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Introduction

Within last several decades many theoretical physicists investigated what isn’t present in
the Nature. It is the Superstrings Theory, the Higgs theory, The Dark Energy and the Dark
Masses hypotheses, etc. Here some of last results from LHC and Tevatron:

WIMP-nucleon cross-section results from the second science run of ZEPLIN-III:
http://arxiv.org/abs/1110.4769 : ”This allows the exclusion of the scalar cross-section above
4.8E-8 pb near 50 GeV/c2 WIMP mass with 90% confidence.”

A search for charged massive long-lived particles: http://arxiv.org/abs/1110.3302 : ”We
exclude pair-produced long-lived gaugino-like charginos below 267 GeV and higgsino-like
charginos below 217 GeV at 95% C.L., as well as long-lived scalar top quarks with mass
below 285 GeV.”

Search for Universal Extra Dimensions with the D0 Experiment:
http://arxiv.org/pdf/1110.2991 : ”No excess of data over background was observed.”

Search for new physics with same-sign isolated dilepton events with jets and missing
transverse energy at CMS: http://arxiv.org/PS cache/arxiv/pdf/1110/1110.2640v1.pdf : ”No
evidence was seen for an excess over the background prediction.”

Search for Supersymmetry with Photon at CMS: http://arxiv.org/abs/1110.2552 : ”No
excess of events above the standard model predictions is found.”

Search for neutral Supersymmetric Higgs bosons...: http://arxiv.org/abs/1110.2421 : ”In
the absence of a signifcant signal, we derive upper limits for neutral Higgs boson production
cross-section...”

Search for Chargino-Neutralino Associated Production in Dilepton Final States with
Tau Leptons: http://arxiv.org/abs/1110.2268 : ”We set limits on the production cross section
as a function of SUSY particle mass for certain generic models.”

Model Independent Search at the D0 experiment: http://arxiv.org/abs/1110.2266 : ”No
evidence of new physics is found.”

Search for the Standard Model Higgs Boson in the Lepton + Missing Transverse Energy
+ Jets Final State in ATLAS: http://arxiv.org/abs/1110.2265 : ”No significant excess of
events is observed over the expected background and limits on the Higgs boson production
cross section are derived for a Higgs boson mass in the range 240 GeV ¡ mH ¡ 600 GeV.”...

etc.,etc. There are more than 100 similar negative results and there are no positive
results absolutely (for instance: http://www.scientific.ru/dforum/scinews ).

On the other hand already in 2006 - 2007 the logic analysis of these subjects described in
books [1] and [2], has shown that all physical events are interpreted by well-known particles
(leptons, quarks, photons, W- and Z-bozons) and forces (electroweak, strong, gravity).

”Final Book” contains development and continuation of ideas of these books. Chapter

v



vi Introduction

1 gives convenient updating of the Gentzen Natural Logic [3], a logic explanation of space-
time relations, and logical foundations of the Probability Theory. The reader who isn’t
interested in these topics, can pass this part and begin readings with Chapter 2.

Chapter 2 receives notions and statements of Quantum Theory from properties of prob-
abilities of physical events. In Chapter 3 Electroweak Theory, Quarks-Gluon Theory and
Gravity Theory are explained from these properties.

For understanding of the maintenance of this book elementary knowledge in the field
of linear algebra and the mathematical analysis is sufficient.



Chapter 1

Time, Space, and Probability

1.1. Classical propositional logic

Let’s consider affirmative sentences of any languages.
Def. 1.1.1: Sentence≪Θ≫ is true if and only if Θ.
For example, sentence≪It is raining≫ is true if and only if it is raining1 [4].
Def. 1.1.2: Sentence≪Θ≫ is false if and only if there is not that Θ.
It is clear that many neither true nor false sentences exist. For example,≪There is rainy

21 august 3005 year in Chelyabinsk≫.
Still an example: Obviously, the following sentence isn’t true and isn’t false [5]:
≪The sentence which has been written on this line, is false.≫
Those sentences which can be either true, or false, are called as meaningful sentences.

The previous example sentence is meaningless sentence.
Further we consider only meaningful sentences which are either true, or false.
Def. 1.1.3: Sentences A and B are equal (design.: A = B) if A is true, if and only if B is

true.
Further I’m using ordinary notions of the classical propositional logic [6].
Def. 1.1.4: A sentence C is called conjunction of sentences A and B (design.: C =

(A&B)) if C is true, if and only if A and B are true.
Def. 1.1.5: A sentence C is called negation of sentences A (design.: C = (¬A)) if C is

true, if and only if A is not true.
Def. 1.1.6: A sentence C is called disjunction of sentences A and B (design.: C =

(A∨B)) if C is true, if and only if A is true or B is true or both A and B are true.
Def. 1.1.7: A sentence C is called implication of sentences A and B (design.: C =

(A⇒ B)) if C is true, if and only if B is true and/or B is false.
A sentence is called a simple sentence if it isn’t neither conjunction, nor a disjunction,

neither implication, nor negation.
Th. 1.1.1:
1) (A&A) = A; (A∨A) = A;
2) (A&B) = (B&A); (A∨B) = (B∨A);
3) (A&(B&C)) = ((A&B)&C); (A∨ (B∨C)) = ((A∨B)∨C);

1Alfred Tarski (January 14, 1901 October 26, 1983) was a Polish logician and mathematician

1



2 Tome amd Space

4) if T is a true sentence then for every sentence A: (A&T ) = A and (A∨T ) = T .
5) if F is a false sentence then (A&F) = F and (A∨F) = A.
Proof of Th. 1.1.1: This theorem directly follows from Def. 1.1.1, 1.2, 1.3, 1.4, 1.6.

□
Further I set out the version of the Gentzen Natural Propositional calculus2 (NPC) [3]:
Expression ”Sentence C is a logical consequence of a list of sentences Γ.” will be wrote

as the following: ”Γ ⊢ C”. Such expressions are called sequences. Elements of list Γ are
called hypothesizes.

Def. 1.1.8
1. A sequence of form C ⊢C is called NPC axiom.
2. A sequence of form Γ ⊢ A and Γ ⊢ B is obtained from sequences of form Γ ⊢ (A&B)

by a conjunction removing rule (design.: R&).
3. A sequence of form Γ1,Γ2 ⊢ (A&B) is obtained from sequence of form Γ1 ⊢ A and a

sequence of form Γ2 ⊢ B by a conjunction inputting rule (design: I&).
4. A sequence of form Γ ⊢ (A∨B) is obtained from a sequence of form Γ ⊢ A or from

a sequence of form Γ ⊢ B by a disjunction inputting rule (design.: I∨).
5. A sequence of form Γ1 [A] ,Γ2 [B] ,Γ3 ⊢C is obtained from sequences of form Γ1 ⊢C,

Γ2 ⊢C, snd Γ3 ⊢ (A∨B) by a disjunction removing rule (design.: R∨) (Here and further:
Γ1 [A] is obtained from Γ1 by removing of sentence A, and Γ2 [B] is obtained from Γ2 by
removing of sentence B).

6. A sequence of form Γ1,Γ2 ⊢ B is obtained from a sequence of form Γ1 ⊢ A and from
a sequence of form Γ2 ⊢ (A⇒ B) by a implication removing rule (design.: R⇒).

7. A sequence of form Γ [A] ⊢ (A⇒ B) is obtained from a sequence of form Γ ⊢ B by
an implication inputting rule (design.: I⇒).

8. A sequence of form Γ ⊢ C is obtained from a sequence of form Γ ⊢ (¬(¬C)) by a
negation removing rule (design.: R¬).

9. A sequence of form Γ1 [C] ,Γ2 [C] ⊢ (¬C) is obtained from a sequence of form Γ1 ⊢ A
and from a sequence of form Γ2 ⊢ (¬A) by negation inputting rule (design.: I¬).

10. A finite string of sequences is called a propositional natural deduction if every
element of this string either is a NPC axioms or is received from preceding sequences by
one of the deduction rules (R&, I&, I∨, R∨, R⇒, I⇒, R¬, I¬).

Actually, these logical rules look naturally in light of the previous definitions.
Example 1: Let us consider the following string of sequences:

1.((R&S)&(R⇒ G)) ⊢ ((R&S)&(R⇒ G)) - NPC axiom.

2.((R&S)&(R⇒ G)) ⊢ (R&S) - R& from 1.

3.((R&S)&(R⇒ G)) ⊢ (R⇒ G) - R& from 1.

4.((R&S)&(R⇒ G)) ⊢ R - R& from 2. (1.1)

5.((R&S)&(R⇒ G)) ⊢ G - R⇒ from 3. and 4.

6.((R&S)&(R⇒ G)) ⊢ S - R& from 2.

7.((R&S)&(R⇒ G)) ⊢ (G&S) - I& from 5. and 6.

2Gerhard Karl Erich Gentzen ( November 24, 1909, Greifswald, Germany August 4, 1945, Prague,
Czechoslovakia) was a German mathematician and logician.
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This string is a propositional natural deduction of sequence

((R&S)&(R⇒ G)) ⊢ (G&S) .

since it fulfills to all conditions of Def. 1.1.8.
Hence sentence (G&S) is logical consequence from sentence

((R&S)&(R⇒ G)).
Th. 1.1.2:

(A∨B) = (¬((¬A)&(¬B))) , (1.2)

(A⇒ B) = (¬(A&(¬B))) . (1.3)

Proof of Th. 1.1.2:
The following string is a deduction of sequence

(A∨B) ⊢ (¬((¬A)&(¬B))):
1. ((¬A)&(¬B)) ⊢ ((¬A)&(¬B)), NPC axiom.
2. ((¬A)&(¬B)) ⊢ (¬A), R& from 1.
3. A ⊢ A, NPC axiom.
4. A ⊢ (¬((¬A)&(¬B))), I¬ from 2. and 3.
5. ((¬A)&(¬B)) ⊢ (¬B), R& from 1.
6. B ⊢ B, NPC axiom.
7. B ⊢ (¬((¬A)&(¬B))), I¬ from 5. and 6.
8. (A∨B) ⊢ (A∨B), NPC axiom.
9. (A∨B) ⊢ (¬((¬A)&(¬B))), R∨ from 4., 7. and 8.
A deduction of sequence (¬((¬A)&(¬B))) ⊢ (A∨B) is the following:
1. (¬A) ⊢ (¬A), NPC axiom.
2. (¬B) ⊢ (¬B), NPC axiom.
3. (¬A) ,(¬B) ⊢ ((¬A)&(¬B)), I& from 1. and 2.
4. (¬((¬A)&(¬B))) ⊢ (¬((¬A)&(¬B))), NPC axiom.
5. (¬((¬A)&(¬B))) ,(¬B) ⊢ (¬(¬A)), I¬ from 3. and 4.
6. (¬((¬A)&(¬B))) ,(¬B) ⊢ A, R¬ from 5.
7. (¬((¬A)&(¬B))) ,(¬B) ⊢ (A∨B), i∨ from 6.
8. (¬(A∨B)) ⊢ (¬(A∨B)), NPC axiom.
9. (¬((¬A)&(¬B))) ,(¬(A∨B)) ⊢ (¬(¬B)), I¬ from 7. and 8.
10. (¬((¬A)&(¬B))) ,(¬(A∨B)) ⊢ B, R¬ from 9.
11. (¬((¬A)&(¬B))) ,(¬(A∨B)) ⊢ (A∨B), I∨ from 10.
12. (¬((¬A)&(¬B))) ⊢ (¬(¬(A∨B))), I¬ from 8. and 11.
13. (¬((¬A)&(¬B))) ⊢ (A∨B), R¬ from 12.
Therefore,

(¬((¬A)&(¬B))) = (A∨B) .

A deduction of sequence (A⇒ B) ⊢ (¬(A&(¬B))) is the following:
1. (A&(¬B)) ⊢ (A&(¬B)), NPC axiom.
2. (A&(¬B)) ⊢ A, R& from 1.
3. (A&(¬B)) ⊢ (¬B), R& from 1.
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4. (A⇒ B) ⊢ (A⇒ B), NPC axiom.
5. (A&(¬B)) ,(A⇒ B) ⊢ B, R⇒ from 2. and 4.
6. (A⇒ B) ⊢ (¬(A&(¬B))), I¬ from 3. and 5.
A deduction of sequence (¬(A&(¬B))) ⊢ (A⇒ B) is the following:
1. A ⊢ A, NPC axiom.
2. (¬B) ⊢ (¬B), NPC axiom.
3. A,(¬B) ⊢ (A&(¬B)), I& from 1. and 2.
4. (¬(A&(¬B))) ⊢ (¬(A&(¬B))), NPC axiom.
5. A,(¬(A&(¬B))) ⊢ (¬(¬B)), I¬ from 3. and 4.
6. A,(¬(A&(¬B))) ⊢ B, R¬ from 5.
7. (¬(A&(¬B))) ⊢ (A⇒ B), I⇒ from 6.
Therefore,

(¬(A&(¬B))) = (A⇒ B)□

Example 2:
1. A ⊢ A - NPC axiom.
2. (A⇒ B) ⊢ (A⇒ B) - NPC axiom.
3. A,(A⇒ B) ⊢ B - R⇒ from 1. and 2.
4. (¬B) ⊢ (¬B) - NPC axiom.
5. (¬B) ,(A⇒ B) ⊢ (¬A) - I¬ from 3. and 4.
6. (A⇒ B) ⊢ ((¬B)⇒ (¬A)) - I⇒ from 5.
7. ⊢ ((A⇒ B)⇒ ((¬B)⇒ (¬A))) - I⇒ from 6.
This string is a deduction of sentence of form

((A⇒ B)⇒ ((¬B)⇒ (¬A)))

from the empty list of sentences. I.e. sentences of such form are logicaly provable.
Th. 1.1.3: If sequence Γ→ C is deduced and C is false then some false sentence is

contained in Γ.
Proof of Th. 1.1.3: is received by induction of number of sequences in the deduction

of sequence Γ→C.
The recursion Basis: Let the deduction of sequence Γ→C contains single sentence.

In accordance the definition of propositional natural deduction this deduction must be of
the following type: C→C. Obviously, in this case the lemma holds true.

The recursion Step:The recursion assumption: Let’s admit that the lemma is carried
out for any deduction which contains no more than n sequences.

Let deduction of Γ→C contains n+1 sequence. In accordance with the propositional
natural deduction definition sequence Γ→C can be axiom NPC or can be received by the
deduction rules from previous sequence.

a) If Γ→C is the NPC axiom then see the recursion basis.
b) Let Γ→C be received by R&. In this case sequence of type Γ→ (C&B) or sequence

of type Γ→ (B&C) is contained among the previous sequences of this deduction. Hence,
deductions of sequences Γ→ (C&B) and Γ→ (B&C) contains no more than n sequences.
In accordance with the recursion assumption, these deductions submit to the lemma. Be-
cause C is false then (C&B) is false and (B&C) is false in accordance with the conjunction
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definition. Therefore, Γ contains some false sentence by the lemma. And in this case the
lemma holds true.

c) Let Γ→C be received by I&. In this case sequence of type Γ1→ A and sequence of
type Γ2→ B is contained among the previous sequences of this deduction, and C = (A&B)
and Γ = Γ1,Γ2. Deductions of sequences Γ1 → A and Γ2 → B contains no more than n
sequences. In accordance with the recursion assumption, these deductions submit to the
lemma. Because C is false then A is false or B is false in accordance with the conjunction
definition. Therefore, Γ contains some false sentence by the lemma. And in this case the
lemma holds true.

d) Let Γ→C be received by R∨. In this case sequences of type Γ1→ (A∨B), Γ2 [A]→
C, and Γ3 [B]→C are contained among the previous sequences of this deduction, and Γ =
Γ1,Γ2,Γ3. Because these previous deductions contain no more than n sequences then in
accordance with the recursion assumption, these deductions submit to the lemma. Because
C is false then Γ2 [A] contains some false sentence, and Γ3 [B] contains some false sentence.
If A is true then the false sentence is contained in Γ2. If B is true then the false sentence is
contained in Γ3. I.e. in these case some false sentence is contained in Γ. If A is false and
B is false then (A∨B) is false in accordance with the disjunction definition. In this case Γ1
contains some false sentence. And in all these cases the lemma holds true.

e) Let Γ→ C be received by I∨. In this case sequence of type Γ→ A or sequence of
type Γ→ B is contained among the previous sequences of this deduction, and C = (A∨B).
Deductions of sequences Γ→ A and Γ→ B contains no more than n sequences. In accor-
dance with the recursion assumption, these deductions submit to the lemma. Because C is
false then A is false and B is false in accordance with the disjunction definition. Therefore,
Γ contains some false sentence by the lemma. And in this case the lemma holds true.

f) Let Γ→C be received by R⇒. In this case sequences of type Γ1→ (A⇒C), Γ2→ A
are contained among the previous sequences of this deduction, and Γ = Γ1,Γ2. Because
these previous deductions contain no more than n sequences then in accordance with the
recursion assumption, these deductions submit to the lemma. If A is false then Γ2 contains
some false sentence. If A is true then (A⇒C) is false in accordance with the implication
defination since C is false. And in all these cases the lemma holds true.

g) Let Γ→C be received by I⇒. In this case sequences of type Γ [A]→ B is contained
among the previous sequences of this deduction, and C = (A⇒ B). Because deduction of
Γ [A]→ B contains no more than n sequences then in accordance with the recursion assump-
tion, this deduction submit to the lemma. Because C is false then A is true in accordance
with the implication definition. Hence, some false sentence is contained in Γ. Therefore, in
this case the lemma holds true.

i) Let Γ→C be received by R¬. In this case sequence of type Γ→ (¬(¬C)) is contained
among the previous sequences of this deduction. This previous deduction contains no more
than n sequences then in accordance with the recursion assumption, this deduction submit
to the lemma Because C is false then (¬(¬C)) is false in accordance with the negation
definition. Therefore, Γ contains some false sentence by the lemma. And in this case the
lemma holds true.

j) Let Γ→C be received by I¬. In this case sequences of type Γ1 [A]→ B, and Γ2 [A]→
(¬B) are contained among the previous sequences of this deduction, and Γ = Γ1,Γ2 and
C = (¬A). Because these previous deductions contain no more than n sequences then in
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accordance with the recursion assumption, these deductions submit to the lemma. Because
C is false then A is true. Hence, some false sentence is contained in Γ because B is false or
(¬B) is false in accordance with the negation definition. Therefore, in all these cases the
lemma holds true.

The recursion step conclusion: If the lemma holds true for deductions containing n
sequences then the lemma holds true for deduction containing n+1 sequences.

The recursion conclusion: Lemma holds true for all deductions □.
Def. 1.1.9 A sentence is naturally propositionally provable if there exists a prpositional

natural deduction of this sentence from the empty list.
In accordance with Th. 1.1.3 all naturally propositionally provable sentences are true

because otherwise the list would appear not empty.
But some true sentences are not naturally propositionally provable.
Alphabet of Propositional Calculations:
1. symbols pk with natural k are called PC-letters;
2. symbols ∩, ∪, ⊃, ˆ are called PC-symbols;
3. (, ) are called brackets.
Formula of Propositional Calculations:
1. any PC-letter is PC-formula.
2. if q and r are PC-formulas then (q∩ r), (q∪ r),(q⊃ r),(ˆq) are PC-formulas;
3. except listed by the two first points of this definition no PC-formulas are exist.
Def. 1.1.10 Let function g has values on the double-elements set {0;1} and has the set

of PC-formulas as a domain. And let
1) g(ˆq) = 1−g(q) for every sentence q;
2) g(q∩ r) = g(q) ·g(r) for all sentences q and r;
3) g(q∪ r) = g(q)+g(r)−g(q) ·g(r) for all sentences q and r;
4) g(q⊃ r) = 1−g(q)+g(q) ·g(r) for all sentences q and r.
In this case a function g is called a Boolean function 3.
Hence if g is a Boolean function then for every sentence q:

(g(q))2 = g(q) .

A Boolean function can be defined by a table:

g(q) g(r) g(q∩ r) g(q∪ r) g(q⊃ r) g(ˆq)
0 0 0 0 1 1
0 1 0 1 1 1
1 0 0 1 0 0
1 1 1 1 1 0

.

Such tables can be constructed for any sentence. For example:

3George Boole (2 November 1815 8 December 1864) was an English mathematician and philosopher.
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g(q) g(r) g(s) g(ˆ((r∩ (ˆs))∩ (ˆq)))
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

,

or:

g(r) g(s) g(q) g(((r∩ s)∩ (r ⊃ q))⊃ (q∩ s))
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

. (1.4)

Def. 1.1.11 A PC-formula q is called a t-formula if for any Boolean function g: g(q) =
1.

For example, formula (((r∩ s)∩ (r ⊃ q))⊃ (q∩ s)) is a t-formula by the table (1.4).
Def. 1.1.12 Function φ(x) which is defined on the PC-formulas set and which has

the sentences set as a range of values, is called an interpretation function if the following
conditions are carried out:

1. if pk is a PC-letter then φ(pk) = A and here A is a simple sentence and if φ(ps) = B
then if s ̸= k then A ̸= B;

2. φ(r∩ s) = (φ(r)&φ(s)), φ(r∪ s) = (φ(r)∨φ(s)), φ(r ⊃ s) = (φ(r)⇒ φ(s)),
φ(ˆr) = (¬φ(r)).

Def. 1.1.13 A sencence C is called tautology if the following condition is carried out:
if φ(q) =C then q is a t-formula.
Lm. 1.1.1: If g is a Boolean function then every natural propositional deduction of se-

quence Γ ⊢ A satisfy the following condition: if g
(
φ−1(A)

)
= 0 then there exists a sentence

C such that C ∈ Γ and g
(
φ−1(C)

)
= 0.

Proof of Lm. 1.1.1: is maked by a recursion on a number of sequences in the deduction
of Γ ⊢ A:

1. Basis of recursion: Let the deduction of Γ ⊢ A contains 1 sequence.
In that case a form of this sequence is A ⊢ A in accordance with the propositional natural

deduction definition (Def. 1.1.8). Hence in this case the lemma holds true.
2. Step of recursion: The recursion assumption: Let the lemma holds true for every

deduction, containing no more than n sequences.
Let the deduction of Γ ⊢ A contains n+1 sequences.
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In that case either this sequence is a NPC-axiom or Γ ⊢ A is obtained from previous
sequences by one of deduction rules.

If Γ ⊢ A is a NPC-axiom then the proof is the same as for the recursion basis.
a) Let Γ ⊢ A be obtained from a previous sequence by R&.
In that case a form of this previous sequence is either the following Γ ⊢ (A&B) or is the

following Γ ⊢ (B&A) in accordance with the definition of deduction. The deduction of this
sequence contains no more than n elements. Hence the lemma holds true for this deduction
in accordance with the recursion assumption.

If g
(
φ−1(A)

)
= 0 then g

(
φ−1(A&B)

)
= 0 and g

(
φ−1(B&A)

)
= 0 in accordance with

the Boolean function definition (Def. 1.1.10). Hence there exists sentence C such that C ∈ Γ
and g

(
φ−1(C)

)
= 0 in accordance with the lemma.

Hence in that case the lemma holds true for the deduction of sequence Γ ⊢ A.
b) Let Γ ⊢ A be obtained from previous sequences by I&.
In that case forms of these previous sequences are Γ1 ⊢ B and Γ2 ⊢ G with Γ = Γ1,Γ2

and A = (B&G) in accordance with the definition of deduction.
The lemma holds true for deductions of sequences Γ1 ⊢ B and Γ2 ⊢ G in accordance

with the recursion assumption because these deductions contain no more than n elements.
In that case if g

(
φ−1(A)

)
= 0 then g

(
φ−1(B)

)
= 0 or g

(
φ−1(G)

)
= 0 in accordance

with the Boolean function definition. Hence there exists sentence C such that g
(
φ−1(C)

)
=

0 and C ∈ Γ1 or C ∈ Γ2.
Hence in that case the lemma holds true for the deduction of sequence Γ ⊢ A.
c) Let Γ ⊢ A be obtained from a previous sequence by R¬.
In that case a form of this previous sequence is the following: Γ ⊢ (¬(¬A)) in accor-

dance with the definition of deduction. The lemma holds true for the deduction of this
sequence in accordance with the recursion assumption because this deduction contains no
more than n elements.

If g
(
φ−1(A)

)
= 0 then g

(
φ−1(¬(¬A))

)
= 0 in accordance with the Boolean function

definition. Hence there exists sentence C such that C ∈ Γ and g
(
φ−1(C)

)
= 0.

Hence the lemma holds true for the deduction of sequence Γ ⊢ A.
d) Let Γ ⊢ A be obtained from previous sequences by I¬.
In that case forms of these previous sequences are Γ1 ⊢ B and Γ2 ⊢ (¬B) with Γ =

Γ1 [G] ,Γ2 [G] and A = (¬G) in accordance with the definition of deduction.
The lemma holds true for the deductions of sequences Γ1 ⊢ B and Γ2 ⊢ (¬B) in ac-

cordance with the recursion assumption because these deductions contain no more than n
elements.

If g
(
φ−1(A)

)
= 0 then g

(
φ−1(G)

)
= 1 in accordance with the Boolean function defi-

nition.
Either g

(
φ−1(B)

)
= 0 or g

(
φ−1(¬B)

)
= 0 by the same definition. Hence there exists

sentence C such that either C ∈ Γ1 [G] or C ∈ Γ2 [G] andg
(
φ−1(C)

)
= 0 in accordance with

the recursion assumption.
Hence in that case the lemma holds true for the deduction of sequence Γ ⊢ A.
e) Let Γ ⊢ A be obtained from a previous sequence by I∨.
In that case a form of A is (B∨G) and a form of this previous sequence is either Γ ⊢ B or

Γ⊢G in accordance with the definition of deduction. The lemma holds true for this previous
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sequence deduction in accordance with the recursion assumption because this deduction
contains no more than n elements.

If g
(
φ−1(A)

)
= 0 then g

(
φ−1(B)

)
= 0 and g

(
φ−1(G

)
= 0 in accordance with

the Boolean function definition. Hence there exists sentence C such that C ∈ Γ and
g
(
φ−1(C)

)
= 0.

Hence in that case the lemma holds true for the deduction of sequence Γ ⊢ A.
f) Let Γ ⊢ A be obtained from previous sequences by R∨.
Forms of these previous sequences are Γ1 ⊢ A, Γ2 ⊢ A, and Γ3 ⊢ (B∨G) with Γ =

Γ1 [B] ,Γ2 [G] ,Γ3 in accordance with the definition of deduction. The lemma holds true for
the deductions of these sequences in accordance with the recursion assumption because
these deductions contain no more than n elements.

If g
(
φ−1(A)

)
= 0 then there exists sentence C1 such that C1 ∈ Γ1 and

g
(
φ−1(C1)

)
= 0, and there exists sentence C2 such that C2 ∈ Γ2 and g

(
φ−1(C2)

)
= 0 in

accordance with the lemma.
If g
(
φ−1(B∨G)

)
= 0 then there exists sentence C such that C ∈ Γ3 and g

(
φ−1(C)

)
= 0

in accordance with the lemma. Hence in that case the lemma holds true for the deduction
of sequence Γ ⊢ A.

If g
(
φ−1(B∨G)

)
= 1 then either g

(
φ−1(B)

)
= 1 or g

(
φ−1(G)

)
= 1 in accordance with

the Boolean function definition.
If g

(
φ−1(B)

)
= 1 then C1 ∈ Γ1 [B]. Hence in that case the lemma holds true for the

deduction of sequence Γ ⊢ A.
If g
(
φ−1(G)

)
= 1 then a result is the same.

Hence the lemma holds true for the deduction of sequence Γ ⊢ A in all these cases.
g) Let Γ ⊢ A be obtained from previous sequences by R⇒.
Forms of these previous sequences are Γ1 ⊢ (B⇒ A) and Γ2 ⊢ (B) with Γ = Γ1,Γ2

in accordance with the definitions of deduction. Hence the lemma holds true for these
deduction in accordance with the recursion assumption because these deductions contain
no more than n elements.

If g
(
φ−1(B⇒ A)

)
= 0 then there exists sentence C such that C∈Γ1 and g

(
φ−1(C)

)
= 0

in accordance with the lemma. Hence in that case the lemma holds true for the deduction
of sequence Γ ⊢ A.

If g
(
φ−1(B⇒ A)

)
= 1 then g

(
φ−1(B)

)
= 0 in accordance with the Boolean function

definition. Hence there exists sentence C such that C ∈ Γ2 and g
(
φ−1(C)

)
= 0.

Hence the lemma holds true for sequence Γ ⊢ A in all these cases.
h) Let Γ ⊢ A be obtained from a previous sequence by I⇒.
In that case a form of sentence A is (B⇒ G) and a form of this previous sequence is

Γ1 ⊢ G with Γ = Γ1 [B] in accordance with the definition of deduction. The lemma holds
true for the deduction of this sequence in accordance the recursion assumption because this
deduction contain no more than n elements.

If g
(
φ−1(A)

)
= 0 then g

(
φ−1(G)

)
= 0 and g

(
φ−1(B)

)
= 1 in accordance with the

Boolean function definition. Hence there exists sentence C such that C ∈ Γ1 [B] and
g
(
φ−1(C)

)
= 0.

The recursion step conclusion: Therefore, in each possible case, if the lemma holds
true for a deduction, containing no more than n elements, then the lemma holds true for a
deduction contained n+1 elements.
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The recursion conclusion: Therefore the lemma holds true for a deduction of any
length □

Th. 1.1.4: Each naturally propositionally proven sentence is a tautology.
Proof of Th. 1.1.4: If a sentence A is naturally propositionally proven then there exists

a natural propositional deduction of form ⊢ A in accordance with Def. 1.1.9. Hence for
every Boolean function g: g

(
φ−1(A)

)
= 1 in accordance with Lm. 1.1.1. Hence sentence

A is a tautology in accordance with the tautology definition (Def. 1.1.13) □
Designation 1: Let g be a Boolean function. In that case for every sentence A:

Ag :=
{

A if g
(
φ−1(A)

)
= 1,

(¬A) if g
(
φ−1(A)

)
= 0.

∣∣∣∣
Lm. 1.1.2: Let B1,B2, ..,Bk be the simple sentences making sentence A by PC-symbols

(¬, &, ∨,⇒).
Let g be any Boolean function.
In that case there exist a propositional natural deduction of sequence

Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Proof of Lm. 1.1.2: is received by a recursion on a number of PC-symbols in sentence
A.

Basis of recursion Let A does not contain PC-symbols . In this case the string of one
sequence:

1. Ag ⊢ Ag, NPC-axiom.
is a fit deduction.
Step of recursion: The recursion assumption: Let the lemma holds true for every

sentence, containing no more than n PC-symbols.
Let sentence A contains n+1 PC-symbol. Let us consider all possible cases.
a) Let A = (¬G). In that case the lemma holds true for G in accordance with the

recursion assumption because G contains no more than n PC-symbols. Hence there exists a
deduction of sequence

Bg
1,B

g
2, ..,B

g
k ⊢ Gg, (1.5)

here B1,B2, ..,Bk are the simple sentences, making up sentence G. Hence B1,B2, ..,Bk
make up sentence A.

If g
(
φ−1(A)

)
= 1 then

Ag = A = (¬G)

in accordance with Designation 1.
In that case g

(
φ−1(G)

)
= 0 in accordance with the Boolean function definition.

Hence

Gg = (¬G) = A

in accordance with Designation 1.
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Hence in that case a form of sequence (1.5) is the following:

Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
If g
(
φ−1(A)

)
= 0 then

Ag = (¬A) = (¬(¬G)) .

in accordance with Designation 1.
In that case g

(
φ−1(G)

)
= 1 in accordance with the Boolean function definition.

Hence

Gg = G

in accordance with Designation 1.
Hence in that case a form of sequence (1.5) is

Bg
1,B

g
2, ..,B

g
k ⊢ G.

Let us continue the deduction of this sequence in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ G.

2. (¬G) ⊢ (¬G), NPC-axiom.
3. Bg

1,B
g
2, ..,B

g
k ⊢ (¬(¬G)), I¬ from 1. and 2.

It is a deduction of sequence

Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
b) Let A = (G&R).
In that case the lemma holds true both for G and for R in accordance with the recur-

sion assumption because G and R contain no more than n PC-symbols. Hence there exist
deductions of sequences

Bg
1,B

g
2, ..,B

g
k ⊢ Gg (1.6)

and

Bg
1,B

g
2, ..,B

g
k ⊢ Rg, (1.7)

here B1,B2, ..,Bk are the simple sentences, making up sentences G and R. Hence
B1,B2, ..,Bk make up sentence A.

If g
(
φ−1(A)

)
= 1 then

Ag = A = (G&R)

in accordance with Designation 1.
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In that case g
(
φ−1(G)

)
= 1 and g

(
φ−1(R)

)
= 1 in accordance with the Boolean func-

tion definition.
Hence Gg = G and Rg = R in accordance with Designation 1.
Let us continue deductions of sequences (1.6) and (1.7) in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ G, (1.6).

2. Bg
1,B

g
2, ..,B

g
k ⊢ R, (1.7).

3. Bg
1,B

g
2, ..,B

g
k ⊢ (G&R), I& from 1. and 2.

It is deduction of sequence Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
If g
(
φ−1(A)

)
= 0 then

Ag = (¬A) = (¬(G&R))

in accordance with Designation 1.
In that case g(G) = 0 or g(R) = 0 in accordance with the Boolean function definition.
Hence Gg = (¬G) or Rg = (¬R) in accordance with Designation 1.
Let Gg = (¬G).
In that case let us continue a deduction of sequence (1.6) in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ (¬G), (1.6).

2. (G&R) ⊢ (G&R), NPC-axiom.
3. (G&R) ⊢ G, R& from 2.
4. Bg

1,B
g
2, ..,B

g
k ⊢ (¬(G&R)), I¬ from 1. and 3.

It is a deduction of sequence Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
The same result is received if Rg = (¬R).
c) Let A = (G∨R).
In that case the lemma holds true both for G and for R in accordance with the recursion

assumption because G and R contain no more than n PC-symbols. Hence there exist a
deductions of sequences

Bg
1,B

g
2, ..,B

g
k ⊢ Gg (1.8)

and

Bg
1,B

g
2, ..,B

g
k ⊢ Rg, (1.9)

here B1,B2, ..,Bk are the simple sentences, making up sentences G and R. Hence
B1,B2, ..,Bk make up sentence A.

If g
(
φ−1(A)

)
= 0 then

Ag = (¬A) = (¬(G∨R))

in accordance with Designation 1.
In that case g

(
φ−1(G)

)
= 0 and g

(
φ−1(R)

)
= 0 in accordance with the Boolean func-

tion definition.
Hence Gg = (¬G) and Rg = (¬R) in accordance with Designation 1.
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Let us continue deductions of sequences (1.8) and (1.9) in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ (¬G), (1.8).

2. Bg
1,B

g
2, ..,B

g
k ⊢ (¬R), (1.9).

3. G ⊢ G, NPC-axiom.
4. R ⊢ R, NPC-axiom.
5. (G∨R) ⊢ (G∨R), NPC-axiom.
6. G,Bg

1,B
g
2, ..,B

g
k ⊢ (¬(G∨R)), I¬ from 1. and 3.

7. R,Bg
1,B

g
2, ..,B

g
k ⊢ (¬(G∨R)), I¬ from 2. and 4.

8. (G∨R) ,Bg
1,B

g
2, ..,B

g
k ⊢ (¬(G∨R)), R∨ from 5., 6., and 7.

9. Bg
1,B

g
2, ..,B

g
k ⊢ (¬(G∨R)), I¬ from 7. and 8.

It is a deduction of sequence Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
If g
(
φ−1(A)

)
= 1 then

Ag = A = (G∨R)

in accordance with Designation 1.
In that case g

(
φ−1(G)

)
= 1 or g

(
φ−1(R)

)
= 1 in accordance with the Boolean function

definition.
Hence Gg = G or Rg = R in accordance with Designation 1.
If Gg = G then let us continue deduction of sequence (1.8) in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ G, (1.8).

2. Bg
1,B

g
2, ..,B

g
k ⊢ (G∨R), I∨ from 1.

It is deduction of sequence Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
The same result is received if Rg = R.
d) Let A = (G⇒ R).
In that case the lemma holds true both for G and for R in accordance with the recur-

sion assumption because G and R contain no more than n PC-symbols. Hence there exist
deductions of sequences

Bg
1,B

g
2, ..,B

g
k ⊢ Gg (1.10)

and

Bg
1,B

g
2, ..,B

g
k ⊢ Rg, (1.11)

here B1,B2, ..,Bk are the simple sentence, making up sentences G and R. Hence
B1,B2, ..,Bk make up sentence A.

If g
(
φ−1(A)

)
= 0 then

Ag = (¬A) = (¬(G⇒ R))

in accordance with Designation 1.
In that case g

(
φ−1(G)

)
= 1 and g

(
φ−1(R)

)
= 0 in accordance with the Boolean func-

tion deduction.
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Hence Gg = G and Rg = (¬R) in accordance with Designation 1.
Let us continue deduction of sequences (1.10) and (1.11) in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ G, (1.10).

2. Bg
1,B

g
2, ..,B

g
k ⊢ (¬R), (1.11).

3. (G⇒ R) ⊢ (G⇒ R), NPC-axiom.
4. (G⇒ R) ,Bg

1,B
g
2, ..,B

g
k ⊢ R, R⇒ from 1. and 3.

5. Bg
1,B

g
2, ..,B

g
k ⊢ (¬(G⇒ R)), I¬ from 2. and 4.

It is deduction of sequence Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
If g
(
φ−1(A)

)
= 1 then

Ag = A = (G⇒ R)

in accordance with Designation 1.
In that case g

(
φ−1(G)

)
= 0 or g

(
φ−1(R)

)
= 1 in accordance with the Boolean function

definition.
Hence Gg = (¬G) or Rg = R in accordance with Designation 1.
If Gg = (¬G) then let us continue a deduction of sequence (1.10) in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ (¬G), (1.10).

2. G ⊢ G, NPC-axiom.
3. G,Bg

1,B
g
2, ..,B

g
k ⊢ (¬(¬R)), I¬ from 1. and 2.

4. G,Bg
1,B

g
2, ..,B

g
k ⊢ R, R¬ from 3.

5. Bg
1,B

g
2, ..,B

g
k ⊢ (G⇒ R), I⇒ from 4.

It is deduction of sequence Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
If Rg = R then let us continue a deduction of sequence (1.11) in the following way:
1. Bg

1,B
g
2, ..,B

g
k ⊢ R, (1.11).

2. Bg
1,B

g
2, ..,B

g
k ⊢ (G⇒ R), I⇒ from 1.

It is deduction of sequence Bg
1,B

g
2, ..,B

g
k ⊢ Ag.

Hence in that case the lemma holds true.
The recursion step conclusion: If the lemma holds true for sentences, containing no

more than n PC-symbols, then the lemma holds true for sentences, containing n+ 1 PC-
symbols.

The recursion conclusion: The lemma holds true for sentences, containing any number
PC-symbols □

Th. 1.1.5 (Laszlo Kalmar)4: Each tautology is a naturally propositionally proven
sentence.

Proof of Th. 1.1.5: Let sentence A be a tautology. That is for every Boolean function
g: g

(
φ−1(A)

)
= 1 in accordance with Def. 1.1.13.

Hence there exists a deduction for sequence

Bg
1,B

g
2, ..,B

g
k ⊢ A (1.12)

4Laszlo Kalmar (March 27, 1905 August 2, 1976) was a Hungarian mathematician and Professor at the Uni-
versity of Szeged. Kalmar is considered the founder of mathematical logic and theoretical Computer Science
in Hungary.
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for every Boolean function g in accordance with Lm. 1.1.2.
There exist Boolean functions g1 and g2 such that

g1
(
φ−1(B1)

)
= 0, g2

(
φ−1(B1)

)
= 1,

g1
(
φ−1(Bs)

)
= g2

(
φ−1(Bs)

)
for s ∈ {2, ..,k} .

Forms of sequences (1.12) for these Boolean functions are the following:

(¬B1) ,B
g1
2 , ..,Bg1

k ⊢ A, (1.13)

B1,B
g2
2 , ..,Bg2

k ⊢ A. (1.14)

Let us continue deductions these sequence in the following way:
1. (¬B1) ,B

g1
2 , ..,Bg1

k ⊢ A, (1.13).
2. B1,B

g1
2 , ..,Bg1

k ⊢ A, (1.14).
3. (¬A) ⊢ (¬A), NPC-axiom.
4. (¬A) ,Bg1

2 , ..,Bg1
k ⊢ (¬(¬B1)), I¬ from 1. and 3.

