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Quantum mechanical observables are naturally assumed to be real. Herein, we depart
from this traditional and seemingly natural assumption whereby we consider a Quantum
Mechanics (QM) whose operators have corresponding complex eigenvalues. The mo-
tivation for this is that complex eigenvalues lead us directly to positive definite energy
solutions, hence mass. The resulting QM is able to qualitatively explain in a coherent
manner some physical phenomenon that are currently inexplicable from a QM whose
operators have corresponding real eigenvalues – e.g. one is now able to explain the insta-
bility of particles, their localization, the observed matter-antimatter asymmetry and the
supposed variation of fundamental natural constants amongst others. In addition to this,
there is the difficulty in Dirac’s interpretation of negative energy states appearing in his
theory. While Dirac’s negative energy problem is not considered a problem anymore,
we provide an alternative way out of this problem. We propose that eigenvalues corre-
sponding to quantum mechanical operators associated with physical observables aught
to be complex. From this seemingly simple hypothesis, we demonstrate that negative
energy states leading to negative mass can be avoided altogether.

I cannot imagine a reasonable Unified Theory containing an

explicit number which the whim of the Creator could just as

easily have chosen differently . . . Numbers arbitrarily cho-

sen by God do not exist. Their alleged existence relies on our

incomplete understanding [of the Laws of Nature and how

God designed and fashioned the Universe].

Albert Einstein (1879-1955)

1 Introduction

Looking back – thus far, one can most confidently and safely
say that the time period of the first thirty years of the twen-
tieth century was perhaps a special time in the intellectual
discource of humanity with this period being a period of the
greatest intellectual leaps in all the history of human thought
and intellectual endeavour. For to date, these great intellec-
tual leaps have found no equal. Perhaps, apart from CERN’s
famous 4th of July 2012 announcement that a strong signal
mimicking a Higgs-like particle has been detected in the LHC
data, it appears as though real progress in Physics has hit a se-
rious brick wall. In all probity, it aught to be said that there
has not been any real noteworthy and new exciting discov-
eries this century as those witnessed at the beginning of the
twentieth century, especially on the frontiers of fundamental
theoretical Physics.

Take for example: in 1905, Germany’s youthful 26 years’
old third class Swiss patent clerk Albert Einstein (1879-1955)
[1] discovered the Special Theory of Relativity (STR), and
shortly thereafter, in the period 1923-4, France’s aristocrat
and physicist Louis Victor Pierre Raymond de Broglie (1892-
1987) [2–5] opened Pandora’s Box with his wave-particle
duality hypothesis, Germany’s great physicist Weiner Karl

Heisenberg (1901-1976) [6] theoretically argued his uncer-
tainty principle into existence and Austria’s own theoretical
physicist Erwin Rudolf Josef Alexander Schrödinger (1887-
1961) [7, 8] discovered the key wave equation of Quantum
Mechanics (QM) which now bears his name, etc.

Once QM was incepted in the mid-1920s, no sooner was
it realised that there was a need to unite these two theories
which stand to this day as a major part of the twin pillars of
modern physics – i.e. the STR and QM. At the time of these
great discoveries and revolutionary paradigm shifts, nobody
yet knew how to make the two theories consistent with each
other. In 1928 while QM was still in its nascence, the then
little-known British preeminent Paul Adrien Maurice Dirac
(1902-1984), who ranks as one of the greatest fundamental
theoretical physicists of his time, then only 26 years’ old, suc-
ceeded where others found it difficult. Dirac [9, 10] success-
fully unified Einstein [1]’s STR and de Broglie [2–5], Heisen-
berg [6] and Schrödinger [7, 8]’s QM.

Dirac [9, 10]’s unified theory was an unprecedented suc-
cess, except for one detail: a quantum system could have ei-
ther positive or negative energy. How can something have
negative energy? For example, according to Einstein [1]’s
mass-energy equivalence, the mass (m) of a particle is re-
lated to its energy (E) by the relation m = E/c2

0 (where:
c0 = 2.99792458 × 108 m s−1 is the speed of light in vacuo),
such that negative energy entails negative mass. For all we
know, the measure of the resistance to any change of the state
of motion of a given substance is a measure of its mass. Fur-
ther, mass was and is understood as a measure of the quantity
of matter in a substance. From this understanding, what does
negative mass mean?

