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Here we consider the degeneration of the four-dimensional fundamental metric tensor
and the physically observable three-dimensional metric tensor as geometric conditions
for non-quantum teleportation. It is shown that non-quantum teleportation can be im-
plemented under any physical conditions at the North and South Poles of a rotating
spherical body and, in general, everywhere along the axis of its rotation. But even at a
very small distance from the poles along the geographical latitudes, non-quantum tele-
portation requires exotic conditions, such as a very strong electromagnetic field, etc.

In the late 1980s, we began an extensive theoretical study, the
task of which was to find out whether instant transmission of
signals (long-range action) and instant displacement of phys-
ical bodies in general (non-quantum teleportation) is possible
according to Einstein’s theory of relativity.

The reason why we started this research was the need to
explain some unique experiments in biophysics, which were
performed in the late 1980s by one of our close colleagues,
an outstanding experimental biophysicist with a broad eru-
dition in the field of bionics (he passed away in 2001). His
experiments had no theoretical explanation in the framework
of modern science. Only with a theory of these experiments
could we determine the key physical factors that produced the
discovered effect and, accordingly, determine methods for en-
hancing these factors in order to create a new industrial tech-
nology of communication and transport.

As always in our theoretical studies, we used the mathe-
matical apparatus of chronometric invariants, introduced in
1944 by Abraham Zelmanov [1–3]. Chronometric invariants
are invariant projections of four-dimensional quantities onto
the three-dimensional space (spatial section) and the line of
time belonging to an observer. Such projections are depen-
dent on the geometric and physical characteristics of the ob-
server’s physical space and are physically observable quan-
tities registered by him in his reference frame. For this rea-
son, Zelmanov’s mathematical apparatus of chronomertic in-
variants is also known as the theory of physically observable
quantities in the four-dimensional space-time.

Since Zelmanov’s original publications [1–3] were very
concise, at the request of our close colleague Pierre Millette,
three decades later, in 2023, we published the most compre-
hensive survey of Zelmanov’s chronometrically invariant for-
malism [4], wherein we collected almost everything that we
know in this field personally from Zelmanov and based on
our own research studies.

So, let us now return to our theoretical research that we
began in the late 1980s.

First of all, we determined the weak and strong conditions
for non-quantum teleportation in the four-dimensional space-

time. According to the chronometrically invariant formal-
ism, the physically observable time interval dτ and the phys-
ically observable three-dimensional interval dσ registered by
an observer are, respectively, chr.inv.-projections of the four-
dimensional displacement vector dxα (α = 0, 1, 2, 3) onto
the time line of the observer and his three-dimensional space
(spatial section of space-time). They are calculated as

dτ =
√
g00 dt −

1
c2 vi dxi, (1)

dσ2 = hik dxidxk, i = 1, 2, 3, (2)

where dt is the interval of coordinate time, which is counted
in the absence of disturbing factors. The three-dimensional
chr.inv.-metric tensor

hik = −gik +
g0ig0k

g00
= −gik +

1
c2 vivk

hik = −gik, hi
k = δ

i
k

 (3)

is the chr.inv.-projection of the fundamental metric tensor gαβ
onto the spatial section of the observer and possesses all prop-
erties of gαβ throughout the spatial section (the observer’s
three-dimensional space). The time (zero) component g00 of
the fundamental metric tensor gαβ is expressed with the phys-
ically observable chr.inv.-potential w of the gravitational field
that fills the space of the observer

√
g00 = 1 −

w
c2 , w = c2 (

1 −
√
g00

)
, (4)

and vi is the three-dimensional vector of the linear velocity of
rotation of the observer’s space

vi = −
cg0i
√
g00
, vi = −cg0i√g00 , vi = hik v

k, (5)

which is caused by the non-orthogonality of the observer’s
spatial section to his time line and therefore it cannot be elim-
inated by coordinate transformations along his spatial section.
Therefore, the square of the four-dimensional (space-time) in-
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terval ds2 = gαβ dxαdxβ is expressed with chronometrically
invariant (physically observable) intervals by the formula

ds2 = c2dτ2 − dσ2, (6)

from which we obtain the weak and strong conditions for non-
quantum teleportation:
The weak condition of non-quantum teleportation

dτ= 0 , dσ, 0 (7)

means that the interval of physically observable time
dτ between the moments of departure and arrival of a
signal (or a physical body) registered by the observer
is equal to zero (dτ= 0), while the three-dimensional
physically observable distance dσ between the points
of departure and arrival is not equal to zero (dσ, 0).
Therefore, the space-time metric ds2 along the trajec-
tories of weak non-quantum teleportation is

ds2 = c2dτ2 − dσ2 = −dσ2

c2dτ2 = 0 , dσ2 , 0

 , (8)

thus these are the trajectories of mass-bearing particles
(since along the trajectories of massless light-like par-
ticles ds2 = c2dτ2 − dσ2 = 0 and c2dτ2 = dσ2 , 0).