5. (¬A) ,Bg1
2 , ..,Bg1

k ⊢ (¬B1), I¬ from 2. and 3.
6. Bg1

2 , ..,Bg1
k ⊢ (¬(¬A)), I¬ from 4. and 5.

7. Bg1
2 , ..,Bg1

k ⊢ A, R¬ from 6.
It is deduction of sequence Bg1

2 , ..,Bg1
k ⊢ A. This sequence is obtained from sequence

(1.12) by deletion of first sentence from the hypothesizes list.
All rest hypothesizes are deleted from this list in the similar way.
Final sentence is the following:

⊢ A.

□
Therefore, in accordance with Th. 1.1.3, all tautologies are true sentences.
Therefore the natural propositional logic presents by Boolean functions.

1.2. Recorders

Any information, received from physical devices, can be expressed by a text, made of sen-
tences.

Let â be some object which is able to receive, save, and/or transmit an information [10].
A set a of sentences, expressing an information of an object â, is called a recorder of this
object. Thus, statement: ”Sentence ≪A≫ is an element of the set a” denotes : ”â has
information that the event, expressed by sentence≪ A≫, took place.” In short: ”â knows
that A.” Or by designation: ”a•≪ A≫”.

Obviously, the following conditions are satisfied:
I. For any a and for every A: false is that a• (A&(¬A)), thus, any recorder doesn’t

contain a logical contradiction.
II. For every a, every B, and all A: if B is a logical consequence from A, and a•A, then

a•B.
*III. For all a, b and for every A: if a•≪ b•A≫ then a•A.



16 Time, Space, abd Probability

For example, if device â has information that device b̂ has information that mass of
particle ←−χ equals to 7 then device â has information that mass of particle ←−χ equal to
7.

1.3. Time

Let’s consider finite (probably empty) path of symbols of form q•.
Def. 1.3.1 A path α is a subpath of a path β (design.: α≺ β) if α can be got from β by

deletion of some (probably all) elements.
Designation: (α)1 is α, and (α)k+1 is α(α)k.
Therefore, if k ≤ l then (α)k ≺ (α)l .
Def. 1.3.2 A path α is equivalent to a path β (design.: α∼ β) if α can be got from β by

substitution of a subpath of form (a•)k by a path of the same form ((a•)s).
In this case:
III. If β≺ α or β∼ α then for any K:
if a•K then a• (K&(αA⇒ βA)).
Obviously, III is a refinement of condition *III.
Def. 1.3.3 A natural number q is instant, at which a registrates B according to κ-clock

{g0,A,b0} (design.: q is [a•B ↑ a,{g0,A,b0}]) if:
1. for any K: if a•K then

a• (K&(a•B⇒ a• (g•0b•0)
q g•0A))

and

a•
(

K&
(

a• (g•0b•0)
q+1 g•0A⇒ a•B

))
.

2. a•
(

a•B&
(
¬a• (g•0b•0)

q+1 g•0A
))

.
Lm. 1.3.1 If

q is [a•αB ↑ a,{g0,A,b0}] , (1.15)

p is [a•βB ↑ a,{g0,A,b0}] , (1.16)

α≺ β, (1.17)

then

q≤ p.

Proof of Lm. 1.3.1: From (1.16):

a•
(
(a•βB)&

(
¬a• (g•0b•0)

(p+1) g•0A
))

. (1.18)

From (1.17) according to III:
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a•
((

a•βB&
(
¬a• (g•0b•0)

(p+1) g•0A
))

&(a•βB⇒ a•αB)
)

. (1.19)

Let us designate:
R := a•βB,
S :=

(
¬a• (g•0b•0)

(p+1) g•0A
)

,
G := a•αB.
In that case a shape of formula (1.18) is

a• (R&S) ,

and a shape of formula (1.19) is

a• ((R&S)&(R⇒ G)) .

Sentence (G&S) is a logical consequence from sentence
((R&S)&(R⇒ G)) (1.1). Hence

a• (G&S) ,

in accordance with II.
Hence

a•
(

a•αB&
(
¬a• (g•0b•0)

(p+1) g•0A
))

in accordance with the designation.
Hence from (1.15):

a•
((

a•αB&
(
¬a• (g•0b•0)

(p+1) g•0A
))

&(a•αB⇒ a• (g•0b•0)
q g•0A)

)
.

According to II:

a•
((
¬a• (g•0b•0)

(p+1) g•0A
)

&a• (g•0b•0)
q g•0A

)
(1.20)

If q > p, i.e. q≥ p+1, then from (1.20) according to III

a•
 ((

¬a• (g•0b•0)
(p+1) g•0A

)
&a• (g•0b•0)

q g•0A
)

&(
a• (g•0b•0)

q g•0A⇒ a• (g•0b•0)
(p+1) g•0A

)  .

According to II:

a•
((
¬a• (g•0b•0)

(p+1) g•0A
)

&a• (g•0b•0)
(p+1) g•0A

)
.

It contradicts to condition I. Therefore, q≤ p □.
Lemma 1.3.1 proves that if

q is [a•B ↑ a,{g0,A,b0}] ,
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and

p is [a•B ↑ a,{g0,A,b0}]

then

q = p.

That’s why, expression ”q is [a•B ↑ a,{g0,A,b0}]” is equivalent to expression ”q =
[a•B ↑ a,{g0,A,b0}].”

Def. 1.3.4 κ-clocks {g1,B,b1} and {g2,B,b2} have the same direction for a if the
following condition is satisfied:

if

r = [a• (g•1b•1)
q g•1B ↑ a,{g2,B,b2}],

s = [a• (g•1b•1)
p g•1B ↑ a,{g2,B,b2}],
q < p,

then

r ≤ s.

Th. 1.3.1 All κ-clocks have the same direction.
Proof of Th. 1.3.1:
Let

r := [a• (g•1b•1)
q g•1B ↑ a,{g2,B,b2}] ,

s := [a• (g•1b•1)
p g•1B ↑ a,{g2,B,b2}] ,

q < p.

In this case

(g•1b•1)
q ≺ (g•1b•1)

p .

Consequently, according to Lm. 1.3.1

r ≤ s

□
Consequently, a recorder orders its sentences with respect to instants. Moreover, this

order is linear and it doesn’t matter according to which κ-clock it is set.
Def. 1.3.5 κ-clock {g2,B,b2} is k times more precise than κ-clock

{g1,B,b1} for recorder a if for every C the following condition is satisfied: if

q1 = [a•C ↑ a,{g1,B,b1}],
q2 = [a•C ↑ a,{g2,B,b2}],
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then

q1 <
q2
k < q1 +1.

Lm. 1.3.2 If for every n:

qn−1 <
qn

kn
< qn−1 +1, (1.21)

then the series

q0 +
∞

∑
n=1

qn−qn−1kn

k1 . . .kn
(1.22)

converges.
Proof of Lm. 1.3.2: According to (1.21):

0≤ qn−qn−1kn < kn.

Consequently, series (1.22) is positive and majorizes next to

q0 +1+
∞

∑
n=1

1
k1 . . .kn

,

convergence of which is checked by d’Alambert’s criterion □
Def. 1.3.6 A sequence H̃ of κ-clocks:⟨

{g0,A,b0} , {g1,A,b2} , ..,
{

g j,A,b j
}
, ..
⟩

is called an absolutely precise κ-clock of a recorder a if for every j exists a natural
number k j so that κ-clock

{
g j,A,b j

}
is k j times more precise than κ-clock

{
g j−1,A,b j−1

}
.

In this case if

q j =
[
a•C ↑ a,

{
g j,A,b j

}]
and

t = q0 +
∞

∑
j=1

q j−q j−1 · k j

k1 · k2 · .. · k j
,

then

t is
[
a•C ↑ a, H̃

]
.

Lm. 1.3.3: If

q := q0 +
∞

∑
j=1

q j−q j−1 · k j

k1 · k2 · .. · k j
(1.23)

with
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qn−1 ≤
qn

kn
< qn−1 +1,

and

d := d0 +
∞

∑
j=1

d j−d j−1 · k j

k1 · k2 · .. · k j
(1.24)

with

dn−1 ≤
dn

kn
< dn−1 +1

then if qn ≤ dn then q≤ d.
Proof of Lm. 1.3.3: A partial sum of series (1.23) is the following:

Qu := q0 +
q1−q0k1

k1
+

q2−q1k2

k1k2
+ · · ·+ qu−qu−1ku

k1k2 · · ·ku
,

Qu = q0 +
q1

k1
−q0 +

q2

k1k2
− q1

k1
+ · · ·+ qu

k1k2 · · ·ku
− qu−1

k1k2 · · ·ku−1
,

Qu =
qu

k1k2 · · ·ku
.

A partial sum of series (1.24) is the following:

Du =
du

k1k2 · · ·ku
.

Consequently, according to the condition of Lemma: Qn ≤ Dn □
Lm. 1.3.4 If

q is
[
a•αC ↑ a, H̃

]
,

d is
[
a•βC ↑ a, H̃

]
,

and

α≺ β

then

q≤ d.

Proof of Lm. 1.3.4 comes out of Lemmas 1.3.1 and 1.3.3 immediately □
Therefore, if α∼ β then q = d.
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1.4. Space

Def. 1.4.1 A number t is called a time, measured by a recorder a according to a κ-clock H̃,
during which a signal C did a path a•αa• (design.:

t :=m
(

aH̃
)
(a•αa•C)),

if

t =
[
a•αa•C ↑ a, H̃

]
−
[
a•C ↑ a, H̃

]
.

Th. 1.4.1

m
(

aH̃
)
(a•αa•C)≥ 0.

Proof comes out straight of Lemma 1.3.4 □
Thus, any ”signal”, ”sent” by the recorder, ”will come back” to it not earlier than it was

”sent”.
Def. 1.4.2
1) for every recorder a: (a•)† = (a•);
2) for all paths α and β: (αβ)† = (β)† (α)†.
Def. 1.4.3 A set ℜ of recorders is an internally stationary system for a recorder a with

a κ-clock H̃ (design.: ℜ is ISS
(

a, H̃
)

) if for all sentences B and C, for all elements a1 and
a2 of set ℜ, and for all paths α, made of elements of set ℜ, the following conditions are
satisfied:

1)
[
a•a•2a•1C ↑ a, H̃

]
−
[
a•a•1C ↑ a, H̃

]
=

=
[
a•a•2a•1B ↑ a, H̃

]
−
[
a•a•1B ↑ a, H̃

]
;

2) m
(

aH̃
)
(a•αa•C) =m

(
aH̃
)(

a•α†a•C
)
.

Th. 1.4.2

{a}− ISS
(

a, H̃
)

.

Proof:
1)As a• ∼ a•a• then, according to Lemma 1.3.4 : if we symbolize

p :=
[
a•a•B ↑ a, H̃

]
,

q :=
[
a•a•a•B ↑ a, H̃

]
,

r :=
[
a•a•C ↑ a, H̃

]
,

s :=
[
a•a•a•C ↑ a, H̃

]
,

then q = p and s = r.
That’s why q− p = s− r.
2) Since any series α, made of elements of set {a} coincides with α† then
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m
(

aH̃
)
(a•αa•C) =m

(
aH̃
)(

a•α†a•C
)
. □

Thus every singleton is an internally stationary systeminternally stationary system.
Lm. 1.4.1: If {a,a1,a2} isISS

(
a, H̃

)
then

[
a•a•2a•1a•2C ↑ a, H̃

]
−
[
a•a•2C ↑ a, H̃

]
=

=
[
a•a•1a•2a•1B ↑ a, H̃

]
−
[
a•a•1B ↑ a, H̃

]
Proof: Let’s symbolize

p :=
[
a•a•1B ↑ a, H̃

]
,

q :=
[
a•a•1a•2a•1B ↑ a, H̃

]
,

r :=
[
a•a•2C ↑ a, H̃

]
,

s :=
[
a•a•2a•1a•2C ↑ a, H̃

]
,

u :=
[
a•a•2a•1B ↑ a, H̃

]
,

w :=
[
a•a•1a•2C ↑ a, H̃

]
.

Thus, according to statement 1.4.3

u− p = s−w,w− r = q−u.

Thus,

s− r = q− p

□
Def. 1.4.4 A number l is called an aH̃(B)-measure of recorders a1 and a2 (design.:

l = ℓ
(

a, H̃,B
)
(a1,a2)

if

l= 0.5 ·
([

a•a•1a•2a•1B ↑ a, H̃
]
−
[
a•a•1B ↑ a, H̃

])
.

Lm. 1.4.2 If {a,a1,a2} is ISS
(

a, H̃
)

then for all B and C:

ℓ
(

a, H̃,B
)
(a1,a2) =ℓ

(
a, H̃,C

)
(a1,a2).
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Proof: Let us designate: Let us design:

p :=
[
a•a•1B ↑ a, H̃

]
,

q :=
[
a•a•1a•2a•1B ↑ a, H̃

]
,

r :=
[
a•a•1C ↑ a, H̃

]
,

s :=
[
a•a•1a•2a•1C ↑ a, H̃

]
,

u :=
[
a•a•2a•1B ↑ a, H̃

]
,

w :=
[
a•a•2a•1C ↑ a, H̃

]
.

Thus, according to Def. 1.4.3:

u− p = w− r,q−u = s−w.

Thus,

q− p = s− r

□
Therefore, one can write expression of form ”ℓ

(
a, H̃,B

)
(a1,a2)” as the following:

”ℓ
(

a, H̃
)
(a1,a2)”.

Th. 1.4.3: If {a,a1,a2,a3} is ISS
(

a, H̃
)

then

1) ℓ
(

a, H̃
)
(a1,a2)≥ 0;

2) ℓ
(

a, H̃
)
(a1,a1) = 0;

3) ℓ
(

a, H̃
)
(a1,a2) =ℓ

(
a, H̃

)
(a2,a1);

4) ℓ
(

a, H̃
)
(a1,a2)+ℓ

(
a, H̃

)
(a2,a3)≥ℓ

(
a, H̃

)
(a1,a3).

Proof: 1) and 2) come out straight from Lemma 1.3.4 and 3) from Lemma 1.4.2.
Let’s symbolize

p :=
[
a•a•1C ↑ a, H̃

]
,

q :=
[
a•a•1a•2a•1C ↑ a, H̃

]
,

r :=
[
a•a•1a•3a•1C ↑ a, H̃

]
,

s :=
[
a•a•2a•1C ↑ a, H̃

]
,

u :=
[
a•a•2a•3a•2a•1B ↑ a, H̃

]
,

w =
[
a•a•1a•2a•3a•2a•1C ↑ a, H̃

]
.
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Thus, according to statement 1.4.3

w−u = q− s.

Therefore,

w− p = (q− p)+(u− s) .

According to Lemma 1.3.4

w≥ r.

Consequently,

(q− p)+(u− s)≥ r− p

□
Thus, all four axioms of the metrical space [7] are accomplished for ℓ

(
a, H̃

)
in an

internally stationary systeminternally stationary system of recorders.
Consequently, ℓ

(
a, H̃

)
is a distance length similitude in this space.

Def. 1.4.5 A set ℜ of recorders is degenerated into a beam ab1 and point a1 if there
exists C such that the following conditions are satisfied:

1) For any sequence α, made of elements of set ℜ, and for any K: if a•K then

a• (K&(αa•1C⇒ αb•1a•1C)).

2) There is sequence β, made of elements of the setℜ, and there exist sentence S such
that a• (βb•1C&S) and it’s false that a• (βa•1b•1C&S)

Further we’ll consider only not degenerated sets of recorders.
Def. 1.4.6: B took place in the same place as a1 for a (design.: ♮(a)(a1,B)) if for every

sequence α and for any sentence K the following condition is satisfied:
if a•K then a• (K&(αB⇒ αa•1B)).
Th. 1.4.4:

♮(a)(a1,a•1B).

Proof: Since αa•1 ∼ αa•1a•1 then according to III: if a•1K then

a•1 (K&(αa•1B⇒ αa•1a•1B))

□
Th. 1.4.5: If

♮(a)(a1,B) , (1.25)

♮(a)(a2,B) , (1.26)
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then

♮(a)(a2,a•1B) .

Proof: Let a•K.
In this case from (1.26):

a• (K&(αa•1B⇒ αa•1a•2B)) .

From (1.25):

a• ((K&(αa•1B⇒ αa•1a•2B))&(αa•1a•2B⇒ αa•1a•2a•1B)) .

According to II:

a• (K&(αa•1B⇒ αa•1a•2a•1B)) .

According to III:

a• ((K&(αa•1B⇒ αa•1a•2a•1B))&(αa•1a•2a•1B⇒ αa•2a•1B)) .

According to II:

a• (K&(αa•1B⇒ αa•2a•1B))

□
Lm. 1.4.3: If

♮(a)(a1,B) , (1.27)

t =
[
a•αB ↑ a, H̃

]
, (1.28)

then

t =
[
a•αa•1B ↑ a, H̃

]
.

Proof: Let’s symbolize:

t j :=
[
a•αB ↑ a,

{
g j,A,b j

}]
.

Therefore,

a•
(

a•αB&
(
¬a•

(
g•jb

•
j
)t j+1 g•jA

))
,

from (1.27):

a•
((

a•αB&
(
¬a•

(
g•jb

•
j
)t j+1 g•jA

))
&(a•αB⇒ a•αa•1B)

)
.
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According to II:

a•
(

a•αa•1B&
(
¬a•

(
g•jb

•
j
)t j+1 g•jA

))
, (1.29)

Let a•K. In this case from (1.28):

a•
(

K&
(

a•αB⇒ a•
(
g•jb

•
j
)t j g•jA

))
.

Therefore, according to III:

a•
((

K&
(

a•αB⇒ a•
(
g•jb

•
j
)t j g•jA

))
&(a•αa•1B⇒ a•αB)

)
.

According to II:

a•
(

K&
(

a•αa•1B⇒ a•
(
g•jb

•
j
)t j g•jA

))
. (1.30)

From (1.27):

a•
((

K&
(

a•
(
g•jb

•
j
)t j+1 g•jA⇒ a•αB

))
&(a•αB⇒ a•αa•1B)

)
.

according to II:

a•
(

K&
(

a•
(
g•jb

•
j
)t j+1 g•jA⇒ a•αa•1B

))
.

From (1.29), (1.30) for all j:

t j =
[
a•αa•1B ↑ a,

{
g j,A,b j

}]
.

Consequently,

t =
[
a•αa•1B ↑ a, H̃

]
□
Th. 1.4.6: If {a,a1,a2} is ISS

(
a, H̃

)
,

♮(a)(a1,B) , (1.31)

♮(a)(a2,B) , (1.32)

then

ℓ
(

a, H̃
)
(a1,a2) = 0.

Proof: Let’s symbolize:

t :=
[
a•B ↑ a, H̃

]
.

According to Lemma 1.4.3:
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from (1.31):

t =
[
a•a•1B ↑ a, H̃

]
,

from (1.32):

t =
[
a•a•1a•2B ↑ a, H̃

]
,

again from (1.31):

t =
[
a•a•1a•2a•1B ↑ a, H̃

]
.

Consequently,

ℓ
(

a, H̃
)
(a1,a2) = 0.5 · (t− t) = 0

□
Th. 1.4.7: If {a1,a2,a3} is ISS

(
a, H̃

)
and there exists sentence B such that

♮(a)(a1,B) , (1.33)

♮(a)(a2,B) , (1.34)

then

ℓ
(

a, H̃
)
(a3,a2) = ℓ

(
a, H̃

)
(a3,a1) .

Proof: According to Theorem 1.4.6 from (1.33) and (1.34):

ℓ
(

a, H̃
)
(a1,a2) = 0; (1.35)

according to Theorem 1.4.3:

ℓ
(

a, H̃
)
(a1,a2)+ ℓ

(
a, H̃

)
(a2,a3)≥ ℓ

(
a, H̃

)
(a1,a3),

therefore, from (1.35):

ℓ
(

a, H̃
)
(a2,a3)≥ ℓ

(
a, H̃

)
(a1,a3),

i.e. according to Theorem 1.4.3:

ℓ
(

a, H̃
)
(a3,a2)≥ ℓ

(
a, H̃

)
(a1,a3). (1.36)

From

ℓ
(

a, H̃
)
(a3,a1)+ ℓ

(
a, H̃

)
(a1,a2)≥ ℓ

(
a, H̃

)
(a3,a2):

and from (1.35):
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ℓ
(

a, H̃
)
(a3,a1)≥ ℓ

(
a, H̃

)
(a3,a2).

From (1.36):

ℓ
(

a, H̃
)
(a3,a1) = ℓ

(
a, H̃

)
(a3,a2)

□
Def. 1.4.7 A real number t is an instant of a sentence B in frame of reference

(
ℜaH̃

)
(design.: t =

[
B |ℜaH̃

]
) if

1) ℜ is ISS
(

a, H̃
)

,
2) there exists a recorder b so that b ∈ℜ and ♮(a)(b,B),
3) t =

[
a•B ↑ a, H̃

]
−ℓ
(

a, H̃
)
(a,b).

Lm. 1.4.4: [
a•B ↑ a, H̃

]
=
[
a•B |ℜaH̃

]
.

Proof: Let ℜ is ISS
(

a, H̃
)

, a1 ∈ℜ and

♮(a)(a1,a•B) . (1.37)

According to Theorem 1.4.4:

♮(a)(a,a•B) .

From (1.37) according to Theorem 1.4.6:

ℓ
(

a, H̃
)
(a,a1) = 0,

therefore [
a•B |ℜaH̃

]
=
[
a•B ↑ a, H̃

]
−ℓ
(

a, H̃
)
(a,a1) =

[
a•B ↑ a, H̃

]
□
Def. 1.4.8 A real number z is a distance length between B and C in a frame of reference(

ℜaH̃
)

(design.: z = ℓ
(

ℜaH̃
)
(B,C)) if

1) ℜ is ISS
(

a, H̃
)

,
2) there exist recorders a1 and a2 so that a1 ∈ℜ, a2 ∈ℜ,

♮(a)(a1,B)) and ♮(a)(a2,C)),
3) z = ℓ

(
a, H̃

)
(a2,a1).

According to Theorem 1.4.3 such distance length satisfies conditions of all axioms of a
metric space.
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1.5. Relativity

Def. 1.5.1: Recorders a1 and a2 equally receive a signal about B for a recorder a if

≪ ♮(a)(a2,a•1B)≫ =≪ ♮(a)(a1,a•2B)≫.

Def. 1.5.2: Set of recorders are called a homogeneous space of recorders, if all its
elements equally receive all signals.

Def. 1.5.3: A real number c is an information velocity about B to the recorder a1 in a
frame of reference

(
ℜaH̃

)
if

c =
ℓ
(

ℜaH̃
)
(B,a•1B)[

a•1B |ℜaH̃
]
−
[
B |ℜaH̃

] .

Th. 1.5.1: In all homogeneous spaces:

c = 1.

Proof: Let c represents information velocity about B to a recorder a1 in a frame of
reference

(
ℜaH̃

)
.

Thus, if

ℜ is ISS
(

a, H̃
)

,

z := ℓ
(

ℜaH̃
)
(B,a•1B) , (1.38)

t1 :=
[
B |ℜaH̃

]
, (1.39)

t2 :=
[
a•1B |ℜaH̃

]
, (1.40)

then

c =
z

t2− t1
. (1.41)

According to (1.38) there exist elements b1 and b2 of set ℜ such that:

♮(a)(b1,B) , (1.42)

♮(a)(b2,a•2B) , (1.43)

z = ℓ
(

a, H̃
)
(b1,b2). (1.44)

According to (1.39) and (1.40) there exist elements b′1 and b′2 of set ℜ such that:
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♮(a)
(
b′1,B

)
, (1.45)

♮(a)
(
b′2,a

•
2B
)

, (1.46)

t1 =
[
a•B ↑ a, H̃

]
− ℓ
(

a, H̃
)(

a,b′1
)
, (1.47)

t2 =
[
a•a•2B ↑ a, H̃

]
− ℓ
(

a, H̃
)(

a,b′2
)
. (1.48)

From (1.38), (1.42), (1.45) according to Theorem 1.4.7:

ℓ
(

a, H̃
)
(a,b1) = ℓ

(
a, H̃

)(
a,b′1

)
. (1.49)

Analogously from (1.38), (1.43), (1.46):

ℓ
(

a, H̃
)
(a,b2) = ℓ

(
a, H̃

)(
a,b′2

)
. (1.50)

Analogously from (1.47), (1.42), (1.49)according to Lemma 1.4.3:

t1 =
[
a•b•1B ↑ a, H̃

]
− ℓ
(

a, H̃
)
(a,b1). (1.51)

From (1.43) according to Lemma 1.4.3:[
a•a•2B ↑ a, H̃

]
=
[
a•b•2a•2B ↑ a, H̃

]
. (1.52)

According to Lemma 1.3.4:[
a•b•2a•2B ↑ a, H̃

]
≥
[
a•b•2B ↑ a, H̃

]
. (1.53)

From (1.43):

♮(a)(a2,b•2B) .

According to Lemma 1.4.3[
a•a•2b•2B ↑ a, H̃

]
=
[
a•b•2B ↑ a, H̃

]
. (1.54)

Again according to Lemma 1.3.4:[
a•a•2b•2B ↑ a, H̃

]
≥
[
a•a•2B ↑ a, H̃

]
.

From (1.54), (1.52), (1.53):[
a•a•2B ↑ a, H̃

]
≥
[
a•b•2B ↑ a, H̃

]
≥
[
a•a•2B ↑ a, H̃

]
,

therefore,
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[
a•a•2B ↑ a, H̃

]
=
[
a•b•2B ↑ a, H̃

]
.

From (1.48), (1.50):

t2 =
[
a•b•2B ↑ a, H̃

]
− ℓ
(

a, H̃
)
(a,b2).

From (1.42) according to Lemma 1.4.3

t2 =
[
a•b•2b•1B ↑ a, H̃

]
− ℓ
(

a, H̃
)
(a,b2). (1.55)

Let’s symbolize

u :=
[
a•C ↑ a, H̃

]
, (1.56)

d :=
[
a•b•1a•C ↑ a, H̃

]
, (1.57)

w :=
[
a•b•2a•C ↑ a, H̃

]
, (1.58)

j :=
[
a•b•2b•1a•C ↑ a, H̃

]
, (1.59)

q :=
[
a•b•1b•2a•C ↑ a, H̃

]
,

p :=
[
a•b•1b•2b•1a•C ↑ a, H̃

]
, (1.60)

r :=
[
a•b•2b•1b•2a•C ↑ a, H̃

]
.

Since ℜ is ISS
(

a, H̃
)

then

q−w = p− j, (1.61)

j = q. (1.62)

From (1.55), (1.51), (1.57), (1.59):(
t2 + ℓ

(
a, H̃

)
(a,b2)

)
−
(

t1 + ℓ
(

a, H̃
)
(a,b1)

)
= j−d,

therefore

t2− t1 = j−d− ℓ
(

a, H̃
)
(a,b2)+ ℓ

(
a, H̃

)
(a,b1). (1.63)

From (1.56), (1.57), (1.58) according to Lemma 1.3.4:

ℓ
(

a, H̃
)
(a,b2) = 0.5·(w−u) , ℓ

(
a, H̃

)
(a,b1) = 0.5·(d−u) .

From (1.61), (1.62), (1.63):
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t2− t1 = 0.5 · (( j−d)+( j−w)) = 0.5 · ( j−d + p− j) = 0.5 · (p−d) .

From (1.60), (1.57), (1.44):

z = 0.5 · (p−d) .

Consequently

z = t2− t1

□
That is in every homogenous space a propagation velocity of every information to every

recorder for every frame reference equals to 1.
Th. 1.5.2: If ℜ is a homogeneous space, then[

a•1B |ℜaH̃
]
≥
[
B |ℜaH̃

]
.

Proof comes out straight from Theorem 1.5.1.
Consequently, in any homogeneous space any recorder finds out that B ”took place” not

earlier than B ”actually take place”. ”Time” is irreversible.
Th. 1.5.3 If a1 and a2 are elements of ℜ,

ℜisISS
(

a, H̃
)

, (1.64)

p :=
[
a•1B |ℜaH̃

]
, (1.65)

q :=
[
a•2a•1B |ℜaH̃

]
, (1.66)

z := ℓ
(

ℜaH̃
)
(a1,a2) ,

then

z = q− p.

Proof: In accordance with Theorem 1.5.1
from (1.64), (1.65), (1.66):

q− p = ℓ
(

ℜaH̃
)
(a•1B,a•2a•1B) ,

thus in accordance with Definition 1.4.8 there exist elements b1 and b2 of ℜ such that

♮(a)(b1,a•1B) , (1.67)

♮(a)(b2,a•2a•1B) , (1.68)
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q− p = ℓ
(

ℜaH̃
)
(b1,b2) .

Moreover, in accordance with Theorem 1.4.4

♮(a)(a•1,a
•
1B) , (1.69)

♮(a)(a•2,a
•
2a•1B) .

From (1.68) in accordance with Theorem 1.4.7:

ℓ
(

ℜaH̃
)
(b1,b2) = ℓ

(
ℜaH̃

)
(b1,a2) . (1.70)

In accordance with Theorem 1.4.3:

ℓ
(

ℜaH̃
)
(b1,a2) = ℓ

(
ℜaH̃

)
(a2,b1) . (1.71)

Again in accordance with Theorem 1.4.7 from (1.69), (1.67):

ℓ
(

ℜaH̃
)
(a2,b1) = ℓ

(
ℜaH̃

)
(a2,a1) . (1.72)

Again in accordance with Theorem 1.4.3:

ℓ
(

ℜaH̃
)
(a2,a1) = ℓ

(
ℜaH̃

)
(a1a2) .

From (1.72), (1.71), (1.70):

ℓ
(

ℜaH̃
)
(b1,b2) = ℓ

(
ℜaH̃

)
(a1a2)

□
According to Urysohn‘s theorem5 [8]: any homogeneous space is homeomorphic to

some set of points of real Hilbert space. If this homeomorphism is not Identical transfor-
mation, then ℜ will represent a non- Euclidean space. In this case in this ”space-time”
corresponding variant of General Relativity Theory can be constructed. Otherwise, ℜ is
Euclidean space. In this case there exists coordinates system Rµ such that the following
condition is satisfied: for all elements a1 and a2 of set ℜ there exist points x1 and x2 of
system Rµ such that

ℓ
(

a, H̃
)
(ak,as) =

(
∑µ

j=1

(
xs, j− xk, j

)2
)0.5

.

5Pavel Samuilovich Urysohn, Pavel Uryson (February 3, 1898, Odessa - August 17, 1924, Batz-sur-Mer)
was a Jewish mathematician who is best known for his contributions in the theory of dimension, and for de-
veloping Urysohn’s Metrization Theorem and Urysohn’s Lemma, both of which are fundamental results in
topology.
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In this case Rµ is called a coordinates system of frame of reference
(

ℜaH̃
)

and numbers⟨
xk,1,xk,2, . . . ,xk,µ

⟩
are called coordinates of recorder ak in Rµ.

A coordinates system of a frame of reference is specified accurate to transformations of
shear, turn, and inversion.

Def. 1.5.4: Numbers
⟨
x1,x2, . . . ,xµ

⟩
are called coordinates of B in a coordinate system

Rµ of a frame of reference
(

ℜaH̃
)

if there exists a recorder b such that b ∈ℜ, ♮(a)(b,B)
and these numbers are the coordinates in Rµ of this recorder.

Th. 1.5.4: In a coordinate system Rµ of a frame of reference
(

ℜaH̃
)

: if z is a dis-
tance length between B and C, coordinates of B are (b1,b2, ..,bn), coordinates of C are
(c1,c2, ..,c3), then

z =

(
µ

∑
j=1

(c j−b j)
2

)0.5

.

Proof came out straight from Definition 1.5.4 □
Def. 1.5.5: Numbers

⟨
x1,x2, . . . ,xµ

⟩
are called coordinates of the recor-der b in the

coordinate system Rµ at the instant t of the frame of reference
(

ℜaH̃
)

if for every B the
condition is satisfied: if

t =
[
b•B |ℜaH̃

]
then coordinates of ≪ b•B≫ in coordinate system Rµ of frame of reference

(
ℜaH̃

)
are the following: ⟨

x1,x2, . . . ,xµ
⟩

.

Lm. 1.5.1 If

τ := [b•C ↑ b,{g0,B,b0}] , (1.73)

p :=
[
a•b• (g•0b•0)

τ g•0B ↑ a,{g1,A,b1}
]

, (1.74)

q :=
[
a•b• (g•0b•0)

τ+1 g•0B ↑ a,{g1,A,b1}
]

, (1.75)

t := [a•b•C ↑ a,{g1,A,b1}] (1.76)

then

p≤ t ≤ q.

Proof
1) From (1.75):

a•
(

a•b• (g•0b•0)
τ+1 g•0B&

(
¬a• (g•1b•1)

q+1 g•1A
))

. (1.77)

Hence from (1.73):
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b• (g•0b•0)

τ+1 g•0B⇒ b•C
)

then from (1.77) according to II:

a•
(

a•b•C&
(
¬a• (g•1b•1)

q+1 g•1A
))

.

According to II, since from (1.76):(
a•b•C⇒ a• (g•1b•1)

t g•1A
)

then

a•
(

a• (g•1b•1)
t g•1A&

(
¬a• (g•1b•1)

q+1 g•1A
))

. (1.78)

If t > q then t ≥ q+1. Hence according to III from (1.78):

a•
(

a• (g•1b•1)
q+1 g•1A&

(
¬a• (g•1b•1)

q+1 g•1A
))

,

it contradicts to I. So t ≤ q.
2) From (1.76):

a•
(

a•b•C&
(
¬a• (g•1b•1)

t+1 g•1A
))

. (1.79)

Since from (1.73): (
b•C⇒ b• (g•0b•0)

τ g•0B
)

then from (1.79) according to II:

a•
(

a•b• (g•0b•0)
τ g•0B&

(
¬a• (g•1b•1)

t+1 g•1A
))

. (1.80)

Since from (1.74): (
a•b• (g•0b•0)

τ g•0B⇒ a• (g•1b•1)
p g•1A

)
then according to II from (1.80):

a•
(

a• (g•1b•1)
p g•1A&

(
¬a• (g•1b•1)

t+1 g•1A
))

. (1.81)

If p > t then p≥ t +1. In that case from (1.81) according to III:

a•
(

a• (g•1b•1)
t+1 g•1A&

(
¬a• (g•1b•1)

t+1 g•1A
))

,
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it contradicts to I. So p≤ t □
Th. 1.5.5 In a coordinates system Rµ of a frame of reference

(
ℜaH̃

)
: if in every instant

t: coordinates of6:
b:
⟨
xb,1 + v · t,xb,2,xb,3, . . . ,xb,µ

⟩
;

g0:
⟨
x0,1 + v · t,x0,2,x0,3, . . . ,x0,µ

⟩
;

b0:
⟨
x0,1 + v · t,x0,2 + l,x0,3, . . . ,x0,µ

⟩
; and

tC =
[
b•C |ℜaH̃

]
;

tD =
[
b•D |ℜaH̃

]
;

qC = [b•C ↑ b,{g0,A,b0}];
qD = [b•D ↑ b,{g0,A,b0}],
then

lim
l→0

2 · l√
(1− v2)

· qD−qC

tD− tC
= 1.

Proof: Let us designate:

t1 :=
[
b• (g0

•b0
•)qC g0

•B |ℜaH̃
]

, (1.82)

t2 :=
[
b• (g0

•b0
•)qC+1 g0

•B |ℜaH̃
]

, (1.83)

t3 :=
[
(g0
•b0
•)qC g0

•B |ℜaH̃
]

, (1.84)

t4 :=
[
(g0
•b0
•)qC+1 g0

•B |ℜaH̃
]

. (1.85)

In that case coordinates of:

≪ b• (g0
•b0
•)qC g0

•B≫:⟨
xb,1 + v · t1,xb,2,xb,3, . . . ,xb,µ

⟩
, (1.86)

≪ b• (g0
•b0
•)qC+1 g0

•B≫:⟨
xb,1 + v · t2,xb,2,xb,3, . . . ,xb,µ

⟩
, (1.87)

≪ (g0
•b0
•)qC g0

•B≫:
⟨
x0,1 + v · t3,x0,2,x0,3, . . . ,x0,µ

⟩
, (1.88)

≪ (g0
•b0
•)qC+1 g0

•B≫:
⟨
x0,1 + v · t4,x0,2,x0,3, . . . ,x0,µ

⟩
, (1.89)

≪ b•C≫:
⟨
xb,1 + v · tC,xb,2,xb,3, . . . ,xb,µ

⟩
. (1.90)

According to Theorem 1.5.1 and Lemma 1.4.4 from (1.82), (1.86), (1.83), (1.87), (1.90):[
a•b• (g0

•b0
•)qC g0

•B |ℜaH̃
]
=[

a•b• (g0
•b0
•)qC g0

•B ↑ a, H̃
]
=

t1 +
(
(xb,1 + vt1)

2 +∑µ
j+2 x2

b, j

)0.5
,

6below v is a real positive number such that |v|< 1)
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[
a•b• (g0

•b0
•)qC+1 B |ℜaH̃

]
=[

a•b• (g0
•b0
•)qC+1 B ↑ a, H̃

]
=

t2 +
(
(xb,1 + vt2)

2 +∑µ
j=2 x2

b, j

)0.5
.

According to Lemma 1.5.1:

t1 +

(
(xb,1 + vt1)

2 +
µ

∑
j=2

x2
b, j

)0.5

≤ tC +

(
(xb,1 + vtC)

2 +
µ

∑
j=2

x2
b, j

)0.5

(1.91)

≤ t2 +

(
(xb,1 + vt2)

2 +
µ

∑
j=2

x2
b, j

)0.5

.

According to Theorem 1.5.1 from (1.82), (1.84), (1.86), (1.88):

t1 = t3 +
(
(x0,1 + vt3− xb,1− vt1)

2 +∑µ
j=2

(
x0, j− xb, j

)2
)0.5

.

From (1.83), (1.85), (1.87), (1.89):

t2 = t4 +
(
(x0,1 + vt4− xb,1− vt2)

2 +∑µ
j=2

(
x0, j− xb, j

)2
)0.5

.

Hence:

(t1− t3)
2 = v2 (t1− t3)

2−2v(t1− t3)(x0,1− xb,1)+∑µ
j=2

(
x0, j− xb, j

)2,

(t2− t4)
2 = v2 (t2− t4)

2−2v(t2− t4)(x0,1− xb,1)+∑µ
j=2

(
x0, j− xb, j

)2.

Therefore,

t2− t4 = t1− t3. (1.92)

Let us designate:

t5 :=
[
b0
• (g0

•b0
•)qC g0

•B |ℜaH̃
]

. (1.93)

In that case coordinates of:

≪ b0
• (g0

•b0
•)qC g0

•B≫:
⟨
x0,1 + v · t5,x0,2 + l,x0,3, . . . ,x0,µ

⟩
.

hence from (1.84), (1.88) according to Theorem 1.5.1:

t5− t3 =
(
(x0,1 + vt5− x0,1− vt3)

2 +(x0,2 + l− x0,2)
2 +∑µ

j=3 (x0, j− x0, j)
2
)0.5

,
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hence:

t5− t3 =
l√

1− v2
. (1.94)

Analogously from (1.93), (1.85), (1.89):

t4− t5 =
l√

1− v2
.

From (1.94):

t4− t3 =
2l√

1− v2
.

From (1.92):

t2− t1 =
2l√

1− v2
.

Hence from (1.91):

t1 +

(
(xb,1 + vt1)

2 +
µ

∑
j=2

x2
b, j

)0.5

≤ tC +

(
(xb,1 + vtC)

2 +
µ

∑
j=2

x2
b, j

)0.5

≤ t1 +
2l√

1− v2
+

((
xb,1 + v

(
t1 +

2l√
1− v2

))2

+
µ

∑
j=2

x2
b, j

)0.5

.

Or if l→ 0 then t2→ t1, and

lim
l→0

 t1 +

(
(xb,1 + vt1)

2 +
µ

∑
j=2

x2
b, j

)0.5


= tC +

(
(xb,1 + vtC)

2 +
µ

∑
j=2

x2
b, j

)0.5

.

Since, if v2 < 1 then function

f (t) = t +

(
(xb,1 + vt)2 +

µ

∑
j=2

x2
b, j

)0.5

is a monotonic one, then

lim
l→0

t1 = tC,
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hence

lim
l→0

[
b• (g0

•b0
•)qC g0

•B |ℜaH̃
]
= tC. (1.95)

Analogously,

lim
l→0

[
b• (g0

•b0
•)qD g0

•B |ℜaH̃
]
= tD. (1.96)

According to Theorem 1.5.1 from (1.82) and (1.83):

[
b• (g0

•b0
•)qD g0

•B |ℜaH̃
]
−
[
b• (g0

•b0
•)qC g0

•B |ℜaH̃
]

=

(
t1 +

2l√
1− v2

(qD−qC)

)
− t1

=
2l (qD−qC)√

1− v2
.

