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From the discretization of time, the nonlocality of matter and electromagnetic waves
can be inferred. These nonlocal waves provide a new perspective on the nonlocality of
quantum phenomena, such as wave collapse and entanglement, and the wave-particle
duality. Interactions can be divided into bound states and scattering, which are all de-
scribed by the modified Dirac equation. From the modified Dirac equation, the quantum
condition of the bound state can be obtained. Regarding scattering, elastic scattering is
related to wave nature, and inelastic scattering is related to particle nature. The wave
nature is expressed in all bound states and elastic scattering, and the particle nature cor-
responds to the case of inelastic scattering. And, in the case of inelastic scattering, a
model for wave collapse is presented.

1 Introduction

The significance of this paper is to newly understand quantum
mechanics from the point of view of discrete time. Quantum
mechanics is a system established by experiment, but its inter-
pretation is diverse. However, it is rare to have a perspective
that integrates and coherently interprets the various phenom-
ena of quantum mechanics. The perspective of discrete time
is very different from existing interpretations, but it provides
an interesting perspective. Since the new perspective is very
unfamiliar, I will briefly summarize the contents presented in
the previous papers [1–3].

The analysis of the dynamical system from the perspec-
tive of discrete time has opened a new way to see things that
have not been understood in the existing quantum mechanics
or existing results from a completely different perspective. In
the first paper [1], from the point of view of discrete time,
matter is divided into two types with completely different dy-
namic principles. Type 1 is an ordinary matter that satisfies
the Dirac equation, and type 2 is completely new. Type 2 does
not interact with the gauge fields and is only affected by grav-
ity. And considering its energy density, it can be interpreted
as dark matter.

Since existing relativistic quantum mechanics cannot ex-
plain anomalies during interactions, it has no choice but to
lead to quantum field theory that assumes second quantiza-
tion and vacuum energy. This theory is based on the ontolog-
ical basis of the statistical mechanical analogy that a field is
a collection of independent infinite harmonic oscillators. On
the other hand, the type 1 field does not make such an on-
tological assumption. If type 1 is a free particle, it can be
interpreted as an ordinary matter that satisfies the Dirac equa-
tion, but the concept of the field is quite different from the
existing one. In the type 1 field, the current harmonic oscil-
lation is determined by contributions from the past and future
of discrete time ∆t. From this point of view, it was shown
that the mass and charge of elementary particles during inter-
actions must be corrected by causal delay, and this correction

showed that it can explain anomalies such as anomalous mag-
netic moment and Lamb shift [2,3].

2 The meaning of discrete time

Discrete time means that there is a minimum value of time
change, which is a unit of time that cannot be further divided.
In other words, it can be said that “time does not pass” from
one click of time to the next, and if we consider the hypo-
thetical events on this unit of time, we can infer that they all
occurred at the same time. Thus, a discrete unit of time is a
collection of simultaneous events.

By the way, this collection of simultaneous events has a
special character. Before discussing that, consider the fol-
lowing thought experiment. Observer A is in a car moving
at speed v. There is a light source in the middle of the car
and light detectors on the front and rear walls of the car. The
events in which light reaches both detectors are simultaneous
for observer A. However, for B, a stationary observer outside
the car, the two events are not simultaneous. Because the car
is moving, the light reaching the rear becomes an event that
occurs earlier than the light reaching the front. This relativ-
ity of simultaneity is a natural result of the special theory of
relativity based on the concept of continuous space-time.

However, in discrete time, the relativity of simultaneity is
limited. Under the same circumstances, if a car moves by ∆l
in discrete time ∆t, what happens to observer B during which
simultaneous events to observer A occur? For observer B,
∆t is a situation in which time does not pass from one click
to the next click, so the events until the movement by ∆l are
simultaneous. Thus, within the range of time ∆t, simultane-
ous events for observer A are also simultaneous events for
observer B. In other words, in discrete time, local absolute si-
multaneity is established. Such a discussion holds within ∆t.
Of course, the relativity of simultaneity is established as time
passes beyond the click of ∆t. Hypothetical events in ∆t do
not hold the Lorentz transformation and cannot be expressed
in Minkowski space-time, which is based on the concept of
continuous space-time. However, since the theory of relativ-
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ity is established beyond the ∆t click, for example, the time
∆t for observer B is ∆t′ = ∆t/γ for observer A. In summary,
discrete time can be said to be a collection of events in which
local absolute simultaneity is established.

