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We suggest here a new approach to couple space-time curvature with the three funda-
mental forces (interactions) of the standard model described by the Yang-Mills Theory.
This is achieved through the extension of the Einstein tensor in the framework of the
Weyl formalism (Weyl-Einstein tensor) which is known to exhibit a particular 4-vector
referred to as the Weyl-Einstein vector. The Weyl-Einstein manifold so defined admits
a tangent Minkowski space at a given point, where this particular vector asymptotically
identifies with the Yang-Mills gauge field vectors. As a result, the Weyl-Einstein ten-
sor implicitly interacts with the particles’ masses and fields provided by the Yang-Mills
equations. Assuming that the principle of equivalence always holds, a very simple grand
unification with gravity could be achieved in this way.

Notations

Space-time Greek indices α, β run from 0, 1, 2, 3 for local
coordinates.
Latin indices a, b are the group indices.
Space-time signature is −2.
We assume here that c = 1.

Introduction

Fields Φ are used to describe the fundamental particles known
in modern physics. In Quantum Electrodynamics such fields
associated with these particles must be chosen consistent with
the symmetries in nature which include for example the
space-time symmetries of Special Relativity. The fields Ψ

are either scalars (neutral or charged) with spin-zero/spin-1
particles, or fermions with spin- 1

2 particles. Initially, it was
thought that these symmetries should be global symmetries,
not depending on the position in space and time. However, it
is well known that the laws of electromagnetism possess an-
other local symmetry, in which charge is locally conserved,
meaning that charged fields have a phase (in the exponent)
that varies freely from point to point. This feat led Yang
and Mills to suggest that local symmetries be extended from
this U(1) group to non Abelian symmetries based on local
gauge invariance which open the way to unify the electro-
magnetism, weak and strong interactions: U(1) × SU(2) ×
SU(3) is today known as the standard model elaborated by
Glashow, Weinberg, Salam and Ward (1979 Nobel Prize). As
we know, this theory implies the existence of gauge fields
Aµ(x), which are necessarily part of a new covariant deriva-
tive Dµ = ∂µ − ie Am(x), where e is a coupling constant (see
§2.1). In a curved space-time, the classical theory makes use
of the Riemann derivative ∇µ, and Dµ is thus generalized to
∇µ−ie Aµ(x) (see, for example, [1, p. 68]). However, the gauge
fields Aµ(x), do not account for the space-time curvature ex-
cept in the case of the electromagnetic field alone through the
Einstein field equations.

Herein, we tackle this problem in a different way:

a) We start by defining a Weyl connection that exhibits
a particular 4-vector (Weyl-Einstein vector) which in-
duces extended curvature tensors;

b) From these curvatures is inferred the Weyl-Einstein ten-
sor which is conceptually conserved like its standard
counterpart which it generalizes;

c) A simple relation is established whereby the Weyl-
Einstein 4-vector is asymptotically related to the Yang-
Mills field vectors.

All three contributions (electromagnetic, weak and strong
interactions) are then permitted to interact with the Weyl-
Einstein 4-tensor through their respective gauge field vectors
alone. A simple grand unification could be achieved through
this particular coupling.

1 The Weyl-Einstein tensor

1.1 The curvatures

1.1.1 General issues

Following Lichnerowicz [2], we start by defining the sym-
metric Weyl-Einstein connection on a semi-metric 4-manifold
denoted by M, i.e.

W α
µν = Γα

µν −
1
2
gαβ (gµβJν + gνβJµ − gµνJβ) (1.1)

or, in another form,

W α
µν = Γα

µν −
1
2

(δαµ Jν + δαν Jµ − gµνJ α) . (1.1bis)

From the point m in the neighbourhood of the Lorentz
manifold denoted (M, g), where ∃ is a congruence of differ-
entiable lines such that ∀m′ ∈ (M, g), we may have the con-
formal metric

ds2
W = eJds2, (1.1ter)

where J =
∫ m′

m Jµdx µ.
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In general, the form dJ = Jµdx µ is non-integrable. The
4-vector Jµ is referred to as the Weyl-Einstein vector.

