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Lamb shift is the energy difference between the two energy levels of 2S 1/2 and 2P1/2

of a hydrogen atom. This cannot be explained by the existing relativistic quantum me-
chanics, but was explained by the interaction of electrons and vacuum in quantum field
theory. However, in this paper, I tried to explain the Lamb shift as a result of the previ-
ous paper [1] that causal delay in a discrete time perspective causes the charge change.
As a result, the charge change caused an additional energy change in the existing fine
structure of hydrogen, and the value was approximated.

1 Introduction

In my previous paper [1], I showed that the concept of causal
delay in discrete time provides a correction for minimal cou-
pling in electromagnetic interactions, and that this correc-
tion causes energy-scale-dependent changes in the charge and
mass of elementary particles. An application example of such
a result was attempted to explain the anomalous magnetic
moment. In this paper, I will try to explain Lamb shift as
another application example.

Like the anomalous magnetic moment, the Lamb shift is
not explained by the existing relativistic quantum mechan-
ics, but by the quantum field theory, a completely different
paradigm. However, the changes in charge and mass due to
the concept of causal delay open the possibility that these can
be explained within the scope of modified relativistic quan-
tum mechanics.

2 Nonrelativistic approximation of the modified Dirac
equation

In the previous paper [1], it was shown that the Hamiltonian
of electromagnetic interacting particles in terms of causal de-
lay and the newly defined charge and mass dependent on en-
ergy scales are as follows

H − q′φ = ~α ·
(
~p − q′ ~A

)
+ βm′ , (1)

where
m′ = f1rm

q′ = (1 − f2r) q
(2)

f1r = Re ( f1) =
1
3

Re
(

e−i∆x·p

e−i∆x·p + 2
(
e−i∆x·∆p − 1

) )
f2r = Re ( f2) =

1
3

Re
(

2e−i∆x·∆p

e−i∆x·p + 2
(
e−i∆x·∆p − 1

) ) . (3)

The Dirac equation satisfied by the electromagnetic inter-
acting particle with mass m′ and charge q′ is as follows when
expressed with two-component spinors ψA and ψB

(
H − q′φ

) (ψA

ψB

)
= ~α ·

(
~p − q′ ~A

) (ψA

ψB

)
+ βm′

(
ψA

ψB

)
. (4)

Eq. (4) becomes the following system of equations(
H − q′ − m′

)
ψA = ~σ ·

(
~p − q′ ~A

)
ψB

(H − q′ + m′)ψB = ~σ ·
(
~p − q′ ~A

)
ψA .

(5)

Since ~A = 0 and φ is static in a hydrogen atom,

ψ
(
~r, t

)
= e−iEtψ

(
~r
)
, E = m′ + ε . (6)

Then, in the second of (5), the following expression is
obtained (

E − q′φ + m′
)
ψB

(
~r
)

= ~σ · ~p ψA
(
~r
)

ψB
(
~r
)

=
(
2m′ + ε − q′φ

)−1 ~σ · ~p ψA
(
~r
)

�
1

2m′

(
1 −

ε − q′φ
2m′

)
~σ · ~p ψA

(
~r
)
.

(7)

Since m′ and q′ are only parameters, the first of (5) is as
follows(

ε − q′φ
)
ψA = ~σ · ~p

1
2m′

(
1 −

ε − q′φ
2m′

)
~σ · ~p ψA

=
q′

4m′2
(
~σ · ~pφ

) (
~σ · ~pψA

)
+

+
1

2m′

(
1 −

ε − q′φ
2m′

) (
~σ · ~p

)2 ψA .

(8)

Therefore, the results of the relativistic correction of the
modified Dirac equation can be obtained as follows

εψA =

{
~p2

2m′
+ q′φ −

~p4

8m′3
−

q′

4m′2
∇φ · ∇+

+
q′

4m′2
~σ ·

(
∇φ × ~p

) }
ψA

=
{
H′0 + H′rel + H′D + H′S O

}
ψA .

