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In this paper, we explore the connection between zitterbewegung for free particles, and
the work of Rabounski and Borissova on Zelmanov’s chronometric invariant formula-
tion of General Relativity to calculate space and time physical observables [2, 6]. In
the chr.inv.-analysis, the spin of a particle interacts with the space non-holonomity field
of pseudo-Riemannian spacetime. From this, the particle gains an additional momen-
tum which imparts a non-geodesic component to the particle’s motion. The solution of
the particle with spin chr.inv.-equation of motion is a spiral that can be visualized as
being wound on a pulsating cylinder. Free electron oscillations occur at a frequency
equal to the double angular velocity of the space rotation Ω, with fluctuations of the
particle position on the order of its reduced Compton wavelength. We thus show that
zitterbewegung is a direct manifestation of general relativistic space and time physical
observables at the elementary particle level.

1 Introduction

In this paper, we explore the connection between zitterbewe-
gung, German for “jittery” or “trembling motion”, as calcu-
lated for Dirac free particles [1], and the work of Rabounski
and Borissova on Zelmanov’s chronometric invariant formu-
lation of General Relativity to calculate space and time phys-
ical observables [2, 6]. We will show that zitterbewegung is
a direct manifestation of general relativistic space and time
physical observables at the elementary particle level.

2 Zitterbewegung

Zitterbewegung was first recognized by Breit [7] and further
analyzed and the name coined by Schrödinger [8, 9]. This
solution is obtained in the Heisenberg representation equation
of motion for the velocity operator α of the Dirac equation for
a free particle

H0 = α · p + βm , (1)

where m and p are the mass and momentum of the free parti-
cle respectively, and the α and β matrices are used instead of
the γµ (β = γ0 and αi = γ0γi) [1, 10].

The space operator solution in the Heisenberg representa-
tion x(t) (i.e. α = ẋ) is then given by

x(t) = x(0)+
p c2

H0
t+

(
α(0) −

p c
H0

)
i~c
2H0

exp (−2iH0t/~) , (2)

where the first two terms on the right hand side of (2) cor-
respond to the classical equation of motion trajectory of the
particle, with the third term corresponding to a rapid oscilla-
tory motion (zitterbewegung) about the classical trajectory.

The angular frequency of these oscillations is of order
2mc2/~ ∼ 2 × 1021 s−1 and their amplitude of order ~/mc ≡
λ–C , corresponding to fluctuations of the particle position on
the order of its reduced Compton wavelength. Schrödinger
found that the zitterbewegung results from the interference

between positive and negative-energy state amplitudes. Con-
sequently, there has been a tendency to dismiss zitterbewe-
gung, as its expectation value vanishes for wave-packets con-
sisting entirely of positive-energy or negative-energy waves.
In addition, it has not been observed experimentally due to its
high-frequency, low amplitude motion, although indirect ev-
idence of its presence has been suggested in numerous areas
by some investigators [11–14]. One is reminded of the situ-
ation with Brownian motion, where it has not been observed
directly, but evidence of its presence is now unquestionably
accepted.

However, zitterbewegung has been investigated by many
researchers, and identified in many areas. Indeed, there is
other evidence that points to the reality of zitterbewegung.
For example, the Darwin term which provides a small cor-
rection in the fine-structure of the energy level of s-orbitals
of the hydrogen atom can be shown to result from zitterbe-
wegung [15]. In the 1990s, David Hestenes revived zitterbe-
wegung as a physical process when he recast it in terms of
his Geometric Algebra [16–19]. Since then. much work has
been done on modelling and detecting zitterbewegung — see
for example [20–25] among many others.

3 Physical observables in General Relativity

Many practitioners of General Relativity do not realize that
the theory is based on a 4-dimensional pseudo-Riemannian
representation of spacetime and that the calculations they per-
form give results in that particular spacetime description. The
pseudo-Riemannian characterization refers to the three space
and one time dimensions, described by a metric with signa-
ture (+ – – –) or (– + + +), which uniquely results in space-
like and time-like intervals. To properly understand the re-
sults obtained, the 4-dimensional calculations in general co-
variant form must be projected onto the observer’s 3+1 space
and time dimensions separately as space and time physical
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observables.
This requires developing a mathematical theory to en-

able the calculation of observable components for any tensor.
This work started in the 1930s — Landau and Lifshitz intro-
duced the observable time interval and the observable three-
dimensional interval in their classic The Classical Theory of
Fields [26, §84]. Zelmanov, starting in 1941, developed such
a comprehensive theory over many decades — it is known as
the theory of chronometric invariants [2, 3]. The most com-
plete description of the mathematical apparatus of physically
observable quantities in General Relativity is given in the re-
cent review article by Rabounski and Borissova [4]. It pro-
vides an up-to-date compendium of the results obtained by
Zelmanov and the authors over the past decades, and allows
for the calculation of the physical observable components of
any tensor.

