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Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture

Vahan Minasyan and Valentin Samoilov
Scientific Center of Applied Research, JINR, Dubna, 141980, Russia

E-mails: mvahan@scar.jinr.ru; scar@off-serv.jinr.ru

We argue the formation of a free neutron spinless pairs in a liquid helium -dilute neutron
gas mixture. We show that the term, of the interaction between the excitations of the
Bose gas and the density modes of the neutron, meditate an attractive interaction via
the neutron modes, which in turn leads to a bound state on a spinless neutron pair. Due
to presented theoretical approach, we prove that the electron pairs in superconductivity
could be discovered by Frölich earlier then it was made by the Cooper.

1 Introduction

In 1938, the connection between the ideal Bose gas and su-
perfluidity in helium was first made by London [1]. The
ideal Bose gas undergoes a phase transition at sufficiently
low temperatures to a condition in which the zero-momentum
quantum state is occupied by a finite fraction of the atoms.
This momentum-condensed phase was postulated by London
to represent the superfluid component of liquid 4He. With
this hypothesis, the beginnings of a two- fluid hydrodynamic
model of superfluids was developed by Landau [2] where he
predicted the notation of a collective excitations so- called
phonons and rotons.

The microscopic theory most widely- adopted was first
described by Bogoliubov [3], who considered a model of a
non-ideal Bose-gas at the absolute zero of temperature. In
1974, Bishop [4] examined the one-particle excitation spec-
trum at the condensation temperature Tc.

The dispersion curve of superfluid helium excitations has
been measured accurately as a function of momentum [5]. At
the lambda transition, these experiments show a sharp peak
inelastic whose neutron scattering intensity is defined by the
energy of the single particle excitations, and there is appear-
ing a broad component in the inelastic neutron scattering in-
tensity, at higher momenta. To explain the appearance of
a broad component in the inelastic neutron scattering inten-
sity, the authors of papers [6–7] proposed the presence of col-
lective modes in superfluid liquid 4He, represented a density
excitations. Thus the collective modes are represent as den-
sity quasiparticles [8]. Such density excitations and density
quasiparticles appear because of the remaining density oper-
ator term that describes atoms above the condensate, a term
which was neglected by Bogoliubov [3].

Previously, the authors of ref [9] discovered that, at the
lambda transition, there was scattering between atoms of the
superfluid liquid helium, which is confirmed by the calcula-
tion of the dependence of the critical temperature on the inter-
action parameter, here the scattering length. On other hand, as
we have noted, there are two types of excitation in superfluid
helium at lambda transition point [5]. This means it is neces-
sary to revise the conditions that determine the Bose-Einstein
condensation in the superfluid liquid helium. Obviously, the

peak inelastic neutron scattering intensity is connected with
the registration of neutron modes in a neutron-spectrometer
which, in turn, defines the nature of the excitations. So we
may conclude that the registration of single neutron modes or
neutron pair modes occurs at the lambda transition, from the
neutron-spectrometer.

In this letter, we proposed new model for Bose-gas by ex-
tending the concept of a broken Bose-symmetry law for bo-
sons in the condensate within applying the Penrose-Onsager
definition of the Bose condensation [10]. After, we show
that the interaction term between Boson modes and Fermion
density modes is meditated by an effective attractive interac-
tion between the Fermion modes, which in turn determines
a bound state of singlet Fermion pair in a superfluid Bose
liquid- Fermion gas mixture.

We investigate the problem of superconductivity present-
ed by Frölich [11]. Hence, we also remark the theory of su-
perconductivity, presented by Bardeen, Cooper and Schrieffer
[12], and by Bogoliubov [13] (BCSB). They asserted that the
Frölich effective attractive potential between electrons leads
to shaping of two electrons with opposite spins around Fermi
level into the Cooper pairs [14]. However, we demonstrate the
term of the interaction between electrons and ions of lattice
meditates the existence of the Frölich singlet electron pairs.

2 New model of a superfluid liquid helium

First, we present new model of a dilute Bose gas with strongly
interactions between the atoms, to describe the superfluid liq-
uid helium. This model considers a system of N identical in-
teracting atoms via S-wave scattering. These atoms, as spin-
less Bose-particles, have a mass m and are confined to a box
of volume V . The main part of the Hamiltonian of such sys-
tem is expressed in the second quantization form as:

Ĥa =
∑

~p,0

p2

2m
â+
~p â~p +

1
2V

∑

~p,0

U~p%̂~p%̂
+
~p . (1)

Here â+
~p and â~p are, respectively, the “creation” and “an-

nihilation” operators of a free atoms with momentum ~p; U~p
is the Fourier transform of a S-wave pseudopotential in the
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momentum space:

U~p =
4πd~2

m
, (2)

where d is the scattering amplitude; and the Fourier compo-
nent of the density operator presents as

%̂~p =
∑

~p1

â+
~p1−~p â~p1 . (3)

According to the Bogoliubov theory [3], it is necessary to
separate the atoms in the condensate from those atoms filling
states above the condensate. In this respect, the operators â0
and â+

0 are replaced by c-numbers â0 = â+
0 =
√

N0 within the
approximation of the presence of a macroscopic number of
condensate atoms N0 � 1. This assumption leads to a broken
Bose-symmetry law for atoms in the condensate state. To ex-
tend the concept of a broken Bose-symmetry law for bosons
in the condensate, we apply the Penrose-Onsager definition
of Bose condensation [10]:

lim
N0,N→∞

N0

N
= const. (4)

This reasoning is a very important factor in the micro-
scopic investigation of the model non-ideal Bose gas because
the presence of a macroscopic number of atoms in the con-
densate means new excitations in the model Bose-gas for su-
perfluid liquid helium:

N~p,0

N0
= α � 1 ,

where N~p,0 is the occupation number of atoms in the quan-
tum levels above the condensate; α is the small number. Ob-
viously, conservation of the total number of atoms suggests
that the number of the Bose-condensed atoms N0 essentially
deviates from the total number N:

N0 +
∑

~p,0

N~p,0 = N ,

which is satisfied for the present model. In this context,

α =
N − N0

N0
∑
~p,0 1

→ 0 ,

where
∑
~p,0 1→ ∞.

For futher calculations, we replace the initial assumptions
of our model by the approximation

lim
N0→∞

N~p

N0
≈ δ~p,0 (5)

The next step is to find the property of operators
â+
~p1−~p√

N0
,

â~p1−~p√
N0

by applying (5). Obviously,

lim
N0→∞

â+
~p1−~p√
N0

= δ~p1,~p (6)

and

lim
N0→∞

â~p1−~p√
N0

= δ~p1,~p . (7)

Excluding the term ~p1 = 0, the density operators of bo-
sons %̂~p and %̂+

~p take the following forms:

%̂~p =
√

N0

(
â+
−~p +

√
2 ĉ~p

)
(8)

and
%̂+
~p =

√
N0

(
â−~p +

√
2 ĉ+

~p

)
(9)

where ĉ~p and ĉ+
~p are, respectively, the Bose-operators of

density-quasiparticles presented in reference [8], which in
turn are the Bose-operators of bosons used in expressions (6)
and (7):

ĉ~p =
1√
2N0

∑

~p1,0

â+
~p1−~p â~p1 =

1√
2

∑

~p1,0

δ~p1,~p â~p1 =
â~p√

2
(10)

and

ĉ+
~p =

1√
2N0

∑

~p1,0

â+
~p1

â~p1−~p =
1√
2

∑

~p1,0

δ~p1,~p â+
~p1

=
â+
~p√
2
. (11)

Thus, we reach to the density operators of atoms %̂~p and
%̂+
~p , presented by Bogoliubov [3], at approximation N0

N =const,
which describes the gas of atoms 4He with strongly interac-
tion via S-wave scattering:

%̂~p =
√

N0

(
â+
−~p + â~p

)
(12)

and
%̂+
~p =

√
N0

(
â−~p + â+

~p

)
(13)

which shows that the density quasiparticles are absent.
The identical picture is observed in the case of the density

excitations, as predicted by Glyde, Griffin and Stirling [5–7]
proposing %̂~p in the following form:

%̂~p =
√

N0

(
â+
−~p + â~p + %̃~p

)
(14)

where terms involving ~p1 , 0 and , ~p1 , ~p are written sepa-
rately; and the operator %̃~p describes the density-excitations:

%̃~p =
1√
N0

∑

~p1,0,~p1,~p

â+
~p1−~p â~p1 . (15)

After inserting (6) and (7) into (15), the term, representing
the density-excitations vanishes because %̃~p = 0.

Consequently, the Hamiltonian of system, presented in (1)
with also (12) and (13), represents an extension of the Bogoli-
ubov Hamiltonian, with the approximation N0

N = const, which
in turn does not depend on the actual amplitude of interac-
tion. In the case of strongly interacting atoms, the Hamilto-
nian takes the following form:

Ĥa =
∑

~p,0

(
p2

2m
+mv2

)
â+
~p â~p +

mv2

2

∑

~p,0

(
â+
−~p â+

~p + â~p â−~p
)
, (16)
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where v =

√
U~pN0

mV =

√
4πd~2N0

m2V is the velocity of sound in
the Bose gas, and which depends on the density atoms in the
condensate N0

V .
For the evolution of the energy level, it is a necessary to

diagonalize the Hamiltonian Ĥa which is accomplished by in-
troduction of the Bose-operators b̂+

~p and b̂~p by using of the
Bogoliubov linear transformation [3]:

â~p =
b̂~p + L~p b̂+

−~p√
1 − L2

~p

, (17)

where L~p is the unknown real symmetrical function of a mo-
mentum ~p.

Substitution of (17) into (16) leads to

Ĥa =
∑

~p

ε~p b̂+
~p b̂~p (18)

hence we infer that b̂+
~p and b̂~p are the “creation” and “annihi-

lation” operators of a Bogoliubov quasiparticles with energy:

ε~p =

[( p2

2m

)2

+ p2v2
]1/2

. (19)

In this context, the real symmetrical function L~p of a mo-
mentum ~p is found

L2
~p =

p2

2m + mv2 − ε~p
p2

2m + mv2 + ε~p
. (20)

As is well known, the strong interaction between the he-
lium atoms is very important and reduces the condensate frac-
tion to 10 percent or N0

N = 0.1 [5], at absolute zero. However,
as we suggest, our model of dilute Bose gas may be valuable
in describing thermodynamic properties of superfluid liquid
helium, because the S-wave scattering between two atoms,
with coordinates ~r1 and ~r2 in coordinate space, is represented
by the repulsive potential delta-function U~r =

4πd~2δ~r
m from

~r = ~r1−~r2. The model presented works on the condensed frac-
tion N0

N � 1 and differs from the Bogoliubov model where
N0
N ≈ 1.

3 Formation singlet spinless neutron pairs

We now attempt to describe the thermodynamic property of
a helium liquid-neutron gas mixture. In this context, we con-
sider a neutron gas as an ideal Fermi gas consisting of n
free neutrons with mass mn which interact with N interact-
ing atoms of a superfluid liquid helium. The helium-neutron
mixture is confined in a box of volume V . The Hamiltonian of
a considering system Ĥa,n consists of the term of the Hamil-
tonian of Bogoliubov excitations Ĥa in (18) and the term of
the Hamiltonian of an ideal Fermi neutron gas as well as the

term of interaction between the density of the Bogoliubov ex-
citations and the density of the neutron modes:

Ĥa,n =
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ+

+
∑

~p

ε~p b̂+
~p b̂~p +

1
2V

∑

~p,0

U0 %̂~p %̂−~p,n ,
(21)

where â+
~p,σ and â~p,σ are, respectively, the operators of cre-

ation and annihilation for free neutron with momentum ~p, by
the value of its spin z-component σ =+

−
1
2 ; U0 is the Fourier

transform of the repulsive interaction between the density of
the Bogoliubov excitations and the density modes of the neu-
trons:

U0 =
4πd0~

2

µ
, (22)

where d0 is the scattering amplitude between a helium atoms
and neutrons; µ = m·mn

m+mn
is the relative mass.

Hence, we note that the Fermi operators â+
~p,σ and â~p,σ sat-

isfy to the Fermi commutation relations [· · ·]+ as:
[
â~p, σ, â+

~p′ , σ′

]
+

= δ
~p, ~p′

δσ,σ′ , (23)

[â~p,σ, â ~p′ ,σ′
]+ = 0 , (24)

[â+
~p,σ, â

+
~p′ ,σ′

]+ = 0 . (25)

The density operator of neutrons with spin σ in momen-
tum ~p is defined as

%̂~p,n =
∑

~p1,σ

â+
~p1−~p,σ â~p1,σ , (26)

where %̂+
~p,n = %̂−~p,n.

The operator of total number of neutrons is
∑

~p,σ

â+
~p,σ â~p,σ = n̂; (27)

on other hand, the density operator, in the term of the Bo-
goliubov quasiparticles %̂~p included in (21), is expressed by
following form, to application (17) into (12):

%̂~p =
√

N0

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
. (28)

Hence, we note that the Bose- operator b̂~p commutates
with the Fermi operator â~p,σ because the Bogoliubov excita-
tions and neutrons are an independent.

Now, inserting of a value of operator %̂~p from (28) into
(21), which in turn leads to reducing the Hamiltonian of sys-
tem Ĥa,n:

Ĥa,n =
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ +

∑
~p ε~p b̂+

~p b̂~p +

+
U0
√

N0

2V

∑

~p

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
%̂−~p,n .

(29)
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Hence, we note that the Hamiltonian of system Ĥa,n in
(29) is a similar to the Hamiltonian of system an electron gas-
phonon gas mixture which was proposed by Frölich at solving
of the problem superconductivity (please, see the Equation
(16) in Frölich, Proc. Roy. Soc. A, 1952, v.215, 291–291 in
the reference [11]), contains a subtle error in the term of the
interaction between the density of phonon modes and the den-
sity of electron modes which represents a third term in right
side of Equation (16) in [11] because the later is described
by two sums, one from which goes by the wave vector ~w but
other sum goes by the wave vector ~k. This fact contradicts to
the definition of the density operator of the electron modes %̂~w
(please, see the Equation (12) in [11]) which in turn already
contains the sum by the wave vector ~k, and therefore, it is
not a necessary to take into account so-called twice summa-
tions from~k and ~w for describing of the term of the interaction
between the density of phonon modes and the density of elec-
tron modes Thus, in the case of the Frölich, the sum must be
taken only by wave vector w, due to definition of the density
operator of electron modes with the momentum of phonon ~w.

To allocate anomalous term in the Hamiltonian of system
Ĥa,n, which denotes by third term in right side in (29), we
apply the Frölich approach [11] which allows to do a canoni-
cal transformation for the operator Ĥa,n within introducing an
operator H̃:

H̃ = exp
(
Ŝ +

)
Ĥa,n exp

(
Ŝ
)
, (30)

which is decayed by following terms:

H̃ = exp
(
Ŝ +

)
Ĥa,n exp

(
Ŝ
)

=

= Ĥa,n −
[
Ŝ , Ĥa,n

]
+

1
2

[
Ŝ ,

[
Ŝ , Ĥa,n

]]
− · · · ,

(31)

where the operators represent as:

Ŝ + =
∑

~p

ˆS +
~p (32)

and
Ŝ =

∑

~p

ˆS ~p (33)

and satisfy to a condition Ŝ + = −Ŝ .
In this respect, we assume that

ˆS ~p = A~p

(
%̂~p,nb̂~p − %̂+

~p,nb̂+
~p

)
, (34)

where A~p is the unknown real symmetrical function from a
momentum ~p. In this context, at application ˆS ~p from (34) to
(33) with taking into account %̂+

−~p,n = %̂~p,n, then we obtain

Ŝ =
∑

~p

ˆS ~p =
∑

~p

A~p %̂~p,n
(
b̂=~p − b̂+

~p

)
. (35)

In analogy manner, at %̂+
−~p,n = %̂~p,n, we have

Ŝ + =
∑
~p

ˆS +
~
p =

∑
~p A~p %̂

+
~p,n

(
b̂+
~p − b̂−~p

)
=

= −
∑

~p

A~p %̂~p,n
(
b̂−~p − b̂+

~p

)
.

(36)

To find A~p, we substitute (29), (35) and (36) into (31).
Then,

[
Ŝ , ˆHa,n

]
= 1

V
∑
~p A~p U0

√
N0

√
1+L~p
1−L~p

%̂~p,n %̂−~p,n +

+
∑

~p

A~p ε~p
(
b̂+
~p + b̂−~p

)
%̂−~p,n ,

(37)

1
2

[
Ŝ ,

[
Ŝ , Ĥa,n

]]
=

∑

~p

A2
~p ε~p %~p,n %̂−~p,n (38)

and [Ŝ , [Ŝ , [Ŝ , Ĥa,n]]] = 0 within application a Bose commu-
tation relations as [%~p1,n, %̂~p2,n] = 0 and [â+

~p1,σ
â~p1,σ, %̂~p2,n] = 0.

Thus, the form of new operator H̃ in (31) takes a follow-
ing form:

H̃ =
∑
~p ε~p b̂+

~p b̂~p +
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ +

+
1

2V

∑

~p

U0
√

N0

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
%̂−~p,n −

−
∑

~p

A~p ε~p
(
b̂+
−~p + b̂~p

)
%̂−~p,n +

∑

~p

A2
~p ε~p %̂~p,n %̂−~p,n −

− 1
V

∑

~p

A~pU0
√

N0

√
1 + L~p
1 − L~p

%̂~p,n %̂−~p,n .

(39)

The transformation of the term of the interaction between
the density of the Bogoliubov modes and the density neu-
tron modes is made by removing of a second and fifth terms
in right side of (39) which leads to obtaining of a quantity
for A~p:

A~p =
U0
√

N0

2ε~pV

√
1 + L~p
1 − L~p

. (40)

In this respect, we reach to reducing of the new Hamilto-
nian of system (39):

H̃ =
∑
~p ε~p b̂+

~p b̂~p +
∑
~p,σ

p2

2mn
â+
~p,σâ~p,σ−

− 1
V

∑

~p

A~pU0
√

N0

√
1 + L~p
1 − L~p

%̂~p,n %̂−~p,n+

+
∑

~p

A2
~p ε~p %̂~p,n %̂−~p,n .

(41)

As result, the new form of Hamiltonian system takes a
following form:

H̃ =
∑

~p

ε~p b̂+
~p b̂~p + Ĥn , (42)
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where Ĥn is the effective Hamiltonian of a neutron gas which
contains an effective interaction between neutron modes:

Ĥn =
∑

~p,σ

p2

2mn
â+
~p,σ â~p,σ +

1
2V

∑

~p

V~p %̂~p,n %̂−~p,n , (43)

where V~p is the effective potential of the interaction between
neutron modes which takes a following form at substituting a
value of A~p from (40) into (41):

V~p = −2A~pU0
√

N0

√
1+L~p
1−L~p

+ 2A2
~p ε~pV =

= −
U2

0 N0

(
1 + L~p

)

Vε~p
(
1 − L~p

) .

(44)

In this letter, we consider following cases:
1. At low momenta atoms of a helium p � 2mv, the

Bogoliunov’s quasiparticles in (19) represent as the phonons
with energy ε~p ≈ pv which in turn defines a value L2

~p ≈
1− p

mv
1+

p
mv
≈

(
1 − p

mv

)2
in (20) or L~p ≈ 1 − p

mv . In this context, the
effective potential between neutron modes takes a following
form:

V~p ≈ −
2mU2

0 N0

V p2 = −4π~2e2
1

p2 . (45)

The value e1 is the effective charge, at a small momenta
of atoms:

e1 =
U0

~

√
mN0

2Vπ
.

2. At high momenta atoms of a helium p � 2mv, we
obtain ε~p ≈ p2

2m + mv2 in (19) which in turn defines L~p ≈ 0
in (20). Then, the effective potential between neutron modes
presents as:

V~p ≈ −
mU2

0 N0

V p2 = −4π~2e2
2

p2 , (46)

where e2 is the effective charge, at high momenta of atoms:

e2 =
U0

2~

√
mN0

Vπ
.

Consequently, in both cases, the effective scattering be-
tween two neutrons is presented in the coordinate space by a
following form:

V(~r) =
1
V

∑

~p

V~p ei ~p~r~ = −e2
∗
r
, (47)

where e∗ = e1, at small momenta of atoms; and e∗ = e2, at
high momenta.

The term of the interaction between two neutrons V(~r) in
the coordinate space mediates the attractive Coulomb inter-
action between two charged particles with mass of neutron

mn, having the opposite effective charges e∗ and −e∗, which
together create a neutral system. Indeed, the effective Hamil-
tonian of a neutron gas in (43) is rewrite down in the space of
coordinate by following form:

Ĥn =

n
2∑

i=1

Ĥi = − ~2

2mn

n∑

i=1

∆i −
∑

i< j

e2
∗

| ~ri − ~r j | , (48)

where Ĥi is the Hamiltonian of system consisting two neutron
with opposite spin which have a coordinates ~ri and ~r j:

Ĥi = − ~2

2mn
∆i − ~2

2mn
∆ j −

e2
∗

| ~ri − ~r j | . (49)

The transformation of considering coordinate system to
the relative coordinate ~r = ~ri −~r j and the coordinate of center
mass ~R =

~ri+~r j

2 , we have

Ĥi = − ~2

4mn
∆R − ~2

mn
∆r − e2

∗
r
. (50)

In analogy of the problem Hydrogen atom, two neutrons
with opposite spins is bound as a spinless neutron pair with
binding energy:

En = − mne4
∗

4~2n2 = −const
n2

(N0

V

)2

, (51)

where n is the main quantum number which determines a
bound state on a neutron pair, at const > 0.

Thus, a spinless neutron pair with mass m0 = 2mn is cre-
ated in a helium liquid-dilute neutron gas mixture.

4 Formation of the Frölich electron pairs in supercon-
ductivity

We now attempt to describe the thermodynamic property of
the model a phonon-electron gas mixture confined in a box
of volume V . In this context, we consider an electron gas
consisting of n free electrons with mass me which interact
with phonon modes of lattice by constancy interaction [11].
The Frölich Hamiltonian has a following form:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 (52)

with
Ĥ0 =

∑

~k,σ

ε~k d̂+
~k,σ

d̂~k,σ , (53)

Ĥ1 =
∑

~w

~ws b̂+
~w b̂~w , (54)

Ĥ2 = i
∑

~w

Dw

(
b̂~w %̂+

~w − b̂+
~w %̂~w

)
, (55)

where d̂+
~k,σ

and d̂~k,σ are, respectively, the Fermi operators of
creation and annihilation for free electron with wave-vector
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~k and energy ε~k = ~2k2

2me
, by the value of its spin z-component

σ =+
−

1
2 ; s is the velocity of phonon; b̂+

~w,σ
and b̂~w,σ are, respec-

tively, the Bose operators of creation and annihilation for free
phonon with wave-vector ~w and energy~ws; Dw is the con-
stant of the interaction between the density of the phonon ex-
citations and the density modes of the electrons which equals

to Dw =

√
α~ws

V (where α = C”2

2Ms2 n
V

is the constant characteriz-

ing of the metal; C” is the constant of the interaction; M is the
mass of ion); %̂~w is the density operator of the electron modes
with wave vector ~w which is defined as:

%̂~w =
∑

~k,σ

d̂+
~k−~w,σd̂~k,σ (56)

and
%̂+
~w =

∑

~k,σ

d̂+
~k,σ

d̂~k−~w,σ , (57)

where %̂+
~w

= %̂−~w.
Hence, we note that the Fermi operators d̂+

~k,σ
and d̂~k,σ sat-

isfy to the Fermi commutation relations [· · ·]+ presented in
above for neutrons (23–25).

Obviously, the Bose- operator b̂~w commutates with the
Fermi operator d̂~k,σ because phonon excitations and electron
modes are an independent.

Now, we introduce new transformation of the Bose-
operators of phonon modes b̂+

~w
and b̂~w by the new Bose -

operators of phonon excitations ĉ+
~w

and ĉ~w which help us to
remove an anomalous term:

b̂~w = −iĉ~w (58)

and
b̂+
~w = iĉ+

~w . (59)

Then, Ĥ1 in (56) and Ĥ2 in (57) take following forms:

Ĥ1 =
∑

~w

~ws ĉ+
~wĉ~w , (60)

Ĥ2 =
∑

~w

Dw

(
ĉ~w %̂+

~w + ĉ+
~w %̂~w

)
=

∑

~w

Dw %̂~w
(
ĉ~w + ĉ+

~w

)
. (61)

To allocate anomalous term in the Hamiltonian of system
Ĥ in (54), presented by the term in (63), we use of the canon-
ical transformation for the operator Ĥ presented by formulae
(30). Due to this approach, we obtain new form for operator
Hamiltonian H̃:

H̃ =
∑

~w

~ws b̂+
~w b̂~w + Ĥe , (62)

where

Ĥe =
∑

~k,σ

ε~k d̂+
~k,σ

d̂~k,σ +
1

2V

∑

~w

V~w %̂~w %̂−~w , (63)

hence V~w is the effective potential of the interaction between

electron modes, which at taking into account Dw =

√
α~ws

V ,
has the form:

V~w = −2D2
wV

~ws
= −2α . (64)

Consequently, the effective scattering between two elec-
trons in the coordinate space takes a following form:

V(~r) =
1
V

∑

~w

V~w ei~w~r = −2αδ(~r) (65)

at using of 1
V

∑
~w ei~w~r = δ(~r).

Using of the relative coordinate ~r = ~ri − ~r j and the coor-
dinate of center mass ~R =

~ri+~r j

2 , we reach to the Hamiltonian
of system consisting two electron with opposite spins:

Ĥi = − ~2

4me
∆R − ~2

me
∆r + V(~r) . (66)

To find the binding energy E < 0 of electron pair, we
search the solution of the Schrödinger equation with intro-
duction of wave function ψ(~r):

Ĥi ψs(~r) = Eψs(~r) .

In this respect, we have a following equation

− ~
2

me
∆rψs(~r) + V(~r)ψs(~r) = Eψ(~r) (67)

which may determine the binding energy E < 0 of electron
pair, if we claim that the condition p f d

~
� 1 always is fulfilled.

This reasoning implies that the effective scattering between
two electrons is presented by the coordinate space:

V(~r) =
1
V

∑

~w

V~w ei~w~r = 4π
∫ w f

0
V~w w

2 sin(wr)
wr

dw , (68)

where we introduce a following approximation as sin(wr)
wr ≈

1 − w2r2

6 at conditions w ≤ w f and w f d � 1 (w f =
(

3π2n
V

) 1
3 is

the Fermi wave number). The later condition defines a state
for distance r between two neighboring electrons which is a

very small r � 1
w f

=
(

V
3π2n

) 1
3 where

4πw3
f

3 = n
2V . Then,

V(~r) ≈ −αn
V

+ α
( n
V

) 5
3

r2. (69)

Thus, the effective interaction between electron modes
V(~r) = −2αδ(~r), presented in (65) is replaced by a screen-
ing effective scattering presented by (69). This approximation
means that there is an appearance of a screening character in
the effective scattering because one depends on the density
electron modes. Now, denoting E = Es, and then, we arrive
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to an important equation for finding a binding energy Es of
singlet electron pair:

[
− ~

2

me
∆r − nα

V
+ α

( n
V

) 5
3

r2
]
ψs(r) = Es ψs(r) , (70)

which we may rewrite down as:

d2ψs(r)
dr2 +

(
λ − θ2r2

)
ψs(r) = 0 , (71)

where we take θ = −
√

meα
~2

(
n
V

) 5
3 , and λ =

meEs
~2 − αmen

~2V .

Now, introducing the wave function ψs(r) via the Chebi-
shev-Hermit function Hs(it) from an imaginary number as ar-
gument it [15] (where i is the imaginary one; t is the real
number; s = 0; 1; 2; . . . ), the equation (71) has a following
solution:

ψs(~r) = e−θ·r
2
Hs

(√
θ r

)
,

where

Hs(it) = ise−t2 dset2

dts

at θ < 0, where

λ = θ

(
s +

1
2

)
.

Consequently, the quantity of the binding energy Es of
electron pair with mass m0 = 2me takes a following form:

Es = −
√
α~2

me

( n
V

) 5
3
(
s +

1
2

)
+
αn
V

< 0 (72)

at s = 0; 1; 2; . . . .
The normal state of electron pair corresponds to quantity

s = 0 which defines maximal binding energy of electron pair:

E0 = −
√
α~2

me

( n
V

) 5
3

+
αn
V

< 0 . (73)

This fact implies that the formation of the superconduct-
ing phase in superconductor is appeared by condition for den-
sity of metal n

V :

n
V
>

(
C2me

2Ms2~2

) 3
2

.

At choosing C ≈ 10 eV [11]; M ≈ 5×10−26 kg; s ≈ 3×103

m, we may estimate density of electron n
V > 1027 m−3 which

may represent as superconductor.
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First, we predict an existence of transverse electromagnetic field formed by supersonic
transverse wave in solid. This electromagnetic wave acquires frequency and speed of
sound, and it propagates along of direction propagation of supersonic wave. We also
show that own frequency of ion-dipole depends on frequency of supersonic transverse
wave.

1 Introduction

In our latest paper [1], we investigated the light diffraction
by supersonic longitudinal waves in crystal. In this respect,
we predicted an existence of transverse electromagnetic field
created by supersonic longitudinal waves in solid. This elec-
tromagnetic wave with frequency of ultrasonic field is moved
by speed of supersonic field toward to direction propagation
of sound. There was shown that the average Poynting vector
of superposition field involves the intensities of the transverse
electromagnetic and the optical fields which form the inten-
sity of light diffraction. We considered a model of solid as
lattice of ions and gas of free electrons. Each ion of lattice
coupled with a point of lattice knot by spring, creating of ion
dipole. The knots of lattice define a position dynamical equi-
librium of each ion which is vibrated by own frequency Ω0.
Hence, we may argue that the presented new model of solid
leads to the same results which may obtain for solid by one
dimensional model of single atomic crystal representing as
model of continuum elastic medium which is described by
chain of ions [2]. The vibration of ion occurs near position of
equilibrium corresponding to minimum of potential energy
(harmonic approximation of nearing neighbors).

Thus, the existence of transverse electromagnetic field is
an important factor for correction so called the Raman-Nath
theory [3] and the theory of photo-elastic linear effect [4]
which were based on a concept that acoustic wave generates
a periodical distribution of refractive index in the coordinate-
time space.

In this letter, we attempt to investigate a property of solid
by under action of supersonic transverse wave. In this con-
text, we find dispersion law for own frequency of ion-dipole
which depends on frequency of supersonic transverse wave.

2 Formation of transverse electromagnetic field

Let’s consider the coupled ions with points of lattice knots.
These ions are vibrated by own frequency Ω0 into ion-dipoles.
We note that ion-dipole is differ from electron-ion dipole
which was discussed within elementary dispersion theory [5].
Hence, we assume that property of springs of ion dipole and
ion-electron one are the same. This assumption allows us to

obtain a connection between own frequencies of electron ω0

and ion Ω0 by condition Ω0 =

√
q
M = ω0

√ m
M where q is the

rigidity of spring; m is the mass of electron.
By under action of transverse acoustic wave, there is an

appearance of vector displacement ~u of each ions in solid.
Consider the propagation of an ultrasonic transverse plane

traveling wave in cubic crystal. Due to laws of elastic field
for solid [6], the vector displacement ~u satisfies to condition
which defines property of transverse supersonic field

div~u = 0 (1)

and is defined by wave-equation

∇2~u − 1
c2

t

d2~u
dt2 = 0 , (2)

where ct is the velocity of a transverse ultrasonic wave
which is determined by elastic coefficients.

The simple solution of (2) in respect to ~u has a following
form

~u = ~u0 sin (Kx + Ωt) , (3)

where ~u0 is the amplitude of vector displacement; K =
Ω
√
ε

c
is the wave number of transverse electromagnetic wave.

Thus each ion acquires the dipole moment of ion ~p =

−e~u. Now, we may argue that there is a presence of transverse
electromagnetic field with vector of electric field ~E due to
displacement of ion:

M
d2~u
dt2 + q~u = −e~E , (4)

where ~E is the vector electric field which is induced by trans-
verse ultrasonic wave; M is the mass of ion; the second term
q~u in left part represents as changing of quasi-elastic force
which acts on ion.

Using of the operation div of the both part of (4) together
with (1), we obtain a condition for Transverse electromag-
netic wave

div ~E = 0 . (5)

Now, substituting solution ~u from (3) in (4), we find the
vector transverse electric wave

~E = ~E0 sin (Kx + Ωt) , (6)
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where

~E0 =
M

(
Ω2

0 −Ω2
)
~u0

e
(7)

is the amplitude of transverse electric field which acts on ion
into ion dipole.

The ion dipole acquires a polarizability α, which is deter-
mined via total dipole moment:

~P = Nα ~E . (8)

where N is the concentration of ion dipoles.
In the presented theory, the vector electric induction ~D is

determined as
~D = 4π~P + ~E , (9)

and
~D = ε~E , (10)

where ~P=N0~p is the total polarization created by ion-dipoles.
It is easy to find the dielectric respond ε of acoustic med-

ium which takes a following form

ε = 1 + 4πNα = 1 +
4πN e2

M
(
Ω2

0 −Ω2
) , (11)

This formulae is also obtained by model of ions chain [2].
The dielectric respond ε of acoustic medium is similar to

optical one, therefore,

√
ε =

c
ct
, (12)

where c is the velocity of electromagnetic wave in vacuum.
Thus, we found that transverse electric wave with fre-

quency Ω is propagated by velocity ct of ultrasonic transverse
wave in the direction OX.

Furthermore, we present the Maxwell equations for elec-
tromagnetic field in acoustic medium with a magnetic permit-
tivity µ = 1:

curl ~E +
1
c

d ~H
dt

= 0 , (13)

curl ~H − 1
c

d ~D
dt

= 0 , (14)

div ~H = 0 , (15)

div ~D = 0 (16)

where ~E = ~E (~r, t) and ~H = ~H (~r, t) are the vectors of local elec-
tric and magnetic fields in acoustic medium; ~D = ~D (~r, t) is the
local electric induction in the coordinate-time space; ~r is the
coordinate; t is the current time in space-time coordinate sys-
tem.

We search a solution of Maxwell equations by introducing
the vectors of magnetic and electric fields by following way

~H = curl ~A , (17)

where

~E = −d~A
cdt

, (18)

where ~A is the vector potential of electromagnetic wave.
After simple calculation, we reach to following equation

for vector potential ~A of transverse electromagnetic field

∇2~A − ε

c2

d2~A
dt2 = 0 (19)

with condition of plane transverse wave

div ~A = 0 . (20)

The solution of (24) and (25) may present by plane trans-
verse wave with frequency Ω which is moved by speed ct

along of direction of unit vector ~s:

~A = ~A0 cos (Kx + Ωt) , (21)

and
~A · ~s = 0 , (22)

where K =
Ω
√
ε

c is the wave number of transverse electro-
magnetic wave; ~s is the unit vector in direction of wave nor-
mal; ~A0 is the vector amplitude of vector potential. In turn,
at comparting (23) and (6), we may argue that the vector of
wave normal ~s is directed along of axis OX (~s = ~ex), because
the vector electric transverse wave ~E takes a form presented
in (6):

~E = ~E0 sin (Kx + Ωt) , (23)

where

~E0 =
Ω ~A0

c
.

To find a connection between vector amplitude of electric
field ~E0 and vector amplitude of acoustic field ~u0, we use of
the law conservation energy. The average density energy wa

of ultrasonic wave is transformed by one wt of transverse elec-
tromagnetic radiation. In turn, there is a condition wa = wt

where Thus,

wa = M N Ω2u2
0 limT→∞ 1

2T

∫ T
−T cos2 (Kx + Ωt) dt =

=
M N Ω2u2

0

2
,

(24)

In analogy manner,

wt =
ε

4π
E2

0 lim
T→∞

1
2T

∫ T

−T
sin2 (Kx + Ωt) dt =

ε

8π
E2

0 . (25)

Thus, at comparing (24) and (25), we arrive to an impor-
tant expression which leads to foundation of dispersion law
for own frequency of ion-dipole:

ε

4π
E2

0 = M NΩ2u2
0 , (26)
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Volume 4 PROGRESS IN PHYSICS October, 2010

where introducing meanings of ~E0 and ε from (7) and (11)
into Eq.(26), we obtain a dispersion equation:

(
Ω2

0 −Ω2
)2

+ 2Ω2
p

(
Ω2

0 −Ω2
)
−Ω2

pΩ2 = 0 , (27)

where Ωp =

√
4πN e2

M = ωp
√ m

M is the classic plasmon fre-
quency of ion but ωp is the plasmon frequency of electron.
For solid ωp ∼ 1016 s−1, therefore, at

√ m
M ∼ 10−2), it follows

Ωp ∼ 1014 s−1.
The solution of Eq.(27) in regard to own frequency of ion

Ω0 take following forms:
1. At Ω0 > Ω

Ω0 =

√
Ω2 −Ω2

p +

√
Ω4

p + Ω2
p Ω2 . (28)

2. At Ω0 6 Ω

Ω0 =

√
Ω2 −Ω2

p −
√

Ω4
p + Ω2

p Ω2 . (29)

Now, consider following solutions of above presented
equations:

1. At Ω � Ωp, Ω0 > Ω, we obtain Ω0 ≈
√

3
2 Ω but

at Ω0 6 Ω, it follows Ω0 ≈
√

1
2 Ω. This condition implies

that we may consider model of solid as ideal gas of atoms at
smaller Ω. 2. At Ω � Ωp, Ω0 > Ω we obtain Ω0 ≈ Ω +

Ωp

2

but at Ω0 6 Ω, it follows that Ω0 ≈ Ω − Ωp

2 . 3. At Ω ≈ Ωp,
Ω0 ≈ 2

1
4 Ωp.

