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SPECIAL REPORT

PLANCK, the Satellite: a New Experimental Test of General Relativity

Larissa Borissova and Dmitri Rabounski
E-mail: lborissova@yahoo.com; rabounski@yahoo.com

If the origin of a microwave background (EMB) is the Earth, what would be its density
and associated dipole anisotropy measured at different altitudes from the surface of
the Earth? The mathematical methods of the General Theory of Relativity are applied
herein to answer these questions. The density of the EMB is answered by means of
Einstein’s equations for the electromagnetic field of the Earth. The dipole anisotropy,
which is due to the rapid motion of the source (the Earth) in the weak intergalactic field,
is analysed by using the geodesic equations for light-like particles (photons), which
are mediators for electromagnetic radiation. It is shown that the EMB decreases with
altitude so that the density of its energy at the altitude of the COBE orbit (900km) is 0.68
times less than that at the altitude of a U2 aeroplane (25 km). Furthermore, the density
at the 2nd Lagrange point (1.5 million km, the position of the WMAP and PLANCK
satellites) should be only�10�7 of the value detected by a U2 aeroplane or at the COBE
orbit. The dipole anisotropy of the EMB doesn’t depend on altitude from the surface of
the Earth, it should be the same irrespective of the altitude at which measurements are
taken. This result is in support to the experimental and observational analysis conducted
by P.-M. Robitaille, according to which the 2.7 K microwave background, first observed
by Penzias and Wilson, is not of cosmic origin, but of the Earth, and is generated by
the oceans. WMAP indicated the same anisotropy of the microwave background at the
2nd Lagrange point that near the Earth. Therefore when PLANCK, which is planned
on July, 2008, will manifest the 2.7 K monopole microwave signal deceased at the 2nd
Langrange point, it will be a new experimental verification of Einstein’s theory.

1 Introduction

Our recent publication [1] was focused on the mathematical
proof in support to the claim made by P.-M. Robitaille: ac-
cording to the experimental and observational analysis con-
ducted by him [3–10], the 2.7 K monopole microwave back-
ground, first detected by Penzias and Wilson [2], is not of
cosmic origin, but of the Earth, and is generated by oceanic
water�. As shown in the framework of Robitaille’s concept,
the anisotropy of the background, observed on the 3.35 mK
dipole component of ity, is due to the rapid motion of the
whole field in common with its source, the Earth, in a weak
intergalactic field so that the anisotropy of the observed mic-
rowave background has a purely relativistic origin [21].z
�Robitaille reported the result first in 1999 and 2001 in the short com-

munications [1, 2], then detailed explanation of the problem was given by
him in the journal publications [3–6] and also in the reports [9, 10].
yThe 3.35 mK dipole component of the background was first observed in

1969 by Conklin [11] in a ground-based observation. Then it was studied by
Henry [12], Corey [13], and also Smoot, Gorenstein, and Muller (the latest
team organized a stratosphere observation on board of a U2 aeroplane [14]).
The history of the discovery and all the observations is given in detail in
Lineweaver’s paper [15]. The anisotropy of the dipole component was found
later, in the COBE space mission then verified by the WMAP space mission
[16–20].
zThis conclusion is based on that fact that, according to the General

Theory of Relativity, photons exceeded from a source at radial directions
should be carried out with the space wherein this source moves so that the
spherical distribution of the signals should experience an anisotropy in the
direction of the motion of this source in the space [22, 23].

If the microwave background is of the earthy origin, the
density of the field should obviously decrease with altitude
from the surface of the Earth. The ground-bound measure-
ments and those made on board of the COBE satellite, at the
altitude 900 km, were processed very near the oceans which
aren’t point-like sources, so the observations were unable to
manifest the change of the field density with altitude. An-
other case — the 2nd Lagrange point, which is located as far
as 1.5 mln km from the Earth, the position of the WMAP
satellite and the planned PLANCK satellite.

A problem is that WMAP has only differential instru-
ments on board: such an instrument, having a few channels
for incoming photons, registers only the difference between
the number of photons in the channels. WMAP therefore tar-
geted measurements of the anisotropy of the field, but was un-
able to measure the field density. PLANCK, which is planned
on July, 2008, is equipped by absolute instruments (with just
one channel for incoming photons, an absolute instrument
gets the integral density of the monopole and all the multi-
pole components of the field). Hence PLANCK will be able
to measure the field density at the 2nd Lagrange point.

We therefore were looking for a theory which would be
able to represent the density and anisotropy of the Earth’s
microwave background as the functions of altitude from the
Earth’s surface.

In our recent publication [1], we created such a theory
with use of the mathematical methods of the General The-
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ory of Relativity where the physical characteristics of fields
are expressed through the geometrical characteristics of the
space itself. We have split our tasks into two particular prob-
lems: if a microwave background originates from the Earth,
what would be the dependency of its density and relativis-
tic anisotropy with altitude? The first problem was solved via
Einstein’s equations for the electromagnetic field of the Earth.
The second problem was solved using the geodesic equations
for light-like particles (photons) which are mediators for elec-
tromagnetic radiation.

We have determined, according to our solutions [1], that a
microwave background that originates at the Earth decreases
with altitude so that the density of the energy of such a back-
ground in the COBE orbit (the altitude 900 km) is 0.68 times
less than that at the altitude of a U2 aeroplane. The density of
the energy of the background at the L2 point is only �10�7

of the value detected by a U2 aeroplane or at the COBE or-
bit. The dipole anisotropy of such an earthy microwave back-
ground, due to the rapid motion of the Earth relative to the
source of a weak intergalactic field which is located in depths
of the cosmos, doesn’t depend on altitute from the surface of
the Earth. Such a dipole will be the same irrespective of the
position at which measurements are taken.

In principle, the first problem — how the density of an
earthy-origin microwave background decreases with altitude
— may be resolved by the methods of classical physics. But
this is possible only in a particular case where the space is
free of rotation. In real, the Earth experiences daily rotation.
We therefore should take into account that fact that the rota-
tion makes the observer’s local space non-holonomic: in such
a space the time lines are non-orthogonal to the spatial sec-
tion, so the Riemannian curvature of the space is non-zero. A
satellite’s motion around the Earth should be also taken into
account for the local space of an observer which is located
on board of the satellite. Therefore in concern of a real ex-
periment, in both cases of ground-based and satellite-based
observations, the first problem can be resolved only in the
framework of the General Theory of Relativity.

The second problem can never been resolved in the frame-
work of classical physics due to the purely relativistic origin
of the field anisotropy we are considering.

WMAP registered the same parameters of the microwave
background anisotropy that the registered by COBE near the
Earth. This is according to our theory.

Therefore when PLANCK will manifest the 2.7 K mono-
pole microwave signal deceased at the 2nd Langrange point,
with the same anisotropy of the background that the measured
near the Earth (according to WMAP which is as well located
at the 2nd Langange point), this will be a new experimental
verification of the General Theory of Relativity.

A drawback of our theory was only that complicate way
in which it was initially constructed. As a result, our re-
cently published calculation [1] is hard to reproduce by the
others who have no mathematical skills in the very specific

areas of General Relativity, which are known to only a close
circle of the specialists who are no many in the world. We
therefore were requested for many additional explanations by
those readers who tried to repeat the calculation.

Due to that discussion, we found another way to give rep-
resentation of our result with much unused stuff removed. We
also gave an additional explanation to those parts of our cal-
culation, which were asked by the readers. As a result a new
representation of our calculation, with the same result, be-
came as simple as easy to peroduce by everyone who is free
in tensor algebra. This representation is given here.

2 The local space metric of a satellite-bound observer

A result of real measurement processed by an observer de-
pends on the properties of his local space. These properties
are completely determined by the metric of this space. We
therefore are looking for the metric of the local space of an
observer, who is located on board of a statellite moved in the
Earth’s gravitational field.

As one regularly does in construction for a metric, we
take a simplest metric which is close to the case we are con-
sidering, then modify the metric by introduction of those ad-
ditional factors which are working in our particular case.

Here is how we do it.
As was proven in the 1940’s by Abraham Zelmanov, on

the basis of the theory of hon-holonomic manifolds [24] con-
structed in the 1930’s by Schouten then applied by Zelmanov
to the four-dimensional pseudo-Riemannian space of General
Relativity, the non-holonomity of such a space (i.e. the non-
orthogonality of the time lines to the spatial section, that is
expressed as g0i , 0 in the fundamental metric tensor g��)
is manifest as the three-dimensional rotation of this space.
Moreover, Zelmanov proven that any non-holonomic space
has nonzero Riemannian curvature (nonzero Riemann-
Christoffel tensor) due to g0i , 0. All these was first reported
in 1944 by him in his dissertation thesis [25], then also in the
latter publications [26–28].

In practice this means that the physical space of the Earth,
the planet, is non-holonomic and curved due to the daily rota-
tion of it. This is in addition to that fact that the Earth’s space
is curved due to the gravitational field of the Earth, described
in an approximation by Schwarzschild metric of a centrally
symmetric gravitational field, created by a spherical mass in
emptiness. The space metric of a satellite-bound observer
should also take into account that fact that the satellite moves
along its orbit in the Earth’s space around the terrestrial globe
(the central mass that produces the field). In addition to it the
Earth, in common with the satellite and the observer located
in it, rapidly moves in the physical space of the Universe as-
sociated to the weak intergalactic microwave field. This fact
should also be taken into account in the metric.

First, we consider a simplest non-holonomic space —
a space wherein all g0i , 0, and they have the same numerical
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values. According to Zelmanov [25–28], such a space ex-
periences rotation around all three axes with the same linear
velocity v= v1 = v2 = v3, where vi =� c g0ipg00

. As obvious,
the metric of such a non-holonomic space is

ds2 = c2dt2+
2v
c
cdt (dx+dy+dz)�dx2�dy2�dz2: (1)

For easy taking the Earth’s field into account, we change
to the cylindrical coordinates r, ', z, where the r-axis is di-
rected from the centre of gravity of the Earth along its ra-
dius. The corresponding transformations of the coordinates
are x= r cos', y= r sin', z= z so that the metric (1) rep-
resented in the new coordinates is

ds2 = c2dt2 +
2v
c

(cos'+ sin') cdtdr +

+
2vr
c

(cos'� sin') cdtd'+
2v
c
cdtdz � (2)

� dr2 � r2d'2 � dz2:

Next we introduce the factor of the Earth’s gravitational
field in the same way as it is made in Schwarzschild metric
(see §100 in The Classical Theory of Fields [29]) — the met-
ric of a spherically symmetric gravitational field, produced
by a sperical mass M in emptiness, which in the cylindrical
coordinates is

ds2 =
�

1� 2GM
c2r

�
c2dt2� dr2

1� 2GM
c2r
� r2d'2� dz2; (3)

where we should take into account that fact that 2GM
c2r is small

value, so we have

ds2 =
�

1� 2GM
c2r

�
c2dt2 �

�
1 +

2GM
c2r

�
dr2�

� r2d'2 � dz2:
(4)

Besides, we should take into account the factor of rota-
tional motion of the observer, in common with the satellite,
along its orbit around the Earth. We see how to do it in the
example of a plane metric in the cylindrical coordinates

ds2 = c2dt2 � dr2 � r2d'2 � dz2; (5)

where we change the reference frame to another one, which
rotates relative to the initially reference frame with a constant
angular velocity !. By the applying the transformation of the
coordinates r0= r, '0='+!t, x0= z, we obtain ds2 in the
rotating reference frame�

ds2 =
�

1� !2r2

c2

�
c2dt2 � 2!r2

c
cdtd'� dr2�
� r2d'2 � dz2:

(6)

Following with the aforementioned stepsy, we obtain the
metric of the local physical space of a satellite-bound ob-
server which takes all properties of such a space into account.
This resulting metric is represented in formula (7).

This metric will be used by us in calculation for the den-
sity of the Earth microwave background, measured by an ob-
server on board of a satellite of the Earth.

This metric is definitely curved due to two factors: non-
zero gravitational potential w = c2 (1�pg00), 0 and the
space non-holonomity g0i , 0. Hence we are able to consider
Einstein equations in such a space.

On the other hand this metric doesn’t take into account
that fact that the Earth microwave background, in common
with the Earth, moves in a weak intergalactic field with a ve-
locity of v = 365�18 km/sec (as observational analysis indi-
cates it). To calculate the accociated dipole anisotropy of the
Earth microwave background, which is due to the motion, we
should use such a space metric which takes this motion into
account. To do it we take the metric (7) then apply Lorentz’
transformations to the z-coordinate (we direct the z-axis with
the motion of the Earth in the weak intergalactic field) and
time with an obvious approximation of v� c and high order
terms omitted: z0= z+ vt, t0= t+ vz

c2 . In other word, we
“move” the whole local physical space of an earthy satellite-
bound observer relative to the source of the weak intergalactic
field. As a result the local physical space of such an observer
and all physical fields connected to the Earth should experi-
ence a drift in the z-direction and a corresponding change the
�See §10.3 in [27], or §3.6 in [28] for detail.
yAs known in Riemannian geometry, which is particular to metric ge-

ometries, a common metric can be deduced as a superposition of all the par-
ticular metrics each of whom takes a particular property of the common space
into account.
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local physically observed time that should has a sequel on the
observed charachteristics of the Earth’s microwave field.

The resulting metric we have obtained after the transfor-
mation is (8). We will use this metric in calculation for the
anisotropy of the Earth microwave background measured by
a satellite-bound observer.

3 The density of the Earth’s microwave background at
the 2nd Lagrange point

To calculate the density of a field (distributed matter) depen-
dent from the properties of the space wherein this field is sit-
uated we should operate with Einstein’s equations

R�� � 1
2
g��R = ��T�� + �g�� ; (9)

the left side of which is for the space geometry, while the
right side describes distributed matter (it is with the energy-
momentum tensor of distributed matter and the �-term which
describes the distribution of physical vacuum).

Projection of the energy-momentum tensor T�� onto the
time line and spatial section of an observer’s local physical
space gives the properties of distributed matter observed by
him [25–28]: the density of the energy of distributed mat-
ter �= T00

g00
, the density of the momentum J i = c T i0pg00

, and the

stress-tensor U ik = c2T ik. To express the first of these ob-
servable quantities through the observable properties of the
local physical space is a task in our calculation.

To reach this task we should project the whole Einstein
equations onto the ime line and spatial section of the metric
space (7) with taking into account that fact that the energy-
momentum tensor is of an electromagnetic field. The left side
of the projected equations will be containing the observable
properties of the local space of such an observer, while the
right side will be containing the aforementioned observable
properties of distributed matter (the Earth microwave back-
ground, in our case). Then we can express the density of the
Earth microwave background � as a function of the observ-
able properties of the local space.

Einstein’s equations projected onto the time line and spa-
tial section of a common case were obtained in the 1940’s
by Zelmanov [25–28], and are quite complicate in the left
side (the observable properties of the local space). We there-
fore first should obtain the observable properties of the given
space (7), then decide what propetries can be omitted from
consideration in the framework of our problem.

According to the theory of physical observable quanti-
ties of the General Theory of Relativity [25–28], the observ-
able properties of a space are the three-dimensional quan-
tities which are invariant within the fixed spatial section of
an observer (so-called chronometrically invariant quantities).
Those are the three-dimensional metric tensor hik, the grav-
itational inertial force Fi, the angular velocity of the space
rotationAik (known as the non-holonomity tensor), the space

deformation tensor Dik, the three-dimensional Christoffel
symbols �i

kn, and the three-dimensional curvature Ciklj , ex-
pressed through the gravitational potential w = c2 (1�pg00)
and the linear velocity of the space rotation vi =� c g0ipg00

(whose components are vi =�cg0ipg00 and vi =hikvk):

hik =�gik +
g0i g0k
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=�gik +
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@xm

�
; (16)

�j
jk =

�@ ln
p
h

@xk
; (17)

Clkij =
1
4
�
Hlkij �Hjkil +Hklji �Hiljk� ; (18)

Ckj = C ���ikij� = himCkimj ; C = Cjj = hljClj : (19)

Here
�@
@t = 1pg00

@
@t and

�@
@xi = @

@xi + 1
c2 vi

�@
@t are the chrono-

metrically invariant differential operators, while

H :::j
lki� =

�@�j
il

@xk
� �@�j

kl

@xi
+ �m

il �
j
km ��m

kl�
j
im (20)

is Zelmanov’s tensor constructed by him on the basis of the
non-commutativity of the second chronometrically invariant
derivatives of an arbitrary spatial vector taken in a given three-
dimensional spatial section

�ri�rkQl � �rk�riQl =
2Aik
c2

�@Ql
@t

+H :::j
lki�Qj ; (21)

where �riQl = �@Ql
@xi ��j

jiQl is the chronometrically invari-

ant derivative of the vector (�riQl =
�@Ql
@xi +�j

jiQl respec-
tively). The tensor H :::j

lki� was introduced by Zelmanov sim-
ilarly to Schouten’s tensor of the theory of non-holonomic
manifolds [24] so that the three-dimensional curvature tensor
Clkij possesses all the algebraic properties of the Riemann-
Christoffel curvature tensor in the spatial section.

We take the components of the fundamental metric tensor
g�� from the metric of the local physical space of a satellite-
bound observer (7), then calculate the aforementioned ob-
servable quantities. In this calculation we take into account
that fact that 2GM

c2r and !2r2

c2 are in order of 10�9 near the sur-
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face of the Earth, and the values decrease with altitude. We
therefore operate these terms according to the rules of small
values. We also neglect all high order terms. We however
cannot neglect 2GM

c2r and !2r2

c2 in g00 =1� 2GM
c2r � !2r2

c2 when
calculating the gravitational potential w = c2 (1�pg00) ac-
cording to the rule of small values

w = c2
�

1�
r

1� 2GM
c2r

� !2r2

c2

�
=

= c2
�

1�
�

1 +
GM
c2r

+
!2r2

2c2

�� (22)

because these terms are multiplied by c2. We also assume
the linear velocity of the space rotation v to be small to the
velocity of light c. We assume that v doesn’t depend from
the z-coordinate. This assumption is due to the fact that the
Earth, in common with its space, moves relative to a weak in-
tergalactic microwave background that causes the anisotropy
of the Earth’s microwave field.

As a result we obtain the substantially non-zero compo-
nents of the characteristics of the space

w =
GM
r

+
!2r2

2
; (23)

v1 = �v (cos'+ sin')

v2 = �r [v (cos'� sin')� !r ]

v3 = �v

9>=>; ; (24)

F1 = (cos'+ sin') vt + !2r � GM
r2

F2 = r (cos'� sin') vt ; F3 = vt

9=; ; (25)

A12 = !r +
1
2
�
(cos'+ sin') v'�

� r (cos'� sin') vr
�

A23 = �v'
2
; A13 = �vr

2

9>>>>=>>>>; ; (26)

h11 = h33 = 1 ; h22 = r2; h11 = h33 = 1

h22 =
1
r2 ; h = r2;

@ ln
p
h

@r
=

1
r

9>=>; ; (27)

�1
22 = �r ; �2

12 =
1
r

(28)

while all components of the tensor of the space deformation
Dik and the three-dimensional curvature Ciklj are negligible
in the framework of the first order approximation (the four-
dimensional Riemannian curvature isn’t negligible).

The quantities vr, v', and vt denote the partial derivatives
of the linear velocity of the space rotation v by the respective
coordinate and time. (Here vz = 0 according to the initially
assumptions in the framework of our problem.)

We consider the projected Einstein equations in complete
form, published in [25–28]

�@D
@t

+DjlDjl+AjlAlj+
�
�rj � 1

c2
Fj
�
F j =

= ��
2
�
�c2 + U

�
+ �c2

�rj �hijD �Dij � Aij�+
2
c2
FjAij = �J i

�@Dik
@t

� (Dij + Aij)
�
Dj
k + A�jk�

�
+DDik +

+ 3AijA
�j
k� +

1
2

(�riFk + �rkFi)� 1
c2
FiFk�

� c2Cik =
�
2
�
�c2hik+2Uik�Uhik�+�c2hik

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

: (29)

We withdraw the �-term, the space deformation Dik, and
the three-dmensional curvature Ciklj from consideration. We
also use the aforemonetioned assumptions on small values
and high order terms that reduce the chronometrically invari-
ant differential operators to the regular differential operators:�@
@t = @

@t ,
�@
@xi = @

@xi . As a result of all these, the projected
Einstein equations take the simplified form

@F i

@xi
+
@ ln
p
h

@xi
F i � AikAik = ��

2
�
�c2 + U

�
@Aik

@xk
+
@ ln
p
h

@xk
Aik = ��J i

2AijA
�j
k� +

1
2

�
@Fi
@xk

+
@Fk
@xi
� 2�m

ikFm
�

=

=
�
2
�
�c2hik + 2Uik � Uhik�

9>>>>>>>>>>>>=>>>>>>>>>>>>;
: (30)

We substitute hereto the obtained observable characheris-
tics of the local physical space of a satellite-bound observer.
Because the value v is assumed to be small, we neglect not
only the square of it, but also the square of its derivative and
the products of the derivatives.

The Einstein equations (30) have been written for a space
filled with an arbitrary matter, which is described by the
energy-momentum tensor written in the common form T�� .
In other word, the distributed matter can be the superposi-
tion of an electromagnetic field, dust, liquid or other mat-
ter. Concerning our problem, we consider only an electro-
magnetic field. As known [29], the energy-momentum tensor
T�� of any electromagnetic field should satisfy the condition
T = �c2�U . We therefore assume that the right side of the
Einstein equations contains the energy-momentum tensor of
only an electromagnetic field (no dust, liquid, or other matter
distributed near the Earth). In other word we should mean, in
the right side,

�c2 = U : (32)

Besides, because all measurement in the framework of
our problem are processed by an observer on board of a satel-
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�2!2�2! (cos'+ sin')
v'
r

+2! (cos'� sin') vr+ (cos'+ sin') vtr+ (cos'� sin')
vt'
r

= ���c2
1
2

h
(cos'+ sin')

�vr
r

+
v''
r2

�
+ (cos'� sin')

�v'
r2 � vr'

r

�i
= ��J1

1
2

h
(cos'+ sin')

�v'
r3 � vr'

r2

�
+ (cos'� sin')

vrr
r

i
= ��J2

1
2

�
vrr +

vr
r

+
v''
r2

�
= ��J3

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr + (cos'+ sin') vtr = �U11

r2

2

h
(cos'+ sin')

vt'
r2 + (cos'� sin')

vtr
r

i
= �U12

!
v'
r

+
1
2
vtr = �U13

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr + (cos'� sin')

vt'
r

= �
U22

r2

r2

2

�vt'
r2 � 2!

vr
r

�
= �U23

�U33 = 0

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(31)

lite, we should also take into account the weightlessness con-
dition GM

r2 = !2r : (33)

As a result, we obtain the system of the projected Einstein
equations (30) in the form (31) which is specific to the real
physical space of a satellite-bound observer.

In other word, that fact that we used the conditions (32)
and (33) means that our theoretical calculation targets mea-
surement of an electromagnetic field in the weightlessness
state in an orbit of the Earth.

We are looking for the quantity � as a function of the prop-
erties of the space from the first (scalar) equation of the Ein-
stein equantions (31). This isn’t a trivial task, because the
aforementioned scalar Einstein equation

��c2 = 2!2 + 2! (cos'+ sin')
v'
r
�

� 2! (cos'� sin') vr � (cos'+ sin') vtr �
� (cos'� sin')

vt'
r

(34)

contains the distribution functions of the linear velocity of
the space rotation (the functions vr, v', and vt), which are
unknown. We therefore should first find the functions.

According to our asumption, �c2 =U . Therefore ��c2
and �U are the same in the framework of our problem. We
calculate the quantity

�U = �hikUik = �
�
U11 +

U22

r2 + U33

�
(35)

as the sum of the 5th and the 8th equations of the system of
the Einstein equations (31) with taking into account that fact
that, in our case, U33 = 0 (as seen from the 10th equation,
with �c2 =U ). We obtain

�U = 4!2 + 4! (cos'+ sin')
v'
r
�

� 4! (cos'� sin') vr + (cos'+ sin') vtr +

+ (cos'� sin')
vt'
r
:

(36)

Subtracting ��c2 (34) from �U (36) then equalizing the
result to zero, according to the electromagnetic field condi-
tion �c2 =U , we obtain the geometrization condition for the
electromagnetic field

!2 + ! (cos'+ sin')
v'
r
� ! (cos'� sin') vr +

+ (cos'+ sin') vtr + (cos'� sin')
vt'
r

= 0 :
(37)

With this condition, all the components of the energy-
momentum tensor of the field T�� (the right side of the Ein-
stein equations) are expressed in only the properties of the
space (the left side of the Einstein equations). Hence we have
geometrized the electromagnetic field. This is an important
result: earlier only isotropic electromagnetic fields (they are
satisfying Rainich’s condition and Nordtvedt-Pagels condi-
tion) were geometrized.

To find the distribution functions of v, we consider the
conservation lawr� T�� = 0, expressed in terms of the phys-
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(cos'� sin')
�vtr'

r
� vt'
r2

�
+ ! (cos'+ sin')

�vr'
r
� v'
r2

��
�! (cos'� sin') vrr + (cos'+ sin') vtrr = 0

(cos'+ sin')
�vtr'
r2 � vt'

r3

�
+ (cos'� sin')

�vt''
r3 +

vtr
r2

�
+

+! (cos'+ sin')
�v''
r3 +

vr
r2

�
+ ! (cos'� sin')

�v'
r3 � vr'

r2

�
= 0

9>>>>>>>>>>=>>>>>>>>>>;
(41)

ical observed quantities [25–28]

�@�
@t

+D�+
1
c2
DijU ij +

+
�
�ri � 1

c2
Fi
�
J i � 1

c2
FiJ i = 0

�@Jk
@t

+ 2
�
Dk
i + A�ki�

�
J i +

+
�
�ri � 1

c2
Fi
�
U ik � �F k = 0

9>>>>>>>>>>>=>>>>>>>>>>>;
(38)

which, under the assumptions specific in our problem, is

@J i

@xi
+
@ ln
p
h

@xi
J i = 0

@Jk

@t
+ 2A�ki� J i +

@U ik

@xi
+ �k

imU
im +

+
@ ln
p
h

@xi
U ik � �F k = 0

9>>>>>>>>=>>>>>>>>;
: (39)

The first (scalar) equation of the system of the conserva-
tion equations (39) means actually that the chronometrically
invariant derivative of the vector J i is zero

�riJ i =
@J i

@xi
+
@ ln
p
h

@xi
J i = 0 ; (40)

i.e. the flow of the vector J i (the flow of the density of the
field momentum) is constant. So, the first equation of (39)
satisfies identically as �riJ i = 0.

The rest three (vectorial) equations of the system (39),
with the properties of the local space of a satellite-bound ob-
server and the components of the energy-momentum tensor
substituted (the latest should be taken from the Einstein equa-
tions), take the form (41). As seen, only first two equations
still remaining meaningful, while the third of the vectorial
equations of conservation vanishes becoming the identity
zero equals zero.

In other word, we have obtained the equations of the con-
servation law specific to the real physical space of a satellite-
bound observer.

Let’s suppose that the function v has the form

v = T (t) rei'; (42)

hence the partial derivatives of this function are

vr = T ei' v' = i T rei'

vtr = _T ei' vt' = i _T rei'

vrr = 0 vtrr = 0

vtr' = i _T ei' vt'' = � _T rei'

v'' = �T rei' vr' = iT ei'

9>>>>>>=>>>>>>;
: (43)

After the functions substituted into the equations of the
conservation law (41), we see that the equations satisfy iden-
tically. Hence v=T (t) rei' is exact solution of the conser-
vation equations with respect to v.

Now we need to find only the unknown function T (t).
This function can be found from the electromagnetic field
condition �c2 =U expressed by us through the properties of
the space itself as the formula (37).

We assume that the satellite, on board of which the ob-
server is located, displaces at small angle along its orbit dur-
ing the process of his observation. This is obvious assump-
tion, because the very fast registration process for a single
photon. Therefore ' is small value in the framework of our
problem. Hence in concern of the formula (37), we should
mean cos'' 1 +' and sin'''. We also take into account
only real parts of the function v and its derivatives. (This is
due to that fact that a real instrument processes measurement
with only real quantities.) Concerning those functions which
are contained in the formula (37), all these means that

v = T r (1 + ')

vr = T (1 + ')
v'
r

= �T '
vtr = _T (1 + ')

vt'
r

= � _T '

9>>>>=>>>>; : (44)

Substituting these into (37), we obtain

(1 + 2') _T � (1 + 2')!T + !2 = 0 ; (45)

or, because '=!t and ! is small value (we also neglect the
terms which order is higher than !2),

_T � !T = � !2

1 + 2!t
= �!2 (1� 2!t) = �!2: (46)

This is a linear differential equation of the first order

_y + f(t) y = g(t) (47)
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whose exact solution is (see Part I, Chapter I, §4.3 in Erich
Kamke’s reference book [30])

y = e�F
�
y0 +

tZ
t0=0

g(t) eF dt
�
; (48)

where
F (t) =

Z
f(t)dt : (49)

We substitute f =�! and g=�!2. So we obtain, for
small values of !,

eF = e
R�!dt = e�!t; e�F = e!t; (50)

hence the function y is

y = e!t
�
y0 � !2

tZ
t0=0

e�!tdt
�

=

= e!t
�
y0 + ! (e�!t � 1)

�
: (51)

We assume the numerical value of the function y=T (t)
to be zero at the initial moment of observation: y0 =T0 = 0.
As a result we obtain the solution for the function T (t):

T = ! (1� e!t) : (52)

Applying this solution, we can find a final formula for the
density of the energy of the Earth’s microwave background
W = �c2 observed by a satellite-bound observer.

First, we substitute the distribution functions of v (44)
into the initially formula for �c2 (34) which is originated
from the scalar Einstein equation. Assuming cos'' 1 +'
and sin''', we obtain

��c2 = �2!2 � 2!T (1 + 2')� (1 + 2') _T : (53)

Then we do the same substitution into the geometrization
condition (37) which is originated from the Einstein equa-
tions, and is necessary to be applied to our case due to that fact
that we have only an electromagnetic field distributed in the
space (�c2 =U in the right side of the Einstein equations, as
for any electromagnetic field). After algebra the geometriza-
tion condition (37) takes the form

!2 � !T (1 + 2') + (1 + 2') _T = 0 : (54)

We express (1 + 2') _T =!T (1 + 2')� 4!2 from this
formula, then substitute it into the previous expression (53)
with taking into accout that fact that the angle ' is a small
value. As a result, we obtain

�c2 =
3!
�

(! � T ) =
3!2

�
�
1� �1� e!t�� : (55)

Expanding the exponent into the series e!t = 1 +!t+
+ 1

2 !
2t2 + : : : ' 1 +!t and taking into account that fact

that ! is small value�, we arrive to the final formula for cal-
culation the density of the energy of the Earth’s microwave
background observed on board of a satellite

�c2 =
3!2

�
; (56)

which is obviously dependent on altitude from the surface of
the Earth due to that fact that !=

p
GM�=R3.

With this final formula (55), we calculate the ratio be-
tween the density of the Earth’s microwave background ex-
pected to be measured at different altitudes from the surface
of the Earth. According to this formula, the ratio between the
density at the altitude of the COBE orbit (RCOBE = 6,370 +
+ 900 = 7,270 km) and that at the altitude of a U2 aeroplane
(RU2 = 6,370 + 25 = 6,395 km) should be

�COBE

�U2

=
R3

U2

R3
COBE

' 0.68 ; (57)

the ratio between the density at the 2nd Lagrange point
(R L2 = 1.5 million km) and that at the COBE orbit should be

� L2

�COBE

=
R3

COBE

R3
L2

' 1.1�10�7; (58)

and the ratio between the density at the 2nd Lagrange point
and that at the altitude of a U2 aeroplane should be

� L2

�U2

=
R3

U2

R3
L2

' 7.8�10�8: (59)

As a result of our calculation, processed on the basis of
the General Theory of Relativity, we see that a microwave
background field which originates in the Earth (the Earth mi-
crowave background) should have almost the same density
at the position of a U2 aeroplane and the COBE satellite.
However, at the 2nd Lagrange point (1.5 million km from
the Earth, the point of location of the WMAP satellite and the
planned PLANCK satellite), the density of the background
should be only�10�7 of that registered either by the U2 aero-
plane or by the COBE satellite.

4 The anisotropy of the Earth’s microwave background
at the 2nd Lagrange point

We consider the anisotropy of the Earth’s microwave back-
ground which is due to the rapid motion of the source of
this field (the Earth) in a weak intergalactic microwave fieldy.
From views of physics this means that photons, the mediators
for electromagnetic radiation, being radiated by the source of
the field (the Earth) should experience a carrying in the direc-

�The quantity !=
p
GM�=R3, the frequency of the rotation of

the Earth space for an observer existing in the weightless state, takes its
maximum numerical value at the equator of the Earth’s surface, where
!= 1.24�10�3 sec�1, and decreases with altitude above the surface.
yAs observatonal analysis indicates it, the Earth moves in the weak in-

tergalactic field with a velocity of v = 365�18 km/sec in the direction of the
anisotropy.
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tion whereto the Earth flies in the weak intergalactic field.
From mathematical viewpoint this problem can be formulated
as a shift of the trajectories experienced by photons of the
Earth’s microwave field in the direction of this motion.

A light-like free particle, e.g. a free photon, moves along
isotropic geodesic trajectories whose four-dimensional (gen-
eral covariant) equations are [25–28]

dK�

d�
+ ����K

� dx�

d�
= 0 ; (60)

whereK� = 

c
dx�
d� is the four-dimensional wave vector of the

photon (the vector satisfies the condition K�K� = 0 which
is specific to any isotropic vector), 
 is the proper cyclic
frequency of the photon, while d� is the three-dimensional
chronometrically invariant (observable) spatial interval deter-
mined as d�2 =

��gik+ g0i g0k
g00

�
dxidxk =hik dxidxk. The

quantity d� is chosen as a parameter of differentiation along
isotropic geodesics, because along them the four-dimensional
interval is zero ds2 = c2d� 2� d�2 = 0 while d�= cd� , 0
(where d� is the interval of the physical observable time de-
termined as d� =pg00 dt+ g0i

cpg00
dxi).

In terms of the physical observables, the isotropic geo-
desic equations are represented by their projections on the
time line and spatial section of an observer [25–28]

d

d�
� 

c2
Fi ci +



c2
Dik cick = 0

d
d�
�

ci
�

+ 2

�
Di
k + A�ik�

�
ck�

�
F i + 
�i
knc

kcn = 0

9>>>>=>>>>; (61)

where ci = dxi
d� is the three-dimensional vector of the observ-

able velocity of light (the square of the vector satisfies ckck =
=hik cick = c2 in the spatial section of the observer). The
first of the equations (the scalar equation) represents the law
of energy for the particle, while the vectorial equation is the
three-dimensional equation of its motion.

The terms Fi
c2

and Dik
c2

are negligible in the framework of
our assumption. We obtain, from the scalar equation of (61),
that the proper frequency of the photons, registered by the
observer, is constant. In such a case the vectorial equations of
isotropic geodesics (61), written in component notation, are

dc1

d�
+ 2

�
D1
k + A�1k�

�
ck � F 1 + �1

22 c
2c2 +

+ 2�1
23 c

2c3 + �1
33 c

3c3 = 0

dc2

d�
+ 2

�
D2
k + A�2k�

�
ck � F 2 + 2�2

12 c
1c2 +

+ 2�2
13 c

1c3 + �2
33 c

3c3 = 0

dc3

d�
+ 2

�
D3
k + A�3k�

�
ck � F 3 + �3

11 c
1c1+

+ 2�3
12 c

1c2 + 2�3
13 c

1c3+

+ �3
22 c

2c2 + 2�3
23 c

2c3 = 0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

; (62)

where c1 = dr
d� , c2 = d'

d� , and c3 = dz
d� , while d

d� =
�@
@t + vi

�@
@xi .

We direct the z-axis of our cylindrical coordinates along
the motion of the Earth in the weak intergalactic field. In such
a case the local physical space of a satellite-bound observer
is described by the metric (8). We therefore will solve the
isotropic geodesic equations in the metric (8).

The metric (7) we used in the first part of the problem is
a particular to the metric (8) in a case, where v = 0. There-
fore the solution v=T (t) rei' (42) we have obtained for the
metric (7) is also lawful for the generatized metric (8). We
therefore calculate the observable characteristics of the space
with taking this function into account. As earlier, we take into
account only real part of the function ei'= cos'+ i sin''
' (1+')+i'. We also take into account the derivatives of
this function (43) and the function T =! (1� e!t) we have
found earlier (52).

As well as in the first part of the problem, we assume '
to be small value: cos'' 1 +' and sin'''. Because !
is small value too, we neglect !2' terms. We also take the
weightlessness condition GM

r2 =!2r into account in calcula-
tion for the gravitational inertial force. It should be noted that
the weightlessness condition is derived from the derivative
of the gravitational potential w = c2 (1�pg00). We there-
fore cannot mere substitute the weightlessness condition into
g00 = 1� 2GM

c2r � !2r2

c2 + 2vv
c2 taken from the metric (8). We

first calculate w = c2 (1�pg00), then take derivative of it by
the respective coordinate that is required in the formula for
the gravitational inertial force Fi (12). Only then the weight-
lessness condition GM

r2 =!2r is lawful to be substituted.
Besides these, we should take into account that fact that

the anisotropy of a field is a second order effect. We there-
fore cannot neglect the terms divided by c2. This is in con-
trast to the first part of the problem, where we concerned only
a first order effect. As a result the space deformation and
the three-dimensional curvature, neglected in the first part,
now cannot be neglected. We however take into account only
the space deformation Dik. The three-dimensional curvature
Ciklj isn’t considered here due to the fact that this quantity
isn’t contained in the equations of motion.

In the same time, in the framework of our assumption for
a weak gravitational field and a low speed of the space rota-
tion,

�@
@t = 1pg00

@
@t ' @

@t and
�@
@xi = @

@xi + 1
c2 vi

�@
@t ' @

@xi .
Applying all these conditions to the definitions of vi, hik,

Fi, Aik, Dik, and �i
km, given in Page 7, we obtain substan-

tially non-zero components of the characteristics of the space
whose metric is (8):

w =
GM
r

+
!2r2

2
� vv ; (63)

v1 = !2tr

v2 = !r2 (!t+ 1)

v3 = !2tr

9>=>; ; (64)
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�r � !2
�
t� rv

c2
�

_z + !2 (r � vt) +
!2v t
c2

_z2 = 0

�'+ 2!
�

1 +
!t
2

�
_r
r

+
!2v
c2

_z + !2 +
2!v

�
1 + ! t

2

�
c2r

_r _z = 0

�z + !2
�
t+

rv
c2
�

_r +
2!2vr
c2

_z + !2r +
!2v t
c2

_r2 +
2!2v t
c2

_r _z = 0

9>>>>>>>>=>>>>>>>>;
(70)

_r2 +
2!2rv t
c2

_r _z +
�

1� 2!2rv t
c2

�
_z2 = c2 (71)

F1 = �!2 (r � vt)

F2 = �!2r2

F3 = �!2r

9>>=>>; ; (65)

A12 = !r
�

1 +
!t
2

�
A23 = 0

A13 =
!2 t
2

9>>>>=>>>>; ; (66)

h11 = 1 ; h13 =
!2v tr
c2

h22 = r2; h23 =
!r2v (1 + !t)

c2

h33 = 1� 2!2v tr
c2

h11 = 1 ; h13 = �!2v tr
c2

h22 =
1
r2 ; h23 = �!v (1 + !t)

c2

h33 = 1 +
2!2v tr
c2

h = r2
�

1 +
2!2v tr
c2

�

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

; (67)

D13 =
!2rv
2c2

; D23 =
!2r2v

2c2

D33 =
!2rv
c2

; D =
!2rv
c2

9>>=>>; ; (68)

�1
22 = �r ; �1

23 = �!rv
c2

�
1 +

!t
2

�
�1

33 =
!2v t
c2

; �2
12 =

1
r

�2
13 =

!v
c2r

�
1 +

!t
2

�
; �3

11 =
!2v t
c2

�3
12 =

!2rv t
2c2

; �3
13 = �!2v t

c2

9>>>>>>>>>>>=>>>>>>>>>>>;
; (69)

where we present only those components of Christoffel’s
symbols which will be used in the geodesic equations (equa-
tions of of motion).

After substitution of the components, the vectorial equa-
tions of isotropic geodesic (62) take the form (70). The condi-
tion hik cick = c2 — a chronometrically invariant expression
of the condition ds2 = c2d� 2� d�2 = 0, which is specific to
isotropic trajectories — takes the form (71).

We consider a light beam (a couple of photons) travel-
ling from the Earth along the radial direction r. Therefore,
looking for anisotropy in the distribution of the photons’ tra-
jectories in the field, we are interested to solve only the third
isotropic geodesic equation of (70), which is the equation of
motion of a photon along the z-axis orthogonal to the light
beam’s direction r.

Before to solve the equation, a few notes on our assump-
tions should be made.

First, because the Earth moves relative to the weak mi-
crowave background with a velocity vi along the z-direction,
only v3 = _z of the components vi is non-zero. Besides that, as
easy to see from our previous considerations, we should mean�@
@t = 1pg00

@
@t ' @

@t and
�@
@z= @

@xi + 1
c2 v3

�@
@t ' @

@z = 0. Hence,

we apply d
d� =

�@
@t + v3 �@

@z = d
@t to our calculation.

Second, the orbital velocity of a satellite of the Earth,
�8 km/sec, is much lesser than the velocity of light. We
therefore assume that a light beam doesn’t sense the orbital
motion of such a satellite. The coordinate ' in the equations
of isotropic geodesics is related to the light beam (a couple
of single photons), not the rotation of the reference space of a
satellite bound observer. Hence, we assume '= const in our
calculation, i.e. c2 = d'

dt = _'= 0.
Third, we are talking about the counting for signle pho-

tons in a detector which is located on board of a satellite. The
process of the measurement is actually instant. In other word,
the measurement is processed very close the moment t0 = 0.
Hence we assume _z= 0 in our calculation, while the acceler-
ation �z can be non-zero in the z-direction orthogonally to the
initially r-direction of such a photon.

Fourth, we apply the relations _r= c and r= ct which are
obvious for such a photon. If such a photon, travelling ini-
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tially in the r-direction, experiences a shift to the z-direction
(the direction of the motion of the Earth relative to the weak
intergalactic field), the distribution of photons of the Earth’s
microwave field has an anisotropy to the z-direction.

After taking all the factors into account, the third equation
of the system (70), which is the equation of motion of a single
photon in the z-direction, takes the simple form

�z + !2
�
ct+

rv
c

�
+ !2 (r + vt) = 0 (72)

which, due to the weightlessness condition GM
r2 =!2r and

the condition r= ct, is

�z +
2GM�
c2t2

�
1 +

v
c

�
= 0 : (73)

Integration of this equation gives

_z =
2GM�
cr

�
1 +

v
c

�
= _z0 + �z0: (74)

The first term of the solution (74) manifests that fact that
such a photon, initially launched in the r-direction (radial di-
rection) in the gravitational field of the Earth, is carried into
the z-direction by the rotation of the space of the Earth. The
second term, �z0, manifests the carriage of the photon into
the z-direction due to the motion of the Earth in this direction
through the weak intergalactic field.

As a result we obtain the carriage of the three-dimensional
vector of the observable velocity of light from the initially
r-direction to the z-direction, due to the common motion of
the space of the Earth in the point of observation:

� _z0
_z0 =

v
c
: (75)

Such a carriage of a photon radiated from the Earth’s sur-
face, being applied to a microwave background generated by
oceanic water, reveals the anisotropy associated with the di-
pole component of the microwave background.

As seen from the obtained formula (75), such a carriage of
a photon into the z-direction, doesn’t depend on the path trav-
elled by such a photon in the radial direction r from the Earth.
In other word, the anisotropy associated with the dipole com-
ponent of the Earth microwave background shouldn’t be de-
pendent on altitude from the surface of the Earth: the aniso-
tropy of the Earth microwave background should be the same
if measured on board a U2 aeroplane (25 km), at the orbit of
the COBE satellite (900 km), and at the 2nd Langrange point
(the WMAP satellite and PLANCK satellite, 1.5 million km
from the Earth).
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It is shown that a photon with a specific frequency can be identified with the Dirac mag-
netic monopole. When a Dirac-Wilson line forms a Dirac-Wilson loop, it is a photon.
This loop model of photon is exactly solvable. From the winding numbers of this loop-
form of photon, we derive the quantization properties of energy and electric charge. A
new QED theory is presented that is free of ultraviolet divergences. The Dirac-Wilson
line is as the quantum photon propagator of the new QED theory from which we can
derive known QED effects such as the anomalous magnetic moment and the Lamb shift.
The one-loop computation of these effects is simpler and is more accurate than that in
the conventional QED theory. Furthermore, from the new QED theory, we have derived
a new QED effect. A new formulation of the Bethe-Salpeter (BS) equation solves the
difficulties of the BS equation and gives a modified ground state of the positronium. By
the mentioned new QED effect and by the new formulation of the BS equation, a term
in the orthopositronium decay rate that is missing in the conventional QED is found,
resolving the orthopositronium lifetime puzzle completely. It is also shown that the
graviton can be constructed from the photon, yielding a theory of quantum gravity that
unifies gravitation and electromagnetism.

1 Introduction

It is well known that the quantum era of physics began with
the quantization of energy of electromagnetic field, from
which Planck derived the radiation formula. Einstein then
introduced the light-quantum to explain the photoelectric ef-
fects. This light-quantum was regarded as a particle called
photon [1–3]. Quantum mechanics was then developed, ush-
ering in the modern quantum physics era. Subsequently, the
quantization of the electromagnetic field and the theory of
Quantum Electrodynamics (QED) were established.

In this development of quantum theory of physics, the
photon plays a special role. While it is the beginning of quan-
tum physics, it is not easy to understand as is the quantum
mechanics of other particles described by the Schrödinger
equation. In fact, Einstein was careful in regarding the
light-quantum as a particle, and the acceptance of the light-
quantum as a particle called photon did not come about until
much later [1]. The quantum field theory of electromagnetic
field was developed for the photon. However, such difficul-
ties of the quantum field theory as the ultraviolet divergences
are well known. Because of the difficulty of understanding
the photon, Einstein once asked: “What is the photon?” [1].

On the other hand, based on the symmetry of the electric
and magnetic field described by the Maxwell equation and
on the complex wave function of quantum mechanics, Dirac
derived the concept of the magnetic monopole, which is hy-
pothetically considered as a particle with magnetic charge, in
analogy to the electron with electric charge. An important
feature of this magnetic monopole is that it gives the quanti-

zation of electric charge. Thus it is interesting and important
to find such particles. However, in spite of much effort, no
such particles have been found [4, 5].

In this paper we shall establish a mathematical model of
photon to show that the magnetic monopole can be identified
as a photon. Before giving the detailed model, let us discuss
some thoughts for this identification in the following.

First, if the photon and the magnetic monopole are dif-
ferent types of elementary quantum particles in the electro-
magnetic field, it is odd that one type can be derived from the
other. A natural resolution of this oddity is the identification
of the magnetic monopole as a photon.

The quantum field theory of the free Maxwell equation
is the basic quantum theory of photon [6]. This free field
theory is a linear theory and the models of the quantum parti-
cles obtained from this theory are linear. However, a stable
particle should be a soliton, which is of the nonlinear na-
ture. Secondly, the quantum particles of the quantum the-
ory of Maxwell equation are collective quantum effects in the
same way the phonons which are elementary excitations in
a statistical model. These phonons are usually considered as
quasi-particles and are not regarded as real particles. Regard-
ing the Maxwell equation as a statistical wave equation of
electromagnetic field, we have that the quantum particles in
the quantum theory of Maxwell equation are analogous to the
phonons. Thus they should be regarded as quasi-photons and
have properties of photons but not a complete description of
photons.

In this paper, a nonlinear model of photon is established.
In the model, we show that the Dirac magnetic monopole
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can be identified with the photon with some frequencies. We
provide a U(1) gauge theory of Quantum Electrodynamics
(QED), from which we derive photon as a quantum Dirac-
Wilson loop W (z; z) of this model. This nonlinear loop
model of the photon is exactly solvable and thus may be re-
garded as a quantum soliton. From the winding numbers of
this loop model of the photon, we derive the quantization
property of energy in Planck’s formula of radiation and the
quantization property of charge. We show that the quanti-
zation property of charge is derived from the quantization
property of energy (in Planck’s formula of radiation), when
the magnetic monopole is identified with photon with certain
frequencies. This explains why we cannot physically find a
magnetic monopole. It is simply a photon with a specific fre-
quency.

From this nonlinear model of the photon, we also con-
struct a model of the electron which has a mass mechanism
for generating mass of the electron. This mechanism of gen-
erating mass supersedes the conventional mechanism of gen-
erating mass (through the Higgs particles) and makes hypoth-
esizing the existence of the Higgs particles unnecessary. This
explains why we cannot physically find such Higgs particles.

The new quantum gauge theory is similar to the conven-
tional QED theory except that the former is not based on the
four dimensional space-time (t;x) but is based on the proper
time s in the theory of relativity. Only in a later stage in the
new quantum gauge theory, the space-time variable (t;x) is
derived from the proper time s through the Lorentz metric
ds2 = dt2� dx2 to obtain space-time statistics and explain
the observable QED effects.

The derived space variable x is a random variable in this
quantum gauge theory. Recall that the conventional quan-
tum mechanics is based on the space-time. Since the space
variable x is actually a random variable as shown in the new
quantum gauge theory, the conventional quantum mechanics
needs probabilistic interpretation and thus has a most myste-
rious measurement problem, on which Albert Einstein once
remarked: “God does not play dice with the universe.” In
contrast, the new quantum gauge theory does not involve the
mentioned measurement problem because it is not based on
the space-time and is deterministic. Thus this quantum
gauge theory resolves the mysterious measurement problem
of quantum mechanics.

Using the space-time statistics, we employ Feynman dia-
grams and Feynman rules to compute the basic QED effects
such as the vertex correction, the photon self-energy and the
electron self-energy. In this computation of the Feynman in-
tegrals, the dimensional regularization method in the conven-
tional QED theory is also used. Nevertheless, while the con-
ventional QED theory uses it to reduce the dimension 4 of
space-time to a (fractional) number n to avoid the ultraviolet
divergences in the Feynman integrals, the new QED theory
uses it to increase the dimension 1 of the proper time to a
number n less than 4, which is the dimension of the space-

time, to derive the space-time statistics. In the new QED the-
ory, there are no ultraviolet divergences, and the dimensional
regularization method is not used for regularization.

After this increase of dimension, the renormalization
method is used to derive the well-known QED effects. Unlike
the conventional QED theory, the renormalization method is
used in the new QED theory to compute the space-time statis-
tics, but not to remove the ultraviolet divergences, since the
ultraviolet divergences do not occur in the new QED theory.
From these QED effects, we compute the anomalous mag-
netic moment and the Lamb shift [6]. The computation does
not involve numerical approximation as does that of the con-
ventional QED and is simpler and more accurate.

For getting these QED effects, the quantum photon prop-
agator W (z; z0), which is like a line segment connecting
two electrons, is used to derive the electrodynamic interac-
tion. (When the quantum photon propagatorW (z; z0) forms a
closed circle with z= z0, it then becomes a photon W (z; z).)
From this quantum photon propagator, a photon propagator is
derived that is similar to the Feynman photon propagator in
the conventional QED theory.

The photon-loop W (z; z) leads to the renormalized elec-
tric charge e and the mass m of electron. In the conventional
QED theory, the bare charge e0 is of less importance than the
renormalized charge e, in the sense that it is unobservable. In
contrast, in this new theory of QED, the bare charge e0 and
the renormalized charge e are of equal importance. While the
renormalized charge e leads to the physical results of QED,
the bare charge e0 leads to the universal gravitation constant
G. It is shown that e=nee0, where ne is a very large wind-
ing number and thus e0 is a very small number. It is further
shown that the gravitational constant G= 2e2

0 which is thus
an extremely small number. This agrees with the fact that the
experimental gravitational constant G is a very small num-
ber. The relationships, e=nee0 and G= 2e2

0, are a part of
a theory unifying gravitation and electromagnetism. In this
unified theory, the graviton propagator and the graviton are
constructed from the quantum photon propagator. This con-
struction leads to a theory of quantum gravity. In short, a new
theory of quantum gravity is developed from the new QED
theory in this paper, and unification of gravitation and elec-
tromagnetism is achieved.

In this paper, we also derive a new QED effect from the
seagull vertex of the new QED theory. The conventional
Bethe-Salpeter (BS) equation is reformulated to resolve its
difficulties (such as the existence of abnormal solutions [7–
32]) and to give a modified ground state wave function of
the positronium. By the new QED effect and the reformu-
lated BS equation, another new QED effect, a term in the or-
thopositronium decay rate that is missing in the conventional
QED is discovered. Including the discovered term, the com-
puted orthopositronium decay rate now agrees with the ex-
perimental rate, resolving the orthopositronium lifetime puz-
zle completely [33–52]. We note that the recent resolution of
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this orthopositronium lifetime puzzle resolves the puzzle only
partially due to a special statistical nature of this new term in
the orthopositronium decay rate.

This paper is organized as follows. In Section 2 we give a
brief description of a new QED theory. With this theory, we
introduce the classical Dirac-Wilson loop in Section 3. We
show that the quantum version of this loop is a nonlinear ex-
actly solvable model and thus can be regarded as a soliton.
We identify this quantum Dirac-Wilson loop as a photon with
the U(1) group as the gauge group. To investigate the prop-
erties of this Dirac-Wilson loop, we derive a chiral symmetry
from the gauge symmetry of this quantum model. From this
chiral symmetry, we derive, in Section 4, a conformal field
theory, which includes an affine Kac-Moody algebra and a
quantum Knizhnik-Zamolodchikov (KZ) equation. A main
point of our model on the quantum KZ equation is that we
can derive two KZ equations which are dual to each other.
This duality is the main point for the Dirac-Wilson loop to
be exactly solvable and to have a winding property which ex-
plains properties of photon. This quantum KZ equation can
be regarded as a quantum Yang-Mills equation.

In Sections 5 to 8, we solve the Dirac-Wilson loop in a
form with a winding property, starting with the KZ equations.
From the winding property of the Dirac-Wilson loop, we de-
rive, in Section 9 and Section 10, the quantization of energy
and the quantization of electric charge which are properties of
photon and magnetic monopole. We then show that the quan-
tization property of charge is derived from the quantization
property of energy of Planck’s formula of radiation, when we
identify photon with the magnetic monopole for some fre-
quencies. From this nonlinear model of photon, we also de-
rive a model of the electron in Section 11. In this model of
electron, we provide a mass mechanism for generating mass
to electron. In Section 12, we show that the photon with a spe-
cific frequency can carry electric charge and magnetic charge,
since an electron is formed from a photon with a specific fre-
quency for giving the electric charge and magnetic charge. In
Section 13, we derive the statistics of photons and electrons
from the loop models of photons and electrons.

In Sections 14 to 22, we derive a new theory of QED,
wherein we perform the computation of the known basic QED
effects such as the photon self-energy, the electron self-energy
and the vertex correction. In particular, we provide simpler
and more accurate computation of the anomalous magnetic
moment and the Lamb shift. Then in Section 23, we com-
pute a new QED effect. Then from Section 24 to Section
25, we reformulate the Bethe-Salpeter (BS) equation. With
this new version of the BS equation and the new QED effect,
a modified ground state wave function of the positronium is
derived. Then by this modified ground state of the positron-
ium, we derive in Section 26 another new QED effect, a term
missing in the theoretic orthopositronium decay rate of the
conventional QED theory, and show that this new theoretical
orthopositronium decay rate agrees with the experimental de-

cay rate, completely resolving the orthopositronium life time
puzzle [33–52].

In Section 27, the graviton is derived from the photon.
This leads to a new theory of quantum gravity and a new uni-
fication of gravitation and electromagnetism. Then in Section
28, we show that the quantized energies of gravitons can be
identified as dark energy. Then in a way similar to the con-
struction of electrons by photons, we use gravitons to con-
struct particles which can be regarded as dark matter. We
show that the force among gravitons can be repulsive. This
gives the diffusion phenomenon of dark energy and the accel-
erating expansion of the universe [53–57].

2 New gauge model of QED

Let us construct a quantum gauge model, as follows. In prob-
ability theory we have the Wiener measure � which is a mea-
sure on the space C[t0; t1] of continuous functions [58]. This
measure is a well defined mathematical theory for the Brow-
nian motion and it may be symbolically written in the follow-
ing form:

d� = e�L0dx ; (1)

where L0 := 1
2

R t1
t0

�dx
dt

�2 dt is the energy integral of the
Brownian particle and dx= 1

N
Q
t dx(t) is symbolically a

product of Lebesgue measures dx(t) and N is a normalized
constant.

Once the Wiener measure is defined we may then define
other measures on C[t0; t1], as follows [58]. Let a potential
term 1

2

R t1
t0
V dt be added to L0. Then we have a measure �1

on C[t0; t1] defined by:

d�1 = e
� 1

2

R t1
t0
V dt

d� : (2)

Under some condition on V we have that �1 is well de-
fined on C[t0; t1]. Let us call (2) as the Feynman-Kac for-
mula [58].

Let us then follow this formula to construct a quantum
model of electrodynamics, as follows. Then similar to the
formula (2) we construct a quantum model of electrodynam-
ics from the following energy integral:

� R s1s0 Dds := � R s1s0 h 1
2

�@A1
@x2 � @A2

@x1

���@A1
@x2 � @A2

@x1

�
+

+
�
dZ�
ds + ie0(

P2
j=1Aj

dxj
ds )Z�

��
��dZds � ie0(

P2
j=1Aj

dxj
ds )Z

�i
ds ;

(3)

where the complex variable Z =Z(z(s)) and the real vari-
ables A1 =A1(z(s)) and A2 =A2(z(s)) are continuous
functions in a form that they are in terms of a (continuously
differentiable) curve z(s) =C(s) = (x1(s); x2(s)); s0 6 s 6
s1; z(s0) = z(s1) in the complex plane where s is a parameter
representing the proper time in relativity. (We shall also write
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z(s) in the complex variable form C(s) = z(s) =x1(s) +
+ ix2(s); s0 6 s 6 s1.) The complex variable Z =Z(z(s))
represents a field of matter, such as the electron (Z� denotes
its complex conjugate), and the real variables A1 =A1(z(s))
and A2 =A2(z(s)) represent a connection (or the gauge field
of the photon) and e0 denotes the (bare) electric charge.

The integral (1.1) has the following gauge symmetry:

Z 0(z(s)) := Z(z(s)) eie0a(z(s))

A0j(z(s)) := Aj(z(s)) + @a
@xj ; j = 1; 2

(4)

where a= a(z) is a continuously differentiable real-valued
function of z.

We remark that this QED theory is similar to the conven-
tional Yang-Mills gauge theories. A feature of (1.1) is that it
is not formulated with the four-dimensional space-time but is
formulated with the one dimensional proper time. This one
dimensional nature let this QED theory avoid the usual ul-
traviolet divergence difficulty of quantum fields. As most of
the theories in physics are formulated with the space-time let
us give reasons of this formulation. We know that with the
concept of space-time we have a convenient way to under-
stand physical phenomena and to formulate theories such as
the Newton equation, the Schrödinger equation, e.t.c. to de-
scribe these physical phenomena. However we also know that
there are fundamental difficulties related to space-time such
as the ultraviolet divergence difficulty of quantum field the-
ory. To resolve these difficulties let us reexamine the concept
of space-time. We propose that the space-time is a statistical
concept which is not as basic as the proper time in relativity.
Because a statistical theory is usually a convenient but incom-
plete description of a more basic theory this means that some
difficulties may appear if we formulate a physical theory with
the space-time. This also means that a way to formulate a ba-
sic theory of physics is to formulate it not with the space-time
but with the proper time only as the parameter for evolution.
This is a reason that we use (1.1) to formulate a QED theory.
In this formulation we regard the proper time as an indepen-
dent parameter for evolution. From (1.1) we may obtain the
conventional results in terms of space-time by introducing the
space-time as a statistical method.

Let us explain in more detail how the space-time comes
out as a statistics. For statistical purpose when many electrons
(or many photons) present we introduce space-time (t;x) as
a statistical method to write ds2 in the form

ds2 = dt2 � dx2: (5)

We notice that for a given ds there may have many dt
and dx which correspond to many electrons (or photons) such
that (5) holds. In this way the space-time is introduced as a
statistics. By (5) we shall derive statistical formulas for many
electrons (or photons) from formulas obtained from (1.1). In
this way we obtain the Dirac equation as a statistical equa-
tion for electrons and the Maxwell equation as a statistical

equation for photons. In this way we may regard the con-
ventional QED theory as a statistical theory extended from
the proper-time formulation of this QED theory (From the
proper-time formulation of this QED theory we also have a
theory of space-time statistics which give the results of the
conventional QED theory). This statistical interpretation of
the conventional QED theory is thus an explanation of the
mystery that the conventional QED theory is successful in
the computation of quantum effects of electromagnetic inter-
action while it has the difficulty of ultraviolet divergence.

We notice that the relation (5) is the famous Lorentz met-
ric. (We may generalize it to other metric in General Relativ-
ity.) Here our understanding of the Lorentz metric is that it
is a statistical formula where the proper time s is more fun-
damental than the space-time (t;x) in the sense that we first
have the proper time and the space-time is introduced via the
Lorentz metric only for the purpose of statistics. This reverses
the order of appearance of the proper time and the space-time
in the history of relativity in which we first have the concept
of space-time and then we have the concept of proper time
which is introduced via the Lorentz metric. Once we under-
stand that the space-time is a statistical concept from (1.1)
we can give a solution to the quantum measurement prob-
lem in the debate about quantum mechanics between Bohr
and Einstein. In this debate Bohr insisted that with the prob-
ability interpretation quantum mechanics is very successful.
On the other hand Einstein insisted that quantum mechan-
ics is incomplete because of probability interpretation. Here
we resolve this debate by constructing the above QED the-
ory which is a quantum theory as the quantum mechanics and
unlike quantum mechanics which needs probability interpre-
tation we have that this QED theory is deterministic since it
is not formulated with the space-time.

Similar to the usual Yang-Mills gauge theory we can gen-
eralize this gauge theory with U(1) gauge symmetry to non-
abelian gauge theories. As an illustration let us consider
SU(2)
U(1) gauge symmetry where SU(2)
U(1) denotes
the direct product of the groups SU(2) and U(1).

Similar to (1.1) we consider the following energy integral:

L :=
R s1
s0

� 1
2 Tr (D1A2 �D2A1)�(D1A2 �D2A1) +

+ (D�0Z�)(D0Z)
�
ds ;

(6)

where Z = (z1; z2)T is a two dimensional complex vector;
Aj =

P3
k=0A

k
j tk (j= 1; 2) where Akj denotes a component

of a gauge field Ak; tk = i T k denotes a generator of
SU(2) 
 U(1) where T k denotes a self-adjoint generator of
SU(2) 
 U(1) (here for simplicity we choose a convention
that the complex i is absorbed by tk and tk is absorbed by
Aj ; and the notation Aj is with a little confusion with the no-
tation Aj in the above formulation of (1.1) where Aj ; j= 1; 2
are real valued); andDl = @

@xl�e0(
P2
j=1Aj

dxj
ds ) for l= 1; 2;

andD0 = d
ds �e0(

P2
j=1Aj

dxj
ds ) where e0 is the bare electric
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charge for general interactions including the strong and weak
interactions.

From (6) we can develop a nonabelian gauge theory as
similar to that for the above abelian gauge theory. We have
that (6) is invariant under the following gauge transformation:

Z 0(z(s)) := U(a(z(s)))Z(z(s))

A0j(z(s)) := U(a(z(s)))Aj(z(s))U�1(a(z(s))) +

+ U(a(z(s)))@U
�1

@xj (a(z(s))); j = 1; 2

(7)

where U(a(z(s))) = ea(z(s)); a(z(s)) =
P
k e0ak(z(s))tk

for some functions ak. We shall mainly consider the case
that a is a function of the form a(z(s)) =

P
k Re!k(z(s))tk

where !k are analytic functions of z. (We let the function
!(z(s)) :=

P
k !

k(z(s))tk and we write a(z) = Re!(z).)
The above gauge theory is based on the Banach space

X of continuous functions Z(z(s)), Aj(z(s)), j= 1; 2; s0 6
s 6 s1 on the one dimensional interval [s0; s1].

Since L is positive and the theory is one dimensional (and
thus is simpler than the usual two dimensional Yang-Mills
gauge theory) we have that this gauge theory is similar to the
Wiener measure except that this gauge theory has a gauge
symmetry. This gauge symmetry gives a degenerate degree
of freedom. In the physics literature the usual way to treat
the degenerate degree of freedom of gauge symmetry is to in-
troduce a gauge fixing condition to eliminate the degenerate
degree of freedom where each gauge fixing will give equiv-
alent physical results [59]. There are various gauge fixing
conditions such as the Lorentz gauge condition, the Feynman
gauge condition, etc. We shall later in the Section on the Kac-
Moody algebra adopt a gauge fixing condition for the above
gauge theory. This gauge fixing condition will also be used to
derive the quantum KZ equation in dual form which will be
regarded as a quantum Yang-Mill equation since its role will
be similar to the classical Yang-Mill equation derived from
the classical Yang-Mill gauge theory.

3 Classical Dirac-Wilson loop

Similar to the Wilson loop in quantum field theory [60] from
our quantum theory we introduce an analogue of Wilson loop,
as follows. (We shall also call a Wilson loop as a Dirac-
Wilson loop.)
Definition A classical Wilson loop WR(C) is defined by:

WR(C) := W (z0; z1) := Pee0
R
C
Ajdxj ; (8)

where R denotes a representation of SU(2); C(�) = z(�) is
a fixed closed curve where the quantum gauge theories are
based on it as specific in the above Section. As usual the
notation P in the definition ofWR(C) denotes a path-ordered
product [60–62].

Let us give some remarks on the above definition of Wil-
son loop, as follows.

1. We use the notationW (z0; z1) to mean the Wilson loop
WR(C) which is based on the whole closed curve z(�). Here
for convenience we use only the end points z0 and z1 of the
curve z(�) to denote this Wilson loop (We keep in mind that
the definition of W (z0; z1) depends on the whole curve z(�)
connecting z0 and z1).

Then we extend the definition of WR(C) to the case that
z(�) is not a closed curve with z0 , z1. When z(�) is not a
closed curve we shall call W (z0; z1) as a Wilson line.

2. In constructing the Wilson loop we need to choose a
representation R of the SU(2) group. We shall see that be-
cause a Wilson line W (z0; z1) is with two variables z0 and
z1 a natural representation of a Wilson line or a Wilson loop
is the tensor product of the usual two dimensional represen-
tation of the SU(2) for constructing the Wilson loop. �

A basic property of a Wilson line W (z0; z1) is that for a
given continuous path Aj ; j= 1; 2 on [s0; s1] the Wilson line
W (z0; z1) exists on this path and has the following transition
property:

W (z0; z1) = W (z0; z)W (z; z1) (9)

where W (z0; z1) denotes the Wilson line of a curve z(�)
which is with z0 as the starting point and z1 as the ending
point and z is a point on z(�) between z0 and z1.

This property can be proved as follows. We have that
W (z0; z1) is a limit (whenever exists) of ordered product of
eAj4xj and thus can be written in the following form:

W (z0; z1) = I +
R s00
s0 e0Aj(z(s))dx

j(s)
ds ds+

+
R s00
s0 e0Aj(z(s2))dx

j(s2)
ds �

�hR s2s0 e0Aj(z(s3))dx
j(s3)
ds ds3

i
ds2 + � � �

(10)

where z(s0) = z0 and z(s00) = z1. Then since Ai are contin-
uous on [s0; s00] and xi(z(�)) are continuously differentiable
on [s0; s00] we have that the series in (10) is absolutely con-
vergent. Thus the Wilson line W (z0; z1) exists. Then since
W (z0; z1) is the limit of ordered product we can write
W (z0; z1) in the form W (z0; z)W (z; z1) by dividing z(�)
into two parts at z. This proves the basic property of Wil-
son line. �
Remark (classical and quantum versions of Wilson loop)
From the above property we have that the Wilson line
W (z0; z1) exists in the classical pathwise sense where Ai are
as classical paths on [s0; s1]. This pathwise version of the
Wilson line W (z0; z1); from the Feynman path integral point
of view; is as a partial description of the quantum version of
the Wilson line W (z0; z1) which is as an operator when Ai
are as operators. We shall in the next Section derive and de-
fine a quantum generator J of W (z0; z1) from the quantum
gauge theory. Then by using this generator J we shall com-
pute the quantum version of the Wilson line W (z0; z1).

We shall denote both the classical version and quantum
version of Wilson line by the same notation W (z0; z1) when
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there is no confusion. �
By following the usual approach of deriving a chiral sym-

metry from a gauge transformation of a gauge field we have
the following chiral symmetry which is derived by applying
an analytic gauge transformation with an analytic function !
for the transformation:

W (z0; z1) 7! W 0(z0; z1) =

= U(!(z1))W (z0; z1)U�1(!(z0)) ;
(11)

where W 0(z0; z1) is a Wilson line with gauge field:

A0� =
@U(z)
@x�

U�1(z) +U(z)A� U�1(z) : (12)

This chiral symmetry is analogous to the chiral symmetry
of the usual guage theory where U denotes an element of the
gauge group [61]. Let us derive (11) as follows. Let U(z) :=
:= U(!(z(s))) and U(z + dz) � U(z) + @U(z)

@x� dx� where
dz = (dx1; dx2). Following [61] we have

U(z + dz)(1 + e0dx�A�)U�1(z) =

= U(z + dz)U�1(z) + e0dx�U(z+dz)A�U�1(s)

� 1+ @U(z)
@x� U�1(z)dx� + e0dx�U(z+dz)A�U�1(s)

� 1 + @U(z)
@x� U�1(z)dx� + e0dx�U(z)A�U�1(z)

=: 1 + @U(z)
@x� U�1(z)dx� + e0dx�U(z)A�U�1(z)

=: 1 + e0dx�A0� :

(13)

From (13) we have that (11) holds.
As analogous to the WZW model in conformal field the-

ory [65, 66] from the above symmetry we have the following
formulas for the variations �!W and �!0W with respect to
this symmetry (see [65] p.621):

�!W (z; z0) = W (z; z0)!(z) (14)
and

�!0W (z; z0) = �!0(z0)W (z; z0) ; (15)

where z and z0 are independent variables and !0(z0) =!(z)
when z0= z. In (14) the variation is with respect to the z vari-
able while in (15) the variation is with respect to the z0 vari-
able. This two-side-variations when z , z0 can be derived as
follows. For the left variation we may let ! be analytic in a
neighborhood of z and extended as a continuously differen-
tiable function to a neighborhood of z0 such that !(z0) = 0 in
this neighborhood of z0. Then from (11) we have that (14)
holds. Similarly we may let !0 be analytic in a neighborhood
of z0 and extended as a continuously differentiable function to
a neighborhood of z such that !0(z) = 0 in this neighborhood
of z. Then we have that (15) holds.

4 Gauge fixing and affine Kac-Moody algebra

This Section has two related purposes. One purpose is to
find a gauge fixing condition for eliminating the degenerate
degree of freedom from the gauge invariance of the above
quantum gauge theory in Section 2. Then another purpose is
to find an equation for defining a generator J of the Wilson
line W (z; z0). This defining equation of J can then be used
as a gauge fixing condition. Thus with this defining equation
of J the construction of the quantum gauge theory in Section
2 is then completed.

We shall derive a quantum loop algebra (or the affine Kac-
Moody algebra) structure from the Wilson line W (z; z0) for
the generator J of W (z; z0). To this end let us first con-
sider the classical case. Since W (z; z0) is constructed from
SU(2) we have that the mapping z ! W (z; z0) (We con-
sider W (z; z0) as a function of z with z0 being fixed) has a
loop group structure [63, 64]. For a loop group we have the
following generators:

Jan = tazn n = 0 ;�1;�2; : : : (16)

These generators satisfy the following algebra:

[Jam; J
b
n] = ifabcJcm+n : (17)

This is the so called loop algebra [63, 64]. Let us then
introduce the following generating function J :

J(w) =
X
a

Ja(w) =
X
a

ja(w) ta; (18)

where we define

Ja(w) = ja(w)ta :=
1X

n=�1
Jan(z)(w � z)�n�1: (19)

From J we have

Jan =
1

2�i

I
z
dw (w � z)nJa(w) ; (20)

where
H
z denotes a closed contour integral with center z. This

formula can be interpreted as that J is the generator of the
loop group and that Jan is the directional generator in the di-
rection !a(w) = (w � z)n. We may generalize (20) to the
following directional generator:

1
2�i

I
z
dw !(w)J(w) ; (21)

where the analytic function !(w) =
P
a !

a(w)ta is regarded
as a direction and we define

!(w)J(w) :=
X
a

!a(w)Ja: (22)

Then since W (z; z0) 2 SU(2), from the variational for-
mula (21) for the loop algebra of the loop group of SU(2) we
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have that the variation of W (z; z0) in the direction !(w) is
given by

W (z; z0) 1
2�i

I
z
dw !(w)J(w) : (23)

Now let us consider the quantum case which is based on
the quantum gauge theory in Section 2. For this quantum case
we shall define a quantum generator J which is analogous to
the J in (18). We shall choose the equations (34) and (35) as
the equations for defining the quantum generator J . Let us
first give a formal derivation of the equation (34), as follows.
Let us consider the following formal functional integration:

hW (z; z0)A(z)i :=

:=
R
dA1dA2dZ�dZe�LW (z; z0)A(z);

(24)

where A(z) denotes a field from the quantum gauge theory.
(We first let z0 be fixed as a parameter.)

Let us do a calculus of variation on this integral to derive
a variational equation by applying a gauge transformation on
(24) as follows. (We remark that such variational equations
are usually called the Ward identity in the physics literature.)

Let (A1; A2; Z) be regarded as a coordinate system of the
integral (24). Under a gauge transformation (regarded as a
change of coordinate) with gauge function a(z(s)) this co-
ordinate is changed to another coordinate (A01; A02; Z 0). As
similar to the usual change of variable for integration we have
that the integral (24) is unchanged under a change of variable
and we have the following equality:R

dA01dA02dZ 0�dZ 0e�L
0
W 0(z; z0)A0(z) =

=
R
dA1dA2dZ�dZe�LW (z; z0)A(z) ;

(25)

where W 0(z; z0) denotes the Wilson line based on A01 and A02
and similarlyA0(z) denotes the field obtained fromA(z) with
(A1; A2; Z) replaced by (A01; A02; Z 0).

Then it can be shown that the differential is unchanged
under a gauge transformation [59]:

dA01dA02dZ 0�dZ 0 = dA1dA2dZ�dZ : (26)

Also by the gauge invariance property the factor e�L is
unchanged under a gauge transformation. Thus from (25) we
have

0 = hW 0(z; z0)A0(z)i � hW (z; z0)A(z)i ; (27)

where the correlation notation h�i denotes the integral with
respect to the differential

e�LdA1dA2dZ�dZ (28)

We can now carry out the calculus of variation. From the
gauge transformation we have the formula:

W 0(z; z0) = U(a(z))W (z; z0)U�1(a(z0)) ; (29)

where a(z) = Re!(z). This gauge transformation gives a
variation ofW (z; z0) with the gauge function a(z) as the vari-
ational direction a in the variational formulas (21) and (23).
Thus analogous to the variational formula (23) we have that
the variation of W (z; z0) under this gauge transformation is
given by

W (z; z0) 1
2�i

I
z
dw a(w)J(w) ; (30)

where the generator J for this variation is to be specific. This
J will be a quantum generator which generalizes the classical
generator J in (23).