The basic approach consists in projecting a general co-
variant 4-dimensional tensor onto an observer’s physical ob-
ject frame of reference (e.g. the Earth’s surface), consisting
of a three-dimensional coordinate grid with “real” physical
clocks (a spatial section x0 = ct = constant, orthogonal to the
observer’s physical time line at time of observation t), known
as the observer’s accompanying reference frame.

The projection operator onto an observer’s time line is
the unit vector of the observer’s four-dimensional velocity bα

with respect to his physical object frame of reference, which
is tangential at each point of the observer’s four-dimensional
trajectory

bα =
dxα

ds
. (3)

The projection of a tensor onto an observer’s time line is given
by its contraction with the vector bα of his reference frame.
In an observer’s accompanying reference frame, his three-
dimensional velocity with respect to his reference object is
zero, bi = 0, and its components are given by

b0 =
1
√
g00

, b0 = g0αbα =
√
g00 , bi = giαbα =

gi0
√
g00

.

The projection operator onto an observer’s three-dimen-
sional spatial section is the four-dimensional symmetric ten-
sor

hαβ = −gαβ + bαbβ , hαβ = −gαβ + bαbβ . (4)

The projection of a tensor onto an observer’s three-dimen-
sional spatial section is given by its contraction with the ten-
sor hαβ of his reference frame.

The observer’s physical object reference frame has a grav-
itational field that can be rotated and deformed, and hence, the
observer’s local reference space can be inhomogeneous and
anisotropic. If there is a spatial section everywhere orthogo-
nal to the time lines, then the space is an holonomic space. If
only spatial sections locally orthogonal to the time lines exist,
then the space is a non-holonomic space.

Any coordinate grid that is at rest with respect to its ref-
erence physical object can be transformed to another coordi-
nate grid through standard coordinate transformations, within
the same spatial section. However, time transformations im-
ply a change of spatial section (i.e. new clocks), and hence
a change in the measurements of observable quantities. This
requires that physical observable quantities in an observer’s
reference frame must be invariant with respect to time trans-
formations throughout his three-dimensional spatial section
xi = constant, so these must be chronometric invariant quan-
tities, and are named chr.inv.-quantities for short. Thus Zel-
manov developed a general mathematical method to calcu-
late physically observable chr.inv.-projections of any four-
dimensional general covariant tensor (see [4] for details).

Accordingly, Zelmanov introduced chr.inv.-derivative op-
erators with respect to time and the spatial coordinates given
by

∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0 , (5)

where g00 and g0i are components of the metric tensor gµν,
and the superscripted symbol ∗∂ indicates a chr.inv.-partial
derivative. These are non-commutative: the order in which
their second derivatives are taken gives different results, and
their difference is not zero.

From these, three tensors can be defined:

1. Aik: three-dimensional antisymmetric chr.inv.-tensor of
the angular velocity with which the reference space of
the observer rotates.

2. Fi: three-dimensional chr.inv.-vector of the gravitation-
al inertial force.

3. Dik: three-dimensional symmetric chr.inv.-tensor char-
acterizing the rate of deformation of the observer’s
space.

Specifically, these tensors are explicitly given by:

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fivk − Fkvi) , (6)

where vi is the tangential (linear) velocity of the rotation and
c is the speed of light in vacuo,

Fi =
1
√
g00

(
∂w
∂xi −

∂vi

∂t

)
=

1
1 − w

c2

(
∂w
∂xi −

∂vi

∂t

)
, (7)

where w = c2
(
1 −
√
g00

)
is the gravitational potential, origi-

nating from the gravitational field of the observer’s reference
object,

Dik =
1
2

∗∂hik

∂t
, D =

∗∂ ln
√

h
∂t

, h = det ‖hik ‖ , (8)

where hik is the physically observable chr.inv.-metric of the
observer’s space, D = hikDik = Dm

m, the trace of the tensor of
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the space deformation rate, is the relative dilatation rate of an
elementary volume of the observer’s space.