In conclusion, we may note that the action of ultrasonic
transverse wave in solid leads to new property as determina-
tion of own frequency of ion-dipole. This fact is useful be-
cause in the case of action of ultrasonic longitudinal wave in
solid, the own frequency of ion-dipole can not be determined.
However, knowledge of value of own frequency of ion-dipole
allows us to calculate the intensity of sound by formulae (26)
(at known meaning of intensity of transverse electromagnetic
field excited by ultrasonic longitudinal wave in solid). In turn,
it determines the resonance frequency ω0 of optical light in

solid because ω0 = Ω0

√
M
m due to condition that the rigidity

of spring is the same for ion-dipole and electron-ion dipole.
Thus, the action of ultrasonic transverse wave on solid may
change an optical property of solid.
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Predictions of High Energy Experimental Results
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Eight predictions of high energy experimental results are presented. The predictions
contain the Σ+ charge radius and results of two kinds of experiments using energetic
pionic beams. In addition, predictions of the failure to find the following objects are
presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched
by their direct interaction with charges and the Higgs boson. The first seven predictions
rely on the Regular Charge-Monopole Theory and the last one relies on mathematical
inconsistencies of the Higgs Lagrangian density.

1 Introduction

A person who studies a well established physical theory be-
comes acquainted with its mathematical structure and with re-
sults of key experiments that are consistent with it. Here one
generally does not pay much attention to the historical order
of the development of theory and experiment. The situation
is different in the case of a theory which has not yet passed
the test of time. In the case of such a theory, one generally
compares its conclusions with already known experimental
results. However, in this situation, experiments that have not
yet been performed play a specific role and one is generally
inclined to be convinced of the theory’s merits, if it predicts
successfully experimental results that are obtained later.

This work describes eight predictions of high energy ex-
perimental results. All but one of the predictions rely on the
Regular Charge-Monopole Theory (RCMT) [1, 2] and on its
application to hadronic structure and processes [3]. From this
point of view, the prediction of the failure to find a genuine
Higgs boson makes an exception, because it relies on the in-
herently problematic structure of the Higgs Lagrangian den-
sity [4]. Some of the predictions refer to experiments that
have not yet been carried out, whereas others refer to ex-
periments that are performed for decades and failed to de-
tect special objects. The second set contains the search for a
monopole by means of its direct interaction with charge, glue-
balls, pentaquarks, nuggets of Strange Quark Matter (SQM)
and the Higgs boson. In spite of a long list of experimental
attempts that have ended in vain, searches for these objects
still continue. The predictions made herein state that genuine
particles of these kinds will not be found.

The second section presents a detailed phenomenological
calculation that yields a prediction of the charge radius of the
Σ+ baryon. This outcome is higher than that of a QCD based
prediction that has been published recently [5]. All other pre-
dictions are derived briefly or have already been published
elsewhere. The third section contains a list of short descrip-
tions of each of these predictions. Concluding remarks are
included in the last section.

2 The Σ+ charge radius

The prediction of the Σ+ charge radius relies on phenomeno-

Particle Mass (MeV) 〈ρr2〉 〈r〉 Error

p 938.3 0.766 0.875
n 939.6 −0.116

Σ− 1197.4 −0.61 0.78 0.15
π+ 139.6 0.452 0.672
k+ 493.7 0.314 0.56

Table 1: Known mean square charge radius (〈ρr2〉) and charge radius
(〈r〉) of hadrons.

logical estimates of expectation value of spatial variables of
baryonic quarks. Here the RCMT indicates a similarity be-
tween electrons in an atom and quarks in a baryons [3]. Ap-
propriate phenomenological assumptions are explained and it
is shown how their application yields the required prediction
of the Σ+ charge radius. The procedure used herein relies on
the currently known data of the proton, the neutron and the
Σ− baryons [6]. The π and the k meson data are used as a
justification for the calculations.

Table 1 contains the presently known data of the mean
square charge radius (〈ρr2〉) and of the corresponding charge
radius of several hadrons, written in units of fm.

Remarks: The experimental error refers to 〈ρr2〉. Here the
error of the Σ− data is much larger than that of the other
baryons. Therefore, only the Σ− error is mentioned. The π−

and k− are antiparticles of their respective positively charged
counterparts and have the same spatial data.

The three valence quarks of baryons make an important
contribution to the quantities described in Table 1. Beside
these quarks, it is well known that pairs of q̄q are found in
baryons. The graphs of Fig. 1 describe the distribution of
quarks and antiquarks in the proton. Two physically impor-
tant properties of the proton (and of all other baryons) are
inferred from the data of Fig. 1.

A. Antiquarks (namely, additional q̄q pairs) are explicitly
seen in baryons and their probability is not negligible.

B. The x-width of antiquarks is much smaller than that of
quarks. This property also proves that the Fermi motion
of antiquarks is much smaller than that of quarks. Us-
ing the Heisenberg uncertainty principle, one finds that,
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Fig. 1: The quantity xq(x) is describes qualitatively as a function of
x (q(x) denotes quark/antiquark distribution, respectively). The solid
line represents quarks and the broken line represents antiquarks.
(The original accurate figure can be found on [7, see p. 281]).

in a baryon, the volume of antiquarks is much larger
than that of quarks.

These conclusions are called below Property A and Property
B, respectively.

Property B is consistent with the RCMT hadronic model
[3]. Indeed, in this model baryons have a core. The model
assigns three positive monopole units to the baryonic core and
one negative monopole unit to every quark. Now, by analogy
with the electronic structure of atoms, one infers that, at the
inner baryonic region, the potential of the baryonic core is not
completely screened by quarks. For this reason, antiquarks,
whose monopole unit has the same sign as that of the baryonic
core, are pushed out to the baryonic external region and are
enclosed inside a larger volume. (Property B is not discussed
in QCD textbooks.)

An evaluation of experimental data of the proton indicates
that the u, d quark flavors make the dominant contribution to
the q̄q pairs and that, in the proton, the ratio between the prob-
ability of these kinds of quarks is [8]

〈d̄〉
〈ū〉 ' 3/2. (1)

This ratio is used later in this work. Obviously, isospin
symmetry shows that this ratio is reversed for the neutron.
The excess of the additional d̄d quark pairs in the proton is
consistent with the Pauli exclusion principle, which RCMT
ascribes to the spin-1/2 quarks. Indeed, a proton contains uud
valence quarks. Hence, it is energetically easier to add a d̄d
pair than a ūu pair.

The following assumption relies on Property A of Fig. 1.
I. It is assumed that, on the average, a baryon contains

one additional q̄q pair. Thus, in the discussion carried
out below, baryons contain four quarks and one anti-
quark. In particular, a proton contains an additional
0.6 d̄d fraction of a pair and 0.4 ūu fraction of a pair.
Isospin symmetry indicates that for a neutron, the cor-
responding quantities are reversed.

The calculation of the baryonic charge radius is not very
sensitive to the accuracy of Assumption I. Indeed, each mem-
ber of a q̄q has an opposite electric charge and their contri-
butions partially cancel each other. Moreover, the ud quarks
carry charge of opposite sign. This property further reduces
the effect of the additional pairs. The discussion of the neu-
tron data, which is carried out later, illustrates these issues.

The baryonic mean square charge radius is obtained be-
low as a sum of the contribution of the baryon’s individual
quarks. Thus, the following notation is used for a quark q and
a baryon b

R2(qi, b) ≡
∫

r2ψ†i ψi d3x, (2)

where ψ†i ψi represents the single particle density of a qi quark.
(Below, ψ is not used explicitly, and the value of R2(q, b) is
derived phenomenologically from the data of Table 1.) Thus,
R2(u, p) denotes the value of (2) for one of the proton’s u
quarks. Analogous expressions are used for other quark fla-
vors and for other baryons. It follows that the contribution
of each quark to the baryonic mean square charge radius is
obtained as a product QR2(q, b), where Q denotes the charge
of the respective quark. Relying on isospin symmetry, one
defines Assumption II:

R2(u, p) = R2(d, p) = R2(u, n) = R2(d, n) ≡ R2, (3)

where the last symbol is used for simplifying the notation.
As explained above, both the data depicted in Fig. 1 and

the RCMT model of hadrons [3], indicate that the volume of
baryonic antiquarks is larger than that of the corresponding
quarks (herein called Property B). Therefore, by analogy of
(3), the following definition is used for the proton/neutron
antiquarks

R2(ū, p) = R2(d̄, p) = R2(ū, n) = R2(d̄, n) = λR2, (4)

where λ > 1 is a numerical parameter.
The foregoing arguments and the data of Table 1 enable

one to equate the experimental value of the proton’s mean
square charge radius with the quantities defined above

0.766=2
2
3

R2− 1
3

R2−0.4 (λ−1)
2
3

R2 +0.6 (λ−1)
1
3

R2 =

=R2−0.2 (λ−1)
1
3

R2. (5)

The terms on the right hand side of the first line of (5) are
defined as follows. The first term represents the contribution
of the two uu valence quarks; the second term is for the single
d quark; the third term is for the ūu pair; the last term is for
the d̄d pair.

An analogous treatment is applied to the neutron and the
result is

− 0.116=
2
3

R2−2
1
3

R2−0.6 (λ−1)
2
3

R2 +0.4 (λ−1)
1
3

R2 =

=−0.8 (λ−1)
1
3

R2. (6)
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Here one sees once again the merits of the RCMT model
of hadrons [3]. Thus, the fact that the proton’s antiquarks vol-
ume is larger than that of its quarks means that λ > 1, as seen
in (4). Obviously, the final result of (6) proves that this rela-
tion is mandatory for explaining the sign of the experimental
value of the neutron’s mean square charge radius. It is also
evident that the contribution of the quark-antiquark pair to R2

is small.
The neutron relation (6) enables the removal of the λ pa-

rameter from (5). Thus, one finds that

R2 = 0.766 + 0.116/4 = 0.795. (7)

This value of R2 will be used in the derivation of the pre-
diction for the charge radius of the Σ+ baryon.

Let us turn to the Σ− baryon whose valence quarks are
dds. The u, d quarks of the previous discussion are regarded
as particles having (practically) the same mass and a different
electric charge. This is the underlying basis of isospin sym-
metry. It is also agreed that the s quark is heavier. Indeed, the
following data support this statement. Thus, the experimental
mass difference (in MeV) of the k, π mesons is [6]

M(k+) − M(π+) = 493.7 − 139.6 = 354.1 (8)

and the difference between the isospin average of the Σ± and
the nucleons is

1
2

(
M(Σ+) + M(Σ−) − M(p) − M(n)

)
=

=
1
2

(1197.4 + 1189.4 − 938.3 − 939.6) = 254.5. (9)

In each of the previous relations, the mass difference be-
tween two hadrons, where an s quark replaces a u (or d) quark
is positive. This outcome indicates that the s quark is indeed
heavier than the u quark.

The RCMT model of baryons and mesons [3] is analo-
gous to the atomic structure of electrons and to the positron-
ium, respectively. The results of (8) and (9) show that replac-
ing a u (or d) quark by an s quark in a nucleon yields more
binding energy than doing it in a pion. This outcome is con-
sistent with the RCMT model. Indeed, in a meson, an s quark
is attracted just by the field of one antiquark that carries one
monopole unit. On the other hand, in a nucleon, the s quark
is attracted by the baryonic core that carries three monopole
units. Like in the atomic case, the field of the core is not com-
pletely screened by the other quarks. (A QCD explanation of
this phenomenon is certainly less obvious.)

Let us turn to the problem of the s quark single particle
radial distribution. Thus, if a u (or d) quark is replaced by the
heavier s quark, then the s quark mean radius will be smaller
than that of the u quark. This conclusion is supported both by
the mass dependence of the radial function of a Dirac solution
of the Hydrogen atom (see [9, see p. 55] and by a comparison

of the experimental k and π radii of Table 1. For this reason,
it is defined here that

R2(s,Σ−) = ηR2, (10)

where 0 < η < 1 is a yet undefined parameter.
By analogy with the case of atomic electrons, one should

expect that the negative monopole of the s quark, which is
closer to the core, partially screens the potential of the posi-
tive monopole at the baryonic core. Therefore, one may ex-
pect a somewhat larger size for the d quarks of the Σ− baryon

R2(d,Σ−) = ξR2, (11)

where ξ > 1 is another undefined parameter.
Like the neutron, whose valence quarks are udd, the Σ−

valence quarks dds contains a pair of d quarks. Hence, it is
assumed here that the contribution of a quark-antiquark pair
to the Σ− mean square charge radius is the same as that of the
neutron (6). (As shown above, the contribution of this effect is
relatively small, and the final result is not sensitive to a small
change of this quantity.) Taking the experimental value of the
Σ− from Table 1, one uses (6), (7), (10), and (11) and writes the
following relation for the two undetermined parameters ξ, η

−0.61 ± δ = −2
1
3

0.795 ξ − 1
3

0.795 η − 0.116, (12)

where δ is related to the error assigned to the measurement of
the mean square charge radius of the Σ− baryon (see Table 1).

Taking into account the constraint on ξ, η, one finds that
relation (12) does not hold for δ = 0. Table 2 describes some
pairs of values of the parameters ξ, η and their relation to
δ. It is shown below how each pair of the ξ, η parameters
of Table 2 yields a prediction of the Σ+ mean square charge
radius.

The Σ+ baryon contains the uus valence quarks and it is
the isospin counterpart of the Σ− baryon. Hence, the spa-
tial properties of its u quarks are the same as those of the d
quarks of the Σ− baryon. Also the s quark of these baryons is
assumed to have the same spatial properties. The small effect
of the quark-antiquark pairs is equated to that of the proton,
because both have a pair of uu valence quarks. Thus, the phe-
nomenological formula for the mean square charge radius of
the Σ+ baryon is

R2(Σ+) = 2
2
3

0.795 ξ − 1
3

0.795 η − 0.029, (13)

where R2(b) denotes the mean square charge radius of the
baryon b. Substituting the values of each pair of the parame-
ters ξ, η into (13), one obtains a predictions for R2(Σ+). It is
clear from the details of the discussion presented above that
a prediction of R2(Σ+) must carry the estimated experimental
error of the mean square charge radius of the Σ− baryon and
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δ ξ η

−15 1.0 0.43
−15 1.05 0.33
−15 1.1 0.23
−10 1.12 0.0
−5 1.03 0.0

Table 2: Several values of ξ and η of (12).

the uncertainties of the assumptions used herein. Thus, the
final prediction is given (in f m2):

0.85 6 R2(Σ+) 6 1.17. (14)

The prediction for the charge radius (in f m) is

0.91 6 R(Σ+) 6 1.12. (15)

The range of these predictions is higher than that of a
QCD dependent prediction which has been published re-
cently [5].

3 The other seven high energy predictions

This section presents seven predictions of high energy exper-
imental results.

• High Energy pion beams exist. Thus, in principle, the
experiment described here can be performed in the near
future. The RCMT basis for a prediction of the elas-
tic π − π cross section is explained. Unlike protons
(see [10] and references therein), pions are character-
ized by a pair of quark-antiquark and they do not have
inner quark shells. Moreover, in a deep inelastic e − p
experiment, the electron collides with one quark at a
time. This property should also hold for the quark-
quark interaction in a π−π collision. Therefore, relying
on RCMT, where quarks carry one monopole unit, the
π − π elastic cross section is analogous to the elastic
cross section of colliding charges. It is well known that
this cross section decreases with the increase of the col-
lision energy (see chapter 6 of [7]).
Prediction: Unlike the proton case, where the elastic
cross section increases for collision energy which is
greater than that of point C of Fig. 2, a decrease of
the elastic cross section is predicted for a π − π scat-
tering. Hence, its graph will not increase for energies
which are not too close to a resonance. In particular, no
similar effect like the rise of the p − p cross section on
the right hand side of point C will be found in a π − π
collision. By the same token, for a very high energy
π − π scattering, the ratio of the elastic cross section to
the total cross section will be much smaller then that of
the p − p cross section of Fig. 2, which is about 1/6.

• The problem of the portion of the pion’s momentum
carried by quarks. The deep inelastic e − p scatter-
ing data are used for calculating the relative portion of

Fig. 2: A qualitative description of the pre-LHC proton-proton cross
section versus the laboratory momentum P. Axes are drawn in a log-
arithmic scale. The solid line denotes the elastic cross section and
the broken line denotes the total cross section. (The accurate figure
can be found in [6].)

the proton’s momentum carried by quarks, as seen in a
frame where the proton’s momentum is very very large.
It turns out that for a proton, the overall quarks’ portion
is about one half of the total momentum. The RCMT
proves that baryons have a core and that this is the rea-
son for the effect. Mesons are characterized as a bound
q̄q pair and they do not have a core. This is the basis
for the following prediction:
Unlike the proton case, it is predicted that an analogous
experiment of deep inelastic e− π scattering will prove
that in this case the pion’s quarks carry all (or nearly
all) the pion’s momentum.

• Several decades ago, claims concerning the existence
of glueballs have been published by QCD supporters
(see [11], p. 100). RCMT describes the strong interac-
tions as interactions between monopoles that satisfy the
RCMT equations of motion. Here, no gluon exist. A
fortiori, a genuine glueball does not exist. On April 14,
2010, Wikipedia says that glueballs ”have (as of 2009)
so far not been observed and identified with certainty.”

• Several decades ago, claims concerning the existence
of pentaquarks have been published by QCD support-
ers [12, 13]. Pentaquarks are supposed to be strongly
bound states of a baryon and a meson. RCMT clearly
contradicts the existence of these kinds of objects. In-
deed, like nucleons, all hadrons are neutral with re-
spect to monopoles. Hence, like the nuclear force, a
hadron-hadron interaction has residual features. In a
deuteron the proton-neutron binding energy is about
2.2 MeV. Let us compare this value to what is expected
for a baryon-meson binding energy. For each flavor,
the lightest meson, which is the best candidate for as-
sembling a pentaquark, is a spin-0 particle, which re-
sembles a noble gas. Hence, the binding energy of a
nucleon with this kind of meson should be even smaller
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than the 2.2 MeV binding energy of the deuteron. For
this reason, strongly bound pentaquarks should not ex-
ist. Experimental results are consistent with this theo-
retical conclusion [14].

• Several decades ago, claims concerning the existence
of SQM have been published by QCD supporters [15].
RCMT clearly contradicts the existence of this kind of
matter. Indeed, an SQM is a nugget of Λ baryons. Now
the mass of a Λ baryon is greater than the nucleon mass
by more than 170 MeV. On the other hand, the Λ bind-
ing energy in an SQM should be similar to the nucleon
binding energy in a nucleus, which is about 8 MeV
per nucleon. This very large difference between energy
values proves that the SQM is unstable and will disinte-
grate like a free Λ. Experimental results are consistent
with this theoretical conclusion [16].

• RCMT proves that there is no direct charge-monopole
interaction. Radiation fields (namely, real photons) in-
teract with charges and with monopoles. As of today,
experimental attempts to detect monopoles rely on a di-
rect interaction of the monopole fields with charges of
the measuring device. As stated above, such an interac-
tion does not exist. Hence, no genuine monopole will
be detected. This prediction has been made about 25
years ago [17]. In spite of a very long search, all at-
tempts to detect monopoles have ended in vain [6, see
p. 1209]. Monopole search continues [18].

• A genuine Higgs boson will not be found. For a the-
oretical discussion, see the first four sections of [4].
This conclusion relies on inherent inconsistencies of
the Higgs Lagrangian density.

4 Concluding remarks

A physical theory is tested by its consistency with experimen-
tal results that belong to the theory’s domain of validity. A
second kind of test is the demand that the examined theory
has a solid mathematical structure. However, one does not
really think that a theory having an erroneous mathematical
structure can fit all experimental data. Therefore, one may
argue that a test of the theory’s mathematical structure plays
an auxiliary role. On the other hand, an analysis of the math-
ematical structure can provide convincing arguments for dis-
qualifying incorrect theories. The present work concentrates
on the examination of the fit of high energy theories to the
data.

In undertaking this task, one realizes that the historical
order of formulating the theory’s predictions and carrying
out the required experiments bears no fundamental meaning.
Thus, at this point, one may state that making a prediction
that is later found to be successful is at least as good as deriv-
ing a theoretical result that fits a known measurement. This is
certainly an incomplete description of the problem. Indeed,

many predictions depend on numerical value of adjustable pa-
rameters that yield the required quantity. Therefore, in the
case of a theory that is not fully established, a successful
prediction that is later confirmed by measurement provides
a significantly better support for it. This aspect is one of the
motivations for writing the present work which contains eight
different predictions. Let us wait and see what will come out
of the experimental work.
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These paradoxes are called “neutrosophic” since they are based on indeterminacy (or
neutrality, i.e. neither true nor false), which is the third component in neutrosophic
logic. We generalize the Venn diagram to a Neutrosophic Diagram, which deals with
vague, inexact, ambiguous, illdefined ideas, statements, notions, entities with unclear
borders. We define the neutrosophic truth table and introduce two neutrosophic oper-
ators (neuterization and antonymization operators) give many classes of neutrosophic
paradoxes.

1 Introduction to the neutrosophics

Let <A> be an idea, or proposition, statement, attribute, the-
ory, event, concept, entity, and <non A> what is not <A>.

Let <anti A> be the opposite of <A>. We have introduced
a new notation [1998], <neut A>, which is neither <A> nor
<anti A> but in between. <neut A> is related with <A> and
<anti A>.

Let’s see an example for vague (not exact) concepts: if
<A> is “tall” (an attribute), then <anti A> is “short”, and
<neut A> is “medium”, while <non A> is “not tall” (which
can be “medium or short”). Similarly for other <A>,
<neut A>, <anti A> such as: <good>, <so so>, <bad>, or
<perfect>, <average>, <imperfect>, or <high>, <medium>,
<small>, or respectively <possible>, <sometimes possible
and other times impossible>, <impossible>, etc.

Now, let’s take an exact concept / statement: if <A> is the
statement “1 + 1 = 2 in base 10” , then <anti A> is “1 + 1 , 2
in base 10”, while <neut A> is undefined (doesn’t exist) since
it is not possible to have a statement in between “1 + 1 = 2
in base 10” and “1 + 1 , 2 in base 10” because in base 10
we have 1+1 is either equal to 2 or 1+1 is different from 2.
<non A> coincides with <anti A> in this case, <non A> is
“1 + 1 , 2 in base 10”.

Neutrosophy is a theory the author developed since 1995
as a generalization of dialectics. This theory considers ev-
ery notion or idea <A> together with its opposite or negation
<anti A>, and the spectrum of “neutralities” in between them
and related to them, noted by <neut A>.

The Neutrosophy is a new branch of philosophy which
studies the origin, nature, and scope of neutralities, as well as
their interactions with different ideational spectra.

Its Fundamental Thesis:
Any idea <A> is T% true, I% indeterminate (i.e. neither true
nor false, but neutral, unknown), and F% false.

Its Fundamental Theory:
Every idea <A> tends to be neutralized, diminished, balanced
by <non A> ideas (not only by <anti A> as Hegel asserted)
— as a state of equilibrium.

In between <A> and <anti A> there may be a continu-
ous spectrum of particular <neut A> ideas, which can balance
<A> and <anti A>.

To neuter an idea one must discover all its three sides:
of sense (truth), of nonsense (falsity), and of undecidability
(indeterminacy) — then reverse/combine them. Afterwards,
the idea will be classified as neutrality.

There exists a Principle of Attraction not only between
the opposites <A> and <anti A> (as in dialectics), but also
between them and their neutralities <neut A> related to them,
since <neut A> contributes to the Completeness of Knowl-
edge.

Hence, neutrosophy is based not only on analysis of op-
positional propositions as dialectic does, but on analysis of
these contradictions together with the neutralities related to
them.

Neutrosophy was extended to Neutrosophic Logic, Neu-
trosophic Set, Neutrosophic Probability and Neutrosophic
Statistics, which are used in technical applications.

In the Neutrosophic Logic (which is a generalization of
fuzzy logic, especially of intuitionistic fuzzy logic) every log-
ical variable x is described by an ordered triple x = (T, I, F),
where T is the degree of truth, F is the degree of falsehood,
and I the degree of indeterminacy (or neutrality, i.e. neither
true nor false, but vague, unknown, imprecise), with T, I, F
standard or non-standard subsets of the non-standard unit in-
terval ]−0, 1+[. In addition, these values may vary over time,
space, hidden parameters, etc.

Neutrosophic Probability (as a generalization of the clas-
sical probability and imprecise probability) studies the chance
that a particular event <A> will occur, where that chance is
represented by three coordinates (variables): T% chance the
event will occur, I% indeterminate (unknown) chance, and
F% chance the event will not occur.

Neutrosophic Statistics is the analysis of neutrosophic
probabilistic events.

Neutrosophic Set (as a generalization of the fuzzy set,
and especially of intuitionistic fuzzy set) is a set such that
an element belongs to the set with a neutrosophic probability,
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i.e. T degree of appurtenance (membership) to the set, I de-
gree of indeterminacy (unknown if it is appurtenance or non-
appurtenance to the set), and F degree of non-appurtenance
(non-membership) to the set.

There exist, for each particular idea: PRO parameters,
CONTRA parameters, and NEUTER parameters which in-
fluence the above values.

Indeterminacy results from any hazard which may occur,
from unknown parameters, or from new arising conditions.
This resulted from practice.

2 Applications of neutrosophics

Neutrosophic logic/set/probability/statistics are useful in ar-
tificial intelligence, neural networks, evolutionary program-
ming, neutrosophic dynamic systems, and quantum mechan-
ics.

3 Examples of neutrosophy used in Arabic philosophy
(F. Smarandache and S. Osman)

• While Avicenna promotes the idea that the world is
contingent if it is necessitated by its causes, Averroes
rejects it, and both of them are right from their point of
view.
Hence <A> and <anti A> have common parts.

• Islamic dialectical theology (kalam) promoting crea-
tionism was connected by Avicenna in an extraordinary
way with the opposite Aristotelian-Neoplatonic tradi-
tion.
Actually a lot of work by Avicenna falls into the frame
of neutrosophy.

• Averroes’s religious judges (qadis) can be connected
with atheists’ believes.

• al-Farabi’s metaphysics and general theory of emana-
tion vs. al-Ghazali’s Sufi writings and mystical trea-
tises [we may think about a coherence of al-Ghazali’s
“Incoherence of the Incoherence” book].

• al-Kindi’s combination of Koranic doctrines with
Greek philosophy.

• Islamic Neoplatonism + Western Neoplatonism.
• Ibn−Khaldun’s statements in his theory on the cyclic

sequence of civilizations, says that:
Luxury leads to the raising of civilization (because the
people seek for comforts of life) but also Luxury leads
to the decay of civilization (because its correlation with
the corruption of ethics).

• On the other hand, there’s the method of absent−by−
present syllogism in jurisprudence, in which we find
the same principles and laws of neutrosophy.

• In fact, we can also function a lot of Arabic aphorisms,
maxims, Koranic miracles (Ayat Al- Qur’an) and
Sunna of the prophet, to support the theory of neutros-
ophy.

Take the colloquial proverb that “The continuance of state
is impossible” too, or “Everything, if it’s increased over its
extreme, it will turn over to its opposite”!

4 The Venn diagram

In a Venn diagram we have with respect to a universal set U
the following:

Fig. 1: Venn diagram

Therefore, there are no common parts amongst <A>,
<neut A>, and <anti A>, and all three of them are (com-
pletely) contained by the universal set U. Also, all borders
of these sets <A>, <neut A>, <anti A>, and U are clear, ex-
act. All these four sets are well−defined.

While <neut A> means neutralities related to <A> and
<anti A>, what is outside of <A>U <neut A>U <anti A> but
inside of U are other neutralities, not related to <A> or to
<anti A>.

Given <A>, there are two types of neutralities: those re-
lated to <A> (and implicitly related to <anti A>), and those
not related to <A> (and implicitly not related to <anti A>)

5 The neutrosophic diagram, as extension of the Venn
diagram

Yet, for ambiguous, vague, not-well-known (or even un-
known) imprecise ideas / notions / statements / entities with
unclear frontiers amongst them the below relationships may
occur because between an approximate idea noted by <A>
and its opposite <anti A> and their neutralities <neut A>
there are not clear delimitations, not clear borders to distin-
guish amongst what is <A> and what is not <A>. There are
buffer zones in between <A> and <anti A> and <neut A>,
and an element x from a buffer zone between <A> and
<anti A> may or may not belong to both <A> and <anti A>
simultaneously. And similarly for an element y in a buffer
zone between <A> and <neut A>, or an element z in the
buffer zone between <neut A> and <anti A>. We may have a
buffer zone where the confusion of appurtenance to <A>, or
to <neut A>, or to <anti A> is so high, that we can consider
that an element w belongs to all of them simultaneously (or
to none of them simultaneously).

We say that all four sets <A>, <neut A>, <anti A>, and
the neutrosophic universal set U are illdefined, inexact, un-
known (especially if we deal with predictions; for example
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if <A> is a statement with some degree of chance of occur-
ring, with another degree of change of not occurring, plus an
unknown part). In the general case, none of the sets <A>,
<neut A>, <anti A>, <non A> are completely included in U,
and neither U is completely known; for example, if U is the
neutrosophic universal set of some specific given events, what
about an unexpected event that might belong to U? That’s
why an approximate U (with vague borders) leaves room for
expecting the unexpected.

The Neutrosophic Diagram in the general case is the fol-
lowing (Fig. 2): the borders of <A>, <anti A>, and <neut A>
are dotted since they are unclear.

Fig. 2: Neutrosophic Diagram

Similarly, the border of the neutrosophic universal set U is
dotted, meaning also unclear, so U may not completely con-
tain <A>, nor <neut A> or <anti A>, but U “approximately”
contains each of them. Therefore, there are elements in <A>
that may not belong to U, and the same thing for <neut A>
and <anti A>. Or elements, in the most ambiguous case, there
may be elements in <A> and in <neut A> and in <anti A>
which are not contained in the universal set U.

Even the neutrosophic universal set is ambiguous, vague,
and with unclear borders.

Of course, the intersections amongst <A>, <neut A>,
<anti A>, and U may be smaller or bigger or even empty de-
pending on each particular case.

See below an example of a particular neutrosophic dia-
gram (Fig. 3), when some intersections are contained by the
neutrosophic universal set:

Fig. 3: Example of a particular neutrosophic diagram

A neutrosophic diagram is different from a Venn diagram
since the borders in a neutrosophic diagram are vague. When
all borders are exact and all intersections among <A>,
<neut A>, and <anti A> are empty, and all <A>, <neut A>,
and <anti A> are included in the neutrosophic universal set
U, then the neutrosophic diagram becomes a Venn diagram.

The neutrosophic diagram, which complies with the neu-
trosophic logic and neutrosophic set, is an extension of the
Venn diagram.

6 Classes of neutrosophic paradoxes

The below classes of neutrosophic paradoxes are not simply
word puzzles. They may look absurd or unreal from the clas-
sical logic and classical set theory perspective. If <A> is a
precise / exact idea, with well-defined borders that delimit it
from others, then of course the below relationships do not oc-
cur.

But let <A> be a vague, imprecise, ambiguous, not-well-
known, not-clear-boundary entity, <non A> means what is
not<A>, and<anti A>means the opposite of<A>. <neut A>
means the neutralities related to <A> and <anti A>, neutrali-
ties which are in between them.

When <A>, <neut A>,<anti A>,<non A>, U are uncer-
tain, imprecise, they may be selfcontradictory. Also, there
are cases when the distinction between a set and its elements
is not clear.

Although these neutrosophic paradoxes are based on
“pathological sets” (those whose properties are considered
atypically counterintuitive), they are not referring to the the-
ory of Meinongian objects (Gegenstandstheorie) such as
round squares, unicorns, etc. Neutrosophic paradoxes are not
reported to objects, but to vague, imprecise, unclear ideas or
predictions or approximate notions or attributes from our ev-
eryday life.

7 Neutrosophic operators

Let’s introduce for the first time two new Neutrosophic Oper-
ators:

1. An operator that “neuterizes” an idea. To neuterize
[neuter+ize, transitive verb; from the Latin word neuter
= neutral, in neither side], n(.), means to map an entity
to its neutral part. [We use the Segoe Print for “n(.)”.]
“To neuterize” is different from “to neutralize” [from
the French word neutraliser] which means to declare
a territory neutral in war, or to make ineffective an en-
emy, or to destroy an enemy.
n(<A>) = <neut A>. By definition n (<neut A>) =

<neut A>.
For example, if <A> is “tall”, then n(tall) = medium,
also n(short) = medium, n(medium) = medium.
But if <A> is “1 + 1 = 2 in base 10” then n (<1 + 1 =

2 in base 10>) is undefined (does not exist), and simi-
larly n (<1 + 1 , 2 in base 10>) is undefined.
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2. And an operator that “antonymizes” an idea. To anto-
nymize [antonym+ize, transitive verb; from the Greek
work antōnymia = instead of, opposite], a (.), means to
map an entity to its opposite. [We use the Segoe Print
for a (.)] a(<A>) = <anti A>.
For example, if <A> is “tall”, then a(tall) = short,
also a (short) = tall, and a (medium) = tall or short .
But if <A> is “1 + 1 = 2 in base10” then a(<1 + 1 =

2 in base10>) = <1+1 , 2 in base 10> and reciprocal-
ly a (<1 + 1 , 2 in base 10>) = <1 + 1 = 2 in base 10>.

The classical operator for negation / complement in logics
respectively in set theory, “to negate” (¬), which is equivalent
in neutrosophy with the operator “ to nonize” (i.e. to non+ize)
or nonization (i.e. non+ization), means to map an idea to its
neutral or to its opposite (a union of the previous two neutro-
sophic operators: neuterization and antonymization):
¬<A> = <non A> = <neut A> ∪ <anti A> = n (<A>) ∪
a(<A>).

Neutrosophic Paradoxes result from the following neu-
trosophic logic / set connectives following all apparently im-
possibilities or semi-impossibilities of neutrosophically con-
necting <A>, <anti A>, <neut A>, <non A> , and the neu-
trosophic universal set U.

8 Neutrosophic truth tables

For <A> = “tall”:

<A> a(<A>) n(<A>) ¬<A>
tall short medium short or medium
medium short or tall medium short or tall
short tall medium tall or medium

To remark that n (<medium>) , medium. If <A> = tall,
then <neut A> = medium, and <neut(neut A)>=<neut A>,
or n(<n(<A>)>) = n(<A>).

For <A> = “1 + 1 = 2 in base 10” we have <anti A> =

<non A> = “1 + 1 , 2 in base 10”, while <neut A> is unde-
fined (N/A) — whence the neutrosophic truth table becomes:

<A> a(<A>) n(<A>) ¬<A>
True False N/A False
False True N/A True

In the case when a statement is given by its neutrosophic
logic components <A> = ( T, I, F), i.e. <A> is T% true,
I% indeterminate, and F% false, then the neutrosophic truth
table depends on the defined neutrosophic operators for each
application.

9 Neutrosophic operators and classes of neutrosophic
paradoxes

a) Complement/Negation
¬<A> , <non A> and reciprocally ¬<non A> , <A>.

¬( ¬<A>) , <A>
¬( ¬<anti A>) , <anti A>
¬( ¬<non A>) , <non A>
¬( ¬<neut A>) , <neut A>
¬( ¬U) , U, where Uis the neutrosophic universal
set. ¬( ¬<∅>) , <∅>, where <∅> is the neutrosophic
empty set.

b) Neuterization
n(<A>) , <neut A>
n(<anti A>) , <neut A>
n(<non A>) , <neut A>
n(n(<A>)) , <A>

c) Antonymization
a(<A>) , <anti A>
a(<anti A>) , <A>
a(<non A>) , <A>
a(a(<A>)) , <A>

d) Intersection/Conjunction
<A> ∩ <non A> , ∅ (neutrosophic empty set) [sym-
bolically (∃x)(x ∈ A ∧ x ∈ ¬A) ],
or even more <A> ∩ <anti A> , ∅ [symbolically (∃x)
(x ∈ A ∧ x ∈ a(A)) ],
similarly <A>∩<neut A>,∅ and <anti A>∩<neut A>
, ∅,
up to <A> ∩ <neut A> ∩ <anti A> , ∅.
The symbolic notations will be in a similar way.
This is Neutrosophic Transdisciplinarity, which means
to find common features to uncommon entities.
For examples:
There are things which are good and bad in the same
time.
There are things which are good and bad and medium
in the same time (because from one point of view they
may be god, from other point of view they may be bad,
and from a third point of view they may be medium).

e) Union / Weak Disjunction
<A> ∪ <neut A> ∪ <anti A> , U.
<anti A> ∪ <neut A> , <non A>.
Etc.

f) Inclusion/Conditional
<A> ⊂ <anti A>
(∀x)(x ∈ A→ x ∈ a(A))
All is <anti A>, the <A> too.
All good things are also bad.
All is imperfect, the perfect too.

