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Introducing the Space Metric of a Rotating Massive Body
and Four New Effects of General Relativity
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This paper introduces and proves the space metric of a rotating spherical body (approx-
imated by a mass-point). This is a new metric to General Relativity, which is an ex-
tension and replacement of Schwarzschild’s mass-point metric (since all cosmic bodies
rotate). Physically observable characteristics of such a space are calculated, including
the curvature of space and others. It is shown that the curvature of such a space has two
components: a component created by the gravitational field (it decreases with distance
from the body) and a constant curvature component created by the rotation of space (it
does not depend on distance). Using Einstein’s equations, the Riemannian conditions
are calculated under which the introduced metric is valid (with the conditions, the Ein-
stein equations vanish). Four new effects of General Relativity are calculated: the de-
flection of light rays and mass-bearing particles near a rotating body, a length-stretching
effect along the geographical longitudes, a time-loss effect in the clocks co-moving with
the Earth’s rotation (to the East) and a time increment when moving to the West.

1 Introduction

This is the fourth paper in the series of papers on the effects
of the space curvature, caused by the rotation of space.

The first [1] of these studies, besides many other scientific
results obtained in it, showed that the rotation of space makes
it curved. Then, two subsequent studies [2, 3] predicted four
new effects of General Relativity, the origin of which is the
space curvature caused by the rotation of space.

The first two effects are the deflection of light rays and
mass-bearing particles in the field of a rotating body [2].

When a body rotates, the space around it curves towards
the direction of its rotation and the centre of the body (around
which it rotates), thereby creating a “slope of the hill” de-
scending “down” along the equator in the direction, in which
the body rotates, and also to the centre of the body. There-
fore, when a particle travels freely to a rotating body, it “rolls
down” the slope of the space curvature along the equator in
the direction, in which the body rotates, as well as to the cen-
tre of the body. As a result, the following two effects should
occur in the field of a rotating body:

1. A particle travelling freely to a rotating body should be
deflected slightly from its radial trajectory in the equa-
torial direction, in which the body rotates, i.e., along
the geographical longitudes;

2. The particle should gain a small increase of its velocity,
and its path should become physically “stretched” for
a little, causing the particle to reach the body with a
delay in time compared to if the body did not rotate.

That is, light rays and mass-bearing particles should be
deflected near a rotating body due to the curvature of space
caused by its rotation. These two effects should take place
both for mass-bearing particles and for light rays (massless
light-like particles such as photons).

The other two effects are the length stretching and time
loss/gain, expected in the field of a rotating body due to the
curvature of its space, caused by its rotation [3]:

3. Since the diurnal rotation of the Earth around its axis
curves the Earth’s space making it “stretched” along the
geographical longitudes, then the measured length of a
standard rod should be greater when the rod is installed
in the longitudinal direction;

4. Due to the same reason, there should be a time loss
on board an airplane flying to the East (the direction in
which the Earth’s space rotates), and also a time incre-
ment when flying in the opposite direction, to the West.

Both of the effects are maximum at the equator (where the
curvature of the Earth’s space caused by its rotation is maxi-
mum and, therefore, space is maximally “stretched”) and de-
crease towards the North and South Poles.

The above four effects, namely — the deflection of light
rays and mass-bearing particles in the field of a rotating body,
and also the length stretching and time loss/gain in the field
of a rotating body — are new fundamental effects of the Gen-
eral Theory of Relativity, which were predicted “au bout d’un
stylo”. These four effects can be considered as an addition to
the well-known Einstein effect of the deflection of light rays
in the field of a gravitating body (which does not take the
rotation of space into account).

2 Problem statement

When calculating the mentioned four new effects in the field
of a rotating body, our task was to deduce the effects in their
“pure form”, i.e., without any other factors taken into account.
To do this, the simplest metric was used, which described the
four-dimensional space (space-time) of a rotating body, the
mass of which is so small that the gravitational field it creates
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can be neglected.
This space metric is easy to deduce. Consider the metric

of an empty space, which does not rotate or deform

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2

θ dφ2
)
, (1)

where and below, in terms of the spherical coordinates, r is
the radial coordinate, dr is the elementary segment length
along the radial r-axis, θ is the polar coordinate angle mea-
sured from the North Pole to the equator, rdθ is the elemen-
tary arc length along the θ-axis (along the geographical lati-
tudes), φ is the geographical longitude (equatorial coordinate
axis), and r sin θdφ is the elementary arc length along the
equatorial φ-axis.

Assume that the space rotates along the equatorial axis φ,
i.e., along the geographical longitudes, with the linear veloc-
ity v3=ωr2sin2

θ, where ω= const is the angular velocity of
this rotation. Since by definition of vi (13)

v3 = ωr2sin2
θ = −

cg03
√
g00

(2)

then we have

g03 = −
1
c
v3
√
g00 = −

ωr2sin2
θ

c
, (3)

and the metric of such a rotating empty space has the form

ds2 = c2dt2 − 2ωr2sin2
θdtdφ −

− dr2 − r2
(
dθ2 + sin2

θ dφ2
)
. (4)

As you can see, the non-zero components of the funda-
mental metric tensor gαβ of this metric are

g00 = 1 , g03 = −
ωr2sin2

θ

c

g11 = −1 , g22 = −r2, g33 = −r2sin2
θ

 , (5)

where g00 = 1 means that the space is free of gravitational
fields or such fields can be neglected: with g00 = 1 the grav-
itational field potential w, the general formula of which for
any space metric is w = c2 (1 −

√
g00) (12), is either equal to

zero w= 0 or approaches zero w→ 0.
The deflection of light rays and mass-bearing particles in

the field of a rotating body [2], and also the length stretching
and time loss/gain in the field of a rotating body [3] were
obtained in the space of the above metric (4). Thanks to the
above approximation, expressed with the simplest metric (4)
describing a rotating empty space, it was possible to obtain
the mentioned effects of the space curvature created by the
rotation of space in their “pure form”, without adding any
other geometric or physical factors.

But real experiments conducted in an Earth-bound labora-
tory must take the gravitational field of the Earth into account.
From this follows the problem statement for this paper:

Problem statement
Our task now is to re-calculate the space curvature ef-
fects caused by the rotation of space — the deflection
of light rays and mass-bearing particles, and also the
length stretching and time loss/gain in the field of a ro-
tating body — for the case, where the gravitational field
of the rotating body is taken into account.

To do this, we need the metric of such a space. We deduce
it from Schwarzschild’s mass-point metric, which describes a
spherically symmetric space filled with the gravitational field
created in emptiness by a spherical massive island of sub-
stance (approximated by a mass-point)

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
, (6)

where r is the radial distance from the centre of the massive
island, rg = 2GM/c2 is its gravitational radius, calculated for
its mass M, and the non-zero components of the fundamental
metric tensor gαβ are

g00 = 1 −
rg
r
, g11 = −

1

1 −
rg
r

g22 = −r2, g33 = −r2sin2
θ

 . (7)

As before, we assume that the space rotates along the
equatorial axis φ (along the geographical longitudes) with the
linear velocity v3=ωr2sin2

θ, where ω= const is the angular
velocity of this rotation. Since by definition of vi (13)

v3 = ωr2sin2
θ = −

cg03
√
g00
, (8)

and, hence,

g03 = −
1
c
v3
√
g00 = −

ωr2sin2
θ

c

√
1 −

rg
r
, 0 , (9)

then we obtain the desired metric

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ −

−
dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
, (10)

which describes a spherically symmetric space, which is filled
with the gravitational field created in emptiness by a rotating
spherical island of matter (approximated by a mass-point) and
rotates together with this body.

It is the metric (10), in the space of which we are going
to re-calculate the space curvature effects, created due to the
rotation of space.

We will do this in the following steps. First, we need to
give a short description of the mathematical formalism we are
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using — the mathematical apparatus of chronometric invari-
ants, which are physically observable quantities in the space-
time of General Relativity.

Second, we calculate the physically observable chr.inv.-
characteristics of the space of a rotating mass-point, which is
the space of the metric (10).

Third, it is not a fact that the space described by the in-
troduced metric of a rotating mass-point (10) is Riemannian.
By definition, a Riemannian space is such one, the metric
of which has the Riemannian square form ds2 = gαβ dxαdxβ,
determined by the Riemann fundamental metric tensor gαβ,
is invariant ds2 = inv everywhere in the space, and also sat-
isfies Einstein’s field equations, which are the specific rela-
tion between the Ricci curvature tensor, the fundamental met-
ric tensor multiplied by the curvature scalar, and the energy-
momentum tensor of the “space filler” (the latter targets non-
empty Riemannian spaces filled with distributed matter). The
above three requirements are specific to the family of Rie-
mannian spaces.

Finding a metric that satisfies the first two conditions is
easy, but satisfying the third condition (Einstein’s field equa-
tions) is problematic. This is why, until now, only a small
number of space metrics have been proven to be Riemannian
and used in the General Theory of Relativity.

A space metric satisfies the field equations, if the compo-
nents of the fundamental metric tensor gαβ (specific to this
metric) and the components of the energy-momentum ten-
sor of the medium (that fills the space), substituted into the
field equations, make the left-hand and right-hand sides of the
equations identical (the field equations vanish). In an empty
Riemannian space, the left-hand side of the field equations it-
self after the above substitution must become zero (since in
this case the energy-momentum tensor of distributed matter
on the right-hand side is zero).

Most likely, the introduced metric of the space of a rotat-
ing mass-point (10) does not satisfy the field equations. For
this reason, at our third step, we will substitute the gαβ compo-
nents from the introduced metric (10) into the left-hand terms
of the field equations (the right-hand side of the equations is
zero, since the space of a rotating mass-point we are consid-
ering is not filled with distributed matter). The relations (par-
ticular conditions) that vanish the resulting field equations are
Riemannian conditions, under which the introduced metric
(10) is Riemannian and, therefore, can be used in the frame-
work of General Relativity.

At our fourth step, we will deduce formulae for the space
curvature effects in the field of a rotating massive body, i.e.,
in the space of the metric (10), which is the final task of this
research.

3 Chronometrically invariant quantities

We use the mathematical apparatus of chronometric invari-
ants, which uniquely determines physically observable quan-

tities in the four-dimensional pseudo-Riemannian space
(space-time of General Relativity). This mathematical forma-
lism was created in 1944 by Abraham Zelmanov.

In addition to the publications by Zelmanov [4–6], which
were very concise, an extended review of the chronometri-
cally invariant formalism was given in each of our three re-
search monographs (together with L. Borissova), originally
published in 2001 [7, 8] and 2013 [9]. In 2023 we published
the most comprehensive survey of the Zelmanov formalism
[10], where we collected almost everything that we know in
this field personally from Zelmanov and based on our own
research studies. The most complete list of the research stud-
ies performed using the chronometrically invariant formalism
as of January 2023 can be found in the Bibliography to our
survey [10].

In short, Zelmanov unambiguously determined physically
observable quantities in the space-time of General Relativity
as the projections of four-dimensional tensor quantities onto
the time line and the three-dimensional spatial section, asso-
ciated with an observer. Such projections remain invariant
throughout the observer’s three-dimensional spatial section
(his observable three-dimensional physical reference space),
i.e., they are “chrono-metric invariants” in his reference frame
and depend on the properties of his physical reference space,
such as the gravitational potential, rotation, deformation, cur-
vature, etc.

The chronometrically invariant projections of any four-
dimensional tensor quantity are calculated using operators of
projection, which take the physical properties and geometric
structure of the observer’s space into account. For detail, see
the References to chronometric invariants, e.g., the most de-
tailed survey [10].