From (1.95) and (1.96):

lim
l→0

2l (qD−qC)

tD− tC
=
√

1− v2

□
Corollary of Theorem 1.5.5: If designate: qst

D := qD and qst
C := qC for v = 0, then

lim
l→0

2l
qst

D−qst
C

tD− tC
= 1,

hence:

lim
l→0

qD−qC

qst
D−qst

C
=
√

1− v2.

For an absolutely precise κ-clock:

qst
D−qst

C =
qD−qC√

1− v2 □

Consequently, moving at speed v κ-clock are times slower than the one at rest.
Th. 1.5.6 Let: v (|v|< 1) and l be real numbers and ki be natural ones.
Let in a coordinates system Rµ of a frame of reference

(
ℜaH̃

)
: in each instant t coor-

dinates of:
b:
⟨
xb,1 + v · t,xb,2,xb,3, . . . ,xb,µ

⟩
,

g j:
⟨
y j,1 + v · t,y j,2,y j,3, . . . ,y j,µ

⟩
,

u j:
⟨
y j,1 + v · t,y j,2 + l/(k1 · . . . · k j) ,y j,3, . . . ,y j,µ

⟩
,

for all bi: if bi ∈ ℑ, then coordinates of
bi:
⟨
xi,1 + v · t,xi,2,xi,3, . . . ,xi,µ

⟩
,

T̃ is
⟨
{g1,A,u1} , {g2,A,u2} , ..,

{
g j,A,u j

}
, ..
⟩
.
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In that case: ℑ is ISS
(

b, T̃
)

.
Proof
1) Let us designate:

p :=
[
b•b•1B ↑ b, T̃

]
,

q :=
[
b•b•2b•1B ↑ b, T̃

]
,

r :=
[
b•b•1C ↑ b, T̃

]
,

s :=
[
b•b•2b•1C ↑ b, T̃

]
,

tp :=
[
b•b•1B |ℜaH̃

]
, (1.97)

tq :=
[
b•b•2b•1B |ℜaH̃

]
, (1.98)

tr :=
[
b•b•1C |ℜaH̃

]
, (1.99)

ts :=
[
b•b•2b•1B |ℜaH̃

]
. (1.100)

According to Corollary of Theorem 1.5.5:

tq− tp =
q− p√
1− v2

, (1.101)

ts− tr =
s− r√
1− v2

. (1.102)

From (1.97-1.100) coordinates of:

≪ b•b•1B≫:
⟨
xb,1 + vtp,xb,2,xb,3, . . . ,xb,µ

⟩
, (1.103)

≪ b•b•2b•1B≫:
⟨
xb,1 + vtq,xb,2,xb,3, . . . ,xb,µ

⟩
,

≪ b•b•1C≫:
⟨
xb,1 + vtr,xb,2,xb,3, . . . ,xb,µ

⟩
, (1.104)

≪ b•b•2b•1C≫:
⟨
xb,1 + vts,xb,2,xb,3, . . . ,xb,µ

⟩
.

Let us designate:

t1 :=
[
b•1B |ℜaH̃

]
, (1.105)

t2 :=
[
b•1C |ℜaH̃

]
. (1.106)

Consequently, coordinates of:
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≪ b•1B≫:
⟨
x1,1 + vt1,x1,2,x1,3, . . . ,x1,µ

⟩
,

≪ b•1C≫:
⟨
x1,1 + vt2,x1,2,x1,3, . . . ,x1,µ

⟩
.

According to Theorem 1.5.1 from (1.104), (1.106), (1.99):

tr− t2 =

(
(xb,1 + vtr− x1,1− vt2)

2 +
µ

∑
j=2

(
xb, j− x1, j

)2

)0.5

.

Analogously from (1.103), (1.105), (1.97):

tp− t1 =

(
(xb,1 + vtp− x1,1− vt1)

2 +
µ

∑
j=2

(
xb, j− x1, j

)2

)0.5

.

Hence,

tr− t2 = tp− t1. (1.107)

Let us denote:

t3 :=
[
b2
•b•1B |ℜaH̃

]
,

t4 :=
[
b2
•b•1C |ℜaH̃

]
.

Hence, coordinates of:

≪ b2
•b•1B≫:

⟨
x2,1 + vt3,x2,2,x2,3, . . . ,x2,µ

⟩
,

≪ b2
•b•1C≫:

⟨
x2,1 + vt4,x2,2,x2,3, . . . ,x2,µ

⟩
.

According to Theorem 1.5.1:

t3− t1 =

(
(x2,1 + vt3− x1,1− vt1)

2 +
µ

∑
j=2

(x2, j− x1, j)
2

)0.5

.

t4− t2 =

(
(x2,1 + vt4− x1,1− vt2)

2 +
µ

∑
j=2

(x2, j− x1, j)
2

)0.5

.

Hence:

t3− t4 = t1− t2. (1.108)

And analogously:

tq− t3 = ts− t4. (1.109)

From (1.108), (1.109), (1.107):
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tq− tp = ts− tr.

From (1.102), (1.101):

q− p = s− r. (1.110)

2) Let us designate:

p′ :=
[
b•C ↑ b, T̃

]
,

q′ :=
[
b•αb•C ↑ b, T̃

]
,

r′ :=
[
b•α†b•C ↑ b, T̃

]
;

here α is b•1b•2 . . .b
•
kb•k+1 . . .b

•
N .

Hence according Definition 1.4.1:

m
(

bT̃
)
(b•αb•C) = q′− p′, (1.111)

m
(

bT̃
)(

b•α†b•C
)
= r′− p′. (1.112)

Let us designate:

t0 :=
[
b•C |ℜaH̃

]
,

t1 =
[
b•1b•C |ℜaH̃

]
,

t2 :=
[
b•2b•1b•C |ℜaH̃

]
,

· · · ,
tk :=

[
b•k . . .b

•
2b•1b•C |ℜaH̃

]
, (1.113)

tk+1 :=
[
b•k+1b•k . . .b

•
2b•1b•C |ℜaH̃

]
,

· · · ,
tN :=

[
b•N . . .b•k+1b•k . . .b

•
2b•1b•C |ℜaH̃

]
,

tN+1 :=
[
b•α†b•C |ℜaH̃

]
.

Hence in accordance with this theorem condition coordinates of:

≪ b•C≫:⟨
xb,1 + vt0,xb,2,xb,3, . . . ,xb,µ

⟩
,

≪ b•1b•C≫:⟨
x1,1 + vt1,x1,2,x1,3, . . . ,x1,µ

⟩
,
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≪ b•2b•1b•C≫:⟨
x2,1 + vt2,x2,2,x2,3, . . . ,x2,µ

⟩
,

· · · ,
≪ b•k · · ·b•2b•1b•C≫:⟨

xk,1 + vtk,xk,2,xk,3, . . . ,xk,µ
⟩

,

≪ b•k+1b•k · · ·b•2b•1b•C≫:⟨
xk+1,1 + vtk+1,xk+1,2,xk+1,3, . . . ,xk+1,µ

⟩
,

· · · ,
≪ b•N · · ·b•k+1b•k · · ·b•2b•1b•C≫:⟨

xN,1 + vtN ,xN,2,xN,3, . . . ,xN,µ
⟩

,

≪ b•α†b•C≫:⟨
xN+1,1 + vtN+1,xN+1,2,xN+1,3, . . . ,xN+1,µ

⟩
.

Hence from (1.113) according Theorem 1.5.1:

t1− t0

=

(
(x1,1 + vt1− xb,1− vt0)

2 +
µ

∑
j=2

(
x1, j− xb, j

)2

)0.5

,

t2− t1

=

(
(x2,1 + vt2− x1,1− vt1)

2 +
µ

∑
j=2

(x2, j− x1, j)
2

)0.5

,

. . . ,

tk+1− tk

=

(
(xk+1,1 + vtk+1− xk,1− vtk)

2 +
µ

∑
j=2

(
xk+1, j− xk, j

)2

)0.5

,

. . . ,

tN+1− tN

=

(
(xb,1 + vtN+1− xN,1− vtN)

2 +
µ

∑
j=2

(
xb, j− xN, j

)2

)0.5

.

If designate:

ρ2
a,b :=

µ

∑
j=1

(xb,1− xa,1)
2 ,

then for every k:

tk+1− tk =
v

1− v2 (xk+1,1− xk,1)

+
1

1− v2

(
ρ2

k,k+1− v2
µ

∑
j=2

(
xk+1, j− xk, j

)2

)0.5

.
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Hence:

tN+1− t0 =

=
1

1− v2


(

ρ2
b,1− v2 ∑µ

j=2

(
x1, j− xb, j

)2
)0.5

+
(

ρ2
N,b− v2 ∑µ

j=2

(
xb, j− xN, j

)2
)0.5

+∑N−1
k=1

(
ρ2

k,k+1− v2 ∑µ
j=2

(
xk+1, j− xk, j

)2
)0.5

 .

Analogously, if designate:

τN+1 :=
[
b•αb•C |ℜaH̃

]
then

τN+1− t0 =

=
1

1− v2


(

ρ2
1,b− v2 ∑µ

j=2

(
xb, j− x1, j

)2
)0.5

+
(

ρ2
b,N− v2 ∑µ

j=2

(
xN, j− xb, j

)2
)0.5

+∑N−1
k=1

(
ρ2

k+1,k− v2 ∑µ
j=2

(
xk, j− xk+1, j

)2
)0.5

 ,

hence

tN+1− t0 = τN+1− t0. (1.114)

According to Theorem 1.5.5:

τN+1− t0 =
q′−p′√

1−v2 and tN+1− t0 =
r′−p′√
1−v2 .

From (1.114), (1.111), (1.112):

m
(

bT̃
)
(b•αb•C) =m

(
bT̃
)(

b•α†b•C
)
.

From (1.110) according to Definition 1.4.3: ℑ is ISS
(

b, T̃
)
□

Therefore, a inner stability survives on a uniform straight line motion.
Th. 1.5.7
Let:
1) in a coordinates system Rµ of a frame of reference

(
ℜaH̃

)
in every instant t:

b :
⟨
xb,1 + v · t,xb,2,xb,3, . . . ,xb,µ

⟩
,

g j:
⟨
y j,1 + v · t,y j,2,y j,3, . . . ,y j,µ

⟩
,

u j:
⟨
y j,1 + v · t,y j,2 + l/(k1 · . . . · k j) ,y j,3, . . . ,y j,µ

⟩
,

for every recorder qi: if qi ∈ ℑ then coordinates of
qi :

⟨
xi,1 + v · t,xi,2,xi,3, . . . ,xi,µ

⟩
,
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T̃ is
⟨
{g1,A,u1} , {g2,A,u2} , ..,

{
g j,A,u j

}
, ..
⟩
.

C :
⟨
C1,C2,C3, . . . ,Cµ

⟩
,

D :
⟨
D1,D2,D3, . . . ,Dµ

⟩
,

tC =
[
C |ℜaH̃

]
,

tD =
[
D |ℜaH̃

]
;

2) in a coordinates system Rµ′ of a frame of reference
(

ℑbT̃
)

:

C :
⟨
C′1,C

′
2,C
′
3, . . . ,C

′
µ
⟩
,

D :
⟨
D′1,D

′
2,D

′
3, . . . ,D

′
µ
⟩
,

t ′C =
[
C | ℑbT̃

]
,

t ′D =
[
D | ℑbT̃

]
.

In that case:

t ′D− t ′C =
(tD− tC)− v(D1−C1)√

1− v2
,

D′1−C′1 =
(D1−C1)− v(tD− tC)√

1− v2
.

Proof:
Let us designate:

ρa,b :=

(
µ

∑
j=1

(b j−a j)
2

)0.5

.

According to Definition 1.4.8 there exist elements qC and qD of set ℑ such that

♮(b)(qC,C)), ♮(b)(qD,D)

and

ℓ
(

ℑbT̃
)
(C,D) = ℓ

(
b, T̃

)
(qC,qD).

In that case:

t ′C =
[
C | ℑbT̃

]
=
[
q•CC | ℑbT̃

]
,

t ′D =
[
D | ℑbT̃

]
=
[
q•DD | ℑbT̃

]
.

According to Corollary of Theorem 1.5.5:[
q•CC |ℜaH̃

]
=
[
C |ℜaH̃

]
= tC,[

q•DD |ℜaH̃
]
=
[
D |ℜaH̃

]
= tD.
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Let us designate:

τ1 :=
[
b•C ↑ b, T̃

]
,

τ2 :=
[
b•D ↑ b, T̃

]
,

t1 :=
[
b•C |ℜaH̃

]
,

t2 :=
[
b•D |ℜaH̃

]
,

t3 :=
[
b•B |ℜaH̃

]
,

t4 :=
[
q•Cb•B |ℜaH̃

]
,

t5 :=
[
b•q•Cb•B |ℜaH̃

]
,

t6 :=
[
q•Dq•Cb•B |ℜaH̃

]
,

t7 :=
[
q•Cq•Dq•Cb•B |ℜaH̃

]
,

t8 :=
[
b•q•Cq•Dq•Cb•B |ℜaH̃

]
.

Under such designations:

t8− t7 = t5− t4 hence: t8− t5 = t7− t4 and

ℓ
(

ℑbT̃
)
(C,D)

= 0.5
([

b•q•Cq•Dq•Cb•B ↑ b, T̃
]
−
[
b•q•Cb•B ↑ b, T̃

])
,

hence:

ℓ
(

ℑbT̃
)
(C,D) = 0.5(t8− t5)

√
1− v2 = 0.5(t7− t4)

√
1− v2,

(t7− t6)
2 = (xC,1 + vt7− xD,1− vt6)

2 +∑µ
j=2 (xC, j− xD, j)

2,
(t6− t4)

2 = (xD,1 + vt6− xC,1− vt4)
2 +∑µ

j=2 (xC, j− xD, j)
2,

hence:

(t7− t6)
2 = v2 (t7− t6)

2 +2v(xC,1− xD,1)(t7− t6)+ρ2
qC,qD

,
(t6− t4)

2 = v2 (t6− t4)
2 +2v(xD,1− xC,1)(t6− t4)+ρ2

qD,qC
.

Sequencely:

t7− t4 = 2√
1−v2

(
v2 (xD,1− xC,1)

2 +
(
1− v2

)
ρ2

qC,qD

)0.5
.



Relativity 47

Let us designate:

Ra,b :=

(
ρ2

a,b− v2
µ

∑
j=2

(a j−b j)
2

)0.5

.

Under such designation:

ℓ
(

ℑbT̃
)
(C,D) =

RqC,qD√
1− v2

.

Since

C1 = xC,1 + vtC, D1 = xD,1 + vtD,
C j+1 = xC, j+1, D j+1 = xD, j+1

then

RqC,qD =

 v2 (D1− vtD−C1 + vtC)
2

+
(
1− v2

)( (D1− vtD−C1 + vtC)
2

+∑µ
j=2 (D j−C j)

2

) 
0.5

,

hence:

RqC,qD =

 v2 (tD− tC)
2−2v(tD− tC)(D1−C1)

+ρ2
C,D

−v2 ∑µ
j=2 (D j−C j)

2


0.5

. (1.115)

Moreover, according to Definition 1.4.7:

t ′D− t ′C = (τ2− τ1)−
−
(
ℓ
(

b, T̃
)
(b,qD)− ℓ

(
b, T̃

)
(b,qC)

) (1.116)

According to Theorem 1.5.5:

τ2− τ1 = (t2− t1)
√

1− v2. (1.117)

According to Theorem 1.5.3:

(t1− tC)
2 = (xb,1 + vt1−C1)

2 +∑µ
j=2 (xb, j−C j)

2,
(t2− tD)

2 = (xb,1 + vt2−D1)
2 +∑µ

j=2 (xb, j−D j)
2.

Therefore,

(t1− tC)
2 = v2 (t1− tC)

2 +2v(xb,1− xC,1)(t1− tC)+ρ2
b,qC

,
(t2− tD)

2 = v2 (t2− tD)
2 +2v(xb,1− xD,1)(t2− tD)+ρ2

b,qD
.
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Hence,

t2− t1 =
= (tD− tC)+ v

1−v2 (xC,1− xD,1)

+ 1
1−v2 (Rb,qD−Rb,qC) .

Because

ℓ
(

b, T̃
)
(b,qD) =

Rb,qD√
1− v2

, ℓ
(

b, T̃
)
(b,qC) =

Rb,qC√
1− v2

,

then from (1.116), (1.117), (1.118):

t ′D− t ′C = (tD− tC)
√

1− v2− v√
1− v2

(xD,1− xC,1) ,

hence:

t ′D− t ′C
= (tD− tC)

√
1− v2− v√

1− v2
((D1−C1)− v(tD− tC)) ,

hence:

t ′D− t ′C =
(tD− tC)− v(D1−C1)√

1− v2
,

D′1−C′1 =
(D1−C1)− v(tD− tC)√

1− v2
.

It is the Lorentz spatial-temporal transformations7 □.

1.6. Probability

There is the evident nigh affinity between the classical probability function and the Boolean
function of the classical propositional logic [9]. These functions are differed by the range
of value, only. That is if the range of values of the Boolean function shall be expanded from
the two-elements set {0;1} to the segment [0;1] of the real numeric axis then the logical
analog of the Bernoulli Large Number Law [13] can be deduced from the logical axioms.
These topics is considered in this article.

Further we consider set of all meaningfull sentences.

7Hendrik Antoon Lorentz (18 July 1853 - 4 February 1928) was a Dutch physicist who shared the 1902
Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect.
He also derived the transformation equations subsequently used by Albert Einstein to describe space and time.
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1.6.1. Events

Def. 1.6.1.1: A set B of sentences is called event, expressed by sentence C, if the following
conditions are fulfilled:

1. C ∈ B;
2. if A ∈ B and D ∈ B then A = D;
3. if D ∈ B and A = D then A ∈ B .
In this case denote: B := ◦C.
Def. 1.6.1.2: An event B occurs if here exists a true sentence A such that A ∈ B .
Def. 1.6.1.3: Events A and B equal (denote: A = B) if A occurs if and only if B

occurs.
Def. 1.6.1.4: Event C is called product of event A and event B (denote: C = (A ·B)) if

C occurs if and only if A occurs and B occurs.
Def. 1.6.1.5: Events C is called complement of event A (denote: C = (#A)) if C occurs

if and only if A does not occur.
Def. 1.6.1.6: (A +B) := (#((#A) · (#B))). Event (A +B) is called sum of event A and

event B .
Therefore, the sum of event occurs if and only if there is at least one of the addends.
Def. 1.6.1.7: The authentic event (denote: T ) is the event which contains a tautology.
Hence, T occurs in accordance Def. 1.6.1.2:
The impossible event (denote: F ) is event which contains negation of a tautology.
Hence, F does not occur.

1.6.2. B-functions

Def. 1.6.2.1: Let b(X) be a function defined on the set of events.
And let this function has values on he real numbers segment [0;1].
Let there exists an event C0 such that b(C0) = 1.
Let for all events A and B: b(A ·B)+b(A · (#B)) = b(A).
In that case function b(X) is called B-function.
By this definition:

b(A ·B)≤ b(A). (1.118)

Hence, b(T ·C0) ≤ b(T ). Because T ·C0 = C0 (by Def.1.6.1.4 and Def.1.6.1.7) then
b(C0)≤ b(T ). Because b(C0) = 1then

b(T ) = 1. (1.119)

From Def.1.6.2.1: b(T ·B)+ b(T · (#B)) = b(T ). Because T D = D for any D then
b(B)+b(#B) = b(T ). Hence, by (1.119): for any B:

b(B)+b(#B) = 1. (1.120)

Therefore, b(T )+b(#T ) = 1. Hence, in accordance (1.119) : 1+b(F ) = 1. Therefore,

b(F ) = 0. (1.121)
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In accordance with Def.1.6.2.1, Def.1.6.1.6, and (1.120):
b(A · (B +C )) = b(A · (#((#B) · (#C )))) =
= b(A)−b((A · (#B)) · (#C )) = b(A)−b(A · (#B))+b((A · (#B)) ·C ) =
= b(A)−b(A)+b(A ·B))+b((#B) · (A ·C )) =
= b(A ·B))+b(A ·C )−b(B ·A ·C ).
And b((A ·B)+(A ·C )) = b(#((#(A ·B)) · (#(A ·C )))) =
= 1−b((#(A ·B)) · (#(A ·C ))) =
= 1−b(#(A ·B))+b((#(A ·B)) · (A ·C )) =
= 1−1+b(A ·B)+b((#(A ·B)) · (A ·C )) =
= b(A ·B)+b((A ·C ))−b((A ·B) · (A ·C )) =
= b(A ·B)+b((A ·C ))−b(A ·B ·C ) because A ·A = A .
Therefore:

b(A · (B +C )) = b(A ·B)+(A ·C )−b(A ·B ·C )) (1.122)

and

b((A ·B)+(A ·C )) = b(A ·B))+b(A ·C )−b(A ·B ·C ). (1.123)

Hence (distributivity):

b(A · (B +C )) = b((A ·B)+(A ·C )). (1.124)

If A = T then from (1.122) and (1.123) (the addition formula of probabilities):

b(B +C ) = b(B)+b(C )−b(B ·C ). (1.125)

Def. 1.6.2.2– 19: Events B and C are antithetical events if (B · C ) = F .
From (1.125) and (1.121) for antithetical events B and C :

b(B +C ) = b(B)+b(C ). (1.126)

Def. 1.6.2.3-20: Events B and C are independent for B-function b events if b(B ·C ) =
b(B) ·b(B).

If events B and C are independent for B-function b events then:
b(B ·(#C ))= b(B)−b(B ·C )= b(B)−b(B) ·b(C )= b(B) ·(1−b(C ))= b(B) ·b(#C ).

Hence, if events B and C are independent for B-function b events then:

b(B · (#C )) = b(B) ·b(#C ). (1.127)

Let calculate:

b(A · (#A) ·C ) = b(A ·C )−b(A ·A ·C ) = b(A ·C )−b(A ·C ) = 0. (1.128)
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1.6.3. Independent Tests

Definition 1.6.3.1: Let st(n) be a function such that st(n) has domain on the set of natural
numbers and has values in the events set.

In this case event A is a [st]-series of range r with V- number k if A, r and k fulfill to
some one amongst the following conditions:

1) r = 1 and k = 1, A = st (1) or k = 0, A = (#st (1));
2) B is [st]-series of range r−1 with V-number k−1 and

A = (B · st (r)) ,

or B is [st]-series of range r−1 with V-number k and

A = (B · (#st (r))) .

Let us denote a set of [st]-series of range r with V-number k as [st](r,k).
For example, if st (n) is a event Bn then the sentences:
(B1 ·B2 · (#B3)), (B1 · (#B2) ·B3), ((#B1) ·B2 ·B3)
are the elements of [st](3,2), and(

B1 ·B2 · (#B3) ·B4 ·B5

)
∈ [st](5,3).

Definition 1.6.3.2: Function st(n) is independent for B-function b if for A : if
A ∈ [st](r,r) then:

b(A) =
r

∏
n=1

b(st (n)) .

Definition 1.6.3.3: Let st(n) be a function such that st(n) has domain on the set of
natural numbers and has values in the set of events.

In this case sentence A is [st]-disjunction of range r with V-number k (denote: t[st](r,k))
if A is the disjunction of all elements of [st](r,k).

For example, if st (n) is event Cn then:
((#C1) · (#C2) · (#C3)) = t[st] (3,0),
t[st] (3,1) = ((C1 · (#C2) · (#C3))+((#C1) ·C2 · (#C3))+((#C1) · (#C2) ·C3)),
t[st] (3,2) = ((C1 ·C2 · (#C3))+((#C1) ·C2 ·C3)+(C1 · (#C2) ·C3)),
(C1 ·C2 ·C3) = t[st] (3,3).
Definition 1.6.3.4: A rational number ω is called frequency of sentence A in the [st]-

series of r independent for B-function b tests (designate: ω = νr [st] (A)) if
1) st(n) is independent for B-function b,
2) for all n: b(st (n)) = b(A),
3) t[st](r,k) is true and ω = k/r.
Theorem: 1.6.3.1: (the J.Bernoulli8 formula [13]) If st(n) is independent for B-

function b and there exists a real number p such that for all n: b(st (n)) = p then

b(t [st] (r,k)) =
r!

k! · (r− k)!
· pk · (1− p)r−k .

8Jacob Bernoulli (also known as James or Jacques) (27 December 1654 16 August 1705) was one of the
many prominent mathematicians in the Bernoulli family.
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Proof of the Theorem 1.6.3.1: By the Definition 1.6.3.2 and formula (1.127): if B ∈
[st] (r,k) then:

b(B) = pk · (1− p)r−k .

Since [st] (r,k) contains r!/(k! · (r− k)!) elements then by the Theorems (1.127),
(1.128) and (1.126) this Theorem is fulfilled.

Definition 1.6.3.5: Let function st(n) has domain on the set of the natural numbers and
has values in the set of the events.

Let function f (r,k, l) has got the domain in the set of threes of the natural numbers and
has got the range of values in the set of the events.

In this case f (r,k, l) = T [st](r,k, l) if
1) f (r,k,k) = t[st](r,k),
2) f (r,k, l +1) = ( f (r,k, l)+ t[st](r, l +1)).
Definition 1.6.3.6: If a and b are real numbers and k−1 < a≤ k and l ≤ b < l+1 then

T [st](r,a,b) = T [st](r,k, l).
Theorem: 1.6.3.2:

T [st](r,a,b) =◦≪ a
r
≤ νr [st] (A)≤ b

r
≫ .

Proof of the Theorem 1.6.3.2: By the Definition 1.6.3.6: there exist natural numbers r
and k such that k−1 < a≤ k and l ≤ b < l +1.

The recursion on l:
1. Let l = k.
In this case by the Definition 1.6.3.4:

T [st](r,k,k) = t[st](r,k) =◦≪ νr [st] (A) =
k
r
≫ .

2. Let n be any natural number.
The recursive assumption: Let

T [st](r,k,k+n) =◦≪ k
r
≤ νr [st] (A)≤ k+n

r
≫ .

By the Definition 1.6.3.5:

T [st](r,k,k+n+1) = (T [st](r,k,k+n)+ t[st](r,k+n+1)).

By the recursive assumption and by the Definition 1.6.3.4:

T [st](r,k,k+n+1) =

= (◦≪ k
r
≤ νr [st] (A)≤ k+n

r
≫+◦≪ νr [st] (A) =

k+n+1
r

≫).

Hence, by the Definition 2.10:
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T [st](r,k,k+n+1) =◦≪ k
r
≤ νr [st] (A)≤ k+n+1

r
≫ .

Theorem: 1.6.3.3 If st(n) is independent for B-function b and there exists a real number
p such that b(st (n)) = p for all n then

b(T [st](r,a,b)) = ∑
a≤k≤b

r!
k! · (r− k)!

· pk · (1− p)r−k .

Proof of the Theorem 1.6.3.3: This is the consequence from the Theorem 1.6.3.1 by
the Theorem 3.6.

Theorem: 1.6.3.4 If st(n) is independent for the B-function b and there exists a real
number p such that b(st (n)) = p for all n then

b(T [st](r,r · (p− ε) ,r · (p+ ε)))≥ 1− p · (1− p)
r · ε2

for every positive real number ε.
Proof of the Theorem 1.6.3.4: Because

r

∑
k=0

(k− r · p)2 · r!
k! · (r− k)!

· pk · (1− p)r−k = r · p · (1− p)

then if

J = {k ∈ N|0≤ k ≤ r · (p− ε)}∩{k ∈ N|r · (p+ ε)≤ k ≤ r}

then

∑
k∈J

r!
k! · (r− k)!

· pk · (1− p)r−k ≤ p · (1− p)
r · ε2 .

Hence, by (1.120) this Theorem is fulfilled.
Hence

lim
r→∞

b(T [st](r,r · (p− ε) ,r · (p+ ε))) = 1 (1.129)

for all tiny positive numbers ε.

1.6.4. The logic probability function

Definition 1.6.4.1: B-function P is P-function if for every event ◦≪ Θ≫:
If P(◦≪Θ≫) = 1 then≪ Θ≫ is true sentence.

Hence from Theorem 1.6.3.2 and (1.129): if b is a P-function then the sentence

≪ (p− ε)≤ νr [st] (A)≤ (p+ ε)≫

is almost true sentence for large r and for all tiny ε. Therefore, it is almost truely that
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νr [st] (A) = p

for large r.
Therefore, it is almost true that

b(A) = νr [st] (A)

for large r.
Therefore, the function, defined by the Definition 1.6.4.1 has got the statistical meaning.

That is why I’m call such function as the logic probability function.

1.6.5. Conditional probability

Definition 1.6.5.1: Conditional probability B for C is the following function:

b(B/C ) :=
b(C ·B)

b(C )
. (1.130)

Theorem 1.6.5.1 The conditional probability function is a B-function.
Proof of Theorem 1.6.5.1 From Definition 1.6.5.1:

b(C/C ) =
b(C ·C )

b(C )
.

Hence by Theorem 1.1.1:

b(C/C ) =
b(C )

b(C )
= 1.

Form Definition 1.6.5.1:

b((A ·B)/C )+b((A · (#B))/C ) =
b(C · (A ·B))

b(C )
+

b(C · (A · (#B)))

b(C )
.

Hence:

b((A ·B)/C )+b((A · (#B))/C ) =
b(C · (A ·B))+b(C · (A · (#B)))

b(C )
.

By Theorem 1.1.1:

b((A ·B)/C )+b((A · (#B))/C ) =
b((C ·A) ·B)+b((C ·A) · (#B))

b(C )
.

Hence by Definition 1.6.2.1:

b((A ·B)/C )+b((A · (#B))/C ) =
b(C ·A)

b(C )
.

Hence by Definition 1.6.5.1:

b((A ·B)/C )+b((A · (#B))/C ) = b(A/C ) □
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1.6.6. Classical probability

Let P be P-function.
Definition 1.6.6.1: {B1,B2, . . . ,Bn} is called as complete set if the following conditions

are fulfilled:
1. if k ̸= s then (Bk ·Bs) is a false sentence;
2. (B1 +B2 + . . .+Bn) is a true sentence.
Definition 1.6.6.2: B is favorable for A if (B · (#A)) is a false sentence, and B is

unfavorable for A if (B ∧A) is a false sentence.
Let
1. {B1,B2, . . . ,Bn} be complete set;
2. for k ∈ {1,2, . . . ,n} and s ∈ {1,2, . . . ,n}: P(Bk) = P(Bs);
3. if 1≤ k ≤ m then Bk is favorable for A , and if m+1≤ s≤ n then Bs is unfavorable

for A .
In that case from Theorem 1.1.1 and from (1.119) and (1.120):

P((#A) ·Bk) = 0

for k ∈ {1,2, . . . ,m} and

P(A ·Bs) = 0

for s ∈ {m+1,m+2, . . . ,n}.
Hence from Definition 1.6.2.1:

P(A ·Bk) = P(Bk)

for k ∈ {1,2, . . . ,n}.
By point 4 of Theorem 1.1.1:

A = (A · (B1 +B2 + . . .+Bm +Bm+1 . . .+Bn)) .

Hence by formula (1.124):
P(A) = P(A ·B1)+P(A ·B2)+ . . .+
+P(A ·Bm)+P(A ·Bm+1)+ . . .+P(A ·Bn) =
= P(B1)+P(B2)+ . . .+P(Bm).
Therefore

P(A) =
m
n

.

1.6.7. Probability and Logic

Let P be the probability function and let B be the set of events A such that either A occurs
or (#A) occurs.

In this case if P(A) = 1 then A occurs, and (A ·B) = B in accordance with Def. 1.6.1.4.
Consequently, if P(B) = 1 then P(A ·B) = 1. Hence, in this case P(A ·B) = P(A) ·P(B).

If P(A) = 0 then P(A ·B) = P(A) ·P(B) because P(A ·B) ≤ P(A) in accordance with
(1.118).
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Moreover in accordance with (1.120): P(#A) = 1−P(A) since the function P is a B-
function.

If event A occurs then (A ·B) = B and (A · (#B)) = (#B) Hence, P(A ·B)+P(A · (#B)) =
P(A) = P(B)+P(#B) = 1.

Consequently, if an element A of B occurs then P(A) = 1. If does not occurs then (#A)
occurs. Hence, P(#A) = 1 and because P(A)+P(#A) = 1 then P(A) = 0 . Therefore, on
B the range of values of is the two-element set {0;1} similar the Boolean function range
of values. Hence, on set B the probability function obeys definition of a Boolean function
(Def.1.1.10).

The logic probability function is the extension of the logic B-function. Therefore, the
probability is some generalization of the classic propositional logic. That is the proba-
bility is the logic of events such that these events do not happen, yet.



Chapter 2

Quants

Quantum theory evolved as a new branch of theoretical physics during the first few decades
of the 20th century in an endeavour to understand the fundamental properties of matter. It
began with the study of the interactions of matter and radiation. Certain radiation effects
could neither be explained by classical mechanics, nor by the theory of electromagnetism.

Quantum theory was not the work of one individual, but the collaborative effort of
some of the most brilliant physicists of the 20th century, among them Niels Bohr1, Erwin
Schrodinger2, Wolfgang Pauli3, and Max Born4, Max Planck5 and Werner Heisenberg6.

Quantum Field Theory (QFT) is the mathematical and conceptual framework for
contemporary elementary particle physics (Eugene Wigner7, Hans Bethe8, Tomonaga9,
Schwinger10, Feynman11, Dyson12, Yang13 and Mills14).

2.1. Physical Events and Equation of Moving

Denote:

x : = (x1,x2,x3) ,

1Niels Henrik David Bohr (7 October 1885 - 18 November 1962) was a Danish physicist
2Erwin Rudolf Josef Alexander Schrodinger (12 August 1887 - 4 January 1961) was an Austrian physicist

and theoretical biologist who was one of the fathers of quantum mechanics
3Wolfgang Ernst Pauli (25 April 1900 15 December 1958) was an Austrian theoretical physicist
4Max Born (11 December 1882 5 January 1970) was a German-born physicist and mathematician
5Max Karl Ernst Ludwig Planck (April 23, 1858 October 4, 1947) was a German physicist
6Werner Karl Heisenberg (5 December 1901 1 February 1976) was a German theoretical physicist
7Eugene Paul Wigner (Hungarian Wigner Jeno Pal; November 17, 1902 - January 1, 1995) was a Hungarian

American physicist and mathematician.
8Hans Albrecht Bethe (July 2, 1906 - March 6, 2005) [1] was a German-American nuclear physicist,
9Sin-Itiro Tomonaga (March 31, 1906 July 8, 1979) was a Japanese physicist

10Julian Seymour Schwinger (February 12, 1918 - July 16, 1994) was an American theoretical physicist.
11Richard Phillips Feynman (May 11, 1918 - February 15, 1988)[2] was an American physicist
12Freeman John Dyson FRS (born December 15, 1923) is a British-born American theoretical physicist and

mathematician
13Chen-Ning Franklin Yang (born October 1, 1922) is a Chinese-American physicist
14Robert L. Mills (April 15, 1927 – October 27, 1999) was an English physicist
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x : = (x0,x) ,∫
d3+1x : =

∫
dx0

∫
dx1

∫
dx2

∫
dx3,∫

d3y : =
∫

dy1

∫
dy2

∫
dy3,

t : =
x0

c
.

Sentence of type: ≪Event A occurs in point x≫ will be written the followig way:
≪ A (x)≫”.

Events of type ◦≪A (x)≫ are called dot events. All dot events and all events received
from dot events by operations of addition, multiplication and addition, are physical events.

A(D) means: (A (x)&◦≪ (x) ∈ D≫).
Let P be the probability function.
A function pA (x) is called absolute probability density of event A if for any domain D:

if D⊆ Rµ+1 then ∫
D

dµ+1x · pA (x) = P(A (D)) .

If J is Jackobian of transformation

x0→ x′0 =
x0− vxk√

1− v2
,

xk→ x′k =
xk− vx0√

1− v2
, (2.1)

x j→ x′j = x j for j ̸= k

then

J =
∂(x′0,x′)
∂(x0,x)

= 1.

Hence, absolute probability density is invariant under the Lorentz transformations.
If

ρA (x0,x) :=
pA (x0,x)∫

dµy · pA (x0,y)
,

then ρA (x0,x) is a probability density of event A in an instant x0.
In transformations (2.1):

ρA (x0,x)→ ρ′A (x0,x) =

=
pA (x0,x)∫

dµy · pA (x0 + v(yk− xk) ,y)
.

Therefore, ρA is not invariant under these transformations.
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Further there are considered events A (x) such that ρA is the zero component of some
3+1-vector field jA

( j
A
= ( jA ,0, jA) = ( jA ,0, jA ,1, jA ,2, jA ,3)).

Hence, there exist real functions jA ,k (x) such that15

ρA =
jA ,0

c

and under transformations (2.1):

jA ,0→ j′A ,0 =
jA ,0− v jA ,k√

1− v2
,

jA ,k→ j′A ,k =
jA ,k− v jA ,0√

1− v2
,

jA ,s→ j′A ,s = jA ,s for s ̸= k.

Denote:

12 :=
[

1 0
0 1

]
, 02 :=

[
0 0
0 0

]
, β[0] :=−

[
12 02
02 12

]
=−14,

the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

A set C̃ of complex n×n matrices is called a Clifford set 16 of rank n [15] if the following
conditions are fulfilled:

if αk ∈ C̃ and αr ∈ C̃ then αkαr +αrαk = 2δk,r;
if αkαr +αrαk = 2δk,r for all elements αr of set C̃ then αk ∈ C̃.
If n = 4 then a Clifford set either contains 3 matrices (a Clifford triplet) or contains 5

matrices (a Clifford pentad).
Here exist only six Clifford pentads [15]: one light pentad β:

β[1] :=
[

σ1 02
02 −σ1

]
, β[2] :=

[
σ2 02
02 −σ2

]
,

β[3] :=
[

σ3 02
02 −σ3

]
,

(2.2)

γ[0] :=
[

02 12
12 02

]
, (2.3)

β[4] := i ·
[

02 12
−12 02

]
; (2.4)

three chromatic pentads:

15c = 299792458
16William Kingdon Clifford (4 May 1845 3 March 1879) was an English mathematician and philosopher.
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the red pentad ζ:

ζ[1] =
[
−σ1 02
02 σ1

]
,ζ[2] =

[
σ2 02
02 σ2

]
,ζ[3] =

[
−σ3 02
02 −σ3

]
, (2.5)

γ[0]ζ =

[
02 −σ1
−σ1 02

]
, ζ[4] = i

[
02 σ1
−σ1 02

]
; (2.6)

the green pentad η:

η[1] =

[
−σ1 02
02 −σ1

]
,η[2] =

[
−σ2 02
02 σ2

]
,η[3] =

[
σ3 02
02 σ3

]
, (2.7)

γ[0]η =

[
02 −σ2
−σ2 02

]
, η[4] = i

[
02 σ2
−σ2 02

]
; (2.8)

the blue pentad θ:

θ[1] =

[
σ1 02
02 σ1

]
,θ[2] =

[
−σ2 02
02 −σ2

]
,θ[3] =

[
−σ3 02
02 σ3

]
, (2.9)

γ[0]θ =

[
02 −σ3
−σ3 02

]
,θ[4] = i

[
02 σ3
−σ3 02

]
; (2.10)

two gustatory pentads:
the sweet pentad ∆:

∆[1] =

[
02 −σ1
−σ1 02

]
,∆[2] =

[
02 −σ2
−σ2 02

]
,∆[3] =

[
02 −σ3
−σ3 02

]
,

∆[0] =

[
−12 02
02 12

]
,∆[4] = i

[
02 12
−12 02

]
;

the bitter pentad Γ:

Γ[1] = i
[

02 −σ1
σ1 02

]
,Γ[2] = i

[
02 −σ2
σ2 02

]
,Γ[3] = i

[
02 −σ3
σ3 02

]
,

Γ[0] =

[
−12 02
02 12

]
,Γ[4] =

[
02 12
12 02

]
.

Further we do not consider gustatory pentads since these pentads are not used yet in the
contemporary physics.

Let us consider the following set of four real equations with eight real unknowns: b2

with b > 0, α, β, χ, θ, γ, υ, λ:


b2 = ρA ,

b2
(
cos2 (α)sin(2β)cos(θ− γ)− sin2 (α)sin(2χ)cos(υ−λ)

)
=− jA ,1

c ,
b2
(
cos2 (α)sin(2β)sin(θ− γ)− sin2 (α)sin(2χ)sin(υ−λ)

)
=− jA ,2

c ,
b2
(
cos2 (α)cos(2β)− sin2 (α)cos(2χ)

)
=− jA ,3

c .