In addition, the tensor Aik is further identified as the space
non-holonomity tensor, which Zelmanov defined in the fol-
lowing theorem:

Zelmanov’s theorem on the holonomity of space-time:
The identical equality to zero of the tensor Aik in a
four-dimensional region of space-time is the neces-
sary and sufficient condition for the orthogonality of
the spatial sections to the time lines everywhere in this
region.
In other words, Aik , 0 in a non-holonomic space-time
region, and Aik = 0 in a holonomic one. [4, p. 7]

Rotating spaces (Aik , 0) are non-holonomic, as three-dimen-
sional spatial sections are non-orthogonal to time lines in ro-
tating spaces.

This section has covered the basics of Zelmanov’s chro-
nometric invariants theory to generate physically observable
quantities in General Relativity by projecting general covari-
ant 4-dimensional tensors onto an observer’s physical object
frame of reference to obtain physically observable chr.inv.-
projections. The reader is encouraged to consult the recent
compendium article of Rabounski and Borissova [4] for a
deeper complete coverage of the chr.inv.-theory.

4 Geodesic motion of particles in pseudo-Riemannian
spacetime

We first apply this formalism to the equations of motion of
a particle. The motion of a particle under the influence of
gravitation is characterized as freely falling along a geodesic
(shortest-distance) line, known as free or geodesic motion.
Under the action of additional non-gravitational forces, the
particle deviates from its geodesic trajectory, and its motion
is known as non-geodesic.

In a four-dimensional pseudo-Riemannian spacetime, the
motion of a particle is geometrically determined by the par-
allel transport of the four-dimensional vector Qα tangential
to the points along the particle’s four-dimensional trajectory,
given by [6, see p. 9]

DQα

ds
=

dQα

ds
+ Γαµν Qµ dxν

ds
, QαQα = constant , (9)

where DQα is the absolute differential of the transported vec-
tor Qα along the trajectory, dQα is the differential of the vec-
tor and Γαµν is the Christoffel symbol of the second kind.

For a particle of rest mass m0 and four-dimensional mo-
mentum vector Pα given by [6, see p. 12]

Pα = m0
dxα

ds
, PαPα = m2

0 = constant , (10)

the equation of motion of the free particle is given by

dPα

ds
+ Γαµν Pµ dxν

ds
= 0 . (11)

For a massless particle of four-dimensional wave vector Kα

given by

Kα =
ω

c
dxα

dσ
, KαKα = 0 , (12)

where ω is the characteristic frequency of the massless par-
ticle and dσ = hikdxidxk is the three-dimensional chr.inv.-
interval, the equation of motion of the free massless particle
is given by

dKα

dσ
+ Γαµν Kµ dxν

dσ
= 0 . (13)

The projection of the four-dimensional equation of mo-
tion (11) onto the time line and the spatial section of an ob-
server for a free particle is then given respectively by [4, see
p. 23]

dm
dτ
−

m
c2 Fivi +

m
c2 Dikvivk = 0 ,

d(mvi)
dτ

+ 2m(Di
k + A·ik·)v

k − mF i + m∆i
nkvnvk = 0 ,

(14)

where m is the relativistic mass of the particle, dτ is the phys-
ically observable time interval, vi is the chr.inv.-vector of the
physically observable velocity of the particle and ∆i

nk is the
chr.inv.-Christoffel symbol of the second kind, while the equi-
valent chr.inv.-equations of motion for a free massless particle
are given by

dω
dτ
−
ω

c2 Fici +
ω

c2 Dikcick = 0 ,

d(ωci)
dτ

+ 2ω(Di
k + A·ik·)c

k − ωF i + ω∆i
nkcnck = 0 ,

(15)

where ci is the chr.inv.-vector of the physically observable
velocity of light, with cici = c2.

In the case where QαQα , constant, the trajectory of
the particle is non-geodesic and the absolute derivative of the
transported vector DQα

ds = Φα, which is a force that deviates
the particle from a geodesic trajectory. The right hand side
of (14) and (15) are set equal to the chr.inv.-projections of the
deviating force Φα instead of 0. These are called the equa-
tions of non-geodesic motion.