In the previous paper [2], ∆t was defined as the time for
light to pass through the Compton wavelength of a matter,
∆t def
= ℏ

mc2 . If the Compton wavelength is regarded as the “spa-
tial domain” of a matter, ∆t can be regarded as the “temporal
domain” of the matter. Therefore, what the above discussion
means is that the relativity of simultaneity is established out-
side matter, and the absoluteness of simultaneity dominates
inside matter. Discrete time is not a concept of objective real-
ity that clicks regardless of matter, like Newton’s concept of
absolute time, but a unique click inherent in matter.

Let’s find out the characteristics of the field defined in
discrete time. Since the field defined in continuous space-
time holds the local principle, the local parts of the field can
change independently. However, if the field defined in dis-
crete time can change locally and independently, the basic
premise of discrete time is violated because time must also
change as a variable in response to the change of field. There-
fore, a field defined in discrete time cannot be changed lo-
cally, and all parts of the field must act simultaneously. That
is, a field defined in discrete time cannot be divided.

3 Formation of nonlocal waves

In discrete time, the spinor Ψ (xµ) at any point xµ of type 1 is
given by the sum of ∆t future and past contributions to xµ, so
that Ψ (xµ) evolves into e−i∆xαpαΨ (xµ) [1]. Eq. (1) and Fig. 1
show this as a formula and figure, respectively.

(xµ + ∆xµ)Ψ (xµ) − xµΨ (xµ + ∆xµ)

= ∆xµe−i∆xαPαΨ (xµ) .
(1)
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Fig. 1: Contributions of spinors at xµ.

The left side of Fig. 1 shows spinors contributing from ∆t
future and past at xµ, in the 1+1 dimension, and the right side
shows them in 3-dimensional real space. All points on the
right hemisphere are ∆t future and all points on the left hemi-
sphere are past. At the center point, all spinors contributing

from the future appear to the left, and all spinors contribut-
ing from the past appear to the right. As discussed in the
previous section, all events in the right hemisphere are simul-
taneous events, and all events in the left hemisphere are also
simultaneous events.

Furthermore, spinors at every point on the right hemi-
sphere can also be represented as contributions from future
and past spinors. Then, the same sphere can be drawn at ev-
ery point on the right hemisphere, and this process can be
repeated over and over again. As a result, a wavefront with
the same phase can be represented as the left side of Fig. 2.

                                     1             
                                                A
                                      2
                                                 B
                                      3

Fig. 2: Formation of simultaneous wavefronts.

By the way, the wavefront formed in this way has special
properties. On the right side of Fig. 2, A is the common point
of 1 and 2. Point A is simultaneous with all points on hemi-
sphere 1 and also with all points on hemisphere 2. Therefore,
all points on hemispheres 1 and 2 are simultaneous with each
other. This is established only when hemispheres 1 and 2
overlap. Since this process can continue to expand, all the
points on the wavefront shown on the left in Fig. 2 are simul-
taneous.

This simultaneous wavefront is not local. If we consider
the field defined on this wavefront, as discussed in the previ-
ous section, it cannot change locally. Interactions occurring at
one point on the wavefront occur simultaneously at all points
on the wavefront. A wavefront is nonlocal, but the local prin-
ciple still applies between one wavefront and another. This
non-locality of type 1 waves is fundamentally different from
the wave concept explained only by the existing local princi-
ple.