Thus under a gauge transformation with gauge function
a(z) from (27) we have the following variational equation:

0 =
D
W (z; z0)

h
�aA(z) +

+
1

2�i

I
z
dwa(w)J(w)A(z)

iE
;

(31)

where �aA(z) denotes the variation of the field A(z) in the
direction a(z). From this equation an ansatz of J is that J
satisfies the following equation:

W (z; z0)
h
�aA(z) +

1
2�i

I
z
dwa(w)J(w)A(z)

i
= 0 : (32)

From this equation we have the following variational
equation:

�aA(z) =
�1
2�i

I
z
dwa(w)J(w)A(z) : (33)

This completes the formal calculus of variation. Now
(with the above derivation as a guide) we choose the follow-
ing equation (34) as one of the equation for defining the gen-
erator J :

�!A(z) =
�1
2�i

I
z
dw !(w)J(w)A(z) ; (34)

where we generalize the direction a(z) = Re!(z) to the ana-
lytic direction !(z). (This generalization has the effect of ex-
tending the real measure of the pure gauge part of the gauge
theory to include the complex Feynman path integral since it
gives the transformation ds ! �ids for the integral of the
Wilson line W (z; z0).)

Let us now choose one more equation for determine the
generator J in (34). This choice will be as a gauge fixing
condition. As analogous to the WZW model in conformal
field theory [65–67] let us consider a J given by

J(z) := �k0W�1(z; z0) @zW (z; z0) ; (35)

where we define @z = @x1 + i@x2 and we set z0= z after the
differentiation with respect to z; k0 > 0 is a constant which
is fixed when the J is determined to be of the form (35) and
the minus sign is chosen by convention. In the WZW model
[65, 67] the J of the form (35) is the generator of the chiral
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symmetry of the WZW model. We can write the J in (35) in
the following form:

J(w) =
X
a

Ja(w) =
X
a

ja(w) ta: (36)

We see that the generators ta of SU(2) appear in this form
of J and this form is analogous to the classical J in (18). This
shows that this J is a possible candidate for the generator J
in (34).

Since W (z; z0) is constructed by gauge field we need to
have a gauge fixing for the computations related to W (z; z0).
Then since the J in (34) and (35) is constructed by W (z; z0)
we have that in defining this J as the generator J of W (z; z0)
we have chosen a condition for the gauge fixing. In this paper
we shall always choose this defining equations (34) and (35)
for J as the gauge fixing condition.

In summary we introduce the following definition.
Definition The generator J of the quantum Wilson line
W (z; z0) whose classical version is defined by (8), is an op-
erator defined by the two conditions (34) and (35). �
Remark We remark that the condition (35) first defines J
classically. Then the condition (34) raises this classical J to
the quantum generator J . �

Now we want to show that this generator J in (34) and
(35) can be uniquely solved. (This means that the gauge fix-
ing condition has already fixed the gauge that the degenerate
degree of freedom of gauge invariance has been eliminated so
that we can carry out computation.)

Let us now solve J . From (11) and (35) the variation �!J
of the generator J in (35) is given by [65, p. 622] and [67]:

�!J = [J; !]� k0@z! : (37)

From (34) and (37) we have that J satisfies the following
relation of current algebra [65–67]:

Ja(w)Jb(z) =
k0�ab

(w � z)2 +
X
c

ifabc
Jc(z)

(w � z)
; (38)

where as a convention the regular term of Ja(w)Jb(z) is
omitted. Then by following [65–67] from (38) and (36) we
can show that the Jan in (18) for the corresponding Laurent
series of the quantum generator J satisfy the following Kac-
Moody algebra:

[Jam; J
b
n] = ifabcJcm+n + k0m�ab�m+n;0 ; (39)

where k0 is usually called the central extension or the level of
the Kac-Moody algebra.
Remark Let us also consider the other side of the chiral
symmetry. Similar to the J in (35) we define a generator
J 0 by:

J 0(z0) = k0@z0W (z; z0)W�1(z; z0) ; (40)

where after differentiation with respect to z0 we set z= z0.

Let us then consider the following formal correlation:

hA(z0)W (z; z0)i :=

:=
Z
dA1dA2dZ�dZA(z0)W (z; z0) e�L;

(41)

where z is fixed. By an approach similar to the above deriva-
tion of (34) we have the following variational equation:

�!0A(z0) =
�1
2�i

I
z0
dwA(z0)J 0(w)!0(w) ; (42)

where as a gauge fixing we choose the J 0 in (42) be the J 0 in
(40). Then similar to (37) we also have

�!0J 0 = [J 0; !0]� k0@z0!0: (43)

Then from (42) and (43) we can derive the current algebra
and the Kac-Moody algebra for J 0 which are of the same form
of (38) and (39). From this we have J 0= J . �

Now with the above current algebra J and the formula
(34) we can follow the usual approach in conformal field
theory to derive a quantum Knizhnik-Zamolodchikov (KZ)
equation for the product of primary fields in a conformal field
theory [65–67]. We derive the KZ equation for the product
of n Wilson lines W (z; z0). Here an important point is that
from the two sides of W (z; z0) we can derive two quantum
KZ equations which are dual to each other. These two quan-
tum KZ equations are different from the usual KZ equation
in that they are equations for the quantum operators W (z; z0)
while the usual KZ equation is for the correlations of quan-
tum operators. With this difference we can follow the usual
approach in conformal field theory to derive the following
quantum Knizhnik-Zamolodchikov equation [65, 66, 68]:

@ziW (z1; z01) � � �W (zn; z0n) =

= �e20
k0+g0

Pn
j,i

P
a
tai
taj

zi�zj W (z1; z01) � � �W (zn; z0n) ;
(44)

for i= 1; : : : ; n where g0 denotes the dual Coxeter number
of a group multiplying with e2

0 and we have g0 = 2e2
0 for

the group SU(2) (When the gauge group is U(1) we have
g0 = 0). We remark that in (44) we have defined tai := ta and:

tai 
 tajW (z1; z01) � � �W (zn; z0n) := W (z1; z01) � � �
� � � [taW (zi; z0i)] � � � [taW (zj ; z0j)] � � �W (zn; z0n) :

(45)

It is interesting and important that we also have the fol-
lowing quantum Knizhnik-Zamolodchikov equation with re-
spect to the z0i variables which is dual to (44):

@z0iW (z1; z01) � � �W (zn; z0n) =

= �e20
k0+g0

Pn
j,iW (z1; z01) � � �W (zn; z0n)

P
a
tai
taj

z0j�z0i
(46)
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for i= 1; : : : ; n where we have defined:

W (z1; z01) � � �W (zn; z0n)tai 
 taj := W (z1; z01) � � �
� � � [W (zi; z0i)ta] � � � [W (zj ; z0j)ta] � � �W (zn; z0n) :

(47)

Remark From the quantum gauge theory we derive the
above quantum KZ equation in dual form by calculus of vari-
ation. This quantum KZ equation in dual form may be con-
sidered as a quantum Euler-Lagrange equation or as a quan-
tum Yang-Mills equation since it is analogous to the classi-
cal Yang-Mills equation which is derived from the classical
Yang-Mills gauge theory by calculus of variation. �
5 Solving quantum KZ equation in dual form

Let us consider the following product of two quantum Wilson
lines:

G(z1; z2; z3; z4) := W (z1; z2)W (z3; z4) ; (48)

where the quantum Wilson lines W (z1; z2) and W (z3; z4)
represent two pieces of curves starting at z1 and z3 and ending
at z2 and z4 respectively.

We have that this product G(z1; z2; z3; z4) satisfies the
KZ equation for the variables z1, z3 and satisfies the dual
KZ equation for the variables z2 and z4. Then by solving
the two-variables-KZ equation in (44) we have that a form of
G(z1; z2; z3; z4) is given by [69–71]:

e�t̂ log[�(z1�z3)]C1 ; (49)

where t̂ := e20
k0+g0

P
a t
a
ta andC1 denotes a constant matrix

which is independent of the variable z1 � z3.
We see that G(z1; z2; z3; z4) is a multi-valued analytic

function where the determination of the � sign depended on
the choice of the branch.

Similarly by solving the dual two-variable-KZ equation
in (46) we have that G is of the form

C2 et̂ log[�(z4�z2)] ; (50)

where C2 denotes a constant matrix which is independent of
the variable z4 � z2.

From (49), (50) and letting:

C1 = Aet̂ log[�(z4�z2)]; C2 = e�t̂ log[�(z1�z3)]A ; (51)

where A is a constant matrix we have that G(z1; z2; z3; z4) is
given by:

G(z1; z2; z3; z4) = e�t̂ log[�(z1�z3)]Aet̂ log[�(z4�z2)] ; (52)

where at the singular case that z1 = z3 we define
log[�(z1 � z3)] = 0. Similarly for z2 = z4.

Let us find a form of the initial operator A. We notice
that there are two operators ��(z1 � z3) := e�t̂ log[�(z1�z3)]

and 	�(z4 � z2) = et̂ log[�(z4�z2)] acting on the two sides of

A respectively where the two independent variables z1; z3 of
�� are mixed from the two quantum Wilson lines W (z1; z2)
and W (z3; z4) respectively and the the two independent vari-
ables z2; z4 of 	� are mixed from the two quantum Wilson
lines W (z1; z2) and W (z3; z4) respectively. From this we
determine the form of A as follows.

Let D denote a representation of SU(2). Let D(g) rep-
resent an element g of SU(2) and let D(g) 
 D(g) denote
the tensor product representation of SU(2). Then in the KZ
equation we define

[ta 
 ta][D(g1)
D(g1)]
 [D(g2)
D(g2)] :=

:= [taD(g1)
D(g1)]
 [taD(g2)
D(g2)]
(53)

and

[D(g1)
D(g1)]
 [D(g2)
D(g2)][ta 
 ta] :=

:= [D(g1)
D(g1)ta]
 [D(g2)
D(g2)ta] :
(54)

Then we let U(a) denote the universal enveloping alge-
bra where a denotes an algebra which is formed by the Lie
algebra su(2) and the identity matrix.

Now let the initial operator A be of the form A1 
 A2 

A3 
 A4 with Ai; i= 1; : : : ; 4 taking values in U(a). In this
case we have that in (52) the operator ��(z1 � z3) acts on A
from the left via the following formula:

ta 
 taA = [taA1]
A2 
 [taA3]
 A4 : (55)

Similarly the operator 	�(z4�z2) in (52) acts onA from
the right via the following formula:

Ata 
 ta = A1 
 [A2ta]
 A3 
 [A4ta] : (56)

We may generalize the above tensor product of two quan-
tum Wilson lines as follows. Let us consider a tensor product
of n quantum Wilson lines: W (z1; z01) � � �W (zn; z0n) where
the variables zi, z0i are all independent. By solving the two
KZ equations we have that this tensor product is given by:

W (z1; z01) � � �W (zn; z0n) =

=
Y
ij

��(zi � zj)AY
ij

	�(z0i � z0j) ; (57)

where
Q
ij denotes a product of ��(zi � zj) or 	�(z0i � z0j)

for i; j = 1; : : : ; n where i , j. In (57) the initial opera-
tor A is represented as a tensor product of operators Aiji0j0 ,
i; j; i0; j0= 1; : : : ; n where each Aiji0j0 is of the form of the
initial operator A in the above tensor product of two-Wilson-
lines case and is acted by ��(zi � zj) or 	�(z0i � z0j) on its
two sides respectively.

6 Computation of quantum Wilson lines

Let us consider the following product of two quantum Wilson
lines:

G(z1; z2; z3; z4) := W (z1; z2)W (z3; z4) ; (58)
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where the quantum Wilson lines W (z1; z2) and W (z3; z4)
represent two pieces of curves starting at z1 and z3 and ending
at z2 and z4 respectively. As shown in the above Section we
have that G(z1; z2; z3; z4) is given by the following formula:

G(z1; z2; z3; z4) = e�t̂ log[�(z1�z3)]Aet̂ log[�(z4�z2)] ; (59)

where the product is a 4-tensor.
Let us set z2 = z3. Then the 4-tensorW (z1; z2)W (z3; z4)

is reduced to the 2-tensorW (z1; z2)W (z2; z4). By using (59)
the 2-tensor W (z1; z2)W (z2; z4) is given by:

W (z1; z2)W (z2; z4) =

= e�t̂ log[�(z1�z2)]A14et̂ log[�(z4�z2)] ;
(60)

where A14 =A1
A4 is a 2-tensor reduced from the 4-tensor
A=A1
A2
A3
A4 in (59). In this reduction the t̂ operator
of � = e�t̂ log[�(z1�z2)] acting on the left side of A1 and A3
in A is reduced to acting on the left side of A1 and A4 in A14.
Similarly the t̂ operator of 	 = et̂ log[�(z4�z2)] acting on the
right side of A2 and A4 in A is reduced to acting on the right
side of A1 and A4 in A14.

Then since t̂ is a 2-tensor operator we have that t̂ is as
a matrix acting on the two sides of the 2-tensor A14 which
is also as a matrix with the same dimension as t̂. Thus �
and 	 are as matrices of the same dimension as the matrix
A14 acting on A14 by the usual matrix operation. Then since
t̂ is a Casimir operator for the 2-tensor group representation
of SU(2) we have that � and 	 commute with A14 since �
and 	 are exponentials of t̂. (We remark that � and 	 are
in general not commute with the 4-tensor initial operator A.)
Thus we have

e�t̂ log[�(z1�z2)]A14et̂ log[�(z4�z2)] =

= e�t̂ log[�(z1�z2)]et̂ log[�(z4�z2)]A14 :
(61)

We let W (z1; z2)W (z2; z4) be as a representation of the
quantum Wilson line W (z1; z4):

W (z1; z4) := W (z1; w1)W (w1; z4) =

= e�t̂ log[�(z1�w1)]et̂ log[�(z4�w1)]A14 :
(62)

This representation of the quantum Wilson lineW (z1; z4)
means that the line (or path) with end points z1 and z4 is
specific that it passes the intermediate point w1 = z2. This
representation shows the quantum nature that the path is not
specific at other intermediate points except the intermediate
point w1 = z2. This unspecification of the path is of the same
quantum nature of the Feynman path description of quantum
mechanics.

Then let us consider another representation of the quan-
tum Wilson line W (z1; z4). We consider the three-product
W (z1; w1)W (w1; w2)W (w2; z4) which is obtained from the

three-tensor W (z1; w1)W (u1; w2)W (u2; z4) by two reduc-
tions where zj , wj , uj , j= 1; 2 are independent variables.
For this representation we have:

W (z1; w1)W (w1; w2)W (w2; z4)= e�t̂ log[�(z1�w1)]�
� e�t̂ log[�(z1�w2)]et̂ log[�(z4�w1)]et̂ log[�(z4�w2)]A14 :

(63)

This representation of the quantum Wilson lineW (z1; z4)
means that the line (or path) with end points z1 and z4 is spe-
cific that it passes the intermediate points w1 and w2. This
representation shows the quantum nature that the path is not
specific at other intermediate points except the intermediate
points w1 and w2. This unspecification of the path is of
the same quantum nature of the Feynman path description of
quantum mechanics.

Similarly we may represent W (z1; z4) by path with end
points z1 and z4 and is specific only to pass at finitely many
intermediate points. Then we let the quantum Wilson line
W (z1; z4) as an equivalent class of all these representations.
Thus we may write:

W (z1; z4) = W (z1; w1)W (w1; z4) =

= W (z1; w1)W (w1; w2)W (w2; z4) = � � � (64)

Remark Since A14 is a 2-tensor we have that a natural
group representation for the Wilson line W (z1; z4) is the 2-
tensor group representation of the group SU(2).

7 Representing braiding of curves by quantum Wilson
lines

Consider again the G(z1; z2; z3; z4) in (58). We have that
G(z1; z2; z3; z4) is a multi-valued analytic function where the
determination of the � sign depended on the choice of the
branch.

Let the two pieces of curves represented byW (z1; z2) and
W (z3; z4) be crossing at w. In this case we write W (zi; zj)
as W (zi; zj) = W (zi; w)W (w; zj) where i = 1; 3, j = 2; 4.
Thus we have

W (z1; z2)W (z3; z4) =

= W (z1; w)W (w; z2)W (z3; w)W (w; z4) :
(65)

If we interchange z1 and z3, then from (65) we have the
following ordering:

W (z3; w)W (w; z2)W (z1; w)W (w; z4) : (66)

Now let us choose a branch. Suppose these two curves
are cut from a knot and that following the orientation of a
knot the curve represented by W (z1; z2) is before the curve
represented by W (z3; z4). Then we fix a branch such that the
product in (59) is with two positive signs:

W (z1; z2)W (z3; z4) = e�t̂ log(z1�z3)Aet̂ log(z4�z2) : (67)
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Then if we interchange z1 and z3 we have

W (z3; w)W (w; z2)W (z1; w)W (w; z4) =

= e�t̂ log[�(z1�z3)]Aet̂ log(z4�z2) :
(68)

From (67) and (68) as a choice of branch we have

W (z3; w)W (w; z2)W (z1; w)W (w; z4) =

= RW (z1; w)W (w; z2)W (z3; w)W (w; z4) ;
(69)

where R = e�i�t̂ is the monodromy of the KZ equation. In
(69) z1 and z3 denote two points on a closed curve such that
along the direction of the curve the point z1 is before the point
z3 and in this case we choose a branch such that the angle of
z3� z1 minus the angle of z1� z3 is equal to �.

Remark We may use other representations of the product
W (z1; z2)W (z3; z4). For example we may use the following
representation:

W (z1; w)W (w; z2)W (z3; w)W (w; z4) =

= e�t̂ log(z1�z3)e�2t̂ log(z1�w)e�2t̂ log(z3�w)�
�Aet̂ log(z4�z2)e2t̂ log(z4�w)e2t̂ log(z2�w) :

(70)

Then the interchange of z1 and z3 changes only z1� z3
to z3� z1. Thus the formula (69) holds. Similarly all other
representations of W (z1; z2)W (z3; z4) will give the same
result. �

Now from (69) we can take a convention that the order-
ing (66) represents that the curve represented by W (z1; z2)
is up-crossing the curve represented by W (z3; z4) while (65)
represents zero crossing of these two curves.

Similarly from the dual KZ equation as a choice of branch
which is consistent with the above formula we have

W (z1; w)W (w; z4)W (z3; w)W (w; z2) =

= W (z1; w)W (w; z2)W (z3; w)W (w; z4)R�1;
(71)

where z2 is before z4. We take a convention that the order-
ing in (71) represents that the curve represented byW (z1; z2)
is under-crossing the curve represented by W (z3; z4). Here
along the orientation of a closed curve the piece of curve
represented by W (z1; z2) is before the piece of curve rep-
resented by W (z3; z4). In this case since the angle of z3� z1
minus the angle of z1� z3 is equal to � we have that the an-
gle of z4� z2 minus the angle of z2� z4 is also equal to �
and this gives the R�1 in this formula (71).

From (69) and (71) we have

W (z3; z4)W (z1; z2) = RW (z1; z2)W (z3; z4)R�1; (72)

where z1 and z2 denote the end points of a curve which is
before a curve with end points z3 and z4. From (72) we
see that the algebraic structure of these quantum Wilson lines
W (z; z0) is analogous to the quasi-triangular quantum group
[66, 69].

8 Computation of quantum Dirac-Wilson loop

Consider again the quantum Wilson line W (z1; z4) given by
W (z1; z4) =W (z1; z2)W (z2; z4). Let us set z1 = z4. In this
case the quantum Wilson line forms a closed loop. Now in
(61) with z1 = z4 we have that the quantities e�t̂ log�(z1�z2)

and et̂ log�(z1�z2) which come from the two-side KZ equa-
tions cancel each other and from the multi-valued property of
the log function we have:

W (z1; z1) = RNA14 ; N = 0;�1;�2; : : : (73)

where R= e�i�t̂ is the monodromy of the KZ equation [69].

Remark It is clear that if we use other representation of the
quantum Wilson loop W (z1; z1) (such as the representation
W (z1; z1) =W (z1; w1)W (w1; w2)W (w2; z1)) then we will
get the same result as (73).

Remark For simplicity we shall drop the subscript of A14
in (73) and simply write A14 =A.

9 Winding number of Dirac-Wilson loop as quanti-
zation

We have the equation (73) where the integerN is as a winding
number. Then when the gauge group is U(1) we have

W (z1; z1) = RNU(1)A ; (74)

where RU(1) denotes the monodromy of the KZ equation for
U(1). We have

RNU(1) = eiN
�e20
k0+g0 ; N = 0;�1;�2; : : : (75)

where the constant e0 denotes the bare electric charge (and
g0 = 0 for U(1) group). The winding number N is as the
quantization property of photon. We show in the follow-
ing Section that the Dirac-Wilson loop W (z1; z1) with the
abelian U(1) group is a model of the photon.

10 Magnetic monopole is a photon with a specific fre-
quency

We see that the Dirac-Wilson loop is an exactly solvable non-
linear observable. Thus we may regard it as a quantum soliton
of the above gauge theory. In particular for the abelian gauge
theory with U(1) as gauge group we regard the Dirac-Wilson
loop as a quantum soliton of the electromagnetic field. We
now want to show that this soliton has all the properties of
photon and thus we may identify it with the photon.

First we see that from (75) it has discrete energy levels of
light-quantum given by

h� := N
�e2

0
k0

; N = 0; 1; 2; 3; : : : (76)
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where h is the Planck’s constant; � denotes a frequency and
the constant k0> 0 is determined from this formula. This
formula is from the monodromy RU(1) for the abelian gauge
theory. We see that the Planck’s constant h comes out from
this winding property of the Dirac-Wilson loop. Then since
this Dirac-Wilson loop is a loop we have that it has the polar-
ization property of light by the right hand rule along the loop
and this polarization can also be regarded as the spin of pho-
ton. Now since this loop is a quantum soliton which behaves
as a particle we have that this loop is a basic particle of the
above abelian gauge theory where the abelian gauge property
is considered as the fundamental property of electromagnetic
field. This shows that the Dirac-Wilson loop has properties of
photon. We shall later show that from this loop model of pho-
ton we can describe the absorption and emission of photon by
an electron. This property of absorption and emission is con-
sidered as a basic principle of the light-quantum hypothesis
of Einstein [1]. From these properties of the Dirac-Wilson
loop we may identify it with the photon.

On the other hand from Dirac’s analysis of the magnetic
monopole we have that the property of magnetic monopole
comes from a closed line integral of vector potential of the
electromagnetic field which is similar to the Dirac-Wilson
loop [4]. Now from this Dirac-Wilson loop we can define
the magnetic charge q and the minimal magnetic charge qmin
which are given by:

eq := enqmin := nee0n
nme0�
k0

; n = 0; 1; 2; 3; : : : (77)

where e :=nee0 is as the observed electric charge for some
positive integer ne; and qmin := nme0�

k0
for some positive in-

teger nm and we write N =nnenm; n = 0; 1; 2; 3; : : : (by
absorbing the constant k0 to e2

0 we may let k0 = 1).
This shows that the Dirac-Wilson loop gives the property

of magnetic monopole for some frequencies. Since this loop
is a quantum soliton which behaves as a particle we have that
this Dirac-Wilson loop may be identified with the magnetic
monopole for some frequencies. Thus we have that photon
may be identified with the magnetic monopole for some fre-
quencies. With this identification we have the following in-
teresting conclusion: Both the energy quantization of elec-
tromagnetic field and the charge quantization property come
from the same property of photon. Indeed we have:

nh�1 := n
nenme2

0�
k0

= eq ; n = 0; 1; 2; 3; : : : (78)

where �1 denotes a frequency. This formula shows that the
energy quantization gives the charge quantization and thus
these two quantizations are from the same property of the
photon when photon is modelled by the Dirac-Wilson loop
and identified with the magnetic monopole for some frequen-
cies. We notice that between two energy levels neqmin and
(n+ 1)eqmin there are other energy levels which may be re-
garded as the excited states of a particle with charge ne.

11 Nonlinear loop model of electron

In this Section let us also give a loop model to the electron.
This loop model of electron is based on the above loop model
of the photon. From the loop model of photon we also con-
struct an observable which gives mass to the electron and is
thus a mass mechanism for the electron.

LetW (z; z) denote a Dirac-Wilson loop which represents
a photon. Let Z denotes the complex variable for electron in
(1.1). We then consider the following observable:

W (z; z)Z : (79)

Since W (z; z) is solvable we have that this observable
is also solvable where in solving W (z; z) the variable Z is
fixed. We let this observable be identified with the electron.
Then we consider the following observable:

Z�W (z; z)Z : (80)

This observable is with a scalar factor Z�Z where Z� de-
notes the complex conjugate ofZ and we regard it as the mass
mechanism of the electron (79). For this observable we model
the energy levels with specific frequencies of W (z; z) as the
mass levels of electron and the massm of electron is the low-
est energy level h�1 with specific frequency �1 of W (z; z)
and is given by:

mc2 = h�1 ; (81)

where c denotes the constant of the speed of light and the
frequency �1 is given by (78). From this model of the mass
mechanism of electron we have that electron is with mass m
while photon is with zero mass because there does not have
such a mass mechanism Z�W (z; z)Z for the photon. From
this definition of mass we have the following formula relat-
ing the observed electric charge e of electron, the magnetic
charge qmin of magnetic monopole and the mass m of elec-
tron:

mc2 = eqmin = h�1 : (82)

By using the nonlinear model W (z; z)Z to represent an
electron we can then describe the absorption and emission of
a photon by an electron where photon is as a parcel of energy
described by the loop W (z; z), as follows. Let W (z; z)Z
represents an electron and let W1(z1; z1) represents a pho-
ton. Then the observable W1(z1; z1)W (z; z)Z represents an
electron having absorbed the photon W1(z1; z1). This prop-
erty of absorption and emission is as a basic principle of the
hypothesis of light-quantum stated by Einstein [1]. Let us
quote the following paragraph from [1]:

. . . First, the light-quantum was conceived of as a par-
cel of energy as far as the properties of pure radiation
(no coupling to matter) are concerned. Second, Ein-
stein made the assumption — he call it the heuristic
principle — that also in its coupling to matter (that is,
in emission and absorption), light is created or anni-
hilated in similar discrete parcels of energy. That, I
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believe, was Einstein’s one revolutionary contribution
to physics. It upset all existing ideas about the interac-
tion between light and matter. . .

12 Photon with specific frequency carries electric and
magnetic charges

In this loop model of photon we have that the observed elec-
tric charge e :=nee0 and the magnetic charge qmin are car-
ried by the photon with some specific frequencies. Let us
here describe the physical effects from this property of pho-
ton that photon with some specific frequency carries the elec-
tric and magnetic charge. From the nonlinear model of elec-
tron we have that an electron W (z; z)Z also carries the elec-
tric charge when a photon W (z; z) carrying the electric and
magnetic charge is absorbed to form the electron W (z; z)Z.
This means that the electric charge of an electron is from the
electric charge carried by a photon. Then an interaction (as
the electric force) is formed between two electrons (with the
electric charges).

On the other hand since photon carries the constant e2
0 of

the bare electric charge e0 we have that between two photons
there is an interaction which is similar to the electric force
between two electrons (with the electric charges). This in-
teraction however may not be of the same magnitude as the
electric force with the magnitude e2 since the photons may
not carry the frequency for giving the electric and magnetic
charge. Then for stability such interaction between two pho-
tons tends to give repulsive effect to give the diffusion phe-
nomenon among photons.

Similarly an electron W (z; z)Z also carries the magnetic
charge when a photonW (z; z) carrying the electric and mag-
netic charge is absorbed to form the electron W (z; z)Z. This
means that the magnetic charge of an electron is from the
magnetic charge carried by a photon. Then a closed-loop in-
teraction (as the magnetic force) may be formed between two
electrons (with the magnetic charges).

On the other hand since photon carries the constant e2
0 of

the bare electric charge e0 we have that between two photons
there is an interaction which is similar to the magnetic force
between two electrons (with the magnetic charges). This in-
teraction however may not be of the same magnitude as the
magnetic force with the magnetic charge qmin since the pho-
tons may not carry the frequency for giving the electric and
magnetic charge. Then for stability such interaction between
two photons tends to give repulsive effect to give the diffusion
phenomenon among photons.

13 Statistics of photons and electrons

The nonlinear modelW (z; z)Z of an electron gives a relation
between photon and electron where the photon is modelled
by W (z; z) which is with a specific frequency for W (z; z)Z

to be an electron, as described in the above Sections. We
want to show that from this nonlinear model we may also de-
rive the required statistics of photons and electrons that pho-
tons obey the Bose-Einstein statistics and electrons obey the
Fermi-Dirac statistics. We have thatW (z; z) is as an operator
acting on Z. LetW1(z; z) be a photon. Then we have that the
nonlinear model W1(z; z)W (z; z)Z represents that the pho-
tonW1(z; z) is absorbed by the electronW (z; z)Z to form an
electron W1(z; z)W (z; z)Z. Let W2(z; z) be another pho-
ton. The we have that the modelW1(z; z)W2(z; z)W (z; z)Z
again represents an electron where we have:

W1(z; z)W2(z; z)W (z; z)Z =

= W2(z; z)W1(z; z)W (z; z)Z :
(83)

More generally the model
QN
n=1Wn(z; z)W (z; z)Z rep-

resents that the photons Wn(z; z); n= 1; 2; : : : ; N are
absorbed by the electron W (z; z)Z. This model shows that
identical (but different) photons can appear identically and it
shows that photons obey the Bose-Einstein statistics. From
the polarization of the Dirac-Wilson loop W (z; z) we may
assign spin 1 to a photon represented by W (z; z).

Let us then consider statistics of electrons. The observ-
able Z�W (z; z)Z gives mass to the electron W (z; z)Z and
thus this observable is as a scalar and thus is assigned with
spin 0. As the observable W (z; z)Z is between W (z; z) and
Z�W (z; z)Z which are with spin 1 and 0 respectively we thus
assign spin 1

2 to the observable W (z; z)Z and thus electron
represented by this observable W (z; z)Z is with spin 1

2 .
Then letZ1 andZ2 be two independent complex variables

for two electrons and let W1(z; z)Z1 and W2(z; z)Z2 repre-
sent two electrons. Let W3(z; z) represents a photon. Then
the model W3(z; z)(W1(z; z)Z1 +W2(z; z)Z2) means that
two electrons are in the same state that the operator W3(z; z)
is acted on the two electrons. However this model means that
a photon W (z; z) is absorbed by two distinct electrons and
this is impossible. Thus the models W3(z; z)W1(z; z)Z1 and
W3(z; z)W2(z; z)Z2 cannot both exist and this means that
electrons obey Fermi-Dirac statistics.

Thus this nonlinear loop model of photon and electron
gives the required statistics of photons and electrons.

14 Photon propagator and quantum photon propagator

Let us then investigate the quantum Wilson line W (z0; z)
with U(1) group where z0 is fixed for the photon field. We
want to show that this quantum Wilson line W (z0; z) may
be regarded as the quantum photon propagator for a photon
propagating from z0 to z.

As we have shown in the above Section on computation
of quantum Wilson line; to compute W (z0; z) we need to
write W (z0; z) in the form of two (connected) Wilson lines:
W (z0; z) =W (z0; z1)W (z1; z) for some z1 point. Then we
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have:

W (z0; z1)W (z1; z) =

= e�t̂ log[�(z1�z0)]Aet̂ log[�(z�z1)] ;
(84)

where t̂=� e20
k0

for the U(1) group (k0 is a constant and we

may for simplicity let k0 = 1) where the term e�t̂ log[�(z�z0)]

is obtained by solving the first form of the dual form of the KZ
equation and the term et̂ log[�(z0�z)] is obtained by solving
the second form of the dual form of the KZ equation.

Then we may write W (z0; z) in the following form:

W (z0; z) = W (z0; z1)W (z1; z) = e�t̂ log (z1�z0)
(z�z1) A : (85)

Let us fix z1 with z such that:

jz1 � z0j
jz � z1j =

r1

n2
e

(86)

for some positive integer ne such that r1 6 n2
e; and we let

z be a point on a path of connecting z0 and z1 and then a
closed loop is formed with z as the starting and ending point.
(This loop can just be the photon-loop of the electron in this
electromagnetic interaction by this photon propagator (85).)
Then (85) has a factor e2

0 log r1
n2
e

which is the fundamental
solution of the two dimensional Laplace equation and is anal-
ogous to the fundamental solution e2

r (where e := e0ne de-
notes the observed (renormalized) electric charge and r de-
notes the three dimensional distance) of the three dimensional
Laplace equation for the Coulomb’s law. Thus the opera-
tor W (z0; z) =W (z0; z1)W (z1; z) in (85) can be regarded
as the quantum photon propagator propagating from z0 to z.

We remark that when there are many photons we may in-
troduce the space variable x as a statistical variable via the
Lorentz metric ds2 = dt2� dx2 to obtain the Coulomb’s law
e2
r from the fundamental solution e2

0 log r1
n2
e

as a statistical
law for electricity (We shall give such a space-time statistics
later).

The quantum photon propagator (85) gives a repulsive ef-
fect since it is analogous to the Coulomb’s law e2

r . On the
other hand we can reverse the sign of t̂ such that this photon
operator can also give an attractive effect:

W (z0; z) = W (z0; z1)W (z1; z) = et̂ log (z�z1)
(z1�z0)A ; (87)

where we fix z1 with z0 such that:

jz � z1j
jz1 � z0j =

r1

n2
e

(88)

for some positive integer ne such that r1 > n2
e; and we again

let z be a point on a path of connecting z0 and z1 and then a
closed loop is formed with z as the starting and ending point.
(This loop again can just be the photon-loop of the electron
in this electromagnetic interaction by this photon propagator

(85).) Then (87) has a factor �e2
0 log r1

n2
e

which is the funda-
mental solution of the two dimensional Laplace equation and
is analogous to the attractive fundamental solution� e2r of the
three dimensional Laplace equation for the Coulomb’s law.

Thus the quantum photon propagator in (85), and in (87),
can give repulsive or attractive effect between two points z0
and z for all z in the complex plane. These repulsive or at-
tractive effects of the quantum photon propagator correspond
to two charges of the same sign and of different sign respec-
tively.

On the other hand when z= z0 the quantum Wilson line
W (z0; z0) in (85) which is the quantum photon propagator
becomes a quantum Wilson loop W (z0; z0) which is identi-
fied as a photon, as shown in the above Sections.

Let us then derive a form of photon propagator from the
quantum photon propagator W (z0; z). Let us choose a path
connecting z0 and z= z(s). We consider the following path:

z(s) = z1 + a0
�
�(s1 � s)e�i�1(s1�s) +

+ �(s� s1)ei�1(s1�s)�; (89)

where �1> 0 is a parameter and z(s0) = z0 for some proper
time s0; and a0 is some complex constant; and � is a step
function given by �(s) = 0 for s< 0, �(s) = 1 for s > 0. Then
on this path we have:

W (z0; z) =

= W (z0; z1)W (z1; z) = et̂ log (z�z1)
(z1�z0)A =

= et̂ log a0[�(s�s1)e�i�1(s1�s)+�(s1�s)ei�1(s1�s)]
(z1�z0) A =

= et̂ log b[�(s�s1)e�i�1(s1�s)+�(s1�s)ei�1(s1�s)]A =

= b0
�
�(s� s1)e�it̂�1(s1�s) + �(s1 � s)eit̂�1(s1�s)�A

(90)

for some complex constants b and b0. From this chosen of
the path (89) we have that the quantum photon propagator is
proportional to the following expression:

1
2�1

�
�(s� s1)e�i�1(s�s1) + �(s1 � s)ei�1(s�s1)� (91)

where we define �1 = � t̂ �1 = e2
0�1 > 0. We see that this is

the usual propagator of a particle x(s) of harmonic oscillator
with mass-energy parameter �1 > 0 where x(s) satisfies the
following harmonic oscillator equation:

d2x
ds2 = ��2

1x(s) : (92)

We regard (91) as the propagator of a photon with mass-
energy parameter �1. Fourier transforming (91) we have the
following form of photon propagator:

i
k2
E � �1

; (93)
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where we use the notation kE (instead of the notation k) to
denote the proper energy of photon. We shall show in the
next Section that from this photon propagator by space-time
statistics we can get a propagator with the kE replaced by
the energy-momemtum four-vector k which is similar to the
Feynman propagator (with a mass-energy parameter �1 > 0).
We thus see that the quantum photon propagator W (z0; z)
gives a classical form of photon propagator in the conven-
tional QED theory.

Then we notice that while �1 > 0 which may be think of
as the mass-energy parameter of a photon the original quan-
tum photon propagator W (z0; z) can give the Coulomb po-
tential and thus give the effect that the photon is massless.
Thus the photon mass-energy parameter �1 > 0 is consis-
tent with the property that the photon is massless. Thus in
the following Sections when we compute the vertex correc-
tion and the Lamb shift we shall then be able to let �1 > 0
without contradicting the property that the photon is mass-
less. This then can solve the infrared-divergence problem
of QED.

We remark that if we choose other form of paths for con-
necting z0 and z we can get other forms of photon propaga-
tor corresponding to a choice of gauge. From the property
of gauge invariance the final result should not depend on the
form of propagators. We shall see that this is achieved by
renormalization. This property of renormalizable is as a prop-
erty related to the gauge invariance. Indeed we notice that the
quantum photon propagator with a photon-loop W (z; z) at-
tached to an electron represented by Z has already given the
renormalized charge e (and the renormalized mass m of the
electron) for the electromagnetic interaction.

It is clear that this renormalization by the quantum photon
propagator with a photon-loop W (z; z) is independent of the
chosen photon propagator (because it does not need to choose
a photon propagator). Thus the renormalization method as
that in the conventional QED theory for the chosen of a pho-
ton propagator (corresponding to a choice of gauge) should
give the observable result which does not depend on the form
of the photon propagators since these two forms of renormal-
ization must give the same effect of renormalization.

In the following Section and the Sections from Section 16
to Section 23 on Quantum Electrodynamics (QED) we shall
investigate the renormalization method which is analogous to
that of the conventional QED theory and the computation of
QED effects by using this renormalization method.

15 Renormalization

In this Section and the following Sections from Section 16 to
Section 23 on Quantum Electrodynamics (QED) we shall use
the density (1.1) and the notations from this density where
Aj ; j= 1; 2 are real components of the photon field. Follow-
ing the conventional QED theory let us consider the following

renormalization:

Aj = z
1
2
AAjR ; j = 1; 2; Z = z

1
2
ZZR ;

e0 =
ze

zZz
1
2
A

e =
1
ne

e ;
(94)

where zA, zZ , and ze are renormalization constants to be de-
termined andARj ; j= 1; 2, ZR are renormalized fields. From
this renormalization the density D of QED in (1.1) can be
written in the following form:

D = 1
2 zA

�@A1R
@x2 � @A2R

@x1

���@A1R
@x2 � @A2R

@x1

�
+

+ zZ
�
dZ�R
ds + ie (

P2
j=1AjR

dxj
ds )Z�R

��
��dZRds � ie (

P2
j=1AjR

dxj
ds )ZR

�
=

=
n

1
2

�@A1R
@x2 � @A2R

@x1

���@A1R
@x2 � @A2R

@x1

�
+

+ dZ�R
ds

dZR
ds + �2Z�RZR � �2Z�RZR +

+ ie (
P2
j=1AjR

dxj
ds )Z�R dZRds �

� ie (
P2
j=1AjR

dxj
ds )dZ

�
R

ds ZR +

+ e2(
P2
j=1ARj

dxj
ds )2Z�RZR

o
+

+
n

(zA � 1)
� 1

2

�@A1R
@x2 � @A2R

@x1

���@A1R
@x2 � @A2R

@x1

��
+

+ (zZ � 1)dZ
�
R

ds
dZR
ds +

+ (ze � 1)
�
+ie (

P2
j=1AjR

dxj
ds )Z�R dZRds �

� ie(P2
j=1AjR

dxj
ds )dZ

�
R

ds ZR
�

+

+ ( z
2
e
zZ
� 1)e2(

P2
j=1AjR

dxj
ds )2Z�RZR

o
:=

:= Dphy +Dcnt ;

(95)

where Dphy is as the physical term and the Dcnt is as the
counter term; and in Dphy the positive parameter � is intro-
duced for perturbation expansion and for renormalization.

Similar to that the Ward-Takahashi identities in the con-
ventional QED theory are derived by the gauge invariance of
the conventional QED theory; by using the gauge invariance
of this QED theory we shall also derive the corresponding
Ward-Takahashi identities for this QED theory in the Section
on electron self-energy. From these Ward-Takahashi identi-
ties we then show that there exists a renormalization proce-
dure such that ze = zZ ; as similar to that in the conventional
QED theory. From this relation ze = zZ we then have:

e0 =
e

z
1
2
A

=
1
ne

e (96)

and that in (95) we have z2
e
zZ
� 1 = ze � 1.
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16 Feynman diagrams and Feynman rules for QED

Let us then transform ds in (1.1) to 1
(�+ih)ds where �; h > 0

are parameters and h is as the Planck constant. The parame-
ter h will give the dynamical effects of QED (as similar to the
conventional QED). Here for simplicity we only consider the
limiting case that � ! 0 and we let h= 1. From this transfor-
mation we get the Lagrangian L from� R s1s0 Dds changing toR s1
s0
Lds. Then we write L = Lphy +Lcnt where Lphy cor-

responds to Dphy and Lcnt corresponds to Dcnt. Then from
the following term in Lphy:

� i
��

dZR
ds

�� dZR
ds
� �2Z�RZR

�
(97)

and by the perturbation expansion of e
R s1
s0
Lds

we have the
following propagator:

i
p2
E � �2 (98)

which is as the (primitive) electron propagator where pE de-
notes the proper energy variable of electron.

Then from the pure gauge part of Lphy we get the photon
propagator (93), as done in the above Sections and the Section
on photon propagator.

Then from Lphy we have the following seagull vertex
term:

ie2
� 2X
j=1

AjR
dxj

ds

�2
Z�RZR : (99)

This seagull vertex term gives the vertex factor ie2. (We
remark that the ds of the paths dxj

ds are not transformed to
�ids since these paths are given paths and thus are indepen-
dent of the transformation ds! �ids.)

From this vertex by using the photon propagator (93) in
the above Section we get the following term:

ie2

2�

Z
i dkE
k2
E � �2

1
= � ie2

2�1
=: �i !2: (100)

The parameter ! is regarded as the mass-energy param-
eter of electron. Then from the perturbation expansion of

e
R s1
s0
Lds

we have the following geometric series (which is
similar to the Dyson series in the conventional QED):

i
p2
E��2 + i

p2
E��2 (�i!2 + i�2) i

p2
E��2 + � � � =

= i
p2
E��2�!2+�2 = i

p2
E�!2 ;

(101)

where the term i� of�i!2 +i�2 is the i� term in Lphy . (The
other term�i� in Lphy has been used in deriving (98).) Thus
we have the following electron propagator:

i
p2
E � !2 : (102)

This is as the electron propagator with mass-energy
parameter !. From ! we shall get the mass m of electron.
(We shall later introduce a space-time statistics to get the
usual electron propagator of the Dirac equation. This usual
electron propagator is as the statistical electron propagator.)
As the Feynman diagrams in the conventional QED we rep-
resent this electron propagator by a straight line.

In the above Sections and the Section on the photon prop-
agator we see that the photon-loop W (z; z) gives the renor-
malized charge e=nee0 and the renormalized mass m of
electron from the bare charge e0 by the winding numbers of
the photon loop such that m is with the winding number fac-
tor ne. Then we see that the above one-loop energy integral
of the photon gives the mass-energy parameter ! of electron
which gives the mass m of electron. Thus these two types
of photon-loops are closely related (from the relation of pho-
ton propagator and quantum photon propagator) such that the
mass m obtained by the winding numbers of the photon loop
W (z; z) reappears in the one-loop energy integral (100) of
the photon.

Thus we see that even there is no mass term in the La-
grangian of this gauge theory the mass m of the electron can
come out from the gauge theory. This actually resolves the
mass problem of particle physics that particle can be with
mass even without the mass term. Thus we do not need the
Higgs mechanism for generating masses to particles.

On the other hand from the one-loop-electron form of the
seagull vertex we have the following term:

ie2

2�

Z
idpE

p2
E � �2 = � ie2

2�
=: �i�2

2 : (103)

So for photon from the perturbation expansion of e
R s1
s0
Lds

we have the following geometric series:

i
k2
E��2

1
+ i

k2
E��2

1
(�i�2

2) i
k2
E��2

1
+ � � � =

= i
k2
E��2

1��2
2

=: i
k2
E��2

0
;

(104)

where we define �2
0 =�2

1 +�2
2. Thus we have the following

photon propagator: i
k2
E � �2

0
; (105)

which is of the same form as (93) where we replace �1 with
�0. As the Feynman diagrams in the conventional QED we
represent this photon propagator by a wave line.

Then the following interaction term in Lphy:

� iedZ�Rds (
P2
j=1AjR

dxj
ds )ZR +

+ iedZRds (
P2
j=1AjR

dxj
ds )Z�R

(106)

gives the vertex factor (�ie)(pE + qE) which corresponds
to the usual vertex of Feynman diagram with two electron
straight lines (with energies pE and qE) and one photon wave
line in the conventional QED.
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Then as the Feynman rules in the conventional QED a
sign factor (�1)n, where n is the number of the electron
loops in a Feynman diagram, is to be included for the Feyn-
man diagram.

17 Statistics with space-time

Let us introduce space-time as a statistical method for a large
amount of basic variables ZR and A1R, A2R. As an illus-
tration let us consider the electron propagator i

p2
E�!2 and the

following Green’s function corresponding to it:

i
2�

Z
e�ipE(s�s0)dpE

p2
E � !2 ; (107)

where s is the proper time.
We imagine each electron (and photon) occupies a space

region (This is the creation of the concept of space which is
associated to the electron. Without the electron this space
region does not exist). Then we write

pE(s� s0) = pE(t� t0)� p(x� x0) ; (108)

where p(x�x0) denotes the inner product of the three di-
mensional vectors p and x�x0 and (t;x) is the time-space
coordinate where x is in the space region occupied by ZR(s)
and that

!2 � p2 = m2 > 0 ; (109)

where m is the mass of electron. This mass m is greater
than 0 since each ZR occupies a space region which implies
that when t� t0 tends to 0 we can have that jx � x0j does
not tend to 0 (x and x0 denote two coordinate points in the
regions occupied by ZR(s) and ZR(s0) respectively) and thus
(109) holds. Then by linear summing the effects of a large
amount of basic variables ZR and letting ! varies from m to
1 from (107), (108) and (109) we get the following statistical
expression:

i
(2�)4

Z
e�ip(x�x0)dp
p2 �m2 ; (110)

which is the usual Green’s function of a free field with mass
m where p is a four vector and x= (t;x).

The result of the above statistics is that (110) is induced
from (107) with the scalar product p2

E of a scalar pE changed
to an indefinite inner product p2 of a four vector p and the
parameter ! is reduced to m.

Let us then introduce Fermi-Dirac statistics for electrons.
As done by Dirac for deriving the Dirac equation we factorize
p2�m2 into the following form:

p2 �m2 = (pE � !)(pE + !) =

= (�p� �m)(�p� +m) ;
(111)

where � are the Dirac matrices. Then from (110) we get the

following Green’s function:

i
(2�)4

R
e�ip(x�x0) �p

�+m
p2�m2 dp =

= i
(2�)4

R e�ip(x�x0)dp
�p��m :

(112)

Thus we have the Fermi-Dirac statistics that the statistical
electron propagator is of the form i

�p��m which is the prop-
agator of the Dirac equation and is the electron propagator of
the conventional QED.

Let us then consider statistics of photons. Since the above
quantum gauge theory of photons is a gauge theory which is
gauge invariant we have that the space-time statistical equa-
tion for photons should be gauge invariant. Then since the
Maxwell equation is the only gauge invariant equation for
electromagnetism which is based on the space-time we have
that the Maxwell equation must be a statistical equation for
photons.

Then let us consider the vertexes. The tree vertex (106)
with three lines (one for photon and two for electron) gives
the factor�ie(pE +qE) where pE and qE are from the factor
dZR
ds for electron.

We notice that this vertex is with two electron lines (or
electron propagator) and one photon line (or photon propa-
gator). In doing a statistics on this photon line when it is
as an external electromagnetic field on the electron this pho-
ton line is of the statistical form �A� where A� denotes the
four electromagnetic potential fields of the Maxwell equation.
Thus the vertex �ie(pE + qE) after statistics is changed to
the form �ie(pE + qE)

�

2 where for each � a factor 1
2 is

introduced for statistics.
Let us then introduce the on-mass-shell condition as in

the conventional QED theory (see [6]). As similar to the on-
mass-shell condition in the conventional QED theory our on-
mass-shell condition is that pE =m where m is the observ-
able mass of the electron. In this case �ie(pE + qE)

�

2 is
changed to �iem�. Then the m is absorbed to the two ex-
ternal spinors 1p

E
u (where E denotes the energy of the elec-

tron satisfied the Dirac equation while the E of pE is only
as a notation) of the two electrons lines attached to this ver-
tex such that the factor 1p

E
of spin 0 of the Klein-Gordon

equation is changed to the factor
pm

E of spinors of the Dirac
equation. In this case we have the magnitude of pE and qE
reappears in the two external electron lines with the factorp
m. The statistical vertex then becomes �ie�. This is ex-

actly the usual vertex in the conventional QED. Thus after a
space-time statistics on the original vertex �ie(pE + qE) we
get the statistical vertex �ie� of the conventional QED.

18 Basic effects of Quantum Electrodynamics

To illustrate this new theory of QED let us compute the three
basic effects of QED: the one-loop photon and electron self-
energies and the one-loop vertex correction.
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As similar to the conventional QED we have the Feynman
rules such that the one-loop photon self-energy is given by the
following Feynman integral:

i�0(kE) := i2(�i)2 e2
2� �

� R (2pE+kE)(2pE+kE)dpE
(p2
E�!2)((kE+pE)2�!2) ;

(113)

where e is the renormalized electric charge.
Then as the Feynman rules in the conventional QED for

the space-time statistics a statistical sign factor (�1)j , where
j is the number of the electron loops in a Feynman diagram,
will be included for the Feynman diagram. Thus for the one-
loop photon self-energy (113) a statistical factor (�1)j will
be introduced to this one-loop photon self-energy integral.

Then similarly we have the Feynman rules such that the
one-loop electron self-energy is given by the following
Feynman integral:

�i�0(pE) := i2(�i)2 e2
2� �

� R (2pE�kE)(2pE�kE)dkE
(k2
E��2

0)((pE�kE)2�!2) :
(114)

Similarly we have the Feynman rules that the one-loop
vertex correction is given by the following Feynman integral:

(�ie)�0(pE ; qE) :=

:= (i)3(�i)3 e3
2�

R (2pE�kE)(2qE�kE)(pE+qE�2kE)dkE
((pE�kE)2�!2)((qE�kE)2�!2)(k2

E��2
0) :

(115)

Let us first compute the one-loop vertex correction and
then compute the photon self-energy and the electron self-
energy.

As a statistics we extend the one dimensional integralR
dkE to the n-dimensional integral

R
dnk (n ! 4) where

k= (kE ;k). This is similar to the dimensional regularization
in the conventional quantum field theories (However here our
aim is to increase the dimension for statistics which is dif-
ferent from the dimensional regularization which is to reduce
the dimension from 4 to n to avoid the ultraviolet divergence).
With this statistics the factor 2� is replaced by the statistical
factor (2�)n. From this statistics on (115) we have the fol-
lowing statistical one loop vertex correction:

e3
(2�)n

R 1
0 dx

R 1
0 2ydy

R
dnk�

� 4pE qE(pE+qE)�2kE((pE+qE)2+4pE qE)+5k2
E(pE+qE)�2k3

E
[k2�2k(pxy+q(1�x)y)�p2

Exy�q2E(1�x)y+m2y+�2(1�y)]3 ;

(116)

where k2 = k2
E �k2, and k2 is from the free parameters !, �0

where we let !2 = m2 +k2, �2
0 =�2 + k2 for the electron

mass m and a mass-energy parameter � for photon; and:

k (pxy + q(1�x)y) := kE(pExy + qE(1�x)y)

�k � 0 = kE(pExy + qE(1�x)y)

)
: (117)

By using the formulae for computing Feynman integrals

we have that (116) is equal to (see [6, 72]):

ie3
(2�)n

R 1
0 dx

R 1
0 2ydy�

� h 4pE qE(pE+qE)�
n
2 �(3�n2 )

�(3)(��r2)3�2
1

(��+r2)2�n2
�

� 2((pE+qE)2+4pE qE)�
n
2 �(3�n2 )r

�(3)(��r2)3�2
1

(��+r2)2�n2
+

+ 5(pE+qE)�
n
2 �(3�1�n2 )n2

�(3)(��r2)3�2�1
1

(��+r2)2�n2
+

+ 5(pE+qE)�
n
2 �(3�n2 )r2

�(3)(��r2)3�2
1

(��+r2)2�n2
�

� (n+2)
2 2�

n
2 �(3�1�n2 )r

�(3)(��r2)3�2�1
1

(��+r2)2�n2
�

� 2�
n
2 �(3�n2 )r3

�(3)(��r2)3�2
1

(��+r2)2�n2

i
=:

=: (�ie)�(p1; p2) ;

(118)

where we define:

r := pExy + qE(1� x)y

� := p2
Exy + q2

E(1� x)y �m2y � �2(1� y)

)
: (119)

We remark that in this statistics the pE and qE variables
are remained as the proper variables which are derived from
the proper time s.

Let us then introduce the Fermi-Dirac statistics on the
electron and we consider the on-mass-shell case as in the con-
ventional QED. We shall see this will lead to the theoretical
results of the conventional QED on the anomalous magnetic
moment and the Lamb shift.

As a Fermi-Dirac statistics we have shown in the above
Section that the vertex term �ie(pE + qE) is replaced with
the vertex term �ie(pE + qE)

�

2 . Then as a Fermi-Dirac
statistics in the above Section we have shown that the sta-
tistical vertex is �ie� under the on-mass-shell condition.
We notice that this vertex agrees with the vertex term in the
conventional QED theory.

Let us then consider the Fermi-Dirac statistics on the one-
loop vertex correction (118). Let us first consider the follow-
ing term in (118):

ie3
(2�)n

R 1
0 dx

R 1
0 2ydy�
��2(pE+qE)4pE qE

�(3)(��r2)3�2
1

(��+r2)2�n2
;

(120)

where we can (as an approximation) let n= 4. From Fermi-
Dirac statistics we have that this term gives the following
statistics:

ie3

(2�)4

Z 1

0
dx
Z 1

0
2ydy

�2(pE + qE)1
2

�4pE qE
�(3)(�� r2)3�2 : (121)

Then we consider the case of on-mass-shell. In this case
we have pE =m and qE =m. Thus from (121) we have the
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following term:

ie3

(2�)4

Z 1

0
dx
Z 1

0
2ydy

�2�4pE qE
�(3)(�� r2)3�2 ; (122)

where a mass factor m= 1
2 (pE + qE) has been omitted and

put to the external spinor of the external electron as explained
in the above Section on space-time statistics. In (122) we
still keep the expression pE qE even though in this case of
on-mass-shell because this factor will be important for giving
the observable Lamb shift, as we shall see. In (122) because
of on-mass-shell we have (as an approximation we let n= 4):

(�� r2)3�2 = ��2(1� y)� r2 =

��2(1� y)�m2y2 :
(123)

Thus in the on-mass-shell case (122) is of the following
form:

ie�
�
�

Z 1

0
dx
Z 1

0
ydy

�2pE qE��2(1� y)�m2y2 ; (124)

where �= e2
4� is the fine structure constant. Carrying out the

integrations on y and on x we have that as � ! 0 (124) is
equal to:

(�ie)��
�
pE qE
m2 log

m
�
; (125)

where the proper factor pE qE will be for a linear space-time
statistics of summation. We remark that (125) corresponds
to a term in the vertex correction in the conventional QED
theory with the infra-divergence when � = 0 (see [6]). Here
since the parameter � has not been determined we shall later
find other way to determine the effect of (125) and to solve
the infrared-divergence problem.

Let us first rewrite the form of the proper value pE qE . We
write pE qE in the following space-time statistical form:

pE qE = �2p0 � p ; (126)

where p and p0 denote two space-time four-vectors of electron
such that p2 =m2 and p02 =m2. Then we have

pE qE =

= 1
3 (pE qE+pE qE+pE qE)= 1

3 (m2�2p0 �p+m2)

= 1
3 (m2�2p0 �p+m2)= 1

3 (p02�2p0 �p+p2)

= 1
3 (p0�p)2

=: 1
3 q

2;

(127)

where following the convention of QED we define q= p0� p.
Thus from (125) we have the following term:

(�ie)� �
3�

q2

m2 log
m
�
; (128)

where the parameter � are to be determined. Again this term

(128) corresponds to a term in the vertex correction in the
conventional QED theory with the infrared-divergence when
�= 0 (see [6]).

Let us then consider the following term in (118):

�ie3

(2�)n

Z 1

0
dx�

�
Z 1

0

2((pE + qE)2 + 4pE qE)� n
2 r2ydy

�(3)(�� r2)3�2(�� + r2)2�n2 :
(129)

For this term we can (as an approximation) also let n= 4
and we have let � (3 � n

2 ) = 1. As similar to the conven-
tional QED theory we want to show that this term gives the
anomalous magnetic moment and thus corresponds to a sim-
ilar term in the vertex correction of the conventional QED
theory (see [6]).

By Fermi-Dirac statistics the factor (pE + qE) in (129)
of (pE + qE)2 gives the statistical term (pE + qE) 1

2
�. Thus

with the on-mass-shell condition the factor (pE + qE) gives
the statistical term m�. Thus with the on-mass-shell con-
dition the term (pE + qE)2 gives the term m�(pE + qE).
Then the factor (pE + qE) in this statistical term also give 2m
by the on-mass-shell condition. Thus by Fermi-Dirac statis-
tics and the on-mass-shell condition the factor (pE + qE)2 in
(129) gives the statistical term �2m2. Then since this is a
(finite) constant term it can be cancelled by the correspond-
ing counter term of the vertex giving the factor �ie� and
having the factor ze� 1 in (95). From this cancellation the
renormalization constant ze is determined. Since the constant
term is depended on the � > 0 which is introduced for space-
time statistics we have that the renormalization constant ze is
also depended on the � > 0. Thus the renormalization con-
stant ze (and the concept of renormalization) is related to the
space-time statistics.

At this point let us give a summary of this renormalization
method, as follows.

Renormalization
1. The renormalization method of the conventional QED

theory is used to obtain the renormalized physical results.
Here unlike the conventional QED theory the renormaliza-
tion method is not for the removing of ultraviolet divergences
since the QED theory in this paper is free of ultraviolet diver-
gences.

2. We have mentioned in the above Section on photon
propagator that the property of renormalizable is a property of
gauge invariance that it gives the physical results independent
of the chosen photon propagator.

3. The procedure of renormalization is as a part of the
space-time statistics to get the statistical results which is in-
dependent of the chosen photon propagator. �

Let us then consider again the above computation of the
one-loop vertex correction. We now have that the (finite) con-
stant term of the one-loop vertex correction is cancelled by
the corresponding counter term with the factor ze� 1 in (95).
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Thus the nonconstant term (128) is renormalized to be the
following renormalized form:

(�ie)� �
3�

q2

m2 log
m
�
: (130)

Let us then consider the following term in (129):

�ie3

(2�)n

Z 1

0
dx
Z 1

0
2ydy

8pE qE�
n
2 �(3� n

2 )r
�(3)(�� r2)3�n2 ; (131)

where we can (as an approximation) let n= 4. With the on-
mass-shell condition we have that � � r2 is again given by
(123). Then letting �= 0 we have that (131) is given by:

�ie�
4�

Z 1

0
dx
Z 1

0
ydy :

8pE qE�r (132)

With the on-mass-shell condition we have r=my. Thus
this term (132) is equal to:

(�ie) ��
4�m

8pE qE : (133)

Again the factor pE qE is for the exchange of energies for
two electrons with proper energies pE and qE respectively
and thus it is the vital factor. This factor is then for the space-
time statistics and later it will be for a linear statistics of sum-
mation for the on-mass-shell condition. Let us introduce a
space-time statistics on the factor pE qE , as follows. With
the on-mass-shell condition we write pE qE in the following
form:

pE qE =
1
2

(mpE + qEm) =
1
2
m(pE + qE) : (134)

Then we introduce a space-time statistics on the proper
energies pE and qE respectively that pE gives a statistics �p
and qE gives a statistics �p0 where p and p0 are space-time
four vectors such that p2 =m2; p02 =m2; and � is a statisti-
cal factor to be determined.

Then we have the following Gordan relation on the space-
time four vectors p and p0 respectively (see [6] [72]):

p� = �(p � ) + i���p�

p�0 = (p0 � )� � i���p0�

)
; (135)

where p� and p�0 denote the four components of p and p0
respectively. Thus from (134) and the Gordan relation (135)
we have the following space-time statistics:

1
2 (mpE + qEm) =

= 1
2m�(�(p � ) + (p0 � )� � i���q�) ;

(136)

where following the convention of QED we define q = p0�p.
From (136) we see that the space-time statistics on pE

for giving the four vector p needs the product of two Dirac
-matrices. Then since the introducing of a Dirac -matrix

for space-time statistics requires a statistical factor 1
2 we have

that the statistical factor �= 1
4 .

Then as in the literature on QED when evaluated between
polarization spinors, the p0� and �p terms are deduced to the
mass m respectively. Thus the term 1

2m�(�p � + p0 � �)
as a constant term can be cancelled by the corresponding
counter term with the factor ze� 1 in (95).

Thus by space-time statistics on pE qE from (133) we get
the following vertex correction:

(�ie) i�
4�m

���q� (137)

where q= p� p0 and the factor 8 in (133) is cancelled by the
statistical factor 1

2�= 1
8 . We remark that in the way of getting

(137) a factor m has been absorbed by the two polarization
spinors u to get the form

pm
E u of the spinors of external

electrons.
Then from (137) we get the following exact second order

magnetic moment:
�
2�

�0 ; (138)

where �0 = 1
2m is the Dirac magnetic moment as in the liter-

ature on QED (see [6]).
We see that this result is just the second order anoma-

lous magnetic moment obtained from the conventional QED
(see [6] [72]- [78]). Here we can obtain this anomalous mag-
netic moment exactly while in the conventional QED this
anomalous magnetic moment is obtained only by approxima-
tion under the condition that jq2j � m2. The point is that we
do not need to carry out a complicate integration as in the lit-
erature in QED when the on-mass-shell condition is applied
to the proper energies pE and qE , and with the on-mass-shell
condition applied to the proper energies pE and qE the com-
putation is simple and the computed result is the exact result
of the anomalous magnetic moment.

Let us then consider the following terms in the one-loop
vertex correction (118):

ie3
(2�)n

R 1
0 dx

R 1
0 2ydy�

�h5(pE+qE)�
n
2 �(3�1�n2 )n2

�(3)(��r2)3�2�1
1

(��+r2)2�n2
+

+ 5(pE+qE)�
n
2 �(3�n2 )r2

�(3)(��r2)3�2
1

(��+r2)2�n2
�

� (n+2)
2 2�

n
2 �(3�1�n2 )r

�(3)(��r2)3�2�1
1

(��+r2)2�n2
�

� 2�
n
2 �(3�n2 )r3

�(3)(��r2)3�2
1

(��+r2)2�n2

i
:

(139)

From the on-mass-shell condition we have �� r2 =�r2

where we have set �= 0. The first and the second term are
with the factor (pE + qE) which by Fermi-Dirac statistics
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gives the statistics (pE + qE) 1
2 

�. Then from the following
integration:R 1

0 dx
R 1

0 2yrdy =

=
R 1

0 dx
R 1

0 2y2(pEx+ (1� x)qE)dy
(140)

we get a factor (pE + qE) for the third and fourth terms. Thus
all these four terms by Fermi-Dirac statistics are with the
statistics (pE + qE)1

2 
�. Then by the on-mass-shell condi-

tion we have that the statistics (pE + qE) 1
2 

� gives the statis-
tics m�. Thus (139) gives a statistics which is of the form
(� � constant). Thus this constant term can be cancelled by
the corresponding counter term with the factor ze� 1 in (95).

Thus under the on-mass-shell condition the renormalized
vertex correction (�ie)�R(p0; p) from the one-loop vertex
correction is given by the sum of (128) and (137):

(�ie)�R(p0; p) =

= (�ie)�� �
3�

q2
m2 log m

� + i�
4�m ���q�

�
:

(141)

19 Computation of the Lamb shift: Part I

The above computation of the vertex correction has not been
completed since the parameter � has not been determined.
This appearance of the nonzero � is due to the on-mass-shell
condition. Let us in this Section complete the above compu-
tation of the vertex correction by finding another way to get
the on-mass-shell condition. By this completion of the above
computation of the vertex correction we are then able to com-
pute the Lamb shift.

As in the literature of QED we let !min denote the min-
imum of the (virtual) photon energy in the scatting of elec-
tron. Then as in the literature of QED we have the following
relation between !min and � when v

c � 1 where v denotes
the velocity of electron and c denotes the speed of light (see
[6, 68–74]):

log 2!min = log �+
5
6
: (142)

Thus from (141) we have the following form of the vertex
correction:

(�ie)� �
3�

q2
m2

�
log m

2!min
+ 5

6

�
+

+(�ie)� ie�i���q�
4�m :

(143)

Let us then find a way to compute the following term in
the vertex correction (143):

(�ie)� �
3�

q2

m2 log
m

2!min
: (144)

The parameter 2!min is for the exchanging (or shifting)
of the proper energies pE and qE of electrons. Thus the mag-
nitudes of pE and qE correspond to the magnitude of !min.
When the !min is chosen the corresponding pE and qE are
also chosen and vise versa.

Since !min is chosen to be very small we have that the
corresponding proper energies pE and qE are very small that
they are no longer equal to the mass m for the on-mass-shell
condition and they are for the virtual electrons. Then to get
the on-mass-shell condition we use a linear statistics of sum-
mation on the vital factor pE qE . This means that the large
amount of the effects pE qE of the exchange of the virtual
electrons are to be summed up to statistically getting the on-
mass-shell condition.

Thus let us consider again the one-loop vertex correction
(118) where we choose pE and qE such that pE � m and
qE � m. This chosen corresponds to the chosen of !min. We
can choose pE and qE as small as we want such that pE � m
and qE � m. Thus we can let �= 0 and set pE = qE = 0
for the pE and qE in the denominators (�� r2)3�2 in (118).
Thus (118) is approximately equal to:

ie3
(2�)n

R 1
0 dx

R 1
0 dy

h
4pE qE(pE+qE)�

n
2 �(3�2)

�m2 �
� 2((pE+qE)2+4pE qE)�

n
2 �(3�2)r

�m2 +

+ 5(pE+qE)�
n
2 �(2�n2 )n2

(��+r2)2�n2
+ 5(pE+qE)�

n
2 �(3�2)r2

�m2 �
� (n+2)

2 2�
n
2 �(2�n2 )r

(��r2)2�n2
+ 2�

n
2 �(3�2)r3

�m2

�
:

(145)

Let us then first consider the four terms in (145) without
the factor �(2� n

2 ). For these four terms we can (as an appro-
ximation) let n= 4. Carry out the integrations

R 1
0 dx

R 1
0 ydy

of these four terms we have that the sum of these four terms
is given by:

(ie) ��2

4�3m2

�
4pE qE(pE + qE)�

� 1
2 ((pE + qE)2 + 4pE qE)(pE + qE) +

+ 5
9 (pE + qE)(p2

E + q2
E + pE qE)�

� 1
8 (p3

E + q3
E + p2

EqE + pEq2
E)
�

=

= (ie) ��2

4�3m2 (pE + qE)
� 5

72p
2
E + 5

72q
2
E � 14

9 pE qE
�
;

(146)

where the four terms of the sum are from the corresponding
four terms of (145) respectively.

Then we consider the two terms in (145) with the factor
�(2� n

2 ). Let � := 2� n
2 > 0. We have:

�(�) � (�� + r2)�� =

=
� 1
� + a finite limit term as �!0

� � e�� log(��+r2) :

(147)

We have:

1
� � e�� log(��+r2) =

= 1
� �
�
1� � log(�� + r2) + 0(�2)

�
: (148)
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Then we have:

� 1
� � � log(�� + r2) =

= � logm2y � log 1
m2�

��m2 � p2
Ex� q2

E(1� x) + (pEx+ qE(1� x))2y
�

=

= � logm2y � log
h
1� p2

Ex(1�xy)+q2E(1�x)(1�(1�x)y)
m2 +

+ 2pE qEx(1�x)y
m2 + 0

�
p2
E+q2E
m2

�i
: (149)

Then the constant term � logm2y in (149) can be can-
celled by the corresponding counter term with the factor
ze� 1 in (95) and thus can be ignored. When p2

E � m2 and
q2
E � m2 the second term in (149) is approximately equal to:

f(x; y) := p2
Ex(1�xy)+q2E(1�x)(1�(1�x)y)

m2 �
� 2pE qEx(1�x)y

m2 :
(150)

Thus by (150) the sum of the two terms in (145) having
the factor �(2� n

2 ) is approximately equal to:

ie3
(2�)n

R 1
0 dx

R 1
0 ydyf(x; y)�

��5(pE + qE)� n
2 n

2 � 2� n
2

(n+2)
2 r

�
;

(151)

where we can (as an approximation) let n= 4. Carrying out
the integration

R 1
0 dx

R 1
0 ydy of the two terms in (151) we

have that (151) is equal to the following result:

(ie) ��2

4�3m2 (pE + qE)�
��(�5 � 1

9 � 2pE qE) + (� 7
24p

2
E � 7

24q
2
E + 3

9pE qE)
�
;
(152)

where the first term and the second term in the [�] are from the
first term and the second term in (151) respectively.

Combining (146) and (151) we have the following result
which approximately equal to (145) when p2

E � m2 and
q2
E � m2:

(�ie) ��2

4�3m2 (pE + qE)
�

2
9
p2
E +

2
9
q2
E +

7
3
pE qE

�
; (153)

where the exchanging term 7
3 pE qE is of vital importance.

Now to have the on-mass-shell condition let us consider
a linear statistics of summation on (153). Let there be a large
amount of virtual electrons zj ; j 2 J indexed by a set J with
the proper energies p2

Ej � m2 and q2
Ej � m2, j 2 J . Then

from (153) we have the following linear statistics of summa-
tion on (153):

(�ie)��2(pEj0+qEj0 )
4�3m2 �
�h 2

9
P
j(p

2
Ej + q2

Ej) + 7
3
P
j pEjqEj

i
;

(154)

where for simplicity we let:

pEj + qEj = pEj0 + qEj0 = pEj0 + qEj0 = 2m0 (155)

for all j; j0 2 J and for some (bare) mass m0 � m and for
some j0 2 J . Then by applying Fermi-Dirac statistics on
the factor pEj0 + qEj0 in (154) we have the following Fermi-
Dirac statistics for (154):

(�ie) ��2

4�3m2
1
2 

�(pEj0 + qEj0)�
�� 2

9
P
j(p

2
Ej + q2

Ej) + 7
3
P
j pEjqEj

�
=

= (�ie)��2�m0
4�3m2

�2
9
P
j(p

2
Ej + q2

Ej) + 7
3
P
j pEjqEj

�
:

(156)

Then for the on-mass-shell condition we require that the
linear statistical sum m0

7
3
P
j pEjqEj in (156) is of the fol-

lowing form:

m0
7
3

X
j

pEjqEj = �0m
7
3
q2; (157)

where q2 = (p0� p2) and the form mq2 =m(p0� p2) is the
on-mass-shell condition which gives the electron mass m;
and that �0 is a statistical factor (to be determined) for this
linear statistics of summation and is similar to the statistical
factor (2�)n for the space-time statistics.

Then we notice that (156) is for computing (144) and thus
its exchanging term corresponding to

P
j pEjqEj must be

equal to (144). From (156) we see that there is a statistical
factor 4 which does not appear in (144). Since this exchang-
ing term in (156) must be equal to (144) we conclude that the
statistical factor �0 must be equal to 4 so as to cancel the sta-
tistical factor 4 in (156). (We also notice that there is a statis-
tical factor �2 in the numerator of (156) and thus it requires
a statistical factor 4 to form the statistical factor (2�)2 and
thus �0 = 4.) Thus we have that for the on-mass-condition
we have that (156) is of the following statistical form:

(�ie) ��2

�3m2 m
�
�
�2

2
9
m2 + �02

2
9
m2 +

7
3
q2
�
: (158)

Then from (158) we have the following statistical form:

(�ie) ��2

�3m2 
�
�
�2

2
9
m2 + �02

2
9
m2 +

7
3
q2
�
; (159)

where the factor m of m� has been absorbed to the two
external spinors of electron. Then we notice that the term
corresponding to �2

2
9m

2 +�02 2
9m

2 in (159) is as a constant
term and thus can be cancelled by the corresponding counter
term with the factor ze� 1 in (95). Thus from (159) we
have the following statistical form of effect which corres-
ponds to (144):

(�ie)� �
�m2

7
3
q2: (160)

This effect (160) is as the total effect of q2 computed from
the one-loop vertex with the minimal energy !min and thus
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includes the effect of q2 from the anomalous magnetic mo-
ment. Thus we have that (144) is computed and is given by
the following statistical form:

(�ie)� �
3�

q2
m2 log m

2!min
=

= (�ie)� �
3�

q2
m2

�
7� 3

8

�
;

(161)

where the term corresponding to the factor 3
8 is from the

anomalous magnetic moment (137) as computed in the lit-
erature of QED (see [6]). This completes our computation of
(144). Thus under the on-mass-shell condition the renormal-
ized one-loop vertex (�ie)�R(p0; p) is given by:

(�ie)�R(p0; p) =

= (�ie)�� �q2
3�m2

�
7 + 5

6 � 3
8

�
+ i�

4�m ���q�
�
:

(162)

This completes our computation of the one-loop vertex
correction.

20 Computation of photon self-energy

To compute the Lamb shift let us then consider the one-loop
photon self energy (113). As a statistics we extend the one di-
mensional integral

R
dpE to the n-dimensional integral

R
dnp

(n ! 4) where p = (pE ;p). This is similar to the di-
mensional regularization in the existing quantum field the-
ories (However here our aim is to increase the dimension for
statistics which is different from the dimensional regulariza-
tion which is to reduce the dimension from 4 to n to avoid the
ultraviolet divergence). With this statistics the factor 2� is re-
placed by the statistical factor (2�)n. From this statistics on
(113) we have that the following statistical one-loop photon
self-energy:

(�1)i2(�i)2 e2
(2�)n �
� R 1

0 dx
R (4p2

E+4pEkE+k2
E)dnp

(p2+2pkx+k2
Ex�m2)2 ;

(163)

where p2 = p2
E �p2, and p2 is from !2 =m2 + p2; and:

pk := pEkE � p � 0 = pEkE : (164)

As a Feynman rule for space-time statistics a statistical
factor (�1) has been introduced for this photon self-energy
since it has a loop of electron particles.

