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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The Dutch Translation∗

Declaratie van Academische Vrijheid
(Wetenschappelijke Mensenrechten)

Artikel 1: Preambule

Meer dan welke tijd dan ook in de geschiedenis van de
mensheid weerspiegelt het begin van de 21e eeuw de diep-
gaande betekenis van de rol van wetenschap en technologie
in menselijke aangelegenheden.

Het krachtige doordringende karakter van de moderne
wetenschap en technologie heeft de algemene opvatting doen
ontstaan dat verdere hoofdontdekkingen in principe alleen
gemaakt kunnen worden door grote onderzoeksgroepen die
gesubsidieerd worden door de overheid of het bedrijfsleven
en die de beschikking hebben over uitzonderlijk dure instru-
mentatie en geassisteerd worden door hordes ondersteunend
personeel.

Deze algemene opvatting is echter van mythische aard en
is in tegenspraak met hoe wetenschappelijke ontdekkingen
werkelijk gedaan worden. Grote en kostbare technologische
projecten, hoe complex ook, zijn slechts het resultaat van het
toepassen van diepe wetenschappelijke inzichten van kleine
groepen toegewijde onderzoekers of alleen werkende weten-
schappers die vaak in een isolement werken. Een weten-
schapper die alleen werkt is nu en in de toekomst, net als
in het verleden, in staat om een ontdekking te doen die een
substantiële invloed heeft op het lot van de mensheid en die
het aangezicht van de hele planeet waar we zo onbetekenend
op verblijven verandert.

Fundamentele ontdekkingen worden over het algemeen
gedaan door individuen op ondergeschikte posities binnen
overheidsinstellingen, onderzoeks- en opleidingsinstituten of
commerciële ondernemingen. Onderzoekers worden maar al
te vaak beperkt en onderdrukt door instituten en bedrijfsdi-
recteuren die met een andere agenda werken en vanuit per-
soonlijke belangen of in het belang van het instituut of het
bedrijf of door grootheidswaanzin wetenschappelijke ont-
dekkingen en onderzoek proberen te controleren en/of toe
te passen.

De annalen van de wetenschap zijn bezaaid met weten-
schappelijke ontdekkingen die onderdrukt en bespot werden
door de gevestigde orde, maar die in latere jaren bekend-
heid kregen en in het gelijk gesteld werden door de onver-
biddelijke opmars van praktische noodzakelijkheid en intel-
lectuele verlichting. Daarnaast zijn de wetenschappelijke an-

∗Original text published in English: Progress in Physics, 2006, v. 1,
57–60. Online — http://www.geocities.com/ptep online/.

Originele Engelse versie door Dmitri Rabounski, hoofdredacteur van
het tijdschrift Progress in Physics. E-mail: rabounski@yahoo.com.

Vertaald door Eit Gaastra. E-mail: eitgaastra@freeler.nl.

nalen bevlekt en besmeurd door plagiaat en opzettelijk valse
voorstellingen, daden begaan door mensen zonder scrupules,
mensen die gemotiveerd werden door jaloezie en hebzucht.
En zo is het nog steeds.

Het doel van deze declaratie is het ondersteunen en be-
vorderen van het grondbeginsel dat stelt dat wetenschap-
pelijk onderzoek vrij moet zijn van verborgen en openlijk
onderdrukkende invloeden van bureaucratische, politieke,
religieuze en commerciële aard en dat wetenschappelijke
creatie niet minder een mensenrecht is dan andere soortge-
lijke rechten en wanhopige ondernemingen zoals die voor-
gesteld zijn in internationale verdragen en het internationale
recht.

Wetenschappers die deze declaratie ondersteunen be-
horen zich eraan houden als teken van solidariteit en be-
trokkenheid met de internationale wetenschapsgemeenschap
en als waarborg voor de rechten van alle wereldburgers om
naar vermogen individuele vaardigheden en aanleg te ge-
bruiken voor ongeremde wetenschappelijke creatie, dit ter
bevordering van de wetenschap en, naar hun uiterste ver-
mogen als betamelijke burgers in een onbetamelijke wereld,
voor de vooruitgang van de mensheid. Wetenschap en tech-
nologie zijn veel te lang dienaren van onderdrukking ge-
weest.

Artikel 2: Wie is een wetenschapper

Een wetenschapper is ieder persoon die aan wetenschap doet.
Ieder persoon die met een wetenschapper samenwerkt in het
ontwikkelen, produceren en voorstellen van ideeën en data
tijdens onderzoek of toepassing is ook een wetenschapper.

Artikel 3: Waar wordt er wetenschap geproduceerd

Wetenschappelijk onderzoek kan overal worden uitgevoerd,
bijvoorbeeld op een werkplek, tijdens een formele educatie-
cursus, tijdens een gesponsord academisch programma, in
groepen, of als individu die thuis onafhankelijk onderzoek
doet.

Artikel 4: Vrijheid van keuze van onderzoeksthema

Veel wetenschappers die werken voor een hogere onder-
zoeksgraad of in andere onderzoeksprogramma’s op acade-
mische instituten zoals universiteiten of hogescholen worden
verhinderd om te werken aan een onderzoeksonderwerp naar
eigen keuze door begeleidende academici en/of administra-
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tieve ambtenaren, niet vanwege het ontbreken van onder-
steunende faciliteiten maar omdat de academische hiërarchie
en/of andere ambtenaren doodeenvoudig de onderzoeksrich-
ting niet goedkeuren als het voorgestelde onderzoek de po-
tentie heeft om voor onrust te zorgen ten aanzien van heer-
sende dogma’s en favoriete theorieën, of als het voorgestelde
onderzoek de subsidies van andere projecten in gevaar kan
brengen. Het gezag van de orthodoxe meerderheid meent
zeer vaak een onderzoeksproject te moeten torpederen zodat
gezag en budgetten onaangetast blijven. Deze alledaagse
praktijken zijn weloverwogen belemmeringen om vrije
wetenschappelijke gedachten tegen te houden, ze zijn ex-
treem onwetenschappelijk en crimineel. Ze mogen niet ge-
tolereerd worden.

Een wetenschapper die werkt voor een academisch in-
stituut, autoriteit of instelling behoort volkomen vrij te zijn
ten aanzien van de keuze van het onderzoeksonderwerp en
mag enkel beperkt worden door de materiële ondersteuning
en intellectuele vaardigheden die geboden worden door het
opleidingsinstituut, de instelling of de autoriteit. Als de
wetenschapper een onderzoek uitvoert als lid van een sa-
menwerkende groep behoren de onderzoeksdirecteuren en
teamleiders zich te beperken tot een adviserende en consul-
terende rol met betrekking tot de keuze van een relevant
onderzoeksthema door een wetenschapper in de groep.

Artikel 5: Vrijheid van keuze van onderzoeksmethoden

Het gebeurt vaak dat er op een wetenschapper druk wordt
uitgeoefend door administratief personeel of begeleidende
academici met betrekking tot een onderzoeksprogramma dat
in een academische omgeving wordt uitgevoerd. Deze druk
wordt uitgeoefend om een wetenschapper er toe te dwin-
gen om andere onderzoeksmethoden te gebruiken dan de
wetenschapper heeft gekozen, dit vanwege geen andere re-
den dan persoonlijke voorkeur, vooroordeel, institutioneel
beleid, redactionele voorschriften of verenigde autoriteit.
Deze praktijk, die zeer wijdverbreid is, is een weloverwogen
ontkenning van de vrijheid van gedachten en kan niet toege-
staan worden.

Een non-commerciële of academische wetenschapper
heeft het recht om een onderzoeksthema te ontwikkelen op
elke redelijke manier en met alle redelijke middelen die hij
als het meest effectief beschouwt. De uiteindelijke beslissing
ten aanzien van hoe het onderzoek uitgevoerd zal worden
behoort te worden gemaakt door de wetenschapper zelf.

Als een non-commerciële of academische wetenschap-
per werkt als lid van een samenwerkend non-commercieel of
academisch team van wetenschappers behoren de projectlei-
ders en onderzoeksdirecteuren enkel adviserende en consul-
terende rechten te hebben en behoren zij niet op een andere
manier de onderzoeksmethoden of het onderzoeksthema van
de wetenschapper in de groep te beı̈nvloeden, matigen of
beperken.

Artikel 6: Vrijheid van samenwerking en deelname in
een onderzoek

Er is een aanzienlijke hoeveelheid institutionele rivaliteit
in de alledaagse praktijk van de moderne wetenschap die
samengaat met gevallen van persoonlijke jaloezie en het
ten koste van alles zorgen voor het behoud van reputaties,
ongeacht het wetenschappelijke wezen. Dit heeft er vaak toe
geleid dat wetenschappers belet werden de hulp in te roepen
van competente collega’s van rivaliserende instituten of an-
deren zonder enige binding met een academisch instituut.
Ook deze praktijken zijn weloverwogen belemmeringen van
wetenschappelijke vooruitgang.

Als een non-commerciële wetenschapper assistentie van
een ander persoon nodig heeft en deze andere persoon stemt
daarin toe dan heeft de wetenschapper de vrijheid om die
persoon uit te nodigen om enige of alle mogelijke assistentie
te verlenen mits de assistentie binnen het aan het onderzoek
verbonden budget valt. Als de assistentie onafhankelijk is
van budgetoverwegingen heeft de wetenschapper de vrijheid
om de assisterende persoon naar eigen goeddunken in di-
enst te nemen, vrij van enige bemoeienis door welk ander
persoon dan ook.

Artikel 7: Vrijheid van meningsverschil in wetenschap-
pelijke discussies

Door heimelijke jaloezie en oude gevestigde belangen ver-
afschuwt de moderne wetenschap openlijke discussie en
verbant zij moedwillig wetenschappers die twijfelen aan de
orthodoxe standpunten. Zeer vaak worden uitzonderlijk be-
kwame wetenschappers die op de tekortkomingen in de
gangbare theorieën of interpretatie van data wijzen gela-
beld als zonderlingen, zodat hun denkbeelden probleemloos
genegeerd kunnen worden. Ze worden publiekelijk en privé
bespot en het wordt hen systematisch belet om conferenties,
seminaries en colloquia te bezoeken, zodat hun ideeën geen
publiek kunnen vinden. Opzettelijke vervalsing van data
en het verkeerd voorstellen van theorieën zijn nu veel ge-
bruikte werktuigen van onscrupuleuzen in het onderdrukken
van feiten, zowel technisch als historisch. Er hebben zich
internationale commissies van wetenschappelijke onverlaten
gevormd en deze commissies treden als gastheer op tijdens
door henzelf in het leven geroepen internationale conferen-
ties waar alleen hun volgelingen toegestaan wordt om lezin-
gen te presenteren, ongeacht de kwaliteit van de inhoud.
Deze commissies halen enorme sommen geld uit de pu-
blieke portemonnee om hun gesponsorde projecten te sub-
sidiëren door hun toevlucht te nemen tot misleiding en leu-
gens. Iedere op wetenschappelijke gronden berustende te-
genwerping ten aanzien van hun voorstellen wordt op hun
instigatie volledig doodgezwegen, zodat geld naar hun pro-
jecten kan blijven stromen en hun goedbetaalde banen ge-
garandeerd blijven. Opponerende wetenschappers zijn in
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hun opdracht ontslagen; anderen is het belet om zekerheid-
biedende academische aanstellingen te krijgen door een
netwerk van corrupte medeplichtigen. In andere situaties
zijn sommigen verdreven van een kandidatuur voor pro-
gramma’s voor een hogere graad, zoals promotie naar een
doctortitel, omdat ze ideeën hebben geuit die de gang-
bare theorie zouden kunnen ondermijnen, hoe oud die or-
thodoxe theorie ook was. Het fundamentele feit dat geen
wetenschappelijke theorie definitief noch onschendbaar is en
daarom open staat voor discussie en her-evaluatie wordt door
hen grondig genegeerd. Ook negeren ze het feit dat een
fenomeen meerdere aannemelijke verklaringen kan hebben
en brengen ze iedere verklaring die niet in overeenstemming
is met de orthodoxe opinie kwaadaardig in diskrediet. Zon-
der aarzelen nemen ze hun toevlucht tot het gebruik van on-
wetenschappelijke argumenten om hun vooringenomen
mening te rechtvaardigen.

Alle wetenschappers behoren vrij te zijn om over hun
onderzoek en het onderzoek van anderen te discussiëren
zonder angst om publiekelijk of privé zonder wezenlijke
argumenten belachelijk gemaakt te worden of te worden
beschuldigd, gekleineerd, betwist of anderszins in diskrediet
gebracht te worden door ongefundeerde aantijgingen. Geen
wetenschapper mag in een positie gebracht worden waar
levensonderhoud of reputatie in gevaar zijn als gevolg van
het uiten van een wetenschappelijke mening. Vrijheid van
wetenschappelijke expressie behoort een uiterst hoog goed
te zijn. Het gebruik van macht in het weerleggen van een
wetenschappelijk argument is niet wetenschappelijk en be-
hoort niet gebruikt te worden om te muilkorven, onder-
drukken, intimideren, verbannen of anderszins een weten-
schapper te dwingen of uit te sluiten. Opzettelijke onder-
drukking van wetenschappelijke feiten of argumenten, zowel
actief door daad als passief door weglaten, en opzettelijke
vervalsing van data om een argument te ondersteunen of om
een opponerende opvatting in diskrediet te brengen is weten-
schappelijke fraude en dient beschouwd te worden als een
wetenschappelijke misdaad. Grondbeginselen ten aanzien
van bewijsmateriaal behoren iedere wetenschappelijke dis-
cussie te begeleiden, of het bewijsmateriaal nu experi-
menteel, theoretisch of een combinatie van die twee is.

Artikel 8: Vrijheid van publicatie van wetenschappelijke
resultaten

Een betreurenswaardige censuur is nu de standaardpraktijk
geworden bij redacties van de belangrijke wetenschapstijd-
schriften en elektronische archieven en hun bendes zoge-
naamde deskundige referees. De referees worden voor het
grootste deel beschermd door anonimiteit zodat de auteur
niet hun zogenaamde deskundigheid kan verifiëren. Stukken
worden momenteel routinematig geweigerd als de auteur de
dominante theorie en gangbare orthodoxie verwerpt of weer-
legt. Veel stukken worden nu automatisch geweigerd omdat

bij de referenties een wetenschapper staat die in ongenade
is gevallen bij de redacteuren, referees of andere deskundige
censoren, zonder dat men zich ook maar enigszins over de
inhoud van het stuk bekommert. Er bestaat een zwarte lijst
van wetenschappers die een afwijkende mening hebben en
deze lijst gaat over en weer tussen participerende redac-
ties. Dit alles draagt bij aan grove vooringenomenheid en
een misdadige onderdrukking van vrije gedachten en dient
veroordeeld te worden door de internationale wetenschaps-
gemeenschap.

Alle wetenschappers behoren het recht te hebben om hun
wetenschappelijke onderzoeksresultaten geheel of gedeel-
telijk te presenteren op relevante wetenschapconferenties en
hetzelfde te publiceren in gedrukte wetenschapstijdschriften,
elektronische archieven en welke andere media dan ook. Van
geen enkele wetenschapper behoren stukken of verslagen
die ter publicatie aangeboden worden aan wetenschapstijd-
schriften, elektronische archieven of andere media gewei-
gerd te worden alleen maar omdat het werk de gangbare
meerderheidsmening ter discussie stelt, in conflict is met de
opvattingen van de redactie, de bases ondermijnt van an-
dere in gang gezette of geplande onderzoeksprojecten van
andere wetenschappers, of botst met een politiek dogma, re-
ligieus geloof of persoonlijke mening van een ander, en geen
enkele wetenschapper behoort op een zwarte lijst te staan of
anderszins gecensureerd te worden noch verhinderd te wor-
den om tot publicatie te komen door welk ander persoon dan
ook. Geen wetenschapper behoort door de belofte van een
geschenk of andere vergoeding ter omkoping de publicatie
van het werk van een andere wetenschapper te blokkeren,
modificeren of anderszins met de publicatie van het werk te
interfereren.

Artikel 9: Het co-auteurschap van wetenschappelijke
artikelen

Het is een slecht verborgen gehouden geheim binnen weten-
schappelijke kringen dat veel co-auteurs van onderzoeksar-
tikelen eigenlijk weinig of niks van doen hebben met het
onderzoek waarover gerapporteerd wordt. Veel supervisors
van afstuderende studenten bijvoorbeeld zijn er niet afke-
rig van om hun namen op artikelen te zetten van perso-
nen die slechts nominaal onder hun supervisie werken. In
veel van die gevallen heeft degene die het artikel schrijft
een superieur begrip ten aanzien van de materie vergeleken
met de supervisor. In andere situaties, ook nu weer met
als doel algemene bekendheid, reputatie, geld, prestige en
dergelijke, worden niet-participerende personen aan het ar-
tikel toegevoegd als co-auteur. De werkelijke auteurs van
dergelijke artikelen kunnen hiertegen enkel protesteren in
het besef dat ze het risico lopen om later hiervoor gestraft te
worden of, naar gelang de omstandigheden, zelfs uitgesloten
te worden van de kandidatuur voor een hogere onderzoeks-
graad of van de onderzoeksgroep. Velen zijn feitelijk ver-
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bannen onder dergelijke omstandigheden. Deze ontstellende
praktijken kunnen niet getolereerd worden. Alleen de perso-
nen verantwoordelijk voor het onderzoek behoren als auteur
geaccrediteerd te worden.

Geen wetenschapper behoort een ander persoon uit te
nodigen om toegevoegd te worden en geen wetenschapper
behoort het toe te staan dat zijn of haar naam toegevoegd
wordt als co-auteur van een wetenschappelijk artikel als hij
of zij niet significant heeft bijgedragen aan het onderzoek
waarover gerapporteerd wordt in het artikel. Geen weten-
schapper behoort het toe te staan dat hij of zij door een
vertegenwoordiger van een academisch instituut, corporatie,
overheidsinstelling of enig ander persoon als co-auteur toe-
gevoegd wordt aan een artikel dat een onderzoek betreft
waar hij of zij niet significant aan heeft bijgedragen, en
geen wetenschapper behoort het toe te staan dat zijn of haar
naam gebruikt wordt als co-auteur met als tegenprestatie
welk geschenk of andere vergoeding ter omkoping dan ook.
Geen persoon behoort een wetenschapper op wat voor
manier dan ook ertoe te bewegen of proberen ertoe te bewe-
gen om het toe te staan dat de naam van de wetenschapper
toegevoegd wordt als co-auteur van een wetenschappelijk ar-
tikel dat een inhoud heeft waar hij of zij niet significant aan
heeft bijgedragen.

Artikel 10: Onafhankelijkheid van affiliatie

Veel wetenschappers zijn nu in dienst met een korte termijn
contract. Met de beëindiging van het dienstverband komt er
ook een einde aan de academische affiliatie. Redacties voe-
ren vaak het beleid dat personen zonder een academische
of commerciële affiliatie niet gepubliceerd worden. Zon-
der affiliatie kan een wetenschapper van veel middelen niet
gebruik maken en de mogelijkheden om lezingen te geven
en artikelen te presenteren op conferenties worden er door
beperkt. Dit is een verdorven praktijk die gestopt moet wor-
den. Wetenschap herkent geen affiliatie.

Geen wetenschapper behoort belet te worden om artike-
len te presenteren op conferenties, colloquia te geven op
seminaries, te publiceren in welke media dan ook, toegang
te krijgen tot academische bibliotheken of wetenschappelij-
ke publicaties, wetenschappelijke bijeenkomsten bij te wo-
nen of lezingen te geven, vanwege het niet geaffilieerd zijn
met een academisch instituut, wetenschappelijk instituut,
overheids- of bedrijfslaboratorium, of welke andere orga-
nisatie dan ook.

Artikel 11: Vrije toegang tot wetenschappelijke infor-
matie

De meeste gespecialiseerde boeken over wetenschappelijke
aangelegenheden en veel wetenschappelijke tijdschriften
leveren weinig tot geen winst op zodat commerciële uit-
gevers niet bereid zijn ze te publiceren zonder een geld-

bijdrage van academische instituten, overheidsinstellingen,
filantropische stichtingen en dergelijke. Onder zulke om-
standigheden zouden commerciële uitgevers vrije toegang
tot elektronische versies van de publicaties toe moeten staan
en ernaar moeten streven de kosten van het gedrukte materi-
aal tot een minimum te beperken.

Alle wetenschappers behoren ernaar te streven dat hun
onderzoeksartikelen gratis beschikbaar zijn voor de interna-
tionale wetenschapsgemeenschap of, als dat niet mogelijk
is, beschikbaar zijn voor zo weinig mogelijk kosten. Alle
wetenschappers zouden actief maatregelen moeten nemen
om hun technische boeken verkrijgbaar te maken voor zo
weinig mogelijk kosten, zodat de wetenschappelijke infor-
matie beschikbaar kan zijn voor een bredere internationale
wetenschapsgemeenschap.

Artikel 12: Ethische verantwoordelijkheid van weten-
schappers

De geschiedenis toont ons dat wetenschappelijke ontdekkin-
gen gebruikt worden voor zowel goed als kwaad en dat ze
sommigen ten goede komen en anderen vernietigen. Omdat
de vooruitgang van wetenschap en technologie niet kan stop-
pen zullen er bepaalde middelen moeten komen om kwaad-
aardige toepassingen te voorkomen. Enkel een democratisch
gekozen regering die vrij is van religieuze, raciale en an-
dere vooroordelen kan de beschaafde wereld waarborgen.
Enkel democratisch gekozen regeringen, tribunalen en com-
missies kunnen het recht van vrije wetenschappelijke cre-
atie waarborgen. Momenteel zijn er verscheidene ondemo-
cratische staten en totalitaire regimes die actief onderzoek
uitvoeren op het gebied van nucleaire fysica, chemie, virolo-
gie, genetische manipulatie, etc. om nucleaire, chemische en
biologische wapens te produceren. Geen wetenschapper be-
hoort vrijwillig samen te werken met ondemocratische staten
of totalitaire regimes. Iedere wetenschapper die gedwongen
wordt om te werken aan het ontwikkelen van wapens voor
zulke staten behoort wegen en middelen te vinden om de
vooruitgang van de onderzoeksprogramma’s te vertragen en
de wetenschappelijke output te beperken, zodat beschaving
en democratie ten slotte kunnen zegevieren.

Alle wetenschappers dragen een morele verantwoorde-
lijkheid voor hun wetenschappelijke creaties en ontdekkin-
gen. Geen wetenschapper behoort zich vrijwillig bezig te
houden met het ontwerpen of vervaardigen van wapens van
welke soort dan ook voor ondemocratische staten of to-
talitaire regimes, of toestaan dat zijn of haar wetenschap-
pelijke vaardigheden of kennis gebruikt wordt voor de ont-
wikkeling van wat dan ook dat de mensheid kan beschadi-
gen. Een wetenschapper behoort te leven met het dictum dat
iedere ondemocratische regering en iedere schending van de
mensenrechten misdadig is.

28 maart 2006

6 Declaratie van Academische Vrijheid: Wetenschappelijke Mensenrechten
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On Isotropic Coordinates and Einstein’s Gravitational Field

Stephen J. Crothers

Queensland, Australia
E-mail: thenarmis@yahoo.com

It is proved herein that the metric in the so-called “isotropic coordinates” for Einstein’s
gravitational field is a particular case of an infinite class of equivalent metrics.
Furthermore, the usual interpretation of the coordinates is erroneous, because in the
usual form given in the literature, the alleged coordinate length

√
dx2 + dy2 + dz2 is

not a coordinate length. This arises from the fact that the geometrical relations between
the components of the metric tensor are invariant and therefore bear the same relations
in the isotropic system as those of the metric in standard Schwarzschild coordinates.

1 Introduction

Petrov [1] developed an algebraic classification of Einstein’s
field equations. Einstein’s field equations can be written as,

Rαβ −
1

2
Rgαβ =κTαβ − λgαβ ,

where κ is a constant, and λ the so-called cosmological
constant. If Tαβ ∝ gαβ , the associated space is called an
Einstein space. Thus, Einstein spaces include those described
by partially degenerate metrics of this form. Consequently,
such metrics become non-Einstein only when

g= det ‖gαβ‖=0 .

A simple source is a spherically symmetric mass (a mass
island), without charge or angular momentum. A simple
source giving rise to a static gravitational field in vacuum,
where space is isotropic and homogeneous, constitutes a
Schwarzschild space. The associated field equations external
to the simple source are

Rαβ −
1

2
Rgαβ =0 ,

or, more simply,
Rαβ =0 .

Thus, a Schwarzschild space is an Einstein space. There
are four types of Einstein spaces. The Schwarzschild space
is a type 1 Einstein space. It gives rise to a spherically
symmetric gravitational field.

The simple source interacts with a “test” particle, which
has no charge, no angular momentum, and effectively no
mass, or so little mass that its own gravitational field can be
neglected entirely. A similar concept is utilised in electro-
dynamics in the notion of a “test” charge.

The only solutions known for Einstein’s field equations
involve a single gravitating source interacting with a test
particle. There are no known solutions for two or more

interacting comparable masses. In fact, it is not even known
if Einstein’s field equations admit of solutions for multi-
body configurations, as no existence theorem has even been
adduced. It follows that there is no theoretical sense to
concepts such as black hole binaries, or colliding or merging
black holes, notwithstanding the all too common practice
of assuming them well-posed theoretical problems allegedly
substantiated by observations.

The metric for Einstein’s gravitational field in the usual
isotropic coordinates is, in relativistic units (c=G=1),

ds2=

(
1− m

2r

)2

(
1 + m

2r

)2 dt
2−

−
(
1 +

m

2r

)4 [
dr2 + r2

(
dθ2 + sin2θ dϕ2

)]
=

(1a)

=

(
1− m

2r

)2

(
1 + m

2r

)2 dt
2 −

(
1 +

m

2r

)4(
dx2 + dy2 + dz2

)
, (1b)

having set r=
√
x2 + y2 + z2. This metric describes

a Schwarzschild space.
By virtue of the factor (dx2 + dy2 + dz2) it is usual that

0 6 r < ∞ is taken. However, this standard range on r is
due entirely to assumption, based upon the misconception
that because 0 6 r <∞ is defined on the usual Minkowski
metric, this must also hold for (1a) and (1b). Nothing could
be further from the truth, as I shall now prove.

2 Proof

Consider the standard Minkowski metric,

ds2= dt2 − dx2 − dy2 − dz2 ≡

≡ dt2 − dr2 − r2(dθ2 + sin2 θdϕ2) , (2)

06 r <∞ .

The spatial components of this metric describe a sphere of
radius r> 0, centred at r=0. The quantity r is an Efcleeth-
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ean∗ distance since Minkowski space is pseudo-Efcleethean.
Now (2) is easily generalised [2] to

ds2= dt2− dr2− (r− r0)
2(dθ2+sin2θ dϕ2) = (3a)

= dt2−
(r − r0)

2

|r − r0|2
dr2−|r− r0|

2(dθ2+sin2θ dϕ2) , (3b)

= dt2 − d|r − r0|
2 − |r − r0|

2(dθ2 + sin2θ dϕ2) , (3c)

0 6 |r − r0| <∞ .

The spatial components of equations (3) describe a sphere
of radius Rc(r)= |r− r0|, centred at a point located any-
where on the 2-sphere r0 . Only if r0 =0 does (3) describe a
sphere centred at the origin of the coordinate system. With
respect to the underlying coordinate system of (3), Rc(r) is
the radial distance between the 2-spheres r= r0 and r 6= r0 .

The usual practice is to supposedly generalise (2) as

ds2=A(r)dt2 −B(r)
(
dr2 + r2dθ2 + r2 sin2θ dϕ2

)
(4)

to finally obtain (1a) in the standard way, with the assumption
that 06 r <∞ on (2) must hold also on (4), and hence
on equations (1). However, this assumption has never been
proved by the theoreticians. The assumption is demonstrably
false. Furthermore, this procedure does not produce a gene-
ralised solution in terms of the parameter r, but instead a
particular solution.

Since (3) is a generalisation of (2), I use it to generalise
(4) to

ds2= eνdt2 − eμ
(
dh2 + h2dθ2 + h2 sin2θ dϕ2

)
(5)

h=h(r)=h(|r−r0|), ν = ν (h(r)), μ=μ(h(r)) .

Note that (5) can be written in the mixed form

ds2= eνdt2−eμ
[(
dh

dr

)2
dr2+h2dθ2+h2 sin2θdϕ2

]

, (6)

from which the particular form (4) usually used is recovered
if h(|r−r0|)= r. However, no particular form for h(|r−r0|)
should be pre-empted. Doing so, in the routine fashion of
the majority of the relativists, produces only a particular
solution in terms of the Minkowski r, with all the erroneous
assumptions associated therewith.

Now (5) must satisfy the energy-momentum tensor equa-
tions for the simple, static, vacuum field:

0= e−μ
(
μ′2

4
+
μ′ν ′

2
+
μ′ + ν ′

h

)

0= e−μ
(
μ′′

2
+
ν ′′

2
+
ν ′2

r
+
μ′ + ν ′

2h

)

0= e−μ
(

μ′′ +
μ′2

4
+
2μ′

h

)

,

∗Due to Efcleethees, incorrectly Euclid, so the geometry is rightly
Efcleethean.

where the prime indicates d/dh. This gives, in the usual way,

ds2=

(
1− m

2h

)2

(
1 + m

2h

)2 dt
2−

−
(
1 +

m

2h

)4 [
dh2 + h2

(
dθ2 + sin2θ dϕ2

)]
,

(7)

from which the admissible form for h(|r−r0|) and the value
of the constant r0 must be rigorously ascertained from the
intrinsic geometrical properties of the metric itself.

Now the intrinsic geometry of the metric (2) is the same
on all the metrics given herein in terms of the spherical
coordinates of Minkowski space, namely, the radius of cur-
vature Rc in the space described by the metric is always
the square root of the coefficient of the angular terms of the
metric and the proper radius Rp is always the integral of
the square root of the component containing the differential
element of the radius of curvature. Thus, on (2),

Rc(r)≡ r, Rp(r)≡
∫ r

0

dr= r≡Rc(r) ,

and on (3),
Rc(r)≡ |r − r0| ,

Rp(r)≡
∫ |r−r0 |

0

dr = |r − r0| ≡Rc(r) ,

whereby it is clear that Rc(r) and Rp(r) are identical, owing
to the fact that the spatial coordinates of (2) and (3) are
Efcleethean.

Now consider the general metric of the form

ds2=A(r)dt2 −B(r)dr2 − C(r)(dθ2 + sin2θ dϕ2) (8)

A,B,C > 0.

In this case,

Rc(r) =
√
C(r), Rp(r) =

∫ √
B(r) dr .

I remark that although (8) is mathematically valid, it
is misleading. In the cases of (2) and (3), the respective
metrics are given in terms of the radius of curvature and its
differential element. This is not the case in (8) where the first
and second components are in terms of the parameter r of
the radius of curvature, not the radius of curvature itself. I
therefore write (8) in terms of only the radius of curvature
on (8), thus

ds2=A∗
(√
C(r)

)
dt2 −B∗

(√
C(r)

)
d
√
C(r)

2
−

−C(r)(dθ2 + sin2θ dϕ2) ,
(9a)

A∗, B∗, C > 0 .
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July, 2006 PROGRESS IN PHYSICS Volume 3

Note that (9a) can be written as,

ds2=A∗
(√
C(r)

)
dt2−B∗

(√
C(r)

)
(
d
√
C(r)

dr

)2
dr2−

−C(r)
(
dθ2 + sin2θ dϕ2

)
,

(9b)

A∗, B∗, C > 0 ,

and by setting

B∗
(√
C(r)

)
(
d
√
C(r)

dr

)2
=B (r) ,

equation (8) is recovered, proving that (8) and equations (9)
are mathematically equivalent, and amplifying the fact that
(8) is a mixed-term metric. Note also that if C(r) is set
equal to r2, the alleged general form used by most relativists
is obtained. However, the form of C(r) should not be pre-
empted, for by doing so only a particular parametric solution
is obtained, and with the form chosen by most relativists, the
properties of r in Minkowski space are assumed (incorrectly)
to carry over into the metric for the gravitational field.

It is also clear from (8) and equations (9) that |r − r0|
is the Efcleethean distance between the centre of mass of
the field source and a test particle, in Minkowski space, and
which is mapped into Rc(r) and Rp(r) of the gravitational
field by means of functions determined by the structure of
the gravitational metric itself, namely the functions given by

Rc(r) =
√
C(r) ,

Rp(r)=

∫ √
B∗
(√
C(r)

)
d
√
C(r)=

∫ √
B (r) dr .

In the case of the usual metric the fact that |r − r0| is
the Efcleethean distance between the field source and a test
particle in Minkowski space is suppressed by the choice
of the particular function

√
C(r)= r2, so that it is not

immediately apparent that when r goes down to α=2m
on that metric, the parametric distance between field source
and test particle has gone down to zero. Generally, as the
parametric distance goes down to zero, the proper radius in
the gravitational field goes down to zero, irrespective of the
location of the field source in parameter space. Thus, the
field source is always located at Rp = 0 as far as the metric
for the gravitational field is concerned.

It has been proved elsewhere [3, 4] that in the case of the
simple “point-mass” (a fictitious object), metrics of the form
(8) or (9) are characterised by the following scalar invariants,

Rp(r0)≡ 0 , Rc(r0)≡ 2m, g00(r0)≡ 0 , (10)

so that the actual value of r0 is completely irrelevant.
Now (7) can be written as

ds2=

(
1− m

2h

)2

(
1 + m

2h

)2 dt
2 −

−
(
1 +

m

2h

)4
dh2−h2

(
1 +

m

2h

)4(
dθ2 + sin2θ dϕ2

)
, (11)

h=h(r)=h(|r − r0|) .

Since the geometrical relations between the components of
the metric tensor are invariant it follows that on (11),

Rc(r)=h(r)

(

1 +
m

2h(r)

)2
, (12a)

Rp(r)=

∫ (

1 +
m

2h(r)

)2
dh(r) =

= h(r) +m lnh(r)−
m2

2

1

h(r)
+K ,

where K = constant,

Rp(r)=h(r) +m ln
h(r)

K1

−
m2

2

1

h(r)
+K2 (12b)

where K1 and K2 are constants.
It is required that Rp(r0) ≡ 0, so

0=h(r0) +m ln
h(r0)

K1

−
m2

2

1

h(r0)
+K2 ,

which is satisfied only if

h(r0)=K1 =K2 =
m

2
. (13)

Therefore,

Rp(r)=h(r) +m ln

(
2h(r)

m

)

−
m2

2

1

h(r)
+
m

2
. (14)

According to (12a), and using (13),

Rc
(
r0
)
=
m

2

(

1 +
m

2m2

)2
=2m,

satisfying (10) as required.
Now from (11),

g00(r) =

(
1− m

2h(r)

)2

(
1 + m

2h(r)

)2 ,

and using (13),

g00(r0) =

(
1− 2m

2m

)2

(
1 + 2m

2m

)2 = 0 ,

satisfying (10) as required.
It remains now to ascertain the general admissible form

of h(r)=h(|r − r0|).
By (6),

dh

dr
6=0 ∀ r 6= r0 .
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It is also required that (11) become Minkowski in the
infinitely far field, so

lim
|r−r0 |→∞

h2(r)
(
1 + m

2h(r)

)4

|r − r0|2
→ 1 ,

must be satisfied.
When there is no matter present (m=0), h(r) must

reduce the metric to Minkowski space.
Finally, h(r) must be able to be arbitrarily reduced to r

by a suitable choice of arbitrary constants so that the usual
metric (1a) in isotropic coordinates can be recovered at will.

The only form for h(r) that satisfies all the require-
ments is

h(r)=

[

|r − r0|
n +

(m
2

)n]
1
n

,

n ∈ <+, r0 ∈ < , r 6= r0 ,

(15)

where n and r0 are entirely arbitrary constants. The condition
r 6= r0 is necessary since the “point-mass” is not a physical
object.

Setting n=1, r0 =
m
2 , and r > r0 in (15) gives the usual

metric (1a) in isotropic coordinates. Note that in this case
r0 =

m
2 is the location of the fictitious “point-mass” in para-

meter space (i. e. in Minkowski space) and thus as the dis-
tance between the test particle and the source, located at
r0 =

m
2 , goes to zero in parameter space, the proper radius

in the gravitational field goes to zero, the radius of curvature
goes to 2m, and g00 goes to zero. Thus, the usual claim that
the term dr2 + r2(dθ2 + sin2θ dϕ2) (or dx2 + dy2 + dz2)
describes a coordinate length is false. Note that in choosing
this case, the resulting metric suppresses the true nature of the
relationship between the r-parameter and the gravitational
field because, as clearly seen by (15), r0 =

m
2 drops out.

Note also that (15) generalises the mapping so that distances
on the real line are mapped into the gravitational field.

Consequently, there is no black hole predicted by the
usual metrics (1) in isotropic coordinates. The black hole
concept has no validity in General Relativity (and none in
Newton’s theory either since the Michell-Laplace dark body
is not a black hole [5, 6]).

The singularity at Rp(r0)≡ 0 is insurmountable because

lim
|r−r0 |→0

2πRc(r)

Rp(r)
→∞ ,

according to the admissible forms of Rp(r),Rc(r), and h(r).
Note also that only in the infinitely far field are Rc(r)

and Rp(r) identical; where the field becomes Efcleethean
(i. e. Minkowski),

lim
|r−r0 |→∞

2πRc(r)

Rp(r)
→ 2π .

It has been proved elsewhere [3, 2] that there are no
curvature singularities in Einstein’s gravitational field. In
particular the Riemann tensor scalar curvature invariant (the
Kretschmann scalar) f =RαβσρRαβσρ is finite everywhere,
and and in the case of the fictitious point-mass takes the
invariant value

f(r0)≡
12

(2m)4
,

completely independent of the value of r0 .
Since the intrinsic geometry of the metric is invariant,

(11) with (15) must also satisfy this invariant condition. A
tedious calculation gives the Kretschmann scalar for (11) at

f(r)=
48m2

h6
(
1 + m

2h

)12 ,

which by (15) is

f(r)=
48m2

[
|r − r0|n +

(
m
2

)n]
6
n

(

1 +
m

2[|r−r0 |n+(m2 )
n
]
1
n

)12 .

Then

f(r0)≡
12

(2m)4
,

completely independent of the value of r0 , as required by
the very structure of the metric.

The structure of the metric is also responsible for the
Ricci flatness of Einstein’s static, vacuum gravitational field
(satisfying Rαβ =0). Consequently, all the metrics herein are
Ricci flat (i. e. R=0). Indeed, all the given metrics can be
transformed into

ds2=

(

1−
2m

Rc

)

dt2 −

(

1−
2m

Rc

)−1
dR2c −

−R2c(dθ
2 + sin2θ dϕ2) ,

Rc= Rc(r)=
√
C(r) , 2m < Rc(r) <∞ ,

(16)

which is Ricci flat for any analytic function Rc(r), which is
easily verified by using the variables

x0= t , x1=Rc(r) , x2= θ , x3=ϕ ,

in the calculation of the Ricci curvature from (16), using,

R= gμν
{

∂2

∂xμ∂xν

(
ln
√
|g|
)
−

−
1
√
|g|

∂

∂xρ

(√
|g| Γρμν

)
+ ΓρμσΓ

σ
ρν

}

.

Setting

χ

2π
= Rc(r) = h(r)

(

1 +
m

2h(r)

)2
,
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July, 2006 PROGRESS IN PHYSICS Volume 3

transforms the metric (7) into,

ds2=

(

1−
2πα

χ

)

dt2 −

(

1−
2πα

χ

)−1
dχ2

4π2
−

−
χ2

4π2
(dθ2 + sin2 θdϕ2) ,

2πα < χ <∞ , α=2m,

(17)

which is the metric for Einstein’s gravitational field in terms
of the only theoretically measurable distance in the field –
the circumference χ of a great circle [2]. This is a truly
coordinate independent expression. There is no need of the
r-parameter at all.

Furthermore, equation (17) is clear as to what quantities
are radii in the gravitational field, viz.

Rc(χ)=
χ

2π
,

Rp(χ)=

∫ χ

2πα

√
χ
2π(

χ
2π − α

)
dχ

2π
=

=

√
χ

2π

( χ
2π
− α

)
+ α ln

∣
∣
∣
∣
∣
∣

√
χ
2π +

√
χ
2π − α

√
α

∣
∣
∣
∣
∣
∣
.

3 Epilogue

The foregoing is based, as has all my work to date, upon the
usual manifold with boundary, [0 ,+∞[×S2. By using the
very premises of most relativists, including their [0,+∞[×S2,
I have demonstrated herein that black holes (see also
[4, 7]), and elsewhere as a logical consequence [8], that
big bangs are not consistent with General Relativity. Indeed,
cosmological solutions for isotropic, homogeneous, type 1
Einstein spaces do not exist. Consequently, there is currently
no valid relativistic cosmology at all. The Standard Cosmo-
logical Model, the Big Bang, is false.

Stavroulakis [9] has argued that
[
0,+∞

[
×S2 is inadmis-

sible because it destroys the topological structure of R3.
He has maintained that the correct topological space for
Einstein’s gravitational field should be R × R3. He has
also shown that black holes are not predicted by General
Relativity in R× R3.

However, the issue of whether or not
[
0,+∞

[
×S2 is

admissible is not relevant to the arguments herein, given
the objectives of the analysis.

Although χ is measurable in principle, it is apparently
beyond measurement in practice. This severely limits the
utility of Einstein’s theory.

The historical analysis of Einstein’s gravitational
field proceeded in ignorance of the fact that only the circum-
ference χ of a great circle is significant. It has also failed

to realise that there are two different immeasurable radii
defined in Einstein’s gravitational field, as an inescapable
consequence of the intrinsic geometry on the metric, and that
these radii are identical only in the infinitely far field where
space becomes Efcleethean (i. e. Minkowski). Rejection sum-
marily of the oddity of two distinct immeasurable radii is
tantamount to complete rejection of General Relativity; an
issue I have not been concerned with.

Minkowski’s metric in terms of χ is,

ds2= dt2 −
dχ2

4π2
−

χ2

4π2
(dθ2 + sin2θ dϕ2) ,

06χ <∞ .

It is generalised to

ds2=A
( χ
2π

)
dt2 −B

( χ
2π

)−1 dχ2

4π2
−

−
χ2

4π2
(dθ2 + sin2θ dϕ2) ,

(18)

χ0 < χ <∞ , A,B > 0 ,

which leads, in the usual way, to the line-element of (17),
from which χ0 and the radii associated with the gravitational
field are determined via the intrinsic and invariant geometry
of the metric.

Setting Rc(r)=
√
C(r) in (16) gives,

ds2=

(

1−
α

√
C(r)

)

dt2−

(

1−
α

√
C(r)

)−1
d
√
C(r)

2
−

−C(r)(dθ2 + sin2 θdϕ2) ,

(19)

where [2]

C(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

, (20)

n∈<+, r0 ∈< , α=2m, r 6= r0 ,

and where n and r0 are entirely arbitrary constants. Note that
if n=1, r0 =α, r > r0 , the usual line-element is obtained,
but the usual claim that r can go down to zero is clearly
false, since when r=α, the parametric distance between field
source and test particle is zero, which is reflected in the fact
that the proper radius on (19) is then zero, Rc=α=2m, and
g00 =0, as required. The functions (20) are called Schwarz-
schild forms [4, 7], and they produce an infinite number of
equivalent Schwarzschild metrics.

