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In a paper published in 1949 in honor of his close friend Albert Einstein on the occa-
sion of his 70th birthday, Kurt Gödel described a homogeneous and rotating universe
by discovering the existence of closed timelike curves (CTCs). In a series of pa-
pers, we replaced the constant a of the Gödel metric with a simple conformal factor,
which easily induces a pressure term that leads directly to the ideal fluid field equa-
tion. Gödel introduced this special term a, relating it to the cosmological constant,
to make his solution satisfying Einstein’s field equations. This theory is now en-
dowed with physical sense, and the dynamics no longer apply to space, but to a fluid.
Eventually, the Gödel CTCs are considered to be flow lines of a charged fluid, which
preserve the properties of the model. The resulting acceleration of these flow lines
can then be adequately controlled.

Notations

Space-time indices: µ, ν = 0, 1, 2, 3;
Space-time signature: −2;
Einstein’s constant: κ;
The velocity of light: c = 1.

1 The Gödel Universe

1.1 General

In his original paper [1], K. Gödel derived an exact solution
to Einstein’s field equation that describes a homogeneous and
non-isotropic universe where matter takes the form of a shear-
free fluid. This metric exhibits a rotational symmetry that
allows for the existence of closed timelike curves (CTCs).

Gödel’s model is usually regarded as a mathematical cu-
riosity and is rejected because it requires a cosmological con-
stant related to a constant Ricci scalar finely tuned to the mass
density of the Universe.

In several publications, we have been able to relax our
requirement that the Gödel metric be a description of our real
Universe, which is still observed to be expanding.

1.2 Gödel’s metric

The classical Gödel line element is given by:

ds2 = a2
(
dt2 +

1
2

e2xdy2 − 2ex dtdy − dx2 − dz2
)
, (1.1)

where a > 0 is a constant.
The normalized unit vector u of matter has components:

uµ = (a−1, 0, 0, 0) , uµ = (a, 0, aex, 0) , (1.2)

thus the Ricci tensor takes the value

Rµν = uµ uν a−2 (1.3)

and the Ricci scalar is

R = uµuµ = a−2. (1.4)

Since R is a constant, then the field equations

Rµν −
1
2
gµνR = κρuµ uν + Λgµν (1.5)

are satisfied (for a given value of the density ρ), if we put:

a−2 = κ , (1.6)

Λ = −
1
2

R =
1

2a2 = −
1
2
κρ. (1.7)

The sign of the cosmological constant Λ here is opposite
to that in Einstein’s field equations. Bearing in mind that a
is a constant, finetuning the density of the universe with the
cosmological constant and the Ricci scalar appears as a dubi-
ous hypothesis. One then clearly sees that such cosmological
constraints are physically irrelevant.

2 The Gödel model as a homogeneous perfect fluid

2.1 Reformulation of the Gödel metric

In our publications [2,3], we assumed that a is slightly space-
time variable and we set:

a2 = e2U (2.1)

(the positive scalar U(x) will be explicited below). Thus, the
Gödel metric takes the form:

ds2 = e2U
(
dt2 +

1
2

e2xdy2 − 2exdtdy − dx2 − dz2
)
. (2.2)

With the Euler variational derivation detailed in [4–6],
this conformal metric leads to the Einstein field equations for
a perfect fluid [7]:

Rµν −
1
2
gµνR = κ

[
(ρ + P) uµuν − Pgµν

]
. (2.3)

Now, the real 4-unit vector u of the Gödel fluid displays
the following components:

uµ = (1, 0, 0, 0) , uµ = (1, 0, ex, 0) . (2.4)
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2.2 Differential geodesic system

The 4-unit vector uµ is normalized on (M, g):

gµν uµu ν = gµνuµuν = 1 .

By differentiating we get:

uν∇µuν = 0 . (2.5)

Let us define the vector Lν by the relation

∇µPδµν = r Lν (2.6)

having set r = ρ + P.
The conservation law for Tµν = ruµuν − Pgµν is expressed

by ∇µT µν = 0, i.e.:

∇µ (ruµuν) = r Lν

∇µ (ruµ)uν + ruµ∇µuν = rLν

 . (2.7)

Multiplying through this relation with uν and taking into
account (2.5), we obtain, by substituting in (2.7) and after
dividing by r:

uµ∇µuν = (gµν − uµuν) Lµ (2.8)

with the projection tensor hµν = (gµν − uµuν)

uν = hµνLµ. (2.9)

With setting Lν = ∂νU, the equation (2.9) takes the form
∗uν = hµν∂µU and (2.6) reads

(ρ + P) Lν = ∇µPδµν ,

Lν =
∂νP
ρ + P

.

As a result we find:

U(xµ) =
∫ P2

P1

dP
ρ + P

,

where the pressures P1 and P2 are related to the points x1 and
x2, respectively.

The flow lines of a perfect fluid with a density ρ and a
pressure P with the equation of state ρ = f (P) obey the dif-
ferential system:

uµ∇µuν = hµν∂µU = ∗uν . (2.10)

The 4-vector ∗uν must be regarded as the 4-acceleration
of the flow lines given by the pressure gradient orthogonal to
those lines [8, p.70].

