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We study the recent series of papers by the Italian-American physicist, Ruggero Maria
Santilli based on the Lie-isotopic branch of hadronic mechanics, which imply that a
system of extended protons and neutrons in conditions of partial mutual penetration
in a nuclear structure verifies the following properties: 1) Admits, for the first time,
explicit and concrete realizations of Bohm’s hidden variables. 2) Violates Bell’s in-
equalities by therefore admitting classical counterparts. 3) Verifies the broadening of
Heisenberg’s indeterminacy principle for electromagnetic interactions of point-like par-
ticles in vacuum into the isouncertainty principle of hadronic mechanics, also called
Einstein’s isodeterminism, for extended hadrons in conditions of partial mutual pene-
tration, which new principle allows a progressive recovering of Einstein’s determinism
in the transition from hadrons to nuclei and stars and its full recovering at the limit
of Schwartzschild’s horizon. We then indicate some of the far reaching advances that
are possible for hadronic mechanics and Einstein’s isodeterminism but impossible for
quantum mechanics and Heisenberg’s indeterminacy principle.

1 Hadronic mechanism

Experimental foundations. This paper is based on the ex-
perimental evidence that protons [1] and neutrons [2] (collec-
tively called nucleons) have an extended charge distribution
with the radius RN = 0.87 fm in conditions of partial mu-
tual penetration when they are members of a nuclear structure
[3–5] (e.g., the charge radius of the Helium [4] RHe = 1.67 fm
is 0.07 fm smaller then the nucleon diameter DN = 1.74 fm),
resulting in the expectation that strong nuclear interactions
have a conventional potential, thus Hamiltonian component
and a new, contact, thus zero-range and non-Hamiltonian
component.
Origination of hadronic mechanics. The Italian-American
physicist, R. M. Santilli initiated his studies on extended par-
ticles under potential/Hamiltonian and contact/non-Hamilto-
nian interactions during his graduate studies at the University
of Torino, Italy. By recalling that quantum mechanics is re-
versible over time while nuclear fusions are known to be ir-
reversible and inspired by the 1935 Einstein-Podolsky-Rosen
(EPR) argument that Quantum mechanics is not a complete
theory, [6] (see the recent studies [7–9]), Santilli dedicated
his 1965 Ph.D. thesis to the EPR irreversible “completion” of
quantum mechanics via the Lie-admissible generalization of
Lie’s theory and Heisenberg’s equation [10–12]).

After joining Harvard University under DOE support in
September 1977 for the study of irreversible processes, San-
tilli resumed his research on the Lie-admissible formulation
of irreversibility as one can see from his 1978 papers [13,14],
his Springer-Verlag monographs [15, 16] and his axiomatic
formulation of irreversibility in the 1981 paper [17] released
under his affiliation at Harvard’s Department of Mathematics
and proposed the continuation of the studies under the name
of hadronic mechanics which is intended to denote a mechan-
ics for strong interactions (see p. 112 of [16] for the first ap-

pearance of the name “hadronic mechanics”).
Hamiltonian interactions, which are collectively referred to
interactions that are linear, local and derivable from a poten-
tial, thus being fully representable by the conventional Hamil-
tonian of quantum mechanics.
Non-Hamiltonian interactions, which are collectively re-
ferred to interactions that are: Nonlinear (in the wave func-
tion) as pioneering by Werner Heisenberg [18]; Nonlocal (di-
stributed in a volume not reducible to points) as pioneered
by Louis de Broglie and David Bohm [19]; Nonpotential (of
contact zero-range type) as pioneered by R. M. Santilli in the
1978 monograph [15] via the conditions of variational self-
adjointness according to which Hamiltonian interactions are
variationally selfadjoint (SA), while non-Hamiltonian inter-
actions are variationally nonselfadjoint (NSA).
Lie-isotopic branch of hadronic mechanics. In this pa-
per, we use the axiom-preserving, time reversible Lie-isotopic
branch of hadronic mechanics introduced in Charts 5.2, 53
and 5.4, p. 165 on of [16] for the representation of stable
(thus, time-reversal invariant) systems of extended collections
of particles at short mutual distances under Hamiltonian/SA
and non-Hamiltonian/NSA interactions.