The term
√
dx2+dy2+dz2 of the standard metric in “iso-

tropic coordinates” is not a coordinate length as commonly
claimed. This erroneous idea stems from the fact that the
usual choice of C(r)= r2 in the metric (19) suppresses
the true nature of the mapping of parametric distances into
the true radii of the gravitational field. This arises from the
additional fact that the location of the field source at r0 = α
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in parameter space drops out of the functional form C(r)
as given by (20), in this particular case. The subsequent
usual transformation to the usual metric (1a) carries with
it the erroneous assumptions about r, inherited from the
misconceptions about r in (19) with the reduction of C(r) to
r2, which, in the usual conception, violates (20), and hence
the entire structure of the metric for the gravitational field.
Obtaining (1a) from first principles using the expression (5)
with h(r)= r2 and the components of the energy-momentum
tensor, already presupposes the form of h(r) and generates
the suppression of the true nature of r in similar fashion.

The black hole, as proved herein and elsewhere [4, 7],
and the Big Bang, are due to a serious neglect of the intrinsic
geometry of the gravitational metric, a failure heretofore to
understand the structure of type 1 Einstein spaces, with the
introduction instead, of extraneous and erroneous hypotheses
by which the intrinsic geometry is violated.

Since Nature does not make point-masses, the point-mass
referred to Einstein’s gravitational field must be regarded as
merely the mathematical artifice of a centre-of-mass of the
source of the field. The fact that the gravitational metric for
the point-mass disintegrates at the point-mass is a theoretical
indication that the point-mass is not physical, so that the
metric is undefined when r= r0 in parameter space, which
is at Rp(r0)≡ 0 on the metric for the gravitational field. The
usual concept of gravitational collapse itself collapses.

To fully describe the gravitational field there must there-
fore be two metrics, one for the interior of an extended
gravitating body and one for the exterior of that field source,
with a transition between the two at the surface of the body.
This has been achieved in the idealised case of a sphere of
incompressible and homogeneous fluid in vacuum [10, 11].
No singularities then arise, and gravitational collapse to a
“point-mass” is impossible.
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We apply the S-denying procedure to signature conditions in a four-dimensional
pseudo-Riemannian space — i. e. we change one (or even all) of the conditions to
be partially true and partially false. We obtain five kinds of expanded space-time for
General Relativity. Kind I permits the space-time to be in collapse. Kind II permits
the space-time to change its own signature. Kind III has peculiarities, linked to the
third signature condition. Kind IV permits regions where the metric fully degenerates:
there may be non-quantum teleportation, and a home for virtual photons. Kind V is
common for kinds I, II, III, and IV.

1 Einstein’s basic space-time

Euclidean geometry is set up by Euclid’s axioms: (1) given
two points there is an interval that joins them; (2) an interval
can be prolonged indefinitely; (3) a circle can be constructed
when its centre, and a point on it, are given; (4) all right
angles are equal; (5) if a straight line falling on two straight
lines makes the interior angles on one side less than two
right angles, the two straight lines, if produced indefinitely,
meet on that side. Non-Euclidean geometries are derived
from making assumptions which deny some of the Euclidean
axioms. Three main kinds of non-Euclidean geometry are
conceivable — Lobachevsky-Bolyai-Gauss geometry, Rie-
mann geometry, and Smarandache geometry.

In Lobachevsky-Bolyai-Gauss (hyperbolic) geometry the
fifth axiom is denied in the sense that there are infinitely
many lines passing through a given point and parallel to
a given line. In Riemann (elliptic) geometry∗, the axiom is
satisfied formally, because there is no line passing through
a given point and parallel to a given line. But if we state
the axiom in a broader form, such as “through a point not
on a given line there is only one line parallel to the given
line”, the axiom is also denied in Riemann geometry. Besides
that, the second axiom is also denied in Riemann geometry,
because herein the straight lines are closed: an infinitely long
straight line is possible but then all other straight lines are of
the same infinite length.

In Smarandache geometry one (or even all) of the axioms
is false in at least two different ways, or is false and also
true [1, 2]. This axiom is said to be Smarandachely denied
(S-denied). Such geometries have mixed properties of
Euclidean, Lobachevsky-Bolyai-Gauss, and Riemann geo-
metry. Manifolds that support such geometries were intro-
duced by Iseri [3].

Riemannian geometry is the generalization of Riemann
geometry, so that in a space of Riemannian geometry:

(1) The differentiable field of a 2nd rank non-degenerate

∗Elleipein — “to fall short”; hyperballein — “to throw beyond” (Greek).

symmetric tensor gαβ is given so that the distance ds
between any two infinitesimally close points is given
by the quadratic form

ds2 =
∑

06α,β6n

gαβ(x) dx
αdxβ = gαβ dx

αdxβ ,

known as the Riemann metric†. The tensor gαβ is called
the fundamental metric tensor, and its components
define the geometrical structure of the space;

(2) The space curvature may take different numerical val-
ues at different points in the space.

Actually, a Riemann geometry space is the space of the
Riemannian geometry family, where the curvature is constant
and has positive numerical value.

In the particular case where gαβ takes the diagonal form

gαβ =







1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1





 ,

the Riemannian space becomes Euclidean.
Pseudo-Riemannian spaces consist of specific kinds of

Riemannian spaces, where gαβ (and the Riemannian metric
ds2) has sign-alternating form so that its diagonal compo-
nents bear numerical values of opposite sign.

Einstein’s basic space-time of General Relativity is a
four-dimensional pseudo-Riemannian space having the sign-
alternating signature (+−−−) or (−+++), which reserves one
dimension for time x0= ct whilst the remaining three are
reserved for three-dimensional space, so that the space
metric is‡

ds2= gαβ dx
αdxβ = g00 c

2dt2+2g0i cdtdx
i+ gik dx

idxk.

†Here is a space of n dimensions.
‡Landau and Lifshitz in The Classical Theory of Fields [4] use the

signature (−+++), where the three-dimensional part of the four-dimensional
impulse vector is real. We, following Eddington [5], use the signature
(+−−−), because in this case the three-dimensional observable impulse,
being the projection of the four-dimensional impulse vector on an observer’s
spatial section, is real. Here α, β=0, 1, 2, 3, while i, k=1, 2, 3.
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In general the four-dimensional pseudo-Riemannian spa-
ce is curved, inhomogeneous, gravitating, rotating, and de-
forming (any or all of the properties may be anisotropic). In
the particular case where the fundamental metric tensor gαβ
takes the strictly diagonal form

gαβ =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





 ,

the space becomes four-dimensional pseudo-Euclidean

ds2 = gαβ dx
αdxβ = c2dt2 − dx2 − dy2 − dz2,

which is known as Minkowski’s space (he had introduced it
first). It is the basic space-time of Special Relativity.

2 S-denying the signature conditions

In a four-dimensional pseudo-Riemannian space of signature
(+−−−) or (−+++), the basic space-time of General Rela-
tivity, there are four signature conditions which define this
space as pseudo-Riemannian.

Question: What happens if we S-deny one (or even all) of
the four signature conditions in the basic space-time of
General Relativity? What happens if we postulate that
one (or all) of the signature conditions is to be denied
in two ways, or, alternatively, to be true and false?

Answer: If we S-deny one or all of the four signature con-
ditions in the basic space-time, we obtain a new ex-
panded basic space-time for General Relativity. There
are five main kinds of such expanded spaces, due to
four possible signature conditions there.

Here we are going to consider each of the five kinds of
expanded spaces.

Starting from a purely mathematical viewpoint, the signa-
ture conditions are derived from sign-alternation in the diag-
onal terms g00, g11, g22, g33 in the matrix gαβ . From a
physical perspective, see §84 in [4], the signature conditions
are derived from the requirement that the three-dimensional
observable interval

dσ2 = hik dx
idxk =

(

−gik +
g0ig0k
g00

)

dxidxk

must be positive. Hence the three-dimensional observable
metric tensor hik=−gik+

g0ig0k
g00

, being a 3×3 matrix de-
fined in an observer’s reference frame accompanying its ref-
erences, must satisfy three obvious conditions

det ‖h11‖ = h11 > 0 ,

det

∥
∥
∥
∥
h11 h12
h21 h22

∥
∥
∥
∥ = h11 h22 − h

2
12 > 0 ,

h = det ‖hik‖ = det

∥
∥
∥
∥
∥
∥

h11 h12 h13
h21 h22 h23
h31 h32 h33

∥
∥
∥
∥
∥
∥
> 0 .

From here we obtain the signature conditions in the fund-
amental metric tensor’s matrix gαβ . In a space of signature
(+−−−), the signature conditions are

det ‖g00‖ = g00 > 0 , (I)

det

∥
∥
∥
∥
g00 g01
g10 g11

∥
∥
∥
∥ = g00 g11 − g

2
01 < 0 , (II)

det

∥
∥
∥
∥
∥
∥

g00 g01 g02
g10 g11 g12
g20 g21 g22

∥
∥
∥
∥
∥
∥
> 0 , (III)

g = det ‖gαβ‖ = det

∥
∥
∥
∥
∥
∥
∥
∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥
∥
∥
∥
∥
∥
∥
∥

< 0 . (IV)

An expanded space-time of kind I: In such a space-
time the first signature condition g00> 0 is S-denied, while
the other signature conditions remain unchanged. Given the
expanded space-time of kind I, the first signature condition
is S-denied in the following form

det ‖g00‖ = g00 > 0 ,

which includes two particular cases, g00> 0 and g00=0, so
g00> 0 is partially true and partially false.

Gravitational potential is w= c2(1−
√
g00) [6, 7], so the

S-denied first signature condition g00> 0 means that in such
a space-time w6 c2, i. e. two different states occur

w < c2 , w = c2.

The first one corresponds to the regular space-time, where
g00> 0. The second corresponds to a special space-time state,
where the first signature condition is simply denied g00=0.
This is the well-known condition of gravitational collapse.

Landau and Lifshitz wrote, “nonfulfilling of the condition
g00> 0 would only mean that the corresponding system of
reference cannot be accomplished with real bodies” [4].

Conclusion on the kind I: An expanded space-time of
kind I (g00> 0) is the generalization of the basic space-time
of General Relativity (g00> 0), including regions where this
space-time is in a state of collapse, (g00 = 0).

An expanded space-time of kind II: In such a space-time
the second signature condition g00 g11− g

2
01< 0 is S-denied,

the other signature conditions remain unchanged. Thus, given
the expanded space-time of kind II, the second signature
condition is S-denied in the following form

det

∥
∥
∥
∥
g00 g01
g10 g11

∥
∥
∥
∥ = g00 g11 − g

2
01 6 0 ,
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which includes two different cases

g00 g11 − g
2
01 < 0 , g00 g11 − g

2
01 = 0 ,

whence the second signature condition g00 g11− g
2
01< 0 is

partially true and partially false.
The component g00 is defined by the gravitational po-

tential w= c2(1−
√
g00). The component g0i is defined by

the space rotation linear velocity (see [6, 7] for details)

vi = −c
g0i
√
g00

, vi = −cg0i
√
g00 , vi = hik v

k.

Then we obtain the S-denied second signature condition
g00 g11− g

2
016 0 (meaning the first signature condition is not

denied g00> 0) as follows

g11 −
1

c2
v21 6 0 ,

having two particular cases

g11 −
1

c2
v21 < 0 , g11 −

1

c2
v21 = 0 .

To better see the physical sense, take a case where g11 is
close to −1.∗ Then, denoting v1= v, we obtain

v2 > −c2, v2 = −c2.

The first condition v2 > −c2 is true in the regular basic
space-time. Because the velocities v and c take positive
numerical values, this condition uses the well-known fact
that positive numbers are greater than negative ones.

The second condition v2 = −c2 has no place in the basic
space-time; it is true as a particular case of the common
condition v2>−c2 in the expanded spaces of kind II. This
condition means that as soon as the linear velocity of the
space rotation reaches light velocity, the space signature
changes from (+−−−) to (−+++). That is, given an expanded
space-time of kind II, the transit from a non-isotropic sub-
light region into an isotropic light-like region implies change
of signs in the space signature.

Conclusion on the kind II: An expanded space-time of
kind II (v2>−c2) is the generalization of the basic space-
time of General Relativity (v2>−c2) which permits the
peculiarity that the space-time changes signs in its own
signature as soon as we, reaching the light velocity of the
space rotation, encounter a light-like isotropic region.

An expanded space-time of kind III: In this space-time
the third signature condition is S-denied, the other signa-
ture conditions remain unchanged. So, given the expanded
space-time of kind III, the third signature condition is

det

∥
∥
∥
∥
∥
∥

g00 g01 g02
g10 g11 g12
g20 g21 g22

∥
∥
∥
∥
∥
∥
> 0 ,

∗Because we use the signature (+−−−).

which, taking the other form of the third signature condition
into account, can be transformed into the formula

det

∥
∥
∥
∥
h11 h12
h21 h22

∥
∥
∥
∥ = h11 h22 − h

2
12 > 0 ,

that includes two different cases

h11 h22 − h
2
12 > 0 , h11 h22 − h

2
12 = 0 ,

so that the third initial signature condition h11 h22−h
2
12> 0

is partially true and partially false. This condition is not clear.
Future research is required.

An expanded space-time of kind IV: In this space-time
the fourth signature condition g=det ‖gαβ‖< 0 is S-denied,
the other signature conditions remain unchanged. So, given
the expanded space-time of kind IV, the fourth signature
condition is

g = det ‖gαβ‖ = det

∥
∥
∥
∥
∥
∥
∥
∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥
∥
∥
∥
∥
∥
∥
∥

6 0 ,

that includes two different cases

g = det ‖gαβ‖ < 0 , g = det ‖gαβ‖ = 0 ,

so that the fourth signature condition g < 0 is partially true
and partially false: g < 0 is true in the basic space-time, g=0
could be true in only he expanded spaces of kind IV.

Because the determinants of the fundamental metric ten-
sor gαβ and the observable metric tensor hik are connected as
follows

√
−g=

√
h
√
g00 [6, 7], degeneration of the fund-

amental metric tensor (g=0) implies that the observable
metric tensor is also degenerate (h=0). In such fully de-
generate areas the space-time interval ds2, the observable
spatial interval dσ2=hik dxidxk and the observable time
interval dτ become zero†

ds2 = c2dτ 2 − dσ2 = 0 , c2dτ 2 = dσ2 = 0 .

Taking formulae for dτ and dσ into account, and also
the fact that in the accompanying reference frame we have
h00=h0i=0, we write dτ 2=0 and dσ2=0 as

dτ =

[

1−
1

c2
(
w+ viu

i
)
]

dt = 0 , dt 6= 0 ,

dσ2 = hikdx
idxk = 0 ,

where the three-dimensional coordinate velocity ui= dxi/dt
is different to the observable velocity vi= dxi/dτ .

†Note, ds2=0 is true not only at c2dτ2= dσ2=0, but also
when c2dτ2= dσ2 6=0 (in the isotropic region, where light propagates).
The properly observed time interval is determined as dτ =

√
g00 dt+

+ g0i
c
√
g00

dxi, where the coordinate time interval is dt 6=0 [4, 5, 6, 7].
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With hik=−gik+ 1
c2
vivk, we obtain aforementioned

physical conditions of degeneration in the final form

w+ viu
i = c2, giku

iuk = c2
(
1−

w

c2

)2
.

As recently shown [8, 9], the degenerate conditions
permit non-quantum teleportation and also virtual photons in
General Relativity. Therefore we expect that, employing an
expanded space of kind IV, one may join General Relativity
and Quantum Electrodynamics.

Conclusion on the kind IV: An expanded space-time of
kind IV (g6 0) is the generalization of the basic space-time
of General Relativity (g < 0) including regions where this
space-time is in a fully degenerate state (g=0). From the
viewpoint of a regular observer, in a fully degenerate area
time intervals between any events are zero, and spatial inter-
vals are zero. Thus, such a region is observable as a point.

An expanded space-time of kind V: In this space-time all
four signature conditions are S-denied, therefore given the
expanded space-time of kind V the signature conditions are

det ‖g00‖ = g00 > 0 ,

det

∥
∥
∥
∥
g00 g01
g10 g11

∥
∥
∥
∥ = g00 g11 − g

2
01 6 0 ,

det

∥
∥
∥
∥
∥
∥

g00 g01 g02
g10 g11 g12
g20 g21 g22

∥
∥
∥
∥
∥
∥
> 0 ,

g = det ‖gαβ‖ = det

∥
∥
∥
∥
∥
∥
∥
∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥
∥
∥
∥
∥
∥
∥
∥

6 0 ,

so all four signature conditions are partially true and partially
false. It is obvious that an expanded space of kind V contains
expanded spaces of kind I, II, III, and IV as particular cases,
it being a common space for all of them.

Negative S-denying expanded spaces: We could also S-
deny the signatures with the possibility that say g00> 0 for
kind I, but this means that the gravitational potential would
be imaginary, or, even take into account the “negative” cases
for kind II, III, etc. But most of them are senseless from the
geometrical viewpoint. Hence we have only included five
main kinds in our discussion.

3 Classification of the expanded spaces for General
Relativity

In closing this paper we repeat, in brief, the main results.
There are currently three main kinds of non-Euclidean

geometry conceivable — Lobachevsky-Bolyai-Gauss geo-
metry, Riemann geometry, and Smarandache geometries.

A four-dimensional pseudo-Riemannian space, a space of
the Riemannian geometry family, is the basic space-time of
General Relativity. We employed S-denying of the signature
conditions in the basic four-dimensional pseudo-Riemannian
space, when a signature condition is partially true and part-
ially false. S-denying each of the signature conditions (or
even all the conditions at once) gave an expanded space for
General Relativity, which, being an instance of the family of
Smarandache spaces, include the pseudo-Riemannian space
as a particular case. There are four signature conditions. So,
we obtained five kinds of the expanded spaces for General
Relativity:
Kind I Permits the space-time to be in collapse;
Kind II Permits the space-time to change its own signature
as reaching the light speed of the space rotation in a light-like
isotropic region;
Kind III Has some specific peculiarities (not clear yet),
linked to the third signature condition;
Kind IV Permits full degeneration of the metric, when all
degenerate regions become points. Such fully degenerate re-
gions provide trajectories for non-quantum teleportation, and
are also a home space for virtual photons.
Kind V Provides an expanded space, which has common
properties of all spaces of kinds I, II, III, and IV, and includes
the spaces as particular cases.

The foregoing results are represented in detail in the book
[10], which is currently in print.

4 Extending this classification: mixed kinds of the ex-
panded spaces

We can S-deny one axiom only, or two axioms, or three
axioms, or even four axioms simultaneously. Hence we may
have: C14 +C

2
4 +C

3
4 +C

4
4 =2

4− 1=15 kinds of expanded
spaces for General Relativity, where Cin denotes combina-
tions of n elements taken in groups of i elements, 06 i6n.
And considering the fact that each axiom can be S-denied in
three different ways, we obtain 15 ×3=45 kinds of expanded
spaces for General Relativity. Which expanded space would
be most interesting?

We collect all such “mixed” spaces into a table. Specific
properties of the mixed spaces follow below.

1.1.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00=0, we have the usual space-time permitting collapse.

1.1.2: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
h11=0 we have h212< 0 that is permitted for imaginary
values of h12: we obtain a complex Riemannian space.

1.1.3: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
h11h22−h212=0, the spatially observable metric dσ2 per-
mits purely spatial isotropic lines.

1.1.4: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
h=0, we have the spatially observed metric dσ2 completely
degenerate. An example — zero-space [9], obtained as a com-
pletely degenerate Riemannian space. Because h=− g

g00
, the
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Positive S-denying spaces, N > 0 Negative S-denying spaces, N 6 0 S-denying spaces, where N > 0 ∪N < 0

Kind Signature conditions Kind Signature conditions Kind Signature conditions

One of the signature conditions is S-denied

1.1.1 I> 0, II> 0, III> 0, IV> 0 1.2.1 I6 0, II> 0, III> 0, IV> 0 1.3.1 I≷ 0, II> 0, III> 0, IV> 0

1.1.2 I> 0, II> 0, III> 0, IV> 0 1.2.2 I> 0, II6 0, III> 0, IV> 0 1.3.2 I> 0, II≷ 0, III> 0, IV> 0

1.1.3 I> 0, II> 0, III> 0, IV> 0 1.2.3 I> 0, II> 0, III6 0, IV> 0 1.3.3 I> 0, II> 0, III≷ 0, IV> 0

1.1.4 I> 0, II> 0, III> 0, IV> 0 1.2.4 I> 0, II> 0, III> 0, IV6 0 1.3.4 I> 0, II> 0, III> 0, IV≷ 0

Two of the signature conditions are S-denied

2.1.1 I> 0, II> 0, III> 0, IV> 0 2.2.1 I6 0, II6 0, III> 0, IV> 0 2.3.1 I≷ 0, II≷ 0, III> 0, IV> 0

2.1.2 I> 0, II> 0, III> 0, IV> 0 2.2.2 I6 0, II> 0, III6 0, IV> 0 2.3.2 I≷ 0, II> 0, III≷ 0, IV> 0

2.1.3 I> 0, II> 0, III> 0, IV> 0 2.2.3 I6 0, II> 0, III> 0, IV6 0 2.3.3 I≷ 0, II> 0, III> 0, IV≷ 0

2.1.4 I> 0, II> 0, III> 0, IV> 0 2.2.4 I> 0, II6 0, III> 0, IV6 0 2.3.4 I> 0, II≷ 0, III> 0, IV≷ 0

2.1.5 I> 0, II> 0, III> 0, IV> 0 2.2.5 I> 0, II6 0, III6 0, IV> 0 2.3.5 I> 0, II≷ 0, III≷ 0, IV> 0

2.1.6 I> 0, II> 0, III> 0, IV> 0 2.2.6 I> 0, II> 0, III6 0, IV6 0 2.3.6 I> 0, II> 0, III≷ 0, IV≷ 0

Three of the signature conditions are S-denied

3.1.1 I> 0, II> 0, III> 0, IV> 0 3.2.1 I> 0, II6 0, III6 0, IV6 0 3.3.1 I> 0, II≷ 0, III≷ 0, IV≷ 0

3.1.2 I> 0, II> 0, III> 0, IV> 0 3.2.2 I6 0, II> 0, III6 0, IV6 0 3.3.2 I≷ 0, II> 0, III≷ 0, IV≷ 0

3.1.3 I> 0, II> 0, III> 0, IV> 0 3.2.3 I6 0, II6 0, III> 0, IV6 0 3.3.3 I≷ 0, II≷ 0, III> 0, IV≷ 0

3.1.4 I> 0, II> 0, III> 0, IV> 0 3.2.4 I6 0, II6 0, III6 0, IV> 0 3.3.4 I≷ 0, II≷ 0, III≷ 0, IV> 0

All the signature conditions are S-denied

4.1.1 I> 0, II> 0, III> 0, IV> 0 4.2.1 I6 0, II6 0, III6 0, IV6 0 4.3.1 I≷ 0, II≷ 0, III≷ 0, IV≷ 0

Table 1: The expanded spaces for General Relativity (all 45 mixed kinds of S-denying). The signature conditions
are denoted by Roman numerals

metric ds2 is also degenerate.
1.2.1: g006 0, h11> 0, h11h22−h212> 0, h> 0. At

g00=0, we have kind 1.1.1. At g00< 0 physically observable

time becomes imaginary dτ = g0i dxi

c
√
g00

.
1.2.2: g00> 0, h116 0, h11h22−h212> 0, h> 0. At

h11=0, we have kind 1.1.2. At h11< 0, distances along
the axis x1 (i. e. the values

√
h11dx

1) becomes imaginary,
contradicting the initial conditions in General Relativity.

1.2.3: g00> 0, h11> 0, h11h22−h2126 0, h> 0. This is
a common space built on a particular case of kind 1.1.3 where
h11h22−h212=0 and a subspace where h11h22−h212< 0.
In the latter subspace the spatially observable metric dσ2

becomes sign-alternating so that the space-time metric has
the signature (+−+−) (this case is outside the initial statement
of General Relativity).

1.2.4: g00> 0, h11> 0, h11h22−h212> 0, h6 0. This
space is built on a particular case of kind 1.1.2 where h=0
and a subspace where h< 0. At h< 0 we have the spatial
metric dσ2 sign-alternating so that the space-time metric has
the signature (+−−+) (this case is outside the initial statement
of General Relativity).

1.3.1: g00 ≷ 0, h11> 0, h11h22−h212> 0, h> 0. Here
we have the usual space-time area (g00> 0) with the signat-
ure (+−−−), and a sign-definite space-time (g00< 0) where
the signature is (−−−−). There are no intersections of the

areas in the common space-time; they exist severally.
1.3.2: g00> 0, h11 ≷ 0, h11h22−h212> 0, h> 0. Here

we have a common space built on two separated areas where
(+−−−) (usual space-time) and a subspace where (++−−).
The areas have no intersections.

1.3.3: g00> 0, h11> 0, h11h22−h212 ≷ 0, h> 0. This is
a common space built on the usual space-time and a particular
space-time of kind 1.2.3, where the signature is (+−+−). The
areas have no intersections.

1.3.4: g00> 0, h11> 0, h11h22−h212> 0, h≷ 0. This is
a common space built on the usual space-time and a particular
space-time of kind 1.2.4, where the signature is (+−−+). The
areas have no intersections.

2.1.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
is a complex Riemannian space with a complex metric dσ2,
permitting collapse.

2.1.2: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits collapse, and purely spatial isotropic directions.

2.1.3: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits complete degeneracy and collapse. At g00=0
and h=0, we have a collapsed zero-space.

2.1.4: g00> 0, h11> 0, h11h22−h212> 0, h> 0. Here
we have a complex Riemannian space permitting complete
degeneracy.

2.1.5: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At

D. Rabounski, F. Smarandache, L. Borissova. S-Denying of the Signature Conditions Expands General Relativity’s Space 17



Volume 3 PROGRESS IN PHYSICS July, 2006

h11=0, we have h212=0: a partial degeneration of the spat-
ially observable metric dσ2.

2.1.6: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits the spatially observable metric dσ2 to comple-
tely degenerate: h=0.

2.2.1: g006 0, h116 0, h11h22−h212> 0, h> 0. At
g00=0 and h11=0, we have a particular space-time of kind
2.1.1. At g00< 0, h11< 0 we have a space with the signature
(−−−−) where time is like a spatial coordinate (this case is
outside the initial statement of General Relativity).

2.2.2: g006 0, h11> 0, h11h22−h2126 0, h> 0. At
g00=0 and h11h22−h212=0, we have a particular space-
time of kind 2.1.2. At g00< 0 and h11h22−h212< 0, we
have a space with the signature (−+−+) (it is outside the
initial statement of General Relativity).

2.2.3: g006 0, h11> 0, h11h22−h212> 0, h6 0. At
g00=0 and h=0, we have a particular space-time of kind
2.1.3. At g00< 0 and h11h22−h212< 0, we have a space-time
with the signature (−−−+) (it is outside the initial statement
of General Relativity).

2.2.4: g00> 0, h116 0, h11h22−h2126 0, h> 0. At
h11=0 and h11h22−h212=0, we have a particular space-
time of kind 2.1.5. At h11< 0 and h11h22−h212< 0, we
have a space-time with the signature (++−+) (outside the
initial statement of General Relativity).

2.2.5: g00> 0, h116 0, h11h22−h212> 0, h6 0. At
h11=0 and h=0, we have a particular space-time of kind
2.1.4. At h11< 0 and h< 0, a space-time with the signature
(+−−+) (outside the initial statement of General Relativity).

2.2.6: g00> 0, h11> 0, h11h22−h2126 0, h6 0. At
h11h22−h212=0 and h=0, we have a particular space-
time of kind 2.1.6. At h11h22−h212< 0 and h< 0, we have
a space-time with the signature (+−++) (outside the initial
statement of General Relativity).

2.3.1: g00 ≷ 0, h11 ≷ 0, h11h22−h212> 0, h> 0. This
is a space built on two areas. At g00> 0 and h11> 0, we
have the usual space-time. At g00< 0 and h11< 0, we have
a particular space-time of kind 2.2.1. The areas have no
intersections: the common space is actually built on non-
intersecting areas.

2.3.2: g00 ≷ 0, h11> 0, h11h22−h212 ≷ 0, h> 0. This
space is built on two areas. At g00>0 and h11h22−h212>0, we
have the usual space-time. At g00< 0 and h11h22−h212< 0,
we have a particular space-time of kind 2.2.2. The areas,
building a common space, have no intersections.

2.3.3: g00 ≷ 0, h11> 0, h11h22−h212> 0, h≷ 0. This
space is built on two areas. At g00> 0 and h11> 0, we have
the usual space-time. At g00< 0 and h11< 0, a particular
space-time of kind 2.2.3. The areas, building a common
space, have no intersections.

2.3.4: g00> 0, h11 ≷ 0, h11h22−h212> 0, h≷ 0. This
space is built on two areas. At h11> 0 and h> 0, we have the
usual space-time. At h11< 0 and h< 0, a particular space-
time of kind 2.2.4. The areas, building a common space, have

no intersections.
2.3.5: g00> 0, h11 ≷ 0, h11h22−h212 ≷ 0, h> 0. This

space is built on two areas. At h11>0 and h11h22−h212>0, we
have the usual space-time. At h11< 0 and h11h22−h212< 0,
a particular space-time of kind 2.2.5. The areas, building a
common space, have no intersections.

2.3.6: g00> 0, h11> 0, h11h22−h212 ≷ 0, h≷ 0. This
space is built on two areas. At h11h22−h212> 0 and h> 0,
we have the usual space-time. At h11h22−h212< 0 and h< 0,
a particular space-time of kind 2.2.6. The areas, building a
common space, have no intersections.

3.1.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits complete degeneracy. At h11> 0, h11h22−
−h212> 0, h> 0, we have the usual space-time. At h11=0,
h11h22−h212=0, h=0, we have a particular case of a zero-
space.

3.1.2: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11h22−h212> 0, h> 0, we have the usual space-
time. At g00=0, h11h22−h212=0, h=0, we have a partic-
ular case of a collapsed zero-space.

3.1.3: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11>0, h>0, we have the usual space-time. At
g00=0, h11=0, h=0, we have a collapsed zero-space,
derived from a complex Riemannian space.

3.1.4: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11> 0, h11h22−h212> 0, we have the usual space-
time. At g00=0, h11=0, h11h22−h212=0, we have the
usual space-time in a collapsed state, while there are permit-
ted purely spatial isotropic directions

√
h11dx

1.
3.2.1: g00> 0, h116 0, h11h22−h2126 0, h6 0. At

h11=0, h11h22−h212=0 and h=0, we have a particular
space-time of kind 3.1.1. At h11< 0, h11h22−h212< 0 and
h< 0, we have a space-time with the signature (++++)

(outside the initial statement of General Relativity).
3.2.2: g006 0, h11> 0, h11h22−h2126 0, h6 0. At

g00=0, h11h22−h212=0 and h=0, we have a particular
space-time of kind 3.1.2. At h11< 0, h11h22−h212< 0 and
h< 0, we have a space-time with the signature (−−++)

(outside the initial statement of General Relativity).
3.2.3: g006 0, h116 0, h11h22−h212> 0, h6 0. At

g00=0, h11=0 and h=0, we have a particular space-time
of kind 3.1.3. At h11< 0, h11h22−h212< 0 and h< 0, we
have a space-time with the signature (−+−+) (outside the
initial statement of General Relativity).

3.2.4: g006 0, h116 0, h11h22−h2126 0, h> 0. At
g00=0, h11=0 and h11h22−h212=0, we have a particular
space-time of kind 3.1.4. At g00< 0, h11< 0 and h11h22−
−h212< 0, we have a space-time with the signature (−++−)

(outside the initial statement of General Relativity).
3.3.1: g00> 0, h11 ≷ 0, h11h22−h212 ≷ 0, h≷ 0. This is

a space built on two areas. At h11> 0, h11h22−h212> 0
and h11> 0, we have the usual space-time. At h11< 0,
h11h22−h212< 0 and h11< 0, we have a particular space-
time of kind 3.2.1. The areas have no intersections: the
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common space is actually built on non-intersecting areas.
3.3.2: g00 ≷ 0, h11> 0, h11h22−h212 ≷ 0, h≷ 0. This

space is built on two areas. At g00> 0, h11h22−h212> 0 and
h> 0, we have the usual space-time. At g00< 0, h11h22−
−h212< 0 and h< 0, we have a particular space-time of
kind 3.2.2. The areas, building a common space, have no
intersections.

3.3.3: g00 ≷ 0, h11 ≷ 0, h11h22−h212> 0, h≷ 0. This
space is built on two areas. At g00> 0, h11> 0 and h> 0,
we have the usual space-time. At g00< 0, h11< 0 and h< 0,
we have a particular space-time of kind 3.2.3. The areas,
building a common space, have no intersections.

3.3.4: g00 ≷ 0, h11 ≷ 0, h11h22−h212 ≷ 0, h> 0. This
space is built on two areas. At g00> 0, h11> 0 and h11h22−
−h212> 0, we have the usual space-time. At g00< 0, h11< 0
and h11h22−h212< 0, a particular space-time of kind 3.2.4.
The areas, building a common space, have no intersections.

4.4.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11> 0, h11h22−h212> 0 and h> 0, we have the
usual space-time. At g00=0, h11=0, h11h22−h212=0 and
h=0, we have a particular case of collapsed zero-space.

4.4.2: g006 0, h116 0, h11h22−h2126 0, h6 0. At
g00=0, h11=0, h11h22−h212=0 and h=0, we have a
particular case of space-time of kind 4.4.1. At g00<0, h11<0,
h11h22−h212< 0 and h< 0, we have a space-time with the
signature (−−−−) (outside the initial statement of General
Relativity). The areas have no intersections.

4.4.3: g00 ≷ 0, h11 ≷ 0, h11h22−h212 ≷ 0, h≷ 0. At
g00> 0, h11> 0, h11h22−h212> 0 and h> 0, we have the
usual space-time. At g00< 0, h11< 0, h11h22−h212< 0 and
h< 0, we have a space-time with the signature (−−−−)

(outside the initial statement of General Relativity). The areas
have no intersections.
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Nonlocal Effects of Chemical Substances on the Brain
Produced through Quantum Entanglement
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Photons are intrinsically quantum objects and natural long-distance carriers of
information. Since brain functions involve information and many experiments have
shown that quantum entanglement is physically real, we have contemplated from the
perspective of our recent hypothesis on the possibility of entangling the quantum
entities inside the brain with those in an external chemical substance and carried out
experiments toward that end. Here we report that applying magnetic pulses to the brain
when an anesthetic or pain medication was placed in between caused the brain to feel
the effect of the said substance for several hours after the treatment as if the test subject
had actually inhaled the same. The said effect is consistently reproducible. We further
found that drinking water exposed to magnetic pulses, laser light or microwave when a
chemical substance was placed in between also causes consistently reproducible brain
effects in various degrees. Further, through additional experiments we have verified
that the said brain effect is the consequence of quantum entanglement between quantum
entities inside the brain and those of the chemical substance under study, induced by
the photons of the magnetic pulses or applied lights. We suggest that the said quantum
entities inside the brain are nuclear and/or electron spins and discuss the profound
implications of these results.

1 Introduction

Quantum entanglement is ubiquitous in the microscopic
world and manifests itself macroscopically under some circ-
umstances [1, 3, 4]. Further, quantum spins of electrons and
photons have now been successfully entangled in various
ways for the purposes of quantum computation, memory and
communication [5, 6]. In the field of neuroscience, we have
recently suggested that nuclear and/or electronic spins inside
the brain may play important roles in certain aspects of brain
functions such as perception [2]. Arguably, we could test our
hypothesis by first attempting to entangle these spins with
those of a chemical substance such as a general anaesthetic
and then observing the resulting brain effects such an attempt
may produce, if any. Indeed, instead of armchair debate on
how the suggested experiments might not work, we just
went ahead and carried out the experiments over a period
of more than a year. Here, we report our results. We point
out from the outset that although it is commonly believed
that quantum entanglement alone cannot be used to transmit
classical information, the function of the brain may not be
totally based on classical information [2].

2 Methods, test subjects and materials

Figure 1A (see end sheet) illustrates a typical setup for the
first set of experiments. It includes a magnetic coil with an
estimated 20 W output placed at one inch above the right
side of a test subject’s forehead, a small flat glass-container

inserted between the magnetic coil and the forehead, and an
audio system with adjustable power output and frequency
spectrum controls connected to the magnetic coil. When
music is played on the audio system, the said magnetic
coil produces magnetic pulses with frequencies in the range
of 5 Hz to 10 kHz. Experiments were conducted with said
container being filled with different general anaesthetics,
medications, or nothing/water as control, and the test subject
being exposed to the magnetic pulses for 10 min and not
being told the content in the container or details of the
experiments.

The indicators used to measure the brain effect of the
treatment were the first-person experiences of any unusual
sensations such as numbness, drowsiness and/or euphoria
which the subject felt after the treatment and the relative
degrees of these unusual sensations on a scale of 10 with
0= nothing, 1=weak, 2= light moderate, 3=moderate, 4=
light strong, 5= strong, 6= heavily strong, 7= very strong,
8= intensely strong, 9= extremely strong and 10= intoler-
able. The durations of the unusual sensations and other symp-
toms after the treatment, such as nausea or headache, were
also recorded.

Figure 1B illustrates a typical setup for the second set of
experiments. It includes the magnetic coil connected to the
audio system, a large flat glass-container filled with 200 ml
fresh tap water and the small flat glass-container inserted
between the magnetic coil and larger glass-container. Figure
1C illustrates a typical setup for the second set of experiments
when a red laser with a 50 mW output and wavelengths of
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635 nm–675 nm was used. All Experiments were conducted
in the dark with the small flat glass-container being filled with
different general anaesthetics, medications, or nothing/water
as control, the large glass-container being filled with 200 ml
of fresh tap water and exposed to the magnetic pulses or
laser light for 30 min and the test subject consuming the
treated tap water but not being told the content in the small
container or details of the experiments. The indicators used
for measuring the brain effects were the same as those used in
the first set of experiments. Experiments were also carried out
respectively with a 1200 W microwave oven and a flashlight
powered by two size-D batteries. When the microwave oven
was used, a glass tube containing 20 ml of fresh tap water
was submerged into a larger glass tube containing 50 ml of
general anaesthetic and exposed to microwave radiation for
5 sec. The said procedure was repeated numerous times, to
collect a total of 200 ml of treated tap water for consumption.
When the flashlight was used, the magnetic coil shown in
Figure 1B was replaced with the flashlight.

To verify that the brain effects experienced by the test
subjects were the consequences of quantum entanglement
between quantum entities inside the brain and those in the
chemical substances under study, the following additional
experiments were carried out. Figure 1D shows a typical
setup of the entanglement verification experiments. The setup
is the reverse of the setup shown in Figure 1C. In addition,
the small flat glass-container with a chemical substance or
nothing/water as control was positioned with an angle to
the incoming laser light to prevent reflected laser light from
re-entering the large glass-container.

In the first set of entanglement verification experiments,
the laser light from the red laser first passed through the
large glass-container with 200 ml of fresh tap water and then
through the small flat glass-container filled with a chemical
substance or nothing/water as control located about 300 cm
away. After 30 min of exposure to the laser light, a test
subject consumed the exposed tap water without being told
the content in the small container or details of the experiments
and reported the brain effects felt for the next several hours.

In the second set of entanglement verification experi-
ments, 400 ml of fresh tap water in a glass-container was
first exposed to the radiation of the magnetic coil for 30 min
or that of the 1500W microwave oven for 2 min. Then the
test subject immediately consumed one-half of the water so
exposed. After 30 min from the time of consumption the
other half was exposed to magnetic pulses or laser light for
30 minutes using the setup shown in Figure 1B and Figure 1D
respectively. The test subject reported, without being told the
content in the small container or details of the experiments,
the brain effects felt for the whole period from the time of
consumption to several hours after the exposure had stopped.
In the third set of entanglement verification experiments, one-
half of 400 ml Poland Spring water with a shelve time of at
least three months was immediately consumed by the test

subject. After 30 min from the time of consumption the other
half was exposed to the magnetic pulses or laser light for
30 min using the setup shown in Figure 1B and Figure 1D
respectively. Test subject reported, without being told the
content in the small container or details of the experiments,
the brain effects felt for the whole period from the time of
consumption to several hours after the exposure had stopped.

Fig. 1: Schematic view of typical experimental setups
used in our study

In the fourth set of entanglement verification experi-
ments, the test subject would take one-half of the 400 ml
fresh tap water exposed to microwave for 2 min or magnetic
pulses for 30 min to his/her workplace located more than 50
miles away (in one case to Beijing located more than 6,500
miles away) and consumed the same at the workplace at a
specified time. After 30 min from the time of consumption,
the other half was exposed to magnetic pulses or laser light
for 30 min at the original location using the setup shown
in Figure 1B and Figure 1D respectively. The test subject
reported the brain effects felt without being told the content
in the small container or details of the experiments for the
whole period from the time of consumption to several hours
after the exposure had stopped.

With respect to the test subjects, Subject A and C are
respectively the first author and co-author of this paper and
Subject B and C are respectively the father and mother of
the first author. All four test subjects voluntarily consented
to the proposed experiments. To ensure safety, all initial ex-
periments were conducted on Subject A by himself. Further,
all general anaesthetics used in the study were properly
obtained for research purposes and all medications were
either leftover items originally prescribed to Subject C’s late
mother or items available over the counter. To achieve proper
control, repeating experiments on Subject A were carried out
by either Subject B or C in blind settings, that is, he was
not told whether or what general anaesthetic or medication
were applied before the end of the experiments. Further, all
experiments on Subject B, C and D were also carried out in
blind settings, that is, these test subjects were not told about
the details of the experiments on them or whether or what
general anaesthetic or medication were applied.
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1st Set: Magn. Coil 2nd Set: Magn. Coil Red laser Flashlight Microwave

Test ] Effect Test ] Effect Test ] Effect Test ] Effect Test ] Effect

Anaesthetics

Subject A 13 yes 16 yes 22 yes 8 yes 3 yes

Subject B 2 yes 2 yes 3 yes 0 n/a 1 yes

Subject C 2 yes 6 yes 6 yes 0 n/a 1 yes

Subject D 2 yes 1 yes 5 yes 0 n/a 0 n/a

Medications

Subject A 17 yes 14 yes 16 yes 1 yes 3 yes

Subject B 1 yes 1 yes 3 yes 0 n/a 2 yes

Subject C 3 yes 1 yes 4 yes 0 n/a 1 yes

Subject D 0 n/a 0 n/a 3 yes 0 n/a 1 yes

Control

Subject A 12 no 5 no 11 no

Subject B 3 no 0 n/a 1 no

Subject C 1 no 2 no 4 no

Subject D 0 n/a 0 n/a 1 no

Table 1: Summary of results obtained from the first two sets of experiments

3 Results

Table 1 summarizes the results obtained from the first two
sets of experiments described above and Table 2 details the
summary into each general anaesthetic studied plus morphine
in the case of medications. In the control studies for the first
set of experiments, all test subjects did not feel anything
unusual from the exposure to magnetic pulses except vague
or weak local sensation near the site of exposure. In contrast,
all general anaesthetics studied produced clear and complete-
ly reproducible brain effects in various degrees and durations
as if the test subjects had actually inhaled the same. These
brain effects were first localized near the site of treatment
and then spread over the whole brain and faded away within
several hours. But residual brain effects (hangover) lingered
on for more than 12 hours in most cases. Among the general
anaesthetics studied, chloroform and deuterated chloroform
(chloroform D) produced the most pronounced and potent
brain effects in strength and duration followed by isoflorance
and diethyl ether. Tribromoethanol dissolved in water (1:50
by weight) and ethanol also produced noticeable effects but
they are not summarized in the table.