According to Newton’s first law of motion, since a posi-
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tive mass quantum system has the property that it has the ten-
dency to preserve its current state of motion in such a manner
that it resists all efforts to change this state of motion, does
it then mean that a negative mass quantum system will have
the exact opposite properties, that is, have the property that it
has the tendency not to preserve the particle’s current state of
motion in such a manner that it does not resist any efforts to
change the particle’s current state of motion but only engen-
ders it? Such are some of the plausible questions that have
puzzled those that have attempted to comprehend what nega-
tive mass might actually be or mean. What will happen when
positive energy-mass matter comes in contact with negative
energy-mass matter? Will they nullify upon contact? These
are just some of the pertinent questions out of many plausible
ones that come to mind.

Be that as it may, Dirac was an extraordinary brilliant man
who sought beauty in his work. He did not think of the nega-
tive energy quantum systems implied by his equation in ordi-
nary terms, but thought of them mathematically and quantum
mechanically. The negative energy solutions first appeared in
the Klein [11] and Gordon [12] theory (KG-theory) on whose
shoulders the Dirac’s theory stands. In order to get rid of these
negative energies, some notable figures of the time suggested
that these negative energy solutions must be discarded with
the simple remark that “these solutions have no correspon-
dence with physical and natural reality”. To that, Dirac [9]
replied:

One gets over the difficulty on the classical theory by
arbitrarily excluding those solutions that have a nega-
tive E. One cannot do this in the QM, since in general
a perturbation will cause transitions from states with
E-positive to states with E-negative.

So, it would strongly appear that negative energy states were
here to stay – at least in theory. They needed a satisfying
physical explanation.

While Dirac’s theory was met with both enthusiasm and
scepticism (e.g. by physicists Werner Heisenberg, Wolfgang
Ernst Pauli (1900-1958), Ernst Pascual Jordan (1902-1980),
George Gamow (1904-1968), amongst others), the enthusi-
asm was on the latent power wielded by the equation, e.g. the
equation solved the difficult contemporary problem of spin;
and scepticism was with respect to the negative energy so-
lutions. Against this scepticism, Dirac [13] further proposed
that the vacuo was an unobservable infinite sea of negative
energy states, such that all negative energy states were filled!
This invisible sea of negative energy states became known as
the Dirac Sea.

According to Pauli [14]’s Exclusion Principle (PEP) that
forbids more than two fermions to be in the same quantum
state, a Universe in which there exists a Dirac Sea would for-
bid the transitions of positive energy quantum states to transit
into negative energy states thereby resulting in a Universe that
has stable positive energy states. Transitions from states with
E-positive to states with E-negative are forbidden because the

E-positive state once in the E-negative state is going to be
in the same quantum state as the E-negative state thus vio-
lating the PEP, hence, forbidden by Nature. In this way, the
Dirac [9, 10] theory was safe.

To further clarify Dirac’s theory, the preeminent Amer-
ican physicist Richard Phillips Feynman (1924-1987) pro-
posed that the negative energy states be interpreted as an-
tiparticles: they move backwards in time such that, in a Uni-
verse where time moves in a forward direction, these quan-
tum states would appear as positive energy states. This is the
current de facto interpretation of antiparticles. Other than the
negative energy problem, Dirac [9, 10]’s equation exhibits a
perfect symmetry and this property of the equation has no cor-
respondence nor bearing with physical and natural reality as
we know it. Often, the theory has had to be patched [15, for
example] in order to measure up to physical and natural re-
ality. These patches often propose that the combined Charge
(C) and Space or Parity (P) reversal symmetry (CP violation)
must explain the apparent matter-antimatter asymmetry [16].
While CP violation has been observed [17–22, for example],
it is yet to be verified by experiment as the mechanism re-
sponsible for the observed matter-antimatter asymmetry.

We must hasten to say that, while this work will touch on
other subjects that we had not intended to cover, the original
and sole aim of this work is twofold:

1. To demonstrate that Dirac’s negative energy solutions can be
eliminated altogether by resorting to particles endowed with
Complex Energy and Momentum (CEM) wherein under this
new proposal, the energy and momentum of the quantum sys-
tem of concern is measured as the magnitude of these com-
plex quantities.

2. To show that the resultant energy from the resulting complex
energy and momentum does solve without any need for ex-
ogenous ideas, the matter-antimatter asymmetry problem that
the Dirac theory has so far failed to solve and possibly the re-
cent issue to do with the plausible variation of Fundamental
Natural Constants (FNCs).