1.1.2 The Weyl-Einstein 4th rank curvature tensor

With the Weyl connection Wα
µν we construct the Weyl-Einstein

curvature tensor which is assumed to have the standard form
of the Riemann-Christoffel tensor

(Rα
βµν)W = ∂νW α

βµ − ∂µW α
βν + W λ

βµW α
λν −W λ

βνW
α
λµ . (1.2)

Inspection shows that the following identity takes place

(R ρ
αβµ)W + (R ρ

µαβ)W + (R ρ
βµα)W = 0 . (1.3)

Using the Riemann covariant derivative denoted using a
semi-colon, the Bianchi identity also reads

(R ρ
αβµ)W ; δ + (R ρ

αδβ)W ; µ + (R ρ
αµδ)W ; β = 0 . (1.3bis)

Let us now express (Rµναβ)W with the metric connection
∇β. Setting (Γ ρ

να)J = 1
2 (δ ρν Jα + δ

ρ
α Jν − gναJ ρ), we obtain

(Rµναβ)W = Rµναβ + gµρ∇β (Γ ρ
να)J −

−
1
2
gµρ

[
∇α (Γ ρ

νβ)J + ∇ν (Γ ρ
αβ)J

]
+

+ gµρ
[
(Γ ρ

λβ)J(Γ λ
να)J − (Γ ρ

λα)J(Γ λ
νβ)J

]
+

+ gµν
[
∂α(Γ ρ

βρ)J − ∂β(Γ
ρ
αρ)J

]
.

(1.4)

1.1.3 The Weyl-Einstein 2nd rank tensor

Relation (1.4) eventually leads to the contracted tensor

(R δ
αβδ)W = (Rαβ)W = Rαβ + ∇ν (Γ ν

αβ)J − ∇β (Γ ν
αν)J +

+ (Γ λ
αβ)J(Γ ν

λν)J − (Γ λ
αρ)J(Γ

ρ
λβ)J

we then have the splitting

(Rαβ)W = (R(αβ))W + (R[αβ])W , (1.5)

where

(R(αβ))W = Rαβ + ∇ν (Γ ν
αβ)J −

1
2

[
∇β (Γ ν

αν)J + ∇α (Γ ν
βν)J

]
+

+ (Γ λ
αβ)J(Γ ν

λν)J − (Γ λ
αρ)J(Γ

ρ
λβ)J ,

(1.6)

(R[αβ])W = ∂α (Γ ν
βν)J − ∂β (Γ ν

αν)J . (1.6bis)

So forth, we check that (Γ ρ
νρ)J = 1

2 (δ ρν Jρ+δ
ρ
ρ Jν−gνρJ ρ) =

1
2 (Jν + 4Jν − Jν) = 2Jν. Thus we get

(R(αβ))W = Rαβ −
1
2

(gαβ∇ν J ν + JαJβ) , (1.7)

(R[αβ])W = 2 (∂αJβ − ∂βJα) = 2Jαβ . (1.8)

1.1.4 The Weyl-Einstein curvature scalar

Applying the contraction RW = g να(Rνα)W, one obtains

RW = R − ∇ρ
[
gνα(Γ ρ

να)J

]
− ∇ρ

[
gνρ(Γ ρ

νρ)J

]
−

− gνα
[
(Γ ρ

να)J(Γ ν
νρ)J − (Γ λ

νρ)J(Γ
ρ
λα)J

]
,

(1.9)

i.e.,

RW = R −
(
∇ρ J ρ +

1
2

J2
)
. (1.10)

1.2 The Weyl-Einstein tensor

Here we omit the subscript W for clarity. Unlike the Riemann-
Christoffel curvature tensor, the Weyl curvature tensor is no
longer antisymmetric on the pair of indices µν

Rµναβ + Rνµαβ = gµνJαβ , (1.11)

or, in another form,

R µν
αβ + R νµ

αβ = g µνJαβ . (1.11bis)

Raising the index α in the equation (1.3bis) and contract-
ing on α and µ as well as on µ and δ, we obtain

R µδ
βµ ; δ + R µδ

µδ ; β = 0 . (1.12)

We next replace R µδ
δβ by its value taken from (1.11bis),

and we eventually find

R µδ
µδ ; β + 2R µδ

βµ ; δ + 2g µδJδβ ; µ = 0 , (1.13)(
R(δ)

(β) −
1
2
δ δβ R

)
; δ

= − J δ
β ; δ , (1.14)

which is just the conservation law for the tensor (re-instating
the subscript W and changing the indices)

(Gαβ)W = (R(αβ))W −
1
2

(
gαβRW − 2Jαβ

)
. (1.15)

We call (Gαβ)W the Weyl-Einstein tensor expressed with
the Riemannian derivatives. Lets us note that (Gαβ)W is no
longer symmetric. In the pure Riemannian regime, this tensor
obviously reduces to the usual Einstein tensor

Gαβ = Rαβ −
1
2
gαβR . (1.16)

2 The unification

2.1 A short overview of the Yang-Mills theory

2.1.1 The principle of gauge invariance

Let us recall that a general Lie group G is defined by the rep-
resentation of a group element denoted U in terms of its gen-
erators Ta

U = exp

− ie
n∑

a=1

Taka

 , (2.1)
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where e is a coupling constant generalizing the fundamental
electronic charge e in the electromagnetic case. The group el-
ement U is defined by the values of the N constants ka, and Ta

are hermitian generators satisfying the associated Lie algebra

[Ta, Tb] = i Cabc Tc , (2.2)

where Cabc are the real antisymmetric structure constants de-
fining the algebra.