As also shown in Table 1, while the test subjects did not
feel anything unusual from consuming the tap water treated
in the control experiments with magnetic pulses or laser
light, all the general anaesthetics studied produced clear and
completely reproducible brain effects in various degrees and
durations respectively similar to the observations in the first
set of experiments. These effects were over the whole brain,
intensified within the first half hour after the test subjects
consumed the treated water and then faded away within
the next few hours. But residual brain effects lingered on

for more than 12 hours as in the first set of experiments.
Among the general anaesthetics studied, again chloroform
and deuterated chloroform produced the most pronounced
and potent effect in strength and duration followed by iso-
florance and diethyl ether as illustrated in Figure 2. Tribromo-
ethanol dissolved in water (1:50 by weight) and ethanol also
produced noticeable effects but they are not summarized in
the table.

Fig. 2: Illustration of relative strengths of brain effects
of several anesthetics and morphine

In addition, available results with flashlight and micro-
wave as photon sources are also summarized in Table 1 re-
spectively. In both cases general anaesthetics studied produc-
ed clear and reproducible brain effects. But the brain effects
produced with microwave exposure were much stronger than
those by flashlight.

Table 1 also summarizes results obtained with several
medications including morphine, fentanyl, oxycodone, nico-
tine and caffeine in first and second sets of experiments. We
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found that they all produced clear and completely reproduc-
ible brain effects such as euphoria or hastened alertness in
various degrees and durations respectively. For example, in
the case of morphine in the first set of experiments the
brain effect was first localized near the site of treatment
and then spread over the whole brain and faded away within
several hours. In the case of morphine in the second set of
experiments the brain effect was over the whole brain, first
intensified within the first half hour after the test subjects
consumed the treated water and then faded away within the
next a few hours as illustrated in Figure 3.

Fig. 3: Illustration of dynamics of brain effects pro-
duced by two types of water exposed to morphine

Comparative experiments were also done on Subject A
and C with chloroform and diethyl ether by asking them to
inhale the vapours of chloroform and diethyl respectively
for 5 sec and compare the brain effect felt with those in the
two sets of experiments described above. The brain effects
induced in these comparative experiments were qualitatively
similar to those produced in various experiments described
above when chloroform and diethyl ether were respectively
used for the exposure to photons of various sources.

Furthermore, through additional experiments we also
made the following preliminary observations. First, the brain
effects in the first set of experiments could not be induced
by a permanent magnet in the place of the magnetic coil.
Nor could these effects be produced by a third magnetic
coil placed directly above the head of the test subject and
connected to a second magnetic coil through an amplifier
with the second magnetic coil receiving magnetic pulses from
a first magnetic coil after the said magnetic pulses first passed
through the anaesthetic sample. That is, the brain effects
could not be transmitted through an electric wire. Second, in
the second set of experiments the water exposed to magnetic
pulses, laser light, microwave and flashlight when a chemical
substance was present tasted about the same as that before
the exposure. Third, heating tap water exposed to magnetic
pulses or laser light in the presence of a chemical substance
diminished the brain effect of the said substance. Fourth,

when distilled water was used instead of fresh tap water the
observed brain effects were markedly reduced as illustrated
in Figure 6 in the case of morphine.

Table 3 summarizes the results obtained with the entang-
lement verification experiments carried out so far with chlor-
oform, deuterated chloroform, diethyl ether and morphine.
With all four sets of experiments, clear and consistently re-
producible brain effects were experienced by the test subjects
above and beyond what were noticeable in the control por-
tions of the experiments under blind settings. More specific-
ally, in the first set of entanglement verification experiments,
the brain effects experienced by the test subjects were the
same as those in which the setup shown in Figure 1C was
used. In the second, third and fourth sets of these experi-
ments, all test subjects did not feel anything unusual in the
first half hour after consuming the first half of the water either
exposed to microwave/magnetic pulses or just sit on the shelf
for more than 3 months. But within minutes after the second
half of the same water was exposed to the laser light or
magnetic pulses in the presence of general anaesthetics, the
test subjects would experience clear and completely repro-
ducible brain effect of various intensities as if they have
actually inhaled the general anaesthetic used in the exposure
of the second half of the water. The said brain effects were
over the whole brain, first intensified within minutes after
the exposure began and persisted for the duration of the said
exposure and for the next several hours after the exposure
had stopped. Further, all other conditions being the same,
magnetic coil produced more intense brain effects than the
red laser. Furthermore, all other conditions being the same,
the water exposed to microwave or magnetic pulses before
consumption produced more intense brain effects than water
just sitting on the shelve for more than 3 months before
consumption.

4 Discussion

With respect to the second, third and fourth sets of entangle-
ment verification experiments, the only possible explanation
for the brain effects experienced by the test subjects are
that they were the consequences of quantum entanglement
because the water consumed by the test subjects was never
directly exposed to the magnetic pulses or the laser lights in
the presence of the chemical substances. There are other
indications that quantum entanglement was the cause of
the brain effects experienced by the test subjects. First, the
brain effect inducing means could not be transmitted through
an electrical wire as already reported above. Second, the
said inducing means did not depend on the wavelengths of
the photons generated. Thus, mere interactions among the
photons, a chemical substance and water will induce brain
effects after a test subject consumes the water so interacted.

While designing and conducting the herein described
experiments, the first author became aware of the claims
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1st Set: Magn. Coil 2nd Set: Magn. Coil Red laser Flashlight Microwave

Test ] Effect Test ] Effect Test ] Effect Test ] Effect Test ] Effect

Chloroform

Subject A 2 yes 2 yes 5 yes 2 yes 3 yes

Subject B 0 n/a 0 n/a 1 yes 0 n/a 1 yes

Subject C 1 yes 2 yes 3 yes 0 n/a 1 yes

Subject D 1 yes 0 n/a 2 yes 0 n/a 0 n/a

Chloroform D

Subject A 3 yes 2 yes 2 yes 1 yes

Subject B 1 yes 0 n/a 1 yes 0 n/a

Subject C 0 n/a 0 n/a 1 yes 0 n/a

Subject D 0 n/a 0 n/s 0 n/a 0 n/a

Isoflurance

Subject A 3 yes 6 yes 5 yes 4 yes

Subject B 0 n/a 1 yes 0 n/a 0 0

Subject C 0 n/a 1 yes 1 n/a 0 0

Subject D 1 yes 1 yes 1 n/a 0 0

Diethyl Ether

Subject A 5 yes 6 yes 10 yes 1 yes

Subject B 1 yes 1 yes 1 yes 0 n/a

Subject C 1 yes 3 yes 1 yes 0 n/a

Subject D 0 n/a 0 n/a 2 yes 0 n/a

Morphine

Subject A 5 yes 7 yes 5 yes

Subject B 0 n/a 1 yes 2 yes

Subject C 0 n/a 1 yes 2 yes

Subject D 0 n/a 0 n/a 2 yes

Other Medications

Subject A 7 yes 4 yes

Subject B 1 yes 0 n/a

Subject C 3 yes 0 n/a

Subject D 0 n/a 0 n/a

Table 2: Breakdown of the summary in Table 1 into each general anesthetic studied plus morphine in the case
of medications

First Set Second Set Third Set Fourth Set

Test ] Effect Test ] Effect Test ] Effect Test ] Effect

Subject A 8 yes 8 yes 3 yes 3 yes

Subject B 2 yes 3 yes 2 yes 1 yes

Subject C 3 yes 2 yes 1 yes 1 yes

Control

Subject A 2 no 8 no 3 no 3 no

Subject B 0 n/a 3 no 2 no 1 no

Subject C 1 no 2 no 1 no 1 no

Table 3: Summary of the results obtained with the entanglement verification ex-
periments carried out so far with chloroform, deuterated chloroform, diethyl ether
and morphine
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related to the so called “water memory” [7]. However, since
these claims were said to be non-reproducible, we do not
wish to discuss them further here except to say that we
currently do not subscribe to any of the existing views on the
subject and readers are encouraged to read our recent online
paper on quantum entanglement [8].

We would like to point out that although the indicators
used to measure the brain effects were qualitative and sub-
jective, they reflect the first-person experiences of the qual-
ities, intensities and durations of these effects by the test
subjects since their brains were directly used as experimental
probes. Further, these effects are completely reproducible
under blind experimental settings so that possible placebo
effects were excluded. However, as with many other im-
portant new results, replications by others are the key to
independently confirm our results reported here. Our experi-
ments may appear simple and even “primitive” but the results
and implications are profound.

We first chose general anaesthetics in our experiments
because they are among the most powerful brain-influencing
substances. Our expectation was that, if nuclear and/or elec-
tronic spins inside the brain are involved in brain functions
such as perception as recently hypothesized by us, the brain
may be able to sense the effect of an external anaesthetic
sample through quantum entanglement between these spins
inside the brain and those of the said anaesthetic sample
induced by the photons of the magnetic pulses by first inter-
acting with the nuclear and/or electronic spins inside the
said anaesthetic sample, thus carrying quantum information
about the anaesthetic molecules, and then interacting with
the nuclear and/or electronic spins inside the brain.

We suggest here that the said quantum entities inside
the brains are likely nuclear and/or electronic spins for the
reasons discussed below. Neural membranes and proteins
contain vast numbers of nuclear spins such as 1H, 13C, 31P
and 15N. These nuclear spins and unpaired electronic spins
are the natural targets of interaction with the photons of the
magnetic pulses or other sources. These spins form complex
intra- and inter-molecular networks through various intra-
molecular J- and dipolar couplings and both short- and long-
range intermolecular dipolar couplings. Further, nuclear spins
have relatively long relaxation times after excitations [9].
Thus, when a nematic liquid crystal is irradiated with multi-
frequency pulse magnetic fields, its 1H spins can form long-
lived intra-molecular quantum coherence with entanglement
for information storage [10]. Long-lived (0.05 ms) entangle-
ment of two macroscopic electron spin ensembles at room
temperature has also been achieved [3]. Furthermore, spin
is a fundamental quantum process with intrinsic connection
to the structure of space-time [11] and was shown to be
responsible for the quantum effects in both Hestenes and
Bohmian quantum mechanics [12, 13]. Thus, we have re-
cently suggested that these spins could be involved in brain
functions at a more fundamental level [2].

5 Conclusions

In light of the results from the entanglement verification
experiments, we conclude that the brain effects experienced
by the test subjects were the consequences of quantum en-
tanglement between quantum entities inside the brains and
those of the chemical substances under study induced by
the entangling photons of the magnetic pulses or applied
lights. More specifically, the results obtained in the first
set of experiments can be interpreted as the consequence
of quantum entanglement between the quantum entities in
the brain and those in the chemical substances induced by
the photons of the magnetic pulses. Similarly, the results ob-
tained from the second sets of experiments can be explained
as quantum entanglement between the quantum entities in
the chemical substance and those in the water induced by
the photons of the magnetic pulses, laser light, microwave or
flashlight and the subsequent physical transport of the water
entangled with the said chemical substance to the brain after
consumption by the test subject which, in turn, produced
the observed brain effects through the entanglement of the
quantum entities inside the brain with those in the consumed
water.

Several important conclusions and implications can be
drawn from our findings. First, biologically and chemically
meaningful information can be communicated via quantum
entanglement from one place to another by photons and
possibly other quantum objects such as electrons, atoms
and even molecules. Second, both classical and quantum
information can be transmitted between locations of arbitrary
distances through quantum entanglement alone. Third, in-
stantaneous signalling is physically real which implies that
Einstein’s theory of relativity is in real (not just superficial)
conflict with quantum theory. Fourth, brain processes such
as perception and other biological processes likely involve
quantum information and nuclear and/or electronic spins
may play important roles in these processes. Further, our
findings provide important new insights into the essence and
implications of the mysterious quantum entanglement and
clues for solving the long-standing measurement problem in
quantum theory including the roles of the observer and/or
consciousness. Very importantly, our findings also provide a
unified scientific framework for explaining many paranormal
and/or anomalous effects such as telepathy, telekinesis and
homeopathy, if they do indeed exist, thus transforming these
paranormal and anomalous effects into the domains of con-
ventional sciences.

Finally, with respect to applications, our findings enable
various quantum entanglement technologies be developed.
Some of these technologies can be used to deliver the thera-
peutic effects of many drugs to various biological systems
such as human bodies without physically administrating the
same to the said systems. This will dramatically reduce waste
and increase productivity because the same drugs can be
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repeatedly used to deliver their therapeutic effects to the
mass on site or from remote locations of arbitrary distances.
Further, many substances of nutritional and recreational
values can be repeatedly administrated to desired biological
systems such as human bodies through the said technologies
either on site or from remote locations. Other such technolog-
ies can be used for instantaneous communications between
remote locations of arbitrary distances in various ways. Po-
tentially, these technologies can also be used to entangle two
or more human minds for legitimate and beneficial purposes.
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In a review, W. A. Rodrigues, Jr., wrote that we confused vector and affine spaces, and
that we misunderstood the concept of curvature. We reply to those comments, and
point out, that in our paper there was an explicit expression for the curvature of a
connection. Therefore we were quite aware — contrary to what asserted the reviewer
— that the curvature of a manifold has nothing to do with a choice of a frame field
which, of course, even in a flat manifold can be position dependent.

In 2005 we published a paper entitled The Extended Relativity
Theory in Clifford Spaces [1] which was reviewed by W.A.
Rodrigues, Jr. [2]. A good review, even if critical, is always
welcome, provided that the criticism is correct and relevant.
Unfortunately the reviewer produced some statements which
need a reply. He wrote:

“Two kinds of Clifford spaces are introduced in their
paper, flat and curved. According to their presentation,
which is far from rigorous by any mathematical stand-
ard, we learn that flat Clifford space is a vector space,
indeed the vector space of a Clifford algebra of real
vector space RD equipped with a metric of signature
P +Q=D. As such the authors state that the coordi-
nates of Clifford space are noncommutative Clifford-
valued quantities. It is quite obvious for a mathem-
atician that the authors confuse a vector space with
an affine space. This is clear when we learn their
definition of a curved Clifford space, which is a 16-
dimensional manifold where the tangent vectors are
position dependent and at any point are generators of
a Clifford algebra CP,Q. The authors, as is the case
of many physicists, seem not to be aware that the
curvature of a manifold has to do with the curvature of
a connection that we may define on such a manifold,
and has nothing to do with the fact that we may choose
even in flat manifold a section of the frame bundle
consisting of vectors that depend on the coordinates
of the manifold points in a given chart of the maximal
atlas of the manifold.”

When introducing flat C-space we just said that the
Clifford-valued polyvector denotes the position of a point
in a manifold, called Clifford space, or C-space. It is a com-
mon practice to consider coordinates, e. g., four coordinates
xμ, μ=0, 1, 2, 3, of a point P of a flat spacetime as com-
ponents of a radius vector from a chosen point P0 (“the
origin”) to P . If we did not provide at this point a several
pages course on vector and affine spaces, this by no means

implies that we were not aware of a distinction of the two
kinds of spaces. That position in flat spacetime is described
by radius vector is so common that we do not need to provide
any further explanation in this respect. Our paper is about
physics and not mathematics. We just use the well established
mathematics. Of course a spacetime manifold (including a
flat one) is not the same space as a vector space, but, choosing
an “origin” in spacetime, to every point there corresponds a
vector, so that there is a one-to-one correspondence between
the two spaces. This informal description is true, regardless
of the fact that there exist corresponding rigorous, formal,
mathematical descriptions (to be found in many textbooks
on physics and mathematics).

The correspondence between points and vectors does no
longer hold in a curved space, at least not according to the
standard wisdom practiced in the textbooks on differential
geometry. However, there exists an alternative approach
adopted by Hestenes and Sobcyk in their book [3], according
to which even the points of a curved space are described by
vectors. Moreover, there is yet another possibility, described
in refs. [4, 5], which employs vector fields aμ(x)γμ in a
curved space M, where γμ, μ=0, 1, 2, . . . , n− 1, are the
coordinate basis vector fields. At every point P the vectors
γμ|P span a tangent space TPM which is a vector space.

A particular case can be such that in a given coordinate
system∗ we have aμ(x) = xμ. Then at every point P ∈ M,
the object x(P) = xμ(P)γμ(P) is a tangent vector. So we
have one-to-one correspondence between the points P of M
and the tangent vectors x(P) = xμ(P)γμ(P), shortly xμγμ.
The set of objects x(P) for all point P in a regionR ⊂Mwe
call the coordinate vector field [4]. So although the manifold
is curved, every point in it can be described by a tangent

∗“Coordinate system” or simply “coordinates” is an abbreviation for
“the coordinates of the manifold points in a given chart of the maximal atlas
of the manifold”.
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vector at that point, the components of the tangent vector
being equal to the coordinates of that point.∗ Those tangent
vectors xμ(P)γμ(P) are now “house numbers” assigned to
a point P . We warn the reader not to confuse the tangent
vector x(P) at a point P with the vector pointing from P0 (a
coordinate origin) to a point P , a concept which is ill defined
in a curved manifold.

Analogous holds for Clifford space C. It is a manifold
whose points E can be physically interpreted as extended
“events”. One possible way to describe those points is by
means of a polyvector field A(X)=AM (X)γM (X)=
=XMγM , where γM |E , M =1, 2, . . . , 2n, are tangent poly-
vectors that at every point E ∈ C span a Clifford algebra. At
a given point E ∈ C it may hold [6, 5]

γM = γμ1 ∧ γμ2 ∧ . . . ∧ γμr , r = 0, 1, 2, . . . , n (1)

i. e., γM are defined as wedge product of vectors γμ , μ=0,
1, 2, . . . , n−1. The latter property cannot hold in a general
curved Clifford space [6, 5]. In refs. [7, 1] we considered a
particular subclass of curvedC-spaces, for which it does hold.

If we choose a particular point E0 ∈C, to which we assign
coordinates XM (E0)= 0, then we have a correspondence
between points E ∈ C and Clifford numbers XM (E) γM (E).
In this sense one has to understand the sentence of ref. [1]:

“An element of C-space is a Clifford number, called
also polyvector or Clifford aggregate which we now
write in the formX = sγ+xμγμ+x

μνγμ∧γν+. . . ”

Therefore, a more correct formulation would be, e. g.,

“An element of C-space is an extended event E ,
to which one can assign a Clifford number, called
polyvector, XM (E)γM (E) ≡ XMγM .”

together with an explanation in the sense as given above.
So a rigorous formulation is, not that an element of C-space
is a Clifford number, but that to a point of C-space there
corresponds a Clifford number, and that this holds for all
points within a domain Ω ⊂C corresponding to a given chart
of the maximal atlas of C.

On the one hand we have a 2n-dimensional manifold
C ≡{E} of points (extended events) E , and on the other
hand the 2n-dimensional space {X(E)} of Clifford numbers
X(E)=XM (E) γ (E) for E ∈Ω⊂C. The latter space
{X(E)}, of course, is not a Clifford algebra. It is a subspace
of 2× 2n-dimensional tangent bundle TC of the manifold C.
At every point E ∈ C there is a also another subspace of TC,
namely the 2n-dimensional tangent space TEC, which is a

∗If we change coordinate system, then aμ(x)γμ=xμγμ=
= a′μ(x′)γ′μ(x

′), with a′μ= aν(x)(∂x′μ/∂xν)=xν(∂x′μ/∂xν). In
another coordinate system S′ one can then take another vector field,
such that bμ(x′)=x′μ. Let us stress that bμ(x′)=x′μ is a different
field from a′μ(x′), therefore the reader should not think that we say
x′μ=xν(∂x′μ/∂xν) which is, of course, wrong. What we say is
a′μ(x′)= (∂x′μ/∂xν)aν(x), where, in particular, aν(x)=xν .

Clifford algebra Cn. Since there is a one-to-one correspond-
ence between the spaces {X(E)} and {E}, the space {X(E)}
can be used for description of the space {E}.

It is true that physicists are often sloppy with mathemat-
ical formulations and usage of language, but it is also true that
mathematicians often read physics papers superficially and
see misconceptions, “errors”, erroneous mathematical state-
ments, etc., instead of trying to figure out the true content
behind an informal (and therefore necessarily imprecise) de-
scription, whose emphasis is on physics and not mathematics.

A culmination is when the reviewer writes

“The authors, as is the case of many physicists, seem
not to be aware that curvature. . . has nothing to do
with the fact that we may choose even in flat manifold
a section of the frame bundle consisting of vectors that
depend on coordinates of the manifold points. . . ”

That curvature has nothing to do with coordinate trans-
formations† is clear to everybody who has ever studied the
basis of general relativity. Everyone who has a good faith that
the author(s) of a paper have a minimal level of competence
would interpret a text such as [1]

“In flat C-space the basis polyvectors γM are con-
stant. In a curved C-space this is no longer true. Each
γM is a function of C-space coordinates XM . . . ”

according to

“In flat C-space one can always find coordinates‡ in
which γM are constant. In a curved C-space this is
no longer true. Each γM depends on position in C-
space.” Or equivalently, “Each γM is a function of
the C-space coordinates”.

However, even our formulation as it stands in ref. [1]
makes sense within the context in which we first consider
flat space in which we choose a constant frame field, i. e.,
constant basis polyvectors. We denote the latter polyvectors
as γM . If we then deform§ the flat space into a curved one,
then the same (poly)vector fields γM in general can no longer
be independent of position. In this sense the formulation as
it stands in our paper is quite correct.

We then define a connection on our manifold C, and the
corresponding curvature (see eqs. (77), (78) of ref. [1]). That

†For instance, in flat spacetime one can introduce a curvilinear
coordinate system of coordinates, like the use of polar coordinates in
the plane and spherical coordinates in R3. However, the introduction of
a curvilinear coordinate system does not convert the original flat space into
a curved one. And vice versa, one can introduce a non-Euclidean metric
(non-flat metric) on a two-dim flat surface, for example, like the hyperbolic
Lobachevsky metric of constant negative scalar curvature.

‡We renounce to use here the lengthy formulation provided by the
reviewer. Usage of the term “coordinates” is sufficient, and it actually means
“coordinates of the manifold point in a given chart of the maximal atlas of
the manifold”.

§This is easy to imagine, if we consider a flat surface embedded in
a higher dimensional space, and then deform the surface. In general, we
may deform the surface so that is is curved not only extrinsically, but also
intrinsically.
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the reviewer reproaches us of being ignorant of the fact that
the curvature of a manifold has to do with the curvature of
a connection is therefore completely out of place, to say at
least.

Finally, let us mention that in the review of another paper
[8] the same reviewer ascribed to one of us (M.P) an incorrect
mathematical statement. But I was quite aware of the well
known fact that Clifford algebras associated with vector
spaces of different signatures (p, q), with p+ q=n, are not
all isomorphic (in the sense as stated, e. g., in the book by
Porteous [9]). What I discussed in that paper was something
different. This should be clear from my description, therefore
I did not explicitly warn the reader about the difference
(although I was aware of the danger that at superficial reading
some people might believe me of committing an error).
However, in subsequent ref. [1] we did warn the reader about
the possibility of such a confusion.
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On the Regge-Wheeler Tortoise and the Kruskal-Szekeres Coordinates

Stephen J. Crothers

Queensland, Australia
E-mail: thenarmis@yahoo.com

The Regge-Wheeler tortoise “coordinate” and the the Kruskal-Szekeres “extension”
are built upon a latent set of invalid assumptions. Consequently, they have led to
fallacious conclusions about Einstein’s gravitational field. The persistent unjustified
claims made for the aforesaid alleged coordinates are not sustained by mathematical
rigour. They must therefore be discarded.

1 Introduction

The Regge-Wheeler tortoise coordinate was not conjured up
from thin air. On the contrary, is was obtained a posteriori
from the Droste/Weyl/(Hilbert) [1, 2, 3] (the DW/H) metric
for the static vacuum field; or, more accurately, from Hilbert’s
corruption of the spacetime metric obtained by Johannes
Droste.

The first presentation and misguided use of the Regge-
Wheeler coordinate was made by A. S. Eddington [4] in
1924. Finkelstein [5], years later, in 1958, presented much
the same; since then virtually canonised in the so-called
“Eddington-Finkelstein” coordinates. Kruskal [6], and Sze-
keres [7], in 1960, compounded the errors with additional
errors, all built upon the very same fallacious assumptions,
by adding even more fallacious assumptions. The result has
been a rather incompetent use of mathematics to produce
nonsense on an extraordinary scale.

Orthodox relativists are now so imbued with the miscon-
ceptions that they are, for the most part, no longer capable
of rational thought on the subject. Although the erroneous
assumptions of the orthodox have been previously demon-
strated to be false [8–18] they have consistently and conven-
iently ignored the proofs.

I amplify the erroneous assumptions of the orthodox
relativists in terms of the Regge-Wheeler tortoise, and con-
sequently in the Kruskal-Szekeres phantasmagoria.

2 The orthodox confusion and delusion

Consider the DW/H line-element

ds2=
(
1−

α

r

)
dt2 −

(
1−

α

r

)−1
dr2−

− r2
(
dθ2 + sin2θ dϕ2

)
,

(1)

where α=2m. Droste showed that α<r<∞ is the correct
domain of definition on (1), as did Weyl some time later.
Hilbert however, claimed 0<r<∞. Modern orthodox rela-
tivists claim two intervals, 0<r<α, α<r<∞, and call the
latter the “exterior” Schwarzschild solution and the former

a “black hole”, notwithstanding that (1) with 0<r<∞ was
never proposed by K. Schwarzschild [19]. Astonishingly, the
vast majority of orthodox relativists, it seems, have never
even heard of Schwarzschild’s true solution.

I have proved elsewhere [11, 12, 13] that the orthodox,
when considering (1), have made three invalid assumptions,
to wit

(a) r is a proper radius;

(b) r can go down to zero;

(c) A singularity must occur where the Riemann tensor
scalar curvature invariant (the Kretschmann scalar),
f =RαβρσR

αβρσ , is unbounded.

None of these assumptions have ever been proved true
with the required mathematical rigour by any orthodox rela-
tivist. Notwithstanding, they blindly proceed on the assum-
ption that they are all true. The fact remains however, that
they are all demonstrably false.

Consider assumption (a). By what rigorous argument
have the orthodox identified r as a radial quantity on (1)?
Moreover, by what rigorous mathematical means have they
ever indicated what they mean by a radial quantity on (1)?
Even a cursory reading of the literature testifies to the fact
that the orthodox relativists have never offered any mathem-
atical rigour to justify assumption (a). Mathematical rigour
actually proves that this assumption is false.

Consider assumption (b). By what rigorous means has it
ever been proved that r can go down to zero on (1)? The
sad fact is that the orthodox have never offered a rigorous
argument. All they have ever done is inspect (1) and claim
that there are singularities at r=α and at r=0, and thereafter
concocted means to make one of them (r=0) a “physical”
singularity, and the other a “coordinate” singularity, and
vaguely refer to the latter as a “pathology” of coordinates,
whatever that means. The allegation of singularities at r=α
and at r=0 also involves the unproven assumption (a).
Evidently the orthodox consider that assumptions (a) and (b)
are self-evident, and so they don’t even think about them.
However, assumptions (a) and (b) are not self-evident and if
they are to be justifiably used, they must first be proved. No

30 S. J. Crothers. On the Regge-Wheeler Tortoise and the Kruskal-Szekeres Coordinates



July, 2006 PROGRESS IN PHYSICS Volume 3

orthodox relativist has ever bothered to attempt the necessary
proofs. Indeed, none it would seem have ever seen the need
for proofs, owing to their “self-evident” assumptions.

Assumption (c) is an even more curious one. Indeed, it
is actually a bit of legerdemain. Having just assumed (a)
and (b), the orthodox needed some means to identify their
“physical” singularity. They went looking for it at a suitable
unbounded curvature scalar, found it in the Kretschmann
scalar, after a series of misguided transformations of “coord-
inates” leading to the Kruskal-Szekeres “extension”, and
thereafter have claimed singularity of the Kretschmann type
in the static vacuum field.

Furthermore, using these unproved assumptions, the
orthodox relativists have claimed a process of “gravitational
collapse” to a “point-mass”. And with this they have devel-
oped what they have called grandiosely and misguidedly,
“singularity theorems”, by which it is alleged that “physical”
singularities and “trapped surfaces” are a necessary conse-
quence of gravitational collapse, and even cosmologically,
called Friedmann singularities.

The orthodox relativists must first prove their assum-
ptions by rigorous mathematics. Unless they do this, their
analyses are unsubstantiated and cannot be admitted.

Since the orthodox assumptions have in fact already been
rigorously proved entirely false, the theory that the orthodox
have built upon them is also false.

3 The Regge-Wheeler tortoise; the Kruskal-Szekeres
phantasmagoria

Since the Regge-Wheeler tortoise does not come from thin
air, from where does it come?

First consider the general static line-element

ds2=A
(√

C(r)
)
dt2 −B

(√
C(r)

)
d
√
C(r)

2
−

−C(r)
(
dθ2 + sin2θ dϕ2

)
,

A,B,C > 0 .

(2)

It has the solution

ds2=

(

1−
α

√
C(r)

)

dt2−

(

1−
α

√
C(r)

)−1
d
√
C(r)

2
−

−C(r)
(
dθ2 + sin2θ dϕ2

)
,

(3)

and setting Rc(r)=
√
C(r) for convenience, this becomes

ds2=

(

1−
α

Rc(r)

)

dt2−

(

1−
α

Rc(r)

)−1
dR2c(r)−

−R2c(r)
(
dθ2 + sin2 θdϕ2

)
,

(4)

for some analytic function Rc(r). Clearly, if Rc(r) is set
equal to r, then (1) is obtained.

Reduce (4) to two dimensions, thus

ds2=

(

1−
α

Rc(r)

)

dt2 −

(

1−
α

Rc(r)

)−1
dR2c(r) . (5)

The null geodesics are given by

ds2=0=

(

1−
α

Rc(r)

)

dt2 −

(

1−
α

Rc(r)

)−1
dR2c(r) .

Consequently
(

dt

dRc(r)

)2
=

(
Rc(r)

Rc(r)− α

)2
,

and therefore,

t= ±

[

Rc(r) + α ln

∣
∣
∣
∣
Rc(r)

α
− 1

∣
∣
∣
∣

]

+ const.

Now

R∗(r)=Rc(r) + α ln

∣
∣
∣
∣
Rc(r)

α
− 1

∣
∣
∣
∣ (6)

is the so-called Regge-Wheeler tortoise coordinate. If
Rc(r)= r, then

r∗= r + α ln
∣
∣
∣
r

α
− 1
∣
∣
∣ , (7)

which is the standard expression used by the orthodox. They
never use the general expression (6) because they only ever
consider the particular case Rc(r)= r, owing to the fact that
they do not know that their equations relate to a particular
case. Furthermore, with their unproven and invalid assum-
ptions (a) and (b), many orthodox relativists claim

0=0 + α ln

∣
∣
∣
∣
0

α
− 1

∣
∣
∣
∣ (8)

so that r∗0 = r0 =0. But as explained above, assuming r0 =0
in (1) has no rigorous basis, so (8) is rather misguided.

Let us now consider (2). I identify therein the radius of
curvature Rc(r) as the square root of the coefficient of the
angular terms, and the proper radius Rp(r) as the integral
of the square root of the component of the metric tensor
containing the squared differential element of the radius of
curvature. Thus, on (2),

Rc(r)=
√
C(r) ,

Rp(r)=

∫ √
B(
√
C(r)) d

√
C(r) + const.

(9)

In relation to (4) it follows that,

Rc(r) is the radius of curvature,

Rp(r)=

∫ √
Rc(r)

(Rc(r)− α)
dRc(r) +K ,

(10)
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where K is a constant to be rigorously determined by a
boundary condition. Note that according to (10) there is no
a priori reason for Rp(r) and Rc(r) to be identical in Ein-
stein’s gravitational field.

Now consider the usual Minkowski metric,

ds2= dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (11)

0 6 r <∞ ,

where

Rc(r)= r , Rp(r)=

∫ r

0

dr= r≡Rc(r) . (12)

In this case Rp(r) is identical to Rc(r). The identity is
due to the fact that the spatial components of Minkowski
space are Efcleethean∗. But (4), and hence (10), are non-
Efcleethean, and so there is no reason for Rp(r) and Rc(r)
to be identical therein.

The geometry of a spherically symmetric line-element
is an intrinsic and invariant property, by which radii are
rigorously determined. The radius of curvature is always
the square root of the coefficient of the angular terms and
the proper radius is always the integral of the square root
of the component containing the square of the differential
element of the radius of curvature. Note that in general
Rc(r) and Rp(r) are analytic functions of r, so that r is
merely a parameter, and not a radial quantity in (2) and (4).
So Rc(r) and Rp(r) map the parameter r into radii (i. e.
distances) in the gravitational field. Note further that r is
actually defined in Minkowski space. Thus, a distance in
Minkowski space is mapped into corresponding distances
in Einstein’s gravitational field by the mappings Rc(r) and
Rp(r).

It has been proved [11, 12] that the admissible form
for Rc(r) is,

Rc(r)=
(∣
∣r − r0

∣
∣n + αn

) 1
n

, (13)

n ∈ <+, r0 ∈ <, α = 2m, r 6= r0 ,

where n and r0 are entirely arbitrary constants, and that

Rp(r)=
√
Rc(r) (Rc(r)− α)+

+α ln

∣
∣
∣
∣
∣

√
Rc(r) +

√
Rc(r)− α√
α

∣
∣
∣
∣
∣
.

If n=1, r0=α, r>r0 are chosen, then by (13), Rc(r)=r
and equation (1) is recovered; but by (13), α<r<∞ is then
the range on the r-parameter. Note that in this case

Rc(α)=α , Rp(α)= 0 ,

∗Owing to the geometry due to Efcleethees, for those ignorant of Greek;
usually and incorrectly Euclid.

and that in general,

Rc(r0)=α , Rp(r0)= 0 ,

α < Rc(r) <∞ ,

since the value of r0 is immaterial. I remark in passing that
if n=3, r0 =0, r > 0 are chosen, Schwarzschild’s original
solution results.

Returning now to the Regge-Wheeler tortoise, it is evi-
dent that

−∞ < R∗(r) <∞ ,

and thatR∗(r)= 0 whenR(r)≈ 1.278465α. Now according
to (13), α<Rc(r)<∞, so the Regge-Wheeler tortoise can
be written generally as,

R∗(r)=Rc(r) + α ln

(
Rc(r)

α
− 1

)

, (14)

which is, in the particular case invariably used by the ortho-
dox relativists,

r∗= r + α ln

(
r

α
− 1

)

,

and so, by (13) and (14), the orthodox claim that

0=0 + α ln

∣
∣
∣
∣
0

α
− 1

∣
∣
∣
∣ ,

is nonsense. It is due to the invalid assumptions (a) and (b)
which the orthodox relativists have erroneously taken for
granted. Of course, the tortoise, r∗, cannot be interpreted
as a radius of curvature, since in doing so would violate
the intrinsic geometry of the metric. This is clearly evident
from (13), which specifies the permissible form of a radius
of curvature on a metric of the form (4).

So what is the motivation to the Regge-Wheeler tortoise
and the subsequent Kruskal-Szekeres extension? Very simply
this, to rid (1) of the singularity at r=α and make r=0
a “physical” singularity, satisfying the ad hoc assumption
(c), under the mistaken belief that† r=α is not a physical
singularity (but it is a true singularity, however, not a Kretsch-
mann curvature-type). This misguided notion is compounded
by a failure to realise that there are two radii in Einstein’s
gravitational field and that they are never identical, except in
the infinitely far field where spacetime becomes Minkowski,
and that what they treat as a proper radius in the gravitational
field is in fact the radius of curvature in their particular
metric, which cannot go down to zero. Only the proper radius
can approach zero, although it cannot take the value of zero,
i. e. r 6= r0 in (13), since Rp(r0)≡ 0 marks the location of
the centre of mass of the source of the field, which is not a
physical object.

†Indeed, that
(
Rc(r0)≡α

)
≡
(
Rp(r0)≡ 0

)
.
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The mechanical procedure to the Kruskal-Szekeres ex-
tension is well-known, so I will not reproduce it here, suffice
to say that it proposes the following null coordinates u and v,

u= t−R∗(r) ,

v= t+R∗(r) ,

which is always given by the orthodox relativists in the
particular case

u= t− r∗ ,

v= t+ r∗ .

Along the way to the Kruskal-Szekeres extension, the
sole purpose of which is to misguidedly drive the radius
of curvature r in (1) down to zero, owing to their invalid
assumptions (a), (b) and (c), the orthodox obtain

ds2= −
αe−

r
α

r
e
(v−u)
2α du dv ,

which in general terms is

ds2= −
αe−

Rc(r)
α

Rc(r)
e
(v−u)
2α du dv ,

and erroneously claim that the metric components of (1) have
been factored into a piece, e−r/α

r , which is non-singular as
r→α, times a piece with u and v dependence [20]. The
claim is of course completely spurious, since it is based
upon the false assumptions (a), (b), and (c). The orthodox
relativists have not, contrary to their claims, developed a
coordinate patch to cover a part of an otherwise incompletely
covered manifold. What they have actually done, quite un-
wittingly, is invent a completely separate manifold, which
they glue onto the manifold of the true Schwarzschild field,
and confound this new and separate manifold as a part of
the original manifold, and by means of the Kruskal-Szekeres
extension, leap between manifolds in the mistaken belief
that they are moving between coordinate patches on one
manifold. The whole procedure is ludicrous; and patently
false. Loinger [21] has also noted that the alleged “interior”
of the Hilbert solution is a different manifold.

The fact that the Hilbert solution is not diffeomorphic
to Schwarzschild’s solution was proved by Abrams [9], who
showed that the Droste/Weyl metric is diffeomorphic to
Schwarzschild’s original solution. This is manifest in (13),
and can be easily demonstrated alternatively by a simple
transformation, as follows. In the Hilbert metric, denote the
radius of curvature by r∗, and equate this to Schwarzschild’s
radius of curvature thus,

r∗=
(
r3 + α3

) 1
3 . (15)

Since 0<r<∞ in Schwarzschild’s original solution, it
follows from this that

α < r∗ <∞ ,

which is precisely what Droste obtained; later confirmed
by Weyl. There is no “interior” associated with the DW/H
metric, and no “trapped surface”. The transformation (15)
simply shifts the location of the centre of mass of the source
in parameter space from r0 =0 to r0 =α, as given explicitly
in (13).

4 Recapitulation and general comments

The standard school of relativists has never attempted to
rigorously prove its assumptions about the variable r appear-
ing in the line-element (1). It has never provided any rigorous
argument as to what constitutes a radial quantity in Einstein’s
gravitational field. It has invented a curvature condition, in
the behaviour of the Kretschmann scalar, as an ad hoc basis
for singularity in Einstein’s gravitational field.

The Regge-Wheeler tortoise has been thoroughly mis-
interpreted by the standard school of relativists. The Kruskal-
Szekeres extension is a misguided procedure, and does not
lead to a coordinate patch, but in fact, to a completely
separate manifold having nothing to do with a Schwazschild
space. The motivation to the Eddington-Finkelstein coordina-
tes and the Kruskal-Szekeres extension is due to the erron-
eous assumptions that the variable r in (1) is a proper radius
and can therefore go down to zero.

The standard school has failed to see that there are two
radii in Einstein’s gravitational field, which are determined
by the intrinsic geometry of the metric. Thus, it has failed
to understand the geometrical structure of type 1 Einstein
spaces. Consequently, the orthodox relativists have incorrect-
ly treated the variable r in (1) as a proper radius, failing
to see that it is in fact the radius of curvature in (1), and
that the proper radius must in fact be calculated by the
geometrical relations intrinsic to the metric. They have failed
to realise that the quantity r is in general nothing more than a
parameter, defined in Minkowski space, which is mapped into
the radii of the gravitational field, thereby making Minkowski
space a parameter space from which Efcleethean distance
is mapped into the corresponding true radii of Einstein’s
pseudo-Riemannian gravitational field.

The so-called “singularity theorems” are not theorems at
all, as they are based upon false concepts. The “point-mass”
is actually nothing more than the location of the centre of
mass of the source of the gravitational field, and has no
physical significance. Moreover, the alleged theorems are
based upon the invalid construction of “trapped surfaces”,
essentially derived from the false assumptions (a), (b) and (c).
The Friedmann singularities simply do not exist at all, either
physically or mathematically, as it has been rigorously proved
that cosmological solutions for isotropic type 1 Einstein
spaces do not even exist [14], so that the Standard Cosmo-
logical model is completely invalid.

My own experience has been that most orthodox rela-
tivists just ignore the facts, resort to aggressive abuse when
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confronted with them, and merrily continue with their de-
monstrably false assumptions. But here is a revelation: abuse
and ignorance are not scientific methods. Evidently, scientific
method is no longer required in science.

I have in the past, invited certain very substantial (and
some not so substantial) elements of the orthodox relativists,
literally under a torrent of vicious abuse, both gutter and
eloquent, depending upon the person, (to which I have on
occasion responded in kind after enduring far too much), to
prove their assumptions (a), (b), and (c). Not one of them
took up the invitation. I have also invited them to prove me
wrong by simply providing a rigorous demonstration that
the radius of curvature is not always the square root of the
coefficient of the angular terms of the metric, and that the
proper radius is not always the integral of the square root
of the component containing the square of the differential
element of the radius of curvature. Not one of them has
taken up that invitation either. To refute my analysis is very
simple in principle — rigorously prove the foregoing.

Alas, the orthodox are evidently unwilling to do so, being
content instead to foist their errors upon all and sundry in
the guise of profundity, to salve their need of vainglory, and
ignore or abuse those who ask legitimate questions as to
their analyses. And quite a few persons who have pointed
out serious errors in the standard theory, have been refused
any and all opportunity to publish papers on these matters in
those journals and electronic archives which constitute the
stamping grounds of the orthodox.

I give the foregoing in illustration of how modern science
is now being deliberately censored and falsified. This cannot
be allowed to continue, and those responsible must be ex-
posed and penalised. It is my view that what the modern
orthodox relativists have done amounts to scientific fraud.
The current situation is so appalling that to remain silent
would itself be criminal.
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In this article, we shall describe some of the most interesting topics in the subject
of Complexity Science for a general audience. Anyone with a solid foundation in
high school mathematics (with some calculus) and an elementary understanding of
computer programming will be able to follow this article. First, we shall explain the
significance of the P versus NP problem and solve it. Next, we shall describe two
other famous mathematics problems, the Collatz 3n+ 1 Conjecture and the Riemann
Hypothesis, and show how both Chaitin’s incompleteness theorem and Wolfram’s
notion of “computational irreducibility” are important for understanding why no one
has, as of yet, solved these two problems.