To achieve our desired objective, we adopt the working
hypothesis, that in general, all quantum mechanical observ-
ables such as the energy and momentum of quantum me-
chanical systems can take complex values (z = x + i y) such
that the resultant observable that we measure in the labora-
tory is the magnitude of this complex quantity in question
(i.e. |z| =

√
x2 + y2 ≥ 0). This assumption is all that we shall

require in our exploration. As a result, we shall formulate
a new basis for the further development of a QM that allows
for observables to take complex values and from thereon, pro-
ceed to show that the theory resulting from the CEM hypoth-
esis not only provides a plausible and perdurable solution to
Dirac’s problem of negative energies, but that, it also provides
a plausible solution to the matter-antimatter asymmetry prob-
lem which the bare Dirac theory is unable to solve by its own.

In closing this introductory section, we give the synop-
sis of the reminder of this paper. That is: in §2, we dis-
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cuss the idea of complex quantum mechanical observables:
we discuss how this idea may provide a perdurable solution
to Dirac’s negative energy problem. In §3, we write down
the usual Dirac equation and thereafter proceed to incorpo-
rate into its structure the CEM hypothesis. In §4, we apply
the idea of complex quantum mechanical observables to the
notion of the variation of FNCs. In §5, we work out the sym-
metries of the new CEM-Dirac equation, and lastly, in §6 and
§7, we give a general discussion and the conclusion drawn
thereof, respectively.

2 Complex energy and momentum

The negative probabilities manifesting in the KG-theory are a
result of the fact that the emergent quantum probability (PQ)
expression in this theory is directly proportional to the energy
(E) of the quantum system in question – i.e. PQ ∝ E, the con-
sequential meaning of which is that, for negative energy quan-
tum systems, the corresponding quantum probability will be
negative. From this very fact PQ ∝ E, Dirac hatched the idea
that these negative energies appearing in the quantum prob-
ability of the KG-theory could be removed if a theory linear
in the temporal and spatial derivatives were possible because
a linear system of equations will always have one solution, a
quadratic two, a cubic three, a quad four, etc.

Further on his effort to eliminate these meaningless neg-
ative probabilities, Dirac hoped that with his linear solution,
he might also eliminate the negative energy solutions as well.
Because of the pivotal constraint that he imposed on his the-
ory, namely that when his equation is squared it must yield
the quantum mechanical wave equation of the KG-theory,
this directly translates to the fact that the energy solutions of
Dirac’s quantum systems would exactly be as those obtained
in the KG-theory, thus leading back to the same problem of
negative energies faced by the KG-theory. The only way
to eliminate these supposedly nagging negative energy solu-
tions would be to build a theory from an energy-momentum
equation that only admits positive definite energy solutions
from the outset. This is the approach that we take here. We
make use of a property of complex numbers – namely that the
magnitude of a complex number is always a positive definite
quantity.

To that end, we postulate that every physical observable
(O ∈ C) shall be considered to have two parts to it, namely:
the real part (OR ∈ R), and the imaginary part (OI ∈ R), that
is to say:

O = OR + ı̇OI . (1)

The subscripts R and I in (1) are used to label the real and
imaginary parts of the complex physical quantity in question.
For example, if the energy of a quantum system were com-
plex, then E = ER + ı̇ EI , where ER and EI are the real and
imaginary parts of the energy respectively. The imaginary
part of the energy may lead to the possibility of naturally ex-
plaining the phenomenon of particle decay. In the case of

momentum, ~p = ~pR + ı̇ ~pI , where ~pR and ~pI are the real and
imaginary parts of the momentum respectively. Likewise, the
imaginary part of the momentum may very well lead one to
be able to naturally explain why particles are localised. These
are interesting issues that can be tackled in a separate paper
in the future.

Once the energy and momentum are complex physical
variables, the rest-mass m0 cannot be spared – i.e. m0 = mR +

ı̇mI , where (mR,mI) ∈ R. In summary:

E = ER + ı̇ EI , (2a)
~p = ~pR + ı̇ ~pI , (2b)
m0 = mR + ı̇mI . (2c)

What (2) implies is that the four momentum pµ, will have
two parts to it – with one part that is associated with the real
part and the other with the imaginary part, i.e.

pµ =

~p, ı̇ E
c2

0


=

~pR,
ı̇ ER

c2
0

 + ı̇

~pI ,
ı̇ EI

c2
0


= pR

µ + ı̇ pI
µ ,

(3)

where:

~pR = pR
1
~̂i + pR

2
~̂j + pR

3
~̂k , (4a)

~pI = pI
1
~̂i + pI

2
~̂j + pI

3
~̂k . (4b)

For pµ, we will have pµ = (~p, ı̇ E/c2
0)∗ = (~p∗,−ı̇ E∗/c2

0), so
that the relativistic invariant quantity pµpµ is now such that
pµpµ = m∗0m0c2

0, i.e.

|E|2 − |~p|2c2
0 = |m0|

2c4
0 , (5)

where:

|E| =
√

E∗E =

√
E2

R + E2
I ≥ 0 , (6a)

|~p| =
√
~p∗~p =

√∣∣∣~pR

∣∣∣2 +
∣∣∣~pI

∣∣∣2 ≥ 0 , (6b)

|m0| =
√

m∗0m0 =

√
m2

R + m2
I ≥ 0 , (6c)

hence, when written in full, (5) is given by:(
E2

R + E2
I

)
−

(∣∣∣~pR

∣∣∣2 +
∣∣∣~pI

∣∣∣2) c2
0 =

(
m2

R + m2
I

)
c4

0 . (7)

While the energy and momentum of the quantum system are
complex, what we measure as the energy, momentum and the
rest-mass of the quantum system are the magnitudes of these
complex quantities. These magnitudes can only take positive
values. So from (5), we will have:

|E| = mc2
0 =

√∣∣∣~p∣∣∣2 c2
0 + |m0|

2 c4
0 ≥ 0 . (8)
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In this way, we find a clever and clear mathematical fix to
Dirac [13]’s long-standing issue of negative mass and ener-
gies as these are now positive definite (i.e. |E| ≥ 0; m =

|E| /c2
0 ≥ 0) as we would naturally expect. As a disclaimer,

we must say that we are not saying that this is the scheme
which Nature has chosen in order to solve this problem, but
that this is a plausible solution which can be taken seriously.
In the next section, we will show how this idea of complex
observables can be applied to the supposed problem of tem-
poral and spatial variation of Fundamental Constants of Na-
ture (FNCs).

3 CEM-Dirac equation

What kind of a Dirac equation does one get from the CEM hy-
pothesis? Before we can answer this important question, we
write down, for completeness purposes, the usual Dirac equa-
tion that assumes real-valued physical observables. Written
in Dirac [23]’s Bra-Ket notation, the Dirac equation is given
by: [

ı̇ ~γµ∂µ − m0c0

]
|ψ〉 = 0 , (9)

where:

|ψ〉 =

∣∣∣∣∣∣∣∣∣∣∣
ψ0
ψ1
ψ2
ψ3

〉
, (10)

is a four-component wavefunction which can further be writ-
ten as a composition of two spinors, the left-hand |ψL〉 and the
right-hand |ψR〉 spinors respectively, i.e.:

|ψ〉 =

∣∣∣∣∣∣ ψL

ψR

〉
, (11a)

|ψL〉 =

∣∣∣∣∣∣ ψ0
ψ1

〉
, (11b)

|ψR〉 =

∣∣∣∣∣∣ ψ2
ψ3

〉
, (11c)

and

γ0 =

(
I2 0
0 −I2

)
, and γi =

(
0 σi

−σi 0

)
, (12)

are the 4 × 4 Dirac gamma matrices with I2 and 0, being
the 2 × 2 identity and null matrices respectively. Through-
out this paper, the Greek indices will be understood to mean
µ, ν, · · · = 0, 1, 2, 3; and lower case English alphabet indices:
i, j, k, · · · = 1, 2, 3. The matrices σ j are the three 2 × 2 Pauli
[24] matrices and are given by:

σ1 =

(
0 1
1 0

)
, (13a)

σ2 = ı̇

(
1 0
0 −1

)
, (13b)

σ3 =

(
0 −1
1 0

)
. (13c)

The Dirac equation admits free particle solutions of the form
ψ = ue−ı̇ S/~, where u = u(E, ~p), is a 4 × 1 component object
and S = pµxµ = ~p ·~r−Et ∈ R is the phase of the quantum sys-
tem in question. The Quantum Probability Amplitude (QPA)
ρ of such a quantum system is such that ρ = u†u, and this
QPA has no temporal nor spatial dependence. As we shall
soon find out, for the CEM version of the Dirac equation,
things are very different.