Below you can find only the necessary minimum of this
mathematical formalism, which is necessary for understand-
ing and reproducing the results obtained in this study.

Projecting the four-dimensional displacement vector dxα

(α = 0, 1, 2, 3) onto the time line of an observer gives the
physically observable chr.inv.-time interval dτ

dτ =
√
g00 dt −

1
c2 vi dxi, i = 1, 2, 3, (11)

where g00 is expressed with the chr.inv.-potential w (physi-
cally observable potential) of the gravitational field that fills
the space of the observer as

w = c2 (
1 −
√
g00

)
,

√
g00 = 1 −

w
c2 , (12)

and vi is the three-dimensional vector of the linear velocity of
rotation of the observer’s space

vi = −
cg0i
√
g00
, vi = −cg0i√g00 , vi = hik v

k. (13)

Projecting dxα onto the observer’s three-dimensional spa-
tial section gives the three-dimensional chr.inv.-displacement
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vector dxi (which coincides with the three-dimensional co-
ordinate displacement vector). As a result, dτ distinguishes
the chr.inv.-velocity vector vi = dxi/dτ (physically observable
three-dimensional velocity) from the three-dimensional coor-
dinate velocity vector ui = dxi/dt.

The three-dimensional chr.inv.-spatial interval dσ (physi-
cally observable three-dimensional interval) is determined

dσ2 = hik dxidxk, (14)

using the three-dimensional chr.inv.-metric tensor hik

hik = −gik +
1
c2 vivk , hik = −gik, hi

k = δ
i
k , (15)

which is the chr.inv.-projection of the fundamental metric ten-
sor gαβ onto the observer’s spatial section and possesses all
properties of gαβ throughout the spatial section (the observer’s
three-dimensional space).

The square of the four-dimensional (space-time) interval
ds2 = gαβ dxαdxβ is therefore expressed with chronometri-
cally invariant (physically observable) quantities as

ds2 = c2dτ2 − dσ2. (16)

Thanks to the splitting of space-time into three-dimen-
sional spatial sections pierced by time lines, which is specific
to the chronometrically invariant formalism, we can reveal the
true nature of three-dimensional rotations. When vi , 0, i.e.,
the reference body of an observer rotates (together with his
reference space), then this rotation cannot be vanished by a
coordinate transformation (by moving the observer to another
reference frame within his three-dimensional spatial section).
This happens because the rotation speed vi (13) is determined
by the mixed (space-time) components g0i of the fundamen-
tal metric tensor gαβ, and not by its three-dimensional spatial
components gik dependent on time (as it is considered in clas-
sical mechanics, where time is just a parameter, and not the
fourth coordinate). Since the components of gαβ are cosines
of the angles between the respective coordinate lines, then
three-dimensional rotations are due to the non-holonomity of
space-time, which means that time lines are not orthogonal to
three-dimensional spatial sections.

If all g0i are zero, then such space-time is holonomic. In
this case the three-dimensional spatial section is everywhere
orthogonal to the time lines that pierce it. If at least one of the
components g0i is different from zero, then such space-time is
non-holonomic, and the spatial section x0 = const is inclined
to the time lines (at different points it can be inclined to the
time lines at different angles depending on the local geometric
structure of the particular four-dimensional space-time).

In general, the physical reference space of a real observer
can be filled with a gravitational field, rotate, deform, be in-
homogeneous and curved.

The chr.inv.-vector of the gravitational inertial force Fi,
where the first (gravitational) term is created by the gradient

of the gravitational potential w and the second (inertial) term
is created by the centrifugal force of inertia, is

Fi =
1
√
g00

(
∂w
∂xi −

∂vi
∂t

)
,
√
g00 = 1 −

w
c2 . (17)

The antisymmetric chr.inv.-tensor Aik of the angular ve-
locity of rotation of space is

Aik =
1
2

(
∂vk
∂xi −

∂vi

∂xk

)
+

1
2c2

(
Fi vk − Fk vi

)
, (18)

which is related to Fi by two identities

∗∂Aik

∂t
+

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
= 0 , (19)

∗∂Akm

∂xi +
∗∂Ami

∂xk +
∗∂Aik

∂xm +

+
1
2

(Fi Akm + Fk Ami + Fm Aik) = 0 , (20)

where asterisk denotes the chr.inv.-derivation operators
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi +
1
c2 vi

∗∂

∂t
. (21)

Antisymmetric chr.inv.-tensors can be used to create the
corresponding chr.inv.-pseudovectors (marked with an aster-
isk) using the antisymmetric chr.inv.-discriminant tensor

εikm =
eikm

√
h
, εikm = eikm

√
h , (22)

where h= det ∥ hik ∥. This tensor is the chr.inv.-analogy of the
Levi-Civita antisymmetric unit tensor eikm (the components
of eikm are either +1 or −1 depending on the transposition of
its indices).* For example, the antisymmetric chr.inv.-tensor
Aik of the angular velocity of rotation of space has the corre-
sponding chr.inv.-pseudovector Ω∗i of this rotation

Ω∗i =
1
2
εikmAkm , Ω∗i =

1
2
εimn Amn

εipqΩ∗i =
1
2
εipqεimn Amn =

=
1
2

(
δ

p
mδ

q
n − δ

q
mδ

p
n

)
Amn = Apq


. (23)

The symmetric chr.inv.-tensor Dik of the deformation rate
of space is formulated as

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik =
∗∂ ln
√

h
∂t

, h = det ∥ hik ∥

 . (24)

*For detail, see pages 14–16 in our comprehensive survey of the Zel-
manov chronometric invariants [10], or §2.3 in our monograph [8].
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The chr.inv.-Christoffel symbols of the 1st rank ∆ jk,m and
the 2nd rank ∆i

nk (their physical sense is the coefficients of
inhomogeneity of space) are

∆i
nk = him∆nk,m =

1
2

him
(
∗∂hnm

∂xk +
∗∂hkm

∂xn −
∗∂hnk

∂xm

)
. (25)

The physically observable curvature of space is expressed
with the chr.inv.-curvature tensor Clkij that possesses all prop-
erties of the Riemann-Christoffel curvature tensor throughout
the three-dimensional spatial section associated with the ob-
server. Its subsequent contractions give the chr.inv.-Ricci cur-
vature tensor Cik and the chr.inv.-scalar curvature C

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
=

= Hlkij −
1
2

(
2 Aki Djl + Aij Dkl + Ajk Dil +

+ Akl Dij + Ali Djk

)
, (26)

Clk = C ··· ilki · = Hlk −
1
2

(
Akj D j

l + Alj D j
k + Akl D

)
, (27)

C = hlkClk = hlkHlk , (28)

where, for a better association with the Riemann-Christoffel
curvature tensor, we denote

H ··· j
lki · =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il∆

j
km − ∆

m
kl∆

j
im . (29)

From the above definitions we see that the physically ob-
servable curvature of space depends on not only the gravita-
tional inertial force (hidden in the second chr.inv.-derivatives
of the chr.inv.-metric tensor), but also the rotation, deforma-
tion and inhomogeneity of space and, therefore, does not van-
ish in the absence of the gravitational field.

By analogy with absolute (general covariant) derivatives,
the corresponding chr.inv.-derivatives are introduced

∗∇i Q k =
∗∂Qk

dxi − ∆
l
ik Ql , (30)

∗∇i Q k =
∗∂Q k

dxi + ∆
k
il Q l, (31)

∗∇i Q jk =
∗∂Q jk

dxi − ∆
l
ij Qlk − ∆

l
ik Q jl , (32)

∗∇i Q k
j =

∗∂Q k
j

dxi − ∆
l
ij Q k

l + ∆
k
il Q l

j , (33)

∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Q lk + ∆k

il Q jl, (34)

∗∇i Q i =
∗∂Q i

∂xi + ∆
j
ji Q i, ∆

j
ji =

∗∂ ln
√

h
∂xi , (35)

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Q il + ∆l

li Q ji, ∆l
li =

∗∂ ln
√

h
∂xi , (36)

which, in particular, exhibit some properties of the chr.inv.-
metric tensor hik and the chr.inv.-discriminant tensor εijk (used
further in calculations)

∗∇i hjk = 0 , ∗∇i hk
j = 0 , ∗∇i h jk = 0 , (37)

∗∇l εijk = 0 , ∗∇l ε
ijk = 0 , (38)

Einstein’s field equations, having the well-known general
covariant (four-dimensional) form

Rαβ −
1
2
gαβR = −κTαβ + λgαβ (39)

can also be presented in chr.inv.-form, i.e., in the form of their
physically observable chr.inv.-projections.

Note, that the Zelmanov formalism uses κ= 8πG
c2 , but not

κ= 8πG
c4 as Landau and Lifshitz did in their The Classical The-

ory of Fields [11]. This is because, since Ricci’s tensor Rαβ
has the dimension [cm−2] and the energy-momentum tensor
Tαβ has the dimension of mass density [gram/cm3], if we used
κ= 8πG

c4 on the right-hand side of the field equations, then we
would not use the energy-momentum tensor Tαβ itself, but
c2Tαβ as Landau and Lifshitz did (which is not correct at all
from the point of view of physical sense and physically ob-
servable quantities).

To understand the chr.inv.-Einstein equations that below,
we should note that any tensor or tensor equation of the 2nd
rank has three chr.inv.-projections: the time projection, the
space-time (mixed) projection and the spatial projection; for
detail, see [10]. So, the energy-momentum tensor Tαβ of a dis-
tributed matter has the following chr.inv.-projections

ϱ =
T00

g00
, J i =

c T i
0

√
g00
, U ik = c2T ik, (40)

where ϱ is the observable mass density of the distributed mat-
ter, J i is its observable momentum density, and U ik is the
observable stress-tensor of the matter field.

The general covariant Einstein field equations (39) also
have three chr.inv.-projections, which are called the chr.inv.-
Einstein equations

∗∂D
∂t
+ Djl D jl + Ajl Alj + ∗∇j F j −

1
c2 Fj F j =

= −
κ

2
(
ϱc2 + U

)
+ λc2, (41)

∗∇j
(
hijD − Dij − Aij) + 2

c2 Fj Aij = κ J i, (42)

∗∂Dik

∂t
−

(
Dij + Aij

) (
D j

k + A· jk ·
)
+ DDik + 3 Aij A· jk · −

−
1
c2 Fi Fk +

1
2

(∗∇i Fk +
∗∇k Fi

)
− c2Cik =

=
κ

2
(
ϱc2hik + 2Uik − Uhik

)
+ λc2hik . (43)
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With the above mathematical tools, we now have every-
thing we need to consider the space of a rotating massive body
using the chronometrically invariant formalism.