1 Challenge

Imagine that you have a collection of one billion lottery
tickets scattered throughout your basement in no particular
order. An official from the lottery announces the number
of the winning lottery ticket. For a possible prize of one
billion dollars, is it a good idea to search your basement
until you find the winning ticket or until you come to the
conclusion that you do not possess the winning ticket? Most
people would think not — even if the winning lottery ticket
were in your basement, performing such a search could take
109/(60× 60× 24× 365.25) years, over thirty work-years,
assuming that it takes you at least one second to examine
each lottery ticket. Now imagine that you have a collection
of only one thousand lottery tickets in your basement. Is
it a good idea to search your basement until you find the
winning ticket or until you come to the conclusion that you
do not possess the winning ticket? Most people would think
so, since doing such would take at most a few hours.

From these scenarios, let us postulate a general rule
that the maximum time that it may take for one person to
search N unsorted objects for one specific object is directly
proportional to N . This is clearly the case for physical
objects, but what about abstract objects? For instance, let
us suppose that a dating service is trying to help n single
women and n single men to get married. Each woman gives
the dating service a list of characteristics that she would
like to see in her potential husband, for instance, handsome,
caring, athletic, domesticated, etc. And each man gives the
dating service a list of characteristics that he would like to
see in his potential wife, for instance, beautiful, obedient,
good cook, thrifty, etc. The dating service is faced with the
task of arranging dates for each of its clients so as to satisfy
everyone’s preferences.

Now there are n! (which is shorthand for n× (n− 1)×
(n − 2) × ∙ ∙ ∙ × 2 × 1) possible ways for the dating service
to arrange dates for each of its clients, but only a fraction of
such arrangements would satisfy all of its clients. If n = 100,
it would take too long for the dating service’s computer

to evaluate all 100! possible arrangements until it finds an
arrangement that would satisfy all of its clients. (100! is too
large a number of possibilities for any modern computer to
handle.) Is there an efficient way for the dating service’s
computer to find dates with compatible potential spouses for
each of the dating service’s clients so that everyone is happy,
assuming that it is possible to do such? Yes, and here is how:

Matchmaker algorithm — Initialize the set M = ∅. Search
for a list of compatible relationships between men and
women that alternates between a compatible relationship
{x1, x2} not contained in set M , followed by a compatible
relationship {x2, x3} contained in set M , followed by a
compatible relationship {x3, x4} not contained in set M ,
followed by a compatible relationship {x4, x5} contained in
set M , and so on, ending with a compatible relationship
{xm−1, xm} not contained in set M , where both x1 and xm
are not members of any compatible relationships contained
in set M . Once such a list is found, for each compatible
relationship {xi, xi+1} in the list, add {xi, xi+1} to M if
{xi, xi+1} is not contained in M or remove {xi, xi+1}
from M if {xi, xi+1} is contained in M . (Note that this
procedure must increase the size of set M by one.) Repeat
this procedure until no such list exists.

Such an algorithm is guaranteed to efficiently find an
arrangement M that will satisfy all of the dating service’s
clients whenever such an arrangement exists [30]. So we
see that with regard to abstract objects, it is not necessarily
the case that the maximum time that it may take for one to
search N unsorted objects for a specific object is directly
proportional to N ; in the dating service example, there are
n! possible arrangements between men and women, yet it is
not necessary for a computer to examine all n! arrangements
in order to find a satisfactory arrangement. One might think
that the problem of finding a satisfactory dating arrangement
is easy for a modern computer to solve because the list of
pairs of men and women who are compatible is relatively
small (of size at most n2, which is much smaller than
the number of possible arrangements n!) and because it is
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easy to verify whether any particular arrangement will make
everyone happy. But this reasoning is invalid, as we shall
demonstrate.

2 The SUBSET-SUM problem

Consider the following problem: You are given a set A=
= {a1, . . . , an} of n integers and another integer b which we
shall call the target integer. You want to know if there exists
a subset of A for which the sum of its elements is equal to b.
(We shall consider the sum of the elements of the empty set to
be zero.) This problem is called the SUBSET-SUM problem
[10]. Now, there are 2n subsets of A, so one could naı̈vely
solve this problem by exhaustively comparing the sum of the
elements of each subset of A to b until one finds a subset-
sum equal to b, but such a procedure would be infeasible
for even the fastest computers in the world to implement
when n = 100. Is there an algorithm which can considerably
reduce the amount of work for solving the SUBSET-SUM
problem? Yes, there is an algorithm discovered by Horowitz
and Sahni in 1974 [21], which we shall call the Meet-in-the-
Middle algorithm, that takes on the order of 2n/2 steps to
solve the SUBSET-SUM problem instead of the 2n steps of
the naı̈ve exhaustive comparison algorithm:

Meet-in-the-Middle algorithm — First, partition the set A
into two subsets, A+= {a1, . . . , adn2 e} and A−= {adn2 e+1,
. . . , an}. Let us define S+ and S− as the sets of subset-
sums of A+ and A−, respectively. Sort sets S+ and b−S−

in ascending order. Compare the first elements in both of
the lists. If they match, then stop and output that there is a
solution. If not, then compare the greater element with the
next element in the other list. Continue this process until
there is a match, in which case there is a solution, or until
one of the lists runs out of elements, in which case there is
no solution.

This algorithm takes on the order of 2n/2 steps, since it
takes on the order of 2n/2 steps to sort sets S+ and b−S−

(assuming that the computer can sort in linear-time) and on
the order of 2n/2 steps to compare elements from the sorted
lists S+ and b − S−. Are there any faster algorithms for
solving SUBSET-SUM? 2n/2 is still a very large number
when n=100, even though this strategy is a vast improve-
ment over the naı̈ve strategy. It turns out that no algorithm
with a better worst-case running-time has ever been found
since the Horowitz and Sahni paper [40]. And the reason for
this is because it is impossible for such an algorithm to exist.
Here is an explanation why:

Explanation: To understand why there is no algorithm with a
faster worst-case running-time than the Meet-in-the-Middle
algorithm, let us travel back in time seventy-five years, long
before the internet. If one were to ask someone back then
what a computer is, one would have gotten the answer, “a
person who computes (usually a woman)” instead of the

present day definition, “a machine that computes” [18]. Let
us imagine that we knew two computers back then named
Mabel and Mildred (two popular names for women in the
1930’s [34]). Mabel is very efficient at sorting lists of integers
into ascending order; for instance she can sort a set of ten
integers in 15 seconds, whereas it takes Mildred 20 seconds
to perform the same task. However, Mildred is very efficient
at comparing two integers a and b to determine whether a< b
or a= b or a> b; she can compare ten pairs of integers in 15
seconds, whereas it takes Mabel 20 seconds to perform the
same task.

Let’s say we were to give both Mabel and Mildred the
task of determining whether there exists a subset of some four
element set, A= {a1, a2, a3, a4}, for which the sum of its
elements adds up to b. Since Mildred is good at comparing
but not so good at sorting, Mildred chooses to solve this
problem by comparing b to all of the sixteen subset-sums
of A. Since Mabel is good at sorting but not so good at
comparing, Mabel decides to solve this problem by using the
Meet-in-the-Middle algorithm. In fact, of all algorithms that
Mabel could have chosen to solve this problem, the Meet-
in-the-Middle algorithm is the most efficient for her to use
on sets A with only four integers. And of all algorithms that
Mildred could have chosen to solve this problem, comparing
b to all of the sixteen subset-sums of A is the most efficient
algorithm for her to use on sets A with only four integers.

Now we are going to use the principle of mathematical
induction to prove that the best algorithm for Mabel to use
for solving the SUBSET-SUM problem for large n is the
Meet-in-the-Middle algorithm: We already know that this is
true when n = 4. Let us assume that this is true for n, i. e.,
that of all possible algorithms for Mabel to use for solving the
SUBSET-SUM problem on sets with n integers, the Meet-in-
the-Middle algorithm has the best worst-case running-time.
Then we shall prove that this is also true for n+ 1:

Let S be the set of all subset-sums of the set A=
= {a1, a2, . . . , an}. Notice that the SUBSET-SUM problem
on the set A∪{a′} of n+1 integers and target b is equivalent
to the problem of determining whether (1) b∈S or (2) b′ ∈S
(where b′= b− a′). (The symbol ∈means “is a member of”.)
Also notice that these two subproblems, (1) and (2), are
independent from one another in the sense that the values of
b and b′ are unrelated to each other and are also unrelated
to set S; therefore, in order to determine whether b∈S or
b′ ∈S, it is necessary to solve both subproblems (assuming
that the first subproblem solved has no solution). So it is
clear that if Mabel could solve both subproblems in the
fastest time possible and also whenever possible make use
of information obtained from solving subproblem (1) to save
time solving subproblem (2) and whenever possible make
use of information obtained from solving subproblem (2) to
save time solving subproblem (1), then Mabel would be able
to solve the problem of determining whether (1) b ∈ S or (2)
b′ ∈ S in the fastest time possible [15].
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We shall now explain why the Meet-in-the-Middle algo-
rithm has this characteristic for sets of size n+ 1: It is clear
that by the induction hypothesis, the Meet-in-the-Middle
algorithm solves each subproblem in the fastest time possible,
since it works by applying the Meet-in-the-Middle algorithm
to each subproblem, without loss of generality sorting and
comparing elements in lists S+ and b−S− and also sorting
and comparing elements in lists S+ and b′−S− as the
algorithm sorts and compares elements in lists S+ and
b− [S− ∪ (S−+ a′)]. There are two situations in which it is
possible for the Meet-in-the-Middle algorithm to make use
of information obtained from solving subproblem (1) to save
time solving subproblem (2) or to make use of information
obtained from solving subproblem (2) to save time solving
subproblem (1). And the Meet-in-the-Middle algorithm takes
advantage of both of these opportunities:

• Whenever the Meet-in-the-Middle algorithm compares
two elements from lists S+ and b−S− and the element
in list S+ turns out to be less than the element in
list b−S−, the algorithm makes use of information
obtained from solving subproblem (1) (the fact that
the element in list S+ is less than the element in
list b−S−) to save time, when n is odd, solving
subproblem (2) (the algorithm does not consider the
element in list S+ again).

• Whenever the Meet-in-the-Middle algorithm compares
two elements from lists S+ and b′−S− and the ele-
ment in list S+ turns out to be less than the element in
list b′−S−, the algorithm makes use of information
obtained from solving subproblem (2) (the fact that
the element in list S+ is less than the element in
list b′−S−) to save time, when n is odd, solving
subproblem (1) (the algorithm does not consider the
element in list S+ again).

Therefore, we can conclude that the Meet-in-the-Middle al-
gorithm whenever possible makes use of information obtain-
ed from solving subproblem (1) to save time solving sub-
problem (2) and whenever possible makes use of information
obtained from solving subproblem (2) to save time solving
subproblem (1). So we have completed our induction step to
prove true for n+ 1, assuming true for n.

Therefore, the best algorithm for Mabel to use for solving
the SUBSET-SUM problem for large n is the Meet-in-the-
Middle algorithm. But is the Meet-in-the-Middle algorithm
the best algorithm for Mildred to use for solving the SUBSET-
SUM problem for large n? Since the Meet-in-the-Middle
algorithm is not the fastest algorithm for Mildred to use
for small n, is it not possible that the Meet-in-the-Middle
algorithm is also not the fastest algorithm for Mildred to use
for large n? It turns out that for large n, there is no algorithm
for Mildred to use for solving the SUBSET-SUM problem
with a faster worst-case running-time than the Meet-in-the-
Middle algorithm. Why?

Notice that the Meet-in-the-Middle algorithm takes on the
order of 2n/2 steps regardless of whether Mabel or Mildred
applies it. And notice that the algorithm of naı̈vely comparing
the target b to all of the 2n subset-sums of set A takes on the
order of 2n steps regardless of whether Mabel or Mildred
applies it. So for large n, regardless of who the computer
is, the Meet-in-the-Middle algorithm is faster than the naı̈ve
exhaustive comparison algorithm — from this example, we
can understand the general principle that the asymptotic
running-time of an algorithm does not differ by more than a
polynomial factor when run on different types of computers
[40, 41]. Therefore, since no algorithm is faster than the
Meet-in-the-Middle algorithm for solving SUBSET-SUM for
large n when applied by Mabel, we can conclude that no
algorithm is faster than the Meet-in-the-Middle algorithm
for solving SUBSET-SUM for large n when applied by
Mildred. And furthermore, using this same reasoning, we
can conclude that no algorithm is faster than the Meet-in-
the-Middle algorithm for solving SUBSET-SUM for large n
when run on a modern computing machine. �

So it doesn’t matter whether the computer is Mabel,
Mildred, or any modern computing machine; the fastest algo-
rithm which solves the SUBSET-SUM problem for large n is
the Meet-in-the-Middle algorithm. Because once a solution
to the SUBSET-SUM problem is found, it is easy to verify
(in polynomial-time) that it is indeed a solution, we say that
the SUBSET-SUM problem is in class NP [5]. And because
there is no algorithm which solves SUBSET-SUM that runs
in polynomial-time (since the Meet-in-the-Middle algorithm
runs in exponential-time and is the fastest algorithm for
solving SUBSET-SUM, as we have shown above), we say
that the SUBSET-SUM problem is not in class P [5]. Then
since the SUBSET-SUM problem is in class NP but not
in class P , we can conclude that P 6=NP , thus solving the
P versus NP problem [15]. The solution to the P versus
NP problem demonstrates that it is possible to hide abstract
objects (in this case, a subset of set A) without an abundance
of resources — it is, in general, more difficult to find a subset
of a set of only one hundred integers for which the sum of
its elements equals a target integer than to find the winning
lottery-ticket in a pile of one billion unsorted lottery tickets,
even though the lottery-ticket problem requires much more
resources (one billion lottery tickets) than the SUBSET-SUM
problem requires (a list of one hundred integers).

3 Does P 6=NP really matter?

Even though P 6=NP , might there still be algorithms which
efficiently solve problems that are in NP but not P in the
average-case scenario? (Since the P 6=NP result deals only
with the worst-case scenario, there is nothing to forbid this
from happening.) The answer is yes; for many problems
which are in NP but not P , there exist algorithms which
efficiently solve them in the average-case scenario [28, 39],
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so the statement that P 6=NP is not as ominous as it sounds.
In fact, there is a very clever algorithm which solves almost
all instances of the SUBSET-SUM problem in polynomial-
time [11, 26, 28]. (The algorithm works by converting the
SUBSET-SUM problem into the problem of finding the
shortest non-zero vector of a lattice, given its basis.) But
even though for many problems which are in NP but not
P , there exist algorithms which efficiently solve them in the
average-case scenario, in the opinion of most complexity-
theorists, it is probably false that for all problems which are
in NP but not P , there exist algorithms which efficiently
solve them in the average-case scenario [3].

Even though P 6=NP , might it still be possible that
there exist polynomial-time randomized algorithms which
correctly solve problems in NP but not in P with a high
probability regardless of the problem instance? (The word
“randomized” in this context means that the algorithm bases
some of its decisions upon random variables. The advantage
of these types of algorithms is that whenever they fail to
output a solution, there is still a good chance that they will
succeed if they are run again.) The answer is probably no, as
there is a widely believed conjecture that P =BPP , where
BPP is the class of decision problems for which there are
polynomial-time randomized algorithms that correctly solve
them at least two-thirds of the time regardless of the problem
instance [22].

4 Are quantum computers the answer?

A quantum computer is any computing device which makes
direct use of distinctively quantum mechanical phenomena,
such as superposition and entanglement, to perform operat-
ions on data. As of today, the field of practical quantum
computing is still in its infancy; however, much is known
about the theoretical properties of a quantum computer. For
instance, quantum computers have been shown to efficiently
solve certain types of problems, like factoring integers [35],
which are believed to be difficult to solve on a classical
computer, e. g., a human-computer like Mabel or Mildred or
a machine-computer like an IBM PC or an Apple Macintosh.

Is it possible that one day quantum computers will be
built and will solve problems like the SUBSET-SUM prob-
lem efficiently in polynomial-time? The answer is that it is
generally suspected by complexity theorists to be impossible
for a quantum computer to solve the SUBSET-SUM problem
(and all other problems which share a characteristic with the
SUBSET-SUM problem in that they belong to a subclass
of NP problems known as NP-complete problems [5]) in
polynomial-time. A curious fact is that if one were to solve
the SUBSET-SUM problem on a quantum computer by brute
force, the algorithm would have a running-time on the order
of 2n/2 steps, which (by coincidence?) is the same asymptotic
running-time of the fastest algorithm which solves SUBSET-
SUM on a classical computer, the Meet-in-the-Middle algo-

rithm [1, 4, 19].
In any case, no one has ever built a practical quantum

computer and some scientists are even of the opinion that
building such a computer is impossible; the acclaimed com-
plexity theorist, Leonid Levin, wrote: “QC of the sort that
factors long numbers seems firmly rooted in science fiction. It
is a pity that popular accounts do not distinguish it from much
more believable ideas, like Quantum Cryptography, Quantum
Communications, and the sort of Quantum Computing that
deals primarily with locality restrictions, such as fast search
of long arrays. It is worth noting that the reasons why
QC must fail are by no means clear; they merit thorough
investigation. The answer may bring much greater benefits
to the understanding of basic physical concepts than any
factoring device could ever promise. The present attitude is
analogous to, say, Maxwell selling the Daemon of his famous
thought experiment as a path to cheaper electricity from heat.
If he did, much of insights of today’s thermodynamics might
be lost or delayed” [25].

5 Unprovable conjectures

In the early twentieth century, the famous mathematician,
David Hilbert, proposed the idea that all mathematical facts
can be derived from only a handful of self-evident axioms.
In the 1930’s, Kurt Gödel proved that such a scenario is
impossible by showing that for any proposed finite axiom
system for arithmetic, there must always exist true statements
that are unprovable within the system, if one is to assume
that the axiom system has no inconsistencies. Alan Turing
extended this result to show that it is impossible to design
a computer program which can determine whether any other
computer program will eventually halt. In the latter half of the
20th century, Gregory Chaitin defined a real number between
zero and one, which he calls Ω, to be the probability that a
computer program halts. And Chaitin proved that:

Theorem 1: For any mathematics problem, the bits of Ω,
whenΩ is expressed in binary, completely determine whether
that problem is solvable or not.

Theorem 2: The bits of Ω are random and only a finite num-
ber of them are even possible to know.

From these two theorems, it follows that the very structure
of mathematics itself is random and mostly unknowable! [8]

Even though Hilbert’s dream to be able derive every
mathematical fact from only a handful of self-evident axioms
was destroyed by Gödel in the 1930’s, this idea has still
had an enormous impact on current mathematics research
[43]. In fact, even though mathematicians as of today accept
the incompleteness theorems proven by Gödel, Turing, and
Chaitin as true, in general these same mathematicians also
believe that these incompleteness theorems ultimately have
no impact on traditional mathematics research, and they have
thus adopted Hilbert’s paradigm of deriving mathematical
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facts from only a handful of self-evident axioms as a practical
way of researching mathematics. Gregory Chaitin has been
warning these mathematicians for decades now that these
incompleteness theorems are actually very relevant to ad-
vanced mathematics research, but the overwhelming majority
of mathematicians have not taken his warnings seriously [7].
We shall directly confirm Chaitin’s assertion that incomplete-
ness is indeed very relevant to advanced mathematics re-
search by giving very strong evidence that two famous math-
ematics problems, determining whether the Collatz 3n+1
Conjecture is true and determining whether the Riemann
Hypothesis is true, are impossible to solve:

The Collatz 3n+1 Conjecture — Here’s a fun experiment
that you, the reader, can try: Pick any positive integer, n. If
n is even, then compute n/2 or if n is odd, then compute
(3n + 1)/2. Then let n equal the result of this computation
and perform the whole procedure again until n=1. For
instance, if you had chosen n=11, you would have obtain-
ed the sequence (3×11+1)/2=17, (3× 17+1)/2=26,
26/2=13, 20, 10, 5, 8, 4, 2, 1.

The Collatz 3n + 1 Conjecture states that such an algo-
rithm will always eventually reach n=1 and halt [23]. Com-
puters have verified this conjecture to be true for all positive
integers less than 224× 250≈ 2.52× 1017 [33]. Why does
this happen? One can give an informal argument as to why
this may happen [12] as follows: Let us assume that at each
step, the probability that n is even is one-half and the pro-
bability that n is odd is one-half. Then at each iteration, nwill
decrease by a multiplicative factor of about

(
3
2

)1/2( 1
2

)1/2
=

=
(
3
4

)1/2
on average, which is less than one; therefore, n will

eventually converge to one with probability one. But such an
argument is not a rigorous mathematical proof, since the
probability assumptions that the argument is based upon are
not well-defined and even if they were well-defined, it would
still be possible (although extremely unlikely, with probabi-
lity zero) that the algorithm will never halt for some input.

Is there a rigorous mathematical proof of the Collatz
3n+1 Conjecture? As of today, no one has found a rigorous
proof that the conjecture is true and no one has found a
rigorous proof that the conjecture is false. In fact, Paul Erdös,
who was one of the greatest mathematicians of the twentieth
century, commented about the Collatz 3n + 1 Conjecture:
“Mathematics is not yet ready for such problems” [23]. We
can informally demonstrate that there is no way to deducti-
vely prove that the conjecture is true, as follows:

Explanation: First, notice that in order to be certain that
the algorithm will halt for a given input n, it is necessary
to know whether the value of n at the beginning of each
iteration of the algorithm is even or odd. (For a rigorous
proof of this, see The Collatz Conjecture is Unprovable
[16].) For instance, if the algorithm starts with input n = 11,
then in order to know that the algorithm halts at one, it is
necessary to know that 11 is odd, (3× 11+1)/2=17 is

odd, (3× 17+1)/2=26 is even, 26/2=13 is odd, 20 is
even, 10 is even, 5 is odd, 8 is even, 4 is even, and 2 is
even. We can express this information (odd, odd, even, odd,
even, even, odd, even, even, even) as a vector of zeroes
and ones, (1, 1, 0, 1, 0, 0, 1, 0, 0, 0). Let us call this vector the
parity vector of n. (If n never converges to one, then its
parity vector must be infinite-dimensional.) If one does not
know the parity vector of the input, then it is impossible to
know what the algorithm does at each iteration and therefore
impossible to be certain that the algorithm will converge to
one. So any proof that the algorithm applied to n halts must
specify the parity vector of n. Next, let us give a definition
of a random vector:

Definition — We shall say that a vector x ∈ {0, 1}m is
random if x cannot be specified in less than m bits in a
computer text-file [6].

Example 1 — The vector of one million concatenations of the
vector (0, 1) is not random, since we can specify it in less
than two million bits in a computer text-file. (We just did.)

Example 2 — The vector of outcomes of one million coin-
tosses has a good chance of fitting our definition of “random”,
since much of the time the most compact way of specifying
such a vector is to simply make a list of the results of each
coin-toss, in which one million bits are necessary.

Now let us suppose that it were possible to prove the
Collatz 3n + 1 Conjecture and let B be the number of bits
in a hypothetical computer text-file containing such a proof.
And let (x0, x1, x2, . . . , xB) be a random vector, as defined
above. (It is not difficult to prove that at least half of all
vectors with B+1 zeroes and ones are random [6].) There is
a mathematical theorem [23] which says that there must exist
a number n with the first B+1 bits of its parity vector equal
to (x0, x1, x2, . . . , xB); therefore, any proof of the Collatz
3n + 1 Conjecture must specify vector (x0, x1, x2, . . . , xB)
(as we discussed above), since such a proof must show
that the Collatz algorithm halts when given input n. But
since vector (x0, x1, x2, . . . , xB) is random, B + 1 bits are
required to specify vector (x0, x1, x2, . . . , xB), contradicting
our assumption that B is the number of bits in a computer
text-file containing a proof of the Collatz 3n+1 Conjecture;
therefore, a formal proof of the Collatz 3n+1 Conjecture
cannot exist [16]. �

The Riemann Hypothesis — There is also another famous
unresolved conjecture, the Riemann Hypothesis, which has a
characteristic similar to that of the Collatz 3n+1 Conjecture,
in that it too can never be proven true. In the opinion of
many mathematicians, the Riemann Hypothesis is the most
important unsolved problem in mathematics [13]. The reason
why it is so important is because a resolution of the Riemann
Hypothesis would shed much light on the distribution of
prime numbers: It is well known that the number of prime
numbers less than n is approximately

∫ n
2

dx
log x . If the Riemann

Hypothesis is true, then for large n, the error in this approxi-
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mation must be bounded by cn1/2 logn for some constant
c> 0 [38], which is also a bound for a random walk, i. e., the
sum of n independent random variables, Xk, for k=1, 2,
. . . , n in which the probability that Xk=−c is one-half and
the probability that Xk= c is one-half.

The Riemann-Zeta function ζ (s) is a complex function

which is defined to be ζ (s)= s
s−1 − s

∫∞
1

x−bxc
xs+1 dx when the

real part of the complex number s is positive. The Riemann
Hypothesis states that if ρ=σ+ ti is a complex root of ζ
and 0<σ< 1, then σ=1/2. It is well known that there
are infinitely many roots of ζ that have 0<σ< 1. And just
like the Collatz 3n+1 Conjecture, the Riemann Hypothesis
has been verified by high-speed computers — for all |t|<T
where T ≈ 2.0× 1020 [29]. But it is still unknown whether
there exists a |t|>T such that ζ (σ+ ti)= 0, where σ 6=1/2.
And just like the Collatz 3n+1 Conjecture, one can give a
heuristic probabilistic argument that the Riemann Hypothesis
is true [17], as follows:

It is well known that the Riemann Hypothesis follows
from the assertion that for large n, M(n)=Σnk=1μ(k)
is bounded by cn1/2 logn for some constant c> 0, where
μ is the Möbius Inversion function defined on N in which
μ(k)=−1 if k is the product of an odd number of distinct
primes, μ(k)= 1 if k is the product of an even number of
distinct primes, and μ(k)= 0 otherwise. If we were to assume
thatM(n) is distributed as a random walk, which is certainly
plausible since there is no apparent reason why it should
not be distributed as a random walk, then by probability
theory, M(n) is bounded for large n by cn1/2 logn for
some constant c> 0, with probability one; therefore, it is
very likely that the Riemann Hypothesis is true. We shall
now explain why the Riemann Hypothesis is unprovable,
just like the Collatz 3n+1 Conjecture:

Explanation: The Riemann Hypothesis is equivalent to the
assertion that for each T > 0, the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number
of roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T}. It
is well known that there exists a continuous real function
Z(t) (called the Riemann-Siegel function) such that |Z(t)|=
= |ζ (1/2+ ti)|, so the real roots t of ζ (1/2+ ti) are the
same as the real roots t of Z(t). (The formula for Z(t) is
ζ (1/2+ ti)eiϑ(t), where ϑ(t)= arg

[
Γ( 14 +

1
2 it)

]
− 1

2 t lnπ.)
Then because the formula for the real roots t of ζ (1/2+ ti)
cannot be reduced to a formula that is simpler than the
equation, ζ (1/2+ ti)= 0, the only way to determine the
number of real roots t of ζ (1/2+ ti) in which 0<t<T is
to count the changes in sign of the real function Z(t), where
0<t<T [31].

So in order to prove that the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number of
roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T}, which
can be computed via a theorem known as the Argument
Principle without counting the changes in sign of Z(t),

where 0<t<T [27, 31, 32], it is necessary to count the
changes in sign of Z(t), where 0<t<T . (Otherwise, it
would be possible to determine the number of real roots t of
ζ (1/2+ ti), where 0<t<T , without counting the changes
in sign of Z(t) by computing the number of roots of ζ (s) in
{s=σ+ ti : 0<σ< 1, 0<t<T} via the Argument Prin-
ciple.) As T becomes arbitrarily large, the time that it takes
to count the changes in sign of Z(t), where 0<t<T , ap-
proaches infinity for the following reasons: (1) There are
infinitely many changes in sign of Z(t). (2) The time that
it takes to evaluate the sign of Z(t) approaches infinity as
t → ∞ [31]. Hence, an infinite amount of time is required
to prove that for each T > 0, the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number of
roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T} (which
is equivalent to proving the Riemann Hypothesis), so the
Riemann Hypothesis is unprovable. �

Chaitin’s incompleteness theorem implies that mathemat-
ics is filled with facts which are both true and unprovable,
since it states that the bits of Ω completely determine whether
any given mathematics problem is solvable and only a finite
number of bits of Ω are even knowable [8]. And we have
shown that there is a very good chance that both the Collatz
3n+1 Conjecture and the Riemann Hypothesis are examples
of such facts. Of course, we can never formally prove that
either one of these conjectures is both true and unprovable,
for obvious reasons. The best we can do is prove that they are
unprovable and provide computational evidence and heuristic
probabilistic reasoning to explain why these two conjectures
are most likely true, as we have done. And of course, it is
conceivable that one could find a counter-example to the Col-
latz 3n+ 1 Conjecture by finding a number n for which the
Collatz algorithm gets stuck in a nontrivial cycle or a counter-
example to the Riemann Hypothesis by finding a complex
root, ρ=σ+ ti, of ζ for which 0<σ< 1 and σ 6=1/2. But
so far, no one has presented any such counter-examples.

The theorems that the Collatz 3n+1 Conjecture and the
Riemann Hypothesis are unprovable illustrate a point which
Chaitin has been making for years, that mathematics is not so
much different from empirical sciences like physics [8, 14].
For instance, scientists universally accept the law of gravity
to be true based on experimental evidence, but such a law
is by no means absolutely certain — even though the law
of gravity has been observed to hold in the past, it is not
inconceivable that the law of gravity may cease to hold in
the future. So too, in mathematics there are conjectures like
the Collatz 3n + 1 Conjecture and the Riemann Hypothesis
which are strongly supported by experimental evidence but
can never be proven true with absolute certainty.

6 Computational irreducibility

Up until the last decade of the twentieth century, the most
famous unsolved problem in all of mathematics was to prove
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the following conjecture:

Fermat’s Last Theorem (FLT) — When n > 2, the equation
xn + yn = zn has no nontrivial integer solutions.

After reading the explanations in the previous section, a
skeptic asked the author what the difference is between
the previous argument that the Collatz 3n+1 Conjecture is
unprovable and the following argument that Fermat’s Last
Theorem is unprovable (which cannot possibly be valid,
since Fermat’s Last Theorem was proven by Wiles and Taylor
in the last decade of the twentieth century [37]):

Invalid Proof that FLT is unprovable: Suppose that we have
a computer program which computes xn+ yn− zn for each
x, y, z ∈ Z and n> 2 until it finds a nontrivial (x, y, z, n)
such that xn+ yn− zn=0 and then halts. Obviously,
Fermat’s Last Theorem is equivalent to the assertion that
such a computer program can never halt. In order to be
certain that such a computer program will never halt, it is
necessary to compute xn+ yn− zn for each x, y, z ∈Z and
n> 2 to determine that xn+ yn− zn 6=0 for each nontrivial
(x, y, z, n). Since this would take an infinite amount of time,
Fermat’s Last Theorem is unprovable. �

This proof is invalid, because the assertion that “it is ne-
cessary to compute xn+ yn− zn for each x, y, z ∈Z and
n> 2 to determine that xn+ yn− zn 6=0 for each nontrivial
(x, y, z, n)” is false. In order to determine that an equation is
false, it is not necessary to compute both sides of the equation
— for instance, it is possible to know that the equation
6x+9y=74 has no integer solutions without evaluating
6x+9y for every x, y ∈Z, since one can see that if there
were any integer solutions, the left-hand-side of the equation
would be divisible by three but the right-hand-side would
not be divisible by three.

Question — So why can’t we apply this same reasoning to
show that the proof that the Collatz 3n + 1 Conjecture is
unprovable is invalid? Just as it is not necessary to compute
xn+ yn− zn in order to determine that xn+ yn− zn 6=0,
is it not possible that one can determine that the Collatz
algorithm will converge to one without knowing what the
algorithm does at each iteration?

Answer — Because what the Collatz algorithm does at each
iteration is what determines whether or not the Collatz se-
quence converges to one [16], it is necessary to know what
the Collatz algorithm does at each iteration in order to de-
termine that the Collatz sequence converges to one. Because
the exact values of xn+ yn− zn are not relevant to knowing
that xn+ yn− zn 6=0 for each nontrivial (x, y, z, n), it is
not necessary to compute each xn+ yn− zn in order to de-
termine that xn+yn−zn 6=0 for each nontrivial (x, y, z, n).

Exercise — You are given a deck of n cards labeled 1, 2, 3,
. . . , n. You shuffle the deck. Then you perform the following
“reverse-card-shuffling” procedure: Look at the top card lab-
eled k. If k=1, then stop. Otherwise, reverse the order of

the first k cards in the deck. Then look at the top card again
and repeat the same procedure. For example, if n=7 and
the deck were in order 5732416 (where 5 is the top card),
then you would obtain 4237516→ 7324516→ 6154237→
→3245167→4235167→5324167→1423567. Now, we pre-
sent two problems:

• Prove that such a procedure will always halt for any n
and any shuffling of the n cards.
• Find a closed formula for the maximum number of

iterations that it may take for such a procedure to
halt given the number of cards in the deck, or prove
that no such formula exists. (The maximum number
of iterations for n=1, 2, 3, . . . , 16 are 0, 1, 2, 4, 7, 10,
16, 22, 30, 38, 51, 65, 80, 101, 113, 139 [36].)

It is easy to use the principle of mathematical induction to
solve the first problem. As for the second problem, it turns out
that there is no closed formula; in other words, in order to find
the maximum number of iterations that it may take for such a
procedure to halt given the number of cards n in the deck, it
is necessary to perform the reverse-card-shuffling procedure
on every possible permutation of 1, 2, 3, . . . , n. This property
of the Reverse-Card-Shuffling Problem in which there is no
way to determine the outcome of the reverse-card-shuffling
procedure without actually performing the procedure itself
is called computational irreducibility [42]. Notice that the
notion of computational irreducibility also applies to the
Collatz 3n+1 Conjecture and the Riemann Hypothesis in that
an infinite number of irreducible computations are necessary
to prove these two conjectures.

Stephen Wolfram, who coined the phrase “computational
irreducibility”, argues in his famous book, A New Kind of Sci-
ence [42], that our universe is computationally irreducible,
i.e., the universe is so complex that there is no general method
for determining the outcome of a natural event without either
observing the event itself or simulating the event on a com-
puter. The dream of science is to be able to make accurate
predictions about our natural world; in a computationally
irreducible universe, such a dream is only possible for very
simple phenomena or for events which can be accurately
simulated on a computer.

7 Open problems in mathematics

In the present year of 2006, the most famous unsolved
number theory problem is to prove the following:

Goldbach’s Conjecture — Every even number greater than
two is the sum of two prime numbers.

Just like the Collatz 3n + 1 Conjecture and the Riemann
Hypothesis, there are heuristic probabilistic arguments which
support Goldbach’s Conjecture, and Goldbach’s Conjecture
has been verified by computers for a large number of even
numbers [20]. The closest anyone has come to proving Gold-
bach’s Conjecture is a proof of the following:
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Chen’s Theorem — Every sufficiently large even integer is
either the sum of two prime numbers or the sum of a prime
number and the product of two prime numbers [9].

Although the author cannot prove it, he believes the following:
Conjecture 1 — Goldbach’s Conjecture is unprovable.
Another famous conjecture which is usually mentioned along
with Goldbach’s Conjecture in mathematics literature is the
following:
The Twin Primes Conjecture — There are infinitely many
prime numbers p for which p+ 2 is also prime [20].
Just as with Goldbach’s Conjecture, the author cannot prove
it, but he believes the following:
Conjecture 2 — The Twin Primes Conjecture is undecidable,
i. e., it is impossible to know whether the Twin Primes
Conjecture is true or false.

8 Conclusion

The P 6=NP problem, the Collatz 3n+1 Conjecture, and the
Riemann Hypothesis demonstrate to us that as finite human
beings, we are all severely limited in our ability to solve
abstract problems and to understand our universe. The author
hopes that this observation will help us all to better appreciate
the fact that there are still so many things which G-d allows
us to understand.
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A revised Lorentz invariant electromagnetic theory leading beyond Maxwell’s
equations, and to a form of extended quantum electrodynamics, has been elaborated
on the basis of a nonzero electric charge density and a nonzero electric field
divergence in the vacuum state. Among the applications of this theory, there are steady
electromagnetic states having no counterpart in conventional theory and resulting in
models of electrically charged and neutral leptons, such as the electron and the neutrino.
The analysis of the electron model debouches into a point-charge-like geometry with
a very small characteristic radius but having finite self-energy. This provides an
alternative to the conventional renormalization procedure. In contrast to conventional
theory, an integrated radial force balance can further be established in which the
electron is prevented from “exploding” under the action of its net self-charge. Through
a combination of variational analysis and an investigation of the radial force balance,
a value of the electronic charge has been deduced which deviates by only one percent
from that obtained in experiments. This deviation requires further investigation. A
model of the neutrino finally reproduces some of the basic features, such as a small but
nonzero rest mass, an angular momentum but no magnetic moment, and long mean
free paths in solid matter.

1 Introduction

Maxwell’s equations in a vacuum state with a vanishing
electric field divergence have served as a basis for quantum
electrodynamics (QED) in its conventional form [1]. This
theory has been very successful in many applications, but as
stated by Feynman [2], there still exist areas within which it
does not provide fully adequate descriptions of physical real-
ity. When applying conventional theory to attempted models
of the electron, there thus appear a number of incomprehens-
ible and unwieldy problems. These include the existence of a
steady particle state, the unexplained point-charge-like geo-
metry, the question of infinite self-energy and the associated
physical concept of renormalization with extra added counter
terms [3], the lack of radial force balance of the electron
under the action of its self-charge [4], and its unexplained
quantized charge. Also the models of an electrically neutral
state of the neutrino include a number of questions, such as
those of a nonzero but small rest mass, a nonzero angular mo-
mentum and a vanishing magnetic moment, and excessively
long mean free paths for interaction with solid matter.

The limitations of conventional theory have caused a
number of authors to elaborate modified electromagnetic ap-
proaches aiming beyond Maxwell’s equations. Among these
there is a theory [5–12] to be described in this paper. It is
based on a vacuum state that can give rise to local space
charges and an associated nonzero electric field divergence,
leading to a current in addition to the displacement current.
The field equations are then changed in a substantial manner,

to result in a form of extended quantum electrodynamics
(“EQED”).

In applications of the present theory to photon phys-
ics, the nonzero electric field divergence appears as a small
quantity, but it still comes out to have an essential effect
on the end results [11, 12]. For the steady particle states
to be treated here, the field equations contain electric field
divergence terms which appear as large contributions already
at the outset.

2 Basic field equations

The basic physical concept of the present theory is the ap-
pearance of a local electric charge density in the vacuum state
in which there are quantum mechanical electromagnetic fluc-
tuations. This charge density is associated with a nonzero
electric field divergence. When imposing the condition of
Lorentz invariance on the system, there arises a local “space-
charge current density” in addition to the displacement cur-
rent. The detailed deductions are described in earlier reports
by the author [5–12]. The revised field equations in the
vacuum are given by

curlB/μ0 = ε0(divE)C+ ε0∂E/∂t , (1)

curlE = −∂B/∂t , (2)

B = curlA , divB = 0 , (3)

E = −∇φ− ∂A/∂t , divE = ρ̄/ε0 (4)

for the electric and magnetic fields E and B, the electric
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charge density ρ̄, the magnetic vector potentialA, the electro-
static potential φ, and the velocity vector C, where C2= c2.
In analogy with the direction to be specified for the current
density in conventional theory, the unit vector C/c depends
on the geometry of the particular configuration to be studied.

Using well-known vector identities, equations (1) and (2)
can be recast into the local momentum equation

div 2S = ρ̄ (E+C×B) + ε0
∂

∂t
g (5)

and the local energy equation

−divS = ρ̄E ∙C+
1

2
ε0
∂

∂t
wf . (6)

Here 2S is the electromagnetic stress tensor,

g = ε0E×B =
1

c2
S (7)

can be interpreted as an electromagnetic momentum density
with S denoting the Poynting vector, and

wf =
1

2

(
ε0E

2 +B2/μ0
)

(8)

representing the electromagnetic field energy density. An
electromagnetic source energy density

ws =
1

2
ρ̄ (φ+C ∙A) (9)

can also be deduced and related to the density (8) as shown
earlier [12].

As distinguished from Maxwell’s equations, the present
theory includes steady electromagnetic states in which all
explicit time derivatives vanish in equations (1)–(6). The
volume integrals of wf and ws then become equal for certain
configurations which are limited in space.

3 Steady axisymmetric states

Among the steady axisymmetric states the analysis is here
restricted to particle-shaped ones where the configuration is
bounded both in the axial and radial directions. There are also
string-shaped states being uniform in the axial directions, as
described elsewhere [7, 12].

3.1 General features of particle-shaped states

In particle-shaped geometry a frame (r, θ, ϕ) of spherical
coordinates is introduced, where all relevant quantities are
independent of the angle ϕ. The analysis is further limited
to a current density j=(0, 0, Cρ̄) and a vector potential
A=(0, 0, A). Here C =± c represents the two possible spin
directions. The basic equations (1)–(4) then take the form

(r0ρ)
2 ρ̄

ε0
= Dφ =

[
D + (sin θ)−2

]
(CA) , (10)

where the dimensionless radial variable ρ= r/r0 has been
introduced with r0 as a characteristic radial dimension, and
where the operator D=Dρ +Dθ is defined by

Dρ = −
∂

∂ρ

(

ρ2
∂

∂ρ

)

, Dθ = −
∂2

∂θ2
−
cos θ

sin θ

∂

∂θ
. (11)

The general solution of equations (10) is obtained in
terms of a generating function

F (r, θ) = CA− φ = G0 ∙G(ρ, θ) , (12)

where G0 stands for a characteristic amplitude and G for a
normalized dimensionless part. The solutions become

CA = −(sin2θ)DF , (13)

φ = −
[
1 + (sin2θ)D

]
F , (14)

ρ̄ = −

(
ε0
r20 ρ

2

)

D
[
1 + (sin2θ)D

]
F . (15)

The extra degree of freedom introduced by the nonzero
electric field divergence and the inhomogeneity of equations
(10) are underlying this general result.

Using expressions (13)–(15), (9), and the functions

f (ρ, θ) = −(sin θ)D
[
1 + (sin2θ)D

]
G , (16)

g (ρ, θ) = −
[
1 + 2(sin2θ)D

]
G (17)

integrated field quantities can be obtained which represent a
net electric charge q0, magnetic moment M0, mass m0, and
angular momentum s0. The magnetic moment is obtained
from the local contributions of the current density, and the
mass and angular momentum from those of ws/c2 and the
energy relation by Einstein. The current density behaves as a
common convection current. The mass flow originates from
the velocity vector, having the same direction for positive
and negative charge elements. Thus the integrated quantities
become

q0 = 2πε0 r0G0Jq , Iq = f , (18)

M0 = πε0Cr
2
0G0JM , IM = ρ (sin θ)f , (19)

m0 = π(ε0/c
2)r0G

2
0Jm , Im = fg , (20)

s0 = π(ε0C/c
2)r20G

2
0Js , Is = ρ (sin θ)fg (21)

with the normalized integrals

Jk =

∫ ∞

ρk

∫ π

0

Ik dρdθ , k = q,M,m, s . (22)

Here ρk are small radii of circles centered around the
origin ρ=0 when G is divergent there, and ρk=0 when G
is convergent at ρ=0.