By using the formulae for computing Feynman integrals
we have that (163) is equal to:

(�1)ie2
(2�)n

R 1
0 dx�

�hk2
E(4x2�4x+1)�

n
2 �(2�n2 )

�(2)(m2�k2
Ex(1�x))2�n2

+ �
n
2 �(2�1�n2 )n2

�(2)(m2�k2
Ex(1�x))2�1�n2

i
:

(165)

Let us first consider the first term in the [�] in (165). Let
� := 2� n

2 > 0. As for the one-loop vertex we have

�(�) � (m2 � k2
E x(1� x))�� =

=
� 1
� + a finite term as �!0

� � e�� log(m2�k2
Ex(1�x)) :

(166)

We have

1
� � e�� log(m2�k2

Ex(1�x)) =

= 1
� �
�
1� � log(m2 � k2

Ex(1� x)) + 0(�2)
�
:

(167)

Then we have

� 1
� � � log(m2 � k2

Ex(1� x)) =

= � logm2 � log
h
1� k2

Ex(1�x)
m2

i
:

(168)

Then the constant term � logm2 in (168) can be can-
celled by the corresponding counter term with the factor
zA � 1 in (95) and thus can be ignored. When k2

E � m2

the second term in (168) is approximately equal to:

k2
Ex(1� x)
m2 : (169)

Carrying out the integration
R 1

0 dx in (163) with

� log
�
1 � k2

Ex(1�x)
m2

�
replaced by (169), we have the follow-

ing result:Z 1

0
dx(4x2 � 4x+ 1)

k2
Ex(1� x)
m2 =

k2
E

30m2 : (170)

Thus as in the literature in QED from the photon self-
energy we have the following term which gives contribution
to the Lamb shift:

k2
E

30m2 =
(pE � qE)2

30m2 ; (171)

where kE = pE � qE and pE , qE denote the proper energies
of virtual electrons. Let us then consider statistics of a large
amount of photon self-energy (168). When there is a large
amount of photon self-energies we have the following linear
statistics of summation: P

i k
2
Ei

30m2 ; (172)

where each i represent a photon. Let us write:

k2
Ei = (pEi � qEi)2 = p2

Ei � 2pEiqEi + q2
Ei : (173)

Thus we have:P
i k

2
Ei =

P
i(pEi � qEi)2 =

=
P
i(p

2
Ei + q2

Ei)� 2
P
i pEiqEi :

(174)

Now as the statistics of the vertex correction we have the
following statistics:X

i

pEiqEi = 4(p0 � p)2 = 4q2; (175)

where 4 is a statistical factor which is the same statistical fac-
tor of case of the vertex correction and p, p0 are on-mass-shell
four vectors of electrons. As the the statistics of the vertex
correction this statistical factor cancels another statistical fac-
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tor 4. On the other hand as the statistics of the vertex correc-
tion we have the following statistics:X

i

p2
Ei = �3m2;

X
i

q2
Ei = �4m2; (176)

where �3 and �4 are two statistical factors. As the case of the
vertex correction these two sums give constant terms and thus
can be cancelled by the corresponding counter term with the
factor zA � 1 in (95). Thus from (174) we have that the lin-
ear statistics of summation

P
i k

2
Ei gives the following statis-

tical renormalized photon self-energies �R and �M (where
we follow the notations in the literature of QED for photon
self-energies �M ):

i�R(kE) = ik2
E�M (kE) =

= ik2
E
�
4�

8q2
30m2 = ik2

E
�
3�

q2
5m2 ;

(177)

where we let k2
Ei = k2

E for all i.
Let us then consider the second term in the [�] in (165).

This term can be written in the following form:

�
n
2 �(2�n2 )n2

(1�n2 )�(2)(m2�k2
Ex(1�x))2�1�n2 =

= �
n
2 �(2�n2 )n2
(1�n2 )�(2)

�
(m2 � k2

Ex(1� x)) + 0(�)
�

=

= k2
E

h
1
� � (�1)�

n
2 �(2�n2 )n2

(1�n2 )�(2) x(1� x)
i

+

+
h

1
� � �

n
2 �(2�n2 )n2
(1�n2 )�(2) m2 + 0(�))

i
(178)

Then the first term in (178) under the integration
R 1

0 dx
is of the form (k2

E � constant). Thus this term can also be
cancelled by the counter-term with the factor zA � 1 in (95).
In summary the renormalization constant zA is given by the
following equation:

(�1)3i(zA � 1) = (�i)n 1
� � e2�

n
2

(2�)n
R 1

0 dx�
� [(4x2 � 4x+ 1)� nx(1�x)

2�n
�

+ cA
o
;

(179)

where cA is a finite constant when � ! 0. From this equation
we have that zA is a very large number when � > 0 is very
small. Thus e0 = ze

�
zZz

1=2
A
��1 e = 1

ne e is a very small

constant when � > 0 is very small (and since e2
4� = � = 1

137
is small) where shall show that we can let ze = zZ .

Then the second term in (178) under the integration
R 1

0 dx
gives a parameter �3 > 0 for the photon self-energy since
� > 0 is as a parameter.

Combing the effects of the two terms in the [�] in (165)
we have the following renormalized one-loop photon self-
energy:

i (�R(kE) + �3) : (180)

Then we have the following Dyson series for photon prop-
agator:

i
k2
E��0

+ i
k2
E��0

(i�R(kE) + i�3) i
k2
E��0

+ � � � =
= i

k2
E(1+�M )�(�0��3) =:

=: i
k2
E(1+�M )��R ;

(181)

where �R is as a renormalized mass-energy parameter. This is
as the renormalized photon propagator. We have the follow-
ing approximation of this renormalized photon propagator:

i
k2
E(1 + �M )� �R �

i
k2
E � �R (1� �M ) : (182)

21 Computation of the Lamb shift: Part II

Combining the effect of vertex correction and photon self-
energy we can now compute the Lamb shift. Combining the
effect of photon self-energy (�ie�)[��M ] and vertex cor-
rection we have:

(�ie)�R(p0; p) + (�ie�)[��M ] =

= (�ie)h� �q2
3�m2

�
7 + 5

6 � 3
8 � 1

5

�
+ i�

4�m�
��q�

i
:

(183)

As in the literature of QED let us consider the states 2S 1
2

and the 2P 1
2

in the hydrogen atom [6, 72–78]. Following

the literature of QED for the state 2S 1
2

an effect of �q2
3�m2 ( 3

8 )
comes from the anomalous magnetic moment which cancels
the same term with negative sign in (183). Thus by using
the method in the computation of the Lamb shift in the lit-
erature of QED we have the following second order shift for
the state 2S 1

2
:

�E2S 1
2

=
m�5

6�

�
7 +

5
6
� 1

5

�
: (184)

Similarly by the method of computing the Lamb shift in
the literature of QED from the anomalous magnetic moment
we have the following second order shift for the state 2P 1

2
:

�E2P 1
2

=
m�5

6�

�
�1

8

�
: (185)

Thus the second order Lamb shift for the states 2S 1
2

and
2P 1

2
is given by:

�E = �E2S 1
2
��E2P 1

2
=
m�5

6�

�
7+

5
6
� 1

5
+

1
8

�
(186)

or in terms of frequencies for each of the terms in (186) we
have:

�� = 952 + 113.03� 27.13 + 16.96 =
= 1054.86 Mc/sec:

(187)

This agrees with the experimental results [6, 72–78]:

��exp = 1057.86� 0.06 Mc/sec

and = 1057.90� 0.06 Mc/sec:
(188)
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22 Computation of the electron self-energy

Let us then consider the one-loop electron self-energy (113).
As a statistics we extend the one dimensional integralR
dkE to the n-dimensional integral

R
dnk (n! 4) where

k= (kE ;k). This is similar to the dimensional regularization
in the existing quantum field theories (However here our aim
is to increase the dimension for statistics which is different
from the dimensional regularization which is to reduce the
dimension from 4 to n to avoid the ultraviolet divergence).
With this statistics the factor 2� is replaced by the statistical
factor (2�)n. From this statistics on (114) we have that the
following statistical one-loop electron self-energy �i�(pE):

�i�(pE) := i2(�i)2 e2
(2�)n

R 1
0 dx

R
dnk�

� (k2
E�4pEkE+4p2

E)dnk
(k2�2kpx+p2

Ex�xm2�(1�x)�2)2 ;
(189)

where k2 = k2
E � k2, and k2 is from !2 = m2 + k2 and

�2
0 = �2 + k2; and kp := kEpE � k � 0 = kEpE . By using

the formulae for computing Feynman integrals we have that
(189) is equal to:

ie2
(2�)n

R 1
0 dx

h
p2
E(x2�4x+4)�

n
2 �(2�n2 )

�(2)(xm2+(1�x)�2�p2
Ex(1�x))2�n2

+

+ �
n
2 �(2�1�n2 )n2

�(2)(xm2+(1�x)�2�p2
Ex(1�x))2�1�n2

i
=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 �
� �( 1

� +O(�)) � e�� log(xm2+(1�x)�2�p2
Ex(1�x))��

�� n
2 n

2
1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�o

=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2
� 1
� � 1

� �
� � log(xm2 + (1� x)�2 � p2

Ex(1� x)) + 0(�)
��

�� n
2 n

2
1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�o

=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 �
� � 1

� � log(xm2 + (1� x)�2 � p2
Ex(1� x)) + 0(�)

��
�� n

2 n
2

1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�	

=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 �
� � 1

� � log(xm2 + (1� x)�2)�
� log(1� p2

Ex(1�x)
xm2+(1�x)�2 ) + 0(�)

��
�� n

2 n
2

1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�o

=:

=: ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 [ 1
� �

� log(xm2 + (1� x)�2)� log(1� p2
Ex(1�x)

xm2+(1�x)�2 ) +

+ 0(�)
�

+ p2
E � 1

��
n
2 n

2 x(1� x)
o

+ i!3 ; (190)

where !3 > 0 is as a mass-energy parameter.
Then we notice that from the expressions for �0(pE) and

�0(pE ; qE) in (114) and (115) we have the following identity:

@
@pE

�0(pE) = ��0(pE ; pE) +

+ i4e2
2�

R
dk �kE+2pE

(k2
E��2

0)((pE�kE)2�!2) :
(191)

This is as a Ward-Takahashi identity which is analogous
to the corresponding Ward-Takahashi identity in the conven-
tional QED theory [6].

From (114) and (115) we get their statistical forms by
changing

R
dk to

R
dnk. From this summation form of statis-

tics and the identity (191) we then get the following statistical
Ward-Takahashi identity:

@
@pE

�(pE) = ��(pE ; pE) +

+ i4e2
(2�)n

R 1
0 dx

R
dnk �kE+2pE

(k2�2kpx+p2
Ex�xm2�(1�x)�2)2 ;

(192)

where �(pE) denotes the statistical form of �0(pE) and is
given by (189) and �(pE ; qE) denotes the statistical form of
�0(pE ; qE) as in the above Sections.

After the differentiation of (190) with respect to pE the
remaining factor pE of the factor p2

E of (190) is absorbed
to the external spinors as the mass m and a factor �

2 is in-
troduced by space-time statistics, as the case of the statistics
of the vertex correction �0(pE ; qE) in the above Sections.
From the absorbing of a factor pE to the external spinors for
both sides of this statistical Ward-Takahashi identity we then
get a statistical Ward-Takahashi identity where the Taylor ex-
pansion (of the variable pE) of both sides of this statistical
Ward-Takahashi identity are with constant term as the begin-
ning term. From this Ward-Takahashi identity we have that
these two constant terms must be the same constant. Then
the constant term, denoted by C(�), of the vertex correction
of this Ward-Takahashi identity is cancelled by the counter-
term with the factor ze� 1 in (95), as done in the above com-
putation of the renormalized vertex correction AR(p0; p). (At
this point we notice that in computing the constant term of
the vertex correction some terms with the factor pE has been
changed to constant terms under the on-mass-shell condition
pE = m. This then modifies the definition of C(�)).

On the other hand let us denote the constant term for the
electron self-energy by B(�). Then from the above statistical
Ward-Takahashi identity we have the following equality:

B(�) + a1 � 1
�

+ b1 = C(�) ; (193)
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where a1, b1 are finite constants when � ! 0 and the term
a1 � 1

� is from the second term in the right hand side of (192).
Let us then compute the constant term B(�) for the elec-

tron self-energy, as follows. As explained in the above the
constant term for the electron self-energy can be obtained by
differentiation of (190) with respect to pE and the removing
of the remaining factor pE of p2

E . We have:

@
@pE

n
ie2

(2�)n
R 1

0 dxp
2
E(x2 � 4x+ 4)� n

2 �
� �1

� � log(xm2 + (1� x)�2 � p2
Ex(1� x))

�
+

+ p2
E � 1

��
n
2 n

2
ie2

(2�)n
R 1

0 x(1� x)dx+ i!3

o
=

= ie2
(2�)n

R 1
0 dx2pE(x2 � 4x+ 4)� n

2 �
��1

� � log(xm2 + (1� x)�2 � p2
Ex(1� x))

�
+

+ ie2
(2�)n

R 1
0 dx

p2
E(x2�4x+4)�

n
2 �2pEx(1�x)

xm2+(1�x)�2�p2
Ex(1�x) +

+ 2pE � 1
� �

n
2 n

2
ie2

(2�)n
R 1

0 x(1� x)dx :

(194)

Then by Taylor expansion of (194) and by removing a
factor 2pE from (194) the constant term for the electron self-
energy is given by:

B(�) := �e2
(2�)n

R 1
0 dx(x2 � 4x+ 4)� n

2 �
� �1

� �� log(xm2 + (1� x)�2)
��

� 1
� �

n
2 n

2
e2

(2�)n
R 1

0 x(1� x)dx :

(195)

Then as a renormalization procedure for the electron self-
energy we choose a �1 > 0 which is related to the � for the
renormalization of the vertex correction such that:

B(�1) = B(�) + a1 � 1
�

+ b1 : (196)

This is possible since B(�) has a term proportional to
1
� . From this renormalization procedure for the electron self-
energy we have:

B(�1) = C(�) : (197)

This constant term B(�1) for the electron self-energy is
to be cancelled by the counter-term with the factor zZ � 1 in
(95). We have the following equation to determine the renor-
malization constant zZ for this cancellation:

(�1)3i(zZ � 1) = (�i)B(�1) : (198)

Then from the equality (197) we have ze = zZ where ze
is determined by the following equation:

(�1)3i(ze � 1) = (�i)C(�) : (199)

Cancelling B(�1) from the electron self-energy (190) we

get the following renormalized one-loop electron self-energy:

� ip2
E�R(pE) + i!2

3 := �ip2
E
�
4� �

� R 1
0 dx(x2 � 4x+ 4) log

h
1� p2

Ex(1�x)
xm2+(1�x)�2

i
+ i!2

3 :
(200)

We notice that in (200) we can let � = 0 since there is
no infrared divergence when � = 0. This is better than the
computed electron self-energy in the conventional QED the-
ory where the computed one-loop electron self-energy is with
infrared divergence when � = 0 [6].

From this renormalized electron self-energy we then have
the renormalized electron propagator obtained by the follow-
ing Dyson series:

i
p2
E�!2 + i

p2
E�!2 (�ip2

E�R(pE) + i!2
3) i
p2
E�!2 + � � � =

= i
p2
E(1��R(pE))�(!2�!2

3) =:

=: i
p2
E(1��R(pE))�!2

R
;

(201)

where !2
R := !2 � !2

3 is as a renormalized electron mass-
energy parameter. Then by space-time statistics from the
renormalized electron propagator (201) we can get the renor-
malized electron propagator in the spin- 1

2 form, as that the
electron propagator i

�p��m in the spin- 1
2 form can be ob-

tained from the electron propagator i
p2
E�!2 .

23 New effect of QED

Let us consider a new effect for electron scattering which is
formed by two seagull vertexes with one photon loop and four
electron lines. This is a new effect of QED because the con-
ventional spin 1

2 theory of QED does not have this seagull
vertex. The Feynman integral corresponding to the photon
loop is given by

i2(i)2e4
2�

R dkE
(k2
E��2

0)((pE�qE�kE)2��2
0) =

= e4
2�

R 1
0

R dkE
(k2
E�2kE(pE�qE)x+(pE�qE)2x��2

0)2 =

= e4
2�

R 1
0

R dkE
(k2
E�2kE(pE�qE)x+(pE�qE)2x��2

0)2 :

(202)

Let us then introduce a space-time statistics. Since the
photon propagator of the (two joined) seagull vertex interac-
tions is of the form of a circle on a plane we have that the
appropriate space-time statistics of the photons is with the
two dimensional space for the circle of the photon propaga-
tor. From this two dimensional space statistics we then get a
three dimensional space statistics by multiplying the statisti-
cal factor 1

(2�)3 of the three dimensional space statistics and
by concentrating in a two dimensional subspace of the three
dimensional space statistics.

Thus as similar to the four dimensional space-time statis-
tics with the three dimensional space statistics in the above
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Sections from (202) we have the following space-time statis-
tics with the two dimensional subspace:

e4
(2�)4

R 1
0

R d3k
(k2
E�2kE(pE�qE)x+(pE�qE)2x�k2��2

4)2 =

= e4
(2�)4

R 1
0 dx

R d3k
(k2�2k�(pE�qE ;0)x+(pE�qE)2x��2

4)2 ;
(203)

where the statistical factor 1
(2�)3 of three dimensional space

has been introduced to give the factor 1
(2�)4 of the four dimen-

sional space-time statistics; and we let k = (kE ;k), k2 =
= k2

E � k2 and since the photon energy parameter �0 is a
free parameter we can write �2

0 = k2 + �2
4 for some �4.

Then a delta function concentrating at 0 of a one dimen-
sional momentum variable is multiplied to the integrand in
(203) and the three dimensional energy-momentum integral
in (203) is changed to a four dimensional energy-momentum
integral by taking the corresponding one more momentum in-
tegral.

From this we get a four dimensional space-time statistics
with the usual four dimensional momentum integral and with
the statistical factor 1

(2�)4 . After this additional momentum
integral we then get (203) as a four dimensional space-time
statistics with the two dimensional momentum variable.

Then to get a four dimensional space-time statistics with
the three dimensional momentum variable a delta function
concentrating at 0 of another one dimensional momentum
variable is multiplied to (203) and the two dimensional mo-
mentum variable of (203) is extended to the corresponding
three dimensional momentum variable. From this we then
get a four dimensional space-time statistics with the three di-
mensional momentum variable.

Then we have that (203) is equal to:

e4
(2�)4

i�
3
2 �(2� 3

2 )
�(2)

R 1
0

dx
((pE�qE)2x(1�x)��2

4)
1
2
: (204)

Then since the photon mass-energy parameter �4 is a free
parameter for space-time statistics we can write �4 in the fol-
lowing form:

�2
4 = (p� q)2x(1� x) ; (205)

where p� q denotes a two dimensional momentum vector.
Then we let p� q = (pE � qE ;p� q). Then we have:

(pE � qE)2 x(1� x)� �2
4 =

= (pE � qE)2 x(1� x)� (p� q)2 x(1� x) =
= (p� q)2 x(1� x) :

(206)

Then we have that (204) is equal to:

e4
(2�)4

i�
3
2 �(2� 3

2 )
�(2)

R 1
0

dx
((p�q)2x(1�x))

1
2

= e4
(2�)4

i��
3
2 �(2� 3

2 )
�(2)

1
((p�q)2)

1
2

=

= e4i
16�((p�q)2)

1
2

= e2�i
4((p�q)2)

1
2
:

(207)

Thus we have the following potential:

Vseagull(p� q) =
e2�i

4((p� q)2) 1
2
: (208)

This potential (208) is as the seagull vertex potential.
We notice that (208) is a new effect for electron-electron

or electron-positron scattering. Recent experiments on the de-
cay of positronium show that the experimental orthopositron-
ium decay rate is significantly larger than that computed from
the conventional QED theory [33–52]. In the following Sec-
tion 24 to Section 26 we show that this discrepancy can be
remedied with this new effect (208).

24 Reformulating the Bethe-Salpeter equation

To compute the orthopositronium decay rate let us first find
out the ground state wave function of the positronium. To
this end we shall use the Bethe-Salpeter equation. It is well
known that the conventional Bethe-Salpeter equation is with
difficulties such as the relative time and relative energy prob-
lem which leads to the existence of nonphysical solutions
in the conventional Bethe-Salpeter equation [7–32]. From
the above QED theory let us reformulate the Bethe-Salpeter
equation to get a new form of the Bethe-Salpeter equation.
We shall see that this new form of the Bethe-Salpeter equation
resolves the basic difficulties of the Bethe-Salpeter equation
such as the relative time and relative energy problem.

Let us first consider the propagator of electron. Since
electron is a spin- 1

2 particle its statistical propagator is of the
form i

�p��m . Thus before the space-time statistics the spin-
1
2 form of electron propagator is of the form i

pE�! which can

be obtained from the electron propagator i
p2
E�!2 by the fac-

torization: p2
E � !2 = (pE � !)(pE + !). Then we consider

the following product which is from two propagators of two
spin-1

2 particles:

[pE1 � !1][pE2 � !2] =

= pE1pE2 � !1pE2 � !2pE1 + !1!2 =:

=: p2
E � !2

b ;

(209)

where we define p2
E = pE1pE2 and !2

b := !1pE2 +!2pE1��!1!2. Then since !1 and !2 are free mass-energy parame-
ters we have that !b is also a free mass-energy parameter with
the requirement that it is to be a positive parameter.

Then we introduce the following reformulated relativistic
equation of Bethe-Salpeter type for two particles with spin- 1

2 :

�0(pE ; !b) = i2�0
[pE1�!1][pE2�!2] �
� R ie2�0(qE ;!b)dqE

((pE�qE)2��2
0) ;

(210)

where we use the photon propagator i
k2
E��2

0
(which is of the

effect of Coulomb potential) for the interaction of these two
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particles and we write the proper energy k2
E of this potential

in the form k2
E = (pE � qE)2; and �0 is as the coupling

parameter. We shall later also introduce the seagull vertex
term for the potential of binding.

Let us then introduce the space-time statistics. Since we
have the seagull vertex term for the potential of binding which
is of the form of a circle in a two dimensional space from the
above Section on the seagull vertex potential we see that the
appropriate space-time statistics is with the two dimensional
space. Thus with this space-time statistics from (210) we
have the following reformulated relativistic Bethe-Salpeter
equation:

�0(p) =
��0

p2 � 2
0

Z
id3q

(p� q)2 �0(q) ; (211)

where we let the free parameters !b and �0 be such that
p2 = p2

E � p2 with !2
b = p2 + 2

0 for some constant 2
0 =

= 1
a2 > 0 where a is as the radius of the binding system; and

(p� q)2 = (pE � qE)2 � (p� q)2 with �2
0 = (p� q)2. We

notice that the potential i�
(p�q)2 of binding is now of the usual

(relativistic) Coulomb potential type. In (211) the constant e2

in (210) has been absorbed into the parameter �0 in (211).
We see that in this reformulated Bethe-Salpeter equation

the relative time and relative energy problem of the conven-
tional Bethe-Salpeter equations is resolved [7–32]. Thus this
reformulated Bethe-Salpeter equation will be free of abnor-
mal solutions.

Let us then solve (211) for the relativistic bound states of
particles. We show that the ground state solution �0(p) can
be exactly solved and is of the following form:

�0(p) =
1

(p2 � 2
0)2 : (212)

We have:

1
((p�q)2)

1
(q2�2

0)2 =

= (2+1�1)!
(2�1)!(1�1)!

R 1
0

(1�x)dx
[x(p�q)2+(1�x)(q2�2

0)2]3 =

= (2+1�1)!
(2�1)!(1�1)!

R 1
0

(1�x)dx
[q2+2xpq+xp2�(1�x)2

0 ]3 =

= 2
R 1

0
(1�x)dx

[q2+2xpq+xp2�(1�x)2
0 ]3 :

(213)

Thus we have:

i
R d3q

((p�q)2)(q2�2
0)2 =

= i2
R 1

0 (1� x)dx
R d3q

[q2+2xpq+xp2�(1�x)2
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= � 2�
3
2 �(3� 3
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�(3)
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(p2 � 2

0)t� p2��3
2 =

= � 2�
3
2 �(3� 3
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�(3)

1
(p2�2

0)

R1
2
0
x
�3
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2
1

0(p2�2
0) :

(214)

Then let us choose �0 such that �0 = 20
�2 . From this

value of �0 we see that the BS equation (211) holds. Thus the
ground state solution is of the form (212). We see that when
pE = 0 and !2

b = p2 + 2
0 then this ground state gives the

well known nonrelativistic ground state of the form 1
(p2+2

0)2

of binding system such as the hydrogen atom.

25 Bethe-Salpeter equation with seagull vertex potential

Let us then introduce the following reformulated relativistic
Bethe-Salpeter equation which is also with the seagull vertex
potential of binding:

�(p) = ��0
p2�2

0
�

� R h i
(p�q)2 + i�

4((p�q)2)
1
2

i
�(q)d3q ;

(215)

where a factor e2 of both the Coulomb-type potential and
the seagull vertex potential is absorbed to the coupling con-
stant �0.

Let us solve (215) for the relativistic bound states of par-
ticles. We write the ground state solution in the following
form:

�(p) = �0(p) + ��1(p) ; (216)

where �0(p) is the ground state of the BS equation when the
interaction potential only consists of the Coulomb-type po-
tential. Let us then determine the �1(p).

From (215) by comparing the coefficients of the �j ; j =
= 0; 1 on both sides of BS equation we have the following
equation for �1(p):

�1(p) = ��0
p2�2

0

R h i
4((p�q)2)

1
2

i
�0(q)d3q+

+ ��0
p2�2

0

R h i
((p�q)2) + i�

4((p�q)2)
1
2

i
�1(q)d3q :

(217)

This is a nonhomogeneous linear Fredholm integral
equation. We can find its solution by perturbation. As a
first order approximation we have the following approxima-
tion of �1(p):
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�1(p) � ��0
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log
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log
��� jpj�0jpj+0

��� =
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0)jpj log
��� jpj�0jpj+0
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(218)

where jpj = p
p2.

Thus we have the ground state �(p) = �0(p) + ��1(p)
where p denotes an energy-momentum vector with a two di-
mensional momentum. Thus this ground state is for a two
dimensional (momentum) subspace. We may extend it to the
ground state of the form �(p) = �0(p) + ���1(p) where p
denotes a four dimensional energy-momentum vector with a
three dimensional momentum; and due to the special nature
that �1(p) is obtained by a two dimensional space statistics
the extension ��1(p) of �1(p) to with a three dimensional mo-
mentum is a wave function obtained by multiplying �1(p)
with a delta function concentrating at 0 of a one dimensional
momentum variable and the variable p of �1(p) is extended to
be a four dimensional energy-momentum vector with a three
dimensional momentum.

Let us use this form of the ground state �(p) = �0(p) +
���1(p) to compute new QED effects in the orthopositronium
decay rate where there is a discrepancy between theoretical
result and the experimental result [33–52].

26 New QED effect of orthopositronium decay rate

From the seagull vertex let us find new QED effect to the
orthopositronium decay rate where there is a discrepancy be-
tween theory and experimental result [33–52]. Let us com-
pute the new one-loop effect of orthopositronium decay rate
which is from the seagull vertex potential.

From the seagull vertex potential the positronium ground
state is modified from �(p)=�0(p) to �(p)=�0(p)+���1(p).
Let us apply this form of the ground state of positronium to
the computation of the orthopositronium decay rate.

Let us consider the nonrelativistic case. In this case we

have �0(p) = 1
(p2+2

0)2 and:

�1(p) =
�1

2�(p2 + 2
0)jpj log

���� jpj � 0

jpj+ 0

���� : (219)

Let M denotes the decay amplitude. Let M0 denotes the
zero-loop decay amplitude. Then following the approach in
the computation of the positronium decay rate [33–52] the
first order decay rate � is given by:R

8� 1
2 

5
2
0
�
�0(p) + ���1(p)

�
M0(p)d3p =:

=: �0 + ��seagull ;
(220)

where 8� 1
2 

5
2
0 is the normalized constant for the usual unnor-

malized ground state wave function �0 [33–52].
We have that the first order decay rate �0 is given

by [33–52]:

�0 := 1
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(�a3)

1
2
M0(0) ;

(221)

where  0(r) denotes the usual nonrelativistic ground state
wave function of positronium; and a = 1

0
is as the radius

of the positronium. In the above equation the step � holds
since �0(p) ! 0 rapidly as p ! 1 such that the effect of
M0(p) is small for p , 0; as explained in [33]- [52].

Then let us consider the new QED effect of decay rate
from ��1(p). As the three dimensional space statistics in the
Section on the seagull vertex potential we have the following
statistics of the decay rate from ��1(p):

�seagull = 1
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(222)
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where the step � holds as similar the equation (221) since in
the two dimensional integral of �1(p) we have that �1(p)!0
as p ! 1 such that it tends to zero as rapidly as the three
dimensional case of �0(p)! 0.

Thus we have:

��seagull =
�
4

�0 : (223)

From the literature of computation of the orthopositron-
ium decay rate we have that the computed orthopositronium
decay rate (up to the order �2) is given by [33–52]:

�o-Ps = �0
�
1 + A�

� + �2

3 log�+B(�� )2 � �3

2� log2 �
�

=

= 7.039934(10)�s�1; (224)

where A = �10.286 606(10), B = 44.52(26) and �0 =
= 9

2 (�2 � 9)m�6 = 7.211 169�s�1.
Then with the additional decay rate from the seagull ver-

tex potential (or from the modified ground state of positron-
ium) we have the following computed orthopositronium de-
cay rate (up to the order �2):

�o-Ps + ��seagull =

= �0
�
1 + (A+ �

4 )�� + �2

3 log�+B(�� )2 � �3

2� log2 �
�

=

= 7.039934(10) + 0.01315874 �s�1 =

= 7.052092(84)�s�1: (225)

This agrees with the two Ann Arbor experimental val-
ues where the two Ann Arbor experimental values are given
by: �o-Ps(Gas) = 7.0514(14)�s�1 and �o-Ps(Vacuum) =
= 7.0482(16)�s�1 [33, 34].

We remark that for the decay rate ��seagull we have only
computed it up to the order �. If we consider the decay rate
��seagull up to the order �2 then the decay rate (225) will be
reduced since the order � of �seagull is of negative value.

If we consider only the computed orthopositronium de-
cay rate up to the order � with the term B(�� )2 omitted, then
�o-Ps = 7.038202 �s�1 (see [33–52]) and we have the fol-
lowing computed orthopositronium decay rate:

�o-Ps + ��seagull = 7.05136074�s�1: (226)

This also agrees with the above two Ann Arbor experi-
mental values and is closer to these two experimental values.

On the other hand the Tokyo experimental value given by
�o-Ps(Powder) = 7.0398(29)�s�1 [35] may be interpreted
by that in this experiment the QED effect �seagull of the seag-
ull vertex potential is suppressed due to the special two di-
mensional statistical form of �seagull (Thus the additional ef-
fect of the modified ground state � of the positronium is sup-
pressed). Thus the value of this experiment agrees with the
computational result �o-Ps. Similarly the experimental result
of another Ann Arbor experiment given by 7.0404(8)�s�1

[36] may also be interpreted by that in this experiment the
QED effect �seagull of the seagull vertex potential is sup-
pressed due to the special two dimensional statistical form
of �seagull.

27 Graviton constructed from photon

It is well known that Einstein tried to find a theory to unify
gravitation and electromagnetism [1, 79, 80]. The search for
such a theory has been one of the major research topics in
physics [80–88]. Another major research topic in physics is
the search for a theory of quantum gravity [89–120]. In fact,
these two topics are closely related. In this Section, we pro-
pose a theory of quantum gravity that unifies gravitation and
electromagnetism.

In the above Sections the photon is as the quantum Wilson
loop with the U(1) gauge group for electrodynamics. In the
above Sections we have also shown that the corresponding
quantum Wilson line can be regarded as the photon propa-
gator in analogy to the usual concept of propagator. In this
section from this quantum photon propagator, the quantum
graviton propagator and the graviton are constructed. This
construction forms the foundation of a theory of quantum
gravity that unifies gravitation and electromagnetism.

It is well known that Weyl introduced the gauge concept
to unify gravitation and electromagnetism [80]. However this
gauge concept of unifying gravitation and electromagnetism
was abandoned because of the criticism of the path depen-
dence of the gauge (it is well known that this gauge con-
cept later is important for quantum physics as phase invari-
ance) [1]. In this paper we shall use again Weyl’s gauge
concept to develop a theory of quantum gravity which uni-
fies gravitation and electromagnetism. We shall show that the
difficulty of path dependence of the gauge can be solved in
this quantum theory of unifying gravitation and electromag-
netism.

Let us consider a differential of the form g(s)ds where
g(s) is a field variable to be determined. Let us consider a
symmetry of the following form:

g(s)ds = g0(s0)ds0; (227)

where s is transformed to s0 and g0(s) is a field variable such
that (227) holds. From (227) we have a symmetry of the fol-
lowing form:

g(s)�g(s)ds2 = g0�(s0)g0(s0)ds02; (228)

where g�(s) and g0�(s) denote the complex conjugate of g(s)
and g0(s) respectively. This symmetry can be considered
as the symmetry for deriving the gravity since we can write
g(s)�g(s)ds2 into the following metric form for the four di-
mensional space-time in General Relativity:

g(s)�g(s)ds2 = g��dx�dx� ; (229)
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where we write ds2 = a��dx�dx� for some functions a��
by introducing the space-time variable x�; � = 0; 1; 2; 3 with
x0 as the time variable; and g�� = g(s)�g(s)a�� . Thus from
the symmetry (227) we can derive General Relativity.

Let us now determine the variable g(s). Let us consider
g(s) = W (z0; z(s)), a quantum Wilson line with U(1) group
where z0 is fixed. When W (z0; z(s)) is the classical Wilson
line then it is of path dependence and thus there is a diffi-
culty to use it to define g(s) = W (z0; z(s)). This is also the
difficulty of Weyl’s gauge theory of unifying gravitation and
electromagnetism. Then when W (z0; z(s)) is the quantum
Wilson line because of the quantum nature of unspecification
of paths we have that g(s) = W (z0; z(s)) is well defined
where the whole path of connecting z0 and z(s) is unspeci-
fied (except the two end points z0 and z(s)).

Thus for a given transformation s0 ! s and for any (con-
tinuous and piecewise smooth) path connecting z0 and z(s)
the resulting quantum Wilson line W 0(z0; z(s(s0))) is again
of the form W (z0; z(s)) = W (z0; z(s(s0))). Let g0(s0) =
=W 0(z0; z(s(s0))) dsds0 . Then we have:

g0�(s0)g0(s0)ds02 =

= W 0�(z0; z(s(s0)))W 0(z0; z(s(s0)))( dsds0 )2ds02 =

= W �(z0; z(s))W (z0; z(s))( dsds0 )
2ds02 =

= g(s)�g(s)ds2:

(230)

This shows that the quantum Wilson lineW (z0; z(s)) can
be the field variable for the gravity and thus can be the field
variable for quantum gravity since W (z0; z(s)) is a quantum
field variable.

Then we consider the operator W (z0; z)W (z0; z). From
this operator W (z0; z)W (z0; z) we can compute the opera-
tor W �(z0; z)W (z0; z) which is as the absolute value of this
operator. Thus this operator W (z0; z)W (z0; z) can be re-
garded as the quantum graviton propagator while the quan-
tum Wilson line W (z0; z) is regarded as the quantum pho-
ton propagator for the photon field propagating from z0 to
z. Let us then compute this quantum graviton propagator
W (z0; z)W (z0; z). We have the following formula:

W (z; z0)W (z0; z) =

= e�t̂ log[�(z�z0)]Aet̂ log[�(z0�z)] ;
(231)

where t̂=� e20
k0

for the U(1) group (k0 > 0 is a constant and

we may let k0 = 1) where the term e�t̂ log[�(z�z0)] is ob-
tained by solving the first form of the dual form of the KZ
equation and the term et̂ log[�(z0�z)] is obtained by solving
the second form of the dual form of the KZ equation.

Then we change the W (z; z0) of W (z; z0)W (z0; z) in
(231) to the second factor W (z0; z) of W (z; z0)W (z0; z) by
reversing the proper time direction of the path of connecting

z and z0 for W (z; z0). This gives the graviton propagator
W (z0; z)W (z0; z). Then the reversing of the proper time di-
rection of the path of connecting z and z0 for W (z; z0) also
gives the reversing of the first form of the dual form of the
KZ equation to the second form of the dual form of the KZ
equation. Thus by solving the second form of dual form of
the KZ equation we have that W (z0; z)W (z0; z) is given by:

W (z0; z)W (z0; z) = et̂ log[�(z�z0)]Aet̂ log[�(z�z0)] =

= e2t̂ log[�(z�z0)]A :
(232)

In (232) let us define the following constant G:

G := � 2 t̂ = 2
e2

0
k0
: (233)

We regard this constant G as the gravitational constant of
the law of Newton’s gravitation and General Relativity. We

notice that from the relation e0 =
�
z

1
2
A
��1e = 1

ne e where

the renormalization number ne = z
1
2
A is a very large num-

ber we have that the bare electric charge e0 is a very small
number. Thus the gravitational constant G given by (233)
agrees with the fact that the gravitational constant is a very
small constant. This then gives a closed relationship between
electromagnetism and gravitation.

We remark that since in (232) the factor �G log r1 =
= G log 1

r1 < 0 (where we define r1 = jz � z0j and r1 is
restricted such that r1 > 1) is the fundamental solution of
the two dimensional Laplace equation we have that this fac-
tor (together with the factor e�G log r1 = eG log 1

r1 ) is anal-
ogous to the fundamental solution �G 1

r of the three dimen-
sional Laplace equation for the law of Newton’s gravitation.
Thus the operatorW (z0; z)W (z0; z) in (232) can be regarded
as the graviton propagator which gives attractive effect when
r1 > 1. Thus the graviton propagator (232) gives the same
attractive effect of �G 1

r for the law of Newton’s gravitation.
On the other hand when r1 6 1 we have that the factor

�G log r1 = G log 1
r1 > 0. In this case we may consider that

this graviton propagator gives repulsive effect. This means
that when two particles are very close to each other then the
gravitational force can be from attractive to become repulsive.
This repulsive effect is a modification of �G1

r for the law of
Newton’s gravitation for which the attractive force between
two particles tends to1 when the distance between the two
particles tends to 0.

Then by multiplying two masses m1 and m2 (obtained
from the winding numbers of Wilson loops in (73) of two par-
ticles to the graviton propagator (232) we have the following
formula:

Gm1m2 log
1
r1
: (234)

From this formula (234) by introducing the space vari-
able x as a statistical variable via the Lorentz metric: ds2 =
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= dt2 � dx2 we have the following statistical formula which
is the potential law of Newton’s gravitation:

�GM1M2
1
r
; (235)

where M1 and M2 denotes the masses of two objects.
We remark that the graviton propagator (232) is for mat-

ters. We may by symmetry find a propagator f(z0; z) of the
following form:

f(z0; z) := e�2t̂ log[�(z�z0)]A : (236)

When jz � z0j > 1 this propagator f(z0; z) gives repul-
sive effect between two particles and thus is for anti-matter
particles where by the term anti-matter we mean particles
with the repulsive effect (236). Then since jf(z0; z)j ! 1
as jz � z0j ! 1 we have that two such anti-matter particles
can not physically exist. However in the following Section on
dark energy and dark matter we shall show the possibility of
another repulsive effect among gravitons.

As similar to that the quantum Wilson loop W (z0; z0) is
as the photon we have that the following double quantum Wil-
son loop can be regarded as the graviton:

W (z0; z)W (z0; z)W (z; z0)W (z; z0) : (237)

28 Dark energy and dark matter

By the method of computation of solutions of KZ equations
and the computation of the graviton propagator (232) we have
that (237) is given by:

W (z0; z)W (z0; z)W (z; z0)W (z; z0) =

= e2t̂ log[�(z�z0)]Age�2t̂ log[�(z�z0)] =

= R2nAg; n = 0;�1;�2;�3; : : :

(238)

where Ag denotes the initial operator for the graviton. Thus
as similar to the quantization of energy of photons we have
the following quantization of energy of gravitons:

h� = 2�e2
0n; n = 0;�1;�2;�3; : : : (239)

As similar to that a photon with a specific frequency can
be as a magnetic monopole because of its loop nature we have
that the graviton (237) with a specific frequency can also be
regarded as a magnetic monopole (which is similar to but dif-
ferent from the magnetic monopole of the photon kind) be-
cause of its loop nature. (This means that the loop nature
gives magnetic property.)

Since we still can not directly observe the graviton in ex-
periments the quantized energies (239) of gravitons can be
identified as dark energy. Then as similar to the construction
of electrons from photons we construct matter from gravitons

by the following formula:

W (z0; z)W (z0; z)W (z; z0)W (z; z0)Z ; (240)

where Z is a complex number as a state acted by the graviton.
Similar to the mechanism of generating mass of electron

we have that the mechanism of generating the mass md of
these particles is given by the following formula:

mdc2 = 2�e2
0nd = �Gnd = h�d (241)

for some integer nd and some frequency �d.
Since the graviton is not directly observable it is consis-

tent to identify the quantized energies of gravitons as dark
energy and to identify the matters (240) constructed by gravi-
tons as dark matter.

It is interesting to consider the quantum gravity effect be-
tween two gravitons. When a graviton propagator is con-
nected to a graviton we have that this graviton propagator
is extended to contain a closed loop since the graviton is
a closed loop. In this case as similar to the quantum pho-
ton propagator this extended quantum graviton propagator
can give attractive or repulsive effect. Then for stability the
extended quantum graviton propagator tends to give the re-
pulsive effect between the two gravitons. Thus the quan-
tum gravity effect among gravitons can be repulsive which
gives the diffusion of gravitons and thus gives a diffusion phe-
nomenon of dark energy. Furthermore for stability more and
more open-loop graviton propagators in the space form closed
loops. Thus more and more gravitons are forming and the re-
pulsive effect of gravitons gives the accelerating expansion of
the universe [53–57].

Let us then consider the quantum gravity effect between
two particles of dark matter. When a graviton propagator is
connected to two particles of dark matter not by connecting
to the gravitons acting on the two particles of dark matter we
have that the graviton propagator gives only attractive effect
between the two particles of dark matter. Thus as similar to
the gravitational force among the usual non-dark matters the
gravitational force among dark matters are mainly attractive.
Then when the graviton propagator is connected to two par-
ticles of dark matter by connecting to the gravitons acting on
the two particles of dark matter then as the above case of two
gravitons we have that the graviton propagator can give at-
tractive or repulsive effect between the two particles of dark
matter.

29 Conclusion

In this paper a quantum loop model of photon is established.
We show that this loop model is exactly solvable and thus
may be considered as a quantum soliton. We show that this
nonlinear model of photon has properties of photon and mag-
netic monopole and thus photon with some specific frequency
may be identified with the magnetic monopole. From the dis-
crete winding numbers of this loop model we can derive the
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quantization property of energy for the Planck’s formula of
radiation and the quantization property of electric charge. We
show that the charge quantization is derived from the energy
quantization. On the other hand from the nonlinear model
of photon a nonlinear loop model of electron is established.
This model of electron has a mass mechanism which gener-
ates mass to the electron where the mass of the electron is
from the photon-loop. With this mass mechanism for gen-
erating mass the Higgs mechanism of the conventional QED
theory for generating mass is not necessary.

We derive a QED theory which is not based on the four
dimensional space-time but is based on the one dimensional
proper time. This QED theory is free of ultraviolet diver-
gences. From this QED theory the quantum loop model of
photon is established. In this QED theory the four dimen-
sional space-time is derived for statistics. Using the space-
time statistics, we employ Feynman diagrams and Feynman
rules to compute the basic QED effects such as the vertex cor-
rection, the photon self-energy and the electron self-energy.
From these QED effects we compute the anomalous magnetic
moment and the Lamb shift. The computation is of simplic-
ity and accuracy and the computational result is better than
that of the conventional QED theory in that the computation
is simpler and it does not involve numerical approximation as
that in the conventional QED theory where the Lamb shift is
approximated by numerical means.

From the QED theory in this paper we can also derive
a new QED effect which is from the seagull vertex of this
QED theory. By this new QED effect and by a reformu-
lated Bethe-Salpeter (BS) equation which resolves the diffi-
culties of the BS equation (such as the existence of abnormal
solutions) and gives a modified ground state wave function
of the positronium. Then from this modified ground state
wave function of the positronium a new QED effect of the or-
thopositronium decay rate is derived such that the computed
orthopositronium decay rate agrees with the experimental de-
cay rate. Thus the orthopositronium lifetime puzzle is com-
pletely resolved where we also show that the recent resolu-
tion of this orthopositronium lifetime puzzle only partially
resolves this puzzle due to the special nature of two dimen-
sional space statistics of this new QED effect.

By this quantum loop model of photon a theory of quan-
tum gravity is also established where the graviton is con-
structed from the photon. Thus this theory of quantum gravity
unifies gravitation and electromagnetism. In this unification
of gravitation and electromagnetism we show that the univer-
sal gravitation constantG is proportional to e2

0 where e0 is the
bare electric charge which is a very small constant and is re-
lated to the renormalized charge e by the formula e0 = 1

ne e
where the renormalized number ne is a very large winding
number of the photon-loop. This relation of G with e0 (and
thus with e) gives a closed relationship between gravitation
and electromagnetism. Then since gravitons are not directly
observable the quantized energies of gravitons are as dark en-

ergy and the particles constructed by gravitons are as dark
matter. We show that the quantum gravity effect among par-
ticles of dark matter is mainly attractive (and it is possible to
be repulsive when a graviton loop is formed in the graviton
propagator) while the quantum gravity effect among gravi-
tons can be repulsive which gives the diffusion of gravitons
and thus gives the diffusion phenomenon of dark energy and
the accelerating expansion of the universe.
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Discussions on uncertainty relations (UR) and quantum measurements (QMS) persisted
until nowadays in publications about quantum mechanics (QM). They originate mainly
from the conventional interpretation of UR (CIUR). In the most of the QM literarure,
it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR
were signaled. As a rule the alluded deficiencies were remarked disparately and dis-
cussed as punctual and non-essential questions. Here we approach an investigation of
the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose
a reconsideration of the major problems referring to UR and QMS. We reveal that all the
basic presumption of CIUR are troubled by insurmountable deficiencies which require
the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must
be deprived of their statute of crucial pieces for physics. So, the aboriginal versions of
UR appear as being in postures of either (i) thought-experimental fictions or (ii) sim-
ple QM formulae and, any other versions of them, have no connection with the QMS.
Then the QMS must be viewed as an additional subject comparatively with the usual
questions of QM. For a theoretical description of QMS we propose an information-
transmission model, in which the quantum observables are considered as random vari-
ables. Our approach directs to natural solutions and simplifications for many problems
regarding UR and QMS.

1 Introduction

The uncertainty relations (UR) and quantum measurements
(QMS) constitute a couple of considerable popularity, fre-
quently regarded as a crucial pieces of quantum mechanics
(QM). The respective crucial character is often glorified by
assertions like:

(i) UR are expression of “the most important principle of
the twentieth century physics” [1];

(ii) the description of QMS is “probably the most impor-
tant part of the theory (QM)” [2].

The alluded couple constitute the basis for the so-called
Conventional Interpretation of UR (CIUR). Discussions
about CIUR are present in a large number of early as well
as recent publications (see [1–11] and references therein).
Less mentioned is the fact that CIUR ideas are troubled by
a number of still unsolved deficiencies. As a rule, in the main
stream of CIUR partisan publications, the alluded deficien-
cies are underestimated (through unnatural solutions or even
by omission).

Nevertheless, during the years, in scientific literature were
recorded remarks such as:

(i) UR “are probably the most controverted formulae in
the whole of the theoretical physics” [12];

(ii) “the word (“measurement”) has had such a damaging
efect on the discussions that. . . it should be banned al-
together in quantum mechanics” [13];

(iii) “the idea that there are defects in the foundations of
orthodox quantum theory is unquestionable present in
the conscience of many physicists” [14];

(iv) “Many scientists have considered the conceptual
framework of quantum theory to be unsatisfactory. The
very foundations of Quantum Mechanics is a matter
that needs to be resolved in order to achieve and gain a
deep physical understanding of the underlying physical
procedures that constitute our world” [15].

The above mentioned status of things require further stud-
ies and probably new views. We believe that a promising
strategy to satisfy such requirements is to develop an investi-
gation guided by the following objectives (obj.):

(obj.1) to identify the basic presumptions of CIUR;
(obj.2) to reunite together all the significant deficiencies of

CIUR;
(obj.3) to examine the verity and importance of the respec-

tive deficiencies;
(obj.4) to see if such an examination defends or incriminate

CIUR;
(obj.5) in the latter case to admit the failure of CIUR and its

abanonment;
(obj.6) to search for a genuine reinterpretation of UR;
(obj.7) to evaluate the consequences of the UR reinterpreta-

tion for QMS;
(obj.8) to promote new views about QMS;
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(obj.9) to note a number of remarks on some adjacent ques-
tions.

A such guided investigation we are approaching in the
next sections of this paper. The present approach try to com-
plete and to improve somewhat less elaborated ideas from few
of our previous writings. But, due to a lot of unfortunate
chances, and contrary to my desire, the respective writings
were edited in modest publications [16–18] or remained as
preprints registred in data bases of LANL and CERN libraries
(see [19]).

2 Shortly on CIUR history and its basic presumptions

The story of CIUR began with the Heisenberg’s seminal work
[20] and it starts [21] from the search of general answers to
the primary questions (q.):

(q.1) Are all measurements affected by measuring uncertain-
ties?

(q.2) How can the respective uncertainties be described
quantitatively?

In connection with the respective questions, in its subse-
quent extension, CIUR promoted the suppositions (s.):

(s.1) The measuring uncertainties are due to the perturba-
tions of the measured microparticle (system) by its in-
teractions with the measuring instrument;

(s.2) In the case of macroscopic systems the mentioned per-
turbations can be made arbitrarily small and, conse-
quently, always the corresponding uncertainties can be
considered as negligible;

(s.3) On the other hand, in the case of quantum micropar-
ticles (of atomic size) the alluded perturbations are es-
sentially unavoidable and consequently for certain
measurements (see below) the corresponding uncer-
tainties are non-negligible.

Then CIUR limited its attention only to the quantum
cases, for which restored to an amalgamation of the following
motivations (m.):

(m.1) Analysis of some thought (gedanken) measuring ex-
periments;

(m.2) Appeal to the theoretical version of UR from the ex-
isting QM.

N: In the present paper we will use the term
“observable” (introduced by CIUR literature) for denoting
a physical quantity referring to a considered microparticle
(system).

Now let us return to the begining of CIUR history. Firstly
[20, 22], for argumentation of the above noted motivation
(m.1) were imagined some thought experiments on a quan-
tum microparticle, destined to simultaneous measurements of
two (canonically) conjugated observables A and B (such are
coordinate q and momentum p or time t and energy E). The

corresponding “thought experimental” (te) uncertainties were
noted with �teA and �teB. They were found as being inter-
connected trough the following te-UR

�teA ��teB > ~ ; (1)

where ~ denotes the reduced Planck constant.
As regard the usage of motivation (m.2) in order to pro-

mote CIUR few time later was introduced [23, 24] the so-
called Robertson Schrödinger UR (RSUR):

�	A ��	B >
1
2

���
�Â; B̂��	��� : (2)

In this relation one finds usual QM notations i.e.: (i) Â
and B̂ denote the quantum operators associated with the ob-
servables A and B of the same microparticle, (ii) �	A and
�	B signify the standard deviation of the respective observ-
ables, (iii) h(: : :)i	 represents the mean value of (: : :) in the
state described by the wave function 	, (iv) [Â; B̂] depict the
commutator of the operators Â and B̂ (for some other details
about the QM notations and validity of RSUR (2) see the next
section).

CIUR was built by regarding the relations (1) and (2), as
standard (reference) elements. It started through the writings
(and public lectures) of the so-called Copenhagen School par-
tisans. Later CIUR was adopted, more or less explicitely, in a
large number of publications.

An attentive examination of the alluded publications show
that in the main CIUR is builded onthe following five basic
presumptions (P):

P1 : Quantities �teA and �	A from relations (1) and (2)
denoted by a unique symbol �A, have similar signif-
icance of measuring uncertainty for the observable A
refering to the same microparticle. Consequently the
respective relations have the same generic interpreta-
tion as UR regarding the simultaneous measurements
of observables A and B of the alluded microparticle;

P2 : In case of a solitary observable A, for a microparticle,
the quantity �A can have always an unbounded small
value. Therefore such an obvservable can be measured
without uncertainty in all cases of microparticles (sys-
tems) and states;

P3 : When two observables A and B are commutable (i.e
[Â; B̂] = 0) relation (2) allows for the quantities �A
and �B, regarding the same microparticle, to be un-
limitedly small at the same time. That is why such ob-
servables can be measured simultaneously and without
uncertainties for any microparticle (system) or state.
Therefore they are considered as compatible;

P4 : If two observables A and B are non-commutable (i.e.
[Â; B̂], 0) relation (2) shows that, for a given micro-
particle, the quantities �A and �B can be never re-
duced concomitantly to null values. For that reason
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such observables can be measured simultaneously only
with non-null and interconnected uncertainties, irres-
pective of the microparticle (system) or state. Hence
such observables are considered as incompatible;

P5 : Relations (1) and (2), Planck’s constant ~ as well as
the measuring peculiarities noted in P4 are typically
QM things which have not analogies in classical (non-
quantum) macroscopic physics.

Here it must recorded the fact that, in individual publi-
cations from the literature which promote CIUR, the above
noted presumptions P1–P5 often appear in non-explicit forms
and are mentioned separately or only few of them. Also in the
same publications the deficiencies of CIUR are omited or un-
derestimated. On the other hand in writings which tackle the
deficiencies of CIUR the respective deficiencies are always
discussed as separate pieces not reunited in some elucidative
ensembles. So, tacitly, in our days CIUR seems to remain a
largely adopted doctrine which dominates the questions re-
garding the foundation and interpretation of QM.

3 Examination of CIUR deficiencies regarded in an elu-
cidative collection

In oder to evaluate the true significance of deficiences regard-
ing CIUR we think that it must discussed together many such
deficiences reunited, for a good examination, in an elucida-
tive collection. Such a kind of discussion we try to present
below in this section.

Firstly let us examine the deficiences regarding the rela-
tion (1). For such a purpose we note the following remark (R):

R1: On the relation (1)
In reality the respective relation is an improper piece for a ref-
erence/standard element of a supposed solid doctrine such as
CIUR. This fact is due to the to the circumstance that such a
relation has a transitory/temporary character because it was
founded on old resolution criteria (introduced by Abe and
Rayleigh — see [22,25]). But the respective criteria were im-
proved in the so-called super-resolution techniques worked
out in modern experimental physics (see [26–31] and refer-
ences). Then it is possible to imagine some super-resolution-
thought-experiments (srte). So, for the corresponding srte-
uncertainties �srteA and �srteB of two observables A and
B the following relation can be promoted

�srteA ��srteB 6 ~ : (3)

Such a relation is possibly to replace the CIUR basic for-
mula (1). But the alluded possibility invalidate the presum-
tion P1 and incriminate CIUR in connection with one of its
main points.
End of R1

For an argued examination of CIUR deficiences regarding
the relation (2) it is of main importance the following remark:

R2: On the aboriginal QM elements
Let us remind briefly some significant elements, selected
from the aboriginal framework of usual QM. So we consider a
QM microparticle whose state (of orbital nature) is described
by the wave function 	. Two observables Aj (j = 1; 2)
of the respective particle will be described by the operators
Âj . The notation (f; g) will be used for the scalar product
of the functions f and g. Correspondingly, the quantities
hAji	 = (	 ; Âj	) and �	Âj = Âj � hÂji	 will depict the
mean (expected) value respectively the deviation-operator of
the observable Aj regarded as a random variable. Then, by
denoting the two observable with A1 = A and A2 = B, we
can be write the following Cauchy-Schwarz relation:�

�	Â	; �	Â	
��

�	B̂	; �	B̂	
�
>

>
�����	Â	; �	B	

����2 : (4)

For an observable Aj considered as a random variable the

quantity �	Aj =
�
�	Âj	; �	Âj	

� 1
2 signifies its standard

deviation. From (4) it results directly that the standard devi-
ations �	A and �	B of the mentioned observables satisfy
the relation

�	A ��	B >
�����	Â	; �	B	

���� ; (5)

which can be called Cauchy-Schwarz formula (CSF). Note
that CSF (5) (as well as the relation (4)) is always valid, i.e.
for all observables, paricles and states. Here it is important to
specify the fact that the CSF (5) is an aboriginal piece which
implies the subsequent and restricted RSUR (1) only in the
cases when the operators Â = Â1 and B̂ = Â2 satisfy the
conditions�

Âj	; Âk	
�

=
�

	; ÂjÂk	
�
; (j; k = 1; 2) : (6)

Indeed in such cases one can write the relation�
�	Â	; �	B̂	

�
=

= 1
2

�
	;
�
�	Â � �	B̂	 + �	B̂ � �	Â

�
	
��

� i
2

�
	; i

�
Â; B̂

�
	
�
;

(7)

where the two terms from the right hand side are purely real
and imaginary quantities respectively. Therefore in the men-
tioned cases from (5) one finds

�	A ��	B >
1
2

���
�Â; B̂��	��� (8)

i.e. the well known RSUR (2).
The above reminded aboriginal QM elements prove the

following fact. In reality for a role of standard (reference)
piece regarding the interpretation of QM aspects must be con-
sidered the CSF (5) but not the RSUR (2). But such a reality
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incriminate in an indubitable manner all the basic presump-
tions P1–P5 of CIUR.
End of R2

The same QM elenments reminded in R2, motivate the next
remark:

R3: On a denomination used by CIUR
The denomination “uncertainty” used by CIUR for quantities
like �	A from (2) is groundless because of the following
considerations. As it was noted previously in the aboriginal
QM framework, �	A signifies the standard deviation of the
observable A regarded as a random variable. The mentioned
framework deals with theoretical concepts and models about
the intrinsic (inner) properties of the considered particle but
not with aspects of the measurements performed on the re-
spective particle. Consequently, for a quantum microparticle,
the quantity �	A refers to the intrinsic characteristics (re-
flected in fluctuations) of the observable A. Moreover it must
noted the following realities:

(i) For a particle in a given state the quantity �	A has
a well defined value connected with the corresponding
wave function 	;

(ii) The value of �	A is not related with the possible mod-
ifications of the accuracy regarding the measurement of
the observable A.

The alluded realities are attested by the fact that for the
same state of the measured particle (i.e. for the same value
of �	A ) the measuring uncertainties regarding the observ-
ableA can be changed through the improving or worsening of
experimental devices/procedures. Note that the above men-
tioned realities imply and justify the observation [32] that,
for two variables x and p of the same particle, the usual CIUR
statement “as �x approaches zero, �p becomes infinite and
vice versa” is a doubtful speculation. Finally we can conclude
that the ensemble of the things revealed in the present remark
contradict the presumptions P2–P4 of CIUR. But such a con-
clusion must be reported as a serious deficience of CIUR.
End of R3

A class of CIUR conceptual deficiences regards the follow-
ing pairs of canonically conjugated observables: Lz-', N -�
and E-t (Lz = z component of angular momentum, ' = az-
imuthal angle, N = number, � = phase, E = energy, t =
time). The respective pairs were and still are considered as
being unconformable with the accepted mathematical rules
of QM. Such a fact roused many debates and motivated vari-
ous approaches planned to elucidate in an acceptable manner
the missing conformity (for significant references see below
within the remarks R4–R6). But so far such an elucidation
was not ratified (or admited unanimously) in the scientific lit-
erature. In reality one can prove that, for all the three men-
tioned pairs of observables, the alluded unconformity refers
not to conflicts with aboriginal QM rules but to serious dis-
agreements with RSUR (2). Such proofs and their conse-

quences for CIUR we will discuss below in the following re-
marks:

R4: On the pair Lz-'
The parts of above alluded problems regarding of the pair Lz-
' were examined in all of their details in our recent paper
[33]. There we have revealed the following indubitable facts:

(i) In reality the pair Lz-' is unconformable only in re-
spect with the secondary and limited piece which is
RSUR (2);

(ii) In a deep analysis, the same pair proves to be in a natu-
ral conformity with the true QM rules presented in R2;

(iii) The mentioned conformity regards mainly the CSF (5)
which can degenerate in the trivial equality 0 = 0 in
some cases rgarding the pair Lz-'.

But such facts points out an indubitable deficience of
CIUR’s basic presumption P4.
End of R4

R5: On the pair N -�
The involvement of pair N -� in debates regarding CIUR
started [35] subsequently of the Dirac’s idea [36] to transcribe
the ladder (lowering and raising) operators â and â+ in the
forms

â = ei�̂
p
N̂ ; â+ =

p
N̂e�i�̂: (9)

By adopting the relation [â; â+] = ââ+ � â+â = 1 from
(9) it follows that the operators N̂ and �̂ satisfy the commu-
tation formula

[N̂ ; �̂] = i : (10)

This relation was associated directly with the RSUR (2)
respectively with the presumption P4 of CIUR. The men-
tioned association guided to the rash impression that the
N -� pair satisfy the relation

�	N ��	� >
1
2
: (11)

But, lately, it was found that relation (11) is false — at
least in some well-specified situations. Such a situation ap-
pears in the case of a quantum oscillator (QO). The mentioned
falsity can be pointed out as follows. The Schrödinger equa-
tion for a QO stationary state has the form:

E	 =
1

2m0
p̂2	 +

1
2
m0!2x̂2	 ; (12)

where m0 and ! represent the mass and (angular) frequency
of QO while p̂=�i~ @

@x and x = x� denote the operators of
the Cartesian moment p and coordinate x. Then the operators
â, â+ and N̂ have [34] the expressions

â =
m0!x̂+ ip̂p

2m0!~
; â+ =

m0!x̂� ip̂p
2m0!~

; N̂ = â+â : (13)

The solution of the equation (12) is an eigenstate wave
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function of the form

	n(x) = 	n(�) / exp
�
��2

2

�
Hn(�) ; (14)

where � = x
pm0!

~
, while n = 0; 1; 2; 3; : : : signifies the os-

cillation quantum number andHn(�) stand for Hermite poli-
nomials of �. The noted solution correspond to the energy
eigenvalue E = En = ~!(n + 1

2 ) and satisfy the relation
N̂	n (x) = n �	n (x).

It is easy to see that in a state described by a wave function
like (14) one find the results

�	N = 0 ; �	� 6 2� : (15)

The here noted restriction �� 6 2� (more exactly
�� = �=

p
3 — see below in (19)) is due to the natural fact

that the definition range for � is the interval [0; 2�). Through
the results (15) one finds a true falsity of the presumed re-
lation (11). Then the harmonization of N -� pair with the
CIUR doctrine reaches to a deadlock. For avoiding the men-
tioned deadlock in many publications were promoted var-
ious adjustements regarding the pair N -� (see [35, 37–43]
and references therein). But it is easy to observe that all
the alluded adjustements are subsequent (and dependent) in
respect with the RSUR (2) in the following sense. The re-
spective adjustements consider the alluded RSUR as an ab-
solutely valid formula and try to adjust accordingly the de-
scription of the pair N -� for QO. So the operators N̂ and
�̂, defined in (9) were replaced by some substitute (sbs) op-
erators N̂sbs = f (N̂) and �̂sbs = g (�̂), where the func-
tions f and g are introduced through various ad hoc proce-
dures. The so introduced substitute operators N̂sbs and �̂sbs
pursue to be associated with corresponding standard devia-
tions �	Nsbs and �	�sbs able to satisfy relations resem-
bling more or less with RSUR (2) or with (11). But we ap-
preciate as very doubtful the fact that the afferent “substitute
observables” Nsbs and �sbs can have natural (or even useful)
physical significances. Probably that this fact as well as the ad
hoc character of the functions f and g constitute the reasons
for which until now, in scientific publications, it does not exist
a unanimous agreement able to guarantee a genuine elucida-
tion of true status of the N -� pair comparatively with CIUR
concepts.

Our opinion is that an elucidation of the mentioned kind
can be obtained only through a discussion founded on the
aboriginal QM elements presented above in the remark R2.
For approaching such a discussion here we add the following
supplementary details. For the alluded QO the Schrödinger
equation (12) as well as its solution (14) are depicted in a
“coordinate x-representation”. But the same equation and
solution can be described in a “phase �-representation”. By
taking into account the relation (10) it results directly that tn
the �-representation the operators N̂ and �̂ have the expres-
sions N̂ = i

� @
@�

�
and �̂ = ��. In the same representation the

Schrödinger equation (12) takes the form

E	n (�) = ~!
�
i
@
@�

+
1
2

�
	n (�) (16)

where � 2 [0; 2�). Then the solution of the above equation is
given by the relation

	n (�) =
1p
2�

exp (in�) (17)

with n = E
~! � 1

2 . If, similarly with te case of a classical
oscillator, for a QO the energy E is considered to have non-
negative values one finds n = 0; 1; 2; 3; : : : .

Now, for the case of a QO, by taking into account the
wave function (17), the operators N̂ and �̂ in the �-
representation, as well as the aboriginal QM elements pre-
sented in R2, we can note the following things. In the respec-
tive case it is verified the relation

(N̂	n; �̂	n) = (	n; N̂�̂	n) + i : (18)

This relation shows directly the circumstance that in the
mentioned case the conditions (6) are not fulfiled by the oper-
ators N̂ and �̂ in connection with the wave function (17). But
such a circumstance point out the observation that in the case
under discussion the RSUR (2)/(8) is not valid. On the other
hand one can see that CSF (5) remains true. In fact it take the
form of the trivial equality 0 = 0 because in the due case one
obtains

�	N = 0 ; �	� =
�p
3
;
�
�N̂	n; � �̂	n

�
= 0 : (19)

The above revealed facts allow us to note the following
conclusions. In case of QO states (described by the wave
functions (14) or (17)) theN -� pair is in a complete disagree-
ment with the RSUR (2)/(8) and with the associated basic pre-
sumption P4 of CIUR. But, in the alluded case, the same pair
is in a full concordance with the aboriginal QM element by
the CSF (5). Then it is completely clear that the here noted
concclusions reveal an authentic deficience of CIUR.

O: Often in CIUR literature the N -� pair is dis-
cussed in connection with the situations regarding ensembles
of particles (e.g. fuxes of photons). But, in our opinion,
such situations are completely different comparatively with
the above presented problem about the N -� pair and QO
wave functions (states). In the alluded situations the Dirac’s
notations/formulas (9) can be also used but they must be uti-
lized strictly in connection with the wave functions describing
the respective ensembles. Such utilization can offer examples
in which the N -� pair satisfy relations which are semblable
with RSUR (2) or with the relation (11). But it is less proba-
ble that the alluded examples are able to consolidate the CIUR
concepts. This because in its primary form CIUR regards on
the first place the individual quantum particles but not ensem-
bles of such particles.
End of R5
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R6: On the E-t pair
Another pair of (canonically) conjugated observables which
are unconformable in relation with the CIUR ideas is given by
energy E and time t. That is why the respective pair was the
subject of a large number of (old as well as recent) controver-
sial discussions (see [2, 44–48] and references therein). The
alluded discussions were generated by the following observa-
tions. On one hand, in conformity with the CIUR tradition,
in terms of QM, E and t regarded as conjugated observables,
ought to be described by the operators

Ê = i~
@
@t
; t̂ = t� (20)

respectively by the commutation relation�
Ê; t̂

�
= i~ : (21)

In accordance with the RSUR (2) such a description re-
quire the formula

�	E ��	t >
~

2
: (22)

On the other hand because in usual QM the time t is a
deterministic but not a random variable for any quantum sit-
uation (particle/system and state) one finds the expressions

�	E = a finite quantity ; �	t � 0 : (23)

But these expressions invalidate the relation (22) and con-
sequently show an anomaly in respect with the CIUR ideas
(especially with the presumption P4). For avoiding the al-
luded anomaly CIUR partisans invented a lot of adjusted
�	E��	t formulae destined to substitute the questionable
relation (22) (see [2, 44–48] and references). The mentioned
formulae can be written in the generic form

�vE ��vt >
~

2
: (24)

Here �vE and �vt have various (v) significances
such as:

(i) �1E = line-breadth of the spectrum characterizing the
decay of an excited state and �1t = half-life of the re-
spective state;

(ii) �2E = ~�! = spectral width (in terms of frequency
!) of a wave packet and �2t = temporal width of the
respective packet;

(iii) �3E = �	E and �3t = �	A � (d hAi	 =dt)�1, with
A = an arbitrary observable.

Note that in spite of the efforts and imagination implied in
the disputes connected with the formulae (24) the following
observations remain of topical interest.

(i) The diverse formulae from the family (24) are not mu-
tually equivalent from a mathematical viewpoint.
Moreover they have no natural justification in the
framework of usual QM (that however give a huge
number of good results in applications);

(ii) In the specific literature (see [2, 44–48] and references
therein) none of the formulas (24) is agreed unanimous-
ly as a correct substitute for relation (22).

Here it must be added also another observation regarding
the E-t pair. Even if the respective pair is considered to be
described by the operators (20), in the true QM terms, one
finds the relation�

Ê	; t̂	
�

=
�

	; Ê t̂	
�� i~ : (25)

This relation shows clearly that for theE-t pair the condi-
tion (6) is never satisfied. That is why for the respective pair
the RSUR (2)/(8) is not applicable at all. Nevertheless for
the same pair, described by the operators (20), the CSF (5) is
always true. But because in QM the time t is a determinis-
tic (i.e. non-random) variable in all cases the mentioned CSF
degenerates into the trivial equality 0 = 0.

Due to the above noted observations we can conclude that
the applicability of the CIUR ideas to the E-t pair persists in
our days as a still unsolved question. Moreover it seems to
be most probabble the fact that the respective question can
not be solved naturally in accordance with the authentic and
aboriginal QM procedures. But such a fact must be reported
as a true and serious deficience of CIUR.
End of R6

In the above remarks R1–R6 we have approached few facts
which through detailed examinations reveal indubitable de-
ficiences of CIUR.The respective facts are somewhat known
due to their relative presence in the published debates. But
there are a number of other less known things which poit
out also deficiences of CIUR. As a rule, in publications, the
respective things are either ignored or mentioned with very
rare occasions. Now we attempt to re-examine the mentioned
things in a spirit similar with the one promoted in the remarks
R1–R6 from the upper part of this section. The announced re-
examination is given below in the next remarks.

R7: On the commutable observables
For commutable observables CIUR adopt the presumtion P3

because the right hand side term from RSUR (2) is a null
quantity. But as we have shown in remark R2 the respec-
tive RSUR is only a limited by-product of the general relation
which is the CSF (5). However by means of the alluded CSF
one can find examples where two commutable observable A
andB can have simultaneously non-null values for their stan-
dard deviations �A and �B.

An example of the mentioned kind is given by the carte-
sian momenta px and py for a particle in a 2D potential well.
The observables px and py are commutable because
[p̂x; p̂y] = 0. The well is delimited as follows: the poten-
tial energy V is null for 0 < x1 < a and 0 < y1 < b respecti-
vely V =1 otherwise, where 0<a<b, x1 = (x+y)p

2
and

y1 = (y�x)p
2

. Then for the particle in the lowest energetic state
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one finds

�	px = �	py = ~
�
ab

r
a2 + b2

2
; (26)

jh(�	p̂x	; �	p̂y	)ij =
�
~�
ab

�2

�
�
b2 � a2

2

�
: (27)

With these expressions it results directly that for the con-
sidered example the momenta px and py satisfy the CSF (5)
in a non-trivial form (i.e. as an inequality with a non-null
value for the right hand side term).

The above noted observations about commutable observ-
ables constitute a fact that conflicts with the basic presump-
tion P3 of CIUR. Consequently such a fact must be reported
as an element which incriminates the CIUR doctrine.
End of R7

R8: On the eigenstates
The RSUR (2) fails in the case when the wave function 	
describes an eigenstate of one of the operators Â or B̂. The
fact was mentioned in [49] but it seems to remain unremarked
in the subsequent publications. In terms of the here devel-
oped investigations the alluded failure can be discussed as
follows. For two non-commutable observables A and B in
an eigenstate of A one obtains the set of values: �	A = 0,
0 < �	B < 1 and h[Â; B̂]i	 , 0. But, evidently, the
respective values infringe the RSUR(2). Such situations one
finds particularly with the pairs Lz-' in some cases detailed
in [33] and N -� in situations presented above in R5.

Now one can see that the question of eigenstates does not
engender any problem if the quantities �	A and �	B are re-
garded as QM standard deviations (i.e.characteristics of quan-
tum fluctuations) (see the next Section). Then the mentioned
set of values show that in the respective eigenstate A has not
fluctuations (i.e. A behaves as a deterministic variable) while
B is endowed with fluctuations (i.e. B appears as a random
variable). Note also that in the cases of specified eigenstates
the RSUR (2) are not valid. This happens because of the fact
that in such cases the conditions (6) are not satisfied. The
respective fact is proved by the observation that its opposite
imply the absurd result

a � hBi	 =

�
Â; B̂

��
	 + a � hBi	 (28)

with h[Â; B̂]i	 , 0 and a= eigenvalue of Â (i.e. Â	 = a	).
But in the cases of the alluded eigenststes the CSF (5) remain
valid. It degenerates into the trivial equality 0 = 0 (because
�	Â	 = 0).

So one finds a contradiction with the basic presumption
P4 — i.e. an additional and distinct deficiency of CIUR.
End of R8

R9: On the multi-temporal relations
Now let us note the fact RSUR (2)/(8) as well as its precur-
sor CSF (5) are one-temporal formulas. This because all the

quantities implied in the respective formulas refer to the same
instant of time. But the mentioned formulas can be general-
ized into multi-temporal versions, in which the correspond-
ing quantities refer to different instants of time. So CSF (5) is
generalizable in the form

�	1A ��	2B >
�����	1Â	1; �	2B̂	2 ;

���� (29)

where 	1 and 	2 represent the wave function for two differ-
ent instants of time t1 and t2. If in (29) one takes jt2�t1j!1
in the CIUR vision the quantities �	1A and �	2B have to
refer to A and B regarded as independent solitary observ-
ables. But in such a regard if

�
�	1Â	1; �	2B̂	2

�
, 0 the

relation (29) refute the presumption P2 and so it reveals an-
other additional deficience of CIUR. Note here our opinion
that the various attempts [50, 51], of extrapolating the CIUR
vision onto the relations of type (29) are nothing but arti-
facts without any real (physical) justification. We think that
the relation (29) does not engender any problem if it is re-
garded as fluctuations formula (in the sense which will be dis-
cussed in the next Section). In such a regard the cases when�
�	1Â	1; �	2B̂	2

�
, 0 refer to the situations in which,

for the time moments t1 and t2, the corresponding fluctua-
tions of A and B are correlated (i.e. statistically dependent).

Now we can say that, the previuosly presented discussion
on the multi-temporal relations, disclose in fact a new defi-
ciency of CIUR.
End of R9

R10: On the many-observable relations
Mathematically the RSUR (2)/(8) is only a restricted by-
product of CSF (5) which follows directly from the two-
observable true relation (4). But further one the alluded rela-
tion (4) appear to be merely a simple two-observable version
of a more general many-observable formula. Such a genaral
formula has the the form

det
h�
�	Âj	; �	Âk	

�i
> 0 : (30)

Here det [�jk] denotes the determinant with elements �jk
and j = 1; 2; : : : ; r; k = 1; 2; : : : ; r with r > 2. The for-
mula (30) results from the mathematical fact that the quanti-
ties
�
�	Âj	; �	Âk	

�
constitute the elements of a Hermitian

and non-negatively defined matrix ( an abstract presentation
of the mentioned fact can be found in [52]).

Then, within a consistent judgment of the things, for the
many-observable relations (30), CIUR must to give an inter-
pretation concordant with its own doctrine (summarized in its
basic presumptions P1–P5). Such an interpretation was pro-
posed in [53] but it remained as an unconvincing thing (be-
cause of the lack of real physical justifications). Other dis-
cussions about the relations of type (30) as in [38] elude any
interpretation of the mentioned kind. A recent attempt [54]
meant to promote an interpretation of relations like (30), for
three or more observables. But the respective attempt has not
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a helping value for CIUR doctrine. This is because instead of
consolidating the CIUR basic presumptions P1–P5) it seems
rather to support the idea that the considered relations are
fluctuations formulas (in the sense which will be discussed
bellow in the next Section). We opine that to find a CIUR-
concordant interpretation for the many-observable relations
(30) is a difficult (even impossible) task on natural ways (i.e.
without esoteric and/or non-physical considerations). An ex-
emplification of the respective difficulty can be appreciated
by investigating the case of observables A1 = p, A2 = x and
A3 = H = energy in the situations described by the wave
functions (14) of a QO.