<anti A> ⊂ <A>
(∀x)(x ∈ a(A)→ x ∈ A)
All is <A>, the <anti A> too.
All bad things have something good in them [this is
rather a fuzzy paradox].
All is perfect things are imperfect in some degree.
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<non A> ⊂ <A>
(∀x)(x ∈ ¬A→ x ∈ A)
All is <A>, the <non A> too.
All bad things have something good and something
medium in them [this is a neutrosophic paradox, since
it is based on good, bad, and medium].
All is perfect things have some imperfectness and medi-
ocrity in them at some degree.
<A> ⊂ <neut A>
(∀x)(x ∈ A→ x ∈ n(A))
All is <neutA>, the <A> too.

<non A> ⊂ <neutA> [partial neutrosophic paradox of
inclusion]
(∀x)(x ∈ ¬A→ x ∈ n(A))
All is <neutA>, the <non A> too.
<non A> ⊂ <antiA> [partial neutrosophic paradox of
inclusion]
(∀x)(x ∈ ¬A→ x ∈ a(A))
All is <antiA>, the <non A> too.
<antiA> ⊂ <neut A>
(∀x)(x ∈ a(A)→ x ∈ n(A))
All is <neut A>, the <anti A> too.
<A> ∪ <anti A> ⊂ <neut A>
(∀x)((x ∈ A ∨ x ∈ a(A))→ x ∈ n(A))
All is <neutA>, the <A> and <antiA> too.

Paradoxes of some Neutrosophic Arguments
<A>⇒ <B>
<B>⇒ <anti A>
∴ <A>⇒ <anti A>
Example: too much work produces sickness; sickness
produces less work (absences from work, low efficien-
cy); therefore, too much work implies less work (this is
a Law of Self-Equilibrium).
<A>⇒ <B>
<B>⇒ <non A>
∴ <A>⇒ <non A>

<A>⇒ <B>
<B>⇒ <neut A>
∴ <A>⇒ <neut A>

g) Equality/Biconditional
Unequal Equalities
<A> , <A>
which symbolically becomes (∃x)(x ∈ ¬A↔ x < ¬A)
or even stronger inequality (∀x)(x ∈ ¬A↔ x < ¬A).
Nothing is <A>, nor even <A>.
<anti A> , <anti A>
which symbolically becomes (∃x)(x ∈ A↔ x < A)
or even stronger inequality (∀x)(x ∈ A↔ x < A).

<neut A> , <neut A>
which symbolically becomes (∃x)(x ∈ vA↔ x < vA)
or even stronger inequality (∀x)(x ∈ vA↔ x < vA).

<non A> , <non A>
which symbolically becomes (∃x)(x ∈ ¬A↔ x < ¬A)
or even stronger inequality (∀x)(x ∈ ¬A↔ x < ¬A).

Equal Inequalities
<A> = <anti A>
(∀x)(x ∈ A↔ x ∈ a(A))
All is <A>, the <anti A> too; and reciprocally, all is
<anti A>, the <A> too. Or, both combined implica-
tions give: All is <A> is equivalent to all is <anti A>.

And so on:
<A> = <neut A>
<anti A> = <neut A>
<non A> = <A>

Dilations and Absorptions
<anti A> = <non A>,
which means that <anti A> is dilated to its neutrosoph-
ic superset <non A>, or <non A> is absorbed to its neu-
trosophic subset <anti A>.
Similarly for:
<neut A> = <non A>
<A> = U
<neut A> = U
<anti A> = U
<non A> = U

h) Combinations of the previous single neutrosophic op-
erator equalities and/or inequalities, resulting in more
neutrosophic operators involved in the same expres-
sion.
For examples:
<neut A> ∩ (<A> ∪ <anti A>) , ∅ [two neutrosophic
operators].
<A>∪<anti A> , ¬<neut A> and reciprocally ¬(<A>
∪<anti A>) , <neut A>.
<A> ∪ <neut A> , ¬<anti A> and reciprocally.
¬(<A> ∪ <neut A> ∪ <anti A>) , ∅ and reciprocally.
Etc.

i) We can also take into consideration other logical con-
nectors, such as strong disjunction (we previously used
the weak disjunction), Shaffer’s connector, Peirce’s
connector, and extend them to the neutrosophic form.

j) We may substitute <A> by some entities, attributes,
statements, ideas and get nice neutrosophic paradoxes,
but not all substitutions will work properly.

10 Some particular paradoxes

Quantum Semi-Paradox
Let’s go back to 1931 Schrödinger’s paper. Saul Youssef
writes (flipping a quantum coin) in arXiv.org at quant-ph/

9509004:
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“The situation before the observation could be describ-
ed by the distribution (1/2,1/2) and after observing
heads our description would be adjusted to (1,0). The
problem is, what would you say to a student who then
asks: ”Yes, but what causes (1/2,1/2) to evolve into
(1,0)? How does it happen?”

It is interesting. Actually we can say the same for any proba-
bility different from 1: If at the beginning, the probability of
a quantum event, P(quantum event) = p, with 0<p<1, and if
later the event occurs, we get to P(quantum event) = 1; but if
the event does not occur, then we get P(quantum event) = 0,
so still a kind of contradiction.

Torture’s paradox
An innocent person P, who is tortured, would say to the tor-
turer T whatever the torturer wants to hear, even if P doesn’t
know anything.

So, T would receive incorrect information that will work
against him/her. Thus, the torture returns against the torturer.

Paradoxist psychological behavior
Instead of being afraid of something, say <A>, try to be afraid
of its opposite <anti A>, and thus− because of your fear −
you’ll end up with the <anti<anti A>>, which is <A>.

Paradoxically, negative publicity attracts better than posi-
tive one (enemies of those who do negative publicity against
you will sympathize with you and become your friends).

Paradoxistically [word coming etymologically from para-
doxism, paradoxist], to be in opposition is more poetical and
interesting than being opportunistic.
At a sportive, literary, or scientific competition, or in a war,
to be on the side of the weaker is more challenging but on
the edge of chaos and, as in Complex Adoptive System, more
potential to higher creation.

Law of Self-Equilibrium
(Already cited above at the Neutrosophic Inclusion/Condit-
ional Paradoxes) <A> → <B> and <B> → <anti A>, there-
fore <A>→ <anti A> !
Example: too much work produces sickness; sickness pro-
duces less work (absences from work, low efficiency); there-
fore, too much work implies less work.
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Five Paradoxes and a General Question on Time Traveling

Florentin Smarandache
Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA. E-mail: smarand@unm.edu

These are five paradoxes on time traveling, which come from Neutrosophy and Neutro-
sophic Logics applied to the theory of relativity.

1 Traveling to the past

Joe40, who is 40 years old, travels 10 years back to the past
when he was 30 years old. He meets himself when he was 30
years old, let’s call this Joe30.

Joe40 kills Joe30.
If so, we mean if Joe died at age 30 (because Joe30 was

killed), how could he live up to age 40?

2 Traveling to the future

Joe30, who is 30 years old, travels 10 years in the future and
meats himself when he will be 40 years old, let’s call him
Joe40.

Joe40 kills Joe30.
At what age did Joe die, at 30 or 40?
If Joe30 died, then Joe40 would not exist.

3 Traveling pregnant woman

a) A 3-month pregnant woman, Jane3, travels 6 months to the
future where she gives birth to a child Johnny3.
b) Then she returns with the child back, and after 1 month
she travels 5 months to the future exactly at the same time as
before.

Then how is it possible to have at exactly the same time
two different situations: first only the pregnant woman, and
second the pregnant woman and her child?

4 Traveling in the past before birth

Joe30, who is 30 years old, travels 40 years in the past, there-
fore 10 years before he was born.

How is it possible for him to be in the time when he did
not exist?

5 Traveling in the future after death

Joe30, who is 30 years old, travels 40 years in the future, 10
years after his death. He has died when he was 60 years old,
as Joe60.

How is it possible for him to be in the time when he did
not exist any longer?

6 A general question about time traveling

When traveling say 50 years in the past [let’s say from year
2010 to year 1960] or 50 years in the future [respectively from
year 2010 to year 2060], how long does the traveling itself
last?

If it’s an instantaneous traveling in the past, is the time
traveler jumping from year 2010 directly to year 1960, or is
he continuously passing through all years in between 2010
and 1960? Similar question for traveling in the future.

If the traveling lasts longer say, a few units (seconds, min-
utes, etc.) of time, where will be the traveler at the second unit
or third unit of time? I mean, suppose it takes 5 seconds to
travel from year 2010 back to year 1960; then in the 1st sec-
ond is he in year 2000, in the 2nd second in year 1990, in the
3rd second in year 1980, in the 4st second in year 1970, and
in the 5st second in year 1960? So, his speed is 10 years per
second?

Similar question for traveling in the future.
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It is proved the falsity of idea that the Uncertainty Relations (UR) have crucial signif-
icances for physics. Additionally one argues for the necesity of an UR-disconnected
quantum philosophy.

1 Introduction

The Uncertainty Relations (UR) enjoy a considerable popu-
larity, due in a large measure to the so called Conventional
(Copenhagen) Interpretation of UR (CIUR). The mentioned
popularity is frequently associated with the idea (which per-
sist so far) that UR have crucial significances for physics (for
a list of relevant references see [1–3]). The itemization of the
alluded idea can be done through the following more known
Assertions (A):
• A1 : In an experimental reading the UR are crucial sym-

bols for measurement characteristics regarding Quantum Me-
chanics (QM) in contrast with non-quantum Classical Physics
(CP). The pointed characteristics view two aspects: (i) the
so called “observer effect” (i.e. the perturbative influence of
“observation”/measuring devices on the investigated system),
and (ii) the measurement errors (uncertainties). Both of the
alluded aspects are presumed to be absolutely notable and un-
avoidable in QM contexts respectively entirely negligible and
avoidable in CP situations.
• A2 : From a theoretical viewpoint UR are essential dis-

tinction elements between the theoretical frameworks of QM
and CP. This in sense of the supposition that mathematically
UR appear only in QM pictures and have not analogues in the
CP representations.
• A3 : In both experimental and theoretical acceptions the

UR are in an indissoluble connection with the description
of uncertainties (errors) specific for Quantum Measurements
(QMS).
• A4 : As an esential piece of UR, the Planck’s constant

~, is appreciated to be exclusively a symbol of quanticity (i.e.
a signature of QM comparatively with CP), without any kind
of analogue in CP.
• A5 : UR entail [4] the existence of some “impossibility”

(or “limitative”) principles in foundational physics.
• A6 : UR are regarded [5] as expression of “the most

important principle of the twentieth century physics”.
To a certain extent the verity of the idea itemized by as-

sertions A1 − A6 depends on the entire truth of CIUR. That is
why in the next section we present briefly the CIUR untruths
which trouble the mentioned verity. Subsequently, in Sec-
tion 3, we point out a lot of Observations (O) which invalidate
completely and irrefutably the items A1 − A6. The respective
invalidation suggests a substitution of UR-subordinate quan-

tum philosophy with an UR-disconnected conception. Such
a suggestion is consolidated by some additional Comments
(C) given in Section 4. So, in Section 5, we can conclude our
considerations with: (i) a definitely negative answer to the
inquired idea, respecively (ii) a pleading for a new quantum
philosophy. Such conclusions argue for the Dirac’s intuitional
guess about the non-survival of UR in the physics of future.

2 Shortly on the CIUR untruths

In its essence the CIUR doctrine was established and dissem-
inated by the founders and subsequent partisans of Copen-
hagen School in QM. The story started from the wish to give
out an unique and generic interpretation for the thought-
experimental (te) formula

∆teA · ∆teB > ~ (1)

(A and B being conjugated observables) respectively for the
QM theoretical formula

∆ψA · ∆ψB >
1
2

∣∣∣∣
〈[

Â, B̂
]〉
ψ

∣∣∣∣ (2)

(where the notations are the usual ones from usual QM —
see also [3]). Both the above two kind of formulas are known
as UR.

The alluded doctrine remains a widely adopted concep-
tion which, in various manners, dominates to this day the
questions regarding the foundation and interpretation of QM.
However, as a rule, a minute survey of the truths-versus-
untruths regarding its substance was (and still is) underesti-
mated in the main stream of publications (see the literature
mentioned in [1, 2]). This in spite of the early known opin-
ions like [6]: “the idea that there are defects in the founda-
tions of orthodox quantum theory is unquestionable present
in the conscience of many physicists”.

A survey of the mentioned kind was approached by us
in the report [3] as well as in its precursor papers [7–15]
and preprints [16]. Our approaches, summarized in [3], dis-
close the fact that each of all basic elements (presumptions)
of CIUR are troubled by a number of insurmountable short-
comings (unthruths). For that reason we believe that CIUR
must be wholly abandoned as a wrong construction which, in
its substance, has no noticeable value for physics. The dis-
closures from [3] were carried out by an entire class of well
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argued remarks (R). From the mentioned class we compile
here only the following ones:
• Ra : Formula (1) is mere provisional fiction without

any durable physical significance. This because it has only
a transitory/temporary character, founded on old resolution
criteria from optics (introduced by Abe and Rayleigh). But
the respective criteria were surpassed by the so called super-
resolution techniques worked out in modern experimental
physics.
Then, instead of CIUR formula (1), it is possible to imagine
some “improved relations” (founded on some super-
resolution thought-experiments) able to invalidate in its very
essence the respective formula.
• Rb : From a theoretical perspective the formula (2) is

only a minor and deficient piece, resulting from the genuine
Cauchy-Schwarz relation

∆ψA · ∆ψB >
∣∣∣∣
(
δψÂψ, δψB̂ψ

)∣∣∣∣ (3)

written in terms of usual QM notations (see [3]).
As regards their physical significance the formulas (2) and (3)
are nothing but simple (second order) fluctuations relations
from the same family with the similar ones [3, 7–9, 12, 15]
from the statistical CP.
• Rc : In a true approach the formulas (1) and (2) as well

as their “improvised adjustments” have no connection with
the description of QMS.
• Rd : The Planck’s constant ~ besides its well-known

quanticity significance is endowed also [3, 12] with the qual-
ity of generic indicator for quantum randomness (stochas-
ticity) — i.e. for the random characteristics of QM observ-
ables. Through such a quality ~ has [3, 12] an authentic ana-
logue in statistical CP. The respective analogue is the Boltz-
mann’s constant kB which is an authentic generic indicator
for thermal randomness. Note that, physically, the random-
ness of an observable is manifested through its fluctuations
[3, 7–9, 12, 15].
• Re : The formula (2) is not applicable for the pair of

(conjugated) observables t − E (time-energy). In other words
[3] a particularization of (2) in the form

∆ψt · ∆ψE >
~

2
(4)

gives in fact a wrong relation. This because in usual QM
the time t is a deterministic variable but not a random one.
Consequently for any QM situation one finds the expressions
∆ψt ≡ 0 respectively ∆ψE = a f inite quantity.
Note that in a correct mathematical-theoretical approach for
the t−E case it is valid only the Cauchy Schwarz formula (3),
which degenerate into trivial relation 0 = 0.

Starting from the above remarks Ra−Re in the next section
we add an entire group of Observations (O) able to give a just
estimation of correctness regarding the assertions A1 − A6.

3 The falsity of assertions A1 − A6

The above announced estimation can be obtained only if the
mentioned remarks are supplemented with some other no-
table elements. By such a supplementation one obtains a
panoramic view which can be reported through the whole
group of the following Observations (O) :
• O1 : The remark Ra, noted in previous section, shows

irrefutably the falsity of the assertion A1. The same falsity
is argued by the fact that the referred “observer effect” and
corresponding measuring uncertainties can be noticeable not
only in QMS but also in some CP measurements (e.g. [17] in
electronics or in thermodynamics)
• O2 : On the other hand the remark Rb points out the

evident untruth of the assertion A2.
•O3 : Furthermore the triplet of remarks Ra−Rc infringes

the essence of the assertion A3.
• O4 : The exclusiveness feature of Planck’s constant ~,

asserted by A4, is evidently contradicted by the remark Rd.
• O5 : Assertion A5 was reinforced and disseminated re-

cently [4] thrugh the topic:

“What role do ‘impossibility’ principles or
other limits (e.g., sub-lightspeed signaling,
Heisenberg uncertainty, cosmic censorship, the
second law of thermodynamics, the holographic
principle, computational limits, etc.) play in
foundational physics and cosmology?”.

Affiliated oneself with the quoted topic the assertion A5 im-
plies two readings: (i) one which hints at Measuring Limits
(ML), respectively (ii) another associated with the so called
“Computational Limits” (CL).
• O6 : In the reading connected with ML the assertion A5

presumes that the QMS accuracies can not surpass “Heisen-
berg uncertainties” (1) and (2). Such a presumption is per-
petuated until these days through sentences like: “The uncer-
tainty principle of quantum mechanics places a fundamental
limitation on what we can know” [18].
Now is easy to see that the above noted remarks Ra and Rc

reveal beyond doubt the weakness of such a presumption. Of
course that, as a rule, for various branches of physics (even
of CP nature such are [17] those from electronics or ther-
modynamics), the existence of some specific ML is a reality.
The respective existence is subordinate to certain genuine el-
ements such are the accuracy of experimental devices and the
competence of the theoretical approaches. But note that as
it results from the alluded remarks the formulas (1) and (2)
have nothing to do with the evaluation or description of the
ML (non-performances or uncertainties) regarding QMS.
• O7 : The reading which associate the UR with CL sems

to refer mainly to the Bremermann’s limit (i.e. to the maxi-
mum computational speed of a self-contained system in the
universe) [19, 20]. But it is easy to see from [19, 20] that the
aludded association is builded in fact on the wrong relations
(1) and (4) written for the observables pair t − E. Conse-
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quently such an association has not any real value for appre-
ciation of UR significance as CL. Add here the remark that,
nevertheless, the search [20] for finding the ultimate physical
limits of computations remains a subject worthy to be investi-
gated. This because, certainly, that what is ultimately permis-
sible in practical computational progresses depends on what
are the ultimate possibilities of real physical artifacts (expe-
riences). However, from our viewpoint, appraisals of the al-
luded possibilities do not require any appeal to the relations
(1, 2, 4).
• O8 : For a true judgment regarding the validity of asser-

tion A6 can be taken into account the following aspects:

(i) In its essence A6 prove oneself to be nothing
but an unjustifiable distortion of the real truths.
Such a proof results directly from the above re-
marks Ra−Rc. According to the alluded remarks
in reality the UR (1) and (2) are mere provisional
fictions respectively minor (and restricted) QM
relations. So it results that, in the main, UR are
insignificant things comparatively with the true
important principles of the 20th century physics
(such are the ones regarding Noether’s theorem,
mass-energy equivalence, partricle-wave duality
or nuclear fission).
(ii) It is wrongly to promote the assertion A6
based on the existent publishing situation where,
in the mainstream of QM text-books, the UR (1)
and/or (2) are amalgamated with the basic quan-
tum concepts. The wrongness is revealed by the
fact that the alluded situation was created
through an unjustified perpetuance of the writing
style done by the CIUR partisans.
(iii) The assertion A6 must be not confused with
the history confirmed remark [21] : UR “are
probably the most controverted formulae in the
whole of the theoretical physics”. With more
justice the respective remark has to be regarded
as accentuating the weakness of concerned asser-
tion.

Together the three above noted aspects give enough reasons
for an incontestable incrimination of the assertion under di-
cussion.

The here detailed observations O1 − O8 assure sufficient
solid arguments in order to prove the indubitable incorrect-
ness for each of the assertions A1 − A6 and, consequently,
the falsity of the idea that UR really have crucial signifi-
cances for physics. But the alluded proof conflicts with the
UR-subordinate quantum philosophy in which the interpreta-
tional questions of QM and debates about QMS description
are indissolubly associated with the formulas (1) and/or (2).
The true (and deep) nature of the respective conflict suggests
directly the necesity of improvements by substituting the al-
luded philosophy with another UR-disconnected conception.

Of course that the before-mentioned substitution necessi-
tates further well argued reconsiderations, able to gain the
support of mainstream scientific communities and publica-
tions. Note that, in one way or other, elements of the UR-
subordinate philosophy are present in almost all current QM
interpretations [22]. We think that among the possible mul-
titude of elements belonging to the alluded reconsiderations
can be included the additional group of comments from the
next section.

4 Some additional comments

The Comments (C) from the foregoing announced group, able
to suggest also improvements in quantum philosophy, are the
following ones:
• C1 : Firstly we note that the substance of above pre-

sented remarks Ra−Rb respectively observations O1−O3 can
be fortified by means of the following three our views:

(i) In its bare and lucrative framework, the usual
QM offers solely theoretical models for own
characteristics of the investigated systems (mi-
croparticles of atomic size).
(ii) In the alluded framework QM has no connec-
tion with a natural depiction of QMS.
(iii) The description of QMS is an autonomous
subject, investigable in addition to the bare theo-
retical structure of usual QM.

We think that, to a certain extent, our above views find some
support in the Bell’s remark [23]: “the word (measurement)
has had such a damaging efect on the discussions that . . .
it should be banned altogether in quantum mechanics”. (It
happened that, in a letter [24], J.S.Bell comunicated us early
the essence of the alluded remark together with a short his
personal agreement with our incipient opinions about UR and
QMS).
• C2 : In its substance the view (i) from C1 regards the

bare QM as being nothing but an abstract (mathematical)
modeling of the properties specific to the atomic-size sytems
(microparticles). For a given system the main elements of
the alluded modeling are the wave functions ψα, respectively
the quantum operators Â j. On the one hand ψα describes
the probabilistic situation of the system in α state. Mathe-
matically ψα is nothing but the solution of the corresponding
Schrodinger equation. On the other hand each of the oper-
ators Â j ( j = 1, 2, . . . , n) is a generalised radom variable
associated to a specific observable A j (e.g. coordinate, mo-
mentum, angular momentum or energy) of the system. Then
in a probabilistic sense the global characterization of the ob-
servables A j is given by the expected parameters:
(i) the mean values

〈
A j

〉
ψ

=
(
ψ, Â jψ

)
wherre ψ ≡ ψα while

( f , g) denotes the scalar product of functions f and g,
(ii) the (r + s)-order correlations

Kψ (i, j; r, s) =
((
δψÂi

)r
ψ,

(
δψÂ j

)s
ψ
)

,
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with δψÂ j = Â j −
〈
A j

〉
ψ

and r + s > 2.
So the definitions of parameters 〈Aa〉ψ and Kψ (i, j; r, s) appeal
to the usual notations from QM texts (see [3, 25, 26]).

• C3 : The before mentioned QM entities are completely
similar with the known things from statistical CP (such are the
phenomenological theory of fluctuations [27,28] respectively
the classical statistical mechanics [29,30]). So the wave func-
tions ψα correspond to the probability distributions wα while
the operators Â j are alike the macroscopic random observ-
ables A j. Moreover the QM probabilistc expected parame-
ters 〈Aa〉ψ and Kψ (i, j; r, s) are entirely analogous with the
mean values respectively the second and higher order fluc-
tuations correlations regarding the macroscopic observables
A j [3, 7–10, 12, 15, 27–31]

• C4 : It is interesting to complete the above comment
with the following annotations. Undoubtedly that, mathemat-
ically, the QM observables have innate characteristics of ran-
dom variables. But similar characteristics one finds also in
the case of statistical CP observables. Then it is surprisingly
that the two kinds of random observables (from QM and CP)
in their connection with the problem of measurements are ap-
proached differently by the same authors [25, 29] or teams
[26, 30]. Namely the alluded problem is totally neglected in
the case of CP observables [29,30], respectively it is regarded
as a capital question for QM observables [25, 26]. Note that
the mentioned differentiation is not justified [25,26,29,30] by
any physical argument. We think that, as regard the descrip-
tion of their measurements, the two kinds of random observ-
ables must be approached in similar manners.
In the context of above annotations it is interesting to mention
the following very recent statement [32]: “To our best current
knowledge the measurement process in quantum mechanics is
non-deterministic”. The inner nature of the mentioned state-
ment strengthens our appreciation [3] that a measurement of
a (random) quantum observable must be understood not as
a single trial (which give a unique value) but as a statistical
sampling (which yields a spectrum of values). Certainly that
in such an understanding the concept of “wave function col-
lapse” [33] becomes an obsolete thing.

• C5 : A credible tentative in approaching similarly the
description of measurements regarding random observables
from both QM and CP was promoted by us in [3, 34]. Our
approach was done according the views (ii) and (iii) noted
in the above comment C1. Mainly the respective approach
aims to obtain a well argued (and consequently credible) de-
scription of QMS. So, in papers [3, 34], a QMS was depicted
as a distortion of the information about the measured sys-
tem. For a given system the respective distortion is described
(modeled) as a process which change linearly the probabil-
ity density and current (given in terms of wave function) but
preserve the mathematical expressions of QM operators re-
garded as generalised random variables. Note that an anal-
ogous description of measurements concerning the random

observables from CP was done by us formerly in [35].
•C6 : Other open question of quantum philosophy regards

the deterministic subjacency of QM randomness. The ques-
tion, of great interest [36], aims to clarify if the respective
randomness has an irreducible nature or otherwise it derives
from the existence of some subjacent hidden variables of de-
terministic essence. Then it appears as a notable aspect the
fact that, in so reputable report [36] about the alluded ques-
tion, the possible involvement of UR (1) and/or (2) is com-
pletely omited. Such a remarkable omission show clearly that
the UR (1) and/or (2) do not present any interest for one of the
most thought-provoking subject regarding quantum philoso-
phy.
•C7 : Here is the place to refer comparatively to the deter-

ministic subjacency regarding CP kind of randomness. The
respective kind is associated (both theoretically and experi-
mentally) with a class of subjacent deterministic variables,
specific to the molecular and atomic motions [27–30]. The
important feature of the alluded CP subjacency is the fact
that it does not annul at all the corresponding randomness.
Namely the respective deterministic subjacency do not revoke
at all the random entities such are the probability distributions
wα and macroscopic observables A j , mentioned above in C3.
The respective entities keep the essence of the CP randomness
revealed physically through the corresponding global fluctu-
ations of macroscopic observables.
We think that the noted classical feature must be taken as a
reference element in managing the discussions regarding the
deterministic subjacency of QM (i.e. the question of hid-
den variables — versus — QM randomness) and, generally
speaking, the renovation of quantum philosophy. More ex-
actly it is of direct interest to see if the existence of hidden
variables removes or keeps the QM randomness incorporated
within the wave functions ψα and operators Â j. We dare to
believe that the alluded QM randomness will persist, even if
the existence of some subjacent hidden variables would be
evidenced (first of all experimentally).
• C8 : Now some other words about the question of “im-

possibility” principles in foundational physics, discussed
above in observations O5 − O7. The respective principles
were mentioned in connection with questions like: ’ What
is Ultimately Possible in Physics?’ (see [4]). To a deeper
analysis the alluded connection calls attention to ’the fron-
tier of knowledge’. In scrutinizing the respective frontier it
was acknowledged recently [32] that: “Despite long efforts,
no progress has been made. . . for . . . the understanding of
quantum mechanics, in particular its measurement process
and interpretation”. What is most important in our opinion is
the fact that, in reality, for the sought “progress” the UR (1)
and (2) are of no interest or utility.

By ending this section it is easy to see that the here added
comments C1 −C8 give supports to the before suggested pro-
posal for a UR-disconnected quantum philosophy.

28 Spiridon Dumitru. Do the Uncertainty Relations Really have Crucial Significances for Physics?



October, 2010 PROGRESS IN PHYSICS Volume 4

5 Conclusions

A survey, in Section 3, of the observations O1 − O8 discloses
that in fact the UR (1) and (2) have not any crucial signifi-
cance for physics. Additionally, in Section 4, an examination
of the comments C1 − C8 provides supporting elements for a
UR-disconnected quantum philosophy.

So we give forth a class of solid arguments which come
to advocate and consolidate the Dirac’s intuitional guess [37]
that : “uncertainty relations in their present form will not
survive in the physics of future”.
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In the APOLLO test, a speed of light was found, which seemingly supports a Galileian
addition theorem of velocities [1]. However, the reported difference of 200 ± 10 m/s is
based on a simple error. The correct evaluation of this test leads to the known value of c
within the given precision. This correction does not mean an impossibility of detecting
spatial anisotropies or gravitational waves.

The Apache Point Lunar Laser-ranging Operation
(APOLLO) provides a possibility of directly testing the in-
variance of light speed [1,2]. Gezari [1] reported a difference
of 200±10 m/s to the known value (c = 299, 792, 458 m/s ac-
cording to [1]), which is in accordance with the speed of the
observatory on the earth to the retro-reflector on the moon.
That would support rather a Galileian addition theorem of ve-
locities than the local invariance of light speed. Let us follow
up the path of light, Figure 1.

The way from the Apache Point Observatory (APO) to
the retro-reflector and back to APO assumed by Gezari (see
also Figure 2 in [1]) is DLB + DBR (dotted lines). Gezari [1]
wrote:

Note that the Earth and Moon are moving to-
gether as a binary system at ∼ 30 km/s in that
frame, as the Earth orbits the Sun, and relative
to each other at much smaller speeds of order
∼ 10 m/s due to the eccentricity of the lunar orbit.

This “much smaller speed” may be the vertical speed of the
moon relative to the earth. However, the moon moves irreg-
ularly in the used frame. This motion is not straight-line,
that means, there is no relativity of motion between earth and
moon. Therefore, we have to consider the horizontal speed
(speed of revolution) of vhor ≈ 1 km/s. In the test constella-
tion, the moon covers smaller distances parallel to the earth
than the earth itself, Figure 1. It is false to set a unitary veloc-
ity of the “binary system” of ∼ 30 km/s. If we define a “binary
system” with power (what is an unfortunate step), this unitary
velocity becomes here smaller.

Therefore, the path of light from APO to retro-reflector
is shorter than assumed by Gezari. It is now D

′
LB (full line),

because the earth takes another position in the chosen frame
at launch, see Figure 1. — The elapsed time tLB + tBR was
measured correctly but the calculation of the light speed gave
a false (greater) value. As well, the way back via DBR does
not differ from that reported by Gezari. With it, the difference
of the path of light is (Figure 1)

DLB − D
′
LB ≈ ∆l cos θ (1)

with
∆l = vhor tLB sin θ , (2)

Fig. 1: Corrected path of light.

i.e.
DLB − D

′
LB ≈

1
2
vhor tLB sin 2θ , (3)

with the numerical values

DLB − D
′
LB <

1
2

km/s × 1.3 s ≈ 650 m . (4)

This difference becomes maximal with θ = 45◦.
The reported value of the light speed c has to be corrected

for a difference (with the ratio of path difference to whole
path)

∆c <
300000 km/s × 650 m

780000 km
≈ 250 m/s . (5)

We get the reported difference of 200 m/s for θ = 27◦ and
for θ = 63◦. That means a coincidence within a tolerance
of ±20%. — Thus, we have to take this result as negative
regarding a verification of a violation of local invariance of c.

This from now on negative result does not rule out the
possible existence of spatial anisotropies, as dependences of
stochastic processes on direction [3] or measurements with
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gas interferometers [2] demonstrate. The observed effects
like anisotropic light speed in gas could be based on aniso-
tropic material properties, which come from anisotropic met-
rics. The reason is explained in [4]:

The universal (according to author’s opinion) field equa-
tions as quoted in [4, 5] (Eq. (1),(2),(3) in [5]) involve 10 in-
dependent equations for 14 components of metrics and elec-
tromagnetic vector potential. If one considers only gravi-
tation, that become 6 independent equations for 10 compo-
nents of metrics. This means, four components of metrics are
ambiguous in first order. Since our existence is time-like,
these ambiguous components are space-like. For example
in central-symmetric and time-independent solutions, verti-
cal metric (first order) results according to

γ(vert) = +
κ m
4π r

, (6)

which comes from Eq. (35) in [4], during horizontal metrics
can have any value, i.e. Eq. (35) in [4] is correct only for
γ(vert). On the earth is γ(vert) ≈ 1.5×10−9 , but γ(hor) could be
just zero. — An upgrade APOLLO equipment could be suited
for direct detection of such differences in metrics, if exist.
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In previous papers we showed that a classical model of gravitation explains present
gravitational phenomena. This paper deals with gravitational repulsion and it shows
how it manifests in black holes and particle pair production. We also suggest a labora-
tory experiment to demonstrate gravitational repulsion.

1 Introduction

In previous papers [1–5] we showed that a Lagrangian

L = −m0(c2 + v2) exp R/r, (1)

where

m0 = gravitational rest mass of a test body mov-
ing at velocity v in the vicinity of a mas-
sive, central body of mass M,

γ = 1/
√

1 − v2/c2,
R = 2GM/c2 is the Schwarzschild radius of the

central body.

gives rise to the following conservation equations:

E = mc2eR/r = total energy = constant , (2)
L = eR/rM, (3)
L = magnitude of L = constant, (4)

Lz = MzeR/r = eR/rm0r2 sin2 θφ̇, (5)
= z component of L = constant,

where
m = m0/γ

2, (6)

is a variable gravitational mass and

M = (r × m0v), (7)

is the total angular momentum of the test body. Eqs. (3) and
(4) are amendments to the equations in the previous articles.

The above equations give rise to equations of motion that
satisfy all tests for present gravitational phenomena.

2 Gravitational repulsion

Eq. (2) shows that gravitational repulsion occurs between
bodies when their masses m are increased by converting radi-
ation energy into mass. This conversion occurs according to
the photoelectric effect,

hν→ mc2. (8)

This is the reverse of what occurs during nuclear fission.
In a previous paper [4, §3] we proposed that this accounts

for the start of the Big Bang as well as the accelerating ex-
pansion of the universe. We now consider other effects.

2.1 Black holes

With black holes the reverse of repulsion occurs. Accord-
ing to (2) and (6) matter is converted into radiation energy
(v → c) as r → 0. Conversely, as radiation is converted into
mass, matter should be expelled from a black hole. This phe-
nomenon has been observed [6].

In this regard our model of a black hole differs from that
of general relativity (GR) in that our model does not approach
a mathematical singularity as r → 0, whereas GR does ap-
proach one as r → R.

2.2 Pair production

¸

U

e−

e+

E = hν

p = hν/c M

Fig. 1: A high-energy gamma ray passing near matter can create an
electron-positron pair.

In pair production a gamma ray converts into a positron
and an electron, with both particles moving away from one
another. Pair production only occurs in the presence of a
heavy mass. The explanation for the required presence of the
mass is generally given in texts as:

The process as we have assumed it to occur is
impossible. This is because energy and momen-
tum cannot simultaneously be conserved in free
space in this process. . . .
However, if the high-energy gamma ray passes
near a very heavy particle, then the heavy particle
can soak up all the momentum without carrying
away a significant amount of energy [7, §5.6].

We aver that the explanation is contrived. The last sen-
tence is too inexact for a rigorous mathematical formulation.
Although we do not submit a formulation at this stage, we
suggest that repulsion occurs between the particles and the
heavy mass.
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2.3 Laboratory demonstration

It should be possible to demonstrate gravitational repulsion in
a laboratory. A suggestion on how to do this is provided by
Jennison and Drinkwater [8]. Their experiment was not de-
signed to demonstrate gravitational repulsion, but to demon-
strate how the properties of mass, or inertia, are simulated by
phase-locked standing waves in a microwave transmitter/re-
ceiver system mounted on a frictionless air track. It should
be possible to modify their experiment to show that gravita-
tional repulsion would occur if the frequencies of the standing
waves were increased. As a prototype we propose a modifi-
cation of their experimental setup as depicted in Fig. 2. Two
microwave transmitters/receivers lock a standing wave of fre-
quency ν near a large mass M. Increasing the frequency of
the standing wave should push it away from M.

From (2) and (8) an increase of ∆ν will cause a separation
of the microwave system from M equal to

∆r = A/(B − ln h∆ν), (9)

where A, B are constants.

mc2 = hν
Repulsion-¾

M

µ µ µ
I I I

∆ν ∆r

Fig. 2: Repulsion of a trapped wave. Repulsion ∆r =A/(B− ln ∆mc2)
where A, B = constant and ∆m = h∆ν/c2.

The repulsive effect can also be measured by a sensitive
gravimeter placed between M and the standing wave system.

Setting up the above experiment could be cumbersome on
a macro scale. The author is investigating demonstrating the
repulsive effect at nano scales.

3 Conclusion

The success of the proposed theory to explain present gravita-
tional phenomena supports the above proposal to demonstrate
gravitational repulsion.
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This short paper examines the Relativity Principle in light of the emerging Planck Vac-
uum (PV) theory and shows that Special and General Relativity are based physically on
the Relativity Principle and the dynamics of the PV.

The idea that absolute motion through space is undetectable
has been around for a long time, spanning the work of Galileo
and Newton, and the Special and General theories of Relativ-
ity [1]. The Relativity Principle asserts that the cosmos is so
constituted that it is impossible to detect absolute motion by
any type of experiment whatsoever, or in more modern terms,
that the equations of physics must be fundamentally covari-
ant [2]. It is important to note, however, that this principle
does not imply that a fundamental reference frame does not
exist. In fact, the following discussion indicates that there
may be a hierarchy of reference frames that are hidden from
our view.