At this point a further step is taken by restricting the
analysis to a separable generating function

G(ρ, θ) = R(ρ) ∙ T (θ) . (23)
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The integrands of the normalized forms then become

Iq = τ0R+ τ1(DρR) + τ2Dρ(DρR) , (24)

IM = ρ (sin θ)Iq , (25)

Im = τ0τ3R
2+(τ0τ4+τ1τ3)R(DρR)+τ1τ4(DρR)

2+

+ τ2τ3RDρ(DρR) + τ2τ4(DρR) [Dρ(DρR)] , (26)

Is = ρ (sin θ)Im , (27)

where

τ0 = −(sin θ)(DθT )− (sin θ)Dθ
[
(sin2θ)(DθT )

]
, (28)

τ1 = −(sin θ)T−(sin θ)Dθ
[
(sin2θ)T

]
−sin3θ (DθT ) , (29)

τ2 = −(sin
3 θ)T , (30)

τ3 = −T − 2(sin
2θ)(DθT ) , (31)

τ4 = −2(sin
2θ)T . (32)

The restriction (23) of separability becomes useful here
for configurations having sources ρ̄ and j that are mainly
localized to a region near the origin, such as for a particle of
limited extent. The analysis further concerns a radial function
R which can become convergent or divergent at the origin,
and a finite polar function T with finite derivatives which
can be symmetric or antisymmetric in respect to the “equa-
torial plane” (midplane) defined by θ=π/2. Repeated partial
integration of expressions (22) for Jq and JM leads to the
following results as described in detail elsewhere [7, 8, 12]:

• The integrated charge q0 and magnetic moment M0

vanish in all cases where R is convergent at the origin
and T has top-bottom symmetry as well as antisym-
metry in respect to the equatorial plane. These cases
lead to models of electrically neutral particles, such as
the neutrino;

• The charge q0 and magnetic moment M0 are both
nonzero provided that R is divergent at the origin and
T has top-bottom symmetry. This case leads to models
of charged particles, such as the electron. As will be
seen from the analysis to follow, the divergence of
R can still becomes reconcilable with finite values of
q0, M0, m0, and s0 provided that the characteristic
radius r0 is made to shrink to the very small values
of a point-charge-like state, as also being supported by
experimental observations.

3.2 Quantum conditions of steady states

In this analysis a simplified road is chosen by imposing relev-
ant quantum conditions afterwards on the obtained general
solutions of the field equations. This is expected to be a
rather good approximation to a rigorous approach where
the extended field equations are quantized from the outset.
The quantized equations namely become equivalent to the

original ones in which the field quantities are replaced by
their expectation values according to Heitler [13].

The angular momentum (spin) condition to be imposed
on a model of the electron in the capacity of a fermion
particle, as well as of the neutrino, is combined with equation
(21) to result in

s0 = π
(
ε0C/c

2
)
r20G

2
0Js = ±h/4π . (33)

In particular, for a charged particle such as the electron,
muon, tauon or their antiparticles, equations (18) and (33)
combine to

q∗ ≡ |q0/e| =
√
f0J2q /2Js , f0 = 2ε0ch/e

2. (34)

Here q∗ is a dimensionless charge which is normalized
with respect to the experimentally determined elementary
charge “e”, and f0∼=137.036 is the inverted value of the
fine-structure constant.

According to Dirac, Schwinger, and Feynman [14] the
quantum condition of the magnetic moment of a charged
particle such as the electron becomes

M0m0/q0 s0 = 1 + δM , δM = 1/2πf0 , (35)

which shows excellent agreement with experiments. Here
the unity term of the right hand member is due to Dirac who
obtained the correct Landé factor, and δM is a small quantum
mechanical correction due to Schwinger and Feynman. Con-
ditions (33) and (35) can also be made plausible by element-
ary physical arguments based on the present picture of a
particle-shaped state of “self-confined” radiation [7, 12].

In a charged particle-shaped state the electric current
distribution generates a total magnetic flux Γtot. Here we
consider the electron to be a system having both quantized
angular momentum s0 and a quantized charge q0. The mag-
netic flux should then be quantized as well, and be given by
the specific values of the two quantized concepts s0 and q0.
This leads to the relation

Γtot = |s0/q0| . (36)

4 A model of the electron

The analysis in this section will show that finite and nonzero
integrated field quantities can be obtained in terms of the
shrinking characteristic radius of a point-charge-like state.
This does not imply that r0 has to become strictly equal to
zero, which would end up into the unphysical situation of a
structureless point.

4.1 The integrated field quantities

The generating function to be considered has the parts

R= ρ−γe−ρ, γ > 0 , (37)

T = 1+
n∑

ν=1

{
a2ν−1 sin[(2ν−1)θ] + a2ν cos(2νθ)

}
. (38)
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The radial part (37) appears at first glance to be somewhat
special. Generally one could have introduced a negative
power series of ρ. However, for a limited number of terms,
that with the largest negative power will in any case dominate
at the origin. Due to the analysis which follows the same
series has further to contain one term only, with a locked
special value of γ. Moreover, the exponential factor in the
form (37) secures the convergence of any moment with R,
but will not appear in the end result.

The radial form (37) is now inserted into the integrands
(24)–(27). Then the integrals (22) take a form Jk= JkρJkθ.
Here Jkρ is a part resulting from the integration with respect
to ρ, and which is dominated by terms of the strongest
negative power. The part Jkθ further results from the integra-
tion with respect to θ. In the integrals Jkρ divergences appear
when the lower limits ρk approach zero. To outbalance this,
we introduce a shrinking characteristic radius

r0 = c0 ε , c0 > 0 , 0 < ε� 1 , (39)

where ε is a dimensionless smallness parameter. The integr-
ated field quantities (18)–(21) then become

q0 = 2πε0c0G0 [Jqθ/(γ − 1)] (ε/ρ
γ−1
q ) , (40)

M0m0 = π2(ε20C/c
2)c30G

3
0 ∙

∙ [JMθJmθ/(γ−2)(2γ−1)] (ε
3/ρ

γ−2
M ρ2γ−1m ) , (41)

s0 = π(ε0C/c
2)c20G

2
0 [Jsθ/2(γ − 1)] (ε/ρ

γ−1
s )2. (42)

The reason for introducing the compound quantityM0m0

in expression (41) is that this quantity appears as a single
entity in all finally obtained relations of the present analysis.
The configuration with its integrated quantities is now re-
quired to scale in such a way that the geometry is preserved
by becoming independent of ρk and ε. Such a uniform scaling
implies that

ρq = ρM = ρm = ρs = ε (43)

and that the parameter γ has to approach the value 2 from
above, as specified by

γ (γ − 1) = 2 + δ̃ , 0 6 δ̃ � 1 , γ ≈ 2 + δ̃/3 . (44)

As a result of this

Jkθ =

∫ π

0

Ikθ dθ , (45)

where

Iqθ = −2τ1 + 4τ2 , (46)

IMθ/δ̃ = (sin θ)(−τ1 + 4τ2) , (47)

Imθ = τ0τ3 − 2(τ0τ4 + τ1τ3) +

+ 4(τ1τ4 + τ2τ3)− 8τ2τ4 , (48)

Isθ = (sin θ)Imθ . (49)

Then
q0 = 2πε0 c0G0Aq , (50)

M0m0 = π2(ε20C/c
2)c30G

3
0AMAm , (51)

s0 = (1/2)π(ε0C/c
2)c20G

2
0As (52)

with Aq ≡ Jqθ, AM ≡ JMθ/δ̃, Am≡ Jmθ, and As≡ Jsθ.
The uniform scaling due to relations (39) and (43) in

the range of small ε requires the characteristic radius r0 to
be very small, but does not specify its absolute value. One
possibility of estimating this radius is by a crude modification
of the field equations by an effect of General Relativity
originating from the circulatory spin motion [7, 12]. This
yields an upper limit of r0 of about 10−19 meters for which
this modification can be neglected.

As expressed by equations (39) and (43), the present
results also have an impact on the question of Lorentz invar-
iance of the electron radius. In the limit ε→ 0 the deductions
will thus in a formal way satisfy such an invariance, in terms
of a vanishing radius. At the same time the range of small
ε becomes applicable to the physically relevant case of a
very small but nonzero radius of a configuration having an
internal structure.

4.2 The magnetic flux

According to equation (13) the magnetic flux function be-
comes

Γ = 2πr (sin θ)A = −2πr0 (G0/c)ρ(sin
3θ)DG . (53)

Making use of equations (37) and (39), it takes the form

Γ= 2π(c0G0/C) sin
3θ
{[
γ(γ−1)+2(γ−1)ρ+ρ2

]
T−

− Dθ T}
(
ε/ργ−1

)
e−ρ . (54)

To obtain a nonzero and finite magnetic flux function at
the spherical surface ρ= ε when γ approaches the value 2
from above, one has then to choose a corresponding dimen-
sionless lower radius limit ρΓ= ε, in analogy with the cond-
ition (43).

In the further analysis a normalized flux function

Ψ ≡ Γ(ρ=ε,θ)/2π(c0G0/C) = sin
3θ (DθT−2T ) (55)

is introduced at ρ= ε. A detailed study [8, 9, 12] of this
function shows that there is a main magnetic flux

Ψ0 = Ψ(π/2) ≡ AΓ , (56)

which intersects the equatorial plane, and that the total flux
of equation (36) also includes that of two separate magnetic
“islands” situated above and below the equatorial plane. As
a consequence, the derivative dΨ/dθ has two zero points at
θ1 and θ2>θ1 in the range 0 6 θ 6 π/2. These define the
particular fluxes Ψ1 in the range 0<θ 6 θ1 and Ψ2 in the
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range θ2<θ<π/2. The total normalized magnetic flux thus
becomes

Ψtot = fΓfΨ0 , fΓf = [2(Ψ1 +Ψ2)−Ψ0] /Ψ0 , (57)

where fΓf > 1 is the obtained flux factor including the ad-
ditional contributions from the magnetic islands.

4.3 Quantum conditions

For the angular momentum and its associated charge relation
(34) the quantum condition becomes

q∗ =
√
f0A2q/As (58)

according to equations (50) and (52). The magnetic moment
condition (35) further reduces to

AMAm/AqAs = 1 + δM . (59)

Combination of equations (36), (50), (52), and (56)
finally yields

8πfΓqAΓAq = As , (60)

where fΓq is the flux factor being required by the quantum
condition. For a self-consistent solution the two flux factors
of equations (57) and (60) have to become equal to a common
factor fΓ= fΓf = fΓq .

4.4 Variational analysis of the integrated charge

Since the elementary electronic charge appears to represent
the smallest quantum of free charge, the question may be
raised whether there is a more profound reason for such a
charge to exist, possibly in terms of variational analysis. In
a first attempt efforts have therefore been made to search for
an extremum of the normalized charge (58), under the two
subsidiary quantum conditions (59) and (60) and including
Lagrange multipliers. The available variables are then the
amplitudes (a1, a2, a3, . . . ) of the polar function (38). How-
ever, such a conventional procedure is found to be upset by
difficulties. It namely applies when there are well-defined
and localized points of extremum, but not when such single
points are replaced by a flat plateau in parameter space.

The plateau behaviour is in fact what occurs here, and an
alternative analysis is then applied in terms of an increasing
number of amplitudes that are “swept” (scanned) across their
entire range of variation [9, 12]. One illustration of this is
presented in Fig. 1 for the first four amplitudes, and with
a flux factor fΓ=1.82. The figure shows the behaviour of
the normalized charge q∗ when scanning the ranges of the
remaining amplitudes a3 and a4. There is a steep barrier in
the upper part of Fig. 1, from which q∗ drops down to a flat
plateau being quite close to the level q∗=1 which represents
the experimental value:

• A detailed analysis of the four-amplitude case clearly
demonstrates the asymptotic flat plateau behaviour at

Fig. 1: The normalized electron charge q∗≡ |q0/e| as a function of
the two amplitudes a3 and a4 in the four amplitude case.

large amplitudes a3 and a4. The self-consistent mini-
mum values of q∗ obtained along the perimeter of the
plateau have been found to vary from q∗=0.969 for
fΓ=1.81 to q∗=1.03 for fΓ=1.69. Consequently,
the plateau is found to be slightly “warped”, being
partly below and partly above the level q∗=1;

• For an increasing number of amplitudes beyond four
there is a similar plateau behaviour, with only a slight
increase in the level. This is not in conflict with the
principle of the variational analysis. Any function q∗

can thus have minima in the hyperspace of amplitudes
at points where some of these amplitudes vanishes;

• The preserved plateau behaviour at an increasing num-
ber of amplitudes can be understood from the fact
that the ratio A2q/As in equation (58) becomes a slow
function of the higher “multipole” terms of the expan-
sion (38);

• With these plateau solutions the normalized charge q∗

is still left with some additional degrees of freedom.
These are eliminated by the analysis of the force bal-
ance in the following subsection. There it will be
shown that the lowest value of q∗ obtained from the
variational analysis solely does not become reconcil-
able with the radial force balance.

4.5 The radial force balance

The fundamental description of a charged particle in conven-
tional theory is deficient also in respect to its radial force
balance. Thus, an equilibrium cannot be maintained by the
classical electrostatic force ρ̄E in equation (5) only, but
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is then assumed to require forces of a nonelectromagnetic
character to be present as described by Jackson [4]. In other
words, the electron would otherwise “explode” under the
action of its self-charge.

Turning to the present revised theory, however, there is
an additional magnetic term ρ̄C×B in equation (5) which
under certain conditions provides the radial force balance of
an equilibrium. With the already obtained results based on
equations (10)–(15), the integrated radial force of the right-
hand member in equation (5) becomes

Fr = −2πε0G
2
0

∫∫ [
DG+D

(
s2DG

)]
∙

∙

[
∂G

∂ρ
−
1

ρ
s2DG

]

ρ2s dρdθ , (61)

where s≡ sin θ. For the point-charge-like model of Sections
4.1–4.4 this force is represented by the form

Fr = I+ − I− , (62)

where I+ and I− are the positive and negative contributions
to Fr. The results are as follows [10]:

• The ratio I+/I− in the plateau region of the four-
amplitude case decreases from 1.27 at q∗=0.98 to
0.37 at q∗=1.01, thereby passing a sharply defined
equilibrium point I+/I−=1 at q∗∼=0.988. The re-
maining degrees of freedom of this case have then
been used up;

• With more than four amplitudes slightly higher values
of q∗ have been obtained in a corresponding plateau
region. Even when there exists a force balance at
higher values of q∗ than that of the four-amplitude
solution, the latter still corresponds to the lowest q∗

for an integrated radial force balance;

• The obtained small deviation of q∗∼=0.988 from the
experimental value q∗=1 is a remaining problem. One
possible explanation could be provided by a small
quantum mechanical correction of the magnetic flux
condition (60), in analogy with the correction δM of the
magnetic moment condition (59). Another possibility
to be further examined is simply due to some uncer-
tainty in the numerical calculations of a rather complex
system of relations, being subject to iterations in sever-
al consecutive steps;

• The present analysis of the integrated (total) forc-
es, performed instead of a treatment of their local
parts, is in full analogy with the earlier deductions
of the integrated charge, magnetic moment, mass, and
angular momentum.

With the obtained radial force balance, we finally return
to the radial constant c0 of equation (39). As shown earlier
[7], the mass and magnetic moment become m0=Km/c0

and M0=KMc0 where Km and KM include the normalized
integrals Am, AM , and As. Introducing the relation hν=
=m0c

2 by Planck and Einstein and the related Compton
wavelength λC = c/ν=h/m0c combination with m0=
=Km/c0 then yields 6πc0/λC =Am/As . In the radial force
balance Am/As=1.07. Choosing the three-fold circumfer-
ence based on the radius c0 to be equal to the Compton
wavelength then results in masses of the electron, muon,
and tauon which deviate by only seven percent from the
experimental values. This three-fold circumference requires
further investigation.

5 A model of the neutrino

The electrically neutral steady states described in Section
3.1 will now be used as a basis for models of the neutrino.
Since the analysis is restricted to a steady particle-shaped
configuration, it includes the concept of a nonzero rest mass.
This is supported by the observed neutrino oscillations. The
present neutrino models are described in detail elsewhere
[7, 12, 15], and will only be outlined in this section.

5.1 A convergent generating function

A separable generating function is now adopted, having a
convergent radial part R and a polar part T of top-bottom
symmetry, as given by

R = ργe−ρ , T = sinα θ , (63)

where γ�α� 1. At increasing values of ρ the part R first
reaches a maximum at ρ= ρ̂= r̂/r0= γ, after which it drops
steeply to zero at large ρ. Therefore r̂= γr0 can be taken as
an effective radius of the configuration. Inserting the forms
(63) into equations (24)–(32) and the integrated expressions
(20)–(22) for the total mass and angular momentum, we
obtain the ratio

Jm/Js = 15/38 γ . (64)

Combination of equations (20), (21), (64), and the quan-
tum condition (33) then yields the mass-radius relation

m0 r̂ = m0γ r0 = 15h/152πc ∼= 7×10
−44 [kg×m] . (65)

For a case with top-bottom antisymmetry of T there is
little difference as compared to the result obtained here.

5.2 A divergent generating function

We now turn to a generating function having a divergent
radial part of the same form (37) as that for the electron
model, and with a polar part of top-bottom antisymmetry.
When ρ= r/r0 increases from ρ=0, the radial part de-
creases from a high level, down to R=1/e at ρ=1, and
further to very small values. Thus r̂= r0 can here be taken
as an effective radius of the configuration.
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The analysis of the radial integrals is analogous to that
of the electron model. To obtain nonzero and finite values of
mass m0 and angular momentum s0, a shrinking effective
radius r̂ and a shrinking amplitude factor G0 are introduced
through the relations

r̂ = r0 = cr ∙ ε , G0 = cG ∙ ε
β , (66)

where cr, cG, and β are positive constants and 0<ε� 1.
Expressions (20) and (21) then take the forms

m0=π(ε0/c
2)crc

2
G(2γ−1)

−1Jmθ
[
ε1+2β/ρ2γ−1m

]
, (67)

s0=π(ε0C/c
2)c2rc

2
G[2 (γ−1)]

−1
Jsθ

[
ε2(1+β)/ρ2(γ−1)s

]
, (68)

where the lower limits ρm and ρs of the integrals (22) have
been introduced. For nonzero and finite values of m0 and s0
it is then required that

ρm = ε(1+2β)/(2γ−1) , ρs = ε(1+β)/(γ−1) . (69)

With the quantum condition (33) relations (66)–(69)
further combine to

m0 r̂ =
h

2πc

γ − 1
2γ − 1

(Jmθ/Jsθ) ε . (70)

The ratio Jmθ/Jsθ is here expected to become a slow
function of the profile shapes of T (θ) and Imθ, as obtained
for a number of test functions for Imθ. An additional spec-
ific example with γ=3 and β=3/2 yields ρm= ε4/5 and
ρs= ε

5/4 making ρm and ρs almost linear functions of ε.
In a first crude approximation relation (70) can therefore be
written as

m0r̂ ∼= 2×10
−43 ε [kg×m] . (71)

5.3 Neutrino penetration into solid matter

The mass m0 has to be reconcilable with observed data.
The upper bounds of the neutrino mass are about 4.7 eV
for the electron-neutrino, 170 keV for the muon-neutrino,
and 18 MeV for the tauon-neutrino. Neutrinos can travel
as easily through the Earth as a bullet through a bank of
fog. They pass through solid matter consisting of nucleons,
each having a radius rN ∼=6×10−15 meters. Concerning the
present neutrino models, there are the following options:

• With the result (65) the ratio r̂/rN becomes about 106,
40, and 0.4 for the electron-neutrino, muon-neutrino,
and the tauon-neutrino. The interaction with the
electron-neutrino is then expected to take place be-
tween the short-range nucleon field as a whole and
a very small part of the neutrino field. The latter
field could then “heal” itself in terms of a restoring
tunneling effect. Then the electron-neutrino would re-
present the “fog” and the nucleon the “bullet”. The
mean free paths of the muon- and tauon-neutrinos
would on the other hand become short for this option;

• With the result (71) the corresponding values of r̂/rN
become about 4×106 ε, 100 ε, and ε, respectively. Here
sufficiently small values of ε would make the neutrino
play the role of the “bullet” and the nucleon that of
the “fog”.

6 Conclusions

The present steady electromagnetic equilibria, and their ap-
plications to leptons, have no counterparts in conventional
theory. The electron model, and that of the muon, tauon
and corresponding antiparticles, embrace new aspects and
explanations of a number of so far unsolved problems:

• To possess a nonzero electric net charge, the character-
istic radius of the particle-shaped states has to shrink to
that of a point-charge-like geometry. This agrees with
experimental observation;

• Despite the success of the conventional renormaliza-
tion procedure, physically more satisfactory ways are
needed in respect to the infinite self-energy problem
of a point-charge, and to the extra added counter terms
by which a finite result is obtained from the difference
of two “infinities”. Such a situation is avoided through
the present theory where the “infinity” (divergence) of
the generating function is outbalanced by the “zero”
of a shrinking characteristic radius;

• In the present approach the Lorentz invariance of the
electron radius is formally satisfied at the limit r0→ 0.
At the same time the theory includes a parameter range
of small but nonzero radii being reconcilable with an
internal structure;

• In contrast to conventional theory, an integrated radial
force balance can be provided by the present space-
charge current density which prevents the electron
from “exploding” under the action of its electric self-
charge. Possibly a corresponding situation may arise
for the bound quarks in the interior of baryons. Here
the strong force provides an equilibrium for their mutu-
al interactions, but this does not fully explain how the
individual quarks are kept in equilibrium in respect to
their self-charges;

• The variational analysis results in a parameter range
of the normalized charge q∗ which is close to the
experimental value q∗=1. Within this range the re-
maining degrees of freedom in the analysis become
exhausted when imposing the additional condition of
an integrated radial force balance. This results in
q∗∼=0.99 which deviates by only one percent from
the experimental value. The reason for the deviation is
not clear at the present stage, but it should on the
other hand be small enough to be regarded as an
experimental support of the theory. It can also be taken
as an indirect confirmation of a correctly applied value
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of the Landé factor, because a change of the latter by a
factor of two would result in entirely different results.
Provided that the value q∗=1 can be obtained after
relevant correction, the elementary charge would no
longer remain as an independent constant of nature,
but is then derived from the velocity of light, Planck’s
constant, and the permittivity of the vacuum.

The steady states having a vanishing net charge also form
possible models for a least some of the basic properties of
the neutrino:

• A small but nonzero rest mass is in conformity with
the analysis;

• The steady state includes an angular momentum, but
no magnetic moment;

• Long mean free paths are predicted in solid matter, but
their detailed comparison with observed data is so far
an open question.
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As shown, any four-dimensional proper vector has two observable projections onto
time line, attributed to our world and the mirror world (for a mass-bearing particle, the
projections posses are attributed to positive and negative mass-charges). As predicted,
there should be a class of neutrally mass-charged particles that inhabit neither our
world nor the mirror world. Inside the space-time area (membrane) the space rotates
at the light speed, and all particles move at as well the light speed. So, the predicted
particles of the neutrally mass-charged class should seem as light-like vortices.

1 Problem statement

As known, neutrosophy is a new branch of philosophy which
extends the current dialectics by the inclusion of neutralities.
According to neutrosophy [1, 2, 3], any two opposite entities
<A> and <Anti-A> exist together with a whole class of
neutralities <Neut-A>.

Neutrosophy was created by Florentin Smarandache and
then applied to mathematics, statistics, logic, linguistic, and
other branches of science. As for geometry, the neutrosophic
method expanded the Euclidean set of axioms by denying one
or more of them in at least two distinct ways, or, alternatively,
by accepting one or more axioms true and false in the same
space. As a result, it was developed a class of Smarandache
geometries [4], that includes Euclidean, Riemann, and Loba-
chevski-Gauss-Bolyai geometries as partial cases.

In nuclear physics the neutrosophic method theoretically
predicted “unmatter”, built on particles and anti-particles,
that was recently observed in CERN and Brookhaven experi-
ments (see [5, 6] and References there). In General Relativity,
the method permits the introduction of entangled states of
particles, teleportation of particles, and also virtual particles
[7], altogether known before in solely quantum physics.
Aside for these, the method permits to expand the basic
space-time of General Relativity (the four-dimensional
pseudo-Riemannian space) by a family of spaces where one
or more space signature conditions is permitted to be both
true and false [8].

In this research we consider another problem: mass-
charges of particles. Rest-mass is a primordial property of
particles. Its numerical value remains unchanged. On the
contrary, relativistic mass has “charges” dependent from re-
lative velocity of particles. Relativistic mass displays itself in
only particles having interaction. Therefore theory considers
relativistic mass as mass-charge.

Experimental physics knows two kinds of regular partic-
les. Regular mass-bearing particles possessing non-zero rest-
masses and relativistic masses (masses-in-motion). Massless

light-like particles (photons) possess zero rest-masses, while
their relativistic masses are non-zeroes. Particles of other
classes (as virtual photons, for instance) can be considered
as changed states of mass-bearing or massless particles.

Therefore, following neutrosophy, we do claim:
Aside for observed positively mass-charged (i. e. mass-

bearing) particles and neutrally mass-charged (light-like) par-
ticles, there should be a third class of “negatively” mass-
charged particles unknown in today’s experimental physics.

We aim to establish such a class of particles by the
methods of General Relativity.

2 Two entangled states of a mass-charge

As known, each particle located in General Relativity’s space-
time is characterized by its own four-dimensional impulse
vector. For instance, for a mass-bearing particle the proper
impulse vector Pα is

Pα = m0
dxα

ds
, PαP

α = 1 , α = 0, 1, 2, 3 , (1)

where m0 is the rest-mass of this particle. Any vector or
tensor quantity can be projected onto an observer’s time line
and spatial section. Namely the projections are physically
observable quantities for the observer [9]. As recently shown
[10, 11], the four-dimensional impulse vector (1) has two
projections onto the time line∗

P0
√
g00

= ±m, where m =
m0√

1− v2/c2
, (2)

and solely the projection onto the spatial section

P i =
m

c
vi =

1

c
pi, where vi=

dxi

dτ
, i=1, 2, 3 , (3)

where pi is the three-dimensional observable impulse. There-
fore, we conclude:

∗Where dτ =
√
g00dt +

g0i
c
√
g00

dxi is the properly observed time

interval [9, 12].
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Any mass-bearing particle, having two time projec-
tions, exists in two observable states, entangled to
each other: the positively mass-charged state is ob-
served in our world, while the negatively mass-
charged state is observed in the mirror world.

The mirror world is almost the same that ours with the
following differences:

1. The particles bear negative mass-charges and energies;

2. “Left” and “right” have meanings opposite to ours;

3. Time flows oppositely to that in our world.

From the viewpoint of an observer located in the mirror
world, our world will seem the same that his world for us.

Because both states are attributed to the same particle,
and entangled, both our world and the mirror world are two
entangled states of the same world-object.

To understand why the states remain entangled and can-
not be joined into one, we consider the third difference
between them — the time flow.

Terms “direct” and “opposite” time flows have a solid
mathematical ground in General Relativity. They are con-
nected to the sign of the derivative of the coordinate time
interval by the proper time interval . The derivative arrives
from the purely geometrical law that the square of a unit four-
dimensional vector remains unchanged in a four-dimensional
space. For instance, the four-dimensional velocity vector

UαUα = gαβ U
αUβ = 1 , Uα =

dxα

ds
. (4)

Proceeding from by-component notation of this formula,
and using w= c2(1−

√
g00) and vi=−c

g0i√
g00

, we arrive to
a square equation

(
dt

dτ

)2
−

2viv
i

c2
(
1− w

c2

)
dt

dτ
+

+
1

(
1− w

c2

)2

(
1

c4
vivkv

ivk − 1

)

= 0 ,

(5)

which solves with two roots
(
dt

dτ

)

1,2

=
1

1− w
c2

(
1

c2
viv

i ± 1

)

. (6)

Observer’s proper time lows anyhow directly dτ > 0,
because this is a relative effect connected to the his viewpoint
at clocks. Coordinate time t flows independently from his
views. Accordingly, the direct flow of time is characterized
by the time function dt/dτ > 0, while the opposite flow of
time is dt/dτ < 0.

If dt/dτ =0 happens, the time flow stops. This is a
boundary state between two entangled states of a mass-
charged particle, one of which is located in our world (the
positively directed time flow dt/dτ > 0), while another — in

the mirror world (where the time flow is negatively directed
dt/dτ < 0).

From purely geometric standpoints, the state dt/dτ =0
describes a space-time area, which, having special properties,
is the boundary space-time membrane between our world and
the mirror world (or the mirror membrane, in other word).
Substituting dt/dτ =0 into the main formula of the space-
time interval ds2= gαβ dxαdxβ

ds2 = c2dt2 + 2g0icdtdx
i + gik dx

idxk, (7)

we obtain the metric of the space within the area

ds2 = gik dx
idxk. (8)

So, the mirror membrane between our world and the
mirror world has a purely spatial metric which is also stat-
ionary.

As Kotton showed [13], any three-dimensional Riemann-
ian space permits a holonomic orthogonal reference frame,
in respect to which the three-dimensional metric can be
reduced to the sum of Pythagorean squares. Because our
initially four-dimensional metric ds2 is sign-alternating with
the signature (+−−−), the three-dimensional metric of the
mirror membrane between our world and the mirror world is
negatively defined and has the form

ds2 = −H2
1 (dx

1)2 −H2
2 (dx

2)2 −H2
3 (dx

3)2, (9)

where Hi (x1, x2, x3) are Lamé coefficients (see for Lamé
coefficients and the tetrad formalism in [14]). Determination
of this metric is connected to the proper time of observer,
because we mean therein.

Substituting dt=0 into the time function (6), we obtain
the physical conditions inside the area (mirror membrane)

vidx
i = ±c2dτ . (10)

Owning the definition of the observer’s proper time

dτ =
√
g00 dt+

g0idxi√
g00

=

(

1−
w

c2

)

dt−
1

c2
vidx

i, (11)

and using dxi= vidτ therein, we obtain: the observer’s
proper state dτ > 0 can be satisfied commonly with the state
dt=0 inside the membrane only if there is∗

viv
i = −c2 (12)

thus we conclude:

The space inside the mirror membrane between our
world and the mirror world seems as the rotating at
the light speed, while all particles located there move
at as well the light speed. So, particles that inhabit the
space inside the membrane seem as light-like vortices.

∗Here is a vector product of two vectors vi and vi, dependent on the
cosine between them (which can be both positive and negative). Therefore
the modules may not be necessarily imaginary quantities.
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Class of mass-charge Particles Energies Class of motion Area

Positive mass-charges, m > 0 mass-bearing particles E > 0 move at sub-light speeds our world

massless (light-like) particles E > 0 move at the light speed our world

Neutral mass-charges, m = 0 light-like vortices E = 0
move at the light speed
within the area, rotating
at the light speed

the membrane

massless (light-like) particles E < 0 move at the light speed the mirror world

Negative mass-charges, m < 0 mass-bearing particles E < 0 move at sub-light speeds the mirror world

This membrane area is the “barrier”, which prohibits
the annihilation between positively mass-charged particles
and negatively mass-charged particles — the barrier between
our world and the mirror world. In order to find its mirror
twin, a particle should be put in an area rotating at the light
speed, and accelerated to the light speed as well. Then the
particle penetrates into the space inside the membrane, where
annihilates with its mirror twin.

As a matter of fact, no mass-bearing particle moved at
the light speed: this is the priority of massless (light-like)
particles only. Therefore:

Particles that inhabit the space inside the membrane
seem as light-like vortices.

Their relativistic masses are zeroes m=0 as those of
massless light-like particles moving at the light speed. How-
ever, in contrast to light-like particles whose energies are
non-zeroes, the particles inside the membrane possess zero
energiesE=0 because the space metric inside the membrane
(8) has no time term.

The connexion between our world and the mirror world
can be reached by matter only filled in the light-like vortical
state.

3 Two entangled states of a light-like matter

As known, each massless (light-like) particle located in Gen-
eral Relativity’s space-time is characterized by its own four-
dimensional wave vector

Kα =
ω

c

dxα

dσ
, KαK

α = 0 , (13)

where ω is the proper frequency of this particle linked to
its energy E= ~ω, and dσ=

(
−gik+

g0ig0k
g00

)
dxidxk is the

measured spatial interval. (Because massless particles move
along isotropic trajectories, the trajectories of light, one has
ds2=0, however the measured spatial interval and the proper
interval time are not zeroes.)

As recently shown [10, 11], the four-dimensional wave
vector has as well two projections onto the time line

K0
√
g00

= ±ω , (14)

and solely the projection onto the spatial section

Ki =
ω

c
ci =

1

c
pi, where ci=

dxi

dτ
, (15)

while ci is the three-dimensional observable vector of the
light velocity (its square is the world-invariant c2, while
the vector’s components ci can possess different values).
Therefore, we conclude:

Any massless (light-like) particle, having two time
projections, exists in two observable states, entangled
to each other: the positively energy-charged state is
observed in our world, while the negatively energy-
charged state is observed in the mirror world.

Because along massless particles’ trajectories ds2=0,
the mirror membrane between the positively energy-charged
massless states and their entangled mirror twins is charact-
erized by the metric

ds2 = gik dx
idxk = 0 , (16)

or, expressed with Lamé coefficients Hi (x1, x2, x3),

ds2 = −H2
1 (dx

1)2 −H2
2 (dx

2)2 −H2
3 (dx

3)2 = 0 . (17)

As seen, this is a particular case, just considered, the
membrane between the positively mass-charged and nega-
tively mass-charge states.

4 Neutrosophic picture of General Relativity’s world

As a result we arrive to the whole picture of the world
provided by the purely mathematical methods of General
Relativity, as shown in Table.

It should be noted that matter inside the membrane is
not the same as the so-called zero-particles that inhabit fully
degenerated space-time areas (see [15] and [8]), despite the
fact they posses zero relativistic masses and energies too.
Fully degenerate areas are characterized by the state w+
+ viu

i= c2 as well as particles that inhabit them∗. At first,
inside the membrane the space is regular, non-degenerate.
Second. Even in the absence of gravitational fields, the zero-
space state becomes viui= c2 that cannot be trivially reduced
to viui=−c2 as inside the membrane.

∗Here ui= dxi/dt is so-called the coordinate velocity.
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Particles inside the membrane between our world and
the mirror world are filled into a special state of light-like
vortices, unknown before.

This is one more illustration to that, between the opposite
states of positively mass-charge and negatively mass-charge,
there are many neutral states characterized by “neutral” mass-
charge. Probably, further studying light-like vortices, we’d
find more classes of neutrally mass-charged states (even,
probably, an infinite number of classes).
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The emitter and receiver Doppler effects are re-examined from the point of view of
boundary condition on a moving boundary. Formulas are derived for the frequencies of
the waves excited on receiver’s and emitter’s surfaces by the waves traveling thorough
the medium. It is shown that if the emitting source and the reflection mirror are moving
with the same speed in the same direction relative to a medium at rest, there is no
observable Doppler effect. Hence, the nil effect of Michelson and Morley experiment
(MME) is the only possible outcome and cannot be construed as an indication about the
existence or nonexistence of an absolute continuum. The theory of a new experiment
that can give conclusive information is outlined and the possible experimental set-up
is sketched.

5 Introduction

Since the groundlaying work of Fizeau, interferometry has
been one of the most often used methods to investigate
the properties of light. The idea of interferometry was also
applied to detecting the presence of an absolute medium in
the Michelson and Morley experiment (MME) [1]. The ex-
pected effect was of second order O(v2/c2) with respect to
the ratio between the Earth speed v and speed of light c and it
is generally accepted now that Michelson-Morley experiment
yielded a nil result, in the sense that the fringes that were
observed corresponded to a much smaller (assumed to be
negligible) speed than actual Earth’s speed. Around the end
of Nineteen Century, the nil result of MME prompted Fitz-
Gerald and Lorentz to surmise that the lengths are contracted
in the direction of motion by the Lorentz factor

√
1− v2/c2

that cancels exactly the expected effect. Since then the Lo-
rentz contraction has been many times verified and can be
considered now as an established fact. The Lorentz contrac-
tion does not need MME anymore in order to survive as
the main vehicle of the modern physics of processes at high
speeds.

On another note, the nil effect of MME was eventually
interpreted as an indication that there exists no absolute
(resting) medium where the light propagates. The problem
with this conclusion is that nobody actually proposed a theo-
ry for MME in which a continuous medium was considered
with the correct boundary conditions. Rather, the emission
theory of light was used whose predictions contradicted the
experimental evidence. In the present paper we show that if a
medium at rest is assumed and if this medium is not entrained
by the moving bodies, the exact effect from MME is nil, i. e.,
the expected second-order effect was an artifact from the fact
that the emission theory of light (essentially corpuscular in
its nature) was applied to model the propagation of light in

a continuous medium.
The best way to judge about the existence of the absolute

medium is to stage first-order experiments (one way experi-
ments). Along these lines are organized many experimental
works, most notably [2, 3] where the sought effect was the
anisotropy of speed of light. In our opinion, it is not quite
clear how one can discriminate between an anisotropic speed
of light on one hand and a first-order Doppler effect, on the
other. Yet, we believe that the solution of the conundrum
about the existence or nonexistence of an absolute continuum
will be solved by a first-order experiment. To this end we
also propose an interference experiment that should be able
to measure the first-order effect. The most important thing is
that first-order effect has actually been observed (see [2, 3],
among others). This being said, one should be aware that the
“second-order” re-interpretations of the slightly nontrivial
results of [4] are also a valid avenue of research in the
quest for detecting the absolute medium (or as the modern
euphemism goes “the preferred frame”). In this connection,
an important contribution seems to be [5]. Another source of
higher-order effects can also be the local dependence of speed
of light on the strength of the gravitational field. This kind of
dependence is very important in any experiment conducted
on Earth and in order to figure out the more subtle effects,
one should use a theory in which the fundamental tensor
of space affects the propagation of light. In the framework
of the present approach it will result into a wave equation
for the light which has non-constant coefficients, the latter
depending on the curvature tensor. It goes beyond the scope
of the present short note to delve into this more complicated
case.

The aim of the present paper is to be understood in a very
limited fashion: we show that the main effect of MME must
be zero when it is considered in a purely Euclidean space
without gravitational effects on the propagation of light. We
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pose correctly the problem of propagation and reflection of
waves in a resting medium when both the source and the
mirror are moving with respect to the medium. We show that
the strict result from the interference is nil which invalidates
most of the conclusions drawn from the perceived nil effect
of MME.

6 Conditions on moving boundaries

Here we follow [6] (see also [7] for application to MME)
where emitter’s Doppler effect was explained with bound-
ary conditions (b. c.) on a moving boundary. Consider the
(1+1)D linear wave equation

φtt = c2φxx , (1)

whose solution is the harmonic wave.

φ (x, t) = eik̂x±iω̂t, where k̂ =
ω̂

c
, (2)

where c is the characteristic speed and “±” signs refer to the
left- and right-going waves, respectively.

Consider now a boundary (a point in 1D) moving with
velocity u, at which a wave with temporal frequency ω is
created. This means that the wave propagating inside the
medium satisfies the following boundary condition

φ (ut, t) = ei(ω1t−k1x) = eiω1(t−x/c) =

= eiω1t(1−u/c) = eiωt,
(3)

where it is tacitly assumed that the right going wave is of
interest. The above b. c. gives that

ω1

(
1−

u

c

)
= ω, → ω1 =

ω

1− u/c
. (4)

The last formula is the well known emitter’s Doppler
effect which shows how the frequency of the propagating
wave is related to the frequency of the moving emitter

If the receiver is at rest, it will measure a frequency
ω1. The situation is completely different if the receiver is
also moving, say with velocity v in the positive x-direction
(to the right). Then due to the b. c. φ (vt, t)= eiω1t−i

ω1
c vt=

= eiω2t, the traveling wave of frequency ω1 and wave number
k1=

ω1
c will generate an oscillation of frequency ω2 at the

moving boundary point x= vt:

ω2 = ω1

(
1−

v

c

)
= ω

1− v/c
1− u/c

, (5)

i. e., the measuring instruments in the moving frame of the
receiver will detect a standing wave of frequency ω2. We
observe here that if the receiver is moving exactly with
the speed of the emitter, then the frequency measured in
receiver’s frame will be exactly equal to emitter’s frequency.
In other words, a receiver that is moving with the same speed
as the emitter does not observe a Doppler effect and cannot
discover the motion.

This conclusion appears in an implicit form in the stand-
ard texts, e. g. [8, 9, p.164], where it is claimed that a Doppler
effect is observed only for relative motion of the emitter and
the receiver. Unfortunately, this correct observation did not
lead to posing the question about the relevance of MME de-
spite of the conspicuous lack of relative motion between the
emitter and the receiver (mirror) in MME. The explanation
in [8] was that “[F]or electromagnetic waves there evidently
exists no preferred frame”. We believe that the rigorous
statement is that absolute rest (the “preferred frame”) cannot
be detected from measurements of Doppler effect between
a source and a receiver which are moving together with
identical speed through the absolute continuum.

After a consensus has been reached between the present
work and the literature that the luminiferous continuum can-
not be detected from an experiment in which a single source
and a receiver are moving together as a non-deformable sys-
tem, then the interesting question which remains is whether
the absolute continuum can be detected when the emitter
and the mirror are in relative motion, i. e. when they move
with different speeds relative to the resting frame. To this
end, consider now the situation when the receiver is a mirror
which sends back a left going wave eiω3t+ik3x generated by
the oscillations with frequency ω2 at the point x= vt namely,
eiω3t+ik3vt = eiω2t. Then

ω3 (1+v/c) = ω2, ⇒ ω3 = ω
1−v/c

(1+v/c)(1−u/c)
. (6)

Now, the wave of frequency ω3 is traveling through the
continuum to the left. The frequency, ω4, of the wave excited
on the moving surface of the emitter by this traveling wave
has to satisfy the moving b. c. eiω̂4 = ei(ω̂3t+ω3

u
c t). Then

ω4 = ω3

(
1+

u

c

)
, ⇒ ω4 = ω

(1−v/c)(1+u/c)
(1+v/c)(1−u/c)

. (7)

The above result is illustrated in Fig. 1.

exp(iωt) exp(iω 1
1−u/c)

exp(iω 1
1−(u−v)/c)

exp(iω 1−v/c
(1+v/c)(1−u/c))

exp(iω (1+u/c)(1−v/c)(1+v/c)(1−u/c))

u v

Fig. 1: Moving emitter and receiver

The case of waves propagating transversely to the emitter
and receiver gives a trivial result in 1D, in the sense that the
frequency and wave number of the propagating wave are not
affected by the motion of the source or the receiver. The
most general treatment for point source in 3D is given by
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the eikonal equation [6, p.225] for the inhomogeneous wave
equation that is obtained in a frame moving with prescribed
speed in certain direction.

An interesting limiting case is presented when u, v � c.
Then the product uv/c2 can be neglected in comparison
with (u− v)/c (provided that u− v ' O(u)) and the above
formula reduces to

ω4 =
1 + (u− v)/c
1− (u− v)/c

,

which is the formula from [8, 9] for zero angle between
the relative speed and the line of the emitter and observer.
The discrepancies of order (uv/c2) can be the cause of
the so-called Pioneer anomaly [10]. It will be interesting
to reexamine the raw data from Pioneer 10 eliminating the
formula for relativistic Doppler effect and using in its place
Eq. 7. Then what appears as an anomaly, can actually give
the information about the absolute velocities of Earth and of
the space ship. It is not necessary, of course, to go as far as
Pioneer 10 and 11 went. The experiment can be done with
an interferometer whose arms are the distances between two
different satellites moving with different orbital speeds in the
vicinity of Earth.

