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The failure to fulfill Lorentz’s condition leads to the emergence of a new scalar field,
which in turn should have the meaning of a new physical field. In this study, we prove
that the appearance of the scalar field in the theory of the Elastodynamics of the Space-
Time Continuum can more clearly explain the emergence of rest-mass and the expres-
sion of elementary particles through symmetric and anti-symmetric electromagnetic
tensors. The use of the scalar field in the previous theory requires a redefinition of
both the Lorentz force and the electrodynamic power, and then a rewrite of the electro-
magnetic stress tensor.

1 Introduction

In modern physics, we can ask the question what is the ori-
gin of mass? Einstein’s famous equation E = mc2 of spe-
cial relativity theory can be written in an alternative form as
m = E/c2. When expressed in this form, it suggests the pos-
sibility of explaining mass in terms of energy. Einstein was
aware of this possibility from the beginning. Indeed, his orig-
inal 1905 paper was titled, “Does the Inertia of a Body De-
pend on Its Energy Content?”. Anyway, when a collision be-
tween a high-energy electron and a high-energy positron oc-
curs, we often observe that many particles emerge from this
event. The total mass of these particles can be thousands of
times the mass of the original electron and positron. Thus,
mass has been physically created from energy. So energy and
mass are equivalent, but the question remains: how is energy
transformed into rest-mass?

Using the theory of the Elastodynamics of the Spacetime
Continuum [9, 16] (which is a result of applying mechan-
ical continuum laws (elastic continuum) to the space-time
continuum), it can be shown that rest-mass energy density
arises from the volume dilatation deformation of the space-
time continuum, while distortion deformations correspond to
massless shear transverse waves. Applying the previous the-
ory to the electromagnetic waves, we find that there is no vol-
ume dilatation, which means that the rest-mass density of the
photon is equal to zero. But with the existence of the scalar
field Ψ (which requires a generalization of the Maxwell-Hea-
viside equations), it can be proven that rest-mass is no longer
equal to zero.

2 Materials and methods

2.1 Generalize the Lorentz force and the electrodynam-
ics power

The basic laws of classical electrodynamics can be summa-
rized in differential form (Maxwell/Heaviside equations) by

these four equations [1, see pp. 24]:

∇⃗ · E⃗ =
ρe

ε0
(1)

∇⃗ × B⃗ − ε0µ0
∂E⃗
∂t
= µ0J (2)

∇⃗ × E⃗ +
∂B⃗
∂t
=
−→
0 (3)

∇⃗ · B⃗ = 0 . (4)

Let A⃗ and φ be, respectively, the vector and scalar poten-
tials of the classical electromagnetic field; they can be con-
nected via different relations, called gauges or gauge condi-
tions/relations, since they contain some arbitrariness. An im-
portant example of this is the Lorentz gauge [2]:

ε0µ0
∂φ

∂t
+ ∇⃗ · A⃗ = 0 . (5)

We will now assume that equality in (5) is not satisfied; that
is, in addition to the presence of the electric and magnetic
fields, there is a scalar field Ψ [3]:

ε0µ0
∂φ

∂t
+ ∇⃗ · A⃗ = 0

B⃗ = ∇⃗ × A⃗

Ψ = ε0µ0
∂φ

∂t
+ ∇⃗ · A⃗ . (6)

In order to introduce the scalar field into electromagnetic
theory, Either new terms must be introduced into the Lagran-
gian of the electromagnetic field [4], which guarantees the ex-
pression of longitudinal waves in the equations of field mo-
tion. Or by introducing the invariant scalar field (our case)
into Maxwell’s equations, which provide a description of the
longitudinal waves [5]. By adding derivatives of the field Ψ
to Maxwell/Heaviside equations, we get the following [4–7]:

∂B⃗
∂t
+ ∇⃗ × E⃗ = 0
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∇⃗ × B⃗ − ε0µ0
∂E⃗
∂t
− ∇⃗ · Ψ = µ0 J⃗

∇⃗ · B⃗ = 0

∇⃗ · E⃗ +
∂Ψ

∂t
=
ρe

ε0
. (7)

Using (6)–(7), we can obtain the inhomogeneous potential
wave equations (automatically) for both scalar and vector po-
tentials without an extra gauge condition:

ε0µ0
∂2φ

∂t2 − ∇
2φ =

ρe

ε0
. (8)

ε0µ0
∂2A⃗
∂t2 − ∇

2A⃗ = µ0 J⃗ . (9)