The PV theory views the cosmos as consisting of an om-
nipresent, negative-energy, degenerate collection of Planck
particles known as the PV; and free space which is the void
of classical physics [3]. Uniformly spread throughout this
free space is the quantum vacuum [4] which consists of an
omnipresent field of virtual photons and massive virtual par-
ticles whose source is the PV [5]. The free-space vacuum
state is not empty, but as Davies puts it, “[this living vac-
uum] holds the key to a full understanding of the forces of
nature” [6, p.104]. How the PV and free space manage to
coexist is not known, but the equations of modern physics
strongly suggest that some type of active vacuum state does
indeed exist, when Newton’s gravitational constant, Planck’s
constant, and the fine structure constant are replaced by their
more fundamental counterparts

G =
e2
∗

m2∗
~ =

e2
∗
c

α =
e2

e2∗
(1)

in those equations. The universality of this suggestion can be
seen by combining the relationships in (1) to yield the string
of equalities

m2
∗G = c~ =

e2

α
(2)

where e∗ and m∗ are the charge and mass of the Planck par-
ticles making up the PV. These equations imply that gravita-
tional physics (m2

∗G), quantum physics (c~), and electromag-
netics (e2/α) belong to a single physics, and their arrange-
ment in the string suggests the central position occupied by
the quantum theory in uniting mass and charge. The latter
suggestion is realized in the equality between the two particle

forces that perturb the PV

mc2

r
=

e2
∗

r2 at r = rc (3)

leading to the particle’s Compton radius rc (= e2
∗/mc2) [3],

where mc2/r and e2
∗/r

2 are the curvature force (a gravitational
force) and the polarization force (an electrical force) the par-
ticle exerts on the PV. That mc2/r is a gravitational type of
force can be seen from Newton’s expression for the gravi-
tational force between two masses m and M separated by a
distance r

mMG
r2 =

(mc2/r)(Mc2/r)
(m∗c2/r∗)

(4)

where c4/G = m∗c2/r∗ is used to remove G from the left
side of the equation. The ratios mc2/r and Mc2/r are the
curvature forces the masses m and M exert on the PV, while
m∗c2/r∗ = e2

∗/r
2
∗ is the maximum force sustainable by the PV.

One of the e∗s in the product e2
∗ comes from the charge on

the free particle and the other represents the charge on the
individual Planck particles within the PV.

The reaction of the PV to the uniform motion of a free
charge is such that an iterative process taking place between
‘the magnetic and Faraday fields produced by the PV’ and the
charge results in the well known relativistic electric and mag-
netic fields commonly ascribed to the charge as a single entity
[3, Sec. 4]. Since these magnetic and Faraday fields emerge
from the PV, it is reasonable to suggest that the Maxwell
equations themselves must owe their existence to a perturbed
PV. If it is then assumed that the tensor forms of the Maxwell
equations are the covariant equations for electromagnetics,
the corresponding coordinate transformation that leaves these
equations covariant is the coordinate transformation that sat-
isfies the Relativity Principle. This will be the Lorentz trans-
formation assuming the result is unique. With this transfor-
mation in hand, the constancy of the speed of light can be
deduced and the Michelson-Morley experiments [7] satisfied.
From that point on relativistic kinematics can be derived in
the usual way [2, p.9]. Special Relativity is now based on (1)
relativity and (2) the dynamics of the PV state, rather than the
standard postulates including (1) relativity and (2) the con-
stancy of the speed of light. In this PV formulation of Special
Relativity the constancy of the speed of light is a derived re-
sult, not a postulate.
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The presence of the PV in the kinematic picture causes
a mix-up in the classical position and time coordinates (r, t),
resulting in the differential interval

ds2 = c2dt2 − dr2 (5)

between the two events in spacetime at (r, t) and (r+dr, t+dt).
However, with the PV in the picture: the mixing of space and
time is no longer the mystery that it is in the pre-PV formal-
ism where the equations in (1) are unknown; and (r, t) is still
just the bookkeeping entry it is in pre-relativistic physics.

The mixing of coordinates and time in Special Relativity
is necessarily carried over into the equations of General Rel-
ativity to insure covariance of those equations. But now the
effects of a mass perturbing the PV show up in the equations.
For a point mass the force perturbation is mc2/r and the re-
sulting differential-interval equation is the Schwarzschild line
element [8]

ds2 = (1 − 2nr) c2dt2 − dr2

(1 − 2nr)
(6)

where

nr ≡ mc2/r
m∗c2/r∗

(7)

is the relative curvature force the mass m exerts on the PV.
If there were no perturbing mass (m = 0), the line element
would reduce to that of the Special Relativity result in (5) as
it should.

Expressing the Einstein field equation in the following
way [9]

Gµν =
8πG
c4 Tµν → Gµν/6

1/r2∗
=

Tµν
ρ∗

(8)

shows that it, and those equations like (6) that follow from
it, owe their existence to the PV as implied by the presence
of the Planck-particle Compton radius r∗ (= e2

∗/m∗c
2) and the

energy density

ρ∗ =
m∗c2

4πr3∗/3
=

e2
∗/r∗

4πr3∗/3
(9)

in the final equation of (8). The ratio 1/r2
∗ in (8) is the Gaus-

sian curvature of a spherical volume of the PV
equal to 4πr3

∗/3.
Although it is accepted knowledge that absolute motion

through free space is undetectable, such motion is clearly sug-
gested by the equations of modern physics as seen above. The
assumed existence of the PV implies that extra-free-space
(XFS) reference frames must exist, at least those reference
frames that describe the dynamics taking place within the
PV for example. From this point it is easy to speculate that
some XFS frames might be associated with levels of real-
ity more fundamental than both the free-space and the PV

frames. Thus the picture emerges of a cosmos possibly oc-
cupied by successive sets of XFS reference frames, in addi-
tion to the free-space frames in which we live, that belong to
deeper levels of reality yet to be discovered.

The coexistence of the free-space and PV reference
frames on top of each other is easily seen in equation (4),
where the Newtonian force on the LHS belongs to the free-
space frame and the three PV-curvature forces on the RHS to
the PV reference frame. The reference frame for both sides of
equations (5) through (9) is the PV reference frame. The pres-
ence of the PV frame in the equations indicates that, although
it may be impossible to detect an absolute frame experimen-
tally, there is abundant evidence that at least XFS reference
frames do exist.

Finally, it is worth noting that there may exist only one
reference frame (the absolute frame) in which there are suc-
cessively more complicated states of existence figuratively
“piled on top of each other like the skins of an onion” with
the free-space state at the top of the pile.
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The Author suggests that frequent distributions can be applied to the modelling the in-
fluences of stochastically perturbing factors onto physical processes and situations, in
order to look for most probable numerical values of the parameters of the complicate
systems. In this deal, very visual spectra of the particularly undetermined complex prob-
lems have been obtained. These spectra allows to predict the probabilistic behaviour of
the system.

Normal distribution, also known as the Gauss distribution, is a
distribution of the probabilities ruling physical quantities and
any other parameters in general, if the parameters are affected
by a large number of purely stochastic processes. The normal
distribution plays a highly important rôle in many fields of
knowledge and activity of the Mankind. This is because of
all distributions, which may be met in the Nature, the most
frequent is the normal distribution. In particular, the nor-
mal distribution sets up the law of the Brownian motion —
the fluctuations of Brownian particles being affected by the
probabilistically perturbing factors such as the heat motion of
molecules. In these fluctuations, the consecutive changes of
the particles’ location are independent from the last events in
them, and their any current location can be assumed to be the
initially start-point.

As an example of another sort, a simplest situation of the
theory of games can be provided. In this example, an initially
rate S 0 increases proportionally to the progression coefficient
q1 with a probability of p1, or decreases proportionally the
progression coefficient q2 with a probability of p2. As is obvi-
ous, the pair of these numerical values are connected to each
other here: these are the current and past values connected as
S i+1 = S i qi.

However in the core of this problem, the examples are a
manifestation of the same situation, because S 0 can be meant
as any parameter under consideration in a process being af-
fected by perturbing factors.

It is clear that, having duration of the process unbounded,
the numerical value of the parameter S 0 will vary near an
average value, then filling, step-by-step, the arc of the normal
distribution.

The current value S i should return back to this average
value each time after a number of the steps passed in the
ways of different lengthes under stochastic alternating q1 and
q2. Therefore, concerning the parameters of the perturbing
effects in the perturbation series, the set of the current numer-
ical values of the parameters is different in the cases of both
sequent and parallel observations. Thus, it seems that there
should not be “spectra” or “non-uniformities” in the Gauss
arc. On the other hand, the Gauss distribution is a particu-

lar case of more complicate distributions, where the smooth
form of the Gauss distribution is only an idealisation of those.
Because some numerical values can meet each other in the se-
ries of the observations, the frequent distribution∗ of the sum
of all numerical values registered in many series manifests
the preferred numerical values of S i thus producing by this
its own specific spectrum.

Note that the discrete nature of normal distributions was
experimentally discovered in different physical processes in
already the 1950’s by S. E. Shnoll [1].

Figures 1–3 show examples of the frequent spectra which
came from the normal distributions being affected by two,
three, and four perturbing factors (the progression coeffi-
cients qi). The ordinate axis shows the number of coinci-
dent numerical values. The axis of abscissas shows the cur-
rent values of S i in doles of the initially value. These nu-
merical values were given, for more simple and convenient
comparing the histograms, in the same interval of abscissas
from 0.0001 to 10000, while the initially parameters were as-
sumed to be such that the axis of the distribution crosses the
initially sum S 0. The diagrams were obtained by summing
500 series of 500 steps in each (so the common number of
the values is 500× 500 = 250000). The relative length of the
current interval g was assumed 10−6 of the current value S i.
The algorithmic language C++ was used in the calculation.

This is a fragment of a computer program

for ( int t = 1; t < 500; t ++ ) {

double Si = 1;

for ( int u = 1; u < 500; u ++ ) {

if ( a >= b && a >= c ) {qi = q1 ; goto nn ; }

if ( b >= a && b >= c ) {qi = q2 ; goto nn ; }

if ( c >= a && c >= b ) {qi = q3 ; goto nn ; }

nn: Si = Si*qi ;

if ( Si < 10000 && Si > 0.0001 )

i++ , m[ i ] = Si ; }

}

∗Frequent distributions provide a possibility for bonding the probability
of the appearance of numerical values of a function in the area where it ex-
ists. That is, the frequent distributions show the reproducibility of numerical
values of the function due to allowed varying its arguments. There is a ready-
to-use function “frequency” in MS Excel; any other software can be applied
as well.
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Fig. 1: Frequent distribution obtained with q1 = 1.5, q2 = 0.5,
p1 = 0.555, p2 = 0.444; number of steps in the series is 500,
number of the series is 500; number of the numerical values in
the scale 190,000 (of those, nonzero intervals are 8,000).

Fig. 2: Frequent distribution obtained with q1 = 1.5, q2 = 0.5,
q3 = 1.37, p1 = 0.333, p2 = 0.333, p3 = 0.333; number of the
steps in the series is 500, number of the series is 500; number of
the numerical values in the scale is 180,000 (of those, nonzero
intervals are 62,000).

Fig. 3: Frequent distribution obtained with q1 = 1.5, q2 = 0.5,
q3 = 19.3, q4 = 0.047, p1 = 0.294, p2 = 0.235, p3 = 0.235,
p4 = 0.235; number of the steps in the series is 500, number of
the series is 500; number of the numerical values in the scale is
67,000 (of those, nonzero intervals are 28,000).

Fig. 4: Frequent distribution obtained with g = 0.1 from the cur-
rent numerical value S i; here q1 = 1.5, q2 = 0.5, p1 = 0.555,
p2 = 0.444; number of the steps in the series is 100, number of
the series is 500; number of the numerical values in the scale is
48,000 (of those, nonzero intervals are 173).

modelling the change of the parameter S i and the set of a
massive data of S i, in look for the frequent distributions ob-
tained due to three perturbing factors q1, q2, q3. Here a, b,
c are prime numbers which stochastically change (the com-
puter program contains a function which generates random
numbers), in each single cycle of the observation, along the
intervals whose length is proportional to their probabilities
p1, p2, p3.

The graphs manifest that fact that, in the common back-
ground of the numerical values of the current parameters,
there is only minor number of those whose probability ex-
ceeds the average value in many times. Besides that, the
exceeding numerical values depend on the numerical values
of the progression coefficients, but are independent from the
length of the series (the number of the steps). Increasing
the number of the perturbing factors does not make the non-
uniform distribution more smooth, as it should be expected.
Contrary, the non-uniformity of the distribution increases: in
this process the allowed current values S i occupy more square

of the graph, while their number in the given section of the
axis x decreases. Therefore a small probability of that the cur-
rent values S i will valuable shift from their average positions
appear due to the appearance of the long chains of the co-
multipliers which have the progression coefficients larger (or
lesser) than unit. If the progression coefficients differ valu-
able from each other, the histogram manifest distributions of
high orders (see Figure 3).

Consider an ultimate case where all perturbing factors, i.e.
the progression coefficients qi, differ from each other by the
numerical values, and there is not their coinciding numerical
values in the series. This situation can easy be modelled, if
setting up in the computer program that the progression co-
efficients have a connexion with the counters of the cycles t
and u, or that they are varied by any other method. In this
case, in a limit, the amplitude of the numerical values in the
histogram will never exceed unit, nowhere, while the frequent
non-uniformity will still remain in the distribution. Therefore,
even if extending the length of the unit interval, the same dis-
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Fig. 5: Non-symmetric frequent distribution obtained according
to the data of Fig. 2; number of the numerical values in the scale
is 22,000 (of those, nonzero intervals are 2,400).

Fig. 6: Frequent distribution of the solutions of the quadratic
equation x2 − 2Bx + C = 0 with q1 = 1.33, q2 = 0.71, q3 = 1.33,
q4 = 0.71; here p1 = p2 = p3 = p4 = 0.25; number of the steps in
the series is 300, number of the series is 300; number of nonzero
intervals is 16,000. All geometric coefficients of the progression
are independent from each other.

Fig. 7: Frequent distribution of the solutions of the quadratic
equation x2− 2Bx + C = 0 with q1 = 0.71, q2 = −0.71, q3 = 0.71,
q4 = −0.71; here p1 = p2 = p3 = p4 = 0.25; number of the
steps in the series is 250, number of the series is 250, number of
nonzero intervals is 1,800. All arithmetic coefficients of the pro-
gression are independent from each other.

Fig. 8: Frequent distribution of the solutions of the quadratic
equation x2−2Bx+C = 0 with q1 = 0.127, q2 = 1.13; p1 = 0.465,
p2 = 0.535; number of the steps in the series is 500, number of
the series is 10,000; number of the numerical values in the scale
is 27,000, number of nonzero intervals is 1,350. All arithmetic
coefficients of the progression are dependent on each other.

tribution takes the amplitudal discrete shape again. Finally,
under truncating the number of the intervals (this, generally
speaking, means analysis of the given process with a lower
precision), the graph takes a shape of almost the smooth nor-
mal distribution (see Figure 4).

It is possible to suppose that the discreteness of normal
distributions (and, as is obvious, any other distributions as
well) is their core property originated from that the rational
numbers are distributed with different density along the axis
of numbers [2, 3].

Shapes of the histograms depend on specific parameters;
they may be very spectacular. So, in the bit of the computer
program that was given above, each perturbing factor realizes
itself independent from the others. If however, for instance in
the first condition, one replaces the logical “and” with the
logical “or”, the distribution changes its shape very much
(see Figure 5).

So forth, Figures 6–9 show illustrative examples of the
versions of the frequent distributions of one of the solutions
of a quadratic equation x2 − 2 B x + C = 0, where we see iter-
rationally correcting two parameters B and C whose initially
numerical values are units.

In the example shown in Figure 6, the progression coef-
ficients are geometric, and are independent from each other.
The parameter B is under a correction by the coefficients q1
and q2, while the parameter C is under a symmetrical correc-
tion by the coefficients q3 and q4. Specific to the graph is that,
somewhere left from the main distribution, in the background
of many dense numerical values whose probabilities are very
small, a small number of the numerical values having a very
high probability appear (they experience a shift to the side of
small numerical values of the function).

In the other examples shown in Figures 7 and 8, the pro-
gression coefficients are arithmetic. In the distribution shown
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Fig. 9: A fragment of the frequent distrinution according to the
data of Fig. 8; number of the numerical values in the scale is 5,300
(of those, nonzero intervals are 220).

in Figure 7, four progression coefficients are present; they are
symmetric. The histogram is built by a set of the Gauss arcs of
the first, second, and higher orders which fill the side of neg-
ative numerical values. The distance between the arcs, and
their shape depend on the numerical value of the progression
coefficients. In Figure 8, we give a part of the quadratic func-
tion distribution in the region of negative numerical values of
its solutions taken under two coefficients q1 and q2, where the
parameters B and C are additionally connected to each other,
and their correction is produced commonly for them. The
respective bit of the algorithm has the form:

for ( int t = 1; t < 10000; t ++ ) {

double B = C = 1;

for ( int u = 1; u < 500; u ++ ) {

if ( a >= b ) B = B + q1 , C = C - sqrt(q2) ;

if ( b >= a ) C = C + q2 , B = B - q1 ;

if ( B*B - C > 0 )

Si = B - sqrt ( B*B - C ) ;

i++ , m[ i ] = Si ; }

}

Here, as well as in the example shown in Figure 7 (but
with more obvious visibility), that fact is manifested that the
overwhelming number of the numerical values, i.e. the prob-
able solutions of the function obtained under the variation of
the parameters B and C, have an infinitesimally small prob-
ability in the scale, while the probability of the solutions is
concentrated in a very small number of the solutions where
it thus is very high. In the fragment of the histogram taken
in a semi-logarithmic scale (Figure 9), is is clearly seen that
the peaks of the maxima “grow up” from the frequent con-
centrations of the numerical values of the functions in the
axis x. Should this mean that, in the case of similar distri-
butions of a macroscopic system having an arbitrary number
of solutions (degrees of freedom), the macroscopic system
under a specific set of the parameters acting in it can be in
selected special discrete (quantum) states, i.e. the system can
have discrete solutions?

It is absolutely obvious that, first, such maximally proba-

ble solutions are mostly interested in processes and phenom-
ena we study. Finding these solutions by some other methods
that the method given above would be very complicate. Of
course, in formulating algorithms for similar problems (ob-
taining the massive of the required values and their distribu-
tion by the algorithm) it is expedient to introduce reasonable
limitations on the intervals of the parameters, their relations,
etc., in order to excluse some extra calculations non-useful in
the problems.

The simple examples we considered here show that the
logical mathematical models similar to those we considered
can contain actually unbounded number (with a limit pro-
vided by the computer techniques only) of both stochastic
influences (the parameters qi) and the conditions of their ap-
pearance (the logical and other relations between the coeffi-
cients qi and also the parameters of the system). In the same
way, very complicate complex influences of very different
stochastic factors affecting any processes we study (not only
physical processes) can be modelled if their formalization is
possible. Moreover, it is probably we can set up the proba-
bilistic system or process to be into a small number of stable
states, which are necessary to our needs in the problem, by
respective choice of the parameters affecting it.

Concerning the Brownian motion as a particular case of
normal distributions, it can be also analysed if we know the
spectrum of the factors perturbing it (the dole of each factor
in their common sum, and the goal of each factor into the
commonly perturbing influence). Concentration of the Brow-
nian molecules and their momentum can be such factors in
the problem.

Generalizing all that has been presented in this paper, I
would like to say that frequent distributions provide a pos-
sibility for bonding the reaction of different parameters of a
complicate system being affected by stochastic factors of the
surrounding world, and also finding most probable states of
the system thus predicting its behaviour. Having any problem,
both those of physics, industry, economics, game, and others
where numerous parameters are unknown, non-sufficiently
determined, or are affected by stochastic changes, the method
that presented in the paper leads to a spectrum of the most
probable solutions of the problem.
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On the Necessity of Using Element No.155 in the Chemical Physical Calculations:
Again on the Upper Limit in the Periodic Table of Elements
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It is shown how the properties of different elements of the Periodic System of Elements
can be obtained using the properties of the theoretically predicted heaviest element
No.155 (it draws the upper principal limit of the Table, behind which stable elements
cannot exist). It is suggested how the properties of element No.155 can be used in the
synthesis of superheavy elements. An analysis of nuclear reactions is also produced on
the same basis.

1 Introduction

At the present time, we know about 20 lists of chemical el-
ements (representing their most important properties such as
atomic mass and radius, density, temperatures of melting and
boiling, energy of ionization, etc.), which were suggested by
their authors as periodic tables of the elements. These data
were however obtained for, mainly, stable isotopes and nu-
merous other radioactive isotopes that makes further inter-
polation of these properties onto superheavy elements quite
complicate.

This is most important for planning further experiments
whose task is synthesis new superheavy elements which ap-
proach to the recently predicted heaviest element No.155,
whose atomic mass is 411.66 (the upper limit of elements in
Mendeleev’s Table of Elements behind which stable elements
cannot exist). Thus, using the parameters of element 155 in
the analysis of other elements, we will see in this paper how
the properties of the elements behave with increasing their
number in the Table.

2 Some peculiarities of the dependency between atomic
mass of the elements and their numbers in the Table
of Elements

Consider the dependency between atomic mass of the ele-
ments and their number in the Table of Elements. This de-
pendency is well known in science and industry and is pre-
sented as numerous lists and tables. As is seen in Fig. 1, this
dependency is well described by the exponential equation of
the line of the trend. However, if we take more attention to
this figure, we find numerous areas which destroy the com-
mon picture. Approximately smooth line continues from the
origin of coordinates to almost the end of Period 6 (No.83,
208.98, Bismuth). This is the last stable isotope, after whom
all elements of the Table have an artificial (radioactive) origin,
except of Thorium (No.90, 232.038), Protactinium (No.91,
231.036) and Uranium (No.92, 238.029). This is their order
in the family of actinides. Period of half-decay of these natu-
ral elements consists many thousand years. It is easy to find
in the figure that valuable deviations from the line of the trend
are present in the region from Bismuth to element 104, then

to element 119 where the deviations from the line of the trend
are high (especially — in the region of the already synthe-
sized superheavy elements 104–118).

This is seen more obvious in Fig. 2, where the absolute
deviations of the atomic masses are presented. These are de-
viations between the data of the Table of elements and the
result obtained after the equation

y = 1.6143 x1.0981, R2 = 0.9969, (1)

where y is the atomic mass, while x is the number in the Table
of Elements.

It should be noted that mass number is an integer equal to
the common number of nucleons in the nucleus. Mass num-
ber of an isotope is equal to the numerical value of its mass,
measured in atomic mass units (a.m.u.) and approximated to
a near integer. A difference between the mass numbers of
different isotopes of the same element is due to the different
number of neutrons in their nuclei.

It is seen in the figure that this difference does not exceed
4 a.m.u. in the first five periods and in lanthanides. This ten-
dency still remain upto Bismuth after whom the deviations of
actinides experience a positive shift: this means that the nu-
merical values of the atomic masses presented in the Periodic
Table are overstated for the region.

Then, after actinides, a region of the atomic masses of the
elements of Period 7 (elements 104–118) is located. These
elements were obtained as a result of nuclear reactions. As
is seen, all deviations in this region are negative: this can
mean a large deficiency of the numerical values of the atomic
masses obtained in the nuclear synthesis producing these el-
ements, incorrect calculations, or a lack of neutrons in the
nuclei. All these in common resulted large deviations of the
atomic masses upto 10–12 a.m.u.

Look at Fig. 1 and Fig. 2 again. Section of the line of the
trend in the interval No.119–155 is manifested in Fig. 1 as a
very straight line without any deviation, while the same sec-
tion in Fig. 2 manifests deviations from 0.63 to 1.28. Once
we get a ratio of the difference between the table and calcu-
lated numerical values of the atomic masses to the respec-
tive a.m.u., we obtain Fig. 3 which shows the respective de-
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viations in percents. As is seen in the figure, most valuable
deviations are located in the left side (upto the first 20 num-
bers). This is because the respective elements of the Table of
Elements bear small atomic masses under high difference of
a.m.u., i.e. the larger numerator results the larger ratio. It is
necessary to note that the results presented in this figure are
within 3–5%. Most lower results are located in the scale from
element 104 to element 118: according to our calculation, the
deviations are only 0.2–0.3% there.

In order to exclude any influence of our calculations onto
the creation of the line of the trend, we study the dependency
“atomic mass — number in the Table” in the scale from ele-
ment 1 to element 118 according to the equation

y = 1.6153 x1.0979, R2 = 0.9966. (2)

As a result we obtain that the general shape of the devia-
tions and their numerical values are actually the same as the
results obtained due to equation (1). So forth, the next partic-
ular equations were taken under analysis:

elements 1–54: y = 1.6255 x1.0948, R2 = 0.9922, (3)
elements 55–118: y = 1.8793 x1.0643, R2 = 0.9954, (4)
elements 119–155: y = 1.5962 x1.1009, R2 = 1.0 . (5)

These sections gave no any substantial change to the pre-
vious: the ultimate high difference of the deviations taken in
3 points of 120 was 0.7% for element 111, 0.95% for element
118, and 1.5% for element 57.

3 Why one third of the elements of the Table of Elements
is taken into square brackets?

94 chemical elements of 118 already known elements are nat-
ural substances (contents of several of them consists, how-
ever, of only traces). Rest 24 superheavy elements were ob-
tained artificially as a result of nuclear reactions. Atomic
mass of an element in Table of Elements is presented by the
average atomic mass of all stable isotopes of the element with
taking their content in the lithosphere. This average mass is
presented in each cell of the Table, and is used in calculations.

If an elements has not stable isotopes, it is taken into
square brackets that means the atomic mass of most long liv-
ing isotope or the specific isotope contents. There are 35 such
elements. Of those 35, elements from 93 to 118 are actinides
and artificially synthesized superheavy elements. Hence, one
third of 118 elements (known in science at the present time)
bears undetermined atomic masses.

Fig. 4 shows common number of isotopes of all elements
of the Table of Elements. Location of all elements can be de-
scribed by the equation of parabola with a high coefficient of
real approximation. As is seen, the descending branch of the
parabola manifest that fact that the heavier element in the Ta-
ble (the larger is its number) the lesser number of its isotopes.
This tendency lads to decreasing the number of isotopes upto
1 at element 118.

4 Synthesis of superheavy elements and the upper limit
of the Periodic Table

Because number of the isotopes reduces to 1 in the end of
Period 7, the possibility of Period 8 and Period 9 (each con-
sisting of 50 elements) in the Table of Elements suggested
earlier by Seaborg and Goldanskii [1, 2] seems non-real. At
the same time, Seaborg suggested a possibility of the synthe-
sis of a “magic nucleus” consisting of 114 protons and 184
neutrons: according to his suggestion, this nucleus should be
the centre of a large “island of stability” in the sea of spon-
taneous decay. Goldanskii told that the “isthmus of stability”
may be a region where isotopes of the elements bearing nu-
clear charges 114, 126, and even 164 may be located. Flerov
[3], when analysed studies on the synthesis of superheavy el-
ements, claimed that the elements should give us a possibility
for answering the question: are the elements bearing nuclear
charges 100–110 located at the real end of the Table of Ele-
ments, or more heavy nuclei exist in the Nature? There are
many studies of the conditions of nuclear reactions. For in-
stance, in already 1966, Strutinski [4] theoretically predicted
a valuable increase of stability of nuclei near the “magic num-
bers” Z = 114 and N = 184. His calculation was based on
the shell model of nucleus (this model won Nobel Prize in
physics in 1963 [5, 6, 7]).

In 1973, Oganesyan in Dubna (Russia) and a group of
German scientists in Darmstadt (Germany) first used cold
synthesis, where the “magic nuclei” were used as both a tar-
get and bombing particles [8]. In 1973, Oganesyan claimed
that elements with atomic numbers 160 and, maybe, 170, are
hypothetically possible. However only two years later, he
claimed that the properties of an element with number 400
and bearing 900 neutrons in its nucleus were theoretically dis-
cussed [9].

In addition to the indeterminacy of atomic masses in the
synthesis of superheavy elements, Oganesyan also told, in his
papers, that we do not know limits in the Table of Elements
behind whom superheavy elements cannot exist. According
to his own words, “the question about limits of the existence
of the elements should be addressed to nuclear physics” [10].
A few years later, in 2005, Oganesyan claimed “this ques-
tion is still open: where is the limit of chemical elements?”
[11]. In 2006, in his interview to Moscow News, he set up the
questions again: “is a limit there?” and “how many elements
can exist?”. So forth, he tells in the interview: “We use mod-
elling instead a theory. Each models approaches this system
in a form of those known to us in analogy to the macroscopic
world. However we still do not understand what is nuclear
substance. Thus the question asked about a limit of the Peri-
odic System is still open for discussion” [12].

In January 20–21, 2009, in Dubna, the international sym-
posium celebrating the 175th birthday of Dmitri Mendeleev
set up the question about limits of the Table of Elements,
and the complete number of elements in it again. Some-
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one suggested even a possibility of the synthesis of elements
with numbers 150–200 [13]. However a few weeks later, in
February 09, at a press-conference in Moscow, the partici-
pants claimed that “at present the scientists discuss a theoret-
ical possibility of extending Mendeleev’s Periodic Table upto
150 elements” [14].

In April 07, 2010, the world press claimed about the end
of an experiment in which element 117 was synthesized (this
experiment continued from July 27, 2009, until February 28,
2010). During these seven months, the experimentalists reg-
istered six cases where nuclei of the new element were born.
This experiment was also based on the supposition that there
is an “island of stability” near an element bearing parameters
Z = 114 and N = 184. Lifespan of this island should be a few
million years. However this target was not reached in the ex-
periment. The research group of experimentalists in Dubna
prepares next experiments which target synthesis of element
119 and element 120 [15].

In this connexion it is interesting those words said by Sig-
urd Hofman (the GSI Helmholtz Centre for Heavy Ion Re-
search, Darmstadt), where he claimed about filling the Table
of Elements upto its end in the close time. According to his
opinion, atomic nuclei heavier than No.126 cannot exist, be-
cause they should have not the shell effect [16].

5 Discussion of the results

1. The considered dependency of atomic masses of the ele-
ments on their numbers in the Table of Elements cannot an-
swer the question “where is the upper limit of the Table”.

Despite the coefficient of the line of the trend is very close
to unit, it is easy to see that there are large deviations of the
data, especially starting from the numbers of actinides and
then so forth. Because all actinides bear similar chemical
properties, selecting a segregate element in this group is quite
complicate task. Besides, the possibility of different isotopic
content in samples of the elements leads to a large deviation
of the calculated atomic masses from the atomic masses given
by the Table of Elements. This is related to one third part of
all elements of the Table.

2. Next elements to actinides, i.e. a group of elements
104–118, were synthesized as a result of nuclear reactions, in
a very small portions (only segregate atoms were produced).
The way how the elements were produced makes a problem in
the identification of them, and the large deviations of the data
of the Table of Elements from the line of the trend. Hence,
atomic masses attributed to these numbers in the Table of El-
ements, are determined very approximate. The line of the
trend, which includes element 155, gives a possibility to ex-
clude the deviations of the atomic masses.

3. Section 4 gave a survey of opinions on the structure of
the Table of Elements, its limits, superheavy elements (their
synthesis and the products of the synthesis), the search for
an “island of stability”, and the technical troubles with the

nuclear reactions.
Many questions could be removed from discussion, if my

recommendations suggested in [17], where I suggested the
last (heaviest) element of the Table of Elements as a reference
point in the nuclear reactions, would be taken into account.
This survey manifests that the quantum mechanical approach
does not answer the most important question: where is the
limit of the Periodic Table of Elements? Only our the-
ory gives a clear answer to this question, commencing in the
pioneering paper of 2005, where the hyperbolic law — a
new fundamental law discovered in the Table of Elements —
was first claimed. This theory was never set up under a sub-
stantially criticism.

It should be noted that the word “discovery” is regularly
used in the press when telling on the synthesis of a new el-
ement. This is incorrect in the core, because “discovery”
should mean finding new dependencies, phenomena, or prop-
erties, while the synthesis of a new element is something like
an invention in the field of industry, where new materials are
under development.

4. Taking all that has been said above, I suggest to IUPAC
that they should produce a legal decision about the use of el-
ement 155, bearing atomic mass 411.66, as a reference point
in the synthesis of new superheavy elements, and as an instru-
ment correcting their atomic masses determined according to
the Table of Elements.

My theory I used in the calculations differs, in principle,
from the calculations produced by the quantum mechanical
methods, which were regularly used for calculations of the
stability of elements. The theory was already approved with
the element Rhodium that verified all theoretical conclusions
produced in the framework of the theory with high precision
to within thousandth doles of percent. Therefore there is no a
reason for omiting the theory from scientific consideration.

6 Conclusions

Having all that has been said above as a base, I suggest an
open discussion of the study Upper Limit in Mendeleev’s
Periodic Table — Element No.155 at scientific forums with
participation of the following scientific organizations:

— International Union of Pure and Applied Chemistry
(IUPAC);

— International Council for Science (ICSU);
— American Physical Society (APS).

This step should allow to give a correct identification to the
chemical elements and substances, and also to plan new re-
actions of nuclear reactions with a well predicted result. In
this deal, financial spends on the experimental research in nu-
clear reactions could be substantially truncated, because the
result would be well predicted by the theory. The experi-
mental studies of nuclear reactions could be continued as a
verification of the theory, and aiming the increase of the ex-
perimental techniques. Thus, according to the last data of the

42 Albert Khazan. On the Necessity of Using Element No.155 in the Chemical Physical Calculations



October, 2010 PROGRESS IN PHYSICS Volume 4

Fig. 1: Dependency between the atomic mass of the elements and their number in the Table of Elements (including element 155).

Fig. 2: Absolute deviations of atomic masses of the elements from the line of the trend (including element 155).

Albert Khazan. On the Necessity of Using Element No.155 in the Chemical Physical Calculations 43



Volume 4 PROGRESS IN PHYSICS October, 2010

Fig. 3: Relative deviation of the atomic masses from the line of the trend, in percents.

Fig. 4: Dependency between the number of the isotopes (3180) and the number of element in the Table of Elements. Location of the stable
isotopes (256) is also shown. The data of Brookhaven National Laboratory, National Nuclear Data Center.
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Fig. 5: Empirical dependency between the radius of the nuceus (fm) and the number of the nucleons.

Fig. 6: Dependency beween the critical energy of the electrons and the nuclear charge, according to formula T = 800/Z.
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Fig. 7: Dependency between the coupling energy of the nuclei and the mass number (number of nucleons).

Fig. 8: Dependency between the number of neutrons and the number of protons in the atomic mass, for all elements of the Table of
Elements. Our calculation data are given beginning from element 104.
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Fig. 9: Dependency between the ionization potential and the number of the elements (nuclear charge), for the neutral atoms of the elements
ending the periods of the Table of Elements (including calculated element 118 and element 155).

Fig. 10: Dependency between the atomic radius and the number of the elements in all periods of the Table of Elements, including the
calculated elements No.188 in Period 7 and No.155 in Period 8.

Albert Khazan. On the Necessity of Using Element No.155 in the Chemical Physical Calculations 47



Volume 4 PROGRESS IN PHYSICS October, 2010

Fig. 11: Change of the numerical value of the atomic radius in each period with increasing number in the Table of Elements.

Fig. 12: Dependency between the specific energy of ther coupling in an atomic nuclei and the number of the nucleons in it.
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List of Chemical Elements (on April 08, 2010), Ununseptium
(No.117) bears atomic mass [295], while atomic mass of Un-
uoctium (No.118) is [294]. According to the calculation, pro-
duced in the framework of my theory, these quantities should
be 301.95 and 304.79 respectively.

As was shown the theoretical studies according to the the-
ory, and its comparing to the experimental data, the element
bearing number 155 and atomic mass 411.66 a.m.u. answers
all conditions necessary for including it into the Periodic Ta-
ble of Elements.

Appendix I

As was already noted above, we took much attention to the
dependency between atomic mass of the elements and their
number in the Table of Elements. It was shown that the line of
the trend continued upto No.155 provides obtaining very cor-
rect results. In verification of this fact, additional dependen-
cies concerning the last element No.155 were studied [18].

Fig. 5 shows an empirical dependency between the radius
of a nucleus and the number of nucleons in it (mass number).
This graph manifests that this dependency is true upto ele-
ment 155: the arc has the same shape without deviation along
all its length.

Fig. 6 shows an arc, which manifests critical energies of
the electrons for all elements of the Table of Elements, in-
cluding No.155. A critical is that energy with whom energy
loss for ionization and radiation become equal to each other.
Formula for the critical energy is Tcrit = 800/Z, where Z is the
charge the nucleus (in units of the charge of the electron). As
is seen from the graph, this formula is applicable to all ele-
ments of the Table of Elements.

Fig. 7 gives calculations of the coupling energy in nuclei.
This graph shows that minimally energy required for destruc-
tion of the nucleus into its nucleons. It is seen, from the graph,
that this dependency is strictly straight along all Table of El-
ements, including element 155.

Dependency between the number of the neutrons and the
charge of the nucleus is shown in Fig. 8. As is seen, equa-
tion of the line of the trend describes, with a high level of
probability (R2 = 0.9997), the polynomial of the fourth order
presented in the graph. This equation covers a large region
along the axis x, from element 1 upto element 155 including.
This dependency was also calculated, in order to compare it
with the previous result, for a truncated region of the protons
from element 1 upto element 104:

Y = 4E − 0.7 x4 + 2 E − 0.5 x3 + 0.007 x2 +

+ 1.0014 x − 0.2176,
(6)

where R2 = 0.999.
As is seen, certainty the level of the approximation differs

only in 0.0007 from the previous. This manifests that fact that
this dependency is as well true for the elements heavier than
No.104, including element 155.

Appendix II

At the present time there are many versions of the periodic
tables of elements, where each cell contains a property of a
respective element (such as atomic radius, volume, density,
first ionization potential, etc.). This information can also be
obtained from the regular lists of the properties of chemical
elements. This information has, however, a substantially lack:
most data end in the beginning or the middle of Period 7.

Here we target continuing the list of numerous properties
of the elements upto element 155, and also the compatibility
of the properties with the reference data.

