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A New Theoretical Derivation of the Fine Structure Constant

Eckart Schönfeld∗ and Peter Wilde†
∗Physikalisch Technische Bundesanstalt (PTB) Braunschweig (retired), Kritzower Straße 4, 19412 Weberin, Germany.

†University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany. E-mail: Peter.Wilde@TU-Ilmenau.de

The present paper is devoted to a new derivation of the expression given already earlier
for the fine structure constant α. This expression is exactly the same as that what we
published several times since 1986. The equation 1/α= π4

√
2 mqm/m0 (m0 being the

rest mass of the electron and mqm the quantum-mechanical fraction of it) is precisely
confirmed. The new derivation is based on relations for the energy density in the inte-
rior of a macroscopically resting electron within the framework of our standing wave
model. This model is strongly supported by the present investigation. Two equations
for the energy density inside of an electron were set equal, one of them is taken from
classical electrodynamics, the other uses relations from quantum mechanics, special
relativity theory and four-dimensional space. As the final theoretical equation for the
fine structure constant is unchanged, the numerical value as published in 2008 is still
maintained: 1/α= 137.035 999 252.

1 Introduction

In the fine structure constant α= e2/~c the constants of the
electron charge e, Planck’s constant h and the light veloc-
ity c are flowing together. These fundamental constants play
a leading role in electrodynamics (ED), quantum mechanics
(QM) and special relativity theory (SRT). Pauli [1] has called
the explanation of the fine structure constant one of the most
important problems of modern atomic physics. Mac Gregor
1971 [2] discussed α as an universal scaling factor. Here we
present a new derivation for the fine structure constant ob-
tained by equalizing two expressions for the energy density of
the electromagnetic field inside the electron. One of these re-
lations is based on ED, the other one is based on QM and SRT.
In our opinion the new derivation is extraordinarily beautiful,
simple and elegant.

We have developed a model of a macroscopically resting
extended electron, called standing wave model. This model is
based on the assumption that there is an internal energy flux
along a closed curve of everywhere the same curvature. The
energy flux takes place with velocity of light and is located on
the surface of a sphere with radius rm. The curve is denoted as
spherical loop. It has an arc length 4πρm, where ρm = rm/

√
2

is its radius of curvature and it consists of four semi circles.
The internal motion produces the spin, magnetic moment and
the electromagnetic field of the electron. In a set of publica-
tions [3–5] the authors have reported about these subjects.

Moreover, a study of the internal energy transport allowed
us to derive a relation for the fine structure constant by in-
vestigating longitudinal and transversal standing waves inside
of the electron. Here a new explanation of the fine structure
constant is presented, also based on the standing wave model
of the macroscopically resting electron but following a way
which is essentially new.

We are convinced the new way of deriving α is of peculiar
interest in understanding the structure of elementary particles.

Therefore, we would like to open a discussion about our ideas
and procedures.

2 Energy density based on electrodynamics

From classical electrodynamics applied to our standing wave
model we were able to calculate the energy contributions of
the electromagnetic field to the self-energy of an electron in
the whole space. The energy flux is located on the surface of
a sphere with the radius [5]

rm =
~

√
2mqmc

, (1)

where mqm denotes the quantum-mechanical fraction of the
rest mass m0 of the electron. Quantities which have a sub-
script m are related to the surface or the interior of a sphere
with radius rm and a subscript qm shall indicate that the cor-
responding quantity is related to quantum mechanics. Inside
the sphere there are a transversal electric field with a field
strength Et

m, and a magnetic field with a field strength Hm.
The absolute values of both field strengths are equal inside
the sphere of radius rm [5]:

e
r2

m
= |Et

m|= |Hm|. (2)

These fields are supposed to be homogeneous inside, i.e.
the magnitudes of the field strenghts do not depend on the
position. The volume of the sphere is given by

Vm =
4
3
πr3

m. (3)

The energy densities of the electric and magnetic fields
can be taken from the field strength squares [6]:

uE =
1

8π
|Et

m|2 (4)

Eckart Schönfeld and Peter Wilde. A New Theoretical Derivation of the Fine Structure Constant 3
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uH =
1

8π
|Hm|2. (5)

The total energy density us of the electromagnetic field
inside the electron is

us = uE + uH =
2

8π
e2

r4
m
. (6)

By integration over the sphere and using eq. (1) as well as
the definition of the fine structure constant, the corresponding
field energy is obtained

Ws =
2

8π

∫ rm

0

∫ π
0

∫ 2π

0

e2

r4
m

r2 sinφ dθ dφ dr

=
2
3

e2

2rm
=

2
3
α
√

2
mqmc2.