The phase of the CEM-Dirac quantum system is such that
S = S R + ı̇ S I , where S R = pR

µ xµ ∈ R and S I = pI
µxµ ∈ R

are the real and imaginary parts of the phase of the quan-
tum system in question. Another major difference is that the
rest-mass will be a complex quantity as opposed to it be-
ing real as is the case with the original Dirac equation. As
will be demonstrated in §5, this complex rest-mass leads to
a Lorentz [25–27] invariant C, CP, CT , and CPT -violating
equation. The QPA of a CEM-Dirac quantum system is such
that ρ = u†ueS I/~, and unlike the QPA of the normal Dirac
particle, the QPA of a CEM-Dirac quantum system does have
an explicit temporal and spatial dependence. It is this explicit
temporal and spatial dependence that we strongly believe will
lead to an explanation of why particles decay and why they
appear to be localized. Like we said (in the text above), we
are not in the present going to investigate this issue, but shall
leave it for a future paper. This we have done so that we keep
our focus on the paramount issue at hand.

In closing this section, we must say that what we have pre-
sented herein is what we have coined the CEM-Dirac equa-
tion. While the CEM-Dirac equation and the usual Dirac
equation are identical in their symbols – i.e. the way we write
these two equations down, the main difference between them
is that the energy, momentum and rest-mass of the CEM-
Dirac equation are complex physical variables while in the
usual Dirac equation these are real physical variables. The
real part of the energy and momentum (ER, ~pR) can perhaps
be understood as the four-momentum of the quantum system
that we measure in the laboratory while the imaginary part
(EI , ~pI), can be understood as the energy responsible for the
decay and localization of the particle in question. Once more,
we shall reiterate that these are issues for a separate paper. In
the next section, we shall apply the CEM-hypothesis to the
contemporary issue of the supposed variation of FNCs.

4 Variation of fundamental physical constants

In this section, we show that the supposed variation of fun-
damental physical constants such as the dimensionless Fine
Structure Constant (FSC) (or the Sommerfeld [28] constant)
α0 can be explained from the idea just laid down above –
i.e. the idea of CEM eigenvalues. The FSC is given by:

α0 =
e2

4πε0~c0
. (14)

Present measurements give 1/α0 = 137.035999084(21)
(CODATA, 2018). If the FSC is varying, it could be any one,
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or a combination, of the constituents making up this dimen-
sionless quantity, namely e, ε0, ~, c0, or any one of the com-
bination of these supposed constants.

The idea that fundamental constants may vary during the
course of the Universe’s evolution was first considered by the
preeminent British physicists Edward Arthur Milne (1896-
1950) and Dirac [29]. Independently, Milne [30] and Dirac
[29] considered cosmological models which incorporated a
time-variable gravitational constant G, thus setting the ball
rolling for the serious theoretical consideration of FNCs. In
the intervening years 1938 to about 1999, the idea that FNCs
may vary over cosmological times had no backing from ex-
perimental philosophy, and because of this, the idea was con-
sidered as purely nothing more than an academic pursuit, spe-
culation and curiosity with no bearing whatsoever to do with
physical and natural reality. With Web et al. [31]’s ground
breaking work, this position has since changed as further and
strong evidence from observational experience suggesting a
plausible variation of the supposedly sacrosanct constants of
Nature has been put forward for serious consideration [32–36,
for example]. The question is: Is there a fundamental basis
for this variation? We think that the QM of complex eigen-
values might have something to say about this.

Without any doubt whatsoever, FNCs (e.g. e, ε0, ~, c0,
etc) are observables since they cannot only be measured in
the laboratory, but are intimately, intrinsically and inherently
associated with quantum systems. With that having been said,
it is clear that if a physical observable such as an FNC is a
true constant of Nature, i.e. having no spatial nor temporal
variation, then its total (and not partial) time derivative must
vanish identically – i.e. d 〈O〉 /dt ≡ 0. The total (and not
partial) time derivative operator is given by:

d
dt

=
∂

∂t
+~v · ~∇ . (15)

Applying this to the expectation value 〈O〉 = 〈Ψ| T̂ |Ψ〉 of an
arbitrary observable O, one gets:

ı̇ ~
d 〈O〉

dt
=

〈
Ψ

∣∣∣∣ [T̂ †, Ĥ] ∣∣∣∣ Ψ〉
+~v ·

〈
Ψ

∣∣∣∣∣ [T̂ †, ~̂P] ∣∣∣∣∣ Ψ〉
, (16)

where: [
T̂ †, Ĥ

]
= T̂ †Ĥ − Ĥ†T̂ , (17a)[

T̂ †,
~̂P
]