5 Fields and charged spin particles in pseudo-Rieman-
nian spaces

The previous section §4 has covered the necessary back-
ground on the calculation of equations of motion in the the-
ory of chronometric invariants to permit their generalization
to charged particles with spin. In their book Fields, Vacuum
and the Mirror Universe: Fields and particles in the space-
time of General Relativity, Rabounski and Borissova apply
the chronometric invariants formalism to the analysis of fields
and charged particles with spin [6, see Chapters 3 & 4].

Chapter 3 provides the chronometrically invariant theory
of electrodynamics in a pseudo-Riemannian space. It takes

68 Pierre A. Millette. Zitterbewegung and the Non-Holonomity of Pseudo-Riemannian Spacetime



Issue 1 (June) PROGRESS IN PHYSICS Volume 19 (2023)

into account the impact on the electromagnetic field of the
physically observable chr.inv.-properties of the reference spa-
ce, specifically the gravitational inertial force (i.e. accelera-
tion) Fi, the space non-holonomity tensor of space rotation
Aik, and the rate of deformation of space tensor Dik. This the-
ory will not be covered here as it is beyond the scope of this
paper.

Chapter 4 covers the chronometrically invariant theory of
particles with spin in a pseudo-Riemannian space. It is based
on the premise that spin is a fundamental property of matter,
such as mass and charge. The analysis will show that the field
of the space non-holonomity from the spatial rotation of the
space Aik interacts with the particle’s spin and imparts it an
additional momentum. From this will be derived the equa-
tions of motion of a particle with an internal rotation momen-
tum (i.e. spin).

5.1 Spin particle equation of motion

Based on these considerations, the four-dimensional dynamic
vector Qα for the parallel transport equations is assumed to
be given by [6, see pp. 155]

Qα = Pα + S α , (16)

where Pα is given by (10) and S α is the spin momentum
which the particle gains from its internal momentum result-
ing from the spin, thus making the motion of the particle non-
geodesic.

To deduce the spin momentum vector S α, we start from
the known properties of the spin of elementary particles.
Their numerical value is given by ±n~, where ~ is the reduced
Planck constant which has units of angular momentum, and
n = 0, 1

2 , 1,
3
2 , 2, with the ± sign indicating right-wise or left-

wise internal rotation of the spin particle respectively. This
suggests that the spin vector would be an antisymmetric ten-
sor of the 2nd rank, similar to a tensor of angular momentum.

From Bohr’s second postulate on the length of an elec-
tron orbit in an atom and the experimental finding that an
electron has an internal magnetic moment proportional to its
internal rotation spin momentum, Rabounski and Borissova
make an argument to define a four-dimensional antisymmet-
ric 2nd rank angular momentum-like tensor, which they call
the Planck tensor and write as ~αβ, given by [6, see pp. 155–
156]

[ri; pk] =
1
2

(
ri pk − rk pi

)
= k~ik (17)

for some constant k, to characterize the spin of a particle in
four-dimensional pseudo-Riemannian space.

The diagonal and space-time components of the Planck
tensor are zero, while the non-diagonal spatial components
are ±~, based on the spatial direction of the spin and the
right- or left-handedness of the reference frame. Note that
the antisymmetric Planck tensor ~ik is not to be confused with

the symmetric physically observable chr.inv.-metric of the ob-
server’s space tensor hik.

This represents a general mathematical approach that re-
quires no assumption on the internal structure of a particle’s
spin. Instead, it is based on a fundamental quantum space
rotation. We have already encountered an antisymmetric ro-
tation of space chr.inv.-tensor Aik in §3, given by (6). In the
absence of gravitational fields, the tensor of angular velocity
Aik is given by

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
, (18)

which can be more specifically denoted as Aαβ = Ωαβ, with
components

Ω00 = 0 Ω0i = −Ωi0 = 0 Ωik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
. (19)

The quantum principle of wave-particle duality results in a
particle’s energy being given by E = mc2 = ~ωwhereω is the
characteristic frequency of the particle with relativistic mass
m. Rabounski and Borissova suggest a generalization of that
equation into the geometric tensor relation mc2 = ~αβωαβ.