(9)

Eq. (9) is the same as just replacing m and q with m′ and
q′ in the existing equation. In Section 3, I briefly review the
fine structure of hydrogen, and in Section 4, how m′ and q′ of
each term in (9) change the fine structure will be discussed.
This discussion will be limited to only 2S 1/2 and 2P1/2.
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3 Fine structure of hydrogen

The Hamiltonian representing the fine structure of hydrogen
is as follows

H =
~p2

2m
−
α

r
−

~p4

8m3 +
1

8m2 ∇
2VC +

α

2m2

~S · ~L
r3

= H0 + Hrel + HD + HS O .

(10)

The changes in the energy of 2S 1/2 and 2P1/2 by the last
three terms of (10) are known as follows. Eq. (11) is the ex-
pectation value of each Hamiltonian, and the subscripts S and
P denote 2S 1/2 and 2P1/2

∆rel = 〈Hrel〉S − 〈Hrel〉P = −
1

12
mα4

∆D = 〈HD〉S − 〈HD〉P = 〈HD〉S =
1
16

mα4

∆S O = 〈HS O〉S − 〈HS O〉P = − 〈HS O〉P =
1
48

mα4 .

(11)

According to (11), the relativistic correction term low-
ers the energy of both 2S 1/2 and 2P1/2, but the energy value
of 2S 1/2 has a lower energy value than 2P1/2 by mα4/12,
and the Darwin term increases only the energy of 2S 1/2 by
mα4/16, and spin-orbit term lowers the energy of only 2P1/2
by mα4/48. The sum of all three effects is 0, so the energies
of 2S 1/2 and 2P1/2 are the same as a result. In other words,
the Lamb shift cannot be explained by the existing relativistic
quantum mechanics.

However, as we will see in the next chapter, the change
in charge due to the causal delay effect causes a slight change
in the expectation value of each Hamiltonian, which may ex-
plain the Lamb shift.

4 Corrections of fine structure

4.1 Modified Coulomb potential energy

First, let’s try to find the charges q′e and q′p of the electron and
the proton interacting in a hydrogen atom from (2)

q′p =
(
1 − f p

2r

)
e

q′e = −
(
1 − f e

2r

)
e .

(12)

In a reference frame where the proton is at rest, first about
the proton*,

pµ =
(
Ep = mp, 0, 0, 0

)
, ∆pµ = 0

∆x · p = Ep ∆tp = 1.
(13)

q′p =

(
1 −

1
3

Re
(

2e−i∆x·∆p

e−i∆x·p + 2
(
e−i∆x·∆p − 1

) )) e

=

(
1 −

2
3

cos 1
)

e ≡ de .

(14)

*See the definition of causal delay time ∆t ≡ 1/m in the previous paper
[1].

About the electron,

∆x · p = ∆te

(
E −

~p2

γme

)
� ∆te me = 1

∆x · ∆p = ∆te

(
∆E −

~p · ∆~p
γme

)
= ∆te ∆V .

(15)

Using (15) and ∆p � p, we get

q′e = −

(
1 −

1
3

Re
(

2e−i∆x·∆p

e−i∆x·p + 2
(
e−i∆x·∆p − 1

) )) e

= −
2 − 2

3 cos(∆x · p)
9 − 8 cos(∆x · ∆p)

e =
− (d + 1) e

9 − 8 cos(∆te ∆V)
.

(16)

If the potential due to the proton is defined as (17), the q′φ
related to the potential energy of the electron in (9) becomes
(18)

φ ≡
q′p
r
. (17)

q′eφ = −
kα

r (9 − 8 cos(∆te ∆V))
,

k ≡ d (d + 1) = 1.049 .
(18)

What we now need to do is to find the explicit expression
for ∆V in (18). In (3), ∆p represents the change in the mo-
mentum of an electron due to the interaction, which means
that when the momentum of a free electron is p, the elec-
tromagnetic field is “turned on” and the momentum after the
interaction is p + ∆p. Therefore, in (18), ∆V means the value
obtained by subtracting the potential energy of the free elec-
tron from the potential energy of the electron in a hydrogen
atom, that is, Coulomb potential energy −α/r. And, since
∆te = 1/m,

q′eφ = −
kα

r (9 − 8 cos(α/mr))
. (19)