Fig. 9 shows a dependency between the ionization poten-
tial of the neutral atoms of the elements and the change of
their nuclei. Each point corresponds to the last element of the
period, from Period 1 to Period 6. The end of Period 7 and
that of Period 8 were calculated according to the equation of
the trend. As is seen, the points corresponding element 118
and element 155 are completely correlated with the initially
data.

An important characteristic of atomic nucleus is the nu-
merical value of its radius (see Fig. 10). This graph was cre-
ated on the basis of the reference data known at the present
time. This dependency between the atomic radius and the
number of the last element in the period was created for all
periods of the Table of Elements where it was possible. Co-
ordinates of the points for Period 7 and Period 8 were calcu-
lated according to the equation of the line of the trend. As is
easy to see, even the point of Period 6 meets the calculated
data in complete.

Fig. 11 shows how the atomic radii change from period to
period and inside each period of the Table of Elements (i.e.
in the columns of the Table from up to down, and along the
horizontal line). The upper maxima represent the beginning
of the periods, while the lower points represent their ends. It
should be noted that in lanthanides, which are No.57–No.71,
a linear dependency between the radius and the number is
observed. Further study of the correlation shows that there
is a change of the linearity upto No.80 (Mercury). Another
very interesting detail is that fact that, in the transfer from the
alkaline to the alkaline earth elements, a valuable lowering
the numerical values of the radii (for 0.3Å on the average) is
observed in the periods.

In the calculations of nuclear reactions, the information
about the stability of the nuclei as the systems consisting of
protons and neutrons has a valuable maning. The forces join-
ing the partcles altogether are known as nuclear forces; they
exceed the forces of electrostatic and gravitational interac-
tions in many orders.

The “resistance” of a nucleus can be bond by their cou-
pling energy which shows the energy required for destroying
the nucleus into its consisting nucleons (their number in the
nucleus is equal to the mass number A expressed in atomic
units of mass, a.m.u.). It is known that the sum of the masses
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Fig. 13: Dependency between the specific energy of ther coupling in an atomic nuclei and the number of the nucleons in it.

of the free nucleons is already larger than the mass of the nu-
cleus they consist. The difference of the masses is known
as the mass defect, according to which Einstein’s formula
E = ∆mc2 gives a possibility for calculating the coupling en-
ergy of the nucleus, thus the specific energy in it per one nu-
cleon.

Fig. 12 shows an arc, created according to the table data,
which manifests the dependency between the specific energy
of the coupling in a nucleus and the number of nucleons in
it [19]. The left side of the graph shows several isotopes of
Hydrogen and the nucleus of several light elements, which
bear close numerical values of the specific energy of the cou-
pling and, thus, a large deviation of the data. The arc become
more smooth with increasing the number of the nucleons. The
maximum is reached in a region of A = 50–60, then the falls
slow down. The main advantage of this graph is that we pro-
duced the calculation beyond element 118 (at which the table
data ended): we showed that the results of our calculation
completely meet the table data known from the reference lit-
erature. Decreasing the specific energy of the coupling in the
region of heavy nuclei is explained by increasing the number
of protons that leads to increasing the Coulomb forces thus
the need of additional neutrons apprears.

This is well manifested in Fig. 13. The arc described by
the quadratic three-term equation has the numerical value of
real approximation R2 = 1. In the region of the nuclei consist-
ing about 120 nucleons, this dependency is actually linear.
Then this dependency transforms into an arc of a very large
curvature radius. Data bofore the point of the nuclear charge
118 (203, 2072.582) were taken from the previous Fig. 12,

then the calculation was produced on the basis of the coordi-
naters of the suggested last element No.155. As is seen, the
arc approaches the horizontal location, where the number of
nucleons in a nucleus is not affected by its coupling energy.
Accordimng to our calculation, this happens in a region of the
coordinates (530, 2670) — (550, 2673) — (600, 2659). This
is the ultimate high energy of the coupling of nuclei. If a nu-
cleus has a higher coupling energy, is becomes instable: even
a small external influence is needed in order to destry it.

Therefore, Oganesyan’s claim that the theoretical physi-
cists discuss the properties of an element with number 400
and bearing 900 neutrons in its nucleus [9] has not any ground
or reason.
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An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

Raymond Jensen

Department of Mathematics and Informatics, Trine University, Angola, Indiana, USA. E-mail: rjensen@allmail.net

An experiment is proposed, whose purpose is to determine whether quantum indeter-
minism can be observed on a truly macroscopic scale. The experiment involves using a
double-slit plate or interferometer and a macroscopic mechanical switch. The objective
is to determine whether or not the switch can take on an indeterminate state.

1 Introduction

Since the founding of quantum theory in the last century,
there has been the question of what limit, if any, there is to the
quantum effects which may be observed, in terms of size or
number of particles of a system under observation. By quan-
tum effects, it is meant in particular, phenomena such as en-
tanglement or indeterminism. The most famous gedankenex-
periment in quantum theory, Schrödingers cat, concerns this
macroscopic question. This cat paradox argument was used
by Schrödinger to ridicule the Copenhagen interpretation of
quantum theory. [1]. Another well-known paradox was that
of Einstein, Podolsky and Rosen [2] commonly referred to
as the EPR paradox. This gedankenexperiment was also an
attempt to discredit the Copenhagen interpretation, but for a
different reason than that of the cat paradox.

Regrettably, there are few known experiments that de-
monstrate whither the macroscopic question, unlike with the
EPR paradox. A recent experiment [3] has shown that quan-
tum effects i.e. entanglement, can occur between systems
of O(1012) particles. Although these results are encourag-
ing, such a system can hardly be termed macroscopic in spite
of the title of the article in which it appears. Here, we con-
sider a macroscopic system to be one clearly visible to the
naked eye and in the solid state, such as Schrödingers cat.
Another experiment, of Schmidt [4], seems to demonstrate
that bits on a computer disk, even printouts of ones and ze-
ros concealed in an envelope, take on indeterminate states.
However, the desire remains for further proof of macroscopic
quantum effects, in particular, absent of paranormal phenom-
ena and resulting complications [5]. Perhaps the reason that
evidence of macroscopic quantum effects is so few and far
between is because macroscopic analogs to experiments such
as the double-slit experiment are difficult to design. One can-
not simply shoot cats through a double slit and expect to see
an interference pattern!

Instead of shooting Schrödingers cat through the double
slit, suppose the cat is kept in its box, but a large double slit
plate is also placed inside the box. Things are arranged so
that the cat in the alive state obstructs one slit, and the cat in
the dead state obstructs the other. All in the box is concealed
from the observer and also, many cats would need to be used.
See Figure 1. Now the question arises: will an interference

Fig. 1: An experiment with Schrödingers cat and a double slit. The
experiment is designed so that if the cat is in the alive state, it ob-
structs slit a and if the cat is in the dead state it obstructs slit b.
Many cats are needed for the experiment. If the cats remain unob-
served and individual photons are transmitted through the double-slit
and box, the question is: would an interference pattern be observed
on the screen, and further, does this signify that the cats were in a
superposition of alive and dead states?

pattern be observed on the screen if individual photons are
transmitted through the double slit and box, one by one? If
interference is observed, would this indicate that the cats were
in an alive-dead state? The answer is in the affirmative; for
if the cats were each definitely either alive or dead when the
photons passed through, then no interference pattern should
be observed.

In the next section, a more realizable (and cat-friendly)
experimental set-up than the previous is proposed. This ex-
periment will aid in answering the question of macroscopic
indeterminism, as the accompanying calculations show. Al-
though the set-up is quite simple by todays standards, it is not
the intention of the author, a theorist, to carry out the experi-
ment. Rather, it is hoped that an experimentalist is willing to
carry out the necessary work.
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Fig. 2: The apparatus in Figure 1 is now modified so that a flap takes
the place of Schrödingers cat. The flap position is controlled by an
indeterministic random number generator, in order to put the flap in
an indeterminate state with regard to which slit it covers. If measures
are taken to destroy information about the flaps position before the
photons reach the screen, the individual photons passing through the
double slit apparatus should build up an interference pattern on the
screen.

2 Double-slit experiment

Consider a set-up with a double slit, as in Figure 2. The differ-
ence between this set-up and the previous is that a flap takes
the place of the cat. The flap covers either one slit or the
other, and alternates between the two positions, controlled by
a random-number generator.

The random number generator, flap and double-slit are
concealed from the observer. The random number generator
should be of the indeterministic type such as the one devel-
oped by Stipčević and Rogina [6]. The purpose of this is to
put the flap into an indeterminate state. The set-up in Fig-
ure 2 is similar to one proposed by Mandel [7] which was
carried out by Sillitto and Wykes [8]. However in that ex-
periment, photons were not transmitted individually. So it
is likely that the experiment was not free of photon-photon
interference, whereas in the experiment under consideration
here, such interference must be eliminated. Also, it is unclear
if the electro-optic shutter used in that experiment could be
said to be in an indeterminate state or to even be a mechani-
cal macroscopic object.

Assuming that the flap in Figure 2 can be put into an in-
determinate state, the flap can be represented by the equation

|ψ〉 =
1√
2

(
|a f 〉 + |b f 〉

)
, (1)

where |a f 〉, |b f 〉 are the basis states representing the flap f

covering slits a and b, respectively. Now if a single photon
p passes through the double-slit, say it passes through slit b,
then the flap must be covering slit a, and vice versa. Thus,
each photon passing through the double-slit is entangled to-
gether with the flap, and the flap-photon entangled state is:

|ψ〉 =
1√
2

(
|a f 〉|bp〉 + |b f 〉|ap〉

)
, (2)

where |ap〉, |bp〉 are the basis states for photon p. Equation
(2) indicates that each photon passing through the double-slit
takes on an indeterminate state with regards to which slit it
passes through. Individual photons in the state (2) will build
up an interference pattern if certain precautions are taken.
Rather than using equation (2) to calculate the pattern which
results from the set-up in Figure 2, we look at a variation of
this experiment, for which it is easier to calculate interfer-
ence. The apparatus is shown in Figure 3, in the next section.

3 Mach-Zehnder interferometer experiment

The set-up in Figure 3 essentially involves the same experi-
ment as that shown in Figure 2, except that the isolated pho-
tons traverse a Mach-Zehnder interferometer (MZ) instead of
a double-slit, and a moveable mirror (rm) replaces the flap.
The rotation of the mirror rm switches the photon trajectory
between two possible paths through MZ. The two different
configurations are shown in the figure, top and bottom. Simi-
lar to the previous experiment, rm is to be put into an indeter-
minate state by controlling it with an indeterministic random
number generator concealed from the observer (not shown in
figure), and isolated photons can only be allowed to enter MZ
through a gate. Further, position information of rm must be
destroyed before each time a photon reaches the detectors.
After such precautions are taken, the photons should each
take an indeterminate path through MZ. Interference patterns
of photon counts vs. relative length or phase between paths,
the same observed by Aspect, Grangier and Roger [9] will
then be seen. We next calculate these interference patterns.

Suppose first, rm is in the down position (upper diagram
in Figure 3). This causes the photon to take the lower (–) path
through MZ. Conversely, if the mirror is in the up position
(lower diagram in Figure 3), the photon will take the upper
(+) path through MZ. If rm can be prepared in an indetermi-
nate state between up and down positions, then what results is
the following entangled state between photon and mirror [cf.
equation (2)]:

|ψ〉 =
1√
2

(|rm up〉| + 〉 + |rm down〉| − 〉) , (3)

where |rm up〉, |rm down〉 are the two possible basis states for
the moveable mirror rm and | + 〉, | − 〉 are the resultant basis
states of the photon traversing MZ.

Let φ be the phase shift between arms of MZ, due to the
presence of a phase shifter, or to a variation in the arms rel-
ative lengths. Using the rotation transformation equations
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Fig. 3: A Mach-Zehnder (MZ) interferometer instead of the double
slit of Figure 2. The moveable mirror rm acts as the former flap. The
devices labeled m are fixed mirrors, bs, a beam splitter and d1, d2
are detectors. When rm is in the horizontal (down) position as at top,
the photon takes the lower (–) path of mz (solid line with arrows).
When rm is in the 45-degree position (up) as at bottom, then the
photon takes the upper (+) path. If rm can take on an indeterminate
state between these two configurations, then the photon paths will
also be indeterminate, and thus interference patterns will result in
d1 and d2, as variations of photon counts vs. relative length or phase
φ between the two paths.

| + 〉 = sin φ|d1〉 + cos φ|d2〉, | − 〉 = cos φ|d1〉 − sin φ|d2〉
to put state (3) into the basis |d1〉, |d2〉 of the detectors, we
obtain:

|ψ〉 =
1√
2

(
sin φ|rm up〉|d1〉 + cos φ|rm up〉|d2〉 +

+ cos φ|rm down〉|d1〉 − sin φ|rm down〉|d2〉) .
(4)

If rm is successfully put into an indeterminate state, then
the detector probabilities will be, using equation (4):

p (d1) = | < rm up, d1|ψ〉+ < rm down, d1|ψ〉|2 =

=
1
2

(1 + sin 2φ)
(5)

and
p(d2) =

1
2

(1 − sin 2φ) . (6)

That is, interference fringes will be observed as oppositely-
modulated signal intensity (∝ probability) as a function of
relative phase φ. These interference patterns; i.e. the inter-
ference patterns predicted by equations (5) and (6) are the

same observed by Aspect and co-workers [9] using a similar
set-up.

On the other hand, if rm remains in a determinate state,
then no interference fringes will be observed; i.e. the signal
intensity vs. phase-shift φ will be flat:

p (d1) = | < rm up, d1|ψ〉|2 + | < rm down, d1|ψ〉|2 =
1
2

(7)

and
p (d2) =

1
2
. (8)

Thus we have that: the interference patterns (5), (6) result if
and only if rm is in an indeterminate state. Presence of the
interference patterns (5), (6) is therefore proof of macroscopic
indeterminism, since the moveable mirror rm is a macroscop-
ic object.

It is emphasized again that it is important for the exper-
imenter to take care that any information about the position
of moveable mirror rm during the experiment is destroyed.
This means that the random number generator should reset
rm after each time an individual photon exits MZ, prior to the
photon reaching detectors d1 or d2; otherwise in principle at
least, the experimenter could discover which path the photon
passed through, by uncovering rm. In that case, no interfer-
ence [i.e. equations (7) and (8)] will be observed. Additional
time to allow resetting rm can be obtained by placing d1 and
d2 at some distance beyond the half-silvered mirror bs.

The experimental set-up of Figure 3 is similar to one pro-
posed by Žukowski et al. [10], except that they propose to use
a pair of electro-optical switches (one for each arm of MZ),
instead of a moveable mirror before the arms. This is be-
cause the object of their proposal is to demonstrate whether
or not the individual photons traverse MZ using both paths
when the photon wave packet is cut in two using the switches
as it passes though MZ. Their aim is to determine which of
several interpretations of quantum theory is correct [11]. The
purpose of that experiment is not to determine if the electro-
optical switches take on an indeterminate state, even if again,
such switches could be called mechanical and macroscopic.

4 Conclusion

An experiment involving individual photons passing through
a double-slit plate or Mach-Zehnder interferometer apparatus
has been proposed. Rather than keep both paths in the plate or
apparatus open at all times however, one path or the other is
kept closed by a macroscopic mechanical switch, controlled
by an indeterministic device. The purpose of this is to deter-
mine whether the macroscopic switch can take on an indeter-
minate state: such indeterminism is detectible, dependent on
whether an interference pattern results.
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Here, we use our new metric tensor exterior to homogeneous oblate spheroidal mass
distributions to study gravitational spectral shift of light in the vicinity of the Sun, Earth
and other oblate spheroidal planets. It turns out most profoundly that, this experimen-
tally verified phenomenon holds good in the gravitational field exterior to an oblate
spheroid using our approach. In approximate gravitational fields, our obtained theo-
retical value for the Pound-Rebka experiment on gravitational spectra shift along the
equator of the Earth (2.578×10−15) agrees satisfactorily with the experimental value of
2.45×10−15. We also predict theoretical values for the Pound-Rebka experiment on the
surface (along the equator) of the Sun and other oblate spheroidal planets.

1 Introduction

According to the General Theory of Gravitation, the rate of a
clock is slowed down when it is in the vicinity of a large grav-
itating mass. Since the characteristic frequencies of atomic
transitions are, in effect, clocks, one has the result that the
frequency of such a transition occurring, say, on the surface
of the Sun, should be lowered by comparison with a similar
transition observed in a terrestrial laboratory. This manifests
itself as a gravitational red shift in the wavelengths of spec-
tral lines [1]. It has been experimentally and astrophysically
observed that there is an increase in the frequency of light
(photon) when the source or emitter is further away from the
body than the receiver. The frequency of light will increase
(shifting visible light towards the blue end of the spectrum)
as it moves to lower gravitational potentials (into a gravity
well). Also, there is a reduction in the frequency of light
when the source or emitter is nearer the body than the re-
ceiver. The frequency of light will decrease (shifting visi-
ble light towards the red end of the spectrum) as it moves
into higher gravitational potentials (out of a gravity well).
This was experimentally confirmed in the laboratory by the
Pound-Rebka experiment in 1959 (they used the Mossbauer
effect to measure the change in frequency in gamma rays as
they travelled from the ground to the top of Jefferson Labs at
Havard University) [2]. This gravitational phenomenon was
later confirmed by astronomical observations [3]. In this ar-
ticle, we verify the validity of our metric tensor exterior to
a massive homogeneous oblate spheroid by studying gravi-
tational spectral shift in the vicinity of the Sun, Earth and
other oblate spheroidal planets. Basically, we assume that
these gravitational sources are time independent and homo-
geneous distributions of mass within spheroids, characterized
by at most two typical integrals of geodesic motion, namely,
energy and angular momentum. From an astrophysical point
of view, such an assumption, although not necessary, could,

however, prove useful, because it is equivalent to the assump-
tion that the gravitational source is changing slowly in time
so that partial time derivatives are negligible compared to the
spatial ones. We stress that the mass source considered is
not the most arbitrary one from a theoretical point of view,
but on the other hand, many astrophysically interesting sys-
tems are usually assumed to be time independent (or static
from another point of view) and axially symmetric continu-
ous sources.

2 Covariant metric tensor exterior to a massive homo-
geneous oblate spheroid

The covariant metric tensor in the gravitational field of a ho-
mogeneous oblate spheroid in oblate spheroidal coordinates
(η, ξ, φ) has been obtained [4, 5] as;

g00 =

(
1 +

2
c2 f (η, ξ)

)
, (2.1)

g11 = − a2

1+ξ2−η2

η2
(
1+

2
c2 f (η, ξ)

)−1

+
ξ2(1+ξ2)
(1−η2)

 , (2.2)

g12 ≡ g21 = − a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1 , (2.3)

g22 = − a2

1+ξ2 − η2

ξ
2
(
1+

2
c2 f (η, ξ)

)−1

+
η2(1−η2)
(1+ξ2)

 , (2.4)

g33 = −a2(1 + ξ2)(1 − η2) , (2.5)

f (η, ξ) is an arbitrary function determined by the mass or
pressure distribution and hence possesses all the symmetries
of the latter, a priori. Let us now recall that for any gravita-
tional field [4–7]

g00 � 1 +
2
c2 Φ (2.6)
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where Φ is Newton’s gravitational scalar potential for the field
under consideration. Thus we can then deduce that the un-
known function in our field equation can be given approxi-
mately as

f (η, ξ) � Φ (η, ξ) , (2.7)

where Φ (η, ξ) is Newton’s gravitational scalar potential ex-
terior to a homogeneous oblate spheroidal mass. It has been
shown that [8];

Φ (η, ξ) = B0Q0 (−iξ) P0 (η) + B2Q2 (−iξ) P2 (η) , (2.8)

where Q0 and Q2 are the Legendre functions linearly inde-
pendent to the Legendre polynomials P0 and P2 respectively;
B0 and B2 are constants given by

B0 =
4πGρ0 a2ξ0

3∆1

and

B2 =
4πGρ0 a2ξ0

9∆2

[
d
dξ

P2(−iξ)
]

ξ=ξ0

,

where ∆1 and ∆2 are defined as

∆1 =

[
d
dξ

Q0(−iξ)
]

ξ=ξ0

and

∆2 = Q0

[
d
dξ

P2(−iξ)
]

ξ=ξ0

− P2(−iξ)
[

d
dξ

Q2(−iξ)
]

ξ=ξ0

,

G is the universal gravitational constant, ρ0 is the uniform
density of the oblate spheroid and a is a constant parameter.

In a recent article [9], we obtained a satisfactory approxi-
mate expression for equation (2.8) as;

Φ(η, ξ) ≈ B0

3ξ3

(
1+3ξ2

)
i− B2

30ξ3

(
7+15ξ2

) (
3η2−1

)
i (2.9)

with

Φ(η, ξ) ≈ B0

3ξ3

(
1 + 3ξ2

)
i +

B2

30ξ3

(
7 + 15ξ2

)
i

and

Φ(η, ξ) ≈ B0

3ξ3

(
1 + 3ξ2

)
i − B2

15ξ3

(
7 + 15ξ2

)
i

as the respective approximate expressions for the gravitation-
al scalar potential along the equator and pole exterior to ho-
mogeneous oblate spheroidal bodies. These equations were
used to compute approximate values for the gravitational
scalar potential exterior to the Sun, Earth and other oblate
spheroidal planets [9].

Fig. 1: Emission and reception space points of light (photon).

3 Gravitational spectral shift exterior to oblate sphero-
idal distributions of mass

Here, we consider a beam of light moving from a source or
emitter at a fixed point in the gravitational field of the oblate
spheroidal body to an observer or receiver at a fixed point in
the same gravitational field. Einstein’s equation of motion
for a photon is used to derive an expression for the shift in
frequency of a photon moving in the gravitational field of an
oblate spheroidal mass.

Now, consider a beam of light moving from a source or
emitter (E) at a fixed point in the gravitational field of an
oblate spheroidal body to an observer or receiver (R) at a fixed
point in the field as shown in Fig. 1.

Let the space time coordinates of the emitter and receiver
be (tE , ηE , ξE , φE) and (tR, ηR, ξR, φR) respectively. It is well
known that light moves along a null geodesic given by

dτ = 0 . (3.1)

Thus, the world line element for a photon (light) takes the
form

c2g00 dt2 = g11 dη2 + 2g12 dηdξ + g22 dξ2 + g33 dφ2. (3.2)

Substituting the covariant metric tensor for this gravita-
tional field in equation (3.2) gives

c2
(
1 +

2
c2 f (η, ξ)

)
dt2 = − a2

1 + ξ2 − η2 ×

×
η2

(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2

(
1 + ξ2

)
(
1 − η2)

 dη2 −

− 2a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1 dη dξ −

− a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2

(
1 − η2

)
(
1 + ξ2)

 dξ2 −

− a2
(
1 + ξ2

) (
1 − η2

)
dφ2. (3.3)
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Now, let u be a suitable parameter that can be used to
study the motion of a photon in this gravitational field. Then
equation (3.3) can be written as

c2
(
1 +

2
c2 f (η, ξ)

) (
dt
du

)2

= − a2

1 + ξ2 − η2 ×

×
η2

(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2

(
1 + ξ2

)
(
1 − η2)

 dη2 −

− 2a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1
(

dη
du

dξ
du

)
−

− a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2

(
1 − η2

)
(
1 + ξ2)

×

×
(

dξ
du

)2

− a2
(
1 + ξ2

) (
1 − η2

) (dφ
du

)2

. (3.4)

Equation (3.4) can be equally written as

dt
du

=
1
c

(
1 +

2
c2 f (η, ξ)

)− 1
2

ds , (3.5)

where ds is defined as

ds2 = − a2

1 + ξ2 − η2 ×

×
η2

(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2

(
1 + ξ2

)
(
1 − η2)

 dη2 −

− 2a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1
(

dη
du

dξ
du

)
−

− a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2

(
1 − η2

)
(
1 + ξ2)

×

×
(

dξ
du

)2

− a2
(
1 + ξ2

) (
1 − η2

) (dφ
du

)2

. (3.6)

Integrating equation (3.5) for a signal of light moving
from emitter E to receiver R gives

tR − tE =
1
c

∫ uR

uE


(
1 +

2
c2 f (η, ξ)

)− 1
2

ds

 du . (3.7)

The time interval between emission and reception of all
light signals is well known to be the same for all light signals
in relativistic mechanics (constancy of the speed of light) and
thus the integral on the right hand side is the same for all light
signals. Consider two light signals designated 1 and 2 then

t1
R − t1

E = t2
R − t2

E (3.8)
or

t2
R − t1

R = t2
E − t1

E . (3.9)

Thus,
∆tR = ∆tE . (3.10)

Hence, coordinate time difference of two signals at the
point of emission equals that at the point of reception. From
our expression for gravitational time dilation in this gravita-
tional field [10], we can write

∆τR =

(
1 +

2
c2 fR(η, ξ)

) 1
2

∆tR . (3.11)

Equations (3.9), (3.10) and (3.11) can be combined to
give

∆τR

∆τE
=


1 + 2

c2 fR(η, ξ)

1 + 2
c2 fE(η, ξ)


1
2

. (3.12)

Now, consider the emission of a peak or crest of light
wave as one event. Let n be the number of peaks emitted in
a proper time interval ∆τE , then, by definition, the frequency
of the light relative to the emitter, νE , is given as

νE =
n

∆τE
. (3.13)

Similarly, since the number of cycles is invariant, the fre-
quency of light relative to the receiver, νR, is given as

νR =
n

∆τR
. (3.14)

Consequently,

νR

νE
=

∆τE

∆τR
=

(
1 +

2
c2 fE(η, ξ)

) 1
2
(
1 +

2
c2 fR(η, ξ)

)− 1
2

(3.15)

or
νR

νE
≈

(
1 +

2
c2 fE(η, ξ)

) (
1 − 2

c2 fR(η, ξ)
)

(3.16)

or
νR

νE
− 1 ≈ 1

c2

[
fE(η, ξ) − fR(η, ξ)

]
(3.17)

to the order of c−2. Alternatively, equation (3.17) can be writ-
ten as

z ≡ ∆ν

νE
≡ νR − νE

νE
≈ 1

c2

[
fE(η, ξ) − fR(η, ξ)

]
. (3.18)

It follows from equation (3.18) that if the source is nearer
the body than the receiver then fE(η, ξ) < fR(η, ξ) and hence
∆ν < 0. This indicates that there is a reduction in the fre-
quency of light when the source or emitter is nearer the body
than the receiver. The light is said to have undergone a red
shift (that is the light moves toward red in the visible spec-
trum). Otherwise (source further away from body than re-
ceiver), the light undergoes a blue shift. Now, consider a
signal of light emitted and received along the equator of the
homogeneous oblate spheroidal Earth (approximate gravita-
tional field where f (η, ξ) ≈ Φ(η, ξ). The ratio of the shift
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Emi Pt Recep pt z (×10−10) Type of shift

ξ0 ξ0 0 none
2ξ0 ξ0 3.454804 blue
3ξ0 ξ0 4.603165 blue
4ξ0 ξ0 5.176987 blue
5ξ0 ξ0 5.521197 blue
6ξ0 ξ0 5.750643 blue
7ξ0 ξ0 5.914522 blue
8ξ0 ξ0 6.037426 blue
9ξ0 ξ0 6.133016 blue

10ξ0 ξ0 6.209486 blue

Fig. 2: Ratio of the shift in frequency of light to the fre-
quency of the emitted light at points along equator and
received on the surface of the Earth on the equator.

Emi Pt Recep pt z (×10−10) Type of shift

ξ0 ξ0 0 none
ξ0 2ξ0 −3.454804 red
ξ0 3ξ0 −4.603165 red
ξ0 4ξ0 −5.176987 red
ξ0 5ξ0 −5.521197 red
ξ0 6ξ0 −5.750643 red
ξ0 7ξ0 −5.914522 red
ξ0 8ξ0 −6.037426 red
ξ0 9ξ0 −6.133016 red
ξ0 10ξ0 −6.209486 red

Fig. 3: Ratio of the shift in frequency of light to the fre-
quency of the emitted light at points along equator and
received on the surface of the Earth on the equator.

Body Radial dist. (km) ξ at pt ΦE (Nmkg−1) ΦR (Nmkg−1) Predicted shift

Sun 700, 022.5 241.527 −1.9375791×1011 −1.9373218×1011 −2.85889×10−21

Earth 6, 378.023 12.010 −6.2079113×107 −6.2078881×107 −2.57800×10−15

Mars 3, 418.5 9.231 −1.2401149×107 −1.2317966×107 −9.24256×10−20

Jupiter 71, 512.5 2.641 −1.4968068×109 −1.4958977×109 −1.010111×10−20

Saturn 60, 292.5 1.971 −4.8486581×108 −4.8484869×108 −1.902222×10−21

Uranus 25, 582.5 3.994 −2.1563913×108 −2.1522082×108 −4.647889×10−20

Neptune 24, 782.5 4.304 −2.5243240×108 −2.5196722×108 −5.168667×10−20

Fig. 4: Predicted Pound-Rebka shift in frequency along the equator for the Sun, Earth and the other oblate spheroidal
planets.

in frequency to the frequency of the emitted light at various
points along the equator and received on the equator at the
surface of the homogeneous oblate spheroidal Earth can be
computed using equation (3.18). This yields Table 1. Also,
the ratio of the shift in frequency of light to the frequency of
the emitted light on the equator at the surface and received at
various points along the equator of the homogeneous oblate
spheroidal Earth can be computed. This gives Table 2.

Tables 1, thus confirms our assertion above that there is an
increase in the frequency of light when the source or emitter is
further away from the body than the receiver. The frequency
of light will increase (shifting visible light toward the blue
end of the spectrum) as it moves to lower gravitational poten-
tials (into a gravity well). Table 2, also confirms our assertion
above that there is a reduction in the frequency of light when
the source or emitter is nearer the body than the receiver. The
frequency of light will decrease (shifting visible light toward
the red end of the spectrum) as it moves to higher gravita-
tional potentials (out of a gravity well). Also, notice that the
shift in both cases increases with increase in the distance of
separation between the emitter and receiver. The value of the
shift is equal in magnitude at the same separation distances
for both cases depicted in Tables 1 and 2.

Now, suppose the Pound-Rebka experiment is performed
at the surface of the Sun, Earth and other oblate spheroidal
planets on the equator. Then, since the gamma ray frequency
shift was observed at a height of 22.5m above the surface, we

model our theoretical computation and calculate the theoreti-
cal value for this shift. This computation yields Table 3.

With these predictions, experimental astrophysicists and
astronomers can now attempt carrying out similar experi-
ments on these bodies. Although, the prospects of carrying
out such experiments on the surface of some of the planets
and Sun are less likely (due to temperatures on their surfaces
and other factors); theoretical studies of this type helps us to
understand the behavior of photons as they leave or approach
these astrophysical bodies. This will thus aid in the devel-
opment of future instruments that can be used to study these
heavenly bodies.

4 Conclusion

The practicability of the findings in this work is an encourag-
ing factor. More so, that in this age of computational preci-
sion, the applications of these results is another factor.
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Microwave Spectroscopy of Carbon Nanotube Field Effect Transistor
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The quantum transport property of a carbon nanotube field effect transistor (CNTFET)
is investigated under the effect of microwave radiation and magnetic field. The photon-
assisted tunneling probability is deduced by solving Dirac equation. Then the current
is deduced according to Landauer-Buttiker formula. Oscillatory behavior of the cur-
rent is observed which is due to the Coulomb blockade oscillations. It was found, also,
that the peak heights of the dependence of the current on the parameters under study are
strongly affected by the interplay between the tunneled electrons and the photon energy.
This interplay affects on the sidebands resonance. The results obtained in the present
paper are found to be in concordant with those in the literature, which confirms the cor-
rectness of the proposed model. This study is valuable for nanotechnology applications,
e.g., photo-detector devices and solid state quantum computing systems and quantum
information processes.

5 Introduction

Carbon Nanotubes (CNTs) have been discovered by Sumio
Iijim of the NEC Tsukuba Laboratory in HRTEM study of
carbon filaments [1]. Carbon-based materials, clusters and
molecules are unique in many ways [2]. One distinction re-
lated to the many possible configurations of the electronic
states of carbon atom, which is known as the hybridization
of atomic orbital. Electrical conductivity of carbon nanotube
depending on their chiral vector carbon nanotube with a small
diameter is metallic or semiconducting [2,3]. The differences
in conducting properties are caused by the molecular struc-
ture that results in a difference band structure and thus a dif-
ferent band gap. The quantum electronic transport properties
of carbon nanotubes have received much attention in recent
years [4, 5]. This is due to the very nice features of the band
structure of these quasi-one dimensional quantum systems.
The quantum mechanical behavior of the electronic trans-
port in carbon nanotubes has been experimentally and the-
oretically investigated by many authors [6, 7]. According to
these investigations, the authors showed that carbon nanotube
sandwiched between two contacts behaves as coherent quan-
tum device. A microwave field with frequency, ω, can induce
additional tunneling process when electrons exchange energy
by absorbing or emitting photons of energy, ~ω. This kind
of tunneling is known as the photon-assisted tunneling [8].
The aim of the present paper is to investigate the quantum
transport characteristics of a CNTFET under the microwave
irradiation and the effect magnetic field.

6 CNTFET

A carbon nanotube field effect transistor (CNTFET) is mod-
eled as: two metal contacts are deposited on the carbon nan-
otube quantum dot to serve as source and drain electrodes.
The conducting substance is the gate electrode in this three-
terminal device. Another metallic gate is used to govern the

electrostatics and the switching of the carbon nanotube chan-
nel. The substrates at the nanotube quantum dot /metal con-
tacts are controlled by the back gate. The tunneling through
such device is induced by an external microwave field of dif-
ferent frequencies of the form V = Vac cos(ωt) where Vac

is the amplitude of the field and ω is its angular frequency,
that is the photon-assisted tunneling process is achieved. One
of the measurable quantities of the transport characteristic is
the current which may be expressed in terms of the tunneling
probability by the following Landauer-Buttiker formula [9]:

I =

(
4e
h

)∫ [
fFD(s)(E)− fFD(d)(E − eVsd)

]
Γn(E)dE (1)

where Γ(E) is the photon-assisted tunneling probability,
fFD(s/d) are the Fermi-Dirac distribution function correspond-
ing to the source (s) and drain (d) electrodes, while e and h
are electronic charge and Planck’s constant respectively. The
tunneling probability Γn(E) might be calculated by solving
the following Dirac equation [7]

[
iνF~

(
0 ∂x − ∂y

∂x − ∂y 0

)
− eVsd + (2)

+ (e~B) (2m)−1 + eVB + eVsd cos (ωt)
]
ψ e

~
= i~

∂ψ e
~

∂E

where vF is the Fermi velocity corresponding to Fermi-energy
EF ,Vg is the gate voltage, Vsd is source-drain voltage, B is the
applied magnetic field, m∗ is the effective mass of the charge
carrier, ~ is the reduced Planck ′s constant, ω is the frequency
of the applied microwave field with amplitude Vac and Vb is
the barrier height. The index e/h refers to electron like (with
the energy > 0 with respect to the Dirac point) and hole-like
(with energy < 0 with respect to the Dirac point) solutions to
the eigenvalue differential equation (2).
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The solution of equation (2) is given by [7]:

Ψ
(ac)
+,n (x, t) =

∑
Jn

(eVac

~ω

)
Ψac

0,e/h (x, t) e(−inωt) (3)

where
Ψ

(in)
0,e/h (x, t) = Ψ

(ac)
0,e/h (x) e∓iEt/h . (4)

Accordingly equation (2) will take the following form.
[
iνF~

(
0 ∂x−∂y

∂x−∂y 0

)
−ε

]
Ψac

0.e/h = ±EΨ0.e/h (5)

where the letter ε denotes the following

ε = EF + eVg + eVsd +

(
e~B
2m∗

)
+ Vb + eVac cosωt . (6)

In Eq. (3), Jn is the nth order Bessel function. Since in
ballistic transport from one region of quantum dot to another
one, charge carriers with a fixed energy (which can be either
positive or negative with respect to the Dirac point) are trans-
mitted and their energy is conserved. The desired state repre-
sents a superposition of positive and negative solution to the
eigenvalue problem Eq. (5). The solution must be generated
by the presence of the different side-bands, n, which come
with phase factors exp(−inωt) that shift the center energy of
the transmitted electrons by integer multiples of ~ω [8]. The
complete solution of Eq. (5) is given by [7]:

(i) The incoming eigenfunction

Ψ
(ac)
icome (x, t)=

∞∑

n=−∞
Jn

(eVac

~ω

)
× (7)

×Ψac
0,+ exp (i (ε + E + n~ω) t/h)

(ii) The reflected eigenfunction

Ψα
r (x, t) =

∞∑

n=−∞
Rn (E) Jn

(eVac

~ω

)
× (8)

×Ψac
0,− exp (i (ε + E + n~ω) t/h)

where Rn(E) is the energy-dependent reflection coefficient.
(iii) The transmitted eigenfunction

Ψac
tr (x, t) =

∞∑

n=−∞
Γn (E) Jn

(eVac

~ω

)
× (9)

×Ψin
+,n exp (i (ε + E + n~ω) t/h)

where Ψ
(ac)
0,+ ,Ψ

(ac)
0,− are respectively given by

Ψ
(ac)
0,+ =

eiqny+ikn x

√
cosαac



exp
(
−αac

2

)

− exp
(
αac

2

)


(10)

and

Ψ
(ac)
0,− =

eiqny−ikn x

√
cosαac



exp
(
αac

2

)

− exp
(
−αac

2

)


(11)

Ψ
(in)
+,n in Eq. (9) is expressed as

Ψ
(in)
+,n =

eiq,y−ik,x

√
cosαin,n



exp
(
−αin,n

2

)

exp
(αin,n

2

)


. (12)

In equations (10, 11, 12), the symbols αac, αin,n are

αac = sin−1
(
~νqn

ε

)
(13)

and

αin,n = sin−1
(
~νqn

ε + n~ω

)
(14)

where
qn =

nπ
W

(n = 1, 2, 3, . . .) (15)

where W is the dimension of the nanotube quantum dot. The
parameter kn in Eqs. (10, 11, 12) is given by

k2
n =


Vb + eVg + eVsd + ~eB

m∗

~ω



2

− q2
n. (16)

In order to get an explicit expression for the tunneling
probability Γn(E + n~ω) this can be achieved by applying
the matching condition for the spatial eigenfunctions at the
boundaries x = 0 and x = L. So, the tunneling probability
Γn(E +n~ω) will take the following form after some algebraic
procedures, as

Γn (E + n~ω) = (17)

=

∣∣∣∣∣∣∣∣∣∣∣∣

kn

kn cos (knL)+i
(

eVg+eVsd +(~eB/2m∗)
~ω

)
sin(knL)

∣∣∣∣∣∣∣∣∣∣∣∣

2

.