(7)

The subscript s shall indicate that the corresponding quan-
tities are related to the standing wave model.

3 Energy density based on QM, SRT and four dimen-
sional space

We start from the three dimensional surface S qm = 2π2R3 of a
four dimensional sphere (cf Schmutzer 1958 [7]). Choosing
for the radius R= πrm there follows

S qm = 2π5r3
m. (8)

The zero point energy inside this sphere is given by

Wqm =
1
2
~ω0, (9)

where ω0 is the lowest possible, positive eigen frequency of
the corresponding basic harmonic oscillator. According to
the standing wave model this harmonic oscillator describes
the electron. From the de Broglie relation

E = ~ω0 = m0c2 (10)

there follows
Wqm =

1
2

m0c2, (11)

and the energy density can be obtained from (8) and (11)

uqm =
Wqm

S qm
=

m0c2

4π5r3
m
. (12)

4 Fine structure constant

A calculation of the values of us and uqm show that they are
very close to each other. This stimulated us to set

us = uqm. (13)

Indeed, using (1), (6) and (12), we obtain

us = uqm ⇔
e2

~c
=

1
√

2π4

m0

mqm
. (14)

Now, using the definition of the fine structure constant,
for the inverse of it there follows immediately

1
α
= π4

√
2

mqm

m0
, (15)

where m0 denotes the rest mass of the electron and mqm its
quantum-mechanical fraction. Just the same relation has been
found earlier in an other way [3–5]. There, we have shown
that both, m0 and mqm, are depending on α. Solving equation
(15) the latest theoretical value of the inverse fine structure
constant is [5]

1
α
= 137.035 999 252. (16)

This value has to be compared with the semi experimental
value 137.035 999 084(51) obtained by combining theory and
experiment of the anomalous magnetic moment of the elec-
tron [8], as well as with the value 137.035 999 074(44),which
is the latest CODATA value [9] from 2010. Furthermore, the
ratio m0/mqm is obtained to be

m0

mqm
= 1.005 263 277. (17)

If we replace (as an alternative) m0 in (11) by mqm and
simultaneously e2 in (6) by e2

i (ei is the intrinsic or bare charge
of the electron) then we have exactly the wonderful relation

~c
e2

i

= π4
√

2 = 137.757 257... (18)

The equations (15) and (18) are identical if

m0

mqm
=

e2

e2
i

. (19)

5 Discussion and conclusions

The numerical value of the fine-structure constant α was of-
ten denoted to be a mystery, a magic number and an enigma.
A lot of more or less obscure relations have been published
with the aim to understand the origin, theoretical background
and the numerical value of the fine structure constant, see for
example the comprehensive compilation of Kragh 2003 [10].
Why a derivation like the present one has not been carried
out earlier? Probably it was the lack of an accurate model of
an extended electron. No such model was available, see for
example Mac Gregor 1992 [11]. We are convinced that with-
out an understanding of the geometry and inner dynamics of
the electron, a consistent understanding of the fine structure
constant will not be possible. The simplicity of the present
explanation of the fine structure constant is really surprising.
Nevertheless, a more detailed discussion and interpretation
of the roots of the fine structure constant would be very de-
sirable. So far it concerns the history it should be remarked
that already König 1951 [12] found as a byproduct in a rather
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complicated argumentation the same expression for α as we
found here but without the factor mqm/m0. A difference be-
tween the theoretical and the experimental value of 0.53 %
might be the reason that his paper, entitled “An electromag-
netic wave picture of micro processes”, have found very little
attention.

We do not intend to give here a comprehensive discussion
of the many aspects which are coupled with the fine structure
constant. Several essays have been published devoted to to
different aspects (Bahcall and Schmidt 1967 [13] (variation
of α with time), Jehle 1972 [14] and 1977 [15] (flux quanti-
zation, loops, general discussion), Wilczek 2007 [16] (fun-
damental constants), Jordan 1939 [17] (cosmological con-
stancy), Peik et al 2004 [18] (temporal limit), Dehnen et al.
1961 [19] (independence on gravitation field), Srianand et
al. 2004 [20] (limits on time variation), Schönfeld 1996 [21]
(self-energy analysis, see also [3–5])). We would like to re-
mark and underline only two aspects of the present results:
one is the exponent four at π which is obviously connected to
the four dimensions of our world, the other is that the present
result supports strongly the independence of the fine structure
constant on time and space, i.e. expresses the cosmological
constancy of alpha which was studied by theory and experi-
ment in the last time. Naturally an experiment can give only
an upper limit of time or position variation, compare [17–20].
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Redshift Adjustment to the Distance Modulus