∣∣∣∣∣∣∣∣∣ (2.11)



Physical Events and Equation of Moving 61

This set has solutions for any ρA and jA ,k. For example one of these solutions is the
following:

1. A value of b2 obtain from first equation.
2. Let

uA ,k :=
jA ,k

ρA
. (2.12)

In this case:
cos2 (α)sin(2β)cos(θ− γ)− sin2 (α)sin(2χ)cos(υ−λ) =−uA ,1

c ,
cos2 (α)sin(2β)sin(θ− γ)− sin2 (α)sin(2χ)sin(υ−λ) =−uA ,2

c ,
cos2 (α)cos(2β)− sin2 (α)cos(2χ) =−uA ,3

c .

∣∣∣∣∣∣
3. Let β = χ.
In that case:

(
cos2 (α)cos(θ− γ)− sin2 (α)cos(υ−λ)

)
sin(2β) =−uA ,1

c ,(
cos2 (α)sin(θ− γ)− sin2 (α)sin(υ−λ)

)
sin(2β) =−uA ,2

c ,(
cos2 (α)− sin2 (α)

)
cos(2β) =−uA ,3

c .

∣∣∣∣∣∣
4. Let (θ− γ) = (υ−λ).
In that case: 

cos(2α)cos(θ− γ)sin(2β) =−uA ,1
c ,

cos(2α)sin(θ− γ)sin(2β) =−uA ,2
c ,

cos(2α)cos(2β) =−uA ,3
c .

∣∣∣∣∣∣
5. Let us raise to the second power the first and the second equations:

cos2 (2α)cos2 (θ− γ)sin2 (2β) =
(
−uA ,1

c

)2 ,
cos2 (2α)sin2 (θ− γ)sin2 (2β) =

(
−uA ,2

c

)2 ,
cos(2α)cos(2β) =−uA ,3

c .

∣∣∣∣∣∣∣
and let us summat these two equations:

sin2 (2β)cos2 (2α)
(
cos2 (θ− γ)+ sin2 (θ− γ)

)
=
(
−uA ,1

c

)2
+
(
−uA ,2

c

)2 ,
cos(2α)cos(2β) =−uA ,3

c .

∣∣∣∣∣∣
Hence: {

sin2 (2β)cos2 (2α) =
(
−uA ,1

c

)2
+
(
−uA ,2

c

)2 ,
cos(2α)cos(2β) =−uA ,3

c .

∣∣∣∣∣
6. Let us raise to the second power the second equation and add this equation to the

previous one: {
sin2 (2β)cos2 (2α) =

(
−uA ,1

c

)2
+
(
−uA ,2

c

)2 ,
cos2 (2α)cos2 (2β) =

(
−uA ,3

c

)2

∣∣∣∣∣
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(
sin2 (2β)+ cos2 (2β)

)
cos2 (2α) =

(
−

uA ,1

c

)2
+
(
−

uA ,2

c

)2
+
(
−

uA ,3

c

)2
,

cos2 (2α) =
(
−

uA ,1

c

)2
+
(
−

uA ,2

c

)2
+
(
−

uA ,3

c

)2
, (2.13)

We receive cos2 (2α).
7. From

cos2 (2α)cos2 (2β) =
(
−

uA ,3

c

)2

we receive cos2 (2β).
8. From

cos2 (2α)cos2 (θ− γ)sin2 (2β) =
(
−

uA ,1

c

)2

we receive cos2 (θ− γ).
———————————————-
If

φ1 := bexp(iγ)cos(β)cos(α) ,

φ2 := bexp(iθ)sin(β)cos(α) ,

φ3 := bexp(iλ)cos(χ)sin(α) , (2.14)

φ4 := bexp(iυ)sin(χ)sin(α)

then you can calculate that

ρA =
4

∑
s=1

φ∗s φs, (2.15)

jA ,α

c
= −

4

∑
k=1

4

∑
s=1

φ∗s β[α]
s,kφk

with α ∈ {1,2,3}.
Let h = 6.6260755 · 10−34 and Ω (Ω⊂ R1+3) be the domain such that: if x ∈ Ω then

|xr| ≤ cπ
h for r ∈ {0,1,2,3}.

And let Ω (Ω⊂ R3) be the domain such that: if x ∈Ω then |xr| ≤ cπ
h for r ∈ {1,2,3}.

Let ℜΩ be the set of functions such that for each element φ(x) of this set: if x /∈Ω then
φ(x) = 0.

Hence: ∫
(D)

dx ·φ(x) =
∫ cπ

h

− cπ
h

dx0

∫ cπ
h

− cπ
h

dx1

∫ cπ
h

− cπ
h

dx2

∫ cπ
h

− cπ
h

dx3 ·φ(x)

for every domain D (D⊂ R1+3).
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Let for each element φ(x) of ℜΩ here exists a number Jφ such that

Jφ =
∫
(Ω)

dx ·φ∗ (x)φ(x) .

And let ℜΩ be the set of functions such that for each element φ(t,x) of this set: if x /∈Ω
then φ(t,x) = 0.

Hence: ∫
(D)

dx·φ(t,x) =
∫ cπ

h

− cπ
h

dx1

∫ cπ
h

− cπ
h

dx2

∫ cπ
h

− cπ
h

dx3 ·φ(t,x)

for every domain D (D⊂ R3).
Let for each element φ(t,x) of ℜΩ here exists a number Jφ such that

Jφ =
∫
(Ω)

dx ·φ∗ (t,x)φ(t,x) .

Let ũ ∈ℜΩ and ṽ ∈ℜΩ and denote:

ũ∗ ṽ :=
∫
(Ω)

dx · ũ∗ (x) ṽ(x) . (2.16)

And let ũ ∈ℜΩ and ṽ ∈ℜΩ and denote:

ũ∗ṽ :=
∫
(Ω)

dx · ũ∗ (t,x) ṽ(t,x) .

In that case operations ũ∗ ṽ and ũ∗ṽ fulfil all four properties of a scalar product:
1. (ũ∗ ṽ)∗ =

∫
(Ω) dx · (ũ∗ (x) ṽ(x))∗ =

∫
(Ω) dx · ṽ∗ (x) ũ(x) = ṽ∗ ũ;

2. ũ∗ (ṽ+ f ) =
∫
(Ω) dx · ũ(x)∗ (ṽ(x)+ f (x)) =

=
∫
(Ω) dx · ũ(x)∗ ṽ(x)+

∫
(Ω̃) dx · ũ(x)∗ f (x) = ũ∗ ṽ+ ũ∗ f ;

3. if z is a complex number then
ũ∗ (zṽ) =

∫
(Ω) dx · ũ∗ (x)(zṽ(x)) = z

∫
(Ω) dx · ũ∗ (x) ṽ(x) = z(ũ∗ ṽ);

4. ũ∗ ũ =
∫
(Ω) dx · ũ∗ (x) ũ(x) =

∫
(Ω) dx · |ũ(x)|2 ≥ 0;

Therefore, these operations are scalar products on ℜΩ and ℜΩ and, therefore, these
linear spaces are unitary spaces.

Denote:

ςw,p (t,x) :=

{
h

2π exp(ihwt)
( h

2πc

) 3
2 exp

(
−i h

c px
)

if x ∈Ω;
0, otherwise.

∣∣∣∣∣ and

ςp (x) :=

{ ( h
2πc

) 3
2 exp

(
−i h

c px
)

if x ∈Ω;
0, otherwise.

∣∣∣∣∣
(2.17)

with natural w, p1, p2, p3 (here: p⟨p1, p2, p3⟩ and px = p1x1 + p2x2 + p3x3).
Since
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∫ cπ
h

− cπ
h

exp
(

ik
h
c

x
)

exp
(
−in

h
c

x
)

dx =
2πc
h

sinπ(n− k)
π(n− k)

and

sinπ(n− k)
π(n− k)

:= δn,k =

{
1, if n = k,

0, otherwise.

∣∣∣∣
then

ςp ∗ ςk = δp := δp0,k0δp1,k1δp2,k2δp3,k3 .

and
ςp∗ςk = δp := δp1,k1δp2,k2δp3,k3 .

Hence, functions ςp and ςk are orthogonal and normalized and ςp and ςk, too. Moreover
if ũ ∈ℜΩ then (Fourier series of function ũ)17

ũ(t,x1,x2,x3) =
∞

∑
w=−∞

∞

∑
k1=−∞

∞

∑
k2=−∞

∞

∑
k3=−∞

aw,k1,k2,k3ςw,k1,k2,k3 (t,x1,x2,x3)

with

aw,k1,k2,k3 := ςw,k1,k2,k3 ∗ ũ,

and if ũ ∈ℜΩ then

ũ(t,x1,x2,x3) =
∞

∑
k1=−∞

∞

∑
k2=−∞

∞

∑
k3=−∞

ak1,k2,k3 (t)ςk1,k2,k3 (x1,x2,x3)

with

ak1,k2,k3 (t) := ςk1,k2,k3∗ũ(t) ,

Therefore, functions ςw,k1,k2,k3 form an orthonormalized basis in space ℜΩ and functions
ςk1,k2,k3 form an orthonormalized basis in space ℜΩ.

Let j ∈ {1,2,3,4}, k ∈ {1,2,3,4} and denote:

∑
k

:=
∞

∑
k1=−∞

∞

∑
k2=−∞

∞

∑
k3=−∞

.

Let a Fourier series for φ j (t,x) (2.14) has the following form:

φ j (t,x) =
∞

∑
w=−∞

∑
p

c j,w,pςw,p (t,x) . (2.18)

If denote: φ j,w,p (t,x) := c j,w,pςw,p (t,x) then a Fourier series for φ j (t,x) has got the
following form:

17Jean Baptiste Joseph Fourier (21 March 1768 16 May 1830) was a French mathematician and physicist
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φ j (t,x) =
∞

∑
w=−∞

∑
p

φ j,w,p (t,x) . (2.19)

Let ⟨t,x⟩ be any space-time point.
Denote:

Ak := φk,w,p|⟨t,x⟩ (2.20)

the value of function φk,w,p in this point, and:

C j :=

(
1
c

∂tφ j,w,p−
4

∑
s=1

3

∑
α=1

β[α]
j,s∂αφs,w,p

)
|⟨t,x⟩ (2.21)

the value of function
(

1
c ∂tφ j,w,p−∑4

s=1 ∑3
α=1 β[α]

j,s∂αφs,w,p

)
.

Here Ak and C j are complex numbers. Hence, the following set of equations:{
∑4

k=1 z j,k,w,pAk =C j,
z∗j,k,w,p =−zk, j,w,p

∣∣∣∣ (2.22)

is a system of 14 algebraic equation with complex unknowns zk, j,w,p
18:

18A calculation of the φ j,w,p partial derivative of t is the following:

∂tφ j,w,p = ∂tc j,w,pςw,p (t,x)

= c j,w,p∂t

(
h

2π exp(ihwt)
(

h
2πc

) 3
2 exp

(
−i h

c px
))

=

= c j,w,p
h

2π

(
h

2πc

) 3
2 exp

(
−i h

c px
)

∂t (exp(ihwt))

= c j,w,p
h

2π

(
h

2πc

) 3
2 exp

(
−i h

c px
)

ihwexp(ihwt) =

= ihwc j,w,p

(
h

2π exp(ihwt)
(

h
2πc

) 3
2 exp

(
−i h

c px
))

= ihwc j,w,pςw,p (t,x) .

Hence

∂tφ j,w,p = ihwφ j,w,p.

Similarly for k ̸= 0:

∂kφ j,w,p = ∂kc j,w,pςw,p (t,x)

= c j,w,p∂k

(
h

2π
exp(ihwt)

(
h

2πc

) 3
2

exp
(
−i

h
c

px
))

=

= c j,w,p
h

2π
exp(ihwt)

(
h

2πc

) 3
2

∂k

(
exp
(
−i

h
c

px
))

=

= −i
h
c

pkc j,w,p
h

2π
exp(ihwt)

(
h

2πc

) 3
2

exp
(
−i

h
c

px
)
=

= −i
h
c

pkc j,w,pςw,p (t,x) .

Hence:
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z1,1,w,pA1 + z1,2,w,pA2 + z1,3,w,pA3 + z1,4,w,pA4 =

= i
h
c
(w+ p3)A1 + i

h
c
(p1− ip2)A2,

z2,1,w,pA1 + z2,2,w,pA2 + z2,3,w,pA3 + z2,4,w,pA4 =

= i
h
c
(w− p3)A2 + i

h
c
(p1 + ip2)A1,

z3,1,w,pA1 + z3,2,w,pA2 + z3,3,w,pA3 + z3,4,w,pA4 =

= i
h
c
(w− p3)A3− i

h
c
(p1− ip2)A4,

z4,1,w,pA1 + z4,2,w,pA2 + z4,3,w,pA3 + z4,4A4,w,p =

= i
h
c
(w+ p3)A4− i

h
c
(p1 + ip2)A3,

z∗1,1,w,p =−z1,1,w,p,

z∗1,2,w,p =−z2,1,w,p,

z∗1,3,w,p =−z3,1,w,p,

z∗1,4,w,p =−z4,1,w,p,

z∗2,2,w,p =−z2,2,w,p,

z∗2,3,w,p =−z3,2,w,p,

z∗2,4,w,p =−z4,2,w,p,

z∗3,3,w,p =−z3,3,w,p,

z∗3,4,w,p =−z4,3,w,p,

z∗4,4,w,p =−z4,4,w,p.

This system can be transformed as system of 8 linear real equations with 16 real un-

∂kφ j,w,p =−i
h
c

pkφ j,w,p.

Therefore,

C j = i
h
c

(
wφ j,w,p +

4

∑
s=1

3

∑
α=1

β[α]
j,s pαφs,w,p

)
|⟨t,x⟩.
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knowns xs,k := Re(zs,k,w,p) for s < k and ys,k := Im(zs,k,w,p) for s≤ k:

−y1,1b1 + x1,2a2− y1,2b2 + x1,3a3− y1,3b3 + x1,4a4− y1,4b4

=−h
c wb1− h

c p3b1− h
c p1b2 +

h
c p2a2,

y1,1a1 + x1,2b2 + y1,2a2 + x1,3b3 + y1,3a3 + x1,4b4 + y1,4a4

= h
c wa1 +hp3a1 +

h
c p1a2 +hp2b2,

−x1,2a1− y1,2b1− y2,2b2 + x2,3a3− y2,3b3 + x2,4a4− y2,4b4

=−h
c wb2− h

c p1b1− h
c p2a1 +

h
c p3b2,

−x1,2b1 + y1,2a1 + y2,2a2 + x2,3b3 + y2,3a3 + x2,4b4 + y2,4a4

= h
c wa2 +

h
c p1a1− h

c p2b1− h
c p3a2,

−x1,3a1− y1,3b1− x2,3a2− y2,3b2− y3,3b3 + x3,4a4− y3,4b4

=−h
c wb3 +

h
c p3b3 +

h
c p1b4− h

c p2a4,
−x1,3b1 + y1,3a1− x2,3b2 + y2,3a2 + y3,3a3 + x3,4b4 + y3,4a4

= h
c wa3− h

c p3a3− h
c p1a4− h

c p2b4,
−x1,4a1− y1,4b1− x2,4a2− y2,4b2− x3,4a3− y3,4b3− y4,4b4

=−h
c wb4 +

h
c p1b3 +

h
c p2a3− h

c p3b4,
−x1,4b1 + y1,4a1− x2,4b2 + y2,4a2− x3,4b3 + y3,4a3 + y4,4a4

= h
c wa4− h

c p1a3 +
h
c p2b3 +

h
c p3a4;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(here ak = ReAk and bk = ImAk.)
This system has solutions in accordance with the Kronecker-Capelli theorem. Hence,

such complex numbers z j,k,w,p|⟨t,x⟩ exist in all points ⟨t,x⟩.
From (2.22), (2.20), (2.21):

4

∑
k=1

z j,k,w,pφk,w,p|⟨t,x⟩ =

(
1
c

∂tφ j,w,p−
4

∑
s=1

3

∑
α=1

β[α]
j,s∂αφs,w,p

)
|⟨t,x⟩,

that is

1
c

∂tφ j,w,p =
4

∑
k=1

(
3

∑
α=1

β[α]
j,k∂αφk,w,p + z j,k,w,pφk,w,p

)
(2.23)

in every point ⟨t,x⟩.
Let κw,p be the linear operators on a linear space, spanned of basic functions ςw,p (t,x),

such that

κw,pςw′,p′
de f
=

{
ςw′,p′ , if w = w′, p = p′;

0, if w ̸= w′ and/or p ̸= p′.

∣∣∣∣
Let

Q j,k|⟨t,x⟩ := ∑
w,p

(
z j,k,w,p|⟨t,x⟩

)
κw,p

in every point ⟨t,x⟩.
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Therefore, from (2.19) and (2.23), for every function φ j here exists an operator Q j,k
such that a dependence of φ j on t is described by the following differential equations 19:

∂tφ j = c
4

∑
k=1

(
β[1]

j,k∂1 +β[2]
j,k∂2 +β[3]

j,k∂3 +Q j,k

)
φk. (2.24)

and Q∗j,k = ∑w,p

(
z∗j,k,w,p|⟨t,x⟩

)
κw,p =−Qk, j.

In that case if
Ĥ j,k := ic

(
β[1]

j,k∂1 +β[2]
j,k∂2 +β[3]

j,k∂3 +Q j,k

)
then Ĥ is called a Hamiltonian20 of a moving with equation (2.24).
A matrix form of formula (2.24) is the following:

∂tφ = c
(

β[1]∂1 +β[2]∂2 +β[3]∂3 + Q̂
)

φ (2.25)

with

φ =


φ1
φ2
φ3
φ4


and

Q̂ =


iϑ1,1 iϑ1,2−ϖ1,2 iϑ1,3−ϖ1,3 iϑ1,4−ϖ1,4

iϑ1,2 +ϖ1,2 iϑ2,2 iϑ2,3−ϖ2,3 iϑ2,4−ϖ2,4
iϑ1,3 +ϖ1,3 iϑ2,3 +ϖ2,3 iϑ3,3 iϑ3,4−ϖ3,4
iϑ1,4 +ϖ1,4 iϑ2,4 +ϖ2,4 iϑ3,4 +ϖ3,4 iϑ4,4

 (2.26)

with ϖs,k = Re(Qs,k) and ϑs,k = Im(Qs,k). Matrix φ is called a state vector of the event
A probability.

An operator Û (t, t0) with a domain and with a range of values on the set of state vectors
is called an evolution operator if each state vector φ fulfils the following condition:

φ(t) = Û (t, t0)φ(t0) . (2.27)

Let us denote:

Ĥd := c
3

∑
s=1

iβ[s]∂s.

In that case

Ĥ = Ĥd + icQ̂

according the Hamiltonian definition:

19This set of equations is similar to the Dirac equation with the mass matrix [16], [17], [18]. I choose a form
of this set of equations in order to describe the behavior of ρ℘(t,x) by spinors and by Clifford’s set elements.

20Sir William Rowan Hamilton (4 August 1805 2 September 1865) was an Irish physicist, astronomer, and
mathematician, who made important contributions to classical mechanics, optics, and algebra.
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Ĥ = ic
(

β[1]∂1 +β[2]∂2 +β[3]∂3 +Q
)

.

From (2.25):

i∂tφ = Ĥφ.

.
Hence:

i∂tφ =
(

Ĥd + icQ̂
)

φ.

This differential equation has the following solution:

∂φ
φ

=−i
(

Ĥd + icQ̂
)

∂t,

∫ t

t=t0

∂φ
φ

=−i
∫ t

t=t0

(
Ĥd + icQ̂

)
∂t,

lnφ(t)− lnφ(t0) =
(
−i

∫ t

t=t0
Ĥd∂t− iic

∫ t

t=t0
Q̂∂t
)

.

Since Ĥd does not depend on time then∫ t

t=t0
Ĥd∂t = Ĥd (t− t0) .

Hence, according logarithm properties:

ln
φ(t)
φ(t0)

=

(
−iĤd (t− t0)+ c

∫ t

t=t0
Q̂∂t
)

.

Therefore,21:

φ(t) = φ(t0)exp
(
−iĤd (t− t0)+ c

∫ t

t=t0
Q̂∂t
)

.

Hence, from (2.27):

Û (t, t0) = exp
(
−iĤd (t− t0)+ c

∫ t

t=t0
Q̂∂t
)

21For an operator Ŝ:

exp
(

Ŝ
)

:= 1̂+ Ŝ+
1
2

Ŝ2 +
1
3!

Ŝ3 + · · ·+ 1
n!

Ŝn + · · ·

with Ŝ2 := ŜŜ and Ŝr+1 := Ŝr Ŝ.
Here 1̂ is the unit operator such that for every ũ: 1̂ũ = ũ.



70 Quants

A Fourier series for φ j (t,x) in ℜΩ has the following shape:

φ j (t0,x) = ∑
p

c j,p (t0)ςp (t0,x)

with (2.17)

ςp (x) :=

{ ( h
2πc

) 3
2 exp

(
−i h

c px
)

if x ∈Ω;
0, otherwise

∣∣∣∣∣
and with (2.19)

c j,p (t0) = ςp (x)∗φ j (t0,x) .

That is in a matrix form:

cp (t0) =
∫
(Ω)

dx0 ·
(

h
2πc

) 3
2

exp
(

i
h
c

px0

)
φ(t0,x0)

Hence,

φ(t0,x) = ∑
p

∫
( )

dx0 ·
(

h
2πc

) 3
2

exp
(

i
h
c

px0

)
φ(t0,x0)

(
h

2πc

) 3
2

exp
(
−i

h
c

px
)

.

That is:

φ(t0,x) =
∫
(Ω)

dx0 ·

(
∑
p

(
h

2πc

)3

exp
(
−i

h
c

p(x−x0)

))
φ(t0,x0) .

Therefore,

φ(t,x) =
∫
(Ω)

dx0 ·
(

h
2πc

)3
(

∑p exp
(
−iĤd (t− t0)+ c

∫ t
t=t0 Q̂∂t

)
·

·exp
(
−i h

c p(x−x0)
) )

φ(t0,x0) .

An operator

K (t− t0,x−x0, t, t0) :=
(

h
2πc

)3
(

∑p exp
(
−iĤd (t− t0)+ c

∫ t
t=t0 Q̂∂t

)
·

·exp
(
−i h

c p(x−x0)
) )

is called propagator of the event A probability.
Hence:

φ(t,x) =
∫
(Ω)

dx0 ·K (t− t0,x−x0, t, t0)φ(t0,x0) . (2.28)

A propagator has the following property:

K (t− t0,x−x0, t, t0) =
∫

dx1 ·K (t− t1,x−x1, t, t1)K (t1− t0,x1−x0, t1, t0) .
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2.2. Double-Slit Experiment

In a vacuum (Figure 1, Figure 2, fig 22): Here transmitter s of electrons, wall w, and the
electrons detecting black screen d are placed[21].

Electrons are emitted one by one from the source s. When an electron hits against
screen d then a bright spot arises in the hit place of d..

1. Let slit a be opened in wall w (Figure 1). An electron flies out from s, passes by a,
and is detected by d.

If such operation will be reiterated N of times then N bright spots shall arise on d against
slit a in the vicinity of point ya.

2. Let slit b be opened in wall w (Figure 2). An electron flies out from s, passes by b,
and is detected by d.

If such operation will be reiterated N of times then N bright spots shall arise on d against
slit b in the vicinity of point yb.

3. Let both slits be opened. In that case do you expect a result as on fig. 22? But no.
We get result as on Figure 422[22].

For instance, such experiment was realized at Hitachi by A. Tonomura, J. Endo, T. Mat-
suda, T. Kawasaki and H. Ezawa in 1989. Here was presumed that interference fringes are
produced only when two electrons pass through both slits simultaneously. If there were
two electrons from the source s at the same time, such interference might happen. But
this cannot occur, because here is no more than one electron from this source at one time.
Please keep watching the experiment a little longer. When a large number of electrons is
accumulated, something like regular fringes begin to appear in the perpendicular direction
as Figure 5(c) shows. Clear interference fringes can be seen in the last scene of the ex-
periment after 20 minutes (Figure 5(d)). It should also be noted that the fringes are made
up of bright spots, each of which records the detection of an electron. We have reached a
mysterious conclusion. Although electrons were sent one by one, interference fringes could
be observed. These interference fringes are formed only when electron waves pass through
on both slits at the same time but nothing other than this. Whenever electrons are observed,
they are always detected as individual particles. When accumulated, however, interference
fringes are formed. Please recall that at any one instant here was at most one electron from
s. We have reached a conclusion which is far from what our common sense tells us.

4. But nevertheless, across which slit the electron had slipped?
Let (Figure 6) two detectors da and db and a photon source s f be added to devices of

Figure 4.
An electron, slipped across slit a, is lighten by source s f , and detector da snaps into

action. And an electron, slipped across slit b, is lighten by source s f , and detector db snaps
into action.

If photon source s f lights all N electrons, slipped across slits, then we received the
picture of Figure 3.

If source s f is faint then only a little part of N electrons, slipped across slits, are noticed

22Single-electron events build up over a 20 minute exposure to form an interference pattern in this double-
slit experiment by Akira Tonomura and co-workers. Figure 5(a) 8 electrons; Figure 5(b) 270 electrons; Fig-
ure 5(c) 2000 electrons; Figure 5(d) 60,000. A video of this experiment will soon be available on the web
(www.hqrd.hitachi.co.jp/em/doubleslit.html).
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by detectors da and db. In that case electrons, noticed by detectors da and db, make picture
of Figure 3, and all unnoticed electrons make picture of Figure 4. In result here the Figure
6 picture is received.

Figure 1:

——————————–
Let us try to interpret these experiments by events and probabilities.
Denote the source s coordinates as ⟨x0,y0⟩, the slit a coordinates as ⟨xa,ya⟩, the slit b

coordinates as ⟨xb,yb⟩. Here xa = xb, and the wall w equation is x = xa. Denote the screen
d equation as x = xd .

Denote
an event, expressed by sentence: ≪electron is detected in point ⟨t,x,y⟩≫, as C (t,x,y),
an event, expressed by sentence≪slit a is open≫, as A ,
and an event, expressed by sentence≪slit b is open≫, as B .

Let t0 be an time instant of an electron emission from source s. Since s is a dotlike
source then a state vector φC in instant t0 has the following form:

φC (t,x,y) |t=t0 = φC (t0,x,y)δ(x− x0)δ(y− y0) . (2.29)

Let tw be an time instant such that if event C (t,x,y) occurs in that instant then C (t,x,y)
occurs on wall w.

Let td be an time instant of a electron detecting by screen d.
1. Let slit a be opened in wall w (Figure 1).
In that case the C (t,x,y) probabilities propagator KCA (t− t0,x− xs,y− ys) in instant tw

should be of the following shape:

KCA (t− t0,x− xs,y− ys) |t=tw
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Figure 2:

Figure 3:
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Figure 4:

Figure 5:
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Figure 6:

= KCA (tw− t0,x− xs,y− ys)δ(x− xa)δ(y− ya) .

According the propagator property:

K (t− t0,x− xs,y− ys) =

=
∫

R
dx1

∫
R

dy1 ·K (t− t1,x− x1,y− y1)K (t1− t0,x1− xs,y1− ys) .

Hence:

KCA (td− t0,xd− xs,yd− ys) =

=
∫

R
dx

∫
R

dy ·KCA (td− tw,xd− x,yd− y)

KCA (tw− t0,x− xs,y− ys)δ(x− xa)δ(y− ya) .

Therefore, according properties of δ-function:

KCA (td− t0,xd− xs,yd− ys) =

= KCA (td− tw,xd− xa,yd− ya)KCA (tw− t0,xa− xs,ya− ys) .

The state vector for the event C (t,x,y) in condition A probability has the following
form (2.28):

φCA (td ,xd ,yd) =
∫

dxs

∫
dys ·KCA (td− t0,xd− xs,yd− ys)φC (t0,xs,ys) .

Hence, from (2.29):
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φCA (td ,xd,yd) =
∫

dxs

∫
dys ·KCA (td− t0,xd− xs,yd− ys)

φC (t0,xs,ys)δ(xs− x0)δ(ys− y0) .

That is:

φCA (td,xd ,yd)

=
∫

dxs

∫
dys ·KCA (td− tw,xd− xa,yd− ya)KCA (tw− t0,xa− xs,ya− ys)

φC (t0,xs,ys)δ(xs− x0)δ(ys− y0) .

Hence, according properties of δ-function:

φCA (td ,xd ,yd)

= KCA (td− tw,xd− xa,yd− ya)KCA (tw− t0,xa− x0,ya− y0)φC (t0,x0,y0) .

In accordance with (2.15):

ρCA (td ,xd ,yd) = φ†
C A (td ,xd ,yd)φCA (td ,xd ,yd) .

Therefore, a probability to detect the electron in vicinity ∆x∆y of point ⟨xd ,yd⟩ in instant
t in condition A equals to the following:

Pa (td ,xd ,yd) := P(C (td ,∆x∆y)/A) = ρCA (td ,xd,yd)∆x∆y.

2. Let slit b be opened in wall w (Figure 2).
In that case the C (t,x,y) probabilities propagator KCB (t− t0,x− xs,y− ys) in instant tw

should be of the following shape:

KCB (t− t0,x− xs,y− ys) |t=tw

= KCB (tw− t0,x− xs,y− ys)δ(x− xb)δ(y− yb) .

Hence, according the propagator property::

KCB (td− t0,xd− xs,yd− ys) =

=
∫

R
dx

∫
R

dy ·KC B (td− tw,xd− x,yd− y)

KCB (tw− t0,x− xs,y− ys)δ(x− xb)δ(y− yb) .

Therefore, according properties of δ-function:

KCB (td− t0,xd− xs,yd− ys) =

= KCB (td− tw,xd− xb,yd− yb)KCB (tw− t0,xb− xs,yb− ys) .
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The state vector for the event C (t,x,y) in condition B probability has the following
form (2.28):

φCB (td ,xd ,yd) =
∫

dxs

∫
dys ·KCB (td− t0,xd− xs,yd− ys)φC (t0,xs,ys) .

Hence, from (2.29):

φCB (td ,xd,yd) =
∫

dxs

∫
dys ·KCB (td− t0,xd− xs,yd− ys)

φC (t0,xs,ys)δ(xs− x0)δ(ys− y0) .

That is:

φCB (td,xd ,yd)

=
∫

dxs

∫
dys ·KCB (td− tw,xd− xb,yd− yb)KCB (tw− t0,xb− xs,yb− ys)

φC (t0,xs,ys)δ(xs− x0)δ(ys− y0) .

Hence, according properties of δ-function:

φCB (td,xd ,yd)

= KCB (td− tw,xd− xb,yd− yb)KCB (tw− t0,xb− x0,yb− y0)φC (t0,x0,y0) .

In accordance with (2.15):

ρCB (td ,xd ,yd) = φ†
CB (td ,xd ,yd)φCB (td ,xd ,yd) .

Therefore, a probability to detect the electron in vicinity ∆x∆y of point ⟨xd ,yd⟩ in instant
t in condition B equals to the following:

Pb (td ,xd ,yd) := P(C (td ,∆x∆y)/B) = ρCB (td,xd ,yd)∆x∆y.

3. Let both slits and a and b are opened (Figure 4).
In that case the C (t,x,y) probabilities propagator KCAB (t− t0,x− xs,y− ys) in instant

tw should be of the following shape:

KCAB (t− t0,x− xs,y− ys) |t=tw =
= KCAB (tw− t0,x− xs,y− ys)(δ(x− xa)δ(y− ya)+δ(x− xb)δ(y− yb)) .

Hence, according the propagator property::

KCAB (td− t0,xd− xs,yd− ys) =
=

∫
R dx

∫
R dy ·KC AB (td− tw,xd− x,yd− y)

KCAB (tw− t0,x− xs,y− ys) ·
·(δ(x− xa)δ(y− ya)+δ(x− xb)δ(y− yb)) .
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Hence,

KCAB (td− t0,xd− xs,yd− ys) =∫
R dx

∫
R dy ·KCAB (td− tw,xd− x,yd− y) KCAB (tw− t0,x− xs,y− ys) ·

·δ(x− xa)δ(y− ya)
+
∫

R dx
∫

R dy ·KCAB (td− tw,xd− x,yd− y) KCAB (tw− t0,x− xs,y− ys) ·
·δ(x− xb)δ(y− yb) .

Hence, according properties of δ-function:

KCAB (td− t0,xd− xs,yd− ys) =
KCAB (td− tw,xd− xa,yd− ya) KCAB (tw− t0,xa− xs,ya− ys)
+KCAB (td− tw,xd− xb,yd− yb) KC AB (tw− t0,xb− xs,yb− ys)

.

The state vector for the event C (t,x,y) in condition A and B probability has the follow-
ing form (2.28):

φCAB (td ,xd ,yd) =
∫

dxs

∫
dys ·KCAB (td− t0,xd− xs,yd− ys)φC (t0,xs,ys) .

Hence, from (2.29):

φCAB (td ,xd ,yd) =
∫

dxs

∫
dys ·KCAB (td− t0,xd− xs,yd− ys)

φC (t0,xs,ys)δ(xs− x0)δ(ys− y0) .

That is:

φCAB (td ,xd,yd) =
∫

dxs
∫

dys·

·
(

KCAB (td− tw,xd− xa,yd− ya) KCAB (tw− t0,xa− xs,ya− ys)
+KCAB (td− tw,xd− xb,yd− yb) KCAB (tw− t0,xb− xs,yb− ys)

)
φC (t0,xs,ys)δ(xs− x0)δ(ys− y0) .

Hence, according properties of δ-function:

φCAB (td,xd ,yd) =

=

(
KCAB (td− tw,xd− xa,yd− ya) KCAB (tw− t0,xa− x0,ya− y0)
+KCAB (td− tw,xd− xb,yd− yb) KCAB (tw− t0,xb− x0,yb− y0)

)
φC (t0,x0,y0) .

That is:

φCAB (td,xd ,yd) =
= KCAB (td− tw,xd− xa,yd− ya) KCAB (tw− t0,xa− x0,ya− y0)φC (t0,x0,y0)
+KCAB (td− tw,xd− xb,yd− yb) KCAB (tw− t0,xb− x0,yb− y0)φC (t0,x0,y0) .

Therefore,

φCAB (td ,xd,yd) = φCA (td ,xd,yd)+φCB (td,xd ,yd) .
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And in accordance with (2.15):

ρCAB (td ,xd ,yd) = φ†
CAB (td,xd ,yd)φCAB (td ,xd ,yd) ,

i.e.

ρCAB = (φCA +φCB)
† (φCA +φCB)

Since state vectors φCA and φCB are not numbers with the same number signs then in
the general case:

(φCA +φCB)
† (φCA +φCB) ̸= φ†

CA φCA +φ†
CBφCB .

Therefore, since a probability to detect the electron in vicinity ∆x∆y of point ⟨xd,yd⟩ in
instant t in condition AB equals:

Pab (td ,xd ,yd) := P(C (td ,∆x∆y)/AB) = ρCAB (td ,xd ,yd)∆x∆y

then

Pab (td,xd ,yd) ̸= Pa (td ,xd ,yd)+Pb (td ,xd,yd) .

Hence, we have the fig.23 picture instead of the Figure 3 picture.
4. Let us consider devices of Figure 6.
Denote event, expressed by sentence ”detector da snaps into action”, as Da and event,

expressed by sentence ”detector db snaps into action”, as Db. Since event C (t,x,y) is a
dotlike event then events Da and Db are exclusive events.

According the property 10 of operations on events:

(Da +Db)+(Da +Db) = T ,

according the property 6 of operations on events:

(Da +Db) = DaDb,

Hence:

Da +Db +DaDb = T .

According the property 5 of operations on events:

C = CT = C
(

Da +Db +DaDb

)
.

According the property 3 of operations on events:

C = CDa +CDb +CDaDb.

Therefore, according the probabilities addition formula for exclusive events:
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P(C (td)) = P(C (td)Da)+P(C (td)Db)+P
(

C (td)DaDb

)
.

But

P(C (td)Da) = Pa (td) ,

P(C (td)Db) = Pb (td) ,

P
(

C (td)DaDb

)
= Pab (td) ,

and we receive the Figure 6 picture.
Thus, here are no paradoxes for the event-probability interpretation of these experi-

ments. We should depart from notion of a continuously existing electron and consider an
elementary particle an ensemble of events connected by probability. Its like the fact that
physical particle exists only at the instant when it is involved in some event. A particle
doesnt exist in any other time, but theres a probability that something will happen to it.
Thus, if nothing happens with the particle between the event of creating it and the event of
detecting it the behavior of the particle is the behavior of probability between the point of
creating and the point of detecting it with the presence of interference.

But what is with Wilson cloud chamber where the particle has a clear trajectory and no
interference?

In that case these trajectories are not totally continuous lines. Every point of ionization
has neighboring point of ionization, and there are no events between these points.

Consequently, physical particle is moving because corresponding probability propa-
gates in the space between points of ionization. Consequently, particle is an ensemble of
events, connected by probability. And charges, masses, moments, etc. represent statistical
parameters of these probability waves, propagated in the space-time. It explains all para-
doxes of quantum physics. Schrodingers cat lives easy without any superposition of states
until the micro event awaited by all occures. And the wave function disappears without any
collapse in the moment when an event probability disappears after the event occurs.

Hence, entanglement concerns not particles but probabilities. That is when event of the
measuring of spin of Alices electron occurs then probability for these entangled electrons
is changed instantly on whole space. Therefore, nonlocality acts for probabilities, not for
particles. But probabilities can not transmit any information

2.3. Lepton Hamiltonian

Let ϑs,k and ϖs,k be terms of Q̂ (2.26) and let Θ0, Θ3, ϒ0 and ϒ3 be a solution of the
following equations set: 

−Θ0 +Θ3−ϒ0 +ϒ3= ϑ1,1;
−Θ0−Θ3−ϒ0−ϒ3= ϑ2,2;
−Θ0−Θ3 +ϒ0 +ϒ3= ϑ3,3;
−Θ0 +Θ3 +ϒ0−ϒ3= ϑ4,4

∣∣∣∣∣∣∣∣ ,
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and Θ1, ϒ1, Θ2, ϒ2, M0, M4, Mζ,0, Mζ,4, Mη,0, Mη,4, Mθ,0, Mθ,4 be solutions of the
following sets of equations: {

Θ1 +ϒ1= ϑ1,2;
−Θ1 +ϒ1= ϑ3,4;

∣∣∣∣{
−Θ2−ϒ2= ϖ1,2;
Θ2−ϒ2= ϖ3,4;

∣∣∣∣{
M0 +Mθ,0= ϑ1,3;
M0−Mθ,0= ϑ2,4;

∣∣∣∣{
M4 +Mθ,4= ϖ1,3;
M4−Mθ,4= ϖ2,4;

∣∣∣∣{
Mζ,0−Mη,4= ϑ1,4;
Mζ,0 +Mη,4= ϑ2,3;

∣∣∣∣{
Mζ,4−Mη,0= ϖ1,4;
Mζ,4 +Mη,0= ϖ2,3

∣∣∣∣ .
Thus the columns of Q̂ are the following:
the first and the second columns:

−iΘ0 + iΘ3− iϒ0 + iϒ3 iΘ1 + iϒ1 +Θ2 +ϒ2
iΘ1 + iϒ1−Θ2−ϒ2 −iΘ0− iΘ3− iϒ0− iϒ3

iM0 + iMθ,0 +M4 +Mθ,4 iMζ,0 + iMη,4 +Mζ,4 +Mη,0
iMζ,0− iMη,4 +Mζ,4−Mη,0 iM0− iMθ,0 +M4−Mθ,4

,

the third and the fourth columns:

iM0 + iMθ,0−M4−Mθ,4 iMζ,0− iMη,4−Mζ,4 +Mη,0
iMζ,0 + iMη,4−Mζ,4−Mη,0 iM0− iMθ,0−M4 +Mθ,4
−iΘ0− iΘ3 + iϒ0 + iϒ3 −iΘ1 + iϒ1−Θ2 +ϒ2
−iΘ1 + iϒ1 +Θ2−ϒ2 −iΘ0 + iΘ3 + iϒ0− iϒ3

.

Hence,

Q̂ =

= iΘ0β[0]+ iϒ0β[0]γ[5]+
+iΘ1β[1]+ iϒ1β[1]γ[5]+
+iΘ2β[2]+ iϒ2β[2]γ[5]+
+iΘ3β[3]+ iϒ3β[3]γ[5]+
+iM0γ[0]+ iM4β[4]−
−iMζ,0γ[0]ζ + iMζ,4ζ[4]−
−iMη,0γ[0]η − iMη,4η[4]+

+iMθ,0γ[0]θ + iMθ,4θ[4].