Santilli’s Lie-isotopic methods are based on the general-
ization of the conventional universal enveloping associative
algebra ξ with generic product AB = A × B and related unit
1, 1 × A = A × 1 ≡ A into the associativity-preserving isoen-
veloping algebra ξ̂ with isoproduct and related isounit (first
presented in Eq. (5), p. 71 of [16] and Chart. 5.2 p. 154 for
treatment)

A×̂B = AŜ B, Ŝ > 0 ,

1̂ = 1/Ŝ , 1̂ × A = A × 1̂ ≡ A ,
(1)

where S , called the isotopic element (or the Santillian) is
positive-definite but possesses otherwise an unrestricted func-
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tional dependence on all needed local variables.
The lifting ξ → ξ̂ was proposed for the consequential

generalization of all branches of Lie’s theory into the axiom-
preserving Lie-Santilli isotheory (presented in Charts 5.3, 5.4
from p.114 on of [16]) (see also [20, 21]) with particular ref-
erence to the lifting of n-dimensional Lie algebras with (Her-
mitean) generators Xk, k = 1, 2, . . . , n and conventional brack-
ets into the form

[Xi ,̂X j] = Xi×̂X j − X j×̂Xi =

= XiŜ X j − X jŜ Xi = Ck
i jXk .

(2)

The fundamental dynamical equation of the isotopic me-
thods are given by the Lie-isotopic generalization of Heisen-
berg equation (Eq. (18a), p. 153 of [16])

idA/dt = A×̂H − H×̂A = AŜH − HŜA , (3)

where the Hamiltonian H represents all SA interactions while
the Santillian Ŝ represents the extended character of particles
and their new class of NSA interactions.
Subsequent studies. For advances on hadronic mechanics
that occurred in the decades following the 1978 proposal [13–
16], the interested reader can inspect: the overview [8] with
applications in various fields; the classification of hadronic
mechanics [22] (including, in addition to the Lie-isotopic
branch, the Lie-admissible branch for the representation of
irreversible processes; hyperstructural branch for biological
structures and the isodual branch for antiparticles); the in-
troductory reviews [23–25]; the AO collection of recent pa-
pers [26]; the list of early workshops and conferences [27];
independent monographs [28–36]; and the general presenta-
tion [37–39].
Realization of the isotopic element. To render this paper
minimally self-sufficient, let us recall the generally used real-
ization of the Santillian [8]

Ŝ = Ŝ 4×4 = Πα=1,2,3,4 Diag,

 1
n2

1,α

,
1

n2
2,α

,
1

n2
3,α

,
1

n2
4,α

 ×
× e−Γ(r,p,a,E,d,τ,π,ψ,... ) > 0 , (4)

nµ,α > 0, Γ > 0,

where:

1) The representation of the dimension and shape of the
individual nucleons is done via semi-axes n2

k,α, k =
1, 2, 3 (with n3 parallel to the spin) and normalization
for the vacuum n2

k,α = 1.
2) The representation of the density is done via the charac-

teristic quantity n2
4,α per individual nucleons with nor-

malization for the vacuum n2
4,α = 1.

3) The representation of the nonlinear, nonlocal and non-
potential interactions between extended nucleons is
done via the positive-definite exponential term Γ with

an arbitrary dependence on relative coordinates r, mo-
menta p, accelerations a, energy E, density d, temper-
ature τ, pressure, π, wave functions ψ or any needed
local variable.

When representing nucleons and their NSA interactions,
the space dimension of the issotopic element is restricted not
to surpass the range of strong interactions R = 1 fm = 10−13

cm. However, the space dimension of the isotopic element
can be, in general, infinite.
Elementary construction of hadronic mechanics. Despite
their apparent mathematical complexity, all isotopic formu-
lations can be constructed via the following simple quan-
tum mechanical nonunitary transformation unit 1 = ℏ, and
therefore, of all related formulations according to the simple
rules [40]

1 → U1U† = 1̂ , 1,

AB → U(AB)U† =

= (UAU†)(UU†)−1(UBU†) = ÂŜ B̂,

[Xi, X j]→ U[Xi, X j]U† = [X̂i ,̂X̂ j] ,

(5)

which transformations essentially complete a quantum me-
chanical model for point-like particles into a hadronic model
for extended particles under new interactions.
Invariance of isotopic formulations. All quantum mechan-
ical nonunitary models, thus including models (5), are af-
fected by serious inconsistency problems, such as the gen-
eral lack of conservation of Hermiticity/observability, causal-
ity, etc. These problems were resolved by Santilli in the 1998
Ref. [40] via the completion of unitary law (4) into the isouni-
tary law

Ŵ×̂Ŵ† = Ŵ†×̂Ŵ = 1̂, (6)

completed by the identical reformulation of transformations
(5) into the isounitary form