The strong condition of non-quantum teleportation

dτ= 0 , dσ= 0 (9)

means that not only the physically observable time in-
terval dτ between departure and arrival registered by
the observer, but also the three-dimensional physically
observable distance dσ between these points is equal
to zero. Therefore, the space-time metric ds2 along the
trajectories of strong non-quantum teleportation is

ds2 = c2dτ2 − dσ2 = 0

c2dτ2 = dσ2 = 0

 , (10)

i.e., the space-time metric along the trajectories is fully
degenerate: for a regular observer, all four-dimensional
space-time intervals ds, three-dimensional observable
intervals dσ and observable time intervals dτ are zero
along such fully degenerate trajectories. We therefore
called them zero-trajectories, and the fully degener-
ate space-time region that hosts such trajectories —
zero-space. The zero-space is the fully degenerate case
of the light-like space (since along light-like trajecto-
ries ds2 = c2dτ2 − dσ2 = 0, but c2dτ2 = dσ2 , 0). We
showed that all particles in the zero-space appear to a
regular observer as having zero rest-mass m0 = 0 sim-
ilar to light-like particles, but they also have zero rel-
ativistic mass m= 0 and frequency ω= 0 (unlike light-
like particles, since for them m, 0 and ω, 0). There-
fore, we called them zero-particles. Deducing the eiko-

nal equation (wave phase equation) for zero-particles,
we found that it has the form of a standing wave equa-
tion. This means that, for a regular observer, all parti-
cles located in the zero-space (zero-particles) appear as
standing light-like waves, and the entire zero-space ap-
pears filled with a system of light-like standing waves
— a light-like hologram. We also showed that the re-
lation between energy and impulse is not conserved
for zero-particles: E2 − c2 p2 , const. This is charac-
teristic only of virtual particles. According to Feyn-
man diagrams, virtual particles are carriers of interac-
tions between elementary particles. This means that all
interactions between particles of our regular space-time
are transmitted by zero-particles through an “exchange
buffer” that is the zero-space.

The condition dτ= 0 gives a formula for physical condi-
tions of non-quantum teleportation

w + vi ui = c2, ui =
dxi

dt
, (11)

which is a specific combination of the gravitational potential
w, the linear velocity of rotation of the observer’s space vi,
and also the coordinate velocity ui of the teleported particle.
This condition is true for both weak and strong non-quantum
teleportation (since dτ= 0 in both cases). In both cases, the
physically observed velocity vi of the teleported signal (or
teleported body) registered by the observer is

vi =
dxi

dτ
= ∞, (12)

which means that, from the observer’s point of view, the ob-
served signal (or body) instantly displaces over the distance
from the point of departure to the point of arrival.

Note that non-quantum teleportation is really instant dis-
placement of signals (or bodies) over a distance in accordance
with the geometric structure of the four-dimensional space-
time. It has nothing common with quantum teleportation [5],
which does not transfer energy or matter over a distance, but
is merely a probabilistic effect based on the laws of Quantum
Mechanics.

We published the above results in 2001, in our first mono-
graph [6], many years after obtaining them. Then a short sum-
mary of the results was published in 2005 [7].

In our monograph [6] we related the physical conditions
of non-quantum teleportation w+ vi ui = c2 (11) to the surface
of gravitational collapsars (black holes). We proceeded from
the fact that according to the definition of the gravitational
potential w= c2 (1−

√
g00 ) (4) the gravitational collapse con-

dition g00 = 0 means w= c2, which coincides with the tele-
portation conditions w+ vi ui = c2 in the particular case where
space does not rotate (vi = 0). This means that the surfaces
of all black holes in the Universe are physically connected to
each other and are gateways to non-quantum teleportation in
the Universe.
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The question remained open: how to achieve the physical
conditions for non-quantum teleportation in a regular labora-
tory on the Earth? In our monograph [6] and paper [8] we
considered the stopped (frozen) light experiment performed
in 2000 by Lene Hau [9]. In her famous experiments, the
physically observable time of photons was stopped for up to
1.5 seconds in 2009 [10] in her Harvard laboratory without
the state of gravitational collapse, thereby implementing the
non-quantum teleportation conditions for photons during this
period of time.