Therefore, from (2.25):
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1
c

∂tφ−
(

iΘ0β[0]+ iϒ0β[0]γ[5]
)

φ =



3
∑

ν=1
β[ν] (∂ν + iΘν + iϒνγ[5]

)
+

+iM0γ[0]+ iM4β[4]−
−iMζ,0γ[0]ζ + iMζ,4ζ[4]−
−iMη,0γ[0]η − iMη,4η[4]+

+iMθ,0γ[0]θ + iMθ,4θ[4]


φ. (2.30)

with

γ[5] :=
[

12 02
02 −12

]
. (2.31)

Because
ζ[k]+η[k]+θ[k] =−β[k]

with k ∈ {1,2,3} then from (2.30): −(∂0 + iΘ0 + iϒ0γ[5]
)
+

3
∑

k=1
β[k]
(
∂k + iΘk + iϒkγ[5]

)
+2
(
iM0γ[0]+ iM4β[4]

)
φ+

+

 −(∂0 + iΘ0 + iϒ0γ[5]
)
−

3
∑

k=1
ζ[k]
(
∂k + iΘk + iϒkγ[5]

)
+2
(
−iMζ,0γ[0]ζ + iMζ,4ζ[4]

)
φ+

+

 (
∂0 + iΘ0 + iϒ0γ[5]

)
−

3
∑

k=1
η[k]
(
∂k + iΘk + iϒkγ[5]

)
+2
(
−iMη,0γ[0]η − iMη,4η[4]

)
φ+

+

 −(∂0 + iΘ0 + iϒ0γ[5]
)
−

3
∑

k=1
θ[k]
(
∂k + iΘk + iϒkγ[5]

)
+2
(

iMθ,0γ[0]θ + iMθ,4θ[4]
)

φ = 0.

In (2.30) summands
−iMζ,0γ[0]ζ + iMζ,4ζ[4]−
−iMη,0γ[0]η − iMη,4η[4]+

+iMθ,0γ[0]θ + iMθ,4θ[4]

contain elements of chromatic pentads and

3

∑
k=1

β[k]
(

∂k + iΘk + iϒkγ[5]
)
+ iM0γ[0]+ iM4β[4]

contains only elements of the light pentads. The following sum

Ĥl := c
3

∑
k=1

β[k]
(

i∂k−Θk−ϒkγ[5]
)
− cM0γ[0]− cM4β[4] (2.32)
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is called lepton Hamiltonian.
And the following equation:(

3

∑
k=0

β[k]
(

i∂k−Θk−ϒkγ[5]
)
−M0γ[0]−M4β[4]

)
φ̃ = 0 (2.33)

is called lepton moving equation
If like to (2.15):

φ†γ[0]φ :=− jA ,0
c and φ†β[4]φ :=− jA ,4

c

and:

ρA uA ,4 := jA ,4 and ρA uA ,5 := jA ,5 (2.34)

then from (2.14):

−
uA ,5

c
= sin2α

(
sinβsinχcos(−θ+υ)
+cosβcosχcos(γ−λ)

)
,

−
uA ,4

c
= sin2α

(
−sinβsinχsin(−θ+υ)
+cosβcosχsin(γ−λ)

)
.

Hence, from (2.11):

u2
A ,1 +u2

A ,2 +u2
A ,3 +u2

A ,4 +u2
A ,5 = c2.

Thus, of only all five elements of a Clifford pentad lends an entire kit of velocity com-
ponents and, for completeness, yet two ”space” coordinates x5 and x4 should be added to
our three x1,x2,x3. These additional coordinates can be selected such that

−πc
h
≤ x5 ≤

πc
h
,−πc

h
≤ x4 ≤

πc
h

.

Coordinates x4 and x5 are not of any events coordinates. Hence, our devices do not
detect of its as space coordinates.

Let us denote:

φ̃(t,x1,x2,x3,x5,x4) := φ(t,x1,x2,x3) ·
·(exp(i(x5M0 (t,x1,x2,x3)+ x4M4 (t,x1,x2,x3)))) .

In this case equation of moving with lepton Hamiltonian (2.32) shape is the following:(
3

∑
k=0

β[0]
(

i∂k−Θk−ϒkγ[5]
)
− γ[0]i∂5−β[4]i∂4

)
φ̃ = 0 (2.35)

Let g1 be the positive real number and for µ ∈ {0,1,2,3}: Fµ and Bµ be the solutions of
the following system of the equations:{

−0.5g1Bµ +Fµ=−Θµ−ϒµ;
−g1Bµ +Fµ=−Θµ +ϒµ.

∣∣∣∣
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Let charge matrix be denoted as the following:

Y :=−
[

12 02
02 2 ·12

]
. (2.36)

Thus23:

−Θµ−ϒµγ[5] =

= −Θµ14−ϒµγ[5] =

= −Θµ

[
12 02
02 12

]
−ϒµ

[
12 02
02 −12

]
=

= −
([

Θµ12 02
02 Θµ12

]
+

[
ϒµ12 02

02 −ϒµ12

])
=

=

[
(−Θµ−ϒµ)12 02

02 (−Θµ +ϒµ)12

]
=

23If products AB j,s exist for all j, s then

A


B0,0 B0,1 · · · B0,n
B1,0 B1,1 · · · B1,n
· · · · · · · · · · · ·

Bm,0 Bm,1 · · · Bm,n

 :=


AB0,0 AB0,1 · · · AB0,n
AB1,0 AB1,1 · · · AB1,n
· · · · · · · · · · · ·

ABm,0 ABm,1 · · · ABm,n


and if products B j,sA exist for all j, s then

B0,0 B0,1 · · · B0,n
B1,0 B1,1 · · · B1,n
· · · · · · · · · · · ·

Bm,0 Bm,1 · · · Bm,n

A :=


B0,0A B0,1A · · · B0,nA
B1,0A B1,1A · · · B1,nA
· · · · · · · · · · · ·

Bm,0A Bm,1A · · · Bm,nA

. (2.37)

If A and all B j,s are k× k matrices then

A+


B0,0 B0,1 B0,2 · · · B0,n
B1,0 B1,1 B1,2 · · · B1,n
B2,0 B2,1 B2,2 · · · B2,n
· · · . . . · · · · · · · · ·

Bn,0 Bn,1 Bn,2 · · · Bn,n

 :=

:= A1nk +


B0,0 B0,1 B0,2 · · · B0,n
B1,0 B1,1 B1,2 · · · B1,n
B2,0 B2,1 B2,2 · · · B2,n
· · · . . . · · · · · · · · ·

Bn,0 Bn,1 Bn,2 · · · Bn,n

=

=


B0,0 +A B0,1 B0,2 · · · B0,n

B1,0 B1,1 +A B1,2 · · · B1,n
B2,0 B2,1 B2,2 +A · · · B2,n
· · · . . . · · · · · · · · ·

Bn,0 Bn,1 Bn,2 · · · Bn,n +A

 . (2.38)
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=

[
(−0.5g1Bµ +Fµ)12 02

02 (−g1Bµ +Fµ)12

]
.

And

Fµ +0.5g1Y Bµ =

= Fµ14 +0.5g1Y Bµ

= Fµ

[
12 02
02 12

]
+0.5g1

(
−
[

12 02
02 2 ·12

])
Bµ =

=

[
Fµ12 02
02 Fµ12

]
−
[

0.5g1Bµ12 02
02 0.5g1Bµ2 ·12

]
=

=

[
Fµ12−0.5g1Bµ12 02

02 Fµ12−g1Bµ ·12

]
.

Hence,

−Θµ−ϒµγ[5] = Fµ +0.5g1Y Bµ

and from (2.35):(
3

∑
k=0

β[k] (i∂k +Fk +0.5g1Y Bk)− γ[0]i∂5−β[4]i∂4

)
φ̃ = 0 (2.39)

Let χ(t,x1,x2,x3) be the real function and:

Ũ (χ) :=
[

exp
(
i χ

2

)
12 02

02 exp(iχ)12

]
. (2.40)

In that case for µ ∈ {0,1,2,3}:

∂µŨ = ∂µ

[
exp
(
i χ

2

)
12 02

02 exp(iχ)12

]
=

[
∂µ exp

(
i χ

2

)
12 ∂µ02

∂µ02 ∂µ exp(iχ)12

]
=

[
i ∂µχ

2 exp
(
i χ

2

)
12 02

02 i∂µχexp(iχ)12

]

= i
∂µχ
2

[
exp
(
i χ

2

)
12 02

02 2exp(iχ)12

]
,

and

YŨ = −
[

12 02
02 2 ·12

][
exp
(
i χ

2

)
12 02

02 exp(iχ)12

]
= −

[
exp
(
i χ

2

)
12 02

02 2exp(iχ)12

]
.
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Hence:

∂µŨ =−i
∂µχ
2

YŨ . (2.41)

Moreover you can calculate that:

Ũ†γ[0]Ũ = γ[0] cos
χ
2
+β[4] sin

χ
2

,

Ũ†β[4]Ũ = β[4] cos
χ
2
− γ[0] sin

χ
2

,

Ũ†Ũ = 14,

Ũ†YŨ = Y ,

β[k]Ũ = Ũβ[k]

for k ∈ {0,1,2,3}
Let

x′4 = x4 cos
χ
2
− x5 sin

χ
2

,

x′5 = x5 cos
χ
2
+ x4 sin

χ
2

.

In that case by the partial derivate definition for any function u:

∂4u = ∂′4u ·∂4x′4 +∂′5u ·∂4x′5 = ∂′4u · cos
χ
2
+∂′5u · sin

χ
2

, (2.42)

∂5u = ∂′4u ·∂5x′4 +∂′5u ·∂5x′5 = ∂′4u ·
(
−sin

χ
2

)
+∂′5u · cos

χ
2

.

Let ∂4χ = 0 and ∂5χ = 0; hence, ∂4U =U∂4 and ∂5U =U∂5.
From (2.39):(

3

∑
s=0

β[s] (i∂s +Fs +0.5g1Y Bs)− γ[0]i∂5−β[4]i∂4

)
φ̃ = 0. (2.43)

Let

B′µ = Bµ−
1
g1

∂µχ.

According to (2.42) and since Ũ†Ũ = 14 and Ũ†YŨ = Y then(
∑3

s=0 β[s]
(

i∂s +Fs +0.5g1Ũ†YŨ
(

B′s +
1
g1

∂sχ
))
−

−γ[0]i
(
−sin χ

2 ∂′4 + cos χ
2 ∂′5
)
−β[4]i

(
cos χ

2 ∂′4 + sin χ
2 ∂′5
) )Ũ†Ũ φ̃ = 0.

Hence:
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(
∑3

s=0 β[s]
(

i∂s +Fs +0.5g1Ũ†YŨ
(

B′s +
1
g1

∂sχ
))
−

−
(
−γ[0] sin χ

2 +β[4] cos χ
2

)
i∂′4−

(
γ[0] cos χ

2 +β[4] sin χ
2

)
i∂′5

)
Ũ†Ũ φ̃ = 0.

Since Ũ is a linear operator then(
∑3

s=0 β[s]
(

i∂s +Fs +0.5g1Ũ†YŨ
(

B′s +
1
g1

∂sχ
))

Ũ†−
−
(
−γ[0] sin χ

2 +β[4] cos χ
2

)
i∂′4Ũ†−

(
γ[0] cos χ

2 +β[4] sin χ
2

)
i∂′5Ũ†

)
Ũ φ̃ = 0

and since ∂4U =U∂4 and ∂5U =U∂5 then


∑3

s=0 β[s]
(

i∂sŨ† +FsŨ† +0.5g1Ũ†YŨŨ†
(

B′s +
1
g1

∂sχ
))
−

−
(
−γ[0]Ũ† sin χ

2 +β[4]Ũ† cos χ
2

)
i∂′4

−
(

γ[0]Ũ† cos χ
2 +β[4]Ũ† sin χ

2

)
i∂′5

Ũ φ̃ = 0. (2.44)

Since

Ũ†γ[0]Ũ = γ[0] cos
χ
2
+β[4] sin

χ
2

,

Ũ†β[4]Ũ = β[4] cos
χ
2
− γ[0] sin

χ
2

then

Ũ†γ[0]ŨŨ† = γ[0]Ũ† cos
χ
2
+β[4]Ũ† sin

χ
2

,

Ũ†β[4]ŨŨ† = β[4]Ũ† cos
χ
2
− γ[0]Ũ† sin

χ
2

,

Hence,

Ũ†γ[0] = γ[0]Ũ† cos
χ
2
+β[4]Ũ† sin

χ
2

,

Ũ†β[4] = β[4]Ũ† cos
χ
2
− γ[0]Ũ† sin

χ
2

.

Therefore,

γ[0]Ũ† = Ũ†γ[0] cos χ
2 −Ũ†β[4] sin χ

2 ,
β[4]Ũ† = Ũ†γ[0] sin χ

2 +Ũ†β[4] cos χ
2 .

Thus, from (2.44):
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

∑3
s=0 β[s]

(
i∂sŨ† +FsŨ† +0.5g1Ũ†YŨŨ†

(
B′s +

1
g1

∂sχ
))
−

−

 −( Ũ†γ[0] cos χ
2 −Ũ†β[4] sin χ

2

)
sin χ

2

+
(

Ũ†γ[0] sin χ
2 +Ũ†β[4] cos χ

2

)
cos χ

2

 i∂′4

−

 (
Ũ†γ[0] cos χ

2 −Ũ†β[4] sin χ
2

)
cos χ

2

+
(

Ũ†γ[0] sin χ
2 +Ũ†β[4] cos χ

2

)
sin χ

2

 i∂′5


Ũ φ̃ = 0.

Hence:

(
∑3

s=0 β[s]
(

i∂sŨ† +FsŨ† +0.5g1Ũ†Y
(

B′s +
1
g1

∂sχ
))
−

−Ũ†β[4]i∂′4− Ũ†γ[0]i∂′5

)
Ũ φ̃ = 0. (2.45)

Since (2.41):

∂µŨ =−i
∂µχ
2

YŨ

then for s ∈ {0,1,2,3}:

∂sŨ† = i
∂sχ
2

Ũ†Y † = i
∂sχ
2

YŨ†.

Therefore,

∂s

(
Ũ†Ũ φ̃

)
= ∂s

(
Ũ†
(

Ũ φ̃
))

=

=
(

∂sŨ†
)(

Ũ φ̃
)
+Ũ†∂s

(
Ũ φ̃
)
= i ∂sχ

2 YŨ†
(

Ũ φ̃
)
+Ũ†∂s

(
Ũ φ̃
)
=

=
(

i ∂sχ
2 YŨ† +Ũ†∂s

)(
Ũ φ̃
)

.

Since YŨ† = Ũ†Y then

i
∂sχ
2

YŨ† +Ũ†∂s = Ũ†i
∂sχ
2

Y +Ũ†∂s.

Hence,

i∂sŨ† =−Ũ† ∂sχ
2

Y +Ũ†i∂s.

Therefore, from (2.45):(
∑3

s=0 β[s]
(
−Ũ† ∂sχ

2 Y +Ũ†i∂s +FsŨ† +0.5g1Ũ†Y
(

B′s +
1
g1

∂sχ
))
−

−Ũ†β[4]i∂′4− Ũ†γ[0]i∂′5

)
Ũ φ̃ = 0.

Hence:
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(
∑3

s=0 β[s]
(

Ũ†i∂s +Ũ†F ′s +0.5g1Ũ†Y B′s
)
−

−Ũ†β[4]i∂′4− Ũ†γ[0]i∂′5

)
Ũ φ̃ = 0

with F ′s := ŨFsŨ†.
Since β[s]Ũ = Ũβ[s] for s ∈ {0,1,2,3} then(

∑3
s=0Ũ†β[s]

(
i∂s +Ũ†F ′s +0.5g1Ũ†Y B′s

)
−

−Ũ†β[4]i∂′4− Ũ†γ[0]i∂′5

)
Ũ φ̃ = 0.

Hence, if denote: φ̃′ := Ũ φ̃ then since Ũ is a linear operator then:

Ũ†

(
3

∑
s=0

β[s] (i∂s +F ′s +0.5g1Y B′s
)
−β[4]i∂′4− γ[0]i∂′5

)
φ̃′ = 0.

That is (
3

∑
s=0

β[s] (i∂s +F ′s +0.5g1Y B′s
)
−β[4]i∂′4− γ[0]i∂′5

)
φ̃′ = 0.

Compare with (2.43).
Thus, this Equation of moving is invariant under the following transformations:

x4→ x′4 = x4 cos
χ
2
− x5 sin

χ
2

;

x5→ x′5 = x5 cos
χ
2
+ x4 sin

χ
2

;

xµ→ x′µ = xµ for µ ∈ {0,1,2,3} ; (2.46)

φ̃→ φ̃′ = Ũ φ̃,

Bµ→ B′µ = Bµ−
1
g1

∂µχ,

Fµ→ F ′µ = ŨFsŨ†.

Therefore, Bµ is like to the B-boson field of Standard Model24 [20]. field.

2.4. Masses

Let

ε1 =


1
0
0
0

 , ε2 =


0
1
0
0

 , ε3 =


0
0
1
0

 , ε4 =


0
0
0
1

 . (2.47)

24Sheldon Lee Glashow (born December 5, 1932) is a American theoretical physicist.
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Functions of type :

h
2πc

exp
(
−i

h
c
(sx4 +nx5)

)
εk (2.48)

with an integer n and s form orthonormal basis of some unitary space ℑ with scalar product
of the following shape:

(φ̃, χ̃) :=
∫ πc

h

− πc
h

dx5

∫ πc
h

− πc
h

dx4 · φ̃†χ̃ (2.49)

(compare with (2.16)).
In that case from (2.15):

(φ̃, φ̃) = ρA , (2.50)(
φ̃,β[s]φ̃

)
= −

jA ,k

c
.

for s ∈ {1,2,3}
Let25

Nϑ (t,x1,x2,x3) := trunc
(

cM0

h

)
, Nϖ (t,x1,x2,x3) := trunc

(
cM4

h

)
.

Hence, functions Nϑ (t,x1,x2,x3) and Nϖ (t,x1,x2,x3) have got integer values.
In that case to high precision:

φ̃ = φ(t,x1,x2,x3) · exp
(
−i
(

x5
h
c

Nϑ (t,x1,x2,x3)+ x4
h
c

Nϖ (t,x1,x2,x3)

))
and Fourier series for φ̃ is of the following form:

φ̃(t,x1,x2,x3,x5,x4) = φ(t,x1,x2,x3) ·∑
n,s

δ−n,Nϑ(t,x)δ−s,Nϖ(t,x) exp
(
−i

h
c
(nx5 + sx4)

)
with

δ−n,Nϑ =
h

2πc

∫ πc
h

− πc
h

exp
(

i
h
c
(nx5)

)
exp
(

iNϑ
h
c

x5

)
dx5 =

sinπ(n+Nϑ)

π(n+Nϑ)
,

δ−s,Nϖ =
h

2πc

∫ πc
h

− πc
h

exp
(

i
h
c
(sx4)

)
exp
(

iNϖ
h
c

x4

)
dx4 =

sinπ(s+Nϖ)

π(s+Nϖ)

with integer n and s.
If denote:

25Function trunc(x) returns the integer part of a real number x by removing the fractional part. For example:

trunc(−2.0857) =−2.
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f (t,x,−n,−s) := φ(t,x)δn,Nϑ(t,x)δs,Nϖ(t,x)

then

φ̃(t,x,x5,x4) =

= ∑n,s f (t,x,n,s)exp
(
−i h

c (nx5 + sx4)
)

.
(2.51)

The integer numbers n and s are denoted mass numbers.
From properties of δ: in every point ⟨t,x⟩: either

φ̃(t,x,x5,x4) = 0

or integer numbers n0 and s0 exist for which:

φ̃(t,x,x5,x4) =

= f (t,x,n0,s0)exp
(
−i h

c (n0x5 + s0x4)
)

.
(2.52)

Here if
m0 :=

√
n2

0 + s2
0

and

m :=
h2

c2 m0 (2.53)

then m is denoted mass of φ̃.
That is for every space-time point: either this point is empty or single mass is placed in

this point.

Figure 7:

Equation of moving (2.39) under the transformation (2.46) has the following form:
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∑n′,s′

(
β[0]
(
i 1

c ∂t +Fµ +0.5g1Y Bµγ[5]
)

+∑3
µ=1 β[µ]

(
i∂µ +Fµ +0.5g1Y Bµγ[5]

)
+ γ[0]i∂′5 +β[4]i∂′4

)
·

·exp
(
−i h

c (n
′x5 + s′x4)

)
Ũ f = 0

with:
n′ = ncos χ

2 − ssin χ
2 ,

s′ = nsin χ
2 + scos χ

2 .

But s and n are integer numbers and s′ and n′ must be integer numbers, too.
A triplet ⟨λ;n,s⟩ of integer numbers is called a Pythagorean triple [19] if

λ2 = n2 + s2.

Let ε be the tiny positive real number. I call an integer number λ as a father number
with precise ε if for each real number χ and for every Pythagorean triple ⟨λ;n,s⟩ here exists
a Pythagorean triple ⟨λ;n′,s′⟩ such that:

∣∣∣−ssin
χ
2
+ncos

χ
2
−n′

∣∣∣ < λε,∣∣∣scos
χ
2
+nsin

χ
2
− s′
∣∣∣ < λε.

For example: number 325 is a father number for the following Pythagorean triples
(Figure 7):

⟨325;323,36⟩ ,
⟨325;315,80⟩ ,
⟨325;312,91⟩ ,
⟨325;300,125⟩ ,
⟨325;280,165⟩ ,
⟨325;260,195⟩ ,
⟨325;253,204⟩ ,

Here ε is maximal ratio value of difference between adjacent s values to father number.
That is here ε = 253−204

325 = 0.15. But for any value of precise ε here exists a fitting father
number in long distant domain of the natural numerical line. But I can not calculate it since
more high-end machine than my computer is needed for such calculation.

The nearest-neighbors to 325 father numbers are numbers 333 and 337. But these father
numbers have got one at a time triple. Hence, fathers, having many ”children”, are isolated
numbers on the natural numerical line. I suspect that these numbers are fathers of particles
families.

Here are three families (generations) according to the Standard Model of particle
physics [20]:
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
(

νe

e−

) (
νµ

µ−

) (
ντ
τ−

)
(

u
d

) (
c
s

) (
t
b

)
 .

Each generation is divided into two leptons:(
νe

e−

)
,
(

νµ

µ−

)
,
(

ντ
τ−

)
,

and two quarks: (
u
d

)
,
(

c
s

)
,
(

t
b

)
.

The two leptons may be divided into one electron-like (e− - electron, µ− - µ–lepton, τ−
- τ-lepton ) and neutrino (νe, νµ, ντ); the two quarks may be divided into one down-type (d,
s, b) and one up-type (u, c, t). The first generation consists of the electron, electron neutrino
and the down and up quarks. The second generation consists of the muon, muon neutrino
and the strange and charm quarks. The third generation consists of the tau lepton, tau
neutrino and the bottom and top quarks. Each member of a higher generation has greater
mass than the corresponding particle of the previous generation. For example: the first-
generation electron has a mass of only 0.511 MeV, the second-generation muon has a mass
of 106 MeV, and the third-generation tau lepton has a mass of 1777 MeV (almost twice
as heavy as a proton). All ordinary atoms are made of particles from the first generation.
Electrons surround a nucleus made of protons and neutrons, which contain up and down
quarks. The second and third generations of charged particles do not occur in normal matter
and are only seen in extremely high-energy environments. Neutrinos of all generations
stream throughout the universe but rarely interact with normal matter.

2.5. One-Mass State

Let form of (2.51) be the following:

φ̃(t,x,x5,x4) = exp
(
−i

h
c

nx5

) 4

∑
k=1

fk (t,x,n,0)εk.

In that case the Hamiltonian has the following form (from (2.39)):

Ĥ = c

(
3

∑
k=1

β[k]i∂k +
h
c

nγ[0]+ Ĝ

)

with

Ĝ :=
3

∑
µ=0

β[µ] (Fµ +0.5g1Y Bµ) .
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Let

ω(k) :=
√

k2 +n2 =
√

k2
1 + k2

2 + k2
3 +n2

and

e1 (k) :=
1

2
√

ω(k)(ω(k)+n)


ω(k)+n+ k3

k1 + ik2
ω(k)+n− k3
−k1− ik2

 . (2.54)

Let

Ĥ0 := c
3

∑
s=1

β[s]i∂s +hnγ[0]. (2.55)

Since (2.53):

hn = m
c2

h

then equation of moving with Hamiltonian Ĥ0 has the following form:

1
c i∂tφ =

(
∑3

s=1 β[s]i∂s +m c
h γ[0]

)
φ. (2.56)

This is the Dirac equation (Paul Dirac26 formulated it in 1928).
Let us denote

γ[s] := γ[0]β[s]

for s ̸= 0.
Let us calculate:

γ[s]γ[ j]+ γ[ j]γ[s]

= γ[0]β[s]γ[0]β[ j]+ γ[0]β[ j]γ[0]β[s] =

= −γ[0]γ[0]β[s]β[ j]− γ[0]γ[0]β[ j]β[s] =

= −
(

β[s]β[ j]+β[ j]β[s]
)
=−2δ j,s

for s ̸= 0 and j ̸= 0.
and

γ[s]γ[0]+ γ[0]γ[s] = γ[0]β[s]γ[0]+ γ[0]γ[0]β[s] =−β[s]+β[s] = 0

for s ̸= 0.
From (2.56):

26Paul Adrien Maurice Dirac (1902 – 1984) was an English theoretical physicist who made fundamental
contributions to the early development of both quantum mechanics and quantum electrodynamics.
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(
1
c

iγ[0]∂t −
3

∑
s=1

γ[s]i∂s−m
c
h

)
φ = 0.

Let us multiply both parts of this equation on(
1
c

iγ[0]∂t −
3

∑
s′=1

γ[s
′]i∂s′+m

c
h

)
:

(
1
c

iγ[0]∂t −
3

∑
s′=1

γ[s
′]i∂s′+m

c
h

)(
1
c

iγ[0]∂t −
3

∑
s=1

γ[s]i∂s−m
c
h

)
φ = 0.

Hence, 

− 1
c2 ∂2

t
−∑3

s=1
1
c iγ[0]∂tγ[s]i∂s−∑3

s′=1 γ[s′]i∂s′
1
c iγ[0]∂t

−1
c iγ[0]∂tm c

h +m c
h

1
c iγ[0]∂t

+∑3
s′=1 γ[s′]i∂s′ ∑3

s=1 γ[s]i∂s

+∑3
s′=1 γ[s′]i∂s′m c

h −∑3
s=1 m c

h γ[s]i∂s

−m2c2

h2


φ = 0.

Hence,  − 1
c2 ∂2

t
+∑3

s′=1 γ[s′]i∂s′ ∑3
s=1 γ[s]i∂s

−m2c2

h2

φ = 0

Since

3

∑
s′=1

γ[s
′]i∂s′

3

∑
s=1

γ[s]i∂s

= −
3

∑
s=1

3

∑
s′=1

γ[s
′]γ[s]∂s′∂s =

= −

 γ[1]γ[1]∂1∂1 + γ[2]γ[1]∂2∂1 + γ[3]γ[1]∂3∂1

+γ[1]γ[2]∂1∂2 + γ[2]γ[2]∂2∂2 + γ[3]γ[2]∂3∂2

+γ[1]γ[3]∂1∂3 + γ[2]γ[3]∂2∂3 + γ[3]γ[3]∂3∂3

=

= −



−∂1∂1

+γ[2]γ[1]∂2∂1 + γ[1]γ[2]∂1∂2

+γ[3]γ[1]∂3∂1 + γ[1]γ[3]∂1∂3
−∂2∂2

+γ[3]γ[2]∂3∂2 + γ[2]γ[3]∂2∂3
−∂3∂3

 .
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Hence,
3

∑
s′=1

γ[s
′]i∂s′

3

∑
s=1

γ[s]i∂s = ∂1∂1 +∂2∂2 +∂3∂3 =
3

∑
s=1

∂2
s .

Thus, (
− 1

c2 ∂2
t +∑3

s=1 ∂2
s − m2c2

h2

)
φ = 0.

(2.57)

This is the Klein-Gordon2728 equation for a free particle with mass m.
Let us calculate:

Ĥ0e1 (k)
( h

2πc

) 3
2 exp

(
−i h

c kx
)
=

=
(
c∑3

s=1 β[s]i∂s +hnγ[0]
)( h

2πc

) 3
2 e1 (k)exp

(
−i h

c kx
)
=

== c∑3
s=1 β[s]i∂se1 (k)

( h
2πc

) 3
2 exp

(
−i h

c kx
)
+

+hnγ[0]e1 (k)
( h

2πc

) 3
2 exp

(
−i h

c kx
)
=

= c∑3
s=1 β[s]ie1 (k)∂s

( h
2πc

) 3
2 exp

(
−i h

c kx
)
+

+hn
( h

2πc

) 3
2 exp

(
−i h

c kx
)

γ[0]e1 (k) =

= c∑3
s=1 β[s]ie1 (k)

(
−i h

c ks
)( h

2πc

) 3
2 exp

(
−i h

c ks
)
+

+hn
( h

2πc

) 3
2 exp

(
−i h

c kx
)

γ[0]e1 (k) =

= ∑3
s=1 (−ihks)β[s]ie1 (k)

( h
2πc

) 3
2 exp

(
−i h

c kx
)
+

+hn
( h

2πc

) 3
2 exp

(
−i h

c kx
)

γ[0]e1 (k) =

= h
( h

2πc

) 3
2 exp

(
−i h

c kx
)(

∑3
s=1 ksβ[s]+nγ[0]

)
e1 (k) =

= h
(

h
2πc

) 3
2

exp
(
−i

h
c

kx
)

k3 k1− ik2 n 0
k1 + ik2 −k3 0 n

n 0 −k3 −k1 + ik2
0 n −k1− ik2 k3

 ·

· 1
2
√

ω(k)(ω(k)+n)


ω(k)+n+ k3

k1 + ik2
ω(k)+n− k3
−k1− ik2



= h
(

h
2πc

) 3
2

exp
(
−i

h
c

kx
)

k3ω(k)+ k2
3 + k2

1 + k2
2 +nω(k)+n2

k1ω(k)+ ik2ω(k)
nω(k)+n2− k3ω(k)+ k2

3 + k2
1 + k2

2
−k1ω(k)− ik2ω(k)



= ω(k)
1

2
√

ω(k)(ω(k)+n)


k3 +n+ω(k)

k1 + ik2
n+ω(k)− k3
−k1− ik2

h
(

h
2πc

) 3
2

exp
(
−i

h
c

kx
)

.

27Oskar Klein, 1894-1977
28Walter Gordon, 1893-1939
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Therefore,

Ĥ0e1 (k)
(

h
2πc

) 3
2

exp
(
−i

h
c

kx
)
= hω(k)e1 (k)

(
h

2πc

) 3
2

exp
(
−i

h
c

kx
)

. (2.58)

Hence, function e1 (k)
( h

2πc

) 3
2 exp

(
−i h

c kx
)

is an eigenvector of Ĥ0 with eigenvalue

hω(k) = h
√

k2 +n2.

Similarly, function e2 (k)
( h

2πc

) 3
2 exp

(
−i h

c kx
)

with

e2 (k) :=
1

2
√

ω(k)(ω(k)+n)


k1− ik2

ω(k)+n− k3
−k1 + ik2

ω(k)+n+ k3

 (2.59)

is eigenvector of Ĥ0 with eigenvalue hω(k) = h
√

k2 +n2, too, and functions

e3 (k)
(

h
2πc

) 3
2

exp
(
−i

h
c

kx
)

and e4 (k)
(

h
2πc

) 3
2

exp
(
−i

h
c

kx
)

with

e3 (k) :=
1

2
√

ω(k)(ω(k)+n)


−ω(k)−n+ k3

k1 + ik2
ω(k)+n+ k3

k1 + ik2

 (2.60)

and

e4 (k) :=
1

2
√

ω(k)(ω(k)+n)


k1− ik2

−ω(k)−n− k3
k1− ik2

ω(k)+n− k3

 (2.61)

are eigenvectors of Ĥ0 with eigenvalue −hω(k).
Here eµ (k) with µ ∈ {1,2,3,4} form an orthonormal basis in the space spanned on

vectors εµ (2.47).

2.6. Creating and Annihilation Operators

Let H be some unitary space. Let 0̃ be the zero element of H. That is any element F̃ of H
obeys to the following conditions:

0F̃ = 0̃, 0̃+ F̃ = F̃ , 0̃†F̃ = F̃ , 0̃† = 0̃.

Let 0̂ be the zero operator on H. That is any element F̃ of H obeys to the following
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condition:

0̂F̃ = 0F̃ , and if b̂ is any operator on H then

0̂+ b̂ = b̂+ 0̂ = b̂, 0̂b̂ = b̂0̂ = 0̂.

Let 1̂ be the identy operator on H. That is any element F̃ of H obeys to the following
condition:

1̂F̃ = 1F̃ = F̃ , and if b̂ is any operator on H then
1̂b̂ = b̂1̂ = b̂.

Let linear operators bs,k (s ∈ {1,2,3,4}) act on all elements of this space. And let these
operators fulfill the following conditions:{

b†
s,k,bs′,k′

}
:= b†

s,kbs′,k′+bs′,k′b
†
s,k =

(
2π

)3
δk,k′δs,s′ 1̂,

{bs,k,bs′,k′}= bs,kbs′,k′+bs′,k′bs,k =
{

b†
s,k,b

†
s′,k′

}
= 0̂.

Hence,
bs,kbs,k = b†

s,kb†
s,k = 0̂.

There exists element F̃0 of H such that F̃†
0 F̃0 = 1 and for any bs,k: bs,kF̃0 = 0̃. Hence,

F̃†
0 b†

s,k = 0̃.
Let

ψs (x) := ∑
k

4

∑
r=1

br,ker,s (k)exp
(
−i

h
c

kx
)

.

Because
4

∑
r=1

er,s (k)er,s′ (k) = δs,s′

and

∑
k

exp
(
−i

h
c

k
(
x−x′

))
=

(
2πc
h

)3

δ
(
x−x′

)
then {

ψ†
s (x) ,ψs′

(
x′
)}

:= ψ†
s (x)ψs′

(
x′
)
+ψs′

(
x′
)

ψ†
s (x)

= δ
(
x−x′

)
δs,s′ 1̂.

And these operators obey the following conditions:

ψs (x) F̃0 = 0̃, {ψs (x) ,ψs′ (x′)}=
{

ψ†
s (x) ,ψ

†
s′ (x

′)
}
= 0̂.

Hence,

ψs (x)ψs′ (x′) = ψ†
s (x)ψ†

s′ (x
′) = 0̂.

Let

Ψ(t,x) :=
4

∑
s=1

φs (t,x)ψ†
s (x) F̃0. (2.62)
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These function obey the following condition:

Ψ† (t,x′)Ψ(t,x) = φ† (t,x′)φ(t,x)δ
(
x−x′

)
.

Hence, ∫
dx′ ·Ψ† (t,x′)Ψ(t,x) = ρ(t,x) . (2.63)

Let a Fourier series of φs (t,x) has the following form:

φs (t,x) = ∑
p

4

∑
r=1

cr (t,p)er,s (p)exp
(
−i

h
c

px
)

.

In that case:

Ψ(t,p) :=
(

2πc
h

)3 4

∑
r=1

cr (t,p)b†
r,pF̃0.

If
H0 (x) := ψ† (x) Ĥ0ψ(x) (2.64)

then H0 (x) is called a Hamiltonian Ĥ0 density.
Because

Ĥ0φ(t,x) = i
∂
∂t

φ(t,x)

then ∫
dx′ ·H0

(
x′
)

Ψ(t,x) = i
∂
∂t

Ψ(t,x) . (2.65)

Therefore, if
Ĥ :=

∫
dx′ ·H0

(
x′
)

then Ĥ acts similar to the Hamiltonian on space H.
And if

EΨ

(
F̃0

)
:= ∑

p
Ψ† (t,p)ĤΨ(t,p)

then EΨ

(
F̃0

)
is an energy of Ψ on vacuum F̃0.

Let us consider operator N̂a (x0) := ψ†
a (x0)ψa (x0).

Let us calculate an average value of this operator:⟨
N̂a (x0)

⟩
Ψ

:=
∫

Ω
dx · N̂a (x0)ρ(t,x) .

In accordance with (2.63):⟨
N̂a (x0)

⟩
Ψ
=

∫
Ω

dx
∫

Ω
dx′ ·Ψ† (t,x′)ψ†

a (x0)ψa (x0)Ψ(t,x) .

Since in accordance with (2.62):



100 Quants

Ψ(t,x) =
4

∑
j=1

φ j (t,x)ψ†
j (x) F̃0.

then

⟨
N̂a (x0)

⟩
Ψ
=

=
∫

Ω
dx

∫
Ω

dx′ ·
4

∑
s=1

φ∗s
(
t,x′
)

F̃†
0 ψs

(
x′
)

ψ†
a (x0)ψa (x0)

4

∑
j=1

φ j (t,x)ψ†
j (x) F̃0 =

=
∫

Ω
dx

∫
Ω

dx′ ·
4

∑
s=1

4

∑
j=1

φ∗s
(
t,x′
)

φ j (t,x) F̃†
0 ψs

(
x′
)

ψ†
a (x0)ψa (x0)ψ†

j (x) F̃0.

Since

ψ†
a (x0)ψs

(
x′
)
+ψs

(
x′
)

ψ†
a (x0) = δ

(
x0−x′

)
δs,a1̂

then

⟨
N̂a (x0)

⟩
Ψ

=
∫

Ω
dx

∫
Ω

dx′ ·
4

∑
s=1

4

∑
j=1

φ∗s
(
t,x′
)

φ j (t,x) ·

·F̃†
0

(
δ
(
x0−x′

)
δs,a1̂−ψ†

a (x0)ψs
(
x′
))

ψa (x0)ψ†
j (x) F̃0

=
∫

Ω
dx

∫
Ω

dx′ ·
4

∑
s=1

4

∑
j=1

φ∗s
(
t,x′
)

φ j (t,x) ·

·
(

δ
(
x0−x′

)
δs,aF̃†

0 1̂− F̃†
0 ψ†

a (x0)ψs
(
x′
))

ψa (x0)ψ†
j (x) F̃0.

Since F̃†
0 1̂ = F̃†

0 and F̃†
0 ψ†

a (x0) = 0̃ then

⟨
N̂a (x0)

⟩
Ψ
=

=

∫
Ω

dx
∫

Ω
dx′ ·

4

∑
s=1

4

∑
j=1

φ∗s
(
t,x′
)

φ j (t,x)δ
(
x0−x′

)
δs,aF̃†

0 ψa (x0)ψ†
j (x) F̃0.

According with properties of δ-function and δ:⟨
N̂a (x0)

⟩
Ψ
=

∫
Ω

dx ·
4

∑
j=1

φ∗a (t,x0)φ j (t,x) F̃†
0 ψa (x0)ψ†

j (x) F̃0.

Since

ψ†
j (x)ψa (x0)+ψa (x0)ψ†

j (x) = δ(x0−x)δ j,a1̂
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then

⟨
N̂a (x0)

⟩
Ψ
=

=
∫

Ω
dx ·

4

∑
j=1

φ∗a (t,x0)φ j (t,x) F̃†
0

(
δ(x0−x)δ j,a1̂−ψ†

j (x)ψa (x0)
)

F̃0

=
∫

Ω
dx ·

4

∑
j=1

φ∗a (t,x0)φ j (t,x)
(

δ(x0−x)δ j,aF̃†
0 1̂F̃0− F̃†

0 ψ†
j (x)ψa (x0) F̃0

)
=

∫
Ω

dx ·
4

∑
j=1

φ∗a (t,x0)φ j (t,x)
(

δ(x0−x)δ j,aF̃†
0 F̃0− 0̃†0̃

)
.

=
∫

Ω
dx ·

4

∑
j=1

φ∗a (t,x0)φ j (t,x)(δ(x0−x)δ j,a1−0)

=
∫

Ω
dx ·

4

∑
j=1

φ∗a (t,x0)φ j (t,x)δ(x0−x)δ j,a.

Thus: ⟨
N̂a (x0)

⟩
Ψ
= φ∗a (t,x0)φa (t,x0). (2.66)

That is operator N̂a (x0) brings the a-component of the event probability density.
Let Ψa (t,x) := ψa (x0)Ψ(t,x).
In that case

⟨
N̂a (x0)

⟩
Ψa

=
∫

Ω
dx

∫
Ω

dx′ ·Ψ† (t,x)ψ†
a (x0)ψ†

a (x0)

ψa (x0)ψa (x0)ψa (x0)Ψ(t,x) .