The complete expression for the tunneling probability
with the influence of the microwave field is given by [8]:

Γwithphoton (E) =
∑

J2
n

(eVac

~ω

)
×

× fFD

(
E − Cg

C
eVg − n~ω − eVcd

)
Γ (E − n~ω) (18)

where Cg is the quantum capacitance of the nanotube quan-
tum dot and C is the coupling capacitance between the nan-
otube quantum dot and the leads.
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Fig. 1: The current as a function of the applied magnetic field (a)
photon energy (b) gate voltage in energy units(c) source drain volt-
age in energy units.

7 Results and Discussions

Numerical calculations were performed according to the fol-
lowing:

(i) The electron transport through the present investigated
device is treated as a stochastic process, so that the tunneled
electron energy has been taken as a random number relative
to the Fermi-energy of the carbon nanotube. The calculations
had been conducted previously by the authors [9, 11].

(ii) The value of the quantum capacitance, Cg, is 0.25 nF.
(iii) The coupling capacitance between carbon nanotube

quantum dot and the leads is calculated in the Coulomb block-
ade regime and in the charging energy of the quantum dot [9,
11]. Its value is found to be approximately equals ∼ 0.4 nF.
The value of the Fermi energy, EF is calculated using the val-
ues of the Fermi velocity, νF , and it was found to be approx-
imately equals ∼ 0.125 eV. This value of the Fermi energy,
EF , was found to be consisted with those found in the liter-
ature [12, 13]. The effective mass of the charge carrier was
taken as 0.054 me [12, 13].

The variation of the current, I, with the applied magnetic
field, B, at difference values of the photon energy, E, gate
voltage, Vg, and different values of the bias voltage, Vsd, is
shown in Figs. (1a,b,c). It is known that the influence of an
external magnetic field, B, will lead to a change in the energy
level separation between the ground state and the first excited
state [14] in the carbon nanotube quantum dot. We notice that
the current dependence on the magnetic field oscillates with
a periodicity of approximately equals ∼ 0.037 T. This value
corresponds roughly to the addition of an extra flux quantum
to the quantum dot. These results have been observed by the
authors [12, 15]. The peak heights are different due the in-
terplay between the tunneled electrons and the applied pho-
tons of the microwave field and also this flux quantum will

affect on the photon–assisted tunneling rates between elec-
tronic states of the carbon nanotube quantum dot. The results
obtained in the present paper are, in general, found to be in
concordant with those in the literature [12–20].

8 Conclusion

We conclude from the present analysis of the proposed ccc
theoretically and numerically that the present device could be
used as photo-detector device for very wide range of frequen-
cies. Some authors suggested that such mesoscopic device,
i.e. cccc could be used for a solid state quantum computing
system. Recently the investigation of the authors [20] shows
that such carbon nanotubes (CNT’s) could find applications
in microwave communications and imaging systems.
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On the Geometry of the Periodic Table of Elements

Albert Khazan
E-mail: albkhazan@gmail.com

The presented analytical research manifests a geometrical connexion existing among the
elements of the Periodic Table of Elements, in addition to the known physical chemical
connexion.

Despite the spectacular versions of the periodic tables of ele-
ments were suggested by the scientists, no one person did not
state the following problem: how the elements are geometri-
cally connected among each other in the groups and periods?
As is known, the element are located in the cells, which are
joined into 18 groups along the vertical axis in the Table of
Elements, and into 7 periods (I suggested recently that 8 peri-
ods, see [1] and references therein) along the horizontal axis.
Number of the elements rises from left to right in the peri-
ods, and from up to down in the groups. The periods begin
with the elements of Group 1, and end with the elements of
Group 18. Each column determines the main physical chem-
ical properties of the elements, which change both from up
to down and from left to right. For example, the elements
of Group 1 are alkaline metals (the very active chemical ele-
ments), while Group 18 consists of inert gases which manifest
a very low chemical activity under the regular physical con-
ditions. In the end of the 20th century, IUPAC suggested a
long period form of the Table of Elements, where Period 1
consists of 2 elements, Periods 2 and 3 consist of 8 elements
in each, Periods 4 and 5 consist of 18 elements in each, while
Periods 6 and 7 consist of 32 elements in each. Finally, Pe-
riod 8 consisting of 37 elements was suggested on the basis
of my theoretical studies [1].

This short study targets a search for the geometrical con-
nexion among the elements of the Periodic Table.

Figure 1 in Page 65 shows that the elements of Group 18
are concentrated along the upper broken line, which is split
into three straight lines joining three elements (four elements
in the end) in each. The numbers indicate the periods and
elements. Period 8, containing element No.155, is also shown
here. Each straight section of these can easily be described by
a straight line equation.

The lower broken line presents Group 1 (as seen accord-
ing to the numbers of the elements). The space between the
upper and lower straight lines is filled with the straight line
of Group 13. It consists of Periods 2–4, 4–6, and 6–8 (Pe-
riod 1 was omitted from the graph for simplicity). Besides,
the points 6,67; 6,81; and 7, 99 which are related to actinides
and lanthanides are shown inside the boundaries. Hence, we
can suppose that the plane bounded by the lines of Group 1
and Group 18, and also by the points 8,155 and 8,119 on right
and the points 1,2; 1,1 on left (and 2,3 of course) contains all
known and unknown elements of the Periodic Table. Thus,

this figure obtained as a result of the purely geometrical con-
structions, allows us to make the following conclusions:

• The Periodic Table should necessary contain Period 8,
which begins with No.119 and ends by No.155;

• No elements can exists outside this figure;
• A strong geometrical connexion exists among the

groups and periods.

Thus, this short study hints at a geometrical connection
among the elements of the Table of Elements, which exists
in addition to the known physical chemical properties of the
elements. Note that the geometrical connexion manifests it-
self per se in the study, without any additional suggestions or
constructions. Therefore, this does not change the form of the
Periodic Table of Elements, which remains the same.
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Fig. 1: Locations of the elements opening the Periods (the lower line) and those closing the Periods (the upper line).
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On the Source of the Systematic Errors in the Quatum Mechanical Calculation
of the Superheavy Elements

Albert Khazan
E-mail: albkhazan@gmail.com

It is shown that only the hyperbolic law of the Periodic Table of Elements allows the
exact calculation for the atomic masses. The reference data of Periods 8 and 9 manifest
a systematic error in the computer software applied to such a calculation (this systematic
error increases with the number of the elements in the Table).

Most scientists who worked on the problems of the Periodic
Table of Elements (G. T. Seaborg, J. T. Bloom, V. I. Goldan-
skii, F. W. Giacobbe, M. R. Kibler, J. A. Rihani et al.) attempt-
ed to construct new models of the Table with the use of quan-
tum mechanical calculations. In this process, they used a
complicate mathematical apparatus of Quantum Mechanics,
and introduced additional conditions such as the periods, the
number of the elements, and so on. In other word, they first
set up a problem of introducing Periods 8 and 9 into the Table
of Elements (50 elements in each), and predict the respec-
tive interior of the cells of the Table and the interior of the
atoms. Only then, on the basis of the above data, they calcu-
late the atomic mass and the number of the neutrons. How-
ever the main task — obtaining the exact numerical values
of the atomic mass, corresponding to the numbers of the ele-
ments higher than period 8 — remains unsolved.

The core of my method for the calculation is the law of
hyperbolas discovered in the Periodic Table [1]. Using the
law, we first calculated the atomic mass of the upper (heavi-
est) element allowed in the Periodic Table (411.663243), then
its number (155) was also calculated. According to the study
[1], this element should be located in Group 1 of Period 8.
The main parameters of the chemical elements were obtained
in our study proceeding from the known data about the ele-
ments, not from the suggestions and the use of the laws spe-
cific to the microscale.

Figure 1 in Page 67 shows two dependencies. The first is
based on the IUPAC 2007 data for elements 80–118 (line 1).
The second continues upto element 224 (line 2). As is seen,
there is a large deviation of the data in the section of the num-
bers 104–118. This is obviously due to the artificial synthesis
of the elements, where the products o the nuclear reactions
were not measured with necessary precision. Line 2 is strictly
straight in all its length except those braking sections where
it is shifted up along the ordinate axis. Is is easy to see that
at the end of line 1, in the numbers 116–118, the atomic mass
experiences a shift for 17 units. These shifts increase their
value with the number of the elements: the next shift rises the
line up for 20 units, and the last shift — for 25 units. In or-
der to find the numerical values of the shifts more precisely,
Figure 2 was created (see Page 67): this is the same broken
line (the initially data) compared to itself being averaged by

the equation of the line of trend (whose data were compared
to the initial data). Hence, the difference between these lines
should give the truly deviation of the numerical values f the
atomic masses between the FLW Inc. data and our data (our
data deviate from the equation of the line of trend for nothing
but only one hundredth of 1 atomic mass unit). Figure 3 in
Page 68 shows a shift of the atomic mass just element 104,
before Period 8: in element 118 the atomic mass is shifted for
11 units; in Period 9 the shift exceeds 15 units, and then it
increases upto 21 units. The respective data for Period 8 are
shown in Figure 4.

These data lead to only a single conclusion. Any software
application, which targets the quantum mechanical calcula-
tion for the atomic mass of the elements, and is constructed
according to the suggested law specific to the microscale, not
the known data about the chemical elements, will make errors
in the calculation. The theory [1] referred herein manifested
its correctness in many publications, and met no one negative
review.
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Fig. 1: Dependency between the atomic mass of the elements and their number in the Table of Elements. The IUPAC data and the FLW
Inc. data begin from number 80, for more visibility of the dependency.

Fig. 2: Dependency between the atomic mass of the elements and their number in the Table of Elements. Black dots are the FLW Inc. data.
Small circles — the averaged results according to the FLW Inc. data.
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Fig. 3: Dependency between the atomic mass, calculated according to our theory and the FLW Inc. data, and their number in the Table of
Elements.

Fig. 4: Dependency between the atomic mass of the elements and their number in the Table of Elements, shown for Period 8. Black dots
are the FLW Inc. data. Small triangles — the data according to our calculations.
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The Dirac Electron in the Planck Vacuum Theory

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA.
E-mail: wcdaywitt@earthlink.net

The nature of the Dirac electron (a massive point charge) and its negative-energy solu-
tions are examined heuristically from the point of view of the Planck vacuum (PV) the-
ory [1,2]. At the end of the paper the concept of the vacuum state as previously viewed
by the PV theory is expanded to include the massive-particle quantum vacuum [3, 4].

1 The Dirac equation

When a free, massless, bare charge travels in a straight line
at a uniform velocity v, its bare Coulomb field e∗/r2 per-
turbs (polarizes) the PV. If there were no PV, the bare field
would propagate as a frozen pattern with the same velocity.
However, the PV responds to the perturbation by producing
magnetic and Faraday fields [1, 5] that interact with the bare
charge in a iterative fashion that leads to the well-known rel-
ativistic electric and magnetic fields [6] that are ascribed to
the charge as a single entity. The corresponding force per-
turbing the PV is e2

∗/r
2, where one of the charges e∗ in the

product e2
∗ belongs to the free charge and the other to the in-

dividual Planck particles making up the degenerate negative-
energy PV. By contrast, the force between two free elemen-
tary charges observed in the laboratory is e2/r2 (= αe2

∗/r
2),

where e is the observed electronic charge and α is the fine
structure constant.

In the Dirac electron, where the bare charge has a mass
m, the response of the PV to the electron’s uniform motion is
much more complicated as now the massive charge perturbs
the PV with two forces, the polarization force e2

∗/r
2 and the

attractive curvature force mc2/r [1]. The radius at which the
magnitudes of these two forces are equal

mc2

r
=

e2
∗

r2 at r = rc (1)

is the electron’s Compton radius rc (= e2
∗/mc2). The string of

Compton relations [4]

rc mc2 = r∗m∗ c2 = e2
∗ = c~ (2)

tie the electron (rcmc2) to the Planck particles (r∗m∗ c2) within
the PV, where r∗ and m∗ are the Compton radius and mass
of those particles. The charges in the product e2

∗ of (2) are
assumed to be massless point charges.

The Dirac equation for the electron is [3, 7]
(
c α̂ p̂ + βmc2

)
ψ = Eψ , (3)

where the momentum operator and energy are given by

p̂ = ~∇/i and E = ±(m2c4 + c2 p2)1/2 (4)

and where α̂ and β are defined in the references. The rela-
tivistic momentum is p (= mv/

√
1 − v2/c2).

As expressed in (3), the physics of the Dirac equation is
difficult to understand. Using (2) to replace ~ in the momen-
tum operator and inserting the result into (3), reduces (3) to

(
α̂

e2
∗∇

imc2 + β

)
ψ =

E
mc2 ψ , (5)

where the charge product e2
∗ suggests the connection in (2)

between the free electron and the PV. It is significant that nei-
ther the fine structure constant nor the observed electronic
charge appear in the Dirac equation, for it further suggests
that the bare charge of the electron interacts directly with the
bare charges on the individual Planck particles within the PV,
without the fine-structure-constant screening that leads to the
Coulomb force e2/r2 in the first paragraph. Equation (5) leads
immediately to the equation

(
α̂

rc∇
i

+ β

)
ψ =

E
mc2 ψ (6)

with its Del operator

rc ∇ =

3∑

n=1

x̂n
∂

∂xn/rc
(7)

being scaled to the electron’s Compton radius.
Through (2), (5), and (6), then, the connection of the

Dirac equation to the PV is self evident — the Dirac equation
represents the response of the PV to the two perturbations
from the uniformly propagating electron. As an extension of
this thinking, the quantum-field and Feynman-propagator for-
malisms of quantum electrodynamics are also associated with
the PV response.

2 The Klein paradox

The “hole” theory of Dirac [7] that leads to the Dirac vacuum
will be presented here along with the Klein paradox as the
two are intimately related. Consider an electrostatic potential
of the form

eφ =


0 for z < 0 (Region I)
V0 for z > 0 (Region II)

(8)

acting on the negative-energy vacuum state (corresponding to
the negative E in (4)) with a free electron from z < 0 being
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scattered off the potential step at z = 0, beyond which V0 >
E + mc2 > 2mc2. This scattering problem leads to the Klein
paradox that is reviewed below.

The scattering problem is readily solved [8, pp.127–131].
For the free electron in Region I, E2 = m2c4 + c2 p2; and for
Region II, (E − V0)2 = m2c4 + (cp′)2, where E is the total
electron energy in Region I, and p and p′ are the z-directed
electron momenta in Regions I and II respectively.

The Dirac equation (with motion in the z-direction) for
z < 0 is (

cαz p̂z + βmc2
)
ψ = Eψ (9)

and for z > 0 is
(
cαz p̂z + βmc2

)
ψ = (E − V0)ψ . (10)

The resulting incident and reflected electron wavefunc-
tions are

ψI = A



1
0
cp

E+mc2

0


eipz/~ (11)

and

ψR = B



1
0
−cp

E+mc2

0


e−ipz/~ (12)

respectively, where cp =
√

E2 − m2c4. The transmitted wave
turns out to be

ψT = D



1
0

cp′

V0−E−mc2

0


eip′z/~ , (13)

where cp′ =
√

(V0 − E)2 − m2c4. It should be noted that the
imaginary exponent in (13) represents a propagating wave
which results from V0 > E + mc2; in particular, the parti-
cle motion in Region II is not damped as expected classically
and quantum-mechanically when V0 < E + mc2.

The constants A, B, and D are determined from the conti-
nuity condition

ψI + ψR = ψT (14)

at z = 0 and lead to the parameter

Γ ≡
(

V0 − E + mc2

V0 − E − mc2

E + mc2

E − mc2

)1/2
> 1 . (15)

The particle currents are calculated from the expectation
values of

jz(x) = cψ†(x)αzψ(x) (16)

and yield jI , jR, and jT for the incident, reflected, and trans-
mitted currents respectively. The resulting normalized reflec-
tion and transmission currents become

jR
jI

= −
(

1 + Γ

1 − Γ

)2
, (17)

jT
jI

= − 4Γ

(1 − Γ)2 . (18)

Since Γ is positive, (17) gives
∣∣∣∣∣

jR
jI

∣∣∣∣∣ − 1 > 0 (19)

for the excess reflected current; i.e., the reflected current is
greater than the incident current! This seemingly irrational
result is known as the Klein paradox.

The most natural and Occam’s-razor-consistent conclu-
sion to be drawn from (19), however, is that the excess elec-
tron (or electrons) in the reflected current is (are) coming from
the right (z > 0) of the step at z = 0 and proceeding in the neg-
ative z direction away from the step. Furthermore, the minus
sign on the normalized transmission current in (18) implies
that no electrons are entering Region II — the total electron
current (reflected plus “transmitted”) travels in the negative z
direction away from the step. Then, given the experimental
fact of electron-positron pair creation, it is reasonable to con-
clude that the incident free electron creates such pairs when
it “collides” with the stressed portion of the vacuum (z > 0),
the positrons (Dirac “holes”) proceeding to the right into the
vacuum after the collision [8, fig. 5.6]. That is, positrons (like
neutrinos [9]) travel within the vacuum, not free space!

The evidence of the created positrons is felt in free space
as the positron fields, analogous to the zero-point fields whose
source is the zero-point agitation of the Planck particles
within the PV. The curving of the positrons in a laboratory
magnetic field is due to that field permeating the PV and act-
ing on the “holes” within. (In the PV-theory view of things,
the free electron is not seen as propagating within the vac-
uum state — only the electron force-fields (e2

∗/r
2 and mc2/r)

permeate that vacuum; consequently, the electron is not col-
liding with the negative-energy Planck particles making up
the vacuum.)

3 Summary and comments

The total r-directed perturbing force the electron exerts on the
PV is

Fe =
e2
∗

r2 −
mc2

r
=

e2
∗

r2

(
1 − r

rc

)
, (20)

where the force vanishes at the electron’s Compton radius rc.
For r > rc the force compresses the vacuum and for r < rc

the vacuum is forced to expand. Ignoring the second term in
(20) for convenience and concentrating on the region r < rc,
the lessons from the preceding section can be applied to the
internal electron dynamics.

Recalling that the bare charge of the free electron inter-
acts directly with the individual Planck particles in the PV,
the electron-Planck-particle potential (e2

∗/r) in the inequality
e2
∗/r > E + mc2 leads to

r <
e2
∗

E + mc2 =
rc

1 + E/mc2 <
rc

2
, (21)
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where the positive and negative energy levels in (4) now over-
lap, and where any small perturbation to the PV can result in
an electron-positron pair being created (the electron travel-
ing in free space and the positron in the PV). The smaller the
radius r, the more sensitive the PV is to such disruption.

The electron mass results from the massless bare charge
being driven by ultra-high-frequency photons of the zero-
point electromagnetic vacuum [4, 10]; so the bear charge of
the electron exhibits a small random motion about its center-
of-motion. The resulting massive-charge collisions with the
sensitized PV produce a cloud of electron-positron pairs
around that charge. The massive free charge then exhibits
an exchange type of scattering [3, p.323] with some of the
electrons in the pairs, increasing the free electron’s apparent
size in the process.

In the current PV theory it is assumed that the total quan-
tum vacuum, which consists of the electromagnetic vacuum
and the massive-particle vacuum [3, 4], exists in free space
as virtual particles. However, the simple picture presented
in the previous paragraphs and in Section 2 concerning pair
creation modifies that view significantly. It is the massive-
particle quantum vacuum that overlaps the positive energy
levels of the free-space electron in the previous discussion.
Thus, as the appearance of this latter vacuum in free space
requires a sufficiently stressed vacuum state (in the above re-
gion r < rc/2 e.g.), it is more reasonable to assume that the
massive-particle component of the quantum vacuum does not
exist in free space except under stressful conditions.

Consequently, it seems reasonable to conclude that the PV
is a composite state patterned, perhaps, after the hierarchy of
Compton relations

remec2 = rpmpc2 = · · · = r∗m∗c2 = e2
∗ , (22)

where the products reme, rpmp, and r∗m∗ refer to the electron,
proton, and Planck particle respectively. The dots between
the proton and Planck-particle products represent any number
of heaver intermediate-particle states. The components of this
expanded vacuum state correspond to the sub-vacua associ-
ated with these particles; e.g., the electron-positron Dirac vac-
uum (remec2) in the electron case. If these assumptions are
correct, then the negative-energy states in (4) no longer end in
a negative-energy infinity — as the energy decreases it passes
through the succession of sub-vacuum states, finally ending
its increasingly negative-energy descent at the Planck-particle
stage r∗m∗c2. In summary, the PV model now includes the
massive-particle quantum vacuum which corresponds to the
collection of sub-vacuum states in (22).
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IN MEMORIAM OF NIKIAS STAVROULAKIS

On the Field of a Spherical Charged Pulsating Distribution of Matter

Nikias Stavroulakis∗

In the theory of the gravitational field generated by an isotropic spherical mass, the
spheres centered at the origin of R3 are non-Euclidean objects, so that each of them
possesses a curvature radius distinct from its Euclidean radius. The classical theory
suppresses this distinction and consequently leads to inadmissible errors. Specifically,
it leads to the false idea that the field of a pulsating source is static. In a number of
our previous publications (see references), we have exposed the inevitable role that
the curvature radius plays and demonstrated that the field generated by a pulsating not
charged spherical course is dynamical. In the present paper we prove that the curvature
radius plays also the main role in the description of the gravitational field generated by
a charged pulsating source.

1 Introduction

The manifold underlying the field generated by an isolated
spherical distribution of matter is the space R × R3, consid-
ered with the product topology of four real lines. In fact, the
distribution of matter is assumed to be located in a system
represented topologically by the space R3 and moreover to
every point of R3 there corresponds the real line described by
the time coordinate t (or rather ct). In the general case, the in-
vestigation of the gravitational field by means of the Einstein
equations is tied up with great mathematical difficulty. In or-
der to simplify the problem, we confine ourselves to the case
when the spherical distribution of matter is isotropic. The
term “isotropic” refers classically to the action of the rota-
tion group SO(3) on R3 and the corresponding invariance of
a class of metrics on R3. But in our case we have to deal with
a space-time metric on R × R3, so that its invariance must be
conceived with respect to another group defined by means of
SO(3) and acting on R × R3. This necessity leads to the in-
troduction of the group SΘ(4), which consist of the matrices

(
1 0H

0V A

)

∗Professor Dr. Nikias Stavroulakis, born on the island of Crete on Octo-
ber 6, 1921, passed away in Athens, Greece, on December 20, 2009. A hand-
written manuscript of this paper was found on his desk by his daughter Eleni,
who gave it to Dr. Ioannis M. Roussos, Professor of Mathematics at Ham-
line University, Saint Paul, Minnesota, compatriot scientific collaborator and
closed friend of her father, to fill in some gaps, rectify some imperfections ex-
isting in the manuscript and submit it for publication to Progress in Physics.
At this point Dr. I. M. Roussos wishes to express that he considers it a great
honor to himself the fact that his name will remain connected with this great
and original scientist. This is a continuation of the 5 most recent research
papers that have appeared in this journal since 2006, but as we shall see at
the end of this paper, very unfortunately Professor Stavroulakis has left it un-
finished. Some of the claimed final conclusions are still pending. We believe
that an expert on this subject matter and familiar with the extensive work
of Professor Stavroulakis, on the basis of the material provided here and in
some of his previous papers, will be able to establish these claims easily.
No matter what, these 6 papers make up his swan-song on his pioneering
research on gravitation and relativity.

with 0H = (0, 0, 0), 0V =


0
0
0

 and A ∈ SO(3). It is also

convenient to introduce the larger group Θ(4) consisting of
the matrices of the same form for which A ∈ O(3).

From the general theory [10] of the SΘ(4)-invariant and
Θ(4)-invariant tensor fields on R×R3, we deduce the explicit
form of an SΘ(4)-invariant space-time metric to be

ds2 =
[
f (t, ‖x‖) dt + f1 (t, ‖x‖) (xdx)

]2 − l21(t, ‖x‖)dx2 −

− l2 (t, ‖x‖) − l21 (t, ‖x‖)
‖x‖2 (xdx)2

and the condition l(t, 0) = l1(t, 0) is satisfied, which is also
Θ(4)-invariant. The functions that appear in it, result from
the functions of two variables

f (t, u) , f1(t, u) , l(t, u) , l1(t, u) ,

assumed to be C∞ on R×[0,+∞[, if we replace u by the norm

‖x‖ =

√
x2

1 + x2
2 + x2

3.

However, since the norm ‖x‖ is not differentiable at the
origin of R3, the functions

f (t, ‖x‖) , f1(t, ‖x‖) , l(t, ‖x‖) , l1(t, ‖x‖)

are not either. So, without appropriate conditions on these
functions in a neighborhood of the origin, the curvature ten-
sor and hence the gravitational field, will present a singularity
at the origin of R3, which would not have any physical mean-
ing. In order to avoid the singularity, our functions must be
smooth functions of the norm in the sense of the following
definition:
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Definition 1. Let φ(t, u) be a function C∞ on R × [0,∞[.
(This implies that the function φ (t, ‖x‖) is C∞ with respect to
the coordinates t, x1, x2, x3 onR×

[
R3 ×

(
R3 − {(0, 0, 0)}

)]
.)

Then the function φ(t, u) will be called smooth function of
the norm, if every derivative

∂p0+p1+p2+p3 φ (t, ‖x‖)
∂tp0∂xp1

1 ∂xp2
2 ∂xp3

3

at the point (t, x) ∈ R3 ×
(
R3 − {(0, 0, 0)}

)
tends to a definite

value, as (x1, x2, x3)→ (0, 0, 0) .
The following Theorem characterizes the smooth func-

tions of the norm:

Theorem 1. Let φ(t, u) be a C∞ function on R× [0,∞[. Then
φ (t, ‖x‖) is a smooth function of the norm if and only if the
right derivatives of odd order

∂2s+1φ (t, u)
∂u2s+1

∣∣∣∣∣
u=0

vanish for every value of t.
We will not need this theorem in the sequel, because we

confine ourselves to the gravitational field outside the spher-
ical source, so that we have to do exclusively with functions
whose restrictions to a compact neighborhood of the origin of
R3 are not taken into account.

This is why we also introduce two important functions on
account of their geometrical and physical significance. Na-
mely:

h (t, ‖x‖) = ‖x‖ f1 (t, ‖x‖)
and

g (t, ‖x‖) = ‖x‖ l1 (t, ‖x‖) ,
although, considered globally on R×R3, they are not smooth
functions of the norm. Then if we set ‖x‖ = ρ, we can conve-
niently rewrite the space-time metric in the form

ds2=

[
f dt+

h
ρ

(xdx)
]2

−
(
g

ρ

)2

dx2− 1
ρ2

l2−
(
g

ρ

)2 (xdx)2 (1)

under the condition |h| 6 l, as explained in [4]. We recall,
[2], that with this metric, the field generated by a spherical
charged, pulsating in general, distribution of matter, is deter-
mined by the system of equations

Q00 +
v2

g4 f 2 = 0 , (2)

Q01 +
v2

g4

f h
ρ

= 0 , (3)

Q11 +
v2

g2ρ2 = 0 , (4)

Q11 + ρ2Q22 +
v2

g4 (−l2 + h2) = 0 , (5)

where v2 = k
c4 ε

2, ε being the charge of the source.
Regarding the function Q00 , Q01 , Q11 , Q22 , they occur

in the definition of the Ricci tensor Rαβ related to (1) and are
given by:

R00 = Q00 , R0i = Ri0 = Q01xi ,

Rii = Q11 + Q22x2
i , Ri j = Q22xix j ,

where i, j = 1, 2, 3 and i , j.
This been said, before dealing with the solutions of the

equations of gravitation, we have to clarify the questions re-
lated to the boundary conditions at finite distance.

Let S m be the sphere be the sphere bounding the mat-
ter. S m is an isotropic non-Euclidean sphere, characterized
therefore by its radius and its curvature-radius, which, in the
present situation, are both time dependent. Let us denote
them by σ(t) and ζ(t) respectively. Since the internal field
extends to the external one through the sphere S m, the non-
stationary (dynamical) states outside the pulsating source are
brought about by the radial deformations of S m, which are
defined by the motions induced by the functions σ(t) and
ζ(t). Consequently these functions are to be identified with
the boundary conditions at finite distance.

How is the time occurring in the functions σ(t) and ζ(t)
defined? Since the sphere S m is observed in a system of ref-
erence defined topologically by the space R3, the time t must
be conceived in the same system. But the latter is not known
metrically in advance (i.e., before solving the equations of
gravitation) and moreover it is time dependent. Consequently
the classical method of special relativity is not applicable to
the present situation. It follows that the first principles re-
lated to the notion of time must be introduced axiomatically
in accordance to the very definition of SΘ(4)-invariant met-
ric. Their physical justification will be sought a-posteriori on
the basis of results provided by the theory itself.

This been said, the introduction of the functions σ(t) and
ζ(t) is implicitly related to another significant notion, namely
the notion of synchronization in S m. If S 1 denotes the unit
sphere

S 1 = { α ∈ R3 | ‖α‖ = 1} ,
the equation of S m at each distance t is written as

x = ασ(t) .

So the assignment of the value t at every point of S m de-
fines both the radius σ(t) and the “simultaneous events”

{ [t, ασ(t)] | α ∈ S 1 } .

What do we mean exactly by saying that two events A
and B in S m are simultaneous? The identity of values of time
at A and B does not imply by itself that we have to do with
simultaneous events. The simultaneity is ascertained by the
fact that the value of time in question corresponds to a definite
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position of the advancing spherical gravitational disturbance
which is propagated radially and isotropically according to
the very definition of the SΘ(4)-invariant metric.

If σ′(t) = ζ′(t) = 0 on a compact interval of time [t1, t2],
no propagation of gravitational disturbances takes place in the
external space during [t1, t2] (at least there is no diffusion of
disturbances), so that the gravitational radiation outside the
matter depends on the derivatives σ′(t) and ζ′(t) . It follows
that we may identify the pair [σ′(t) , ζ′(t)] with the gravi-
tational disturbance emitted radially from the totality of the
points of S m at the instant t. We assume that this gravitational
disturbance is propagated as a spherical wave and reaches the
totality of any of the spheres

S ρ = { x ∈ R3 | ‖x‖ = ρ > σ(t) }

outside the matter, in consideration, at another instant.

2 Propagation function and canonical metric

A detailed study of the propagation process appears in the
paper [2]. It is shown that the propagation of gravitation from
a spherical pulsating source is governed by a function π(t, ρ),
termed propagation function, such that

∂π(t, ρ)
∂t

> 0 ,
∂π(t, ρ)
∂ρ

6 0 , ρ > σ(t) , π[t, σ(t)] = t .

If the gravitational disturbance reaches the sphere

S ρ = { x ∈ R3 | ‖x‖ = ρ > σ(t) }

at the instant t, then

τ = π(t, ρ)

is the instant of its radial emission from the totality of the
sphere S m.

Among the infinity of possible choices for π(t, ρ), we dis-
tinguish principally the one obtained in the limit case where
h = l. Then π(t, ρ) reduces to the time coordinate, denoted
by τ, in the sphere that bounds the matter and the space-time
metric takes the so-called canonical form

ds2 =

[
f (t, ρ)dτ + l(τ, ρ)

(xdx)
ρ

]2

− (6)

−

[
g(τ, ρ)
ρ

]2

dx2 +

l2(τ, ρ) −
[
g(τ, ρ)
ρ

]2
(xdx)2

ρ2

 .

Any other Θ(4)-invariant metric is derived from (6) if we
replace τ by a conveniently chosen propagation function
π(t, ρ). It follows that the general form of a Θ(4)-invariant

metric outside the matter can be written as follows:

ds2 =

[
f
[
π(t, ρ), ρ

] ∂π(t, ρ)
∂t

dt +

+

(
f
[
π(t, ρ), ρ

] ∂π(t, ρ)
∂t

+ l
[
π(t, ρ), ρ

]) (xdx)
ρ

]2
− (7)

−
[ (
g[π(t, ρ), ρ]

ρ

)2

dx2 +

+

l2[π(t, ρ), ρ] −
(
g[π(t, ρ), ρ]

ρ

)2
(xdx)2

ρ2

]
.

We do not need to deal with the equations of gravitation
related to (7). Their solution follows from that of the equa-
tions of gravitation related to (6), if we replace in it τ by the
general propagation function π(t, ρ). Each permissible prop-
agation function is connected with a certain conception of
time, so that, the infinity of possible propagation functions
introduces an infinity of definitions of time with respect to
(7). So, the notion of time involved in (7) is not quite clear.

Our study of the gravitational field must begin necessarily
with the canonical form (6). Although the conception of time
related to (6) is unusual, it is easily definable and understand-
able. The time in the bounding the matter sphere S m as well
as in any other sphere S ρ outside the matter is considered as a
time synchronization according to what has been said previ-
ously. But of course this synchronization cannot be extended
radially. Regarding the time along the rays, it is defined by
the radial motion of photons. The motion of a photon emitted
radially at the instant τ0 from the sphere S m will be defined by
the equation τ = τ0. If we label this photon with indication τ0,
then as it travels to infinity, it assigns the value of time τ0 to
every point of the corresponding ray. The identity values of
τ along this ray does not mean “synchronous events”. This
conception of time differs radically from the one encountered
in special relativity.

3 The equations related to (2.1)

Since h = l the equations (2), (3), (4) and (5) are greatly
simplified to:

Q00 +
v2

g4 f 2 = 0 , (8)

ρQ01 +
v2

g4 f l = 0 , (9)

ρ2Q11 +
v2

g2 = 0 , (10)

Q11 + ρ2Q22 = 0 . (11)

Regarding the functions Q00, Q01, Q11 and Q22, they are
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already known, [3], to be:

Q00 =
1
l
∂2 f
∂τ∂ρ

− f
l2
∂2 f
∂ρ2 +

f
l2

∂2l
∂τ∂ρ

+
2
g

∂2g

∂τ2 −

− f
l3
∂l
∂τ

∂l
∂ρ

+
f
l3
∂ f
∂ρ

∂l
∂ρ

+
2 f
l2g

∂l
∂τ

∂g

∂ρ
− 2 f

l2g
∂ f
∂ρ

∂g

∂ρ
− (12)

− 2
fg
∂ f
∂τ

∂g

∂τ
− 2

lg
∂l
∂τ

∂g

∂τ
+

2
lg
∂ f
∂ρ

∂g

∂τ
− 1

f l
∂ f
∂τ

∂ f
∂ρ

,

ρQ01=
∂

∂τ

[
1
f l
∂( f l)
∂ρ

]
− ∂
∂ρ

(
1
l
∂ f
∂ρ

)
+

2
g

∂2g

∂τ∂ρ
− 2

lg
∂ f
∂ρ

∂g

∂ρ
, (13)

ρ2Q11 = −1 − 2g
f l

∂2g

∂τ∂ρ
+
g

l2
∂2g

∂ρ2 −
2
f l
∂g

∂τ

∂g

∂ρ
−

− g
l3
∂l
∂ρ

∂g

∂ρ
+

1
l2

(
∂g

∂ρ

)2

+
g

f l2
∂ f
∂ρ

∂g

∂ρ
, (14)

Q11 + ρ2Q22 =
2
g

[
∂2g

∂ρ2 −
∂g

∂ρ

1
f l
∂( f l)
∂ρ

]
. (15)

From (8) and (9) we deduce the equation

lQ00 − fρQ01 = 0 , (16)

which is easier to deal with than (8) on account of the identity

lQ00 − fρQ01 =
2l
g

∂2g

∂τ2 +
2 f
lg

∂l
∂τ

∂g

∂ρ
− 2l

fg
∂ f
∂τ

∂g

∂τ
− (17)

− 2
g

∂l
∂τ

∂g

∂τ
+

2
g

∂ f
∂ρ

∂g

∂τ
− 2 f

g

∂2g

∂τ∂ρ

which follows from (12) and (13).
On account of (15), the equation (11) gives

∂

∂ρ

(
1
f l
∂g

∂ρ

)
= 0

whence
1
f l
∂g

∂ρ
= β = function of τ

and, more explicitly,

∂g(τ, ρ)
∂ρ

= β(τ) f (τ, ρ) l(τ, ρ) .