Yuri Heymann
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The distance modulus is derived from the logarithm of the ratio of observed fluxes of
astronomical objects. The observed fluxes need to be corrected for the redshift as the
ratio of observed to the emitted energy flux is proportional to the wavelength ratio of
the emitted to observed light according to Planck’s law for the energy of the photon. By
introducing this redshift adjustment to the distance modulus, we find out that the appar-
ent “acceleration” of the expansion of the Universe that was obtained from observations
of supernovae cancels out.

1 Introduction

In the present study a redshift adjustment to the distance mod-
ulus was introduced. The rationale is that the observed fluxes
of astronomical objects with respect to the emitting body are
being reduced by the effect of redshift. According to Planck’s
law, the energy of the photon is inversely proportional to the
wavelength of light; therefore, the ratio of observed to emitted
fluxes should be multiplied by the wavelength ratio of emitted
to observed light.

2 Model development

Below is shown the derivation of the redshift adjusted dis-
tance modulus.

Let us recall the derivation of the distance modulus. The
magnitude as defined by Pogson [1] is:

m = −2.5 log F + K, (1)

where m is the magnitude, F the flux or brightness of the light
source, and K a constant. The absolute magnitude is defined
as the apparent magnitude measured at 10 parsecs from the
source.

By definition, the brightness is a measure of the energy
flux from an astronomical object and depends on distance.
Therefore, a redshift correction to the flux is derived from
Planck’s law for the energy of the photon

E =
h · c
λ
, (2)

where E is the energy of the photon, h the Planck’s constant,
and λ the light wavelength.

The ratio of observed to emitted energy flux is derived
from eq. (2), leading to

Eobs

Eemit
=
λemit

λobs
=

1
1 + z

, (3)

where Eobs and Eemit are respectively the observed and emit-
ted energy fluxes, λobs and λemit are respectively the observed
and emitted light wavelengths, and z the redshift.

As light is emitted from a source, it is spread out uni-
formly over a sphere of area 4πd2. Excluding the redshift ef-
fect, the brightness – expressed in units of energy per time and
surface area – diminishes with a relationship proportional to
the inverse of square distance from the source of light. There-
fore, taking into account the redshift effect, the following re-
lationship is obtained for the brightness:

Fobs ∝
Lemit

d2 ·
Eobs

Eemit
, (4)

where Lemit is the emitted luminosity, and d the distance to
the source of light.

Combining eq. (1), (3) and (4), we obtain

m = −2.5 log
(

Lemit

d2 · (1 + z)

)
+ K. (5)

And, because z is close to zero at 10 Parsec:

M = −2.5 log
(Lemit

100

)
+ K, (6)

where M is the absolute magnitude.
Hence, the redshift adjusted distance modulus, eq. (5) mi-

nus eq. (6) is:

m − M = −5 + 5 log d + 2.5 log(1 + z) (7)

with d in parsec, and log is the logarithm in base 10.

3 Discussion

In the present study the distance modulus was adjusted to take
into account the effect of redshifts on the observed fluxes of
astronomical objects. Evidence of an ”accelerating” Universe
expansion was established based on the observation of su-
pernovae [2]. This result was obtained by detecting a de-
viation from linearity on the distance modulus versus red-
shift plot in log scale for supernovae. In order to account
for the redshift adjustment, the adjusted distance modulus
m − M − 2.5log(1 + z) should be plotted againt redshifts for
the supernovae. A deviation of m − M of about +0.5 mag-
nitude was obtained at redshift 0.6. The redshift adjustment

6 Yuri Heymann. Redshift Adjustment to the Distance Modulus
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2.5log(1+z) is roughly equal to this deviation. By introducing
the redshift adjusted distance modulus eq. (7) this deviation
cancels out, and one may no longer conclude that the expan-
sion of the Universe is accelerating.
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This brief paper traces comments on the article [2]. This article, a preprint, has recently
received an attention, raising errors related to the timing process within the OPERA
Collaboration results in [1], that turns out to be a wrong route by which serious science
should not be accomplished. A peer-reviewed status should be previously considered to
assert that [2] claims a solution for the superluminal results in [1]. Within [2], it seems
there is an intrinsical misconception within its claimed solution, since an intrinsical
proper time reasoning leads to the assumption the OPERA collaboration interprets a
time variation as a proper time when correcting time intervals between a GPS frame
and the grounded baseline frame. Furthermore, the author of [2] seems to double radio
signals, doubling the alleged half of the truly observed time of flight, since the Lorentz
transformations do consider radio signals intrinsically by construction.