From (7), we can make sure that the electric field, the mag-
netic field, and the scalar field all satisfy the following inho-
mogeneous field wave equations:

ε0µ0
∂2E⃗
∂t2 − ∇

2E⃗ = µ0

−∇ ρe

ε0
−
∂J⃗
∂t

 (10)

ε0µ0
∂2B⃗
∂t2 − ∇

2B⃗ = µ0∇⃗ × J⃗ (11)

ε0µ0
∂2Ψ

∂t2 − ∇
2Ψ = µ0

(
∇⃗ · J⃗ +

∂ρe

∂t

)
. (12)

The existence of the longitudinal expansion/contraction wa-
ves (12), implies the existence of an elastic continuum (which
has volume dilatation) [6–9]. Maxwell’s theory does not ac-
cept the existence of this type of wave, because Maxwell’s
theory is described by an antisymmetric tensor

Fµϑ = ∂µAϑ − ∂ϑAµ

the trace of which equals zero, where Aµ is the four-dimens-
ional electromagnetic potential. This tensor Fµϑ can only de-
scribe transverse waves, which means that the vacuum used
in electromagnetism cannot be compressed. Therefore, there
was a need to introduce an elastic continuum by analogy with
a continuous elastic medium (mechanical continuum) like the
Foka-Podolsky Lagrangian [6]. In order to obtain both the
generalized power and the generalized Lorentz force, a source
transformation must be defined [7]:

ρ′e = ρe − ε0
∂Ψ

∂t
,
−→
J ′ =

−→
J +

1
µ0
∇⃗ · Ψ . (13)

The scalar field S used in [7], is associated withΨ byΨ = −S.
The electrodynamics power theorem is given by:

µ0(J⃗ · E⃗) = −
1
2
∂

∂t

(
ε0µ0E⃗2 + B⃗2

)
− ∇⃗(E⃗ × B⃗) . (14)

Using (13–14), the electrodynamics power is transformed in
the following way:

J⃗ · E⃗ − Ψ
ρe

µ0ε0
= −

1
2
∂

∂t

ε0E⃗2 +
B⃗2

µ0
+
Ψ2

µ0


−

1
µ0
∇⃗(E⃗ × B⃗ + E⃗ · Ψ)

(15)

where J⃗ · E⃗ − Ψ ρe
µ0ε0

represents the volume creation rate of
electromagnetic energy (joules per cubic meter per second)
or alternatively represents the rate of change of mechanical
energy per unit volume, i.e. the rate at which the field does
work on the charges per unit volume. The Lorenz force is
given by:

µ0

(
ρeE⃗ + J⃗ × B⃗

)
= ε0µ0((∇⃗ · E⃗) · E⃗ + (∇⃗ × E⃗) × E⃗)+

+ (∇⃗ × B⃗) × B⃗ − ε0µ0
∂

∂t
(E⃗ × B⃗) .

(16)

Using (13), the generalized Lorenz force is transformed into
the following form:

ρe · E⃗ + J⃗ × B⃗ − ΨJ⃗ = ε0((∇⃗ · E⃗) · E⃗ + (∇⃗ × E⃗) × E⃗)+

+
1
µ0

(∇⃗ × B⃗) × B⃗ − ε0
∂

∂t
(E⃗ × B⃗ − Ψ · E⃗)+

+
1

2µ0
∇⃗Ψ2 −

1
µ0
∇⃗ × (Ψ · B⃗)

(17)

where
(
ρe · E⃗ + J⃗ × B⃗ − ΨJ⃗

)
represents the rate of change of

mechanical momentum per unit volume and time. Note that
the scalar field and the electric vector field have different signs
indicating that the scalar field decelerates the charge, and that
the deceleration is proportional to the current density, which
in turn is proportional to the velocity of the charge. Thus, the
electric vector field accelerates the charge while the scalar
field decelerates it.