The additional momentum S α in (16) gained by a particle
from its spin can be determined from the actionS of a particle
with spin. The action to displace a spin particle generated by
the interaction of its spin with the space non-holonomity field
Aαβ is given by [6, see pp. 162]

S = α(S )
∫ b

a
~αβAαβ ds =

n
c

∫ b

a
~αβAαβ ds , (20)

where α(S ) is a scalar constant characteristic of the particle
in the spin interaction. One then obtains [6, see pp. 164]

S α =
1
c2 n ~µνAµν

dxα

ds
, (21)

such that the dynamic vector Qα that characterizes the motion
of the spin particle is given by

Qα = Pα + S α = m0
dxα

ds
+

1
c2 n ~µνAµν

dxα

ds
, (22)

where Pα is given by (10).
The equations of motion of a spin particle are obtained

from the parallel transport equations of Qα given by (22)
along the trajectory of the particle

d
ds

(Pα + S α) + Γαµν (Pµ + S µ)
dxν

ds
= 0 , (23)

where QαQα = constant. The chr.inv.-equations of a particle
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with mass and spin is given by [6, see pp. 170]

dm
dτ
−

m
c2 Fivi +

m
c2 Dikvivk =

= −
1
c2

dη
dτ

+
η

c4 Fivi −
η

c4 Dikvivk ,

d(mvi)
dτ

+ 2m (Di
k + A·ik·)v

k − m F i + m ∆i
nkvnvk =

= −
1
c2

d(ηvi)
dτ

−
2η
c2 (Di

k + A·ik·)v
k +

η

c2 F i −
η

c2 ∆i
nkvnvk ,

(24)

where η is given by

η =
n ~µνAµν√

1 − v2

c2

. (25)

The left hand side of equations (24) is the same as that of
equations (14), and represents the geodesic part of a spin-
less particle’s motion. However, while the right hand side of
equations (14) are equal to zero, in the case of a particle with
spin, the right hand side of equations (24) are non-zero, and
thus represent the non-geodesic component of the motion of
a particle with spin. That, is the component that gives rise to
zitterbewegung, while the left hand side represents the classi-
cal geodesic trajectory of the particle.

Allowing for the weak gravitational interaction, compared
to others, by setting w→ 0 in (7) and D = 0 in (8) [6, p. 176],
results in the elimination of the Fi and Dik terms, and a sim-
plification of (24). The kinematic equations of motion (24)
become

dvi

dτ
+ 2A·ik·v

k + ∆i
nkvnvk = 0 . (26)

Assuming that the space rotates with a constant angular ve-
locity Ω around the x3-axis (z-axis), from (18) and (19) and
the linear velocity of rotation of the space given by vi = Ωik xk,
then the space non-holonomity tensor Aik has only two non-
zero components,

A12 = −A21 = −Ω , (27)

and the chr.inv.-vector equations of motion become

dv1

dτ
+ 2Ωv2 = 0 ,

dv2

dτ
− 2Ωv1 = 0 ,

dv3

dτ
= 0 , (28)

where the superscripts are numerical vector indices.
Solving the equations of motion, we obtain the solutions

[6, p. 179–183]

v1 = v1
(0) cos(2Ωτ) , v2 = v2

(0) sin(2Ωτ) , v3 = v3
(0) , (29)

where the vi
(0) represent the initial values of vi. Integrating

(29) with respect to dτ, we obtain the particle’s trajectory dis-

placements

x1 = x1
(0) +

v1
(0)

2Ω
sin(2Ωτ)

x2 = x2
(0) +

v1
(0)

2Ω
−

v1
(0)

2Ω
cos(2Ωτ)

x3 = x3
(0) + v3

(0)τ ,

(30)

where the xi
(0) represent the initial values of xi.

Setting the initial displacement of the particle to be zero,
x1

(0) = x2
(0) = x3

(0) = 0, (30) can be simplified as

x1 = x = a sin(2Ωτ)

x2 = y = a [1 − cos(2Ωτ)]

x3 = z = bτ ,

(31)

where a =
v1

(0)

2Ω
and b = v3

(0). From this, we can move from
the τ parametric representation to the coordinate represen-
tation of the solution to determine the shape of the three-
dimensional trajectory covered by the particle. We obtain [6,
p. 184]

x2 + y2 = 2a2 [1 − cos(2Ωτ)] = 4a2 sin2(Ωτ) , (32)

where τ = z/b, which is similar to a spiral line equation
x2 + y2 = a2 , z = bτ. The particle has a constant velocity
b = v3

(0) along the axis of the spiral, with the radius of the par-
ticle’s trajectory oscillating with a frequency Ω in the range
0 to 2a = v1

(0)/Ω at distances z = πkb
2Ω

, for k = 0, 1, 2, 3, · · · .
The spiral can be visualized as being wound on a pulsating
cylinder.