7 Michelson-Morley experiment (MME)

It was argued that because of the motion of the experimental
equipment (the interferometer), the time taken by light to
travel in the direction of motion will be different from the
time needed to return, and these times together will differ
from the time to travel in lateral direction. The argument
that led to the prediction that the effect is of second order
(see, [11, p.149], [1]) was typically corpuscular in its nature.
The emission theory of light assumed that the “particles” of
light were supposed to move in a resting continuum with
velocity c. However when these particles were emitted by
a moving surface in the direction of motion, they acquired
speed c+v, whereas the particles emitted against the motion
would move with speed c− v. The emission theory claimed
that the total time for a ray to complete the full path in
longitudinal direction is

t1 =
l

c+ v
+

l

c− v
=

2l

c(1− v2/c2)
, (8)

where l is the length of the longitudinal and transverse arms
of the interferometer. The arguments about the nature of
reflections in the transverse arm of the interferometer are
similarly based on the emission theory. In the transverse
direction the length of the path traveled by one light corpuscle
is calculated using the Pythagorean theorem and the total
time needed for the light particle to complete the return trip
to the lateral mirror is given by (see [1])

t2 =
2l

c

√

1 +
v2

c2
. (9)

Then the difference in the times needed to traverse the
longitudinal and the transverse arms is

t1 − t2 ≈
2l

c

[

1 + 2
v2

c2
− 1−

v2

c2
+O

(
v4

c4

)]

≈ l
v2

c2
. (10)

Under the standard analogies of corpuscular approach, at
this point the arguments usually go back to the wave theory
of light assuming that the change in travel time of light
particles somehow materializes as change of the emitted or
received frequency.

Although the scientific community gradually elevated
MME to the status of one of the experimenta crucis for the
theory of relativity, the above argument was never critically
revisited after the postulate of the constancy of speed of light
was accepted. The only work known to the present author is
[12] where the emission theory and wave theory of Doppler
effect are compared and shown to coincide within the first
order in v/c but no conclusions about the actual applicability
of the above corpuscular-based formula are made.

The problem with applying a corpuscular approach to
a wave phenomenon in a medium is that a propagation
speed c+ v is impossible since all propagation speeds are
limited by the characteristic speed of the medium. Yet, the
above derivations were repeated in [11, 13] and now feature
prominently in many of the most authoritative modern text-
books, such as [9, 14]. So we are faced with a very peculiar
situation: The formula used to explain the results of one of the
most important for relativity theory experiments contradict
the second postulate of the same theory.

The fallacy of the argumentation is as follows:

(i) The existence of a continuous medium in which the
light propagates is stipulated (luminiferous continuum);

(ii) An irrelevant to continuum description theoretical for-
mula is derived using the corpuscular concept of light
(emission theory of light);

(iii) An experiment is designed for which it is believed that
it can allow the measurement of the variable involved
in the irrelevant theoretical formula;

(iv) Measurements obtained from the experiment do not
show the expected effect;

(v) Conclusion is drawn that the contradiction is due to
the fact that the original assumption of the presence of
a continuum at rest is wrong;

(vi) The concept of existing of a material luminiferous
continuum (i) is abandoned altogether.

This kind of fallacy is called ignoratio elenchi (“pure
and simple irrelevance”) and consists in using an argument
that is supposed to prove one proposition but succeeds only
in proving a different one. Clearly, there can be at least two
causes for the nil result of the experiment. Before assuming
that (i) is wrong, one has to examine (ii) from the point
of view of the wave theory of light under the condition of
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constancy of speed of light. The only way to pass judgment
on the presence or absence of an absolute continuum is to
derive a formula for the interference effect that is based on
the assumption that the space between the different parts of
the equipment is filled with a continuous medium in which
the propagation speed of linear waves is a given constant. In
doing so, the reflection from the mirror has to be treated as
an excitation of a wave on moving material surface. Then
the frequency of the excited wave (which then travels back
as the reflected wave) is subject to the motion of the mirror
itself. In this short note we make an attempt to correctly pose
the problem (using the adequate mathematical approach to
solving the wave equation with b. c. on moving boundaries)
and to show the consequences of this for the interpretation
of interferometry experiments involving moving mirrors that
are moving translatory with respect to the supposed absolute
continuum. Only after the proper theoretical formula based
on the idea that the continuum is at rest and that the equip-
ment is moving relative to it, is derived and only after the
predictions of this relevant formula are found to contradict
the experimental evidence, one rule out the existence of
an absolute continuum at rest in which the light waves are
propagating as shear waves in a material medium.

It has been shown above that if the source of light and the
mirror are moving together with the same velocity relative
to the resting medium, then the Doppler effect is strictly
equal to zero. This means that no Doppler effect can be
detected from an experiment in which the emitter and the
mirror are moving together through a quiescent continuum.
This means that a nil effect from the celebrated experiment of
Michelson and Morley should be interpreted as an evidence
about the existence of a material continuum at rest and
that this absolute continuum is not entrained by the moving
bodies. The flawed arguments of the emission theory of light
introduced an error of O(v2/c2) in the formulas which was,
in fact, the perceived effect in MME. At the same time,
the correct solution (see the previous section) shows that
the effect must be strictly nil provided that an absolute
continuum fills the space between the different parts of the
interferometer and that this continuum is not entrained.

8 A possible experimental set-up

If MME is irrelevant to detecting the absolute medium,
then the question arises of is it possible at all to detect
the latter by means of an interferometry experiment whose
parts are moving together with the Earth. The answer (as
already suggested in [7]) is in the positive if one can use two
independent sources of light of virtually identical frequencies
and avoid reflections. This means that one has to aim the
beams against each other as shown in Fig. 2.

Assume now that two waves of identical frequencies are
excited at two different points that are moving together in the
same direction with the same velocity relative to the resting

medium. The interference between the right-going wave from
the left source and the left-going wave from the right source
is given by

eiω(t−x/c)/(1−u/c) + eiω(t+x/c)/(1+u/c) =

=
[
cos (ω1t− k1x) + cos (ω2t+ k2x)

]
+

+ i
[
sin (ω1t− k1x) + sin (ω2t+ k2x)

]
=

= 2 cos (ω̃t+ k̂x) exp
[
i(ω̂t+ k̃x)

]
,

(11)

where

ω̃ =
ω1+ω2
2

= ω

(

1−
u2

c2

)

, ω̂ =
ω2−ω1
2

= −
u

c
ω̃,

are the carrier and beat frequencies, and k̃ = ω̃/c, k̂ = ω̂/c.
The wave excited at certain point, say x = 0, is

2 cos (ω̃t) exp (iω̂t) . (12)

In Fig. 2 we show a possible experimental set-up which
makes use of two independent sources of coherent light. Note
that using two lasers, does not make our experiment similar
to the set-up used in [15] because the latter involves mirrors
and as it has been shown above, using mirrors dispels any
possible effect.

Maser/Laser I Photodetector/Screen Maser/Laser II

Fig. 2: Experimental set-up involving two lasers/masers

One of the ways to find the beat frequency is to use a
photodetector in a point of the region of interference of the
two waves. Note that the carrier frequency of the visible
light is very high and cannot be detected in principle. The
problem is that and even the beat frequency, Eq. 12, can be
too high for the resolution of the available photodetectors.
Apart from the fact that mirrors were used in [16], the
high beat frequency could be another reason why it was
not detected in those experiments. In fact they were after
the beat frequency connected with the second-order effects
and found practically no beat which is exactly what is to be
expected in the light of the theory above presented. This is
additional confirmation of the theory proposed here because
we claim that no effect (neither first- nor second-order not
higher-order) can exist if reflections are involved.

The other way to conduct the experiment is to measure
the beat wave number k̂ by taking a snapshot of the wave at
certain moment of time. Then the spatial distribution of the
wave amplitude is

2 cos (k̂x) exp (ik̃x) , (13)

which will produce an interference pattern in the resting
continuum that can be observed on a screen (as shown
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alternatively in Fig. 2). Note that in this case the screen
is “parallel” or “tangent” to the vibrating part of the absolute
continuum, and what is observed, are the dark and light strips
corresponding the the different values of the amplitude of the
beat wave. Clearly, the effect will be best observed if the two
lasers beams have identical polarization.

The requirements for the frequency stabilization of the
sources of light stem from the magnitudes of the beat fre-
quency. It is accepted nowadays that the speed of the so-
called Local Standard of Rest (LSR) to which solar system
belongs, is of order of v≈ 300 km/s relative to the center
of the local cluster of galaxies [17]. The speed of LSR is
an upper estimate of the speed with respect to the absolute
medium. This maximum can be reached only if the center of
cluster of galaxies is at rest relative to the medium. Thus, the
upper limit for the dimensionless parameter ε= v/c is 10−3,
which places very stringent requirements on the resolution
in case that a photodetector is involved. For red-light lasers,
the beat frequency is of order of 600GHz which is well
beyond the sensitivity of the available photodetectors. This
means that one should opt for terahertz masers when the beat
frequency ωb will be smaller than 1–3GHz.

In the alternative implementation of the experimental set-
up a detecting screen is used to get the spatial distribution of
the interference pattern. In such a case, one can use standard
visible-light lasers. For instance, the red light has wavelength
approximately in the range of 600m−9, then the beat wave
length is expected to be ε−1≈1000 times longer. This means
0.6mm which is technically feasible to observe on a screen.
Conversely, using terahertz masers in this case could make
the wave length of the beat wave of order of 20–50 cm.

Now, in order to have reliable results from the proposed
interferometry experiment, one needs frequency stabilization
a couple of orders of magnitude better than the sought effect.
To be on the safe side, we mention that the lowest value for ε
is 10−4 which corresponds to the orbital speed of Earth. Then
the best stabilization of the frequency needed is 10−7. This is
well within the stabilization limits for the currently available
low-power lasers. For example, Coherent, Inc. offers the
series 899-21 that are Actively Stabilized, Scanning Single-
Frequency Ring Lasers with stabilization 10−9.

9 Conclusion

The theory of Michelson-Morley interference experiment
is revisited from the point of view of the wave theory of
light. The fallacy of using the accepted formula based on
the emission theory of light is shown and new formulas are
derived based on the correct posing of the boundary con-
ditions at moving boundaries for a hyperbolic equation. It
is shown that when the source of light and the reflector are
moving with the same speed through a non-entrained absol-
ute continuum, the reflected wave as received back at the
emitter’s place shows no Doppler shift, and hence no fringes

can be expected. The situation is different if the emitter and
the reflector are in relative motion with respect to each other.
The meaning of the results of the present work is that the
only correct conclusion from a nil effect from interferometry
experiment involving reflection is not that absolute medium
does not exist, but that an absolute continuum exist which
is not entrained by the motion of the measuring instrument
(the system of emitters and mirrors). Naturally, the nil effect
of Michelson-Morley experiment should not be used as the
sole verification of the absolute medium and to this end a
new experimental set-up is proposed.
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The Roland De Witte 1991 Experiment (to the Memory of Roland De Witte)

Reginald T. Cahill
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In 1991 Roland De Witte carried out an experiment in Brussels in which variations in
the one-way speed of RF waves through a coaxial cable were recorded over 178 days.
The data from this experiment shows that De Witte had detected absolute motion of
the earth through space, as had six earlier experiments, beginning with the Michelson-
Morley experiment of 1887. His results are in excellent agreement with the extensive
data from the Miller 1925/26 detection of absolute motion using a gas-mode Michelson
interferometer atop Mt. Wilson, California. The De Witte data reveals turbulence in
the flow which amounted to the detection of gravitational waves. Similar effects were
also seen by Miller, and by Torr and Kolen in their coaxial cable experiment. Here we
bring together what is known about the De Witte experiment.

Preface of the Editor-in-Chief

Today, on the 15th anniversary of De Witte’s experiment, I would
like to comment on an erroneous discussion of the “supposed dis-
parity” between the De Witte results and Einstein’s Principle of Re-
lativity, and the whole General Theory of Relativity, due to the
measured anisotropy of the velocity of light. The same should be
said about the Torr-Kolen experiment (1981, Utah State Univ., USA)
and the current experiment by Cahill (Flinders Univ., Australia).

The discussion was initiated by people having a poor knowledge
of General Relativity, having learnt it from “general purpose” books,
and bereft of native abilities to learn even the basics of tensor calcu-
lus and Riemannian geometry — mainly so-called “anti-relativists”
and mere anti-semites, to whom Einstein’s genius and discoveries
give no rest.

Roland De Witte was excellent experimentalist, not a master in
theory. He was misled about the “disparity” by the anti-relativists,
that resulted his deep depression and death.

It is well known that in a four-dimensional pseudo-Riemannian
space (the basic space-time of General Relativity), the velocity of
light c is said to be general covariantly invariant; its value is inde-
pendent of the reference frame we use. However a real observer is
located in his three-dimensional spatial section x0= const (inhomo-
geneous, curved, and deforming), pierced by time lines xi= const
(also inhomogeneous and curved). The space can bear a gravitation-
al potential w=c2(1−

√
g00), and be non-holonomic — the time

lines are non-othogonal to the spatial section, that is displayed as the
space three-dimensional rotation at the linear velocity vi=−c

g0i√
g00

.
These factors lead to the fact that the physically observable time
interval is dτ =

√
g00 dt− 1

c2
vidx

i, which is different to the coord-
inate time interval dt. Anyone can find all this in The Classical
Theory of Fields by Landau and Lifshitz 1, the bible of General
Relativity, and other literature.

The complete theory of physically observable quantities was
developed in the 1940’s by Abraham Zelmanov, by which the
observable quantities are determined by the projections of four-
dimensional quantities onto an observer’s real time line and spatial
section. (See 2,3,4,5 and References therein.) From this we see that
the physically observable velocity of light is a three-dimensional
vector ci= dxi

dτ
dependent on the gravitational potential and the

space non-holonomity (rotation) through the physically observable
time interval dτ . In particular, ci can be distributed anisotropically
in the spatial section, if it completely rotates. At the same time the
complete general covariantly invariant c remains unchanged.

Therefore the anisotropy of the observed value of the velocity
of light does not contradict Einstein’s Principle of Relativity. On
the contrary, such an experimental result can be viewed as a new
verification of Einstein’s theory.

Moreover, as already shown by Zelmanov2 in the 1940’s, Gen-
eral Relativity’s space permits absolute reference frames connect-
ed to the anisotropy of the fields of the spatial non-holonomity
or deformation, i. e. connected to globally polarized fields which
are likely a global background giro. Therefore, absolute reference
frames connected to the spatial anisotropy of the velocity of light
or the Cosmic Microwave Background can also be viewed as
additional verifications of General Relativity.

Roland De Witte didn’t published his experimental results. All
we possess subsequent to his death is his public letter of 1998
and letters to his colleagues wherein he described his experimental
set up in detail. I therefore asked Prof. Cahill to prepare a brief
description of the De Witte experiment so that any interested person
may thereby have a means of referring to De Witte’s results as
published. Reginald T. Cahill is an expert in such experimental
techniques and currently prepares a new experiment, similar to that
by De Witte (but with a precision in measurement a thousand times
greater using current technologies). Therefore his description of the
De Witte experiment is accurate.

Dmitri Rabounski

1 Landau L. D., Lifshitz E. M. The classical theory of fields. 4th ed.,
Butterworth–Heinemann, 1980.
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1 Introduction

R. De Witte

Ever since the 1887 Michelson-Morley ex-
periment [1] to detect absolute motion, that
is motion relative to space, by means of the
anisotropy of the speed of light, physicists
in the main have believed that such absolute
motion was unobservable, and even meaning-
less. This was so after Einstein proposed as

one of his postulates for his Special Theory of Relativity
that the speed of light is invariant quantity. However the
Michelson-Morley experiment did observe small fringe shifts
of the form indicative of an anisotropy of the light speed∗. The
whole issue has been one of great confusion over the last 100
years or so. This confusion arose from deep misunderstand-
ings of the theoretical structure of Special Relativity, but
also because ongoing detections of the anisotropy of the
speed of light were treated with contempt, rather than being
rationally discussed. The intrinsic problem all along has been
that the observed anisotropy of the speed of light also affects
the very apparatus being used to measure the anisotropy.
In particular the Lorentz-Fitzgerald length contraction effect
must be included in the analysis of the interferometer when
the calibration constant for the device is calculated. The cal-
ibration constant determines what value of the speed of light
anisotropy is to be determined from an observed fringe shift
as the apparatus is rotated. Only in 2002 was it discovered
that the calibration constant is very much smaller than had
been assumed [2, 3], and that the observed fringe shifts cor-
responded to a speed in excess of 0.1% of the speed of light.
That discovery showed that the presence of a gas in the light
path is essential if the interferometer is to act as a detector
of absolute motion, and that a vacuum operated interfero-
meter is totally incapable of detecting absolute motion. That
physics has suppressed this effect for over 100 years is a
major indictment of physics. There have been in all seven de-
tections of such anisotropy, with five being Michelson inter-
ferometer experiments [1, 4, 5, 6, 7], and two being one-way
RF coaxial cable propagation time experiments, see [9, 10]
for extensive discussion and analysis of the experimental
data. The most thorough interferometer experiment was by
Miller in 1925/26. He accumulated sufficient data that in con-
junction with the new calibration understanding, the velocity
of motion of the solar system could be determined† as
(α=5.2hr, δ=−67◦), with a speed of 420± 30 km/s. This
local (in the galactic sense) absolute motion is different from
the Cosmic Microwave Background (CMB) anisotropy de-
termined motion, in the direction (α=11.20hr, δ=−7.22◦)
with speed 369 km/s; this is motion relative to the source of
the CMB, namely relative to the distant universe.

∗The older terminology was that of detecting motion relative to an
ether that was embedded in a geometrical space. However the more modern
understanding does away with both the ether and a geometrical space, and
uses a structured dynamical 3-space, as in [9, 10].

†There is a possibility that the direction is opposite to this direction.

The first one-way coaxial cable speed-of-propagation ex-
periment was performed at the Utah State University in
1981 by Torr and Kolen [8]. This involved two rubidium
vapor clocks placed approximately 500 m apart with a 5 MHz
sinewave RF signal propagating between the clocks via a
buried nitrogen filled coaxial cable maintained at a constant
pressure of ∼ 2 psi. Unfortunately the cable was orientated in
an East-West direction which is not a favourable orientation
for observing absolute motion in the Miller direction. There
is no reference to Miller’s result in the Torr and Kolen
paper, otherwise they would presumably not have used this
orientation. Nevertheless there is a small projection of the
absolute motion velocity onto the East-West cable and Torr
and Kolen did observe an effect in that, while the round
speed time remained constant within 0.0001% c, variations
in the one-way travel time were observed. The maximum
effect occurred, typically, at the times predicted using the
Miller velocity [9, 10]. So the results of this experiment are
also in remarkable agreement with the Miller direction, and
the speed of 420 km/s. As well Torr and Kolen reported fluc-
tuations in both the magnitude, from 1–3 ns, and the time of
maximum variations in travel time.

However during 1991 Roland De Witte performed the
most extensive RF travel time experiment, accumulating
data over 178 days. His data is in complete agreement with
the 1925/26 Miller experiment. These two experiments will
eventually be recognised as two of the most significant ex-
periments in physics, for independently and using different
experimental techniques they detected the same velocity of
absolute motion. But also they detected turbulence in the flow
of space past the earth; non other than gravitational waves.
Both Miller and De Witte have been repeatably attacked for
their discoveries. Of course the experiments indicated the
anisotropy of the speed of light, but that is not in conflict
with the confirmed correctness of various relativistic effects.
While Miller was able to publish his results [4], and indeed
the original data sheets were recently discovered at Case
Western Reserve University, Cleveland, Ohio, De Witte was
never permitted to publish his data in a physics journal. The
only source of his data was from a e-mail posted in 1998, and
a web page that he had established. This paper is offered as
a resource so that De Witte’s extraordinary discoveries may
be given the attention and study that they demand, and that
others may be motivated to repeat the experiment, for that is
the hallmark of science‡.

2 The De Witte experiment

In a 1991 research project within Belgacom, the Belgium tel-
communications company, another (serendipitous) detection
of absolute motion was performed. The study was undertaken
by Roland De Witte. This organisation had two sets of atomic

‡The author has been developing and testing new techniques for doing
one-way RF travel time experiments.
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clocks in two buildings in Brussels separated by 1.5 km
and the research project was an investigation of the task
of synchronising these two clusters of atomic clocks. To
that end 5 MHz radio frequency (RF) signals were sent in
both directions through two buried coaxial cables linking
the two clusters. The atomic clocks were caesium beam
atomic clocks, and there were three in each cluster: A1, A2
and A3 in one cluster, and B1, B2, and B3 at the other
cluster. In that way the stability of the clocks could be
established and monitored. One cluster was in a building
on Rue du Marais and the second cluster was due south in a
building on Rue de la Paille. Digital phase comparators were
used to measure changes in times between clocks within the
same cluster and also in the propagation times of the RF
signals. Time differences between clocks within the same
cluster showed a linear phase drift caused by the clocks not
having exactly the same frequency, together with short term
and long term noise. However the long term drift was very
linear and reproducible, and that drift could be allowed for in
analysing time differences in the propagation times between
the clusters.

The atomic clocks (OSA 312) and the digital phase
comparators (OS5560) were manufactured by Oscilloquartz,
Neuchâtel, Switzerland. The phase comparators produce a
change of 1 V for a phase variation of 200 ns between the
two input signals. At both locations the comparison between
local clocks, A1–A2 and A1–A3, and between B1–B2, B1–
B3, yielded linear phase variations in agreement with the fact
that the clocks have not exactly the same frequencies due
to the limited reproducible accuracy together with a short
term and long term phase noise (A. O. Mc Coubrey, Proc. of
the IEEE, Vol. 55, No. 6, June, 1967, 805–814). Even if the
long term frequency instability were 2×10−13 this is able to
produce a phase shift of 17 ns a day, but this instability was
not often observed and the ouputs of the phase comparators
have shown that the local instability was typically only a few
nanoseconds a day (5 ns) between two local clocks.

But between distant clocks A1 toward B1 and B1 toward
A1, in addition to the same linear phase variations (but with
identical positive and negative slopes, because if one is fast,
the other is slow), there is also an additional clear sinusoidal-
like phase undulation (≈ 24 h period) of the order of 28 ns
peak to peak.

The possible instability of the coaxial lines cannot be
responsible for the phase effects observed because these
signals are in phase opposition and also because the lines are
identical (same place, length, temperature, etc. . .) causing the
cancellation of any such instabilities. As well the experiment
was performed over 178 days, making it possible to measure
with accuracy (± 25 s) the period of the phase signal to be
the sidereal day (23 h 56 min), thus permitting to conclude
that absolute motion had been detected, even with apparent
turbulence.

According to the manufacturer of the clocks, the typical

humidity sensitivity is df/f =10−14 % humidity, so the effect
observed between two distant clocks (24 ns in 12 h) needs, for
example, a differential step of variation of humidity of 55%,
two times a day, over 178 days. So the humidity variations
cannot be responsible for the persistent periodic phase shift
observed. As for pressure effects, the manufacturer confirmed
that no measurable frequency change during pressure varia-
tions around 760 mm Hg had been observed. When temp-
erature effects are considered, the typical sensitivity around
room temperature is df/f =0.25×10−13 ◦C and implies, for
example, a differential step of room temperature variation
of 24◦C, two times a day, over 178 days to produce the
observed time variations. Moreover the room temperature
was maintained at nearly a constant around 20◦C by the
thermostats of the buildings. So the possible temperature
variations of the clocks could not be responsible for the
periodic phase shift observed between distant clocks. As well
the heat capacity of the housings of the clocks would even
further smooth out possible temperature variations. Finally,
the typical magnetic sensitivity of df/f =1.4×10−13 Gauss
needs, for example, differential steps of field induction of
4 Gauss variation, two times a day, over 178 days. But the
terrestrial magnetic induction in Belgium is only in the order
of 0.2 Gauss and thus its variations are much less (except
during a possible magnetic storm). As for possible parasitic
variable DC currents in the vicinity of the clocks, a 4 Gauss
change needs a variation of 2000 amperes in a conductor at
1 m, and thus can be excluded as a possible effect. So temp-
erature, pressure, humidity and magnetic induction effects on
the frequencies of the clocks were thus completely negligible
in the experiment.

Changes in propagation times were observed over 178
days from June 3 1991 7 h 19 m GMT to 27 Nov 19 h 47 m
GMT and recorded. A sample of the data, plotted against si-
dereal time for just three days, is shown in Fig. 1. De Witte re-
cognised that the data was evidence of absolute motion but he
was unaware of the Miller experiment and did not realise that
the Right Ascension for minimum/maximum propagation
time agreed almost exactly with Miller’s direction (α=5.2hr,
δ=−67◦). In fact De Witte expected that the direction of
absolute motion should have been in the CMB direction, but
that would have given the data a totally different sidereal
time signature, namely the times for maximum/minimum
would have been shifted by 6 hrs. The declination of the
velocity observed in this De Witte experiment cannot be
determined from the data as only three days of data are
available. However assuming exactly the same declination
as Miller the speed observed by De Witte appears to be also
in excellent agreement with the Miller speed, which in turn
is in agreement with that from the Michelson-Morley and
other experiments.

Being 1st-order in v/c the Belgacom experiment is easily
analysed to sufficient accuracy by ignoring relativistic ef-
fects, which are 2nd-order in v/c. Let the projection of the
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Fig. 1: Variations in twice the one-way travel time, in ns, for an
RF signal to travel 1.5 km through a buried coaxial cable between
Rue du Marais and Rue de la Paille, Brussels, by subtracting the
Paille Street phase shift data from the Marais Street phase shift
data. An offset has been used such that the average is zero. The
cable has a North-South orientation, and the data is ± difference of
the travel times for NS and SN propagation. The sidereal time for
maximum effect of ∼5 hr (or ∼17 hr) (indicated by vertical lines)
agrees with the direction found by Miller [4]. Plot shows data over
3 sidereal days and is plotted against sidereal time. The main effect
is caused by the rotation of the earth. The superimposed fluctuations
are evidence of turbulence i.e gravitational waves. Removing the
earth induced rotation effect we obtain the first experimental data
of the turbulent structure of space, and is shown in Fig. 2. De Witte
performed this experiment over 178 days, and demonstrated that the
effect tracked sidereal time and not solar time, as shown in Fig. 3.

absolute velocity vector v onto the direction of the coaxial
cable be vP . Then the phase comparators reveal the difference
between the propagation times in NS and SN directions.
Consider a simple analysis to establish the magnitude of the
observed speed.

Δt =
L

c
n − vP

−
L

c
n + vP

=

= 2
L

c/n
n
vP
c
+O

(
v2P
c2

)

≈ 2t0n
vP
c
.

Here L=1.5 km is the length of the coaxial cable, n=1.5
is the assumed refractive index of the insulator within the co-
axial cable, so that the speed of the RF signals is approxim-
ately c/n=200, 000 km/s, and so t0=nL/c=7.5×10−6 sec
is the one-way RF travel time when vP =0. Then, for ex-
ample, a value of vP =400 km/s would give Δt=30 ns. De
Witte reported a speed of 500 km/s. Because Brussels has a
latitude of 51◦ N then for the Miller direction the projection
effect is such that vP almost varies from zero to a maximum
value of |v|. The De Witte data in Fig. 1 shows Δt plotted
with a false zero, but shows a variation of some 28 ns. So the
De Witte data is in excellent agreement with the Miller’s data.

The actual days of the data in Fig. 1 are not revealed by
De Witte so a detailed analysis of the data is not possible.
If all of De Witte’s 178 days of data were available then a
detailed analysis would be possible.

Fig. 2: Shows the speed fluctuations, essentially “gravitational
waves” observed by De Witte in 1991 from the measurement of
variations in the RF coaxial-cable travel times. This data is obtained
from that in Fig. 1 after removal of the dominant effect caused by
the rotation of the earth. Ideally the velocity fluctuations are three-
dimensional, but the De Witte experiment had only one arm. This
plot is suggestive of a fractal structure to the velocity field. This is
confirmed by the power law analysis shown in Fig. 4. From [11].

De Witte does however reveal the sidereal time of the
cross-over time, that is a “zero” time in Fig. 1, for all 178
days of data. This is plotted in Fig. 3 and demonstrates that
the time variations are correlated with sidereal time and not
local solar time. A least squares best fit of a linear relation to
that data gives that the cross-over time is retarded, on aver-
age, by 3.92 minutes per solar day. This is to be compared
with the fact that a sidereal day is 3.93 minutes shorter
than a solar day. So the effect is certainly galactic and not
associated with any daily thermal effects, which in any case
would be very small as the cable is buried. Miller had also
compared his data against sidereal time and established the
same property, namely that, up to small diurnal effects iden-
tifiable with the earth’s orbital motion, the dominant features
in the data tracked sidereal time and not solar time, [4].

The De Witte data is also capable of resolving the ques-
tion of the absolute direction of motion found by Miller. Is
the direction (α=5.2hr, δ=−67◦) or the opposite direction?
Being a 2nd-order Michelson interferometer experiment
Miller had to rely on the earth’s orbital effects in order to
resolve this ambiguity, but his analysis of course did not
take account of the gravitational in-flow effect [9, 10]. The
De Witte experiment could easily resolve this ambiguity by
simply noting the sign ofΔt. Unfortunately it is unclear as to
how the sign in Fig. 1 is actually defined, and De Witte does
not report a direction expecting, as he did, that the direction
should have been the same as the CMB direction.

The dominant effect in Fig. 1 is caused by the rotation of
the earth, namely that the orientation of the coaxial cable with
respect to the direction of the flow past the earth changes as
the earth rotates. This effect may be approximately unfolded
from the data, see [9, 10], leaving the gravitational waves
shown in Fig. 2. This is the first evidence that the velocity
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Fig. 3: Plot of the negative of the drift of the cross-over time
between minimum and maximum travel-time variation each day (at
∼ 10h± 1h ST) versus local solar time for some 178 days, from
June 3 1991 7 h 19 m GMT to 27 Nov 19 h 47 m GMT. The straight
line plot is the least squares fit to the experimental data, giving an
average slope of 3.92 minutes/day. The time difference between a
sidereal day and a solar day is 3.93 minutes/day. This demonstrates
that the effect is related to sidereal time and not local solar time.

Fig. 4: Shows that the speed
fluctuations in Fig. 2 are scale
free, as the probability distri-
bution from binning the speeds
has the form p(v)∝ |v|−2.6.
This plot shows log[p(v)] vs
|v|. From [11].

field describing the flow of space has a complex structure,
and is indeed fractal. The fractal structure, i.e. that there is an
intrinsic lack of scale to these speed fluctuations, is demon-
strated by binning the absolute speeds |v| and counting the
number of speeds p(|v|) within each bin. Plotting log[p(|v|)]
vs |v|, as shown in Fig. 4 we see that p(v) ∝ |v|−2.6. The
Miller data also shows evidence of turbulence of the same
magnitude. So far the data from three experiments, namely
Miller, Torr and Kolen, and De Witte, show turbulence in
the flow of space past the earth. This is what can be called
gravitational waves [9, 10].

3 Biography of De Witte

These short notes were extracted from De Witte’s webpage.
Roland De Witte was born September 29, 1953 in the

small village of Halanzy in the south of Belgium. He became
the apprentice to an electrician and learned electrical wiring
of houses. At the age of fourteen he decided to take private
correspondence courses in electronics from the EURELEC

company, and obtained a diploma at the age of sixteen. He
decided to stop work as an apprentice and go to school.
Without a state diploma it was impossible for him to be
admitted into an ordinary school with teenagers of his age.
After working for a scrap company where he used dynamite,
he was finally admitted into a secondary school with the
assistance of the director, but with the condition that he pass
some tests from the board of the state examiners, called the
Central Jury, for the first three years. After having sat the
exams he became a legitimate schoolboy. But when he was
in the last but one year in secondary school he decided to
prepare for the entrance exam in physics at the University
of Liège, and became a university student in physics one
year before his friends. During secondary school years he
was interested in all the scientific activities and became a
schoolboy president of the Scientific Youths of the school
in Virton. Simple physics experiments were performed: Mil-
likan, photoelectric effect, spectroscopy, etc. . . and a small
electronics laboratory was started. He also took part in differ-
ent scientific short talks contests, and became a prizewinner
for a talk about “special relativity”, and received a prize from
the Belgian Shell Company which had organised the contest.
De Witte even visited the house where Einstein lived for a
few months in Belgium when he left Germany. The house
is the “Villa Savoyarde” at “Coq-Sur-Mer” Belgium, and is
just 200 m from the North Sea. During secondary school
De Witte had hobbies such as astronomy and pirate radio
transmission on 27 Mhz with a hand-made transmitter, with
his best long distance communication being with Denmark.

De Witte says that he is not able to study by “heart”, and
during secondary school, even with his bad memory which
caused problems in history and english, he nevertheless al-
ways achieved the maximum of points in physics, chemistry
and mathematics and was the top of his class. At University
he obtained the diploma from the two year degree in physics
but was not able to continue due to the “impossibility to study
by heart several thousands of pages of erroneous calcula-
tions” like the others did to obtain the graduate diploma. Thus
even though considered to be intelligent by several teachers,
he decided to leave the University and became the manager
of a retail electronic components shop. He did this job for
ten years while also performing his physics experiments and
studying theoretical physics. He was interested in micro-
waves and became an IEEE member and reader of the pub-
lications of the Microwave Theory & Techniques and Inst-
rumentation & Measurement Societies. During that period he
built an electron spin resonance spectrometer for the pleasure
of studying the electron and free radicals. By chance he
was invited by Dr. Yves Lion of the Physics Institute of the
University of Liège to help them for a few weeks in their re-
searches on the photoionisation mechanism of the tryptophan
amino-acid with the powerful EPR spectrometer. He was also
interested in TV satellite reception and Meteosat images. He
built several microwave microstrip circuits such as an 18 dB
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low noise amplifier using GaAs-Fets for 11.34 GHz. He also
developed some apparatus using microprocessors for a digital
storage system for Meteosat’s images.

In 1990 he became a civil servant in the Metrology
Department of the Transmission Laboratories of Belgacom
(Belgium Telephone Company). His job was to test the
synchronization of rubidium frequency standards on a distant
master ceasium beam clock. It is there that he took the time to
compare the phase of distant ceasium clocks and discovered
the periodic phase shift signal with a sidereal day period. De
Witte retired from the Department, reporting that he had been
dismissed, and worked on theoretical physics and philosophy
of science, while performing various cheap experiments to
test his electron theory and also develop a new working pro-
cess for a beamless ceasium clock.

De Witte acknowledged assistance from J. Tamborijn, the
Engineer Cerfontaine, and particularly Engineer and Execut-
ive Director B. Daspremont, all from the Metrology, Fiber
Optics and Transmission Laboratory of Belgacom in Brus-
sels, for the use of the six caesium atomic clocks, the com-
parators, the recorder and the underground lines, and also
Paul Pàquet, Director of the Royal Observatory of Belgium,
for explanations and documentation provided about the real-
isation of UTC in Belgium.

4 De Witte’s letter

Roland De Witte was not able to have his experimental re-
sults published in a physics journal. His only known pub-
lications are that of an e-mail posted to the newsgroup
sci.physics.research. The e-mail is reproduced here:

* Subject: Ether-wind detected!
* From: “DE WITTE Roland” <roland.dewitte@ping.be>
* Date: 07 Dec 1998 00:00:00 GMT
* Approved: baez@math.ucr.edu
* Newsgroups: sci.physics.research
* Organization: EUnet Belgium, Leuven, Belgium

I have performed an interesting experiment with cesium
beam frequency standards.
A 5 Mhz signal from one clock (A) is sent to another clock
(B) 1.5 km apart in Brussels by the use of an underground
coaxial cable of the Belgium Telephone Company. There,
the 5Mhz signal from clock A is compared to the one of
clock B, by the use of a digital phase comparator (like those
used in PLL).
Incredibly, the output of the phase comparator shows a clear
and important sinus-like undulation which permits to con-
clude of the existence of a periodic variation (24 h period)
of the speed of light in the coaxial cable around 500 km/s.
In performing the experiment during 178 days, with six
caesium beam clocks, the period of the phase signal has
been accurately measured and is 23 h 56 m ±25 s. and thus
is the sidereal day.
This result, like the one of D. G. Torr and P. Kolen (Natl. Bur.

Stand. (U.S.), Spec. Publ. 617, 1984) is well understood with
a new space-time theory based on a new electron theory.
It is also the case for the nearly negative result of the exper-
iment of Krisher et al., with a fiber optics instead of a coaxial
cable (Physical Review D, Vol. 42, Number 2, 1990, pp. 731–
734).
All the details of the experiment is on my web-site under con-
struction: www.ping.be/electron/belgacom.htm together with
already a few arguments against Einstein’s special theory of
relativity.

DE WITTE Roland
www.ping.be/electron

[Moderator’s note: needless to say, there are many potential
causes of daily variations that need to be studied in interpret-
ing an experiment of this sort. — jb]

5 Conclusions

The De Witte experiment was truly remarkable considering
that initially it was serendipitous. DeWiite’s data like that of
Miller is extremely valuable and needs to be made available
for detailed analysis. Regrettably Roland De Witte has died,
and the bulk of the data was apparently lost when he left
Belgacom.
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Polyally diglycol carbonate “CR-39” is widely used as etched track type particle de-
tector. Doppler broadening positron annihilation (DBPAT) provides direct information
about core and valance electrons in (CR-39) due to radiation effects. It provides a
non-destructive and non-interfering probe having a detecting efficiency. This paper
reports the effect of irradiation α-particle intensity emitted from 241Am (5.486 MeV)
source on the line shape S- and W-parameters for CR-39 samples. Modification of
the CR-39 samples due to irradiation were studied using X-ray diffraction (XRD) and
scanning electron microscopy (SEM) techniques.

1 Introduction

Polyallyl diglycol carbonate (C12H18O7,ρ= 1310kg/m3) is
a thermoset polymer [1]. Polyallyl diglycol carbonate, CR-
39, has been used in heavy ion research such as composition
of cosmic rays, heavy ion nuclear reactions, radiation dose
due to heavy ions, exploration of extra heavy elements etc. Its
availability in excellent quality from different manufactures
is also an advantage for further applications [1].

Swift heavy ions (SHI) produce permanent damage in
polymeric materials as latent tracks along their path due to
dissociation of valence bonds, cross linking and formation
of free radicals [2, 3].

Positron Annihilation Technique (PAT) has been employ-
ed for the investigating Polymorphism in several organic
materials [4] and it has emerged as a unique and potent probe
for characterizing the properties of polymers [5]. In PAT, the
positron is used as a nuclear probe which is repelled by the
ion cores and preferentially localized in the atomic size free-
volume holes [6] of the polymeric material. The motion of the
electron-positron pair causes a Doppler shift on the energy
of the annihilation radiation. As a consequence, the line-
shape gives the distribution of the longitudinal momentum
component of the annihilating pair. Positron Annihilation
Doppler Broadening Spectroscopy (PADBS) is a well estab-
lished tool to characterize defects [7]. The 0.511 MeV peak
is Doppler broadened by the longitudinal momentum of
the annihilating pairs. Since the positrons are thermalized,
the Doppler broadening measurements provide information
about the momentum distributions of electrons at the anni-
hilation site.

Essentially all prior Doppler broadening measurements
[8, 9] have been performed using either slow positron beams
or wide-energy-spectrum positron beams from radioactive
sources. Two parameters S (for shape), and W (for wings)

[10] are usually used to characterize the annihilation peak.
The S-parameter is more sensitive to the annihilation with
low momentum valence and unbound electrons. The S-para-
meter defined by Mackenzie et al. [11] as the ratio of the
integration over the central part of the annihilation line to
the total integration. Diffraction peaks are analyzed through
common fitting procedures, which result in parameters like
the center of gravity and the width of the distribution. The
W-parameter is more sensitive to the annihilation with high
momentum core electrons and is defined as the ratio of counts
in the wing regions of the peak to the total counts in the peak.

Fig. 1 shows Doppler broadening line-shape from which
the S- and W-parameters are calculated using the following
equations:

S =

∫ xc+g1

xc−g1
y(x)dx

area
,

W =

∫ xc−g2

xc−g3
y(x)dx+

∫ xc−g3

xc−g2
y(x)dx

area
,

where area =
∫ gmax
gmin y(x)dx, and xc is the center of the peak.

In this regard, the main goal of the positron annihilation
technique experiments is to point out the CR-39 line-shape
parameters resulting from the effect of α-particle energies.

2 Experimental technique

Track detectors “CR-39” were normally irradiated in air
by different α-particle energies with different fluxes from
1476.42 particles/cm2 at 1.13 MeV to 48130.25 particles/cm2

at 4.95 MeV from 0.1μCi 241Am source. Collimators of
different thickness were used to change the α-particle energy.
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Fig. 1: Definition of the S- and W-parameters [12] (note, that the
limits g1, g2, g3 are arbitrary to a certain degree, but have to be
the same for all annihilation lines analyzed).

After irradiations, the samples were etched in 6.25 M NaOH
solution at 70◦C for 6 hr.

The simplest way to guide the positrons into the samples
is to use a sandwich configuration as shown in Fig. 2. 22Na
is the radioactive isotope used in our experiment.

Fig. 2: Sandwich configuration
of the positron source respect to
a pair of specimen.

The positron source of 1mCi free carrier 22NaCl was
evaporated from an aqueous solution of sodium chloride and
deposited on a thin Kapton foil of 7.5μm in thickness. The
22Na decays by positron emission and electron capture (E. C.)
to the first excited state (at 1.274 MeV) of 22Na. This excited
state de-excites to the ground state by the emission of a
1.274 MeV gamma ray with half life T1/2 of 3×10−12 sec.
The positron emission is almost simultaneous with the emis-
sion of the 1.274 MeV gamma ray while the positron anni-
hilation is accompanied by two 0.511 MeV gamma rays. The
measurements of the time interval between the emission of
1.274 MeV and 0.511 MeV gamma rays can yield the lifetime
τ of positrons. The source has to be very thin so that only
small fractions of the positron annihilate in the source.

The system which has been used to determine the Doppler
broadening S-and W-parameters consists of an Ortec HPGe
detector with an energy resolution of 1.95 keV for 1.33 MeV
line of 60Co, an Ortec 5 kV bais supply 659, Ortec amplifier
575 and trump 8 k MCA. Fig. 3 shows a schematic diagram
of the experimental setup. Doppler broadening is caused by
the distribution of the velocity of the annihilating electrons
in the directions of gamma ray emission. The signal coming
from the detector enters the input of the preamplifier and
the output from the preamplifier is fed to the amplifier. The

Fig. 3: Block diagram of HPGe-detector and electronics for Doppler
broadening line-shape measurements.

input signal is a negative signal. The output signal from the
amplifier is fed to a computerized MCA. All sample spectra
are acquired for 30 min.

