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In our recent publication, we derived a solution that allows the coupling between the
Yang-Mills theory and the space-time curvature; Progr. Phys., 2021, v.18, 97–102 [1].
This result was achieved by considering a specific manifold which we named the Weyl-
Einstein manifold spanned by the connection coefficients displaying a 4-vector. We then
deduced a Weyl-Einstein tensor, which was found to be conserved. The Weyl-Einstein
4-vector was directly identified with the Yang-Mills gauge field vectors as described
in the Minkowski space tangent to the Weyl-Einstein manifold. In the present work,
we investigate further this topic, and we examine how this coupling fits into the field
equations.

Notations
Throughout this text, we assume the Einstein summation, whereby
a repeated index implies summation over all values of this index.
4-tensor or 4-vector: small Latin indices a, b, . . . = 0, 2, 3, 4.
3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3.
Signature of the space-time metric: (+−−−).
Ordinary derivative: ∂aU.
Riemannian covariant derivative on (M, g): ∇a or (;).

1 The Weyl-Einstein field equations

1.1 The Weyl-Einstein tensor

Following Lichnerowicz [2] we defined the semi-metric man-
ifold (Mw, g) spanned by the Weyl-Einstein connexion coeffi-
cients expressed here with the metric connexion

Wc
ab =

1
2
gcd (∂b gda + ∂a gdb − ∂d gab)−

−
1
2
gcd (Jb gda + Ja gdb − Jd gab) ,

(1.1)

Wc
ac =

1
2
gcd (∂a gcd − Ja gcd) , (1.2)

where Ja is referred to as the Weyl-Einstein 4-vector.
The Einstein-Weyl-curvature tensor is assumed to keep its

original form

(Rc
adb)w = ∂b Wc

ad − ∂d Wc
ab +Wc

ebWe
ad −Wc

edWe
ab . (1.3)

Setting

(Γc
ab)J =

1
2
gcd (Jb gda + Ja gdb − Jd gab) (1.4)

and using the Riemannian covariant derivatives, we found

(Rab)w = Rab + ∇c(Γc
ab)J − ∇b(Γc

ac)J +

+ (Γd
ab)J(Γc

dc)J − (Γd
ae)J(Γe

db)J ,
(1.5)

Rw = R −
(
∇a Ja +

1
2

J2
)
. (1.6)

With these, we derived the Weyl-Einstein tensor as

(Gab)w = (Rab)w −
1
2

(gabRw − 2 Jab) , (1.7)

where
Jab = (Γd

ab)J(Γc
dc)J − (Γd

ae)J(Γe
db)J .

The Weyl-Einstein tensor was shown to be conserved.

1.2 Massive source

The Weyl-Einstein field equations are now expressed by

(Gab)w = κTab . (1.8)

Using the Riemannian covariant derivatives, the Weyl-
Einstein tensor conservation law reads

∇a(Ga
b)w = 0 . (1.9)

The right hand side of (1.8) should also verify

∇a T a
b = 0

or
∂a Ta

b = 0 (1.10)

with the tensor density Ta
b =
√
−gT a

b .
However, inspection shows that

∂a Ta
b =

1
2

Tca ∂b gca (1.11)

or equivalently

∂a Ta
b =

1
2

Tca (∂b gca − Jb gca) .

Thus the condition (1.10) is never satisfied in a general
coordinates system. This circumstance results from the fact
that the global conservation should hold for the 4-momentum
of both the matter and its gravitational field.
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To keep the equation (1.10) consistent with (1.9), we must
look for a solution of the form

∂a

(
Ta

b + ta
b

)
= 0 , (1.12)

where tab is the given tensor’s density.
Let us compute

dgab = d
(√
−g gab

)
=
√
−g

(
dgab +

1
2
gabged

)
dged =

=
√
−g

(
−gaegbd +

1
2
gabged

)
dged ,

therefore

(Rab)w dgab =
√
−g

(
−Rce

w +
1
2
gceRw

)
dgce = −κTcedgce .