Based on the above noted appreciations we conclude that
the impossibility of a natural extension of CIUR doctrine to
a interpretation regarding the many-observable relations (30)
rveal another deficience of the respective doctrine.
End of R10

R11: On the quantum-classical probabilistic similarity
Now let us call attention on a quantum-classical similarity
which directly contradicts the presumption P5 of CIUR. The
respective similarity is of probabilistic essence and regards
directly the RSUR (2)/(8) as descendant from the CSF (5).
Indeed the mentioned CSF is completely analogous with cer-
tain two-observable formula from classical (phenomenolgi-
cal) theory of fluctuations for thermodynamic quantities. The
alluded classical formula can be written [55, 56] as follows

�wA ��wB > jh�wA � �wBiwj : (31)

In this formula A and B signify two classical global ob-
servables which characterize a thermodynamic system in its
wholeness. In the same formula w denotes the phenomeno-
logical probability distribution, h(: : :)iw represents the mean
(expected value) of the quantity (: : :) evaluated by means of
w while �wA, �wB and h�wA � �wBiw stand for character-
istics (standard deviations respectively correlation) regarding
the fluctuations of the mentioned observables. We remind
the appreciation that in classical physics the alluded char-
acteristics and, consequently, the relations (31) describe the
intrinsic (own) properties of thermodynamic systems but not
the aspects of measurements performed on the respective sys-
tems. Such an appreciation is legitimated for example by the
research regarding the fluctuation spectroscopy [57] where
the properties of macroscopic (thermodynamic) systems are
evaluated through the (spectral components of) characteris-
tics like �wA and h�wA � �wBiw.

The above discussions disclose the groundlessness of idea
[58–60] that the relations like (31) have to be regarded as
a sign of a macroscopic/classical complementarity (similar
with the quantum complementarity motivated by CIUR pre-
sumption P4). According to the respective idea the quantities
�wA and �wB appear as macroscopic uncertainties. Note
that the mentioned idea was criticized partially in [61,62] but
without any explicit specification that the quantities �wA and

�wB are quatities which characterise the macroscopic fluctu-
ations.

The previously notified quantum-classical similarity to-
gether with the reminded significance of the quantities im-
plied in (31) suggests and consolidates the following regard
(argued also in R3). The quantities �	A and �	B from
RSUR (2)/(8) as well as from CSF (5) must be regarded as
describing intrinsic properties (fluctuations) of quantum ob-
servables A and B but not as uncertainties of such observ-
ables.

Now, in conclusion, one can say that the existence of clas-
sical relations (31) contravenes to both presumptions P1 and
P5 of CIUR. Of course that such a conclusion must be an-
nounced as a clear deficience of CIUR.
End of R11

R12: On the higher order fluctuations moments
In classical physics the fluctuations of thermodynamic ob-
servables A and B implied in (31) are described not only by
the second order probabilistic moments like �wA, �wB or
h�wA �wBiw. For a better evaluation the respective fluctua-
tions are characterized additionally [63] by higher order mo-
ments like



(�wA)r (�wB)s

�
w with r + s > 3. This fact

suggests the observation that, in the context considered by
CIUR, we also have to use the quantum higher order prob-
abilistic moments like

��
�	Âj

�r	; ��	Âk�s	�, r + s > 3.
Then for the respective quantum higher order moments CIUR
is obliged to offer an interpretation compatible with its own
doctrine. But it seems to be improbable that such an interpre-
tation can be promoted through credible (and natural) argu-
ments resulting from the CIUR own presumptions.

That improbability reveal one more deficience of CIUR.
End of R12

R13: On the so-called “macroscopic operators”
Another obscure aspect of CIUR was pointed out in connec-
tion with the question of the so called “macroscopic opera-
tors”. The question was debated many years ago (see [64,65]
and references) and it seems to be ignored in the lsat decades,
although until now it was not elucidated. The question ap-
peared due to a forced transfer of RSUR (2) for the cases of
quantum statistical systems. Through such a transfer CIUR
partisans promoted the formula

��A ���B >
1
2

���
�Â; B̂������ : (32)

This formula refers to a quantum statistical system in a
state described by the statistical operator (density matrix) �̂.

With A and B are denoted two macroscopic (global) ob-
servables associated with the operators Â and B̂. The quantity

��A =
n

Tr
h�
Â� 
A���2io 1

2

denotes the standard deviation of the macroscopic observable
A regarded as a (generalised) random variable. In its expres-
sion the respective quantity imply the notation hAi�=Tr

�
Â�̂
�
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for the mean (expected) value of the macroscopic observ-
able A.

Relation (32) entailed discussions because of the conflict
between the following two findings:

(i) On the one hand (32) is introduced by analogy with
RSUR (2) on which CIUR is founded. Then, by ex-
trapolating CIUR, the quantities ��A and ��B from
(32) should be interpreted as (global) uncertainties sub-
jected to stipulations as the ones indicated in the basic
presumption P1;

(ii) On the other hand, in the spirit of the presumption P5,
CIUR agrees the posibility that macroscopic observ-
ables can be measured without any uncertainty (i.e.
with unbounded accuracy). For an observable the men-
tioned possibility should be independent of the fact that
it is measured solitarily or simultaneously with other
observables. Thus, for two macroscopic (thermody-
namic) observables, it is senselessly to accept CIUR
basic presumptions P3 and P4.

In order to elude the mentioned conflict it was promoted
the idea to abrogate the formula (32) and to replace it with an
adjusted macroscopic relation concordant with CIUR vision.
For such a purpose the global operators Â and B̂ from (32)
were substituted [64,65] by the so-called “macroscopic oper-
ators” Â and B̂. The respective “macroscopic operators” are
considered to be representable as quasi-diagonal matrices (i.e.
as matrices with non-null elements only in a “microscopic
neighbourhood” of principal diagonal). Then one supposes
that

�Â; B̂� = 0 for any pairs of “macroscopic observables”
A and B. Consequently instead of (32) it was introduced the
formula

��A ���B > 0 : (33)

In this formula CIUR partisans see the fact that the un-
certainties ��A and ��B can be unboundedly small at the
same time moment, for any pair of observables A and B and
for any system. Such a fact constitute the CIUR vision about
macroscopic observables. Today it seems to be accepted the
belief that mentioned vision solves all the troubles of CIUR
caused by the formula (32).

A first disapproval of the mentioned belief results from
the following observations:

(i) Relation (32) cannot be abrogated if the entire mathe-
matical apparatus of quantum statistical physics is not
abrogated too. More exactly, the substitution of oper-
ators from the usual global version Â into a “macro-
scopic” variant Â is a senseless invention as long as
in practical procedures of quantum statistical physics
[66, 67] for lucrative operators one uses Â but not Â;

(ii) The substitution Â! Â does not metamorphose auto-
matically (32) into (33), because if two operators are
quasi-diagonal, in sense required by the partisans of
CIUR, it is not surely that they commute.

For an ilustration of the last observatiom we quote [68]
the Cartesian components of the global magnetization ~M of a
paramagnetic system formed of N independent 1

2 -spins. The
alluded components are described by the global operators

M̂� =
~
2
�̂(1)
� � ~

2
�̂(2)
� � � � � � ~

2
�̂(N)
� ; (34)

where � = x; y; z;  = magneto-mechanical factor and
�̂(i)
� = Pauli matrices associated to the i-th spin (particle).

Note that the operators (34) are quasi-diagonal in the sense
required by CIUR partisans, i.e. M̂� � M̂�. But, for all that,
they do not commute because

�M̂�;M̂�
�

= i~ �"��� �M̂�
( "��� denote the Levi-Civita tensor).

A second disproval of the belief induced by the substitu-
tion Â ! Â is evidenced if the relation (32) is regarded in
an ab original QM approach like the one presented in R2. In
such regard it is easy to see that in fact the formula (32) is
only a restrictive descendant from the generally valid relation

��A ���B >
���h��A � ��Bi���� ; (35)

where ��Â = Â � hAi�. In the same regard for the “macro-
scopic operators” A and B instead of the restricted relation
(33) it must considered the more general formula

��A ���B >
���h��A � ��Bi���� : (36)

The above last two relations justify the following affirma-
tions:

(i) Even in the situations when
�Â; B̂� = 0 the product

��A ���B can be lower bounded by a non-null quan-
tity. This happens because it is possible to find cases in
which the term from the right hand side of (36) has a
non-null value;

(ii) In fact the substitution Â! Â replace (35) with (36).
But for all that the alluded replacement does not guar-
anttee the validity of the relation (33) and of the corre-
sponding speculations.

The just presented facts warrant the conclusion that the
relation (32) reveal a real deficiency of CIUR. The respec-
tive deficiency cannot be avoided by resorting to the so-called
“macroscopic operators”. But note that the same relation does
not rise any problem if it is considered together with (35)
as formulas which refer to the fluctuations of macroscopic
(global) observables regarding thermodynamic systems.
End of R13

R14: On the similarities between calassical Boltzmann’s
and quantum Planck’s constants kB and ~
The quantum-classical similarity revealed in R11 entails also
a proof against the CIUR presumption P5. According to the
respective presumptions the Planck constant ~ has no analog
in classical (non-quantum) physics. The announced proof can
be pointed out as follows.

58 Spiridon Dumitru. Reconsideration of the Uncertainty Relations and Quantum Measurements



April, 2008 PROGRESS IN PHYSICS Volume 2

The here discussed similarity regards the groups of classi-
cal respectively quantum relations (31) and (5) (the last ones
including their restricted descendant RSUR (2)/(8)). The re-
spective relations imply the standard deviations �wA or
�	A associated with the fluctuations of the corresponding
classical and quantum observables. But mathematically the
standard deviation indicate the randomness of an observable.
This in the sense that the alluded deviation has a positive or
null value as the corresponding observable is a random or, al-
ternatively, a deterministic (non-random) variable. Therefore
the quantities �wA and �	A can be regarded as similar in-
dicators of randomness for the classical respectively quantum
observables.

For diverse cases (of observables, systems and states) the
classical standard deviations �wA have various expressions
in which, apparently, no common element seems to be im-
plied. Nevertheless such an element can be found out [69]
as being materialized by the Boltzmann constant kB . So, in
the framework of phenomenological theory of fluctuations (in
Gaussian approximation) one obtains [69]

(�wA)2 = k� �X
�

X
�

@ �A
@ �X�

� @ �A
@ �X�

�
�

@2�S
@ �X�@ �X�

��1

: (37)

In this relation �A = hAiw, �S = �S(�X�) denotes the en-
tropy of the system written as a function of independent ther-
modynamic variables �X� , (� = 1; 2; : : : ; r) and (a��)�1

represent the elements for the inverse of matrix (a��). Then
from (37) it result that the expressions for (�wA)2 consist of
products of kB with factors which are independent of kB .
The respective independence is evidenced by the fact that
the alluded factors must coincide with deterministic (non-
random) quantities from usual thermodynamics (where the
fluctuations are neglected). Or it is known that such quantities
do not imply kB at all. See [69] for concrete exemplifications
of the relations (37) with the above noted properties.

Then, as a first aspect, from (37) it results that the fluctu-
ations characteristics (�wA)2 (i.e. dispersions = squares of
the standard deviations ) are directly proportional to kB and,
consequently, they are non-null respectively null quantities as
kB , 0 or kB ! 0. (Note that because kB is a physical
constant the limit kB ! 0 means that the quantities directly
proportional with kB are negligible comparatively with other
quantities of same dimensionality but independent of kB .) On
the other hand, the second aspect (mentioned also above) is
the fact that �wA are particular indicators of classical ran-
domness. Conjointly the two mentioned aspects show that
kB has the qualities of an authentic generic indicator of ther-
mal randomness which is specific for classical macroscopic
(thermodynamic) systems. (Add here the observation that the
same quality of kB can be revealed also [69] if the thermal
randomness is studied in the framework of classical statisti-
cal mechanics).

Now let us discuss about the quantum randomness whose

indicators are the standard deviations �	A. Based on the
relations (26) one can say that in many situations the expres-
sions for (�	A)2 consist in products of Planck constant ~
with factors which are independent of ~. (Note that a similar
situation can be discovered [33] for the standard deviations of
the observables Lz and ' in the case of quantum torsion pen-
dulum.) Then, by analogy with the above discussed classical
situations, ~ places itself in the posture of generic indicator
for quantum randomness.

In the mentioned roles as generic indicators kB and ~, in
direct connections with the quantities �wA and �	A, regard
the onefold (simple) randomness, of classical and quantum
nature respectively. But in physics is also known a twofold
(double) randomness, of a combined thermal and quantum
nature. Such a kind of randomness one encounters in cases
of quantum statistical systems and it is evaluated through the
standard deviations ��A implied in relations (32) and (35).
The expressions of the mentioned deviations can be obtained
by means of the fluctuation-dissipation theorem [70] and have
the form

(�� A)2 =
~

2�

1Z
�1

coth
�

~!
2kBT

�
�
00

(!) d! : (38)

Here �
00

(!) denote the imaginary parts of the suscepti-
bility associated with the observable A and T represents the
temperature of the considered system. Note that �

00
(!) is

a deterministic quantity which appear also in non-stochastic
framework of macroscopic physics [71]. That is why �

00
(!)

is independent of both kB and ~. Then from (38) it results that
kB and ~ considered together appear as a couple of generic
indicators for the twofold (double) randomness of thermal
and quantum nature. The respective randomness is negligi-
ble when kB ! 0 and ~ ! 0 and significant when kB , 0
and ~ , 0 respectively.

The above discussions about the classical and quantum
randomness respectively the limits kB ! 0 and ~ ! 0 must
be supplemented with the following specifications.

(i) In the case of the classical randomness it must consid-
ered the following fact. In the respective case one as-
sociates the limits kB! 0 respectively “(classical) mi-
croscopic approach” ! “(classical) macroscopic ap-
proach”. But in this context kB! 0 is concomitant
with the conditionN! 0 (N = number of microscopic
constituents (molecules) of the considered system).
The respective concomitance assures the transforma-
tion kBN! �R, i.e. transition of physical quantities
from “microscopic version” into a “macroscopic ver-
sion” (because R sidnify the macoscopic gass constant
and � denotes the macroscopic amount of substance;

(ii) On the other hand in connection with the quantum case
it must taken into account the following aspect. The
corresopnding randomness regards the cases of observ-
ables of orbital and spin types respectively;
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(iii) In the orbital cases the limit ~ ! 0 is usually associ-
ated with the quantum ! classical limit. The respec-
tive limit implies an unbounded growth of the values of
some quantum numbers so as to ensure a correct limit
for the associated observables regarding orbital move-
ments. Then one finds [72, 73] that, when ~ ! 0, the
orbital-type randomness is in one of the following two
situations:
(a) it converts oneself in a classical-type randomness
of the corresponding observables (e.g. in the cases of
' and Lz of a torsional pendulum or of x and p of a
rectilinear oscillator), or

(b) it disappears, the corresponding observables be-
coming deterministic classical variables (e.g. in the
case of the distance r of the electron in respect with
the nucleus in a hydrogen atom);

(iv) The quantum randomness of spin-type regards the spin
observables. In the limit ~! 0 such observables disap-
pear completely (i.e. they lose both their mean values
and the affined fluctuations).

In the alluded posture the Planck constant ~ has an au-
thentic classical analog represented by the Boltzmann con-
stant kB . But such an analogy contradicts strongly the pre-
sumption P5 and so it reveals a new deficience of CIUR.
End of R14

Within this section, throgh the remarks R1–R14, we exam-
ined a collection of things whose ensemble point out defi-
ciencies which incriminate all the basic presumptions P1–R5

of CIUR, considered as single or grouped pieces. In regard
to the truth qualities of the respective deficiences here is the
place to note the folloving completion remark:

R15: On the validity of the above signallized CIUR defi-
ciences
The mentioned deficiencies are indubitable and valid facts
which can not be surmounted (avoided or rejected) by solid
and verisimilar arguments taken from the inner framework of
CIUR doctrine.
End of R15

4 Consequences of the previous examination

The discussions belonging to the examination from the previ-
ous section impose as direct consequences the following re-
marks:

R16: On the indubitable failure of CIUR
In the mentioned circumstances CIUR proves oneself to be
indubitably in a failure situation which deprives it of neces-
sary qualities of a valid scientific construction. That is why
CIUR must be abandoned as a wrong doctrine which, in fact,
has no real value.
End of R16

R17: On the true significance of the relations (1) and (2)
The alluded abandonment has to be completed by a natural re-
interpretation of the basic CIUR’s relations (1) and (2). We
opine that the respective re-interpretation have to be done and
argued by taking into account the discussions from the previ-
ous Section, mainly those from the remarks R1, R2 and R3.
We appreciate that in the alluded re-interpretation must be in-
cluded the following viewpoints:

(i) On the one hand the relations (1) remain as provisional
fictions destitute of durable physical significance;

(ii) On the other hand the relations (2) are simple fluctua-
tions formulae, from the same family with the micro-
scopic and macroscopic relations from the groups (4),
(5), (29), (30) respectively (31), (32), (35);

(iii) None of the relations (1) and (2) or their adjustments
have not any connection with the description of QMS.

Consequently in fact the relations (1) and (2) must be re-
garded as pieces of fiction respectively of mathematics with-
out special or extraordinary status/significance for physics.
End of R17

R18: On the non-influences towards the usual QM
The above noted reconsideration of CIUR does not disturb in
some way the framework of usual QM as it is applied con-
cretely in the investigations of quantum microparticles. (Few
elements from the respective framework are reminded above
in the remark R2).
End of R18

5 Some considerations on the quantum and classical
measurements

The question regarding the QMS description is one of the
most debated subject associated with the CIUR history. It
generated a large diversity of viewpoints relatively to its im-
portance and/or approach (see [1–9] and references). The re-
spective diversity inserts even some extreme opinions such
are the ones noted in the Section 1 of the present paper. As a
notable aspect many of the existing approaches regarding the
alluded question are grounded on some views which presume
and even try to extend the CIUR doctrine. Such views (v.)
are:

(v.1) The descriptions of QMS must be developed as confir-
mations and extensions of CIUR concepts;

(v.2) The peculiarities of QMS incorporated in CIUR pre-
sumptions P2–P4 are connected with the correspond-
ing features of the measuring perturbations. So in the
cases of observables refered in P2–P3 respectively in
P4 the alluded perturbations are supposed to have an
avoidable respectively an unavoidable character;

(v.3) In the case of QMS the mentioned perturbations cause
specific jumps in states of the measured quantum mi-
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croparticles (systems). In many modern texts the re-
spective jumps are suggested to be described as fol-
lows. For a quantum observable A of a microparticle
in the state 	 a QMS is assumed to give as result a
single value say an which is one of the eigenvalues of
the associated operator Â. Therefore the description of
the respective QMS must include as essential piece a
“collapse” (sudden reduction) of the wave function i.e
a relation of the form:

	
�

before
measurement

�! 	n

�
after
measurement

�
; (39)

where 	n (after measurement) denotes the eigen-
function of the operator Â corresponding to the eigen-
value an;

(v.4) With regard to the observables of quantum and classical
type respectively the measuring inconveniences (per-
turbations and uncertainties) show an essential differ-
ence. Namely they are unavoidable respectively avoid-
able characteristics of measurements. The mentioned
difference must be taken into account as a main point
in the descriptions of the measurements regarding the
two types of observables;

(v.5) The description of QMS ought to be incorporated as an
inseparable part in the framework of QM. Adequately
QM must be considered as a unitary theory both of
intrinsic properties of quantum microparticles and of
measurements regarding the respective properties.

Here is the place to insert piece-by-piece the next remark:

R19: Counter-arguments to the above views
The above mentioned views about QMS must be appreciated
in conformity with the discussions detailed in the previous
sections. For such an appreciation we think that it must taken
into account the following counter-arguments (c-a):

(c-a.1) According to the remark R16, in fact CIUR is noth-
ing but a wrong doctrine which must be abandoned.
Consequently CIUR has to be omitted but not extended
in any lucrative scientific question, particularly in the
description of QMS. That is why the above view (v.1)
is totally groundless;

(c-a.2) The view (v.2) is inspired and argued by the ideas
of CIUR about the relations (1) and (2). But, accord-
ing to the discussions from the previous sections, the
respective ideas are completely unfounded. Therefore
the alluded view (v.2) is deprived of any necessary and
well-grounded justification;

(c-a.3) The view (v.3) is inferred mainly from the belief that
the mentioned jumps have an essential importance
for QMS.
But the respective belief appears as entirely unjustified
if one takes into account the following natural and in-
dubitable observation [74]: “it seems essential to the

notion of measurement that it answers a question about
the given situation existing before the measurement.
Whether the measurement leaves the measured system
unchanged or brings about a new and different state of
that system is a second and independent question”.
Also the same belief apperars as a fictitious thing if
we take into account the quantum-classical probabilis-
tic similarity presented in the remark R11. According
to the respective similarity, a quantum observable must
be regarded mathematically as a random variable.Then
a measurement of such a observable must consist not in
a single trial (which give a unique value) but in a sta-
tistical selection/sampling (which yields a spectrum of
values). For more details regarding the measurements
of random observables see below in this and in the next
sections.
So we can conclude that the view (v.3) is completely
unjustified;

(c-a.4) The essence of the difference between classical and
quantum observables supposed in view (v.4) is ques-
tionable at least because of the following two reasons:

(a) In the classical case the mentioned avoidance of
the measuring inconveniences have not a significance
of principle but only a relative and limited value (de-
pending on the performances of measuring devices and
procedures). Such a fact seems to be well known by
experimenters.

(b) In the quantum case until now the alluded unavoid-
ableness cannot be justified by valid arguments of ex-
perimental nature (see the above remark R16 and the
comments regarding the relation (3));

(c-a.5) The viev (v.5) proves to be totally unjustified if the
usual conventions of physics are considered. Accord-
ing to the respective conventions, in all the basic chap-
ters of physics, each observable of a system is regarded
as a concept “per se” (in its essence) which is denuded
of measuring aspects. Or QM is nothing but such a
basic chapter, like classical mechanics, thermodynam-
ics, electrodynamics or statistical physics. On the other
hand in physics the measurements appear as main pour-
poses for experiments. But note that the study of the
experiments has its own problems [75] and is done in
frameworks which are additional and distinct in respect
with the basic chapters of physics. The above note is
consolidated by the observation that [76]: “the proce-
dures of measurement (comparison with standards) has
a part which cannot be described inside the branch of
physics where it is used”.
Then, in contrast with the view (v.5), it is natural to
accept the idea that QM and the description of QMS
have to remain distinct scientific branches. However
the two branches have to use some common concepts
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and symbols. This happens because, in fact, both of
them also imply elements regarding the same quantum
microparticles (systems).

The here presented counter-arguments contradict all the
above oresented views (v.1)–(v.5) promoted in many of the
existing approaches regarding the QMS description.
End of R19

On the basis of discussions presented in R11 and reminded
in (c-a.3) from R19 a quantum observables must be consid-
ered as random variables having similar characteristics which
corespond to the classical random observables. Then it results
that, on principle, the description of QMS can be approached
in a manner similar with the one regarding the corresponding
classical measurements. That is why below we try to resume
a model promoted by us in [77, 78] and destined to describe
the measurement of classical random observables.

For the announced resume we consider a classical ran-
dom observable from the family discussed in R11. Such an
observable and its associated probability distribution will be
depicted with the symbols eA respectively w = w(a). The in-
dividual values a of eA belong to the spectrum a 2 (�1;1)).
For the considered situation a measurement preserve the spec-
trum of eA but change the dustribution w(a) from a “in” (in-
put) version win(a) into an “out” (output) reading wout(a).
Note thatwin(a) describes the intrinsic properties of the mea-
sured system while wout(a) incorporates the information
about the same system, but obtained on the recorder of mea-
suring device. Add here the fact that, from a general per-
spective, the distributions win(a) and wout(a) incorporate
informations referring to the measured system. That is why
a measurement appears as an “informational input ! out-
put transmision process”. Such a process is symbolized by
a transformation of the form win(a) ! wout(a). When the
measurement is done by means of a device with stationary
and linear characteristics, the the mentioned transformation
can described as follows:

wout (a) =
1Z
�1

G (a; a0)win (a0) da0: (40)

Here the kernelG (a; a0) represents a transfer probability
with the significances:

(i) G (a; a0) da enotes the (infnitesimal) probability that
by measurement the in-value a0 of eA to be recorded
in the out-interval (a; a+ da);

(ii) G (a; a0) da0 stands for the probability that the out-
value a to result from the in-values which belong to
the interval (a0; a0 + da0).

Due to the mentioned significances the kernel G (a; a0)
satisfies the conditions

1Z
�1

G (a; a0) da =
1Z
�1

G (a; a0) da0 = 1 : (41)

Add here the fact that, from a physical perspective, the
kernel G (a; a0) incorporates the theoretical description of all
the characteristics of the measuring device. For an ideal de-
vice which ensure wout(a) = win(a) it must be of the form
G (a; a0) = �(a � a0) (with �(a � a0) denoting the Dirac’s
function of argument a� a0).

By means of w�(a) (� = in; out) the corresponding
global (or numerical) characteristics of eA regarded as random
variable can be introduced. In the spirit of usual practice of
physics we refer here only to the two lowest order such char-
acteristics. They are the � — mean (expected) value hAi� and
� — standard deviations ��A defined as follows

hAi� =
1Z
�1

aw� (a) da

(��A)2 =
D�
A� 
A���2E�

9>>>>=>>>>; : (42)

Now, from the general perspective of the present paper, it
is of interest to note some observations about the measuring
uncertainties (errors). Firstly it is important to remark that
for the discussed observable A, the standard deviations �inA
and �outA are not estimators of the mentioned uncertainties.
Of course that the above remark contradicts some loyalities
induced by CIUR doctrine. Here it must be pointed out that:

(i) On the one hand �inA together with hAiin describe
only the intrinsic properties of the measured system;

(ii) On the other hand �outA and hAiout incorporate com-
posite information about the respective system and the
measuring device.

Then, in terms of the above considerations, the measur-
ing uncertainties of A are described by the following error
indicators (characteristics)

" fhAig = jhAiout � hAiinj
" f�Ag = j�outA��inAj

)
: (43)

Note that because A is a random variable for an accept-
able evaluation of its measuring uncertainties it is completely
insufficient the single indicator " fhAig. Such an evaluation
requires at least the couple " fhAigand " f�Ag or even the
differences of the higher order moments like

"
�


(�A)n
�	

=
��
(�outA)n

�
out �



(�inA)n

�
in

�� ; (44)

where ��A = eA� hAi� ; � = in; out ; n > 3).
Now we wish to specify the fact that the errors (uncertain-

ties) indicators (43) and (44) are theoretical (predicted) quan-
tities. This because all the above considerations consist in a
theoretical (mathematical) modelling of the discussed mea-
suring process. Or within such a modelling we operate only
with theoretical (mathematical) elements presumed to reflect
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in a plausible manner all the main characteristics of the re-
spective process. On the other hand, comparatively, in exper-
imental physics, the indicators regarding the measuring errors
(uncertainties) are factual entities because they are estimated
on the basis of factual experimental data. But such entities
are discussed in the framework of observational error studies.

6 An informational model for theoretical description
of QMS

In the above, (c-a.5) from R19, we argued forthe idea that QM
and the description of QMS have to remain distinct scientific
branches which nevertheless have to use some common con-
cepts and symbols. Here we wish to put in a concrete form
the respective idea by recommending a reconsidered model
for description of QMS. The announced model will assimilate
some elements discussed in the previous section in connecton
with the measuremens of classical random observables.

We restrict our considerations only to the measurements
of quantum observables of orbital nature (i.e. coordinates,
momenta, angles, angular momenta and energy). The re-
spective observables are described by the following operators
Âj (j = 1; 2; : : : ; n) regarded as generalized random vari-
ables. As a measured system we consider a spinless mi-
croparticle whose state is described by the wave function 	 =
	 (~r), taken in the coordinate representation (~r stand for mi-
croparticle position). Add here the fact that, because we con-
sider only a non-relativistic context, the explicit mention of
time as an explicit argument in the expression of 	 is unim-
portant.

Now note the observation that the wave function 	 (~r) in-
corporate information (of probabilistic nature) about the mea-
sured system. That is why a QMS can be regarded as a pro-
cess of information transmission: from the measured micro-
particle (system) to the recorder of the measuring device.
Then, on the one hand, the input (in) information described
by 	in (~r) refers to the intrinsic (own) properties of the re-
spective micropraticle (regarded as information source). The
expression of 	in (~r) is deducible within the framework of
usual QM (e.g. by solving the adequate Schrödinger equa-
tion). On the other hand, the output (out) information, de-
scribed by the wave function 	out (~r), refers to the data ob-
tained on the device recorder (regarded as information re-
ceiver). So the measuring device plays the role of the trans-
mission channel for the alluded information. Accordingly the
measurement appears as a processing information operation.
By regarding the things as above the description of the QMS
must be associated with the transformation

	in (~r)! 	out (~r) : (45)

As in the classical model (see the previous section), with-
out any loss of generality, here we suppose that the quantum
observables have identical spectra of values in both in- and
out-situations. In terms of QM the mentioned supposition

means that the operators Âj have the same mathematical ex-
pressions in both in- and out-readings. The respective ex-
pressions are the known ones from the usual QM.

In the framework delimited by the above notifications the
description of QMS requires to put the transformation (45) in
concrete forms by using some of the known QM rules. Ad-
ditionally the same description have to assume suggestions
from the discussions given in the previous section about mea-
surements of classical random obsevables. That is why, in our
opinion, the transformation (45) must be detailed in terms of
quantum probabilities carriers. Such carriers are the proba-
bilistic densities �� and currents ~J� defined by

�� = j	�j2 ; ~J� =
~

m0
j	�j2 � r�� : (46)

Here j	�j and �� represents the modulus and the argu-
ment of 	� respectively (i.e. 	� = j	�j exp(i��)) and m0
denotes the mass of microparticle.

The alluded formulation is connected with the observa-
tions [79] that the couple �– ~J “encodes the probability dis-
tributions of quantum mechanics” and it “is in principle mea-
surable by virtue of its effects on other systems”. To be added
here the possibility [80] of taking in QM as primary entity the
couple �in– ~Jin but not the wave function 	in (i.e. to start
the construction of QM from the continuity equation for the
mentioned couple and subsequently to derive the Schrödinger
equation for 	in).

According to the above observations the transformations
(45) have to be formulated in terms of �� and ~J� . But �� and
~J� refer to the position and the motion kinds of probabilities
respectively. Experimentally the two kinds can be regarded as
measurable by distinct devices and procedures. Consequently
the mentioned formulation has to combine the following two
distinct transformations

�in ! �out ; ~Jin ! ~Jout : (47)

The considerations about the classical relation (40) sug-
gest that, by completely similar arguments, the transforma-
tions (47) admit the following formulations

�out (~r) =
$

� (~r; ~r0) �in
�
*r
0�
d3~r0 (48)

Jout; � =
3X

�=1

$
��� (~r; ~r0) Jin; � (~r0) d3~r0 : (49)

In (49) J�;� with � = in; out and � = 1; 2; 3 = x; y; z
denote Cartesian components of ~J� .

Note the fact that the kernels � and ��� from (48) and
(49) have significance of transfer probabilities, completely
analogous with the meaning of the classical kernel G(a; a0)
from (40). This fact entails the following relations

$
� (~r; ~r0) d3~r =

$
� (~r; ~r0) d3~r0 = 1 ; (50)
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3X
�=1

$
��� (~r; ~r0) d3~r =

=
3X

�=1

$
��� (~r; ~r0) d3~r0 = 1 :

(51)

The kernels � and ��� describe the transformations in-
duced by QMS in the data (information) about the measured
microparticle. Therefore they incorporate some extra-QM el-
ements regarding the characteristics of measuring devices and
procedures. The respective elements do not belong to the
usual QM framework which refers to the intrinsic (own) char-
acteristics of the measured microparticle (system).

The above considerations facilitate an evaluation of the
effects induced by QMS on the probabilistic estimators of
here considered orbital observables Aj . Such observables are
described by the operators Âj whose expressions depend on ~r
and r. According to the previous discussions the mentioned
operators are supposed to remain invariant under the transfor-
mations which describe QMS. So one can say that in the situa-
tions associated with the wave functions 	� (� = in; out) the
mentioned observables are described by the following proba-
bilistic estimators/characteristics (of lower order): mean val-
ues hAji� , correlations C� (Aj ; Ak) and standard deviations
��Aj . With the usual notation (f; g) =

R
f�g d3~r for the

scalar product of functions f and g, the mentioned estimators
are defined by the relations

hAji� =
�

	�; Âj	�

�
��Âj = Âj � hAji�
C� (Aj ; Ak) =

�
��Âj 	�; ��Âk 	�

�
��Aj =

q
C� (Aj ; Aj)

9>>>>>>>>>=>>>>>>>>>;
: (52)

Add here the fact that the in-version of the estimators (52)
are calculated by means of the wave function 	in, known
from the considerations about the inner properties of the in-
vestigated system (e.g. by solving the corresponding Schrö-
dinger equation).

On the other hand the out-version of the respective esti-
mators can be evaluated by using the probability density and
current �out and ~Jout. So if Âj does not depend on r (i.e.
Âj = Aj(~r)) in evaluating the scalar products from (52) one
can use the evident equality 	�Âj 	� = Âj �� . When Âj
depends onr (i.e. Âj = Aj(r)) in the same products can be
appealed to the substitution

	��r	� =
1
2
r�� +

im
~
~J� ; (53)

	��r2	� = �
1
2
� r2 �

1
2
� +

im
~
r ~J� � m2

~2

~J2
�

��
: (54)

The mentioned usage seems to allow the avoidance of the
implications regarding [79] “a possible nonuniqueness of cur-
rent” (i.e. of the couple ��– ~J�).

Within the above presented model of QMS the errors (un-
certainties) associated with the measurements of observables
Aj can be evaluated through the following indicators

" fhAjig =
��hAjiout � hAjiin��

" fC (Aj ; Ak)g = jCout (Aj ; Ak)�Cin (Aj ; Ak)j
" f�Ajg = j�outAj ��inAj j

9>>=>>; : (55)

These quantum error indicators are entirely similar
with the classical ones (43). Of course that, mathematic-
ally, they can be completed with error indicators like
"
���

�	Âj
�r	; ��	Âk�s	�	, r+ s> 3, which regard the

higher order probabilistic moments mentioned in R12.
The above presented model regarding the description of

QMS is exemplified in the end of this paper in Annex.
Now is the place to note that the out-version of the esti-

mators (52), as well as the error indicators (55), have a theo-
retical significance.

In practice the verisimilitude of such estimators and
indicators must be tested by comparing them with their
experimental (factual) correspondents (obtained by sampling
and processing of the data collected from the recorder
of the measuring device). If the test is confirmative both
theoretical descriptions, of QM intrinsic properties of sys-
tem (microparticle) and of QMS, can be considered as ade-
quate. But if the test gives an invalidation of the results, at
least one of the mentioned descriptions must be regarded as
inadequate.

In the end of this section we wish to add the following
two observations:

(i) The here proposed description of QMS does not im-
ply some interconnection of principle between the mea-
suring uncertainties of two distinct observables. This
means that from the perspective of the respective de-
scription there are no reasons to discuss about a mea-
suring compatibility or incompatibility of two observ-
ables;

(ii) The above considerations from the present section refer
to the QMS of orbital observables. Similar considera-
tions can be also done in the case of QMS regarding the
spin observables. In such a case besides the probabili-
ties of spin-states (well known in QM publications) it is
important to take into account the spin current density
(e.g. in the version proposed recently [81]).

7 Some conclusions

We starred the present paper from the ascertained fact that in
reality CIUR is troubled by a number of still unsolved defici-
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encies. For a primary purpose of our text, we resumed the
CIUR history and identified its basic presumptions.Then, we
attempt to examine in details the main aspects as well as
the validity of CIUR deficiencies regarded in an elucidative
collection.

The mentioned examination, performed in Section 3 re-
veal the following aspects:

(i) A group of the CIUR deficiencies appear from the ap-
plication of usual RSUR (2) in situations where, math-
ematically, they are incorrect;

(ii) The rest of the deficiencies result from unnatural as-
sociations with things of other nature (e.g. with the
thought experimental relations or with the presence/

absence of ~ in some formulas);
(iii) Moreover one finds that, if the mentioned applications

and associations are handled correctly, the alluded de-
ficiencies prove themselves as being veridic and un-
avoidable facts. The ensemble of the respective facts
invalidate all the basic presumptions of CIUR.

In consensus with the above noted findings, in Section
4, we promoted the opinion that CIUR must be abandoned
as an incorrect and useless (or even misleading) doctrine.
Conjointly with the respective opinion we think that the
primitive UR (the so called Heisenberg’s relations) must be
regarded as:

(i) fluctuation formulas — in their theoretical RSUR ver-
sion (2);

(ii) fictitious things, without any physical significance —
in their thought-experimental version (1).

Abandonment of CIUR requires a re-examination of the
question regarding QMS theoretical description. To such a re-
quirement we tried to answer in Sections 5 and 6. So, by a de-
tailed investigation, we have shown that the CIUR-connected
approaches of QMS are grounded on dubitable (or even in-
correct) views.

That is why we consider that the alluded question must
be reconsidered by promoting new and more natural models
for theoretical description of QMS. Such a model, of some-
what informational concept, is developed in Section 6 and it
is exemplified in Annex.

Of course that, as regards the QMS theoretical descrip-
tion, our proposal from Section 6, can be appreciated as only
one among other possible models. For example, similarly
with the discussions regarding classical errors [77, 78], the
QMS errors can be evaluated through the informational
(Shannon) entopies.

It is to be expected that, in connection with QMS, other
models will be also promoted in the next moths/years. But
as a general rule all such models have to take into account
the indubitable fact that the usual QM and QMS theoreti-
cal description must be refered to distinct scientific questions
(objectives).

Annex: A simple exemplification for the model presented
in Section 6

For the announced exemplification let us refer to a micropar-
ticle in a one-dimensional motion along the x-axis. We take
	in (x) = j	in (x)j � exp fi�in (x)g with

j	in (x)j / exp

(
� (x� x0)2

4�2

)
; �in (x) = kx : (56)

Note that here as well as in other relations from this An-
nex we omit an explicit notation of the normalisation con-
stants which can be added easy by the interesed readers.

Correspondingly to the 	 and � from (56) we have

�in (x) = j	in (x)j2 ; Jin (x) =
~k
m0
j	in (x)j2 : (57)

So the intrinsic properties of the microparticle are de-
scribed by the parameters x0, � and k.

If the errors induced by QMS are small the kernels � and
� in (48)–(49) can be considered of Gaussian forms like

� (x; x0) / exp

(
� (x� x0)2

22

)
; (58)

� (x; x0) / exp

(
� (x� x0)2

2�2

)
; (59)

where  and � describe the characteristics of the measuring
devices. Then for �out and Jout one finds

�out (x) / exp

(
� (x� x0)2

2 (�2 + 2)

)
; (60)

Jout (x) / ~k � exp

(
� (x� x0)2

2 (�2 + �2)

)
: (61)

It can been seen that in the case when both  ! 0 and
� ! 0 the kernels �(x; x0) and �(x; x0) degenerate into the
Dirac’s function �(x�x0). Then �out ! �in and Jout ! Jin.
Such a case corresponds to an ideal measurement. Alterna-
tively the cases when  , 0 and/or � , 0 are associated with
non-ideal measurements.

As observables of interest we consider coordinate x
and momentum p described by the operators x̂=x� and
p̂=�i~ @

@x . Then, in the measurement modeled by the ex-
pressions (56),(58) and (59), for the errors (uncertainties) of
the considered observables one finds

" fhxig = 0 ; " fhpig = 0 ; " fC (x; p)g = 0 ; (62)

" f�xg =
p
�2 + 2 � � ; (63)
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" f�pg = ~

����� k2(�2+2)p
(�2+�2)(�2+22��2)

�

� k2 + 1
4(�2+2)

i 1
2 � k

���� : (64)

If in (56) we restrict to the values x0 = 0, k = 0 and �=
=
q

~
2m0! our system is just a linear oscillator in its ground

state (m0 = mass and ! = angular frequency). This means
that the “in”-wave function (56) has the same expression with
the one from (14) for n = 0. As observable of interest we
consider the energy described by the Hamiltonian

Ĥ = � ~2

2m0

d2

dx2 +
m0 !2

2
x2: (65)

Then for the respective observable one finds

hHiin =
~!
2
; �inH = 0 ; (66)

hHiout =
!
h
~2 +

�
~+ 2m! 2�2i

4 (~+ 2m0 ! 2)
; (67)

�outH =
p

2m!2 2 �~+m! 2�
(~+ 2m! 2)

: (68)

The corresponding errors of mean value resoectively of
standard deviation of oscillator energy have the expressions

" fhHig = jhHiout � hHiinj , 0 ; (69)

" f�Hg = j�outH ��inHj , 0 : (70)

Acknowledgements

I wish to express my profound gratitude to Dmitri Rabounski
and Florentin Smarandache who encouraged and helped me
to prepare for publication this paper and a precedent one [33].

Submitted on January 11, 2008
Accepted on January 23, 2008

References

1. Martens H. Uncertainty Principle — Ph. D. Thesis. Technical
University, Eindhoven, 1991.

2. Auletta G. Foundations and interpretation of Quantum Mechan-
ics. World Scientific, Singapore, 2000.

3. Jamer M. The conceptual development of Quantum Mechanics.
Mc Graw Hill, New York, 1966.

4. De Witt B. S., Graham N. Resource letter IQM-1 on the in-
terpretation of Quantum Mechanics. Am. J. Phys., 1971, v.39,
724–738.

5. Nilson D.R. Bibliography on the history and philosophy of
Quantum Mechanics. In: Logics and Probability in Quantum
Mechanics, Ed. Suppes P., D. Reidel, Dordrecht, 1976.

6. Balentine L. E. Resource letter IQM-2: foundations of quantum
mechanics since the Bell inequalities. Am. J. Phys. , 1987, v.55,
785-792

7. Busch P., Lahti P., Mittelstaedt P. The quantum theory of mea-
surement. Second Edition, Springer, Berlin, 1996.

8. Hilgevoord J., Uffink J. The Uncertainty Principle. Stan-
ford Enciclopedia of Philosophy, 2006, http://plato.stanford.
edu/entries/qt-uncertainty/

9. Krips H. Measurement in Quantum Theory. Stanford Enci-
clopedia of Philosophy, 2007, http://plato.stanford.edu/entries/
qt-measurement/

10. Busch P., Heinonen T., Lahti P. Heisenberg’s uncertainty prin-
ciple. Physics Reports, 2007, v.452, 155–176.

11. Nikolic H. Quantum Mechanics: myths and facts. Foundations
of Physics, 2007, v.37, 1563–1611.

12. Bunge M. The interpretation of Heisenberg’s inequalities. In:
Denken und Umdenken — zu Werk und Werkung von Werner
Heisenberg, H. Pfepfer H. (ed.), Piper R., München, 1977.

13. Bell J.S. Against “measurement”. Physics World, 1990, v.3, 33–
40 (reprinted also in variety of the books concerning J. S. Bell’s
writings).

14. Piron C. What is wrong in Orthodox Quantum Theory. Lect.
Notes. Phys., Springer, 1982, v.153, 179–182.

15. Lazarou D.K. Interpretation of quantum theory — an overview.
arXiv: 0712.3466.

16. Dumitru S. Uncertainty relations or correlation relations? Epis-
temological Letters, 1977, issue 15, 1–78.

17. Dumitru S. Fluctuations but not uncertainities — deconspira-
tion of some confusions. In: Recent Advances in Statistical
Physics, ed. Datta B. and Dutta M., World Scientific, Singa-
pore, 1987, 122–151.

18. Dumitru S. Lz � ' uncertainty relation versus torsion pendu-
lum example and the failure of a vision. Revue Roumaine de
Physique, 1988, v.33, 11–45.

19. Dumitru S. Author of the preprints mentioned in the internet
addresses at the Cornell University E-Print Library (formerly
maintained by LANL) and CERN E-Print Library:
http://arxiv.org/find/quant-ph/1/au:+Dumitru S/0/1/0/all/0/1
http://cdsweb.cern.ch/search?f=author&p=Dumitru
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Proceeding from the assumption that the time flow of an individual object is a real
physical value, in the framework of a physical kinetics approach we propose an analogy
between time and temperature. The use of such an analogy makes it possible to work out
a discrete-continuum model of time for a simple physical system. The possible physical
properties of time for the single object and time for the whole system are discussed.

Commonly, time is considered to be a fundamental property
of the Universe, and the origin which is not yet clear enough
for natural sciences, although it is widely used in scientific
and practical activity. Different hypotheses of temporal influ-
ence on physical reality and familiar topics have been dis-
cussed in modern scientific literature (see, e. g., [1–3] and
references therein). In particular, the conception of discrete
time-space was proposed in order to explain a number of
physical effects (e.g., the problem of asymmetry of some
physical phenomena and divergences in field theory) [2–4].
Following this theme, in the present paper we shall consider
some aspects of the pattern of discrete-continuum time for a
single object and for the whole system. We will focus on the
difference between time taken as a property of a single ob-
ject and a property of the system. We would also touch upon
the question of why the discreteness of time is not obvious in
ordinary conditions.

As a “given” property of existence time is assumed to be
an absolutely passive physical factor and the flow of time is
always uniform in ordinary conditions (here we consider the
non-relativistic case) for all objects of our world. Therefore
classical mechanics proceeds from the assumption that the
properties of space and time do not depend on the properties
of moving material objects. However even mechanics sug-
gests that other approaches are possible.

From the point of view of classical mechanics a reference
frame is in fact a geometrical reference frame of each mate-
rial object with an in-built “clock” registering time for each
particular object. So in fixing the reference frame we deal
with the time of each unique object only and subsequently
this time model is extended to all other objects of concrete
reality. Thus, we always relate time to some concrete object
(see, e. g., [5]). Here we seem to neglect the fact that such
an assumption extends the time scale as well as the time flow
of only one object onto reality in general. This approach is
undoubtedly valid for mechanical systems. In the framework
of such an approach there is no difference between the time
of an unique object and the time of the system containing a
lot of objects.

But is it really so? Will the time scale of the system taken
as a whole be the same as the time scale of each of the ele-

ments constituting the system? It is of interest to consider the
opposite case, i.e. when time for a single object and time for
the system of objects do not coincide. So we set out to try
to develop a time model for a physical system characterized
by continuum and discrete time properties which arise from
the assumption that the time flow of an individual object is a
real physical value as, for example, the mass or the charge of
the electron. In other words, following Mach, we are going to
proceed from the assumption that if there is no matter, there
is no time.

In order to show the plausibility of such an approach we
shall consider a set of material N objects, for example, struc-
tureless particles without any force-field interaction between
them. Each object is assumed to have some individual phys-
ical characteristics and each object is the carrier of its own
local time, i.e. for each i-object we shall define its own time
flow with some temporal scale �i as

dti = �idt; (1)

where t is the ordinary Newtonian time. Generally speaking,
one can expect dependence of �i on the physical characteris-
tics of the object, for example, both kinetic and potential en-
ergy of the object. However, here we shall restrict ourselves
to consideration of the simple case when �i = const.

Since we associate objects with particles we shall also as-
sume that there are collisions between particles and the value
of �i remains constant until the object comes into contact with
other objects, as �i may be changed only during the impact,
division or merger of objects. This means that the dynamics
of a single object without interaction with other objects is de-
termined only by its own time ti. If, however, we consider the
dynamics of an i-object with another j-object we have to take
into account some common time of i- and j-objects which we
are to determine.

This consideration suggests that in order to describe the
whole system (here we shall use the term “system” to denote
a set of N objects which act as a single object) one should
use something close or similar to a physical kinetics pattern
where macroscopic parameters like density, temperature etc.,
are defined by averaging the statistically significant ensemble
of objects. In particular, for the system containingN particles
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the temperature may be written as

T =
1
N

NX
i=1

v2
i �

 
1
N

NX
i=1

vi

!2

; (2)

where vi is the velocity of the i-object. For the whole system
we introduce the general time � to replace the local time of
the i-object (1) as

d� = (1 +D) dt; (3)

where D is determined by the differential relation

D (� ) =

24 1
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�i

!2 351=2

: (4)

By such a definition the general time of the system is the
sum total of its Newtonian times and some nonlinear time
D (ti) which is a function that depends on the dispersion of
the individual times dti. It is noteworthy that this simplest
possible statistical approach is similar to that of [6, 7].

It is quite evident that we have Newtonian-like time even
if D= const, 0. Indeed, from (3) it follows that

� = (1 +D) t : (5)

The pure Newtonian case in relation (3) is realized when
all objects have the same temporal scales �i = �0.

At the same time there exist a number of cases in which
the violation of the pure Newtonian case may occur. For ex-
ample, let us assume that we have got a system where some
number of objects would perish, disappear, whilst another set
of the objects might come into existence. In this case the
number N is variable and we have to consider D as an ex-
plosive step-like function with respect to N , which we ought
to integrate (3) only in some interval t0 6 t6 tx where D re-
mains constant. Here it is obvious that the value of such an
interval tx�t0 is initially unknown. Instead of the Newtonian
continuum time (5) we now get a piecewise linear continuous
time which is determined by the following recurrence relation

� = (1 +D)(t� t0) + �0 ; t0 6 t 6 tx ; (6)

where �0 = � (�0): This relation remains true whilst D is not
changed. At the moment of local time t= tx the value D
becomes D+�D, so we have to redefine �0 and other
parameters as

�0 := � (tx) = (1 +D)(tx � t0) + �0

t0 := tx ; D := D + �D

)
: (7)

Thus, instead of the linear Newtonian time for a single
object we get the broken linear dependence for the time of the
whole system if the number of objects forming this system is
continuously changing.

Since in reality the majority of objects, as a rule, form
some systems consisting of elementary units, it can be con-
cluded that the number of constituent elements might change,

as was shown above in the example considered. In this case
D becomes variable and one deals with the manifestation of
a piecewise linear dependence of time.

However, it is clear that the effects of this non-uniform
time can be revealed to best advantage in a system with a
rather small N , since in the limit N!1 the parameter D
becomes little sensitive to the changes in N . That is the basic
reason why, in ordinary conditions, we may satisfy ourselves
with the Newtonian time conception alone.

In the present paper we have tried to draw an analogy be-
tween time and temperature for the simplest possible physical
system without collective interaction of the objects constitut-
ing the system, in order to show the difference in the defini-
tion of time for unique objects and for whole systems. One
should consider this case as a basic simplified example of the
system where the discrete-continuum properties of time may
be observed. Thus one should consider it as a rather artifi-
cial case since there are no physical objects without field-like
interactions between them.

However, despite the simplified case considered above,
the piecewise linear properties of time may in fact be observ-
ed in reality (in ordinary, non-simplified conditions), though
they are by no means obvious. In order to reveal the of disper-
sion time D (� ) it is necessary to create some specific exper-
imental conditions. Temporal effects, in our opinion, are best
observed in systems characterized by numerous time scales
and a relatively small number of constituent elements.
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A quark is not a tiny sphere. The formal model idea is based on a vector group which
is constructed like an outer vector product. The vectors perform dynamic movements.
Two vectors (vector pair) which rotate in opposite directions in a plane have an increas-
ing and diminishing result vector as consequence. At the same time the vector group
rotates about the bisectrix of the vector pair. The two movements matched to each other
result in that the tip of the resultant vector draws so-called geometrical locus loops in
a plane. The u- and the d-quarks have characteristic loops. Each vector group has its
own orthogonal, hyperbolic space. By joining three such spaces each, two groups of
spaces, one group with a quasi-Euclidian and one group with a complex space are ob-
tained. Based on the u- and d-quarks characterized with their movements and spaces a
first elementary particle order is compiled.

1 Introduction

The models are presented in a comprehensive work� and
comprise a large number of aspects. Not all of these can be
reflected in the present publication. For this reason, only the
prominent aspects are presented in four short Parts I to IV.

It is clear that the answer to the question of the head-
ing cannot originate from experiments. A quark is a part
of the confinements, of the interior of the elementary parti-
cles, which are not accessible for experiments. For this rea-
son the answer in the present case is based on a model, (lex-
ically = draft, hypothetical presentation to illustrate certain
statements; hypothesis = initially unconfirmed assumption of
legitimacy with the objective of making them a guaranteed
part of our knowledge through confirmation later on) which
on the one hand is based on secured, e.g. QED, physical the-
ories (lexically = scientific presentation, system of scientific
principles). The answer is not based on one or several axioms
(lexically = immediately obvious tenet which in itself cannot
be justified).

The model or the models were developed during a journey
of thinking taking decades from the galaxies to the quarks, to
the elementary particles, back to the stars and again to the
confinement, the universe as a puzzle.

2 The vector principle

The photon contains electric and magnetic fields and is de-
scribed with appropriate vectors. This formal description pos-
sibility is utilised. Why does the photon have the electric
and magnetic vectors positioned vertically to the direction of
flight and vertically with regard to each other, the understand-
ing of this will be developed during the course of the model

�There is a homepage under the Internet address www.universum-un.de
where a book with the title “Models for Quarks and Elementary Particles”
will be displayed, having a volume of approximately 250 DIN A4 pages.

development. For this reason it is obvious that a long dis-
tance over highly formal stretches was covered which is not
re-enacted here in detail.

It is highly productive to start from the idea of the outer
vector product known from mathematics: two vectors of iden-
tical size start in a coordinate origin and open up a plane. The
resultant vector (EV) stands vertically on this plane and like-
wise starts in the coordinate origin. In the next step the three
vectors of the outer vector product are given a dynamic char-
acteristic. Two movements are introduced:

Firstly, the two identically sized vectors perform a move-
ment in opposite directions. Since the angle between the two
vectors V1 and V2 is called 2', this is described as '-rotation
or '-swivelling; see Fig. 1.

Fig. 1

If the two vectors according to Fig. 1 perform smaller and
opposing '-swivel movements, the resultant vector EV3 be-
comes greater and smaller in its orientation.

Secondly, the entire vector arrangement measured by
Fig. 1 performs a rotation about the bisectrix between the
vectors V1 and V2. Since this angle of rotation is referred
to as �, this rotation is a �-rotation or a �-swivelling. If the
vectors V1 and V2 during the �-rotation enclose a fixed angle,
the vector tip of the EV draws an arc of a circle. However,
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should the angle 2' between V1 and V2 change during the �-
rotation, the tip of the EV deviates from the arc of the circle;
see Fig. 2.

Fig. 2

Fig. 3

It is immediately obvious that there are a huge number
of possible combinations of the two '- and �-movements
in a coordinate system. In developing the models attention
was paid to ensure that only '- and �-movements that were
matched to one another were considered. If for example each
vector V1 and V2 starting from the vertical axis covers an an-
gle '= 90� and the EV at the same time covers an angle of
�= 180� in the horizontal plane, the tip of the EV draws a
loop in a plane. Assuming two vector pairs (one drawn black
and one green) with the arrangement as in Fig. 1, two loops,
see for instance Fig. 3 are obtained. Loops of this type are
called geometric loci or geometric locus loops.

3 The three types of space

The limitation to a defined few coordinated '- and
�-movements is not yet sufficient to understand quarks. It is
necessary to go beyond the Euclidian space with three orthog-
onal axes. At the same time, the principle of the vectors, espe-
cially that of the outer vector product should be maintained.
The transition is made from the Euclidian space to the hyper-
bolic space with right angles between the axes. Here, it must
be decided if the hyperbolic space should have one or two
imaginary axes. Just as in the case of the vectors only very
few models with matched '- and �-movements were found
to be carrying further, only few variants carry further with the
space as well. (It has not been possible to find a similarly
selective way from the amount of the approximately 10500

string theories and, in my opinion, will never be found either.)

Just as an outer vector product is productive as idea, it
is also productive for the outer vector product, (for the first
quark generation) to assume an orthogonal, hyperbolic space
with two real axes and one imaginary axis; Fig. 4.

Fig. 4

So as not to create any misunderstanding at this point: it
is not that several vector groups (one vector pair, VP, and one
EV each) are placed in a hyperbolic orthogonal space with
two real axes and one imaginary axis but each vector group
has its own hyperbolic space. Here, the VP can be positioned
in the real plane or in a Gaussian plane.

Various combinations of the vector groups are possible,
as a result of which individual spaces can also be combined
differently. As with the '- and �-movements and as with the
hyperbolic space, a selection has to be performed also with
the combination of individual spaces. Fig. 5 to Fig. 9 show
such a selection. The choice of words of the captions to the
Figures becomes clear only as this text progresses.

Taking into account quantum chromodynamics, which
prescribes three-quark particles, the result of the selected
combinations of such individual spaces is the following: only
two groups of combined spaces of three vector groups each
are obtained: either spaces which in each of the three ori-
entations have at least one real axis (if applicable, superim-
posed by an imaginary axis) and are therefore called “quasi-
Euclidian” (see Fig. 7 and Fig. 8), or spaces which only have
imaginary axes in one of the three orientations and are there-
fore called “complex” (see Fig. 6).

Particles of three quarks have either a quasi-Euclidian or
a complex overall space. The Euclidian space from the view
of this model is fiction.
Note for Fig. 6 to Fig. 9: Variants of three hyperbolic spaces
linked in the coordinate origin consisting of the hyperbolic
spaces of a dual-coordination and the hyperbolic space of a
singular quark in various arrangements.

4 The four quarks (of the first generation)

Taking into account the construction of a vector group, the
matched '- and �-movements, the orientation of VP and EV
in the hyperbolic space and the electric charge a geometrical
locus loop according to Fig. 10 is obtained for the d-quark
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Fig. 5: The two ideal-typically arranged hyperbolic spaces of a dual-
coordination as dd, uu, dd, uu, linked in the coordinate origin.

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12
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with negative electric charge and a loop according to Fig. 11
is obtained for the u-quark with positive electric charge.

Antiquarks are characterized by an opposite electric
charge so that the geometrical locus loop of the d-quarks with
positive electric charge is situated in a Gaussian plane and the
geometrical locus loop of the u-quark with negative electric
charge is situated in the real plane.

5 Experiment of an order of elementary particles

Fig. 1 shows two vector groups (black and green) and Fig. 5
shows two hyperbolic spaces (blue and red); the vector groups
and the hyperbolic spaces are each inter-linked in the coordi-
nate origin. These presentations stem from the realisation that
two quarks of the same type of each three-quark particle as-
sume a particularly close bond. In the text this is called “dual-
coordination”, or briefly, “Zk”. The third remaining quark of
a three-quark particle is then called a “singular” quark. The
different orientations of the quarks (VP and EV) with their
spaces result in that the geometrical locus loops can stand at
different angles relative to one another. A dd-Zk for example
has an angle zero between both �-rotation planes, see Fig. 12.
The same applies to a uu-Zk with angle zero between both �-
rotation planes. Since the planes are positioned in parallel,
the symbol k is used. If the rotation planes of two geometri-
cal loci stand vertically on top of each other, the symbol ? is
used. Table 1 is produced with this system.

Line ddd ddu duu uuu
A ddkd � ee ddku � n0 dkuu � p+ uuku � ��

B dd?d � e� dd?u � �e d?uu �?+ uu?u �
�
�++

�
C ddd � �� ddu � �0 duu � �+ uuu � �++

Table 1: The order of particles, sorted by quark flavours and the parallel
k and vertical ? orientation of the geometrical loci.

The esteemed reader will be familiar with four of the spin
1
2 ~-particles (neutron n0, proton p+, electron e� and neu-
trino �e ) and, if applicable, the �-particles with spin 3

2 ~ from
line C from high-energy physics. Because of the brevity of
the present note the individual quark compositions will not be
discussed. However, it is immediately evident that highly in-
teresting consequences for the standard model of physics are
obtained from the methodology of Table 1. This is evident on
the examples of the electron and the neutrino, which, in the
standard model, are considered as uniform particles, but here
appear to be composed of quarks. In Parts II and IV of the
publication the aspect of the electron composed of quarks is
deepened. The structural nature of the quarks in the nucleons
is another example for statements of these models that clearly
go beyond the standard model.
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It is extremely productive to give the resultant vector (EV) from the outer vector product
(Part I of this article series) a physical significance. The EV is assumed as electric flux
< with the dimensions [Vm]. Based on Maxwell’s laws this develops into the idea of
the magnetic monopole (MMP) in each quark. The MMP can be brought in relation
with the Dirac monopole. The massless MMP is a productive and important idea on the
one hand to recognise what mass is and on the other hand to develop the quark structure
of massless photon (-likes) from the quark composition of the electron. Based on the
experiments by Shapiro it is recognised that the sinusoidal oscillations of the quark can
be spiralled in the photons. In an extreme case the spiralling of such a sinusoidal arc
produces the geometric locus loop of a quark in a mass-loaded particle.

1 Introduction

Based on some characteristics of the photon mentioned in
Part I [1], vectors are introduced to describe the quarks. The
formal structures of the quarks (of the first generation) are
presented with outer vector product, its angular movements
and the corresponding space types. A first order of the ele-
mentary particles follows [2].

2 The magnetic monopole (MMP)

It is highly productive to give the vectors from the outer vec-
tor product (Part I of this series of papers) a physical meaning.
Initially, the EV is assumed as electric flux < with the dimen-
sions [Vm].

A very good model for further considerations is given
in [3] (see Fig. 7.128, p.398 therein), in which a changing
electric field with an enclosing magnetic field is shown. For
the present models this should be formulated as follows: a
vector pair (VP) generates the EV issuing from the origin of
a coordinate system, which EV is now identified with an elec-
tric flux <. When this flux is created, almost the entire electric
flux < based on Maxwell’s laws creates the magnetic flux �
located ring-shaped about the <-flux. With this linkage, the
models are put on the basis of the QED mentioned in Part I.
Feynman [22] calls the QED-theory the best available theory
in natural sciences.

The electric source flux < in turn comprises the toroidal
magnetic flux �, (like the water of a fountain overflowing on
all sides), whose maximum radius is designated MAGINPAR,
which is illustrated with Fig. 1.

The <-EV with toroidal magnetic flux � is a substantial
part of the description of a quark. With the coverage of the
toroidal magnetic flux � through the electric source flux < it
is also an obvious explanation for the magnetic flux � not ap-
pearing outside the confinement under normal circumstances.
The <-EV shown in Fig. 1 does not correspond to a dipole.

Fig. 1: Schematic section through the �- and <-fields of a (d-)quark.
In the �-tube or funnel the <-field lines created in orange are not
indicated. P designates the outer apex line of the �-flux which de-
termines the MAGINPAR at the same time. Graphically, the config-
uration is also called “fountain”. The symbolic <�-field line lies on
the funnel longitudinal axis and is discussed in Part III.

With the latter, the fields shown would be simultaneously vis-
ible on two sides of the coordinate origin, while an <-flux
trough would also have to appear opposite to a source flux <.

A Zk (see Part I) comprises two such <-source fluxes off-
set by 180� relative to each other which are merely like a
dipole. A three-quark particle according to Table 1 (see Part I)
comprises three <-source fluxes.

Dirac has stated the charge of the magnetic monopole ac-
cording to Jackson ( [3], p.319), as follows:

g2 =
1
e�
� n2

4
�4��0~c

�
V2s2� or g =

n
2
�
r

4��0~c
e�

;

g = 4.1357�10�15 [V s] with n = 1 :

If this value is multiplied with double the value of the fine
structure constant 2 e�= 1/68.518, it is identical to the value
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of the magnetic flux � = 6.03593�10�17[Vs] of the present
models. The dimension of g is likewise identical to the mag-
netic flux � of the present models, (see [2] Chapter 8.1).

The electron or the electric unit charge of q =
= 1.60219�10�19 [As] according to [1] Table 1 and accord-
ing to [2] (Chapter 7 therein), consists of three d-quarks. Con-
sequently the natural constant � does not stand for a quark
either but for a “3QT”, i.e. according to a first assumption
for the three d-quarks of the electron. Imagining the electric
flux < and the toroidal magnetic flux � of a quark accord-
ing to Fig. 1 the magnetic fluxes of a d-quark or of a u-quark
amount to:

�d =
�
3

=
6.03593�10�17

3
= 2.01198�10�17 [Vs] ;

�u =
2�
3

= 4.02396�10�17 [Vs] :

According to the present models these magnetic fluxes are
the values of the magnetic monopoles (MMPs).

Obviously this means that we, and our entire world, also
consist of the much sought-after MMPs.

The intensity of the interaction of the Dirac monopole is
estimated extremely high. Since the MMP according to the
present models is approximately 2 e� smaller, the intensity of
the interaction of the MMPs is substantially smaller as well.
The force between two charged particles corresponds to the
product of both charges:

g2

�2 =
�
4.1356�10�15�2�

6.03593�10�17�2 =

=
�
68.518�6.03593�10�17�2�

6.03593�10�17�2 =
68.5182

1
=

4695
1

:

The charge quantity g determined by Dirac thus results
in 4695 times greater a force between the charges g than be-
tween the fluxes �. A further reduction of the interaction ob-
viously results through the �

3 and 2�
3 fragments of the d- or

u-quarks. These reduction factors are not the sole cause for
the quite obviously much lower intensity of the interaction
of the MMPs than assumed by Dirac. The probably decisive
reduction factor is the construction of the quark sketched in
Fig. 1, where the magnetic flux � of a quark is shielded to the
outside by the electric flux <.

The literature sketches an MMP as follows:
• A constant magnetic field oriented to the outside on all

sides (hedgehog) not allowing an approximation of ad-
ditional MMPs;

• If two or more (anti-) MMPs attract one another, they
are unable to assume a defined position relative to one
another because of their point-symmetrical structure;

• The “literature MMP” is the logical continuation of the
current world view of the “spheres” which is moder-
ated through probability densities. Atoms are relatively

“large spheres”, nucleons are “very small spheres”
therein, and the quarks would consequently be “even
smaller spheres” in the nucleons and the electrons are
allegedly point-like. The interactions between the
“spheres” are secured by the bosons as photons or
gluons.

The aspects of these models are:

• The idea of the “sphere chain” is exploded in these
models since the swivelling and simultaneously pulsat-
ing MMPs act in all particles. Particles can be seen
highly simplified as different constellations of MMPs;

• The idea of the “fountain” according to Fig. 1 contains
the toroidal magnetic flux � as MMP;

• The structures brought about by the MMP are tempo-
rally, spatially and electromagnetically highly aniso-
tropic and asymmetrical. Without this structure our
world would not be possible. From this it can be con-
cluded that the highly symmetrical “literature
MMP” sketched above must not be seen as an elemen-
tary part of our world.

3 Some enigmas of the photon

(a) Why the photon has the electric and magnetic vectors
positioned vertically to the direction of flight and verti-
cally to each other is not answered in Part I;

(b) If the photon is created through “annihilation” of elec-
tron and positron as is well known and if the electron
according to Table 1, Part I, has the quark structure
dd ?d , the question arises if the characterisation of the
photon with the simple letter  according to the stan-
dard model is correct;

(c) If electron and positron have a basic mass m= 0.511
MeV/c2 why does the photon have the mass zero?

(d) Why does the wavelength of the light observed by us
not fit to the Compton wavelength of the electrons emit-
ting the light?

To solve the enigma, some courageous jumps have to be
performed:

First jump: The photon consists of the same quark type as the
electron, namely d according to Table 1 (of Part I);

Second jump: The photon contains its own anti-particle, i.e.
consists of the quark types d and �d according to the
models;

Third jump: Both quark groups (3 d and 3 �d) oscillate by
themselves with very similar basic frequencies. This
is explained as follows:
The Compton wavelength of the electron (3 d) or that
of the positron (3 �d) in each case results in a basic fre-
quency of approximately 1020Hz. Thus the photon has
two very similar basic frequencies. The beat resulting
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from both frequencies has a wavelength or frequency
which is greater and lower respectively by the factor
105 and with just under 1015Hz is also in the visible
range. The beat is the answer to Question (d) concern-
ing the photon.

Some consequences of the courageous jumps:

(1) The photon must be seen as a composite yet uniform
particle;

(2) Two frequencies in this uniform medium create a beat;
(3) According to Table 1 of Part I, Line B, there are three

additional leptons in addition to the electron (or its anti-
particle positron). It can be expected that from these
leptons and each of their anti-particles composite yet
uniform particles can be formed according to the same
pattern as with the photon. These particles are called
“photon-like” in the models.

In Table 1, the quark structure of the electron is intro-
duced with dd ?d . Using the anti-d-quark the positron has
the same structure. If both elementary particles in the photon
are connected it should be unsurprisingly expected that both
structures can be found again in the photon. In addition to this
it should be expected that both particles are closely connected
with each other. This is expressed in that the two singular
quarks of electron and positron in turn assume a close bond.
In the models this is called “bond coordination” or “Bk” in
brief and in the case of the photon d �d as structural element.
Consequently the overall structure of the photon appears as
dd ? d �d ? �d �d. The overall photon-like structure of the neutri-
nos would be dd ? u�u ? �d �d, etc.

In contrast with the three-quark particles of Table 1 the
photon-likes are six-quark particles. It is clear that the six-
quark structure of the photon-likes has substantial
consequences on the reaction equations of the weak interac-
tion. This is reported in Part IV. The quark structure of the
photon is the answer to Question (b) concerning the photon.

4 The “pioneering” experiments of Shapiro

Years after the discovery of the quark structure of the photons
and long after the insight, as to what mass actually is, was
gained, the experiments by Shapiro [5] were brought into re-
lation with both. Here, the experiments by Shapiro are dealt
with first in order to facilitate introduction to the subjects.

Towards the end of the nineteen-sixties, Shapiro observed
a reduced speed of light cM near the Sun. The cause is the “re-
fractive index of the vacuum”. Deviating from the interpreta-
tion through the standard model of physics and utilising new
insights through these models the following is determined in
a first jump:

Under the effect of directed electric fields the flat sinu-
soidal oscillation of the photon becomes helical (see [2],
pages 167 and 179). This results in that at constant frequency

the penetration points of the sine curve through the “x-axis”
are situated closer together and the speed of the photon in
direction of flight is no longer c but cM .

Following this thought pattern it can be determined in a
second jump: Under the effect of extremely strong highly di-
rectional electric fields the initially flat sinusoidal oscillation
of the photon is spiralled to such an extent that the geometri-
cal locus loops used for “stationary” particles appear (see [2],
page 165ff and Fig. 2 and 3).

Fig. 2: A photon with initially flat sinusoidal arcs and with schemat-
ically sketched “fountain” runs vertically to the direction of an elec-
tric field while the arrows on the sinusoidal arcs indicate the se-
quence of the amplitude.

Fig. 3: Projection of the helically deformed initially horizontal and
flat sinusoidal arcs of a photon according to Fig. 2 in the y�z plane.

Looking at the helical sinusoidal oscillation in the direc-
tion of the x-axis a sinusoidal arc presents itself as a narrower
or wider loop. If the loop is very narrow the progressive speed
cM of the photon is only a little smaller than c [5]. However if
the loop is very wide the photon is practically unable to move.
This means that the photon is then captured in an electron.

The extremely strong directional electric fields can be
found in the source fields of the “fountain”, Fig. 1, of the elec-
tron quarks. This means that an electron with suitable MAG-
INPAR is able to spiral the lateral sinusoidal oscillation of
an approaching photon to such an extent that the lateral sinu-
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soidal oscillation becomes a central-symmetrical sinusoidal
oscillation. If the amplitudes or MAGINPAR of both par-
ticles fit to each other the photon is stored in the electron.
This also means that an electron charged in this way — and
that is every electron from our environment — has central-
symmetrical sinusoidal oscillations of 3 d-quarks as well as
stored 3 d- and 3 �d-groups of the photons.

It is now evident: the flat oscillation of the photon is con-
verted to the radial oscillation in the electron or in the fermion
through the extremely strong directional electric quark source
fields. The geometrical locus loops developed from formal
aspects which are shown in Part I for instance with Fig. 3 are
sine curves or sinusoidal oscillations which are presented in
polar coordinates for a centre each.

5 What is mass?

In Table 1 the neutron and the neutrino are positioned below
each other. Both have the same types and quantities of quarks,
however with different structural signs! The mass of the neu-
tron almost amounts to 940 MeV, the mass of the neutrino
according to the standard model below one eV. The electron
and the positron each have a basic mass of 0.511 MeV, while
the photon consisting of the same quarks has no mass at all.

Quite obviously, “mass” is not a characteristic of a quark.
Mass is a characteristic which arises from the constellation
of several quarks. Only certain elementary particles have
mass! These include those where the MMPs perform central-
symmetrical sinusoidal oscillations, e.g. the three-quark par-
ticles of Table 1. The amplitude of the central-symmetrical si-
nusoidal oscillations is practically identical with the MAGIN-
PAR R. The magnitude of the MAGINPAR R is determined
by the frequency � via �= c

� = c
X�R .

In [2] (page 164), mass is defined as follows:

m =
h
c2
� =

=
�q

2 e�c2
� = 7.3726�10�51

�
VA s4

m2

�
� �

�
1
s

�
:

(1)

Conclusion: Mass is nothing other than the very, very
frequent occurrence of the MMPs � at the coordinate
centre of the particle in accordance with the frequency
� multiplied by the electric charge q divided by c2 and
also 2 e�. The constants jointly have the value
7.3726�10�51 [VAs4/m2]. These statements satisfy a
desire of physics that has remained unanswered for a
very long time. The masses of the mass-loaded ele-
mentary particles known to us that could only be exper-
imentally measured in the past can be calculated from
elementary quantities.

With a photon, the six quarks or MMPs involved describe
a lateral movement along a line. The sinusoidal oscillations
of the MMPs are not central-symmetrical. According to the

definition such particles have no mass. The lateral movement
is the answer to Question (c) regarding the photon.

The well-known relation of mass m [VAs3/m2] and in-
ertia N� [VAs3/m] becomes visible by introducing the equa-
tions h=Nh=2 e� and Nh=N�� c. (See [2], Fig. 8.3a of
Chapter 8.2.1 therein.) By this equation, equation (1) trans-
forms to

m =
N� �
2 e�c

or m =
N�

2 e�X�R
;

which is the short version of equation (8-II) on page 156
of [2].
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Electric charge is considered as a form of imaginary energy. With this consideration, the
energy of an electrically charged particle is a complex number. The real part is propor-
tional to the mass, while the imaginary part is proportional to the electric charge. The
energy of an antiparticle is given by conjugating the energy of its corresponding parti-
cle. Newton’s law of gravity and Coulomb’s law of electric force are classically unified
into a single expression of the interaction between the complex energies of two electri-
cally charged particles. Interaction between real energies (or masses) is the gravitational
force. Interaction between imaginary energies (or electric charges) is the electromag-
netic force. Since radiation is also a form of real energy, there are another two types
of interactions between real energies: the mass-radiation interaction and the radiation-
radiation interaction. Calculating the work done by the mass-radiation interaction on
a photon, we can derive the Einsteinian gravitational redshift. Calculating the work
done by the radiation-radiation interaction on a photon, we can obtain a radiation red-
shift. This study suggests the electric charge as a form of imaginary energy, so that
classically unifies the gravitational and electric forces and derives the Einsteinian grav-
itational redshift.