3 Results and discussion

3.1 Positron annihilation measurements

Fig. 4 shows the Doppler broadening line shape parameters
measured for unirradiated and irradiated CR-39 samples at
α-particle energies of 2.86 and 4.86 MeV. The measured line-
shape profiles reveal similar line-shape counts for samples
(unirradiated and irradiated with α-particle energy, i. e.
4.86 MeV). A minimum line-shape counts are obtained at
2.86 MeV. The other observation is that the Full Width at
Half Maximum (FWHM) for 2.86 MeV irradiated sample
is more broadening than others. From such behavior it is
clear that either something happened during irradiation with
2.86 MeV and it recovers again at higher energies or some
kind of transition occurs at 2.86 MeV of α-particle energy.

The Doppler broadening line-shape S- and W-parameters
are calculated using SP ver. 1.0 program [13] which designed
to automatically analyze of the positron annihilation line in
a fully automated fashion.

The S- and W-parameters calculated using the previous
program were correlated as a function of α-particle energy
with different fluxes deposit into CR-39 detector, the results
are illustrated in Fig. 5. The S-parameters has values around
46% while values of about 15% are obtained for W-parame-
ters. An abrupt change definitely observed at irradiation en-
ergy 2.86 MeV of α-particles for both S- and W-parameters.
At this energy a drastically decrease in the S-parameter com-
parable with a drastically increase in the W-parameter. Values
of about 35% and 28% were observed for the S- and W-para-
meters respectively at 2.86 MeV of α-particle energy.
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Fig. 4: The line shape spectra of the unirradiated sample and
irradiated with α-particle energies of 2.86 and 4.84 MeV.

Fig. 5: The behavior of the S- and W-parameters as a function of
α-particle energies.

A high concentration of defects, or an increase in the
mean size of defects, leads to a larger contribution of annihi-
lation photons from low momentum electrons because posi-
trons are trapped at defects [14]. This is reflected in Dopp-
ler broadening measurements by an increase in S-parameter
and a decrease in W-parameter. The behavior of S- and
W-parameters reveal an abrupt change at the position of
the transition. The behavior of the line-shape S- and W-
parameters can be related to the different phases. Like many
others molecular materials, the use of PAT also proven a
very valuable in the study of phase transition in polymers.
The same results have been obtained by Schiltz et al. [15].
Walker’s et al. [4] measurements have indicated the conver-
sion of one polymorphism to another. Srivastana et al. [16]
have investigated polymorphic transitions in DL-norlevcine
and hexamethyl benzene.

The transitions in the crystalline phase are related to
the lattice transformation from monoclinic to hexagonal and
setting in of torsional oscillations in the polymer chain.

Fig. 6: X-ray diffraction pattern of “CR-39” Polyallyl diglycol
carbonate.

3.2 X-ray diffraction pattern (XRD) and Scanning Elec-
tron Microscopy (SEM)

The X-ray diffraction analysis was used to obtain information
about the transformation as a result of change in α-irradiation
intensity. The XRD intensity measurements as a function of
diffraction angle (2θ) for unirradiated sample and samples
irradiated at different α-particle energies are shown in Fig. 6.

From the X-ray charts it is observed that, an increase
in the intensity is obtained at higher α-irradiation intensity
4.84 and 4.95 MeV. At these energies, the XRD chart reveals
a new peak that start to appear at 2.86 MeV α-particle energy.
The one prominent X-ray peak is located at 2θ = 21.5◦ and it
grows up with increasing α-particle energy. The appearance
of this peak might be related to phase transition.

A number of papers on the study of polymer show that
the amorphous state is altered by structural relaxation and
crystallization processes. Positron annihilation behavior in
the amorphous state has been described both in terms of topo-
logical short range ordering (TSRO) and chemical short-
range ordering (CSRO) at the basis of the structural relaxa-
tion mechanisms [11, 15, 17–19]. During crystallization the
positron behavior is determined by the phase diagram of the
amorphous and crystallized system. On our X-ray diffraction
patterns might be the first sign of the crystallization onset
appears at 2.86 MeV. This sign is increased at higher α-
particle energies as shown in the Fig. 6.

The SEM images taken for unirradiated and irradiated
CR-39 samples at 4.84 MeV with magnification of 500 are
shown in Fig. 7a and b. Tracks are obtained as a result of
exposure of α-particle energy. A different magnified (15000)
image for one track is shown at Fig. 7c. Cumbrera et al. [19]
showed that rings of the structure (metastable structure) were
already present in the scanning electron micrographs.

4 Conclusion

Doppler broadening positron annihilation (DBPAT) provides
direct information about core and valance electrons in CR-
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(a) Unirradiated (M= 500) (b) 4.84 MeV (M= 500)

(c) 4.84 MeV (M= 15000)

Fig. 7: SEM for unirradiated
sample and irradiated sample at
4.84 MeV α-particle energies
for different magnifications

39 due to radiation effects. The behavior of the S- and W-
parameters supports the idea that positrons are trapped by
defects and inhomogeneities inherently present in the as-
received CR-39 polycarbonate. The annihilation character-
istics of positrons are very sensitive to phase transitions. The
phase transition in the CR-39 polycarbonate remain complex.
XRD pattern and SEM technique of polymers studied in the
present work clearly show crystalline and amorphous regions
in the samples.
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The alleged existence of so-called Planck particles is examined. The various methods
for deriving the properties of these “particles” are examined and it is shown that their
existence as genuine physical particles is based on a number of conceptual flaws which
serve to render the concept invalid.

1 Introduction

The idea of the so-called Planck particle seems to have been
around for quite some time now but has appeared in a number
of totally different contexts. It seems to have been used
initially as a means of making equations and expressions
dimensionless by making use of suitable combinations of the
universal constants c, the speed of light, G, Newton’s uni-
versal constant of gravitation, and finally Planck’s constant.
As far as the third and final constant is concerned, it has
appeared variously as the original h and in the reduced form
~. The combinations considered were those which ended up
with the dimensions of mass or length or time and so, the
idea of a “Planck particle” emerged.

Hence, initially the notion seems to have occurred via
expressions deduced from dimensional considerations; no
mention of an actual “particle” would have been included
at this point presumably. Later, however, other arguments
were introduced which lead to the same expressions. These
included examining the equivalence of the Compton wave-
length and Schwarzschild radius of a particle or drawing
on results from Special Relativity and Quantum Mechanics.
Finally, because the expressions incorporate the Planck con-
stant, which is normally associated with quantum phenom-
ena, and both the speed of light and the universal constant
of gravitation, which are often associated with relativistic
and gravitational phenomena, these “particles” seem to have
been elevated to a position of importance and even physical
reality which is difficult to justify.

Here the various methods of determining the expressions
for the various physical quantities, such as mass and length,
of these so-called Planck “particles” will be examined, before
some conclusions about the actual “particles” themselves —
including their physical existence — will be discussed.

2 The “Planck” quantities

(a) Dimensional analysis

Using the fundamental ideas of dimensional analysis allows
the derivation of the Planck mass, Planck length, and all

the other Planck quantities to be accomplished very easily.
Taking c,G and h as the three basic quantities, the expression
for the Planck mass is found easily by putting

(
LT−1

)α (
ML2T−1

)β (
M−1L3T−2

)γ
=M ,

where
(
LT−1

)
,
(
ML2T−1

)
,
(
M−1L3T−2

)
are the dim-

ensions of c, G and h respectively. Equating coefficients
immediately gives

Planck mass≡

√
ch

G
.

Similar manipulations give

Planck length≡

√
hG

c3
and Planck time≡

√
hG

c5
.

It is easy to see how expressions such as these could
prove useful in making equations dimensionless and so more
suitable for numerical work. However, the derivation of these
expressions is seen to have been accomplished by a purely
mathematical exercise; absolutely no physical argument has
been involved!

(b) Compton wavelength and Schwarzschild radius

Another derivation involves the consideration of a body who-
se Compton wavelength equals its Schwarzschild or gravi-
tational radius [1]. Immediately, this equivalence leads to

h

mc
=
2Gm

c2
,

from which it follows that

m=

√
hc

2G
.

Corresponding expressions for the Planck length and
Planck time follow easily and it is seen that the ratio of
Planck mass to Planck length equals c2/2G, which would
make such a body, if it truly existed, a Michell-Laplace dark
body or a Schwarzschild black hole.
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However, the expressions derived by this route are seen
to involve an extra figure two. This apparent little problem is
overcome by using ~ instead of h in the dimensional analysis
approach and by putting the Compton wavelength equal to
π multiplied by the Schwarzschild or gravitational radius
in the approach. Since the equivalence is purely arbitrary,
introducing an extra arbitrary factor of π is not really a
problem.

(c) The quantum/relativity approach

This approach makes use of the Heisenberg uncertainty prin-
ciple [2]. The starting point is provided by the introduction
of a Planck time, tp, for which quantum fluctuations are felt
to exist on the scale of the Planck length which is defined
to be equal to `p= ctp. If a Planck density is denoted by
ρp, a Planck mass may then be mp

∼= ρp `3p. Then, using
Heisenberg’s uncertainty principle in the form

ΔEΔt ∼= mp c
2tp

∼= ρp
(
ctp
)3
c2tp

∼=
c5t4p
Gt2p

∼= ~ ,

leads to
tp
∼=

√
~G
c5

∼= 5.4×10−44 sec .

Here the reduced Planck constant, ~, has been used as is
more usual. The expressions for both the Planck mass and
Planck length follow easily and their numerical values are

mp
∼= 2.2×10−8 kg and `p

∼= 1.6×10−35 m

respectively, where the value of the reduced Planck constant
has been used.

These are the three basic properties associated with these
so-called Planck “particles”. It is quite common to note also
that the corresponding Planck energy and Planck temperature
are then given by

Ep =mpc
2 ∼=

√
~c5

G
∼= 1.2×1019 GeV

and

Tp =
Ep
k
∼=

√
~c5

Gk2
∼= 1.4×1032 K .

3 Planck particles as black holes

The arbitrary equality of the Compton wavelength to the
alleged “Schwarzschild radius” has resulted in the claim that
the so-called Planck particles are black holes. This conclusion
is inadmissible for a number of reasons.

The expression

R=
2Gm

c2
, (1)

describes the Michell-Laplace dark body, a theoretical astro-

nomical object having an escape velocity equal to that of
light. This expression can be generalised to

R6
2Gm

c2
, (2)

to include escape velocities greater than that of light.
The radius R described by (1) and (2) is Euclidean, and

therefore measurable in principle. The Compton wavelength
is also measurable in principle because it too is Euclidean.
However, (1) is routinely claimed to be the “Schwarzschild
radius”, the radius of the event horizon of the alleged black
hole. (1) is also claimed to show that the escape velocity
associated with a black hole is the velocity of light. Actually
this is false. An alleged black hole has no escape velocity
since it is claimed also that neither material object nor light
may leave the event horizon. On the other hand, an escape
velocity does not mean that a material object having an initial
velocity less than the escape velocity cannot leave the surface
of a gravitating body. A material object possessing an initial
velocity less than the escape velocity may leave the surface
of the host object, travel radially outward to a finite distance
where it comes to rest momentarily before falling radially
backwards to the host. If the escape velocity is the velocity of
light, then light itself may leave the surface and travel radially
outward to infinity and, therefore, escape. Hence, equation
(1) does not specify an escape velocity for the alleged black
hole. In truth, black holes have no escape velocity associated
with them [3, 4].

Furthermore, in the case of the Michell-Laplace dark
body, equation (1) specifies a Euclidean radius, whereas, in
the case of the alleged black hole, the Schwarzschild radius
is non-Euclidean. Moreover, in principle, R is a measurable
length in the Euclidean space of Newton’s theory, but in
General Relativity R is not measurable in principle. Hence
equating the Euclidean Compton wavelength to R given by
(1) is conceptually flawed. In addition, in Einstein’s gravita-
tional field there are two radii — the proper radius and the
radius of curvature. These are the same only in the infinitely
far field where space-time is asymptotically Minkowski, (that
is, pseudo-Euclidean) where the radii coalesce to become
identical because, in Euclidean space, the radius of curvature
and the proper radius are identical. Therefore, when the
Compton wavelength is equated to (1) in the context of
the black hole, which non-Euclidean Einstein radius does
R specify?

It has been shown [5, 6] that when (1) is interpreted
in terms of Einstein’s gravitational field, the Schwarzschild
radius R is actually the invariant radius of curvature of the
fictitious point-mass, which corresponds to an associated
invariant proper radius of zero. In ignorance of the fact
that Einstein’s gravitational field yields two different radii,
physicists erroneously interpret R in equation (1) as a proper
radius in Einstein’s gravitational field and, therefore, allow
it to go to zero, which is false! In their conception of R as
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a proper radius they also treat R as a measurable quantity
in Einstein’s gravitational field, as it is in Euclidean space,
which is also false!

Hence, even if the equality of the Compton wavelength to
the gravitational radius of curvature of a point-mass could be
admitted, the alleged Planck particles would necessarily be
point-masses, which are not only fictitious but also contradict
the very meaning of the Compton wavelength and, indeed,
the foundations of Quantum Mechanics. However, there can
be no meaning to the equality of a measurable Euclidean
length to an immeasurable non-Euclidean length to begin
with. Not only that, there can be no meaning to the equality
of a Euclidean length which is both the proper radius and the
radius of curvature in Euclidean space and a non-Euclidean
radius of curvature, which is not the same as the correspond-
ing non-Euclidean proper radius. Consequently, claims that
Planck particles are black holes are false, even if black holes
actually exist. It might well be noted at this juncture that
General Relativity, contrary to widespread claims, doesn’t
even predict the existence of black holes [5, 6].

Planck particles are presumed to be able to interact with
one another. However, the black hole is allegedly derived
from a solution to Einstein’s gravitational field for a “point-
mass”. Therefore, the black hole is the result of a solution
involving a single gravitating body interacting with a “test
particle”. It is not the result of a solution involving the
gravitational coupling of two comparable masses. Since there
are no known solutions to Einstein’s field equations for multi-
body configurations and since it is not even known if Ein-
stein’s field equations admit multi-body configurations [3],
all conceptions of black hole interactions are meaningless.
Consequently, Schwarzschild radius Planck particle interac-
tions are also meaningless.

The claim that Planck particles were prolific during the
early Universe but are now extremely rare is also erroneous.
This follows since it has been proved that cosmological
solutions to Einstein’s field equations for isotropic type 1
Einstein spaces, from which the expanding Universe and the
Big Bang have allegedly been derived, do not even exist.[7].

4 Comments and conclusions

Above, three ways of deducing expressions for the so-called
Planck quantities have been outlined. In many ways, the first
method indicates a good idea of the physical standing for
the so-called Planck “particles”. This first method is purely
a mathematical manipulation of three man-made constants.
At the end of the day, all numbers originate in a man-
made model and so these three numbers, although assigned
a seemingly exalted status as universal constants, are still
members of that group of man-made objects. As mentioned
already, the first method contains no physics and makes
absolutely no pretensions to contain any. The second and
third derivations, on the other hand, do seem to contain

some physics as a basis for what follows. However, closer
examination casts real doubt on this initial feeling. What
physical basis is there in asserting the equivalence of the
Compton wavelength and the Schwarzschild or gravitational
radius of a particle? If one believes modern ideas, this merely
asserts that the said particle is a “Schwarzschild black hole”,
and does so from the outset. The second of these two is simp-
ly a mathematical manipulation of symbols using Heisen-
berg’s uncertainty principle as a starting point. The manipula-
tions, as such, are reasonable enough, but is it valid to then
make physical assertions about “particles” whose very exist-
ence depends only on these mathematical manipulations?

The alleged link between Quantum mechanics and Gen-
eral Relativity via the interpretation of the Compton wave-
length as a Schwarzschild radius is clearly seen to be false.
All that remains is an interpretation of Planck particles via
equation (1) as it relates to the Michell-Laplace dark body
radius. In this case, one may say only that the escape velocity
associated with a Planck particle is the velocity of light
in the flat three-dimensional Euclidean space of Newton.
Of course, the Planck particles are thereby robbed of their
more mysterious relativistic qualities and their primordial
profusion. Black hole creation in the collision of a high
energy photon with a particle and concomitant digestion
of the photon is fallacious. Likewise there is no possibility
of micro black holes being formed by fermion collision in
particle accelerators.

There can be little doubt that Planck “particles” origin-
ated purely out of mathematical manipulations and there
seems no reason to suppose that they exist or ever have
existed as genuine physical particles. It is for that reason
that it is worrying to see these objects being assigned an
actual physical role in models of the early universe. Most
books on this subject seem to regard Planck “particles” as
genuine particles — mini black holes — which existed in
large numbers during the very early stages of the formation
of the universe but are now thought to be extremely rare,
if not actually extinct. The grounds for this belief seem
very shaky and it is claimed, for example, that the decay
of a single Planck “particle” could lead to the production of
5×1018 baryons [1]. It is also claimed that theory as presently
available doesn’t allow examination back beyond a time of
approximately 10−43 seconds, the Planck “time” because,
beyond that time, a theory of quantum gravity would be
necessary. Hence, this time is effectively regarded as an
actual barrier between the quantum and non-quantum world.
Why? The relevance of this question lies in the fact that it is
a purely arbitrary figure. The fact that it and the other Planck
quantities depend on the reduced Planck constant, which
is regarded as being a quantity associated with quantum
mechanics, and the speed of light and the universal constant
of gravitation, which are associated with relativistic and
gravitational phenomena, is something which comes out of
human choice not something which occurs naturally. It is
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interesting that quantities which have the dimensions of
mass, length and time may be constructed from these three
constants which appear so frequently in so many areas of
theoretical science but that is all it is — interesting! It is not,
at least as far as current scientific knowledge is concerned,
any more significant than that. Playing around with numbers
and combinations of numbers can be very fascinating but, if
attempts are made to assign physical reality to the outcomes
of such mathematical diversions, scientific chaos could, and
probably will, ensue!
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We introduce a phenomenological formalism in which the space structure is treated
in terms of attachment space and detachment space. Attachment space attaches to
an object, while detachment space detaches from the object. The combination of
these spaces results in three quantum space phases: binary partition space, miscible
space and binary lattice space. Binary lattice space consists of repetitive units of
alternative attachment space and detachment space. In miscible space, attachment space
is miscible to detachment space, and there is no separation between attachment space
and detachment spaces. In binary partition space, detachment space and attachment
space are in two separate continuous regions. The transition from wavefunction to the
collapse of wavefuction under interference becomes the quantum space phase transition
from binary lattice space to miscible space. At extremely conditions, the gauge boson
force field undergoes a quantum space phase transition to a “hedge boson force field”,
consisting of a “vacuum” core surrounded by a hedge boson shell, like a bubble with
boundary.

1 The origin of the space structure

The conventional explanation of the hidden extra space dim-
ensions is the compactization of the extra space dimensions.
For example, six space dimensions become hidden by the
compactization, so space-time appears to be four dimension-
al. Papers [1, 2] propose the other explanation of the reduc-
tion of > 4D space-time into 4D space-time by slicing > 4D
space-time into infinitely many 4D slices surrounding the 4D
core particle. Such slicing of > 4D space-time is like slicing
3-space D object into 2-space D object in the way stated
by Michel Bounias as follows: “You cannot put a pot into a
sheet without changing the shape of the 2-D sheet into a 3-D
dimensional packet. Only a 2-D slice of the pot could be a
part of sheet”.

This paper proposes that the space structure for such
reduction of > 4D space-time can also be derived from
the cosmic digital code [3, 4], which one can consider as
“the law of all laws”. The cosmic digital code consists of
mutually exclusive attachment space and detachment space.
Attachment space attaches to an object, while detachment
space detaches from the object. The cosmic digital code
is analogous to two-value digital code for computer with
two mutually exclusive values: 1 and 0, representing on and
off. In terms of the cosmic digital code, attachment space
and detachment space are represented as 1 and 0, respect-
ively. The object with > 4D space-time attaches to > 4D
attachment space, which can be represented by

(i 13+k)m as > 4D attachment space with m
repetitive units of time (i) and 3 + k space dimension.

The slicing of > 4D attachment space is through 4D
detachment space, represented by

(i 03)n as detachment space with n repetitive units of
time (i) and three space dimension.

The slicing of > 4D attachment space by 4D detachment
space is the space-time dimension number reduction equation
as follows

(i 13+k)m︸ ︷︷ ︸
4D attachment space

slicing
−→

(i 13)m︸ ︷︷ ︸
4D core attachment space

+
k∑

k=1

((i 03) (i 13))n,k

︸ ︷︷ ︸
k types 4D slices

(1)

The two products of the slicing are the 4D-core attach-
ment space and 4D slices represented by n repetitive units of
alternative 4D attachment space and 4D detachment space.
They are k types of 4D slices, representing the total number
of space dimensions greater than three-dimensional space.
For example, the slicing of 10D attachment space produces
4D core attachment space and six types of 4D slices. The va-
lue of n approaches to infinity for infinitely many 4D slices.

The core attachment space surrounded by infinitely many
4D slices corresponds to the core particle surrounded by in-
finitely many small 4D particles. Gauge force fields are made
of such small 4D particles surrounding the core particle. The
space with repetitive units (of alternative attachment space
and detachment space) is binary lattice space.
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The combination of attachment space (1) and detachment
space (0) results in three quantum space phases: miscible
space, binary partition space, or binary lattice space for four-
dimensional space-time.

(14)n attachment space + (04)n detachment space
combination
−→ three quantum space phases:

(14 04)n binary lattice space, miscible space, or
(14)n (04)n binary partition space.

(2)

Binary lattice space consists of repetitive units of alter-
native attachment space and detachment space. In miscible
space, attachment space is miscible to detachment space, and
there is no separation of attachment space and detachment
space. In binary partition space, detachment space and attach-
ment space are in two separate continuous regions.

2 The quantum space phase transition for particles

Binary lattice space, (1404)n, consists of repetitive units of
alternative attachment space and detachment space. Thus,
binary lattice space consists of multiple quantized units of
attachment space separated from one another by detachment
space. Binary lattice space is the space for wavefunction,
which thus appears as not an abstract entity but a real one
filled with a substance, that is in line with works [5, 6]. In
wavefunction

|ψ〉 =
n∑

i=1

ci| φ i〉 (3)

each individual basis element |φ i〉 attaches to attachment spa-
ce, and separates from the adjacent basis element by detach-
ment space. Detachment space detaches from object. Binary
lattice space with n units of four-dimensional, (1404)n, con-
tains n units of basis elements.

Detachment space contains no object that carries inform-
ation. Without information, detachment space is outside of
the realm of causality. Without causality, distance (space) and
time do not matter to detachment space, resulting in non-loc-
alizable and non-countable space-time. The requirement for
the system (binary lattice space) containing non-localizable
and non-countable detachment space is the absence of net
information by any change in the space-time of detachment
space. All changes have to be coordinated to result in zero
net information. This coordinated non-localized binary lattice
space corresponds to nilpotent space. All changes in energy,
momentum, mass, time, space have to result in zero as
defined by the generalized nilpotent Dirac equation [7, 8]

(
∓k∂/∂t± i∇+ jm

)(
± ikE ± ip+ jm

)
×

× exp
(
i(−Et+ pr)

)
= 0 ,

(4)

where E, p, m, t and r are respectively energy, momentum,
mass, time, space and the symbols ±1, ± i, ± i, ± j, ± k, ± i,

± j,± k are used to represent the respective units required by
the scalar, pseudoscalar, quaternion and multivariate vector
groups. The changes involve the sequential iterative path
from nothing (nilpotent) through conjugation, complexifica-
tion, and dimensionalization. The non-local property of bin-
ary lattice space for wavefunction provides the violation of
Bell inequalities [9] in quantum mechanics in terms of faster-
than-light influence and indefinite property before measure-
ment. The non-locality in Bell inequalities does not result in
net new information.

In binary lattice space, for every attachment space, there
is its corresponding adjacent detachment space. Thus, a basis
element attached to attachment space can never be at rest
with complete localization even at the absolute zero degree.
The adjacent detachment space forces the basis element to
delocalize.

In binary lattice space, for every detachment space, there
is its corresponding adjacent attachment space. Thus, no part
of the object can be irreversibly separated from binary lattice
space, and no part of a different object can be incorporated in
binary lattice space. Binary lattice space represents coherence
as wavefunction. Binary lattice space is for coherent system.

Any destruction of the coherence by the addition of a
different object to the object causes the collapse of binary
lattice space into miscible space. The collapse is a quantum
space phase transition from binary lattice space to miscible
space.

(
(04) (14)

)
n

︸ ︷︷ ︸
binary lattice space

quantum space phase transition
−→ miscible space.

(5)

In miscible space, attachment space is miscible to detach-
ment space, and there is no separation of attachment space
and detachment space. In miscible space, attachment space
contributes zero speed, while detachment space contributes
the speed of light. A massless particle is on detachment space
continuously, and detaches from its own space continuously.
For a moving massive particle, the massive part with rest
massm0 belongs to attachment space and the other part of the
particle mass, which appears due to the motion, induces an
additional energy, namely the kinetic energy K, that changes
properties of attachment space and leads to the propagation
speed v lesser than the speed of light c.

To maintain the speed of light constant for a moving
particle, the time (t) in a moving particle has to be dilated,
and the length (L) has to be contracted relative to the rest
frame

t =
t0√

1− v2/c2
= t0γ ,

L = L0/γ ,

E = K +m0c
2 = γm0c

2,

(6)
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where γ=1/
√
1−v2/c2 is the Lorentz factor for time dila-

tion and length contraction, E is the total energy and K is
the kinetic energy.

The information in such miscible space is contributed by
the combination of both attachment space and detachment
space, so detachment space with information can no longer
be non-localize. Any value in miscible space is definite.
All observations in terms of measurements bring about the
collapse of wavefunction, resulting in miscible space that
leads to eigenvalue as definite quantized value. Such collapse
corresponds to the appearance of eigenvalue E by a measu-
rement operator H on a wavefunction ψ, i. e.

Hψ = Eψ . (7)

Another way for the quantum space phase transition from
binary lattice space to miscible space is gravity. Penrose
[10] pointed out that the gravity of a small object is not
strong enough to pull different states into one location. On
the other hand, the gravity of large object pulls different
quantum states into one location to become binary partition
space. Therefore, a small object without outside interference
is always in binary lattice space, while a large object is never
in binary latticespace.

3 The quantum space phase transitions for force fields

At zero temperature or extremely high pressure, binary lattice
space for a gauge force field undergoes a quantum space
phase transition to become binary partition space. In binary
partition space, detachment space and attachment space are
in two separate continuous regions as follows

(14)m +

k∑

k=1

(
(04) (14)

)
n,k

︸ ︷︷ ︸
particle gauge boson field in binary lattice space

−→

(14)m︸ ︷︷ ︸
hedge particle

+

k∑

k=1

(04)n,k (14)n,k

︸ ︷︷ ︸
hedge boson field in binary
partition space

(8)

The force field in binary lattice space is a gauge boson
force field, the force field in binary partition space is denoted
as a hedge boson force field. The detachment space in hedge
boson field is a “vacuum” core, while hedge bosons attached
to attachment space form the hedge boson shell. Gauge boson
force field has no boundary, while the attachment space in
the binary partition space acts as the boundary for hedge
boson force field. Hedge boson field is like a bubble with
core vacuum surrounded by membrane where hedge bosons
locate.

Hedge boson force is incompatible to gauge boson force
field. The incompatibility of hedge boson force field and
gauge boson force field manifests in the Meissner effect,
where superconductor repels external magnetism. The energy
(stiffness) of hedge boson force field can be determined by
the penetration of boson force field into hedge boson force
field as expressed by the London equation for the Meissner
effect

∇2H = −λ−2H , (9)

where H is an external boson field and λ is the depth of
the penetration of magnetism into hedge boson shell. Eq. (9)
indicates that the external boson field decays exponentially
as it penetrate into hedge boson force field.

The Meissner effect is the base for superconductivity. It
is also the base for gravastar, an alternative to black hole [11–
13]. Gravastar is a spherical void as Bose-Einstein condens-
ate surrounded by an extremely durable form of matter. This
paper proposes gravastar based on hedge boson field.

Before the gravitational collapse of large or supermassive
star, the fusion process in the core of the star to create the
outward pressure counters the inward gravitational pull of the
star’s great mass. When the core contains heavy elements,
mostly iron, the fusion stops. Instantly, the gravitational
collapse starts. The great pressure of the gravity collapses
atoms into neutrons. Further pressure collapses neutrons to
quark matter and heavy quark matter.

Eventually, the high gravitational pressure transforms the
gauge gluon force field into the hedge gluon force field,
consisting of a vacuum core surrounded by a hedge gluon
shell, like a bubble. The exclusion of gravity by the hedge
gluon force field as in the Meissner effect prevents the
gravitational collapse into singularity. To keep the hedge
gluon force field from collapsing, the vacuum core in the
hedge gluon force field acquires a non-zero vacuum energy
whose density (ρ) is equal to negative pressure (P ). The
space for the vacuum core becomes de Sitter space. The
vacuum energy of the vacuum core comes from the gravitons
in the exterior region surrounding the hedge gluon force field
as in the Chapline’s dark energy star. The external region
surrounding the hedge gluon force field becomes the vacuum
exterior region. Thus, the core of gravastar can be divided
into three regions: the vacuum core, the hedge gluon shell,
and the vacuum exterior region

vacuum core region: ρ = −P
hedge gluon shell region: ρ = + P
vacuum exterior region: ρ = P = 0

(10)

Quarks without the strong force field are transformed
into the decayed products as electron-positron and neutrino-
antineutrino denoted as the “lepton composite”

quarks quark decay
−→ e− + e+ +

_
ν + ν

the lepton composite
(11)
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The result is that the core of the collapsed star consists of
the lepton composite surrounded by the hedge gluon field.
This lepton composite-hedge gluon force field core consti-
tutes the core for gravastar. The star consisting of the lepton
composite-hedge gluon field core (LHC) and the matter shell
is “gravastar”. The matter shell consists of different layers
of matters: heavy quark matter layer, quark matter layer,
neutron layer, and heavy element layer one after the other:

LHC (lepton composite
— hedge gluon force field core):

lepton composite region: ρ = + P
vacuum core region: ρ = −P
hedge gluon shell region: ρ = + P
vacuum exterior region: ρ = P = 0

MATTER SHELL

(heavy quark layer
quark layer
neutron layer
heavy element layer): ρ = + P

(12)

4 Summary

Thus our formal phenomenological approach allows us to
conclude that the quantum space phase transition is the quan-
tum phase transition for space. The approach that is devel-
oped derives the space structure from attachment space and
detachment space. Attachment space attaches to an object,
while detachment space detaches from the object. The com-
bination of attachment space and detachment space results in
three quantum space phases: binary partition space, miscible
space, or binary lattice space. Binary lattice space consists of
repetitive units of alternative attachment space and detach-
ment space. In miscible space, attachment space is miscible
to detachment space, and there is no separation of attachment
space and detachment space. In binary partition space, de-
tachment space and attachment space are in two separate
continuous regions. For a particle, the transition from wave-
function to the collapse of wavefuction under interference is
the quantum space phase transition from binary lattice space
to miscible space.

At zero temperature or extremely high pressure, gauge
boson force field undergoes a quantum space phase transition
to “hedge boson force field”, consisting of a vacuum core sur-
rounded by a hedge boson shell, like a bubble with boundary.
In terms of the quantum space phase, gauge boson force field
is in binary lattice space, while hedge boson force field is in
binary partition space. The hedge boson force fields include
superconductivity and gravastar.
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Spectral Emission of Moving Atom Exhibits always a Redshift

J. X. Zheng-Johansson
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A renewed analysis of the H. E. Ives and G. R. Stilwell’s experiment on moving hydro-
gen canal rays (J. Opt. Soc. Am., 1938, v. 28, 215) concludes that the spectral emission
of a moving atom exhibits always a redshift which informs not the direction of the
atom’s motion. The conclusion is also evident from a simple energy relation: atomic
spectral radiation is emitted as an orbiting electron consumes a portion of its internal
energy on transiting to a lower-energy state which however has in a moving atom an
additional energy gain; this results in a redshift in the emission frequency. Based on
auxiliary experimental information and a scheme for de Broglie particle formation,
we give a vigorous elucidation of the mechanism for deceleration radiation of atomic
electron; the corresponding prediction of the redshift is in complete agreement with
the Ives and Stilwell’s experimental formula.

1 Introduction

Charged de Broglie particles such as the electron and the
proton can be decelerated by emitting electromagnetic radia-
tion. This occurs in all different kinds of processes, including
atomic spectral emission produced in laboratory [1, 2] or
from celestial processes[3], and charged particle synchrotron
radiation [4, 5]. The electromagnetic radiation emission from
sources of this type is in common converted from a portion
of the internal energy or the mass of a de Broglie particle in-
volved, which often involves a final state in motion, hence
moving source. The associated source-motion effect has ex-
cept for admitting a relativistic effect connected to high
source velocity thus far been taken as no different from the
ordinary Doppler effect that consists in a red- or blue-shift de-
pending on the source is moving away or toward the observer.
The ordinary Doppler effects are directly observable with
moving sources of a “conventional type”, like an external-
field-driven oscillating electron, an automobile horn, and
others, that are externally driven into oscillation which does
not add directly to the mass of the source. In this paper we
first (Sec. 2) examine the property, prominently an invariable
redshift, of moving atom radiation as informed by the hydro-
gen canal ray experiment [1] of Ives and Stilwell performed
at the Bell Labs in 1938 for a thorougher investigation of the
associated anomalous Doppler effect then known. Combining
with auxiliary experimental information and a scheme for de
Broglie particle formation[6], we then elucidate (Secs. 3–
5) the mechanism for spectral emission of moving atom, or
in essence the underlying (relative) deceleration radiation of
moving de Broglie electron, and predict Ives and Stilwell’s
experimental formula for redshift.

2 Indication by Ives-Stilwell’s experiment on fast mov-
ing hydrogen atoms

In their experiment on fast moving hydrogen canal ray spec-
tral emission[1], Ives and Stilwell let positively charged hyd-

rogen ions H+i of mass MHi and charge qi (i=2, 3) be
accelerated into a canal ray of high velocity, v, across accura-
tely controlled electric potential V correlated with v through
the work-energy relation qV = 1

2MHiv
2; or

v/c = A
√
V (1)

with c the speed of light, and A=
√

2qi
c2MHi

. For V ∼ 6700–

20755 volts, v ∼ 106 m/s as from (1). By neutralization and
dissociation the ions are at exit converted to excited atoms
that are unstable and will transit to ground state by emitting
Balmer spectral lines. The wavelength, λr, of the emitted
Hβ line is then measured using diffraction grating (Fig. 1a)
as a function of V . For a finite v, the spectral line produces
a first-diffraction peak at P (v), at distance y(v) = PO from
the center O; for a hydrogen at rest, v = 0, the line has a
wavelength λr0 =4861 angst. and produces a first peak at P0,
y0 = P0O. These have the geometric relations: λr =

λr0
y0
y,

and
Δλr = λr − λ

′
r0 = (λr0/y0)(y − y0) (2)

Δλr being the mean displacement of the Doppler lines at
a given v. The measured spectrogram, Fig. 1b, informs y−
− y0=B′

√
V with B′ a constant; this combining with (2) is:

Δλr/λr0 = (λr − λ
′
r0)/λr0 = B

√
V (3)

where B = B′λr0/y0.
If assuming

Δλr
λr0

= +
v

c
, (4)

then this and (3) give v
c =B

√
V . But vc and

√
V must satisfy

(1); thus B ≡ A; that is (3) writes:

Δλr/λr0 = A
√
V . (3 ′)

In [1], the two variables Δλr
λr0

and
√
V are separately
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Fig. 1: (a) Schematic single-slit diffraction grating. (b) Experim-
ental spectrogram, peak coordinates y (∝ λr) at several voltages
V (∝ v2), 7859, . . . , 20755 volts, after original Fig. of Ref. [1].
Spectral lines at finite V values all fall in the redshift regions I and
III beyond the V = 0 (v2 = 0)-lines illustrated in this plot.

measured and thus given an experimental relation, shown in
Fig. 10, of [1, p. 222], which agrees completely with (3′);
accordingly (4) is directly confirmed. Furthermore there is a
shift of center of gravity of λ′r0 from λr0 : Δ

′λr =λr0 −λ
′
r0=

= 1
2 (
v
c )
2; or λ′r0 =λr0

(
1− 1

2 (
v
c )
2
)
'λr0

√
1−(v/c)2. With

this and (4) in the first equation of (3) or similarly of (2),
one gets:

λr =
√
1− (v/c)2 λr0 + (v/c)λr0 ; (5)

(5) gives λr −λr0 >
v
c −

1
2 (
v
c )
2> 0; or, λr is always elongat-

ed for |v|> 0. Furthermore, (4)–(5) are obtained in [1] for
both the cases where source and observer move toward and
away from each other: The source velocity v is in the fixed
+x-direction; waves emitted parallel with v (Fig. 2) strike
on the diffraction grating D (observer 1) directly (Fig. 2b),
and waves antiparallel with v (Fig. 2c) strike on mirror M
(observer 2) first and are then reflected to D. That is, (5) is
regardless of the direction of the vector c. Therefore from
Ives and Stilwell’s experiment we conclude:

The wavelength of spectral line emitted from an atom
in motion is always longer, or red-shifted, than from
one at rest, irrespective if the atom is moving away
or toward the observer; the faster the atom moves, the
longer wavelength its spectral line is shifted to.

This apparently contrasts with the conventional Doppler ef-
fect where wavelengths will be λr =λr0(1− v/c) and λr =
=λr0(1 + v/c) and show a blue or red shift according to if
the source is moving toward or away from the observer.

3 Emission frequency of a moving atom

If a H atom is at rest in the vacuum, its electron, of charge −e
in circular motion at velocity un+1 about the atomic nucleus
in an excited n+1th orbit, has from quantum-mechanical sol-
ution (and also solution based on the unification scheme [6])

an eigen energy εu.n+1=−~2/
[
2me0(n+1)

2a2B0
]
, where

n=1, 2, . . . and me0 = γ0Me, γ0=1/
[
1− (un+1/c)2

]−1/2

with un being high (∼ 106 m/s), Me the electron rest mass,
and aB0 Bohr’s radius (should already contain 1/γ0, see
below). If now the electron transits to an unoccupied nth
orbit, the atom lowers its energy to εu.n and emits an electro-
magnetic wave of frequency

νr0 =
εu.n+1(0)− εu.n(0)

h
=

~2(2n+ 1)
h2me(n+ 1)2n2a2B

; (6)

accordingly λr0 = c/νr0 and kr0 =2π/λr0 =2πνr0/c.
If now the atom is moving at a velocity v in+x-direction,

(v/c)2� 0, then in the motion direction, its orbital radius is
Lorentz contracted to aB = aB0/γ, and its mass augmented
according to Einstein to me= γme0 = γγ0Me (see also the
classical-mechanics solutions [6]), where γ=1/

√
1−(v/c)2.

With aB and me for aB0 and me0 in (6), we have νr =

= εu.n+1(v)−εu.n(v)
h = γνr0 ; including in this an additional

term δνr which we will justify below to result because of an
energy gain of the moving source, the spectral frequency for
the n+ 1 → n transition for the moving atom then writes

νr = γ (νr0 + δνr) . (7)

4 Atomic spectral emission scheme

We now inspect how an electron transits, from an initial
n+1th to final nth orbit in an atom moving in general, here
at velocity v in +x-direction. To the initial-state electron,
with a velocity un+1 if v = 0, the finite v of the traveling
atom will at each point on the orbit project a component
v cos θ onto un+1(θ), with θ in (0, 2π); the average is ūn+1=
=
∫ 2π
θ=0
[un+1+v cos θ]dθ = un+1. That is, ūn+1 and any its

derivative dynamic quantities of the stationary-state orbiting
electron are not affected by v except through the second
order factor γ(v). The situation however differs during the
n+1→ n transition which distinct features may be induced
as follows:

(i) The transition ought realistically be a mechanical
process in which, in each sampling, the electron comes off
orbit n + 1 at a single definite location, e. g. A in Fig. 2a.
That where A is located on the orbit in any sampling, is a
statistic event.

(ii) The spectral radiation is a single monochromatic
electromagnetic wave emitted in forward direction of the
orbiting electron at the point (A) it comes off orbit n + 1,
as based on observations for decelerating electron radiation
in a storage ring in synchrotron experiments [4], which is
no different from an orbiting atomic electron except for its
macroscopic orbital size.

(iii) It follows from (i)–(ii) combined with momentum
conservation condition that the transition electron coming off
at A, will migrate across shortest-distance AB, perpendicular
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Fig. 2: An atomic electron comes off orbit n+1 statistically e. g. at
A in (a), emitting in brief time δt a single electromagnetic wave of
energy hνr in forward (un+1) direction, and then migrates (transits)
along AB, ⊥ un+1, to orbit n for an atom of v = 0, and across
AB′ in time tAB′ for finite v in +x-direction; BB′ = vtAB′ . In
(a): ∠c, v = θ; (b): c‖v; (c): −c‖v. The insets in (a)-(c) illustrate
the radiation from an apparent source.

to un+1, to orbit n, at B if the atom is at rest, or at B′ if
the atom is moving at velocity v in x-direction, given after
vector addition.

(iv) A stationary-state orbiting electron on orbit n∗ (=
n+1 or n), ψkdn∗ , is [6] a (single) beat or de Broglie phase
wave convoluted from the opposite-traveling component total
waves {ϕjkn} generated by an oscillatory massless (vaculeon)
charge−e, of wavevectors k†n∗ and k‡n∗ , which being Doppler
shifted for the source moving at velocity ujn+1. An n+1→ n
transition emits the difference between the two single waves,
ψkdn+1 and ψkdn — the emitted radiation is naturally also a
single wave. And,

(v) The component total waves making up the electron
beat wave at A is generated by the source in a brief time δt
when at A, a wave frequency ∼V =511 keV/h' 1020 s−1;
so the the time for detaching the entire radiation wave trains
from the source is estimated δt∼1/V=8×10−21 s. In con-
trast, the orbiting period of the electron is τd.n+1=1/νd.n+1=
=(n1)

21.5×10−16 s. So in time δt� τd.n+1, the electron is
essentially not moved along orbit n+1 as well as path AB
or AB′; hence un∗ (' un+1) (thus c) and v are at fixed
angle θ. Specifically if the electron comes off at A1 and A2
as in Fig. 2b and c, respectively, we have the approaching

and receding source and observer

c ‖ v and − c ‖ v . (8)

The wave and dynamic variables for the nonstationary
transition process would not be a simple difference between
solutions of the stationary states. However, we can try to
represent the process effectively using an apparent source
such that:

(v.1) the total wave detached from the apparent source gives
the same observed radiation as due to the actual source;
and

(v.2) the apparent source in transition has the same motion
as the (actual source of the) transition electron, that
is, translating at the velocity v (cf. item iv) in +x-
direction here.

5 A theoretical formula for the redshift

In fulfilling (v.1), the apparent source ought to be an oscillat-
ory charge (q) executing in stationary state circular motion at
velocity ua on orbit n+1 (insets in Fig. 2). Let first the orbit
n+1 be at rest, v=0, and so must be the apparent source as
by (v.2). The apparent source generates two identical mono-
chromatic electromagnetic waves traveling oppositely along
orbit n + 1, of wavevectors k†a0= k

‡

a0= ka0, which super-
pose into a single electromagnetic wave ψka0 . On transition,
the source emits the entire ψka0 in the direction parallel with
ua(θ), by simply detaching it; thus ka0 ≡ kr0 =2π/λr0 .