The SU(2) group is defined in terms of the set of all uni-
tary unimodular matrices with (2× 2) complex elements. The
related constraints are known to be

det ‖U‖ = 1 , (2.3)

U+U = UU+ = I , (2.4)

where I is the unit matrix, and U+ is the Hermitian conjugate
of the matrix U.

2.1.2 Electromagnetism and local gauge invariance U(1)

Consider non-hermitian complex charged scalar fields written
in terms of the real fields Φ1(x) and Φ2(x)

Φ(x) =
1
√

2
[Φ1(x) + iΦ2(x)] , (2.5)

Φ+(x) =
1
√

2
[Φ1(x) − iΦ2(x)] .

The classical Lagrangian for this charged scalar field is

L = ∂ µΦ+∂µΦ − m2Φ+Φ , (2.6)

where the first term corresponds to the kinetic energy of the
scalar field, and the second the potential energy of the mas-
sive field (mass of the charged particle).

Noether’s theorem states that the symmetry of charge con-
servation is equivalent to the invariance of L under the group
U(1) of continuous phase rotations, specified by a single pa-
rameter k.

We then check that this Lagrangian is invariant under the
continuous group of phase rotations of Φ called the global
Abelian gauge group U(1)

Φ(x)→ Φ(x) exp i k , (2.7)

Φ+(x)→ Φ(x) exp (− i k) , (2.7bis)

with the real parameter k.
Eqs. (2.7) and (2.7bis) should be true even when the pa-

rameter k depends on x µ, thus the phase difference between
distinct space-time points is unobservable: it is called the lo-
cal gauge invariance principle. However inspection shows
that the kinetic energy Lagrangian ∂ µΦ+∂µΦ is not invariant
under the local gauge transformation

Φ(x)→ Φ(x) exp (− i k) Q(x) . (2.8)

This is because the derivative may now operate on the
variable parameter k(x). To remedy this problem one is forced
to introduce a new covariant derivative

Dµ = ∂µ − ie Aµ(x) , (2.9)

where Q is the quantity of the charges of the fields Φ which
is proportional to the fundamental electronic unit e.

Here, the vector field Aµ(x) transforms as

Aµ(x)→ Aµ(x) + ∂µ k(x) . (2.10)

Hence, it is also necessary to include a kinetic energy term
in L which takes into account the introduction of the new
gauge field Aµ(x). This is achieved by adding the term

(L)kin
A = −

1
4

F µνFµν , (2.11)

where we retrieve the electromagnetic field strength tensor

Fµν = ∂µAν − ∂νAµ . (2.12)

The new Lagrangian is now

L = −
1
4

F µνFµν +L′ [Φ, Φ+ DµΦ DµΦ
+] . (2.13)

The tensor Fµν is obviously invariant under the gauge
transformation of (2.8), so (L)kin

A is also gauge invariant. This
symmetry group is the Abelian group U(1) with a single com-
muting generator T1 = Q satisfying

[T1, T1] = 0 . (2.14)

Unlike the classical theory, the equations of motion are
obtained by varying the action L with respect to Aµ for the
fixed Φ, i.e.,

∂ν

[
L

∂ (∂νAµ(x))

]
−

∂L

∂Aµ(x)
= 0 , (2.15)

or, in another form,

∂νF µν(x) =
∂L

∂Aµ(x)
. (2.16)

From this equation, the current density is easily inferred

I µ(x) = −
1
e

∂L

∂Aµ(x)
, (2.17)

I µ(x) = i
[
Φ+(x)

∂L

∂ (DµΦ+)
− Φσ+(x)

∂L

DµΦ+

]
, (2.18)

which is conserved
∂µI µ = 0 . (2.19)

The associated charge is given by

Q =

∫
I0(x) d3x =

∫
i
{
Φ+ DµΦ − D µΦ+Φ

}
d3x , (2.20)
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which also remains unchanged with time

dQ
dt

= 0 , (2.21)∫
∂x0 I0(x) d3x = 0 , (2.22)

or, equivalently,
∫
∂µI µ(x) d3x = 0.

This result is formally equivalent to the classical theory,
but it also shows that this new approach remains a particu-
lar case of a higher symmetry principle which rules modern
physics.