We contend that the function β(τ) cannot vanish. In fact,
if β(τ0) = 0 for some value τ0 of τ, then

∂g(τ0, ρ)
∂ρ

= 0

from which it follows that

g(τ0, ρ) = constant .

This condition is un-physical: Since a photon travel-
ing radially to infinity, assigns the values of time τ0 to every
point of a ray, this condition implies that the curvature radius
g(τ0, ρ) is constant outside the matter at the instant τ0. Con-
sequently β(τ) , 0 , so that

either β(τ) > 0 or β(τ) < 0 for every value of τ .

But, since f (τ, ρ) > 0 and l(τ, ρ) > 0 , the condition
β(τ) < 0 implies

∂g(τ, ρ)
∂ρ

< 0

and so the curvature radius g(τ, ρ) is a strictly decreasing
function of ρ. This last conclusion is also un-physical.

Consequently β(τ) > 0 for every τ, so that we can define
the positive function

α = α(τ) =
1
β(τ)

and write
f l = α

∂g

∂ρ

and so
f =

α

l
∂g

∂ρ
. (18)

Consequently

∂ f
∂ρ

= −α
l2
∂l
∂ρ

∂g

∂ρ
+
α

l
∂2g

∂ρ2 (19)

and inserting this expression into (14) we obtain

ρ2Q11 = −1 − 2g

α ∂g
∂ρ

∂2g

∂τ∂ρ
+

2g
l2
∂2g

∂ρ2 −

− 2
α

∂g

∂τ
− 2g

l3
∂l
∂ρ

∂g

∂ρ
+

1
l2

(
∂g

∂ρ

)2

.

On account of (10), we can deduce that

0 =

(
ρ2Q11 +

v2

g2

)
∂g

∂ρ
=

= −∂g
∂ρ
− 2g
α

∂g2

∂τ∂ρ
+

2g
l2
∂2g

∂ρ2

∂g

∂ρ
− 2
α

∂g

∂τ

∂g

∂ρ
−

−2g
l3
∂l
∂ρ

(
∂g

∂ρ

)2

+
1
l2

(
∂g

∂ρ

)3

+
v2

g2

∂g

∂ρ
=

=
∂

∂ρ

−g −
2g
α

∂g

∂τ
+
g

l2

(
∂g

∂ρ

)2

− v
2

g

 ,
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whence

−g − 2g
α

∂g

∂τ
+
g

l2

(
∂g

∂ρ

)2

− v
2

g
= −2µ = function of τ

and so
∂g

∂τ
=
α

2

−1 +
2µ
g
− v2

g2 +
1
l2

(
∂g

∂ρ

)2 . (20)

To continue our discussion we need the following deriva-
tives obtained by direct computation:

∂2g

∂τ∂ρ
=α

−
µ

g2

∂g

∂ρ
+
v2

g3

∂g

∂ρ
− 1

l3
∂l
∂ρ

(
∂g

∂ρ

)2

+
1
l2
∂g

∂ρ

∂2g

∂ρ2

 , (21)

∂3g

∂τ∂ρ2 =α


2µ
g3

(
∂g

∂ρ

)2

− µ
g2

∂2g

∂ρ2−
3v2

g4

(
∂g

∂ρ

)2

+
v2

g3

∂2g

∂ρ2 +

+
3
l4

(
∂l
∂ρ

)2 (
∂g

∂ρ

)2

− 1
l3
∂2l
∂ρ2

(
∂g

∂ρ

)2

− 4
l3
∂l
∂ρ

∂l
∂ρ

∂2g

∂ρ2 +

+
1
l2

(
∂2g

∂ρ2

)2

+
1
l2
∂g

∂ρ

∂3g

∂ρ3

 . (22)

Consider now the equation (9). Since

∂

∂τ

[
1
f l
∂( f l)
∂ρ

]
=

∂

∂τ


∂2g
∂ρ2

∂g
∂ρ

 =

∂g
∂ρ

∂3g
∂τ∂ρ2 − ∂2g

∂ρ2
∂2g
∂τ∂ρ(

∂g
∂ρ

)2

by taking into account (21) and (22), we find after some com-
putations

∂

∂τ

[
1
f l
∂( f l)
∂ρ

]
= α

[2µ
g3

∂g

∂ρ
− 3v2

g4

∂g

∂ρ
+

3
l4

(
∂l
∂ρ

)2
∂g

∂ρ
−

− 3
l3
∂l
∂ρ

∂2g

∂ρ2 −
1
l3
∂2l
∂ρ2

∂g

∂ρ
+

1
l2
∂g3

∂ρ3

]
.

On the other hand (19) leads to the relation

∂

∂ρ

[
1
l
∂ f
∂ρ

]
=α


3
l4

(
∂l
∂ρ

)2
∂g

∂ρ
− 1

l3
∂2l
∂ρ2

∂g

∂ρ
− 3

l3
∂l
∂ρ

∂2g

∂ρ2 +
1
l2
∂3g

∂ρ3

 .

Moreover by (21)

2
g

∂2g

∂τ∂ρ
=α

−
2µ
g3

∂g

∂ρ
+

2v2

g4

∂g

∂ρ
− 2

l3g
∂l
∂ρ

(
∂g

∂ρ

)2

+
2

l2g
∂g

∂ρ

∂2g

∂ρ2



and

2
lg
∂ f
∂ρ

∂g

∂ρ
= α

−
2

l3g
∂l
∂ρ

(
∂g

∂ρ

)2

+
2

l2g
∂g

∂ρ

∂2g

∂ρ2

 .

Inserting these expressions into (13) we find, after cance-
lations,

ρQ01 = −α v
2

g4

∂g

∂ρ

so that

ρQ01 +
v2

g4 f l = −α v
2

g4

∂g

∂ρ
+
v2

g4 α
∂g

∂ρ
= 0 .

Consequently the equation (9) is verified.
It remains to examine the equation (16), which amounts

to transform the expression (17). In principle, we need the
derivatives

∂2g

∂τ2 and
∂ f
∂τ

expressed by means of l and g.
First we consider the expression of ∂2g

∂τ2 resulting from the
derivative of (20) with respect to τ and then replace in it the
∂g
∂τ

and ∂2g
∂τ∂ρ

, given by their expressions (20) and (21). We get:

2
∂2g

∂τ2 =
dα
dτ

−1+
2µ
g
− v

2

g2 +
1
l2

(
∂g

∂ρ

)2 +

+α

−
2
l3
∂l
∂τ

(
∂g

∂ρ

)2

+
2
g

dµ
dτ

 +

+α2


µ

g2−
2µ2

g3 +
3µv2

g4 −
3µ

l2g2

(
∂g

∂ρ

)2

− v
2

g3−
v4

g5 +

+
3v2

l2g3

(
∂g

∂ρ

)2

− 2
l5

(
∂g

∂ρ

)3
∂l
∂ρ

+
2
l4

(
∂g

∂ρ

)2
∂2g

∂ρ2

 .

On the other hand taking the derivative of

f =
α

l
∂g

∂ρ

with respect to τ and then, in the resulting expression, replace
the expression of ∂2g

∂τ∂ρ
given by equation (21) , we obtain

∂ f
∂τ

=
dα
dτ

1
l
∂g

∂ρ
−α

l2
∂l
∂τ

∂g

∂ρ
+

+
α2

l

−
µ

g2

∂g

∂ρ
+
v2

g3

∂g

∂ρ
− 1

l3
∂l
∂ρ

(
∂g

∂ρ

)2

+
1
l2
∂g

∂ρ

∂2g

∂ρ2

 .

So, we have already obtained f , ∂ f
∂τ

, ∂ f
∂ρ

, ∂2g
∂τ∂ρ

, ∂2g
∂τ2 , by

means of l and g. Inserting them into (21), we get after some
computations and several cancelations the relation

lQ00 − fρQ01 =
2αl
g2

dµ
dτ

,

so that the equation (16) is written as

2αl
g2

dµ
dτ

= 0

which implies
dµ
dτ

= 0
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and so µ is a constant.
Later on we will prove that this constant is identified with

the mass that produces the gravitational field. . . ∗
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The spin dependent conductance of mesoscopic device is investigated under the ef-
fect of infrared and ultraviolet radiation and magnetic field. This device is modeled as
Aharonov-Casher semiconducting ring and a quantum dot is embedded in one arm of
the ring. An expression for the conductance is deduced. The results show oscillatory
behavior of the conductance. These oscillations might be due to Coulomb blockade
effect and the interplay of Rashba spin orbit coupling strength with the induced pho-
tons of the electromagnetic field. The present device could find applications in quantum
information processing (qubit).

1 Introduction

Advances in nanotechnology opened the way for the syn-
thesis of artificial nanostructures with sizes smaller than the
phase coherence length of the carriers [1]. The electronic
properties of these systems are dominated by quantum ef-
fects and interferences [2]. One of the goals of semiconductor
spintronics [3,4] is to realize quantum information processing
based on electron spin. In the last decades, much attention is
attracted by many scientists to study the spin-dependent trans-
port in diverse mesoscopic systems, e.g., junctions with fer-
romagnetic layers, magnetic semiconductors, and low-dimen-
sional semiconducting nanostructures [5, 6]. Coherent oscil-
lations of spin state driven by a microwave field have been
studied extensively [7–11].

Many authors investigated the spin transport through
quantum rings [12–18]. These rings are fabricated out of two
dimensional electron gas formed between heterojunction of
III–V and II–VI semiconductors. Spin-orbit interaction (SOI)
is crucial in these materials. The purpose of the present pa-
per is to investigate the quantum spin transport in ring made
of semiconductor heterostructure under the effect of infrared
and ultraviolet radiations.

2 Theoretical treatment

In order to study the quantum spin characteristics of a meso-
scopic device under the effect of both infrared (IR) and ultra-
violet (UV) radiation, we propose the following model:

A semiconductor quantum dot is embedded in one arm
of the Aharonov-Casher ring with radius comparable with
the Fermi-wavelength of semiconductor heterostructure. This
ring is connected to two conducting leads. The form of the
confining potential is modulated by an external gate electrode
allowing for direct control of the electron spin-orbit interac-
tion. By introducing an external magnetic field, we also cal-
culate the combined Aharonov-Casher, and Aharonov-Bohm
conductance modulations. The conductance G for the present

investigated device will be calculated using Landauer for-
mula [17–19] as:

G =
2e2

h
sin φ

∑

µ=1,2

dE
(
−∂ jFD

∂E

) ∣∣∣Γµ,with photon (E)
∣∣∣2 , (1)

where fFD is the Fermi-Dirac distribution function, e is the
electron charge, h is Planck’s constant, φ is the electron phase
difference propagating through the upper and lower arms of
the ring, and

∣∣∣Γµ,with photon (E)
∣∣∣2 is the tunneling probability

induced by the external photons.
Now, we can find an expression for the tunneling proba-

bility
∣∣∣Γµ,with photon (E)

∣∣∣2 by solving the following Schrodinger
equation and finding the eigenfunctions for this system as fol-
lows:

( P2

2m∗
+ Vd + eVg + EF + eVac cos (ωt) +

+
~eB
2m∗

+ ĤS oc + eVS d

)
ψ = Eψ , (2)

where Vd is the barrier height, Vg is the gate voltage, m∗ is the
effective mass of electrons, EF is the Fermi-energy, B is the
applied magnetic field, and Vac is the amplitude of the applied
infrared, and ultraviolet electromagnetic field with frequency
ω. In (2) ĤS oc is the Hamiltonian due to the spin-orbit cou-
pling which is expressed as:

ĤS oc =
~2

2m∗a2

(
− i

∂

∂φ
− ΦAB

2π
− ωS ocm∗a2

~
σr

)
, (3)

where ωS oc = α/ (~a) and it is called the frequency associated
with the spin-orbit coupling,α is the strength of the spin-orbit
coupling, a is the radius of the Aharonov-Casher ring, and σr

is the radial part of the Pauli matrices which expressed in the
components of Pauli matrices σx, σy as:

σr = σx cos φ + σy sin φ,
σφ = σy cos φ − σx sin φ . (4)
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Due to the application of magnetic field B, normal to the
plane of the device, the Aharonov-Bohm phase will be picked
up by an electron which encircling the following magnetic
flux ΦAB, see Eq. (3), as:

ΦAB =
πeBa2

~
. (5)

Now, the solution of Eq. (2) will consist of four eigen-
functions [17, 18, 20], where ψL (x) is the eigenfunction for
transmission through the left lead, ψR (x) for the right lead,
ψup (θ) for the upper arm of the ring, and ψlow (θ) for the lower
arm of the ring. Their expressions are:

ψL (x, t) =
∑

σ

∞∑

n=−∞
Jn

(eVac

~ω

) [
Aeikx+Be−ikx

]
χσ (π) e−inωt, (6)

χ ∈ [−∞, 0]

ψR (x, t) =
∑

σ

∞∑

n=−∞
Jn

(eVac

~ω

) [
Ceik′x+De−ik′x

]
χσ (0) e−inωt, (7)

χ ∈ [0,∞] ,

ψup (θ, t) =
∑

σ,µ

∞∑

n=−∞
Jn

(eVac

~ω

)
Fµein′σµ φe−inωtχσ (φ) , (8)

φ ∈ [0, π] ,

ψlow (θ, t) =
∑

σ,µ

∞∑

n=−∞
Jn

(eVac

~ω

)
Gµeinσµ φe−inωtχσ (φ) , (9)

φ ∈ [π, 2π]

were Jn (eVac/ (~ω)), Eqs. (6–9), is the nth order Bessel func-
tion. The solutions, Eqs. (6–9), must be generated by the pres-
ence of the different side-bands n, which come with phase
factor exp (−inωt). The parameter χσ (φ) is expressed as:

χ1
n (φ) =

(
cos (θ/2)

eiφ sin (θ/2)

)
(10)

and

χ2
n (φ) =

(
sin (θ/2)

−eiφ cos (θ/2)

)
(11)

where the angle θ [17, 18, 21] is given by

θ = 2 tan−1


Ω −

√
Ω2 + ω2

S oc

ωS oc

 (12)

in which Ω is given by

Ω =
~

2m∗a2 . (13)

Also, the parameters n′σµ and nσµ expressed respectively
as:

n′σµ = µk′a − φ +
ΦAB

2π
+

Φσ
AC

2π
, (14)

nσµ = µka − φ +
ΦAB

2π
+

Φ
µ
AC

2π
, (15)

in which µ = ±1 corresponding to the spin-up, and spin-down
of the transmitted phase, expressed as [17, 18, 20]:

Φ
µ
AC = π

1 +
(−1)µ

(
ω2

S oc + Ω2
)1/2

Ω

 . (16)

The wave numbers k′ and k are given respectively by

k′ =

√
2m∗ (E + n~ω)

~2 , (17)

and

k =

√
2m∗

~2

(
Vd + eVg +

N2e2

2C
+ EF + n~ω − E

)
, (18)

where Vd is the barrier height, Vg is the gate voltage, N is the
number of electrons entering the quantum dot, C is the total
capacitance of the quantum dot, e is the electron charge, EF

is the Fermi energy, m∗ is the effective mass of electrons with
energy E, and ~ω is the photon energy of both infrared and
ultraviolet electromagnetic field.

Now, the tunneling probability
∣∣∣Γµ,with photon (E)

∣∣∣2 could be
obtained by applying the Griffith boundary condition [15, 17,
18, 20, 21] to Eqs. (6–9). The Griffith boundary condition
states that the eigenfunctions, Eqs. (6–9), are continuous and
their current density is conserved at each intersection. Ac-
cordingly therefore, the expression for the tunneling proba-
bility is given by:
∣∣∣Γµ with photons (E)

∣∣∣2 = (19)

=
∑

n

J2
n



8i cos
(
ΦAB+Φ

µ
AC

2

)
sin (πka)

4 cos (2πk′a) +4 cos
(
ΦAB + Φ

µ
AC

)
+4 sin (2πk′a)



2

.

Now, substituting
∣∣∣Γµ with photons (E)

∣∣∣2, into Eq. (1), we get
a full expression for the conductance G, which will be solved
numerically as will be seen in the next section.

3 Result and discussion

Numerical calculations are performed for the conductance G
as function of the gate voltage Vg, magnetic field B, and func-
tion of ωS oc frequency due to spin-orbit coupling at specific
values of photon energies, e.g., energies of infrared and ul-
traviolet radiations. The values of the following parameters
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Fig. 1: The variation of the conductance G with the gate voltage Vg

at different photon energy EIR and EUV .

Fig. 2: The variation of the conductance G with the magnetic field
B at different photon energy EIR and EUV .

have been found previous by the authors [22–24]. The val-
ues of C ∼ 10−16 F and Vd ∼ 0.47 eV. The value of the number
of electrons entering the quantum dot was varied as random
number.

We use the semiconductor heterostructures as In Ga As/
In Al As. The main features of our obtained results are:

1. Fig. (1), shows the dependence of the conductance G,
on the gate voltage Vg, at both photon energy of in-
frared (IR), and ultraviolet (UV) radiations. Oscillatory
behavior is shown. For the case of infrared radiation,
the peak height strongly increases as gate voltage in-
creases from –0.5 to 1. But for the case ultraviolet, this
increase in peak height is so small.

2. Fig. (2), shows the dependence of the conductance G,
on the applied magnetic field B, at both the photon en-
ergies considered (IR and UV). A periodic oscillation
is shown for the two cases, the periodicity equals t̃he
quantum flux h/e.

Fig. 3: The variation of the conductance G with the frequency ωS oc

at different photon energy EIR and EUV .

3. The dependence of the conductance G, on the frequen-
cy associated with the spin-orbit coupling, ωS oc. at dif-
ferent values of the investigated applied photon ener-
gies is shown in Fig. 3.

The obtained results might be explained as follows: The
oscillatory behavior of the conductance is due to spin-sensi-
tive quantum interference effects caused by the difference in
the Aharonov-Casher phase accumulated by the opposite spin
states. The Aharonov-Casher phase arises from the propaga-
tion of the electron in the spin-orbit coupling. The quantum
interference effect appears due to photon spin-up, and spin-
down subbands coupling. Our results are found concordant
with these in the literature [15, 16, 25].

4 Conclusion

The Aharonov-Casher, and Aharonov-Bohm effects are stud-
ied, taking into consideration the influence of both infrared
(IR), and ultraviolet (UV) electromagnetic field. This could
be realized by proposing a semiconducting quantum dot em-
bedded in one arm of semiconducting ring. Spin filtering, and
spin pumping due to the effect of photons are studied by de-
ducing the spin transport conductance. The present results are
valuable for the application in the field of quantum informa-
tion processing (qubit) quantum bit read out, and writing.
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A numerical analysis of elementary particle masses on the logarithmic number line
revealed systematic mass gaps of 2e, e, e

2 , e
4 , e

8 and e
16 . Also in abundance data of

the chemical elements, a repeated abundance gap of e
2 could be detected. This lead

us to modify a fractal scaling model originally published by Müller in this journal,
interpreting elementary particles as proton resonances. We express a set of 78 accurately
determined particle masses on the logarithmic scale in a continued fraction form where
all numerators are Euler’s number.

1 Introduction

Recently in three papers of this journal, Müller [1–3] has pro-
posed a chain of similar harmonic oscillators as a new model
to describe the fractal properties of nature. For a specific pro-
cess or data set, this model treats observables such as ener-
gies, frequencies, lengths and masses as resonance oscillation
modes and aims at predicting naturally preferred values for
these parameters. The starting point of the model is the fact
that hydrogen is the most abundant element in the universe
and therefore the dominant oscillation state. Consequently,
Müller calculates the spectrum of eigenfrequencies of a chain
system of many proton harmonic oscillators according to a
continued fraction equation [2]

f = fp exp S , (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton and S the con-
tinued fraction corresponding to f . S was suggested to be in
the canonical form with all partial numerators equal 1 and the
partial denominators are positive or negative integer values

S = n0 +
1

n1 +
1

n2 +
1

n3 + . . .

. (2)

Particularly interesting properties arise when the nomina-
tor equals 2 and all denominators are divisible by 3. Such
fractions divide the logarithmic scale in allowed values and
empty gaps, i.e. ranges of numbers which cannot be ex-
pressed with this type of continued fractions. He showed that
these continuous fractions generate a self-similar and discrete
spectrum of eigenvalues [1], that is also logarithmically in-
variant. Maximum spectral density areas arise when the free
link n0 and the partial denominators ni are divisible by 3.

This model was applied to the mass distribution of ce-
lestial bodies in our solar system [2] as well as to the mass
distribution of elementary particles such as baryons, mesons,

leptons and gauge bosons [3]. The masses were found to be
located at or close to spectral nodes and definitively not ran-
dom.

In this article we investigated the properties of masses
in the micro-cosmos on the logarithmic scale by a graphi-
cal analysis with particular interest in detection of periodic
trends. We analyzed abundance data of the chemical ele-
ments, atomic masses and the masses of elementary particles.
Then we applied a slightly modified version of Müller’s frac-
tal model and demonstrate that there is a hidden structure in
the masses of elementary particles.

2 Data sources and computational details

Solar system abundance data of chemical elements (with un-
certainties of around 10%) were taken from reference [4].
High accuracy nuclide masses are given in an evaluation by
Audi [5]. Relative isotope abundances for a selected chemi-
cal element can be found in the CRC Handbook of Chemistry
and Physics [6]. Accurate masses of elementary particles are
given in Müller’s article [3] and were used for the calcula-
tion of continued fractions. In order to avoid machine based
rounding errors, numerical values of continued fractions were
always calculated using the the Lenz algorithm as indicated
in reference [7].

3 Results

Figure 1 shows the relative abundance of the chemical ele-
ments in a less usual form. In textbooks or articles these data
are normally presented as log10(abundance) versus atomic
number on a linear scale. Here we adopted Müller’s formal-
ism and present the abundance data as a function of the nat-
ural logarithm of the atomic masses (here mean values from
a periodic table were used) which were previously divided
by the lowest atomic weight available (hydrogen). As can be
seen, there is a general trend of decreasing abundance with
increasing atomic mass, but the plot has a few remarkable
extremities.
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Fig. 1: Solar system abundance data of the chemical elements on a
logarithmic scale. H and He omitted for clarity.

Nuclide ln m (nuclide)
m (H) multiples of e

2

1
1H 0.0 0.0 × e

2

4
2He 1.379 1.015 × e

2

16
8 O 2.764 2.034 × e

2

56
26Fe 4.016 2.955 × e

2

208
82 Pb 5.330 3.921 × e

2

Table 1: ln m(nuclide)
m(H) of element abundance maxima expressed in mul-

tiples of e
2 .

Elements marking very clear maxima or minima are la-
beled with symbols. The most relevant maxima in graph are
elements O, Fe and Pb. Of course, H and He, the most abun-
dant elements in the universe (not shown in Fig. 1) must also
be interpreted as maxima in the figure. From Figure 2 it be-
comes directly clear that these abundance maxima occur in
almost equal distances on the logarithmic number line. The
simple calculation ln m(4

2He)
m(1

1H) −ln m(1
1H)

m(1
1H) = 1.37 reveals that these

distance seems to be e
2 , where e is Euler’s number. When

drawing a sine function with period e, f (x) = sin( 2πx
e ) on the

logarithmic number line, the abundance maxima are closely
located to the zeros of this function.

Table 1 summarizes the numerical deviations from multi-
ples of e

2 . The calculations were performed for the naturally
most abundant isotope of the considered element.

Figure 2 has some analogy to Kundt’s famous experiment
with standing sound waves in a tube. It seems as a standing
wave on the logarithmic number line supporting an accumula-
tion of naturally preferred mass particles in the nodes, which
are multiples of e

2 . On the other hand these preferred masses
are not exactly located in the notes, more evidently the less
abundant chemical elements (Li, Be, B, F) are more distant

Fig. 2: Abundance maxima and minima of chemical elements on the
logarithmic number line.

Fig. 3: Stable isotopes on the logarithmic scale in the range 0 to e.

from the bulges than H, He, O, Fe and U from the nodes. Pm
and Tc are even completely absent in the abundance data due
to their radioactivity.

Within the first period of the sine function in Fig. 2, very
few stable isotopes are found. So it is possible to analyze the
location of their isotope masses in relation to nodes of the pre-
viously constructed sine function including higher harmonics.
Figure 3 displays the logarithmic axis from zero to e with a
sine function of period e and two corresponding (2nd and 4th)
higher harmonics defined through repeated frequency dou-
bling. The location (= ln mnuclide

mproton
) of all existing stable isotopes

in that range is indicated. From this, similar wave stabiliza-
tions regarding these light isotopes can be obtained:

1. Deuterium is a stable, but hardly abundant hydrogen
isotope. It seems to be stabilized by the second har-
monics with period e

2 due to location in the node (tri-
tium does not fit in a node of this wave). Possibly hy-
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drogen isotopes are principally governed by the basic
wave with period e and the influence of higher harmon-
ics is greatly reduced, which explains the low abun-
dance.

2. Why is the isotope 4He (99.999%) much more abun-
dant than 3He (0.0001%)? Assuming that He is prin-
cipally governed as H by the wave with period e, the
isotope 4He is closer to the node than 3He. In this case
the higher stability of 4He can also explained with the
magic numbers for both, protons and neutrons.

3. Lithium is composed of 92.5% 7Li and 7.5% 6Li. The
isotope 7Li is more abundant and clearly closer to a
node of the second harmonic (it has also a little higher
bonding energy per nucleon than 6Li ).

4. The isotope 11B is exactly located in the node of the
third harmonic with period e

4 . It is much more abundant
(80.1%) than 10B (19.9%).

5. The isotope 12C is closer to the node of the fourth har-
monics than 13C. This is in agreement with the abun-
dances of 98.0% for 12C and 1.1% for 13C.

6. Nitrogen is composed of 99.63% 14N and 0.36% 15N.
The isotope 15N is almost in the node of the basic wave
and all higher harmonics. Here the model fails to pre-
dict the correct abundance order, but the isotope 15N
has the higher stability, which can be readily confirmed
by the magic number of 8 neutrons in this nuclide. For
a certain reason, the nuclide stability does not go along
with the corresponding abundance. For an explanation
of this fact must be considered that elements heavier
than He cannot be built up in our sun or similar present-
day (second generation) stars [8]. This is due to the fact
that for all nuclei lighter than carbon, a nuclear reaction
with a proton leads to the emission of an alpha particle
disintegrating the original nucleus. So the heavier el-
ements in stars must already have existed prior to the
second generation star formation. Bethe [8] investi-
gated possible nuclear reactions of both nitrogen iso-
topes and found that 15N can give a p − α reaction

15N + 1H→ 4He + 12C

while 14N can only capture a proton
14N + 1H→ 15O + γ.

According to Bethe, such a p − α reaction is always
more probable than a radiative capture. So we theo-
rize that without existence of the above mentioned nu-
clear reaction, the abundance data would show an ex-
cess of 15N.

A nuclear reaction also explains why lead is the element
with the highest deviation from such a node (Fig. 2). We
believe that Pb does actually not present its true abundance
value as existed through stellar element formation, its abun-
dance is increased since it is the end product of the 3 most

Fig. 4: Accumulation of particle masses on the logarithmic scale.

important decay chains (thorium series, uranium series, ac-
tinium series). There are no stable isotopes between Pb and
238U, which has a long half-life. The element uranium lies
much more close to a node than Pb, and also because of its
long half-life, we believe that this nuclide could be a former
abundance maximum.

In order to find similar regularities for elementary parti-
cles we selected according to some physics textbooks a set of
commonly discussed particles. Their importance was mainly
justified by the relatively long lifetimes (> 10−19 s). We be-
lieve that nature’s preferred masses are the more stable parti-
cles and particularly for these masses some regularities could
be expected. Table 2 presents the considered set of particles,
their rest masses and positions on the logarithmic scale. It
was found that the particles produce an interesting set of mass
distances on the logarithmic number line: 2e, e, e

2 , e
4 , e

8 and
e

16 . These mass gaps are listed in Table 3. There is, however,
no standing wave analogy on the logarithmic scale that can
be applied to all particles, consequently here, another model
must be applied, which lead us to modify Müller’s contin-
ued fraction term in an empirical way. However, the standing
wave analogy is not completely absent. Müller [3] has shown
that the majority of baryon and meson masses is in the range
of 1300–8600 MeV/c2. When scaling according to ln mparticle

melectron
,

this range translates to 8–8.5 on the logarithmic scale and it
becomes clear that this range and as well as the masses of the
electron, muon, pion and gauge bosons are in proximity of the
zeros of the above considered sine function (see Figure 4).

Considering the framework of Müller’s fractal scaling
model, we interpret these numerical regularities as follows:
Masses in nature are in relation to proton resonance states.
Nature can realize various masses, only when they are close
to proton resonance states, they are preferred masses. For
stable particles such as nuclides, the term “preferred mass”
translates to more abundance. For unstable particles, “pre-
ferred mass” translates to more realization probability. Un-
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Particle Rest mass m
[MeV/c2]

ln m (particle)
m (proton)

Leptons:
Electron 0.511 −7.515
µ 105.658 −2.183
τ 1776.84 0.638

Mesons:
π± 139.57 −1.905
π0 134.9766 −1.939
K± 493.677 −0.642
K0

S ,K
0
L 497.614 −0.634

η 547.853 −0.538
ρ± 770 −0.198
ρ0 775.5 −0.191
ω 782.6 −0.181
η0 957.8 0.021
K∗± 891.7 −0.051
K∗0 896.0 −0.046
φ 1019.5 0.083
D±,D0 1869.6 0.689
D±s 1968.5 0.741
J/Ψ 3096.9 1.194
B±, B0 5279.2 1.727
Y 9460.3 2.311

Baryons:
p 938.272 0
n 939.56 0.001
Λ0 1115.6 0.173
Σ+ 1189.4 0.237
Σ0 1192.5 0.240
Σ− 1197.3 0.244
∆±,∆++,∆0 1232 0.272
Ξ0 1314.9 0.337
Ξ− 1321.3 0.342
Ω 1672 0.578
Λ+

C 2281 0.888
Λ0

b 5624 1.791
Ξ−b 5774 1.817
Ξ−∗,Ξ0∗ 15300 2.792

Table 2: Selected particles with rest masses and values on the loga-
rithmic number line.

Particle Rest mass difference Numerical
mass step on logarithmic scale result

Mass gap 2e (= 5.436):

Electron→ µ | − 7.515 − −2.183| 5.332

Mass gap e (= 2.718):

p→ Ξ−∗,Ξ0∗ |0 − 2.792| 2.792

Mass gap e
2 (= 1.359):

π0 → K± | − 1.939 − −0.642| 1.297
Ξ0 → B±, B0 |0.337 − 1.727| 1.390
Λ+

C → Y |0.888 − 2.311| 1.423

Mass gap e
4 (= 0.68):

K0
S ,K

0
L → p | − 0.634 − 0| 0.634

Λ0 → Λ+
C |0.173 − 0.888| 0.715

p→ D±,D0 |0 − 0.689| 0.689
p→ D±s |0 − 0.741| 0.741
p→ τ |0 − 0.638| 0.638

Mass gap e
8 (= 0.34):

η→ ρ± | − 0.538 − −0.198| 0.340
p→ Ξ0 |0 − 0.337| 0.337
p→ Ξ− |0 − 0.342| 0.342
η→ ρ0 | − 0.538 − −0.191| 0.347
η→ ρ± | − 0.538 − −0.198| 0.340
Σ+ → Ω |0.237 − 0.578| 0.341
Σ0 → Ω |0.240 − 0.578| 0.338
Σ− → Ω |0.244 − 0.578| 0.334
Λ+

C → J/Ψ |0.888 − 1.194| 0.306
Ω→ Λ+

C |0.578 − 0.888| 0.310

Mass gap e
16 (= 0.17):

ω→ p | − 0.181 − 0| 0.181
ρ± → p | − 0.198 − 0| 0.198
ρ0 → p | − 0.191 − 0| 0.191
p→ Λ0 |0 − 0.173| 0.173
Λ0 → Ξ0 |0.173 − 0.337| 0.164
Λ0 → Ξ− |0.173 − 0.342| 0.169
Ω→ D±s |0.578 − 0.741| 0.163
D±s → Λ+

C |0.741 − 0.888| 0.147
D±,D0 → Λ+

C |0.689 − 0.888| 0.199

Table 3: Mass gaps between elementary particles on the logarithmic
scale.
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Particle Particle mass with standard deviation.
Continued fraction representation

N-baryons (S=0, I=1/2):

p 938.27203 ±0.00008
[0; 0]

n 939.565346 ±0.000023
[0; 0 | 1973]

Λ-baryons (S=−1, I=0):

Λ 1115.683 ±0.006
[0; 0 | 15, e+1, 15, −6]

Λ(1520) 1519.5 ±1.0
[0; 0 | 6, −9, e+1, −e−1, ***]

Σ-baryons (S=−1, I=1):

Σ+ 1189.37 ±0.07
[0; 0 | 12, −6, e+1, −e−1, 6]

Σ0 1192.642 ±0.024
[0; 0 | 12, −e−1, −9, e+1, −e−1, ***]

Σ− 1197.449 ±0.03
[0; 0 | 12, −e−1, 6, −e−1, e+1, −e−1]

Σ(1385)+ 1382.8 ±0.4
[0; 0 | 6, e+1, −e−1, ***]

Σ(1385)0 1383.7 ±1.0
[0; 0 | 6, e+1, −e−1, e+1, −e−1]

Σ(1385)− 1387.2 ±0.5
[0; 0 | 6, e+1, −e−1, e+1, e+1]

Ξ-baryons (S=−2, I=1/2):

Ξ0 1314.86 ±0.2
[0; 0 | 9, −e−1, e+1, −6]

Ξ− 1321.71 ±0.07
[0; 0 | 9, −e−1, e+1, ***]

Ξ(1530)0 1531.8 ±0.32
[0; 0 | 6, −6]

Ξ(1530)− 1535.0 ±0.6
[0; 0 | 6, −6, 9]

Ω-baryons (S=−3, I=0):

Ω− 1672.45 ±0.29
[0; 0 | e+1, e+1, −e−1, e+1, −e−1, −e−1]
[1.5; 0 | −e−1, e+1, −15, 6]

charmed baryons (C = +1):

Λ+
C 2286.46 ±0.14

[1.5; 0 | −e−1, −e−1, 45, −15]

ΛC(2595)+ 2595.4 ±0.6
[1.5; 0 | −6, 6, e+1, −e−1, ***]

ΛC(2625)+ 2628.1 ±0.6
[1.5; 0 | −6, 12, 6]

ΛC(2880)+ 2881.53 ±0.35
[1.5; 0 | −6, −e−1, e+1, ***]

Table 4: Continued fraction representation of particle masses ac-
cording to equation (4).