4 Physically observable characteristics of the space of
a rotating massive body

Consider a space of the rotating Schwarzschild metric, which
we have introduced (10). It has the form

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ −

−
dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
. (44)

Such a space rotates in the equatorial plane along the geo-
graphical longitudes φ with an angular velocity ω= const.
The linear velocity of this rotation is v3=ωr2sin2

θ

v3 = ωr2sin2
θ = −

cg03
√
g00
, v1 = v2 = 0 , (45)

hence, non-zero components of the fundamental metric tensor
of the above space metric are

g00 = 1 −
rg
r
, g03 = −

ωr2sin2
θ

c

√
1 −

rg
r

g11 = −
1

1 −
rg
r

, g22 = −r2, g33 = −r2sin2
θ


. (46)

Respectively, the chr.inv.-metric tensor hik =−gik +
1
c2 vi vk

(15) of a rotating Schwarzschild space has only the following
non-zero components

h11 =
1

1 − rg
r

, h22 = r2

h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)

, (47)

and, respectively, calculating the determinant of the chr.inv.-
metric tensor hik, we obtain

h = det ∥ hik ∥ = h11 h22 h33 =

=
r4 sin2

θ

1 − rg
r

(
1 +
ω2r2sin2

θ

c2

)
, (48)

√
h =

r2sin θ√
1 − rg

r

√
1 +
ω2r2sin2

θ

c2 . (49)

As is seen from the above formulae, the matrix hik is strict
diagonal: all of its non-diagonal components hik (i, k) are
zero. Therefore, the upper-index components of hik are ob-
tained just like the invertible matrix components to any diag-

onal matrix as hik = (hik)−1. They are

h11 = 1 −
rg
r
, h22 =

1
r2

h33 =
1

r2sin2
θ

(
1 + ω

2r2sin2θ

c2

)

. (50)

In particular, as a result, the square of the linear velocity,
with which the space rotates v2 = vi v i = vi hikvk (13) is

v2 = v3 h33v3 =
ω2r2sin2

θ

1 + ω
2r2sin2θ

c2

. (51)

As is seen from (47), the obtained chr.inv.-metric tensor
hik does not depend on time. This means that the chr.inv.-
tensor of the deformation rate of space Dik (24) is zero

Dik =
1
2

∗∂hik

∂t
= 0 , (52)

i.e., a rotating Schwarzschild space does not deform.
Taking into account that the linear velocity v3=ωr2sin2

θ

with which the space rotates does not depend on time

∂v3
∂t
= 0 (53)

and also that the gravitational field potential w= c2 (1−
√
g00 )

in the present case is

w = c2
1 − √

1 −
rg
r

 , (54)

we obtain the components of the chr.inv.-vector of the gravi-
tational inertial force Fi (17). They are

F1 =
1
√
g00

∂w
∂r
= −

c2rg
2r2

1

1 − rg
r

, F2 = F3 = 0 , (55)

F1 = h11F1 = −
c2rg
2r2 , F2 = F3 = 0 . (56)

Since the gravitational inertial force in the present case is
a radially acting force F1 that depends only on x1 = r, i.e.

∗∂Fk

∂xi = 0 , i , k , (57)

then according to the 1st Zelmanov identity (19) we have

∗∂Aik

∂t
= 0 , (58)

i.e., the rotation of the space of the rotating Schwarzschild
metric is stationary.

According to the definition of the chr.inv.-tensor of the an-
gular velocity of rotation of space Aik (18), only the follow-
ing components of it are non-zero in the space of the rotat-
ing Schwarzschild metric: A13 , 0, A31 , 0, A13 , 0, A31 , 0,
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A23 , 0, A32 , 0, A23 , 0, A32 , 0. Using the definition of Aik

(18), after some algebra we obtain

A13 =
1
2
∂v3
∂r
+

1
2c2 F1v3 = ωr sin2

θ −
ωrg sin2

θ

4
(
1 − rg

r

) , (59)

A31 = −A13 = −ωr sin2
θ +
ωrg sin2

θ

4
(
1 − rg

r

) , (60)

A13 = h11h33A13 =

=

(
1 − rg

r

)
ω

r
(
1 + ω

2r2sin2θ

c2

) − ωrg

4r2
(
1 + ω

2r2sin2θ

c2

) , (61)

A31 = −A13 =

= −

(
1 − rg

r

)
ω

r
(
1 + ω

2r2sin2θ

c2

) + ωrg

4r2
(
1 + ω

2r2sin2θ

c2

) , (62)

A23 =
1
2
∂v3
∂θ
= ωr2sin θ cos θ , (63)

A32 = −A23 = −ωr2sin θ cos θ , (64)

A23 = h22h33A23 =
ω cot θ

r2
(
1 + ω

2r2sin2θ

c2

) , (65)

A32 = −A23 = −
ω cot θ

r2
(
1 + ω

2r2sin2θ

c2

) . (66)

Find the physically observable scalar angular velocity Ω,
with which the space rotates. Its square is calculated as

Ω2 = Ω∗iΩ
∗i = Ω∗1Ω

∗1 + Ω∗2Ω
∗2 =

= h11Ω
∗1Ω∗1 + h22Ω

∗2Ω∗2. (67)

In the space of the rotating Schwarzschild metric, which
we are considering, we have

Ω∗1 =
1
2
ε1kmAkm =

e1km

2
√

h
Akm =

e123

2
√

h
A23 +

e132

2
√

h
A32 (68)

and, taking into account that e123 =+1 and e132 =−1, and also
A32 =− A23, we obtain

Ω∗1 =
e123

2
√

h
A23 +

e123

2
√

h
A23 =

e123

√
h

A23 =
A23
√

h
. (69)

In the same way, we obtain

Ω∗2 =
1
2
ε2kmAkm =

e2km

2
√

h
Akm =

=
e213

2
√

h
A13 +

e231

2
√

h
A31 =

e213

√
h

A13 = −
A13
√

h
. (70)

Finally, substituting A13 (59), A23 (63), h= det ∥ hik ∥ (48),
h11 and h22 (47) intoΩ2 (67), we obtain the physically observ-
able scalar angular velocity Ω of the rotation of space

Ω =
√
Ω∗iΩ∗i =

ω√
1 + ω

2r2sin2θ

c2

×

×

√√√√
1 −

3rg sin2
θ

2r
+

r2
g sin2

θ

16r2
(
1 − rg

r

) . (71)

If there is no mass (M = 0), then the gravitational radius is
rg = 2GM/c2 = 0. In this case, g00 = 1− rg

r = 1 and the formu-
lae for hik (47–50), Aik (59–66) and Ω (71) we have obtained
in the space of the rotating Schwarzschild metric transform
into the corresponding formulae in the spherically symmetric
rotating space without the gravitational field, which we have
obtained earlier; see page 43 in the previous paper [1].

To calculate the chr.inv.-Einstein equations in the space of
the rotating Schwarzschild metric, we need the chr.inv.-Ricci
curvature tensor Cik containing in the third, tensor chr.inv.-
Einstein equation (43). The chr.inv.-Ricci tensor Cik (27) con-
sists of the chr.inv.-derivatives of the chr.inv.-Christoffel sym-
bols ∆i

nk and the products of ∆i
nk with each other. In turn, ∆i

nk
(25) are the re-combination of the chr.inv.-derivatives of the
chr.inv.-metric tensor hik (47). Therefore, at first we calculate
the non-zero chr.inv.-derivatives of hik

∗∂h11

∂r
= −

rg(
1 − rg

r

)2
r2
, (72)

∗∂h22

∂r
= 2r , (73)

∗∂h33

∂r
= 2r sin2

θ

(
1 +

2ω2r2sin2
θ

c2

)
, (74)

∗∂h33

∂θ
= 2r2sin θ cos θ

(
1 +

2ω2r2sin2
θ

c2

)
. (75)

The chr.inv.-Christoffel symbols ∆i
nk (25) in the rotating

Schwarzschild metric space have the non-zero components

∆1
11 =

1
2

h11
∗∂h11

∂r
, ∆1

22 =
1
2

h11
∗∂h22

∂r

∆1
33 = −

1
2

h11
∗∂h33

∂r
, ∆2

12 =
1
2

h22
∗∂h22

∂r

∆2
21 =

1
2

h22
∗∂h22

∂r
, ∆2

33 = −
1
2

h22
∗∂h33

∂θ

∆3
13 =

1
2

h33
∗∂h33

∂r
, ∆3

23 =
1
2

h33
∗∂h33

∂θ

∆3
31 =

1
2

h33
∗∂h33

∂r
, ∆3

32 =
1
2

h33
∗∂h33

∂θ



. (76)
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After some algebra using the obtained formulae for the
non-zero components of hik (50) and the chr.inv.-derivatives
of the non-zero components of hik (72–75), we obtain

∆1
11 = −

rg

2r2
(
1 − rg

r

) , (77)

∆1
22 = −r , (78)

∆1
33 = −r sin2

θ

(
1 +

2ω2r2sin2
θ

c2

)
, (79)

∆2
12 = ∆

2
21 =

1
r
, (80)

∆2
33 = − sin θ cos θ

(
1 +

2ω2r2sin2
θ

c2

)
, (81)

∆3
13 = ∆

3
31 =

1

r
(
1 + ω

2r2sin2θ

c2

) (
1 +

2ω2r2sin2
θ

c2

)
, (82)

∆3
23 = ∆

3
32 =

cot θ

1 + ω
2r2sin2θ

c2

(
1 +

2ω2r2sin2
θ

c2

)
. (83)

The non-zero contracted chr.inv.-Christoffel symbols ∆i
i1

and ∆i
i2 are calculated from their definition based on the de-

terminant h = det ∥ hik ∥; see (35) or (36). Using the formulae
for h (48) and its square root (49) obtained in the space of the
rotating Schwarzschild metric, we obtain

∆i
i1 =

∗∂ ln
√

h
∂r

=
2

r
(
1 + ω

2r2sin2θ

c2

) (
1 +

3ω2r2sin2
θ

2c2

)
−

−
rg

2r2
(
1 − rg

r

) , (84)

∆i
i2 =

∗∂ ln
√

h
∂θ

=
cot θ

1 + ω
2r2sin2θ

c2

(
1 +

2ω2r2sin2
θ

c2

)
. (85)

Based on the above formulae, we calculate the non-zero
chr.inv.-derivatives of the contracted chr.inv.-Christoffel sym-
bols ∆i

i1 and ∆i
i2. After some algebra, we obtain

∗∂∆i
i1

∂r
= −

2

r2
(
1 + ω

2r2sin2θ

c2

)2
−

3ω2sin2
θ

c2
(
1 + ω

2r2sin2θ

c2

)2
−

−
3ω4r2sin4

θ

c4
(
1 + ω

2r2sin2θ

c2

)2
+

rg

r3
(
1 − rg

r

)2

(
1 −

rg
2r

)
, (86)

∗∂∆i
i1

∂θ
=

2ω2r sin θ cos θ

c2
(
1 + ω

2r2sin2θ

c2

)2
, (87)

∗∂∆i
i2

∂r
=

2ω2r sin θ cos θ

c2
(
1 + ω

2r2sin2θ

c2

)2
=

∗∂∆i
i1

∂θ
, (88)

∗∂∆i
i2

∂θ
= −

1

sin2
θ
(
1 + ω

2r2sin2θ

c2

) −
−

2ω2r2sin2
θ

c2
(
1 + ω

2r2sin2θ

c2

)2
−

2ω4r4sin2
θ

c4
(
1 + ω

2r2sin4θ

c2

)2
. (89)

Now, using the quantities calculated above, we calculate
the chr.inv.-Ricci curvature tensor Cik in the space of the ro-
tating Schwarzschild metric. Since the space we are consid-
ering does not deform (Dik = 0), then in this case the general
formula for Clk =C ···ilki · (27) is simplified to

Clk = Hlk = H ···i
lki · =

=

∗∂∆i
il

∂xk −

∗∂∆i
kl

∂xi + ∆
m
il ∆

i
km − ∆

m
kl∆

i
im , (90)

which, according to the non-zero chr.inv.-Christoffel symbols
calculated in the space of the rotating Schwarzschild metric
(see above), has the following non-zero components

C11 =

∗∂∆i
i1

∂r
+ ∆2

21∆
2
12 + ∆

3
31∆

3
13 −

−

∗∂∆1
11

∂r
+ ∆1

11∆
1
11 − ∆

1
11∆

i
i1 , (91)