2.2 The unification

2.2.1 The gauge invariance of the Weyl-Einstein connec-
tion

If we were to define a Weyl-Einstein covariant derivative just
as in (2.9), the connection coefficients Wτ

µσ should be invari-
ant under the conformal relation

gαβ → Ugαβ , (2.23)

where U(x) > 0 is a real scalar. Conformal invariance is
here simply achieved by implementing the additional gauge
condition

Jµ → Jµ − ∂µU (2.24)

as oneself can be easily convinced.

2.2.2 The Weyl-Einstein-Yang-Mills relation

Let us consider the time-like geodesic dsW spanned by the
connexion coefficients Wτ

µσ (1.1ter). To this geodesic is as-
sociated the 1-form dJ = Jµdx µ. Likewise, we write the
Minkowskian line element as ds to which we associate the
Yang-Mills 1-form dA = Aµdx µ where Aµ is the generic term
that stands for every gauge field of any of the first three Yang-
Mills interactions. A specific unification between the Yang-
Mills theory and space-time curvature can be thus achieved
through the interaction between the Yang-Mills gauge field
and vectors and the Weyl-Einstein vector Jµ. Such a relation
can be set so as to maintain the euclidean character of the
Yang-Mills theory within the Weyl-Einstein formalism. To
this end, we write

dJ
dA

= 1 + ln
(

dsW

ds

)
, (2.25)

dJ = dA
[
1 + ln

(
dsW

ds

)]
. (2.26)

When dsW → ds, the 4-vector Jµ identifies with the Yang-
Mills gauge field vector.

The Yang-Mills physics always takes place in the Min-
kowski space that is asymptotic to the genuine Weyl-Einstein

manifold M. In this way, the vector Jµ inherent to space-
time curvature is regarded as “embedding” all the Yang-Mills
gauge fields thereby providing a specific unification as de-
scribed below.

2.3 Application to the Yang-Mills interactions

2.3.1 The weak interaction (SU(2) symmetry)

Writing classically the group element as

U = exp
[
− i hTa ka

]
, a = 1, 2, 3 , (2.27)

with the generators

Ta =
σ a

2
, (2.28)

where σ a are the three 2× 2 Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.29)

which satisfy [4, p. 2]

Tr
(
σ a

2
σ b

2

)
=

1
2
δab, (2.30)

Tr
σ a

2
= 0 . (2.31)

Here we must introduce three vector gauge fields Ba
µ,

which are conveniently represented by the vector field

Bµ(x) = TaBaµ(x) . (2.32)

The transformation properties of Bµ are obtained from :

Bµ(x)→ Bµ(x) − Ta∂µka(x) + i hka(x) [Ta, Bµ(x)] , (2.33)

where h is the relevant coupling constant.
Here Ta satisfy the commutation relations with different

structure constants

[Ta, Tb] = i fabc Tc . (2.34)

Using (2.30) in (2.33), then multiplying by Tb and taking
the trace, we have the transformations laws of the individual
gauge field Ba

µ(x)

B a
µ (x)→ B a

µ (x) − ∂µka(x) + h fa
bc kb(x) B c

µ (x) , (2.35)

and the general form of the covariant derivative is

Dµ = ∂µ − i h Bµ . (2.36)

The SU(2) group relevant for matter representation is de-
termined by the generators Ta, so that (2.36) is expressed by

Dµ = ∂µ − i h BaµTa, (2.37)

where Bµ is here related to Jµ through equation (2.26).
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2.3.2 The SU(3) symmetry

We finally illustrate the strong interaction (gluons) by defin-
ing the non-Abelian symmetry SU(3) whose elementary
group element with 8 real parameters reads

U = exp
[
− ig

λa

2
ka

]
, a = 1, . . . , 8 . (2.38)

The λa are the eight Gell-Mann 3× 3 Hermitian traceless
matrices [5]

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 ,
λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,
λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,
λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =

 1 0 0
0 1 0
0 0 −2

 ,
and the representation of SU(3) acting on the matter field
triplet

ψ(x) =

ψ1
ψ2
ψ3

(2.39)

is just the group element U. Accordingly, the Lagrangian for
the SU(3) gauge bosons interacting with the above fermion
triplet can be computed to give

L = −
1
4

F µν
k F k

µν + i ◦ψa γ
µ
k

[
∂µ − i gS k

µ

(
λ

2

)a

a′

]
ψ

a′ , (2.40)

where ◦ψa is the complex conjugate spinor and where the field
strength tensor is

F µν
k = ∂ µ S ν

k(x) + g eln
k kn(x) Fµ

l Fν
n , k, l, n = 1, . . . , 8 . (2.41)

Here, we have the correspondence S µ → J µ.