3 Elastodynamics of the Space-Time Continuum

Einstein’s general theory of relativity is based on the geom-
etry of continuous spacetime, which can be described by the
following field equation [8, see pp. 875]:

Rµϑ −
1
2
gµϑR + gµϑL =

8πG
c

Tµϑ (18)

where
Rµϑ: Ricci curvature tensor,
gµϑ: metric tensor,
R: curvature scalar,
L: the cosmological constant, which can be neglected for
small distances,
Tµϑ: the stress energy-momentum tensor.
In (18), everything on the left-hand side refers to the curva-
ture of spacetime, and everything on the right-hand side refers
to mass and energy.
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According to the theory of the Elastodynamics of the Spa-
ce-Time Continuum [9, 16], energy propagates in the Space-
Time Continuum, which causes deformation of the Space-
Time Continuum with longitudinal waves corresponding to
mass and transverse waves corresponding to massless field
energy. This leads implicitly to the proposition that the space-
time continuum must be a deformable continuum. This de-
formation, which has a physical nature [9], can be expressed
through strain that results from stress, so the stress energy-
momentum tensor results in strains in the space-time con-
tinuum (strained space-time). The presence of strain in the
space-time continuum leads to a deformation in the geome-
try of this space-time continuum. We can say it in the fol-
lowing way: the energy-momentum stress tensor produces a
strain in the spacetime continuum, and that strain changes the
geometry of the space-time continuum, and leads to the de-
formations with the longitudinal component being mass. The
stress-strain relation for an isotropic and homogeneous space-
time continuum can be written as the following [10]:

2Υ0ε
µϑ + λ0g

µϑε = T µϑ . (19)

Eq. (19) gives the stress in term of strain for a homoge-
neous and isotropic space-time continuum, both Υ0 and λ0
are Lamé constants, and they are linked together through K0
the bulk modulus:

1
2
Υ0 = K0 − λ0 . (20)

Here Y0 is the shear modulus, which corresponds to the re-
sistance of the space-time continuum to distortions, K0 repre-
sents the resistance of the space-time continuum to dilatation,
where distortions describe a change of shape of the space-
time continuum without a change in volume, and dilatation
describes a change of volume without a change of shape of the
space-time continuum [9-10], T µϑ is the energy-momentum
stress tensor, the tensor εµϑ is the strain tensor, the volume di-
latation ε = εαα is the trace εµϑ. If we compare (19) and (18)
we find an interesting similarity [9] (if we neglect the cosmo-
logical constant). The trace Tαα of (19) takes the following
relation:

2 (Υ0 + 2λ0) ε = Tαα . (21)

The total rest-mass energy density of the system is related to
the trace Tαα, by the following [11-12]:

Tαα
(
xk

)
= ρc2 . (22)

Using the last formula in (21), we get the relation between the
invariant volume dilatation and the invariant rest-mass:

2 (Υ0 + 2λ0) ε = ρc2 . (23)

By using (20), (23) takes the following expression:

4K0ε = ρc2 . (24)

Eq. (24) shows that the rest-mass is the result of the di-
latation of the spacetime continuum; the volume dilatation is
an invariant, as is the rest-mass energy density. The strain en-
ergy density of the space-time continuum is a scalar given by
[9]:

E =
1
2

T µϑεµϑ . (25)

In order to get the dilatation energy density and distortion
energy density, we first need to write the tensor decomposi-
tion of εµϑ as a sum of a strain deviator (distortion) tensor eµϑ

and a scalar (dilatation) tensor es [9]:

εµϑ = eµϑ + esg
µϑ (26)

where:

eµ
ϑ
= εµϑ − es δ

µ
ϑ
,

es =
1
4

eαα =
1
4
ε . (27)

In the same way, the energy-momentum stress tensor is de-
composed into a stress deviator tensor tµϑ and a scalar ts [9]:

T µϑ = tµϑ + tsg
µϑ (28)

where:

tµ
ϑ
= T µ

ϑ
− ts δ

µ
ϑ
,

ts =
1
4

Tαα . (29)

Using (26–29), one can get the following expression for the
scalar E [13]:

E =
1
2

K0ε
2 + Υ0eµϑeµϑ = E∥ + E⊥ (30)

where:

E∥ =
1

32K0

(
ρc2

)2
=

1
2

K0ε
2 , E⊥ = Υ0eµϑeµϑ. (31)

The strain energy density of the space-time continuum can
also be written in the following way [13]:

E =
1

2K0
t2
s +

1
4Υ0

tµϑtµϑ . (32)

From (30) or (32), we can see that the strain energy density
is separated into two terms: the first term corresponds to the
rest-mass longitudinal density (the dilatation energy density),
while the second is the massless transverse term (the distor-
tion energy density). Now we need to calculate the strain
energy density in two cases:
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σ̃µϑ =