C12 =

∗∂∆i
i1

∂θ
+ ∆3

31∆
3
23 − ∆

2
21∆

i
i 2 , (92)

C21 =

∗∂∆i
i 2

∂r
+ ∆3

32∆
3
13 − ∆

2
12∆

i
i 2 , (93)

C22 =

∗∂∆i
i 2

∂θ
−

∗∂∆1
22

∂r
+

+ 2∆2
12∆

1
22 + ∆

3
32∆

3
23 − ∆

1
22∆

i
i1 , (94)

C33 = −

∗∂∆1
33

∂r
−

∗∂∆2
33

∂θ
+

+ 2∆3
13∆

1
33 + 2∆3

23∆
2
33 − ∆

1
33∆

i
i1 − ∆

2
33∆

i
i 2 . (95)

To calculate these components, we calculate the unknown
derivatives contained in them. We obtain

∗∂∆1
11

∂r
=

rg

r3
(
1 − rg

r

)2

(
1 −

rg
2r

)
, (96)

∗∂∆1
33

∂r
= − sin2

θ

(
1 +

6ω2r2sin2
θ

c2

)
, (97)

∗∂∆2
33

∂θ
= sin2

θ +
2ω2r2sin4

θ

c2 −

− cos2
θ −

6ω2r2sin2
θ cos2θ

c2 . (98)

Substituting the non-zero necessary chr.inv.-Christoffel
symbols and their chr.inv.-derivatives into these general for-
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mulae (91–95), after some algebra and non-trivial transfor-
mations we obtain formulae for the non-zero components of
the chr.inv.-Ricci tensor in the space of the rotating Schwarz-
schild metric. They have the form

C11 =
3ω2sin2

θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r2sin4
θ

c4
(
1 + ω2r2sin2θ

c2

)2
+

+
rg

r3
(
1 − rg

r

) (
1 + ω

2r2sin4θ

c2

) (
1 +

3ω2r2sin2
θ

2c2

)
, (99)

C12 =
3ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r3sin3
θ cos θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (100)

C21 =
3ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r3sin3
θ cos θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (101)

C22 =
3ω2r2cos2θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r4sin2
θ cos2θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (102)

C33 =
3ω2r2sin2

θ

c2 −
ω4r4sin4

θ

c4
(
1 + ω2r2sin2θ

c2

) , (103)

where C12 =C21 means that the space of the rotating Schwarz-
schild metric has a certain curvature symmetry.

Using the obtained components of the chr.inv.-Ricci ten-
sor Cik (99–103) and the upper-index components hik (50) of
the chr.inv.-metric tensor, we calculate the physically observ-
able chr.inv.-scalar curvature C = hikCik (28) of the space of
the rotating Schwarzschild metric. Since only h11, h22, h33 are
non-zero in such a space, then C = h11C11 + h22C22 + h33C33.
After some algebra, we obtain

C =
6ω2

c2
(
1 + ω2r2sin2θ

c2

) − 2ω4r2sin2
θ

c4
(
1 + ω2r2sin2θ

c2

)2
+

+
rg

r3
(
1 + ω2r2sin2θ

c2

) ×
×

(
1 −

3ω2r2sin2
θ

2c2 +
ω4r4sin4

θ

c4

)
, (104)

where the first two terms are due only to the rotation of space,
and the third term (in the second and third lines of the for-
mula) is due to the combined action of the gravitational field
and the rotation of space.

This is the physically observable chr.inv.-scalar curvature
of the three-dimensional space of a rotating massive body. It
is this curvature of space that is registered in astronomical
observations and laboratory measurements in the space near
such rotating massive bodies as stars and planets.

In the absence of a massive island of substance producing
the gravitational field (M = 0, rg = 2GM/c2 = 0), the obtained
formula (104) transforms into the formula

C =
6ω2

c2
(
1 + ω2r2sin2θ

c2

) − 2ω4r2sin2
θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (105)

obtained recently in a rotating spherically symmetric space
without a gravitational field; see page 45 in the first paper [1]
of this series of papers.

At small speeds of rotation, the obtained formula for the
chr.inv.-scalar curvature (104) takes the simplified form

C =
6ω2

c2 +
rg
r3 . (106)

From the obtained simplified formula for C (106), we see
that the rotation of a massive body at slow rotations creates
a constant curvature field that does not depend on distance
from its source (the rotating body), whereas the gravitational
field of the body creates a curvature that decreases inversely
proportional to r3 from it.

If the massive body approximated by a mass-point does
not rotate (ω= 0), then the space metric of a rotating massive
body (10), which we have introduced and considered here,
transforms into the Schwarzschild mass-point metric (6). In
this case the obtained formula for the physically observable
chr.inv.-scalar curvature (104) transforms into

C =
rg
r3 , (107)

which is the same as the three-dimensional scalar curvature
of a spherically symmetric gravitational field, which Landau
and Lifshitz give in their The Classical Theory of Fields [11];
see page 325 of §100 in the 4th final English edition, or pages
378–379 of §97 in the 3rd French edition. The only difference
is that their curvature has a negative sign. This is because in
the years, when they wrote their book (the 1st edition was
issued in 1939), Zelmanov’s chronometrically invariant for-
malism had not yet been created. Therefore, Landau and Lif-
shitz believed that the three-dimensional components gik of
the fundamental metric tensor gαβ create an observable metric
tensor. On the contrary, the chronometrically invariant for-
malism clearly proves that the physically observable metric
tensor that possesses all properties of the fundamental met-
ric tensor throughout the three-dimensional spatial section as-
sociated with an observer (his observable three-dimensional
space) is hik =−gik +

1
c2 vi vk (15). This is why their curvature

of a non-rotating centrally symmetric gravitational field is ne-
gative, and the truly physically observable chr.inv.-curvature
(107), which we have just deduced using the chronometri-
cally invariant formalism, has a positive sign, as it should be
according to the physical sense of this quantity.

Consider a few typical numerical examples of the curva-
ture of space caused by rotating cosmic bodies.
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The first typical example is the Sun: r⊙ ≃ 7.0× 1010 cm,
M⊙ ≃ 2.0× 1033 gram, rg⊙ = 2GM⊙/c2 ≃ 3.0× 105 cm, ω⊙ ≃
≃ 2.87× 10−6 sec−1 (we are considering the Carrington rota-
tion of the Sun at the equator with a sidereal period of 25.38
days). According to the obtained formula (106), the expected
constant curvature of space due to the proper rotation of the
Sun is C = 6ω2

⊙/c
2 ≃ 5.6× 10−32 cm−2, while the variable cur-

vature of space due to the gravitational field of the Sun at a
distance of one solar radius r⊙ from its centre (i.e., on the
Sun’s surface) is 4 orders of magnitude greater: C = rg⊙/r3

⊙ ≃

≃ 8.8× 10−28 cm−2.
Since the curvature of space due to the Sun’s rotation is

constant, and the curvature due to its gravitational field de-
creases inversely proportional to r3 from it, then there is a
spherical surface in the cosmos on which these curvatures are
equal to each other: C = rg/r3 = 6ω2/c2. For the Sun, this is a
spherical surface surrounding the Sun at a distance of

r = 3

√
c2rg⊙
6ω2
⊙

≃ 1.8 × 1012 cm ≃ 25 r⊙ . (108)

Starting from the distance r≃ 1.8×1012 cm≃ 25 r⊙ from
the centre of the Sun, the contribution of the Sun’s rotation
to the observable curvature of space (it remains constant with
distance) exceeds the contribution of the Sun’s gravitational
field (since it decreases inversely proportional to r3). For
comparison: Mercury, the closest planet to the Sun, orbits
the Sun at a distance of r= 57.9 mln km= 82.7 r⊙.

For the Earth (r⊕ = 6.37× 108 cm, M⊕ = 5.97× 1027 gram,
rg⊕ = 0.884 cm, ω⊕ = 7.27× 10−5 sec−1), the constant curva-
ture of space caused by the Earth’s rotation is C = 6ω2

⊕/c
2 ≃

≃ 3.5×10−29 cm−2 that is 3 orders of magnitude greater than
the constant curvature C = 6ω2

⊙/c
2 ≃ 5.6× 10−32 cm−2 caused

by the rotation of the Sun. The curvature of space caused by
the Earth’s gravitational field on the Earth’s surface (r= r⊕) is
C = rg⊕/r3

⊕ ≃ 3.4×10−27 cm−2.
At a distance of

r = 3

√
c2rg⊕
6ω2
⊕

≃ 2.93 × 109 cm ≃ 29 300 km ≃ 4.6 r⊕ (109)

from the centre of the Earth (or at an altitude of h= r− r⊕ ≃
≃ 23 000 km≃ 3.6 r⊕ above the Earth’s surface) the contribu-
tions of the Earth’s rotation and its gravitational field to the
curvature of space become equal to each other. At higher alti-
tudes, the contribution of the Earth’s rotation to the curvature
of space, since it remains constant with altitude, is greater
than the contribution of the Earth’s gravitational field (the lat-
ter becomes comparatively negligible, since it decreases in-
versely proportional to r3).

For our Galaxy (r≃ 30 000 pc≃ 1023 cm, M≃ 2× 1011M⊙,
rg ≃ 6× 1016 cm, T ≃ 200 mln years,ω= 2π/T ≃ 10−15 sec−1),
the constant curvature of space caused by its rotation is C =
= 6ω2/c2 ≃ 7× 10−51 cm−2, while the curvature caused by its
gravitational field at its edge (r≃ 30 000 pc≃ 1023 cm) is 2

∗C = rg
r3 , cm−2 †C = 6ω2

c2 , cm−2 ‡r = 3
√

c2rg
6ω2

Galaxy 6 × 10−53 7 × 10−51 7 000 pc

Sun 8.8 × 10−28 5.6 × 10−32 25 r⊙

Earth 3.4 × 10−27 3.5 × 10−29 4.6 r⊕

Pulsars (min) 1.9 × 10−21

Pulsars (max) 1.4 × 10−13

∗The variable (decreasing) curvature of space caused by the
gravitational field of the cosmic body at a distance equal to its
radius from its centre.
†The constant curvature of space caused by the rotation of the
cosmic body.
‡The distance from the centre of the cosmic body at which the
contribution of its rotation to the curvature of space becomes
equal to the contribution of its gravitational field.

orders of magnitude weaker: C = rg/r3 ≃ 6× 10−53 cm−2. The
distance from the Galactic centre, at which the contribution of
the rotation of the Galaxy to the curvature of space becomes
equal to the contribution of its gravitational field is

r =
3

√
c2rg
6ω2 ≃ 2.1 × 1022 cm ≃ 7 000 parsec. (110)

The observed frequencies of radio-pulsars are in the range
from ωmin= 0.53 to ωmax= 4501 sec−1. Therefore, the con-
stant curvature of space caused by pulsars is in the range of
magnitudes from C ≃ 1.9× 10−21 to C ≃ 1.4× 10−13 cm−2.

As a result of the above calculation, we arrive at the fol-
lowing conclusion:
Conclusion on the background curvature of space

The curvature of space caused by the gravitational field
of rotating massive bodies decreases inversely propor-
tional to r3 and, therefore, becomes negligibly small
already in the immediate vicinity of these bodies, at a
distance of a few of their radii from them. However,
the rotation of these bodies creates a constant curvature
field, which is much weaker than the curvature caused
by their gravitational fields near these bodies, but does
not depend on the distance to them. Moreover, such
rapidly rotating cosmic objects as pulsars create strong
fields of a constant curvature, the magnitude of which
is many orders greater than the constant curvature fields
caused by other rotating stars and Galaxies.