2.3.3 Example of the gauge group U(1) × SU(2)

Using (2.29), we can construct explicit examples of the gener-
ators Ta needed to describe the transformation of matter mul-
tiplet under SU(2) which we will couple with the electromag-
netic boson under U(1). We first introduce three vector gauge
fields Ba

µ which may be written in the form [6, p. 53, eq. 2.91]

Bµ =

(
σa

2

)
Ba
µ =

1
2

∣∣∣∣∣∣∣ B3
µ B1

µ − i B2
µ

B1
µ + i B2

µ −B3
µ

∣∣∣∣∣∣∣ . (2.42)

These are the gauge bosons transforming as the adjoint of
SU(2) we couple with the gauge boson transforming as U(1).

The kinetic term of the resulting Lagrangian is given by

(L)kin = −
1
4

(B a
µν B µν

a + F µν Fµν) . (2.43)

Here, the combination Cµ = Bµ + Aµ which takes place in
the Euclidean tangent space is identified to the Weyl-Einstein
4-vector Jµ at this point.

All these examples illustrate how the Yang-Mills gauge
field vectors actually interact with the Weyl-Einstein 4-vector
through equation (2.26).

Conclusion

In this short paper, we have only sketched a possible repre-
sentation of how space-time curvature can couple with the
Yang-Mills Theory in a non-trivial way.

For each type of interaction, we show that the Yang-Mills
gauge fields are asymptotically connected to the space-time
curvature through the Weyl-Einstein 4-vector. This amounts
to state that the first three interactions are defined in the eu-
clidean space-time which is tangent to the Weyl-Einstein
manifold at the point where this 4-gauge vector is chosen.

This particular interaction appears as a new coupling be-
tween the Weyl-Einstein space-time geometry and the various
particles/fields satisfying the Yang-Mills theory. In a sense,
such a coupling could be regarded as the realization of a new
representation of Einstein’s field equations with a source. In
the classical General Relativity, the Riemannian field equa-
tions disregard the Weyl-Einstein vector and they just dis-
play an energy-momentum tensor on the right hand side as
a source. The insertion of such a tensor was never entirely
satisfactory to Einstein’s opinion who always claimed that
the right hand side of his equations was somewhat “clumsy”.
Einstein’s argument should not be hastily dismissed: indeed,
while his tensor exhibits a conceptually conserved property,
the energy-momentum tensor as a source does not, which
leaves the theory with a major inconsistency [7]. For a mas-
sive tensor, the problem has been cured by introducing the so-
called pseudo-tensor that conveniently describes the gravita-
tional field of the mass so that the 4-momentum vector of both
matter and its gravity is conserved (for example, the Einstein-
Dirac pseudo-density) [8, 9]. Unfortunately by essence, this
pseudo-tensor can be transformed away at any point by a
change of coordinates that naturally shows the non-localiz-
ability of the gravitational energy [10]. At any rate, a pseudo-
tensor is not suitable to be represented on the right hand side
of the field equations. This is of course a stumbling-block
which has plagued General Relativity for more than a century.
Moreover, unlike the Einstein tensor, the energy-momentum
tensors are mainly antisymmetric and symmetrization is thus
always required “afterwards” through the Belinfante proce-
dure. To evade the initial problem one is led to introduce
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a vacuum energy-momentum field energy that is “excited”
in the vicinity of a mass to produce the gravitational field
[11, 12]. Far from the mass, this (real) vacuum energy tensor
never vanishes and guarantees the conservation of the source
tensor on the right hand side of the field equations. How-
ever, several constraints are needed to be implemented which
might be viewed as a loss of generality of the theory [13].

Let us note in passing that the most important Einstein so-
lutions are derived from source-free equations as for example
the famous Schwarzschild metric [14]. In the frame of our
theory, the field equations in the post-Newtonian approxima-
tion should certainly deserve further scrutiny which is beyond
the scope of this paper. In conclusion, we suggest here to cor-
relate gauge fields so that unification of the three fundamental
interactions with Einstein’s General Theory of Relativity can
be achieved in a very simple way. The principle of equiv-
alence implies that gravity is thus indirectly related to each
type of particles described in the Yang-Mills Theory.

Many topics such as the fermion and scalar quantum num-
bers in the electroweak model, or the spontaneous symme-
try breakdown and the Higgs mechanism have not been dis-
cussed here.

We are however convinced that the introduction of the
Weyl-Einstein formalism in the theory does not conflict with
these results, and that it constitutes one of the permissible
unifying theory between gauge theories.

Submitted on June 2, 2022
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