Particle Particle mass with standard deviation.
Continued fraction representation

charmed baryons (C = +1):

ΣC(2455)++ 2454.02 ±0.18
[1.5; 0 | −6, e+1, −e−1, e+1, e+1, −e−1, e+1]

ΣC(2455)+ 2452.9 ±0.4
[1.5; 0 | −6, e+1, −e−1, e+1, e+1]

ΣC(2455)0 2453.76 ±0.18
[1.5; 0 | −6, e+1, −e−1, e+1, e+1, −e−1]

Ξ+
c 2467.8 ±0.6

[0; 0 | e+1, −e−1, e+1, 60]
[1.5; 0 | −6, e+1, −e−1, −15]

Ξ0
c 2470.88 ±0.8

[0; 0 | e+1, −e−1, e+1, −162]
[1.5; 0 | −6, e+1, −e−1, −6]

Ξc(2645)+ 2645.9 ±0.6
[1.5; 0 | −6, 21, −6]

Ξc(2645)0 2645.9 ±0.5
[1.5; 0 | −6, 21, −6]

Ξc(2815)+ 2816.6 ±0.9
[1.5; 0 | −6, −e−1, 12]

Ξc(3080)+ 3077.0 ±0.4
[1.5; 0 | −9, 9, 18]

light unflavored mesons (S = C = B = 0):

π± 139.57018 ±0.00035
[1.5; −3 | −6, −e−1, 18, −e−1, e+1, −e−1, e+1]

π0 134.9766 ±0.0006
[1.5; −3 | −6, −15, e+1, −e−1, −33]

η 547.853 ±0.024
[0; 0 | −6, e+1, −e−1, 6, −e−1, 12]
[1.5; −3 | e+1, −e−1, e+1, 9, −e−1, −e−1]

ρ (770) 775.49 ±0.34
[0; 0 | −15, −e−1]

ω (782) 782.65 ±0.12
[0; 0 | −15]

ρ′(958) 957.78 ±0.06
[0; 0 | 132]

φ (1020) 1019.455 ±0.02
[0; 0 | 33, −12, e+1]

f1(1285) 1281.8 ±0.6
[0; 0 | 9, −9, −6]

a2(1320) 1318.3 ±0.6
[0; 0 | 9, −e−1, e+1, −e−1, e+1, −e−1]

f1(1420) 1426.4 ±0.9
[0; 0 | 6, 6, −6]

strange mesons (S =±1, C = B = 0):

K± 493.667 ±0.016
[0; 0 | −e−1, −6, e+1, 39]

K0 497.614 ±0.024
[1.5; −3 | e+1, −e−1, −e−1, e+1, −e−1]
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Particle Particle mass with standard deviation.
Continued fraction representation

strange mesons (S =±1, C = B = 0):

K∗(892)± 891.66 ±0.26
[0; 0 | −54, e+1]

K∗(892)0 896.00 ±0.25
[0; 0 | −60, e+1]

charmed mesons (S =±1):

D± 1869.62 ±0.2
[0; 0 | e+1, 12, 24]

D0 1864.84 ±0.17
[0; 0 | e+1, 12, −e−1, −e−1]

D∗(2007)0 2006.97 ±0.19
[0; 0 | e+1, −18, −e−1, e+1, −e−1]
[1.5; 0 | −e−1, 63]

D∗(2010)± 2010.27 ±0.17
[0; 0 | e+1, −18, −216]
[1.5; 0 | −e−1, 78]

charmed, strange mesons (C = S =±1):

D±s 1968.49 ±0.34
[0; 0 | e+1, −54]

D∗±s 2112.3 ±0.5
[1.5; 0 | −e−1, −12, 15]

D∗S 0(2317)± 2317.8 ±0.6
[0; 0 | e+1, −e−1, −27]
[1.5; 0 | −e−1, −e−1, 6, −e−1, −e−1]

DS 1(2460)± 2459.6 ±0.6
[0; 0 | e+1, −e−1, e+1, 12]
[1.5; 0 | −6, e+1, −e−1, 9]

DS 1(2536)± 2535.35 ±0.34
[0; 0 | e+1, −e−1, e+1, −e−1, e+1, e+1]
[1.5; 0 | −6, e+1, e+1, e+1]

DS 2(2573)± 2572.6 ±0.9
[1.5; 0 | −6, 6, −15]

bottom mesons (B =±1):

B± 5279.17 ±0.29
[1.5; 0 | 12, −54]

B0 5279.5 ±0.3
[1.5; 0 | 12, −51]

B∗ 5325.1 ±0.5
[1.5; 0 | 12, −6, 6]

bottom, strange mesons (S = B =±1):

B0
S 5366.3 ±0.6

[1.5; 0 | 12, −e−1, 6, −e−1]

cc-mesons (S = B =±1):

J/Ψ(1S) 3096.916 ±0.011
[1.5; 0 | −9, 24]

Xc0(1P) 3414.75 ±0.31
[1.5; 0 | 12, −e−1, e+1, ***]

Xc1(1P) 3510.66 ±0.07
[1.5; 0 | −15, −45]

hc(1P) 3525.67 ±0.32
[1.5; 0 | −15, −6, −6]

Particle Particle mass with standard deviation.
Continued fraction representation

cc-mesons (S = B =±1):

Xc2(1P) 3556.20 ±0.09
[1.5; 0 | −15, −e−1, e+1, ***]

Ψ(2S) 3686.09 ±0.04
[1.5; 0 | −21, 9, −e−1, e+1, ***]

Ψ(3770) 3772.92 ±0.35
[1.5; 0 | −24, −e−1, e+1, ***]

X(3872) 3872.3 ±0.8
[1.5; 0 | −33]

Y(1S) 9460.3 ±0.26
[0; 3 | −e−1, −12, −87]

Xb0(1P) 9859.44 ±0.42
[0; 3 | −e−1, −6, 9, −15]
[1.5; 0 | e+1, −6, e+1, −6, e+1, −e−1]

Xb1(1P) 9892.78 ±0.26
[1.5; 0 | e+1, −6, e+1, −e−1, e+1, −9]

Xb2(1P) 9912.21 ±0.26
[0; 3 | −e−1, −6, e+1, 15, −e−1]

Y(2S) 10023.76 ±0.31
[0; 3 | −e−1, −e−1, −e−1, −e−1]
[1.5; 0 | e+1, −e−1, −e−1, e+1, 12, −e−1]

Xb0(2P) 10232.5 ±0.4
[0; 3 | −e−1, −e−1, 327]
[1.5; 0 | e+1, −e−1, −6, −e−1, e+1, −e−1]

Xb1(2P) 10255.46 ±0.22
[0; 3 | −e−1, −e−1, 30, 6]

Xb2(2P) 10268.65 ±0.22
[0; 3 | −e−1, −e−1, 21, −e−1]
[1.5; 0 | e+1, −e−1, −9, 6, 6]

Y(3S) 10355.2 ±0.5
[0; 3 | −e−1, −e−1, 6, e+1, 6]
[1.5; 0 | e+1, −e−1, −18, 9]

leptons:

Electron 0.510998910 ±0.000000013
[1.5; −9 | −177]

µ 105.658367 ±0.000004
[0; −3 | e+1, −6, −e−1, e+1, ***]

τ 1776.84 ±0.17
[0; 0 | e+1, 6, −e−1, e+1, −e−1, −e−1]

gauge bosons:

W 80398 ±25
[1.5; 3 | −54, −e−1, e+1]

Z 91187.6 ±2.1
[1.5; 3 | 36, −6, e+1]
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fortunately, these simple graphs do not provide information
to distinguish between stable and unstable particles. The re-
peatedly occurring mass gaps from 2e to e

16 strongly support
the idea that masses in the micro-cosmos are not random and
have a self-similar, fractal structure. However, we empha-
size that this fractal behavior is only a statistical influence
with low priority, since we know for instance that nature real-
izes with the chemical elements easily the whole logarithmic
mass range from 0 to 2e without significant mass gaps. Also
it should be noted that the logarithmic mass differences in Ta-
ble 3 are always approximately multiples of the fractions of e.
This means the fractal property provides only a signature of
regularities, becoming visible only on the logarithmic number
line.

Due to the fact that frequently mass distances occur which
are close, but not exactly a fraction of e, we decided to modify
Müller’s continued fractions (given in equation(2)). Specifi-
cally we abandon the canonical form and change all partial
numerators to Euler’s number. Furthermore we follow results
published by Müller in one of his patents [9] and introduce a
phase shift p in equation (2). According to [9] the phase shift
can only have the values 0 or ±1.5. So we write

ln
particle mass
proton mass

= p + S , (3)

where S is the continued fraction

S = n0 +
e

n1 +
e

n2 +
e

n3 + . . .

. (4)

We abbreviate p + S as [p; n0 | n1, n2, n3, . . . ]. Provided
that our initial assumption is correct, and the particles are res-
onance states, their masses should be located in the maximum
spectral density areas. Consequently we must require that the
free link n0 and the partial denominators ni are integers divis-
ible by 3. For convergence reason, we have to include |e + 1|
as allowed partial denominator. This means the free link n0
is allowed to be 0,±3,±6,±9 . . . and all partial denominators
ni can take the values e + 1,−e − 1,±6,±9,±12 . . . In order
to test the model very critically for a more extended set of
particles we followed Müller’s article [3] and selected all el-
ementary particles which have their masses determined with
a standard deviation 6 1 MeV/c2 and included additionally
the gauge bosons due to their special importance (78 parti-
cles altogether). For the calculation of the continued frac-
tions we assumed first that the mass values were without any
measurement error. This means, equation (3) does not hold
and one ideally obtains a continued fraction with an infinite
number of partial denominators. For practical reasons we de-
termined only 18 partial denominators. Next we calculated
repeatedly the particle mass from the continued fraction, ev-
ery time considering one more partial denominator. As soon
as the calculated mass value (on the linear scale) was in the

interval “mass±standard deviation”, we stopped considering
further denominators and gave the resulting fraction in Table
4. In special cases, where the particle mass is much more ac-
curately determined than the proton mass (e.g. electron) the
standard deviation was set to that of the proton.

It was found that the great majority of the particle masses
could be expressed by a continued fraction, which means that
they are localized in nodes or sub-nodes. Only 10 particles
were found to be localized in a gap. In such a case the con-
tinued fraction turns into an alternating sequence of −e− 1
and e + 1 without any further significant approximation to the
mass value. In Table 4, this sequence was then abbreviated
by three stars. It should be noted that the particle mass cal-
culated from such a fraction is still close to the experimental
value, but has a difference from the experimental value higher
than the standard deviation. For around 50% of the particles,
it was required to set the phase shift to 1.5 in order to get the
masses located in a node or sub-node. For 14 particles, their
masses can even be located in sub-nodes for both phase shifts
(0 and 1.5). If so, both continued fractions were indicated in
Table 4. As can be seen, the continued fractions have seldom
more than 5 partial denominators, they can be even shortened
abandoning the standard deviation requirement and accept-
ing a small percentage error on the logarithmic scale as it was
done in Müller’s article [2].

There are, however some general questions open. It is
clear that the continued fraction analysis provides a new sys-
tem to put the particles in groups regarding the length of the
fraction (fractal layers), the phase shift, value of the free link
and the value of the numerator. Which of these parameters
have physical meaning and which ones are just mathematics?

Especially regarding the physical significance of the nom-
inator, more research must be done. We believe that is not co-
incidence that most of the masses become localized in nodes
or sub-nodes when calculating the fractal spectrum with nom-
inator e, similar calculations have shown that the numerators
2 or the golden ratio do not work in this manner. This how-
ever, was here found empirically, to the best of our knowledge
there is no way to calculate directly which nominator repro-
duces best the fractal distribution. It must still be done by trial
and error combined with intuition. Anyway, we suggest to
abandon the canonical form of the continued fractions when-
ever possible, since with numerator 1, actually some physi-
cal information of the fractal distribution is lost. It is known
that continued fractions with arbitrary numerator , 1 can be
transformed into fractions with numerator equal to 1, via Eu-
ler equivalent transformation.

From the presented numerical results, some ideas can be
derived:

1. The three most stable here considered particles are the
electron, proton and neutron with half-life of around
11 minutes. Their continued fraction representations
are quite short, consisting only of the free link and one
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partial denominator. Possibly short continued fractions
indicate stability. Furthermore the very high values of
the first partial denominators n1 indicate two facts: a
proximity to the node n0 and an irrelevance of any fur-
ther partial denominator which can change the value
of the fraction only insignificantly. This means a high
value of n1 might also be considered as a criterion for
stability.

2. According to reference [1], in a node, there is a change
from spectral compression to spectral decompression,
which means that with a certain probability a change
in process trend can be observed. This statement is
in agreement with the continued fraction representa-
tions of the electron and the neutron. The electron [1.5;
−9 | −177] lies with a negative first partial denominator
closely before the principal node [1.5; −9], whereas the
neutron [0; 0 | 1973] is positioned right after the prin-
cipal node [0; 0] due to its positive denominator. This
means the electron in the compression range is stable
whereas the neutron is in a decompression range and
already exhibits decay property.

4 Resume

Numerical investigation of particle masses revealed that 87%
of the considered elementary particles can be interpreted as
proton resonance states. We cannot expect that all particle
masses are only governed by proton resonance properties,
other natural laws apply as well. The here presented math-
ematical model can be modified in various ways and future
research should concentrate on identifying fractal properties
in other data sets such as half-lifes of radioactive nuclides or
mass defects, utilizing either our or similarly modified contin-
ued fractions. Only when multiple fractal data sets are known,
the possible numerical values of the numerator or the phase
shift can be adequately interpreted and maybe attributed to a
physical property.
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Charge of the Electron, and the Constants of Radiation According
to J. A. Wheeler’s Geometrodynamic Model

Anatoly V. Belyakov
E-mail: belyakov.lih@gmail.com

This study suggests a mechanical interpretation of Wheller’s model of the charge. Ac-
cording to the suggested interpretation, the oppositely charged particles are connected
through the vortical lines of the current thus create a close contour “input-output” whose
parameters determine the properties of the charge and spin. Depending on the energetic
state of the system, the contour can be structurized into the units of the second and thirs
order (photons). It is found that, in the framework of this interpretation, the charge is
equivalent to the momentum. The numerical value of the unit charge has also been cal-
culated proceeding from this basis. A system of the relations, connecting the charge to
the constants of radiation (the Boltzmann, Wien, and Stefan-Boltzmann constants, and
the fine structure constant) has been obtained: this give a possibility for calculating all
these constants through the unit charge.

William Thomson (Baron Kelvin), the prominent physicist of
the 19th century, said: “we can mean a phenomenon to be
clearly understood only if a mechanical model of it has been
constructed”. It would be fine if the famous phrase would be
actual in the nowadays as well. This however meets some
difficulties, in particular — in the case of the electron, despite
its spin has the dimension of mechanical angular momentum,
and the charge is not (at least) a special “entity” or “electric
substance”.

In order to explain the properties of the electric charge,
John A. Wheeler suggested his own concept of geometrody-
namics. According to the concept, the charged micro-
particles are special points in the three-dimensional spatial
surface of our world, connected to each other through “worm-
holes” — vortical tubes analogous to the lines of current
working according to the “input-output” (“source-drain”)
principle, but in an additional dimension of space.

Is the fourth dimension still necessary in this case?
Suppose that the world, being an entity in the limits of

the three-dimensional continuum, is a really surface which is
topologically non-unitary coherent and fractalized upto the
parameters of the micro-world bearing a fraction dimension
of the numerical value upto three. In this case, it is easy to see
that the Wheeler vortical tube is located “under the surface”
of our world, thus is “invisible” to us, the fragments of the
fractalized surface.

Meanwhile numerous specific properties of the micro-
world do not manifest themselves into it, or are manifested
being distorted, as if they were projected into our world from
an “additional” dimension. In particular, this should be true in
the charge and spin of the electron, which can be considered
according to the mechanistic scheme as the respective mo-
mentum of the vortical tube and the angular momentum with
respect to its longitudinal axis. So forth we will consider, for
brevity, the close contour crossing the surface X of the our
world in the points, say, p+ and e−. In the framework of this

scheme, a free charged particle is presented as a section of the
open contour, or as a single-pole curl directed along the “ad-
ditional” direction; the electron can be presented as an object
activating the motion of the medium (electric current).

Let S be the sinus of an angle determining the projection
of the momentum onto the surface X, and also the projection
of the circulation velocity v (this is also, in the same time,
the velocity of the rotation around the longitudinal axis of
the contour) onto the chosen direction, say the axis p+− e−.
In this case, S i characterizes the ratio of the projection of
the velocity to the velocity itself (i = 1, 2, 3 depending on the
orientation of the velocity vector).

Let, according to our initially suggestion, the charge be
equivalent to the momentum, thus be Coulomb = kg×m/sec.
Replace the elementary charge with the ultimate momentum
of the electron, me c, in the formulae of Coulomb and Am-
pere. With taking this into account, in order to arrive at the
numerical coincidence with the electric and magnetic forces
(determined by the classical formulae), it is sufficient to in-
troduce new formulae for the electric and magnetic contants,
ε0 and µ0, as follows

ε0 =
me

re
= 3.233×10−16 [

kg/m
]
, (1)

µ0 =
1

c2 ε0
= 0.0344 [N−1] , (2)

where me is the mass of the electron, while c is the velocity
of light. The quantity re means the classical radius of the
electron, which is, in SI units,

re =
10−7 e2

0

me
, (3)

where e0 is the charge of the electron.
Thus, these constants get a clear physical meaning now.

They characterize the vortical tube, because ε0 has a dimen-
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sion of its density per meter, while µ0 is the quantity recipro-
cal to the centrifugal force which appears when the element
of the vortical tube, whose mass is me, rotates with the radius
re with the linear velocity c.

The contour’s length can vary, depending on the energetic
state of the system. Assume that its increase, according to the
well-known analogy to hydrodynamics, results the decrease
of the tube’s radius upto an arbitrary numerical value r, and
also the creation of the secondary and tertiary spiral struc-
tures, which fill the toroidal volume (the section of the torus
is the same as the classical radius of the electron re).

Thus, the charge of a particle can be characterized by the
projection of the longitudinal component of the momentum
Mv onto the surface X, where the mass of the vortical tube
(contour) is proportional to the tube’s length, and is

M = ε0 R = εn2Rb , (4)

where n is the leading quantum number, Rb =α2 re is the Bohr
1st radius, while α is the reciprocal fine structure constant
which is 137.036 (it will be shown below that α is also deter-
mined according to the suggested model).

Among the possible contours characterized by different
masses and velocities, there is such a contour in which the
energy of the unit charge (electron) reaches the maximal nu-
merical value. We take into account that a potential, in the
framework of the mechanistic “coulombless” system, corre-
sponds to a velocity. Thus, in the case of this contour, we can
write down

e v = me c2 = Emax , (5)

where e is the common charge, which is identical to the mo-
mentum (in contrast to its projection, the observed charge e0).
In this contour, we determine the standard unit of the potential
(velocity) as follows

v =
me v

2

e
= 1 [m/sec] . (6)

Thus we obtain, from (5) and (6),

v = c2/3
p v , (7)

where the dimensionless velocity of light cp = c
v has been in-

troduced, and also

e = M v = me c2/3
p c2/3

p v . (8)

In other word, we see that the mass M of the contour is
the same as mec2/3

p = 4.48×105 me that is close to the summary
mass of the bosons W+, W−, Z0.

We will refer to the contour as the standard contour. In
it, the maximal energy of the “point-like” electron, me c2, is
the same as that of the current tube, M v2. The numerical val-
ues of the charge and spin remain unchanged for any contour,
and have a common component — the contour’s momentum

M v. It should be noted that, despite the dimension of elec-
tric charge corresponds to the dimension of momentum, it is
not common to both entities, thus cannot be divided by the
dimensions of mass and velocity.

The projection of the momentum, which is the observed
charge, is

e0 = me c4/3
p S iv , (9)

where, as is obvious, i = 1, while the complete momentum of
the vortical tube (the Planck constant h) reduced to the radius
of the electron can be determined as the vector recovered, on
the basis of the projection, in the general way where i = 3.
Thus

h
re

= 2παme c =
e0

S 3 . (10)

Taking e0 from (9), we obtain, through (10),

S =
c1/6

p√
2πα

= 0.881, (11)

thus the projective angle is 61.82◦, while the obtained numer-
ical value of the observed charge e0 = 1.61×10−19 kg/m×sec
differs from the exact value (standard numerical value ob-
tained in the experiments) for doles of the percent.

The charge of the “point-like” electron in the region X, we
will denote as ex, is substituted into the formulae of Coulomb
and Ampere: under ε0 and µ0 assumed in the model, it consist
a very small part of e0, which is

ex = me c =
e0

c1/3
p S

=
e0

590
. (12)

The main standard quantum number can be expressed
through the mass M of the contour and its density per one
meter (the electric constant ε0)

ns =

√
me c2/3

p

ε0 Rb
=

c1/3
p

α
= 4.884; (13)

the contour’s size is Rs = n2
s Rb = 1.26×10−9 m.

The number of the ordered structural units z of the con-
tour (we will refer to them as photons, for brevity) is deter-
mined, for an arbitrary quantum number, by the ratio between
the full length of the contour and the length of the wave λ

z =
n2 Rb

(
re
r

)

λ
, (14)

where

λ =
W
R∞

, (15)

Rydberg’s constant is expressed as

R∞ =
1

4πα3re
, (16)
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while Balmer’s formula is

W =
m2n2

m2 − n2 , (17)

where n,m = 1, 2, . . . Here the ratio of the radii re
r takes into

account the increase of the length of the “stretched” contour
in the case where the spiral structures of the second and third
orders are created. Because ε0 = const and µ0 = const, in the
case of arbitrary r and v the formulae (1) and (2) lead to

re

r
=

(c
v

)2
. (18)

We obtain the velocity v and radius r of the vortical tube
of the contour, in the general case, from the condition of con-
stancy of the momentum which is true for any contour having
an arbitrary quantum number n. We obtain

M v = me c4/3
p v = n2Rb ε0 v , (19)

wherefrom, substituting the extended formulae of Rb and ε0,
and taking (18) into account, we obtain

v =
c1/3

p c

(αn)2 , (20)

r =
c2/3

p re

(αn)4 . (21)

As a result, with (15) and (16) taken into account, and
having the velocity v replaced with its projection vS i, we ob-
tain the number of the photons in the arbitrary contour

z =
n6α3

4πW c2/3
p S 2i

. (22)

In particular, consider the standard contour (denote it by
the index s). In the unitary transfer in it from ns to ns + 1,
we obtain: Ws = 76.7, λs = 7.0×10−6 m, vs = 4.48×105 m/sec,
rs = 6.3×10−21 m, while the number of the photos zs being cal-
culated under i = 2 is close to α= 137.

Thus, given a “standard” photon, the following relation

Rs

re
=

re

rs
= c2/3

p = 448000 (23)

is reproduced (that is specific to an atom).
The Boltzmann, Wien, and Stefan-Boltzmann constants,

k, b, and σ, can be determined connecting the energy of the
section of the contour in the region X taken per one photon,
Ez, i.e. the energy of the structural unit, with the energy of the
heat motion Et (the average energy of the radiating oscillator)
in the case of a specific particular conditions.

We express Ez and Et as follows

Ez =
ex vS

z
, (24)

Et = k T . (25)

The numerical value of Ez decreases with the increase of
the quantum number so that, with a numerical value of n, it
becomes equal Et taken with the wavelength λ of the photon
emitted by a black body whose temperature is that of the scale
unit

Ez = Et under T = 1◦ [K] . (26)

With decreasing n, the numerical value of Ez increases
faster than Et. Assume that, with taking (23) into account,
the following ratio

(Ez)s = zEt under T = Ts (27)

is true for the standard contour.
Using (12), (20), and (22), we modify (24) then re-write

(26) and (27) for n and ns assuming that the most large con-
tour has been contracted into a tertiary structure

AW
n8 = k T , i = 3, T = 1◦ [K] , (28)

AsWs

n8
s

= k Ts z , i = 2. (29)

where A = 4πS 2in5
s e0 v. Taking into account that A

As
= S 2 and

also

1◦ [K] =
bR∞
W

, (30)

Ts =
bR∞
Ws

(31)

where Wien’s constant is

b = Tλ , (32)

we obtain, from the common solution of (28) and (29),

n4

W
=

S z1/2n4
s

Ws
. (33)

Assume z = zs = 137. Taking (17) into account, we cal-
culate, for the transfer from n to n+ 1: n = 39.7, W = 32470,
λ= 0.0030 m, Wien’s constant b = 0.0030 m×K. From (28),
we obtain Boltzmann’s constant k = 1.38×10−23 J/K. Accord-
ing (22), we obtain the number of the photons of the contour:
z = 117840 under i = 3.

The number of the photons z of the given contour is very
close to the numerical value of 2πα2. This result does not
follow from the initially assumptions, thus is absolutely inde-
pendent. So, the presence of the secondary and tertiary struc-
tures has been confirmed. That is, there are three specific con-
tours: the contour of the 1st order (the Bohr 1st radius, n = 1;
the contour of the 2nd order (the standard contour, n = 4.884,
containing α structural units, the photons); and the contour of
the 3rd order (n≈ 40, containing 2πα2 photons).
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Fig. 1: Dependency of Wien’s constant b on the reciprocal value
of the fine structure constant α.

Fig. 2: Results of the numerical differentiation of the function
b (α) in the region of the second singular point (inflection of the
b (α) arc). The ordinate axis means the speed of the change of the
parameter b.

Boltzmann’s constant can be expressed also through the
parameters of the standard contour

k =
ns e0 v
αTs

= 1.38×10−23 [J/K] , (34)

where Ts = b
λs

= 414.7◦K.
Formula (34) can be transformed so that

k T
ns

= me

(
c2/3

p v
)2 S
α
, (35)

i.e. given the standard contour, the energy of the radiating
oscillator per the contour’s quantum number is equal to the
energy of the internal rotation of the “point-like” electron
taken per the number of the structural units of the contour.

It is interesting to compare the Planck entropy of the pho-
ton, S h, to the entropy of the part of the contour related to the
single photon, S z, within the region X. The Planck entropy
remains constant

S h =
Eh

T
=

hc
λT

=
hc
b

= 6.855×10−23 [J/K] , (36)

while S z decreases rapidly with the increase of the leading
quantum number

S z =
Ez

T
=

AW
n8 T

=
AW2

n8 bR∞
. (37)

Equalizing S h to S z, and expanding the formulae for h,
R∞, and A for the case of the ionization of the atom (that
means the transfer from n to m→∞ under W→∞), we ob-
tain, under i = 1 . . . 3,

n∞ =
4
√

8πn3
s S 2i+1 = 6.7 . . . 5.9 . (38)

Because the common direction of the physical processes
to the increase of entropy, thermodynamics prefers, with

n> 6.7, that the structural units of the contour exist separately
from each other, i.e. are the photons. It is probably, this re-
sult verifies the identity of the contour’s structural units to
the photons, and also manifests one of the causes of that the
stable atoms have no more electronic shells than 6 or 7.

The Stefan-Boltzmann constant can be expressed as the
projection of the unit energy of the heat motion per one pho-
ton and the unit square of the standard contour, i.e. as
k∆TS/(αn4

s R2
b), where ∆T =1◦K, and reduced to the unit of

time and the unit of temperature (in the respective exponent).
As a result, we obtain σ= 5.56×10−8 [W/m2K4].

The obtained formulae (34), (35), and (39) are actually
definitions. They completely confirm the existence of the spe-
cial standard contour.

Despite the fine structure constant was used in the cal-
culation (the constant itself is meant to be derived from e0
and h), the calculation was processed in independent way.
Besides, assuming that α and all other quantities dependent
on it (re, S , e0, ns, z, k, b) are variables, we can determine the
numerical value of α according to the location of the second
singular point (inflection of the b(α) arc in Fig. 1), where the
change of b is proportional to the quantum number. Numer-
ical differentiation, Fig. 2, manifest the numerical value of α
within the boundaries 137–140 and, hence, it manifests the
numerical values of all other parameters (for instance, k and
z in Fig. 3 and Fig. 4 respectively). That is, finally, in order
to calculate all the parameters we only need: the mass of the
electron, the velocity of light, the units of velocity and tem-
perature, and the assumption that Ez is proportional to Et in
the standard contour.

It is interesting that more precise numerical value of α ar-
rives under the condition that m and n approach to infinity in
the function b(α) and Balmer’s formula (17). Thus Balmer’s
formula becomes W = n3

2 under infinite large distance between
the charges, that meets the determination of the textbook nu-
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Fig. 3: Dependency of Boltzmann’s constant k on the reciprocal
value of the fine structure constant α.

Fig. 4: Dependency of the number of the photons z of the standard
contour on the reciprocal value of the fine structure constant α.

merical value of α. In the same time, we can obtain the exact
numerical value of the charge from formula (1), by substitut-
ing α determined from the function b(α), Fig. 2.

Note that the validity of the suggested model is confirmed
by that significant fact that the quantity kT , which is the unit
of the work done by the structural unit of an ideal gas (this
quantity is also interpreted, in the theory of heat radiation, as
the energy of an elementary oscillator), is connected here with
the charge of the electron. A connexion between Planck’s
constant and the quantity kT was found, as is known, in al-
ready a century ago by Max Planck, through the formula of
the blackbody radiation. This formula is proportional to

1
λ

1
λ

1
λ
(
eC/λ − 1

) ,

where C is a constant. Taking all that has been obtained in our
study, we understand follows. The first term here manifests
the decrease of the intensity of the radiation with the increase
of the wavelength of the photon. The second term manifests
the decrease of the number of the photons per the unit of the
full length of the contour. The third term manifests the change
of the length of the contour itself, which reaches a contant
with the increase of λ thus the Planck formula transforms into
the Rayleigh-Jeans formula. With small numerical values of
λ, the contour compresses upto the size of the photon. This
gives an explanation to the decrease of the radiation power on
high frequencies.

In the end, it should be noted that the properties of the
charge are, of course, not limited by Wheeler’s model in its
mechanistic interpretation suggested here. Meanwhile, the
unexpected relation between the charge of the electron and
the molecular kinetic properties of the atoms and molecules
manifests additional connexions between the elementary par-
ticles and macro-particles, thus this fact needs to be more
studied in the future.

Submitted on July 24, 2010 / Accepted on August 17, 2010
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LETTERS TO PROGRESS IN PHYSICS

Scientific Community of Valentin N. Samoilov
(On the Occasion of His 65th Birthday Anniversary)

Dmitri Rabounski
E-mail: rabounski@ptep-online.com

In this letter we celebrate the 65th birthday anniversary of Prof. Valentin N. Samoilov,
a man of the Soviet scientific ancestry in the nuclear and space research, who is a pupil
and follower of the famous Soviet engineer Sergey P. Korolev and the prominent Soviet
nuclear physicist Michael G. Mescheryakov.

Prof. Valentin N. Samoilov. The back wall of his cabinet is cur-
tained with photo portrait of Michael G. Mescheryakov.

On behalf of the Editorial Board of Progress in Physics, in
April 25, 2010, I am pleased to celebrate the 65th birthday an-
niversary of Professor Valentin Nikolaevich Samoilov, ScD,
Director of Scientific Centre of Applied Research, Joint Insti-
tute for Nuclear Research (JINR), Dubna, Russia. His more
than 45 years of the successful work on science rose from that
fact that he started his scientific activity being of a pupil of
two famous persons of the Soviet scientific ancestry: Sergey
P. Korolev, the engineer and rocket designer who headed the
pioneering cosmic flights in the USSR, and Prof. Michail G.
Mescheryakov, the nuclear physicist an close co-labour of

Igor V. Kurchatov in the construction and launch of the first
cyclotronic accelerator of particles in Leningrad, 1938–1940.
According to the testament of his teachers, Prof. Samolilov
spends his life in scentific research. He is still full of energy
and creative scentific ideas until the present day.

In the row of Prof. Samoilov’s scientific achievements,
which are many, I would like to emphasize four fundamental
discoveries in physics of solids and particles he did in com-
mon with Dr. Vahan N. Minasyan (reportas about these were
published recently in Progress in Physics [4–7]). In these pa-
pers, they presented a new and very original approach to in-
vestigation of the excitation processes of electromagnetic sur-
face shape resonances in lamellar metallic gratings by light,
from the visible to near-infrared scale, based on the surface
plasmon–polaritons, where they first argued that the smooth
metal-air interface should be regarded as a distinct dielec-
tric medium, the skin of the metal. They predicted the ex-
istence of light quasi-particles bearing spin equal to 1, and
a finite effective mass m = 2.5×10−5 me (where me is the
mass of the electron); these light quasi-particles should excite
two type surface polaritons in the nanoholes in metal films.
They also found, theoretically, that a transverse electromag-
netic field should exist being formed by supersonic longitu-
dinal and transverse waves in solids which acquire the fre-
quency and the speed of sound. According to their theory, the
transverse electromagnetic field should propagate along the
direction the forming supersonic wave travels. In this con-
text, another very interesting result obained in the paper [6]
should also be noted: there they first proved that the property
of the lambda-point of superliquid helium is determined by
registering the single neutron modes or neutron pair modes in
the neutron-spectrometer.

In addition to his scientific research, Prof. Valentin N.
Samoilov is known as a successful organizer of science, and
also as a designer of the space flight complexes and their
segregate components. He was granted by the honorary title
Merit Creator of Cosmical Techniques (2006) and by the in-
ternational order Tsciolkovski Star (2002). He also was con-
ferred with the order Beneficence, Honor and Glory (2006),
Tsiolkovski Medal (2004), and Korolev Medal (2005). Due to
his activity in astro-biology research, in 2005 he was elected
to the International Academy of Information, Communica-
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tion, Control, in Engineering, Nature, and Society (Pasadena,
California, USA). Aside for these, during the last 15 years
Prof. Samoilov governs numerous common scientific projects
on the nuclear safety between JINR and DOE, which include
close communications with the US National Laboratories
such as BNL, SNL and PNNL. Also, during the last 20 years
he governs communications between JINR and European Sci-
entific Nuclear Research Centre in Geneva (CERN), in the
framework of the scientific projects LHC, CMS, ATLAS,
COMPASS, and CLIC. By governing of him, a joint scien-
tific community is working amongst JINR, Institute of Par-
ticle and Nuclear Studies, and High Energy Accelerator Re-
search Organization (Japan). Due to his international activ-
ity, connecting research scientists throughout the world, Prof.
Samoilov was conferred with Order of People Friendship
which was decorated upon him in 2006 by Vladimir V. Putin,
President of Russia.

Prof. Valentin N. Samoilov authored two scientific mono-
graphs, Technology Modeling of the Complicated Processes
[1] and Theoretical Informational Analysis of the Compli-
cated Systems [2], and co-authored seven other scientific
books. During his long term and successful scientific carrier,
he also authored about 300 scientific publications, 20 regis-
tered inventions certified by patents, and 30 software applica-
tion [3]. For several of these achievements, he was confered
wth A. S. Popov Silver Medal (2006).

The decades of distinguished leadership and mutual co-
operation in the field of nuclear material protection control
and accountability between Russia and the USA are greatly
recognized as his contribution to the global security. In the
present time, Prof. Valentin N. Samoilov is still engaged for
the nuclear and cosmic safety as an experienced veteran of
the atomic industry.

I would like to wish Prof. Samoilov for long life and suc-
cess in the future.

Submitted on April 29, 2010 / Accepted on April 30, 2010
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LETTERS TO PROGRESS IN PHYSICS

Nikias Stavroulakis (1921–2009). In Memoriam

Ioannis M. Roussos
Dept. of Mathematics, Hamline University, 1536 Hewitt Avenue, Saint Paul, Minnesota 55104-1284, USA

E-mail: iroussos@gw.hamline.edu

This paper was written by Dr. Ioannis M. Roussos, Professor of Mathematics, Ham-
line University at Saint Paul, Minnesota, in honor and memoriam of the late Dr. Nikias
Stavroulakis, Professor of Mathematical Physics. The included information is partic-
ularly based on the publications of the late professor, and was particularly collected
through the various types of communication (personal visits with lengthy and exten-
sive discussions, professional meetings, letters, telephone-calls, words of relatives and
friends, etc.) Dr. Roussos had with and about him in the last 14 years. Dr. Roussos
first met Dr. Stavroulakis in the 3rd Panhellenic Congress of Geometry, University of
Athens, Greece, May 1996, and they became friends ever since.

Prof. Nikias Stavroulakis, Limoges, France, 1980.

Nikias Stavroulakis was born at the village Thronos Rethym-
nes of the Island of Crete, Greece, on October 2, 1921. In
1938 he finished high school (Lyceum) and then entered the
National Technical University (E. M. Polytechnion), Athens,
Greece, where he studied Civil Engineering.

Although World War II interrupted the smooth course of
his studies, destroyed his country, and he escaped execution
by the Nazis on account of their defeat and hasty retreat for
a time-span of just a few days, he managed to continue his
studies after the war was over, in 1945. He graduated from the
National Technical University (E. M. Polytechnion), Athens,
Greece, in 1947.

During the years 1949–1963 he worked as a civil engi-
neer in Greece. His work, as civil engineer, was done under
extremely trying and bad conditions, civil war, imprisonment,
great difficulties and political turmoil, struggle and pressure.

The year 1963, he was released from a Greek prison in
which he was kept because of ideological believes and po-

litical reasons, and went to Paris, France, to pursue gradu-
ate studies in mathematics. He eventually received Doctorat
d’Etat from Faculté des Sciences of Paris in 1969. His advi-
sor was the famous professor Charles Ehresmann. His disser-
tation was entitled Substructure of Differentiable Manifolds
and Riemannian Spaces with Singularities.

Then, he was immediately hired as a professor of math-
ematics by the University of Limoges, France, from which
he retired the year 1990. On his retirement he returned to
Athens, Greece, where he mainly stayed and continued his
research until the end of his life.

He is the author of numerous papers related to the sub-
jects of: Geometry, algebraic topology, differential geometry,
optimization problems, mathematical physics and general rel-
ativity. His scientific work and contributions were recognized
internationally from the beginning.

Although he had retired for several years, he continued
his scientific and mathematical research up to the end of his
life in December 2009 at the ages of 88. His main purpose
was to restore the theory of gravitational field by pointing
out the misunderstandings and correcting the mathematical
errors committed by relativists since the inception of general
relativity and thus rejecting them right from the beginning of
his carrier.

Unfortunately he died on the 20th of December 2009, due
a chronic aneurism in the abdominal area. At that time he was
working on several papers, but his untimely death left them
unfinished. As he had told me, among other things, he was
planning to write a few things about the use of the polar coor-
dinates beyond those he had already exposed in his already
published papers, write some expository papers and above
all to finish especially the important paper On the Filed of
a Spherical Charged Pulsating Distribution of Matter, which
will appear (as he left it unfinished), as his sixth publication
in the journal Progress in Physics. He will be greatly missed
from his friends and scientific collaborators.
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Nikias Stavroulakis at the age of 4
years, outside his house at the village
Thronos, Crete, Greece, 1925.

Nikias Stavroulakis (center, 6th from the left in the middle row), with his classmates and
teachers of the last grade of Lyceum of Rethymno, Crete, Greece, 1938.

Nikias Stavroulakis and Salomi in their wedding, Athens, Greece, 1958. Prof. Nikias Stavroulakis on the 10th International
Conference on General Relativity and Gravitation
in Padova, Italy, July 4–9, 1983.
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He was married to Salomi, who died four years earlier,
with whom he had a daughter, Eleni.

Besides being a great, well published, voluminous and
original scientist, Nikias Stavroulakis was always the polite
man of principle and humility; seeking the truth and never
being afraid to say “we do not know yet”, when something
was unknown, elusive or simply surmised.

Dr. Nikias Stavroulakis was Professor at Université de
Limoges, Département de Mathématique, France, and Mem-
ber of Faculté des Sciences de Limoges, U. E. R. des Sciences
de Limoges and then Emeritus during his time of research
in relativity and gravitation. He made an extensive and ad-
vanced contribution in:

1) the Birkhoff theorem in General Relativity;
2) the indiscriminate use of the polar coordinates, before

knowing what the manifold in which we work is;
3) the static and dynamical field of a pulsating spherical

mass;
4) the theory of black holes and the Big Bang theory.
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