5.2 Charged spin particle in an electromagnetic field

For a charged spin particle in an electromagnetic field, the
four-dimensional dynamic vector Qα for the parallel transport
equations takes the form [6, p. 186]

Qα = Pα +
e
c2 Aα + S α , (33)

where e is the electric charge and Aα is the electromagnetic
field potential. There is thus an additional momentum gained
by the particle from the interaction of its charge with the elec-
tromagnetic field. The chr.inv.-scalar equation of motion of a
charged spin particle in an electromagnetic field is then given
by [6, p. 204]

d
dτ

(
m +

η

c2

)
= −

e
c2 Eivi , (34)

where Ei is the ith component of the electric field. Then for
particles with mass,

m0c2 = −n~mnAmn (35)

70 Pierre A. Millette. Zitterbewegung and the Non-Holonomity of Pseudo-Riemannian Spacetime



Issue 1 (June) PROGRESS IN PHYSICS Volume 19 (2023)

where again ~mn is the Planck tensor and Amn is the rotation
of space chr.inv.-tensor. The right hand side of this equa-
tion (without the negative sign) characterizes the interaction
energy of the particle’s spin with the space non-holonomity
field, i.e. the “spin energy”. Rabounski and Borissova refer
to (35) as the law of quantization of the masses of elementary
particles:

The rest-energy of any mass-bearing spin particle is
equal to the energy of its spin interaction with the spa-
ce non-holonomity field, taken with the opposite sign.
[6, p. 205]

From (35), it can be shown that for any elementary particle
with mass, the following relationship exists between its rest-
mass m0 and the angular velocity of the space rotation Ω [6,
p. 207]:

Ω =
m0c2

2n~
. (36)

5.3 The Compton wavelength and zitterbewegung

The wavelength corresponding to the frequency of the space
rotation Ω given by (36) can be calculated by assuming that
the wave of the space non-holonomity propagates at the speed
of light c [6, p. 209]:

λ–Ω =
c
Ω

= 2n
~

m0c
. (37)

For an electron, with n = 1
2 , (37) becomes

λ–C =
~

m0c
, (38)

i.e. the wavelength of the space non-holonomity rotation Ω is
equal to the reduced Compton wavelength of the electron.

This confirms that (31) and (32) are the candidate equa-
tions to describe zitterbewegung: free electron oscillations
occur at a frequency equal to the double angular velocity of
the space rotation Ω given by (31), with fluctuations of the
particle position on the order of its reduced Compton wave-
length given by (38) while following a trajectory described
by a pulsating spiral equation of motion.

6 Discussion and conclusion

In this paper, we have explored the connection between zitter-
bewegung for free particles, and the work of Rabounski and
Borissova on Zelmanov’s chronometric invariant formulation
of General Relativity to calculate space and time physical ob-
servables [2,6]. They introduced a four-dimensional antisym-
metric tensor of the 2nd rank they called the Planck tensor to
characterize the spin of an elementary particle. In the chr.inv.-
analysis, the spin of a particle interacts with the space non-
holonomity field of pseudo-Riemannian spacetime.

From this, the particle gains an additional momentum
which imparts a non-geodesic component to the particle’s

motion. The solution of the particle with spin chr.inv.-equa-
tion of motion is a spiral that can be visualized as being
wound on a pulsating cylinder. It has a constant velocity b =

v3
(0) along the x3-axis of the spiral, with the radius of the par-

ticle’s trajectory oscillating with a frequency Ω in the range 0
to 2a = v1

(0)/Ω at distances z = πkb
2Ω

, for k = 0, 1, 2, 3, · · · . The
wavelength of the space non-holonomity rotation Ω is equal
to the reduced Compton wavelength of the electron.

Free electron oscillations occur at a frequency equal to
the double angular velocity of the space rotation Ω, with fluc-
tuations of the particle position on the order of its reduced
Compton wavelength. Thus, we have shown that within the
chr.inv.-equation of motion of particles with spin derived in
Rabounski and Borissova’s work [6], zitterbewegung is a di-
rect manifestation of general relativistic space and time phys-
ical observables at the elementary particle level.
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