It seems that the space of the entire Universe is
filled with a constant curvature field that is the superpo-
sition of the constant curvature fields caused by rapidly
rotating cosmic bodies such as pulsars. This is the basis
for considering the background space of our Universe
as a constant curvature space.

This is a very interesting theoretical discovery that re-
quires further study and analysis by astronomers.
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5 Einstein’s field equations in the space of a rotating
massive body

As mentioned on page 81, Einstein’s equations are one of the
necessary conditions for a space to be Riemannian. There-
fore, the considered space metric of a rotating massive body
(10) is Riemannian under some particular conditions (Rie-
mannian conditions) by which the Einstein equations for this
space metric vanish. Now our task is to find out the Rieman-
nian conditions for the space metric (10).

As we showed above (52), the space of a rotating massive
body, which we are considering, does not deform (Dik = 0),
and is not filled with any distributed matter such as gas, dust,
electromagnetic fields, etc. The latter means that the energy-
momentum tensor of distributed matter is zero (Tαβ = 0) and,
hence, the entire right-hand side of the Einstein field equa-
tions is zero. With taking the above into account, the chr.inv.-
Einstein equations (41–43) take the simplified form

Ajl Alj + ∗∇j F j −
1
c2 Fj F j = 0 , (111)

∗∇j Aij −
2
c2 Fj Aij = 0 , (112)

2 Aij A· jk · −
1
c2 Fi Fk +

1
2

(∗∇i Fk +
∗∇k Fi

)
− c2Cik = 0 . (113)

The 1st Riemannian condition for the space metric of a ro-
tating massive body (10), which we are considering, follows
from the obtained scalar chr.inv.-Einstein equation (111).
Since Ajl Alj =−Ajl A jl is the square of the chr.inv.-tensor Ajl

of the angular velocity of the rotation of space, taken with
the opposite sign, and the Zelmanov operator of the chr.inv.-
physical divergence (marked with a tilde)

∗∇̃j =
∗∇j −

1
c2 Fj , (114)

gives a divergence that is physically registered by the ob-
server, for instance, ∗∇̃j F j according to (31) is

∗∇̃j F j =
∗∂F j

dx j + ∆
j
jl F l −

1
c2 Fj F j =

= ∗∇j F j −
1
c2 Fj F j, (115)

then the scalar chr.inv.-Einstein equation (111) gives:

The 1st Riemannian condition
In the space of a rotating massive body, the physically
observable rotation of space is always balanced by the
physically observable divergence of the acting gravita-
tional inertial force:

Ajl A jl = ∗∇̃j F j, (116)

or, which is the same,

2Ω2 = ∗∇̃j F j. (117)

P.S. The alternative form (117) of the 1st Riemannian con-
dition (116) is obtained using the components of Ajl (59–66)
that we have calculated earlier in the space of a rotating mas-
sive body, after which we have

Ajl A jl =
2ω2

1 + ω
2r2sin2θ

c2

−
3ω2rg sin2

θ

r
(
1 + ω

2r2sin2θ

c2

) +
+

ω2r2
g sin2

θ

8r2
(
1 + ω

2r2sin2θ

c2

) (
1 − rg

r

) = 2Ω2, (118)

where Ω2 is the square of the physically observable scalar
angular velocity Ω (71) with which the space rotates.

The 2nd Riemannian condition for the space metric of a
rotating massive body follows from the obtained vector chr.
inv.-Einstein equation (112):

The 2nd Riemannian condition
In the space of a rotating massive body, the physically
observable divergence of the rotation of space is always
and everywhere equal to zero:

∗∇̃j Aij = 0 , (119)

which means that the physically observable rotation of
such a space is homogeneous (i.e., such a space rotates
always and everywhere homogeneously).

P.S. And here is why. Using the definition of the operator
of the chr.inv.-physical divergence ∗∇̃j (114) that is physically
registered by the observer, we calculate the chr.inv.-physical
divergence of the contravariant tensor of the angular velocity
of rotation of space Aij. According to the general formula for
the chr.inv.-derivative ∗∇j of an arbitrary contravariant tensor
of the 2nd rank (36), we obtain

∗∇̃j Aij =
∗∂Aij

∂x j + ∆
i
jl A jl −

1
c2 Fj Aij +

+ ∆l
lj Aij −

1
c2 Fj Aij = ∗∇j Aij −

2
c2 Fj Aij, (120)

which completely coincides with the left-hand side of the ob-
tained vector chr.inv.-Einstein equation (112), while the right-
hand side of the equation is zero.

The 3rd and 4th Riemannian conditions for the space met-
ric of a rotating massive body follow from the obtained tensor
chr.inv.-Einstein equation (113), re-written in the expanded
component notation

2 A1j A· j1· −
1
c2 F1 F1 +

∗∇1 F1 − c2C11 = 0 , (121)

2 A1j A· j2· − c2C12 = 0 , (122)

2 A2j A· j2· − c2C22 = 0 , (123)

2 A3j A· j3· − c2C33 = 0 , (124)
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in accordance with the non-zero components of Aij, Fi and
Cik, which we have calculated earlier (see above).

So, the 3rd Riemannian condition follows from the first
component (124). It says:

The 3rd Riemannian condition
In the space of a rotating massive body, the physically
observable curvature of space in the radial direction
x1 = r from the body is caused by both the physically
observable rotation of space (the first term of the equa-
tion) and the physically observable divergence of the
gravitational inertial force acting in the same radial di-
rection (the second term):

2 A13 A·31· +
∗∇̃1 F1 = c2C11 . (125)

The 4th Riemannian condition follows from the rest three
non-zero components (122–124) of the tensor chr.inv.-Ein-
stein equation:

The 4th Riemannian condition
In the space of a rotating massive body, the physically
observable curvature of space in all other directions
from the body, except for the radial direction x1 = r (in
which the gravitational-inertial force acts), is caused
only by the physically observable rotation of space:

2 A13 A·32· = c2C12

2 A23 A·32· = c2C22

2
(
A31 A·13· + A32 A·23·

)
= c2C33

 . (126)

P.S. It should be noted that the components A13 and A31

(59–62) of the chr.inv.-tensor of the angular velocity of rotat-
ion of space Aij contain both terms determined only by the ro-
tation of space and terms dependent on rg = 2GM/c2 (which
includes the mass M of the attracting body). This is because
the chr.inv.-tensor Aij (18) by definition takes into account
the effect of the acting gravitational inertial force Fi onto the
tensor Aij, thereby making Aij a truly physically observable
quantity dependent on the physical properties of space.

Therefore, when we say a “physically observable rotation
of space” or a “physically observable quantity” in general,
we mean a chronometrically invariant physical quantity, actu-
ally registered by the observer in his real measurements and,
therefore, dependent on the physical properties of space.

Finally, summing up the results obtained in this Section
of the present work, we can state the following:

Conclusion
Under the four Riemannian conditions deduced above,
the space metric of a rotating massive body (10) that we
have introduced and studied in this paper satisfies Ein-
stein’s field equations (thereby turning them into zero
identities) and is therefore proven to be Riemannian
and can be used in General Relativity.

The above conclusion has great significance for General
Relativity, cosmology and astrophysics. This is because the
introduced (and now proven) space metric of a rotating spher-
ical body, approximated by a mass-point, is not only a new
metric to General Relativity, which is an extension and re-
placement of the classical Schwarzschild mass-point metric
(which does not take into account the rotation of space). The
introduced space metric is the main space metric in the Uni-
verse, characterizing the physically observable field of any
real cosmic body, be it a planet, star, galaxy or something
else (since all real cosmic bodies rotate).

6 Deflection of light rays and mass-bearing particles in
the space of a rotating massive body

In the previous study [2], we considered massless (light-like)
and mass-bearing particles moving in the space of a rotat-
ing body, where the gravitational field created by the body
was so weak that its influence on the moving particles could
be neglected. The solutions obtained for the chronometri-
cally invariant equations of motion of free massless and free
mass-bearing particles in the space of a rotating body showed
that their physically observable motion should deviate from a
straight line due to the curvature of space caused by the ro-
tation of space. In other words, the trajectories of light rays
and mass-bearing particles should be deflected near a rotating
body due to the curvature of space caused by its rotation.

These are two new fundamental effects of General Rela-
tivity, in addition to the deflection of light rays in the field of
a gravitating body (known in Einstein’s theory from the very
beginning).

In the paper [2], the mentioned two new effects were cal-
culated in the space metric of a rotating body, where g00 = 1,
i.e., the gravitational potential is zero w= c2 (1−√g00

)
= 0,

in order to show these effects of the rotation of space in their
“pure form” (i.e., in the absence of the gravitational field).

Now we are going to calculate these two new effects of
General Relativity anew, now in the space of a rotating mas-
sive body, the metric of which (10) takes the gravitational
field of the rotating body into account: the gravitational po-
tential is w, 0 and, hence, g00 < 1; for details, see the space
metric (10) that we are considering. This, in contrast to the
abstract case considered in the previous work [2], is a real
physical case, since all real cosmic bodies in the Universe
such as planets, stars, galaxies and something else not only
rotate, but also have their own gravitational field.

So, let us begin. The chr.inv.-equations of motion are the
physically observable chr.inv.-projections of the general co-
variant four-dimensional equations of motion onto the time
line and the three-dimensional spatial section associated with
a particular observer. Such projections are invariant through-
out the spatial section of the observer (his physically observ-
able three-dimensional space) and are expressed through the
physical properties of his local reference space. A detailed
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derivation of the chr.inv.-equations of motion can be found in
the monographs [7, 8], the first of which is devoted to free
(geodesic) motion of particles, while the second is a study of
non-geodesic motion.

The chr.inv.-equations of motion of a free mass-bearing
particle have the form

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 , (127)

d (mvi)
dτ

+ 2m
(
Di

k + A·ik ·
)

vk − mF i +

+ m∆i
nkvnvk = 0 , (128)

and the chr.inv.-equations of motion of a free massless (light-
like) particle have the form

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0 , (129)

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik ·
)

ck − ωF i +

+ ω∆i
nk cnck = 0 , (130)

where the first (scalar) chr.inv.-equation of motion is the pro-
jection of the general covariant equations of motion onto the
observer’s time line, and the second (vector) chr.inv.-equation
of motion is the projection onto his spatial section (his three-
dimensional space).

Here m is the relativistic mass of the mass-bearing parti-
cle, ω is the relativistic frequency of the massless (light-like)
particle, the physically observable time interval dτ (11) is
expressed through the gravitational potential w (12) and the
linear velocity of the rotation of space vi (13) as

dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi, (131)

and the chr.inv.-vector of the physically observable velocity
of the particle has the form

vi =
dxi

dτ
, vivi = hikvivk = v2,

which, in the case of massless (light-like) particles, trans-
forms into the chr.inv.-vector of the physically observable ve-
locity of light, for which ci ci = hik cick = c2 = const (despite
the fact that its individual components ci are variables de-
pending on the properties of space).