Since

ψa (x0)ψa (x0) = 0̂

then ⟨
N̂a (x0)

⟩
Ψa

= 0.

Therefore ψa (x0) ”annihilates” the a of the event-probability density.

2.7. Particles and Antiparticles

Operator Ĥ obeys the following condition:

Ĥ=

(
2πc
h

)3

∑
k

hω(k)

(
2

∑
r=1

b†
r,kbr,k−

4

∑
r=3

b†
r,kbr,k

)
.
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This operator is not positive defined and in this case

EΨ

(
F̃0

)
=

(
2πc
h

)3

∑
p

hω(p)

(
2

∑
r=1
|cr (t,p)|2−

4

∑
r=3
|cr (t,p)|2

)
.

This problem is usually solved in the following way [25, p.54]:
Let:

v1 (k) : = γ[0]e3 (k) ,

v2 (k) : = γ[0]e4 (k) ,

d1,k : =−b†
3,−k,

d2,k : =−b†
4,−k.

In that case:

e3 (k) = −v1 (−k) ,

e4 (k) = −v2 (−k) ,

b3,k = −d†
1,−k,

b4,k = −d†
2,−k.

Therefore,

ψs (x) : = ∑
k

2

∑
r=1

(
br,ker,s (k)exp

(
−i

h
c

kx
)
+

+d†
r,kvr,s (k)exp

(
i
h
c

kx
))

Ĥ =

(
2πc
h

)3

∑
k

hω(k)
2

∑
r=1

(
b†

r,kbr,k +d†
r,kdr,k

)
−2∑

k
hω(k) 1̂.

The first term on the right side of this equality is positive defined. This term is taken
as the desired Hamiltonian. The second term of this equality is infinity constant. And this
infinity is deleted (?!) [25, p.58]

But in this case dr,kF̃0 ̸= 0̃. In order to satisfy such condition, the vacuum element F̃0
must be replaced by the following:

F̃0→ Φ̃0 := ∏
k

4

∏
r=3

(
2πc
h

)3

b†
r,kF̃0.

But in this case:
ψs (x)Φ̃0 ̸= 0̃.

And condition (2.65) isn’t carried out.
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In order to satisfy such condition, operators ψs (x) must be replaced by the following:

ψs (x)→ ϕs (x) :=

:=∑
k

2

∑
r=1

(
br,ker,s (k)exp

(
−i

h
c

kx
)
+dr,kvr (k)exp

(
i
h
c

kx
))

.

Hence,

Ĥ =
∫

dx ·H (x) =
∫

dx ·ϕ† (x) Ĥ0ϕ(x) =

=

(
2πc
h

)3

∑
k

hω(k)
2

∑
r=1

(
b†

r,kbr,k−d†
r,kdr,k

)
.

And again we get negative energy.
Let’s consider the meaning of such energy: An event with positive energy transfers this

energy photons which carries it on recorders observers. Observers know that this event
occurs, not before it happens. But event with negative energy should absorb this energy
from observers. Consequently, observers know that this event happens before it happens.
This contradicts Theorem 1.5.2. Therefore, events with negative energy do not occur.

Hence, over vacuum Φ̃0 single fermions can exist, but there is no single antifermions.
A two-particle state is defined the following field operator [28]:

ψs1,s2 (x,y) :=
∣∣∣∣ ϕs1 (x) ϕs2 (x)

ϕs1 (y) ϕs2 (y)

∣∣∣∣ .
In that case:

Ĥ= 2h
(

2πc
h

)6(
Ĥa + Ĥb

)
where

Ĥa : = ∑
k

∑
p
(ω(k)−ω(p))

2

∑
r=1

2

∑
j=1
×

×
{

v†
j (−k)v j (−p)e†

r (p)er (k)×

×
(
+b†

r,pd†
j,−kd j,−pbr,k

)
+

+
(
+d†

r,−pb†
j,kb j,kdr,−p

)
+

+v†
j (−p)v j (−k)e†

r (k)er (p)×

×
(
−b†

r,kd†
j,−pd j,−kbr,p

)
+

+
(
−b†

r,pd†
j,−kd j,−kbr,p

)}
and

Ĥb : = ∑
k

∑
p
(ω(k)+ω(p))

2

∑
r=1

2

∑
j=1
×
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×
{

v†
j (−p)v j (−k)v†

r (−k)vr (−p)×

×
(
−d†

r,−kd†
j,−pd j,−kdr,−p

)
+

+
(
−d†

r,−pd†
j,−kd j,−kdr,−p

)
+e†

r (k)er (p)e†
j (p)e j (k)×

×
(
+b†

r,kb†
j,pb j,kbr,p

)
+

+
(
+b†

r,pb†
j,kb j,kbr,p

)}
.

If velosities are small then the following formula is fair.

Ĥ= 4h
(

2πc
h

)6(
Ĥa + Ĥb

)
where

Ĥa : = ∑
k

∑
p
(ω(k)−ω(p))×

×
2

∑
r=1

2

∑
j=1

(
d†

j,−pb†
r,kbr,kd j,−p−b†

j,pd†
r,−kdr,−kb j,p

)
and

Ĥb : = ∑
k

∑
p
(ω(k)+ω(p))×

×
2

∑
j=1

2

∑
r=1

(
b†

j,pb†
r,kbr,kb j,p−d†

j,−pd†
r,−kdr,−kd j,−p

)
.

Therefore, in any case events with pairs of fermions and events with fermion-
antifermion pairs can occur, but events with pairs of antiftrmions can not happen.

Therefore, an antifermion can exists only with a fermion.



Chapter 3

Fields

3.1. Electroweak Fields

In 1963 American physicist Sheldon Glashow1 [44] proposed that the weak nuclear force
and electricity and magnetism could arise from a partially unified electroweak theory. But
”... there is major problem: all the fermions and gauge bosons are massless, while exper-
iment shows otherwise. Why not just add in mass terms explicitly? That will not work,
since the associated terms break SU(2) or gauge invariances. For fermions, the mass term
should be mψψ?

mψψ = mψ(PL +PR)ψ =

= m(ψ(PLPL)ψ+ψ(PRPR)ψ)
= m(ψRψL +ψLψR) .

However, the left-handed fermion are put into SU(2) doublets and the right-handed ones
into SU(2) singlets, so ψRψL and ψLψR are not SU(2) singlets and would not give an SU(2)
invariant Lagrangian. Similarly, the expected mass terms for the gauge bosons,

1
2

m2
BBµBµ

plus similar terms for other, are clearly not invariant under gauge transformations Bµ→
B′µ =Bµ−∂µχ/g, The only direct way to preserve the gauge invariance and SU(2) invariance
of Lagrangian is to set m = 0 for all quarks, leptons and gauge bosons:. There is a way to
solve this problem, called the Higgs mechanism” [35].

No. The Dirac Lagrangian for a free fermion can have of the following form:

L f := ψ†
(

β[0]∂0 +β[1]∂1 +β[2]∂2 +β[3]∂3 + imγ[0]
)

ψ.

Indeed, this Lagrangian is not invariant under the SU(2) transformation. But it is beautiful
and truncating its mass term is not good idea.

Further you will see, how it is possible to keep this beauty.

1Sheldon Lee Glashow (born December 5, 1932) is an American theoretical physicist.
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3.1.1. The Bi-mass State

Let us consider [23], [24] the subspace ℑJ of the space ℑ spanned of the following subbasis
(2.48):

J :=

⟨ h
2πc exp

(
−i h

c (s0x4)
)

ε1,
h

2πc exp
(
−i h

c (s0x4)
)

ε2,
h

2πc exp
(
−i h

c (s0x4)
)

ε3,
h

2πc exp
(
−i h

c (s0x4)
)

ε4,
h

2πc exp
(
−i h

c (n0x5)
)

ε1,
h

2πc exp
(
−i h

c (n0x5)
)

ε2,
h

2πc exp
(
−i h

c (n0x5)
)

ε3,
h

2πc exp
(
−i h

c (n0x5)
)

ε4

⟩
(3.1)

with some integer numbers s0 and n0.
Let U be any linear transformation of space ℑJ such that for every φ̃: if φ̃ ∈ ℑJ then

(2.49, 2.50, 2.16):

(U φ̃,U φ̃) = ρA , (3.2)(
U φ̃,β[s]U φ̃

)
= −

jA ,s

c

for s ∈ {1,2,3}.
In that case:

U†β[µ]U = β[µ]

for µ ∈ {0,1,2,3}.
Such transformation has a matrix of the following shape:

U :=


(a”+b”i)12 02 (c”+ ig”)12 02

02 (a‘+b‘i)12 02 (c‘+ ig‘)12
(u”+ iv”)12 02 (k”+ is”)12 02

02 (u‘+ iv‘)12 02 (k‘+ is‘)12

 .
with real functions

a”(t,x), b”(t,x), c”(t,x), g”(t,x), u”(t,x), v”(t,x), k”(t,x), s”(t,x),
a‘(t,x), b‘(t,x), c‘(t,x), g‘(t,x), u‘(t,x), v‘(t,x), k‘(t,x), s‘(t,x).
These functions fulfil the following conditions:

v”2 +b”2 +u”2 +a”2 = 1,
c”2 +g”2 + k”2 + s”2 = 1,

s” =−a”g”u”−u”b”c”+a”c”v”+b”g”v”
u”2 + v”2 ,

k” =
−u”a”c”−u”b”g”+ v”a”g”−b”c”v”

u”2 + v”2 .

v‘2 +b‘2 +u‘2 +a‘2 = 1,
c‘2 +g‘2 + k‘2 + s‘2 = 1,
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s‘ =−a‘g‘u‘−u‘b‘c‘+a‘c‘v‘+b‘g‘v‘
u‘2 + v‘2 ,

k‘ =
−u‘a‘c‘−u‘b‘g‘+ v‘a‘g‘−b‘c‘v‘

u‘2 + v‘2 .

U has 4 eigenvalues: exp(iα1), exp(iα2), exp(iα3), exp(iα4) for 8 orthonormalized
eigenvectors:

ε1,1,ε1,2,ε2,1,ε2,2,ε3,1,ε3,2,ε4,1,ε4,2.

Let

K :=
[

ε1,1 ε1,2 ε2,1 ε2,2 ε3,1 ε3,2 ε4,1 ε4,2
]
.

Let θ1, θ2, θ3, θ4 be solution of the following system of equations:
θ1 +θ2 +θ3 +θ4 = α1,
θ1 +θ2−θ3−θ4 = α1,
θ1−θ2 +θ3−θ4 = α1,
θ1−θ2−θ3 +θ4 = α1.

∣∣∣∣∣∣∣∣
and

U1 := exp(iθ1) ,

U2 := K
[

exp(iθ2)14 04
04 exp(−iθ2)14

]
K†,

U3 := K


exp(iθ3)12 02 02 02

02 exp(−iθ3)12 02 02
02 02 exp(iθ3)12 02
02 02 02 exp(−iθ3)12

K†,

U4 := K


exp(iθ4)12 02 02 02

02 exp(−iθ4)12 02 02
02 02 exp(−iθ4)12 02
02 02 02 exp(iθ4)12

K†.

In this case:

U1U2U3U4 =U

and
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U2 =


exp(iθ2)12 02 02 02

02 exp(−iθ2)12 02 02
02 02 exp(iθ2)12 02
02 02 02 exp(−iθ2)12

.


Besides

U1U2 =


ei(θ1+θ2) 0 0 0

0 ei(θ1−θ2) 0 0
0 0 ei(θ1+θ2) 0
0 0 0 ei(θ1−θ2)

 .

Let χ and ς be thesolution of the following set of equations:{
0.5χ+ ς = θ1 +θ2,

χ+ ς = θ1−θ2,

∣∣∣∣
i.e.:

χ =−4θ2,
ς = θ1 +3θ2.

Let

U [e] := exp(iς)

and (2.40)

Ũ =

[
exp
(
i χ

2

)
12 02

02 exp(iχ)12

]
.

In that case:

ŨU [e]18 =U1U2.

Here real functions
a(t,x), b(t,x), c(t,x), g(t,x), u(t,x), v(t,x), k (t,x),s(t,x)
exist such that:

U3U4 =


(a+ ib)12 02 (c+ ig)12 02

02 (u+ iv)12 02 (k+ is)12
(−c+ ig)12 02 (a− ib)12 02

02 (−k+ is)12 02 (u− iv)12


and

a2 +b2 + c2 +g2 = 1,
u2 + v2 + r2 + s2 = 1.
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If

U (+) :=


12 02 02 02
02 (u+ iv)12 02 (k+ is)12
02 02 12 02
02 (−k+ is)12 02 (u− iv)12

 (3.3)

and

U (−) :=


(a+ ib)12 02 (c+ ig)12 02

02 12 02 02
(−c+ ig)12 02 (a− ib)12 02

02 02 02 12

 (3.4)

then

U3U4 =U (−)U (+) =U (+)U (−).

Let us consider U (−).
Let:

ℓ◦ :=
1

2
√

(1−a2)

 (b+
√

(1−a2)
)

14 (q− ic)14

(q+ ic)14

(√
(1−a2)−b

)
14

 (3.5)

and

ℓ∗ :=
1

2
√

(1−a2)

 (√(1−a2)−b
)

14 (−q+ ic)14

(−q− ic)14

(
b+
√

(1−a2)
)

14

 . (3.6)

These operators are fulfilled to the following conditions:

ℓ◦ℓ◦ = ℓ◦, ℓ∗ℓ∗ = ℓ∗;

ℓ◦ℓ∗ = 0 = ℓ∗ℓ◦,

(ℓ◦− ℓ∗)(ℓ◦− ℓ∗) = 18,

ℓ◦+ ℓ∗ = 18,

ℓ◦γ[0] = γ[0]ℓ◦, ℓ∗γ[0] = γ[0]ℓ∗,
ℓ◦β[4] = β[4]ℓ◦, ℓ∗β[4] = β[4]ℓ∗

and
U (−)†γ[0]U (−) = aγ[0]− (ℓ◦− ℓ∗)

√
1−a2β[4],

U (−)†β[4]U (−) = aβ[4]+(ℓ◦− ℓ∗)
√

1−a2γ[0].
(3.7)

From (2.39) the lepton equation of motion is the following:(
3

∑
µ=0

β[µ] (i∂µ +Fµ +0.5g1Y Bµ)+ γ[0]i∂5 +β[4]i∂4

)
U (−)†U (−)φ̃ = 0.
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If
∂kU (−)† =U (−)†∂k (3.8)

for k ∈ {0,1,2,3,4,5} then(
U (−)†i∑3

µ=0 β[µ] (i∂µ +Fµ +0.5g1Y Bµ)

+γ[0]U (−)†i∂5 +β[4]U (−)†i∂4

)
U (−)φ̃ = 0.

Hence, from (3.7):

U (−)†


∑3

µ=0 β[µ] (i∂µ +Fµ +0.5g1Y Bµ)

+γ[0]i
(

a∂5− (ℓ◦− ℓ∗)
√

1−a2∂4

)
+β[4]i

(√
1−a2 (ℓ◦− ℓ∗)∂5 +a∂4

)
U (−)φ̃ = 0.

Thus, if denote:

x′4 = (ℓ◦+ ℓ∗)ax4 +(ℓ◦− ℓ∗)
√

1−a2x5,

x′5 = (ℓ◦+ ℓ∗)ax5− (ℓ◦− ℓ∗)
√

1−a2x4

then (
3

∑
µ=0

β[µ] (i∂µ +Fµ +0.5g1Y Bµ)+
(

γ[0]i∂′5 +β[4]i∂′4
))

φ̃′ = 0 (3.9)

with
φ̃′ =U (−)φ̃.

That is the lepton Hamiltonian is invariant for the following global transformation:

φ̃→ φ̃′ =U (−)φ̃,

x4→ x′4 = (ℓ◦+ ℓ∗)ax4 +(ℓ◦− ℓ∗)
√

1−a2x5, (3.10)

x5→ x′5 = (ℓ◦+ ℓ∗)ax5− (ℓ◦− ℓ∗)
√

1−a2x4,

xµ→ x′µ = xµ.

3.1.2. Neutrino

Wolfgang Pauli postulated the neutrino in 1930 to explain the energy spectrum of beta de-
cays, the decay of a neutron into a proton and an electron. Clyde Cowan, Frederick Reines
found the neutrino experimentally in 1955. Enrico Fermi2 developed the first theory de-
scribing neutrino interactions and denoted this particles as neutrino in 1933. In 1962 Leon
M. Lederman, Melvin Schwartz and Jack Steinberger showed that more than one type of
neutrino exists. Bruno Pontecorvo3 suggested a practical method for investigating neutrino

2Enrico Fermi (29 September 1901 28 November 1954) was an Italian-born, naturalized American physicist
particularly known for his work on the development of the first nuclear reactor, Chicago Pile-1, and for his
contributions to the development of quantum theory, nuclear and particle physics, and statistical mechanics.

3Bruno Pontecorvo (Marina di Pisa, Italy, August 22, 1913 – Dubna, Russia, September 24, 1993) was an
Italian-born atomic physicist, an early assistant of Enrico Fermi and then the author of numerous studies in
high energy physics, especially on neutrinos.
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masses in 1957, over the subsequent 10 years he developed the mathematical formalism
and the modern formulation of vacuum oscillations...

Let ℑeν be the unitary space, spanned by the following basis:

Jeν :=

⟨
h

2πc

√
2πn0

sinh(2n0π)
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε1,

h
2πc

√
2πn0

sinh(2n0π)
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε2,

h
2πc

√
2πn0

sinh(2n0π)
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε3,

h
2πc

√
2πn0

sinh(2n0π)
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε4,

h
2πc exp

(
−i h

c (n0x5)
)

ε1,
h

2πc exp
(
−i h

c (n0x5)
)

ε2,
h

2πc exp
(
−i h

c (n0x5)
)

ε3,
h

2πc exp
(
−i h

c (n0x5)
)

ε4

⟩
. (3.11)

Let ℑe be the subspace of the space ℑeν such that if φ̃ ∈ ℑe then φ̃ has the following
shape:

φ̃(t,x,x5,x4) = exp
(
−i

h
c

n0x5

) 4

∑
k=1

fk (t,x,n0,0)εk

That is φ̃ has the following matrix in the basis Jeν:

φ̃ =



0
0
0
0
f1
f2
f3
f4


. (3.12)

Let us consider the following Hamiltonian on ℑe:

Ĥ0,4 := c

(
3

∑
r=1

β[r]i∂r + γ[0]i∂5 +β[4]i∂4

)
: (3.13)

Ĥ0,4φ̃ = c
(
∑3

r=1 β[r]i∂r + γ[0]i∂5 +β[4]i∂4
)

φ̃ =

= ∑3
r=1 β[r]ci∂rφ̃+

+γ[0]ci∂5 exp
(
−i h

c n0x5
)

∑4
k=1 fk (t,x,n0,0)εk+

+β[4]ci∂4 exp
(
−i h

c n0x5
)

∑4
k=1 fk (t,x,n0,0)εk =

= ∑3
r=1 β[r]ci∂rφ̃+

+γ[0]ci
(
−i h

c n0
)

exp
(
−i h

c n0x5
)

∑4
k=1 fk (t,x,n0,0)εk+

+0 =

= ∑3
r=1 β[r]ci∂rφ̃+hn0γ[0] exp

(
−i h

c n0x5
)

∑4
k=1 fk (t,x,n0,0)ε. =

= ∑3
r=1 β[r]ci∂rφ̃+hn0γ[0]φ̃.

Hence, on this space:
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Ĥ0,4 = Ĥ0 := c
3

∑
r=1

β[r]i∂r +hn0γ[0]. (3.14)

Let ℑ◦ be the subspace of the space ℑeν such that if φ̃◦ ∈ ℑ◦ then
φ̃◦ = ℓ◦ φ̃ and φ̃ ∈ ℑe, and if φ̃ ∈ ℑe then (ℓ◦φ̃) ∈ ℑ◦. If φ̃◦ = ℓ◦φ̃ then in the basis Jeν:

φ̃◦ =
1

2
√

(1−a2)



−(−q+ ic) f1
−(−q+ ic) f2
−(−q+ ic) f3
−(−q+ ic) f4

−
(
−
√
(1−a2)+b

)
f1

−
(
−
√
(1−a2)+b

)
f2

−
(
−
√
(1−a2)+b

)
f3

−
(
−
√
(1−a2)+b

)
f4


.

Let us consider the Hamiltonian Ĥ0,4 mode of behavior on the space ℑ◦:
Hence,

Ĥ0,4φ̃◦ = c∑3
r=1 β[r]i∂rφ̃◦+

+γ[0]ic (q−ic)
2
√

(1−a2)

h
2πc

√
2πn0

sinh(2n0π)×

×


∂5


f1
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε1+

+ f2
(
cosh

( h
c n0x4

)
+ sinh

(h
c n0x4

))
ε2+

+ f3
(
cosh

( h
c n0x4

)
− sinh

(h
c n0x4

))
ε3+

+ f4
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε4

+

+
(√

(1−a2)−b
)

h
2πc ∂5 exp

(
−i h

c (n0x5)
)
·

·( f1ε1 + f2ε2 + f3ε3 + f4ε4)


+

+β[4]ic (q−ic)
2
√

(1−a2)

h
2πc

√
2πn0

sinh(2n0π)×

×


∂4


f1
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε1+

+ f2
(
cosh

(h
c n0x4

)
+ sinh

( h
c n0x4

))
ε2+

+ f3
(
cosh

(h
c n0x4

)
− sinh

( h
c n0x4

))
ε3+

+ f4
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε4

+

+
(√

(1−a2)−b
)

∂4
h

2πc exp
(
−i h

c (n0x5)
)
·

·( f1ε1 + f2ε2 + f3ε3 + f4ε4)


.
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Ĥ0,4φ̃◦ = c∑3
r=1 β[r]i∂rφ̃◦+

+γ[0]ic (q−ic)
2
√

(1−a2)

h
2πc

√
2πn0

sinh(2n0π)×

×


∂5


f1
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε1+

+ f2
(
cosh

( h
c n0x4

)
+ sinh

(h
c n0x4

))
ε2+

+ f3
(
cosh

( h
c n0x4

)
− sinh

(h
c n0x4

))
ε3+

+ f4
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε4

+

+
(√

(1−a2)−b
)

h
2πc ∂5 exp

(
−i h

c (n0x5)
)
·

·( f1ε1 + f2ε2 + f3ε3 + f4ε4)


+

+β[4]ic (q−ic)
2
√

(1−a2)

h
2πc

√
2πn0

sinh(2n0π)×

×


∂4


f1
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε1+

+ f2
(
cosh

(h
c n0x4

)
+ sinh

( h
c n0x4

))
ε2+

+ f3
(
cosh

(h
c n0x4

)
− sinh

( h
c n0x4

))
ε3+

+ f4
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε4

+

+
(√

(1−a2)−b
)

∂4
h

2πc exp
(
−i h

c (n0x5)
)
·

·( f1ε1 + f2ε2 + f3ε3 + f4ε4)


.

Therefore,

Ĥ0,4φ̃◦ = c∑3
r=1 β[r]i∂rφ̃◦+

+γ[0]ic
√

1−a2−b
2
√

1−a2 ×
×
(
0+ h

2πc ∂5 exp
(
−i h

c (n0x5)
)
( f1ε1 + f2ε2 + f3ε3 + f4ε4)

)
+

+β[4]ic q−ic
2
√

1−a2
h

2πc

√
2πn0

sinh(2n0π)×

×




f1
(
∂4 cosh

(h
c n0x4

)
+∂4 sinh

(h
c n0x4

))
ε1+

+ f2
(
∂4 cosh

(h
c n0x4

)
+∂4 sinh

(h
c n0x4

))
ε2+

+ f3
(
∂4 cosh

(h
c n0x4

)
−∂4 sinh

(h
c n0x4

))
ε3+

+ f4
(
∂4 cosh

( h
c n0x4

)
−∂4 sinh

(h
c n0x4

))
ε4

+

+0

 .

Hence,

Ĥ0,4φ̃◦ = c∑3
r=1 β[r]i∂rφ̃◦+

+γ[0]ic
(
−i h

c n0
) √1−a2−b

2
√

1−a2
h

2πc exp
(
−i h

c n0x5
)
×

×( f1ε1 + f2ε2 + f3ε3 + f4ε4)+

+β[4]ic h
c n0

q−ic
2
√

1−a2
h

2πc

√
2πn0

sinh(2n0π)×

×


f1
(
sinh

(h
c n0x4

)
+ cosh

(h
c n0x4

))
ε1+

+ f2
(
sinh

(h
c n0x4

)
+ cosh

(h
c n0x4

))
ε2+

+ f3
(
sinh

(h
c n0x4

)
− cosh

(h
c n0x4

))
ε3+

+ f4
(
sinh

(h
c n0x4

)
− cosh

(h
c n0x4

))
ε4

 .

Therefore,
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Ĥ0,4φ̃◦ = c∑3
r=1 β[r]i∂rφ̃◦+

+hn0γ[0]
√

1−a2−b
2
√

1−a2
h

2πc exp
(
−i h

c n0x5
)
×

×( f1ε1 + f2ε2 + f3ε3 + f4ε4)+

+hn0β[4]i q−ic
2
√

1−a2
h

2πc

√
2πn0

sinh(2n0π)×

×


f1
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε1+

+ f2
(
cosh

(h
c n0x4

)
+ sinh

(h
c n0x4

))
ε2−

− f3
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε3−

− f4
(
cosh

(h
c n0x4

)
− sinh

(h
c n0x4

))
ε4

 .

Hence, in basis Jeν:

Ĥ0,4φ̃◦ = c∑3
r=1 β[r]i∂rφ̃◦+hn0×

×


γ[0]
√

1−a2−b
2
√

1−a2



0
0
0
0
f1
f2
f3
f4


+β[4]i q−ic

2
√

1−a2



f1
f2
− f3
− f4

0
0
0
0




=

= c∑3
r=1 β[r]i∂rφ̃◦+hn0×

×


γ[0]
√

1−a2−b
2
√

1−a2



0
0
0
0
f1
f2
f3
f4


+β[4]i q−ic

2
√

1−a2 γ[5]



f1
f2
f3
f4
0
0
0
0




.

with

γ[5] :=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Since

β[4]iγ[5] = γ[0]

then
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Ĥ0,4φ̃◦ = c∑3
r=1 β[r]i∂rφ̃◦+hn0×

×


γ[0] 1

2
√

1−a2



0
0
0
0(√

1−a2−b
)

f1(√
1−a2−b

)
f2(√

1−a2−b
)

f3(√
1−a2−b

)
f4


+ γ[0] 1

2
√

1−a2



(q− ic) f1
(q− ic) f2
(q− ic) f3
(q− ic) f4

0
0
0
0




.

Therefore,

Ĥ0,4φ̃◦ = c
3

∑
r=1

β[r]i∂rφ̃◦+hn0γ[0]
1

2
√

1−a2



−(−q+ ic) f1,
−(−q+ ic) f2,
−(−q+ ic) f3,
−(−q+ ic) f4,

−
(
−
√

1−a2 +b
)

f1,

−
(
−
√

1−a2 +b
)

f2,

−
(
−
√

1−a2 +b
)

f3,

−
(
−
√

1−a2 +b
)

f4


.

Hence,

Ĥ0,4φ̃◦ = c
3

∑
r=1

β[r]i∂rφ̃◦+hn0γ[0]φ̃◦.

Thus, in space ℑe:

Ĥ0,4 = Ĥ0 = c
3

∑
r=1

β[r]i∂r +hn0γ[0],

too.
Let ℑ∗ be the subspace of the space ℑeν such that if φ̃∗ ∈ ℑ∗ then

φ̃∗ = ℓ∗ φ̃ and φ̃ ∈ ℑe, and if φ̃ ∈ ℑe then (ℓ∗φ̃) ∈ ℑ∗. If φ̃∗ = ℓ∗φ̃ (3.12) then in the basis
Jeν:

φ̃∗ =
1

2
√

(1−a2)



(−q+ ic) f1
(−q+ ic) f2
(−q+ ic) f3
(−q+ ic) f4(

b+
√

1−a2
)

f1(
b+
√

1−a2
)

f2(
b+
√

1−a2
)

f3(
b+
√

1−a2
)

f4


.
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Similarly to φ̃◦ you can calculate that

Ĥ0,4φ̃∗ = Ĥ0φ̃∗ = c
3

∑
r=1

β[r]i∂rφ̃∗+hn0γ[0]φ̃∗.,

too.
Let

e1L (k) :=
[

ω(k)+n0 + k3
k1 + ik2

]
, e1R (k) :=

[
ω(k)+n0− k3
−k1− ik2

]
,

e2L (k) :=
[

k1− ik2
ω(k)+n0− k3

]
, e2R (k) :=

[
−k1 + ik2

ω(k)+n0 + k3

]
,

e3L (k) :=−e1R (k) , e3R (k) := e1L (k) ,

e4L (k) :=−e2R (k) , e4R (k) := e2L (k) .

with

ω(k) :=
√

n2
0 + k2

1 + k2
2 + k2

3

( n0, k1, k2,k3 are real numbers).
In this case:

es (k) =
1

2
√

ω(k)(ω(k)+n0)

[
esL (k)
esR (k)

]
.

Let

es (k) :=
[ −→0 4

es (k)

]
here s ∈ {1,2,3,4}.
And let:

e◦s (k) := ℓ◦es (k)

=
1√

2
(√

1−a2−b
)√

1−a2

[
(q− ic)es (k)(√
1−a2−b

)
es (k)

]
,

e∗s (k) := ℓ∗es (k)

=
1√

2
(√

1−a2 +b
)√

1−a2

[
(−q+ ic)es (k)(

b+
√

1−a2
)

es (k)

]
.
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Denote

Ĥ0 (k) :=
3

∑
r=1

β[r]kr =


k3 k1− ik2 n0 0

k1 + ik2 −k3 0 n0
n0 0 −k3 −k1 + ik2
0 n0 −k1− ik2 k3

 .

In that case

Ĥ0e◦1 (k)
(

h
2πc

) 3
2

exp
(

i
h
c

)
=

= hĤ0 (k)e◦1 (k)
(

h
2πc

) 3
2

exp
(

i
h
c

)
= hω(k)e◦1 (k)

(
h

2πc

) 3
2

exp
(

i
h
c

)
.

Therefore, e◦1 (k)
( h

2πc

) 3
2 exp

(
i h

c

)
is an eigenvector of Ĥ0 with the eigenvalue hω(k).

Similarly you can calculate that

e◦2 (k)
( h

2πc

) 3
2 exp

(
i h

c

)
, e∗1 (k)

( h
2πc

) 3
2 exp

(
i h

c

)
, e∗2 (k)

( h
2πc

) 3
2 exp

(
i h

c

)
,

are eigenvectors of Ĥ0 with the same eigenvalue, and

e◦3 (k)
( h

2πc

) 3
2 exp

(
i h

c

)
, e◦4 (k)

( h
2πc

) 3
2 exp

(
i h

c

)
,

e∗3 (k)
( h

2πc

) 3
2 exp

(
i h

c

)
, e∗4 (k)

( h
2πc

) 3
2 exp

(
i h

c

)
are an eigenvectors of Ĥ0 with the eigenvalue (−hω(k)).

Vectors e◦s (k)
( h

2πc

) 3
2 exp

(
i h

c

)
, e∗s (k)

( h
2πc

) 3
2 exp

(
i h

c

)
with s ∈ {1,2,3,4} form an or-

thonormalized basis in the space ℑeν (3.11) and

4

∑
s=1

(
e∗∗s,r (k)e∗s,r′ (k)+ e∗◦s,r (k)e◦s,r′ (k)

)
= δr,r′ (3.15)

for r,r′ ∈ {1,2,3,4,5,6,7,8}.
Let

e′∗s (k) :=U (−)e∗s (k)

=
1√

2
(√

1−a2 +b
)√

1−a2

1
2
√

ω(k)(ω(k)+n0)

·



(
a− i
√

1−a2
)
(−q+ ic)esL (k)

(−q+ ic)esR (k)(
a− i
√

1−a2
)(√

1−a2 +b
)

esL (k)(√
(1−a2)+b

)
esR (k)


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and

e′◦s (k) :=U (−)e◦s (k)

=
1√

2
(√

1−a2−b
)√

1−a2

1
2
√

ω(k)(ω(k)+n0)

·



(
a+ i
√

1−a2
)
(q− ic)esL (k)

(q− ic)esR (k)(
a+ i
√

1−a2
)(√

1−a2−b
)

esL (k)(√
(1−a2)−b

)
esR (k)

 .

For these vectors:

4

∑
r=1

(
e′∗∗r, j (k)e′∗r, j′ (k)+ e′∗◦r, j (k)e′◦r, j′ (k)

)
= δ j, j′

and since U (−)†U (−) = 18 then e′◦s (k) and e′∗s (k) form an orthonormalized basis in the
space ℑeν, too.

Let

e′r (k) :=U (−)er (k) =
1

2
√

ω(k)(ω(k)+n0)


(c+ iq)erL (k)−→0 2
(a− ib)erL (k)

erR (k)

 . (3.16)

In that case:

e′r (k) =
1√
2

(√
1− b√

1−a2
e′◦r (k)+

√
1+

b√
1−a2

e′∗r (k)

)
.

Let for j, j′ ∈ {1,2,3,4,5,6,7,8}:{
ψ†

j′ (y) ,ψ j (x)
}
= δ(y−x)δ j′, j1̂,{

ψ†
j′ (y) ,ψ

†
j (x)

}
= 0̂ =

{
ψ j′ (y) ,ψ j (x)

}
and let

b◦r,k :=
(

h
2πc

)3 ∫
(Ω)

dx · ei h
c kx

8

∑
j′=1

e∗◦r, j′ (k)ψ j′ (x) ,

b∗r,k :=
(

h
2πc

)3 ∫
(Ω)

dx · ei h
c kx

8

∑
j′=1

e∗∗r, j′ (k)ψ j′ (x) .

In that case:
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∑
k

e−i h
c kx

(
4

∑
r=1

e◦r, j (k)b◦r,k +
4

∑
r=1

e∗r, j (k)b∗r,k

)

= ∑
k

e−i h
c kx


∑4

r=1 e◦r, j (k)
( h

2πc

)3 ·
·
∫
(Ω) dx′ · ei h

c kx′ ∑8
j′=1 e∗◦r, j′ (k)ψ j′ (x′)

+∑4
r=1 e∗r, j (k)

( h
2πc

)3 ·
·
∫
(Ω) dx′ · ei h

c kx′ ∑8
j′=1 e∗∗r, j′ (k)ψ j′ (x′)


=

(
h

2πc

)3

∑
k

∫
(Ω)

dx′ · ei h
c kx′e−i h

c kx ·

·
4

∑
r=1

8

∑
j′=1

(
e◦r, j (k)e∗◦r, j′ (k)+ e∗r, j (k)e∗∗r, j′ (k)

)
ψ j′
(
x′
)

.

In accordance with (3.15):

∑
k

e−i h
c kx

(
4

∑
r=1

e◦r, j (k)b◦r,k +
4

∑
r=1

e∗r, j (k)b∗r,k

)

=

(
h

2πc

)3 ∫
(Ω)

dx′ ·∑
k

e−i h
c k(x−x′)

8

∑
j′=1

δ j, j′ψ j′
(
x′
)

.

Hence, since

∑
k

ei h
c k(x′−x) =

(
h

2πc

)3

δ
(
x′−x

)
and according properties of δ:

∑
k

e−i h
c kx

(
4

∑
r=1

e◦r, j (k)b◦r,k +
4

∑
r=1

e∗r, j (k)b∗r,k

)

=

(
h

2πc

)3 ∫
(Ω)

dx′ ·
(

h
2πc

)3

δ
(
x′−x

)
ψ j
(
x′
)

=
∫
(Ω)

dx′ ·δ
(
x′−x

)
ψ j
(
x′
)
= ψ j (x) .

Thus:

∑k e−i h
c kx (∑4

r=1 e◦r, j (k)b◦r,k +∑4
r=1 e∗r, j (k)b∗r,k

)
= ψ j (x). (3.17)

Let
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ψ(x) := h
2πc×

×


√

2πn0
sinh(2n0π)


(

cosh
( h

c n0x4
)
+

+sinh
(h

c n0x4
) )∑2

r=1 ψr (x)εr+

+

(
cosh

(h
c n0x4

)
−

−sinh
(h

c n0x4
) )∑4

r=3 ψr (x)εr

+

+exp
(
−i h

c (n0x4)
)

∑4
r=1 ψr+4 (x)εr

 .
(3.18)

That is in basis Jeν (3.11):

ψ(x) =



ψ1 (x)
ψ2 (x)
ψ3 (x)
ψ4 (x)
ψ5 (x)
ψ6 (x)
ψ7 (x)
ψ8 (x)


.

That is in this basis:

b◦r,k :=
(

h
2πc

)3 ∫
(Ω)

dx · ei h
c kxe†

◦r, j (k)ψ(x) ,

b∗r,k :=
(

h
2πc

)3 ∫
(Ω)

dx · ei h
c kxe†

∗r, j (k)ψ(x) .

Let

ψ′ (x) :=U (−)ψ(x) .

In that case:

b′◦r,k :=
(

h
2πc

)3 ∫
(Ω)

dx · ei h
c kxe′†◦r, j (k)ψ′ (x) ,

b′∗r,k :=
(

h
2πc

)3 ∫
(Ω)

dx · ei h
c kxe′†∗r, j (k)ψ′ (x) .

Hence:

b′◦r,k =

(
h

2πc

)3 ∫
(Ω)

dx · ei h
c kx
(

U (−)e◦r, j (k)
)†(

U (−)ψ(x)
)

,

b′∗r,k =

(
h

2πc

)3 ∫
(Ω)

dx · ei h
c kx
(

U (−)e∗r, j (k)
)†(

U (−)ψ(x)
)

.
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Since U (−)†U (−) = 18 then

b′◦r,k =

(
h

2πc

)3 ∫
(Ω)

dx · ei h
c kxe†

◦r, j (k)ψ(x) ,

b′∗r,k =

(
h

2πc

)3 ∫
(Ω)

dx · ei h
c kxe†

∗r, j (k)ψ(x) .

That is:

b′◦r,k = b◦r,k and b′∗r,k = b∗r,k.

And from (3.17):

ψ′j (x) = ∑
k

e−i h
c kx

4

∑
r=1

(
e′◦r, j (k)b◦r,k + e′∗r, j (k)b∗r,k

)
. (3.19)

For operators b◦r,k and b∗r,k:{
b†
◦r′,k′ ,b◦r,k

}
=
( h

2πc

)3 δr,r′δk,k′ 1̂,{
b†
∗r′,k′ ,b∗r,k

}
=
( h

2πc

)3 δr,r′δk,k′ 1̂,{
b†
◦r′,k′ ,b∗r,k

}
= 0̂,{

b†
∗r′,k′ ,b◦r,k

}
= 0̂,{

b†
◦r′,k′ ,b

†
◦r,k

}
= 0̂,{

b†
∗r′,k′ ,b

†
∗r,k

}
= 0̂,

{b◦r′,k′ ,b◦r,k}= 0̂,
{b∗r′,k′ ,b∗r,k}= 0̂,{
b†
∗r′,k′ ,b

†
◦r,k

}
= 0̂.

(3.20)

Let

br,k :=
√

2
(
1−a2) 1

4

(
1√√

1−a2−b
b◦r,k +

1√√
1−a2 +b

b∗r,k

)
.

In that case:

e′◦r (k)b◦r,k + e′∗r (k)b∗r,k =

=
1√
2

(√
1− b√

1−a2
e′◦r (k)+

√
1+

b√
1−a2

e′∗r (k)

)
br,k

−

√
b−
√

1−a2

b+
√

1−a2
e′◦r (k)b∗r,k−

√
b+
√

1−a2

b−
√

1−a2
e′∗r (k)b◦r,k
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And from (3.16):

e′◦r (k)b◦r,k + e′∗r (k)b∗r,k
= e′r (k)br,k

−

√
b−
√

1−a2

b+
√

1−a2
e′◦r (k)b∗r,k

−

√
b+
√

1−a2

b−
√

1−a2
e′∗r (k)b◦r,k.