= T̂ †
~̂P − ~̂P

†

T̂ , (17b)

and ~̂P = −ı̇ ~~∇ is the quantum mechanical momentum opera-
tor and ~v is the velocity of the quantum system under consid-
eration. We must say that it is more appropriate to think of
this velocity:

~v =
~

m
Im

Ψ†~∇Ψ

Ψ†Ψ

 , (18)

as the Bohmian [37–39] velocity∗ field of the quantum sys-
tem in question and the possible justification for this has been
provided in [40].

What (16) is telling us, is that if an observable is a true
constant, that is, it does not vary neither with time nor space,
then the operator corresponding to this observable must com-
mute with both the Hamiltonian and the momentum opera-

tor – i.e.
[
T̂ †, Ĥ

]
= 0, and

[
T̂ †,

~̂P
]

= 0. Against the seem-
ingly sacrosanct dictates of our current understanding of QM,
the condition

[
T̂ †, Ĥ

]
= 0 is here found not to be sufficient

to guarantee that the observable O will be a truly conserved
quantity and constant quantity throughout all of space and
time. If for some reason we have that

[
T̂ †, Ĥ

]
, 0, and[

T̂ †,
~̂P
]
, 0, then for an observable to be a true constant,

the spatial variation aught to be compensated by the temporal
variation and vice-versa, and this will be in accordance with
(16) under the setting d 〈O〉 /dt = 0.

At this point, in order for us to proceed, we need to eval-
uate (16) in terms of observable quantities, i.e. we need to

compute
〈
Ψ

∣∣∣∣ [T̂ †, Ĥ] ∣∣∣∣ Ψ〉
and ~v ·

〈
Ψ

∣∣∣∣∣ [T̂ †, ~̂P] ∣∣∣∣∣ Ψ〉
. To that

end, we know that:∣∣∣∣∣T̂ ∂Ψ

∂t

〉
=

1
ı̇ ~

∣∣∣∣∣T̂ ı̇ ~ ∂Ψ

∂t

〉
,

=
1
ı̇ ~

∣∣∣∣T̂ ÊΨ
〉
,

= −
1
ı̇ ~

E
∣∣∣∣T̂Ψ

〉
,

(19)

and that: 〈
T̂
∂Ψ

∂t

∣∣∣∣∣ = −
1
ı̇ ~

〈
T̂ ı̇ ~

∂Ψ

∂t

∣∣∣∣∣ ,
= −

1
ı̇ ~

〈
T̂ ÊΨ

∣∣∣∣ ,
= −

1
ı̇ ~

E∗
〈
T̂Ψ

∣∣∣∣ .
(20)

Multiplying (19) from the left by 〈Ψ| and (20) from the right
by |Ψ〉 respectively, and thereafter adding the resulting equa-
tions, we will have:〈

Ψ
∣∣∣∣ [T̂ †, Ĥ] ∣∣∣∣ Ψ〉

= (E − E∗) 〈O〉 ,

= 2ı̇ EI 〈O〉 ,

= ı̇ ~
∂ 〈O〉

∂t
,

(21)

hence: 〈
Ψ

∣∣∣∣ [T̂ †, Ĥ] ∣∣∣∣ Ψ〉
= −2ı̇ EI 〈O〉 . (22)

∗Im() is an operator which extracts the imaginary part of a complex
quantity – i.e. if z = x + ı̇ y, then Im(z) = y.
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Further, we know that:∣∣∣∣T̂ ~∇Ψ
〉

= −
1
ı̇ ~

∣∣∣∣T̂ (−ı̇ ~)~∇Ψ
〉
,

= −
1
ı̇ ~

∣∣∣∣∣T̂ ~̂PΨ

〉
,

= −
1
ı̇ ~

~p
∣∣∣∣T̂Ψ

〉
,

(23)

and: 〈
T̂ ~∇Ψ

∣∣∣∣ =
1
ı̇ ~

〈
T̂ (−ı̇ ~)~∇Ψ

∣∣∣∣ ,
=

1
ı̇ ~

〈
T̂
~̂PΨ

∣∣∣∣∣ ,
=

1
ı̇ ~

~p∗
〈
T̂Ψ

∣∣∣∣ .
(24)