At (19), q′eφ is not exactly equal to the potential energy
of the electron. Eq. (19) becomes −kα/r for large r, so it is
somewhat different from the Coulomb potential energy −α/r.
So, to be equal to the Coulomb potential energy at a large
r, the modified Coulomb potential energy must be defined as
follows

Vm ≡
q′eφ
k

= −
α

r (9 − 8 cos(α/mr))
. (20)

Eq. (20) approximates the Coulomb potential energy well
at large r. For example, at Bohr radius a0 = 1/mα, the ratio
of modified Coulomb potential energy to Coulomb potential
energy is as follows

Vm

VC
=

1
9 − 8 cosα2 = 0.99999999 . (21)

However, for small r, especially around r = b ≡ α/m =

a0 α
2 = 2.82×10−15 m, that is, the closer to the proton (proton
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radius rp = 0.84 × 10−15 m), the more it deviates from the
Coulomb potential energy.

Considering the potential energy in the proton, assuming
that the charges are uniformly distributed, the potential en-
ergy is a linear function with respect to r2, so the overall po-
tential energy function is as follows

r < rp : Vin =
α

2rp

( r
rp

)2

− 1.12


r ≥ rp : Vm = −

α

r(9 − 8 cos(b/r))
.

(22)

At r < rp, the effect of fine structure by (10) is negligible,
and the same is true for (9).

4.2 Mass change effect

As can be seen from (2), the mass also changes according to
the energy scale. We discuss how the change in mass affects
the energy of the electron in hydrogen. The energy of the
electron is

E =

√
m2 + ~p2 + V � m +

~p2

2m
−

~p4

8m3 + V . (23)

In (23), ~p2/2m and V are in order of mα2, and −~p4/8m3

is in order of mα4. Meanwhile, ~p2/2m + V is invariant with
respect to mass change. The reason is that, when the charge
is constant, mv2/r = −e|~E|, the change in mass cancels out
the change in velocity. Thus, the energy change due to mass
change appears in the term −~p4/8m3, which is α2 times
smaller than ~p2/2m or V . That is, the energy change given
by the mass change is α2 times the energy change due to the
charge change, so it can be ignored. Therefore, mass will be
treated as a constant from now on.

Now, let’s examine how each of the terms in (9) changes
the fine structure.

4.3 Nonrelativistic term

H′0 =
~p2

2m
+ kVm ⇒

~p2

2m
+ Vm . (24)

P2/2m + Vm in (24) is used to converge to the nonrela-
tivistic Hamiltonian H0 at large r. This is possible because
the physics is invariant to the gauge transformation of elec-
tromagnetic potential energy. Also, convergence to the non-
relativistic Hamiltonian H0 at large r means that each term of
H′ can be considered as a perturbation to H0.

Now we need to find the expectation value 〈H′0〉S ,P. In
(10), the expectation value of H0 is 〈H0〉 = 〈VC〉/2 by the
virial theorem, which does not strictly apply to H′0. However,
since the expectation value of H′0 mostly contributes to the
large r part, and Vm � VC in the large r, the virial theorem
can be approximately applied to the expectation value of H′0.
Thus 〈

H′0
〉

S ,P
�
〈Vm〉S ,P

2
. (25)

What we want to calculate is

∆′0 =
〈
H′0

〉
S
−

〈
H′0

〉
P

=
1
2
{〈Vm〉S − 〈Vm〉P} . (26)

And the function of the eigenstates 2S 1/2 and 2P1/2 to be
used in the calculation, that is, the solution of the Schrödinger
equation is as follows.