1 An intrinsical proper time reasoning? A misconcep-
tion from the OPERA collaboration, or from the au-
thor of [2]? What is actually observed, τclock/γ?

The author of the article [2]∗ used, ab initio, the designation:
from the perspective of the clock... Within the approach used
by the author, via special relativity, the GPS frame of refer-
ence must use two distinct but synchronized clocks to tag the
instants at A and B. The eq. (2) in [2] was, intrinsically, ob-
tained via the Lorentz transformations for the neutrino events
of departure from A and arrival to B, but this was not clearly
specified within [2], being the construction of the Eq. (2)
in [2] crudely accomplished under what would be being seen
from the perspective of the clock, in the author of [2] words:

• From the perspective of the clock the detector at B
moves towards location A at a speed v. And we find
that the foton will reach the detector when the sum
of the distances covered by the detector and the foton
equals the original separation...; [2].

This reasoning, ab initio, leads, as it very seems, to an in-
trinsical proper time reasoning under the perspective of what
was being seen, locally, by the satellite at its very location.
Let (xA, tA) and (xB, tB) be the spacetime events of departure
and arrival of the neutrino in the baseline reference frame K,
respectively. The time interval spent by the neutrino to ac-
complish the travel in the [2] GPS reference frame K′ is:

δt′ =
(
1 − v2/c2

)−1/2
[
(tB − tA) − v

c2 (xB − xA)
]
, (1)

in virtue of the canonical Lorentz transformation for time in
K′ as a function of the spacetime coordinates in K, where v
is the assumed boost of K′ in relation to K in the baseline

∗The comments we raise here are related to the first version of [2], v1,
uploaded to arXiv. Recently, the author uploaded an updated version, but
the misconceptions seem to persist. The root of the arguments within [2] to
obtain the alleged 64 ns seems to be flawed ab initio.

direction AB, c the speed of light in the empty space. With
δt = tB− tA, δx = xB− xA = S baseline, δx = vνδt, where vν is the
neutrino velocity along the AB direction, the eq. (1) reads:

δt′ =
(
1 − v2/c2

)−1/2
S baseline

(
1
vν
− v

c2

)
. (2)

With vν = c, γ =
√

1 − v2/c2, δt′ !
= τclock, as defined

in [2], the eq. (2) here becomes the eq. (2) in [2]:

τclock =
γS baseline

c + v
⇒ cτclock + vτclock = γS baseline. (3)

But:
• δt′ !

= τclock is not a proper time (it is a time interval
measured by distinct clocks at different spatial posi-
tions in K′); hence: why would the OPERA collabo-
ration correct δt′ !

= τclock via δt = δt′/γ, as claimed via
the eq. (5) in [2]?
• Such correction would be plausible if the events of de-

parture and arrival of the neutrino had the same spatial
coordinate x′A = x′B in the GPS K′ frame of reference,
but it is not the case.

Hence, as asserted before, the claimed solution supposes
an intrinsical proper time reasoning, but there is no reason for
this, since the δt′ is not a proper time. Thus, the claimed so-
lution turns out to be constructed on an erroneous correction.
The correction that should be done by the OPERA Collab-
oration, if the [2] GPS reference frame was to be taken in
consideration, would read:

δt =
(
1 − v2/c2

)−1/2
[(

t′B − t′A
)
+
v

c2

(
x′B − x′A

)]
, (4)

and this correction would read: δt = δt′/γ, with the γ =√
1 − v2/c2 defined in [2], if and only if : x′B − x′A = 0, but

it is not the case.
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Furthermore, I would like to assert that, related to the K′