For br,k: {
b†

r′,k′ ,br,k

}
= 4 b2+c2+q2

c2+q2

( h
2πc

)3 δr,r′δk,k′ 1̂,{
b†

r′,k′ ,b
†
r,k

}
= 0̂,

{br′,k′ ,br,k}= 0̂. (3.21)

From (3.19):

ψ′j (x) = ∑
k

e−i h
c kx

4

∑
r=1

e′r, j (k)br,k

−

√
b−
√

1−a2

b+
√

1−a2 ∑
k

e−i h
c kx

4

∑
r=1

e′◦r, j (k)b∗r,k

−

√
b+
√

1−a2

b−
√

1−a2 ∑
k

e−i h
c kx

4

∑
r=1

e′∗r, j (k)b◦r,k.

Let:

χ(x) := ∑
k

e−i h
c kx

4

∑
r=1

e′r (k)br,k, (3.22)

χ∗ j (x) :=

√
b−
√

1−a2

b+
√

1−a2 ∑
k

e−i h
c kx

4

∑
r=1

e′◦r, j (k)b∗r,k

χ◦ j (x) :=

√
b+
√

1−a2

b−
√

1−a2 ∑
k

e−i h
c kx

4

∑
r=1

e′∗r, j (k)b◦r,k.

In that case:

ψ′j (x) = χ j (x)−χ∗ j (x)−χ◦ j (x) .

Let
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Ĥ ′0 :=U (−)Ĥ0U (−)†.

For this Hamiltonian:

∫
(Ω)

dx ·χ†
∗ (x) Ĥ ′0ψ′ (x)

=
∫
(Ω)

dx ·

√
b−
√

1−a2

b+
√

1−a2 ∑
k′

ei h
c k′x

4

∑
r′=1

b†
∗r′,k′e

′†
◦r′
(
k′
)
·

·Ĥ ′0 ∑
k

e−i h
c kx

4

∑
r=1

(
e′◦r (k)b◦r,k + e′∗r (k)b∗r,k

)
=

∫
(Ω)

dx ·

√
b−
√

1−a2

b+
√

1−a2 ∑
k

∑
k′

ei h
c k′x

4

∑
r′=1

b†
∗r′,k′e

′†
◦r′
(
k′
)
·

·Ĥ ′0e−i h
c kx
(

∑2
r=1 (e

′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)+

+∑4
r=3 (e

′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)

)

=
∫
(Ω)

dx ·

√
b−
√

1−a2

b+
√

1−a2 ∑
k

∑
k′

ei h
c k′xe−i h

c kx
4

∑
r′=1

b†
∗r′,k′e

′†
◦r′
(
k′
)
·

·hĤ ′0 (k)
(

∑2
r=1 (e

′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)+

+∑4
r=3 (e

′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)

)
.

Hence:

∫
(Ω)

dx ·χ†
∗ (x) Ĥ ′0ψ′ (x)

=
∫
(Ω)

dx ·

√
b−
√

1−a2

b+
√

1−a2 ∑
k

∑
k′

ei h
c k′xe−i h

c kx
4

∑
r′=1

b†
∗r′,k′e

′†
◦r′
(
k′
)
·

·h
(

ω(k)∑2
r=1 (e

′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)−

−ω(k)∑4
r=3 (e

′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)

)

=
∫
(Ω)

dx ·

√
b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k)∑
k′

ei h
c k′xe−i h

c kx ·

·
4

∑
r′=1

b†
∗r′,k′e

′†
◦r′
(
k′
)( ∑2

r=1 (e
′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)−

−∑4
r=3 (e

′
◦r (k)b◦r,k + e′∗r (k)b∗r,k)

)

=

√
b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k)∑
k′

(∫
dx · e−i h

c (k−k′)x
)
·

·
4

∑
r′=1

b†
∗r′,k′

 ∑2
r=1

(
e′†◦r′ (k

′)e′◦r (k)b◦r,k + e′†◦r′ (k
′)e′∗r (k)b∗r,k

)
−

−∑4
r=3

(
e′†◦r′ (k

′)e′◦r (k)b◦r,k + e′†◦r′ (k
′)e′∗r (k)b∗r,k

)  .
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Since ∫
(Ω)

dx · e−i h
c (k−k′)x =

(
2πc
h

)3

δk,k′

then

∫
(Ω)

dx ·χ†
∗ (x) Ĥ ′0ψ′ (x)

=

√
b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k)∑
k′

(
2πc
h

)3

δk,k′ ·

·
4

∑
r′=1

b†
∗r′,k′

 ∑2
r=1

(
e′†◦r′ (k

′)e′◦r (k)b◦r,k + e′†◦r′ (k
′)e′∗r (k)b∗r,k

)
−

−∑4
r=3

(
e′†◦r′ (k

′)e′◦r (k)b◦r,k + e′†◦r′ (k
′)e′∗r (k)b∗r,k

)  .

In accordance with properties of δ:

∫
(Ω)

dx ·χ†
∗ (x) Ĥ ′0ψ′ (x)

=

√
b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k)
(

2πc
h

)3

·

·
4

∑
r′=1

b†
∗r′,k

 ∑2
r=1

(
e′†◦r′ (k)e′◦r (k)b◦r,k + e′†◦r′ (k)e′∗r (k)b∗r,k

)
−

−∑4
r=3

(
e′†◦r′ (k)e′◦r (k)b◦r,k + e′†◦r′ (k)e′∗r (k)b∗r,k

)  .

Since

e′†◦r′
(
k′
)

e′◦r (k) = δr,r′ ,

e′†◦r′
(
k′
)

e′∗r (k) = 0

then

∫
(Ω)

dx ·χ†
∗ (x) Ĥ ′0ψ′ (x)

=

√
b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k)
(

2πc
h

)3

·

·
4

∑
r′=1

b†
∗r′,k

(
2

∑
r=1

(δr,r′b◦r,k +0b∗r,k)−
4

∑
r=3

(δr,r′b◦r,k +0b∗r,k)

)

=

(
2πc
h

)3
√

b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k) ·
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·
4

∑
r′=1

b†
∗r′,k

(
2

∑
r=1

δr,r′b◦r,k−
4

∑
r=3

δr,r′b◦r,k

)

=

(
2πc
h

)3
√

b−
√

1−a2

b+
√

1−a2
·

·∑
k

hω(k)

(
2

∑
r=1

b†
∗r,kb◦r,k−

4

∑
r=3

b†
∗r,kb◦r,k

)
.

Therefore,

∫
(Ω)

dx ·χ†
∗ (x) Ĥ ′0ψ′ (x)

=

(
2πc
h

)3
√

b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k)

(
2

∑
r=1

b†
∗r,kb◦r,k−

4

∑
r=3

b†
∗r,kb◦r,k

)
.

Similarly you can calculate that

∫
dx ·χ†

◦ (x) Ĥ ′0ψ′ (x)

=

(
2πc
h

)3
√

b−
√

1−a2

b+
√

1−a2 ∑
k

hω(k)

(
2

∑
r=1

b†
◦r,kb∗r,k−

4

∑
r=3

b†
◦r,kb∗r,k

)
.

Since

Ψ̃(t,p) =
(

2πc
h

)3 4

∑
r=1

cr (t,p)b†
r,pF̃0

and (3.20) {
b†
∗r′,k′ ,b◦r,k

}
= 0̂,

{
b†
∗r′,k′ ,b

†
∗r,k

}
= 0̂,

{
b†
∗r′,k′ ,b

†
◦r,k

}
= 0̂.

then

b†
∗r,kb◦r,kΨ̃ =−b◦r,k

(
2πc
h

)3 4

∑
r=1

cr (t,p)b†
∗r,kb†

r,pF̃0 = 0̃.

Similarly

b†
◦r,kb∗r,kΨ̃ = 0̃.

Hence, ∫
(Ω) dx ·ψ′† (x) Ĥ ′0ψ′ (x)Ψ(t,x0) =

∫
(Ω) dx·χ† (x) Ĥ ′0χ(x)Ψ(t,x0).

Thus, the function ψ′ (x) can be substituted for the function χ(x) in calculations of a
probabilities evolution.
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Let

νn0,(s) (k) :=
[
(c+ iq)esL (k)−→0 2

]
, ln0,(s) (k) :=

[
(a− ib)esL (k)

esR (k)

]
.

Hence, from (3.16):

e′s (k) = h
2πc×

×


√

2πn0
sinh(2n0π)


(

cosh
( h

c n0x4
)
+

+sinh
(h

c n0x4
) )(c+ iq)esL (k)+

+

(
cosh

(h
c n0x4

)
−

−sinh
(h

c n0x4
) )−→0 2

+

+exp
(
−i h

c (n0x4)
)

ln0,(s) (k)

 .

Therefore, in basis Jeν:

e′s (k) =
[

νn0,(s) (k)
ln0,(s) (k)

]
.

Therefore, from (3.22):

χ(x) = ∑
k

e−i h
c kx

4

∑
s=1

[
νn0,(s) (k)
ln0,(s) (k)

]
bs,k,

Let

ν̃n0 (x) := ∑
k

e−i h
c kx

2

∑
s=1

νn0,(s) (k)bs (k) ,

l̃n0 (x) := ∑
k

e−i h
c kx

4

∑
s=1

ln0,(s) (k)bs (k) .

Hence, in basis Jeν:

χ(x) =
[

ν̃n0 (x)
l̃n0 (x)

]
. (3.23)

Let:

Ĥl,0 := c
3

∑
r=1

β[r]i∂r +hn0

(
aγ[0]−bβ[4]

)
,

Ĥν,0 := c
3

∑
r=1

β[r]i∂r +hn0

(
aγ[0]+bβ[4]

)
,

Ĥν,l := (c+ iq)


0 0 n0 0
0 0 0 n0
−n0 0 0 0

0 −n0 0 0

 ,
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Ĥl,ν := (c− iq)


0 0 −n0 0
0 0 0 −n0
n0 0 0 0
0 n0 0 0

 .

In that case in basis Jeν:

Ĥ ′0 =
[

Ĥν,0 Ĥν,l
Ĥl,ν Ĥl,0

]
.

Let

Ĥl,0 (k) :=
3

∑
r=1

β[r]kr +n0

(
aγ[0]−bβ[4]

)
,

Ĥν,0 (k) :=
3

∑
r=1

β[r]kr +n0

(
aγ[0]+bβ[4]

)
.

In that case

Ĥ ′0 (k) =
[

Ĥν,0 (k) Ĥν,l
Ĥl,ν Ĥl,0 (k)

]
An neutrino and it’s lepton are tied by the follows equations:

Ĥν,0 (k)νn0,(s) (k)+ Ĥν,lln0,(s) (k) = ω(k)νn0,(s) (k)

for s ∈ {1,2} and

Ĥν,0 (k)νn0,(s) (k)+ Ĥν,lln0,(s) (k) =−ω(k)νn0,(s) (k)

for s ∈ {3,4}.
I suppose that such neutrino can fly 1.5 cm. [36] and give birth to it’s leptons.

3.1.3. Electroweak Transformations

During the 1960s Sheldon Lee Glashow, Abdus Salam, and Steven Weinberg independently
discovered that they could construct a gauge-invariant theory of the weak force, provided
that they also included the electromagnetic force.

The existence of the force carriers, the neutral Z particles and the charged W parti-
cles, was verified experimentally in 1983 in high-energy proton-antiproton collisions at the
European Organization for Nuclear Research (CERN).

Let (3.8) does not hold true, that is U (−) depends on x. And let denote:

K :=
3

∑
µ=0

β[µ] (Fµ +0.5g1Y Bµ) . (3.24)



128 Fields

In that case from (2.39) the equation of moving is of following form:(
K +

3

∑
µ=0

β[µ]i∂µ + γ[0]i∂5 +β[4]i∂4

)
φ̃ = 0. (3.25)

Let us consider for this Hamiltonian the following transformations:

φ̃→ φ̃′ :=U (−)φ̃,

x4→ x′4 := (ℓ◦+ ℓ∗)ax4 +(ℓ◦− ℓ∗)
√

1−a2x5,

x5→ x′5 := (ℓ◦+ ℓ∗)ax5− (ℓ◦− ℓ∗)
√

1−a2x4, (3.26)

xµ→ x′µ := xµ, for µ ∈ {0,1,2,3} ,

K→ K′ =U (−)KU (−)†− i
3

∑
µ=0

β[µ]
(

∂µU (−)
)

U (−)†

with
∂4U (−) =U (−)∂4 and ∂5U (−) =U (−)∂5:

Since

(ℓ◦− ℓ∗)(ℓ◦− ℓ∗) = 18

then

x4 = ax′4− (ℓ◦− ℓ∗)
√

1−a2x′5 and

x5 = (ℓ◦− ℓ∗)
√

1−a2x′4 +ax′5.

Since for any f :

∂′4 f = ∂4 f ·∂′4x4 +∂5 f ·∂′4x5,

∂′5 f = ∂4 f ·∂′5x4 +∂5 f ·∂′5x5

then

∂′4 f = ∂4 f ·a+∂5 f · (ℓ◦− ℓ∗)
√

1−a2,

∂′5 f = ∂4 f ·
(
−(ℓ◦− ℓ∗)

√
1−a2

)
+∂5 f ·a.

Therefore, if (
K′+

3

∑
µ=0

β[µ]i∂µ + γ[0]i∂′5 +β[4]i∂′4

)
U (−)φ̃ = 0

then
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
U (−)KU (−)†− i∑3

µ=0 β[µ]
(
∂µU (−))U (−)†

+∑3
µ=0 β[µ]i∂µ + γ[0]i

((
−(ℓ◦− ℓ∗)

√
1−a2

)
∂4 +a∂5

)
+β[4]i

(
a∂4 +(ℓ◦− ℓ∗)

√
1−a2∂5

)
U (−)φ̃ = 0.

Hence,
U (−)KU (−)†U (−)− i∑3

µ=0 β[µ]
(
∂µU (−))U (−)†U (−)

+∑3
µ=0 β[µ]i∂µU (−)+ γ[0]U (−)i

((
−(ℓ◦− ℓ∗)

√
1−a2

)
∂4 +a∂5

)
+β[4]U (−)i

(
a∂4 +(ℓ◦− ℓ∗)

√
1−a2∂5

)
 φ̃ = 0

since U (−) is a linear operator such that ∂4U (−) =U (−)∂4 and ∂5U (−) =U (−)∂5.
Since

U (−)†U (−) = 18,

for any f :

∂µ

(
U (−) f

)
=
(

∂µU (−)
)

f +
(

U (−)∂µ f
)
=
((

∂µU (−)
)
+U (−)∂µ

)
f ,

and

γ[0]U (−) = U (−)
(

aγ[0]− (ℓ◦− ℓ∗)
√

1−a2β[4]
)

,

β[4]U (−) = U (−)
(

aβ[4]+(ℓ◦− ℓ∗)
√

1−a2γ[0]
)

then 

U (−)K− i∑3
µ=0 β[µ]

(
∂µU (−))

+∑3
µ=0 β[µ]i

((
∂µU (−))+U (−)∂µ

)
+U (−)

(
aγ[0]− (ℓ◦− ℓ∗)

√
1−a2β[4]

)
×

×i
((
−(ℓ◦− ℓ∗)

√
1−a2

)
∂4 +a∂5

)
+U (−)

(
aβ[4]+(ℓ◦− ℓ∗)

√
1−a2γ[0]

)
×

×i
(

a∂4 +(ℓ◦− ℓ∗)
√

1−a2∂5

)


φ̃ = 0.

Therefore,

U (−)K− i∑3
µ=0 β[µ]

(
∂µU (−))

+∑3
µ=0 β[µ]i

((
∂µU (−))+U (−)∂µ

)

+iU (−)



(
aγ[0]− (ℓ◦− ℓ∗)

√
1−a2β[4]

)
×

×
(
−(ℓ◦− ℓ∗)

√
1−a2∂4 +a∂5

)
+
(

aβ[4]+(ℓ◦− ℓ∗)
√

1−a2γ[0]
)
×

×
(

a∂4 +(ℓ◦− ℓ∗)
√

1−a2∂5

)




φ̃ = 0,
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(
U (−)K +

3

∑
µ=0

β[µ]iU (−)∂µ + iU (−)
(
+γ[0]∂5 +β[4]∂4

))
φ̃ = 0,

Hence,

U (−)

(
K +

3

∑
µ=0

β[µ]i∂µ + i
(
+γ[0]∂5 +β[4]∂4

))
φ̃ = 0

since β[µ]U (−) =U (−)β[µ] for µ ∈ {0,1,2,3}. Compare with (3.25).
Therefore, this equation of moving is invariant under the transformation (3.26).
Let g2 be some positive real number.
If design (here: a,b,c,q form U (−) in (3.4)):

W0,µ :=−2 1
g2q

(
q(∂µa)b−q(∂µb)a+(∂µc)q2+
+a(∂µa)c+b(∂µb)c+ c2 (∂µc)

)
W1,µ :=−2 1

g2q

(
(∂µa)a2−bq(∂µc)+a(∂µb)b+
+a(∂µc)c+q2 (∂µa)+ c(∂µb)q

)
W2,µ :=−2 1

g2q

(
q(∂µa)c−a(∂µa)b−b2 (∂µb)−
−c(∂µc)b− (∂µb)q2− (∂µc)qa

)
and

Wµ :=


W0,µ12 02 (W1,µ− iW2,µ)12 02

02 02 02 02
(W1,µ + iW2,µ)12 02 −W0,µ12 02

02 02 02 02

 (3.27)

then
−i
(

∂µU (−)
)

U (−)† =
1
2

g2Wµ, (3.28)

and from (3.24), (3.25):(
∑3

µ=0 β[µ]i
(
∂µ− i0.5g1BµY − i 1

2 g2Wµ− iFµ
)

+γ[0]i∂′5 +β[4]i∂′4

)
φ̃′ = 0. (3.29)

Let (3.4) a′ (t,x), b′ (t,x), c′ (t,x), q′ (t,x) are real functions and:

U ′ :=


(a′+ ib′)12 02 (c′+ ig′)12 02

02 12 02 02
(−c′+ ig′)12 02 (a′− ib′)12 02

02 02 02 12

 .

In this case if
U ′′ :=U ′U (−)

then there exist real functions a′′ (t,x), b′′ (t,x), c′′ (t,x), q′′ (t,x) such that U ′′ has the similar
shape:
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U ′′ =


(a′′+ ib′′)12 02 (c′′+ ig′′)12 02

02 12 02 02
(−c′′+ ig′′)12 02 (a′′− ib′′)12 02

02 02 02 12

 .

Let:

W ′′µ :=− 2i
g2

(
∂µ

(
U ′U (−)

))(
U ′U (−)

)†
,

Hence,

W ′′µ = − 2i
g2

(
∂µU ′

)
U (−)

(
U ′U (−)

)†
− 2i

g2
U ′∂µU (−)

(
U ′U (−)

)†

= − 2i
g2

(
∂µU ′

)
U (−)U (−)†U ′†− 2i

g2
U ′
(

∂µU (−)
)

U (−)†U ′†

= − 2i
g2

(
∂µU ′

)
U ′†− 2i

g2
U ′
(

∂µU (−)
)

U (−)†U ′†.

Since from (3.28):

Wµ =−i
2
g2

(
∂µU (−)

)
U (−)†

then

W ′′µ = − 2i
g2

(
∂µU ′

)
U ′†− 2i

g2
U ′
((

∂µU (−)
)

U (−)†
)

U ′†

= − 2i
g2

(
∂µU ′

)
U ′† +U ′WµU ′†.

Therefore, if

ℓ′′◦ :=
1

2
√

(1−a′′2)

 (b′′+
√

(1−a′′2)
)

14 (q′′− ic′′)14

(q′′+ ic′′)14

(√
(1−a′′2)−b′′

)
14

 ,

ℓ′′∗ :=
1

2
√

(1−a′′2)

 (√(1−a′′2)−b′′
)

14 (−q′′+ ic′′)14

(−q′′− ic′′)14

(
b′′+

√
(1−a′′2)

)
14

 .

then under the following transformation

φ̃→ φ̃′′ :=U ′′φ̃,

x4→ x′′4 :=
(
ℓ′′◦+ ℓ′′∗

)
a′′x4 +

(
ℓ′′◦− ℓ′′∗

)√
1−a′′2x5,

x5→ x′′5 :=
(
ℓ′′◦+ ℓ′′∗

)
a′′x5−

(
ℓ′′◦− ℓ′′∗

)√
1−a′′2x4, (3.30)

xµ→ x′′µ := xµ, for µ ∈ {0,1,2,3} ,

K→ K′′ :=
3

∑
µ=0

β[µ]
(

Fµ +0.5g1Y Bµ +
1
2

g2W ′′µ

)
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fields W ′′µ and Wµ are tied by the following equation

W ′′µ =U ′WµU ′†− 2i
g2
(∂µU ′)U ′† (3.31)

like in Standard Model.
From (3.28):

Wµ =−i
2
g2

(
∂µU (−)

)
U (−)†.

Let us calculate:

∂µWν−∂νWµ =

= ∂µ

(
−i

2
g2

(
∂νU (−)

)
U (−)†

)
−∂ν

(
−i

2
g2

(
∂µU (−)

)
U (−)†

)
=

= −i
2
g2

( (
∂µ∂νU (−))U (−)† +

(
∂νU (−))(∂µU (−)†)

−
(
∂ν∂µU (−))U (−)†−

(
∂µU (−))(∂νU (−)†) ) .

Since

∂µ∂νU (−) = ∂ν∂µU (−)

then

∂µWν−∂νWµ = (3.32)

= −i
2
g2

((
∂νU (−)

)(
∂µU (−)†

)
−
(

∂µU (−)
)(

∂νU (−)†
))

.

And let us calculate:

WµWν−WνWµ =

=

(
−i

2
g2

(
∂µU (−)

)
U (−)†

)(
−i

2
g2

(
∂νU (−)

)
U (−)†

)
−

−
(
−i

2
g2

(
∂νU (−)

)
U (−)†

)(
−i

2
g2

(
∂µU (−)

)
U (−)†

)
= − 4

g2
2

( (
∂µU (−))U (−)† (∂νU (−))U (−)†

−
(
∂νU (−))U (−)† (∂µU (−))U (−)†

)
.

Since

U (−)U (−)† = 18

then

∂µ

(
U (−)U (−)†

)
= 0, and ∂ν

(
U (−)U (−)†

)
= 0,
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Hence,(
∂µU (−)

)
U (−)† +U (−)∂µU (−)† = 0, and

(
∂νU (−)

)
U (−)† +U (−)∂νU (−)† = 0

Hence, (
∂µU (−)

)
U (−)† =−U (−)∂µU (−)† and

(
∂νU (−)

)
U (−)† =−U (−)∂νU (−)†.

Therefore,

WµWν−WνWµ =

= − 4
g2

2

(
−
(
∂µU (−))U (−)†U (−)∂νU (−)†+

+
(
∂νU (−))U (−)†U (−)∂µU (−)†

)
= − 4

g2
2

(
−
(

∂µU (−)
)(

∂νU (−)†
)
+
(

∂νU (−)
)(

∂µU (−)†
))

since

U (−)†U (−) = 18.

Therefore, in accordance with (3.32):

∂µWν−∂νWµ = i g2
2 (WµWν−WνWµ). (3.33)

In accordance with (3.27) matrix WµWν−WνWµ has the following columns:
the first and the second columns are the following:

2iW1,µW2,ν−2iW2,µW1,ν 02
02 02

2W0,νW1,µ +2iW0,νW2,µ−2W0,µW1,ν−2iW0,µW2,ν 02
02 02

,

the third and the fourth columns are the following:

2W0,µW1,ν−2iW0,µW2,ν−2W0,νW1,µ +2iW0,νW2,µ 02
02 02

−2iW1,µW2,ν +2iW2,µW1,ν 02
02 02

.

And matrix ∂µWν−∂νWµ has the following columns:
the first and the second ones are the following:

∂µW0,ν−∂νW0,µ 02
02 02

∂µW1,ν + i∂µW2,ν−∂νW1,µ− i∂νW2,µ 02
02 02

,

the third and the fourth columns are the following:
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∂µW1,ν− i∂µW2,ν−∂νW1,µ + i∂νW2,µ 02
02 02

−∂µW0,ν +∂νW0,µ 02
02 02

.

Therefore, in accordance with (3.33):

i
g2

2
(2iW1,µW2,ν−2iW2,µW1,ν)

= ∂µW0,ν−∂νW0,µ,

i
g2

2
(2W0,νW1,µ +2iW0,νW2,µ−2W0,µW1,ν−2iW0,µW2,ν)

= ∂µW1,ν + i∂µW2,ν−∂νW1,µ− i∂νW2,µ,

i
g2

2
(2W0,µW1,ν−2iW0,µW2,ν−2W0,νW1,µ +2iW0,νW2,µ)

= ∂µW1,ν− i∂µW2,ν−∂νW1,µ + i∂νW2,µ,

i
g2

2
(−2iW1,µW2,ν +2iW2,µW1,ν)

= −∂µW0,ν +∂νW0,µ.

Hence,

∂νW0,µ = ∂µW0,ν−g2 (W1,µW2,ν−W1,νW2,µ) , (3.34)

∂νW1,µ = ∂µW1,ν−g2 (W2,µW0,ν−W2,νW0,µ) , (3.35)

∂νW2,µ = ∂µW2,ν−g2 (W0,µW1,ν−W0,νW1,µ) . (3.36)

The derivative of (3.34) with respect to xν is of the following form:

∂ν∂νW0,µ = ∂µ∂νW0,ν−

−g2

(
(∂νW1,µ)W2,ν +W1,µ (∂νW2,ν)
−(∂νW1,ν)W2,µ−W1,ν (∂νW2,µ)

)
.

Let us substitute ∂νW1,µ and ∂νW2,µ for its expressions from (3.35) and (3.36):

∂ν∂νW0,µ = ∂µ∂νW0,ν−

−g2

 (∂µW1,ν−g2 (W2,µW0,ν−W2,νW0,µ))W2,ν
+W1,µ (∂νW2,ν)− (∂νW1,ν)W2,µ

−W1,ν (∂µW2,ν−g2 (W0,µW1,ν−W0,νW1,µ))

=

= ∂µ∂νW0,ν

−g2

 (∂µW1,ν)W2,ν−g2 (W2,µW0,νW2,ν−W2,νW0,µW2,ν)
+W1,µ (∂νW2,ν)− (∂νW1,ν)W2,µ

−W1,ν∂µW2,ν +g2 (W1,νW0,µW1,ν−W1,νW0,νW1,µ)

=
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=−g2
2 (W1,νW1,ν +W2,νW2,ν)W0,µ+

+g2
2 (W1,νW1,µ +W2,µW2,ν)W0,ν

−g2

(
(∂µW1,ν)W2,ν−W1,ν∂µW2,ν

+W1,µ (∂νW2,ν)− (∂νW1,ν)W2,µ

)
+

+∂µ∂νW0,ν

Hence,

∂ν∂νW0,µ =
=−g2

2 (W1,νW1,ν +W2,νW2,ν)W0,µ+
+g2

2 (W1,νW1,µ +W2,µW2,ν)W0,ν

−g2

(
(∂µW1,ν)W2,ν−W1,ν∂µW2,ν

+W1,µ (∂νW2,ν)− (∂νW1,ν)W2,µ

)
+

+∂µ∂νW0,ν.

Therefore:

∂ν∂νW0,µ =
=−g2

2 (W0,νW0,ν +W1,νW1,ν +W2,νW2,ν)W0,µ+
+g2

2W0,νW0,νW0,µ
+g2

2 (W1,νW1,µ +W2,µW2,ν)W0,ν

−g2

(
(∂µW1,ν)W2,ν−W1,ν∂µW2,ν

+W1,µ (∂νW2,ν)− (∂νW1,ν)W2,µ

)
+

+∂µ∂νW0,ν.

Thus,

∂ν∂νW0,µ =
=−g2

2 (W0,νW0,ν +W1,νW1,ν +W2,νW2,ν)W0,µ+
+g2

2 (W0,νW0,µ +W1,νW1,µ +W2,µW2,ν)W0,ν

−g2

(
(∂µW1,ν)W2,ν−W1,ν∂µW2,ν

+W1,µ (∂νW2,ν)− (∂νW1,ν)W2,µ

)
+

+∂µ∂νW0,ν.

(3.37)

Since

W̃ 2
ν :=W0,νW0,ν +W1,νW1,ν +W2,νW2,ν

and ⟨
W̃ν|W̃µ

⟩
:=W0,νW0,µ +W1,νW1,µ +W2,µW2,ν =

⟨
W̃ν|W̃µ

⟩
for

W̃µ =

 W0,µ
W1,µ
W2,µ

 and W̃ν =

 W0,ν
W1,ν
W2,ν


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then

∂ν∂νW0,µ =−
(

g2W̃ν

)2
W0,µ+

+g2
2

⟨
W̃ν|W̃µ

⟩
W0,ν

−g2

(
(∂µW1,ν)W2,ν−W1,ν∂µW2,ν

+W1,µ (∂νW2,ν)− (∂νW1,ν)W2,µ

)
+

+∂µ∂νW0,ν.

Hence,

∂0∂0W0,µ =−
(

g2W̃0

)2
W0,µ+

+g2
2
⟨
W0|Wµ

⟩
W0,0

−g2

(
(∂µW1,0)W2,0−W1,0∂µW2,0

+W1,µ (∂0W2,0)− (∂0W1,0)W2,µ

)
+

+∂µ∂0W0,0.

Since ∂0 =
1
c ∂t then

1
c2 ∂2

t W0,µ =−
(

g2W̃0

)2
W0,µ+

+g2
2

⟨
W̃0|W̃µ

⟩
W0,0

−g2

(
(∂µW1,0)W2,0−W1,0∂µW2,0

+W1,µ (∂0W2,0)− (∂0W1,0)W2,µ

)
+

+∂µ∂0W0,0.

And for s ∈ {1,2,3}:

∂s∂sW0,µ = −
(

g2W̃s

)2
W0,µ

+g2
2

⟨
W̃s|W̃µ

⟩
W0,s

−g2

(
(∂µW1,s)W2,s−W1,s∂µW2,s

+W1,µ (∂sW2,s)− (∂sW1,s)W2,µ

)
+∂µ∂sW0,s.

Therefore,

− 1
c2 ∂2

t W0,µ +∑3
s=1 ∂2

sW0,µ =

−


−
(

g2W̃0

)2
W0,µ +g2

2

⟨
W̃0|W̃µ

⟩
W0,0

−g2

(
(∂µW1,0)W2,0−W1,0∂µW2,0

+W1,µ (∂0W2,0)− (∂0W1,0)W2,µ

)
+∂µ∂0W0,0

+

+


∑3

s=1−
(

g2W̃s

)2
W0,µ

+g2
2

⟨
W̃s|W̃µ

⟩
W0,s

−g2

(
(∂µW1,s)W2,s−W1,s∂µW2,s

+W1,µ (∂sW2,s)− (∂sW1,s)W2,µ

)
+∂µ∂sW0,s

 ..
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Hence,

− 1
c2 ∂2

t W0,µ +∑3
s=1 ∂2

sW0,µ =(
g2W̃0

)2
W0,µ−∑3

s=1

(
g2W̃s

)2
W0,µ

+g2
2 ∑3

s=1

⟨
W̃s|W̃µ

⟩
W0,s−g2

2

⟨
W̃0|W̃µ

⟩
W0,0

+g2


(

(∂µW1,0)W2,0−W1,0∂µW2,0
+W1,µ (∂0W2,0)− (∂0W1,0)W2,µ

)
−∑3

s=1

(
(∂µW1,s)W2,s−W1,s∂µW2,s

+W1,µ (∂sW2,s)− (∂sW1,s)W2,µ

)


+∂µ ∑3
s=1 ∂sW0,s−∂µ∂0W0,0− .

Hence, (
− 1

c2 ∂2
t +∑3

s=1 ∂2
s
)

W0,µ = g2
2

(
W̃ 2

0 −∑3
s=1W̃ 2

s

)
W0,µ+

+g2
2

(
∑3

s=1

⟨
W̃s|W̃µ

⟩
W0,s−

⟨
W̃0|W̃µ

⟩
W0,0

)
+g2


(

(∂µW1,0)W2,0−W1,0∂µW2,0
+W1,µ (∂0W2,0)− (∂0W1,0)W2,µ

)
−∑3

s=1

(
(∂µW1,s)W2,s−W1,s∂µW2,s

+W1,µ (∂sW2,s)− (∂sW1,s)W2,µ

)


+∂µ ∑3
s=1 ∂sW0,s−∂µ∂0W0,0. (3.38)

This equation looks like to the Klein-Gordon equation4 of field W0,µ with mass

m =
h
c

g2

√
W̃ 2

0 −
3

∑
s=1

W̃ 2
s (3.39)

and with additional terms of the W0,µ interactions with others components of W̃ . You can
receive similar equations for W1,µ and for W2,µ.

If

W̃ ′0 :=
W̃0− v

cW̃k√
1−
( v

c

)2
, W̃ ′k :=

W̃k− v
cW̃0√

1−
( v

c

)2
, W̃ ′k := W̃k, if s ̸= k

then

W̃ ′20 −
3

∑
s=1

W̃ ′2s

=

(
W̃0− v

cW̃k

)2

1−
( v

c

)2 −

(
W̃k− v

cW̃0

)2

1−
( v

c

)2 −∑
s̸=k

W̃ ′2s

4(2.57) (
− 1

c2 ∂2
t +

3

∑
s=1

∂2
s

)
φ =

m2c2

h2 φ
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=
W̃ 2

0 +
( v

c

)2W̃ 2
k −W̃ 2

k −
( v

c

)2W̃ 2
0

1−
( v

c

)2 −∑
s̸=k

W̃ ′2s

=

(
1−
( v

c

)2
)

W̃ 2
0 −

(
1−
( v

c

)2
)

W̃ 2
k

1−
( v

c

)2 −∑
s̸=k

W̃ ′2s .

Hence,

W̃ ′20 −
3

∑
s=1

W̃ ′2s = W̃ 2
0 −

3

∑
s=1

W̃ 2
s .

Therefore, such ”mass” (3.39) is invariant for the Lorentz transformations:
You can calculate that it is invariant for the transformations of turns, too:{

W̃ ′r = W̃r cosλ−W̃s sinλ.
W̃ ′s = W̃r sinλ+W̃s cosλ;

∣∣∣∣
with a real number λ, and r ∈ {1,2,3}, s ∈ {1,2,3}; and it is invariant for a global weak
isospin transformation U ′:

W ′ν→W ′′ν =U ′WνU ′†

but is not invariant for a local transformation (3.31). But local transformations for W0,µ,
W1,µ and W2,µ is insignificant since all three particles are very short-lived with a mean life
of about 3×10−25 seconds.

That is in (3.38) the form

m =
h
c

g2

√
W̃ 2

0 −
3

∑
s=1

W̃ 2
s

varies in space, but locally acts like a mass - i.e. it does not allow to particles of this field to
behave as a massless ones.

A mass of the W -boson was measured, for instant (Figure 29), between 1996 and 2000
at LEP5 [26].

Let6

α := arctan g1
g2

,
Zµ := (W0,µ cosα−Bµ sinα) ,
Aµ := (Bµ cosα+W0,µ sinα) .

(3.40)

In that case:

∑ν gν,ν∂ν∂νW0,µ = cosα ·∑ν gν,ν∂ν∂νZµ + sinα ·∑ν gν,ν∂ν∂νAµ.

If
5The Large Electron-Positron Collider (LEP) (Figure 28) is largest particles accelerator (ring with a circum-

ference of 27 kilometers built in a tunnel under the border of Switzerland and France.)
6here α is the Weinberg Angle. The experimental value of sin2 α = 0.23124±0.00024 [27].
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∑
ν

gν,ν∂ν∂νAµ = 0

then
mZ =

mW

cosα
with mW from (3.39). It is like Standard Model.

Figure 28:

The equation of moving (3.29) under Fµ = 0 has the following form:(
∑3

µ=0 β[µ]i
(
∂µ− i0.5g1BµY − i 1

2 g2Wµ
)

+γ[0]i∂5 +β[4]i∂4

)
φ̃ = 0. (3.41)

Hence, in accordance with (3.27) and (2.36):

∑3
µ=0 β[µ]i×

×




∂µ− i0.5g1Bµ

(
−
[

12 02
02 2 ·12

])
−

−i 1
2 g2


W0,µ12 02 (W1,µ− iW2,µ)12 02

02 02 02 02
(W1,µ + iW2,µ)12 02 −W0,µ12 02

02 02 02 02




+γ[0]i∂5 +β[4]i∂4


·φ̃ = 0.

In accordance with (3.40) [29]:
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Figure 29:

Bµ =

−Zµ
g1√

g2
1 +g2

2

+Aµ
g2√

g2
1 +g2

2

 ,

W0,µ =

Zµ
g2√

g2
1 +g2

2

+Aµ
g1√

g2
1 +g2

2

 .

Let (e is the elementary charge7: e = 1.60217733×10−19 C).

e :=
g1g2√
g2

1 +g2
2

,

and let

Ẑµ := Zµ
1√

g2
2 +g2

1


(
g2

2 +g2
1
)

12 02 02 02
02 2g2

112 02 02
02 02

(
g2

2−g2
1
)

12 02
02 02 02 2g2

112

 ,

7Sir Joseph John ”J. J.” Thomson, (18 December 1856 - 30 August 1940) was a British physicist. He is
credited for the discovery of the electron and of isotopes, and the invention of the mass spectrometer.



Quarks and Gluons 141

Ŵµ := g2


02 02 (W1,µ− iW2,µ)12 02
02 02 02 02

(W1,µ + iW2,µ)12 02 02 02
02 02 02 02 ·12

 ,

Âµ := Aµ


02 02 02 02
02 12 02 02
02 02 12 02
02 02 02 12

 .

In that case from (3.41):

(
∑3

µ=0 β[µ]i
(

∂µ + ieÂµ− i0.5
(

Ẑµ +Ŵµ

))
+ γ[0]i∂5 +β[4]i∂4

)
φ̃ = 0.

(3.42)

Let in basis (3.11) (3.23) :

φ̃ =


φν−→0 2

φe,L

φe,R

 .

In that case ∑3
µ=0 β[µ]i

(
∂µφ̃+ iAµe

[
φe,L

φe,R

]
− i0.5

(
Ẑµ +Ŵµ

)
φ̃
)

+
(
γ[0]i∂5 +β[4]i∂4

)
φ̃

= 0.

(3.43)

Here the vector field Aµ is the electromagnetic potential 8. And
(

Ẑµ +Ŵµ

)
is the weak

interaction potential Evidently neutrinos do not involve in the electromagnetic interactions.

3.2. Quarks and Gluons

The quark model was independently proposed by physicists Murray Gell-Mann9 and
George Zweig10 in 1964.

8James Clerk Maxwell of Glenlair (13 June 1831 - 5 November 1879) was a Scottish physicist and mathe-
matician. His most prominent achievement was formulating classical electromagnetic theory.

9Murray Gell-Mann (born September 15, 1929) is an American physicist and linguist
10George Zweig (born on May 30, 1937 in Moscow, Russia into a Jewish family) was originally trained as a

particle physicist under Richard Feynman and later turned his attention to neurobiology. He spent a number of
years as a Research Scientist at Los Alamos National Laboratory and MIT, but as of 2004, has gone on to work
in the financial services industry.
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The first direct experimental evidence of gluons was found in 1979 when three-jet
events were observed at t he electron-positron collider PETRA. However, just before PE-
TRA11 appeared on the scene, the PLUTO experiment at DORIS12 showed event topologies
suggestive of a three-gluon decay.

The following part of (2.30):

3
∑

k=0
β[k]
(
−i∂k +Θk +ϒkγ[5]

)
−

−Mζ,0γ[0]ζ +Mζ,4ζ[4]+

−Mη,0γ[0]η −Mη,4η[4]+

+Mθ,0γ[0]θ +Mθ,4θ[4]

φ = 0. (3.44)

is called the chromatic equation of moving.
Here (2.6), (2.8), (2.10):

γ[0]ζ =−


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , ζ[4] =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0


are mass elements of red pentad;

γ[0]η =


0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 , η[4] =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


are mass elements of green pentad;

γ[0]θ =


0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 , θ[4] =


0 0 −i 0
0 0 0 i
−i 0 0 0
0 i 0 0


are mass elements of blue pentad.

I call:

• Mζ,0, Mζ,4 red lower and upper mass members;

• Mη,0, Mη,4 green lower and upper mass members;

• Mθ,0, Mθ,4 blue lower and upper mass members.

11PETRA (or the Positron-Electron Tandem Ring Accelerator) is one of the particle accelerators at DESY in
Hamburg, Germany.