Likewise, multiplying (23) from the left by 〈Ψ| and (24) from
the right by |Ψ〉 respectively, and thereafter adding the result-
ing equations, we will have:〈

Ψ

∣∣∣∣∣∣
[
T̂ ,

~̂P
†
] ∣∣∣∣∣∣ Ψ

〉
= −

(
~p − ~p∗

)
〈O〉

= −2ı̇ ~pI 〈O〉

= −ı̇ ~~∇ 〈O〉 ,

(25)

hence:

~v ·

〈
Ψ

∣∣∣∣∣∣
[
T̂ ,

~̂P
†
] ∣∣∣∣∣∣ Ψ

〉
= −2ı̇~v · ~pI 〈O〉 . (26)

Now, inserting (22) and (26) into (16), we obtain:

ı̇ ~
d 〈O〉

dt
= −2ı̇ ~

(
EI −~v · ~pI

)
〈O〉 . (27)

From this, it follows that a system will have all of its observ-
ables being constants if-and-only-if :

EI −~v · ~pI = 0 . (28)

In passing – out of curiosity, we need to point out an indelible
fact of experience namely that (28) has a seductive and irre-
sistible semblance with Bartoli [41, 42] and Maxwell [43]’s
energy-momentum dispersion relation for Light – i.e. E −
c0 p = 0. If any, what connection can one make of this (28)
with the nature of the photon? At present, we can only ex-
hibit our curiosity: that is, we shall leave it here and slate it
for exploration in future papers.

Now, applying the above ideas to the case of the varia-
tion of the FSC and assuming the present Standard Big Bang
Cosmology Model [44–46] which assumes co-moving coor-
dinates [47–50], it would appear that this FSC variation aught
to be temporal in nature, as logic dictates that it cannot be
spatial since co-moving coordinates imply ~v ≡ 0. This di-
rectly implies that those patches of the sky exhibiting differ-
ent FSC-values aught to be of different ages! If the temporal
homogeneity and isotropy of the Universe is to be preserved,

then the only way to explain the variation of the FSC across
the night-sky is to drop the assumption of co-moving coordi-
nates! We are not going to say anything further on this matter
of the variation of the FSC and complex observables, as this is
something that requires a dedicated piece of work of its own.
All that we wanted, we have achieved, and this has been to
demonstrate the latent power in the seemingly alien idea of
complex quantum mechanical observables that we have here
suggested. We shall now move to the next section, where we
shall consider the symmetries of the CEM-Dirac equation.

5 Symmetries of the CEM-Dirac equation

Now, if the electromagnetic coupled CEM-Dirac equation[
ı̇ ~γµDµ − m0c0

]
|ψ〉 = 0, with m0 ∈ C, is to be symmetric,

i.e. q 7−→ −q⇒
[
ı̇ ~γµD∗µ − m0c0

]
|ψ〉 = 0

under charge conjugation, then we need to show that there
exists a set of mathematically legal operations that take this
new charge conjugated equation

[
ı̇ ~γµD∗µ − m0c0

]
|ψ〉 = 0,

back to the original CEM-Dirac equation – i.e. an equation
without the ∗-operation on the covariant derivativeDµ. If we
can find these legal mathematical operations, it would mean
that the CEM-Dirac equation applies equally to particles as to
antiparticles – hence, it is symmetric with respect matter and
antimatter. On the contrary, if we fail to find the said legal
mathematical operations, it invariably means that the CEM-
Dirac equation is not symmetric under charge conjugation.

To that end, let us start our attempt by removing the ∗-
operator on the covariant derivative Dµ in the equation[
ı̇ ~γµD∗µ − m0c0

]
|ψ〉 = 0. We will do this by taking the com-

plex conjugate throughout this equation. So doing, we obtain[
ı̇ ~γµ∗Dµ + m∗0c0

]
|ψ∗〉 = 0, and because γ5γ0γµ∗ = −γµγ5γ0,

we can, in this resulting equation, remove the complex con-
jugate operator acting on γµ∗ and this we can achieve by mul-
tiplying throughout the resultant equation by γ5γ0 and then
making use of the fact that γ5γ0γµ∗ = −γµγ5γ0. So doing, we
will have: [