reference frame, the frame taken by the author of [2] to ex-
plain the relevance of the GPS reference frame in terms of
special relativity: the radio signals turn out to be irrelevant
to be taken into consideration once the clocks within K′ are
synchronized, viz., the Lorentz transformations for events do
consider radio signals intrinsically under the synchronization
of clocks in a given reference frame. This said, the factor 2
the author uses to reach 64 ns seems misconcepted. Remem-
bering, the τclock is the time interval in K′, it is not a proper
time interval, and this time interval totally accounts for the
entire process of emission and detection of the neutrino at A
and B, respectively, departure and arrival, from which there
are not two corrections to be accomplished at the points A
and B related to radio signals. The radio signals related to the
events at A and B in the GPS reference frame in [2], K′, were
taken into consideration ab initio, in [2], since the clocks at A
and B in this reference frame tagging the events of departure
and arrival were previously synchronized by the very radio
signals the author of [2] refers at the end of his article, due
to the intrinsical use of the Lorentz transformations, ab ini-
tio, within the eq. (2) in [2], albeit the author of [2] had not
written down his eq. (2) in [2] under a Lorentzian reasoning.
Hence, once the Lorentz transformations provided the τclock,
the radio signals should not be considered twice.

I would like to furtherly comment the root of misconcep-
tions, by which the author of [2] seems to have carried his
reasonings to raise his arguments. Related to my previous
comments, as asseverated before (see footnote 1), these ones
are related to the first version of the mentioned article up-
loaded to arXiv. The author uploaded an updated version, but
the root of misconceptions persists within his primordial rea-
soning related to the Lorentz transformations. It very seems
the author had in mind that the time interval to be corrected
δt′ = τclock (here, we continue to consider the notations within
the first version of [2], since there are not substantial modifi-
cations throughout the updated version to avoid the criticisms
raised) was a proper interval. Constructing his arguments,
the author refers to what is observed in the satellite reference
frame. Suppose, following the author of [2] reasonings, the
satellite sends a radio signal to the event at A to see the de-
parture of the neutrino when this radio signal is sent back to
the satellite. Be t′ES A (E denotes emission, S denotes satellite,
and A denotes the location of the CERN at the instant, read in
the satellite local clock, the neutrino starts the travel to Gran
Sasso) the instant this signal is sent to reach the event of the
neutrino departure; t′RS A (R detotes reception) the instant the
signal comes back to the satellite, read in the satellite local
clock. These instants are related by:

t′RS A = t′ES A + 2d′S A(t′A)/c, (5)

where d′S A(t′A) is the distance between the satellite and the
CERN location at A, at the instant the signal (radio signal)
reaches A, viz., d′S A(t′A) is the distance between the satellite

and the CERN location at A at the instant t′A the neutrino is
sent to Gran Sasso in the satellite frame. Analogous reasoning
related to the neutrino arrival at Gran Sasso, at B, leads to:

t′RS B = t′ES B + 2d′S B(t′B)/c, (6)

where d′S B(t′B) is the distance between the satellite and the
Gran Sasso location at B, at the instant another signal previ-
ously sent by the satellite at instant t′ES B read in the satellite
local clock (another radio signal) reaches B, viz., d′S B(t′B) is
the distance between the satellite and the Gran Sasso location
at B at the instant t′B the neutrino arrives to Gran Sasso in the
satellite frame. The instants t′A and t′B are respectively given
by:

t′A =
t′ES A + t′RS A

2
, (7)

and:

t′B =
t′ES B + t′RS B

2
. (8)

From these relations, the proper time interval between the
instants the satellite sees the events of departure and arrival,
t′RS B − t′RS A, is given by:

t′RS B − t′RS A = t′B − t′A +
d′S B(t′B)

c
−

d′S A(t′A)
c
, (9)

therefore, since t′B − t′A = δt
′ = τclock, see my previous com-

ments:

τclock = t′RS B − t′RS A −
(

d′S B(t′B)
c

−
d′S A(t′A)

c

)
, (10)

from which: τclock does take into consideration the radio sig-
nals travelling, encapsulated within the time intervals within:

τsignals =
d′S B(t′B)

c
−

d′S A(t′A)
c
. (11)

The problem within the reasonings of the author of [2]
seems to be this author was thinking that τclock would be the
proper interval related to what was being seen by the satel-
lite, t′RS B − t′RS A. Hence, at the end of his article, this au-
thor applies a correction related to radio signals to account
for the time interval t′B − t′A, but this process was already done
when the author obtained δt′ = t′B − t′A, viz., as said before
within my previous comments, the Lorentz transformations
have got radio signals intrinsically, by construction, to deal
with events in spacetime. Thus, when the author of [2] ap-
plies the factor 2, this author seems to erroneously account
for radio signals twice, and the factor 2 seems misconcepted.
Even if the OPERA Collaboration had done the correction the
author of [2] refers to, such discrepancy would be 32 ns, but
not this value twice. The factor 2 seems to have not got logi-
cal explanation within the [2] reasoning, mostly being putted
a fortiori.
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2 Conclusions

Respectfully, the reasoning that led the author of [2] to the
factor 2 is not clear. I think this reasoning should be putted
under a fairly crystalline terms, as far as possible, in virtue
of the importance given to this article, in virtue of the impor-
tance given to the subject. Furthermore, what would be being
observed, δt′/γ (this gamma is the original one used by the
author of [2]), or this value twice? Why does not the author
of [2] provide spacetime diagrams showing the process re-
lated to the radio signals that doubles the alleged half of the
truly observed time of flight?