Since the space of a rotating massive body, which we
are considering, does not deform (Dik = 0), then the chr.inv.-
equations of motion simplify by vanishing Dik. For a free
mass-bearing particle they take the form

dm
dτ
−

m
c2 Fi vi = 0 , (132)

d (mvi)
dτ

+ 2mA·ik ·v
k − mF i + m∆i

nkvnvk = 0 , (133)

while for a massless (light-like) particle they become

dω
dτ
−
ω

c2 Fi ci = 0 , (134)

d (ωci)
dτ

+ 2ωA·ik ·c
k − ωF i + ω∆i

nk cnck = 0 . (135)

6.1 Solving the chr.inv.-scalar equation of motion

Since the rotating massive body we are considering is not
a gravitational collapsar, i.e., its physical radius r is much
greater than its gravitational radius (r≫ rg), then according
to the formulae for Fi (55) and F i (56) obtained for the field
of a rotating massive body we have

F1 = F1 = −
c2rg
2r2 = −

GM
r2 . (136)

With this fact taken into account, the scalar equation of
motion of a free mass-bearing particle (132), in the case when
it travels along the radial direction x1 = r from the rotating
massive body, takes the form

dm
m
= −

GM
c2

dr
r2 , (137)

which is a simple differential equation dy
y
=− a dx

x2 or, which
is the same, d ln m=− a dx

x2 . It solves as y=Cea/x, where the
integration constant C in this case is C =m(r= r0 = 0) =m0. As
a result, we obtain that the scalar equation of motion of a free
mass-bearing particle (132) solves as

m = m0 e
GM
c2r
≃ m0

(
1 +

GM
c2 r

)
. (138)

For example, according to the obtained solution, the mass
of a body located on the Earth’s surface (M⊕ = 5.97× 1027

gram, r⊕ = 6.37× 108 cm) is greater than its mass, measured
when the body was located at a distance of the Moon’s orbit
from the Earth (r= 3.0× 1010 cm) by a value of 1.5× 10−11 m0
due to the greater magnitude of the Earth’s gravitational field
potential on the Earth’s surface.

The scalar equation of motion of a free massless (light-
like) particle (134), when it radially travels in space, solves in
the same way. Its solution has the form

ω = ω0 e
GM
c2r
≃ ω0

(
1 +

GM
c2 r

)
. (139)

This solution means that photons gain an additional en-
ergy (and frequency) from the gravitational field. For exam-
ple, a photon with a frequency ω0 at the moment of emission
from the surface of a star has a lower frequency ω<ω0 (and
energy) when it moves away from this star at some distance.
The greater the gravitational field potential (i.e., the closer the
photon is to the source of the gravitational field), the more the
photon’s frequency is redshifted. According to the above so-
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lution, the photon’s redshift z in the field of a rotating massive
body is determined as (where r0 < r1)

z =
ω0 − ω

ω
= e

GM
c2r0
− GM

c2r1 − 1 ≃
GM
c2 r0

−
GM
c2 r1

. (140)

So, by solving the chr.inv.-scalar equation of free mass-
bearing and massless (light-like) particles we have deduced
two effects. First, we have deduced the well-known relativis-
tic effect of the decrease in the mass of a body with height
above the Earth’s surface (138). Second, we have deduced the
gravitational redshift (140), which is also the effect of General
Relativity, known from the very beginning and first registered
in the spectra of white dwarfs.

Landau and Lifshitz derived these effects from the con-
servation of energy of a free particle travelling in a stationary
gravitational field; for example, see [11, §88]. Zelmanov fol-
lowed the same way of derivation. However, the new deriva-
tion method presented here, based on the integration of the
chr.inv.-scalar geodesic equation, allows us to represent the
mentioned effects as something not specifically related to the
stationary gravitational field, but as general effects of General
Relativity that can be calculated in any metric space.

Note that the chr.inv.-scalar equation of motion does not
take the rotation of space into account. Therefore, the obtain-
ed solutions of the equation (and the effects following from
them) coincide with the solutions in a space of the Schwarz-
schild’s mass-point field (which does not rotate).

6.2 Solving the chr.inv.-vector equation of motion

Let us now solve the chr.inv.-vector equation of motion. For a
free mass-bearing particle, radially travelling in the space of
a rotating massive body, this is the equation (133), while for
a massless particle this is the equation (135).

Since the chr.inv.-vector equation of motion depends on
the tensor of the angular velocity of rotation of space Aik,
we expect that its solution will reveal new effects of Gen-
eral Relativity, previously unknown in the framework of the
non-rotating Schwarzschild mass-point metric.

The chr.inv.-vector equations of motion are unsolvable in
their general form (133) and (135), because they require sub-
stitution of the solutions for the particle’s mass m (138) and
frequency ω (139) obtained from the chr.inv.-scalar equations
of motion, which in turn contain an exponential function of
distance r (as a result, each term of the vector equations of
motion would contain this complicated function).

Therefore, we will solve the chr.inv.-vector equations of
motion in an approximation that the mass-bearing particle’s
mass m and the massless (light-like) particle’s frequency ω
remain constant during the travel. This approximation can be
used in problems of motion near planets and stars, because,
as shown above, the mass m0 of a body located on the sur-
face of the Earth is only 1.5× 10−11 m0 greater than its mass
measured when the body was at the distance of the Moon.

In addition to the assumed approximations m= const and
ω= const, we assume, as well as when we solved the scalar
equations of motion above, that the rotating massive body that
is the source of the gravitational field is not a gravitational
collapsar (r≫ rg), so the acting gravitational inertial force is
expressed in the simplified form (136).

Moreover, to further simplify the vector equations of mo-
tion, we assume that the particle travels at a very high radial
velocity v1 in the equatorial plane along the radial axis x1 = r
towards the origin of the coordinates (the body’s centre). For
example, it could be a particle falling from the near-Earth
space in the equatorial plane onto the Earth’s surface. In this
case: a) the polar angle is θ= π2 and, therefore, cos θ= 0 and
sin θ= 1, b) the velocities v2 and v3, with which the particle
is deflected along the geographical latitudes and longitudes,
are negligible compared to its radial velocity v1.

Finally, we assume that the body that is the source of the
field rotates (synchronously with its entire space) with slow
linear velocities compared to the velocity of light.

Now we substitute into the chr.inv.-vector equations of
motion (133) and (135) the components of the gravitational
inertial force Fi (136), the tensor of the angular velocity of
rotation of space Aik (59–66), and also the inhomogeneity co-
efficients of space, a.k.a. the Christoffel symbols ∆i

nk (77–83),
which we have calculated above in this paper in accordance
with the space metric of a rotating massive body. As a result,
after using the above approximations, we obtain the vector
equations of motion in component notation.

The resulting chr.inv.-vector equation of motion of a free
mass-bearing particle, in component notation derived after
some algebra, has the form

d v1

dτ
− 2ωr v3 − r v2v2 − r v3v3 +

GM
r2 = 0

d v2

dτ
+

2
r

v1v2 = 0

d v3

dτ
+

2ω
r

v1 +
2
r

v1v3 = 0


. (141)

and for a massless (light-like) particle the resulting chr.inv.-
vector equation of motion has the components

d c1

dτ
− 2ωrc3 − r c2c2 − r c3c3 +

GM
r2 = 0

d c2

dτ
+

2
r

c1c2 = 0

d c3

dτ
+

2ω
r

c1 +
2
r

c1c3 = 0


. (142)

As can be seen from the equations, the gravitational field
of a rotating body makes a contribution in the form of only
the last term in the first equation, i.e., it affects the motion
of the particle only along the radial direction x1 = r. On the
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contrary, the rotation field of this body makes a contribution
to the motion of the particle both along the radial axis r and
along the equatorial (longitudinal) coordinate axis φ and the
latitudinal coordinate axis θ.

As is seen, the vector equations of motion for a mass-
bearing particle and a massless (light-like) particle are iden-
tical. The only difference is that the equations for a massless
(light-like) particle contain the physically observable veloc-
ity of light ci instead of the mass-bearing particle’s physically
observable velocity vi. For this reason, we will solve only the
equation of motion of a mass-bearing particle (the solution
for a massless particle will coincide).

The problem is that this system of differential equations
is unsolvable even when considered in the above simplified
form. Therefore, we will solve them using the small parame-
ter method.

Namely, — we assume that the radially travelling particle
gains only a very small increment or decrement α′ to its ini-
tial numerical value v1. This allows us to set v1 = const in the
third equation of the system, which is the equation of motion
along the equatorial (longitudinal) axis φ, and in the second
equation that is the equation of motion along the latitudinal
axis θ. Then, using the obtained solutions of the third and
second equations, we will solve the first equation (the equa-
tion of motion along the radial axis r) with respect to v1 +α′,
i.e., with respect to the small parameter α.

But even now, without solving the vector equations of mo-
tion, but only based on their general form given above, we see
that three effects are possible, namely:

1. The deflection of a radially travelling particle along the
geographic longitudes due to the influence of the rota-
tion of space (the third equation);

2. The deflection of a radially travelling particle along the
geographic latitudes due to the influence of the rotation
of space (the second equation);

3. The acceleration or braking of a radially travelling par-
ticle in the radial direction due to both the gravitational
field and the rotation of space (the first equation).

6.2.1 Solving the third vector equation of motion

The third equation is an equation of motion along the equato-
rial axis φ. This is a differential equation of the form

y′ + ay + b = 0 , (143)

or, which is the same,

φ′′ + aφ′ + b = 0 , (144)

where the variable y and the constants used are

y = v3 =
dφ
dτ
, (145)

a =
2
r

v1 = const, b =
2ω
r

v1 = const. (146)

The above equations (143) and (144) solve as

y =
C

eax −
b
a
, φ =

C1

eax −
bx
a
+C2 . (147)

Substituting the integration constants, calculated from the
initial conditions x= x0 = 0 and y= y0 = 0,

C =
b
a
= ω , (148)

C1 = −
b
a2 = −

ωr
2v1 , C2 = −C1 =

ωr
2v1 , (149)

below we represent the above solutions of the equations (143)
and (144) in their final form.

As a result, the obtained solution of the equation (143),
which is the physically observable velocity y= v3 of the radi-
ally travelling particle along the equatorial axis φ at the point
of arrival on the surface of the rotating body (onto which the
particle was falling down from the cosmos along the radial
direction r), takes the final form

v3 = −ω + ωe
− 2

r v1τ
. (150)

The first term here is the basic equatorial velocity of the
particle, the cause of which is the shift of its equatorial co-
ordinate φ towards negative numerical values due to the turn
of the rotating massive body during the time of the particle’s
travel to the body’s surface.

The second term is absent in the classical theory. This ad-
ditional term reveals an additional velocity gained by the free
falling mass-bearing particle along the equatorial coordinate
φ (geographical longitudes) of the rotating massive body in
the direction, opposite to its rotation.

In turn, the obtained solution for the equatorial coordinate
φ of the particle’s point of arrival, which is the solution of the
equation (144), takes the final form as follows

φ = φ0 − ωτ +
ωr
2v1

(
1 − e

− 2
r v1τ

)
. (151)

The first and second terms of the solution are known in
the classical theory.

The third, additional term of this solution, unknown in the
classical theory, reveals a deflection of the free falling mass-
bearing particle along the equatorial coordinate φ (geograph-
ical longitudes) of the rotating massive body in the direction,
opposite to its rotation.

Respectively, the solutions of the third vector equation of
motion for a massless (light-like) particle, such as a photon,
have the same form

c3 = −ω + ωe
− 2

r c1τ
, (152)

φ = φ0 − ωτ +
ωr
2c1

(
1 − e

− 2
r c1τ

)
, (153)
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where the mass-bearing particle’s velocity is replaced with
the physically observable velocity of light.*

These solutions show another new effect of the rotation of
space, which is absent in the classical theory and is revealed
by the second term of the solution (152) and the third term of
the solution (153). This is an additional deflection of a light
ray travelling towards the surface of a rotating massive body,
which occurs along the equatorial coordinate φ (geographical
longitudes) of the body in the direction, in which the body
rotates.