So far, we have discussed the nonlocality of a type 1 wave,
that is, a matter field wave. We will now discuss the nonlo-
cality of electromagnetic waves. The electric and magnetic
fields individually obviously apply the local principle. But
what about electromagnetic waves? In judging the nonlocal-
ity of electromagnetic waves, I will refer again to the propo-
sition discussed earlier. In discrete time, the collection of
simultaneous events establishes local absolute simultaneity.
Therefore, if a wavefront composed of certain simultaneous
events has local absolute simultaneity, it can be judged that
the wavefront is a nonlocal wave.
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Electromagnetic waves are produced by accelerating elec-
tric charge. Around the accelerating charge, there are kinks of
the field, and these kinks are what form the wave. The kinks
depend on the motion of the charge, and the motion of the
charge is performed in units of discrete time ∆t . Then, the
kinks formed between ∆t can also be said to be simultaneous
events to the observer fixed on the charge, which, according
to the above discussion, can also be said to be simultaneous
events to the stationary observer. Therefore, electromagnetic
waves can be said to have local absolute simultaneity, so they
can be said to be nonlocal waves like matter field waves.

Until now, we have had a somewhat unfamiliar discus-
sion that matter field waves and electromagnetic waves are
nonlocal waves. However, in my opinion, the fact that these
are nonlocal waves is already included in the existing quan-
tum mechanics. In quantum mechanics, the energy of light
is E = hν. What does this equation mean? If we try to un-
derstand it as a wave, there is no local nature of a wave at
all. So, it should be understood as a particle, but what does
the frequency of a particle mean? The fact that the energy
of light does not depend on the local properties of the wave
means that the wave is nonlocal. Light is created by kinks,
the magnitude of which determines the frequency, and the to-
tal kinks form a nonlocal wavefront. An interaction at one
point of the wavefront acts simultaneously on all parts of the
wavefront. Therefore, the energy of light does not depend on
the local properties of the wave, but is proportional only to its
frequency.

4 Wave collapse and wave-particle duality

Quantum mechanics has various interpretations depending on
the meaning of the wave function and measurement. In this
paper, these meanings are as follows. The wavefunction is
not a probability concept, but an objective real field, and the
measurement is merely the interaction between elementary
particles.

Based on the discussion in the previous section, let’s infer
the wave collapse, which is an intrinsic property of nonlocal
waves, and the particle nature of matter and light.

When an electron interacts with an electromagnetic wave,
the wavefront of the electron and the wavefront of the electro-
magnetic wave meet. If one part of the wavefront of an elec-
tron is affected by an electromagnetic wave, all parts of the
wavefront of an electron are simultaneously affected because
of the intrinsic property of nonlocal waves. It is as if all the
information of the electron wavefront is concentrated at the
point of contact and interacts with the electromagnetic wave.
This can be seen as a kind of wave collapse, and it can be said
to be the definition of the particle nature of electrons. This
discussion can be equally applied to electromagnetic waves
interacting with electrons. Electromagnetic waves are also
nonlocal waves, and when interacting with electrons, the en-
tire wave is concentrated in a local area, which is the particle

nature of light, that is, the definition of a photon. The elec-
trons and photons concentrated in this local area exchange
energy and momentum as particles. In other words, the in-
teraction—which we will discuss in the next section, corre-
sponds to inelastic scattering—occurs on a “quantum” unit.
After the interaction, they move as new free waves, each with
new energy and momentum. In the next section I will present
a mathematical model for the collapse of matter waves.

The wave-particle duality is one of the most important
phenomena that reveals the essence of quantum mechanics,
and contains a deep mystery about the existence of matter.
However, current understanding of this remains superficial.
It is difficult to understand that matter or photons choose one
state among particle or wave depending on the situation*. If
there is a correct theory, there must be a clear reason for hav-
ing a particular state in a particular situation. The reality of
quantum mechanical existence presented in this paper is as
follows. A nonlocal wave causes a wave collapse at a spe-
cific interaction to acquire particle properties, and when the
interaction disappears, the wave properties are restored. This
process is repeated.

Speaking of electromagnetism, fields with local proper-
ties are real, and their waves (as nonlocal waves) are real,
and photons formed by the collapse of waves are real. We
discussed earlier that the quantum of a photon energy should
depend only on its frequency, but there is one more thing to
consider here. When an electromagnetic wave is generated
by kinks caused by the acceleration of an electric charge, the
amount of the charge becomes a variable of the photon en-
ergy. The quantum concept of photon energy is established
only when the charge amount of all free elementary particles
is the same. In reality it is. That is, quantization of photon
energy is established by quantization of charge.