U = ŴŜ 1/2,

UU† = 1̂→ Ŵ×̂Ŵ† = Ŵ†×̂Ŵ = 1̂,

1̂→ Ŵ×̂1̂×̂Ŵ† = 1̂′ ≡ 1̂,

Â×̂B̂→ Ŵ×̂(Â×̂B̂)×̂Ŵ† = Â′×̂′B̂′ = Â′Ŝ ′B̂′,

Ŝ ′ ≡ Ŝ = (W†×̂Ŵ)−1,

(7)

with consequential resolution of the problematic aspects of
quantum nonunitary models (5), as well as the prediction by
isotopic formulations, in view of properties (7), of the same
numerical values under the same conditions at different times.
Experimental verifications. Santilli hadronic mechanics has
been verified in virtually all physics fields by the exact and
invariant representation of experimental data generally not
representable via quantum mechanics, such as: direct exper-
imental verifications of the EPR argument [41–43]; electro-
dynamics [44–47]; large ion physics [48]; particle physics
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[49, 50]; Bose-Einstein correlation [51, 52]; propagation of
light within physical media [53]; cosmology [54, 55]; neu-
tron synthesis from the Hydrogen [56]; Deuteron magnetic
moment [57]; Deuteron spin and rest energy [58]; and other
fields.

2 Einstein’s isodeterminism

EPR entanglement. Experimental evidence well known sin-
ce Einstein’s times establishes that particles, which are ini-
tially bounded together and then separated, can influence each
other continuously and instantaneously at arbitrary distances
[59]. Albert Einstein strongly objected against the very terms
“quantum entanglement” on grounds that the sole possible
representation of particle entanglements via the Copenhagen
interpretation of quantum mechanics would require superlu-
minal communications that violate special relativity.

For the intent of honoring the generally forgotten Ein-
steins view, Santilli [62] proved that the sole possible repre-
sentation of particle entanglement by the Copenhagen inter-
pretation of quantum mechanics is that for which the parti-
cles are free, evidently because the sole possible interactions
admitted by said interpretation are those derivable from a po-
tential which is identically null for particles at large mutual
distances.

By recalling that the wave packet of particles is identi-
cally null solely at infinite distance, Ref. [62] then pointed out
that the sole interactions that are continuous, instantaneous
and at arbitrary distances are given by the mutual penetration
of wave packets of particles which, being nonlinear, nonlo-
cal and nonpotential, thus NSA [15], are beyond any hope of
treatment via quantum mechanics.

Thanks to the prior development of isomathematics for
the representation of NSA interactions [33, 36, 37], Santilli
[62] proposed the axiom-preserving completion of quantum
into hadronic entanglement under the suggested name of EPR
entanglements which does indeed represent particle entangle-
ments with non-zero, yet non-Hamiltonian-NSA interactions.

Note that the EPR entanglement of particles requires a
conceptual and and technical revision of the notion of interac-
tions, e.g., because nuclear constituents admit nontrivial NSA
interactions even when they are at a mutual distance bigger
than that of strong interactions.

More recently, the EPR entanglement has been experi-
mentally proved to hold at arbitrary classical distances [60].
This important feature appears to support Santilli’s sugges-
tion [15] that contact forces dating back to Newton, when
turned into an operator form, are plausible candidates for the
fifth interactions intended as nonlinear, nonlocal, continuous
and instantaneous interactions at arbitrary distances due to
the overlapping of the weave packets of particles (see Sect.
1.5.C of [80]). Their lack of identification to date is easily
explained by their lack of existence in quantum mechanics.
Therefore, in the event such a view is accepted, Santilli’s

1978 monograph [15] can be considered the birth of the fifth
interactions.

Note also that paper [62] confirms Einstein’s additional
view that “The wave function of quantum mechanics does
not provide a complete description of the entire physical re-
ality” [6].
Bohm’s hidden variables. As it is well known, in an attempt
of reconciling Einstein’s determinism with quantum mechan-
ics, D. Bohm [63, 64] submitted in 1952 the hypothesis that
quantum mechanics admits hidden variables λ, that is, vari-
ables which are hidden in its formalism. Following half a cen-
tury of failure to achieve explicit realizations, a rather general
consensus (confirmed by Bell’s inequalities outlined next) is
that Bohm’s hidden variables do not exist within the formal-
ism of quantum mechanics.