Controlling this acceleration is almost impossible: vary-
ing the pressure P through the equation of state appears as
physically unrealistic. There is however a way to solve this
problem: the fluid encoding the CTCs should be character-
ized by a charged current density acted upon by a variable
electromagnetic field. Next we will show that the resulting 4-
acceleration of this fluid only depends on the charge and the
4-potential of the field.

3 Controlling the CTCs

3.1 Charged fluid

At first, we consider a simple charged fluid in the connected
domain where exists a field vector Aδ represented by the Max-
well tensor

Fγδ = ∂γAδ − ∂δAγ . (3.1)

To this 4-potential-vector is associated the linear form:

dA = Aλdxλ. (3.2)

The energy-momentum tensor reads:

T µν = ρuµuν + t µν, (3.3)

where

t µν = −
1

4π

(
1
4
gµνFγδF γδ + F µβF νβ

)
(3.4)

is the energy-momentum of the electromagnetic field.
From the conservation condition of the tensor T µν

∇µT µν = 0 (3.5)

it follows that
∇µ t µν = −Fµν jµ, (3.6)

where the 4-current density jµ = µuµ carrying the charge µ
is defined by the second group of Maxwell’s equations:

∇µF µν = −4π j ν. (3.7)

Equation (3.5) yields:

∇µ (ρuµuν) = µFµνuµ,

ρuµ∇µuν + uν∇µ (ρuµ) = µFµν uµ.

The 4 current density is conserved:

∇µ (µuµ) = 0 .

Then, using the relation uµuν = 0 and due to the antisym-
metry of Fµν, we obtain:

∇µ (ρuµ) = 0 ,

therefore
uµ∇µuν =

µ

ρ
Fµν uµ.

By setting k = µ/ρ, the equation

uµ∇µ uν = k(Fµνuµ) = ∗uν (3.8)

represents the equation of geodesics for a charged homoge-
neous fluid (i.e., its acceleration).

The flow lines of this current form the geodesics of the
Finsler metric [9], which extremizes the integral:

s =
∫ x2

x1

(ds + kd A) . (3.9)
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Relations (2.5) and (2.6) can be written in the form:

∇µuµ +
uµ∂µµ
µ

= 0 , ∇µuµ +
uµ∂µρ
ρ
= 0 ,

then, subtracting, we obtain:

uµ∂µ

(
ln
µ

ρ

)
= 0 . (3.10)

It should be noted that throughout along these trajectories,
the ratio k = µ/ρ remains constant.

3.2 Charged perfect fluid

Let us now turn to the perfect fluid scheme. In this case, the
energy-momentum tensor reads:

T µν = (ρ + P)uµuν − Pgµν + t µν. (3.11)

Introduce the scalar:

ρ′ =
ρ + P

eU . (3.12)

Observing that

dρ′

ρ
=

d (ρ + P)
ρ + P

−
dP
ρ + P

=
dρ
ρ + P

,

we derive an equation similar to (3.10):

uµ∂µ ln
(
µ

ρ′

)
= 0 .

This shows that the ratio k′ = µ/ρ′ should also remain
constant along the Finsler trajectory:

ds′ =
(
e2Ugab dxadxb

)1/2
+ k′d A ,

s′ =
∫ x2

x1

(
eUds + k′d A

)
.

Let us apply this system to the Gödel interval:

dsG =

=

[
e2U

(
dt2+

1
2

e2xdy2−2exdtdy−dx2−dz2
)]1/2

. (3.13)

The flow lines of the charged fluid encoding the Gödel
CTCs are described by:

sG =

∫ x2

x1

eU
(
dt2+

1
2

e2xdy2−2exdtdy−dx2−dz2
)1/2

+

+ k′d A
]
. (3.14)

The 4-acceleration vector of the charged fluid encoding
the CTCs is now:

uµ∇µuν = k′ (Fµν uµ) = ∗uν . (3.15)

For a given value of the charge µ, this simple formula can
be modified through a variable electromagnetic field.

Conclusions

When Gödel wrote down his metric, he was forced to intro-
duce a distinctive constant factor a to re-write the field equa-
tions with a cosmological constant together with additional
restrictions. Our theory is free from all these restrictions and,
moreover, it gives a physical meaning to the term a.

The Gödel space-time is no longer a cosmological model,
but a bounded region in which the dynamics of a physical
fluid takes place, preserving all the basic properties associated
with closed timelike curves. These CTCs are not geodesics,
as shown in [10], so they are a subject to accelerations that
were obtained using our conformal formalism.

It is obvious that the properties of Gödel CTCs are pre-
served for a charged fluid, and the modified Gödel metric can
be locally reproduced. Moreover, the acceleration of this fluid
seems to be physically feasible by means of an alternating
electromagnetic field.

As mentioned earlier [11], these results shed new light on
the possibilities of time travel, confirming earlier work started
in [12–14].
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