5 Bound state and scattering

In terms of discrete time, interacting particles satisfy the mod-
ified Dirac equation [2].

DmΨ =
(
iγµ∂µ − f1rγ

µpµ − f2rγ
µ∆pµ

)
Ψ = 0 . (2)

where

f1r = Re( f1) =
1
3

Re
(

e−ixαpα

e−ixαpα + 2
(
e−ixα∆pα − 1

) )
f2r = Re( f2) =

1
3

Re
(

2e−ixα∆pα

e−ixαpα + 2
(
e−ixα∆pα − 1

) ) . (3)

Eq. (2) is a first-order linear differential equation, and the
way it is applied differs depending on the type of interaction

*Wheeler’s delayed choice experiment clearly shows the contradic-
tion of the existing quantum mechanical view of duality. And the
Elitzur–Vaidman bomb tester claims that interaction-free measurements are
possible based on the existing viewpoint. In my next paper, I will present a
new interpretation of these experiments from the new perspective presented
above.
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– scattering and bound state. In the case of the scattering
process, for example, the scattering of electron and photon
interacts in an extremely limited space-time region, so the
modified Dirac equation is also applied only in such a limited
space-time region. On the other hand, in the case of ceaseless
interaction, such as in the bound state, the modified Dirac
equation holds without limitation because the interaction oc-
curs in a relatively wide space-time region.

5.1 Bound state

5.1.1 ∆pµ ≪ pµ

In this case, that is, when the interaction is very small, f1r,
f2r, and the modified Dirac equation is as follows

f1r �
1
3
, f2r �

2
3

cos (xαpα)(
iγµ∂µ −

1
3
γµpµ −

2
3

cos (xαpα) γµ∆pµ

)
Ψ = 0 .

(4)

The solution of (4) satisfies the following equation

∂µΨ = −
i
3

(
pµ + 2cos (xαpα)∆pµ

)
Ψ. (5)

And the solution of (5) is as follows

Ψ = c exp
[
−

i
3

∫ xµ (
pµ + 2cos

(
x′αpα

)
∆pµ

)
dx′µ

]
= c exp

[
−

i
3

pµxµ −
2i
3

∫ xµ

cos
(
x′αpα

)
∆pµdx′µ

]
.

(6)

∆pµ means interaction, so it is determined according to
the specific situation. If it is an electrostatic potential like
the potential in a hydrogen atom, ∆pµ is independent of the
integral variable in (6) because there is only a scalar potential
energy component that is independent of time. Thus

Ψ = c exp
[
−

i
3

(
pµxµ + 2ϵ

(
∆pµ

)
sin

(
xµpµ

))]
. (7)

ϵ
(
∆pµ

)
is a small quantity linear to ∆pµ. In (7), for Ψ to

be a free wave, i.e. harmonic oscillation, sin
(
xµpµ

)
= 0, so

the following quantum condition is derived

xµpµ = nπ (n = 0,±1,±2, · · ·) . (8)

For any given pµ, xµ that satisfies (8) has as its solution a
certain region in space-time. Harmonic oscillations that ex-
ist in this region can be referred to as standing waves. As a
simple example, consider the case where the electron in a hy-
drogen atom is in uniform circular motion. In this case, the
phase value is as follows∮ (

Edt − P⃗ · dx⃗
)
= E

∮
dt − P⃗ ·

∮
dx⃗

= −mvrπ = nπ

∴ L = mvr = n .

(9)

Eq. (9) agrees with the well-known Bohr’s quantum condition
for the hydrogen atom.

In (7), when ϵ → 0, the 4-momentum appearing in the
phase part is not pµ but pµ/3. This result is questionable be-
cause the system we are dealing with is a system in which a
free particle with 4-momentum pµ becomes pµ + ∆pµ by in-
teraction. However, as we will see later, this does not violate
the law of conservation of energy at all.