In 1995, R. M. Santilli [38] proved that hidden variables
do exist within the context of hadronic mechanics, they are
hidden in the axiom of associativity of quantum mechanics
and are quantitatively represented by the isotopic element
(Sect. 4.C.3, p. 170 on and Sect. 6.8, p. 254 on of [38], e.g.,

λ = Ŝ ,

A×̂B = AλB, A×̂(B×̂C) = (A×̂B)×̂C.
(8)

It should be noted that, despite its apparent elementary
character of the isotopic product (1), the quantitative study of
the indicated realization of Bohm’s hidden variables required
collegial efforts in the nonlocal lifting of the entire 20th cen-
tury applied mathematics, including the Newton-Leibnitz dif-
ferential calculus [65] (see also studies [36]). Nowadays,
there exists a number of explicit and concrete realization of
hidden variables, among which we mention the realization
used for the first numerically exact and time invariant repre-
sentation of the Deuteron magnetic moment [66, 67] which
achievement resulted to be impossible for quantum mechan-
ics in one century.
Bell’s inequalities. In the 1964, J. S. Bell [68] proved a num-
ber of quantum mechanical inequalities, the first one of which
essentially states that systems of point like particles with spin
1/2 represented via quantum mechanics do not admit clas-
sical counterparts. This view was assumed by mainstream
physicists for over half a century to be the final disproof of
the EPR argument and of Bohm’s hidden variables.

Again thanks to the prior development of isomathemat-
ics as well as of explicit and concrete realizations of hidden
variables, Santilli [71] proved in 1998 a number of hadronic
inequalities essentially stating that systems of extended parti-
cles with spin 1/2 represented via the Lie-isotopic branch of
hadronic mechanics do indeed admit classical counterparts,
while providing explicit examples.

Santilli’s hadronic inequalities are confirmed by the direct
experimental verifications of the EPR-argument [41–43] es-
tablishing the existence in nature of particle conditions which
violate Bell’s inequalities.
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Note that the above theoretical and experimental works
imply the expectation that Heisenberg’s uncertainties prin-
ciple is correspondingly violated by strong interactions
between extended nucleons in conditions of mutual penetra-
tion.
Einstein’s isodeterminism. Soon after joining Harvard Uni-
versity in late 1977, R. M. Santilli expressed doubts on the ex-
act validity for strong interactions of Heisenberg’s uncertainty
principle (also called indeterminacy principle) and other qu-
antum mechanical laws, as one can see from the titles of
the 1978 memoir [14] (see also the subsequent papers [69,
70]). Santilli’s argument underlying such a conviction is that
Heisenberg’s standard deviations for coordinates ∆r, momen-
ta ∆p and their product are certainly valid for the conditions
of their original conception, i.e., for point-like charged parti-
cles under electromagnetic interactions, because a point-like
particle can move within a star by solely sensing action-at-a-
distance interactions due to its dimensionless character.

The situation is conceptually, mathematically, theoreti-
cally and experimentally different when considering extended
nucleons in conditions of mutual penetration because, in view
of their “strength”, strong interactions imply the creation of
a pressure on a given nucleon by its surrounding nucleons,
according to a view pioneered by L. de Broglie and D. Bohm
with their nonlocal theory [19]. It is then evident that the stan-
dard deviations for the indicated nucleon ∆r and ∆p cannot
be the same as the corresponding deviations for an electron in
vacuum, thus implying the need for a suitable completion of
Heisenberg’s uncertainty principle for strong interactions.

Thanks to the original works [14, 69, 70] and the recent
works [62, 71], Santilli [72] finally achieved in 2019 the
axiom-preserving EPR completion of Heisenberg’s uncer-
tainty principle into the isouncertainty principle of hadronic
mechanics, also called Einstein’s isouncertainies, for extend-
ed nucleons under electromagnetic, weak and strong interac-
tions whose derivation can be outlined as follows.

LetH be the Hilbert-Myung-Santilli isospace [73] of iso-
mechanics with isostates |ψ̂⟩ and isoinner product ⟨ψ|×̂|ψ̂⟩ (for
a review, see Sect. 4 of [23]). Assume the isonormalization
which is necessary for a constant Santillian

⟨ψ̂|×̂|ψ̂⟩ = ⟨ψ̂|Ŝ |ψ̂⟩ = Ŝ , (9)

the Schrödinger-Santilli isoequation [16, 38]

Ĥ×̂|ψ̂⟩ =

= [Σk=1,2,...n
1

2mk
p̂k×̂ p̂k + V̂(r)] Ŝ (r, p, ψ, . . . ) |ψ̂⟩ =

E × |ψ̂⟩,

(10)

the isolinear momentum [65]

p̂×̂|ψ̂⟩ = −i 1̂∂r̂ψ̂, (11)

and the isocommutation rules

[r̂i ,̂ p̂ j]×̂|ψ̂⟩ = −i 1̂δi. j|ψ̂⟩,

[r̂i ,̂r̂ j]|ψ̂⟩ = [ p̂i ,̂ p̂ j]|ψ̂⟩ = 0.
(12)