Taking into account the Lagrangian form of the Weyl-
Einstein Ricci tensor

(Rab)w = ∂
e
[

Lw

∂ (∂e gab)

]
−
∂Lw

∂gab ,

where the effective Weyl-Einstein Lagrangian is now

Lw = g
ab √−g

(
We

abWd
de −Wd

aeWe
bd

)
(1.13)

one obtains

−κTab dgab =

(
∂c
∂Lw

∂c gab −
∂Lw

∂gab

)
dgab =

= ∂c

(
dgab ∂Lw

∂c gab

)
− dLw ,

−κTab∂d gab = ∂c

(
∂d g

ab ∂Lw

∂ (∂c gab)
− δcd Lw

)
= 2κ ∂c t c

d .

From the last equation we find

∂c Tc
a =

1
2

Tdc ∂a gdc = −∂c t c
a .

In order to satisfy the conservation law (1.12), one clearly
sees that the gravitational field energy-momentum tensor den-
sity should be described by the Weyl-Einstein extension of the
Einstein-Dirac pseudo-tensor [3, p.61]

t c
d =

1
2
κ

[
∂d g

ab ∂Lw

∂(∂c gab)
− δc

d Lw

]
(1.14)

the quantities tab are called “pseudo-tensor density” since
they can be transformed away by a suitable choice of the ref-
erence frame and they are not irreducible [4]. This is why the
classical theory stipulates that a (free) gravitational energy
cannot be localizable.

In the classical General Relativity, the non symmetric ten-
sor tab/

√
−g is symmetrized through the Belinfante proce-

dure [5] to suit the standard symmetric Einstein tensor. The
relevant symmetric tensor is denoted tab.

Unfortunately, the Einstein field equations whatever their
transcriptions, are yet unbalanced since they do not exhibit
a full real tensor as a source. To remedy this problem, we
showed that a slightly variable cosmological term Λ-term in-
duces a stress-energy tensor of vacuum, which restores a true
gravitational tensor on the right-hand side of equation (1.6)
as it should be [6, 7].

This real tensor is given by

(tab)vac = −
1

2κ
Λgab . (1.15)

The Λ-term was found to be [8]

Λ = ∇a Ka = θ2, (1.16)

where Ka is a 4-vector and

θ = Xa
; a (1.17)

is the space-time volume scalar expansion characterizing the
vacuum stress-energy tensor (tab)vac, and Xa is a congruence
of non intersecting unit time lines XaXa = 1

Xa
; a = habθab , (1.18)

while θab stands for the expansion tensor and hab = gab−Xa Xb

is the projection tensor.
Due to the form of (1.16), the Lagrangian (1.13) differs

only from a divergence and varying its action generates the
same field equations. The real tensor (tab)vac which corre-
sponds to the vacuum stress-energy tensor can be added to tab

without affecting the Weyl-Einstein Lagrangian.
With this definition the Weyl-Einstein field equations can

be finally written as

(Gab)w = (Rab)w −
1
2

(gab Rw − 2 Jab) =

= κ

[
ρc2uaub +

tab
√
−g
+ (tab)vac

]
.

(1.19)

Here the symmetrization procedure is evaded, because the
quantity tab/

√
−g is genuinely antisymmetric.

When gravity is weak and velocities are low compared to
c, we have the Newtonian approximation where the massive
tensor in (1.19) reduces to

T 0
0 = ρc2.

Inspection then shows that

(
R0

0
)
w = R0

0 =
1
c2

∂2φ

∂2
β
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with g00 = 1+φ/c2, from which we find the well-known Pois-
son equation

∆φ = 4πGρ ,

where G is Newton’s constant.

1.3 Electromagnetic contribution

The field equations are expressed by

(Rab)w −
1
2

(
gab Rw − 2 Jab

)
=

= κ
1

4π

(
−∂a AcFbc +

1
4
gab Fcd F cd

)
,

(1.20)

Fab = ∂a Ab − ∂b Aa .