Let now orbit n + 1 be in motion at velocity v in +x-
direction, and so must be the apparent source. Let the source
comes off orbit n + 1 at point A1 (Fig. 2b). In a brief time
δt before this, the apparent source was essentially at A1 and
generating two waves ϕ†

k
†
a

parallel and antiparallel with ua,

thus v; their wavelengths were owing to the source motion of
v Doppler shifted, to λ†a=λr0(1−

v
c ), λ

‡
a=λr0(1+

v
c ), and

wavevectors k†a =
2π

λ
†
a

, k‡a =
2π

λ
‡
a

with the Doppler shifts

k†a−kr0 =
(v/c)kr0
1− v/c

(a); kr0−k
‡
a =

(v/c)kr0
1 + v/c

(b). (9)

The two waves superpose to ψka =ϕ
†

k
†
a

+ϕ‡

k
‡
a

, being ac-

cording to [6] now a single beat, or de Broglie phase wave
of the moving apparent source. On transition the source
detaches the entire single beat wave ψka , which is no longer
“regulated” by the source and will relax into a pure electro-
magnetic wave ψkr , but in conserving momentum, retains
in the single direction parallel with ua thus v. Similarly, if
the source exits at A2 (Fig. 2c), a single electromagnetic
wave will be emitted parallel with ua(A2), or, −v ∙ψka has
a de Broglie wavevector given[6] by the geometric mean of
(9a) and (b):

ka.d =
√
(k†a − kr0)(kr0 − k

‡
a) =

(
v
c

)
kr0√

1− (v/c)2

or ka.d = γ
(v
c

)
kr0 . (10)
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We below aim to express the ka.d-effected radiation var-
iables kr, νr and λr, which being directly observable. Mo-
mentum conservation requires |~ka.d|= |~δkr|; ka.d is as-
sociated with an energy gain of the apparent source, εa.v =

= (~ka.d)
2

2me
, owing to its motion, and thus an energy deficit in

the emitted radiation wave ψkr ,

δεr(= ~δkrc) = −εa.v ,

for either c ‖ v or − c ‖ v ,
(11)

and accordingly momentum and frequency deficits in the
emission

δkr = −ka.d = −(v/c)kr0 , (12)

δνr = δkrc = −(v/c)kr0c = −(v/c)νr0 . (13)

With (13) in (7), we have

νr = γ
(
1−

v

c

)
νr0 ' γ νr0 −

(v
c

)
νr0 (14)

where γ in front of δνr is higher order thus dropped. With
(14) we can further compute for the emitted wave:

kr =
2πνr
c

= γ
(
1−

v

c

)
kr0 ' γkr0 −

(v
c

)
kr0 , (15)

λr =
c

νr
=

c

νr0(1/γ − v/c)
'
λr0
γ
+
(v
c

)
λr0 . (16)

The theoretical prediction (16) for λr above is seen to
agree exactly with Ives and Stilwell’s experimental formula,
(5). Notice especially that the prediction gives δνr < 0 and
δλr > 0 for both c ‖ v and −c ‖ v as follows from (11); that
is, they represent always a redshift in the emission spectral
line, regardless if the wave is emitted parallel or antiparallel
with v.

6 Discussion

From the forgoing analysis of the direct experimental spectral
data of Ives and Stilwell on hydrogen canal rays, and with
the elucidation of the underlying mechanism, we conclude
without ambiguity that, the spectral emission of a moving
hydrogen atom exhibits always a redshift compared to that
from an atom at rest; the faster the atom moves, the redder-
shift it shows. This is not an ordinary Doppler effect associat-
ed with a conventional moving source, but rather is an energy
deficiency resulting from the de Broglie electron kinetic
energy gain in transition to a moving frame, a common
feature elucidated in [7] to be exhibited by the deceleration
radiation of all de Broglie particles. This redshift does not
inform the direction of motion of the source (the atom).

It is on the other hand possible for an atomic spectral
emission to exhibit blue shift for other reasons, for example,
when the observer is moving toward the source as based on
Galilean transformation. The author thanks P.-I. Johansson
for his support of the research and the Studsvik Library for
helping acquiring needed literature.
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In the present paper an attempt is made to develop a fractional integral and differen-
tial, deterministic and projective method based on the assumption of the essential
discontinuity observed in real systems (note that more than 99% of the volume occupied
by an atom in real space has no matter). The differential treatment assumes continuous
behaviour (in the form of averaging over the recent past of the system) to predict the
future time evolution, such that the real history of the system is “forgotten”. So it
is easy to understand how problems such as unpredictability (chaos) arise for many
dynamical systems, as well as the great difficulty to connecting Quantum Mechanics
(a probabilistic differential theory) with General Relativity (a deterministic differential
theory). I focus here on showing how the present theory can throw light on crucial
astrophysical problems like dark matter and dark energy.

1 Introduction

In 1999 I published [1] the preliminaries of a new theory: the
General Interactivity. It was a sketched presentation of the
mathematical basis of the theory, i. e. the fractional integral
treatment of time evolution. In the present paper we extend
the ideas of General Interactivity to the fractional derivatives,
and so we can explain the outer flatness of rotation curves,
last measures of SN Ia at high redshifts, the fluctuations in
the CMB radiation and the classical cosmology theory.

In 1933 Zwicky [2] found that the Coma cluster of
galaxies ought to contain more matter than is inferred from
optical observations: many of the thousands of galaxies in
the cluster move at speeds faster than the escape velocity
expected from the amount of visible matter and from the
Newton theory of gravitation. In the 1970’s, many authors
discovered that the speed of stars and clouds of hydrogen
atoms rotating in a galactic disk is nearly constant all the
way out to the edge of the galaxy [3, 4]. Using Newton’s
law of gravitation, this implied that the amount of matter at
increasing radius is not falling away, against the observed
star-light suggests. Over past two decades, the measured
deflection of light from a distant star by a massive object
like a galaxy (gravitational lens) points to a mass-to-light
ratio for the lensing galaxies of about 150, and yet if galaxies
contained only observed stars the expected value would be
between 5 and 10 [5]. From the observed cosmic micro-
wave background (CMB, the relic radiation of the Big Bang
that fills the Universe) fluctuations, we need that 23% of
the Universe is dark matter, and 73% is dark energy
[6, 7, 8, 9, 10]. Recent observations of SN Ia brightness show
that the expansion of the Universe has been speeding up.
This unexpected acceleration is also ascribed to an amount
of dark energy that is very similar than 73% of the Uni-
verse [11].

In Section 2 we show a review of the theory, in Section 3

we apply the theory to account for the observed dark matter
and dark energy, and in Section 4 we develop the conclusions.

2 The model

I start from two hypothesis: (1) the irreversibility in time
of natural systems and (2) the interactivity among all the
systems in the Universe. These hypotheses imply an intricate,
unsettled and discontinuous (and hence non-differentiable)
space-time. The differential treatment projects a variable
X(t), whose value is known at a time t, to a successive
time, t+Δt, through the assumption of a knowledge of
their time derivative, X ′(t), as follows: X(t+Δt)=X(t)+
+X ′(t)Δt. In many cases, to a good approximation, there
is proportionality between X(t) and X ′(t) so that X ′(t) ∝
X(t+Δt). Here I extend this projection, but with two crucial
modifications: (a) I project a complete distribution of real
values (a set of measured values ordered in time) instead
of individual values at one time, and (b) I generalize the
derivative to the Liouville fractional derivative (to take into
account the possibility of the discontinuous space-time of
the system under study). This then gives the fundamental
equation of the new dynamics:

d
β
FRAC

dt
X(tpast) ∝ X(tfuture) . (1)

X(tpast) being a table of values of the variable X until
the present time, X(tfuture) the same number of values of
X but from the present time to the future (a projection), and
β a value between 0 and 1 that includes the key information
about the history of the system.

But for more physical sense, one must take the inverse
of equation (1), i. e.

X(tpast) ∝
1

Γ(β)

∫ T

tpast

X(tfuture)

(tpast − tfuture)1−β
dtfuture (2)
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which is the fractional integration (or the Riemann-Liouville
integral) of X(tfuture), T being a time-period characteristic
of each system. The first hypothesis, irreversibility, suggests
the necessity of projecting the values of X(t), weighted
by a function of time that must be similar to the function
characteristic of critical points, such as observed in the well
known irreversible phase transitions in Thermodynamics; for
example, the form (TE − TEC)−0.64 for the time correlation
length of an infinite set of spins with a temperature TE near
the critical temperature TEC [12]. Compare this with the term
(tpast − tfuture)

β−1 in equation (2). I call this weighting
“generalized inertia”; it is characteristic of each system in
the sense of incorporating into the β exponent the history of
all the interactions suffered by the system, including those
interactions avoided by the differential approximation (high
order terms in Taylor expansions) due to its small values.

To use the fundamental equation (1) with maximum effi-
ciency, I invert equation (2) because this is an Abel integral
transform, and there is a technique developed by Simmoneau
et al. [13] to optimize the inversion of Abel transforms. This
technique consists in making a spectral expansion using a
special kind of polynomials whose coefficients are obtained
by means of numerical integration, thus avoiding the basic
problem of amplification of the errors, a problem inherent
in numerical differentiation; in the technique of Simmoneau
et al., measurement errors are incorporated into the coeffi-
cients of the spectral expansion and then propagate with time
without being amplified.

In the present context one can see the time as a critical
variable, each “present” being an origin of time coordinates,
with two time dimensions: the past and the future. We should
note that in Quantum Mechanics two independent wave func-
tions are needed (the real part and the imaginary part of the
total wave function) to describe the state of a system at each
moment in time.

One can view General Interactivity as a third approxima-
tion to reality: the first was the conception of continuous and
flat space-time by Newton, the second was that of continuous
and curved space-time by Einstein. Here I see a discontinuous
space-time whose degree of intricacy measures the essential
cause of changing. As in Newtonian Dynamics, where the
forces are the causes of changing, and in General Relativity,
where modifications of the metric of space-time are the
cause of changes in the motion of all massive systems, in
General Interactivity the exponent β gives us a measure
of the intricacy of the space-time “seen” by each system
through a given variable X. But how can we see Gravity
from the new point of view of General Interactivity? From
(differential) Potential Theory we know that the modulus of
the gravity force per unit mass is the following function of
mass distribution, ρ(x), in space:

FG(x) = G

∫
ρ(x′)

|x′ − x|2
d3x′ (3)

and, comparing with the three-dimensional fractional integra-
tion of ρ(x) we have:

Rβ
[
ρ(x)

]
= πβ−

π
2
Γ
(
3−β
2

)

Γ
(
β
2

)
∫

ρ(x′)

|x− x′|3−β
d3x′; (4)

FG(x) can be identified with the 1-integral of ρ(x) in three-
dimensional space (β=1) except for a constant. So in the
present context the gravity force can be interpreted as a one-
dimensional projection of the three-dimensional continuous
distribution of matter. It is not, then, a complete integral (this
would be β=3) and so the sum (integral) for obtaining the
gravity is more intricate than the mass distribution (contin-
uous by definition), i. e. the real discontinuity of mass distrib-
utions is transferred to the fractional integral instead of
working with a discontinuous ρ(x). Gravity, like the electro-
static force, whose expression is very similar to FG(x),
is seen as an inertial reaction of space-time, which would
tend to its initial (less intricate,i. e. simpler) state, towards a
structure in which the masses were all held together without
relative motions; both forces are seen as reactions against the
action of progressive intricacy in the general expansion of
the Universe following the Big Bang.

We take the total mass-energy of the Universe as the
observable magnitude X(t) to evolve in time using Eq. (2).
The constancy of this variable gives 1 = 1

β2
(T 2 − t2past)

β

(where I take squared variables for simplicity in the use of
Simmoneau et al.’s inversion technique). The greater past-
time variable, tpast, less β indicating that the space-time is
more intricate with time; this is the reason for integrating
more fractionally (less β). So the parameter β can also be
considered as a measure of the entropy of the Universe.

Another key to understand General Interactivity comes
from the classical Gaussian and Planckian distribution func-
tions, to which real systems in equilibrium tend. The equi-
librium distribution function for systems of particles, for col-
lisional and for collisionless systems (in the non-degenerate
limit [14]) is Gaussian; classical Brownian motion is an ex-
ample [15]; the equilibrium distribution function for systems
of waves is a Planckian, and a key example is blackbody
radiation. If both distribution functions evolve in time, then,
using the inversion of equation (2), we have the same final
result: the Planckian distribution. This tells us that whatever
the initial distribution at the beginning of the Big Bang (per-
haps both the Planckian characteristic of interacting waves
and the Gaussian characteristic of interacting particles co-
existed), their time evolution leads to a Planckian distribu-
tion, thereby connecting with the actual observed spectrum
of the Cosmic Microwave Background, which appears to be
almost perfectly Planckian.

But, why is the Planckian more stable than the Gaussian
with the passing of time? The answer I propose is that suc-
cessive critical transitions (at each time), due to the complex-
ity caused by interactions at large distances, tend to amplify
the Gaussian distribution to all range of energies, making it
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flatter. This breaks the thermal homogeneity because of the
very different time evolution of many regions, due to the
delay in the transmission of information from any one zone
to others that are far away (note that the speed of the light
is a constant). This amplification goes preferentially to high
energies because there is no limit, in contrast with lower
energies, for which the limit is the vacuum energy.

In this context, then, the Universe is seen as an expansion
of objects that emitting information (electromagnetic waves)
in all directions, and one can differentiate between two basic
kinds of interactions: (a) at small distances (the distance
travelled by light during a time that is characteristic of
each system) forming coupled systems showing macroscopic
(ensemble) characteristics, such as temperature or density,
well differentiated from those of their surroundings; and
(b) at large distances, interfering one system from another in a
complex manner due to the permanent change in the relative
distances due to the constancy of the speed of light, the
huge number of interactions and the internal variation of the
sources themselves. Note that this distinction between small
and large distances can be extended relative to each physical
system. For instance, a cloud of water vapour (as in the
Earth’s atmosphere) constitutes a system of water molecules
interacting over short distances, while the interaction between
one cloud and another is considered to take place over a large
distance. Inside a galaxy, the stars in a cluster are considered
to interact over short distances, while the interactions between
that cluster and the remaining stars and gas clouds in the
galaxy are considered as interactions over large distances.

In General Relativity there are no point objects; instead,
all the objects in Nature are considered as systems of other
objects, even subatomic particles appearing to be composed
of others yet smaller.

I now focus on one of the most puzzling interpretations of
Quantum Mechanics: the wave-particle duality. In Quantum
Mechanics the objects under study show a double behaviour
depending on what type of experiment one makes. An elect-
ron behaves as a particle in collisions with other electrons,
but the same electron passing through two gaps (enough
small and enough near each other) behaves as a wave in
that the outcoming electrons form an interference pattern.
In General Interactivity each “particle” is considered as a
system, and we know that the equilibrium distribution of
random particles is Gaussian, and that after the time evolution
given by Eq. (2) the distribution transforms into a Planckian
(the interaction with the other systems “drives” the random
set of particles) which is the distribution to which a set of
interacting waves in a cavity naturally tend. Furthermore,
the Planckian can be decomposed into a set of Gaussians,
so that the double nature of matter/energy is ensured. The
fact that a Planckian can be the result of the addition of
Gaussians of different centres and amplitudes is interpreted
as the Planckian representing an ensemble of random motions
in turn represented by Gaussians, which find a series of walls

to which resulting in certain reflexion and certain absorption.
As already demonstrated [15], both processes, reflexion and
absorption by a barrier, are equivalent to the addition and the
subtraction, respectively, of two Gaussians: the main Gaus-
sian and that which emerge as a consequence of the barrier
(by displacing its centre to the other side of the barrier). A
Gaussian, then, converts into a set of several other Gaussians
at progressively smaller amplitudes as a consequence of the
existence of barriers, and the envelope is a Planckian. There
is a partial reflection at each barrier in the direction of higher
energies, while the reflection is total to the lower energies and
the absorption of unreflected part must be added to the left
of the barrier. This argument can be applied to explain the
Planckian distribution observed in the Cosmic Microwave
Background Radiation: the energy barriers can be thought of
as the consequence of the existence of wrinkles in space-time,
caused by the finiteness of the Universe (closed box) and the
uncoupled expansion of the content with respect to the box,
or by breaking of the expansion because of the collision of
the outer parts with another medium, or by the succession of
several bangs at the beginning, instead of only one bang.

3 Dark Matter and Dark Energy

Another example of application of this theory is the generali-
zation of one of the most important theorems in Field Theory,
Gauss’s theorem, leading to a possible solution (as a kind of
Modified Newtonian Dynamics theory) of the well known
problem of the “lost mass” of the Universe and its associated
problem of “dark matter” [16]. Assuming the well known
observation of the infinitesimal volume occupied by matter
relative to holes in Nature (the nucleus of an atom occupy less
than 1% of the atom’s volume, and gas clouds in the inter-
stellar medium have densities of 1 atom per cubic centimeter
or less), one must consider the possibility of relaxing the con-
tinuum hypothesis. The Gauss’s theorem can be expressed,
simplified and for the gravitational field, as

∫

S

gNdS = −4πGM , (5)

where gN is the intensity of the gravity field over a closed
surface, S, which contains the mass, M , which is the origin
of the field, on the assumption of continuity, and G is the uni-
versal gravity constant. So, integrating Eq. (5) on the assump-
tion of gN ' constant over S, we get gN =−4πGM/S, with
S =

∫
S
dS. If we take as the starting point the differential

form of Gauss theorem, and then we take in Eq. (5) the frac-
tional, instead of the full, integral and also assume g' const,
we have

g(r) =
−4πGM

πβ−1Γ( 2−β2 )
Γ( β2 )

∫
S

dX
|S−X|2−β

. (6)

Because β is less than 2, g is greater than gN , and this
result could explain the observational fact of gN being very
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Fig. 1: Rotation curve (kms−1) for NGC3198. Crosses are observ-
ational data points taken from van Albada et al. [17]. Full line is the
prediction of the present theory, and dashed line is the prediction
by the Newton law of gravitation.

small in explaining, for instance, many galactic rotation
curves far from the central regions. For, assuming spherical
simetry one has:

g(r) = gN
4πr2

πβ−1Γ( 2−β2 )
Γ( β2 )

∫ 2π
0

2πr2 sin θdθ
r2−β

. (7)

And taking β=1 one has g(r)= gNr, which introduced
in the classical centrifugal equilibrium identity V 2

r = g leads
to the amazingly V =(GM)1/2' constant as is observed for
flat rotation curves that needs dark matter (see Fig. 1).

More complicated treatment can be made: in the integral
treatment one can consider the basic constituents of matter
(the atoms) and the infinitesimal size of the volume occupied
by the atomic mass (the nucleus) with respect to the size
of the atom, and then one finds the necessity of take into
account that ubiquitous nature of the big holes existing inside
the matter (the atoms and molecules inside the very low
density galactic gas clouds amplify the hole effect respect
to the whole cloud and then amplify the influence in the
macroscopic gravitational (massive) behaviour). So one can
consider the hypothesis of continuity as a first approximation,
and one can re-examine the Gauss’ theorem

∫

S

gdS = −4πG
∫

V

ρdV , (8)

where g is the gravitational field over the surface S, S is
any closed surface containing the massive object which is
the source of the field, G is the gravitational constant, ρ

is the density, and V is the volume contained within the
surface S. And one can generalize Eq. (5) in the sense of take
both integrals as fractional integrals (α and β respectively)
which leads to normal integrals for some especial case. If
one assumes, for simplicity, spherical symmetry for the gas
mass distribution in the galaxy, one has:

ρ = ρ0 e
−(r−r0)

r′ (9)

and assuming g' constant over the now non-necessary conti-
nue surface (the fractional integration takes this into account)
one has:

g = −
16π2Gρ0C2(β)

f(α)r2C1(α)
r2−α

∫
r2rβ−3e−

r−r0
r′ dr , (10)

where f(α) is some function of α,

C2(β) = πβ−3/2
Γ
(
3−β
2

)

Γ
(
β
2

) , (11)

C1(α) = πα−1
Γ
(
2−α
2

)

Γ
(
α
2

) , (12)

while

gN = −
4πGρ0
r2

∫
r2e−

r−r0
r′ dr . (13)

So, in the especial case when β = 3 and α = 2 we have
g = gN . Then, expanding rβ−3' 1+(β−3) log r+ . . . as
β→ 3 and r2−α' 1−(α−2) log r+ . . . as α→ 2, and in-
cluding the expansions into Eq. (13) one has

g '
8πC2(β)

f(α)C1(α)

(
1− (α− 2) log r

)
×

×

(

gN −
4πGρ0
r2

∫
(β − 3)(log r)r2e−

r−r0
r′ dr

)

.

(14)

And integrating by parts and taking very large values for
r, we have

g ' gN
8πC2(β)

f(α)C1(α)

(
1 + (α− 2)(3− β) log 2r

)
. (15)

And for typical values of observed flat rotation curves
(5kpc 6 r 6 20kpc) we have that g∝ gNr represents a good
approximation. So, for certain values of α and β (α less than
2 and β greater than 3) one has that outer rotation curves can
be flat as observed.

But the most puzzling problem up-to-date in cosmology
is the necessity of adding “ad hoc” a dark energy or negative
pressure (the so called by Einstein cosmological constant)
to the main equation of General Relativity to account for
the last measures on supernovae Ia and the fluctuations in
the cosmic microwave background radiation which implies
a flat accelerating expanding universe. The field equation
of General Relativity was formulated by Einstein as the
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generalization of the classic Poisson equation which relates
the second derivative of the potential φ associated to the
gravitational field with the assumed continuous mass distrib-
ution represented by the volume density ρ:

Δ2φ+ 4πGρ = 0 . (16)

For comparison, the similar equation in General Rela-
tivity, which relates the mass and energy distribution with
the differential changes in the geometry of the continuum
space-time, is (see e. g. Einstein [18]):

(

Rμν −
1

2
gμνR

)

+ κTμν = 0 . (17)

But for the last equation be coherent with the last inde-
pendent measures of SN Ia and fluctuations of CMB radia-
tion, we need to add a term gμνΛ to the left side of equation
which represents near 73% of all the other terms. This prob-
lem is avoided naturally if we consider a discontinuous
space-time, and then we re-formulate the equations by using
the fractional derivative instead the full derivative. In that
case, the second derivative is less than the full derivative,
and then the cosmological constant is not needed at all to
equilibrate the equations. In fact the μ-fractional derivative
of the function rλ is given by [19]:

Dμrλ =
Γ(λ+ 1)

Γ(λ− μ+ 1)
rλ−μ (18)

for λ greater than −1, μ greater than 0. But as λ→−1,
rλ→∝φ being φ the gravitational potential. And as one can
see, taken a fixed value of λ, as μ increase, the μ-derivative
decrease. Or to be more precise, if we assume that the con-
stant to be added to the left side of Eq. (17) represents the
73% of all the matter and energy in the Universe, one has:

lim
λ→−1

Γ(λ− μ+ 1)R−λ−2

Γ(λ− 2 + 1)R−λ−μ
' 1.73 , (19)

where R is a characteristic scale-length of the Universe.
And the relation (19) works for values of μ greater but
very near 2, being 2 the value corresponding to the usual
second derivative. So we conclude that taking a value, for
the derivatives in the field equations, slightly greater than
the usual 2, we are able of include the cosmological constant
inside the new fractional derivative of the classical field
equations.

4 Conclusions

The new theory of the General Interactivity can be applied
to many fields of natural science and constitutes a new step
forward in the approximation to the real behaviour of Nature.
It assumes the necessity of explicitly taking into account
the real history of a system and projecting to the future.

However, it also takes into account the non-uniformity of the
distribution of holes in the Nature and is therefore a theory
of discontinuity. The new theory can account for naturally
the needed amounts of dark matter and dark energy as a light
modification of classical field equations.
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Creep experiments were conducted on Cu-8.5 at.% Al alloy in the intermediate tem-
perature range from 673 to 873 K, corresponding to 0.46–0.72 Tm where Tm is
the absolute melting temperature. The present analysis reveals the presence of two
distinct deformation regions (climb and viscous glide) in the plot of log ε̇ vs. log σ.
The implications of these results on the transition from power-law to exponential
creep regime are examined. The results indicated that the rate controlling mechanism
for creep is the obstacle-controlled dislocation glide. A phenomenological model
is proposed which assumes that cell boundaries with sub-grains act as sources and
obstacles to gliding dislocations.

1 Introduction

The importance of accurate experimental data on the creep
properties of polycrystalline metals and alloys is well known.

Creep resistance is an important attribute of high tempe-
rature alloys and mechanisms that control! creep in alloys
must be well understood for design of alloys that resist
creep. These mechanisms can be classified into different
types depending on the values of the activation energy for
creep and temperatures. Several of these mechanism were
reviewed by Raj and Langdon [1].

The creep resistance of Cu was shown to increase as
the Al content is increased although the creep increment
was small above 8.5 at.% Al. The creep response of Cu-
Al binary solid solutions has been described in one of two
ways: (i) those alloys in which dislocation climb is the rate-
controlling step during deformation and (ii) where dislocation
glide becomes rate controlling due to solute drag on moving
dislocations [2]. More detailed knowledge of dislocation pro-
cesses in cell walls and for sub-boundaries in creep that could
lead to a greater understanding of the creep mechanisms has
been emphasized [3]. From out point of view, the two models
which represent an important step in this direction are as
follows: (a) the model of soft (i.e. sub-grain interior) and hard
(i. e. sub-boundaries) regions introduced by Nix-Ilschner [4],
and developed with considerable detail by Rodriguez et al.
[5]; (b) the bowing-out model of sub-boundaries due to
Argon and Takeuchi [6]. From an experimental point of
view, Aldrete [7] measured local stresses in the sub-grain
structure formed during steady state creep in Cu-16 at.% Al
solid solution alloy. Their results show that the internal stress
σi [3] mainly originates in cell wall regions.

The objective of this paper is to study the phenomenolo-
gical model for creep behaviour in Cu-8.5 at.% Al alloy,
and examine the mechanism controlling the creep regime at
intermediate temperature region.

2 Experimental procedure

The Cu-8.5 at.% Al alloy was prepared from melting high
purity copper and aluminum (99.99%) by aspiration through
a quartz crucible of induction melted alloy under a helium
atmosphere [8]. The cooling rate of the alloy is between
4×102 and 103 Ks−1. The ingot was swaged in wire form
of diameter 1mm and ≈ 50mm gauge length. The wire spe-
cimens were pre-annealed at 873K for 1h to check what
happens to the distribution of Al, and to remove the effects of
machining with producing a stable uniform grain size [9], in a
quartz ampoule after evacuating to at least 5.3×104 Pa. After
this treatment the samples were considered to be precipitated
[10]. Fairly reproducible and equiaxed grains were obtained
from the heat treatment, and the average linear intercept
grain size obtained from a statistical sample size of grains
was ∼=10μm.

Creep tests were conducted at the intermediate temperatu-
re range from 673 to 873K, corresponding to 0.46–0.72Tm,
with an accuracy of ±1K under constant stress condition
in a home-made creep machine with a Andrade-Chalmers
lever arm. All tests were conducted under a flowing argon
atmosphere maintained at a slightly positive pressure.

Some temperature change tests were conducted in order
to determine the activation energy for creep Qc.

3 Results and discussion

All creep curves showed a normal primary stage and a
reasonably well-established steady-state region. The duration
of the tertiary stage was short and abrupt, although the
contribution of the tertiary strain to the total strain was often
quite large. Typical creep curves are shown in Fig. 1 for a
temperature 773K and different stress levels.

Usually creep tests are carried out on annealed samples;
then we can assume that, during the first minutes of the test,

M. Abo-Elsoud. Phenomenological Model for Creep Behaviour in Cu-8.5 at.% Al Alloy 87



Volume 3 PROGRESS IN PHYSICS July, 2006

Fig. 1: Representative creep curves at different stress levels and at
T = 823K.

Fig. 2: Stress dependence of minimal creep rate at different tem-
peratures. The creep rates show a change in slopes from n = 3 to
n = 2.8 at the transition stresses.

the annihilation events are negligible as compared with the
creation of dislocations. Therefore, considering that all the
dislocations are mobile, the change ρm in is due to the crea-
tion of new dislocations. Also, according to Montemayor-
Aldrete et al. [7] the creation rate ρ̇+m of dislocations is
given as

ρ̇+m =
ασ ε̇

ū
, (1)

where ū is the mean value for the self-energy of dislocations
per unit length, α is the average geometrical factor relating
the tensile deformation to the shear deformation for samples,
and ε̇ is the deformation rate.

Since the strain in the secondary region was often quite
small, especially at the lower temperatures, it was necessary
to assume that the minimum creep rate was representative of
secondary behaviour. Fig. 2 shows the variation of the mini-
mum creep rate ε̇ with applied stress plotted logarithmically.
As indicated, the stress exponent, n, (n= ∂ ln ε̇/∂ lnσa)T,t
decreases from ∼=3.2±0.2 at the lowest temperature of
673K to ∼=2.8±0.2 at temperature above ∼=773K. These
values of stress exponent are typical for a rate controlling
process due to a transition from viscous glide mechanism
to climb of dislocation along the shear planes [2]. However,
Fig. 2 assumes implicitly that the power-law relationship
is valid and this may not be true to for all of the datum

Fig. 3: The dependence of the volume fraction fc of subgrains near
grain boundaries on applied stress at T = 773K.

points. This observation suggested that there is a connection
between creep behaviour and the internal microstructure of
the primary sub-grains. It is found that the primary sub-grains
become elongated in the transition region between power-
law and exponential creep, and they often contain fewer
secondary sub-boundaries, larger numbers of coarse-walled
cells and a higher dislocation density in comparison to their
equiaxed neighbors [1]. Similar microstructures consisting of
cells and equiaxed and elongated sub-grains have also been
observed in Al [9], Cu [11], Fe [12].

From a phenomenological point of view, the qualitative
features of the our model consider that in the early primary
transient stage of deformation the only difference between vi-
scous glide and power-law creep is due to the dependence of
the glide velocity on the effective stress σe. Here σe=σ−σi,
with σ the applied stress and σi the internal stress. At the
higher stress level in the power law creep regime, the ap-
parent creep mechanism is determined by the relative vol-
ume fraction of climb-and viscous-glide-controlled regions
as presented in Fig. 3. If the above arguments are reasonable,
then it is suggested that the creep rate in a grain of a
polycrystalline aggregate can be represented by summation
of the viscous glide and climb rates as follows [13]:

ε̇app = (1− fc) ε̇g + fc ε̇c , (2)

where ε̇app is the apparent creep rate, and ε̇g and ε̇c are the
rates of the viscous glide and climb processes respectively.
The volume fraction of sub-grains near the boundary is fc.
The volume fraction of the region controlled by the viscous
glide process is 1− fc. If grain boundaries migrate only, the
value of fc becomes zero.

Fig. 4 shows a schematic representation of the deforma-
tion behaviour in the vicinity of grain boundaries and devel-
opment of sub-grains in n≈ 3 stress region. It shows a large
equiaxed primary sub-grain which is formed during power-
law creep and subdivided by cells; for simplicity, secondary
sub-boundaries are not shown (see Fig. 4a). Under steady-
state conditions, a dislocation generated at a cell boundary
under the action of a shear stress, τ , can glide across to the
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Fig. 4: A phenomenological model for creep showing (a) cells
and dislocations within a sub-grain and (b) emission of extended
dislocations from a cell wall; b1 and b2 are the Burgers vectors of
the partial dislocations.

opposite boundary fairly easily (Fig. 4b), where its motion
is obstructed or it is annihilated. This process is similar to
mechanisms suggested for cyclic deformation [14] but unlike
the earlier two phase creep models [2], the present me-
chanism is consistent with recent experimental observations
[15] since it assumes that the cell rather than the sub-grain
boundaries govern steady-state behaviour. This difference is
important because, in order to accommodate strain inhomo-
geneity in the material, a cell boundary is more likely than a
sub-boundary to breakup due to its smaller misorientation
angle (about 0.1◦), and thus it is more likely to release
new dislocations into the sub-grain interior. In this way,
the cell boundaries act as the major sources and sinks for
dislocations during creep. The transition from power-law to
exponential creep can be envisaged [4, 7] to occur when
these microstructural changes are sufficiently large that they
influence the nature and magnitudes of the internal stresses
acting within the primary sub-grains, thereby resulting in an
increase in their aspect ratio. The internal stresses within
elongated sub-grains are expected to be higher than that
within equiaxed sub-grain, and this difference can lead to
sub-boundary migration if the sub-boundaries are mobile.
This is consistent with experimental observations on many
materials [16].

Fig. 5 shows a comparison of the experimental activation
energies Qc for the alloy with those predicted by the Nix-
Ilschner model [4] for obstacle-controlled glide Qg vs. norm-
alized stress σ/G. It suggest that obstacle controlled disloca-
tion glide is the dominant mechanism in Cu-8.5 at.% Al alloy

Fig. 5: A comparing between the experimental activation energies,
Qc, for Al-8.5 at.% Cu alloy, and the prediction by the Nix-Ilschner
model [4] for obstacle-controlled glide, Qg at T = 773K.

Fig. 6: The normalized activation energies, Qc, dependence of the
T/Tm for the increasing strain rates.

at intermediate temperature region when σ/G > 5×10−5,
corresponding to the exponential creep regime [17].

Although the Nix-Ilschner model [4] is in excellent agree-
ment with the experimental data, it is conceptually limited
because since it assumes that the deformation processes
occurring within the sub-grain interior (i. e. the soft regions)
are coupled with recovery mechanisms taking place at the
sub-boundaries (i. e. the hard regions). While this assumption
predicts that the power-law and the exponential creep mech-
anisms will act independently, it dose not satisfy the strain
compatibility conditions which must maintained between the
hard and soft regions to ensure that the slowest deforming
phase determines the overall creep rate in both deformation
regimes. Support this phenomenological model is also found
in Cottrell-Stokes type experiments [18].

Additionally, Fig. 6 reveals that the normalized activation
energies, Qg/RTm, extrapolate smoothly to the values ob-
tained at lower homologous temperatures where obstacle-
controlled glide was established as the dominant deformation
process.

4 Conclusion

1. A detailed analysis of creep data on Cu-8.5 at.% Al
alloy, obtained at intermediate temperatures between
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0.46–0.72Tm, showed that the obstacle-controlled
glide is the rate-controlling mechanism in the transition
from power-law to exponential creep regime.

2. A phenomenological model for creep is proposed
which is based on the premise that cell boundaries in
the sub-grain interior act as sources and obstacles for
dislocations.

3. The soft and hard regions model for the internal stress
σi for a power-law creep curve can only be explained
by considering the contribution to σi arising from the
cell wall dislocations, as well as from dislocations that
do not belong to the cell walls.
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Doppler broadening positron annihilation technique (DBPAT) provides direct inform-
ation about the change of core and valance electrons in Polyallyl diglycol carbonate
(CR-39). CR-39 is widely used as etched track type particle detector. This work aims
to study the variation of line-shape parameters (S- and W-parameters) with different
α-particle doses of 241Am (5.486 MeV) on CR-39 samples at different energies. The
relation between both line-shape parameters was also reported. The behavior of the
line-shape S- and W-parameters can be related to the different phases.

1 Introduction

Positron Annihilation Technique (PAT) has been used to
probe a variety of material properties as well as carry out
research in solid state physics. Recently this technique has
become established as a useful tool in material science and
is successfully applied for investigation of defect structures
present in metal alloys. PAT has been employed for the
investigating Polymorphism in several organic materials [1]
and it has emerged as a unique and potent probe for character-
izing the properties of polymers [2].

Positron Annihilation Doppler Broadening Spectroscopy
(PADBS) is a well established tool to characterize defects [3].
The 511 keV peak is Doppler broadened by the longitudinal
momentum of the annihilating pairs. Since the positrons are
thermalized, the Doppler broadening measurements provide
information about the momentum distributions of electrons
at the annihilation site.

Two parameters S (for shape), and W (for wings) [4]
are usually used to characterize the annihilation peak. The
S-parameter is more sensitive to the annihilation with low
momentum valence and unbound electrons. The S-parameter
defined by Mackenzie et al. [5] as the ratio of the integration
over the central part of the annihilation line to the total
integration. The W-parameter is more sensitive to the anni-
hilation with high momentum core electrons and is defined
as the ratio of counts in the wing regions of the peak to the
total counts in the peak.

CR-39 is a polymer of Polyallyl diglycol carbonate
(PADC) has been used in heavy ion research such as compo-
sition of cosmic rays, heavy ion nuclear reactions, radiation
dose due to heavy ions and exploration of extra heavy ele-
ments. Some applications include studies of exhalation rates
of radon from soil and building materials [6, 7] and neutron
radiology [8]. When a charged particle passes through a
polyallyl diglycol carbonate, C12H18O7 (CR-39) a damage

zone are created, this zone is called latent track. The latent
track of the particle after chemical etching is called “etch pit”
[9]. The etch pit may be seen under an optical microscope.
Positron trapping in vacancies (the size of the etch pit in the
CR-39 sample) results in an increase (decrease) in S (W)
since annihilation with low momentum valence electrons is
increased at vacancies.

2 Experimental technique

Various holder collimators with different heights are used
to normally irradiate the INTERCAST CR-39 in air by α-
particles [10]. Track detectors “CR-39” were normally irrad-
iated in air by different α-particle energies from 0.1μCi
241Am source.

The heights of the holders are 12.47, 17.55, 21.58, 24.93,
28.7, 31.55 and 34.6 mm they would reduce the energy of
5.486 MeV α-particles from 241Am to 4.34, 3.75, 3.3, 2.86,
2.3, 1.78 and 1.13 MeV, respectively. The irradiations were
verified at 0.5, 2, 3, 4.5 min. After exposures, the detectors
were etched chemically in 6.25 M NaOH solution at 70◦C for
6 h. The simplest way to guide the positrons into the samples
is to use a sandwich configuration. 22Na is the radioactive
isotope used in our experiment.

The positron source of 1 mCi free carrier 22NaCl was
evaporated from an aqueous solution of sodium chloride
and deposited on a thin Kapton foil of 7.5μm in thickness.
The 22Na decays by positron emission and electron capture
(E. C.) to the first excited state (at 1.274 MeV) of 22Na. This
excited state de-excites to the ground state by the emis-
sion of a 1.274 MeV gamma ray with half life T1/2 of
3×10−12 sec. The positron emission is almost simultaneous
with the emission of the 1.274 MeV gamma ray while the po-
sitron annihilation is accompanied by two 0.511 MeV gamma
rays. The measurements of the time interval between the
emission of 1.274 MeV and 0.511 MeV gamma rays can
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Fig. 1: Block diagram of HPGe-detector and electronics for Doppler
broadening line shape measurements.

Fig. 2: The variation of S-parameter as a function of irradiation
energy for 0.5, 1, 2 and 3 min. irradiation time.

yield the lifetime τ of positrons. The source has to be very
thin so that only small fractions of the positron annihilate
in the source.

The system which has been used in the present work
to determine the Doppler broadening S- and W-parameters
consists of an Ortec HPGe detector with an energy resolution
of 1.95 keV for 1.33 MeV line of 60Co, an Ortec 5 kV bais
supply 659, Ortec amplifier 575 and trump 8 k MCA. Figure
1, shows a schematic diagram of the experimental setup.
Doppler broadening is caused by the distribution of the
velocity of the annihilating electrons in the directions of
gamma ray emission. The signal coming from the detector
enters the input of the preamplifier and the output from the
preamplifier is fed to the amplifier. The input signal is a
negative signal. The output signal from the amplifier is fed
to a computerized MCA. All samples spectrum are collected
for 30 min.

3 Results and discussion

The Doppler broadening line-shape parameters were mea-
sured for irradiated CR-39 samples of different α-particle

Fig. 3: The variation of W-parameter as a function of irradiation
energy for 0.5, 1, 2 and 3 min irradiation time.

Fig. 4: The variation of S and W parameters as a function of
irradiation time for CR-39 samples.

energies at different doses (0.5, 1, 2 and 3 min). The data
of S-and W-parameters at 1 min were calculated by Abdel-
Rahman et. al. [11]. The Doppler broadening line-shape S-
and W-parameters are calculated using SP ver. 1.0 program
[12] which designed to automatically analyze of the positron
annihilation line in a fully automated fashion but the manual
control is also available. The most important is to determine
the channel with the maximum which is associated with the
energy 511 keV. The maximum is necessary because it is a
base for definition of the regions for calculations of S- and
W-parameters.

The results of S- and W-parameters as a function of
α-particle energy at different irradiation doses into CR-39
polymer are shown in Figures 2 and 3. From these figures one
notice a linear behavior of S- and W-parameters obtained at
minimum irradiation time of 0.5 min. The effect of such small
irradiation time is very weak to make any variation in line-
shape parameters. The values of S- and W-parameters are
47% and 15% respectively at 0.5 min. At longer time (1 min)
the S-parameter has values around 46% while values of about
15% are obtained for W-parameter. An abrupt change at
1 min definitely observed at irradiation energy of 2.86 MeV
of α-particles for both S- and W-parameters. At this energy
a drastically decrease in the S-parameter with deviation of
about ΔS= 11% comparable with a drastically increase in
the W-parameter with deviation of about ΔW= 13% [11].
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Fig. 5: The correlation between the W-parameter and S-parameter
at irradiation time of 1 min.

Fig. 6: The correlation between the W-parameter and S-parameter
at irradiation time of 3 min.

The S-parameter decreases while W-parameter increases with
increasing of irradiation time. Values of about 35% and 25%
for S-parameter are obtained at 2 and 3 min respectively for
lower energies. The deviation of both S- and W-parameters
at 2.86 MeV become very small at longer time as measured
at 2 and 3 min. The deviations of 4S and 4W reach values
less than 0.1% at 3 min (notice different scale on Figures 2
and 3). The behavior of S- and W-parameters reveal an abrupt
change at the position of the transition (1 min at 2.86 MeV).
The behavior of the line-shape S- and W-parameters can be
related to the different phases. Like many others molecular
materials, the use of PAT also proven a very valuable in the
study of phase transition in polymers.

To recognize more clear the effect of both irradiation time
and energy, we take 3 values of energies from presented
figures and draw them as a function of irradiation time.
Figure 4 (a, b, and c) represent the S- and W-parameters as a
function irradiation time for samples irradiated at energies of
1.78, 2.86 and 3.75 MeV respectively. It is much more clear
from these figures a slightly change of S- and W-parameters
are obtained only at 1 min at irradiation energies of 1.78 and
3.75 MeV. Much more pronounced change in both S- and
W-parameters are obtained at the same irradiation time at
energy of 2.86 MeV.

The values of W-parameter as a function of S-parameter
at 1 and 3 min are plotted in Figs. 5 and 6. It is obvious from

these Figures that W-parameter increases as S-parameter
decreases for all irradiation times. In addition there are a good
correlation with r2= 0.998 and 0.8928 between S-parameter
and W-parameter for 1 and 3 min respectively.

4 Conclusion

The variation of line-shape parameters (S- and W-parameters)
at different α-particle doses of 241Am on CR-39 samples for
different energies have been studied. The behavior of line-
shape parameters at different α-particle doses reveals a pro-
nounced decrease and increase in both S- and W-parameters
respectively. A linear behavior of S- and W-parameters are
obtained at minimum irradiation time of 0.5 min. An abrupt
change of both line-shape parameters, obtained at 2.86 MeV
and irradiation dose of 1 min. The W-parameter increases as
S-parameter decreases for all irradiation times.
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