Then the isounitary transformation (7) of Heisenberg’s
uncertainty principle

∆r∆p =
1
2
|⟨ψ|
[
r,̂p
]
|ψ⟩| ⩾

1
2
ℏ, (13)

uniquely and unambiguously yields the isouncertainty princi-
ple of hadronic mechanics, also called Einstein’s isodetermin-
ism, whose projection on our spacetime (as needed for exper-
iments) is given by [72] (see [23] for an extended derivation)

∆̂r∆̂p =
1
2
|⟨ψ̂|×̂

[
r̂,̂ p̂
]
×̂|ψ̂⟩| =

=
1
2
|⟨ψ̂|Ŝ

[
r̂,̂ p̂
]
Ŝ |ψ̂⟩| ≈

1
2
ℏŜ =

1
2
ℏe−Γ(r,p,a,E,d,τ,π,ψ,... ) ≈

≈
1
2
ℏ
[
1 − Γ(r, p, a, E, d, τ, π, ψ, . . . ) + . . .

]
≪

1
2
ℏ , (14)

where the Santillian Ŝ is given by Eq. (4) and we assumed, in
first approximation, that all nucleons are perfectly spherical.

It should ne mentioned that completion (14) of Heisen-
berg’s uncertainty principle includes as particular cases most
of the existing generalized uncertainty relations known to this
author (see, e.g., [74–76] and papers quoted therein).

In particular, the standard isodeviations ∆̂r and ∆̂p pro-
gressively and individually tend to zero with the increase of
the density of the hadronic medium, thus in the transition
from hadrons to nuclei and stars.

Note that the completion of the value ⩾ 1
2 ℏ into the form

≈ 1
2 ℏŜ is due to the nonlocality of hadronic mechanics which

requires a redefinition of the very notion of standard devia-
tions due to the very big pressure exercised on a nucleon by
the surrounding nucleons under “strong” interactions [24,72].

To achieve the full validity of Einstein’s determinism, Sa-
ntilli [77,78] decomposes the Riemannian metric g(x) in four
dimensions into then product of the Minkowskian metric η =
−Diag, (1, 1, 1,−1) and the gravitational isotopic element Ŝ

g(x) = Ŝ 4×4 η4×4, (15)

with particular values for the Schwartzschild metric

Ŝ kk =
1

1 − 2M/r
, Ŝ 44 = 1 − 2M/r . (16)

It is then easy to see that Einstein’s determinism [6] is fully
recovered at the limit of the Schwartzschild horizon.

3 Concluding remarks

Despite one century of studies under large public funds, nu-
clear physics has been unable to achieve the controlled nu-
clear fusion; the recycling of radioactive nuclear waste; the
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exact representations of nuclear data; the synthesis of the neu-
tron from the Hydrogen atom in the core of stars; the nuclear
stability despite the natural instability of the neutron and ex-
tremely repulsive protonic Coulomb forces; and other open
problems.

A main point which is attempted to convey in this paper
is that the indicated open nuclear problems appear to be due
to the theoretical assumption that Heisenberg’s uncertainty
principle for point-like particles under electromagnetic inter-
actions is also valid for extended nucleons under strong inter-
actions.

As an illustration, Heisenberg’s uncertainty principle pro-
hibits a structural representation of the synthesis of the neu-
tron from the electron and the proton in the core of stars,
because the standard deviation ∆re for the coordinate of the
electron is much bigger than the size of the neutron and the
standard deviation ∆pe of the momentum implies a kinetic
energy of the electron bigger than the rest energy of the neu-
tron,

∆re > Rn = 0.87 × 10−13 cm,

∆ve >
ℏ

∆re × me
> 1010 m/s,

∆Ke =
1

2me
× (∆pe)2 > mn = 939.56 MeV/c2.

(17)

By comparison, the study of the neutron synthesis via hadron-
ic mechanics under isouncertainty principle (14), implies sta-
ndard isodeviations for which Eqs. (17) become

∆̂re = Ŝ∆re ⩽ Rn = 0.87 × 10−13 cm,

∆̂v = Ŝ∆ve ≪ 1010 m/s,

∆̂Ke = Ŝ∆Ke ≪ mn = 939.56 MeV/c2,

(18)

thus allowing a quantitative representation of the neutron syn-
thesis from the Hydrogen [79] with far reaching advances
that cannot be formulated in quantum mechanics, let alone
treated, such as [80–82]: 1) The prediction of means for re-
cycling radioactive nuclear waste by nuclear power plants via
new stimulated decays; 2) The possible return to the contin-
uous creation of matter in the universe to explain the 0.782
MeV missing in the neutron synthesis; 3) The apparent re-
duction of all matter in the universe to protons and electrons.
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