In the case of ∆pµ → 0, if γµpµ = m is used, (4) can be
expressed as follows

i
∂Ψ

∂t
=

(
α⃗ · P̂ +

1
3
βm

)
Ψ . (10)

In (7), the free wave solution is as follows for ϵ → 0

Ψ =

(
φ

χ

)
exp

(
−

i
3

xµpµ
)
. (11)

In (11), φ and χ are two-component spinors. Using (12),
(10) becomes (13)

∂Ψ

∂t
=

1
3

EΨ, P̂Ψ =
1
3

P⃗Ψ . (12)

EΨ =
(
α⃗ · P⃗ + βm

)
Ψ . (13)

In (13), the energy of Ψ is ±
√

P⃗2 + m2 , which is equal
to the energy of the free particle before interaction. So, as
expected, energy is conserved.

5.1.2 ∆pµ = pµ

In this case, the modified Dirac equation is:{
iγµ∂µ − ( f1r + f2r) m

}
Ψ = 0 . (14)

G (xµ) def
= f1r + f2r = Re

(
1

3 − 2eixµpµ

)

=
3cos

(
xµpµ

)
− 2

13 − 12cos
(
xµpµ

) . (15)

In (14), the condition for Ψ to become a plane wave in a
specific space-time region is that G must be constant, which
means that G has an extreme value in that region. Therefore,
the following condition must be satisfied

∂λG (xµ) = −
15 pλsin

(
xµpµ

)
(
13 − 12cos

(
xµpµ

))2 = 0 . (16)

Eq. (16) is the same quantum condition as in ∆pµ ≪ pµ.
Eq. (14) is related to pair production. If ∆pµ is the 4-

momentum of the incident photon and pµ = pelctron
µ + ppositron

µ ,
that is, the sum of the 4-momentum of the electron and the
positron, Ψ in (14) becomes the wave function for the entire
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electron and positron. This plane wave will persist until a
new interaction occurs. If an interaction occurs on one side
(electron) of this free wave, the whole system will be affected
at the same time due to the characteristics of nonlocal waves,
so the other side (positron) will also “experience the same in-
teraction at the same time”. This can be said to be the mech-
anism of entanglement.

5.2 Scattering

In the case of elastic scattering, there is no change in the
energy of the incident particle. That is, since ∆p0 = 0 and
|P⃗′| = |P⃗| hold, the incident wave and the reflected wave have
the same wavelength, so it is predicted that wave collapse
will not occur when they interact. Assuming that the inter-
action occurs within the range of ∆t during elastic scattering,
∆pµ = 0 and f1r = 1/3 just before and after the interaction,
so the following free wave equation is established(

iγµ∂µ −
1
3

m
)
Ψ = 0 . (17)

On the other hand, in inelastic scattering, there is a change
in the energy of the incident particle and the target particle.
This means that the properties of the wave before and after
the interaction are different. The mechanism that enables this
process is the concept of wave collapse discussed in section
4. During inelastic scattering, a nonlocal wave instantly col-
lapses and becomes a particle state. In this particle state, en-
ergy and momentum are exchanged, and as a result, a new
wave corresponding to new energy and momentum is formed.
We will now present a model for this wave collapse.

When an interaction occurs in a local region in space-
time, the modified Dirac equation is also applied only in a
local region. In this case, f1r and f2r must, of course, be
quantities defined in a local region. Therefore, f1r and f2r

must be corrected to converge to 0 at large xµ. In this case,
the collapse of the wave inevitably occurs.

In order to model the wave collapse during inelastic scat-
tering, we introduce a damping factor ϵµ that satisfies the fol-
lowing condition

xµ =
(
t,
∣∣∣x⃗ ∣∣∣ n̂x⃗

)
, ϵµ =

(
ϵ0,

∣∣∣⃗ϵ ∣∣∣ n̂ϵ⃗)
e−ϵµxµ → 0, as xµ → ∞, for n̂x⃗ · n̂ϵ⃗ = −1 .

(18)

And if the new 4-momentum p′µ is defined as follows,
the modified Dirac equation and f ′1r, f ′2r are as follows. For
simplicity, we will discuss wave collapse for the special case
∆pµ = apµ (a is a real number)

p′µ = pµ − iϵµ{
iγµ∂µ −

(
f ′1r + a f ′2r

)
γµp′µ

}
Ψ = 0 .