However, we are interested in non-quantum teleportation
of physical bodies, and physical bodies consist of substance
(i.e., mass-bearing particles).

At first glance, to realize the physical conditions of non-
quantum teleportation w+ vi ui = c2 (11) for real physical bod-
ies, we need either to increase the gravitational potential in
our laboratory to the numerical value characteristic of grav-
itational collapse or to rotate the local space of our labora-
tory at a speed close to the speed of light and also move the
teleported test-body at a similar speed. Both are beyond the
capabilities available in a regular laboratory.

Therefore, in 2022 we took a different approach to solv-
ing this problem [11], where the exotic physical conditions
required for non-quantum teleportation can be achieved us-
ing a very strong electromagnetic field (such strong electro-
magnetic fields are able to be generated using modern tech-
nologies since the 1930s). The basis was considered to be the
space of a low-speed rotating spherical body (like the planet
Earth), the gravitational field of which is so weak that it can
be neglected, which corresponds to the physical conditions in
a regular Earth-bound laboratory. Having solved Einstein’s
field equations for the metric of such a space (their right-hand
side is non-zero due to the electromagnetic field), we obtained
specific characteristics of the magnetic and electric strengths
under which physical bodies can be teleported.

Now we would like to answer the following question: are
there natural, not man-made, conditions on the Earth (and on
any other planet or star) under which non-quantum teleporta-
tion of physical bodies can be implemented?

To answer this question, let us now consider geometric
conditions of non-quantum teleportation in the field of each
of the three following space metrics:

• the space of a rotating spherical body, the gravitational
field of which is so weak that can be neglected (its met-
ric was introduced and proved in [11]);
• the space of a non-rotating spherical massive body, ap-

proximated by a material point (Schwarzschild’s mass-
point metric);
• the space of a rotating spherical massive body, approx-

imated by a material point (its metric was introduced
and proved in [12]).

The key point in our consideration is the degeneration
of space. Under the weak non-quantum teleportation con-

dition (8), only the physically observable time is degenerate
(dτ= 0). However, under the strong non-quantum teleporta-
tion condition (10), both the physically observable time, the
physically observable three-dimensional space and the four-
dimensional space-time are degenerate.

As we know from the theory of metric spaces, a metric
space is degenerate if the determinant of its metric tensor is
equal to zero. Anyone familiar with Riemannian geometry
and tensor calculus can verify that in the four-dimensional
pseudo-Riemannian space, which is the basic space-time of
General Relativity, the determinant of the fundamental met-
ric tensor g = det ∥ gαβ ∥ is equal to g< 0. This means that the
basic space-time of General Relativity is non-degenerate, and
the zero-space (fully degenerate space-time) is located out-
side of it.

Zelmanov had proved that the determinant of the funda-
mental metric tensor g = det ∥ gαβ ∥ and the determinant of
the chr.inv.-metric tensor h = det ∥ hik ∥ are related with each
other by the formula

h = −
g

g00
, (13)

which means that, once the chr.inv.-metric tensor hik is degen-
erate (h= 0), the fundamental metric tensor gαβ is degenerate
too (g= 0). Or, in another form

g = −g00 h , (14)

i.e., non-quantum teleportation is possible either under the
state of gravitational collapse (g00 = 0), or under the degener-
acy of the observable three-dimensional metric (h= 0), or if
both these conditions take place together.

Consider the above Zelmanov formula in the field of each
of the three mentioned space metrics.