1 Introduction

It is well known that mass and electric charge are two fun-
damental properties (inertia and electricity) of matter, which
directly determine the gravitational and electromagnetic in-
teractions via Newton’s law of gravity [1] and Coulomb’s law
of electric force [2]. Mass is a quantity of matter [3], and the
inertia of motion is solely dependent upon the mass. Accord-
ing to Einstein’s energy-mass expression (or Einstein’s first
law) [4], mass is also understood as a form of real energy.
The real energy is always positive. It cannot be destroyed but
can be transferred from one form to another. Therefore, the
mass is understood not only based on the gravitational inter-
action but also on the quantity of matter, the inertia of motion,
and the energy

Electric charge has two varieties of either positive or neg-
ative. It appears always in association with mass to form pos-
itive or negative electrically charged particles with different
masses. The interaction between electric charges, however, is
independent of the mass. Positive and negative charges can
annihilate or cancel each other and produce in pair with the
total electric charges conserved. So far, the electric charge
is understood only based on the electromagnetic interactions.
Its own physics meaning of a pure electric charge is still un-
clear.

In this paper, the pure electric charge is suggested to be
a form of imaginary energy. With this suggestion or idea of
imaginary energy, we can express an electrically charged par-
ticle as a pack of certain amount of complex energy, in which
the real part is proportional to the mass and the imaginary part
is proportional to the electric charge. We can combine the

gravitational and electromagnetic interactions between two
electrically charged particles into the interaction between
their complex energies. We can also naturally obtain the en-
ergy of an antiparticle by conjugating the energy of its corre-
sponding particle and derive the Einsteinian gravitational red-
shift from the mass-radiation interaction, a type of interaction
between real energies.

2 Electric charge — a form of imaginary energy

With the idea that the electric charge is a form of imaginary
energy, total energy of a particle can be generally expressed
as a complex number

E = EM + iEQ; (1)

where i =
p�1 is the imaginary number. The real energy

Re(E) = EM is proportional to the particle mass

EM = Mc2; (2)

while the imaginary energy Im(E) = EQ is proportional to
the particle electric charge defined by

EQ =
Qp
G
c2 = �EM ; (3)

where G is the gravitational constant, c is the light speed, and
� is the charge-mass ratio (or the imaginary-real energy ratio)
defined by

� � EQ

EM
=

Qp
GM

; (4)

in the cgs unit system. The imaginary energy has the same
sign as the electric charge has. Including the electric charge,
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we can modify Einstein’s first law as

E = (1 + i�)Mc2: (5)

The modulus of the complex energy is

jEj = p
1 + �2Mc2: (6)

For an electrically charged particle, the absolute value of
� is a big number. For instance, proton’s � is about 1018

and electron’s � is about �2�1021. Therefore, an electrically
charged particle holds a large amount of imaginary energy
in comparison with its real or rest energy. A neutral particle
such as a neutron, photon, or neutrino has only a real energy.

3 Unification of Newton’s law of gravity and Coulomb’s
law

Considering two pointlike electrically charged objects with
masses M1, M2, electric charges Q1, Q2, and distance r, we
can unify Newton’s law of gravity and Coulomb’s law of elec-
tric force by the following single expression of the interaction
between complex energies

~F = �G E1E2

c4r3 ~r; (7)

where E1 is the energy of object one and E2 is the energy of
object two. Eq. (7) shows that the interaction between two
particles is proportional to the product of their energies and
inversely proportional to the square of the distance between
them.

Replacing E1 and E2 by using the complex energy ex-
pression (1), we obtain

~F = �G M1M2

r3 ~r +
Q1Q2

r3 ~r � ipG M1Q2+M2Q1

r3 ~r =

= ~FMM + ~FQQ + i ~FMQ : (8)

The first term of Eq. (8) represents Newton’s law for the
gravitational interaction between two masses ~FMM . The sec-
ond term represents Coulomb’s law for the electromagnetic
interaction between two electric charges ~FQQ. The third term
is an imaginary force between the mass of one object and
the electric charge of the other object i ~FMQ. This imaginary
force is interesting and may play an essential role in adhering
an electric charge on a mass or in combining an imaginary
energy with a real energy. A negative imaginary force ad-
heres a positive electric charge on a mass, while a positive
imaginary force adheres a negative electric charge on a mass.
Figure 1 sketches all of the interactions between two electri-
cally charged particles as included in Eq. (8).

Electric charges have two varieties and thus three types of
interactions: (1) repelling between positive electric charges
~F++, (2) repelling between negative electric charges ~F��,
and (3) attracting between positive and negative electric
charges ~F+�. Figure 2 shows the three types of the Coulomb
interactions between two electric charges.

Fig. 1: Interactions between two electrically charged particles. They
iclude (1) the gravitational force between masses, (2) the electric
force between charges, and (3) the imaginary force between mass
and charge.

Fig. 2: Interactions between two electric charges. They include (1)
repelling between two positive charges, (2) repelling between two
negative charges, and (3) attraction between positive and negative
charges.

4 Energy of antiparticles

The energy of an antiparticle [5, 6] is naturally obtained by
conjugating the energy of the corresponding particle

E� =
�
EM + iEQ

�� = EM � iEQ: (9)

The only difference between a particle and its correspond-
ing antiparticle is that their imaginary energies (thus their
electric charges) have opposite signs. A particle and its an-
tiparticle have the same real energy but have the sign-opposite
imaginary energy.

In a particle-antiparticle annihilation process, their real
energies completely transfer into radiation photon energies
and their imaginary energies annihilate or cancel each other.
Since there are no masses to adhere, the electric charges come
together due to the electric attraction and cancel each other
(or form a positive-negative electric charge pair (+,�)). In
a particle-antiparticle pair production process, the radiation
photon energies transfer to rest energies with a pair of imag-
inary energies, which combine with the rest energies to form
a particle and an antiparticle.
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To describe the energies of all particles and antiparticles,
we can introduce a two-dimensional energy space. It is a
complex space with two axes denoted by the real energy
Re(E) and the imaginary energy Im(E). There are two
phases in the energy space. In phase I, both real and imag-
inary energies are positive, while, in phase II, the imaginary
energy is negative. Neutral particles including massless radi-
ation photons are located on the real energy axis. Electrically
charged particles are distributed between the real and imag-
inary energy axes. A particle and its antiparticle cannot be
located in the same phase of the energy space.

5 Quantization of imaginary energy

The imaginary energy is quantized. Each electric charge
quantum e (the electric charge of proton) has the following
imaginary energy

Ee =
ep
G
c2 � 1.67�1015 ergs � 1027 eV; (10)

which is about 1018 times greater than proton’s real energy
(or the energy of proton’s mass). Dividing the size of proton
(10�15 cm) by proton’s imaginary-real energy ratio (1018),
we obtain a scale length lQ = 1033 cm.

On the other hand, Kaluza-Klein theory geometrically
unified the four-dimensional Einsteinian general theory of
relativity and Maxwellian electromagnetic theory into a five-
dimensional unification theory ([7–9] for the original studies,
[10] for an extensive review, and [11, 12] for the field solu-
tions). In this unification theory, the fifth dimension is a com-
pact (one-dimensional circle) space with radius 1033 cm [13],
which is about the order of lQ obtained above. The reason
why the fifth dimensional space is small and compact might
be due to that the imaginary energy of an electrically charged
particle is many orders of magnitude higher than its real en-
ergy. The charge is from the extra (or fifth) dimension [14],
a small compact space. A pure electric charge is not mea-
sureable and is thus reasonably represented by an imaginary
energy.

The imaginary energy of the electric charge quantum is
about the thermal energy of the particle at a temperature TQ =
= 2Ee=kB � 2.4�1031 �K. At this extremely high temper-
ature, an electrically charged particle (e.g. proton) has a real
energy in the same order of its imaginary energy. According
to the standard big bang cosmology, the temperature at the
grand unification era and earlier can be higher than about TQ
[15]. To have a possible explanation for the origin of the uni-
verse (or the origin of all the matter and energy), we suggest
that a large electric charge such as 1046 Coulombs (�1076

ergs) was burned out, so that a huge amount of imaginary
energies transferred into real energies at the temperature TQ
and above during the big bang of the universe. This sugges-
tion gives a possible explanation for the origin of the universe
from nothing to the real world in a process of transferring a

Fig. 3: Three types of gravitational interactions between real ener-
gies: (1) the mass-mass interaction, (2) the mass-radiation interac-
tion, and (3) the radiation-radiation interaction.

large amount of imaginary energy (or electric charge) to real
energy.

6 Gravitational and radiation redshifts

Real energies actually have two components: matter with
mass and matter without mass (i.e. radiation). The interac-
tions between real energies may be referred as the gravitation
in general. In this sense, we have three types of gravitations:
(1) mass-mass interaction ~FMM , (2) mass-radiation interac-
tion ~FM , and (3) radiation-radiation interaction ~F . Figure
3 sketches all these interactions between real energies.

The energy of a radiation photon is given by h�, where
h is the Planck’s constant and � is the frequency of the ra-
diation. According to Eq. (7), the mass-radiation interaction
between a mass M and a photon  is given by

~F = �G Mh�
c2r3 ~r ; (11)

and the radiation-radiation interaction between two photons
1 and 2 is given by

~F = �G (h�1)(h�2)
c4r3 ~r : (12)

Newton’s law of gravity describes the gravitational force
between two masses ~FMM . The Einsteinian general theory
of relativity has successfully described the effect of matter
(or mass) on the space-time and thus the interaction of matter
on both matter and radiation (or photon). If we appropriately
introduce a radiation energy-momentum tensor into the Ein-
stein field equation, the Einsteinian general theory of relativ-
ity can also describe the effect of radiation on the space-time
and thus the interaction of radiation on both matter and radi-
ation.

When a photon of light travels relative to an object (e.g.
the Sun) from ~r to ~r + d~r, it changes its energy or frequency
from � to � + d�. The work done on the photon by the mass-
radiation interaction (~FM � d~r) is equal to the photon energy
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change (hd�), i.e.,

�G Mh�
c2r2 dr = hd� : (13)

Eq. (13) can be rewritten as

d�
�

= � GM
c2r2 dr : (14)

Integrating Eq. (14) with respect to r from R to1 and �
from �e to �o, we have

ln
�o
�e

= � GM
c2R

; (15)

where R is the radius of the object, �e is the frequency of the
light when it is emitted from the surface of the object, �o is
the frequency of the light when it is observed by the observer
at an infinite distance from the object. Then, the redshift of
the light is

ZG =
�o � �e
�e

=
�e � �o
�o

= exp
�
GM
c2R

�
� 1 : (16)

In the weak field approximation, it reduces

ZG ' GM
c2R

: (17)

Therefore, calculating the work done by the mass-
radiation interaction on a photon, we can derive the Einstein-
ian gravitational redshift in the weak field approximation.

Similarly, calculating the work done on a photon from an
object by the radiation-radiation gravitation ~F , we obtain a
radiation redshift,

Z =
4GM
15c5

�AT 4
c +

G
c5
�AT 4

s ; (18)

where � is the Stephan-Boltzmann constant, A is the surface
area, Tc is the temperature at the center, Ts is the temperature
on the surface. Here we have assumed that the inside temper-
ature linearly decreases from the center to the surface. The
radiation redshift contains two parts. The first term is con-
tributed by the inside radiation. The other is contributed by
the outside radiation. The redshift contributed by the outside
radiation is negligible because Ts � Tc.

The radiation redshift derived here is significantly small
in comparison with the empirical expression of radiation red-
shift proposed by Finlay-Freundlich [16]. For the Sun with
Tc = 1.5�107 �K and Ts = 6�103 �K, the radiation redshift
is only about Z = 1.3�10�13, which is much smaller than
the gravitational redshift ZG = 2.1�10�6.

7 Discussions and conclusions

A quark has not only the electric charge but also the color
charge [17, 18]. The electric charge has two varieties (pos-
itive and negative), while the color charge has three values
(red, green, and blue). Describing both electric and color
charges as imaginary energies, we may unify all of the four
fundamental interactions into a single expression of the inter-

action between complex energies. Details of the study includ-
ing the color charge will be given in the next paper.

Eq. (1) does not include the self-energy — the contribu-
tion to the energy of a particle that arises from the interaction
between different parts of the particle. In the nuclear physics,
the self-energy of a particle has an imaginary part [19, 20].
The mass-mass, mass-charge, and charge-charge interactions
between different parts of an electrically charged particle will
be studied in future.

As a summary, a pure electric charge (not observable and
from the extra dimension) has been suggested as a form of
imaginary energy. Total energy of an electrically charged par-
ticle is a complex number. The real part is proportional to the
mass, while the imaginary part is proportional to the electric
charge. The energy of an antiparticle is obtained by conjugat-
ing the energy of its corresponding particle. The gravitational
and electromagnetic interactions have been classically unified
into a single expression of the interaction between complex
energies.

The interactions between real energies are gravitational
forces, categorized by the mass-mass, mass-radiation, and
radiation-radiation interactions. The work done by the mass-
radiation interaction on a photon derives the Einsteinian
gravitational redshift, and the work done by the radiation-
radiation interaction on a photon gives the radiation redshift,
which is significantly small in comparison with the gravita-
tional redshift.

The interaction between imaginary energies is electro-
magnetic force. Since an electrically charged particle con-
tains many order more imaginary energy than real energy,
the interaction between imaginary energies are much stronger
than that between real energies.

Overall, this study develops a new physics concept for
electric charges, so that classically unifies the gravitational
and electric forces and derives the Einsteinian gravitational
redshift.
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An “Earth-Planet” or “Earth-Star” Couplet as a Gravitational Wave Antenna,
wherein the Indicators are Microseismic Peaks in the Earth

Vladimir A. Dubrovskiy�

Institute of Geosperes Dynamics, Russian Academy of Science, Leninskiy pr. 38, k. 6, Moscow 117334, Russia

An “Earth-planet” or “Earth-star” couplet can be considered as a gravitational wave
antenna. There in such an antenna a gravitational wave should lead to a peak in the
microseismic background spectrum on the Earth (one of the ends of the antenna). This
paper presents numerous observational results on the Earth’s microseismic background.
The microseismic spectrum, being compared to the distribution of the relative location
of the nearest stars, found a close peak-to-peak correspondence. Hence such peaks can
be a manifestation of an oscillation in the couplet “Earth-star” caused by gravitational
waves arriving from the cosmos.

1 Introduction

Use the following simplest model. Focus on two gravitation-
ally-connected objects such as the couplets “Earth-Moon”,
“Earth-Jupiter”, “Earth-Saturn”, “Earth-Sun”, or “Earth-star”
(a near star is meant). Such a couplet can be considered as
a gravitational wave antenna. A gravitational wave, falling
down onto such an antenna, should produce an oscillation
in the system that leads to a peak in the microseismic back-
ground spectrum of the Earth (one of the ends of the antenna).

Gravitational waves radiated on different frequencies may
have an origin in gravitationally unstable objects in the Uni-
verse. For instance, a gravitationally unstable cosmic cloud
wherein a stellar form may be such a source. A mechanism
which generates gravitational waves on a wide spectrum can
be shown in such an example. There is a theorem: “if a
system is in the state of unstable equilibrium, such a sys-
tem can oscillatorily bounce at low frequencies in the stable
area of the states; the frequency decreases while the system
approaches the state of equilibrium (threshold of instability)
with a finite wavenumber at zero frequency” [1, 2]. This the-
orem is applicable exactly to the case of the gravitational in-
stability of the cosmic clouds. Such a gravitational instabil-
ity is known as Jeans’s instability, and leads to the process
of the formation of stars [3]. In this process intense gravita-
tional radiation should be produced. Besides the spectrum of
the waves should be continuously shifting on low frequency
scales as such a cloud approaches to the threshold of instabil-
ity. Hence, gravitational waves radiated on the wide spectrum
of frequencies should be presented in the Universe always as
stellar creation process.

Hence, the peaks of the microseismic background on the

�Posthumous publication prepared by Prof. Simon E. Shnoll (Institute
of Theoretical and Experimental Biophysics, Russian Academy of Sciences,
Pushino, Moscow Region, 142290, Russia), who was close to the author. E-
mail of the submitter: shnoll@iteb.ru; shnoll@mail.ru. See Afterword for
the biography and bibliography of the author, Prof. Vladimir A. Dubrovskiy
(1935–2006).

Earth (if any observed), if correlated to the parameters of the
“Earth-space body”system (such as the distance L between
them), should manifest the reaction in the “Earth-space body”
couplet of the gravitational waves arriving from the cosmos.
The target of this study is the search for such correlation
peaks in the microseismic background of the Earth.

2 Observations

Our observations were processed at the Seismic Station of
Simpheropol University (Sevastopol, Crimea Peninsula),
using a laser interferometer [4]. Six peaks were registered
at 2.3 Hz, 1 Hz, 0.9 Hz, 0.6 Hz, 0.4 Hz, 0.2 Hz (see Fig. 1a
and Fig. 1b). The graphs were drawn directly on the basis
of the records made by the spectrum analyzer SK4-72. The
spectrum analyzer SK4-72 accumulates output signals from
an interferometer, then enhances periodic components of the
signal relative to the chaotic components. 1,024 segregate
records, 40-second length each, were averaged.

Many massive gravitating objects are located near the so-
lar system at the distance of 1.3, 2.7, 3.5, 5, 8, and 11 parsecs.
All the distances L between the Earth and these objects cor-
respond to all the observed peaks (see Fig. 1a and Fig. 1b).
The calculated distribution of the gravitational potential of
the nearest stars is shown in Fig. 1c. Comparing Fig. 1a and
Fig. 1b to Fig. 1c, we reveal a close similarity between the
corresponding curves: each peak of Fig. 1a and Fig. 1b cor-
responds to a peak in Fig. 1c, and vice versa. Besides there
are small deviations, that should be pointed out for clarity.
For distances L> 4 parsecs the data were taken only for the
brightest star, and the curve of the gravitational potential cor-
responding to this distance is lower than that for the L< 4
shown in the theoretical Fig. 1c. Another deviation is the
presence of a uniform growth for the low-frequency back-
ground component in the experimental Fig. 1a and Fig. 1b,
which doesn’t appear in Fig. 1c. Such a uniform component
of the microseismic background is usually described by the
law A! � 1=!2 [5, 6].
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Fig. 1: The observed microseismic background (solid curve) after
accumulation of the background signals from the interferometer out-
put: Fig. 1a shows the range 0.1–5 Hz; Fig. 1b shows the range 0.1–
2 Hz. The dotted curve of Fig. 1a shows the calculated distribution
of the gravitational potential of the stars in common with the uniform
part of the microseismic background. This dotted curve is normal-
ized so that it is the same as that of the solid curve at 2.28 Hz. Fig. 1c
shows the calculated distribution of the gravitational potential of the
stars. The solid points correspond to all the nearest stars, a distance
to which is L < 4 parsecs, and to all the brightest stars located at
L > 4 parsecs. Masses M are expressed in the mass of the Sun.
�Aur, �Lyz, etc. mean � stars of the constellations according to
the astronomical notation [7,8]. A, B sign for the components of the
binaries. The numbers typed at the extrema are frequencies.

Moreover, the quantitative correlation between the fre-
quency peaks and the distribution of the nearest stars is found.
Namely, the sharpest peak at 2.28 Hz corresponds to the dis-
tance between the Earth and the nearest binary stars A and B,
�Centaurus [7,8]. The broader peak at 1 Hz (see Fig. 1a, and
Fig. 1b) corresponds to the distances to the stars which are
distributed over the range from 2.4 to 3.8 parsecs [7, 8]. The
spectrum analyzer SK4-72 averages all the peaks in the range
2.4–3.8 parsecs into one broad peak near 1 Hz (Fig. 1a). At
the same time the broad peak of Fig. 1a, being taken under
detailed study, is shown to be split into two peaks (Fig. 1b) if
the spectrum analyzer SK4-72 processes the frequency range
from 0.1 to 2 Hz (the exaggeration of the frequency scale).
This subdivision of the frequency range corresponds to the
division of the group of stars located as far as in the range
from 2.4 to 3.8 parsecs into two subgroups which are near 2.7
and 3.5 parsecs (Fig. 1c).

The distribution of the gravitational potential over the
subgroups, in common with the uniform background spec-
trum, is shown by the dotted curve in Fig. 1a. We see therein
both the quantitative and qualitative correlation between the
frequent spectra of the microseismic background and the dis-
tribution of the gravitational potential in the subgroups.

The Sevastopol data correlation on the frequency spectra
between the microseismic background and the distances be-
tween the Earth and the nearest stars are the same as the data
registered in Arizona. The Sevastopol and Arizona data are
well-overlapping with coincidence in three peaks [9].

It is possible to propose more decisive observations.
Namely, it would be reasonable to look for peaks which could
be corresponding to the Earth-Moon” (�240 MHz), “Earth-
Sun” (�0.6 MHz), “Earth-Venus” (�0.3–2.2 MHz), “Earth-
Jupiter” (�100–150 kHz), and “Earth-Saturn” (�58–72 kHz)
antennae. Moreover, the peaks corresponding to Venus,
Jupiter and Saturn should change their frequency in accor-
dance with the change in the distance between the Earth and
these planets during their orbital motion around the Sun. If
such a correlation could be registered in an experiment, this
would be experimentum crucis in support of the above pre-
sented results.
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Afterword by the Editor

In addition to the posthumous paper by Prof. Dubrovskiy, I should
provide an explaination why we publish it in a form substantially
trunscated to the originally version of the manuscript.

The originally Dubrovskiy manuscript, submitted by Prof. Si-
mon E. Shnoll, was based on the preprint uloaded in 2001 into the
Cornell arXiv.org, astro-ph/0106350. In that manuscript, aside for
the experimental data presented in the current publication, Dubrov-
skiy tried to use the data as a verification to the Laplace speed of
gravitation, which is many orders higher than the velocity of light.
His belief in Laplace’s theory unfortunately carried him into a few
formally errors.

Laplace supposed such a speed as a result of his soltion of the
gravitational two-body problem, which concerns the motion of two
point particles that interact only with each other, due to gravity. In
this problem a body A experiences that the force of gravitation which
acts at that point where the body A is located in the moment. Be-
cause a body B (the source of the force) is distant from the body A
and moves with respect to it with a velocity, there is incoincidence
of two directions: the line connecting both bodies in the moment
and the direction from the body A to that point where the body B
was located, due to its motion, some time ago. What line is the lo-
cation of the centre of gravity in such a system? If it is located in
the first line, a force accelerating the body A should appear. If it is
the second line, a non-compensated component of the momentum
should appear in the body B, that is the breaking of the conserva-
tion law. As a result such a system becomes unstable anyway. This
is a paradox of the two body problem of the 18th century. Using
the mathematical methods accessed in the end of the 18th century,
Laplace resolved this problem by introduction of the speed of grav-
itation, which should be, in the sample of the planets, at least ten
orders higher than the velocity of light.

The contemporary Newtonian celestial mechanics resolves the
two body problem with use of the methods of higher mathematics.
This is a classical example, which shows that two bodies orbiting
a common centre of gravity under specific conditions move along
stable elliptic orbits so that they cannot leave the system or fall onto
each other. This classical problem, known as the Kepler problem,
is described in detail in §13 of Short Course of Theoretical Physics.
Mechanics. Electrodynamics by Landau and Lifshitz (Nauka Pub-
lishers, Moscow, 1969).

The same situation takes a place in the General Theory of Rel-
ativity in a case where the physical conditions of the motion are
close to the non-relativistic Newtonian mechanics. This problem is

discussed in detail in §101 of The Classical Theory of Fields by Lan-
dau and Lifshitz (Butterworth-Heinemann, 1980). The mechanical
energy and the moment of momentum of a two body system remain
unchanged with only a small correction for the energy-momentum
loss with gravitational radiation. In a system like the solar system the
power of gravitational radiation, which is due to the orbiting plan-
ets, is nothing but only a few kilowatts. Therefore such a system is
stable with the speed of gravitation equal to the velocity of light: the
planets cannot leave the solar system or fall onto each other within
a duration compared to the age of the Universe.

Due to the aforementioned reason, I substantially corrected the
originally Dubrovskiy manuscript. I removed everything on the su-
perluminal Laplace velocity of gravitation. I also corrected minor
errors in the description of gravitational wave antennae.

I did it through the prior permission of Dr. Victor N. Sergeev
(e-mail: svn@idg.chph.ras.ru), who was a close friend of Prof. Dub-
rovskiy and a co-author of many his works.

Dr. Sergeev is in contact with Prof. Shnoll. He read the corrected
version of the manuscript, and agreed with the edition. Sergeev
wrote, in a private letter of January 29, 2008: “. . . He [Dubrovskiy]
considered the manuscript as a verification to his theory of gravita-
tion where gravitational waves travel with a superluminal velocity.
However the precense of a correlation of the microseismic spectra
to the cosmic bodies, the result itself is important independent from
interpretation given to it. Of course, it would be very good to publish
this result. Besides, the edited version has nothing of those contra-
dicting to the views of V. A. Dubrovskiy.”

In general, an idea about a free-mass gravitational wave an-
tenna whose basis is set up by an “Earth-planet” or “Earth-star”
couplet is highly original. No such an idea met in the science before
Dubrovskiy. Moreover, the correlation of the microseismic oscilla-
tions to the distances found by him gives good chances that such a
couplet can be used as a huge free-mass gravitational wave detec-
tor in the future. The interstellar distances are extremely larger to 5
mln. km of the basis of LISA — the Laser Interferometer Space An-
tenna planned by the European Space Agency to launch on the next
decade. So the displacement effect in the Dubrovskiy mass-detector
due the a falling gravitatuonal wave should be large that could result
a microseismic activity in the Earth.

With such a fine result, this paper will leave fond memories of
Prof. Dubrovskiy. May his memory live for ever!

Dmitri Rabounski, Editor-in-Chief
Progress in Physics

Vladimir A. Dubrovskiy (1935–2006)

Vladimir Anatolievich Dubrovskiy was born on March 20, 1935, in
the formerly-known Soviet Union. In 1953–1959 he was a student
in the Physics Department of Moscow University. Then he worked
on the research stuff of the Academy of Sciences of URSS (now the
Russian Academy of Sciences, RAS) all his life. During the first pe-
riod, from 1959 to 1962, he was employed as a research scientist at
the Institute of Mathematics in the Siberian Branch of the Academy
of Sciences, where he worked on the physics of elementary particles.
During the second period, from 1962 to 1965, he completed post-
graduate education at the Institute of Applied Mechanics: his theme
was a “quasi-classical approximation of the equations of Quantum
Mechanics”. During two decades, from 1966 to 1998, he worked at
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the Laboratory of Seismology of the Institute of the Physics of the
Earth, in Moscow, where he advanced from a junior scientist to the
Chief of the Laboratory. His main research at the Institute concerned
the internal constitution and evolution of the Earth.

From 1972 to 1992 Dubrovskiy was the Executive Secretary of
the “Intergovernmental Commission URSS-USA on the Prediction
for Earthquakes”. In 1986–1991 he was the Executive Secretary of
the “Commission on the Constitution, Composition, and Evaluation
of the Earth’s Interior” by the Academy of Science of URSS and the
German Research Foundation (Deutsche Forschungsgemeinschaft).
In 1997 he was elected a Professor in the Department of Mechanics
and Mathematics of Moscow University.

In the end of 1996, Dubrovskiy and all the people working with
him at his Laboratory of Seismology were ordered for discharge
from the Institute of the Physics of the Earth due to a conflict be-
tween Dubrovskiy and the Director of the Institute. Then, in Febru-
ary of 1997, Dubrovskiy accused the Director with repression in
science like those against genetics during the Stalin regime, and
claimed hungry strike. A month later, in March, his health condition
had become so poor, forcing him to be hospitalized. (Despite the ur-
gent medical treatment, his health didn’t come back to him; he was
still remaining very ill, and died nine years later.) All the story met
a resonance in the scientific community. As a result, Dubrovskiy, in
common with two his co-workers, was invited by another Institute
of the Academy of Sciences, the Institute of Geospheres Dynam-
ics in Moscow, where he worked from 1998 till death. He died on
November 12, 2006, in Moscow.

Dubrovskiy authored 102 research papers published in scientific
journals and the proceedings of various scientific conferences. A
brief list of his scientific publications attached.

Main scientific legacy of V. A. Dubrovskiy

A five dimensional approach to the quasiclassical approach of the equa-
tions of Quantum Mechanics:

• Dubrovskiy V. A. and Skuridin G. A. Asymptotic decomposition in
wave mechanics. Magazine of Computational Mathematics and
Mathematical Physics, 1964, v. 5, no. 4.

The hypothesis on the iron oxides contents of the Earth’s core:
• Dubrovskiy V. A. and Pan’kov V. L. On the composition of the

Earth’s core. Izvestiya of the Academy of Sciences of USSR, Earth
Phys., 1972, no. 7, 48–54.

Now this hypothesis has been verified by many scientists in their experimen-
tal and theoretical studies. A new idea is that the d-electrons of the transition
elements (mainly iron), being under high pressure, participate with high ac-
tivity in the formation of the additional covalent bindings. As a result the
substances become dense, so the iron oxide FeO can be seen as the main part
of the contents formation of the core of the Earth.

The theory of eigenoscillation of the elastic inhomogeneities:
• Dubrovskiy V. A. Formation of coda waves. In: The Soviet-American

Exchange in Earthquake Prediction. U.S. Geological Survey. Open-
File Report, 81–1150, 1981, 437–456.

• Dubrovskiy V. A. and Morochnik V. S. Natural vibrations of a spher-
ical inhomogeneity in an elastic medium. Izvestiya of the Academy
of Sciences of USSR, Physics of the Solid Earth, 1981, v. 17, no. 7,
494–504.

• Dubrovskiy V. A. and Morochnik V. S. Nonstationary scattering of
elastic waves by spherical inclusion. Izvestiya of the Academy of

Sciences of USSR, Physics of the Solid Earth, 1989, v. 25, no. 8,
679–685.

This presents the analytic solution of the boundary problem. The frequent
equation is derived for both radial, torsional and spheroidal vibrations. A
new method of solution for the diffraction problem is developed for a spher-
ical elastic inclusion into an infinite elastic medium. The obtained analytical
solution is checked by numerical computation. Formulae are obtained for
the coda waves envelop in two limiting cases: single scattering and diffusion
scattering. A frequency dependence on the quality factor is manifest through
the corresponding dependance on the scattering cross-section.

The mechanism of the tectonic movements:
• Artemjev M. E., Bune V. J., Dubrovskiy V. A., and Kambarov N. Sh.

Seismicity and isostasy. Phys. Earth Planet. Interiors, 1972, v. 6,
no. 4, 256–262.

• Dubrovskiy V. A. Mechanism of tectonic movements. Izvestiya of
the Academy of Sciences of USSR, Physics of the Solid Earth, 1986,
v. 22, no. 1, 18–27.

• Dubrovskiy V. A., Sergeev V. N., and Fuis G. S. Generalized condi-
tion of isostasy. Doklady of the Russian Academy of Sciences, 1995,
v. 342, no. 1.

• Dubrovskiy V. A. and Sergeev V. N. Physics of tectonic waves. Izves-
tiya of the Russian Academy of Sciences, Physics of the Solid Earth,
1997, v. 33, no. 10, 865–866.

This mechanism is seen to be at work in a “lithosphere-astenosphere” system
which has the density inversion between the lithosphere and astenosphere.
The substance of the elastic lithosphere is denser than that of the liquid as-
tenosphere. A solution for the model of the elastic layer above the incom-
pressible fluid with the density inversion is found. It is found that there is a
nontrivial, unstable equilibrium on nonzero displacement of the elastic layer.
The bifurcation point is characterized by a critical wavelength of the peri-
odic disturbance. This wavelength is that of the wave disturbance when the
Archimedian force reaches the elastic force of disturbance.

Two-level convection in Earth’s mantle:
• Dubrovskiy V. A. Two-level convection in the Earth’s mantle. Dok-

lady of the Russian Academy of Sciences, 1994, v. 334, no. 1.

• Dubrovskiy V. A. Convective instability motions in the Earth’s inte-
riors. Izvestiya of the Russian Academy of Sciences, Physics of the
Solid Earth, 1995, no. 9.

The mantle convection is considered at two levels: a convection in the lower
mantle is the chemical-density convection due to the core-mantle bound-
ary differentiation into the different compositionally light and heavy compo-
nents, while the other convection is the heat-density convection in the“elastic
lithosphere — fluid astenosphere“ system. The last one manifests itself in
different tectonic phenomena such as the tectonic waves, the oceanic plate
tectonic and continental tectonic as a result of the density inversion in the
“lithosphere-astenosphere” system. The lower mantle chemical convection
gives the heat energy flow to the upper mantle heat convection.

Generation for the magnetic, electric and vortex fields in magnetohydro-
dynamics, electrohydrodynamics and vortex hydrodynamics:

• Dubrovskiy V. A. and Skuridin G. A. The propagation of small dis-
turbances in magnetohydrodynamics. Geomagnetism and Aeronomy,
1965, v. 5, no. 2, 234–250.

• Dubrovskiy V. A. The equations of electrohydrodynamics and elec-
troelasticity. Soviet Physics Doklady, v. 29(12), December 1984
(transl. from Doklady Akademii Nauk URSS, 1984, v. 279, 857–860).

• Dubrovskiy V. A. Conditions for magnetic field Generation. Doklady
Akadmii Nauk URSS, 1986, v. 286, no. 1, 74–77.

• Dubrovskiy V. A. and Rusakov N. N. Mechanism of generation of
an elastic field. Doklady Akadmii Nauk URSS, 1989, v. 306, no. 6,
64–67.
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• Dubrovskiy V. A. On a relation between strains and vortices in hydro-
dynamic flows. Doklady Physics, 2000, v. 45, no. 2, 52–54 (transl.
from Doklady Akademii Nauk URSS, 2000, v. 370, no. 6, 754–756.

A nonlinear system of the equations is obtained, which manifests a mutual
influence between the motion of a dielectric medium and an electric field.
This theory well-describes the atmospheric electricity, including ball light-
ing. The theory proves: the motion of a magnetohydrodynamical, electro-
hydrodynamical or hydrodynamical incompressible fluid is locally unstable
everywhere relative to the disturbances of a vortex, magnetic or electric field.
A mutual, pendulumlike conversion energy of the fluid flow and energy of a
magnetic, electric or vortex field is possible. Two-dimensional motions are
stable in a case where they are large enough. The magnetic restrain of plasma
is impossible in three-dimensional case.

The elastic model of the physical vacuum:
• Dubrovskiy V. A. Elastic model of the physical vacuum. Soviet Phys-

ics Doklady, v. 30(5), May 1985 (translated from Doklady Akademii
Nauk URSS, 1985, v. 283, 83–85.

• Dubrovskiy V. A. Measurments of the gravity waves velocity. arXiv:
astro-ph/0106350.

• Dubrovskiy V. A. Relation of the microseismic background with cos-
mic objects. Vestnik MGU (Transactions of the Moscow University),
2004, no. 4.

• Dubrovskiy V. A. and Smirnov N. N. Experimental evaluation of the
gravity waves velocity. In: Proc. of the 54nd International Astronau-
tical Congress, September 29 — October 3, 2003, Bremen, Germany.

New variables in the theory of elasticity are used (e.g. the velocity, vortex,
and dilation set up instead the velocity and stress used in the standard theory).
This gives a new system of the equations describing the wave motion of
the velocity, vortex and dilation. In such a model, transversal waves and
longitudinal waves are associated to electromagnetic and gravitational waves
respectively. Such an approach realizes the field theory wherein elementary
particles are the singularities in the elastic physical vacuum.

A universal precursor for the geomechanical catastrophes:
• Dubrovskiy V. A. Tectonic waves. Izvestiya of the Academy of Sci-

ences of URSS, Earth Physics, 1985, v. 21, no. 1, 20–23.

• Dubrovskiy V. A. and Dieterich D. Wave propagation along faults
and the onset of slip instability. EOS, 1990, v. 71, no. 17, 635–636.

• Dubrovskiy V. A., McEvilly T. V., Belyakov A. S., Kuznetzov V. Y.,
and Timonov M. V. Borehole seismoacoustical emission study at the
Parkfield prognosis range. Doklady of the Russian Academy of Sci-
ences, 1992, v. 325, no. 4.

• Dubrovskiy V. A. and Sergeev V. N. The necessary precursor for a
catastrophe. In: Tectonic of Neogey: General and Regional Aspects,
GEOS, Moscow, 2001, v. 1, 222–226.

Unstable phenomena such as earthquakes can occur in a geomechanical sys-
tem, if there is an unstable state of equilibrium in a set of critical geophysical
parameters. There are two fields of the geophysical parameters, which cor-
respond to the stable and unstable states. According to Dubrovskiy (1985)
and also Dubrovskiy and Sergeev (2001), in the stable field of the parame-
ters the geosystem has vibratory eigenmotions, where the frequencies tend
to zero if the system approaches unstable equilibrium (during an earthquake
occurrence, for instance). However the critical wavelength of the vibrations
remains finite at zero frequency, and characterizes the size of the instability.
Change in the eigenfrequencies affects the spectrum of seismoacoustic emis-
sion in an area surrounding an impending earthquake. Such a change indi-
cates the fact that the geomechanical system is close to an unstable threshold,
and the critical wavelength determines the energy and space dimensions of
the developing instability sorce. Such an approach to the study of a systems
in the state of unstable equilibrium is applicable to all system, whose behav-
ior is described by hyperbolic equations in partial derivatives, i.e. not only
geomechanical systems.
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One shows how in certain model situations conformal general relativity corresponds
to a Bohmian-Dirac-Weyl theory with conformal mass and Bohmian quantum mass
identified.

The article [12] was designed to show relations between con-
formal general relativity (CGR) and Dirac-Weyl (DW) the-
ory with identification of conformal mass m̂ and quantum
mass M following [7, 9, 11, 25] and precision was added via
[21]. However the exposition became immersed in techni-
calities and details and we simplify matters here. Explic-
itly we enhance the treatment of [7] by relating M to an im-
proved formula for the quantum potential based on [21] and
we provide a specific Bohmian-Dirac-Weyl theory wherein
the identification of CGR and DW is realized. Much has
been written about these matters and we mention here only
[1–7, 9–20, 23–28] and references therein. One has an Ein-
stein form for GR of the form

SGR =
Z
d4x
p�g(R� �jr j2 + 16�LM ) (1.1)

(cf. [7, 22]) whose conformal form (conformal GR) is an in-
tegrable Weyl geometry based on

ŜGR =
Z
d4x

p�ĝ e� �
�
�
R̂�

�
�� 3

2

�
jr̂ j2 + 16�e� LM

�
= (1.2)

=
Z
d4x

p�ĝ "�̂R̂� ��� 3
2

� jr̂�̂j2
�̂

+ 16��̂2LM

#
where 
2 = exp(� ) =� with ĝab = 
2gab and �̂=
= exp( ) =��1 (note (r̂ )2 = (r̂�̂)2=(�̂)2). One sees also
that (1.2) is the same as the Brans-Dicke (BD) action when
LM = 0, namely (using ĝ as the basic metric)

SBD =
Z
d4x

p�ĝ ��̂R̂� !
�̂
jr̂�̂j2 + 16�LM

�
; (1.3)

which corresponds to (1.2) provided !=�� 3
2 and LM = 0.

For (1.2) we have a Weyl gauge vector wa � @a = @a�̂=�̂
and a conformal mass m̂ = �̂�1=2m with 
2 = �̂�1 as the
conformal factor above. Now in (1.2) we identify m̂ with
the quantum mass M of [25] where for certain model situa-
tions M � � is a Dirac field in a Bohmian-Dirac-Weyl theory
as in (1.8) below with quantum potential Q determined via
M2 = m2 exp(Q) (cf. [10, 11, 21, 25] and note that m2 / T
where 8�T ab = (1=

p�g)(�
p�g LM=�gab)). Then �̂�1 =

= m̂2=m2 = M2=m2 � 
2 for 
2 the standard conformal

factor of [25]. Further one can write (1A)
p�ĝ �̂ R̂=

= �̂�1p�ĝ �̂2 R̂ = �̂�1p�g R̂ = (�2=m2)
p�g R̂. Re-

call here from [11] that for gab = �̂ĝab one has
p�g=

= �̂2p�ĝ and for the Weyl-Dirac geometry we give a brief
survey following [11, 17]:

1. Weyl gauge transformations: gab! ~gab = e2�gab;
gab! ~gab = e�2�gab — weight e.g. �(gab) =�2.
� is a Dirac field of weight -1. Note �(

p�g) = 4;
2. �cab is Riemannian connection; Weyl connection is �̂cab

and �̂cab = �cab = gabwc � �cbwa � �cawb;
3. raBb = @aBb �Bc�cab; raBb = @aBb +Bc�bca;
4. r̂aBb = @aBb �Bc�̂cab; r̂aBb = @aBb +Bc�̂bca;
5. r̂�gab = �2gabw�; r̂�gab = 2gabw� and for 
2 =

= exp(� ) the requirementrcgab = 0 is transformed
into r̂cĝab = @c ĝab showing that wc =�@c (cf. [7])
leading to w� = �̂�=�̂ and hence via �=m�̂�1=2 one
has wc = 2�c=� with �̂c=�̂=�2�c=� and wa =
=�2�a=�.

Consequently, via �2R̂ = �2R� 6�2r�w� + 6�2w�w�
(cf. [11, 12, 16, 17]), one observes that ��2r�w� =
=�r�(�2w�) + 2�@��w�, and the divergence term will
vanish upon integration, so the first integral in (1.2) becomes

I1 =
Z
d4x
p�g

�
�2

m2R+12�@��w�+6�2w�w�
�
: (1.4)

Setting now �� 3
2 =  the second integral in (1.2) is

I2 = � 
Z
d4x

p�ĝ �̂ jr̂�̂j2j�̂j2 =

= � 4
Z
d4x

p�ĝ �̂�1�̂2 jr̂�j2
�2 = (1.5)

= � 4
m2

Z
d4x
p�gjr̂�j2;

while the third integral in the formula (1.2) becomes
(1B) 16�

R p�g d4xLM . Combining now (1.4), (1.5), and
(1B) gives then

ŜGR =
1
m2

Z
d4x
p�g ��2R+ 6�2w�w� +

+ 12�@��w� � 4jr̂�j2 + 16�m2LM
�
:

(1.6)
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We will think of r̂� in the form (1C) r̂��= @�� �
� w�� = �@��. Putting then jr̂�j2 = j@�j2 (1.6) becomes
(recall  = �� 3

2 )

ŜGR =
1
m2

Z
d4x
p�g �

� ��2R+ (3� 4�)j@�j2 + 16�m2LM
�
:

(1.7)

One then checks this against some Weyl-Dirac actions.
Thus, neglecting termsW abWab we find integrands involving
dx4p�g times

��2R+ 3(3� + 2)j@�j2 + 2��4 + LM (1.8)

(see e.g. [11,12,17,25]); the term 2��4 of weight�4 is added
gratuitously (recall � (

p�g ) = 4). Consequently, omitting
the � term, (1.8) corresponds to (1.7) times m2 for LM �� 16�LM and (1D) 9� + 4� + 3 = 0. Hence one can iden-
tify conformal GR (without �) with a Bohmian-Weyl-Dirac
theory where conformal mass m̂ corresponds to quantum
mass M.

REMARK 1.1. The origin of a �4 term in (1.8) from
ŜGR in (1.2) with a term 2

p�ĝ�̂ in the integrand would
seem to involve writing (1E) 2

p�ĝ �̂ = 2
p�ĝ �̂2
4�̂ =

= 2
p�g �4�̂=m4 so that � in (1.8) corresponds to �̂. Nor-

mally one expects �
p�g ! p�ĝ �̂2� (cf. [2]) or perhaps

�! �̂2� = 
�4� = �̂. In any case the role and nature of a
cosmological constant seems to still be undecided. �
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The equations of gravitation together with the equations of electromagnetism in terms
of the General Theory of Relativity allow to conceive an interdependence between the
gravitational field and the electromagnetic field. However the technical difficulties of
the relevant problems have precluded from expressing clearly this interdependence.
Even the simple problem related to the field generated by a charged spherical mass
is not correctly solved. In the present paper we reexamine from the outset this problem
and propose a new solution.

1 Introduction

Although gravitation and electromagnetism are distinct enti-
ties, the principles of General Relativity imply that they affect
each other. In fact, the equations of electromagnetism, con-
sidered in the spacetime of General Relativity, depend on the
gravitational tensor, so that the electromagnetic field depends
necessarily on the gravitational potentials. On the other hand,
the electromagnetism is involved in the equations of gravita-
tion by means of the corresponding energy-momentum ten-
sor, so that the gravitational potentials depend necessarily on
the electromagnetic field. It follows that, in order to bring out
the relationship between gravitation and electromagnetism,
we must consider together the equations of electromagnetism,
which depend on the gravitational tensor, and the equations of
gravitation, which depend on the electromagnetic potentials.
So we have to do with a complicated system of equations,
which are intractable in general. Consequently it is very dif-
ficult to bring out in explicit form the relationship between
gravitation and electromagnetism. However the problem can
be rigorously solved in the case of the field (gravitational and
electric) outside a spherical charged mass. The classical solu-
tion of this problem, the so-called Reissner-Nordström met-
ric, involves mathematical errors which distort the relation-
ship between gravitational and electric field. In dealing with
the derivation of this metric, H. Weyl notices that “For the
electrostatic potential we get the same formula as when the
gravitation is disregarded” [5], without remarking that this
statement includes an inconsistency: The electrostatic poten-
tial without gravitation is conceived in the usual spacetime,
whereas the gravitation induces a non-Euclidean structure af-
fecting the metrical relations and, in particular, those involved
in the definition of the electrostatic potential. The correct so-
lution shows, in fact, that the electrostatic potential depends
on the gravitational tensor.

In the present paper we reexamine from the outset the
problem related to the joint action of the gravitation and elec-
tromagnetism which are generated by a spherical charged
source. We assume that the distribution of matter and charges

is such that the corresponding spacetime metric is S�(4)-
invariant (hence also �(4)-invariant), namely a spacetime
metric of the following form [3, 4]

ds2 = f2dx2
0 + 2ff1(xdx)dx0 � `21dx2 +

+
�
`21 � `2
�2 + f2

1

�
(xdx)2;

(1.1)

(where f = f(x0; kxk), f1 = f1(x0; kxk), `1 = `1(x0; kxk),
` = `(x0; kxk), � = kxk).

It is useful to write down the components of (1.1):

g00 = f2; g0i = gi0 = xiff1 ;

gii = �`21 +
�
`21 � `2
�2 + f2

1

�
x2
i ;

gij =
�
`21 � `2
�2 + f2

1

�
xixj ; (i; j = 1; 2; 3; i , j) ;

the determinant of which equals�f2`2`41. Then an easy com-
putation gives the corresponding contravariant components:

g00 =
`2 � �2f2

1
f2`2

; g0i = gi0 = xi
f1

f`2
;

gii = � 1
`21
� 1
�2

�
1
`2
� 1
`21

�
x2
i ;

gij = � 1
�2

�
1
`2
� 1
`21

�
xixj ; (i; j = 1; 2; 3; i , j) :

Regarding the electromagnetic field, with respect to
(1.1), it is defined by a skew-symmetrical S�(4)-invariant
tensor field of degree 2 which may be expressed either by its
covariant componentsX

V��dx� 
 dx� ; (V�� = �V��) ;

or by its contravariant componentsX
V ��

@
@x�


 @
@x�

; (V �� = �V ��) :
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2 Electromagnetic field outside a spherical charged
source. Vanishing of the magnetic field

According to a known result [2], the skew-symmetrical
S�(4)-invariant tensor field

P
V��dx� 
 dx� is the direct

sum of the following two tensor fields:
(a) A �(4)-invariant skew-symmetrical tensor field

q (x0; kxk)(dx0 
 F (x)� F (x)
 dx0) ;�
F (x) =

3X
i=1

xidxi
�
;

which represents the electric field with components

V01 = �V10 = qx1 ; V02 = �V20 = qx2 ;

V03 = �V30 = qx3 :

)
; (2.1)

(b) A purely S�(4)-invariant skew-symmetrical tensor
field

q1(x0; kxk)�x1(dx2 
 dx3 � dx3 
 dx2) +

+x2(dx3 
 dx1 � dx1 
 dx3) +

+x3(dx1 
 dx2 � dx2 
 dx1)
�
;

which represents the magnetic field with components

V23 = �V32 = q1x1 ; V31 = �V13 = q1x2 ;

V12 = �V21 = q1x3 :

)
: (2.2)

Since the metric (1.1) plays the part of a fundamental ten-
sor, we can introduce the contravariant components of the
skew-symmetrical tensor field

P
V��dx�
dx� with respect

to (1.1).

Proposition 2.1 The contravariant components of theS�(4)-
invariant skew-symmetrical tensor field

P
V��dx�
dx� are

defined by the following formulae:

V 01 = �V 10 = � qx1

f2`2
; V 02 = �V 20 = � qx2

f2`2
;

V 03 = �V 30 = � qx3

f2`2
;

V 23 = �V 32 =
q1x1

`41
; V 31 = �V 13 =

q1x2

`41
;

V 12 = �V 21 =
q1x3

`41
:

Proof. The componets V 01 and V 23, for instance, result from
the obvious formulae

V 01 =
X

g0�g1�V�� = (g00g11 � g01g10)V01 +

+ (g00g12 � g02g10)V02 + (g00g13 � g03g10)V03 +

+ (g02g13 � g03g12)V23 + (g03g11 � g01g13)V31 +

+ (g01g12 � g02g11)V12

and

V 23 =
X

g2�g3�V�� = (g20g31 � g21g30)V01 +

+ (g20g32 � g22g30)V02 + (g20g33 � g23g30)V03 +

+ (g22g33 � g23g32)V23 + (g23g31 � g21g33)V31 +

+ (g21g32 � g22g31)V12

after effectuating the indicated operations.

Proposition 2.2 The functions q= q(x0; �), q1 = q1(x0; �),
(x0 = ct; �= kxk), defining the components (2.1) and (2.2)
outside the charged spherical source are given by the
formulae

q =
"f`
�3`21

; q1 =
"1

�3 ;

(" = const; "1 = const:)

(The equations of the electromagnetic field are to be con-
sidered together with the equations of gravitation, and since
these last are inconsistent with a punctual source, there exists
a length � > 0 such that the above formulae are valid only
for � > �.)

Proof. Since outside the source there are neither charges nor
currents, the components (2.1), (2.2) are defined by the clas-
sical equations

@V��
@x

+
@V�
@x�

+
@V�
@x�

= 0 ; (2.3)�
x0 =ct; (�; �; )2f(0; 1; 2); (0; 2; 3); (0; 3; 1); (1; 2; 3)g�,

3X
�=0

@
@x�

�p�GV ��� = 0 ;�
� = 0; 1; 2; 3; G = �f2`2`41

�
:

(2.4)

Taking (�; �; ) = (0; 1; 2), we have, on account of (2.3),

@(qx1)
@x2

+
@(q1x3)
@x0

� @(qx2)
@x1

= 0

and since
@q
@xi

=
@q
@�

xi
�
; (i = 1; 2; 3) ;

we obtain

x1x2
@q
@�
� x2x1

@q
@�

+ x3
@q1
@x0

= 0 ;

whence
@q1
@x0

= 0, so that q1 depends only on �, q1 = q1(�).

On the other hand, taking (�; �; ) = (1; 2; 3), the equa-
tion (2.3) is written as

@(q1x3)
@x3

+
@(q1x1)
@x1

+
@(q1x2)
@x2

= 0 ;

whence 3q1 +�q01 = 0, so that 3�2q1 +�3q01 = 0 or (�3q1)0= 0
and �3q1 = "1 = const or q1 =

"1

�3 .
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Consider now the equation (2.4) with � = 1. Since G =
=�f2`2`41,

V 11 = 0 ; V 10 =
qx1

f2`2
; V 12 =

q1x3

`41
; V 13 = �q1x2

`41
;

we have

@
@x0

�
q`21
f`

x1

�
+

@
@x2

�
q1f`
`21

x3

�
� @
@x3

�
q1f`
`21

x2

�
= 0 :

Because of

@
@x2

�
q1f`
`21

x3

�
=
x3x2

�
@
@�

�
q1f`
`21

�
=

@
@x3

�
q1f`
`21

x2

�
;

we obtain

x1
@
@x0

�
q`21
f`

�
= 0

so that
q`21
f`

depends only on � :
q`21
f`

= '(�).

Now the equation (2.4) with � = 0 is written as

@
@x1

(x1'(�)) +
@
@x2

(x2'(�)) +
@
@x3

(x3'(�)) = 0 ;

whence 3'(�) + �'0(�) = 0 and 3�2'(�) + �3'0(�) = 0 or
(�3'(�))0 = 0.

Consequently �3'(�) = " = const and q =
"f`
�3`21

.

The meaning of the constants " and "1:

Since the function q occurs in the definition of the electric
field (2.1), it is natural to identify the constant " with the
electric charge of the source. Does a similar reasoning is
applicable to the case of the magnetic field (2.2)? In other
words, does the constant "1 represents a magnetic charge of
the source? This question is at first related to the case where
" = 0, "1 , 0, namely to the case where the spherical source
appears as a magnetic monopole. However, although the ex-
istence of magnetic monopoles is envisaged sometimes as a
theoretical possibility, it is not yet confirmed experimentally.
Accordingly we are led to assume that "1 = 0, namely that
the purely S�(4)-invariant magnetic field vanishes. So we
have to do only with the electric field (2.1), which, on account

of q =
"f`
�3`21

, depends on the gravitational tensor (contrary to

Weyl’s assertion).

3 Equations of gravitation outside the charged source

We recall that, if an electromagnetic fieldX
V��dx� 
 dx� ; (V�� = �V��)

is associated with a spacetime metricX
g��dx� 
 dx� ;

then it gives rise to an energy-momentum tensorX
W��dx� 
 dx�

defined by the formulae

W�� =
1

4�

�
1
4
g��

X
V�V � �XV��V � ��

�
: (3.1)

In the present situation, the covariant and contravariant com-
ponents V� and V � are already known. So it remains to
compute the mixed components

V � �� =
X

g�V� = �X g�V� = �V �� � :
Taking into account the vanishing of the magnetic field,

an easy computation gives

V � 00 =
�2qf1

f`2
; V � k0 = �qxk

`2
; (k = 1; 2; 3) ;

V � 0k = �`2 � �2f2
1

f2`2
qxk ; (k = 1; 2; 3) ;

V � kk = � qf1

f`2
x2
k ; (k = 1; 2; 3) ;

V � 32 = � qf1

f`2
x2x3 = V � 23 ;

V � 13 = � qf1

f`2
x3x1 = V � 31 ;

V � 21 = � qf1

f`2
x1x2 = V � 12 :

It follows thatX
V�V � = �2�2q2

f2`2
;X

V0�V � �0 = ��2q2

`2
;X

V0�V � �1 = ��2f1q2

f`2
x1 ;X

V1�V � �2 =
`2 � �2f2

1
f2`2

q2x1x2 ;X
V1�V � �1 =

`2 � �2f2
1

f2`2
q2x2

1 ;

and then the formula (3.1) gives the components W00, W01,
W11, W12 of the energy-momentum tensor. The other com-
ponents are obtained simply by permuting indices.

Proposition 3.1 The energy-momentum tensor associated
with the electric field (2.1) is a �(4)-invariant tensor defined
by the following formulae

W00 = E00 ; W0i = Wi0 = xiE01 ;

Wii = E11 + x2
iE22 ; Wij = Wji = xixjE22 ;

(i; j = 1; 2; 3; i , j) ;
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where

E00 =
1

8�
�2f2E ; E01 =

1
8�

�2ff1E ;

E11 =
1

8�
�2`21E ; E22 =

1
8�

(�`21 � `2 + �2f2
1 )E

with
E =

q2

f2`2
=

"2

�2g4 :

Regarding the Ricci tensorR�� , we already know [4] that
it is a symmetric �(4)-invariant tensor defined by the func-
tions

Q00 = Q00(t; �) ; Q01 = Q01(t; �) ;

Q11 = Q11(t; �) ; Q22 = Q22(t; �)

as follows

R00 = Q00 ; R0i = Ri0 = Q01xi ; Rii = Q11 + x2
iQ22 ;

Rij = Rji = xixjQ22 ; (i; j = 1; 2; 3; i , j) :

So, assuming that the cosmological constant vanishes, we
have to do from the outset with four simple equations of grav-
itation, namely

Q00� R2 f2 +
8�k
c4

E00 = 0 ;

Q01� R2 ff1 +
8�k
c4

E01 = 0 ;

Q11 +
R
2
`21 +

8�k
c4

E11 = 0 ;

Q11 + �2Q22� R2 (�2f2
1 �`2) +

8�k
c4

(E11 +�2E22) = 0 :

An additional simplification results from the fact that the
mixed components of the electromagnetic energy-momentum
tensor satisfy the condition �W�

� = 0, and then the equations
of gravitation imply (by contraction) that the scalar curva-
tureR vanishes. Moreover, introducing as usual the functions

h = �f1, g = �`1, and taking into account that q =
"f`
�3`21

, we

obtain

E =
"2

�2g4 ; E00 =
"2

8�
f2

g4 ; E01 =
"2

8�
ff1

g4 ;

E11 =
"2

8�
`21
g4 ; E11 + �2E22 =

"2

8�
(�`2 + h2)

g4 ;

so that by setting

�2 =
k
c4
"2;

we get the definitive form of the equations of gravitation

Q00 +
�2

g4 f
2 = 0 ; (3.1)

Q01 +
�2

g4 ff1 = 0 ; (3.2)

Q11 +
�2

g4 `
2
1 = 0 ; (3.3)

Q11 + �2Q22 +
�2

g4 (�`2 + h2) = 0 : (3.4)

4 Stationary solutions outside the charged spherical
source

In the case of a stationary field, the functions Q00, Q01, Q11,
Q22 depend only on � and their expressions are already
known [3, 4]

Q00 = f
�
�f 00
`2

+
f 0`0
`3
� 2f 0g0

`2g

�
; (4.1)

Q01 =
h
�f

Q00 ; (4.2)

Q11 =
1
�2

�
�1 +

g02
`2

+
gg00
`2
� `0gg0

`3
+
f 0gg0
f`2

�
; (4.3)

Q11 + �2Q22 =
f 00
f

+
2g00
g
� f 0`0
f`
� 2`0g0

`g
+
h2

f2 Q00 : (4.4)

On account of (4.2), the equation (3.2) is written as�
Q00 +

�2

g4 f
2
�
h = 0

so that it is verified because of (3.1).
Consequently it only remains to take into account the

equations (3.1), (3.3), (3.4).
From (3.1) we obtain

�2

g4 = �Q00

f2

and inserting this expression into (3.4) we obtain the relation

f2(Q11 + �2Q22)� (�`2 + h2)Q00 = 0

which, on account of (4.1) and (4.4), reduces, after cancela-
tions, to the simple equation

g00
g0 =

f 0
f

+
`0
`

which does not contain the unknown function h and implies

f` = cg0; (c = const): (4.5)

Next, from (3.1) and (3.3) we deduce the equation

Q11 � Q00

f2 `21 = 0 (4.6)

which does not contain the function h either.
Now, from (4.5) we find

f =
cg0
`
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and inserting this expression of f into (4.6), we obtain an
equation which can be written as

d
d�

�
F 0
2g0
�

= 0

with

F = g2 � g2g02
`2

:

It follows that

F = 2A1g � A2 ; (A1 = const; A2 = const);

and

g02 = `2
�

1� 2A1

g
+
A2

g2

�
: (4.7)

On account of (4.5), the derivative g0 does not vanish. In
fact g0= 0 implies either f = 0 or `= 0, which gives rise to
a degenerate spacetime metric, namely a spacetime metric
meaningless physically. Then, in particular, it follows from
(4.7) that

1� 2A1

g
+
A2

g2 > 0 :

The constant A1, obtained by means of the Newtonian
approximation, is already known:

A1 =
km
c2

= � :

In order to get A2, we insert first

f 0
f

=
g00
g0 �

`0
`

into (4.3) thus obtaining

�2Q11 = �1 +
g02
`2

+
2gg00
`2
� 2`0gg0

`3
: (4.8)

Next by setting

Q(g) = 1� 2A1

g
+
A2

g2

we have

g0 = `
p
Q(g) ;

g00 = `0
p
Q(g) + `2

�
A1

g2 � A2

g3

�
and inserting these expressions of g0 and g00 into (4.8), we find

�2Q11 = �A2

g2 :

The equation (3.3) gives finally the value of the con-
stant A2:

A2 = �2 =
k"2

c4
:

It follows that the general stationary solution outside the
charged spherical source is defined by two equations, namely

f` = c
dg
d�
; (4.9)

dg
d�

= `

s
1� 2�

g
+
�2

g2 ; (4.10)�
� =

km
c2
; � =

p
k
c2
j"j; 1� 2�

g
+
�2

g2 > 0
�
:

The interdependence of the two fields, gravitational and
electric, in now obvious: The electric charge ", which defines
the electric field, is also involved in the definition of the grav-
itational field by means of the term

�2

g2 =
k
c4

�
"
g

�2

:

On the other hand, since

q =
"f`
�3`21

=
c"
�g2

dg
d�
;

the components of the electric field:

V01 = �V10 = qx1 =
c"
g2
dg
d�
x1

�
=

= � c" @
@x1

�
1
g

�
= �c @

@x1

�
"
g

�
;

V02 = �V20 = qx2 = �c @
@x2

�
"
g

�
;

V03 = �V30 = qx3 = � c @
@x3

�
"
g

�
result from the electric potential:

"
g

=
"

g(�)

which is thus defined by means of the curvature radius g(�),
namely by the fundamental function involved in the definition
of the gravitational field.

Note that, among the functions occurring in the space-
time metric, only the function h = �f1 does not appear in the
equations (4.9) and (4.10). The problem does not require a
uniquely defined h. Every differentiable function h satisfy-
ing the condition jhj 6 ` is allowable. And every allowable
h gives rise to a possible conception of the time coordinate.
Contrary to the Special Relativity, we have to do, in General
Relativity, with an infinity of possible definitions of the time
coordinate. In order to elucidate this assertion in the present
situation, let us denote by �1 the radius of the spherical sta-
tionary source, and consider a photon emitted radially from
the sphere kxk = �1 at an instant � . The equation of motion
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of this photon, namely

f(�)dt+ h(�)d� = `(�)d�

implies
dt
d�

=
�h(�) + `(�)

f(�)

whence � = t�  (�) with

 (�) =
�Z

�1

�h(u) + `(u)
f(u)

du :

For every value of � > �1, �(t; �) = t� (�) is the instant
of radial emission of a photon reaching the sphere kxk = �
at the instant t. The function �(t; �) will be called propaga-
tion function, and we see that to each allowable h there cor-
responds a uniquely defined propagation function. Moreover
each propagation function characterizes uniquely a concep-
tion of the notion of time. Regarding the radial velocity of
propagation of light, namely

d�
dt

=
f(�)

�h(�) + `(�)
;

it is not bounded by a barrier as in Special Relativity. In the
limit case where the allowable h equals `, this velocity be-
comes infinite.

This being said, we return to the equations (4.9) and
(4.10) which contain the remaining unknown functions f , `,
g. Their investigation necessitates a rather lengthy discussion
which will be carried out in another paper. At present we
confine ourselves to note two significant conclusions of this
discussion:

(a) Pointwise sources do not exist, so that the spherical
source cannot be reduced to a point. In particular the
notion of black hole is inconceivable;

(b) Among the solutions defined by (4.9) and (4.10), par-
ticularly significant are those obtained by introducing
the radial geodesic distance

� =
�Z

0

`(u)du :

Then we have to define the curvature radius G(�) =
= g(�(�)) by means of the equation

dG
d�

=
r

1� 2�
G

+
�2

G2

the solutions of which need specific discussion accord-
ing as �2��2> 0 or �2��2 = 0 or �2��2< 0. The
first approach to this problem appeared in the paper [1].

We note finally that the derivation of the Reissner-Nord-
ström metric contains topological errors and moreover iden-
tifies erroneously the fundamental function g(�) with a ra-

dial coordinate. This is why the Reissner-Nordström metric
is devoid of geometrical and physical meaning.

Submitted on February 05, 2008
Accepted on February 07, 2008

References
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The low-lying collective levels in 224-234Th isotopes are investigated in the frame work
of the interacting boson approximation model (IBA-1). The contour plot of the poten-
tial energy surfaces, V (�; ), shows two wells on the prolate and oblate sides which
indicate that all thorium nuclei are deformed and have rotational characters. The levels
energy, electromagnetic transition rates B(E1) and B(E2) are calculated. Bending at
angular momentum I+ = 20 has been observed for 230Th. Staggering effect has been
calculated and beat patterns are obtained which indicate the existence of an interaction
between the ground state band, (GSB), and the octupole negative parity band, (NPB).
All calculated values are compared with the available experimental data and show rea-
sonable agreement.

1 Introduction

The level schemes of 224-234Th isotopes are characterized
by the existence of two bands of opposite parity and lie in
the region of octupole deformations. The primary evidence
for this octupole deformaton comes from the parity-doublet
bands, fast electric transition (E1) between the negative and
positive parity bands and the low-lying 1�, 0+

2 and 2+
2 excita-

tion energy states. This kind of deformation has offered a real
challenge for nuclear structure models. Even-even thorium
nuclei have been studied within the frame work of the Spdf
interacting boson model [1] and found the properties of the
low-lying states can be understood without stable octupole
deformation. High spin states in some of these nuclei suggest
that octupole deformation develops with increasing spin.

A good description of the first excited positive and neg-
ative parity bands of nuclei in the rare earth and the actinide
region has achieved [2–4] using the interacting vector boson
model. The analysis of the eigen values of the model Hamil-
tonian reveals the presence of an interaction between these
bands. Due to this interaction staggering effect has repro-
duced including the beat patterns.

Shanmugam-Kamalahran (SK) model [5] for �-decay has
been applied successfully to 226-232Th for studying their sha-
pes, deformations of the parent and daughter nuclei as well as
the charge distribution process during the decay. Also, a solu-
tion of the Bohr Hamiltonian [6] aiming at the description of
the transition from axial octupole deformation to octupole vi-
brations in light actinides 224Ra and 226Th is worked out.The
parameter free predictions of the model are in good agree-
ment with the experimental data of the two nuclei, where they
known to lie closest to the transition from octupole deforma-
tion to octupole vibrations in this region. A new frame-work
for comparing fusion probabilities in reactions [7] forming
heavy elements, 220Th, eliminates both theoretical and ex-
perimental uncertinities, allowing insights into systematic be-

havior, and revealing previously hidden characteristics in fu-
sion reactions forming heavy elements.

It is found that cluster model [8] succeeded in reproducing
satisfactorily the properties of normal deformed ground state
and super deformed excited bands [9, 10] in a wide range of
even-even nuclei, 222 6 A > 242[11]. The calculated spin
dependences [12] to the parity splitting and the electric multi
pole transition moments are in agreement with the experimen-
tal data. Also, a new formula between half-lives, decay en-
ergies and microscopic density-dependent cluster model [13]
has been used and the half-lives of cluster radioactivity are
well reproduced.

A new imperical formula [14], with only three parame-
ters, is proposed for cluster decay half-lives. The parame-
ters of the formula are obtained by making least square fit
to the available experimental cluster decay data. The cal-
culated half-lives are compared with the results of the ear-
lier proposed models models, experimental available data and
show excellent agreement. A simple description of the cluster
decay by suggesting a folding cluster-core interaction based
on a self-consistant mean-field model [15]. Cluster decay in
even-even nuclei above magic numbers have investigated.

Until now scarce informations are available about the ac-
tinide region in general and this is due to the experimental
difficulties associated with this mass region. The aim of the
present work is to:

(1) calculate the potential energy surfaces, V (�; ), and
know the type of deformation exists;

(2) calculate levels energy, electromagnetic transition rates
B(E1) and B(E2);

(3) study the relation between the angular momentum I ,
the rotational angular frequency ~! and see if there any
bending for any of thorium isotopes;

(4) calculate staggering effect and beat patterns to study the
interaction between the (+ve) and (�ve) parity bands.
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)
224Th 0.2000 0.000 0.0081 �0.0140 0.0000 0.0000 0.2150 �0.6360
226Th 0.2000 0.000 0.0058 �0.0150 0.0000 0.0000 0.2250 �0.6656
228Th 0.2000 0.0000 0.0052 �0.0150 0.0000 0.0000 0.1874 �0.5543
230Th 0.2000 0.0000 0.0055 �0.0150 0.0000 0.0000 0.1874 �0.5543
232Th 0.2000 0.0000 0.0055 �0.0150 0.0000 0.0000 0.1820 �0.5384
234Th 0.2000 0.0000 0.0063 �0.0150 0.0000 0.0000 0.1550 �0.4585

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

2 (IBA-1) model

2.1 Level energies

The IBA-1 model was applied to the positive and negative
parity low-lying states in even-even 224-234Th isotopes. The
proton, �, and neutron, �, bosons are treated as one boson and
the system is considered as an interaction between s-bosons
and d-bosons. Creation (sydy) and annihilation (s ~d) operat-
ors are for s and d bosons. The Hamiltonian [16] employed
for the present calculation is given as:

H = EPS � nd + PAIR � (P � P )

+
1
2
ELL � (L � L) +

1
2
QQ � (Q �Q)

+ 5OCT � (T3 � T3) + 5HEX � (T4 � T4) ;

(1)

where

P � p =
1
2

24 n(sysy)(0)
0 �

p
5(dydy)(0)

0

o
xn

(ss)(0)
0 �

p
5( ~d ~d)(0)

0

o 35(0)

0

; (2)

L � L = �10
p

3
h
(dy ~d)(1)x (dy ~d)(1)

i(0)

0
; (3)

Q �Q =
p

5

26664
�

(Sy ~d+ dys)(2) �
p

7
2

(dy ~d)(2)
�
x�

(sy ~d+ + ~ds)(2) �
p

7
2

(dy ~d)(2)
�
37775

(0)

0

; (4)

T3 � T3 = �p7
h
(dy ~d)(2)x (dy ~d)(2)

i(0)

0
; (5)

T4 � T4 = 3
h
(dy ~d)(4)x (dy ~d)(4)

i(0)

0
: (6)

In the previous formulas, nd is the number of boson; P �P ,
L �L, Q �Q, T3 �T3 and T4 �T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX is the strengths of the pairing, an-
gular momentum, quadrupole, octupole and hexadecupole in-
teractions.

2.2 Transition rates

The electric quadrupole transition operator [16] employed in
this study is given by:

T (E2) = E2SD � (sy ~d+ dys)(2) +

+
1p
5
E2DD � (dy ~d)(2) : (7)

The reduced electric quadrupole transition rates between
Ii ! If states are given by

B (E2; Ii � If ) =
[< If k T (E2) k Ii >]2

2Ii + 1
: (8)

3 Results and discussion

3.1 The potential energy surface

The potential energy surfaces [17], V (�, ), for thorium iso-
topes as a function of the deformation parameters � and 
have been calculated using :

EN�N� (�; ) = <N�N� ;� jH�� jN�N� ;�> =

= �d(N�N�)�2(1 + �2) + �2(1 + �2)�2�
��kN�N�[4� ( �X� �X�)� cos 3]

	
+

+
�

[ �X� �X��2] +N�(N� � 1)
�

1
10
c0 +

1
7
c2
�
�2
�
;

(9)

where

�X� =
�

2
7

�0:5

X� � = � or � : (10)

The calculated potential energy surfaces, V (�; ), for tho-
rium series of isotopes are presented in Fig. 1. It shows that
all nuclei are deformed and have rotational-like characters.
The prolate deformation is deeper than oblate in all nuclei
except 230Th.The two wells on both oblate and prolate sides
are equals and O(6) characters is expected to the nucleus. The
energy and electromagnetic magnetic transition rates ratio are
not in favor to that assumption and it is treated as a rotational-
like nucleus.
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I+i I+f
224Th 226Th 228Th 230Th 232Th 234Th

01 Exp. 21 ——- 6.85(42) 7.06(24) 8.04(10) 9.28(10) 8.00(70)

01 Theor. 21 4.1568 6.8647 7.0403 8.038 9.2881 8.0559

21 01 0.8314 1.3729 1.4081 1.6076 1.8576 1.6112

22 01 0.0062 0.0001 0.0044 0.0088 0.0105 0.0079

22 02 0.4890 0.8357 0.8647 1.0278 1.2683 1.1659

23 01 0.0127 0.0272 0.0211 0.0157 0.0122 0.0075

23 02 0.1552 0.0437 0.0020 0.0023 0.0088 0.0099

23 03 0.1102 0.0964 0.0460 0.0203 0.0079 0.0023

24 03 0.2896 0.4907 0.5147 0.6271 0.8048 0.7786

24 04 0.1023 0.0709 0.0483 0.0420 0.0385 0.0990

22 21 0.1837 0.1153 0.0599 0.0387 0.0286 0.0174

23 21 0.0100 0.0214 0.0211 0.0198 0.0178 0.0118

23 22 0.8461 1.0683 0.5923 0.2989 0.1538 0.0697

41 21 1.3733 2.0662 2.0427 2.2957 2.6375 2.2835

41 22 0.0908 0.1053 0.0764 0.0579 0.0445 0.0266

41 23 0.0704 0.0325 0.0104 0.0038 0.0018 0.0008

61 41 1.5696 2.2921 2.2388 2.4979 2.8606 2.4745

61 42 0.0737 0.0858 0.0685 0.0585 0.0493 0.0312

61 43 0.0584 0.0404 0.0198 0.0106 0.0061 0.0029

81 61 1.5896 2.3199 2.2720 2.5381 2.9105 2.5220

81 62 0.0569 0.0660 0.0554 0.0511 0.0466 0.0314

81 63 0.0483 0.0421 0.0256 0.0166 0.0109 0.0055

101 81 1.4784 2.2062 2.1948 2.4760 2.8586 2.4899

101 82 0.0448 0.0513 0.0438 0.0422 0.0407 0.0290

Table 2: Values of the theoretical reduced transition probability, B(E2) (in e2 b2).

I�i I+f
224Th 226Th 228Th 230Th 232Th 234Th

11 01 0.0428 0.0792 0.1082 0.1362 0.1612 0.1888

11 02 0.0942 0.0701 0.0583 0.0534 0.0515 0.0495

31 21 0.1607 0.1928 0.2209 0.2531 0.2836 0.3227

31 22 0.0733 0.0829 0.0847 0.0817 0.0768 0.0717

31 23 0.0360 0.0157 0.0054 0.0013 0.0002 0.0000

31 41 0.0233 0.0441 0.0652 0.0884 0.1150 0.1384

31 42 0.0170 0.0285 0.0371 0.0424 0.0460 0.0449

51 41 0.2873 0.3131 0.3363 0.3657 0.3946 —–

51 42 0.0787 0.0834 0.0868 0.0865 0.0835 —–

51 43 0.0160 0.0101 0.0051 0.0020 0.0006 —–

71 61 0.4178 0.4387 0.4581 0.4839 0.5100 —–

71 62 0.0732 0.0757 0.0798 0.0817 0.0812 —–

91 81 0.5532 0.5690 0.5848 0.6070 0.6301 —–

91 82 0.0639 0.0665 0.0707 0.0735 0.0748 —–

Table 3: Values of the theoretical reduced transition probability, B(E1) (in � e2b).
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Fig. 1: Potential Energy surfaces for 224-234Th nuclei.

Fig. 2: Comparison between experimental (Exp.) and theoretical (IBA-1) energy levels in 224-234Th.
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3.2 Energy spectra

IBA-1 model has been used in calculating the energy of the
positive and negative parity low -lying levels of thorium se-
ries of isotopes. In many deformed actinide nuclei the neg-
ative parity bands have been established and these nuclei are
considered as an octupole deformed. A simple means to ex-
amine the nature of the band is to consider the ratio R which
for octupole band , R � 1, and defined as [18]:

R =
E (I + 3)� E (I � 1)NPB
E (I)� E (I � 2)GSB

: (11)

In the present calculations all values of R for thorium se-
ries of isotopes are � 1, and we treated them as octupole
deformed nuclei.

A comparison between the experimental spectra [19–24]
and our calculations, using values of the model parameters
given in Table 1 for the ground and octupole bands, are illus-
trated in Fig. 2. The agreement between the calculated levels
energy and their correspondence experimental values for all
thorium nuclei are slightly higher especially for the higher
excited states. We believe this is due to the change of the
projection of the angular momentum which is due to band
crossing and octupole deformation.