ψn=2,l=0,m=0 =
1√
8πa3

0

(
1 −

r
2a0

)
e−r/2a0

ψn=2,l=1,m=0 =
1

4
√

2πa3
0

r
a0

e−r/2a0 cos θ .
(27)

Eq. (26) is calculated as follows

〈Vm〉S =

∫ ∞

rp

4πr2 −α

r (9 − 8 cos(b/r))
1

8πa3
0

×

×

1 − r
a0

+
r2

4a2
0

 e−r/a0 dr

= −
mα6

2

∫ ∞

0.3

1
9 − 8 cos(1/r′)

×

×

(
r′ − α2r′2 +

α4

4
r′3

)
e−α

2r′dr′
(
r = br′

)
〈Vm〉P =

∫ ∞

rp

4πr2 2
3

−α

r(9 − 8 cos(b/r))
×

×
1

32πa3
0

r2

a2
0

e−r/a0 dr

= −
mα10

24

∫ ∞

0.3

1
9 − 8 cos((1/r′)

r′3e−α
2r′ dr′

∆′0 = −
mα6

4

∫ ∞

0.3

1
9 − 8 cos(1/r′)

×

×

(
r′ − α2r′2 +

α4

6
r′3

)
e−α

2r′ dr′ .

(28)

Unfortunately, the integral of (28) cannot be calculated
analytically, but can be approximated. In the above integral,
the factor 1/(9 − 8 cos(b/r)) converges to 1 at large r. Its
shape resembles a step function. This means that the integral
is dominant at large r, so it can be calculated with the factor
1/(9 − 8 cos(b/r)) � 1. So

〈Vm〉S � 〈VC〉S , 〈Vm〉P � 〈VC〉P

∴ ∆′0 �
1
2
{〈VC〉S − 〈VC〉P} = 0 .

(29)

Consequently, it can be said that the energy difference be-
tween 2S 1/2 and 2P1/2 by Vm is very small.
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4.4 Relativistic correction term

H′rel = −
~p4

8m3 = −
1

2m
(E − Vm)2 . (30)

In (30), E is the expectation value of H′0, so the desired
value is

∆′rel =
〈
H′rel

〉
S
−

〈
H′rel

〉
P

= −
1

2m

{ (
E2

S − E2
P

)
− 2

(
ES 〈Vm〉S − EP 〈Vm〉P

)
+

+
(〈

V2
m

〉
S
−

〈
V2

m

〉
P

) }
� −

1
2m

{〈
V2

m

〉
S
−

〈
V2

m

〉
P

}
.

(31)

The first and second terms in the second line of (31) can
be ignored by the results in the previous chapter 〈Vm〉S �
〈Vm〉P, ES � EP〈

V2
m

〉
S

=

∫ ∞

rp

4πr2 α2

r2 (9 − 8 cos(b/r))2 |ψ200|
2 dr

〈
V2

m

〉
P

=

∫ ∞

rp

2πr2 2
3

α2

r2 (9 − 8 cos(b/r))2 |ψ210|
2 dr .

(32)

In (32), it is a rough approximation, but if we put factor
1/(9 − cos(b/r))2 ' 1〈

V2
m

〉
S
'

〈
V2

C

〉
S
,
〈
V2

m

〉
P
'

〈
V2

C

〉
P

∴ ∆′rel ' −
1

2m

{〈
V2

C

〉
S
−

〈
V2

C

〉
P

}
= ∆rel .

(33)

According to (33), the correction by the relativistic cor-
rection term is also expected to be small.

4.5 Spin-orbit term

H′S O =
q′e

4m2 ~σ ·
(
∇φ × ~p

)
=

kα
2m2

1
9 − 8 cos(b/r)

~S · ~L
r3

=
1

2m2

kVm

r2
~S · ~L .

(34)

In (34), the spin-orbit term H′S O is also expressed as mod-
ified Coulomb potential energy. This means that the gauge
transformation can be performed so that H′S O also converges
to HS O at large r. Thus

H′S O =
1

2m2

Vm

r2
~S · ~L . (35)

On the other hand, using (36),〈
nl jm j

∣∣∣∣~S · ~L∣∣∣∣ nl jm j

〉
=

1
2

{
j ( j + 1) − l (l + 1) −

3
4

}
〈
~S · ~L

〉
S

= 0 ,
〈
~S · ~L

〉
P

= −1 .
(36)

Expectation values are:〈
H′S O

〉
S = 0

〈
H′S O

〉
P = −

α

2m2

〈
1

9 − 8 cos(b/r)
1
r3

〉
P

� −
α

2m2

〈
1
r3

〉
P

= 〈HS O〉P .