ı̇ ~γµDµ − m∗0c0

]
|ψc〉 = 0 , (29)

where |ψc〉 = γ5γ0 |ψ∗〉 is the wavefunction of the correspond-
ing antiparticle. Clearly, if we have that mI ∝ q, or mI ∝ qn,
where (n ∈ O) = 3, 5, 7, etc, this would mean that the trans-
formation q 7−→ −q, would also lead to:

mI 7−→ −mI ⇒ m∗0 7−→ m0 , (30)

and in this way, (29) would simultaneously transform to:[
ı̇ ~γµDµ − m0c0

]
|ψc〉 = 0 , (31)

thus making this CEM-Dirac equation (whose rest-mass
(m0 ∈ C) is a complex quantity) symmetric under charge
conjugation. Less for the fact that the wavefunction |ψ〉 has
been replaced by the new wavefunction |ψc〉, (31) is the same

G. G. Nyambuya. Avoiding Negative Energies in Quantum Mechanics 37



Volume 19 (2023) PROGRESS IN PHYSICS Issue 1 (June)

CEM-Dirac equation applicable to the particle counterpart.
Since |ψc〉 represents the antiparticle, the original Dirac equa-
tion is said to be symmetric under charge conjugation. In
Dirac [9, 10]’s original theory, m0 is real, the meaning of
which is that mI ≡ 0, hence making this original Dirac [9,10]
equation symmetric under charge conjugation. In the new
setting of the CEM-Dirac equation, if mI is not related to the
electrical charge of the particle as suggested in (29), then the
CEM-Dirac equation (with m0 ∈ C) is going to be asymmetric
with respect to charge conjugation. As the reader can verify
for themselves, not only is the CEM-Dirac equation going to
violate C symmetry, but also CP, CT , and CPT symmetries
as well. The only preserved symmetries are the P, T and PT
symmetries.

6 Discussion

We have shown herein that the issue to do with negative en-
ergies can be solved by way of making a proper choice of
the energy and momentum eigenvalues of the energy and mo-
mentum operators, respectively. These eigenvalues need to
be complex as opposed to them being real as is the case in the
present formulation of QM. Once the energy and momentum
eigenvalues are complex, the measurable values become the
magnitude of the corresponding eigenvalues and these mag-
nitudes are positive definite! In this way, the issues surround-
ing these negative energies vanish forthwith. What remains is
whether or not this is the scheme which Nature has chosen in
order to go round this problem. We are of the strong opinion
that this may very well be the scheme Nature has chosen.

This issue of negative energies has similarities with neg-
ative probabilities. As already said in the main text, prior
to the discovery of his equation, Dirac had hoped that the
negative probabilities occurring in the KG-theory, if solved,
would also solve, in his new anticipated theory, the issue of
the negative energies as well. We now know that Dirac was
wrong as his new anticipated theory, which has positive def-
inite probabilities, also has these negative energies. We did
show in [40] that the emergence of these negative probabili-
ties in the KG-theory is a result of an improper choice of the
quantum mechanical probability current density in the KG-
theory. In the same vein, the emergence of negative energies
in both the Dirac and the KG-theory is a result of an improper
choice of the energy and momentum eigenvalues – they need
to be complex as suggested therein.

While we have not explored the richness of the hypothesis
of complex energy and momentum eigenvalues, we need to
mention the latent power in this new way of thinking, namely
that one may very well able to explain the variation of FNCs
using this idea. Apart from this, it should be possible, using
the complex part of the energy and momentum, to explain
why particles decay, as well as the localization of particles
into a finite region of space. What we had wanted here is to
show that Dirac’s negative energies can be done away with,

once and for all!

7 Conclusion

The following conclusion is drawn on the proviso that the hy-
pothesis of complex energy-momentum is acceptable:

1. The complex energy-momentum hypothesis when applied to
both the Klein-Gordon and the Dirac theory, does solve the
issue of negative energies. This problem ceases to exist as the
energy of all particles now is positive definite.

2. Quantum mechanics as currently understood and constituted
where all quantum mechanical operators are required to be
hermitian so that the corresponding eigenvalues are real-va-
lued, may have to be modified or reconsidered.

3. The long-standing issue of the asymmetry in the matter-anti-
matter constitution of the Universe can be explained by the
C,CP,CT and CPT violation that arises from the complex
energy-momentum hypothesis when applied to the Dirac equ-
ation.
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laković D., Molaro P., and Pasquini L. Four Direct Measurements of
the Fine-Structure Constant 13 Billion Years Ago. Science Advances,
2020, v. 6 (17).

33. Leefer N., Weber C. T. M., Cingöz A., Torgerson J. R., and Budker D.
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