Unfortunately there is no enough measurements of elec-
tromagnetic transition ratesB (E2) orB (E1) for these series
of nuclei. The only measured B (E2; 0+

1 ! 2+
1 )’s are pre-

sented, in Table’s 2,3 for comparison with the calculated val-
ues. The parameters E2SD and E2DD used in the pres-
ent calculations are determined by normalizing the calculated
values to the experimentally known ones and displayed in
Table 1.

For calculating B (E1) and B (E2) electromagnetic tran-
sition rates of intraband and interaband we did not introduce
any new parameters. Some of the calculated values are pre-
sented in Fig. 3 and show bending at N = 136, 142 which
means there is an interaction between the (+ve)GSB and
(�ve) parity octupole bands.

The moment of inertia I and energy parameters ~! are
calculated using equations (12, 13):

2I
~2 =

4I � 2
�E(I ! I � 2)

; (12)

(~!)2 = (I2 � I + 1)
�

�E(I ! I � 2)
(2I � 1)

�2

: (13)

All the plots in Fig. 4 show back bending at angular mo-
mentum I+ = 20 for 230Th. It means, there is a band crossing
and this is confirmed by calculating staggering effect to these
series of thorium nuclei. A disturbance of the regular band
structure has observed not only in the moment of inertia but
also in the decay properties.

Fig. 3: The calculated B(E2)’s for the ground state band of
224-234Th isotopes.

3.3 The staggering

The presence of odd-even parity states has encouraged us to
study staggering effect for 218-230Th series of isotopes [10,
12, 25, 26]. Staggering patterns between the energies of the
GSB and the (�ve) parity octupole band have been calcu-
lated, �I = 1, using staggering function equations (14, 15)
with the help of the available experimental data [19–24].

Stag (I) = 6�E (I)� 4�E (I � 1)� 4�E (I + 1)

+ �E (I + 2) + �E (I � 2) ; (14)
with

�E (I) = E (I + 1)� E (I) : (15)

The calculated staggering patterns are illustrated in Fig. 5,
where we can see the beat patterns of the staggering behavior
which show an interaction between the ground state and the
octupole bands.

3.4 Conclusions

The IBA-1 model has been applied successfully to 224-234Th
isotopes and we have got:

1. The ground state and octupole bands are successfully
reproduced;

2. The potential energy surfaces are calculated and show
rotational behavior to 224-234Th isotopes where they
are mainly prolate deformed nuclei;

3. Electromagnetic transition rates B (E1) and B (E2)
are calculated;

4. Bending for 230Th has been observed at angular mo-
mentum I+ = 20;

5. Staggering effect has been calculated and beat patterns
are obtained which show an interaction between the
ground state and octupole bands;
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Fig. 4: Angular momentum I as a function of the rotational fre-
quency (~!)2 and 2I/~2 as a function of (~!)2 for the GSB of 230Th.

Fig. 5: �I = 1, staggering patterns for the ground state and octupole
bands of 224-232Th isotope.
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Results from two optical-fiber gravitational-wave interferometric detectors are reported.
The detector design is very small, cheap and simple to build and operate. Using two de-
tectors has permitted various tests of the design principles as well as demonstrating the
first simultaneous detection of correlated gravitational waves from detectors spatially
separated by 1.1 km. The frequency spectrum of the detected gravitational waves is
sub-mHz with a strain spectral index a=�1.4�0.1. As well as characterising the wave
effects the detectors also show, from data collected over some 80 days in the latter part
of 2007, the dominant earth rotation effect and the earth orbit effect. The detectors op-
erate by exploiting light speed anisotropy in optical-fibers. The data confirms previous
observations of light speed anisotropy, earth rotation and orbit effects, and gravitational
waves.

1 Introduction

Results from two optical-fiber gravitational-wave interfero-
metric detectors are reported. Using two detectors has per-
mitted various tests of the design principles as well as demon-
strating the first simultaneous detection of correlated grav-
itational waves from detectors spatially separated by 1.1 km.
The frequency spectrum of the detected gravitational waves is
sub-mHz. As well as charactersing the wave effects the detec-
tors also show, from data collected over some 80 days in the
latter part of 2007, the dominant earth rotation effect and the
earth orbit effect. The detectors operate by exploiting light
speed anisotropy in optical-fibers. The data confirms previ-
ous observations [1–4, 6–10] of light speed anisotropy, earth
rotation and orbit effects, and gravitational waves. These ob-
servations and experimental techniques were first understood
in 2002 when the Special Relativity effects and the presence
of gas were used to calibrate the Michelson interferometer
in gas-mode; in vacuum-mode the Michelson interferome-
ter cannot respond to light speed anisotropy [11, 12], as con-
firmed in vacuum resonant-cavity experiments, a modern ver-
sion of the vacuum-mode Michelson interferometer [13]. The
results herein come from improved versions of the prototype
optical-fiber interferometer detector reported in [9], with im-
proved temperature stabilisation and a novel operating tech-
nique where one of the interferometer arms is orientated with
a small angular offset from the local meridian. The detection
of sub-mHz gravitational waves dates back to the pioneer-
ing work of Michelson and Morley in 1887 [1], as discussed
in [16], and detected again by Miller [2] also using a gas-
mode Michelson interferometer, and by Torr and Kolen [6],
DeWitte [7] and Cahill [8] using RF waves in coaxial cables,
and by Cahill [9] and herein using an optical-fiber interfer-

ometer design, which is very much more sensitive than a gas-
mode interferometer, as discussed later.

It is important to note that the repeated detection, over
more than 120 years, of the anisotropy of the speed of light
is not in conflict with the results and consequences of Special
Relativity (SR), although at face value it appears to be in con-
flict with Einstein’s 1905 postulate that the speed of light is
an invariant in vacuum. However this contradiction is more
apparent than real, for one needs to realise that the space and
time coordinates used in the standard SR Einstein formalism
are constructed to make the speed of light invariant wrt those
special coordinates. To achieve that observers in relative mo-
tion must then relate their space and time coordinates by a
Lorentz transformation that mixes space and time coordinates
— but this is only an artifact of this formalism�. Of course
in the SR formalism one of the frames of reference could
have always been designated as the observable one. Such an
ontologically real frame of reference, only in which the speed
of light is isotropic, has been detected for over 120 years,
yet ignored by mainstream physics. The problem is in not
clearly separating a very successful mathematical formalism
from its predictions and experimental tests. There has been a
long debate over whether the Lorentz 3-space and time inter-
pretation or the Einstein spacetime interpretation of observed
SR effects is preferable or indeed even experimentally distin-
guishable.

What has been discovered in recent years is that a dy-
namical structured 3-space exists, so confirming the Lorentz
interpretation of SR, and with fundamental implications for
physics — for physics failed to notice the existence of the

�Thus the detected light speed anisotropy does not indicate a breakdown
of Lorentz symmetry, contrary to the aims but not the outcomes of [13].
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Fig. 1: Schematic layout of the interferometric optical-fiber light-
speed anisotropy/gravitational wave detector. Actual detector is
shown in Fig. 2. Coherent 633 nm light from the a He-Ne Laser is
split into two lengths of single-mode polarisation preserving fibers
by the 2�2 beam splitter. The two fibers take different directions,
ARM1 and ARM2, after which the light is recombined in the 2�2
beam joiner, in which the phase differences lead to interference ef-
fects that are indicated by the outgoing light intensity, which is
measured in the photodiode detector/amplifier (Thorlabs PDA36A
or PDA36A-EC), and then recorded in the data logger. In the ac-
tual layout the fibers make two loops in each arm, but with excess
lengths wound around one arm (not shown) — to reduce effective
fiber lengths so as to reduce sensitivity. The length of one straight
section is 100 mm, which is the center to center spacing of the plas-
tic turners, having diameter = 52 mm, see Fig. 2. The relative travel
times, and hence the output light intensity, are affected by the vary-
ing speed and direction of the flowing 3-space, by affecting differ-
entially the speed of the light, and hence the net phase difference
between the two arms.

main constituent defining the universe, namely a dynamical
3-space, with quantum matter and EM radiation playing a mi-
nor role. This dynamical 3-space provides an explanation for
the success of the SR Einstein formalism. It also provides a
new account of gravity, which turns out to be a quantum ef-
fect [17], and of cosmology [16,18–20], doing away with the
need for dark matter and dark energy.

2 Dynamical 3-space and gravitational waves

Light-speed anisotropy experiments have revealed that a dy-
namical 3-space exists, with the speed of light being c, in vac-
uum, only wrt to this space: observers in motion “through”
this 3-space detect that the speed of light is in general dif-
ferent from c, and is different in different directions�. The dy-
namical equations for this 3-space are now known and involve
a velocity field v(r; t), but where only relative velocities are
observable locally — the coordinates r are relative to a non-
physical mathematical embedding space. These dynamical
equations involve Newton’s gravitational constant G and the
fine structure constant �. The discovery of this dynamical 3-
space then required a generalisation of the Maxwell, Schrö-
dinger and Dirac equations. The wave effects already de-
�Many failed experiments supposedly designed to detect this anisotropy

can be shown to have design flaws.

Fig. 2: Photograph of a detector showing the optical fibers forming
the two orthogonal arms. See Fig. 1 for the schematic layout. The
2�2 beam splitter and joiner (Thorlabs FC632-50B-FC) are the two
small stainless steel cylindrical tubes. The two FC to FC mating
sleeves (Thorlabs ADAFC1) are physically adjacent. The overall di-
mensions of the metal base plate are 160�160 mm. The 2�2 splitter
and joiner each have two input and two output fibers, with one not
used. Arm 2 is folded over the splitter and joiner, compared to the
schematic layout. The interferometer shown costs approximately
$400.

tected correspond to fluctuations in the 3-space velocity field
v(r; t), so they are really 3-space turbulence or wave effects.
However they are better known, if somewhat inappropriately,
as “gravitational waves” or “ripples” in “spacetime”. Be-
cause the 3-space dynamics gives a deeper understanding of
the spacetime formalism we now know that the metric of the
induced spacetime, merely a mathematical construct having
no ontological significance, is related to v(r; t) according
to [16, 18, 20]

ds2 = dt2 � (dr� v(r; t)dt)2

c2
= g��dx�dx� : (1)

The gravitational acceleration of matter, and of the struc-
tural patterns characterising the 3-space, are given by [16,17]

g =
@v
@t

+ (v � r)v (2)

and so fluctuations in v(r; t) may or may not manifest as
a gravitational force. The general characteristics of v(r; t)
are now known following the detailed analysis of the experi-
ments noted above, namely its average speed, and removing
the earth orbit effect, is some 420�30 km/s, from direction
RA = 5.5�2hr, Dec = 70�10�S — the center point of the
Miller data in Fig. 12b, together with large wave/turbulence
effects. The magnitude of this turbulence depends on the
timing resolution of each particular experiment, and here we
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Fig. 3: (a) Detector 1 (D1) is located inside a sealed air-filled bucket
inside an insulated container (blue) containing some 90 kg of wa-
ter for temperature stabilisation. This detector, in the School of
Chemistry, Physics and Earth Sciences, had an orientation of 5� anti-
clockwise to the local meridian. Cylindrical He-Ne laser (Melles-
Griot 0.5 mW 633 nm 05-LLR-811-230) is located on LHS of bench,
while data logger is on RHS. Photodiode detector/pre-amplifier is lo-
cated atop aluminium plate. (b) Detector 2 (D2) was located 1.1 km
North of D1 in the Australian Science and Mathematics School. This
detector had an orientation of 11� anti-clockwise to the local merid-
ian. The data was logged on a PC running a PoScope USB DSO
(PoLabs http://www.poscope.com).

characterise them at sub-mHz frequencies, showing that the
fluctuations are very large, as also seen in [8].

3 Gravitational wave detectors

To measure v(r; t) has been difficult until now. The early ex-
periments used gas-mode Michelson interferometers, which
involved the visual observation of small fringe shifts as the
relatively large devices were rotated. The RF coaxial ca-
ble experiments had the advantage of permitting electronic
recording of the RF travel times, over 500m [6] and 1.5 km
[7], by means of two or more atomic clocks, although the ex-
periment reported in [8] used a novel technique that enable
the coaxial cable length to be reduced to laboratory size�.
�The calibration of this technique is at present not well understood in

view of recent discoveries concerning the Fresnel drag effect in optical fibers.

Fig. 4: (a) Detectors are horizontally located inside an air-filled
bucket. The plastic bag reduces even further any air movements,
and thus temperature differentials. The blue crystals are silica gel to
reduce moisture. (b) Bucket located inside and attached to bottom
of the insulated container prior to adding water to the container.

The new optical-fiber detector design herein has the advan-
tage of electronic recording as well as high precision because
the travel time differences in the two orthogonal fibers em-
ploy light interference effects, but with the interference ef-
fects taking place in an optical fiber beam-joiner, and so no
optical projection problems arise. The device is very small,
very cheap and easily assembled from readily available
opto-electronic components. The schematic layout of the de-
tector is given in Fig. 1, with a detailed description in the
figure caption. The detector relies on the phenomenon where
the 3-space velocity v(r; t) affects differently the light travel
times in the optical fibers, depending on the projection of
v(r; t) along the fiber directions. The differences in the light
travel times are measured by means of the interference
effects in the beam joiner. The difference in travel times is
given by

�t = k2 Lv2
P

c3
cos
�
2�
�
; (3)

where

k2 =
(n2 � 1)(2� n2)

n
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Fig. 5: D1 photodiode output voltage data (mV), recorded every 5
secs, from 5 successive days, starting September 22, 2007, plotted
against local Adelaide time (UT = local time + 9.5 hrs). Day se-
quence is indicated by increasing hue. Dominant minima and max-
ima is earth rotation effect. Fluctuations from day to day are evident
as are fluctuations during each day — these are caused by wave ef-
fects in the flowing space. Changes in RA cause changes in timing
of min/max, while changes in magnitude are caused by changes in
declination and/or speed. Blurring effect is caused by laser noise.
Same data is plotted sequentially in Fig. 7a.

is the instrument calibration constant, obtained by taking ac-
count of the three key effects: (i) the different light paths, (ii)
Lorentz contraction of the fibers, an effect depending on the
angle of the fibers to the flow velocity, and (iii) the refrac-
tive index effect, including the Fresnel drag effect. Only if
n , 1 is there a net effect, otherwise when n = 1 the various
effects actually cancel. So in this regard the Michelson inter-
ferometer has a serious design flaw. This problem has been
overcome by using optical fibers. Here n= 1.462 at 633 nm is
the effective refractive index of the single-mode optical fibers
(Fibercore SM600, temperature coefficient 5�10�2fs/mm/C).
Here L � 200 mm is the average effective length of the two
arms, and vP (r; t) is the projection of v(r; t) onto the plane
of the detector, and the angle � is that of the projected velocity
onto the arm.

The reality of the Lorentz contraction effect is experimen-
tally confirmed by comparing the 2nd order in v=c Michel-
son gas-mode interferometer data, which requires account be
taken of the contraction effect, with that from the 1st order
in v=c RF coaxial cable travel time experiments, as in De-
Witte [7], which does not require that the contraction effect
be taken into account, to give comparable values for v.

For gas-mode Michelson interferometers k2�n2�1, be-
cause then n� 1+ is the refractive index of a gas. Operat-
ing in air, as for Michelson and Morley and for Miller, n=
= 1.00029, so that k2 = 0.00058, which in particular means
that the Michelson-Morley interferometer was nearly 2000
times less sensitive than assumed by Michelson, who used
Newtonian physics to calibrate the interferometer — that
analysis gives k2 =n3� 1. Consequently the small fringe

Fig. 6: Schematic of earth and spatial flow at approximate local
sidereal times (RA) of 5 hrs and 17 hrs. The detector arms, D, of
D1 and D2 are operated at small offset angles from the local merid-
ian. The long straight lines indicate the spatial flow velocity vector,
with declination �. The large earth-rotation induced minima/maxima
are caused by the inclination angle varying from a maximum � to a
minimum �, respectively. Wave effects are changes in the velocity
vector.

shifts observed by Michelson and Morley actually correspond
to a light speed anisotropy of some 400 km/s, that is, the earth
has that speed relative to the local dynamical 3-space. The
dependence of k on n has been checked [11, 18] by compar-
ing the air gas-mode data against data from the He gas-mode
operated interferometers of Illingworth [3] and Joos [4].

The above analysis also has important implications for
long-baseline terrestrial vacuum-mode Michelson interfero-
meter gravitational wave detectors — they have a fundamen-
tal design flaw and will not be able to detect gravitational
waves.

The interferometer operates by detecting changes in the
travel time difference between the two arms, as given by (3).
The cycle-averaged light intensity emerging from the beam
joiner is given by

I(t) / �
Re(E1 + E2ei!(�+�t))

�2
=

= 2jEj2 cos
�
!(� + �t)

2

�2
�

� a+ b�t : (4)

Here Ei are the electric field amplitudes and have the
same value as the fiber splitter/joiner are 50%–50% types,
and having the same direction because polarisation preserv-
ing fibers are used, ! is the light angular frequency and � is
a travel time difference caused by the light travel times not
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Fig. 7: (a) Plot of 5 days of data from Fig. 5 shown sequentially. The
Fourier Transform of this data is shown in Fig. 12a. (b) Plot shows
data after filtering out earth-rotation frequencies (f < 0.025 mHz)
and laser noise frequencies (f > 0.25 mHz, Log10[0.25] =�0.6).
This shows wave/turbulence effects. Note that the magnitude of the
wave component of the signal is some 10% of full signal in this
bandwidth.

being identical, even when �t = 0, mainly because the var-
ious splitter/joiner fibers will not be identical in length. The
last expression follows because �t is small, and so the detec-
tor operates, hopefully, in a linear regime, in general, unless
� has a value equal to modulo(T ), where T is the light pe-
riod. The main temperature effect in the detector, so long
as a temperature uniformity is maintained, is that � will be
temperature dependent. The temperature coefficient for the
optical fibers gives an effective fractional fringe shift error of
��=T = 3�10�2/mm/C, for each mm of length difference.
The photodiode detector output voltage V (t) is proportional
to I(t), and so finally linearly related to �t. The detector
calibration constants a and b depend on k, � and the laser
intensity and are unknown at present.

4 Data analysis

The data is described in detail in the figure captions.

• Fig. 5 shows 5 typical days of data exhibiting the earth-
rotation effect, and also fluctuations during each day
and from day to day, revealing dynamical 3-space tur-
bulence — essentially the long-sort-for gravitational
waves. It is now known that these gravitational waves

were first detected in the Michelson-Morley 1887 ex-
periment [16], but only because their interferometer
was operated in gas-mode. Fig. 12a shows the fre-
quency spectrum for this data;

• Fig. 7b shows the gravitational waves after removing
frequencies near the earth-rotation frequency. As dis-
cussed later these gravitational waves are predominate-
ly sub-mHz;

• Fig. 8 reports one of a number of key experimental
tests of the detector principles. These show the two
detector responses when (a) operating from the same
laser source, and (b) with only D2 operating in inter-
ferometer mode. These reveal the noise effects coming
from the laser in comparison with the interferometer
signal strength. This gives a guide to the S/N ratio of
these detectors;

• Fig. 9 shows two further key tests: 1st the time delay
effect in the earth-rotation induced minimum caused by
the detectors not being aligned NS. The time delay dif-
ference has the value expected. The 2nd effect is that
wave effects are simultaneous, in contrast to the 1st ef-
fect. This is the first coincidence detection of gravita-
tional waves by spatially separated detectors. Soon the
separation will be extended to much larger distances;

• Figs. 10 and 11 show the data and calibration curves
for the timing of the daily earth-rotation induced min-
ima and maxima over an 80 day period. Because D1 is
orientated away from the NS these times permit the de-
termination of the Declination (Dec) and Right Ascen-
sion (RA) from the two running averages. That the run-
ning averages change over these 80 days reflects three
causes (i) the sidereal time effect, namely that the 3-
space velocity vector is related to the positioning of the
galaxy, and not the Sun, (ii) that a smaller component is
related to the orbital motion of the earth about the Sun,
and (iii) very low frequency wave effects. This analysis
gives the changing Dec and RA shown in Fig. 12b, giv-
ing results which are within 13� of the 1925/26 Miller
results, and for the RA from the DeWitte RF coaxial
cable results. Figs. 10a and 11a also show the turbu-
lence/wave effects, namely deviations from the running
averages;

• Fig. 12a shows the frequency analysis of the data. The
fourier amplitudes, which can be related to the strain
h = v2=2c2, decrease as fa where the strain spectral
index has the value a = �1.4� 0.1, after we allow for
the laser noise.

5 Conclusions

Sub-mHz gravitational waves have been detected and partial-
ly characterised using the optical-fiber version of a Michel-
son interferometer. The waves are relatively large and were
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Fig. 8: Two tests of the detectors. (a) The left plot shows data from
D1 and D2 when co-located, parallel and operating from the same
laser. The data from one has been rescaled to match the data from
the other, as they have different calibrations. Both detectors show
a simultaneous gravitational wave pulse of duration � 0.5 hrs. (b)
The right plot shows data from D2 (blue) and from a direct feed of
the common laser source to the photodiode detector of D1 (red), i.e
bypassing the D1 interferometer. This data has been rescaled so that
high frequency components have the same magnitude, to compen-
sate for different feed amplitudes. The laser-only signal (red) shows
the amplitude and frequency noise level of the laser. The signal from
D2 (blue) shows the same noise effects, but with additional larger
variations — these are wave effects detected by D2 operating in in-
terferometer mode. This data shows that the laser noise is dominant
above approximately 1 mHz.

first detected, though not recognised as such, by Michelson
and Morley in 1887. Since then another 6 experiments
[2,6–9], including herein, have confirmed the existence of this
phenomenon. Significantly three different experimental tech-
niques have been employed, all giving consistent results. In
contrast vacuum-mode Michelson interferometers, with me-
chanical mirror support arms, cannot detect this phenomenon
due to a design flaw. A complete characterisation of the waves
requires that the optical-fiber detector be calibrated for speed,
which means determining the parameter b in (4). Then it will
be possible to extract the wave component of v(r; t) from
the average, and so identify the cause of the turbulence/wave
effects. A likely candidate is the in-flow of 3-space into the
Milky Way central super-massive black hole — this in-flow
is responsible for the high, non-Keplerian, rotation speeds of
stars in the galaxy.

The detection of the earth-rotation, earth-orbit and gravi-
tational waves, and over a long period of history, demonstrate
that the spacetime formalism of Special Relativity has been
very misleading, and that the original Lorentz formalism is
the appropriate one; in this the speed of light is not an invari-
ant for all observers, and the Lorentz-Fitzgerald length con-
traction and the Lamor time dilation are real physical effects
on rods and clocks in motion through the dynamical 3-space,
whereas in the Einstein formalism they are transferred and
attributed to a perspective effect of spacetime, which we now
recognise as having no ontological significance — merely a

Fig. 9: Photodiode data (mV) on October 4, 2007, from de-
tectors D1 (red plot) and D2 (blue plot) operating simultaneously
with D2 located 1.1 km due north of D1. A low-pass FFT filter
(f 6 0.25 mHz, Log10[f (mHz)] 6 �0.6) was used to remove laser
noise. D1 arm is aligned 5� anti-clockwise from local meridian,
while D2 is aligned 11� anti-clockwise from local meridian. The
alig nment offset between D1 and D2 causes the dominant earth-
rotation induced minima to occur at different times, with that of D2
at t = 7.6 hrs delayed by 0.8 hrs relative to D1 at t = 6.8 hrs, as ex-
pected from Figs.10b and 11b for Dec = 77�. This is a fundamental
test of the detection theory and of the phenomena. As well the data
shows a simultaneous sub-mHz gravitational wave correlation at t �
8.8 hrs and of duration � 1 hr. This is the first observed correlation
for spatially separated gravitational wave detectors. Two other wave
effects (at t � 6.5 hrs in D2 and t � 7.3 hrs in D1) seen in one de-
tector are masked by the stronger earth-rotation induced minimum
in the other detector.

mathematical construct, and in which the invariance of the
speed of light is definitional — not observational.
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Fig. 12: (a) Log-Log plot of the frequency spectrum jh(f)j of the
data from the five days shown in Fig. 7a. h(f) is the strain v2=2c2 at
frequency f , normalised to v = 400 km/s at the 24 hr frequency. The
largest component (large red point) is the 24 hr earth rotation fre-
quency. The straight line (blue) is a trend line that suggests that the
signal has two components — one indicated by the trend line having
the form jh(f)j / fa with strain spectral index a = �1.4 � 0.1,
while the second component, evident above 1 mHz, is noise from
the laser source, as also indicated by the data in Fig. 8. (b) Southern
celestial sphere with RA and Dec shown. The 4 blue points show the
results from Miller [2] for four months in 1925/1926. The sequence
of red points show the daily averaged RA and Dec as determined
from the data herein for every 5 days. The 2007 data shows a direc-
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Derivation of Maxwell’s Equations Based on a Continuum Mechanical Model
of Vacuum and a Singularity Model of Electric Charges

Xiao-Song Wang
E-mail: wangxs1999@yahoo.com

The main purpose of this paper is to seek a mechanical interpretation of electromagnetic
phenomena. We suppose that vacuum is filled with a kind of continuously distributed
material which may be called 
(1) substratum. Further, we speculate that the 
(1)
substratum might behave like a fluid with respect to translational motion of large bod-
ies through it, but would still posses elasticity to produce small transverse vibrations.
Thus, we propose a visco-elastic constitutive relation of the 
(1) substratum. Further-
more, we speculate that electric charges are emitting or absorbing the 
(1) substratum
continuously and establish a fluidic source and sink model of electric charges. Thus,
Maxwell’s equations in vacuum are derived by methods of continuum mechanics based
on this mechanical model of vacuum and the singularity model of electric charges.

1 Introduction

Maxwell’s equations in vacuum can be written as [1]

r � E =
�e
�0
; (1)

r� E = �@B
@t

; (2)

r � B = 0 ; (3)

1
�0
r� B = j + �0

@E
@t

; (4)

where E is the electric field vector, B is the magnetic induc-
tion vector, �e is the density field of electric charges,
j is the electric current density, �0 is the dielectric constant
of vacuum, �0 is magnetic permeability of vacuum, t is time,
r = i @@x + j @@y + k @

@z is the Hamilton operator.
The main purpose of this paper is to derive the aforemen-

tioned Maxwell equations in vacuum based on a continuum
mechanics model of vacuum and a singularity model of elec-
tric charges.

The motivation for this paper was looking for a mecha-
nism of electromagnetic phenomena. The reasons why new
mechanical models of electromagnetic fields are interesting
may be summarized as follows.

First, there exists various electromagnetic phenomena
which could not be interpreted by the present theories of elec-
tromagnetic fields, e.g., the spin of an electron [1, 2], the
Aharonov-Bohm effect [3, 4], etc. New theories of of elec-
tromagnetic phenomena may consider these problems from
new sides.

Second, there exists some inconsistencies and inner diffi-
culties in Classical Electrodynamics, e.g., the inadequacy of
the Liéenard-Wiechert potentials [5–7]. New theories of elec-
tromagnetic phenomena may overcome such difficulties.

Third, there exists some divergence problems in Quantum
Electrodynamics [8]. By Dirac’s words, “I must say that I
am very dissatisfied with the situation, because this so-called
good theory does involve neglecting infinities which appear in
its equations, neglecting them in an arbitrary way. This is just
not sensible mathematics”. New theories of electromagnetic
phenomena may open new ways to resolve such problems.

Fourth, since the quantum theory shows that vacuum is
not empty and produces physical effects, e.g., the Casimir ef-
fect [9–12], it is valuable to reexamine the old concept of
electromagnetic aether.

Fifth, from the viewpoint of reductionism, Maxwell’s the-
ory of electromagnetic fields can only be regarded as a phe-
nomenological theory. Although Maxwell’s theory is a field
theory, the field concept is different from that of continuum
mechenics [13–16] due to the absence of a medium. Thus,
from the viewpoint of reductionism, the mechanism of elec-
tromagnetic phenomena is still remaining an unsolved prob-
lem of physics [17].

Sixth, one of the puzzles of physics is the problem of dark
matter and dark energy (refer to, for instance, [18–26]). New
theories of electromagnetic phenomena may provide
new ideas to attack this problem.

Finally, one of the tasks of physics is the unification of the
four fundamental interactions in the Universe. New theories
of electromagnetic phenomena may shed some light on this
puzzle.

To conclude, it seems that new considerations for elec-
tromagnetic phenomena is needed. It is worthy keeping an
open mind with respect to all the theories of electromagnetic
phenomena before the above problems been solved.

Now let us briefly review the long history of the mechan-
ical interpretations of electromagnetic phenomena.

According to E. T. Whittaker [17], Descartes was the first
person who brought the concept of aether into science by sug-
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gested mechanical properties to it. Descartes believed that ev-
ery physical phenomenon could be interpreted in the frame-
work of a mechanical model of the Universe. William Wat-
son and Benjamin Franklin (independently) constructed the
one-fluid theory of electricity in 1746 [17]. H. Cavendish at-
tempted to explain some of the principal phenomena of elec-
tricity by means of an elastic fluid in 1771 [17]. Not con-
tented with the above mentioned one-fluid theory of electric-
ity, du Fay, Robert Symmer and C. A. Coulomb developed a
two-fluid theory of electricity from 1733 to 1789 [17].

Before the unification of both electromagnetic and light
phenomena by Maxwell in 1860’s, light phenomena were in-
dependent studied on the basis of Descartes’ views for the
mechanical origin of Nature. John Bernoulli introduced a flu-
idic aether theory of light in 1752 [17]. Euler believed in
an idea that all electrical phenomena are caused by the same
aether that moves light. Furthermore, Euler attempted to ex-
plain gravity in terms of his single fluidic aether [17].

In 1821, in order to explain polarisation of light,
A. J. Frensnel proposed an aether model which is able to
transmit transverse waves. After the advent of Frensnel’s
successful transverse wave theory of light, the imponderable
fluid theories were abandoned. In the 19th century, Fren-
snel’s dynamical theory of a luminiferous aether had an im-
portant influence on the mechanical theories of Nature [17].
Inspired by Frensnel’s luminiferous aether theory, numerous
dynamical theories of elastic solid aether were established by
Stokes, Cauchy, Green, MacCullagh, Boussinesq, Riemann
and William Thomson. (See, for instance, [17]).

Thomson’s analogies between electrical phenomena and
elasticity helped to James Clark Maxwell to establish a me-
chanical model of electrical phenomena [17]. Strongly im-
pressed by Faraday’s theory of lines of forces, Maxwell com-
pared the Faraday lines of forces with the lines of flow of a
fluid. In 1861, in order to obtain a mechanical interpretation
of electromagnetic phenomena, Maxwell established a me-
chanical model of a magneto-electric medium. The Maxwell
magneto-electric medium is a cellular aether, looks like a
honeycomb. Each cell of the aether consists of a molecu-
lar vortex surrounded by a layer of idle-wheel particles. In a
remarkable paper published in 1864, Maxwell established a
group of equations, which were named after his name later,
to describe the electromagnetic phenomena.

In 1878, G. F. FitzGerald compared the magnetic force
with the velocity in a quasi-elastic solid of the type first sug-
gested by MacCullagh [17]. FitzGerald’s mechanical model
of such an electromagnetic aether was studied by A. Sommer-
feld, by R. Reiff and by Sir J. Larmor later [17].

Because of some dissatisfactions with the mechanical
models of an electromagnetic aether and the success of the
theory of electromagnetic fields, the mechanical world-view
was removed with the electromagnetic world-view gradually.
Therefore, the concepts of a luminiferous aether and an elas-
tic solid aether were removed with the concepts of an electro-

magnetic aether or an electromagnetic field. This paradigm
shift in scientific research was attributed to many scientists,
including Faraday, Maxwell, Sir J. Larmor, H. A. Lorentz,
J. J. Thomson, H. R. Hertz, Ludwig Lorenz, Emil Wiechert,
Paul Drude, Wilhelm Wien, etc. (See, for instance, [17].)

In a remarkable paper published in 1905, Einstein aban-
doned the concept of aether [27]. However, Einstein’s asser-
tion did not cease the exploration of aether (refer to, for in-
stance, [17,28–37,68,69]). Einstein changed his attitude later
and introduced his new concept of aether [38, 39]. In 1979,
A. A. Golebiewska-Lasta observed the similarity between the
electromagnetic field and the linear dislocation field [28].
V. P. Dmitriyev have studied the similarity between the elec-
tromagnetism and linear elasticity since 1992 [32,35,37,40].
In 1998, H. Marmanis established a new theory of turbu-
lence based on the analogy between electromagnetism and
turbulent hydrodynamics [34]. In 1998, D. J. Larson derived
Maxwell’s equations from a simple two-component solid-
mechanical aether [33]. In 2001, D. Zareski gave an elas-
tic interpretation of electrodynamics [36]. I regret to admit
that it is impossible for me to mention all the works related to
this field of history.

A. Martin and R. Keys [41–43] proposed a fluidic cos-
monic gas model of vacuum in order to explain the physical
phenomena such as electromagnetism, gravitation, Quantum
Mechanics and the structure of elementary particles.

Inspired by the above mentioned works, we show that
Maxwell’s equations of electromagnetic field can be derived
based on a continuum mechanics model of vacuum and a sin-
gularity model of electric charges.

2 Clues obtained from dimensional analysis

According to Descartes’ scientific research program, which
is based on his views about the mechanical origin of Nature,
electromagnetic phenomena must be (and can be) interpreted
on the basis of the mechanical motions of the particles of
aether.

Therefore, all the physical quantities appearing in the the-
ory of electromagnetic field should be mechanical quantities.

Thus, in order to construct a successful mechanical model
of electromagnetic fields, we should undertake a careful di-
mensional analysis (refer to, for instance, [44]) for physical
quantities in the theory of electromagnetism (for instance,
electric field vector E, magnetic induction vector B, the den-
sity field of electric charges �e, the dielectric constant of vac-
uum �0, the magnetic permeability of vacuum �0, etc.).

It is known that Maxwell’s equations (1-4) in vacuum can
also be expressed as [1]

r2�+
@
@t

(r � A) = ��e
�0
; (5)

r2A�r(r � A)� �0�0
@
@t

�
r�� @A

@t

�
= �j ; (6)
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where � is the scalar electromagnetic potential, A is the vec-
tor electromagnetic potential, r2 = @2

@x2 + @2

@y2 + @2

@z2 is the
Laplace operator.

In 1846, W. Thomson compared electric phenomena with
elasticity. He pointed out that the elastic displacement u of
an incompressible elastic solid is a possible analogy to the
vector electromagnetic potential A [17].

Noticing the similarity between the Eq. (6) and the equa-
tion (39) of momentum conservation of elastic solids, it is
natural to judge that vacuum is filled with a kind of elastic
substratum. Further, we may say that the dimension of the
electromagnetic vector potential A of such an elastic substra-
tum is the same that of the displacement vector u of an elastic
solid. Thus, the dimension of the vector electromagnetic po-
tential A of the elastic substratum is [L0M0T 0], where L, M
and T stands for the dimensions of length, mass, and time,
respectively. Therefore, we can determine the dimensions of
the rest physical quantities of the theory of electromagnetism,
for instance, the electric field vector E, the magnetic induc-
tion vector B, the electric charge qe, the dielectric constant
of vacuum �0, the magnetic permeability of vacuum �0, etc.
For instance, the dimension of an electric charge qe should be
[L0M1T�1].

Inspired by this clue, we are going to produce, in the next
Sections, an investigation in this direction.

3 A visco-elastic continuum model of vacuum

The purpose of this Section is to establish a visco-elastic con-
tinuum mechanical model of vacuum.

In 1845–1862, Stokes suggested that aether might behave
like a glue-water jelly [45–47]. He believed that such an
aether would act like a fluid on the transit motion of large
bodies through it, but would still possessing elasticity to pro-
duce a small transverse vibration.

Following Stokes, we propose a visco-elastic continuum
model of vacuum.
Assumption 1. Suppose that vacuum is filled with a kind of
continuously distributed material.

In order to distinguish this material with other substra-
tums, we may call this material as 
(1) substratum, for con-
venience. Further, we may call the particles that constitute
the 
(1) substratum as 
(1) particles (for convenience).

In order to construct a continuum mechanical theory of
the 
(1) substratum, we should take some assumptions based
on the experimental data about the macroscopic behavior of
vacuum.
Assumption 2. We suppose that all the mechanical quantities
of the 
(1) substratum under consideration, such as the den-
sity, displacements, strains, stresses, etc., are piecewise con-
tinuous functions of space and time. Furthermore, we sup-
pose that the material points of the 
(1) substratum remain
be in one-to-one correspondence with the material points be-
fore a deformation appears.

Assumption 3. We suppose that the material of the 
(1) sub-
stratum under consideration is homogeneous, that is @�

@x =
= @�

@y = @�
@z = @�

@t = 0; where � is the density of the 
(1)
substratum.

Assumption 4. Suppose that the deformation processes of
the 
(1) substratum are isothermal. So we neglect the ther-
mal effects.

Assumption 5. Suppose that the deformation processes are
not influenced by the gradient of the stress tensor.

Assumption 6. We suppose that the material of the 
(1) sub-
stratum under consideration is isotropic.

Assumption 7. We suppose that the deformaton of the 
(1)
substratum under consideration is small.

Assumption 8. We suppose that there are no initial stress
and strain in the body under consideration.

When the 
(1) substratum is subjected to a set of external
forces, the relative positions of the 
(1) particles form the
body displacement.

In order to describe the deformation of the 
(1) substra-
tum, let us introduce a Cartesian coordinate system fo;x;y;zg
or fo; x1; x2; x3g which is static relative to the 
(1) substra-
tum. Now we may introduce a definition to the displacement
vector u of every point in the 
(1) substratum:

u = r� r0; (7)

where r0 is the position of the point before the deformation,
while r is the position after the deformation.

The displacement vector may be written as u = u1i +
+u2j +u3k or u = ui + vj +wk, where i, j, k are three unit
vectors directed along the coordinate axes.

The gradient of the displacement vector u is the relative
displacement tensor ui;j = @ui

@xj .
We decompose the tensor ui;j into two parts, the sym-

metric "ij and the skew-symmetric 
ij (refer to, for instance,
[14, 48, 49])

ui;j =
1
2

(ui;j + uj;i) +
1
2

(ui;j � uj;i) = "ij + 
ij ; (8)

"ij =
1
2

(ui;j + uj;i) ; 
ij =
1
2

(ui;j � uj;i) : (9)

The symmetric tensor "ij manifests a pure deformation of
the body at a point, and is known the strain tensor (refer to,
for instance, [14,48,49]). The matrix form and the component
notation of the strain tensor "ij are

"ij =

0BBBB@
@u
@x

1
2

�
@u
@y + @v

@x

�
1
2

�@u
@z + @w

@x

�
1
2

�
@v
@x + @u

@y

�
@v
@y

1
2

�
@v
@z + @w

@y

�
1
2

�@w
@x + @u

@z

� 1
2

�
@w
@y + @v

@z

�
@w
@z

1CCCCA; (10)
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"ij =

0@ "11 "12 "13
"21 "22 "23
"31 "32 "33

1A : (11)

The strain-displacements equations come from Eq. (10)

"11 =
@u
@x

; "12 = "21 =
1
2

�
@u
@y

+
@v
@x

�
"22 =

@v
@y

; "23 = "32 =
1
2

�
@v
@z

+
@w
@y

�
"33 =

@w
@z

; "31 = "13 =
1
2

�
@w
@x

+
@u
@z

�
9>>>>>>>=>>>>>>>;
: (12)

For convenience, we introduce the definitions of the mean
strain deviator "m and the strain deviator eij as

"m =
1
3

("11 + "22 + "33) ; (13)

eij = "ij � "m =

0@ "11�"m "12 "13
"21 "22�"m "23
"31 "32 "33�"m

1A: (14)

When the 
(1) substratum deforms, the internal forces
arise due to the deformation. The component notation of the
stress tensor �ij is

�ij =

0@ �11 �12 �13
�21 �22 �23
�31 �32 �33

1A : (15)

For convenience, we introduce the definitions of mean
stress �m and stress deviator sij as

�m =
1
3

(�xx + �yy + �zz) ; (16)

sij = �ij � �m =

0@�11��m �12 �13
�21 �22��m �23
�31 �32 �33��m

1A: (17)

Now let us turn to study the constitutive relation.
An elastic Hooke solid responds instantaneously with re-

spect to an external stress. A Newtonian viscous fluid re-
sponds to a shear stress by a steady flow process.

In 19th century, people began to point out that fact that
some materials showed a time dependence in their elastic re-
sponse with respect to external stresses. When a material like
pitch, gum rubber, polymeric materials, hardened cement and
even glass, is loaded, an instantaneous elastic deformation
follows with a slow continuous flow or creep.

Now this time-dependent response is known as viscoelas-
ticity (refer to, for instance, [50–52]). Materials bearing both
instantaneous elastic elasticity and creep characteristics are
known as viscoelastic materials [51,52]. Viscoelastic materi-
als were studied long time ago by Maxwell [51–53], Kelvin,
Voigt, Boltzamann [51, 52, 54], etc.

Inspired by these contributors, we propose a visco-elastic
constitutive relation of the 
(1) substratum.

It is natural to say that the constitutive relation of the 
(1)
substratum may be a combination of the constitutive relations
of the Hooke-solid and the Newtonian-fluid.

For the Hooke-solid, we have the generalized Hooke law
as follows (refer to, for instance, [14, 48, 49, 55]),

�ij = 2G"ij + ���ij ; "ij =
�ij
2G
� 3�
Y
�m �ij ; (18)

where �ij is the Kronecker symbol, �m is the mean stress,
where Y is the Yang modulus, � is the Poisson ratio, G is the
shear modulus, � is Lamé constant, � is the volume change
coefficient. The definition of � is � = "11 + "22 + "33 =
= @u

@x + @v
@y + @w

@z .
The generalized Hooke law Eq. (18) can also be written

as [55]
sij = 2Geij ; (19)

where sij is the stress deviator, eij is the strain deviator.
For the Newtonian-fluid, we have the following constitu-

tive relation
deij
dt

=
1
2�

sij ; (20)

where sij is the stress deviator, deijdt is the strain rate deviator,
� is the dynamic viscocity.

The 
(1) substratum behaves like the Hooke-solid during
very short duration. We therefore differentiate both sides of
Eq. (19), then obtain

deij
dt

=
1

2G
dsij
dt

: (21)

A combination of Eq. (21) and Eq. (20) gives

deij
dt

=
1
2�

sij +
1

2G
dsij
dt

: (22)

We call the materials behaving like Eq. (22) “Maxwell-
liquid” since Maxwell established such a constitutive relation
in 1868 (refer to, for instance, [50–53]).

Eq. (22) is valid only in the case of infinitesimal defor-
mation because the presence of the derivative with respect to
time. Oldroyd recognized that we need a special definition
for the operation of derivation, in order to satisfy the princi-
ple of material frame indifference or objectivity [51,56]. Un-
fortunately, there is no unique definition of such a differential
operation fulfil the principle of objectivity presently [51].

As an enlightening example, let us recall the description
[50] for a simple shear experiment. We suppose

d�t
dt

=
@�t
@t

;
det
dt

=
@et
@t

; (23)

where �t is the shear stress, et is the shear strain.
Therefore, Eq. (22) becomes

@et
@t

=
1
2�

�t +
1

2G
@�t
@t

: (24)
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Integration of Eq. (24) gives

�t = e�G� t
�
�0 + 2G

Z t

0

det
dt

e
G
� dt
�
: (25)

If the shear deformation is kept constant, i.e. @et@t = 0, we
have

�t = �0 e�
G
� t : (26)

Eq. (26) shows that the shear stresses remain in the
Maxwell-liquid and are damped in the course of time.

We see that �
G must have the dimension of time. Now

let us introduce the following definition of Maxwellian relax-
ation time �

� =
�
G
: (27)

Therefore, using Eq. (27), Eq. (22) becomes

sij
�

+
dsij
dt

= 2G
deij
dt

: (28)

Now let us introduce the following hypothesis

Assumption 9. Suppose the constitutive relation of the 
(1)
substratum satisfies Eq. (22).

Now we can derive the the equation of momentum con-
servation based on the above hypotheses 9.

Let T be a characteristic time scale of an observer of the

(1) substratum. When the observer’s time scale T is of the
same order that the period of the wave motion of light, the
Maxwellian relaxation time � is a comparigly large number.
Thus, the first term of Eq. (28) may be neglected. Therefore,
the observer concludes that the strain and the stress of the

(1) substratum satisfy the generalized Hooke law.

The generalized Hooke law (18) can also be written
as [14, 55]

�11 = �� + 2G"11

�22 = �� + 2G"22

�33 = �� + 2G"33

�12 = �21 = 2G"12 = 2G"21

�23 = �32 = 2G"23 = 2G"32

�31 = �13 = 2G"31 = 2G"13

9>>>>>>>>>>>=>>>>>>>>>>>;
; (29)

where �= Y �
(1+�)(1�2�) is Lamé constant, � is the volume

change coefficient. By its definition, �= "11 + "22 + "33 =
= @u

@x + @v
@y + @w

@z .
The following relationship are useful

G =
Y

2(1 + �)
; K =

Y
3(1� 2�)

; (30)

where K is the volume modulus.

It is known that the equations of the momentum conser-
vation are (refer to, for instance, [14, 48, 49, 55, 57, 58]),

@�11

@x
+
@�12

@y
+
@�13

@z
+ fx = �

@2u
@t2

; (31)

@�21

@x
+
@�22

@y
+
@�23

@z
+ fy = �

@2v
@t2

; (32)

@�31

@x
+
@�32

@y
+
@�33

@z
+ fz = �

@2w
@t2

; (33)

where fx, fy and fz are three components of the volume force
density f exerted on the 
(1) substratum.

The tensor form of the equations (31-33) of the momen-
tum conservation can be written as

�ij;j + fi = �
@2ui
@t2

: (34)

Noticing Eq. (29), we write Eqs. (31-33) as

2G
�
@"11

@x
+
@"12

@y
+
@"13

@z

�
+ �

@�
@x

+ fx = �
@2u
@t2

; (35)

2G
�
@"21

@x
+
@"22

@y
+
@"23

@z

�
+ �

@�
@y

+ fy = �
@2v
@t2

; (36)

2G
�
@"31

@x
+
@"32

@y
+
@"33

@z

�
+ �

@�
@z

+ fz = �
@2w
@t2

: (37)

Using Eq. (12), Eqs. (35-37) can also be expressed by
means of the displacement u

Gr2u+(G+�) @
@x

�
@u
@x + @v

@y + @w
@z

�
+fx = � @

2u
@t2

Gr2v+(G+�) @
@y

�
@u
@x + @v

@y + @w
@z

�
+fy = � @

2v
@t2

Gr2w+(G+�) @
@z

�
@u
@x + @v

@y + @w
@z

�
+fz = � @

2w
@t2

9>>>>=>>>>;: (38)

The vectorial form of the aforementioned equations (38)
can be written as (refer to, for instance, [14,48,49,55,57,58]),

Gr2u + (G+ �)r(r � u) + f = �
@2u
@t2

: (39)

When no body force in the 
(1) substratum, Eqs. (39)
reduce to

Gr2u + (G+ �)r(r � u) = �
@2u
@t2

: (40)

From Long’s theorem [48, 59], there exist a scalar func-
tion  and a vector function R such that u is represented by

u = r +r� R (41)

and  and R satisfy the following wave equations

r2 � 1
cl

@2 
@t2

= 0 ; (42)

r2R� 1
ct

@2R
@t2

= 0 ; (43)
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where cl is the velocity of longitudinal waves, ct is the veloc-
ity of transverse waves. The definitions of these two elastic
wave velocities are (refer to, for instance, [48, 49, 57, 58]),

cl =

s
�+ 2G
�

; ct =

s
G
�
: (44)

 and R is usually known as the scalar displacement potential
and the vector displacement potential, respectively.

4 Definition of point source and sink

If there exists a velocity field which is continuous and finite
at all points of the space, with the exception of individual
isolated points, then, usually, these isolated points are called
velocity singularities. Point sources and sinks are examples
of such velocity singularities.
Assumption 10. Suppose there exists a singularity at a point
P0 = (x0; y0; z0) in a continuum. If the velocity field of the
singularity at a point P = (x; y; z) is

v(x; y; z; t) =
Q

4�r2 r̂; (45)

where r =
p

(x� x0)2 + (y � y0)2 + (z � z0)2, r̂ is the
unit vector directed outward along the line from the singular-
ity to this point P = (x; y; z), we call such a singularity a
point source in the case of Q > 0 or a point sink in the case
of Q < 0. Here Q is called the strength of the source or sink.

Suppose that a static point source with the strength Q lo-
cates at the origin (0; 0; 0). In order to calculate the volume
leaving the source per unit of time, we may enclose the source
with an arbitrary spherical surface S of the radius a. Calcula-
tion shows thatZZ

S
 u � n dS =

ZZ
S
 Q

4�a2 r̂ � n dS = Q ; (46)

where n is the unit vector directed outward along the line from
the origin of the coordinates to the field point
(x; y; z). Equation (46) shows that the strength Q of a source
or sink evaluates the volume of the fluid leaving or entering a
control surface per unit of time.

For the case of continuously distributed point sources or
sinks, it is useful to introduce a definition for the volume den-
sity �s of point sources or sinks. The definition is

�s = lim4V!0

4Q
4V ; (47)

where4V is a small volume,4Q is the sum of the strengthes
of all the point sources or sinks in the volume4V .

5 A point source and sink model of electric charges

The purpose of this Section is to propose a point source and
sink model of electric charges.

Let T be the characteristic time of a observer of an elec-
tric charge in the 
(1) substratum. We may suppose that the
observer’s time scale T is very large to the Maxwellian relax-
ation time � . So the Maxwellian relaxation time � is a rel-
atively small, and the stress deviator sij changes very slow.
Thus, the second term in the left side of Eq. (28) may be ne-
glected. For such an observer, the constitutive relation of the

(1) substratum may be written as

sij = 2�
deij
dt

: (48)

The observer therefore concludes that the 
(1) substra-
tum behaves like a Newtonian-fluid on his time scale.

In order to compare fluid motions with electric fields,
Maxwell introduced an analogy between sources or sinks and
electric charges [17].

Einstein, Infeld and Hoffmann introduced an idea by
which all particles may be looked as singularities in fields
[60, 61].

Recently [62], we talked that the universe may be filled
with a kind fluid which may be called “tao”. Thus, Newton’s
law of gravitation is derived by methods of hydrodynamics
based on a point sink flow model of particles.

R. L. Oldershaw talked that hadrons may be considered
as Kerr-Newman black holes if one uses appropriate scaling
of units and a revised gravitational coupling factor [63].

Inspired by the aforementioned works, we introduce the
following

Assumption 11. Suppose that all the electric charges in the
Universe are the sources or sinks in the 
(1) substratum. We
define such a source as a negative electric charge. We define
such a sink as a positive electric charge. The electric charge
quantity qe of an electric charge is defined as

qe = � kQ�Q ; (49)

where � is the density of the 
(1) substratum, Q is called the
strength of the source or sink, kQ is a positive dimensionless
constant.

A calculation shows that the mass m of an electric charge
is changing with time as

dm
dt

= � �Q =
qe
kQ

; (50)

where qe is the electric charge quantity of the electric charge.
We may introduce a hypothesis that the masses of electric

charges are changing so slowly relative to the time scaler of
human beings that they can be treaten as constants approxi-
mately.

For the case of continuously distributed electric charges,
it is useful to introduce the following definition of the volume
density �e of electric charges

�e = lim4V!0

4qe
4V ; (51)
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where4V is a small volume,4qe is the sum of the strengthes
of all the electric charges in the volume4V .

From Eq. (47), Eq. (49) and Eq. (51), we have

�e = � kQ��s : (52)

6 Derivation of Maxwell’s equations in vacuum

The purpose of this Section is to deduce Maxwell’s equations
based on the aforementioned visco-elastic continuum model
of vacuum and the singularity model of electric charges.

Now, let us deduce the continuity equation of the 
(1)
substratum from the mass conservation. Consider an arbitrary
volume V bounded by a closed surface S fixed in space. Sup-
pose that there are electric charges continuously distributed
in the volume V . The total mass in the volume V is

M =
ZZZ

V
� dV ; (53)

where � is the density of the 
(1) substratum.
The rate of the increase of the total mass in the vol-

ume V is @M
@t

=
@
@t

ZZZ
V
�dV : (54)

Using the Ostrogradsky–Gauss theorem (refer to, for in-
stance, [16, 64–67]), the rate of the mass outflow through the
surface S isZZ

S
 �(v � n)dS =

ZZZ
V
r � (� v)dV ; (55)

where v is the velocity field of the 
(1) substratum.
The definition of the velocity field v is

vi =
@ui
@t

; or v =
@u
@t
: (56)

Using Eq. (52), the rate of the mass created inside the
volume V is ZZZ

V
��s dV =

ZZZ
V
� �e
kQ

dV: (57)

Now according to the principle of mass conservation, and
making use of Eq. (54), Eq. (55) and Eq. (57), we have

@
@t

ZZZ
V
� dV =

ZZZ
V
� �e
kQ

dV �
ZZZ

V
r � (� v) dV: (58)

Since the volume V is arbitrary, from Eq. (58) we have

@�
@t

+r � (� v) = � �e
kQ

: (59)

According to Assumption 3, the 
(1) substratum is ho-
mogeneous, that is @�

@x = @�
@y = @�

@z = @�
@t = 0. Thus, Eq. (59)

becomes
r � v = � �e

kQ�
: (60)

According to Assumption 11 and Eq. (50), the masses
bearing positive electric charges are changing since the
strength of a sink evaluates the volume of the 
(1) substra-
tum entering the sink per unit of time. Thus, the momentum
of a volume element 4V of the 
(1) substratum containing
continuously distributed electric charges, and moving with an
average speed ve, changes. The increased momentum 4P
of the volume element 4V during a time interval 4t is the
decreased momentum of the continuously distributed electric
charges contained in the volume element 4V during a time
interval4t, that is,

4P = �(�s4V4t) ve = � �e
kQ
4V4t ve : (61)

Therefore, the equation of momentum conservation
Eq. (39) of the 
(1) substratum should be changed as

Gr2u + (G+ �)r(r � u) + f = �
@2u
@t2
� �eve

kQ
: (62)

In order to simplify the Eq. (62), we may introduce an
additional assumption as

Assumption 12. We suppose that the 
(1) substratum is al-
most incompressible, or we suppose that � is a sufficient small
quantity and varies very slow in the space so that it can be
treaten as �= 0.

From Assumption 12, we have

r � u =
@u
@x

+
@v
@y

+
@w
@z

= � = 0 : (63)

Therefore, the vectorial form of the equation of momen-
tum conservation Eq. (62) reduces to the following form

Gr2u + f = �
@2u
@t2
� �eve

kQ
: (64)

According to the Stokes-Helmholtz resolution theorem
(refer to, for instance, [48, 57]), which states that every suf-
ficiently smooth vector field may be decomposed into irrota-
tional and solenoidal parts, there exist a scalar function  and
a vector function R such that u is represented by

u = r +r� R: (65)

Now let us introduce the definitions

r� = kE
@
@t

(r ) ; A = kE r� R ; (66)

E = � kE @u
@t
; B = kE r� u ; (67)

where � is the scalar electromagnetic potential, A is the vec-
tor electromagnetic potential, E is the electric field intensity,
B is the magnetic induction, kE is a positive dimensionless
constant.

From Eq. (65), Eq. (66) and Eq. (67), we have

E = �r�� @A
@t
; B = r� A (68)
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and

r� E = �@B
@t

; (69)

r � B = 0 : (70)

Based on Eq. (66) and noticing that

r2u = r(r � u)�r� (r� u) ; (71)

r2A = r(r � A)�r� (r� A) ; (72)

and r � u = 0,r � A = 0, we have

kE r2u = r2A : (73)

Therefore, using Eq. (73), Eq. (64) becomes

G
kE
r2A + f = �

@2u
@t2
� �eve

kQ
: (74)

Using Eq. (72), Eq. (74) becomes

� G
kE
r� (r� A) + f = �

@2u
@t2
� �eve

kQ
: (75)

Now using Eq. (68), Eq. (75) becomes

� G
kE
r� B + f = � �

kE
@E
@t
� �eve

kQ
: (76)

It is natural to say that there are no other body forces or
surface forces exerted on the 
(1) substratum. Thus, we have
f = 0. Therefore, Eq. (76) becomes

kQG
kE

r� B =
kQ�
kE

@E
@t

+ �eve : (77)

Now let us introduce the following definitions

j = �eve ; �0 =
kQ�
kE

;
1
�0

=
kQG
kE

: (78)

Therefore, Eq. (77) becomes

1
�0
r� B = j + �0

@E
@t

: (79)

Noticing Eq. (67) and Eq. (78), Eq. (60) becomes

r � E =
�e
�0
: (80)

Now we see that Eq. (69), Eq. (70), Eq. (79) and Eq. (80)
coincide with Maxwell’s equations (1–4).

7 Mechanical interpretation of electromagnetic waves

It is known that, from Maxwell’s equations (1-4), we can ob-
tain the following equations (refer to, for instance, [1])

r2E� 1
�0�0

@2E
@t2

=
1
�0
r�e + �0

@j
@t
; (81)

r2H� 1
�0�0

@2H
@t2

= � 1
�0
r� j : (82)

Eq. (81) and Eq. (82) are the electromagnetic wave equa-
tions with sources in the 
(1) substratum. In the source free
region where �e = 0 and j = 0, the equations reduce to the
following equations

r2E� 1
�0�0

@2E
@t2

= 0 ; (83)

r2H� 1
�0�0

@2H
@t2

= 0 : (84)

Eq. (83) and Eq. (84) are the electromagnetic wave equations
without the sources in the 
(1) substratum.

From Eq. (83), Eq. (84) and Eq. (78), we see that the ve-
locity c0 of electromagnetic waves in vacuum is

c0 =
1p�0�0

=
r
G
� : (85)

From Eq. (44) and Eq. (85), we see that the velocity c0
of electromagnetic waves in the vacuum is the same as the
velocity ct of the transverse elastic waves in the 
(1) sub-
stratum.

Now we may regard electromagnetic waves in the vacuum
as the transverse waves in the 
(1) substratum. This idea was
first introduced by Frensnel in 1821 [17].

8 Conclusion

We suppose that vacuum is not empty and may be filled with
a kind continuously distributed material called 
(1) substra-
tum. Following Stokes, we propose a visco-elastic constitu-
tive relation of the 
(1) substratum. Following Maxwell, we
propose a fluidic source and sink model of electric charges.
Thus, Maxwell’s equations in vacuum are derived by methods
of continuum mechanics based on this continuum mechan-
ical model of vacuum and the singularity model of electric
charges.

9 Discussion

Many interesting theoretical, experimental and applied prob-
lems can be met in continuum mechanics, Classical Electro-
dynamics, Quantum Electrodynamics and also other related
fields of science involving this theory of electromagnetic phe-
nomena. It is an interesting task to generalize this theory of
electromagnetic phenomena in the static 
(1) substratum to
the case of electromagnetic phenomena of moving bodies.
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On the Geometry of Background Currents in General Relativity

Indranu Suhendro
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In this preliminary work, we shall reveal the intrinsic geometry of background currents,
possibly of electromagnetic origin, in the space-time of General Relativity. Drawing a
close analogy between the object of our present study and electromagnetism, we shall
show that there exists an inherent, fully non-linear, conservative third-rank radiation
current which is responsible for the irregularity in the curvature of the background
space(-time), whose potential (generator) is of purely geometric origin.

1 Introduction

Herein we attempt to study, in a way that has never been fully
explored before, the nature of background radiation fields
from a purely geometric point of view. One may always ex-
pect that empty (matter-free) regions in a space(-time) of non-
constant sectional curvature are necessarily filled with some
kind of pure radiation field that may be associated with a class
of null electromagnetic fields. As is common in practice, their
description must therefore be attributed to the Weyl tensor
alone, as the only remaining geometric object in emptiness
(with the cosmological constant neglected). An in-depth de-
tailed elaboration on the nature of the physical vacuum and
emptiness, considering space(-time) anisotropy, can be seen
in [6, 7].

Our present task is to explore the geometric nature of the
radiation fields permeating the background space(-time). As
we will see, the thrilling new aspect of this work is that our
main stuff of this study (a third-rank background current and
its associates) is geometrically non-linear and, as such, it can-
not be gleaned in the study of gravitational radiation in weak-
field limits alone. Thus, it must be regarded as an essential
part of Einstein’s theory of gravity.

Due to the intended concise nature of this preliminary
work, we shall leave aside the more descriptive aspects of
the subject.

2 A third-rank geometric background current in a gen-
eral metric-compatible manifold

At first, let us consider a general, metric-compatible manifold
MD of arbitrary dimension D and coordinates x�. We may
extract a third-rank background current from the curvature as
follows:

J��� = J�[��] = r�R���� ;
where square brackets on a group of indices indicate anti-
symmetrization (similarly, round brackets will be used to in-
dicate symmetrization). Of course, r is the covariant deriva-
tive, and, with @� = @

@ x� ,

R���� = @����� � @����� + �����
�
�� � ��������

are the usual components of the curvature tensor R of the
metric-compatible connection � whose components are
given by

���� =
1
2
g�� (@�g�� � @�g�� + @�g��) + ��[��]�

� g�� �g����[��] + g����[��]

�
:

Here g�� are the components of the fundamental sym-
metric metric tensor g and ��[��] are the components of the
torsion tensor. The (generalized) Ricci tensor and scalar are
then given, as usual, by the contractions R�� =R���� and
R=R��, respectively.

We may introduce the traceless Weyl curvature tensor W
through the decomposition

R��� = K�
�� +

+
1

D � 2
�
���R� + g�R

�
� � ��R�� � g��R�� ;

K�
�� = W�

�� +

+
1

(D � 1) (D � 2)
�
�� g�� � ���g��R ;

K�� = K(��) = K�
��� = � 1

D � 2
g��R ;

for which D> 2. In particular, we shall take into account the
following useful relation:

R���R
��� = W�

��W
��� +

+
1

D � 2
�
K� �

� �R
��+K����R���K����R[��]

�
+

+
1

D�2
�
2RR��+g��R��R���R��R���R �

� R
���+

+
2

D�2

�
R(��)R[�

�] +R
(��)R �

� �R��R(��)
��

� 2
(D�2)2 RR

�� :
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Now, for an arbitrary tensor field T , we have, as usual,

(r�r� �r�r�)T���������� =

= R����T
�����
����� +R����T

�����
����� + � � � �R����T���������� �

�R����T���������� � 2��[��]r�T���������� :

For a complete set of general identities involving the cur-
vature tensor R and their relevant physical applications in
Unified Field Theory, see [1–5].

At this point, we can define a second-rank background
current density (field strength) f through

f�� = f [��] = r�J��� = r�r�R���� = �r[�r�]R���� :

An easy calculation gives, in general,

f�� = �1
2
�
R���R

��� �R���R���� �
�R[��]R���� � ��[��]r�R���� :

In analogy to the electromagnetic source, we may define
a first-rank current density through

j� = r�f�� :
Then, a somewhat lengthy but straightforward calculation

shows that
r� j� = R[��]f�� + ��[��]r�f�� :

We may also define the field strength f through a sixth-
rank curvature tensor F whose components are given by

F������ = F[��][��]�� =

=
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

��R����R���� :
where R���� = R���� .

If we define a second-rank anti-symmetric tensor B by

B�� = F ��
���� =

=
1
2
�
R���R��� �R���R�����R����R[��] ;

we then obtain

f�� = B�� + ��[��]r�R���� ;
such that in the case of vanishing torsion, the quantities f and
B are completely equivalent.

3 A third-rank radiation current relevant to General
Relativity

Having defined the basic geometric objects of our theory, let
us adhere to the standard Riemannian geometry of General
Relativity in which the torsion vanishes, that is ��[��] = 0, and
so the connection is the symmetric Levi-Civita connection.
However, let us also take into account discontinuities in the
first derivatives of the components of the metric tensor in or-
der to take into account discontinuity surfaces correspond-
ing to any existing background energy field. As we will see,
we shall obtain a physically meaningful background current
which is strictly conservative.

Now, in connection with the results of the preceding sec-
tion, if we employ the simplified relation (which is true in the
absence of torsion)

R���R
��� = W�

��W
��� +

+
1

D � 2
�
K� �

� � R
�� +K����R��

�
+

+
1

D � 2
�
2RR�� + g��R��R�� � 4R��R

��� �
� 2

(D � 2)2 RR
�� ;

as well as the relations

K�
��K

��� = W�
��W

��� +
1

(D�1) (D�2)2 g
��R2;

K����R�� = W����R�� +

+
1

(D � 1) (D � 2)
(R�� � g��R)R ;

we obtain the desired relation

f�� = �1
2
�
W�

��W
��� �W �

��W
�����

� 1
D � 2

�
W� �

� � �W � �
� �

�
R�� :

If the metric tensor is perfectly continuous, it is obvious
that

f�� = 0 :

In deriving this relation we have used the symmetry
W���� =W���� . This shows that, in the presence of met-
ric discontinuity, the field strength f depends on the Weyl
curvature alone which is intrinsic to the background space(-
time) only when matter and non-null electromagnetic fields
are absent. We see that, in spaces of constant sectional cur-
vature, we will strictly have J���= 0 and f��= 0 since the
Weyl curvature vanishes therein. In other words, in the sense
of General Relativity, the presence of background currents is
responsible for the irregularity (anisotropy) in the curvature
of the background space(-time). Matter, if not elementary
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particles, in this sense, can indeed be regarded as a form of
perturbation with respect to the background space(-time).

Furthermore, it is now apparent that

J��� + J��� + J��� = 0 :

This relation is, of course, reminiscent of the usual Bian-
chi identity satisfied by the components of the Maxwellian
electromagnetic field tensor.

Also, we obtain the conservation law

r�j� = 0 :

which becomes trivial when the metric is perfectly continu-
ous.

Hence, the formal correspondence between our present
theory and the ordinary theory of electromagnetism may be
completed, in the simplest way, through the relation

J��� = r�R���� = r���� ;

where the anti-symmetric field tensor � given by

��� = @�A� � @�A�
plays a role similar to that of the electromagnetic field
strength. However, it should be emphasized that it exists in
General Relativity’s fully non-linear regime. In addition, it
vanishes identically in the absence of curvature anisotropy.
Interestingly, if one is willing to regard electromagnetism as
a kind of non-linear gravity, one may alternatively regard �
as being the complete equivalent of Maxwell’s electromag-
netic field strength. However, we shall not further pursue this
interest here.

Furthermore, we obtain the relation

f�� = ���� ;

where �=r�r�. That is, the wave equation

���� = �1
2
�
W���W��

� �W���W��
�
��

� 1
D � 2

(W���� �W����)R�� :

In the absence of metric discontinuity, we obtain

���� = 0 :

Let us now introduce a vector potential � such that the
curl of which gives us the field strength f . Instead of writ-
ing f�� = @���� @��� and instead of expressing the field
strength f in terms of the Weyl tensor, let us write its compo-
nents in the following equivalent form:

f�� = �1
2
�
R���R��� �R���R���� =

= r��� �r��� :

In order for the potential � to be purely geometric, we
shall have

r��� = �1
2
R���R��� ;

from which an “equation of motion” follows somewhat ef-
fortlessly:

D��
Ds

= �1
2
R���R���

dx�

ds
;

where D��
Ds = dx�

ds r���.
Note that, in the absence of metric discontinuity, the vec-

tor potential � is a mere gradient of a smooth scalar field �:
�� = r�� .

Now, it remains to integrate the equation

@��� = �1
2
R���R��� + ������

by taking a closed contour P associated with the surface area
dS spanned by infinitesimal displacements in two different
directions, that is,

dS�� = d1x�d2x� � d1x�d2x� :

An immediate effect of this closed-loop integration is that,
by using the generally covariant version of Stokes’ theorem
and by explicitly assuming that the integration factor Z
given by

Z�� =
1
2

ZZ

S

�r����� �r�����
�
dS�� =

=
1
2

ZZ

S

�
R���� + �������� � ��������

�
dS�� =

=
1
2

ZZ

S

�
R���� + 2��������

�
dS��

does not depend on �, the integral
H
P

������dx� shall indeed
vanish identically.

Hence, we are left with the expression

��� = �1
2

I
P

R���R���dx
� :

By introducing a new integration factor X satisfying
X�� +X�� +X�� = 0 as follows:

X�� = X [��] =
I
P

R���dx
� =

=
1
2

ZZ

S

�r�R��� �r�R����dS�� ;
we obtain, through direct partial integration,

��� = �1
2

�
R���X�� �

Z
X��dR���

�
:
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Simplifying, by keeping in mind that X =X (R; dR), we
finally obtain

��� =
1
2

Z
R���dX�� :

The simplest desired result of this is none other than

��� =
1
2
R���X�� ;

which, expressed in terms of the Weyl tensor, the Ricci tensor,
and the Ricci scalar, is

���=
1
2
W���X��+

1
D�2

�
X� �

� R���X� �
� R��

�
+

+
1

(D � 1) (D � 2)
X �
� �R :

Hence, through Einstein’s field equation (i.e. through the
energy-momentum tensor T )

R�� = � 8�G
c4

�
T�� � 1

2
g��T

�
;

where G is Newton’s gravitational constant and c is the speed
of light, we may see how the presence of (distributed) matter
affects the potential �.

4 Final remarks

At this point, having outlined our study in brief, it remains
to be seen whether our fully geometric background current
may be associated with any type of conserved material cur-
rent which is already known in the literature. It is also tempt-
ing to ponder, from a purely physical point of view, on the
possibility that the intrinsic curvature of space(-time) owes its
existence to null (light-like) electromagnetic fields or simply
pure radiation fields.

In this case, let the null electromagnetic (pure radiation)
field of the background space(-time) be denoted by ', for
which

'��'�� = 0 :

Then we may express the components of the Weyl ten-
sor as

W���� = '��'�� � '��'�� + '��'�� ;

such that the relation W �
��� = 0 is satisfied.

If this indeed is the case, then we shall have a chance to
better understand how matter actually originates from such a
pure radiation field in General Relativity. This will hopefully
also open a new way towards the full geometrization of matter
in physics.

Finally, as a pure theory of gravitation, the results in the
present work may be compared to those given in [8] and [9],
wherein, based on the theory of chronometric invariants [7], a

new geometric formulation of gravity (which is fully equiva-
lent to the standard form of General Relativity) is presented in
a way very similar to that of the electromagnetic field, based
solely on a second-rank anti-symmetric field tensor.
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E-mail: s.dumitru@unitbv.ro; s.dumitru42@yahoo.com

The argument of twins’ asymmetry, essentially put forward in the common solution of
the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which
the noninertial effects are insignificant. Consequently the respective solution proves
itself as unreliable thing and the Twin Paradox is re-established as an open problem
which require further investigations.

1 Introduction

Undoubtely that, in connection with Special Relativity, one
of the most disputed subjects was (and still remaining) the
so-called the Twin Paradox. Essentially this paradox consists
in a contradiction between time-dilatation (relativistic trans-
formations of time intervals) and the simple belief in sym-
metry regarding the ageing degrees of two relatively moving
twins. The idea of time-dilattation is largely agreed in sci-
entific literature (see [1–5] and references therein) as well
as in various (more or less academic) media. However the
experimental convincingness of the respective idea still re-
mains a subject of interest even in the inverstigations of the
last decades (see for examples [6–9]).

It is notable the fact that, during the last decades, the dis-
putes regarding the Twin Paradox were diminished and dis-
imulated owing to the common solution (CS), which seems
to be accredited with a great and unimpeded popularity. In
the essence, CS argues that the twins are in completely asym-
metric ageing situations due to the difference in the noniner-
tial effects which they feel. Such noninertial effects are con-
nected with the nonuniform motion of only one of the two
twins. Starting from the mentioned argumentation, without
any other major and credible proof, CS states that the Twin
Paradox is nothing but an apparent and fictitious problem.

But even in the situations considered by CS a kind of
symmetry between the twins can be restored if the nonin-
ertial effects are adequately managed. Such a management
is possible if we take into account an asymptotic situation
when the motions of the traveling twin is prevalently uniform
or, in addition, the nonuniform motions are symmetrically
present for both of the twins. Here we will see that the exis-
tence of the mentioned asymptotic situations have major con-
sequences/implications for the reliability of CS. Our search
is done in the Special Relativity approach (without appeals to
General Relativity). This is because we consider such an ap-
proach to be sufficiently accurate/adequate for the situations
under discussion.

In the end we shall conclude that the existence of the
alluded asymptotic situations invalidate the CS and restores
the Twin Paradox as a real (non-apparent, non-fictitious) and
open problem which requires further investigations.

2 Asymptotic situations in which the noninertial effects
are insignificant

In order to follow our project let us reconsider, in a quan-
titative manner, the twins arrangement used in CS. We con-
sider two twins A and B whose proper reference frames are
KA and KB respectively. The situations of the two twins A
and B are reported in comparison with an inertial reference
frame K.

2.1 Discusions about an asymptotic asymmetric situa-
tion

Within the framework of a first approach, we consider the
twin A remaining at rest in the coordinate origin O of the
frame K while the twin B moves forth and back along the
positive part of the x-axis of K. The motion of B passes
throgh the points O, M , N and P whose x-positions are:
xO = 0, xM =D, xN =D+L, xP = 2D+L. The motion
starts and finishes at O, while P is a turning point — i.e.
the velocity of B is zero at O and P . Along the segments
OM and NP the motion is nonuniform (accelerated or de-
celerated) with a time t dependent velocity v(t). On the other
hand, along the segmentMN , the motion is uniform with the
velocity of v0 = const. In the mentioned situation KA coin-
cides with K, while KB moves (nonuniformly or uniformly)
with respect to K. The time variables describing the degrees
of ageeing of the two twins will be indexed respective to A
and B. Also the mentioned time variables will be denoted re-
spective to � and t as they refer to the proper (intrinsic) time
of the considered twin or, alternatively, to the time measured
(estimed) in the reference frame of the other twin. The in-
finitesimal or finite intervals of � and t will be denoted by d�
and dt respectively by �� and �t.

With the menioned specifications, according to the rela-
tivity theory, for the time interval from the start to the finish
of the motion of the twin B, one can write the relations

��A = (�tB)n + (�tB)u ; (1)

��B =
Z

(�tB)n

r
1� v2 (tB)

c2
� dtB + (�tB)u

r
1� v2

0
c2

: (2)
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In these equations the indices n and u refer to the nonuni-
form respectively uniform motions, while c denotes the light
velocity. In (2) it was used the fact (accepted in the relativity
theory [10]) that instantaneously, at any moment of time, an
arbitrarily moving reference frame can be considered as in-
ertial. Because v(tB) 6 v0 6 c, from (1) and (2) a formula
follows:

��A > ��B : (3)

On the other hand, in the framework of a simple concep-
tion (naive belief) these two twins must be in symmetric age-
ing when B returns at O. This means that, according to the
respective conception, the following supposed relation (s.r)
have to be taken into account

��A = ��B (s.r.) : (4)

Moreover, for the same simple conception, by invoking
the relative character of the twins’ motion, the roles of A and
B in (3) might be (formally) inverted. Then one obtains an-
other supposed relation, namely

��A < ��B (s.r.) : (5)

This obvious disagreement between the relativistic for-
mula (3) and the supposed relations (4) and (5) represents
just the Twin Paradox.