The metric of the space of a rotating spherical body, the
gravitational field of which is so weak that it can be neglected,
was introduced and proved using Einstein’s field equations
in [11]. It has the form

ds2 = c2dt2 − 2ωr2sin2
θdtdφ −

− dr2 − r2
(
dθ2 + sin2

θ dφ2
)
, (15)

where the non-zero components of the fundamental metric
tensor gαβ are

g00 = 1 , g03 = −
ωr2sin2

θ

c

g11 = −1 , g22 = −r2, g33 = −r2sin2
θ

 , (16)

and the chr.inv.-metric tensor hik of such a space has the fol-
lowing non-zero components

h11 = 1 , h22 = r2

h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
 , (17)
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where, since the matrix hik is diagonal, the upper-index com-
ponents of hik are hik= (hik)−1 just like the invertible com-
ponents to any diagonal matrix. Such a space rotates in the
equatorial plane along the φ-axis (along the geographical lon-
gitudes) with a constant angular velocity ω= const and, ac-
cording to the definition of vi (5), with a linear velocity

v3 = −
cg03
√
g00
= ωr2sin2

θ , (18)

for which, since v2= vi v
i = hik v

iv k and v i= hikvk, we have

v2 = vi v
i =
ω2r2sin2

θ

1 + ω2r2sin2θ

c2

, v =
ωr sin θ√
1 + ω2r2sin2θ

c2

, (19)

i.e., the dimension of v is
[
cm/sec

]
. At slow rotation the above

formula transforms to the conventional v = ωr sin θ.
Therefore, the determinant of the fundamental metric ten-

sor g = det ∥ gαβ ∥ and the determinant of the chr.inv.-metric
tensor h = det ∥ hik ∥ of such a space have the form

g = −r4sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
, (20)

h = r4sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
. (21)

From these formulae for the determinants g = det ∥ gαβ ∥
and h = det ∥ hik ∥ it is clear:

The space of a rotating spherical body, the gravitational
field of which is so weak that it can be neglected, is
fully degenerate (the conditions of full degeneracyh= 0
and g=−g00 h= 0 are satisfied together) everywhere
along the axis of its rotation, i.e., along its polar axis, in
particular — at the North and South Poles on the sur-
face of the body. This takes place simply because there
sin θ= 0, since the polar angle θ is measured from the
North Pole. But even at a very small distance from the
North or South Poles along the geographical latitudes,
the space of such a body is non-degenerate.

This is a purely mathematical fact that does not depend on
the physical properties of the spherical body (since they are
negligible) or the speed of its rotation, but takes place only
due to the geometric structure of its space.

Another case is a spherical body that does not rotate but
has a significant mass, so that its gravitational field cannot be
neglected. The metric of the space of a non-rotating spherical
massive body, approximated by a material point, is known as
Schwarzschild’s mass-point metric. It has the form

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
, (22)

where rg = 2GM/c2 is the gravitational radius characteristic
of the body, which is calculated for its mass M, and

g00 = 1 −
rg
r
, g11 = −

1

1 −
rg
r

g22 = −r2, g33 = −r2sin2
θ

 (23)

and, respectively,

h11 =
1

1 −
rg
r

, h22 = r2, h33 = r2sin2
θ , (24)

on the basis of which we obtain formulae for the determinants
g = det ∥ gαβ ∥ and h = det ∥ hik ∥

g = −r4 sin2
θ , h =

r4 sin2
θ

1 −
rg
r

. (25)

In such a space, we see a situation different from the pre-
vious one:

The space of a non-rotating spherical massive body is
fully degenerate (i.e., the conditions of full degener-
acy h= 0 and g=−g00 h= 0 are satisfied together) at
the North and South Poles of the body and, in general,
along the entire axis of rotation of the space (since there
sin θ= 0) only at distances r, rg from the centre of the
body. On a spherical surface with a radius equal to the
gravitational radius of the body rg (on which g00 = 0),
the four-dimensional space-time metric remains degen-
erate at the poles (g= 0), and the physically observable
three-dimensional space has a breaking h=∞ every-
where on the surface except at the poles, where it has
an uncertainty h= 0

0 .

It should be noted that this is a coordinate effect, because
a non-rotating spherical body does not have a physical polar
axis: its polar axis can be chosen arbitrarily. Therefore, the
effect of degeneration of the space of a non-rotating body can
always be eliminated by coordinate transformations (shifting
the “polar” axis to another place on the surface of the body).
This is in contrast to rotating physical bodies, because each of
them has its own physical polar axis (its own axis of rotation)
and, therefore, the effect of degeneration of its space cannot
be eliminated by coordinate transformations.