1
2

(
ε0E⃗2 + 1

µ0
B⃗2 + 1

µ0
Ψ2

)
Sx/c −

√
ε0
µ0

ExΨ Sy/c −
√
ε0
µ0

EyΨ Sz/c −
√
ε0
µ0

EzΨ

Sx/c +
√
ε0
µ0

ExΨ −Txx −
1

2µ0
Ψ2 −Txy −

1
µ0
ΨBz −Txz +

1
µ0
ΨBy

Sy/c +
√
ε0
µ0

EyΨ −Tyx +
1
µ0
ΨBz −Tyy −

1
2µ0
Ψ2 −Tyz −

1
µ0
ΨBx

Sz/c +
√
ε0
µ0

EzΨ −Tzx −
1
µ0
ΨBy −Tzy +

1
µ0
ΨBx −Tzz −

1
2µ0
Ψ2



3.1 Case number (1)

Electromagnetic stress tensor σµϑ as strain energy density (in
case Ψ = 0). Using σαβ = ηαµηβϑσµϑ, we obtain the follow-
ing [9]:

σαβ =


ε0
2
−→
E 2 + 1

2µ0

−→
B2 −Sx/c −Sy/c −Sz/c

−Sx/c −Txx −Txy −Txz
−Sy/c −Tyx −Tyy −Tyz
−Sz/c −Tzx −Tzy −Tzz

 (33)

where Tij = ε0

(
EiE j −

1
2δijE

2
)
+ 1
µ0

(
BiB j −

1
2δijB

2
)

is the
Maxwell stress tensor. The dilatation energy density (the
“mass” longitudinal term) is given by [9]:

E∥ =
1
2

K0ε
2 =

1
2K0

t2
s =

1
32K0

(
σαα

)2 (34)

where:

σαα = η00σ
00 + η11σ

11 + η22σ
22 + η33σ

33 (35)

with the metric ηϑµ of signature (+1,−1,−1,−1).
The tensor σαα can be calculated [9,13]:

σαα =
1
2

(
ε0
−→
E 2 +

1
µ0

−→
B2

)
+ Txx + Tyy + Tzz = 0 (36)

giving σαα = 0, which means the longitudinal term (the rest-
mass term) is equal to zero:

E∥ =
1

32K0

(
ρc2

)2
=

1
32K0

(
σαα

)2
= 0 . (37)

In another sense, the rest-mass of the photon is zero. The term
E⊥ is given by (31) and takes the final expression [9,13]:

E⊥ =
1

4Υ0
σµϑσµϑ =

1
Υ0

(
U2

em −
1
c2 S 2

)
(38)

where: Uem =
1
2 ε0

(
−→
E 2 + c2−→B2

)
is the electromagnetic field

energy density.

3.2 Case Number (2)

Electromagnetic stress tensor as strain energy density (in case
Ψ , 0 ). We found that when Ψ = 0, the rest mass density is

zero. Now, we need to repeat the previous procedure of Case
(1) with the existence of the scalar field (Ψ , 0). To achieve
this we should calculate the tensor σαβ with the existence of
the scalar field Ψ: when Ψ , 0, the tensor σµϑ changes to
the tensor σ̃µϑ and this new tensor must fulfill the relations
(15-17):

∂µσ̃
µϑ =

 −
1
c

(
J⃗ · E⃗ − Ψ

ρe

µ0ε0

)
−

(
ρe · E⃗ + J⃗ × B⃗ − ΨJ⃗

)
 . (39)

The tensor σ̃µϑ that achieves the relation (39) is written in the
following Eq. (40) shown at the top of the page.

Shown at the top of the page. (40)

Note that when Ψ → 0, then σ̃µϑ → σµϑ, and quantity√
ε0
µ0

is the inverse of the impedance of free space z0
−1. The

next step is to calculate the longitudinal mass term:

σ̃αα = η00σ̃
00 + η11σ̃

11 + η22σ̃
22 + η33σ̃

33 =

=
1
2

(
ε0
−→
E 2 +

1
µ0

−→
B2 +

1
µ0
Ψ2

)
+ Txx +

1
2µ0
Ψ2+

+ Tyy +
1

2µ0
Ψ2 + Tzz +

1
2µ0
Ψ2 .