Note that the solutions of the third vector equation of mo-
tion, which we have derived above in the field of a rotating
massive body with a significant gravitational field, coincide
with those derived earlier [2] in the field of a rotating body,
the gravitational field can be neglected (i.e., in the absence
of the gravitational field). This is because the acting gravi-
tational force takes effect on only the first vector equation of
motion (along the radial axis r), but is not included into the
second and third vector equations of motion (along the lat-
itudinal polar coordinates θ and the equatorial longitudinal
coordinates φ).

For this reason, the numerical examples of the solutions
will be identical to those calculated in the previous paper [2]
in the absence of the gravitational field. Therefore, we now
reproduce the examples here in short from [2].

Thus, the curvature of space caused by the rotation of the
Earth around its axis (ω⊕ =1 rev/day=1.16×10−5 rev/sec,
r⊕ = 6.37×108 cm) deflects a light ray arriving at the Earth’s
surface from the Moon (τ =1 sec) along the geographical lon-
gitudes φ in the direction of the Earth’s rotation. The angle of
deflection of the light ray is†

∆φ =
ω⊕ r⊕
2c1

(
1 − e

− 2
r c1τ

)
≃ 1.2 × 10−7 rev ≃ 0.16 ′′, (154)

where the deflection of the light ray is mainly due to the first
term, and the second term, depending on the travel time τ, is
equal to 1.5× 10−41 and, therefore, can be neglected.

The magnitude of this effect increases with the radius and
rotation velocity of the cosmic body. Thus, a light ray arriving
at the Sun (ω⊙ =4.5×10−7 rev/sec, r⊙ = 7.0×1010 cm) is de-
flected by the curvature of space caused by the Sun’s rotation
by an angle, the numerical value of which is

∆φ ≃ 5.3 × 10−7 rev ≃ 0.68 ′′, (155)

the value of which is much larger in the case of a rapidly rot-
ating star, such as Wolf-Rayet stars or neutron stars.

*Note that, despite the components of the physically observable velocity
of light are variables depending on the properties of space, its square remains
constant ci ci = hik cick = c2 = const).

†In this case, the physically observable velocity of light has a negative
numerical value of c1 =− 3× 1010 cm/sec, since the velocity of light vector
is directed towards the Earth, i.e., opposite to the radial coordinates r mea-
sured from the centre of the Earth.

6.2.2 Solving the second vector equation of motion

The second vector equation of motion is an equation of mo-
tion along the geographical latitudes, where the latitudinal
coordinate θ (polar angle) is measured from the North Pole.
This is a differential equation of the form

y′ + ay = 0 , (156)

or, with respect to the latitudinal coordinates θ,

θ
′′ + aθ′ = 0 , (157)

where the variable y and the constant a are

y = v2 =
dθ
dτ
, a =

2
r

v1 = const. (158)

These equations solve as

y =
C

eax , θ =
C1

eax +C2 , (159)

where the integration constants are calculated from the initial
conditions x= x0 = 0 and y= y0 = 0. They are C = 0, C1 = 0
and C2 = θ0.

Thus, the final solutions of the second vector equation of
motion have the following form

v2 = 0 , θ = θ0 , (160)

which means that a particle travelling radially towards the sur-
face of a massive rotating body is not deflected along the ge-
ographical latitudes.

6.2.3 Solving the first vector equation of motion

The first vector equation of motion is an equation of motion
along the first (radial) coordinate axis r.

This equation contains contributions from both the rota-
tion of space (the second term) and the gravitational field (the
last term of the equation). Therefore, its solution will differ
from the solution of the first equation of motion in the field
of a rotating body, the gravitational field of which can be ne-
glected (i.e., in the absence of the gravitational field).

Assume that the particle’s velocity in the radial direction
gains only a very small increment or decrement α′ to its ini-
tial numerical value v1. In other words, we assume v1 = const
and, therefore, solve the first vector equation of motion with
respect to the sum v1 +α′, i.e., with respect to the small pa-
rameter α.

Taking the obtained solutions v3 =−ω and v2 = 0 into
account, the first vector equation of motion is reduced to

d v1

dτ
+ ω2r +

GM
r2 = 0 , (161)

where r is the radius of the rotating body, and M is its mass.
This is a differential equation having the form

y′ + b = 0 , (162)
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or, with respect to the small parameter α,

α′′ + b = 0 , (163)

where the variable y and the constant b are

y = α′, b = ω2r +
GM
r2 = const. (164)

The above equations (162) and (163) solve as

y = C − bx , α = −
bx2

2
+C2 x +C1 , (165)

where the integration constants, calculated from the initial
conditions x= x0 = 0, α=α0 = 0 and y= y0 = 0, are zero. As
a result, the solutions of the equations (162) and (163) take
their final form

α′ = −ω2rτ −
GM
r2 τ, α = −

ω2r
2
τ2 −

GM
2r2 τ

2. (166)

The second terms in the solutions are the contribution of
the gravitational field, created by the rotating massive body,
which is the well-known effect of the classical theory. The
terms reveal, respectively, the additional radial velocity gain
by the falling particle (in the solution for α′) and also the
reduction of the distance travelled by the particle (in the so-
lution for α), all due to the influence of the gravitational field
attracting the particle to the rotating body.

However, the first terms in the solutions are absent in the
classical theory. They show, respectively, the additional neg-
ative radial velocity (in the solution for α′) and the stretching
in the distance travelled by the particle (in the solution for α)
due to the influence of the rotation of space of the gravitating
body onto which the particle falls.

We see that here only the rotation of space produces a
new effect of General Relativity in addition to the classical
theory (i.e., the gravitational field of the rotating body does
not produce a new additional effect).

In the absence of the gravitational field, the obtained so-
lutions (166) coincide with those obtained in the previous pa-
per [2] for a particle travelling towards a rotating body, the
gravitational field of which can be neglected.

In fact, the new effect revealed by the first terms of the so-
lutions (166) means that a mass-bearing particle or a light ray
reaches a rotating massive body later due to the “stretching”
of its path of travel due to the curvature of space caused by
the rotation of space of the body, i.e., the mass-bearing par-
ticle or the light ray arrives at the rotating body with a time
delay compared if the body did not rotate.

These new effects are the same for both mass-bearing and
massless (light-like) particles. For example, the increment of
the path length travelled by a light ray from the Moon to the
Earth, and also the delay in its travel time are

α = −
ω2
⊕ r⊕
2
τ2 ≃ −1.7 cm, (167)

∆τ =
α

c1 ≃ 5.7 × 10−11 sec, (168)

and for a light ray that travelled from the Earth to the Sun
the increment of the travelled path length and the delay in its
travel time are

α = −
ω2
⊙ r⊙
2
τ2 ≃ −6.6 × 104 cm, (169)

∆τ =
α

c1 ≃ 2.2 × 10−6 sec, (170)

which are the same as those calculated in the previous paper
[2] in the field of a rotating body, the gravitational field of
which can be neglected.

6.2.4 Conclusion

In concluding this Section of the present paper, let us formu-
late the two new effects of General Relativity calculated here
in the field of a rotating massive body:

The 1st new effect of General Relativity
A mass-bearing particle radially falling onto the sur-
face of a rotating body gains an additional velocity, di-
rected along the equatorial coordinate φ (geographical
longitudes) of the body in the opposite direction of its
rotation, thereby causing a deflection of the particle in
the longitudinal direction φ.

In addition, the radially falling mass-bearing parti-
cle arrives at the rotating body with a time delay com-
pared if the body did not rotate.

This happens due to the “stretching” of the rotating
body’s space along the equatorial coordinate φ (along
the geographical longitudes) and the radial direction r
(towards the body) as a result of the curvature of space,
caused by its rotation (together with the body).

The 2nd new effect of General Relativity
A light ray radially spreading towards the surface of a
rotating body acquires an additional deflection upon ar-
rival along the equatorial latitudinal coordinate φ of the
body in the direction, in which the body rotates.

In addition, the radially spreading light ray arrives
at the rotating body with a time delay compared if the
body did not rotate.

This deflection of the light ray and the delay in its
arrival at the rotating body occurs due to the “stretch-
ing” of the rotating body’s space along the equatorial
coordinate φ (along the geographical longitudes) and
the radial direction r (towards the body), which are the
result of the curvature of space, caused by its rotation
(together with the body).

The physical origin of the new effects is obvious from our
above calculation of the curvature of space, which we found
to be caused by not only the gravitational field but also the
rotation of space:
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On the origin of the new effects
As has been found, the rotation of any body curves
space in the direction of its rotation and to the centre
of this body (the centre of rotation), thereby creating a
“slope of the hill” slowing “down” along the equator in
the direction, in which this body rotates, and also to the
centre of this body.

In addition, the gravitational field created by the ro-
tating body also curves space, making its own contribu-
tion in the form of the curvature of space towards the
body’s centre.

As a result, due to the created curvature of space,
a mass-bearing particle or a light ray freely travelling
towards a rotating massive body “rolls down the curva-
ture hill” of space along the equator of the body in the
direction of the body’s rotation (the contribution of the
rotation of space), and also “rolls” towards the centre
of the body (the combined contribution of the rotation
of space and the gravitational field).

7 Length stretching and time loss/gain in the space of
a rotating massive body

According to the chronometrically invariant formalism, the
three-dimensional physically observable chr.inv.-interval dσ
(14) and the physically observable time interval dτ (11)

dσ2 = hik dxidxk, dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi (171)

depend on the chr.inv.-metric tensor hik =−gik +
1
c2 vi vk (15),

the gravitational field potential w (12) and the linear velocity
of the rotation of space vi (13). Thus, we can calculate dσ
and dτ in the space of any particular metric, for which we
have previously calculated the quantities hik, w and vi.

Let us now calculate the length of a rigid rod and the time
interval in the field of a rotating massive body.

7.1 Length stretching

Let us substitute into the formula for dσ the non-zero compo-
nents hik (47) that we have calculated according to the space
metric of a rotating massive body (10).

Thus, we obtain the physically observable length dl of a
rigid rod, installed in stages along each of the coordinates

dlr =
√

h11 dr2 =
dr√
1 − rg

r

=
dl0√
1 − rg

r

, (172)

dlθ =
√

h22 dθ2 = rdθ = dl0 , (173)

dlφ =
√

h33 dφ2 =

√
1 +
ω2r2sin2

θ

c2 r sin θ dφ =

=

√
1 +
ω2r2sin2

θ

c2 dl0 , (174)

where dr= dl0 is the length of an elementary segment along
the radial axis r, rdθ= dl0 is the length of an elementary arc
along the latitudinal axis θ (the polar angle θ is measured
from the North Pole), and r sin θdφ= dl0 is the length of an
elementary arc along the equatorial latitudinal axis φ.

As is seen from the above calculation, a rigid rod located
in the field of a rotating massive body (say, in the field of
the Earth or the Sun) retains its original physically observ-
able length dl0, when installed along the geographical lati-
tudes (dlθ = dl0).

In contrast, when the rod installed in the position along
the radial coordinate r, i.e., in the direction towards the centre
of the rotating massive body (along its radius), its physically
observable length dlr is greater than its original length dl0 by
a small value δlr

dlr =
√

h11 dr2 =
dl0√
1 − rg

r

≃

(
1 +

rg
2r

)
dl0 , (175)

δlr ≃
rg
2r

dl0 ≃
1
2

C r2dl0 , (176)

which is determined by the curvature of space C = rg
r3 caused

by the gravitational field of the rotating body. See the second
term in the formula for the physically observable curvature C
(106) of the space of a rotating massive body, which we have
derived above in this paper.