For resolving of the Twin Paradox, CS invokes [1–3]
(as essential and unique argument) the assertion that the
twins ageing is completely asymmetric. The respective as-
sertion is argued with an idea that, in the mentioned arrange-
ment of twins, B feels non-null noninertial effects during its
nonuniform motions, while A, being at rest, does not feel
such effects. Based on the alluded argumentation, without
any other major and credible proof, CS rejects the supposed
relations (4) and (5) as unfounded and fictitious. Then, ac-
cording to CS only the relativistic formula (3) must be re-
garded as a correct relation. Consequently CS inferes the
conclusion: the Twin Paradox is nothing but a purely and ap-
parent fictitious problem.

But now we have to notify the fact that CS does not ap-
proach any discussion on the comparative importance (signif-
icance) in the Twin Paradox problem of the respective nonuni-
form and uniform motions. Particularly, it is not taken into
discussions the asymptotic situatios where, comparatively,
the effects of the noninertial motions become insignificant.
Or, it is clear that, as it is considered by CS, the asymmetry of
the twins is generated by the nonuniform motions, while the
uniform motions have nothing to do on the respective asym-
metry. That is why we discuss that the alluded comparative
importance is absolutely necessary. Moreover such a discus-
sion should refer (in a quantitative manner) to the compara-
tive value/ratio of L and D. This is because

(�tB)u =
2L
v0

; (6)

while, on the other hand, (�tB)n depends onD, — e.g. when
the nonuniformity of B motions is caused by constant forces,
the relativity theory gives

(�tB)n =
4v0D

c2
�

1�
q

1� v2
0
c2

� : (7)

Then with the notation � = D
L one obtains

(�tB)n
(�tB)u

= �
2v2

0

c2
�

1�
q

1� v2
0
c2

� � 4� (for v0�c) : (8)

This means that, in the mentioned circumstances, the ratio
� = D

L has a property which gives a quantitative description
to the comparative importance (significance) of the respective
nonuniform and uniform motions. It is natural to consider �
as the bearing the mentioned property in the circumstances
that are more general than those refered in (7) and (8). That
is why we will conduct our discussions in terms of the param-
eter �.

S: The quantitiesD and v0 are considered as bing
nonnull and constant, while L is regarded as an adjustable
quantity. So we can consider situations where � � 1 or even
where � ! 0.

Now let us discuss the cases where � � 1. In such a case the
twin B moves predominantly uniform, and the noninertiel ef-
fects on it are prevalently absent. The twins’ positions are
prevalently symmeric or even become asymptotically symet-
ric when � ! 0. That is why we regard/denote the respective
cases as asymptotic situations. In such situations the role of
the accelerated motions (and of associated noninertial effects)
becomes insignifiant (negligible).

These just alluded situations should be appreciated by
consideration (prevalently or even asymptotically) of Ein-
stein’s posulate of relativity, which states [3] that the inertial
frames of references are equivalent to each other, and they
cannot be distinguished by means of investigation of physical
phenomena. Such an appreciation materializes itself in the
relations

��A � ��B ; (�� 1)

lim
�!0

��A = lim
�!0

��B

9>=>; : (9)

Also, from (1) and (2) one obtains

��B � ��A

r
1� v2

0
c2
< ��A ; (�� 1) : (10)

By taking into account the mentioned Einstein postulate
in (10), the roles of A and B might be inverted and one finds

��A � ��B

r
1� v2

0
c2
< ��B ; (�� 1) : (11)
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Note that, in the framework of the discussed case, the rela-
tions (9) and (11) are not supposed (or fictitious) pieces as (4)
and (5) are, but they are true formulae like (10). This means
that for � � 1 the mentioned arrangement of the twins leads
to a set of incompatible relations (9)–(11). Within CS the
respective incompatibility cannot be avoided by any means.

2.2 Discusions about an asymptotic completely symmet-
ric situation

Now let us consider a new arrangement of the twins as fol-
lows. The twin B preserves exactly his situation previously
presented. On the other hand, the twin A moves forward and
backward in the negative part of the x-axis in K, symmetric
to as B moves with respect to the point O. All the men-
tioned notations remain unchanged as the above. Evidently
that, in the framework of the new arrangement, the situations
of these two twins A and B, as well as their proper frames
KA and KB , are completely symmetric with respect to K.
From this fact, for the time intervals between start and finish
of the motions, it results directly the relation

��A = ��B : (12)

In addition, for asymptotic situations where �� 1, one
obtains

��A = ��B � 2L
v0

r
1� v2

0
c2
; (� � 1) : (13)

On the other hand, by taking into account Einstein’s pos-
tulate of relativity, similarly to the relations (10) and (11) for
the new arrangement in the asymptotic situations (i.e., where
� � 1 and the noninertial effects are insignificant), one finds

��B � ��A

r
1� w2

0
c2

< ��A ; (� � 1) ; (14)

��A � ��B

r
1� w2

0
c2

< ��B ; (� � 1) ; (15)

with
w0 =

2v0

1 + v2
0
c2

: (16)

It should be noted that fact that, with respect to the rel-
ativity theory, the relations (12), (14) and (15) are true for-
mulae: they are not supposed and/or fictitious. On the other
hand, one finds that the mentioned relations are incompatible
to each other. The respective incompatibility cannot be re-
solved or avoided in a rational way by CS whose solely major
argument is the asymmetry of the twins.

3 Some final comments

The above analysed facts show that, in the mentioned
“asymptotic situations”, the noninertial effects are insignif-
icant for the estimation of the time intervals evaluated (felt)

by the two twins. Consequently in such situations the inertial-
noninertial asymmetry between such two twins cannot play a
significant role. Therefore the respective asymmetry cannot
be considered a reliable proof in the resolving of
the Twin Paradox. This means that the CS loses its essential
(and solely) argument. So, the existence of the above men-
tioned asymptotic situations appears as a true incriminating
test for CS.

Regarding to its significance and implications, the men-
tioned test has to be evaluated/examined concurently with the
“approvingly ilustrations” invoked and preached by the sup-
porters of CS. At this point it seems to be of some profit to
remind the Feynmann’s remark [11] that, in fact, a concep-
tion/theory is invalidated (proved to be wrong) by the real
and irrefutable existence of a single incriminating test, indif-
ferently of the number of approving illustrations. Some scien-
tists consider that such a test must be only of experimental but
not of theoretical nature. We think that the role of such tests
can be played also by theoretical consequences rigurously de-
rived from a given conception. So thinking, it is easy to see
that for CS the existence of the above discussed asymptotic
situations has all the characteristics of an irrefutable incrimi-
nating test. The respecrtive existence invalidate the CS which
must be abandoned as a wrong and unreliable approach of the
Twin Paradox.

But even if CS is abandoned the incompatibility regardig
the relations (9)–(11) or/and the formulae (12), (14) and (15)
remains as an unavoidable and intriguing fact. Then what is
the significance and importance of the respective fact? We
think that it restores the Twin Paradox as an authentic un-
solved problem which is still waiting for further investiga-
tions. Probably that such investigations will involve a large
variety of facts/arguments/opinions.

In connection to the alluded further investigations the fol-
lowing first question seems to be non-trivially interesting: can
the investigations on the Twin Paradox be done in a credible
manner withot troubling the Special Theory of Relativity? If a
negative answer, a major importance goes to the second ques-
tion: can the Twin Paradox, restored as mentioned above, be
an incriminating test for the Special Theory of Relativity, in
the sense of the previously noted Feynmann’s remark, or not?
Can the second question be connected to the “sub-title” of the
volume mentioned in the reference [9], or not?

This paper was prepared on the basis of an earlier manu-
script of mine [12].
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The paper presents design, principles of operation, and examples of registrations carried
out by original device developed and constructed by V. N. Smirnov. The device man-
ifested the possibility to register very weak gravitational perturbations of non-seismic
kind both from celestial bodies and from the internal processed in the terrestrial globe.

Given all hypotheses of the possible, do choice for
such one which doesn’t limit your further thinking on
the studied phenomenon. J. C. Maxwell

1 Introduction

At present day, we have many working properly gravitational
wave detectors such as LIGO (USA), GEO-600 (Great Britain
and Germany), VIRGO (Italy), TAMA-300 (Japan), mini-
GRAIL (the Netherlands) and so on. The physical principles
of measurement, on a basis of which all the detectors work,
lie in the theory of deviation of two particles in the field of a
falling gravitational wave meant as a wave of the space met-
ric (so called deformation gravitational waves [1, 2]). The
first of such devices was a solid-body (resonant) detector — a
1.500 kg aluminum pig, which is approximated by two parti-
cles connected by an elastic force (spring). It was constructed
and armed in the end of 1960’s by Joseph Weber, the pioneer
of these measurements [3–5]. Later there were constructed
also free-mass gravitational detectors, built on two mirrors,
distantly located from each other and equipped by a laser
range-finder to measure the distance between them. Once
a gravitational wave falls onto both solid-body or free-mass
detector, the detector should have smallest deformation that
could be registered as piezo-effect in a solid-body detector or
the change of the distance between the mirrors in a free-mass
detector [1]. For instance, LIGO (USA) is a free-mass detec-
tor, while miniGRAIL (the Netherlands) is a solid-body de-
tector built on a 65-cm metallic sphere, cooled down to liquid
Helium. (A spherical solid-body detector is especially good,
because it easily registers the direction of the falling gravita-
tional wave that manifests the source of the gravitational ra-
diation.) A device similar to miniGrail will soon be launched
at Saõ-Paolo, Brasil. Moreover, it is projected a “big Grail”
which mass expects to be 110 tons.

As supposed, the sources of gravitational radiation should
be the explosions of super-novae, stellar binaries, pulsars, and
the other phenomena in the core of which lies the same pro-
cess: two masses, which rotate round the common centre of
inertia, loose the energy of gravitational interaction with time
so shorten the distance between them; the lost energy of grav-

itational interaction exceeds into space with gravitational ra-
diation [1]. In the same time, we may expect the sources of
gravitational radiation existing in not only the far cosmos, but
also in the solar system and even in the Earth. The nearest
cosmic source of gravitational waves should be the system
Earth-Moon. Besides, even motion of tectonic masses should
generate gravitational radiation. Timely registering gravita-
tional radiation produced by such tectonic masses, we could
reach a good possibility for the prediction of earthquakes.

Here we represent a device, which could be considered
as a gravitational wave detector of a new kind, which is a
resonant-dynamic system. The core of such a detector is a
rotating body (made from metal or ceramics) in the state of
negative acceleration. Besides the advantage of the whole
system is that is gives a possibility for easy registration of the
direction of the gravitation wave moved through it.

2 The dynamical scheme of the device

Fig. 1 shows the dynamical scheme of the device, where the
rotating body is a 200 g cylindrical pig made from brass and
shaped as a cup (it is marked by number 1). The rotor is fixed
up on the axis of a micro electrical motor of direct current
(number 2). In the continuation of the axis 3 of the motor
a thick disc made from aluminum (number 4) is located; the
other side of the disc is painted by a light-absorbing black
color ink, except of the small reflecting sector 5. There over
the disc, an azimuth circle 6 is located, it is for orientation
of the device to the azimuth coordinates (they can further be
processed into the geographical coordinates of the sources of
a registered signal, or the celestial coordinates of it if it is lo-
cated in the cosmos). The azimuth circle has a optical pair
consisting of semiconductor laser as emitter and photodiode
as receiver 7. A laser beam, reflected by the sector 5, acts
onto the photodiode. The electrical motor 2 is fixed on the
rectangular magnetic platform 8, which is suspended by the
strong counter-field 0.3 Tesla of the stationary fixed mag-
net 9. There between the magnetic platforms an inductive
detector 10 is located.

We consider the functional dependencies between the el-
ements of this device. The rotor 1 turns into rotation by the
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Fig. 1: Dynamical scheme of the device.

electric motor to 4.000 rpm; the disc 4 rotates synchronically
with the rotor. Once the reflected laser beam falls onto the
photodiode, it produces an electric current. The pulse signal,
produced by the photodiode, goes into the control electronic
block which produces a rectangular pulse of voltage with the
regulated duration in the scale from 1.5 to 4.0�sec. Next
time these impulses go into the input of the motor driver. If
the output of the driver had a stable voltage with the polarity
(+;�), the inverts to (�;+) in the moment when the electric
pulse acts. For this moment the motor’s rotation is under ac-
tion of a negative acceleration: the rotation is braking for a
short time. During the braking a reverse pulse current is in-
ducted in the motor circuit, that is a “braking current” appears
a form of which is under permanent control on the screen of
an control oscilloscope.

Fig. 2 shows the block diagram of the control block.
There are: the rectangular magnetic platform 1, in common
with the rotor and the motor 3 located on it; the stationary
fixed magnetic platform 2; the inductive detector 4; selective
amplifier 5 working in the range from 10 Hz to 20 kHz; plot-
ter 6; the source of the power for the electrical motor (num-
ber 7); the driver 8; the electronic block for processing of the
electric pulse coming out from the photodiode (number 9);
the inductive detector of the pulse current (number 10); the
indicator of the angular speed of the rotor (number 11); oscil-
loscope 12.

At the end of braking pulse finishes (if to be absolutely
exact — on falling edge of pulse) the electrical motor rotat-
ing with inertia re-starts, so a positive acceleration appears in

Fig. 2: Diagram of the control block.

the system. The starting pulse is due to the strong starting cur-
rents in the power supply circuit. According to Ampere’s law,
the occurred starting current leads to a mechanical impact ex-
perienced by the electrical motor armature (it is the necessary
condition for the work of the whole device as a detector of
gravitational perturbation). During the rotor’s rotation, the
whole spectrum of the low frequent oscillations produced by
this mechanical impact are transferred to the mechanical plat-
form 1, which induces electromotive force on the detector 4.
This signal is transferred to the selective amplifier 5, wherein
a corresponding harmonic characterizing the rotor’s state is
selected. This harmonic, converted into analogous signal, is
transferred to the plotter 6.

3 The peculiarities of the experiment

The impulsive mechanical impact experienced by the motor
armature is actually applied to the centre of the fixation of the
rotor at the axis of electrical motor. The rotor, having a form
of cylindrical resonator, reach excitation with low frequency
due to this impact. In order to increase the excitation effect,
a brass bush seal was set up on the motor’s axis: the contact
surface between the axis and the rotor became bigger than be-
fore that. As a result in the rotor a standing sonar wave occurs
which has periodically excited, while all the time between the
excitations it dissipates energy. The rotor, as a low frequent
resonator, has its own resonant frequency, which was mea-
sured with special equipment by the method of the regulated
frequent excitation and laser diagnostics. (The necessity to
know the resonator frequency of the rotor proceeded from the
requirement to choose the frequency of its rotation and also
the frequency of its excitation.

Effect produced in the rotor due to a gravitational pertur-
bation consist of the change of the period of its rotation that
leads to the change in the initially parameters of the whole
system: the shift of the operating point on frequency response
function of selective amplifier and also the signal’s amplitude
changed at the output of the selective amplifier. Besides the
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Fig. 3: Diagram of the device orientation at the supposed source of
gravitational perturbation.

change of the angular speed of the rotation, due to the mo-
mentum conservation law, produces a reaction in the mag-
netic platform. Because the magnetic has rectangular form,
the magnetic field between the platforms 1 and 2 (see Fig. 2)
is non-uniform so the derivative of the density of the mag-
netic flow is substantial. All these lead to the fast change in
the level of the signal’s amplitude, and are defining the sensi-
tivity of the whole device.

Plotter registered such a summarized change of the sig-
nal’s amplitude.

Thus the sensitivity of the device is determined by the
following parameters: (1) the choice for the required reso-
nant frequency of the rotor; (2) the choice of the angular
speed of its rotation; (3) the duration of the braking pulse;
(4) the choice for the information sensor which gives infor-
mation about the rotor; (5) the factor of the orientation of the
device at the supposed source of gravitational perturbation.

The vector of the device orientation is the direction of the
impulsive braking force F or, that is the same, the negative
acceleration vector applied to the rotor. In the moment of
braking there a pair of forces F appears, which are applied
to the rotor. The plane where the forces act is the antennae
parameter of the system. Fig. 3 represent a fragment of the
device, where 1 is the rotor, 2 is the azimuth circle, 3 are the

indicators of direction, where the angular scale has the origin
of count (zero degree) pre-defined to the Southern pole. If
we suppose that the source of gravitational perturbation (it
is pictured by gray circle, 4) is a cosmic object, the device
should be oriented to the projection of this source onto the
horizontal plane (this projection is marked by number 5, and
pictured by small gray circle). The plane 6 is that for the
acting forces of braking.

4 Experimental results

Here are typical experimental results we got on the device
over a years of investigations.

The fact that such a device works as an antenna permits to
turn it so that it will be directed in exact at the selected space
objects in the sky or the earthy sources located at different
geographical coordinates.

First, we were looking for the gravitational field pertur-
bations due to the tectonic processes that could be meant the
predecessors of earthquakes. Using the geographic map of
the tectonic breaks, we set up an experiment on the orien-
tation of the device to such breaks. Despite the fact that
exact measurement of such directions is possible by a sys-
tem of a few devices (or in that case where the device is lo-
cated in area of a tectonic brake), the measurement of the
azimuth direction by our device was as precise as �2�. The
azimuthal directions were counted with respect to the South
pole. All measurement represented on the experimental di-
agrams (Fig. 4–9) are given with Moscow time, because the
measurement were done at Moscow, Russia. The period of
the rotation of the gyro changed in the range from 75�sec
to 200�sec during all the measurements produced on: the
rises and sets of the planets of the solar system (including
the Moon) and also those of the Sun; the moments when the
full moon and new moon occurs; the solar and lunar eclipses;
the perihelion and aphelion of the Earth, etc. In some ex-
periments (Fig. 6) extremely high gravitational perturbations
were registered, during which the period of the rotation of the
gyro was changed till 400�sec and even more (the duration
of such extremely high perturbations was 5–10 minutes on
the average). Further we found a correlation of the registered
signals to the earthquakes. The correlation showed: the per-
turbations of the earthy gravitational field, registered by our
device, predesecced the earthquakes in the range from 3 to 15
days in the geographic areas whereto the device was directed
(Fig. 4–6).

Examples of records in Fig. 7–8 present transit of Venus
through the disc of the Sun (Fig. 7) and solar eclipse at
Moscow, which occur at November 03, 2005.

Aside for such single signals as presented in Fig. 4–8, our
device registered also periodic signals. The periodic signals
were registered twice a year, in October and May, that are two
points in the chord of the orbit of the Earth which connects
the directions to Taurus and Virgo. The time interval between
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Fig. 4: June 30, 2005. The azimuth of the signal is �53� to East.
The predecessing signal of the earthquake in the Indian Ocean near
Sumatra Island, Indonesia, July 05, 2005.

Fig. 5: March 29, 2006. The azimuth of the signal is �9� to East:
the predecessor of the earthquake in the Western Iran, which oc-
curred on April 02, 2006.

Fig. 6: May 05, 2007. A high altitude gravitational perturbation.
The azimuth of the signal is 122� to West. The central states of
the USA became under action of 74 destructing tornados two days
later, on May 08, 2007.

Fig. 7: June 08, 2004. Transit of Venus through the disc of the Sun,
09h51min.

Fig. 8: November 03, 2005. The solar eclipse at Moscow city,
Russia. The eclipse phase is �0.18.

Fig. 9: May 31, 2003. Periodical signals.
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the signals growing with the motion of the Earth along its
orbit during 5 days then deceased. A fragment of the graph is
represented in Fig. 9.

It should be noted that when Joseph Weber claimed about
a gravitational wave signal registered with his solid-body de-
tector [3–5], he pointed out that fact that the solely registered
signal came from Taurus.

5 Conclusion

The core of the device is a rotating body (in our case it is a
rotating brass resonator), which sensitivity to gravitational ra-
diation lies in its excitation expected in the field of a falling
gravitational wave. Despite the physical state of the gyro-
resonator corresponds, in main part, to the wave-guide solid-
body gyros, its internal construction and the principles of
work are substantially different from those [6].

The device manifested the possibility to register gravi-
tational perturbations of non-seismic kind from the internal
processed in the terrestrial globe, and locate the terrestrial co-
ordinates of the sources of the perturbations.

An auxiliary confirmation of such a principle for the reg-
istration of gravitational perturbation is that fact that one of
the gyros CMG-3 working on board of the International
Space Station “experienced an unusual high vibration” on
March 28, 2005 (it was registered by the space station com-
mander Leroy Chiao and the astronaut Salizhan Sharipov [7]),
in the same time when a huge earthquake occurred near Nias
Island (in the shelf of Indian Ocean, close to Sumatra, In-
donesia).

This device is a really working instrument to be used for
the aforementioned tasks. In the same time, a lack of attention
to it brakes the continuation of the experiments till the stop of
the whole research program in the near future.
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We present the third quantization of Bergmann-Wagoner scalar-tensor and Brans Dicke
solvable toy models. In the first one we used an exponential cosmological term, for the
second one we considered vanishing cosmological constant. In both cases, it is found
that the number of the universes produced from nothing is very large.

1 Introduction

The Wheeler-DeWitt (WDW) equation is a result of quan-
tization of a geometry and matter (second quantization of
gravity), in this paper we consider the third quantization of
a solvable inflationary universe model, i.e., by analogy with
the quantum field theory, it can be done the second quanti-
zation of the universe wavefunction  expanding it on the
creation and annihilation operators (third quantization) [1].
Because in the recent years there has been a great interest
in the study of scalar-tensor theories of gravitation, owing
that of the unified theories [2, 3], we choose to work with
the most general scalar-tensor theory examined by Bergmann
and Wagoner [4, 5], in this theory the Brans-Dicke parameter
! and cosmological function � depend upon the scalar gravi-
tational field �. The Brans-Dicke theory can be obtained set-
ting ! = const and � = 0.

The WDW equation is obtained by means of canonical
quantization of Hamiltonian H according to the standard ca-
nonical rule, this leads to a difficulty known as the problem
of time [6]. Also, this equation has problems in its proba-
bilistic interpretation. In the usual formulation of quantum
mechanics a conserved positive-definite probability density is
required for a consistent interpretation of the physical prop-
erties of a given system, and the universe in the quantum
cosmology perspective, do not satisfied this requirement, be-
cause the WDW equation is a hyperbolic second order differ-
ential equation, there is no conserved positive-definite proba-
bility density as in the case of the Klein-Gordon equation, an
alternative to this, is to regard the wavefunction as a quantum
field in minisuperspace rather than a state amplitude [7].

The paper is organized as follows. In Section 2 we obtain
the WDW equation. In Section 3 we show third quantization
of the universe wavefunction using two complete set of modes
for the most easy choice of factor ordering. Finally, Section 4
consists of conclusions.

2 Canonical formalism

Our starting point is the action of Bergmann-Wagoner scalar
tensor theory

S=
1
l2p

Z
M

p�g
�
�R(4)�!(�)

�
g���;��;�+2��(�)

�
d4x+

+
2
l2p

Z
@M

p
h�hijKij d3x ; (1)

where g = det(g�;�), �(t) is the conventional real scalar
gravitational field, while lp is the Planck length and �(�) is
the cosmological term. The quantity R(4) is the scalar cur-
vature of the Friedmann-Robertson-Walker theory, which is
given, according to the theory, by

R(4) = �6k
a2 � 6

_a2

N2a2 � 6
�a

N2a
+ 6

_a _N
N3a

: (2)

The second integral in (1) is a surface term involving the
induced metric hij and second fundamental form Kij on the
boundary, needed to cancel the second derivatives in R(4)

when the action is varied with the metric and scalar field, but
not their normal derivatives, fixed on the boundary. Substi-
tuting (2) in (1) and integrating with respect to space coordi-
nates, we have

S =
1
2

Z �
�Nka�+

a�
N

_a2 +
a2

N
_a _� �

� N!(�)
6�

a3 _�2 +
N
3
a3��(�)

�
dt ; (3)

where dot denotes time derivative with respect to the time t,
now introducing a new time d� = � 1

2 dt and the following
independent variables

� = a2� cosh
Z �

2!(�) + 3
3

�1
2 d�
�
; (4)

� = a2� sinh
Z �

2!(�) + 3
3

�1
2 d�
�
; (5)

�(�) = 3�
�
�1 cosh

Z �
2!(�) + 3

3

�1
2 d�
�

+

+ �2 sinh
Z �

2!(�) + 3
3

�1
2 d�
�

�
; (6)
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where �1 and �2 are constants, with gaugeN = 1, then action
(3) transforms into a symmetric form

S =
1
2

Z �
1
4
�
�02 � �02�+ �1�+ �2� � k

�
d�; (7)

here prime denotes time derivative with respect to � . The
Hamiltonian of the system is

H = 2�2
� � 2�2

� +
1
2

(k � �1�� �2�): (8)

After canonical quantization of H , the WDW equation is�
@2
� + A��1@� � @2

� �B��1@� +

+
1
4

(�1�+ �2� � k)
�
 (�; �) = 0; (9)

where A and B are ambiguity ordering parameters. The gen-
eral universe wavefunction for this model can be given in
terms of Airy functions.

3 Third quantization

The procedure of the universe wavefunction  quantization is
called third quantization, in this theory we consider  as an
operator acting on the state vectors of a system of universes
and can be decomposed as

 ̂(�; �) = Ĉi  +
i (�; �) + Ĉyi  �i (�; �) ; (10)

where  �i (�; �) form complete orthonormal sets of solutions
to WDW equation. This is in analogy with the quantum field
theory, where Ĉi and Ĉyi are creation and annihilation opera-
tors. Thus, we expect that the vacuum state in a third quan-
tized theory is unstable and creation of universes from the
initial vacuum state takes place. In this view, the variable
� plays the role of time, and variable � the role of space.
 (�; �) is interpreted as a quantum field in the minisuper-
space.

We assume that the creation and annihilation operators of
universes obey the standard commutation relations�

C(s); Cy(s0)
�

= �(s� s0); (11)�
C(s); C(s0)

�
=
�
Cy(s); Cy(s0)

�
= 0 : (12)

The vacuum state j0i is defined by

C(s)j0i for 8C ; (13)

and the Fock space is spanned by Cy(s1)Cy(s2):::j0i. The
field  (�; �) can be expanded in normal modes  s as

 (�; �) =
+1Z
�1

�
C(s) s(�; �) + Cy(s) �s(�; �)

�
ds ; (14)

here, the wave number s is the momentum in Planck units and
is very small.

3.1 General model

Let us consider the quantum model (9) for the most easy fac-
tor ordering A = B = 0, with �2 = 0 and closed universe
k = 1. Then, the WDW equation becomes�

@2
� � @2

� +
1
4

(�1�� 1)
�
 (�; �) = 0; (15)

the third-quantized action to yield this equation is

S3Q=
1
2

Z �
(@� )2�(@� )2� 1

4
(�1��1) 2

�
d�d� ; (16)

this action can be canonically quantized and we impose the
equal time commutation relations�

i @� (�; �);  (�; �0)
�

= �(� � �0) ; (17)�
i @� (�; �); i @� (�; �0)

�
= 0 ; (18)�

 (�; �);  (�; �0)
�

= 0 : (19)

A suitable complete set of normalized positive frequency
solutions to equation (15) are:

 outs (�; �) =
eis�

(16�1) 1
16

�
Ai
h
(2�1)� 2

3 (1� 4s2 � �1�)
i

+

+ iBi
h
(2�1)� 2

3 (1� 4s2 � �1�)
i�
; (20)

and

 ins (�; �) =
p

2 eis�

(16�1) 1
16
�

�
�
e

(1�4s2)
3
2

3�1 Ai
h
(2�1)� 2

3 (1� 4s2 � �1�)
i

+

+
i
2
e�

(1�4s2)
3
2

3�1 Bi
h
(2�1)� 2

3 (1� 4s2 � �1�)
i�
; (21)

 outs (�; �) and  ins (�; �) can be seen as a positive frequency
out going and in going modes, respectively, and these solu-
tions are orthonormal with respect to the Klein-Gordon scalar
product

h s;  s0i = i
Z
 s
$
@ �  �s0d� = �(s� s0) : (22)

The expansion of  (�; �) in terms of creation and anni-
hilation operators for the in-mode and out-mode is

 (�; �) =
Z �

Cin(s) ins (�; �) +

+ Cyin(s) in�r (�; �)
�
ds ; (23)

and

 (�; �) =
Z �

Cout(s) outs (�; �) +

+ Cyout(s) out�r (�; �)
�
ds : (24)
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As both sets (20) and (21) are complete, they are related
to each other by the Bogoliubov transformation defined by

 outs (�; �) =
Z �

C1(s; r) inr (�; �) +

+ C2(s; r) in�r (�; �)
�
dr ; (25)

and

 ins (�; �) =
Z �

C1(s; r) outr (�; �) +

+ C2(s; r) out�r (�; �)
�
dr : (26)

Then, we obtain that the Bogoliubov coefficients C1(s; r)
= �(s� r)C1(s) and C2(s; r) = �(s+ r)C2(s) are

C1(s; r) = �(s� r) 1p
2
�

�
 

1
2
e�

(1�4s2)
3
2

3�1 + e
(1�4s2)

3
2

3�1

!
;

(27)

and

C2(s; r) = �(s+ r)
1p
2
�

�
 

1
2
e�

(1�4s2)
3
2

3�1 + e
(1�4s2)

3
2

3�1

!
:

(28)

The coefficients C1(s; r) and C2(s; r) are not equal to
zero. Thus, two Fock spaces constructed with the help of the
modes (20) and (21) are not equivalent and we have two dif-
ferent third quantized vacuum states (voids): the in-vacuum
j 0; in i and out-vacuum j 0; out i (which are the states with
no Friedmann Robertson Walker-like universes) defined by

Cin(s) j 0; ini = 0 and Cout(s) j 0; out i = 0; (29)

where s2R. Since the vacuum states j 0; in i and j 0; out i
are not equivalent, the birth of the universes from nothing
may have place, where nothing is the vacuum state j 0; in i.
The average number of universes produced from nothing, in
the s-tn mode N(s) is

N(s) =
D

0; in j Cyout(s)Cout(s) j 0; in
E
; (30)

as follows from equation (25) we get

N(s) =
1
2

 
1
2
e�

(1�4s2)
3
2

3�1 � e (1�4s2)
3
2

3�1

!2

; (31)

considering Coleman’s wormhole mechanism [8] for the van-
ishing cosmological constant and the constraint �1 6 1

8 ��
10�120m4

p , with jsj � 1, then the number of state N(s) is

N(s) � 1
2
e

2
3�1

(1�4s2)
3
2 : (32)

This result from third quantization shows that the number
of the universes produced from nothing is exponentially large.

3.2 Particular model

An interesting model derived from Bergmann Wagoner action
(1) with !(�) =!0 = const, �(�) = 0 andN = 1 is the Brans-
Dicke theory

S=
1
l2p

Z p�g ��R(4)�!(�)
�

g���;��;�+2��(�)
�
dt: (33)

By means of new variables

x = ln(a2�) ; y = ln�
1
� ; dt = ad� ; (34)

where �2 = 3
2!0+3 , action (33) transforms into

S =
1
2

Z �
x02
4
� y02

4
� 1
�
exd � ; (35)

the WDW equation for this model is�
x�A@x(xA@x)� @2

y � e2x

4

�
 (x; y) = 0 ; (36)

the ambiguity of factor ordering is encoded in the A param-
eter. The third quantized action to yield the WDW equation
(36) is

S3Q =
1
2

Z �
(@x )2 � (@y )2 +

e2x

4
 2
�
dx dy : (37)

Again, in order to quantize this toy model, we impose
equal time commutation relations given by (17–19), and by
means of normal mode functions  p we can expand the field
 (x; y). A suitable normalized out-mode function with posi-
tive frequency for large scales, is

 outp (x; y) =
1

2
p

2
e��2 jpjH(2)�q

iex

2
eipy; (38)

whereH(2)�q is a Hankel function and q=�i jp j. The normal-
ized in-mode function is

 inp (x; y) =
e �2 jpj

2 sinh
1
2 (� jp j) Jq

iex

2
eipy; (39)

where Jq is a first class Bessel function. In the classically al-
lowed regions the positive frequency modes correspond to the
expanding universe [9]. As both wavefunctions (38) and (39)
are complete, they are related to each other by a Bogoliubov
transformation. The corresponding coefficients are

C1(p; q) = �(p� q) 1p
1� e�2�jpj ; (40)

and
C2(p; q) = �(p+ q)

1p
e2�jpj � 1

: (41)

The coefficients C1(p) and C2(p) are not equal to zero
and satisfy the probability conservation condition

jC1(p) j2 � jC2(p) j2 = 1 :
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In this way, it can be constructed two not equivalent Fock
spaces by means of (38) and (39). These two different third
quantized vacuum states, the in-vacuum j 0; ini and out-
vacuum j 0; outi are defined by (29). The average number
of universes created from nothing, i.e., the in-vacuum in the
p-th N(p), is

N(p) =


0; in j Cyout(p)Cout(p) j 0; in� =

= j C2(p) j2 =

=
1

e2�jpj � 1
: (42)

This expresion corresponds to a Planckian distribution of uni-
verses.

4 Conclusions

By means of a suitable choice of lapse function and inde-
pendent variables, we have solved the WDW equation in the
Bergmann-Wagoner gravitational theory for a cosmological
function of the form �(�)=�1 cosh[2y(�)]+�2 sinh[2y(�)],
this kind of cosmological term is important because of new
scenario of extended inflation [10]. Also, we have studied
on the third quantization of Bergmann-Wagoner and Brans-
Dicke models, in which time is related by the scalar fac-
tor of universe and the space coordinate is related with the
scalar field. The universe is created from stable vacuum ob-
tained by the Bogoliubov-type transformation just as it is in
the quantum field theory.

One of the main results of third quantization is that the
number of universes produced from nothing is exponentially
large. We calculated the number density of the universes cre-
ating fron nothing and found that the initial state j 0; ini is
populated by a Planckian distribution of universes.
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Gravity Model for Topological Features on a Cylindrical Manifold

Igor Bayak

E-mail: bayak@mail.ru

A model aimed at understanding quantum gravity in terms of Birkhoff’s approach is
discussed. The geometry of this model is constructed by using a winding map of
Minkowski space into a R3 � S1-cylinder. The basic field of this model is a field
of unit vectors defined through the velocity field of a flow wrapping the cylinder. The
degeneration of some parts of the flow into circles (topological features) results in in-
homogeneities and gives rise to a scalar field, analogous to the gravitational field. The
geometry and dynamics of this field are briefly discussed. We treat the intersections be-
tween the topological features and the observer’s 3-space as matter particles and argue
that these entities are likely to possess some quantum properties.

1 Introduction

In this paper we shall discuss a mathematical construction
aimed at understanding quantum gravity in terms of Birk-
hoff’s twist Hamiltonian diffeomorphism of a cylinder [1].
We shall also use the idea of compactification of extra dimen-
sions due to Klein [2]. To outline the main idea behind this
model in a very simple way, we can reduce the dimensional-
ity and consider the dynamics of a vector field defined on a
2-cylinder R1 � S1. For this purpose we can use the velocity
field u(x; � ) of a two-dimensional flow of ideal incompress-
ible fluid moving through this manifold.

Indeed, the dynamics of the vector field u(x; � ) with the
initial condition u(x; 0) is defined by the evolution equation

�
Z

��

Z
�x
dx ^ u(x; � )d� ! 0 ; (1.1)

where we use the restriction of the vector field onto an arbi-
trary cylinder’s element; �� is the evolution (time) interval,
and �x is an arbitrary segment of the cylinder’s element. In
other words, we assume the variation of the integral of the
mass carried by the flow through the segment during a finite
time interval to be vanishing. That is, as a result of the field
evolution, u(x; 0)!u(x;1), the functional of the flow mass
approaches to its maximal value. If, at the initial moment of
time, the regular vector field u(x; 0) corresponds to a unit
vector forming an angle ' with the cylinder’s element, then
the evolution of this field is described by the equation

�
Z

��

Z
�x
dx ^ u(x; � )d� =

= �
Z

��

Z
�x

sin'(� )dxd� = cos'(� )���x! 0 : (1.2)

Therefore, the case of '(0) = 0 corresponds to the ab-
solute instability of the vector field. During its evolution,
u(x; 0)!u(x;1), the field is relatively stable at
0<'(� )< �

2 , achieving the absolute stability at the end of
this evolution, when '(1) = �

2 . If, additionally, we fix the

vector field u(x; � ) at the endpoints of the segment �x by
imposing some boundary conditions on the evolution equa-
tion (1.1), we would get the following dynamical equation:

�
Z

��

Z
�x
dx ^ u(x; t)d� = 0 : (1.3)

Let some flow lines of the vector field u(x; � ) be degener-
ated into circles (topological features) as a result of the abso-
lute instability of the field and fluctuations during the initial
phase of its evolution. Since the dynamics of such topological
features is described by (1.3), the features would tend to move
towards that side of �x where the field u(x; � ) is more sta-
ble. Thus, the topological features serve as attraction points
for each other and can be used for modelling matter particles
(mass points).

We must emphasise that the plane (x; � ), in which our
variational equations are defined, has the Euclidean metric.
That is, in the case of the Euclidean plane (x; �) wrapping
over a cylinder we can identify the azimuthal parameter �
with the evolution parameter � . By choosing the observer’s
worldline coinciding with a cylinder’s element we can speak
of a classical limit, whereas by generalising and involving
also the azimuthal (angular) parameter we can speak of the
quantisation of our model. So, when the observer’s worldline
is an arbitrary helix on the cylinder, the variational equation
(1.3) reads

�
Z

�x0

Z
�x1

dx1 ^ g(x)dx0 = 0 ; (1.4)

where the varied is the vector field g(x) defined on the
pseudo-Euclidean plane (x0; x1) oriented in such a way that
one of its isotropic lines covers the cylinder-defining circle
and the other corresponds to a cylinder’s element. In this case
we can speak of a relativistic consideration. If the observer’s
worldline corresponds to a curved line orthogonal to the flow
lines of the vector field g(x), where g2(x)> 0, then we have
to use the variational equation defined on a two-dimensional
pseudo-Riemann manifold M induced by the vector field
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g(x), namely,

�
Z

�M
g2(x0)

p�det gij dx00 ^ dx01 = 0 ; (1.5)

where �M = �x00 ��x01 is an arbitrary region of the man-
ifold M ; x00(�) is the flow line of the vector field g(x) pa-
rameterised by the angular coordinate �; x01(r) is the spa-
tial coordinate on the cylinder (orthogonal to the observer
worldline) parameterised by the Euclidean length r; gij is
the Gram matrix corresponding to the pair of tangent vec-
tors

�dx00
d� ;

dx01
dr

�
. In this case the dynamics of the vector field

is described through the geometry of its flow lines [3–5].
Thus, we can say that our approach to the dynamics of the

vector field is based on maximisation of the mass carried by
the flow [6, 7], which is not exactly what is typically used in
the ergodic theory [8–10]. However, this principle is likely to
be related to the the minimum principle for the velocity field
[13–15], which is a special case of the more general principle
of minimum or maximum entropy production [11, 12].

Before a more detailed discussion of this model we have
to make a few preliminary notes. First, throughout this pa-
per we shall use a somewhat unconventional spherical coordi-
nates. Namely, latitude will be measured modulo 2� and lon-
gitude – modulo �. In other words, we shall use the following
spherical (�, ', �1; : : : ; �n�2) to Cartesian (x1; : : : ; xn) coor-
dinate transformation in Rn:

x1 = � cos';
x2 = � sin' cos �1;
x3 = � sin' sin �1;
: : : : : : : : : : : : : : : : : : : : :
xn�1 = � sin' : : : sin �n�3 cos �n�2;
xn = � sin' : : : sin �n�3 sin �n�2;

where 06 �<1, 06'< 2� and 06 �i<�. We shall also
be interpreting the projective space RPn as the space of cen-
trally symmetric lines in Rn+1, that is, as a quotient space
Rn+1nf0g under the equivalence relation x� rx, where
r 2 Rnf0g.

2 The geometry of the model

We can describe the geometry of our model in terms of the
mapping of the Euclidean plane into a 2-sphere, S2, by wind-
ing the former around the latter. We can also use similar
winding maps for the pseudo-Euclidean plane into a cylin-
der, R�S1, or a torus, S1�S1. More formally this could be
expressed in the following way [16]. Take the polar coordi-
nates ('; �) defined on the Euclidean plane and the spherical
coordinates (�; �) on a sphere. We can map the Euclidean
plane into sphere by using the congruence classes modulo �
and 2�. That is,

� = j' j mod �; � = j � �� j mod 2�; (2.1)

where the positive sign corresponds to the interval 0 6 ' < �
and negative — to the interval � 6 ' < 2�. If the projective
lines are chosen to be centrally symmetric then the Euclidean
plane can be generated as the product RP 1 � R. Here the
components of R are assumed to be Euclidean, i.e., rigid and
with no mirror-reflection operation allowed. Similarly, we
can define a space based on unoriented lines in the tangent
plane to the sphere. Therefore, the sphere can be generated by
the product RP 1�S1, the opposite points of the circle being
identified with each other. In this representation all centrally
symmetric Euclidean lines are mapped as

R! S1 : ei�x = e�i�� (2.2)

by winding them onto the corresponding circles of the sphere.
The winding mapping of Euclidean space onto a sphe-re

can be extended to any number of dimensions. Here we are
focusing mostly on the case of Euclidean space, R3, generated
as the productRP 2�R and also on the case of a 3-sphere gen-
erated as RP 2 � S1. In both cases we assume the Euclidean
rigidity of straight lines and the identification of the opposite
points on a circle. Euclidean space, R3, can be mapped into a
sphere, S3, by the winding transformation analogous to (2.1).
Indeed, for this purpose we only have to establish a relation
between the length of the radius-vector in Euclidean space
and the spherical coordinate (latitude) measured modulo 2�.
The relevant transformations are as follows:

�1 = # ; �2 = j' j mod �; � = j��� j mod 2�; (2.3)

where the sign is determined by the quadrant of '.
Let (e0; e1) be an orthonormal basis on a pseudo-

Euclidean plane with coordinates (x0; x1). Let the cylindrical
coordinates of R � S1 be (�; r). Then the simplest mapping
of this pseudo-Euclidean plane to the cylinder would be

� = j�(x0 + x1)j mod 2�; r = x0 � x1 : (2.4)

That is, the first isotropic line is winded here around the
cylinder’s cross-section (circle) and the second line is iden-
tified with the cylinder’s element. In this way one can make
a correspondence between any non-isotropic (having a non-
zero length) vector in the plane and a point on the cylinder.
For instance, if a vector x having coordinates (x0; x1) forms
a hyperbolic angle ' with the e0 or �e0, then

� = j � �e�'� j mod 2� = j�(x0 + x1)j mod 2�: (2.5)

If this vector forms the hyperbolic angle ' with the e1 or
�e1, then

r = �e'� = x0 � x1 ; (2.6)

where ' = � ln
���x0+x1

�

���; � = j(x0 + x1)(x0 � x1)j1=2.
By analogy, one can build a winding map of the pseudo-

Euclidean plane into the torus, with the only difference that in
the latter case the second isotropic line is winded around the
longitudinal (toroidal) direction of the torus.

Igor Bayak. Gravity Model for Topological Features on a Cylindrical Manifold 139



Volume 2 PROGRESS IN PHYSICS April, 2008

Now let us consider a 6-dimensional pseudo-Euclidean
space R6 with the signature (+;+;+;�;�;�). In this case
the analogue to the cylinder above is the product R3 � S3,
in which the component R3 is Euclidean space. In order to
wind the space R6 over the cylinder R3 � S3 we have to take
an arbitrary pseudo-Euclidean plane in R6 passing through
the (arbitrary) orthogonal lines xk, xp that belong to two Eu-
clidean subspaces R3 of the space R6. Each plane (xk; xp)
has to be winded onto a cylinder with the cylindrical coordi-
nates (�k; rp); the indices k; p correspond to the projective
space RP 2. We can take all the possible planes and wind
them over the corresponding cylinders. The mapping trans-
formation of the pseudo-Euclidean space R6 into the cylinder
R3 � S3 is similar to the expressions (2.5) and (2.6):

�k = j � �e�'�j mod 2� =
= j�(xk + xp)j mod 2� ; (2.7)

rp = �e'� = xk � xp : (2.8)

By fixing the running index k and replacing it with zero
we can get the winding map of the Minkowski space R4 into
the cylinder R3�S1, which is a particular case (reduction) of
(2.7) and (2.8). Conversely, by winding R3 over a 3-sphere,
S3, we can generalise the case and derive a winding map from
R6 into S3 � S3.

Let us consider the relationship between different ortho-
normal bases in the pseudo-Euclidean plane, which is winded
over a cylinder. It is known that all of the orthonormal bases
in a pseudo-Euclidean are equivalent (i.e., none of them can
be chosen as privileged). However, by defining a regular field
c of unit vectors on the pseudo-Euclidean plane it is, indeed,
possible to get such a privileged orthonormal basis (c; c1). In
turn, a non-uniform unitary vector field g(x), having a hyper-
bolic angle '(x) with respect to the field c, would induce a
non-orthonormal frame (g0(x); g01(x)). Indeed, if we assume
that the following equalities are satisfied:

� = j � �e�'�(e'g)j mod 2� =
= j � �e�'�(g0)j mod 2�; (2.9)

�1 = �e'�(e�'g1) = �e'�(g01) ; (2.10)

we can derive a non-orthonormal frame (g0(x); g01(x)) by us-
ing the following transformation of the orthonormal frame
(g(x); g1(x)):

g0(x) = e'g(x); g01(x) = e�'g1(x): (2.11)

Then the field g(x) would induce a 2-dimensional pseudo-
Riemann manifold with a metric tensor fg0ijg (i; j = 0; 1),
which is the same as the Gram matrix corresponding to the
system of vectors (g0(x); g01(x)). A unitary vector field g(x)
defined in the Minkowski space winded onto the cylinder
R3�S1 would induce a 4-dimensional pseudo-Riemann man-
ifold. Indeed, take the orthonormal frame (g; g1; g2; g3) de-
rived by hyperbolically rotating the Minkowski space by

the angle '(x) in the plane (g(x); c). Then the Gram ma-
trix g0ij (i; j= 0; 1; 2; 3) corresponding to the set of vectors
fe'g; e�'g1; g2; g3g would be related to the metric of the
pseudo-Riemann manifold. Note, that, since the determinant
of the Gram matrix is unity [17, 18], the induced metric pre-
serves the volume. That is, the differential volume element of
our manifold is equal to the corresponding volume element of
the Minkowski space.

3 The dynamics of the model

As we have already mentioned in Section 1, the dynamics of
the velocity field u(x; � ) of an ideal incompressible fluid on
the surface of a cylinder R3 � S1 can be characterised by
using the minimal volume principle, i.e., by assuming that the
4-volume of the flow through an arbitrary 3-surface � � R3

during the time T is minimal under some initial and boundary
conditions, namely:

�
Z T

0

Z
�
dV ^ u(x; � ) d� = 0 ; (3.1)

where dV is the differential volume element of a 3-surface �.
This is also equivalent to the minimal mass carried by the flow
through the measuring surface during a finite time interval.

In a classical approximation, by using the winding pro-
jection of the Minkowski space into a cylinder R3 � S1, we
can pass from the dynamics defined on a cylinder to the stat-
ics in the Minkowski space. Let the global time t be param-
eterised by the length of the flow line of the vector field c
in the Minkowski space corresponding to some regular vec-
tor field on the cylinder and let the length of a single turn
around the cylinder be h. Let us take in the Minkowski space
a set of orthogonal to c Euclidean spaces R3 in the Minkowski
space. The distance between these spaces is equal to hz,
where z 2Z. The projection of this set of spaces into the
cylinder is a three-dimensional manifold, which we shall re-
fer to as a global measuring surface. Then we can make
a one-to-one correspondence between the dynamical vector
field u(x; � ) and the static vector field g(x), defined in the
Minkowsky space. Thus, in a classical approximation there
exists a correspondence between the minimisation of the 4-
volume of the flow u(x; � ) on the cylinder and the minimisa-
tion of the 4-volume of the static flow defined in the Minkow-
ski space by the vector field g(x), namely:

�
Z x0

0

Z
�0
dV ^ g(x) dx0 = 0 ; (3.2)

where the first basis vector e0 coincides with the vector c, and
the 3-surfaces, �0, lie in the Euclidean sub-spaces orthogonal
to the vector c. Let f(cig) = (c0; c1; c2; c3) be an orthonor-
mal basis in R4 such that c0 = c. Let the reference frame
bundle be such that each non-singular point of R4 has a corre-
sponding non-orthonormal frame (gi(x)) = (g0; g1; g2; g3),
where g0 = g(x), g1 = c1, g2 = c2, g3 = c3. Let us form
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a matrix fgijg of inner products (ci; gj) of the basis vectors
fcig and the frame fgig. The absolute value of its determi-
nant, det(gij), is equal to the volume of the parallelepiped
formed by the vectors (g0; g1; g2; g3). It is also equal to the
scalar product, (g(x); c). On the other hand, the equation
(g(x); c)2 = jdetG(x)j holds for the Gram matrix, G(x),
which corresponds to the set of vectors fgi(x)g [21]. Then,
according to the principle (3.2), the vector field g(x) satisfies
the variational equation

�
Z



(g(x); c) dx4 = �

Z


jdetG(x)j 12 dx4 = 0 ; (3.3)

where dx4 is the differential volume element of a cylindri-
cal 4-region 
 of the Minkowski space, having the height
T . The cylinder’s base is a 3-surface � with the bound-
ary condition g(x) = c. In order to derive the differential
equation satisfying the integral variational equation (3.3), we
have to find the elementary region of integration, 
. Let
�� be an infinitesimal parallelepiped spanned by the vec-
tors �x0;�x1;�x2;�x3, with ! being a tubular neighbour-
hood with the base spanned by the vectors �x1;�x2;�x3.
This (vector) tubular neighbourhood is filled in with the vec-
tors j�x0jg(x) obtained from the flow lines of the vector
field g(x) by increasing the natural parameter (the pseudo-
Euclidean length) by the amount j�x0j. Then the localisation
expression of the equation (3.3) gives [19]:

�
Z

��
jdetG(x; t)j 12 dx4 = �Vol! = 0 : (3.4)

Since the field lines of a nonholonomy vector field g(x) are
nonparallel even locally, any variation of such a field (i.e, the
increase or decrease of its nonholonomicity) wo-uld result in
a non-vanishing variation of the volume Vol!. Conversely,
in the case of a holonomy field its variations do not affect the
local parallelism, so that the holonomicity of the field g(x)
appears to be the necessary condition for the zero variation
of Vol!. Given a vector field g(x) with an arbitrary absolute
value, the sufficient conditions for the vanishing variation of
the volume of the tubular neighbourhood ! are the potential-
ity of this field and the harmonic character of its potential. In
terms of differential forms these conditions correspond to a
simple differential equation:

d ? g(x) = 0 ; (3.5)

where d is the external differential; ? is the Hodge star oper-
ator; g(x) = d'(x); and '(x) is an arbitrary continuous and
smooth function defined everywhere in the Minkowski space,
except for the singularity points (topological features). Sub-
stituting the unitary holonomy fi-eld g(x) = k(x)d'(x) in
(3.5), where k(x) = 1=jd'(x)j, we shall find that the unitary
vector field g(x) must satisfy the minimum condition for the
integral surfaces of the co-vector field dual to g(x). In this
case the magnitude of the scalar quantity '(x) will be equal
to the hyperbolic angle between the vectors g(x) and c. We

can also note that the potential vector field g(x) = d'(x)
represented by the harmonic functions '(x) is the solution to
the following variational equation:

�
Z T

0

Z
�

"�
@'(x; t)
@t

�2
�r2'(x; t)

#
dx3dt = 0 ; (3.6)

in which � is a region in Euclidean space of the “global”
observer; the function '(x; t) is defined in the Minkowski
space. Thus, the stationary scalar field '(x) induced by a
topological feature in the global space is identical to the New-
tonian gravitational potential of a mass point.

We have to bear in mind that the space of a “real” observer
is curved, since the line for measuring time and the surface for
measuring the flux is defined by the vector field g(x), and not
by the field c as in the case of the global observer. Therefore,
if we wish to derive a variational equation corresponding to
the real observer, we have to define it on the pseudo-Riemann
manifold M induced in the Minkowski space by the holon-
omy field g(x), whose flux is measured through the surfaces
orthogonal to its flow lines and whose flow lines serve for
measuring time. The metric on M is given by the Gram ma-
trix of four tangent vectors, one of which corresponds to the
flow line x00(�) parameterised by the angular coordinate of
the cylindrical manifold, and the three others are tangent to
the coordinate lines of the 3-surface x01(r); x02(r); x03(r) pa-
rameterised by the Euclidean length. The following varia-
tional equation holds for an arbitrary region �M of M :

�
Z

�M
g2(x0) dV = 0 (3.7)

(under the given boundary conditions) where dV is the differ-
ential volume element of M . Note that the norm of the vec-
tor g(x) coincides with the magnitude of the volume-element
deformation of the pseudo-Riemann ma-nifold, which allows
making the correspondence between our functional and that
of the Hilbert-Einstein action.

Returning to the global space, let us consider some prop-
erties of the vector field g(x). Let a point in the Minkowski
space has a trajectory X(� ) and velocity _X . Its dynamics is
determined by the variational equation:

�
Z T

0

�
g(x); _X

�
d� = 0 : (3.8)

The varied here is the trajectory X(� ) in the Minkowski
space where the vector field g(x) is defined and where the
absolute time � plays the role of the evolution parameter.
For small time intervals the integral equation (3.8) can be re-
duced to

�
�
g(x); _X

�
= 0 ; (3.9)

which is satisfied by the differential equation

�X = g(X) : (3.10)
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Taking the orthogonal projection �(� ) = prR3 X(� ) of the
trajectory of a given topological feature in Euclidean space
of the global observer, as well as the projection r'(X) =
= prR3 g(X) of the vector field g(x) at the point X(� ) gives
a simple differential equation

��(� ) = r'(x); (3.11)

which (as in Newtonian mechanics) expresses the fact that the
acceleration of a mass point in an external gravitational field
does not depend on the mass.

4 Some implications

Let us consider some implications of our model for a real
observer in a classical approximation (by the real observer
we mean the reference frame of a topological feature). First,
we can note that a real observer moving uniformly along a
straight line in the Minkowski space cannot detect the “rel-
ative vacuum” determined by the vector c and, hence, can-
not measure the global time t. By measuring the velocities
of topological features (also uniformly moving along straight
lines) our observer would find that for gauging space and time
one can use an arbitrary unitary vector field c0 defined on the
Minkowski space. Therefore, the observer would conclude
that the notion of spacetime should be relative. It is seen
that the real observer can neither detect the unitary vector
field g(x) nor its deviations from the vector c. However, it
would be possible to measure the gradient of the scalar (grav-
itational) field and detect the pseudo-Riemann manifold in-
duced by g(x).

Indeed, in order to gauge time and distances in different
points of space (with different magnitudes of the scalar field)
one has to use the locally orthonormal basis fg0ig defined on
the 4-dimensional pseudo-Riemann manifold with its metric
tensor fg0ijg. Thus, for the real observer, the deformations of
the pseudo-Euclidean space could be regarded as if induced
by the scalar field. Locally, the deformations could be can-
celled by properly accelerating the mass point (topological
feature), which implies that its trajectory corresponds to a
geodesics of the manifold.

We can see that the dynamics of a topological feature in
our model is identical to the dynamics of a mass point in
the gravitational field. Indeed, the scalar field around a topo-
logical feature is spherically symmetric. At distance r from
the origin the metric will be e2'dt2 � e�2'dr2, which cor-
responds to the metric tensor of the gravitational field of a
point mass, given e2' � 1 + 2' for small '. If ' = H� ,
i.e., hyperbolic angle ' linearly depends from the evolution-
ary parameter � , then we can compare the constant H with
the cosmological factor.

Let us now consider some quantum properties of our
model. Let the absolute value of the vector field c be a con-
tinuous function jc(x)j in the Minkowski space. Then the
angular velocity of the flow will be:

_�(x) =
d�(x)
dt

=
�
h
jc(x)j ; (4.1)

where the angular function �(x) can be identified with the
phase action of the gauge potential in the observer space. On
the other hand, it is reasonable to associate the angular veloc-
ity X(� ) of the topological feature with the Lagrangian of a
point mass in the Minkowski space:

_�(X) =
d�(X)
d�

=
�
h
L(x) : (4.2)

Let us consider the random walk process of the topolog-
ical feature in the cylinder space R3 � S1. Let a probability
density function �(x) be defined on a line, such that �(x),Z +1

�1
�(x) dx = 1 : (4.3)

Let us calculate the expectation value for the random vari-
able ei�x, which arises when a line is compactified into a
circe:

M(ei�x) =
Z +1

�1
�(ei�x) dx =

=
Z +1

�1
ei�x�(x) dx = pei��: (4.4)

Here the quantity pei�� can be called the complex prob-
ability amplitude. It characterises two parameters of the ran-
dom variable distribution, namely, the expectation value it-
self, ei��, and the probability density, p, i.e. the magnitude
of the expectation value. If �(x) = �(�), then M(ei�x) =
= 1 � ei��. Conversely, if �(x) is uniformly distributed along
the line then the expectation value isM(ei�x) = 0. It follows
from these considerations that a distribution in R3 of a com-
plex probability amplitude is related to random events in the
cylinder space R3 � S1.

In order to specify the trajectoriesX(� ) in the Minkowski
space with an external angular potential �(x) we shall use the
procedure proposed by Feynman [22]. Let the probabilistic
behaviour of the topological feature be described as a Markov
random walk in the cylinder space R3 � S1. An elementary
event in this space is a free passage. In the Minkowski space
such an event is characterised by two random variables, dura-
tion, �� , and the random path vector, �X , whose projection
into Euclidean space of the absolute observer is ��. The ratio
��
�� is a random velocity vector, _�. On the other hand, the free
passage of a topological feature corresponds to an increment
in the phase angle ��(X) = _�(X)�� (phase action) in the
cylinder space R3 � S1.

Let the probability distribution of the phase action has an
exponential form, say, �(��) = e��� (neglecting the nor-
malisation coefficient). Then, the corresponding probability
density for the random variable ei�� will be

�(ei��) = e���ei��: (4.5)

Using the properties of a Markov chain [20], we can de-
rive the probability density for an arbitrary number of random
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walks:

�(ei�) =
TY
0

e� _�d�ei _�d� : (4.6)

To get the expectation value of the random variable ei�
we have to sum up over the all possible trajectories, that is, to
calculate the quantity

M(ei�) =
X TY

0

e� _�d�ei _�d� : (4.7)

It is known that any non-vanishing variation of the phase
action has a vanishing amplitude of the transitional proba-
bility and, on the contrary, that the vanishing variation cor-
responds to a non-vanishing probability amplitude [23–25].
Then it is seen that the integral action corresponding to the
topological feature must be minimal. It follows that the “pro-
babilistic trap” of a random walk [26] in the cylinder space
R3�S1 is determined by the variational principle — the same
that determines the dynamics of a mass point in classical me-
chanics.

5 Conclusions

In conclusion, we have made an attempt to describe the dy-
namics of spacetime (as well as of matter particles) in terms
of the vector field defined on a cylindrical manifold and based
on the principle of maximum mass carried by the field flow.
The analysis of the observational implications of our model
sheds new light on the conceptual problems of quantum
gravity.

Still many details of our model are left unexplored. For
example, it would be instructive to devise the relationship
between the vector field g(x) and the 4-potential of electro-
magnetic field A(x) and to consider the local perturbations
of g(x) as gravitons or/and photons. We also expect that the
most important properties of our model would be revealed by
extending it to the cylindrical manifold R3�S3. In particular,
we hope that within such an extended version of our frame-
work it would be possible to find a geometric interpretation
of all known gauge fields. It is also expected that studying
the dynamics of the minimal unit vector field on a 7-sphere
should be interesting for cosmological applications of our ap-
proach.
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It was known for quite long time that a quaternion space can be generalized to a Clifford
space, and vice versa; but how to find its neat link with more convenient metric form
in the General Relativity theory, has not been explored extensively. We begin with a
representation of group with non-zero quaternions to derive closed FLRW metric [1],
and from there obtains Carmeli metric, which can be extended further to become 5D
and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric). Thereafter
we discuss some plausible implications of this metric, beyond describing a galaxy’s
spiraling motion and redshift data as these have been done by Carmeli and Hartnett
[4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We
also note possible implications to quantum gravity. Further observations are of course
recommended in order to refute or verify this proposition.

1 Introduction

It was known for quite long time that a quaternion space can
be generalized to a Clifford space, and vice versa; but how to
find its neat link to more convenient metric form in the Gen-
eral Relativity theory, has not been explored extensively [2].

First it is worth to remark here that it is possible to find
a flat space representation of quaternion group, using its al-
gebraic isomorphism with the ring division algebra [3, p.3]:

EiEj = � �ij + fijkEk : (1)

Working for Rdim, we get the following metric [3]:

ds2 = dx�dx�; (2)

imposing the condition:

x�x� = R2: (3)

This rather elementary definition is noted here because it
was based on the choice to use the square of the radius to
represent the distance (x�), meanwhile as Riemann argued
long-time ago it can also been represented otherwise as the
square of the square of the radius [3a].

Starting with the complex n = 1, then we get [3]:

q = x0 + x1E1 + x2E2 + x3E3 : (4)

With this special choice of x� we can introduce the spe-
cial metric [3]:

ds2 = R2(�ij@�i@�j): (5)

This is apparently most direct link to describe a flat metric
from the ring division algebra. In the meantime, it seems very
interesting to note that Trifonov has shown that the geometry
of the group of nonzero quaternions belongs to closed FLRW
metric. [1] As we will show in the subsequent Section, this

approach is more rigorous than (5) in order to describe neat
link between quaternion space and FLRW metric.

We begin with a representation of group with non-zero
quaternions to derive closed FLRW metric [1], and from there
we argue that one can obtain Carmeli 5D metric [4] from this
group with non-zero quaternions. The resulting metric can
be extended further to become 5D and 6D metric (which we
propose to call Kaluza-Klein-Carmeli metric).

Thereafter we discuss some plausible implications of this
metric, beyond describing a galaxy’s spiraling motion and
redshift data as these have been done by Carmeli and Hartnett
[4–7]. Possible implications to the Earth geochronometrics
and possible link to coral growth data are discussed. In the
subsequent Section we explain Podkletnov’s rotating disc ex-
periment. We also note a possible near link between Kaluza-
Klein-Carmeli and Yefremov’s Q-Relativity, and also possi-
ble implications to quantum gravity.

The reasons to consider this Carmeli metric instead of the
conventional FLRW are as follows:
• One of the most remarkable discovery from WMAP

is that it reveals that our Universe seems to obey Eu-
clidean metric (see Carroll’s article in Nature, 2003);

• In this regards, to explain this observed fact, most ar-
guments (based on General Relativity) seem to agree
that in the edge of Universe, the metric will follow Eu-
clidean, because the matter density tends to approach-
ing zero. But such a proposition is of course in contra-
diction with the basic “assumption” in GTR itself, i.e.
that the Universe is homogenous isotropic everywhere,
meaning that the matter density should be the same too
in the edge of the universe. In other words, we need
a new metric to describe the inhomogeneous isotropic
spacetime.
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g�� =

0BBBB@
� (�)( _R

R )2 0 0 0
0 �� (�) 0 0
0 0 �� (�) sin2(�) 0
0 0 0 �� (�) sin2(�) sin2(#)

1CCCCA : (6)

• Furthermore, from astrophysics one knows that spiral
galaxies do not follow Newtonian potential exactly.
Some people have invoked MOND or modified (Post-)
Newton potential to describe that deviation from New-
tonian potential [8, 9]. Carmeli metric is another pos-
sible choice [4], and it agrees with spiral galaxies, and
also with the redshift data [5–7].

• Meanwhile it is known, that General Relativity is strict-
ly related to Newtonian potential (Poisson’s equation).
All of this seems to indicate that General Relativity is
only applicable for some limited conditions, but it may
not be able to represent the rotational aspects of gravi-
tational phenomena. Of course, there were already ex-
tensive research in this area of the generalized gravita-
tion theory, for instance by introducing a torsion term,
which vanishes in GTR [10].

Therefore, in order to explain spiral galaxies’ rotation
curve and corresponding “dark matter”, one can come up with
a different route instead of invoking a kind of strange matter.
In this regards, one can consider dark matter as a property of
the metric of the spacetime, just like the precession of the first
planet is a property of the spacetime in General Relativity.

Of course, there are other methods to describe the inho-
mogeneous spacetime, see [15, 16], for instance in [16] a
new differential operator was introduced: �

�� = 1
Ho

1
c
�
�t , which

seems at first glance as quite similar to Carmeli method. But
to our present knowledge Carmeli metric is the most con-
sistent metric corresponding to generalized FLRW (derived
from a quaternion group).

Further observations are of course recommended in order
to refute or verify this proposition.

2 FLRW metric associated to the group of non-zero
quaternions

The quaternion algebra is one of the most important and well-
studied objects in mathematics and physics; and it has natural
Hermitian form which induces Euclidean metric [1]. Mean-
while, Hermitian symmetry has been considered as a method
to generalize the gravitation theory (GTR), see Einstein paper
in Ann. Math. (1945).

In this regards, Trifonov has obtained that a natural exten-
sion of the structure tensors using nonzero quaternion bases
will yield formula (6). (See [1, p.4].)

Interestingly, by assuming that [1]:

� (�)
� _R
R

�2
= 1 ; (7)

then equation (6) reduces to closed FLRW metric [1, p.5].
Therefore one can say that closed FLRW metric is neatly as-
sociated to the group of nonzero quaternions.

Now consider equation (7), which can be rewritten as:

� (�)( _R)2 = R2: (8)

Since we choose (8), then the radial distance can be ex-
pressed as:

dR2 = dz2 + dy2 + dx2: (9)

Therefore we can rewrite equation (8) in terms of (9):

� (�)(d _R)2 = (dR)2 = dz2 + dy2 + dx2; (10)

and by defining

� (�) = � 2 =
1

H2
0 (�)

=
1

�(H2
0 )n

: (11)

Then we can rewrite equation (10) in the form:

� (�)(d _R)2 = � 2(dv)2 = dz2 + dy2 + dx2; (12)

or �� 2(dv)2 + dz2 + dy2 + dx2 = 0 ; (13)

which is nothing but an original Carmeli metric [4, p.3, equa-
tion (4)] and [6, p.1], where H0 represents Hubble constant
(by setting �=n= 1, while in [12] it is supposed that �= 1:2,
n = 1). Further extension is obviously possible, where equa-
tion (13) can be generalized to include the (icdt) component
in the conventional Minkowski metric, to become (Kaluza-
Klein)-Carmeli 5D metric [5, p.1]:

�� 2(dv)2 + dz2 + dy2 + dx2 + (icdt)2 = 0 : (14)

Or if we introduce equation (13) in the general relativistic
setting [4, 6], then one obtains:

ds2 = � 2(dv)2 � e� � dr2 �R2 � (d#2 + sin2# � d�2): (15)

The solution for (15) is given by [6, p.3]:

dr
dv

= � � exp
�
��

2

�
; (16)

which can be written as:

d _r
dr

=
dv
dr

= ��1 � exp
�
�
2

�
: (17)

This result implies that there shall be a metric deforma-
tion, which may be associated with astrophysics observation,
such as the possible AU differences [11, 12].
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Furthermore, this proposition seems to correspond neatly
to the Expanding Earth hypothesis, because [13]:

“In order for expansion to occur, the moment of inertia
constraints must be overcome. An expanding Earth would
necessarily rotate more slowly than a smaller diameter planet
so that angular momentum would be conserved.” (Q.1)

We will discuss these effects in the subsequent Sections.
We note however, that in the original Carmeli metric,

equation (14) can be generalized to include the potentials to
be determined, to become [5, p.1]:

ds2 =
�

1 +
	
� 2

�
� 2 (dv)2 � dr2 +

�
1 +

�
c2

�
c2dt2; (18)

where
dr2 = dz2 + dy2 + dx2: (19)

The line element represents a spherically symmetric inho-
mogeneous isotropic universe, and the expansion is a result of
the spacevelocity component. In this regards, metric (18) de-
scribes funfbein (“five-legs”) similar to the standard Kaluza-
Klein metric, for this reason we propose the name Kaluza-
Klein-Carmeli for all possible metrics which can be derived
or extended from equations (8) and (10).

To observe the expansion at a definite time, the (icdt)
term in equation (14) has been ignored; therefore the met-
ric becomes “phase-space” Minkowskian. [5, p.1]. (A simi-
lar phase-space Minkowskian has been considered in various
places, see for instance [16] and [19].) Therefore the metric
in (18) reduces to (by taking into consideration the isotropic
condition):

dr2 +
�

1 +
	
� 2

�
� 2 (dv)2 = 0 : (20)

Alternatively, one can suppose that in reality this assump-
tion may be reasonable by setting c ! 0, such as by consid-
ering the metric for the phonon speed cs instead of the light
speed c; see Volovik, etc. Therefore (18) can be rewritten as:

ds2
phonon =

�
1 +

	
� 2

�
� 2 (dv)2 � dr2 +

+
�

1 +
�
c2s

�
c2s dt

2:
(21)

To summarize, in this Section we find out that not only
closed FLRW metric is associated to the group of nonzero
quaternions [1], but also the same group yields Carmeli met-
ric. In the following Section we discuss some plausible im-
plications of this proposition.

3 Observable A: the Earth geochronometry

One straightforward implication derived from equation (8) is
that the ratio between the velocity and the radius is directly
proportional, regardless of the scale of the system in question:

� _R
R

�2
= � (�)�1 ; (22)

or �
R1
_R1

�
=
�
R2
_R2

�
=
p
� (�) : (23)

Therefore, one can say that there is a direct proportion-
ality between the spacevelocity expansion of, let say, Virgo
galaxy and the Earth geochronometry. Table 1 displays the
calculation of the Earth’s radial expansion using the formula
represented above [17]:

Therefore, the Earth’s radius increases at the order of
� 0.166 cm/year, which may correspond to the decreasing
angular velocity (Q.1). This number, albeit very minute, may
also correspond to the Continental Drift hypothesis of A. We-
gener [13, 17]. Nonetheless the reader may note that our cal-
culation was based on Kaluza-Klein-Carmeli’s phase-space
spacevelocity metric.

Interestingly, there is a quite extensive literature suggest-
ing that our Earth experiences a continuous deceleration rate.
For instance, J. Wells [14] described a increasing day-length
of the Earth [14]:

“It thus appears that the length of the day has been in-
creasing throughout geological time and that the number of
days in the year has been decreasing. At the beginning of the
Cambrian the length of the day would have been 21h.” (Q.2)

Similar remarks have been made, for instance by
G. Smoot [13]:

“In order for this to happen, the lunar tides would have to
slow down, which would affect the length of the lunar month.
. . . an Earth year of 447 days at 1.9 Ga decreasing to an Earth
year of 383 days at 290 Ma to 365 days at this time. However,
the Devonian coral rings show that the day is increasing by
24 seconds every million years, which would allow for an
expansion rate of about 0.5% for the past 4.5 Ga, all other
factors being equal.” (Q.3)

Therefore, one may compare this result (Table 1) with the
increasing day-length reported by J. Wells [13].

4 Observable B: the Receding Moon from the Earth

It is known that the Moon is receding from the Earth at a
constant rate of � 4cm/year [17, 18].

Using known values: G = 6.6724�10�8 cm2/(g � sec2)
and � = 5.5�106 g/m3, and the Moon’s velocity�7.9 km/sec,
then one can calculate using known formulas:

Vol =
4
3
� � (R+ �R)3; (24)

M + �M = Vol � � ; (25)

r + �r =
G � (M + �M)

v2 ; (26)

where r, v, M each represents the distance from the Moon to
the Earth, the Moon’s orbital velocity, and the Earth’s mass,
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Nebula Radial velocity
(mile/s)

Distance
(103 kly)

Ratio
(10�5 cm/yr)

the Earth dist.
(R, km)

Predicted the Earth exp.
(�R, cm/year)

Virgo 750 39 2.617 6371 0.16678

Ursa Mayor 9300 485 2.610 6371 0.166299

Hydra 38000 2000 2.586 6371 0.164779

Bootes 2 86000 4500 2.601 6371 0.165742

Average 2.604 0.1659

Table 1: Calculation of the radial expansion from the Galaxy velocity/distance ratio. Source: [17].

respectively. Using this formula we obtain a prediction of the
Receding Moon at the rate of 0.00497 m/year. This value is
around 10% compared to the observed value 4 cm/year.

Therefore one can say that this calculation shall take into
consideration other aspects. While perhaps we can use other
reasoning to explain this discrepancy between calculation and
prediction, for instance using the “conformal brane” method
by Pervushin [20], to our best knowledge this effect has neat
link with the known paradox in astrophysics, i.e. the observed
matter only contributes around �1–10% of all matter that is
supposed to be “there” in the Universe.

An alternative way to explain this discrepancy is that there
is another type of force different from the known Newtonian
potential, i.e. by taking into consideration the expansion of
the “surrounding medium” too. Such a hypothesis was pro-
posed recently in [21]. But we will use here a simple argu-
ment long-time ago discussed in [22], i.e. if there is a force
other than the gravitational force acting on a body with mass,
then it can be determined by this equation [22, p.1054]:

d(mv0)
dt

= F + Fgr; (27)

where v0 is the velocity of the particle relative to the absolute
space [22a]. The gravitational force can be defined as before:

Fgr = �mrV ; (28)

where the function V is solution of Poisson’s equation:

r2 V = 4�K� ; (29)

and K represents Newtonian gravitational constant. For sys-
tem which does not obey Poisson’s equation, see [15].

It can be shown, that the apparent gravitational force that
is produced by an aether flow is [22]:

Fgr = m
@v
@t

+mr
�
v2

2

�
�mv0 �r� v+ v

dm
dt

; (30)

which is an extended form of Newton law:

~F =
d
dt

(~m~v) = m
�
d~v
dt

�
+ v

�
d~m
dt

�
: (31)

If the surrounding medium be equivalent to Newton’s the-
ory, this expression shall reduce to that given in (27). Suppos-
ing the aether be irrotational relative to the particular system

of the coordinates, and m= const, then (29) reduces [22]:

Fgr = �m
�
�@v
@t
�r

�
v2

2

��
; (32)

which will be equivalent to equation (27) only if:

rV =
@v
@t

+r
�
v2

2

�
: (33)

Further analysis of this effect to describe the Receding
Moon from the Earth will be discussed elsewhere. In this Sec-
tion, we discuss how the calculated expanding radius can de-
scribe (at least partially) the Receding Moon from the Earth.
Another possible effect, in particular the deformation of the
surrounding medium, shall also be considered.

5 Observable C: Podkletnov’s rotation disc experiment

It has been discussed how gravitational force shall take into
consideration the full description of Newton’s law. In this
Section, we put forth the known equivalence between New-
ton’s law (31) and Lorentz’ force [23], which can be written
(supposing m to be constant) as follows:

~F =
d
dt

( ~m~v) = m
�
d~v
dt

�
= q

�
~E +

1
c
~v � ~B

�
; (34)

where the relativistic factor is defined as:

 = �
r

1
1� �2 : (35)

while we can expand this equation in the cylindrical coordi-
nates [23], we retain the simplest form in this analysis. In
accordance with Spohn, we define [24]:

E = �rA : (36)

B = r� A : (37)

For Podkletnov’s experiment [26–28], it is known that
there in a superconductor E = 0 [25], and by using the mass
m in lieu of the charge ratio e

c in the right hand term of (34)
called the “gravitational Lorentz force”, we get:

m
�
d~v
dt

�
=
m


�
~v � ~B

�
=

1


�
~p� ~B

�
: (38)
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Let us suppose we conduct an experiment with the weight
w= 700 g, the radius r= 0.2 m, and it rotates at f = 2 cps
(cycle per second), then we get the velocity at the edge of
the disc as:

v = 2� � f r = 2.51 m/sec; (39)

and with known values forG= 6.67�10�11, c' 3�108m/sec,
Mearth = 5.98�1024 kg, rearth = 3�106 m, then we get:

Fgr =
G
c2r

Mv � 3.71�10�9 newton/kgm sec: (40)

Because B=F=meter, then from (39), the force on the
disc is given by:

Fdisc = ~Bearth � ~pdisc � Bearth �
�
m
c


�
: (41)

High-precision muon experiment suggests that its speed
can reach around � 0.99 c. Let us suppose in our disc, the
particles inside have the speed 0.982 c, then �1 = 0.1889.
Now inserting this value into (40), yields:

Fdisc = (3.71�10�9) � (0.7) � (3�108) � 0.189 =
= 0.147 newton = 14.7 gr:

(42)

Therefore, from the viewpoint of a static observer, the
disc will get a mass reduction as large as 14:7

700 = 2.13%, which
seems quite near with Podkletnov’s result, i.e. the disc can
obtain a mass reduction up to 2% of the static mass.