(41)

Taking into account the properties of tensor Tij and (35–37),
we find the following:

σ̃αα =
2
µ0
Ψ2 . (42)

Thus, the mass term is no longer equal to zero:

Ẽ∥ =
1

32K0

(
ρc2

)2
=

1
32K0

(
σ̃αα

)2
=

1
32K0

4
µ2

0

Ψ4 . (43)

The rest-mass term takes the following expression:

ρ = ±2ε0|Ψ|
2 . (44)

The massless transverse terms (the distortion energy density)
can be calculated as follows:

Ẽ⊥ =
1

4Υ0
t̃µϑ t̃µϑ, where t̃µϑ = σ̃µϑ and t̃µϑ = σ̃µϑ.
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σ̃αβ =



1
2

(
ε0
−→
E 2 + 1

µ0

−→
B2 + 1

µ0
Ψ2

)
−Sx/c +

√
ε0
µ0

EXΨ −Sy/c +
√
ε0
µ0

EyΨ −Sz/c +
√
ε0
µ0

EzΨ

−Sx/c −
√
ε0
µ0

EXΨ −Txx −
1

2µ0
Ψ2 −Txy −

1
µ0
ΨBz −Txz +

1
µ0
ΨBy

−Sy/c −
√
ε0
µ0

EyΨ −Tyx +
1
µ0
ΨBz −Tyy −

1
2µ0
Ψ2 −Tyz −

1
µ0
ΨBx

−Szc −
√
ε0
µ0

EzΨ −Tzx −
1
µ0
ΨBy −Tzy +

1
µ0
ΨBx −Tzz −

1
2µ0
Ψ2


. (45)

By using σ̃αβ = ηαµηβϑσ̃µϑ, the tensor σ̃µϑ can be written
as in (45) above at the top of the page. The term σ̃µϑσ̃µϑ can
now be calculated as in (46) below. The formula in (46) is
simplified as in (47) below.

σ̃µϑσ̃µϑ =
1
4

(
ε0
−→
E 2 +

1
µ0

−→
B2 +

1
µ0
Ψ2

)2

+ Txx
2+

+
1
µ0

TxxΨ
2 +

1
4µ2

0

Ψ4 + Tyy
2 +

1
µ0

TyyΨ
2+

+
1

4µ2
0

Ψ4 + Tzz
2 +

1
µ0

TzzΨ
2 +

1
4µ2

0

Ψ4−

−2
(

Sx

c

)2

− 2
(√
ε0

µ0
ExΨ

)2

− 2
(

Sy

c

)2

−

−2
(√
ε0

µ0
EyΨ

)2

− 2
(

Sz

c

)2

− 2
(√
ε0

µ0
EzΨ

)2

+

+2
(

Txy

)2
+ 2

(
1
µ0
ΨBx

)2

+ 2 ( Txz)2 +

+2
(

1
µ0
ΨBy

)2

+ 2
(

Tzy

)2
+ 2

(
1
µ0
ΨBz

)2

.

(46)

σ̃µϑσ̃µϑ =

{
1
4

(
ε0
−→
E 2 +

1
µ0

−→
B2

)2

+ Txx
2 + Tyy

2+

+Tzz
2 − 2

(
Sx

c

)2

− 2
(

Sy

c

)2

− 2
(

Sz

c

)2

+2
(

Txy

)2
+ 2 ( Txz)2 + 2

(
Tzy

)2
}
+

+

{
1
2

(
ε0
−→
E 2 +

1
µ0

−→
B2

)
+ Txx + Tyy + Tzz

}
·

1
µ0
Ψ2+

+
2
µ0
Ψ2


−→
B2

µ0
− ε0
−→
E 2

 + 1
µ2

0

Ψ4 .

(47)

By making use of (36–38), we find the following [9]:

1
4

(
ε0
−→
E 2 +

1
µ0

−→
B2

)2

+ Txx
2 + Tyy

2 + Tzz
2−

−2
(

Sx

c

)2

− 2
(

Sy

c

)2

− 2
(

Sz

c

)2

+

+2
(

Txy

)2
+ 2 ( Txz)2 + 2

(
Tzy

)2
=

= ε2
0

(
−→
E 2 + c2−→B2

)2
−

4
c2

(
S2

x + S2
y + S2

z

)
= σµϑσµϑ

(48)

1
2

(
ε0
−→
E 2 +

1
µ0

−→
B2

)
+ Txx + Tyy + Tzz = σ

α
α = 0 . (49)

Finally:

σ̃µϑσ̃µϑ = σ
µϑσµϑ +

2
µ0
Ψ2


−→
B2

µ0
− ε0
−→
E 2

 + 1
µ2

0

Ψ4 (50)

which means that the massless transverse terms (the distortion
energy density) take the following expression:

Ẽ⊥ = E⊥ +
1

2Υ0µ0
Ψ2

 B⃗2

µ0
− ε0
−→
E 2

 + 1
4Υ0µ

2
0

Ψ4 . (51)

4 Results and discussions

Because of the continuity equation (when ∇⃗ · J⃗+ ∂ρe
∂t = 0 ), the

discovery of the scalar field Ψ is not as easy as the discovery
of the electromagnetic fields. This means that the left-hand
side of (12) can be zero for a scalar field that is not equal to
zero. Then (12) can be written in the form of two equations:

ε0µ0
∂2Ψ

∂t2 − ∇
2Ψ = 0 , ∇⃗ · J⃗ +

∂ρe

∂t
= 0 .

From the last two equations, we can note that the wave equa-
tion ε0µ0

∂2Ψ
∂t2 −∇

2Ψ = 0, is as fundamental an equation as the
continuity equation ∇⃗ · J⃗ + ∂ρe

∂t = 0 [6]. Because the existence
of the scalar field is linked to the appearance of the rest mass
in the electromagnetic field, the motion of charges in accor-
dance with the equation ∇⃗ · J⃗+ ∂ρe

∂t = 0, always conjugates the
longitudinal waves and happens with volume dilatation. We
can write Maxwell’s equations (1–4) through the electromag-
netic tensor Fµϑ:

∂µ
[
Fµϑ

]
= Jϑ . (52)

The previous tensor is an antisymmetric tensor, which can
be written in the following formula:

[
Fµϑ

]
=

1
2

([
aµϑ

]
−

[
aϑµ

])
(53)

where aµϑ is an asymmetric tensor, which takes the following
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[
S µϑ

]
=

1
2



2
c2

∂φ

∂t
−
∂Ax

∂t
+

1
c
∂φ

∂x
−
∂Ay

∂t
+

1
c
∂φ

∂y
−
∂Az

∂t
+

1
c
∂φ

∂z

−
∂Ax

∂t
+

1
c
∂φ

∂x
−2
∂Ax

∂x
−
∂Ax

∂y
−
∂Ay

∂x
−
∂Ax

∂z
−
∂Az

∂x

−
∂Ay

∂t
+

1
c
∂φ

∂y
−
∂Ay

∂x
−
∂Ax

∂y
−2
∂Ay

∂y
−
∂Ay

∂z
−
∂Az

∂y

−
∂Az

∂t
+

1
c
∂φ

∂z
−
∂Az

∂x
−
∂Ax

∂z
−
∂Az

∂y
−
∂Ay

∂z
−2
∂Az

∂z



expression:

[
aµϑ

]
=



1
c2

∂φ

∂t
−
∂Ax

∂t
−
∂Ay

∂t
−
∂Az

∂t
1
c
∂φ

∂x
−
∂Ax

∂x
−
∂Ay

∂x
−
∂Az

∂x
1
c
∂φ

∂y
−
∂Ax

∂y
−
∂Ay

∂y
−
∂Az

∂y
1
c
∂φ

∂z
−
∂Ax

∂z
−
∂Ay

∂z
−
∂Az

∂z


. (54)

We can write another tensor, which is a symmetric tensor S µϑ:[
S µϑ

]
=

1
2

([
aµϑ

]
+

[
aϑµ

])
, (55)

which is given explicitly at the top of this page.
Using the formula S αα = ηαβS αβ, we can get the diago-

nal components of this tensor to describe the electromagnetic
potential ∂ϑAϑ:

S αα = Ψ = ε0µ0
∂φ

∂t
+ ∇⃗ · A⃗ . (56)

Therefore, the Lorentz condition is a cancellation of four-
dimensional volume dilatation from the space-time contin-
uum. According to [14-15], the pair

(
S µϑ, Fµϑ

)
of tensors

can explain the matter-field duality, Fµϑ describes the field
properties

(
Fµϑ as the field tensor.) and S µϑ contains mat-

ter waves (matter tensor with S αα , 0 ), which corresponds
to (44), and also to (17), which confirms that the scalar field
hinders the movement and therefore plays a role similar to in-
ertia. Both tensors

(
S µϑ, Fµϑ

)
can display fundamental prop-

erties such as energies or electric charge or rest-mass. Tensor
aµϑ is equivalent to the formula

{
aµϑ ∼ ∂µAϑ

}
, and the tensor

Fµϑ is equivalent to formula
{
∂µAϑ − ∂ϑAµ

}
, finally the tensor

S µϑ is
{
∂µAϑ + ∂ϑAµ

}
.

