) and (50) are linked using a common index.
Furthermore, each set of field equations differ from a sign.

Proof: Let us label the “negative” equation as

(−)Hαβνγ
, γα = ∂α

{
∂γ [−g (gανg βγ − g βνg γα)]

}
. (51)

Now in the same manner as for (44), equation (51) reduces to

(−)H i 00
, i j = ∂i

{
∂ j [−g (gi0g0 j − g00gi j)]

}
. (52)

Lowering one of the space indices we obtain

(−)H i 00
j , i j = ∂i ( ∂ j gg

00δ
j
i ) , (53)

which is just the opposite to H 0 0 j
i , i j = ∂i ∂ j (−gg00δ

j
i ) (45).

Had we set i = j, we would have found

(−)∆ψ = −∆ψ . (54)

As a consequence, the right member of the Poisson equation
(in our orthonormal frame) should also reverse sign

(−)(Gρ) = −Gρ . (55)

Since the Einstein constant is here a common factor, we infer
that mass densities of each field equations differ from a sign
as well as the gravitation potential ψ.

Therefore, in the framework of the Newtonian approxi-
mation we find two opposite field tensors which induce two
opposite energy density tensors which we label as

(+)
(
T 00 + t00

L−L

)
and (−)

(
T 00 + t00

L−L

)
. (56)

3.3 Two antagonist manifolds

Conservation properties lead to the following evident corre-
sponding equivalences

H αβνγ
, βγ →

(+)G αν = κ
[
(+)(T αν + t ανL−L)

]
. (57)

H αβνγ
, γα →

(−)G βν = κ
[
(−)(T βν + t βνL−L)

]
. (58)

Hence, the field equation (57) can be regarded as being
defined on a “positive” manifold with respect to the “nega-
tive” manifold on which is defined the field equation (58).

Remark: One should always bear in mind that both (+)G αν

and (−)G βν are coupled through the 4th rank tensor Hβαγµ,
which necessarily imposes that indices must keep their re-
spective label. The “intertwined” metrics are then

(+)ds2 = (+)gαν dxαdxν, (−)ds2 = (−)gβν dx βdxν, (59)

and, in the “vierbein” (tetrad) formalism, we have

(+)gαν = ea
α eb

ν ηab ,
(−)gβν = ea

β eb
ν ηab , (60)

where ηab is the Minkowski tensor.

One thus writes the Pfaffian metrics as

(+)ds2 = ηab
(+)η aη b, (−)ds2 = ηab

(−)θ aθ b, (61)

(+)θ α = ea
α dxα, (−)θ a = ea

β dx β, (62)

The common basis 1-form θ b = eb
ν dxν outlines the cou-

pling between the metrics.
Obviously, in a flat space-time, (+)gαν and (−)gβν coincide

with ηab meaning that the twin universes emerge from curva-
ture.

Conclusions and outlook

The twin universe hypothesis recently saw a revived interest.
Several astrophysicists conjectured that it could provide

an appropriate explanation to the puzzle of the dark energy
and dark matter issues and other unsolved observational data
questions [8–15]. However, all these theories do not justify
the origin of the double universe which remains a pure arbi-
trary statement, not relying on any sound physical grounds.
In here we showed that General Relativity formally confirms
the existence of two coupled Einstein’s field equations char-
acterizing two co-existing antagonist manifolds.

General Relativity further shows that there exists at most
two such field equations [16].

We hope that this formal demonstration will help to sub-
stantiate the current research in astrophysics.

Appendix. Classical Einstein tensor retrieved from the
differential equations

Using (12), the field equations

−
1
2
ηβγδ ∧Ωγδ = κ ∗Tβ (A1)

can be written in the form

−
1
4
η

µ
α ν θ

σ ∧ θ δRν
µσδ = κTαβ η β. (A2)

We first use the following relations

ηα ∧ ∗θ α, (A3)

ηα =
1
3!

(
ηαβγδ θ

β ∧ θ γ ∧ θ δ
)

=
1
3!
θ β ∧ ηαβ . (A4)

Then, applying the following Riemannian identities

θ β ∧ ηα = δ
β
α η ,

θ γ ∧ ηαβ = δ
γ
β ηα − δ

γ
α ηβ ,

θ δ ∧ ηαβγ = δδγ ηαβ + δδβ ηγα + δδα ηβγ ,

θ ε ∧ ηαβγδ = δεδ ηαβγ − δ
ε
γ ηδαβ + δεβ ηγδα − δ

ε
α ηβγδ ,
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we obtain

−
1
4

R µν
στ

[
δτν (δσµ ηα − δ

σ
ν ηµ) +

+ δτµ (δσα ην − δ
σ
ν ηα) + δτα (δσν ηµ − δ

σ
µ ην)

]
=

= −
1
2

R µν
µν ηα + R µν

αν ηµ =

= −
1
2

R βν
αν ηβ −

1
2
η
β
α R µν

µν ηβ =

=

(
R β
α −

1
2
δ
β
α R

)
ηβ .

(A5)

Submitted on October 10, 2021

References
1. Marquet P. Lichnerowicz’s theory of spinors in General Relativity: the

Zelmanov approach. The Abraham Zelmanov Journal, 2012, v. 5, 117–
133.

2. Kramer D., Stephani H., Hertl E., MacCallum M. Exact Solutions of
Einstein’s Field Equations. Cambridge University Press, 1979.

3. Dirac P.A.M. General Theory of Relativity. Princeton University Press,
2nd edition, 1975.

4. Rosenfeld L. Sur le tenseur d’impulsion-énergie. Académie royale de
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