Concluding, it seems unlikely that the OPERA collabora-
tion has misinterpreted a GPS time interval within the terms
of [2].
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Spooky Action at a Distance or Action at a Spooky Distance?

Sebastiano Tosto
Italy. E-mail: stosto@inwind.it

The paper demonstrates that the non-locality and non-reality of the quantum world are
direct consequences of the concept of uncertainty. It is also shown that the analysis of
states in the phase space entails the operator formalism of wave mechanics. While being
well known that the uncertainty principle is a consequence of the commutation rules of
operators, the paper shows that the reverse path is also possible; i.e. the uncertainty
equations entails themselves the operators and wave equations of energy and momen-
tum. The same theoretical approach has been eventually extended to infer significant
results of the special relativity.

1 Introduction

Einstein never liked the weirdness and the conceptual limit
of the quantum mechanics due to its probabilistic character;
for instance, he disliked the incomplete knowledge about po-
sition and momentum of a particle, about all components of
angular momentum and so forth. Paradoxically, just his the-
ory of the specific heat and its explanation of the photoelec-
tric effect were the strongest support to the energy quanti-
zation early introduced by Plank to explain the black body
radiation. In fact to the quantum theory we owe not only
the ability to explain weird experimental data, e.g. the dual
wave/particle behavior of matter and the tunnel effect, but
also important discoveries like the laser, the transistor and
the superconductivity. Further experimental evidences recen-
tly obtained compelled however accepting besides its weird
character other aspects even more counterintuitive of quan-
tum behavior. Mostly important are in this respect the non-
localism and non-realism: according to the former, exchange
of information is allowed even between particles separated by
a superluminal distance; according to the latter, the experi-
mental measurements do not reveal preexisting properties of
particles but concur to define themselves the measured pro-
perties. The EPR gedanken experiment [1] tried to overcome
the conceptual incompleteness of quantum mechanics by hy-
pothesizing “hidden variables” in the wave function, i.e. va-
riables not accessible to experimental evidence but able to
improve our extent of knowledge and to overcome the diffi-
culty of a “spooky action at a distance” between correlated
couples of particles. Yet, several experiments were able to
exclude the existence of hidden variables while demonstra-
ting instead non-local effects [2, 3]. The theoretical apparatus
of quantum mechanics acknowledges the non-local behavior
of the quantum particles through the concept of entanglement
[4, 5]. This term was early introduced by Schrodinger [6] to
describe the possibility of correlating quantum systems even
though spatially separated; the most controversial point con-
cerns of course the difficulty arising from the requirements of
relativity. Even today the concept of entanglement has dif-
ferent interpretations: the most acknowledged point of view

is the quantum superposition of states, according which two
correlated particles share a single quantum state until a mea-
surement is carried out. The quantum mechanics is founded
on a set of mathematical rules, which however do not incor-
porate themselves since the beginning the non-locality and
non-reality in its fundamental conceptual structure, in order
to include and rationalize per se these effects. For this rea-
son the EPR paper appears legitimate from a rational point of
view, although in fact wrong from a physical point of view;
indeed a separate theoretical tool, the Bell inequality [7], was
necessary to evidence the inconsistency of the EPR attempt
[8, 9]: the predictions of local realism on which is based the
Bell inequality conflict with the results obtained in various
experiments, e.g. [10, 11, 12]. It is worth noticing that no the-
oretical foundation of the wave mechanics can be considered
really general without containing inherently the non-realism
and non-localism of the quantum world. It is therefore inte-
resting to examine in this respect the approach followed in
previous papers [13, 14], where results consistent with that of
wave mechanics have been inferred exploiting the following
equations only

ΔxΔpx = n~ = ΔεΔt. (1,1)