Finally, consider the space of a rotating spherical massive
body, approximated by a material point. Its metric was intro-
duced and proved in [12] and has the form

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ −

−
dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
, (26)
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where, respectively,

g00 = 1 −
rg
r
, g03 = −

ωr2sin2
θ

c

√
1 −

rg
r

g11 = −
1

1 −
rg
r

, g22 = −r2, g33 = −r2sin2
θ


, (27)

the space rotates along the φ-axis (along the geographical lon-
gitudes) with a constant angular velocity ω= const and, ac-
cording to the definition of vi (5), with a linear velocity

v3 = −
cg03
√
g00
= ωr2sin2

θ , (28)

and the chr.inv.-metric tensor hik of the space has the follow-
ing non-zero components

h11 =
1

1 −
rg
r

, h22 = r2

h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)

, (29)

so, the determinants g = det ∥ gαβ ∥ and h = det ∥ hik ∥ have the
form

g = −r4sin2
θ

(
1 +
ω2r2sin2

θ

c2

)
, (30)

h =
r4 sin2

θ

1 −
rg
r

(
1 +
ω2r2sin2

θ

c2

)
. (31)

In such a space, the situation with its degeneration is sim-
ilar to the space of a massive spherical body that does not ro-
tate (considered above):

The space of a non-rotating spherical massive body is
fully degenerate (i.e., both conditions of full degener-
acy h= 0 and g=−g00 h= 0 are satisfied) if sin θ= 0,
i.e., at the North and South Poles of the body and, in
general, along the entire axis of rotation of the space,
but only at distances r, rg from the centre of the body.
At a distance equal to the gravitational radius of the
body rg (this is a spherical surface, on which g00 = 0)
the four-dimensional space-time metric remains degen-
erate at the poles (g= 0), and the physically observable
three-dimensional space has a breaking h=∞ except at
the poles, where it has an uncertainty h= 0

0 .

Note that there is one key difference between this situation
and the situation in a space of Schwarzschild’s mass-point
metric. As we have noted above, the effect of degeneration
of space has a coordinate origin in the case of the mass-point
metric, because the polar axis of such a space can be chosen
arbitrarily. On the contrary, any rotating body has its own
physical polar axis (its axis of rotation) and, therefore, the

effect of degeneration of its space cannot be eliminated by
coordinate transformations. For this reason, the mass-point
metric cannot be considered physically valid in the problems
where the degeneracy of space plays a rôle: when solving
such problems, the mass-point metric must be replaced with
the space metric of a rotating spherical massive body.

Finally, based on the above analysis of the geometric con-
ditions of degeneration of spherical spaces, we arrive at the
following conclusion about preferred conditions under which
non-quantum teleportation could be implemented in a regular
laboratory located on the surface of the Earth:
Preferred conditions for non-quantum teleportation

Non-quantum teleportation can be implemented under
any physical conditions in a laboratory located at the
North and South Poles of a rotating spherical body, say,
the Earth. This is simply due to the geometric structure
of its rotating space, which is fully degenerate at the
poles and, in general, everywhere along its axis of ro-
tation. But even at a very small distance from the poles
along the geographical latitudes, non-quantum telepor-
tation requires exotic conditions, such as a very strong
electromagnetic field, etc.

Yes, non-quantum teleportation can be implemented in a
laboratory located at any other geographical latitude, and not
only at the North and South Poles, say, due to certain configu-
rations of a very strong electromagnetic field generated in the
laboratory [11], or under some other exotic physical condi-
tions created in it (since they do not depend on the geographi-
cal location of the laboratory). On the other hand, as we found
in this study, at the North and South Poles non-quantum tele-
portation can be implemented under any physical conditions
simply due to the geometric structure of the rotating space of
the planet, which significantly simplifies the technical imple-
mentation of non-quantum teleportation in practice.

Therefore, to paraphrase the legendary saying of Baron
Nathan Mayer Rothschild, who in 1815 said “He who owns
the information, owns the world” (this phrase is sometimes
misattributed to Winston Churchill, who often repeated it),
we say: “He who owns the land at the poles of the Earth,
owns the technical possibility for non-quantum teleportation
to any point in the Universe”. To be more precise, we mean
land at the South Pole (in Antarctica), since there, unlike the
North Pole of the Earth, which is covered by the waters of
the Arctic Ocean, it is possible to install a laboratory and a
stationary device for non-quantum teleportation.

Submitted on June 15, 2025
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