12DORIS (Doppel-Ring-Speicher, ”double-ring storage”), built between 1969 and 1974, was DESY’s second
circular accelerator and its first storage ring with a circumference of nearly 300 m.
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The mass members of this equation form the following matrix sum:

M̂ :=


−Mζ,0γ[0]ζ +Mζ,4ζ[4]−

−Mη,0γ[0]η −Mη,4η[4]+

+Mθ,0γ[0]θ +Mθ,4θ[4]

=

=


0 0 −Mθ,0 Mζ,η,0

0 0 M∗ζ,η,0 Mθ,0

−Mθ,0 Mζ,η,0 0 0

M∗ζ,η,0 Mθ,0 0 0

+ i


0 0 Mθ,4 M∗ζ,η,4
0 0 Mζ,η,4 −Mθ,4

−Mθ,4 −M∗ζ,η,4 0 0

−Mζ,η,4 Mθ,4 0 0


with Mζ,η,0 := Mζ,0− iMη,0 and Mζ,η,4 := Mζ,4− iMη,4.
Elements of these matrices can be turned by formula of shape [28]:[

cos θ
2 i sin θ

2

i sin θ
2 cos θ

2

][
Z X − iY

X + iY −Z

][
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
=

=

 Z cosθ−Y sinθ X− i
(

Y cosθ
+Z sinθ

)
X + i

(
Y cosθ
+Z sinθ

)
−Z cosθ+Y sinθ


.

Hence, if:

U2,3 (α) :=


cosα i sinα 0 0
isinα cosα 0 0

0 0 cosα i sinα
0 0 isinα cosα


and

M̂′ :=


−M′ζ,0γ[0]ζ +M′ζ,4ζ[4]−

−M′η,0γ[0]η −M′η,4η[4]+

+M′θ,0γ[0]θ +M′θ,4θ[4]

 :=U†
2,3 (α)M̂U2,3 (α)

then

M′ζ,0 = Mζ,0 ,

M′η,0 = Mη,0 cos2α+Mθ,0 sin2α ,

M′θ,0 = Mθ,0 cos2α−Mη,0 sin2α ,

M′ζ,4 = Mζ,4 ,

M′η,4 = Mη,4 cos2α+Mθ,4 sin2α ,

M′θ,4 = Mθ,4 cos2α−Mη,4 sin2α .

Therefore, matrix U2,3 (α) makes an oscillation between green and blue chromatics.
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Let us consider equation (2.30) under transformation U2,3 (α) where α is an arbitrary
real function of time-space variables (α = α(t,x1,x2,x3)):

U†
2,3 (α)

(
1
c

∂t + iΘ0 + iϒ0γ[5]
)

U2,3 (α)φ =

=U†
2,3 (α)

 3
∑

ν=1
β[ν] (∂ν + iΘν + iϒνγ[5]

)
+

+ iM0γ[0]+ iM4β[4]+ M̂

U2,3 (α)φ .

Because
U†

2,3 (α)U2,3 (α) = 14 ,

U†
2,3 (α)γ[5]U2,3 (α) = γ[5] ,

U†
2,3 (α)γ[0]U2,3 (α) = γ[0] ,

U†
2,3 (α)β[4]U2,3 (α) = β[4] ,

U†
2,3 (α)β[1] = β[1]U†

2,3 (α) ,

U†
2,3 (α)β[2] =

(
β[2] cos2α+β[3] sin2α

)
U†

2,3 (α) ,

U†
2,3 (α)β[3] =

(
β[3] cos2α−β[2] sin2α

)
U†

2,3 (α) ,

then (
1
c

∂t +U†
2,3 (α)

1
c

∂tU2,3 (α)+ iΘ0 + iϒ0γ[5]
)

φ =

=



β[1]
(
∂1 +U†

2,3 (α)∂1U2,3 (α)+ iΘ1 + iϒ1γ[5]
)
+

+β[2]


(cos2α ·∂2− sin2α ·∂3)

+U†
2,3 (α)(cos2α ·∂2− sin2α ·∂3)U2,3 (α)

+ i(Θ2 cos2α−Θ3 sin2α)
+ i
(
ϒ2γ[5] cos2α−ϒ3γ[5] sin2α

)



+β[3]


(cos2α ·∂3 + sin2α ·∂2)

+U†
2,3 (α)(cos2α ·∂3 + sin2α ·∂2)U2,3 (α)

+ i(Θ2 sin2α+Θ3 cos2α)
+ i
(
ϒ3γ[5] cos2α+ϒ2γ[5] sin2α

)


+ iM0γ[0]+ iM4β[4]+ M̂′



φ . (3.45)

Let x′2 and x′3 be elements of other coordinate system such that:

∂′2 : = (cos2α ·∂2− sin2α ·∂3) , (3.46)

∂′3 : = (cos2α ·∂3 + sin2α ·∂2) .

Therefore, from (3.45):(
1
c

∂t +U†
2,3 (α)

1
c

∂tU2,3 (α)+ iΘ0 + iϒ0γ[5]
)

φ =
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=


β[1]
(

∂1 +U†
2,3 (α)∂1U2,3 (α)+ iΘ1 + iϒ1γ[5]

)
+β[2]

(
∂′2 +U†

2,3 (α)∂′2U2,3 (α)+ iΘ′2 + iϒ′2γ[5]
)

+β[3]
(

∂′3 +U†
2,3 (α)∂′3U2,3 (α)+ iΘ′3 + iϒ′3γ[5]

)
+ iM0γ[0]+ iM4β[4]+ M̂′

φ .

with
Θ′2 := Θ2 cos2α−Θ3 sin2α ,

Θ′3 := Θ2 sin2α+Θ3 cos2α ,

ϒ′2 := ϒ2 cos2α−ϒ3 sin2α ,

ϒ′3 := ϒ3 cos2α+ϒ2 sin2α .

Therefore, the oscillation between blue and green chromatics curves the space in the x2,
x3 directions.

Similarly, matrix

U1,3 (ϑ) :=


cosϑ sinϑ 0 0
−sinϑ cosϑ 0 0

0 0 cosϑ sinϑ
0 0 −sinϑ cosϑ


with an arbitrary real function ϑ(t,x1,x2,x3) describes the oscillation between blue and red
chromatics which curves the space in the x1, x3 directions. And matrix

U1,2 (ς) :=


e−iς 0 0 0

0 eiς 0 0
0 0 e−iς 0
0 0 0 eiς


with an arbitrary real function ς(t,x1,x2,x3) describes the oscillation between green and red
chromatics which curves the space in the x1, x2 directions.

Now, let

U0,1 (σ) :=


coshσ −sinhσ 0 0
−sinhσ coshσ 0 0

0 0 coshσ sinhσ
0 0 sinhσ coshσ

 .

and

M̂′′ :=

 −M′′ζ,0γ[0]ζ +M′′ζ,4ζ[4]−
−M′′η,0γ[0]η −M′′η,4η[4]+

+M′′θ,0γ[0]θ +M′′θ,4θ[4]

 :=U†
0,1 (σ)M̂U0,1 (σ)

then:

M′′ζ,0 = Mζ,0 ,

M′′η,0 = (Mη,0 cosh2σ−Mθ,4 sinh2σ) ,
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M′′θ,0 = Mθ,0 cosh2σ+Mη,4 sinh2σ ,

M′′ζ,4 = Mζ,4 ,

M′′η,4 = Mη,4 cosh2σ+Mθ,0 sinh2σ ,

M′′θ,4 = Mθ,4 cosh2σ−Mη,0 sinh2σ .

Therefore, matrix U0,1 (σ) makes an oscillation between green and blue chromatics with
an oscillation between upper and lower mass members.

Let us consider equation (2.30) under transformation U0,1 (σ) where σ is an arbitrary
real function of time-space variables (σ = σ(t,x1,x2,x3)):

U†
0,1 (σ)

(
1
c

∂t + iΘ0 + iϒ0γ[5]
)

U0,1 (σ)φ =

=U†
0,1 (σ)

 3
∑

ν=1
β[ν] (∂ν + iΘν + iϒνγ[5]

)
+

+ iM0γ[0]+ iM4β[4]+ M̂

U0,1 (σ)φ .

Since:

U†
0,1 (σ)U0,1 (σ) =

(
cosh2σ−β[1] sinh2σ

)
,

U†
0,1 (σ) =

(
cosh2σ+β[1] sinh2σ

)
U−1

0,1 (σ) ,

U†
0,1 (σ)β[1] =

(
β[1] cosh2σ− sinh2σ

)
U−1

0,1 (σ) ,

U†
0,1 (σ)β[2] = β[2]U−1

0,1 (σ) ,

U†
0,1 (σ)β[3] = β[3]U−1

0,1 (σ) ,

U†
0,1 (σ)γ[0]U0,1 (σ) = γ[0],

U†
0,1 (σ)β[4]U0,1 (σ) = β[4],

U−1
0,1 (σ)U0,1 (σ) = 14 ,

U−1
0,1 (σ)γ[5]U0,1 (σ) = γ[5] ,

U†
0,1 (σ)γ[5]U0,1 (σ) = γ[5]

(
cosh2σ−β[1] sinh2σ

)
,
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then 

U−1
0,1 (σ)

(
cosh2σ · 1

c ∂t + sinh2σ ·∂1
)

U0,1 (σ)

+
(
cosh2σ · 1

c ∂t + sinh2σ ·∂1
)

+ i(Θ0 cosh2σ+Θ1 sinh2σ)
+ i(ϒ0 cosh2σ+ sinh2σ ·ϒ1)γ[5]−

−β[1]


U−1

0,1 (σ)
(
cosh2σ ·∂1 + sinh2σ · 1

c ∂t
)

U0,1 (σ)

+
(
cosh2σ ·∂1 + sinh2σ · 1

c ∂t
)

+ i(Θ1 cosh2σ+Θ0 sinh2σ)
+ i(ϒ1 cosh2σ+ϒ0 sinh2σ)γ[5]


−β[2]

(
∂2 +U−1

0,1 (σ)(∂2U0,1 (σ))+ iΘ2 + iϒ2γ[5]
)

−β[3]
(
∂3 +U−1

0,1 (σ)(∂3U0,1 (σ))+ iΘ3 + iϒ3γ[5]
)

− iM0γ[0]− iM4β[4]− M̂′′



φ = 0 . (3.47)

Let t ′ and x′1 be elements of other coordinate system such that:

∂x1

∂x′1
= cosh2σ

∂t
∂x′1

=
1
c

sinh2σ

∂x1

∂t ′
= csinh2σ

∂t
∂t ′

= cosh2σ

∂x2

∂t ′
=

∂x3

∂t ′
=

∂x2

∂x′1
=

∂x3

∂x′1
= 0



. (3.48)

Hence:

∂′t :=
∂

∂t ′
=

∂
∂t

∂t
∂t ′

+
∂

∂x1

∂x1

∂t ′
+

∂
∂x2

∂x2

∂t ′
+

∂
∂x3

∂x3

∂t ′
=

= cosh2σ · ∂
∂t

+ csinh2σ · ∂
∂x1

=

= cosh2σ ·∂t + csinh2σ ·∂1 ,

that is
1
c

∂′t =
1
c

cosh2σ ·∂t + sinh2σ ·∂1

and

∂′1 :=
∂

∂x′1
=
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=
∂
∂t

∂t
∂x′1

+
∂

∂x1

∂x1

∂x′1
+

∂
∂x2

∂x2

∂x′1
+

∂
∂x3

∂x3

∂x′1
=

= cosh2σ · ∂
∂x1

+ sinh2σ · 1
c

∂
∂t

=

= cosh2σ ·∂1 + sinh2σ · 1
c

∂t .

Therefore, from (3.47):

β[0]
(

1
c ∂′t +U−1

0,1 (σ)
1
c ∂′tU0,1 (σ)+ iΘ′′0 + iϒ′′0γ[5]

)
+β[1]

(
∂′1 +U−1

0,1 (σ)∂′1U0,1 (σ)+ iΘ′′1 + iϒ′′1γ[5]
)

+β[2]
(

∂2 +U−1
0,1 (σ)∂2U0,1 (σ)+ iΘ2 + iϒ2γ[5]

)
+β[3]

(
∂3 +U−1

0,1 (σ)∂3U0,1 (σ)+ iΘ3 + iϒ3γ[5]
)

+ iM0γ[0]+ iM4β[4]+ M̂′′


φ = 0

with
Θ′′0 := Θ0 cosh2σ+Θ1 sinh2σ ,

Θ′′1 := Θ1 cosh2σ+Θ0 sinh2σ ,

ϒ′′0 := ϒ0 cosh2σ+ sinh2σ ·ϒ1 ,

ϒ′′1 := ϒ1 cosh2σ+ϒ0 sinh2σ .

Therefore, the oscillation between blue and green chromatics with the oscillation be-
tween upper and lower mass members curves the space in the t, x1 directions.

Similarly, matrix

U0,2 (ϕ) :=


coshϕ i sinhϕ 0 0
−i sinhϕ coshϕ 0 0

0 0 coshϕ −i sinhϕ
0 0 isinhϕ coshϕ


with an arbitrary real function ϕ(t,x1,x2,x3) describes the oscillation between blue and red
chromatics with the oscillation between upper and lower mass members curves the space in
the t, x2 directions. And matrix

U0,3 (ι) :=


eι 0 0 0
0 e−ι 0 0
0 0 e−ι 0
0 0 0 eι


with an arbitrary real function ι(t,x1,x2,x3) describes the oscillation between green and red
chromatics with the oscillation between upper and lower mass members curves the space in
the t, x3 directions.
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Now let

Ũ (χ) :=


eiχ 0 0 0
0 eiχ 0 0
0 0 e2iχ 0
0 0 0 e2iχ


and

M̂′ :=


−M′ζ,0γ[0]ζ +M′ζ,4ζ[4]−

−M′η,0γ[0]η −M′η,4η[4]+

+M′θ,0γ[0]θ +M′θ,4θ[4]

 := Ũ† (χ)M̂Ũ (χ)

then:

M′ζ,0 =
(
Mζ,0 cosχ−Mζ,4 sinχ

)
,

M′ζ,4 =
(
Mζ,4 cosχ+Mζ,0 sinχ

)
,

M′η,4 = (Mη,4 cosχ−Mη,0 sinχ) ,

M′η,0 = (Mη,0 cosχ+Mη,4 sinχ) ,

M′θ,0 = (Mθ,0 cosχ+Mθ,4 sinχ) ,

M′θ,4 = (Mθ,4 cosχ−Mθ,0 sinχ) .

Therefore, matrix Ũ (χ) makes an oscillation between upper and lower mass members.
Let us consider equation (3.44) under transformation Ũ (χ) where χ is an arbitrary real

function of time-space variables (χ = χ(t,x1,x2,x3)):

Ũ† (χ)
(

1
c

∂t + iΘ0 + iϒ0γ[5]
)

Ũ (χ)φ =

= Ũ† (χ)

(
3

∑
ν=1

β[ν]
(

∂ν + iΘν + iϒνγ[5]
)
+ M̂

)
Ũ (χ)φ .

Because

γ[5]Ũ (χ) = Ũ (χ)γ[5] ,

β[1]Ũ (χ) = Ũ (χ)β[1] ,

β[2]Ũ (χ) = Ũ (χ)β[2] ,

β[3]Ũ (χ) = Ũ (χ)β[3] ,

Ũ† (χ)Ũ (χ) = 14 ,

then (
1
c

∂t +
1
c

Ũ† (χ)
(

∂tŨ (χ)
)
+ iΘ0 + iϒ0γ[5]

)
φ =

=

 3
∑

ν=1
β[ν]
(

∂ν +Ũ† (χ)
(

∂νŨ (χ)
)
+ iΘν + iϒνγ[5]

)
+Ũ† (χ)M̂Ũ (χ)

φ .
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Now let:

Û (κ) :=


eκ 0 0 0
0 eκ 0 0
0 0 e2κ 0
0 0 0 e2κ


and

M̂′ :=


−M′ζ,0γ[0]ζ +M′ζ,4ζ[4]−

−M′η,0γ[0]η −M′η,4η[4]+

+M′θ,0γ[0]θ +M′θ,4θ[4]

 := Û−1 (κ)M̂Û (κ)

then:

M′θ,0 = (Mθ,0 coshκ− iMθ,4 sinhκ) ,

M′θ,4 = (Mθ,4 coshκ+ iMθ,0 sinhκ) ,

M′η,0 = (Mη,0 coshκ− iMη,4 sinhκ) ,

M′η,4 = (Mη,4 coshκ+ iMη,0 sinhκ) ,

M′ζ,0 =
(
Mζ,0 coshκ+ iMζ,4 sinhκ

)
,

M′ζ,4 =
(
Mζ,4 coshκ− iMζ,0 sinhκ

)
.

Therefore, matrix Û (κ) makes an oscillation between upper and lower mass members,
too.

Let us consider equation (3.44) under transformation Û (κ) where κ is an arbitrary real
function of time-space variables (κ = κ(t,x1,x2,x3)):

Û−1 (κ)
(

1
c

∂t + iΘ0 + iϒ0γ[5]
)

Û (κ)φ =

= Û−1 (κ)

(
3

∑
ν=1

β[ν]
(

∂ν + iΘν + iϒνγ[5]
)
+ M̂

)
Û (κ)φ.

Because

γ[5]Û (κ) = Û (κ)γ[5] ,

Û−1 (κ)β[1] = β[1]Û−1 (κ) ,

Û−1 (κ)β[2] = β[2]Û−1 (κ) ,

Û−1 (κ)β[3] = β[3]Û−1 (κ) ,

Û−1 (κ)Û (κ) = 14 ,

then (
1
c

∂t +Û−1 (κ)
(

1
c

∂tÛ (κ)
)
+ iΘ0 + iϒ0γ[5]

)
φ =
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=


3
∑

ν=1
β[ν]
(

∂ν +Û−1 (κ)
(

∂νÛ (κ)
)
+ iΘν + iϒνγ[5]

)
+

+Û−1 (κ)M̂Û (κ)

φ .

If denote:

Λ1 :=


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 ,

Λ2 :=


0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

 ,

Λ3 :=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

Λ4 :=


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 ,

Λ5 :=


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 ,

Λ6 :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,

Λ7 :=


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 ,

Λ8 :=


i 0 0 0
0 i 0 0
0 0 2i 0
0 0 0 2i

 ,

then

U−1
0,1 (σ)(∂sU0,1 (σ)) = Λ1∂sσ ,

U−1
2,3 (α)(∂sU2,3 (α)) = Λ2∂sα ,
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U−1
1,3 (ϑ)(∂sU1,3 (ϑ)) = Λ3∂sϑ ,

U−1
0,2 (ϕ)(∂sU0,2 (ϕ)) = Λ4∂sϕ ,

U−1
1,2 (ς)(∂sU1,2 (ς)) = Λ5∂sς ,

U−1
0,3 (ι)(∂sU0,3 (ι)) = Λ6∂sι ,

Û−1 (κ)(∂sÛ (κ)) = Λ7∂sκ ,

Ũ−1 (χ)(∂sŨ (χ)) = Λ8∂sχ .

Let Ù be the following set:

Ù :=
{

U0,1,U2,3,U1,3,U0,2,U1,2,U0,3,Û ,Ũ
}

.

Because

U−1
2,3 (α)Λ1U2,3 (α) = Λ1

U−1
1,3 (ϑ)Λ1U1,3 (ϑ) = (Λ1 cos2ϑ+Λ6 sin2ϑ)

U−1
0,2 (ϕ)Λ1U0,2 (ϕ) = (Λ1 cosh2ϕ−Λ5 sinh2ϕ)

U−1
1,2 (ς)Λ1U1,2 (ς) = Λ1 cos2ς−Λ4 sin2ς

U−1
0,3 (ι)Λ1U0,3 (ι) = Λ1 cosh2ι+Λ3 sinh2ι

Û−1 (κ)Λ1Û (κ) = Λ1

Ũ−1 (χ)Λ1Ũ (χ) = Λ1

========

Ũ−1 (χ)Λ2Ũ (χ) = Λ2

Û−1 (κ)Λ2Û (κ) = Λ2

U−1
0,3 (ι)Λ2U0,3 (ι) = Λ2 cosh2ι−Λ4 sinh2ι

U−1
1,2 (ς)Λ2U1,2 (ς) = Λ2 cos2ς−Λ3 sin2ς

U−1
0,2 (ϕ)Λ2U0,2 (ϕ) = Λ2 cosh2ϕ+Λ6 sinh2ϕ

U−1
1,3 (ϑ)Λ2U1,3 (ϑ) = Λ2 cos2ϑ+Λ5 sin2ϑ

U−1
0,1 (σ)Λ2U0,1 (σ) = Λ2

=========

U−1
0,1 (σ) Λ3U0,1 (σ) = Λ3 cosh2σ−Λ6 sinh2σ

U−1
2,3 (α) Λ3U2,3 (α) = Λ3 cos2α−Λ5 sin2α

U−1
0,2 (ϕ) Λ3U0,2 (ϕ) = Λ3

U−1
1,2 (ς) Λ3U1,2 (ς) = Λ3 cos2ς+Λ2 sin2ς

U−1
0,3 (ι) Λ3U0,3 (ι) = Λ3 cosh2ι+Λ1 sinh2ι

Û−1 (κ) Λ3Û (κ) = Λ3

Ũ−1 (χ) Λ3Ũ (χ) = Λ3
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==========

Ũ−1 (χ) Λ4Ũ (χ) = Λ4

Û−1 (κ) Λ4Û (κ) = Λ4

U−1
0,3 (ι) Λ4U0,3 (ι) = Λ4 cosh2ι−Λ2 sinh2ι

U−1
1,2 (ς) Λ4U1,2 (ς) = Λ4 cos2ς+Λ1 sin2ς

U−1
1,3 (ϑ) Λ4U1,3 (ϑ) = Λ4

U−1
2,3 (α) Λ4U2,3 (α) = Λ4 cos2α−Λ6 sin2α

U−1
0,1 (σ) Λ4U0,1 (σ) = Λ4 cosh2σ+Λ5 sinh2σ

==========

U−1
0,1 (σ) Λ5U0,1 (σ) = Λ5 cosh2σ+Λ4 sinh2σ

U−1
2,3 (α) Λ5U2,3 (α) = Λ5 cos2α+Λ3 sin2α

U−1
1,3 (ϑ) Λ5U1,3 (ϑ) = (Λ5 cos2ϑ−Λ2 sin2ϑ)

U−1
0,2 (ϕ) Λ5U0,2 (ϕ) = Λ5 cosh2ϕ−Λ1 sinh2ϕ

U−1
0,3 (ι) Λ5U0,3 (ι) = Λ5

Û−1 (κ) Λ5Û (κ) = Λ5

Ũ−1 (χ)Λ5Ũ (χ) = Λ5

===========

Ũ−1 (χ)Λ6Ũ (χ) = Λ6

Û−1 (κ)Λ6Û (κ) = Λ6

U−1
1,2 (ς)Λ6U1,2 (ς) = Λ6

U−1
0,2 (ϕ)Λ6U0,2 (ϕ) = Λ6 cosh2ϕ+Λ2 sinh2ϕ

U−1
1,3 (ϑ)Λ6U1,3 (ϑ) = Λ6 cos2ϑ−Λ1 sin2ϑ

U−1
2,3 (α)Λ6U2,3 (α) = Λ6 cos2α+Λ4 sin2α

U−1
0,1 (σ)Λ6U0,1 (σ) = Λ6 cosh2σ−Λ3 sinh2σ

========

Ũ−1 (χ) Λ7Ũ (χ) = Λ7

U−1
0,3 (ι) Λ7U0,3 (ι) = Λ7

U−1
1,2 (ς) Λ7U1,2 (ς) = Λ7

U−1
0,2 (ϕ) Λ7U0,2 (ϕ) = Λ7

U−1
1,3 (ϑ) Λ7U1,3 (ϑ) = Λ7

U−1
2,3 (α) Λ7U2,3 (σ) = Λ7

U−1
0,1 (σ) Λ7U0,1 (σ) = Λ7

=========

U−1
0,1 (σ) Λ8U0,1 (σ) = Λ8

U−1
2,3 (α) Λ8U2,3 (α) = Λ8
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U−1
1,3 (ϑ) Λ8U1,3 (ϑ) = Λ8

U−1
0,2 (ϕ) Λ8U0,2 (ϕ) = Λ8

U−1
1,2 (ς) Λ8U1,2 (ς) = Λ8

U−1
0,3 (ι) Λ8U0,3 (ι) = Λ8

Û−1 (κ) Λ8Û (κ) = Λ8

then for every product U of Ù’s elements real functions Gr
s (t,x1,x2,x3) exist such that

U−1 (∂sU) =
g3

2

8

∑
r=1

ΛrGr
s

with some real constant g3 (similar to 8 gluons).

3.3. Asymptoiic Freedom, Confinement, Cravitation

The Quarks Asymptotic Freedomin phenomenon and the Quarks Confinement phenomenon
has been was discovered by J. Friedman13, H. Kendall14, R. Taylor15 at SLAC in the late
1960s and early 1970s.

Researches of the phenomenon of gravitation were spent by Galileo Galilei16 in the late
16th and early 17th centuries, by Isaac Newton17 in 17th centuries, by A. Einstein18 in 20th
centuries.

From (3.48):

∂t
∂t ′

= cosh2σ, (3.49)

∂x
∂t ′

= csinh2σ.

Hence, if v is the velocity of a coordinate system {t ′,x′} in the coordinate system {t,x}
then

sinh2σ =

( v
c

)√
1−
( v

c

)2
, cosh2σ =

1√
1−
( v

c

)2
.

Therefore,

v = c tanh2σ. (3.50)
13Jerome Isaac Friedman (born March 28, 1930) is an American physicist.
14Henry Way Kendall (December 9, 1926 – February 15, 1999) was an American particle physicist
15Richard Edward Taylor (born November 2, 1929 in Medicine Hat, Alberta) is a Canadian-American pro-

fessor (Emeritus) at Stanford University.
16Galileo Galilei ( 15 February 1564[4] – 8 January 1642), was an Italian physicist, mathematician, as-

tronomer, and philosopher
17Sir Isaac Newton PRS (25 December 1642 – 20 March 1727 was an English physicist, mathematician,

astronomer, natural philosopher, alchemist, and theologian
18Albert Einstein ( 14 March 1879 – 18 April 1955) was a German-born theoretical physicist
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Let
2σ := ω(x)

t
x

with

ω(x) =
λ
|x|

,

where λ is a real constant with positive numerical value.
In that case

v(t,x) = c tanh
(

λ
|x|

t
x

)
. (3.51)

and if g is an acceleration of system {t ′,x′1} as respects to system {t,x1} then

g(t,x1) =
∂v
∂t

=
cω(x1)(

cosh2 ω(x1)
t

x1

)
x1

.

Figure 30:

Figure 30 shows the dependency of a system {t ′,x′1} velocity v(t,x1) on x1 in system
{t,x1}.

This velocity in point A is not equal to one in point B. Hence, an oscillator, placed in
B, has a nonzero velocity in respect to an observer, placed in point A. Therefore, from the
Lorentz transformations, this oscillator frequency for observer, placed in point A, is less
than own frequency of this oscillator (red shift).

Figure 31 shows a dependency of a system {t ′,x′1} acceleration g(t,x1) on x1 in system
{t,x1}.

If an object immovable in system {t,x1} is placed in point K then in system {t ′,x′1} this
object must move to the left with acceleration g and g≃ λ

x2
1
.

I call:

• interval from S to ∞ the Newton Gravity Zone,
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Figure 31:

• interval from B to C the the Asymptotic Freedom Zone,

• and interval from C to D the Confinement Force Zone.

3.3.1. Dark Energy

In 1998 observations of Type Ia supernovae suggested that the expansion of the universe
is accelerating [37]. In the past few years, these observations have been corroborated by
several independent sources [38]. This expansion is defined by the Hubble19 rule [39]:

V (r) = Hr, (3.52)

here V (r) is the velocity of expansion on the distance r, H is the Hubble’s constant
(H ≈ 2.3×10−18c−1 [40]).

Let a black hole be placed in a point O. Then a tremendous number of quarks oscillate
in this point. These oscillations bend time-space and if t has some fixed volume, x > 0, and
Λ := λt then

v(x) = c tanh
(

Λ
x2

)
. (3.53)

A dependency of v(x) (light years/c) from x (light years) with Λ = 741.907 is shown in
Figure 32.

Let a placed in a point A observer be stationary in the coordinate system {t,x}. Hence,
in the coordinate system {t ′,x′} this observer is flying to the left to the point O with velocity
−v(xA). And point X is flying to the left to the point O with velocity −v(x).

Consequently, the observer A sees that the point X flies away from him to the right with
velocity

19Edwin Powell Hubble (November 20, 1889 September 28, 1953)[1] was an American astronomer
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Figure 32: Dependence of v (light year/c) on x (light year) with Λ = 741.907

Figure 33: Dependence of VA (r) on r with xA = 25×103 l.y.
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Figure 34: Dependence of H on r

VA (x) = c tanh
(

Λ
x2

A
− Λ

x2

)
(3.54)

in accordance with the relativistic rule of addition of velocities.
Let r := x− xA (i.e. r is distance from A to X), and

VA (r) := c tanh

(
Λ
x2

A
− Λ

(xA + r)2

)
. (3.55)

In that case Figure 33 demonstrates the dependence of VA (r) on r with xA = 25× 103

l.y.
Hence, X runs from A with almost constant acceleration:

VA (r)
r

= H. (3.56)

Figure 34 demonstrates the dependence of H on r. (the Hubble constant.).
Therefore, the phenomenon of the accelerated expansion of Universe is explained by

oscillations of chromatic states.

3.3.2. Dark Matter

”In 1933, the astronomer Fritz Zwicky20 was studying the motions of distant galaxies.
Zwicky estimated the total mass of a group of galaxies by measuring their brightness. When
he used a different method to compute the mass of the same cluster of galaxies, he came up
with a number that was 400 times his original estimate. This discrepancy in the observed
and computed masses is now known as ”the missing mass problem.” Nobody did much with

20Fritz Zwicky (February 14, 1898 February 8, 1974) was a Swiss astronomer.
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Figure 35: A rotation curve for a typical spiral galaxy. The solid line shows actual mea-
surements (Hawley and Holcomb., 1998, p. 390) [42]

Zwicky’s finding until the 1970’s, when scientists began to realize that only large amounts
of hidden mass could explain many of their observations. Scientists also realize that the
existence of some unseen mass would also support theories regarding the structure of the
universe. Today, scientists are searching for the mysterious dark matter not only to explain
the gravitational motions of galaxies, but also to validate current theories about the origin
and the fate of the universe” [41] (Figure 35 [42], Figure 36 [43]).

Some oscillations of chromatic states bend space-time as follows (3.46):

∂
∂x′

= cos2α · ∂
∂x
− sin2α · ∂

∂y
, (3.57)

∂
∂y′

= cos2α · ∂
∂y

+ sin2α · ∂
∂z

.

Let

z : = x+ iy, i.e. z = reiθ;

z′ : = x′+ iy′.

Because linear velocity of the curved coordinate system ⟨x′,y′⟩ into the initial system
⟨x,y⟩ is the following21:

v(θ,r) =

√(
•
x′ (θ,r)

)2

+

(
•
y′ (θ,r)

)2

then in thic case:

21
•
x′:= ∂x′

∂t ,
•
y′:= ∂y′

∂t .
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Figure 36: Rotation curve of NGC 6503. The dotted, dashed and dash-dotted lines are the
contributions of gas, disk and dark matter, respectively.

Figure 37:
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v(θ,r) =
∣∣∣∣ •x′∣∣∣∣ .

Let function z′ be a holomorphic function. Hence, in accordance with the Cauchy-
Riemann conditions the following equations are fulfilled:

∂x′

∂x
=

∂y′

∂y
,

∂x′

∂y
= −∂y′

∂x
.

Therefore, in accordance with (3.57):

dz′ = e−i(2α)dz

where 2α is an holomorphic function, too. For example, let

2α :=
1
i
((x+ y)+ i(y− x)) .

In this case:

•
z′=− 1

16
(1− i)(A(t,r,θ)+B(t,r,θ)+C (t,r,θ))

where

A(t,r,θ) : =
4r cosθ√

t
exp
(

2r2

t
(sin2θ)− i cos2θ

)
,

B(t,r,θ) : =−2
√

π√
t

erf
(

Q(θ)
r√
t

)
,

C (t,r,θ) : =−
√

π · cosθ ·Q∗ (θ) · erf
(

Q(θ)
r√
t

)
where

Q(θ) := (cosθ− sinθ)+ i(cosθ+ sinθ) .

Figure 37 shows the dependence of velocity v on the radius r at large t ∼ 108 and line
(1) at θ = π, and line (2) at θ = 13π/14. Compare it with Figure 35 and Figure 36.

Hence, Dark Matter and Dark Energy can be mirages in the space-time, which is curved
by oscillations of chromatic states.

,





Conclusion

Fundamental Theoretical Physics contains sequences of theories, each of which is explained
of previous ones by rules of the classical logic. For example, optics is absorbed by theory of
electromagnetism, classical mechanics - by special theory of relativity and quantum theory,
the theory of electromagnetism and weak interactions - by theory of electroweak interac-
tions of Sheldon Glashow and so on. That means that basic notions and statements of every
subsequent theory are more logical than basic notions and axioms of the preceding one.

When these basic elements of the theory become absolutely logical, i.e. when they
become notions and rules of classical logic, theoretical physics will come to an end, it will
rather be logic than physics.

—————————————————-
Any subjects, connected with an information is called informational objects. For ex-

ample, it can be a physics device, or computer disks and gramophone records, or people,
carrying memory on events of their lifes, or trees, on cuts which annual rings tell on past
climatic and ecological changes, or stones with imprints of long ago extincted plants and
bestials, or minerals, telling on geological cataclysms, or celestial bodies, carrying an in-
formation on a remote distant past Universe, etc., etc.

It is clearly that an information, received from such information object, can be expressed
by a text which made of sentences.

A set of sentences, expressing an information of some informational object, is called
recorder of this object (p.15).

Obviously, the following conditions are satisfied:
I. A recorder does not kept logically hereafter refers to the classical propositional logic

inconsistent sentence.
II. If a recorder contains some sentence then one contains all propositional conse-

quences of that sentence.
+III. If recorder a contains sentence ”recorder b contains sentence A” then recorder a

contains sentence A.
For example, if recorder a contains sentence ”recorder b contains sentence ”Big Theo-

rem is proved” ” then recorder a contains sentence ”Big Theorem is proved”.
Some recorders systems form structures like clocks. The following results come from

the logical properties of a set of recorders (p.16)
First, all such clocks have the same direction, i.e. if an event expressed by sentence A

precedes an event expressed by sentence B according to one of such clocks then the same
for others as well (p.18).

Secondly, time, according to this clock, is irreversible, i.e. there’s no recorde which can
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receive information about an event that has happened until this event really happens. Thus,
nobody can come back in past or receive information from future (p.32).

Thirdly, a set of recorders are naturally embedded into a metrical space, i.e. all four
axioms of metrical space are received from logical properties of the set of recorders (p.23).

Fourthly, if this metrical space is Euclidean, then the corresponding ”space and time”
of recorders obeys to transformations of the complete Poincare group. In this case Special
Theory of Relativity follows the logical properties of information. If this metric space is not
Euclidean then suitable non-linear geometry may be built on this space. And an appropriate
version of the General Relativity Theory can be implemented in that space-time (pp.29–48).

Therefore, basic properties of time - unidirectionality and irreversibility, metrical prop-
erties of space and principles of the theory of relativity derive from logical properties of
the set of recorders. Thus, if you have some set of objects, dealing with information, then
”time” and ”space” are inevitable. And it doesn’t matter whether this set is included in our
world or some other worlds, which don’t have a space-time structure initially.

Such ”Time–Space” is called ”Informational Time–Space”.
Because we receive our time with our informational system then all other our times’

notions (thermodynamical time, cosmological time, psychological time, quantum time etc.)
should be defined by that Informational Time.

————————————————-
As it is well known, classical propositional logic can be formulated on the basis of the

properties of Boolean function. If the range of this function will be extended to the interval
[0, 1] of the real number axes then we shall obtain the function which has all properties
of the function of probability. Logical analogue of Law of Large Numbers in form of
Bernoulli is derived for this function. So, probability theory is a generalization of classical
propositional logic and, therefore, it is also propositional logic (pp.48–56).

—————————————————-
I consider the events, each of which can bound to a certain point in space-time. Such

events are called dot events[45]. Combinations (sums, products, supplements) of such
events are events, called physical events.

The probability density of dot events in space-time is invariant under Lorentz transfor-
mations. But probability density of such events in space at a certain instant of time is not
invariant under these transformations. I consider the dot events for which density of proba-
bility in space at some instant of time is the null component of a 3+1-vector function which
is transformed by the Lorentz formulas (pp.58–59).

I call these probabilities the traceable probabilities.
It is known that Dirac’s equation contains four anticommutive complex 4X4 matrices.

And this equation is not invariant under electroweak transformations. But it turns out that
there is another such matrix anticommutive with all these four matrices. If additional mass
term with this matrix will be added to Dirac’s equation then the resulting equation shall
be invariant under these transformations I call these five of anticommutive complex 4X4
matrices Clifford pentade. There exist only six Clifford pentads I call one of them the light
pentad, three - the chromatic pentads, and two - the gustatory pentads.

The light pentad contains three matrices corresponding to the coordinates of 3-
dimensional space, and two matrices relevant to mass terms - one for the lepton and one for
the neutrino of this lepton.
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Each chromatic pentad also contains three matrices corresponding to three coordinates
and two mass matrices - one for top quark and another - for bottom quark.

Each gustatory pentad contains one coordinate matrix and two pairs of mass matrices -
these pentads are not needed yet (pp.59–60).

It is proven (pp.65–68, 80–82) that any square-integrable 4x1-matrix function with
bounded domain (Planck’s function) obeys some generalization of Dirac’s equation with
additional gauge members. This generalization is the sum of products of the coordinate
matrices of the light pentad and covariant derivatives of the corresponding coordinates plus
product of all the eight mass matrices (two of light and six of chromatic) and the corre-
sponding mass numbers.

If this equation does not contain chromatic mass numbers then we obtain Dirac’s equa-
tion for leptons with gauge members which are similar to electroweak fields obtained for
gauge fields W and Z (pp.83–89, 106–139).

If this equation does not contain lepton’s and neutrino’s mass terms then we obtain the
Dirac’s equation with gauge members similar to eight gluon’s fields (pp.141 –155). And
oscillations of chromatic states of this equation bend space-time. This bend gives rise to the
effects of redshift, confinement and asymptotic freedom, and Newtonian gravity turns out
to be a continuation of subnucleonic forces (pp.155–157).

And it turns out that these oscillations bend space-time so that at large distance space
expands with acceleration according to Hubble’s law. And these oscillations bend space-
time so that here appears the discrepancy between q uantity of the luminous matter in space
structures and the traditional picture of gravitational interaction of stars in these structures
(pp.157–162)

Thus, concepts and statements of Quantum Theory are concepts and statements of the
probability of dot events and their ensembles.

Elementary physical particles in vacuum behave as these probabilities. For example, in
accordance with doubleslit experiment.

Thus, if between event of the creating of a particle and event of the detecting of ones
here events do not occur then at this period of time this particle does not exist - here only
probability of this particle detecting in some point. But this probability, as we have seen,
obeys the equations of quantum theory, and we get the interference. But in a cloud chamber
events of condensation form a chain, meaning the trajectory of this particle. In this case the
interference disappears. But this trajectory is not continuous - each point of this line has a
neighbour point. And the effect of this particle moving arises from the fact that a wave of
probability propagates between these points.

Consequently, the elementary physical particle represents an ensemble of dot events
associated probabilities. And charge, mass, energy, momentum, spins, etc. represent pa-
rameters of distribution of these probabilities. It explains all paradoxes of quantum physics.
Schrodinger’s cat lives easy without any superposition of states until the microevent awaited
by all occures. And the wave function disappears without any collapse in the moment when
an event probability disappears after the event occurs (pp.71–79).

Thus, the fundamental essence of nature are not particles and fields, but dot events and
connecting them probability.

————————————————–
Hence, the fundamental theoretical physics is one among of extensions of classical
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propositional logic.



Epilogue

”... They sawed dumb-bells ...
”What’s the matter?” Balaganov said suddenly, stopping work. ”I’ve been sawing away

for three hours, and still it isn’t gold!” Panikovsky did not reply. He had made the discovery
a half hour before, and had continued to move the saw only for the sake of appearance.
”Well, let’s saw some more,” redhaired Shura said gallantly. ”Of course we must saw,”
remarked Panikovsky, trying to defer the moment of reckoning as long as possible. ... ”I
can’t make it out,” said Shura, when he had sawed the dumbbell into two halves. ”This is
not gold!” ”Go on sawing! Go on!” gabbled Panikovsky...”

Ilya Ilf, Yevgeny Petrov. ”The Little Golden Calf”. M., 1987.
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