We remark here that we use a simplified analysis using
Lorentz’ force, considering the fact that superconductivity
may be considered as a relativistic form of the ordinary elec-
tromagnetic field [25].

Interestingly, some authors have used different methods to
explain this apparently bizarre result. For instance, using Taj-
mar and deMatos’ [29] equation: 0 = a


2 = 0:2�2
2 = 0:2. In

other words, it predicts a mass reduction around � 0:2
9:8 = 2%,

which is quite similar to Podkletnov’s result.
Another way to describe those rotating disc experiments

is by using simple Newton law [33]. From equation (31) one
has (by setting F = 0 and because g = dv

dt ):
dm
dt

= �m
v
g = � m

!R
g ; (43)

Therefore one can expect a mass reduction given by an
angular velocity (but we’re not very how Podkletnov’s exper-
iment can be explained using this equation).

We end this section by noting that we describe the rotating
disc experiment by using Lorentz’ force in a rotating system.
Further extension of this method in particular in the context
of the (extended) Q-relativity theory, will be discussed in the
subsequent Section.

6 Possible link with Q-Relativity. Extended 9D metric

In the preceding Section, we have discussed how closed
FLRW metric is associated to the group with nonzero quater-
nions, and that Carmeli metric belongs to the group. The only

problem with this description is that it neglects the directions
of the velocity other than against the x line.

Therefore, one can generalize further the metric to be-
come [1, p.5]:

� � 2(dvR)2 + dz2 + dy2 + dx2 = 0 ; (44)

or by considering each component of the velocity vector [23]:

(i� dvX)2 + (i� dvY )2 + (i� dvZ)2 +

+ dz2 + dy2 + dx2 = 0 :
(45)

From this viewpoint one may consider it as a generaliza-
tion of Minkowski’s metric into biquaternion form, using the
modified Q-relativity space [30, 31, 32], to become:

ds = (dxk + i� dvk) qk: (46)

Please note here that we keep using definition of Yefre-
mov’s quaternion relativity (Q-relativity) physics [30], albeit
we introduce dv instead of dt in the right term. We propose
to call this metric quaternionic Kaluza-Klein-Carmeli metric.

One possible further step for the generalization this equa-
tion, is by keep using the standard Q-relativistic dt term, to
become:

ds = (dxk + icdtk + i� dvk) qk ; (47)

which yields 9-Dimensional extension to the above quater-
nionic Kaluza-Klein-Carmeli metric. In other words, this
generalized 9D KK-Carmeli metric is seemingly capable to
bring the most salient features in both the standard Carmeli
metric and also Q-relativity metric. Its prediction includes
plausible time-evolution of some known celestial motion in
the solar system, including but not limited to the Earth-based
satellites (albeit very minute). It can be compared for instance
using Arbab’s calculation, that the Earth accelerates at rate
3.05 arcsec/cy2, and Mars at 1.6 arcsec/cy2 [12]. Detailed
calculation will be discussed elsewhere.

We note here that there is quaternionic multiplication rule
which acquires the compact form [30–32]:

1qk = qk1 = qk ; qjqk = ��jk + "jknqn ; (48)

where �kn and "jkn represent 3-dimensional symbols of Kro-
necker and Levi-Civita, respectively [30]. It may also be
worth noting here that in 3D space Q-connectivity has clear
geometrical and physical treatment as movable Q-basis with
behavior of Cartan 3-frame [30].

In accordance with the standard Q-relativity [30, 31], it
is also possible to write the dynamics equations of Classical
Mechanics for an inertial observer in the constant Q-basis, as
follows:

m
d2

dt2
(xkqk) = Fkqk : (49)

Because of the antisymmetry of the connection (the gen-
eralized angular velocity), the dynamics equations can be
written in vector components, by the conventional vector no-
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tation [30, 32]:

m
�
~a+ 2~
� ~v + ~
� ~r + ~
� (~
� ~r)� = ~F ; (50)

which represents known types of classical acceleration, i.e.
the linear, the Coriolis, the angular, and the centripetal acce-
leation, respectively.

Interestingly, as before we can use the equivalence be-
tween the inertial force and Lorentz’ force (34), therefore
equation (50) becomes:

m
�
d~v
dt

+ 2~
� ~v + ~
� ~r + ~
� (~
� ~r)
�

=

= q

�
~E +

1
c
~v � ~B

�
;

(51)

or �
d~v
dt

�
=
q

m

�
~E +

1
c
~v � ~B

�
�

� 2~
� ~v + ~
� ~r + ~
� (~
� ~r)
m

:
(52)

Please note that the variable q here denotes electric
charge, not quaternion number.

Therefore, it is likely that one can expect a new effects
other than Podkletnov’s rotating disc experiment as discussed
in the preceding Section.

Further interesting things may be expected, by using (34):

~F = m
�
d~v
dt

�
= q

�
~E +

1
c
~v � ~B

�
)

) m (d~v) = q
�
~E +

1
c
~v � ~B

�
dt :

(53)

Therefore, by introducing this Lorentz’ force instead of
the velocity into (44), one gets directly a plausible extension
of Q-relativity:

ds =
�
dxk + i�

q
m

�
~Ek +

1
c
~vk � ~Bk

�
dtk
�
qk : (54)

This equation seems to indicate how a magnetic worm-
hole can be induced in 6D Q-relativity setting [16, 19]. The
reason to introduce this proposition is because there is known
link between magnetic field and rotation [34]. Nonetheless
further experiments are recommended in order to refute or
verify this proposition.

7 Possible link with quantum gravity

In this Section, we remark that the above procedure to de-
rive the closed FLRW-Carmeli metric from the group with
nonzero quaternions has an obvious advantage, i.e. one can
find Quantum Mechanics directly from the quaternion frame-
work [35]. In other words, one can expect to put the gravita-
tional metrical (FLRW) setting and the Quantum Mechanics
setting in equal footing. After all, this may be just a goal
sought in “quantum gravity” theories. See [4a] for discussion

on the plausible quantization of a gravitational field, which
may have observable effects for instance in the search of ex-
trasolar planets [35a].

Furthermore, considering the “phonon metric” described
in (20), provided that it corresponds to the observed facts,
in particular with regards to the “surrounding medium” vor-
tices described by (26–29), one can say that the “surrounding
medium” is comprised of the phonon medium. This proposi-
tion may also be related to the superfluid-interior of the Sun,
which may affect the Earth climatic changes [35b]. Therefore
one can hypothesize that the signatures of quantum gravity,
in the sense of the quantization in gravitational large-scale
phenomena, are possible because the presence of the phonon
medium. Nonetheless, further theoretical works and observa-
tions are recommended to explore this new proposition.

8 Concluding remarks

In the present paper we begun with a representation of a group
with non-zero quaternions to derive closed FLRW metric [1],
and we obtained Carmeli 5D metric [4] from this group. The
resulting metric can be extended further to become 5D and
6D metric (called by us Kaluza-Klein-Carmeli metric).

Thereafter we discussed some plausible implications of
this metric. Possible implications to the Earth geochrono-
metrics and possible link to the coral growth data were dis-
cussed. In subsequent Section we explained Podkletnov’s
rotating disc experiment. We also noted possible neat link
between Kaluza-Klein-Carmeli metric and Yefremov’s
Q-Relativity, in particular we proposed a further extension
of Q-relativity to become 9D metric. Possible implications to
quantum gravity, i.e. possible observation of the quantization
effects in gravitation phenomena was also noted.

Nonetheless we do not pretend to have the last word on
some issues, including quantum gravity, the structure of the
aether (phonon) medium, and other calculations which re-
main open. There are also different methods to describe the
Receding Moon or Podkletnov’s experiments. What this pa-
per attempts to do is to derive some known gravitational phe-
nomena, including Hubble’s constant, in a simplest way as
possible, without invoking a strange form of matter. Further-
more, the Earth geochronometry data may enable us to verify
the cosmological theories with unprecedented precision.

Therefore, it is recommended to conduct further observa-
tions in order to verify and also to explore the implications of
our propositions as described herein.

Acknowledgment

The writers would like to thank to Profs. C. Castro and
A. Yefremov for valuable discussions. Special thanks to Prof.
D. Rapoport for insightful remarks in particular concerning
possible link between gravitation and torsion.

Submitted on February 25, 2008 / Accepted on March 10, 2008

V. Christianto and F. Smarandache. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, and Lorentz’ Force 149



Volume 2 PROGRESS IN PHYSICS April, 2008

References

1. Trifonov V. Geometry of the group of nonzero quaternions.
arXiv: physics/0301052; [1a] arXiv: math-ph/0606007.

2. Carrion H.L., et al. Quaternionic and octonionic spinors. A
classification. arXiv: hep-th/0302113.

3. Abdel-Khalek K. The ring division self duality. arXiv: hep-
th/9710177; [3a] Riemann B. In which line-element may be
expressed as the fourth root of a quartic differential expression.
Nature, v. VIII, nos. 183 and 184, 14–17, 36, and 37. Translated
by William K. Clifford.

4. Carmeli M. Is galaxy dark matter a property of spacetime?
arXiv: astro-ph/9607142; [4a] Carmeli M., et al. The SL(2,c)
gauge theory of gravitation and the quantization of gravitational
field. arXiv: gr-qc/9907078.

5. Hartnett J.G. Carmeli’s accelerating universe is spatially flat
without dark matter. arXiv:gr-qc/0407083.

6. Hartnett J.G. Extending the redshift-distance relation in
Cosmological General Relativity to higher redshifts. arXiv:
physics.gen-ph/0705.3097.

7. Hartnett J.G. The distance modulus determined from Carmeli’s
cosmology. arXiv: astro-ph/0501526.

8. Fujii Y. Cosmological constant, quintessence and Scalar-Tensor
theories of gravity. arXiv: gr-qc/0001051.

9. Fujii Y. Quintessence, Scalar-Tensor theories, and non-
Newtonian gravity. arXiv:gr-qc/9911064.

10. Hehl F.W. and Obukhov Y. arXiv: gr-qc/0711.1535, p.1–2;
[10a] Rapoport D. In: Quantization in Astrophysics, Brownian
motion, and Supersymmetry, F. Smarandache and V. Christianto
(eds), Chenai, Tamil Nadu, 2007.

11. Noerdlinger P. arXiv: astro-ph/0801.3807.

12. Arbab I.A. On the planetary acceleration and the rotation of the
Earth. arXiv: astro-ph/0708.0666, p. 5–7.

13. Smoot N.C. Earth geodynamic hypotheses updated. Jour-
nal of Scientific Exploration, 2001, v. 15, no. 3, 465–494;
http://www.scientificexploration.org/jse/

14. Wells J.W. Coral growth and geochronometry. Nature, 9 March
1963; http://freepages.genealogy.rootsweb.com/�springport/
geology/coral growth.html

15. Christodoulou D. and Kazanas D. Exact solutions of the
isothermal Lane-Emdeen equations with rotation and implica-
tions for the formation of planets and satellites. arXiv: astro-ph/

0706.3205.

16. Sussman R. A dynamical system approach to inhomogeneous
dust solutions. arXiv: gr-qc/0709.1005.

17. Sollanych M.J. Continental drift and the expansion of the uni-
verse. http://www3.bc.sympathico.ca/moon/index.html

18. O’Brien R. In: 2002 Yearbook of Astronomy, P. Moore (ed.),
Macmillan Publ. Ltd., London, 2002, 214–223, 262–263.

19. Friedman J.L., et al. Reduced phase space formalism for spher-
ically symmetric geometry with a massive dust shell. arXiv:
gr-qc/970605, p.19

20. Pervushin V.N., et al. Astrophysics in relative units as the theo-
ry of conformal brane. arXiv: hep-th/0209070.

21. Rughede O.L. On the theory and physics of aether. Progress in
Physics, 2006, v. 2.

22. Kirkwood R.L. Gravitational field equations. Phys. Rev., 1954,
v. 95, no. 4, 1051–1056; [22a] Cahill R. Dynamical fractal 3-
space and the generalized Schrödinger equation: equivalence
principle and vorticity effects. Progress in Physics, 2006, v. 2.

23. Murad P.A. Relativistic fluid dynamics and light speed travel,
AIAA, 1999.

24. Spohn H. Semiclassical limit of the Dirac equation and spin
precession. arXiv: quant-ph/9911065.

25. Cui H.Y. Relativistic mechanism of superconductivity. arXiv:
physics/0212059.

26. Podkletnov E. and Nieminen R. Physica C, 1992, v. 203, 441.

27. Podkletnov E. Weak gravitation shielding properties of com-
posite bulk YBa2Cu3O7�x superconductor below 70 K under
e.m. field. arXiv: cond-mat/9701074.

28. Podkletnov E. and Modanese G. Impulse gravity generator
based on charged YBa2Cu3O7�y superconductor with compos-
ite crystal structure. arXiv: physics/0108005.

29. Tajmar M. and deMatos C. Induction and amplification of non-
Newtonian gravitational fields. arXiv: gr-qc/0107012; [29a]
deMatos C. and Tajmar M. Gravitational pointing vector and
gravitational Larmor theorem in rotating bodies with angular
acceleration. arXiv: gr-qc/0107014.

30. Yefremov A. Quaternions: algebra, geometry and physical the-
ories. Hypercomplex Numbers in Geometry and Physics, 2004,
v. 1(1), 105.

31. Yefremov A. In: Quantization in Astrophysics, Brownian mo-
tion, and Supersymmetry, F. Smarandache and V. Christianto
(eds), Chenai, Tamil Nadu, 2007.

32. Smarandache F. and Christianto V. Less mundane explana-
tion of Pioneer anomaly from Q-relativity. Progress in Physics,
2007, v. 3.

33. Shipov G. Shipov on torsion. http://www.shipov.com/

200506 news03.pdf

34. Dzhunushaliev V. Duality between magnetic field and rotation.
arXiv: gr-qc/0406078.

35. Trifonov V. Geometrical modification of quaternionic quantum
mechanics. arXiv: math-ph/0702095; [35a] Bower G.C., et
al. Radio astrometric detection and characterization of extra-
Solar planets: a white paper submitted to the NSF ExoPlanet
Task Force. arXiv: astro-ph/0704.0238; [35b] Manuel O.K.,
et al. Superfluidity in the Solar interior: implications for Solar
eruptions and climate. J. Fusion Energy, 2002, v. 21, 192–198;
arXiv: astro-ph/0501441.

150 V. Christianto and F. Smarandache. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, and Lorentz’ Force



April, 2008 PROGRESS IN PHYSICS Volume 2

The Palindrome Effect

Simon E. Shnoll�y, Victor A. Panchelyugay, and Alexander E. Shnolly
�Department of Physics, Moscow State University, Moscow 119992, Russia

yInstitute of Theor. and Experim. Biophysics, Russian Acad. of Sciences, Pushchino, Moscow Region, 142290, Russia
Corresponding authors. Simon E. Shnoll: shnoll@iteb.ru; Victor A. Panchelyuga: panvic333@yahoo.com

As initially experimental material of this paper serves sets of histograms built on the
base of short samples which provided the daily time series of the �-decay rate fluctu-
ations and the p-n junction current fluctuations. Investigations of the histograms simi-
larity revealed the palindrome effect, which is: two sets of histograms built on the base
of two consecutive 12-hours time series are most similar if one set of the histograms is
rearranged in inverse order, and the start time of the series is exact six hours later the
local noon.

1 Introduction

As was shown in our previous works, the similarity of his-
tograms built on the base of short samples of the time series
of fluctuations measured on the processes of different nature,
changes the regularly with time. These changes can be char-
acterized by different periods equal the solar (1440 min) and
sidereal (1436 min) days, several near 27-day periods, and
yearly periods [1–5]. At different geographical locations the
shapes of the histograms are similar to each other with high
probability for the coincident moments of the local time [6].
Also it was found the dependence of the histogram patterns on
the spatial directions of outgoing �-particles [5] and the mo-
tion specific to the measurement system [7]. Aforementioned
phenomena led us to an idea that the histogram patterns can
be dependent on also the sign of the projection obtained from
the velocity vector of the measurement system projected onto
the Earth’s orbital velocity vector. As was found, this suppo-
sition is true.

2 The method

A raw experimental data we used for this paper were sets of
the histograms built on the base of short samples which pro-
vided the daily time series of 239Pu �-decay rate fluctuations
and the p-n junction current fluctuations. The experimental
data processing and histogram sets analyzing are given in de-
tails in [1, 2].

We use the daily time series of fluctuations in the study.
Every time series started six hours later the local noon. Af-
ter the data acquisition, we divided the 24-hours record into
two 12-hours ones. On the base of these two consecutive
12-hours time series two sets of histograms (so-called “direct
sets”) were obtained for further analysis. The sign of the mea-
surement system’s velocity projected onto the Earth’s orbital
velocity is positive for one set, while the sign is negative for
the other. Proceeding from the direct sets, by rearranging in
inverse order, we obtained two “inverse” sets of histograms.

The histograms themselves were built on the base of the
60 of 1-sec measurements. So, one histogram durations was
1 min, while the 12-hours time series we used in the present
work formed the sets consisting of 720 such histograms. The
similarity of the histogram was studied for couplets (“direct-
direct” and “direct-inverse”) along the 720-histogram sets.
Here we present the results in the form of interval distribu-
tion: the number of similar pairs of the histograms is present
as a function on the time interval between them.

3 Experimental results

Fig. 1 shows the interval distributions for two couplets of the
sets built on the base of the daily time series of 239Pu �-decay
rate fluctuations, obtained on April 23, 2004. The left dia-
gram, Fig. 1a, shows the interval distribution for the “direct-
inverse” histogram sets. From the right side of the diagram,
we get the “direct-direct” histogram sets.

A peak shown in Fig. 1a means that the histograms with
the coincident numbers in the “direct-inverse” sets are similar
with very high probability. These sets of similar histograms
constitute about 20% from the total number (720) of the pairs.
In contrast to the “direct-inverse” sets, the interval distribu-
tions in the “direct-direct” histogram sets (Fig. 1b) achieve
only 5% of the total number of the pairs for the same zero
interval.

We call the palindrome effect� such a phenomenon, where
two sets of the histograms built on the base of two consecutive
12-hours time series are most similar in the case where one of
the sets is rearranged in inverse order, while the daily record
starts six hours later the local noon.

The palindrome effect doesn’t depend from the annual
motion of the Earth. This effect is actually the same for all
the seasons. This statement is illustrated by Fig. 2, where
the palindrome effect is displayed for the measurements car-
ried out on the autumnal equinox, September 22–23, 2005.
�This comes from the Greek word ����̀���o�o& , which means there

and back.
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Fig. 1: The palindrome effect in the daily time series of the 239Pu �-decay rate fluctuations, registered on April
23, 2004. The interval distribution for the “direct-inverse” histogram sets are shown in Fig. 1a, while those for
the “direct-direct” histograms sets are shown in Fig. 1b.

Fig. 2: The palindrome effect in the daily time series of the 239Pu �-decay rate fluctuations, registered on the
autumnal equinox, September 22-23, 2005. The interval distribution for the “direct-inverse” histogram sets are
shown in Fig. 1a, while those for the “direct-direct” histogram sets are shown in Fig. 2b.

Fig. 3: The palindrome effect.
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As easy to see, Fig. 2a and Fig. 2b are similar to Fig. 1a and
Fig. 1b respectively. Similarly to Fig. 1 and Fig. 2, the inter-
val distribution was obtained also for the winter and summer
solstice.

The aforementioned results mean that, for different loca-
tions of the Earth in its circumsolar orbit, we have the same
appearance of the palindrome effect.

4 Discussions

It is important to note that the 12-hours time series used in
the present work were measured in such a way that the pro-
jection of the tangential velocity vector V� (Fig. 3) of the mea-
surement system (which is due to the rotatory motion of the
Earth) onto the vector of the orbital velocity of the Earth Vo
has the same sign. So, two moments of time or, in another
word, two singular points a and � exist in the 24-hours daily
circle where the sign of the projection changes. The sign of
the projection is showed in Fig. 3 by gray circles. The palin-
drome effect can be observed, if the 12-hours time series start
exact at the moments a and �. For the aforementioned re-
sults, these moments are determined within a 1-min accuracy
by zero peaks shown in Fig. 1–2.

A special investigation on the time series measured within
the 20-min neighborhood of the a and � moments was carry
out with use of a semiconductor source of fluctuations (fluc-
tuations of p-n junction current). The interval distribution
obtained on the base of two sets of the 2-sec histograms con-
structed from this time series showed these moments to within
the 2-sec accuracy. If we get a symmetric shift of the start-
point of the time series relative to the a and � points, we find
that the peak on the interval distribution (like those shown in
Fig. 1–2) has the same time shift relative to zero interval.

The importance of two singular points a and � for the
palindrome effect leads us to an idea about the significance of
the tangential velocity vector V� and its projection onto the
vector Vo. If consider the numerical value of the projection,
we see that the set 10–70 is symmetric to the �7–�1. In such a
case the interval distributions (a) and (b) in Fig. 1–2 should be
the same. Because they are different in real, just given sup-
position is incorrect. We also can consider our measurement
system as oriented. In this case the 1 and 10 histograms should
be the same. This means that zero peaks should be located in
the “direct-direct” interval distributions, and be absent on the
“direct-inverse” one. As seen in Fig. 1–2, this is not true.

On the other hand, it is possible to formulate a supposition
which is qualitatively agreed with the obtained experimental
results. This supposition is as follows. There is an external
influence unshielded by the Earth, and this influence is or-
thogonal to Vo. In such a case the inversion of one set of the
histograms is understood, and leads to the interval distribu-
tions like those of Fig. 1-2. As easy to see, in such an inver-
sion rearrange order of the histograms, the histograms whose
location is the same orthogonal line have the same numbers.

This is because we have zero-peak in the “direct-inverse” in-
terval distribution.

The origin of such lines can be the Sun. The only prob-
lem in this case is the orbital motion of the Earth. We cannot
be located in the same line after 24-hours. As probable, we
should suppose that this structure of the lines, which are or-
thogonal to Vo, moves together with the Earth.

Now we continue this bulky research on the palindrome
effect. Detailed description of new results and the verifica-
tions to the aforementioned suppositions will be subjected in
forthcoming publications.
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The paper presents experimental investigations of a local-time peak splitting right up
to a second-order splitting. The splitting pattern found in the experiments has a fractal
structure. A hypothesis about the possibility of high order splitting is proposed. The
obtained experimental result leads to a supposition that the real space possesses a fractal
structure.

1 Introduction

The main subject of this paper is a local-time effect, which
is one of manifestations of the phenomenon of macroscopic
fluctuations. The essence of this phenomenon is that the pat-
tern (shape) of histograms, which are built on the base of short
samples of the time series of the fluctuations measured in the
processes of different nature, are non-random. Many-years of
investigations of such histograms carried out by the method
of macroscopic fluctuations [1] revealed a variety of phenom-
ena [2–4]. The most important among the phenomena is the
local-time effect [5–8].

The local-time effect consists of the high probability of
the similarity of the histogram pairs, which are divided by a
time interval equal to the local-time difference between the
points of measurement. This effect was registered in the scale
of distances from the maximal distance between the loca-
tions of measurement which are possble on the Earth’s sur-
face (about 15,000 km) to the distances short as 1 meter. Be-
sides, this effect can be observed on the processes of very
different nature [2–4].

The idea of a typical local-time experiment is illustrated
by Fig. 1. There in the picture we have two spaced sources
of fluctuations 1 and 2, which are fixed on the distance L
between them, and synchronously moved with a velocity V
in such a way that the line which connects 1 and 2 is parallel
to the vector of the measurement system’s velocity V . In this
case, after a time duration �t0

�t0 =
L
V
; (1)

the source of fluctuations 1 appear in the same position that
the source 2 was before. In Fig. 1 these new places are pre-
sented as 10 and 20. According to the local-time effect, co-
incident spatial positions cause similar histograms patterns.
In the interval distribution built on the base of the measure-
ments carried out by the system displayed in Fig. 1 (the num-
ber of similar pairs of the histograms as a function of the time
interval between them), a single peak in the interval �t0 is
observed.

In our previous works [6-8], we showed that there within

Fig. 1: This diagram illustrates the appearance of the local-
time effect.

Fig. 2: The sketch of the solar (1440 min) and stellar (1446
min) splitting of the daily period.

the time resolution enhancement (with use histograms, short-
est in time) the local-time peak splits onto two sub-peaks. It
was found that the ratio between the splitting �t1 and the
local-time value �t0 is k= 2.78�10�3. This numerical value
is equal, with high accuracy, to the ratio between the daily pe-
riod splitting 240 sec and the daily period value T = 86400
sec [7, 8]. This equality means that the local-time effect
and the daily period are originated in the same phenomenon.
From this viewpoint, the daily period can be considered as
the maximum value of the local-time effect, which can be ob-
served on the Earth.

In our recent work [8], we suggested that the sub-peaks of
the local-time peak can also be split with resolution enhance-
ment, and, in general, we can expect an n-order splitting with
the value �tn

�tn = kn �t0 ; n = 1; 2; 3; : : : (2)
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Fig. 3: The interval distributions for the 10-sec histograms (a), 2-sec histograms (b)–(c), and 0.2-sec histograms (d–e).
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Preliminary results obtained in [8] verified this suggestion
in part. The present work provides further investigation on the
second-order splitting of the local-time peak.

As easy to see, from (2), every subsequent value of the
local-time peak splitting �tn needs more than two orders of
resolution enhancement. Therefore, most easy way to study
�tn is to use the maximum value of �t0. Such a value, as
stated above, is the daily period �t0 = 86400 sec.

2 Experimental results

To study the second-order splitting of the daily period, we use
the known positions of the “solar peak” (1440 min) and the
“sidereal peak” (1436 min), which are the first-order split-
tings of the daily period. The peaks are schematically dis-
played in Fig. 2. To find the position of the second-order split-
ting peaks, we used the method of consecutive refinements
of the positions of the solar and sidereal peaks. The peaks
displayed in Fig. 2 are determined with one-minute accuracy.
Since the positions of the solar and stellar peaks are well-
known, we can study its closest neighborhood by shortest (to
one minute) histograms. In Fig. 2, such a neighborhood is
displayed by gray bars (they mean 10-sec histograms). After
obtaining the intervals distribution for the 10-sec histograms,
the procedure was repeated, while the rôle of the 1-min his-
tograms was played by the 10-sec histograms, and those were
substituted for the 2-sec histograms. After this, the procedure
was on the 2-sec and 0.2-sec histograms.

Zero interval (Fig. 2) marked by black colour corresponds
to the start-point of the records. We used two records, started
in the neighboring days at the same moments of the local
time. So, the same numbers of histograms were divided by
the time interval equal to the duration of solar day: 86400
sec. The interval values shown in Fig. 2 are given relative to
zero interval minus 86400 sec.

The time series of the fluctuations in a semiconductor
diode were registered on November 2–4, 2007. Each of the
measurement consisted of two records with a length of 50000
and 19200000 points measured with the sampling rate 5 Hz
and 8 kHz. On the base of these time series, we built the sets
of the 10-sec, 2-sec, and 0.2-sec histograms. We used these
sets in our further analysis.

The 10-second set of histograms was built on the base of
the records, obtained with the sampling rate 5 Hz. Each 10-
sec histogram was built from 50 points samples of the time
series of fluctuation. The 2-sec and 0.2-sec sets were built
on the base of the 50-point samples of the 25 Hz and 250 Hz
time series (they were recount from the 8 kHz series).

It is important to note, that the solar day duration is not
equal exactly to 86400 sec, but oscillates along the year. Such
oscillations are described by the time equation [8]. To provide
our measurements, we choose the dates when the time equa-
tion has extrema. Due to this fact, the day duration for all the
measurements can be considered as the same, and we can

Fig. 4: The daily period splitting. Gray color marks the experimen-
tally found splittings. The splitting displayed below were calculated
on the base of the formula (2) for n= 3. . . 5.

average the interval distributions obtained on the base of the
time series measured on November 2–4, 2007.

The interval distributions obtained after the comparison of
the histograms are given in Fig. 3. The upper graph, Fig. 3a,
displays the interval distribution for the 10-sec histograms.
As follows from Fig. 3a, the interval distribution in the neigh-
borhood of the 1-min peaks consists of two sharp peaks (dis-
played by gray bars) which are separated by a time interval
of 240�10 sec giving the positions of the solar and sidereal
peaks with 10-sec accuracy.

The interval distributions in the neighborhood of the 10-
sec peaks (Fig. 3a), for the 2-sec histograms, are displayed in
Fig. 3b–3c. Gray bars in Fig. 3b–3c correspond to the new
positions of the solar and sidereal peaks with 2-sec accuracy.
Considering the neighboring of the 2-sec peaks (Fig. 3b–3c)
to the 0.2-sec histograms, we obtain the interval distributions
displayed in Fig. 3d–3e. As easy to see, instead of the more
precise position of the 2-sec solar and sidereal peaks, we ob-
tain the splitting of the aforementioned peaks onto two cou-
plets of new distinct peaks. So, from Fig. 3d–3e, we state the
second-order splitting of the daily period.

3 Discussion

On the base of the formula (2), for n= 2 with use of �t0 =
= 86400 sec and k= 2.78�10�3 for the second-order split-
ting �t2, we get the value �t2 = 0.67 sec. From the ex-
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perimentally obtained interval distribution (Fig. 3d–3e), we
have �t2 = 0.8�0.2 sec. So, the experimental value agrees
with the theoretical estimations made on the base of the for-
mula (2).

Such an agreement leads us to a suppositon that there is
a high-order splitting, which can be obtained from the for-
mula (2). In Fig. 4, we marked by gray colour the experi-
mentally found splitting. The splitting displayed below was
calculated on the base of (2) for n= 3. . . 5, �t0 = 86400 sec,
and k= 2.78�10�3. This splitting will be a subject of our
further studies, and only this splitting is accessed to be stud-
ies now. For n> 5, we will need to get measurements with a
sampling rate of about 7.5 THz. Such a sampling rate is out
of the technical possibilities for now.

As was stated in Introduction, the local-time effect exists
in the scale from the maximal distances, which are possible
on the Earth’s surface, to the distances close to one meter.
Besides, the local-time effect doesn’t depend on the origin
(nature) of the fluctuating process. In the case, where the spa-
tial basis of the measurements is about one meter, the time
required for obtaining of the long-length time series (that is
sufficient for further analysis) is about 0.5 sec. Any exter-
nal influences of geophysical origin, which affect the sources
of the fluctuations synchronously, cannot be meant a source
of the experimentally obtained results. Only the change we
have is the changing of the spatial position due to the motion
of whole system with a velocity V originated in the rotatory
motion of the Earth (see formula 1). From this, we can con-
clude that the local-time effect originates in the heterogeneity
of the space itself. The results presented in Fig. 3 lead us to a
supposition that such an heterogeneity has a fractal structure.
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Interpretations are given herein regarding the very visionary and important Pu-239 his-
togram work of Shnoll, and calling attention to background research which was not fully
described in that paper. In particular, this Letter gives results of our theoretical and ex-
perimental research of gravitational anomalies during total solar eclipses and planetary
line-up, and compares interpretations of the data with the work of Shnoll.

I am writing this Letter-to-the-Editor in reference to the very
luminary paper authored by S. Shnoll [1], published in this
journal, because of the far-reaching impact of the implica-
tions of this paper in describing nature, and because I have
corresponded scientifically with the author on the subject of
his repeat-pattern histogram work [2, 3] since 2001 when I
first conveyed to Shnoll that his very meritorious radioactive
decay findings of periodicities was an element of a larger and
more ubiquitous external-particle net-transfer-of-momenta
model and theory in which the origin of gravity due to
collision-induced phenomena, was the initial cornerstone [4].
At that time Shnoll reported that the cause of the periodicities
in his radioactive decay histograms was unknown but must
be due to “profound cosmophysical phenomena” [2, 3]. The
cited references within [1] do not convey the full background
of the work leading to that paper [1] which Shnoll refers to as
a survey, but in my opinion is far beyond a simple review-of-
the-literature paper, and is instead a very significant archival
work. Additionally, within the text itself [1] there are no ref-
erences to the private communications References 40 and 41
cited in the list of references in [1]. For these above reasons,
I wish to clarify various elements of the paper [1].

I also advised Shnoll in 2003 and 2004 to search out his
earlier Pu-239 alpha decay data that were taken at the time
of a total solar eclipse [5], doing so because I was impressed
with his work during 2003 on characteristic histograms dur-
ing the New Moon, observed simultaneously independent of
location and latitude [6]. As stated, although my work, and
that of colleague, Frank Lucatelli, is referenced as private
communications in Shnoll’s paper [1], as Refs. 40 and 41,
those references are not cited in the text, but instead only in
the bibliography, and thus most readers would be unaware of
our input into Shnoll’s paper of [1]. I also conveyed to Dr.
Shnoll our own work whereby at my request, colleagues had
measured a dip in the radioactive decay of Co-60 in southeast-
ern Kansas, and in Po-210 in the Boston area at the time of the
total solar eclipse of 4 December, 2002, when the “umbra”
passed closest to the isotope sources [7]. We predicted that

this effect would be observed based on the data of Allais [8],
and of Saxl and Allen [9] showing decreases in gravity asso-
ciated with the eclipses of 1954 and 1959, and the eclipse of
1970, respectively, and also based on the dip in gravity which
I observed using a dual Newton-cradle pendula system during
the planetary line-up of Earth-Sun-Jupiter’s/magnetosphere-
Saturn on 18 May 2001 [10]. This prediction was based on
my postulate that if gravity were a result of external particle
impingement on mass particles, then the other three axiomatic
“forces” should also depend upon, or be influenced by the ex-
ternal particle flux.

In this Letter-to-the-Editor, I wish to address points re-
garding Dr. Shnoll’s interpretation of his decades of data, and
of the data of others.

Shnoll has conducted very excellent collimator studies,
which showed that when the collimator was pointed north to-
ward the pole star, the near-daily-periods in the repeat his-
togram patterns of Pu-239 decay were not observed, con-
trasting the data showing repeat histograms when the colli-
mators were oriented east, and when they were oriented west.
Shnoll interprets these data stating that . . . “Such a depen-
dence, in its turn, implies a sharp anisotropy of space.” I
suggest that a better and more correct manner to interpret
these data is in terms of the Earth-Moon-Sun system, spin-
ning and orbiting in the east-west ecliptic plane interrupting,
through capture and/or scattering, elementary particles (prob-
ably neutrinos) that would otherwise impinge upon the ra-
dioactive source and perturb the weak interaction in unstable
nuclei. This is not a proof of heterogeneity and anisotropy of
space time in a general sense, but indication of celestial body
orbits that exist in the general plane of the ecliptic — the ex-
ternal particles being omnidirectional, and the heterogeneity
arising generally from supernovae explosions and their con-
sequences. Shnoll earlier in the paper rightfully states, refer-
ring to daily, monthly, and yearly periods in repeat forms of
the histograms, that “All these periods imply the dependence
of the obtained histogram pattern on two factors of rotation
— (1) rotation of the Earth around its axis, and (2) move-
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ment of the Earth along its circumsolar orbit”, thus support-
ing the above explanation. Shnoll alludes to this explana-
tion by stating that a heterogeneity in the gravitational field
results from the existence of “mass thicknesses” of celestial
bodies, and this then must relate to the capture cross-section
between nucleons of the mass bodies. Stanley [11] has de-
scribed in detail the properties of mass that relate to gravity,
and treated mathematically the flux of externally impinging
neutrinos [11] as related to gravitational interactions. Shnoll
invokes a “wave interference” and relates it to a gravitational
effect (which associates with our use of interruption and cap-
ture, but in our case the phenomenon is particle-based rather
than wave-based).

In Section 10 of [1], the author describes the observa-
tions of characteristic histogram patterns for the occurrence
of the New Moon, and the total solar eclipse. The author
writes that the specific patterns do not “depend on position
on the Earth’s surface where the Moon’s shadow falls during
the eclipse or the New Moon.” We have found, however, that
the decrease in gravity signature during a total solar eclipse
does depend upon the latitude of the location of totality and
of the measurements [12], and this is clearly proven in com-
paring the different data signatures during eclipses in different
locations, most notably the work of Wang et al. [13, 14] dur-
ing the eclipse of March 1997 in China. The work of Stanley
and Vezzoli [12] has been able to mathematically describe
from first principles the detailed gravimeter data of Wang et
al. [13, 14] for the above eclipse, including the parabolic dips
in gravity at first contact, and at last contact. The dependence
upon latitude of the location of the measurements and of total-
ity is due to the elastic scattering properties of the three-body
problem. Shnoll then interprets the overall data in associa-
tion with the fractality of space-time — a conclusion that we
have also reached in our gravity research [11, 15] and that is
also described very recently by Loll [16]. Shnoll notes that he
also observes a chirality in histograms, which we have shown
is fundamental in the nature of materials and the aggregation
of mass to form compounds [17].

It is interesting to note that in [1], Shnoll concludes that
there is a spatial heterogeneity on the scale of 10�13 cm.
This is the value that we calculate for the inter-neutrino spac-
ing of the neutrino flux, corresponding to a collision cross-
section with nucleons of �10�38 cm2, and a particle density
3.7�1028–1034 particles per cm3.

Our work, and our interpretation of the Shnoll work
[1–3], and many other works by Shnoll, correlates very well
with the positron annihilation work of Vikin [19] showing that
the production of positronium from Na-22 undergoes a max-
imum near the time of the New Moon, and a minimum near
the time of the Full Moon. At the time of the New Moon, the
Earth laboratory (whether measurements are of gravitational
interactions or of radioactive decay phenomena) faces in the
general direction of the line of the Moon and the Sun for a
short period of the day, and then rotates such that the labo-

ratory faces free and open space and distant stars during the
duration of the day, so that a large complement of neutrinos
falls uninterrupted onto the measuring device; also neutrinos
that are emitted by the Sun may be scattered by the Moon to
affect the data. During the Full Moon, however, the Earth lab-
oratory is always between the Moon and the Sun, and hence
the overall collision physics is considerably different.

Shnoll sums the interpretation of the work that he de-
scribes within [1] by stating “Taken together, all these facts
can mean that we deal with narrowly directed wave fluxes”,
which he refers to as beams that are more narrow than the
aperture of the collimators of the apparatus (0.9 mm). Our
model and theory of gravity [11] is based on a flux of par-
ticles, and the “narrow beam” is interpreted due to very low-
angle elastic scattering of external particles by the nucleons of
the celestial bodies [11,12], particularly the Moon (near body
in [12]) and Sun (far body), such that some particles never
reach the detecting apparatus such as pendula, gravimeter, or
radioactive source-detector system.

Fundamental to Shnoll’s work is his assertion that these
periodic characteristic histograms relate to a wide variety of
phenomena ranging from bio-chemical phenomena, to the
noise in a gravitational antenna, to alpha decay. This is in
agreement with my own work and that of others, and I have
found that anomalies in gravity, radioactive decay of Po-210
(and Co-60), and changes in plant growth, orientation, and
physiology, as well as embryonic centriole-centriole separa-
tion phenomena, and even DNA and its sheathing H2O, are
affected by the Earth-Moon-Sun relationship [10–12, 14, 17,
19, 20]. It has been shown by Gershteyn et al. [21] that the
value of G varies at least 0.054% with the orientation of the
torsion pendula masses with the stars, and that G is periodic
over the sidereal year [21] — this periodicity arguing for a
strong link between the Shnoll radioactive decay data and
gravity. Furthermore the Shnoll work [1] cites the possibil-
ity of a space-time anisotropy in a preferential direction, and
refers to the drift of the solar system toward the constellation
Hercules. Our theoretical work in collision-induced gravity
shows that G is a function of collision cross-section of the
neutrino-nucleon interaction [11], and experimental work in-
dicates thatG is a function also of at least temperature, phase,
and shape [10, 22]. Our very recent experimental work deter-
mined that G= 6.692�10�11 cubic meters per kg sec2 [15]
which compares very favorably with the slightly earlier work
of Fixler et al [22] using precision a interferrometric method
in conjunction with cold Cs atoms and a known Pb mass,
yielding G= 6.693�10�11 cubic meters per kg sec2 — these
values being considerably larger than the normally utilized
value of 6.67�10�11. These data are in accord with an in-
creasing trend in G that could possibly be related to other
trends such as that cited by Shnoll [1].

Shnoll reports [1] that the subject histograms have a fine
structure that shows what he refers to as “macroscopic fluc-
tuations”. We have reported gravitational fluctuations [10]
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that appear at random, and are associated with time intervals
of �0.13 sec, indicating another correlation between gravity
data and radioactive decay data. The gravitational fluctua-
tions that we detected were observed in the form of two New-
ton cradle pendula dwelling near each other for prolonged pe-
riods of time, but occurring in an unpredictable manner. We
tentatively correlated these events with signals arriving from
supernovae events that had occurred somewhere in the vast-
ness of the universe. We also had detected on 27 August 2001
a peak in the radioactive decay of our Po-210 source, far in
excess of two-sigma Poisson statistics, and later correlated
with the arrival of radiation from supernovae explosion SN
2001 dz in UGC 47, emitting energy in all neutrinos of the
order of 1046 joules.

All of the above points to the ubiquity of a model of na-
ture based on elementary impinging momentum-transferring
external particles that can be interrupted by mass particles,
rather than nature being based on the conventional four ax-
iomatic forces and their respective field theory. Furthermore,
in an external particle based model for gravity, there is no
need to invoke a purely mathematical “fabric” to space-time
curvilinearity according to geodesics or warping, nor is it nec-
essary to invoke Riemanian space, nor Minkowski space, but
instead space-time is considered to be of a fractal geometry,
and the trajectory of mass particles and photons through space
is curved because of collisions with neutrinos (WIMPS). Al-
though the collision cross-section of the neutrino with the
photon is extremely low, the flux density of the neutrino in our
region of the universe is extremely high, and we postulate that
the bending of light is due to that interaction. It seems that as-
trophysics is now poised to affirm modifications to Einstein’s
theory of General Relativity, and this is not unexpected in
that many recent findings have indicated that gravity is quan-
tized [15, 16, 24–26]. Understanding the nature and details
of this quantization is one of the very major challenges and
objectives in physics of this new century.

See also [27] for corroboration by private communication
of periodic behavior of radioactive decay data during New
Moon.
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In a letter published by Dr. Vezzoli in the current issue of your journal, he claims priority
back to 2001 for an explanation to certain gravitational phenomena, which were first
recorded by me and my co-workers at my laboratory. He claims priority to me on
the basis of the fact that he shared his results and plans with me in 2001 in private
communication. However, I and my co-workers understood the phenomena in the same
terms as much as 20 years before that, in the 1980’s, and discussed by us in numerous
publications during the 1980’s, in the Soviet (now Russian) scientific journals. I provide
a list of my early publications, refuting Dr. Vezzoli’s claim to priority.

Dear Sir,
I refer a letter published by Dr. Vezzoli in the current issue

of your journal he claims priority back to 2001 for an expla-
nation to certain gravitational phenomena, which were first
recorded by me and my co-workers at my laboratory. Clearly,
Dr. Vezzoli is mistaken to think that he was the first person to
propose, in 2001, an explanation of the gravitational phenom-
ena recorded by me and my co-workers, at my laboratory. We
in fact understood the phenomena in the same terms as much
as 20 years before that, in the 1980’s, as numerous publica-
tions [1–17] testify. For instance, an explanation of the exper-
iments was given by me in 1989 at the International Congress
on Geo-Cosmic Relations, in Amsterdam [4, 5]. This ex-
planation was repeated in the other papers, published by us
in 1989, 1995, and 2001. Our data, obtained during solar
eclipses, began with the eclipse of July 31, 1981, when a large
series of measurements was processed by 30 experimentalists
connected to my laboratory, located at 10 geographical points
stretching from the Atlantic to the Pacific (Sakhalin Island)
along the corridor of the eclipse. We got more than 100,000
single measurements of the speed of chemical reactions dur-
ing that eclipse. Our results were published in 1985 and 1987
[2, 3]. Since 1981 we processed measurements obtained dur-
ing many solar and lunar eclipses, and also Full Moon and
New Moon phases. The results were published in part only
because a detailed analysis was required. In 1989 I published
a paper wherein I claimed an observed change in the form of
histograms obtained from a radioactive decay which was de-
pendent upon the position of the Moon over the horizon [6].
This effect was observed at different geographical points. In
the same paper [6] I suggested a gravitational origin of the
observed effects.

I was pleased by the fact that a suggestion similar to that
of mine was given by our American colleagues (Dr. Vezzoli,
Dr. Lucatelli, and others), 20 years subsequent to me. This is
despite that fact that their conclusions were made on the basis
of scanty experimental data, in contrast to our own.

Dr. Vezzoli’s claim to priority in this research, and hence
his intellectual property, is I feel due to the following circum-
stance: the absence of information in the West about most
publications made by us during the 1980’s in the Soviet (now
Russian) scientific journals.

My belief is that I, being a purely experimental physicist,
should represent neither theoretical interpretations of the ob-
served phenomena nor hypotheses on the subject given by the
other authors. They may do that in their own papers; such a
policy would be most reasonable from any standpoint.

Unfortunately, no definite theoretical explanation of the
phenomenon we observed [1–16] was published in the scien-
tific press until now. The authors of a series of papers, pub-
lished in 2001 in Biophysics, v. 46, no. 5, presented different
hypotheses on the subject. Not one of those hypotheses re-
sulted in a calculation which could be verified by experiment.

I am responsible for a huge volume of experimental
data, resulting from decades of continuous experimental re-
search carried out by myself and dozens of my co-workers.
I wouldn’t like to dilute the data with a survey on hypotheses
and theoretical propositions given by the theoretical physi-
cists. Frankly speaking, I have no obligation to give such
a survey. I am prepared to provide references to published
papers on the subject, if it is suitable according to contents.
However I feel that it is wrong to refer any information ob-
tained in private communications before they publish their
views on their own account.

I give below a list of my early publications, which refute
the claim made by Dr. Vezzoli. Even a cursory inspection
of the publications reveals the fact that the information pro-
vided to me by Dr. Vezzoli and Dr. Lucatelli wasn’t news to
me. I do not wish to be embroiled in any quarrel with them.
However, having the list of my early publications, it would be
strange to raise the issue of priority.
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In this work, the presence of substantial microwave power in the atmosphere of the
Earth is discussed. It is advanced that this atmospheric microwave power constitutes
pools of scattered photons initially produced, at least in substantial part, by the �3 K
microwave background. The existence of these microwave pools of photons can serve to
explain how the Earth, as an anisotropic source, is able to produce an Earth Microwave
Background (EMB) at �3 K which is isotropic.

The �3 K microwave background [1] has always been asso-
ciated with the primordial universe [2]. Conversely, I have
advanced an oceanic origin for this signal [3–7], a scenario
supported by Rabounski and Borissova [8–10]. The Earth
has an anisotropic surface comprised of water and solid mat-
ter. However, the microwave background is isotropic. As
a result, if the Earth is the emitter of the �3 K signal [1],
isotropy must be achieved by scattering oceanic photons in
the atmosphere.

Initially, I invoked a Compton process in the atmosphere
in order to generate isotropy from an anisotropic oceanic
source [3]. Yet, given the nature of the scattering required
and the energies involved, such a mechanism is not likely. I
therefore proposed that Mie scattering should be present [4].
Finally, I discussed both Rayleigh and Mie scattering [6].
Rayleigh scattering should be more important at the lower
frequencies, while directional Mie scattering would prevail at
the higher frequencies [6].

Currently [2], the microwave background is believed to
be continuously striking the Earth from all spatial directions.
Under steady state, any photon initially absorbed by the atmo-
sphere must eventually be re-emitted, given elastic interac-
tions. Since the incoming microwave background is isotropic
[1, 2], then even scattering effects associated with absoption/

emission should not reduce the signal intensity on the ground,
because of steady state [6]. Thus, there should be no basis for
signal attenuation by the atmosphere, as I previously stated
[6]. Nonetheless, current astrophysical models of the atmo-
sphere assume that such attenuations of the microwave back-
ground occur [i.e. 11, 12]. These models also appear to ne-
glect atmospheric scattering [i.e. 11, 12].

I have mentioned that scattering processes are a central as-
pect of the behavior of our atmosphere at microwave frequen-
cies [6]. In addition, since steady state assumptions should
hold, any scattering of radiation, should build up some kind
of reservoir or pool of scattered photons in the atmosphere.

Scattering is known to become more pronounced with in-
creasing frequencies. Consequently, larger photon reservoirs
might be seen at the shorter wavelengths.

It is known that the atmosphere interferes with the mea-
surements of the microwave background [11]. However, this
interference has been attributed to atmospheric emissions [i.e.
11, 12], not to scattering. Experimental measurements have
demonstrated that atmospheric emissions increase substan-
tially with frequency [11, 12]. For instance, emissions at-
tributed to the water continuum tend to increase with the
square of the frequency [12]. Atmospheric contributions are
so pronounced at the elevated frequencies, that they can con-
tribute in excess of 15 K to the microwave background tem-
perature measurements at wavelengths below 1 cm [see table
4.2 in ref 11]. At a wavelength of 23.2 cm, Penzias and Wil-
son [1] obtained a 2.3 K contribution to their measurement
just from the atmosphere [see table 4.2 in ref 11]. Even at
a wavelength of 75 cm, an atmospheric contribution of 1K
can be expected [see table 4.2 in ref 11]. Atmospheric mod-
eling used in microwave background studies confirms the in-
crease in interference with frequency and its decrease with
altitude [i.e. 11, 12].

A pronounced increase in emission with frequency is ex-
pected if scattering is present. As such, it is reasonable to
postulate that astrophysics is dealing with scattering in this
instance [6], not with simple emission [11, 12]. Microwave
background measurements at the elevated frequencies are
therefore primarily complicated not by a lack of absolute sig-
nal, as I previously believed [6], but rather, by the tremen-
dous interference from the scattered signal reservoirs in the
atmosphere. In order to eliminate this effect, we are there-
fore forced to study the elevated frequencies from mountains
top or at higher altitudes using balloons, rockets and satel-
lites [11].

Should the microwave background arise from the universe
[2], the atmosphere of the Earth would still generate the same
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reservoirs of scattered radiation. The atmosphere cannot dis-
tinguish whether a photon approaches from space [2] or from
the oceanic surface [6]. Thus, establishing the presence of
the scattered pool of photons in the atmosphere cannot recon-
cile, by itself, whether the microwave background originates
from the cosmos, or from the oceans. Nonetheless, since a
steady state process is involved, if a �3 K signal is indeed
produced by the oceans, then a �3 K signal will be detected,
either on Earth [1] or above the atmosphere [13]. The Planck-
ian nature of this signal will remain unaltered precisely be-
cause of steady state. This is a key feature of the steady
state regimen. Importantly, experimental measures of emis-
sion [11, 12] do confirm that substantial microwave power
appears to be stored in the scattering reservoirs of the at-
mosphere. Consequently, a mechanism for creating isotropy
from an anisotropic oceanic signal [5] is indeed present for
the oceanic �3 K Earth Microwave Background.

Dedication: This work is dedicated to my three sons, Jacob,
Christophe and Luc.
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This paper answers twelve most common questions on the basics of Einstein’s theory
of relativity. The answers remove most key problems with a real, solid understanding
of the theory.

Since its inception, Progress in Physics, has maintained the
importance of freedom of expression in science [1]. As a re-
sult, the journal has sometimes published works even though
the editorial staff differred either with the premise or with the
conclusions of a paper. The editorial board maintains that it is
best to disseminate works, rather than to unknowlingly sup-
press seminal ideas. The validity of all scientific arguments
will eventually be discovered. For this reason, the journal
strongly upholds the rights of individual scientists relative to
publication. At the same time, many questions focusing on
fundamental aspects of Einstein’s theory of relativity have
been submitted to the journal. Most of these letters were
not published as they were concieved by authors who did not
properly grasp the concepts outlined within the classic text-
books on this subject, such as The Classical Theory of Fields
by Landau and Lifshitz [2] and others [3].

Recently, the editorial board made the decision to publish
a work by Stephen J. Crothers [4] even though some ques-
tions remained relative to its basic premise. We chose to
move to publication for two reasons. First, Crothers is a ca-
pable scientist who has already demonstrated substantial in-
sight into General Relativity [5]. Indeed, the editorial board
has written in support of these ideas [6]. Second, the journal
has received substantial correspondance from both amateurs
and established scientists. These letters have focused on per-
ceived problems with Einstein’s theory of relativity. The edi-
tors therefore feels compelled to address these concerns, both
relative to Crothers [4] and to other serious scientists who had
previously worked, with success, on numerous applications
of the theory of relativity.

In general, the correspondance we have received has ex-
pressed doubt concerning the validity of some key points in
Einstein’s theory. We found that these questions originated in
the fact that the scientists asking the questions were educated
as physicists, while the base of Einstein’s theory is Rieman-
nian geometry. It is therefore not suprising that some confu-
sion might arise. The meaning of Einstein’s theory is the ge-
ometrization of physics, the expression of all physics through
the geometrical properties of the four-dimensional pseudo-
Riemannian space (the basic space-time of the theory of rel-
ativity) or its extensions. Many physicists came to the the-

ory of relativity from the other fields of physics; they learned
Einstein’s theory through brief courses which gave the the-
ory in its historical sense, often with artifically introduced
principles and postulates. When the meaning of Einstein’s
theory, the geometrization of physics, was finally understood
through the joint intellectual powers of Albert Einstein and
Marcel Grossmann, all the physical principles came out from
the consideration; they all became covered by the particular
properties of the geometry within four-dimensional pseudo-
Riemannian space. Such a “historical” approach, which is
very common in most brief courses on the theory of relativ-
ity for physicists, often carries a student away with specu-
lations on the principles and postulates, instead of studying
Riemannian geometry itself. As a result, serious physicists
erred relative to simple questions which remained open af-
ter their brief education. Only a small minority of physicists,
who devoted their life to understanding the theory of relativ-
ity, were lucky enough to be able to study the special (more
advanced) courses on this subject.

Here we collected twelve of the most common questions
on the basics of Einstein’s theory, asked by the readers and
some of our colleagues. We hope the answers will remove
most key problems with a real, solid understanding of the
theory.
First. Naturally, each term in Einstein’s equations in empti-
ness (i.e. with zero right-hand-side) vanishes. This is due
to that fact that, in such a case, the scalar curvature is zero
R= 0, so Einstein’s equations become the vanishing condi-
tion for Ricci’s tensor: R�� = 0. In the same time, Ricci’s
tensor R�� isn’t a number, but a 2nd-rank tensor whose com-
ponents are 16 (only 10 of whom are independent). The for-
mula R�� = 0, i.e. Einstein’s equations in emptiness, means
10 different differential equations with zero elements on the
right-hand-side. These are differential equations with respect
to the components of the fundamental metric tensor g�� : each
of 10 equations R�� = 0 is expressed in the terms containing
the components of g�� and their derivatives according to the
definition of Ricci’s tensor R�� . Nothing more. (With non-
zero elements on the right-hand-side, these would be Ein-
stein’s equations in a space filled with distributed matter, e.g.
electromagnetic field, dust, liquid, etc. In such a case these
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would be 10 differential equations with a free term.)
Therefore the vanishing of each term of Einstein’s equa-

tions in emptiness doesn’t matter with respect to the validity
of the equations in both general and particular cases.
Second. A common mistake is that a gravitational field is de-
scribed by Einstein’s equations. In fact, a gravitational field is
described not by Einstein’s equations, but the components of
the fundamental metric tensor g�� of which only 10 are sub-
stantial (out of 16). To find the components, we should solve
a system of 10 Einstein’s equations, consisting of g�� and
their derivatives: the differential equations with zero right-
hand-side (in emptiness) or non-zero right-hand-side (with
distributed matter).
Third. The condition R�� = 0 doesn’t mean flateness, the
pseudo-Euclidean space (g00 = 1, i.e. the absence of grav-
itational fields), but only emptiness (see the first point that
above). Only a trivial case means flatness when R�� = 0.
Fourth. A mass, the source of a gravitational field, is con-
tained in the time-time component g00 of the fundamental
metric tensor g�� : the gravitational potential expresses as
w = c2

p
1�g00. Therefore Einstein’s equations in emptiness,

R�� = 0, satisfy a gravitational field produced by a mass
(g00 , 1). The right-hand-side terms (the energy-momentum
tensor T�� of matter and the �-term which describes physical
vacuum) describe distributed matter. There is no contradic-
tion between Einstein’s equations in emptiness and the equiv-
alence principle.
Fifth. In the case of geometrized matter, the most known
of which are isotropic electromagnetic fields (such fields are
geometrized due to Rainich’s condition and Nortvedt-Pagels’
condition), the energy-momentum tensor of the field express-
es itself through the components of the fundamental met-
ric tensor. In such a case, we can also construct Einstein’s
equations containing only the “geometrical” left-hand-side by
moving all the right side terms (they consist of only g�� and
their functions) to the left-hand-side so the right-hand-side
becomes zero. But such equations aren’t Einstein’s equations
in emptiness because R�� , 0 therein.
Sixth. Minkowski’s space, the basic space-time of Special
Relativity, permits test-masses, not point-masses. A test-mass
is one which is so small that the gravitational field produced
by it is so negligible that it doesn’t have any effect on the
space metric. A test-mass is a continous body, which is ap-
proximated by its geometrical centre; it has nothing in com-
mon with a point-mass whose density should obviously be
infinite.

The four-dimensional psedo-Riemannian space with Min-
kowski’s signature (+���) or (�+++), the space-time of
General Relativity, permits continuosly gravtating masses
(such a mass can be approximated by the centre of its grav-
ity) and test-masses which move in the gravitational field. No
point-masses are present in the space-time of both Special
Relativity and General Relativity.

Seventh. Einstein’s theory of relativity doesn’t work on in-
finite high density. According to Einstein, the theory works
on densities up to the nuclear density. When one talks about
a singular state of a cosmological solution, one means a so-
called singular object. This is not a point, but a compact ob-
ject with a finite radius and high density close to the nuclear
density. Infinite high density may occur on the specific con-
ditions within a finite radius (this is described in the modern
relativistic cosmology [7]), but Einstein’s theory does con-
sider only the states before and after that transit, when the
density lowers to that in atomic nuclei. Such a transit itself is
out of consideration in the framework of Einstein’s theory.

Eighth. Einstein’s pseudotensor isn’t the best solution for
elucidating the energy of a gravitational field, of course. On
the other hand, the other solutions proposed to solve this
problem aren’t excellent as well. Einstein’s pseudotensor of
the energy of a gravitational field permits calculation of real
physical problems; the calculation results meet experiment
nicely. See, for intance, Chapter XI of the famous The Clas-
sical Theory of Fields by Landau and Lifshitz [2]. This man-
ifests the obvious fact that Einstein’s pseudotensor, despite
many drawbacks and problems connected to it, is a good ap-
proximation which lies in the right path.

Bel’s tensor of superenergy, which is constructed in anal-
ogy to the tensor of the electromagnetic field, is currently the
best of the attempts to solve the problem of the energy of the
gravitational field in a way different from that of Einstein. See
the original publications by Louis Bel [8]. More can be found
on Bel’s tensor in Debever’s paper [9] and also in Chapter 5 of
Gravitational Waves in Einstein’s Theory by Zakharov [10].

Besides Bel’s tensor, a few other solutions were proposed
to the problem of the energy of the gravitational field, with
less success. Einstein’s theory of relativity isn’t fosilized,
rather it is under active development at the moment.

Nineth. Another very common mistake is the belief that Ein-
stein’s equations have no dynamical solution. There are dif-
ferent dynamical solutions, Peres’ metric for instance [11].
Peres’s metric, one of the empty space metrics, being applied
to Einstein’s equations in emptiness (which are R�� = 0),
leads to a solely harmonic condition along the x1 and x2 di-
rections. One can read all these in detail, for instance, in
Chapter 9 of the well-known book Gravitational Waves in
Einstein’s Theory by Zakharov [10].

Tenth. The main myths about Einstein’s theory proceed in
a popular misconception claiming the principal impossibil-
ity of an exceptional (absolute) reference frame in the theory
of relativity. This is naturally impossible in the space-time
of Special Relativity (Minkowski’s space, which is the four-
dimensional pseudo-Euclidean space with Minkowski’s sig-
nature) due to that fact that, in such a space, all space-time
(mixed) components g0i of the fundamental metric tensor are
zero (the space is free of rotation), and also all non-zero com-
ponents of the metric are independent from time (the space

Dmitri Rabounski and Larissa Borissova. Reply to the “Certain Conceptual Anomalies in Einstein’s Theory of Relativity” 167



Volume 2 PROGRESS IN PHYSICS April, 2008

deformation is zero). This however isn’t true in the space-
time of General Relativity which is pseudo-Riemannian, so
any components of the metric can be non-zero therein. It was
shown already in the 1940’s, by Abraham Zelmanov, a promi-
nent scientist in the theory of relativity and cosmology, that
the space-time of General Relativity permits absolute refer-
ence frames connected to the anisotropy of the fields of the
space rotation or deformation of the whole Universe, i. e. con-
nected to globally polarized (dipole-fit) fields which are as a
global background gyro. See Chapter 4 in his book of 1944,
Chronometric Invariants [7], for detail.

Eleventh. Another popular myth claims that an experiment,
which manifests the anisotropy of the distribution of the ve-
locity of light, is in contradiction to the basics of the the-
ory of relativity due to the world-invariance of the velocity
of light. This myth was also completely shattered [12]. Ac-
cording to the theory of physical observables in General Rel-
ativity [7], the observable velocity of light lowers from the
world-invariance of the velocity by the gravitational potential
and the linear velocity of the space rotation at the point of
observation. The vector of the observable velocity of light di-
rected towards an attracting body is carried into the direction
of our motion in the space. As a result, the distribution of the
vectors of the velocity of light beams has a preferred direction
in space, depending on the motion, despite the fact that the
world-invariance of the velocity of light remains unchanged.
In such a case the field of the observable velocities of light is
distributed anisotropically. If the space is free from rotation
and gravitation (for instance, Minkowski’s space of Special
Relativity), the anisotropic effect vanishes: the spatial vectors
of the observable velocity of light are distributed equally in all
directions in the three-dimensional space. The anisotropic ef-
fect hence is due to only General Relativity. Here is nothing
contradictory to the basics of Einstein’s theory.

Twelfth. About Friedmann’s models of a homogeneous uni-
verse, including the Big Bang scenario. It was already shown
in the 1930’s [7] that Friedmann’s models have substantial
drawbacks both in its principal and mathematical approaches.
Friedmann’s models are empty (free of distributed matter),
homogeneous, and isotropic. They were only the first, histor-
ical step made by the scientists in the attempt to create physi-
cally and mathematically valid models of relativistic cosmol-
ogy. There are hundreds of thousands of solutions to Ein-
sten’s equations. True relativistic cosmology should be stated
by models of an inhomogeneous, anisotropic universe, which
meet the real physical conditions of the cosmos, and can be
applied to only a local volume, not the whole Universe [7].
A classification of the cosmological models, which are the-
oretically thinkable on the basis of Einstein’s equations, was
given in the 1940’s. See Chapter 4 of Chronometric Invari-
ants by Zelmanov [7], for detail. Many different cosmolog-
ical scenarios are listed there, including such exotics as the
transits through the states of infinite rarefraction and infinite

density on a finite volume (that is possible under special phys-
ical conditions). The Big Bang model, the model of expan-
sion of a compact object of a finite radius and nuclear density,
where the space is free of gravitating bodies, rotation, and de-
formation, is just one of many. Aside for this model, many
other models of an expanding universe can be conceived on
the basis of the solutions of Einstein’s equations.

Relativistic cosmology is based on the time functions of
the density, volume and others obtained from solutions to
Einstein’s equations. Therefore, only those states are under
consideration, which are specific to Einstein’s equations (they
work up to only the nuclear density). Relativistic cosmology
points out only the possibility of the state of infinite density as
a theoretically extrem of the density function, while the equa-
tions of the theory are valid up to only the nuclear density. It
is a very common mistake that Einstein’s theory studies the
state of infinite density, including a singular point-state.
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The usual concept of space and time, based on Aristotle’s principle of contemplation
of the world and of the absoluteness of time, is a product of rational thinking. At
the same time, in philosophy, rational thinking differs from reasonable thinking; the
aim of logic is to distinguish finite forms from infinite forms. Agreeing that space
and time are things of infinity in this work, we shall show that, with regard to these
two things, it is necessary to apply reasonable thinking. Spaces with non-Euclidean
geometry, for example Riemannian and Finslerian spaces, in particular, the space of the
General Theory of the Relativity (four-dimensional pseudo-Riemannian geometry) and
also the concept of multi-dimensional space-time are products of reasonable thinking.
Consequently, modern physical experiment not dealing with daily occurrences (greater
speeds than a low speed to the velocity of light, strong fields, singularities, etc.) can be
covered only by reasonable thinking.

In studying the microcosm, the microcosm or any extreme
conditions in physics, we deal with neo-classical, unusual
physics. For example, the uncertainty principle in quantum
physics and the relativity principle in relativistic physics are
really unusual to our logic. We may or may not desire such
things, but we shall agree with physical experiments in which
there is no exact localization of micro-particles or in which,
in all inertial systems, light has the same speed and, hence,
time is not absolute. Our consent with such experiments, the
results of which are illogical from the view-point of ordinary
consciousness, means that we accept to start to operate at an-
other level of consciousness which is distinct from the level of
consciousness necessary for the acceptance of experimental
results of classical physics. The fundamental difference con-
sists of the human consciousness at such a new level which
operates with other categories — forms of infinity.

The world is a thing of infinity. Hence, a logic which in-
cludes forms of infinity is necessary for its cognition. The
logic in itself considers the thinking in its activity and in its
product. This product shall then be used by all sciences. The
one and only philosophy, underlining that problem of logic is
to distinguish finite forms from infinite forms, and to show
some necessity to consider thinking in its activity. This activ-
ity is supra-sensory activity; though it may look like sensual
perception, such as contemplation. Therefore the content of
logic is the supra-sensory world and in studying it we will
stay (i.e., remain) in this world. Staying in this world, we
find the universal. For instance, the general laws of the mo-
tion of planets, are invisible (they are not “written in the sky”)
and inaudible; they exist only as a process of activity of our
thinking. Hence, we arrive at Hegel’s slogan “what is reason-
able, is real” [1] by which the status of thinking is raised to
the status of truth. As a result, it is possible not only to as-
sume that our real world has a tie with unusual geometries,

but, in fact, it is true.
From this point of view, it is possible to agree with many

mathematicians [2–6], that Euclid could direct natural sci-
ences. In another way, at the same time, he could have taken
not space as primary concept, but time.

Aristotle, having proclaimed the general principle of a
world-contemplation of motions occurring simultan-
eously [7], has come to a conclusion (which is only natural
to that epoch) that the duration of any phenomenon does not
depend on a condition of rest or motion of a body in which
this motion is observed, i.e. time is absolute and does not
depend on the observer. This principle satisfied requirements
of the person for the cognition of the world for such a very
time. Why? Because, what is reasonable, is necessarily real.
In reasoning itself, there is everything that it is possible to
find in experience. Aristotle said, “There is nothing existent
in (man’s) experience that would not be in reason”. Hence,
in reasoning, there exist many constructions which can be ad-
justed to the experience.

Prior to the beginning of the 20th century, the Aristo-
tle’s principle of contemplation of world was sufficient for
understanding our experiencing the world. The experiment
of Michelson-Morley on measuring the velocity of light had
not yet surfaced. This experiment appeared only later when
there also appeared other experiments confirming relativity
theory and quantum mechanics. The new principle of the
contemplation of the world, explaining these experiments,
has proclaimed things, which are “monstrous” from the point
of view of rational thinking. Instead of time, it is the ve-
locity of light which turns out to be the absolute magnitude.
The observed duration of events (the perception of time) de-
pends on the rest and motion of the observer. The under-
standing of this fact hasn’t come from rational thinking, but
from reasonable thinking. Rational thinking, which can ex-
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plain only finite things, has become insufficient for a crucial
explanation of new experimental data. Only reasonable think-
ing can realize such infinite things as, for example, the world,
time, space. And only reasonable thinking can understand
Aristotle’s question whether time (related to that which di-
vides the past and the future) is uniform or not, whether time
remains always identical and invariable, or whether it con-
stantly changes. Strict rational thinking protests against such
a question, but reasonable thinking answers it. Furthermore,
it depends on the level of our thinking (the level of conscious-
ness of the observer). One may object: it depends not on
one’s level of consciousness, but from one’s level of physi-
cal experiment. But experiment itself depends on the level
of our knowledge and therefore depends on the level of our
consciousness. Any principle of contemplation of the world
exists in our reasoning. Our reasoning the chooses necessary
principle for a concrete case. Really, our reasoning is infinite.

As it is known, after the experiments confirming relativity
theory our relation to the real world has changed. Rieman-
nian geometry has played a huge role in understanding the
structure of physical reality. It was a victory of “reason over
mind”. Relativity theory and Riemannian geometry (and its
special case — pseudo-Euclidian geometry of Minkowski’s
space which is the basis of the Special Theory of Relativity)
are products of reasoning.

We ask ourselves, why is there no unusual geometry re-
lated to the ordinary representation of the observer? This re-
sults from the fact that in life, in usual experiment, we deal
with small speeds and weak fields. In such conditions, the
differences among geometries are insignificant. As a simple
example, in seeing that bodies are in motion as a result of
some action-force, our mind has decided, that it will be car-
ried out in any case. That is, motion is force. It is an example
of naive thinking. Newton’s first law has finished with this
kind of knowledge because, as it became known at some later
stage in the history of physics, bodies can move with constant
velocity without influence of any force. There are many such
examples. Perhaps, among various possible representations,
one may further revise the geometries of Lobachevsky, Rie-
mann, and Finsler.

In receiving abnormal results, the mind will treat them
somehow, but not in the direction of revision of “obvious”
geometrical properties. Thus, if we can overcome the resis-
tance of the mind and reconsider “obvious” things, then our
thinking can reproduce from itself new sensations and con-
templations.

For example, let’s consider multi-dimensional time.
Within the limits of existenting models that assume multi-
dimensional time, there is a set of the parallel worlds (various
spatial sections intersecting each other at the same point of a
given space-time). It is like a set of possible states of a body
in Euclidean space. Let’s notice, that our reason at all does
not resist to this new sensation in order to construct a new
principle of the contemplation of the world.

Even if concepts of multi-dimensional space and time,
constructed via reasonable thinking, demand confirmation by
physical experiment (which at present seems far-fetched), it
is still possible to confirm it in other ways. As Hegel has
spoken, experience is done for the cognition of phenomena
but not for the cognition of truth itself. One experience is
not enough for the cognition of truth. Empirical supervision
gives us numerous identical perceptions. However, general-
ity is something different from a simple set. This generality
is found only by means of reasoning.

This Letter is based on a talk given at the XIIIth Interna-
tional Meeting “Physical Interpretations of Relativity The-
ory” (PIRT-2007, July 2–5, 2007, Moscow State Technical
University, Russia).

I would like to express my sincere gratitude to the Editor-
in-Chief of this journal Dmitri Rabounski for his help in my
scientific work and for valuable discussions.
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A Blind Pilot: Who is a Super-Luminal Observer?
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This paper discusses the nature of a hypothetical super-luminal observer who, as well as
a real (sub-light speed) observer, perceives the world by light waves. This consideration
is due to that fact that the theory of relativity permits different frames of reference,
including light-like and super-luminal reference frames. In analogy with a blind pilot on
board a supersonic jet aeroplane (or missile), perceived by blind people, it is concluded
that the light barrier is observed in the framework of only the light signal exchange
experiment.

We outline a few types of the frames of reference which may
exist in the space-time of General Relativity — the four-
dimensional pseudo-Riemannian space with Minkowski’s
signature (+���) or (�+++). Particles, including the ob-
server himself, that travel at sub-luminal speed (“inside” the
light cone), bear real relativistic mass. In other words, the
particles, the body of reference and the observer are in the
state of matter commonly referred to as “substance”. There-
fore any observer whose frame of reference is one of this kind
is referred to as a sub-luminal speed observer, or as a substan-
tial observer.

Particles and the observer that travel at the speed of light
(i. e. over the surface of a light hypercone) bear zero rest-mass
m0 = 0 but their relativistic mass (mass of motion) is nonzero
m, 0. They are in the light-like state of matter. In other
words, such an observer accompanies the light. We therefore
call such an observer a light-like observer.

Accordingly, we will call particles and the observer that
travel at a super-luminal speed super-luminal particles and
observer respectively. They are in the state of matter for
which rest-mass is definitely zero m0 = 0 but the relativistic
mass is imaginary.

It is intuitively clear who a sub-luminal speed observer is:
this term requires no further explanation. The same more or
less applies to a light-like observer. From the point of view of
a light-like observer the world around looks like a colourful
system of light waves. But who is a super-light observer? To
understand this let us give an example.

Imagine a new supersonic jet aeroplane (or missile) to be
commissioned into operation. All members of the ground
crew are blind, and so is the pilot. Thus we may assume that
all information about the surrounding world the pilot and the
members of the ground crew gain is from sound, that is, from
transverse waves traveling in air. It is sound waves that build
a picture that those people will perceive as their “real world”.

The aeroplane takes off and begins to accelerate. As long
as its speed is less than the speed of sound in air, the blind
members of the ground crew will match its “heard” position
in the sky to the one we can see. But once the sound bar-
rier is overcome, everything changes. The blind members

of the ground crew will still perceive the speed of the plane
equal to the speed of sound regardless of its real speed. The
speed of propagation of sound waves in air will be the maxi-
mum speed of propagation of information, while the real su-
personic jet plane will be beyond their “real world”, in the
world of “imaginary objects”, and all its properties will be
imaginary too. The blind pilot will hear nothing as well. Not
a single sound will reach him from his past reality and only
local sounds from the cockpit (which also travels at the super-
sonic speed) will break his silence. Once the speed of sound
is overcome, the blind pilot leaves the subsonic world for a
new supersonic one. From his new viewpoint (the supersonic
frame of reference) the old subsonic fixed world that contains
the airport and the members of the ground crew will simply
disappear to become a realm of “imaginary quantities”.

What is light? — Transverse waves that run across a
certain medium at a constant speed. We perceive the world
around through eyesight, receiving light waves from other ob-
jects. It is waves of light that build our picture of the “truly
real world”.

Now imagine a spaceship that accelerates faster and faster
to eventually overcome the light barrier at still growing speed.
From the purely mathematical viewpoint this is quite possi-
ble in the space-time of General Relativity. For us the speed
of the spaceship will be still equal to the speed of light what-
ever is its real speed. For us the speed of light will be the
maximum speed of propagation of information, and the real
spaceship for us will stay in another “unreal” world of super-
light speeds where all properties are imaginary. The same is
true for the spaceship’s pilot. From his viewpoint, overcom-
ing the light barrier brings him into a new super-light world
that becomes his “true reality”. And the old world of sub-light
speeds is banished to the realm of “imaginary reality”.

I am thankful to Prof. Brian Josephson and Dr. Elmira Isaeva
for discussion and comments.
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