The second equality is consequence of the first one de-
fining formally Δt = Δx/vx andΔε = Δpxvx, wherevx is
the average velocity with which any particle travels through
Δx; the equalities share the common numbern of allowed
states. The equations (1,1) do not require any assumption
about the ranges, about the motion of the particle and even
about its wave/corpuscle nature; this latter will be inferred
as a corollary in section 6. The present paper aims to con-
tribute some ideas about how to regard the non-locality and
non-reality uniquely according to eqs. (1,1). For reasons that
will be clear below, it is useful to introduce shortly in section
2 the way of exploiting these equations to infer the quantum
angular momentum; the remarks at the end of this section,
which has a preliminary worth, are essential to discuss sub-
sequently the weirdness of the quantum world. Although the
angular momentum has been already introduced in [13], its
elucidation is so straightforward and elementary that it deser-
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ves being shortly sketched here; in doing so, indeed, it in-
troduces reference concepts that will be further developed in
the following sections 3 and 4 that concern the non-reality
and non-locality. Eventually, the connection between quan-
tum theory and special relativity is also sketched in sections 5
and 7; the link between eqs. (1,1) and the operator formalism
of wave mechanics is discussed in section 6.

2 The non-relativistic angular momentum

The non-relativistic quantization of the classical angular mo-
mentumM2 and of one of its componentsMw along an ar-
bitrary direction defined by the unit vectorw starts from the
classical scalarr × p ∙ w; herer is the radial distance of any
particle from the originO of an arbitrary reference systemR
andp its momentum. For instance, this could be the case of
an electron in the field of a nucleus centered inO. As intro-
duced in [15], the positions

r → Δr p → Δp (2,1)

enable the numberl of quantum states to be calculated as
a function of the rangesΔr and Δp of all local distances
and momenta physically allowed to the particle. These ran-
ges only, and not the random local valuesr andp themsel-
ves, are considered in the following. The first step yields
Mw = (Δr × Δp) ∙ w = (w × Δr ) ∙ Δp and soMw = ΔI ∙ Δp,
whereΔI = w × Δr . If Δp andΔI are orthogonal, thenMw =

0; else, writingΔI ∙ Δp as (Δp ∙ ΔI/ΔI )ΔI with ΔI = |ΔI |,
the component±ΔpI = Δp ∙ ΔI/ΔI of Δp alongΔI yields
Mw = ±ΔIΔpI . In turn this latter equation yields according to
eqs. (1,1)Mw = ±l~, beingl the usual notation for the number
of states of the angular momentum;l is positive integer inclu-
ding zero. As expected,Mw is not a single valued function be-
cause of the uncertainties initially postulated forr andp. One
component ofM only, e.g. along thez-axis, is knowable; re-
peating the same approach for they andx components would
trivially mean changingw. Just this conclusion suggests that
the average values< M2

x >, < M2
y > and< M2

z > should
be equal; so the quantity of physical interest to describe the
properties of quantum angular momentum isl, as a function
of which M2 is indeed inferred as well. Let us calculate these
average components over the possible states summing (l~)2

from −L to +L, whereL is an arbitrary maximum value ofl.
Being by definition< M2

i >=
∑li=L

li=−L (~l)2/(2L + 1), one finds

M2 =
∑3

i=1 < M2
i >= L(L + 1)~2. Note that the mere physi-

cal definition of angular momentum is enough to find quan-
tum results completely analogous to that of wave mechanics;
any local detail of motion, like that of electron “orbit” around
the nucleus, is utterly unnecessary. The quantization of the
classical values appears merely introducing the delocalisation
ranges into the definition of angular momentum and then ex-
ploiting eqs. (1,1). The reason of it is evident: after the steps
(2,1), the unique information available comes from the uncer-
tainty ranges of coordinates and momentum, rather than from

the local values of these latter; then the quantities thereafter
calculated concern the number of allowed states only, which
have in fact the same physical meaning of the quantum num-
ber defined by the solution of the pertinent wave equation.
An analogous approach shows that the non-relativistic hydro-
genlike energy levels depend on a further integern because
of the radial uncertainty equationΔpρΔρ = n~ of an electron
from the nucleus [13]; again, even without specifying any lo-
cal detail of motion, the numbers of statesl andn related to
the angular and radial uncertainties of the electron in the field
of nucleus correspond to the respective quantum numbers that
characterize the energy levels. This preliminary introduction
on how to exploit eqs. (1,1) was included in the present pa-
per to emphasize several points useful in the following, i.e.:
(i) the replacements (2,1) that allow to exploit eqs. (1,1) are
enough to plug the classical physical definitionr ×p of angu-
lar momentum into the quantum world; (ii) no hypothesis is
necessary about the geometrical properties of motion of the
particle nor about its wave/matter nature to infer the quantum
result; (iii) trivial algebraic manipulations replace the solu-
tion of the pertinent wave equation; (iv) the information in-
ferred through eqs. (1,1) only is fully consistent with that of
the wave mechanics; (v) the local momentum and distance
between the particles concerned in the “orbiting” system do
not play any role in determiningl; (vi) as found elsewhere,
[15, 17], the number of allowed states plays actually the role
of the quantum numbers of the operator formalism of wave
mechanics; (vii) the amount of information accessible for the
angular momentum is not complete like that expected in the
classical physics; (viii) eqs. (1,1) rule out “a priori” any pos-
sibility of “hidden variables” that could in principle enhance
our knowledge aboutMw and M2 in order to obtain a more
complete description of the orbiting quantum system.