(19)

where

f ′1r =
1
3

Re
(

e−ix·p′

e−ix·p′ + 2
(
e−iax·p′ − 1

) )
=

1
3

Re
(

e−ϵ·xe−ix·p

e−ϵ·xe−ix·p + 2
(
e−ϵ·xe−iax·p − 1

) )
f ′2r =

2
3

Re
(

e−iax·p′

e−ix·p′e−ix·p + 2
(
e−iax·p′ − 1

) )
=

2
3

Re
(

e−ϵ·xe−iax·p

e−ϵ·xe−ix·p + 2
(
e−ϵ·xe−iax·p − 1

) ) .
(20)

In (20), both f ′1r and f ′2r converge to 0 at large xµ by e−ϵµxµ

factor. Now let’s find the solution of (19)

∂µΨ = −
i
3

p′µ
(
1 + S ′

)
Ψ

where S ′ (x) = Re
(

2 (a − 1) e−ϵ·xe−iax·p + 2
e−ϵ·xe−ix·p + 2

(
e−ϵ·xe−iax·p − 1

) ) .
(21)

Ψ = c exp
{
−

i
3

p′µ

∫ xµ (
1 + S ′

)
dx′µ

}
= c exp

{
−

i
3

(
xµpµ + pµ

∫ xµ

S ′dx′µ
)}
×

× exp
(
−

1
3
ϵµxµ −

1
3
ϵµ

∫ xµ

S ′dx′µ
)
.

(22)

As expected, since the factor e−
1
3 ϵµxµ exists in Ψ, it converges

to 0 at large t. This means the collapse of the wave.
Of course, these results are different from the concept

of simultaneous wave collapse of nonlocal waves discussed
above. The reason is the fundamental limitation of the mod-
ified Dirac equation. Since the modified Dirac equation does
not accurately represent the behavior of non-local waves, but
approximates it to the behavior of local waves in continuous
space-time, it cannot describe concepts such as simultaneous
collapse of waves. But, it can be said that it has value as a
model of wave collapse. On the other hand, in the interaction
such as the bound state, there is no phenomenon such as wave
collapse, but a standing wave is formed, so the modified Dirac
equation representing the behavior of a local wave represents
the exact behavior of the wave.

6 Conclusions

One of the most important concepts inferred from the dis-
cretization of time is the nonlocality of matter and electro-
magnetic waves. The nonlocality of waves can naturally cause
wave collapse when interacting. This state of wave collapse
means particle nature and also corresponds to the quantum
state. What this paper concludes about the wave-particle du-
ality is that particle and wave properties are not selected by
matter according to circumstances, but are determined only

Young Joo Noh. Interpretation of Quantum Mechanics in Terms of Discrete Time I 113



Volume 19 (2023) PROGRESS IN PHYSICS Issue 2 (December)

by the way of interaction. It is done by analysis of the modi-
fied Dirac equation.

Interactions can be divided into bound states and scatter-
ing, which are all described by the modified Dirac equation.
Quantum conditions can be obtained in a bound state, which
is expected to be the same as in conventional quantum me-
chanics. Scattering can be divided into elastic scattering and
inelastic scattering, both of which are forms of interaction.
Elastic scattering is related to wave nature and inelastic scat-
tering is related to particle nature. According to the analysis
of the modified Dirac equation, the wave nature is expressed
in all bound states and elastic scattering. An example is the
Davisson–Germer experiment which demonstrates the wave
nature of electrons. The particle nature correspond to the case
of inelastic scattering. Examples include the photoelectric ef-
fect and Compton scattering.

The particle nature resulting from the collapse of nonlo-
cal waves encompasses the quantum concept of the existing
quantum mechanics, and the nonlocal wave concept encom-
passes the existing classical field. For matter (nonlocal waves,
and particle nature due to wave collapse), and for electromag-

netics (classical fields, nonlocal waves, and particle nature
due to wave collapse), each stage of existence participates in
interaction as a physical reality.

Received on August 1, 2023
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