And also, when the rod is installed in the position along
the equatorial coordinate φ, i.e., in the direction along the ge-
ographical longitudes along which the massive body (say, the
Earth or the Sun) rotates around its own axis, its physically
observable length dlφ is greater than its original length dl0 by
a small value δlφ

dlφ =

√
1 +
ω2r2sin2

θ

c2 dl0 ≃
(
1 +
ω2r2sin2

θ

2c2

)
dl0 , (177)

δlφ ≃
ω2r2sin2

θ

2c2 dl0 ≃
1

12
C r2sin2φ dl0 , (178)

determined by the curvature of space C = 6ω2

c2 created by its
rotation (together with the massive body) and is expressed
with the first term in the formula for the physically observable
curvature C (106), which we have derived in this paper.

As a result of the above derivation, we obtain the 3rd new
effect of General Relativity:

The 3rd new effect of General Relativity
A rigid rod installed along the radial coordinate in the
field of a rotating massive body (i.e., in the direction to
the body’s centre) acquires an additional length. This
additional length is determined by the curvature of the
body’s space caused by its gravitational field.

In addition, if the rod is installed along the equa-
torial coordinate φ (i.e., along the geographical longi-
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tudes of the body), then its length acquires an addi-
tional length determined by the curvature of the body’s
space caused by its rotation.

This effect of length stretching of a rod in the field
of a rotating massive body is due to the “stretching” of
the body’s space along the radial direction r (towards
the body) caused by its gravitational field, and along the
equatorial coordinate φ (along the geographical longi-
tudes), caused by the rotation of the body’s space (to-
gether with the body).

In other words, a rod in the field of a rotating mas-
sive body is “stretched” together with the “stretching”
of the coordinate grid of space in the radial and equa-
torial directions. The “stretching” of the grid of space
in the radial direction occurs due to the curvature of
the body’s space (the funnel of space) in this direction,
caused by its gravitational field. Whereas the “stretch-
ing” of the coordinate grid of space along the equato-
rial coordinates is caused by the curvature of the body’s
space due to its rotation in this direction.

For example, the length stretching of a rod installed at
the equator of the Earth (ω⊕ =1 rev/day=7.27×10−5 sec−1,
r⊕ = 6.37×108 cm) in the direction along the longitudinal axis
φ, i.e., along the equator, has a numerical value of

δlφ ≃
ω2
⊕ r2
⊕ sin2

θ

2c2 dl0 ≃ 1.2 × 10−12 dl0 (179)

of the original length dl0 of the rod.
The length stretching of a rod installed vertically on the

Earth’s surface, has a numerical value of

dlr ≃
rg⊕
2r⊕

dl0 ≃ 7.0 × 10−10 dl0 . (180)

This length stretching effect is maximum at the equator,
where the curvature and “stretching” of the Earth’s space
caused by the Earth’s gravitational field are maximum (since
the Earth is oblate towards the equator), and the curvature and
“stretching” of the Earth’s space caused by the Earth’s rotat-
ion are also maximum. This length stretching effect decreases
towards the geographical poles, where the length stretching
caused by the rotation of the Earth’s space vanishes (since
sin θ= 0 at the poles), and the length stretching caused by the
gravitational field is a little lesser than at the equator.

7.2 Time loss/gain

Let us now substitute into the general formula for the physi-
cally observable interval dτ the gravitational potential w (54)
and the linear velocity of the rotation of space v3 =ωr2sin2

θ

(45) that we have calculated above in this paper among the
other characteristic of the space metric of a rotating massive
body (10).

Thus, we obtain the physically observable time interval
dτ, which will be registered by an observer travelling along

the equatorial direction φ (i.e., along the geographical longi-
tudes) in the space of a rotating massive body

dτ =

√
1 −

rg
r

dt −
1
c2 v3 u3 dt =

=

√
1 −

rg
r

dt −
ωr2sin2

θ

c2 u3 dt , (181)

where u3 =
dφ
dt is the coordinate velocity of the observer in the

equatorial direction x3 =φ, along which he travels.
The first term in this formula determines the known effect

of time loss due to the curvature of the body’s space C = rg
r3

caused by its the gravitational field: the stronger the gravita-
tional field (the closer the observer is to a massive body), the
shorter the time intervals registered by him

dτ =

√
1 −

rg
r

dt ≃
(
1 −

rg
2r

)
dt , (182)

δτ ≃ −
rg
2r

dt ≃ −
1
2

C r2dt . (183)

In other words, this is the known effect of the classical
theory: the higher the observer is above the surface of a mas-
sive body, the weaker the curvature of the body’s space and,
consequently, the shorter the time intervals that the observer
records.

However, the second term of (181) is absent in the classi-
cal theory. This term reveals the increment of the physically
observable time, which is due to the curvature of the body’s
space C = 6ω2

c2 caused by its rotation (together with the mas-
sive body itself)

δτ = −
ωr2sin2

θ

c2 u3dt = −
C r2sin2

θ

6ω
u3dt . (184)

The sign of this effect depends on the direction, in which
the observer travels with respect to the rotation of space, i.e.,
on the sign of the observer’s coordinate velocity u3 (he travels
along the equatorial axis x3 =φ).

As a result, based on the second term in the obtained so-
lution, we obtain the 4th new effect of General Relativity in
addition to those three explained above. This effect says:

The 4th new effect of General Relativity
A clock on board an airplane (or a spacecraft) flying in
the field of a rotating massive body in the same direc-
tion in which the body’s space rotates (together with
the body itself) should register a time loss depending
on the airplane’s (or a spacecraft’s) velocity and the ro-
tation velocity of the body’s space.

In contrast, a clock on board an airplane (or a space-
craft) flying in the direction, opposite to the body’s
space rotation should register a time increment, as well
depending on the airplane’s (or a spacecraft) velocity
and the velocity, with which the body’s space rotates.
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This effect of time loss/gain in the field of a rotating
massive body is due to the “stretching” of the body’s
space along the equatorial direction φ (along the ge-
ographical longitudes), caused by the rotation of the
body’s space along this axis. When, say, an airplane
flies towards the Earth’s rotation, the magnitude of the
total rotation of space registered on its board is less than
the proper rotation of the Earth’s space at the point of
departure/arrival and, therefore, the “stretching” (and
curvature) of space registered on board the airplane is
also less. In contrast, when an airplane flies backwards
the Earth’s space rotation, the clock on its board reg-
isters a time increment due to the greater magnitude
of the total rotation and, therefore, greater “stretching”
(and curvature) of space.

For example, consider a typical commercial flight travel-
ling at 10 000 m along the Earth’s equator (ω⊕ =1 rev/day=
= 7.27× 10−5 sec−1, r⊕ = 6.37× 108 cm) at a typical cruising
speed of 800 km/hour, which means a flight time around the
globe of t ≃ 1.8×105 sec. Since the planet Earth rotates from
West to East, the above 800 km/hour mean that the airplane’s
velocity is u3 =+ 3.5×10−5 sec−1 when flying Eastward and
u3 =− 3.5×10−5 sec−1 when flying Westward.

Then, according to the second term (184) in the obtained
solution for dτ (181) we have obtained in the field of a ro-
tating massive body, a clock installed on board the airplane
should register a time loss of

δτEast = −
ω⊕ r2

⊕ sin2
θ

c2 u3 t ≃ −210 nanosec, (185)

when flying to the East (i.e., in the same direction, in which
the Earth’s space rotates), and also a time increment

δτWest = +
ω⊕ r2

⊕ sin2
θ

c2 u3 t ≃ +210 nanosec, (186)

when flying to the West (i.e., oppositely to the rotation of the
Earth’s space).*

This effect is maximum at the equator (where the curva-
ture of the Earth’s space caused by its rotation is maximum
and, therefore, space is maximally “stretched”) and decreases
towards the poles, where sin θ= 0 and, therefore, this effect
vanishes.

This effect was first registered in the “around-the-world-
clock experiment”, conducted in 1971 by Joseph C. Hafele
and Richard E. Keating [12–14] and then repeated in 2005
by the UK’s National Measurement Laboratory [15], despite
the fact that they did not know about the chronometrically
invariant formalism and the effects caused by the rotation of
space; I discussed this issue in extensive friendly correspon-

*The calculated numerical values are the same as those calculated in the
previous paper [3] in the absence of the gravitational field, since the gravi-
tational field produces an individual effect, expressed by the first term of the
obtained solution for dτ (181).

dence with Joseph C. Hafele in the last years of his life, be-
fore he passed away in 2014 [16]. Their flights took place in
the Northern Hemisphere (not at the equator) and at different
altitudes. In addition, the results of their measurements were
affected by the relativistic addition of the airplane’s veloc-
ity to the Earth’s rotation velocity when flying Eastward (and
subtraction when flying Westward), as well as the decrease
in the Earth’s gravitational potential with flight altitude. That
is their measurement results were not purely the effect of the
rotation of space. The total effect registered in the Hafele-
Keating experiment was a time loss of − 59±10 nanosec-
onds when flying Eastward and a time increment of + 273± 7
nanoseconds when flying Westward, which fits well with our
above calculation of the new effect due to the rotation of
space, if we take into account the relativistic addition of the
airplane’s velocity to the Earth’s rotation velocity when flying
Eastward and subtraction when flying Westward.

8 Conclusion

The main contribution of this paper is introducing and prov-
ing the space metric of a rotating massive body, approximated
by a mass-point. This is a new space metric to General Rela-
tivity, the main purpose of which is to be a modern extension
and replacement of the classical Schwarzschild mass-point
metric (since in the space of the Schwarzschild metric a mas-
sive body creating gravitational field does not rotate).

We have proven that the introduced space metric of a ro-
tating massive body satisfies Einstein’s field equations, and
also derived the Riemann conditions under which this occurs.
Therefore, the introduced metric can be legitimately used in
General Relativity.

We have calculated all known physically observable prop-
erties of space determined by the introduced metric of a ro-
tating massive body, including the physically observable cur-
vature of space. And here is what is especially interesting:
we have found that the curvature of space is caused not only
by the gravitational field filling it, but also by the rotation of
space (together with the massive body). Based on this theo-
retical discovery, we have predicted and calculated four new
effects of General Relativity:

1. Deflection along the equatorial coordinate and time
delay of mass-bearing particles falling onto a rotating
massive body, which is due to the “stretching” (curva-
ture) of space, caused by its rotation (together with the
body itself);

2. Deflection along the equatorial coordinate and time de-
lay of light rays spreading to a rotating massive body,
which is due to the “stretching” (curvature) of space,
caused by its rotation;

3. Length stretching of a rod installed along the radial and
equatorial coordinates in the field of a rotating mas-
sive body due to the “stretching” (curvature) of space
in these directions, caused by its rotation;
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4. The loss of time in a clock travelling in the direction
of the body’s space rotation, which is due to the in-
crease in the “stretching” (curvature) of space in the
direction of its rotation, and accordingly the increment
of time when the clock travels oppositely to the rotation
of space.

All real cosmic bodies in the Universe rotate. Therefore,
the introduced and proved space metric is the main space met-
ric in the Universe, characterizing the field of any real cosmic
body, be it a planet, star, galaxy or something else.

Feel free to use this new metric instead of the classical
Schwarzschild metric to solve problems in General Relativ-
ity and astrophysics, if you have the necessary mathematical
skills and wishes to do so, of course.

Submitted on September 28, 2024
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