According to the theory of the Elastodynamics of the Spa-
ce-Time Continuum, the antisymmetric rotation tensor ωµϑ

can be written in the following [9-11]:

ωµϑ =
1
2

(
uµ;ϑ − uϑ;µ

)
(57)

where uµ is the displacement of an infinitesimal element of
the spacetime continuum from its unstrained position xµ. The
tensor in (57) corresponds to tensor Fµϑ [9, 16, see pp. 64]:

Fµϑ = φ0ω
µϑ . (58)

In order to fulfill Lorentz’s condition, the electromagnetic
potential four-vector Aµ satisfies the following relationship
[9, 16]:

Aµ = −
1
2
φ0uµ⊥ (59)

where the constant φ0 is referred to as the “space-time contin-
uum electromagnetic shearing potential constant” [9, 16, see
pp. 64] and uµ⊥ indicates that the relation holds for a transverse
displacement. From the last equation, we get the Lorentz con-
dition directly ∂µAµ = 0. The previous case corresponds to
antisymmetric tensor Fµϑ. However, in our case, Lorentz’s
condition is not satisfied, and therefore we need to general-
ize the previous relationship (59) to include symmetric ten-
sor S µϑ. According to the theory of the Elastodynamics of
the Space-Time Continuum, the symmetric strain tensor εµϑ,
which is equivalent to a tensor S µϑ, can be written as the fol-
lowing [9. 16, see pp. 53]:

εµϑ =
1
2

(
uµ;ϑ + uϑ;µ

)
. (60)

The displacements in expressions derived from (60) are writ-
ten as u∥, which means that symmetric displacements are al-
ong the direction of motion (longitudinal). We can now write
(59) in the following general form:

Aµ = f (uµ) . (61)

From (57), we can write the following:

∂ϑAµ = ∂ϑ f (uµ) =
∂ f (uµ)
∂uµ

∂uµ

∂xϑ
=
∂ f (uµ)
∂uµ

{
ε
µ
ϑ
+ ω

µ
ϑ

}
. (62)

Eq. (62) also comes automatically from [9, 16], therefore, we
can consider the field Aµ as a real physical vacuum in which
both electromagnetic waves and elementary particles can pro-
pagate and arise due to the dynamic distortion and dilatation
of this medium. The mass that appeared in (44) is real rest-
mass density, but there are two options: positive rest-mass
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density and negative rest-mass density
(
ρ ∼ ±|Ψ|2

)
. By mul-

tiplying (32) by (32 K0 ) and taking into account (31) and the
scalar function, we get the following [9, 16]:

32K0ε =
(
ρc2

)2
+

8K0

Υ0
t̃µϑ t̃µϑ . (63)

The last expression is similar to the energy relation of
Special Relativity, which can be written after taking the squa-
re root as follows:

E = ±ℏω = ±c

√
(ρc)2 +

8K0

c2Υ0
t̃µϑ t̃µϑ (64)

where E is the total energy density, noting that t̃µϑ t̃µϑ is quad-
ratic in structure [13], and equivalent to the momentum den-
sity. As we see in (64), the energy equation accepts nega-
tive solutions. Generally, (63) is the Klein-Gordon equation.
Eq. (44) is reminiscent of the wave function in quantum me-
chanics, which means the volume density of the particles;
thus, we can say that the wave function in quantum mechanics
describes the propagation of longitudinal waves in the space-
time continuum [9]. Finally, note that the tensor σµϑ is sym-
metric, but the tensor σ̃µϑ is not; the symmetry was broken af-
ter the mass appeared. We can confirm that the equations that
describe the behavior of elementary particles become funda-
mentally simpler and more symmetric when the mass of the
particles is zero.

5 Conclusion

We found that the addition of the scalar field to the Maxwell-
Heaviside equations requires a generalization of both the Lor-
entz force and power. Using the Elastodynamics of the Space-
time Continuum theorem, and after calculating the electro-
magnetic stress tensor which includes the previous general-
izations, the positive rest-mass and the negative rest-mass ap-
pear, meaning that the photon acquires mass, which in turn
corresponds to the volume dilatation of the space-time con-
tinuum.

Received on October 22, 2023
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