(37)

The difference between the spin-orbit term before and af-
ter charge correction is

∆′S O − ∆S O = −
〈
H′S O

〉
P + 〈HS O〉P � 0 . (38)

Therefore, the charge change has little contribution to the
spin-orbit term.

4.6 Darwin term

H′D = −
q′e

4m2 ∇φ · ∇ .
(39)

If we get the expectation value of (39), we get

〈
ψ |H′D |ψ

〉
= −

1
4m2

∫
ψ†

(
q′e∇φ · ∇

)
ψ d3~r

= −
1

8m2

∫
q′e∇φ · ∇

(
ψ†ψ

)
d3~r

=
1

8m2

∫
ψ†ψ∇ ·

(
q′e∇φ

)
d3~r .

(40)

Consequently

H′D =
1

8m2 ∇ ·
(
q′e∇φ

)
. (41)

where

q′e = −
(d + 1) e

9 − 8 cos(b/r)
, φ =

de
r
. (42)

In (41), if q′e = −e and q′p = e, it becomes HD. H′D is

H′D =
1

8m2

(
∇q′e · ∇φ + q′e∇

2φ
)

=
kα

8m2

{
∂

∂r
1

(9 − 8 cos(b/r))
1
r2 +

+
4πδ

(
~r
)

9 − 8 cos(b/r)

}
.

(43)

In (43), the Darwin term is expressed as a quantity related
to the second order derivative of the modified Coulomb po-
tential energy. This means that there is no gauge degree of
freedom in the Darwin term, so the value of k in the equation
must be maintained.
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Expectation values are:

〈
H′D

〉
S =

kα
8m2

∫ ∞

rp

4πr2 ∂

∂r
1

(9 − 8 cos(b/r))
×

×
1
r2

∣∣∣ψ200
(
~r
)∣∣∣2 dr

+
kα

8m2

∫ ∞

~rp

4π δ
(
~r
)

9 − 8 cos(b/r)
|ψ200

(
~r
)
|2 d3~r

=
4πkα
8m2

{ [
1

9 − 8 cos(b/r)

∣∣∣ψ200
(
~r
)∣∣∣2 ]∞

rp

−

−

∫ ∞

rp

1
9 − 8 cos(b/r)

∂

∂r

∣∣∣ψ200
(
~r
)∣∣∣2 dr

}

+
4πkα
8m2

∣∣∣∣ψ200

(
~rp

)∣∣∣∣2
9 − 8 cos(b/rp)

� −
4πkα
8m2

∫ ∞

rp

∂

∂r

∣∣∣ψ200
(
~r
)∣∣∣2 dr

=
4πkα
8m2

∣∣∣∣ψ200

(
~rp

)∣∣∣∣2 � kmα4

16
.

〈
H′D

〉
P �

4πkα
8m2

∣∣∣∣ψ210

(
~rp

)∣∣∣∣2 = O
(
mα8

)
.

(44)

As can be seen from (44), the Darwin term by charge cor-
rection works mostly in the 2S 1/2 state. Thus

∆′D =
〈
H′D

〉
S −

〈
H′D

〉
P �

〈
H′D

〉
S �

kmα4

16
. (45)

Therefore, the difference between the Darwin term before
and after charge correction is

∆′D − ∆D � (k − 1)
mα4

16
= 57.67 mα6 . (46)

In (11), the existing Darwin term acts only on the 2S 1/2
state to increase its energy by mα4/16, and in (46), the ef-
fect of charge correction by causal delay further increases the
energy of the 2S 1/2 state by 57.67 mα6.

5 Conclusions

From a discrete time point of view, causal delay gives energy
scale-dependent changes to the mass and charge of elemen-
tary particles. In this paper, as a result of applying it to the
Lamb shift, it was obtained that the change in the charge value
increases the energy of 2S 1/2 by about 57.67 mα6 =1076 MHz
mostly by the Darwin term. This is slightly different from the
experimental value of 1057.86 MHz, but it is a good result
as an approximation. If numerical integration can be done
accurately, I think it will be close to the actual value.
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