The source tensor is antisymmetric. Its form is derived
from the canonical equation

(
tb
a
)
elec =

∂a Ac∂L
∂ (∂b Ac)

− δba L ,

where L=− 1
16π Fbc F bc.

If the Weyl part is neglected, the term 1
4π ∂c AcFbc is clas-

sically added so that when charge is absent, holds the relation

1
4π
∂c Aa Fc

b =
1

4π
∂c

(
Aa Fc

b

)
.

This eventually yields the well-known symmetric energy-
momentum tensor of the electromagnetic field

τab =
1

4π

(
−F c

a Fbc +
1
4
gab F cdFcd

)
.

1.4 Charged matter

The Weyl-Einstein field equations are

(Rab)w −
1
2

(
gab Rw − 2 Jab

)
=

= κ

[
ρc2uaub +

tab
√
−g
+ (tab)vac +

+
1

4π

(
−∂a Ac Fbc +

1
4
gab Fcd F cd

)]
.

(1.21)

We easily check that the right hand side of the equations
is conserved.

2 Relation to the Yang-Mills gauge fields

We first write the Minkowskian line element ds and the Weyl-
Einstein line element dsw, then we set

dJ = dA
(
1 + Log

dsw

ds

)
(1.22)

with the following one-forms

dJ = Ja dxa,

dA = Aa dxa.

The above 4-vector Aa is a generic gauge vector of the
Yang-Mills field defined in the flat space tangent to the Weyl-
Einstein manifold.

2.1 Weak interaction SU(2) symmetry

Let us now examine the rôle of the Weyl-Einstein tensor in
the field equations. We write the group element of SU(2) as

U = exp
[
−i Tβkβ

]
,

where k is the group parameter with the generators

Tβ =
1
2
σβ,

(here σβ are the 2× 2 Pauli spin matrices) with the coupling
constant h, the gauge field transforms as

Ba → Ba − Tβ∂a ka(x) + i hka(x)
[
Tβ, Ba(x)

]
.

Here, the Weyl-Einstein field equations (1.19) apply with
the correspondence

Ja → Ba .

2.2 The electromagnetic symmetry U(1)

This symmetry group is the abelian group U(1) with a single
commuting generator T1 = Q satisfying

[T1,T1] = 0 ,

where Q is the quantity of the charges of the field Φ (x) pro-
portional to the fundamental charge unit e. Under the phase
rotation

Φ (x)→ Φ (x) exp
[
− i kQ(x)

]
the vector field Aa(x) transforms as

Aa(x)→ Aa(x) + ∂a k .

Within the Weyl-Einstein field equations (1.20), we have
the correspondence

Ja → Aa .

2.3 Combined symmetry U(1) × SU(2)

Here the Weyl-Einstein field equations for charged matter
(1.21) are used, where we simply have

Ja → Aa + Ba ,

where Aa is the electromagnetic vector field gauge field and
Ba is the gauge vector field of the weak interaction.

Other combinations implying for example strong interac-
tion SU(3) could be derived in the same way.
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3 Conclusion

What have we achieved? Our theory relies on the specific
form of the connexion coefficients which displays a 4-vector.
This connexion form was first considered by H. Weyl by relat-
ing this vector to the “segment curvature” next to the Riemann
curvature and zero torsion, with the aim to unify electricity
and gravitation in a non trivial way [9]. Although we kept the
name Weyl-Einstein connexion, the extra segment curvature
is not introduced here. On the contrary, we have exploited
the Weyl-Einstein 4-vector to connect the Yang-Mills gauge
fields through an extended field equations set where both the
left and right sides are still conserved. In doing so, such
field equations can now display the type of interactions that
is considered thus informing us between either electromag-
netic field or weak and strong interactions of matter which
was basically impossible with the standard field equations.

Submitted on October 8, 2024
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