It is worth mentioning that the validity of the point (i) has
been checked and extended in the papers [13, 14] also to more
complex quantum systems like many electron atoms/ions and
diatomic molecules. The fact that eqs. (1,1) efficiently re-
place the standard approach of wave mechanics has central
interest for the topics introduced in following sections, espe-
cially as concerns the very important point (viii). In principle
one could not exclude that the wave function, from which is
extracted all physical information allowed about the quantum
systems, could actually contain hidden variables; indeed this
chance, reasonably suspected in the famous EPR paper, has
been excluded later thanks to a separate theoretical tool only,
the Bell inequality. In the present approach, instead, the quan-
tization of angular momentum is more “transparent” in that it
explicitly displays variables and steps that lead to the quan-
tum result; in other words, the present approach excludes any
possibility of hidden variables because it works with actual
quantities inherent the mere definition of angular momentum
only. In conclusion the present section aimed mostly to en-
sure that sensible results are obtained regarding the uncer-
tainty as a fundamental principle of nature itself, rather than
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as a by-product of the operator formalism of wave mecha-
nics. It is necessary however to better understand eqs. (1,1).
To ascertain “a posteriori” that these equations work well has
no heuristic worth. Therefore, after having checked their va-
lidity, the remainder of the paper starts from a step behind
them, i.e. to highlight the more profound physical basis roo-
ted in the concept of space-time uncertainty.

3 Non-realism and non-localism of eqs. (1,1)

Let us introduce a reference systemR to define the ranges of
eqs. (1,1). In the simplest 1D case,R is represented by an ar-
bitrary axis where are defined two coordinatesxo andxt with
respect to an arbitrary originO: the former describes the po-
sition of the rangeΔx = xt − xo with respect toO, the latter
describes its size. The postulated arbitrariness of size makes
Δx consistent with the local coordinatexo in the limit case
xt → xo and with any other coordinate if is also allowed the
limit sizeΔx→ ∞. If neither boundary coordinate is time de-
pendent, then the section 2 and the papers [15, 16] show that
this is all we need to know to define an observable physical
property of the concerned quantum system: indeed, with the
help of an analogous reasoning for the momentum range, this
approach is enough to find the number of allowed states i.e.
the quantum numbers that define the eigenvalues of the obser-
vable. If insteadxo andxt are in general time dependent, then
Δx expands or shrinks as a function of time, while possibly
shifting with respect toO too, depending on how are mutu-
ally related the displacements ofxo andxt. Actually the paper
[15] shows that such a detailed information about how both
of them displace with respect toO is physically redundant; all
we need to know is the resultingΔẋ only. If Δx is an empty
range, the chance of displacement in principle possible forxo

andxt entails the presence of a force field withinΔx; in the
absence of a particle delocalized in it, however, this conclu-
sion has a self-contained worth only that concerns a property
of the the range itself inR. Instead consequences of physical
interest are expected when a free particle is possibly therein
delocalized; first of all because this presence requires itself
highlighting the physical meaning ofxo andxt to justify why
these boundary coordinates, although remaining in principle
completely arbitrary, can in fact include all values of dyna-
mical variables allowed to the particle. Assume for instance
two infinite potential barriers atxo and xt: if the size of the
delocalization range changes fromΔx1 toΔx2 during the time
rangeΔt = t2 − t1, it means that necessarily the properties of
the particle are affected duringΔt as well; at the timet1 the
particle was constrained bouncing withinΔx1 with average
frequencyν1 = vxΔx−1

1 , at the timet2 with average frequency
ν2 = v′xΔx−1

2 . The average displacement velocityvx of the
particle has been regarded different at the timest1 andt2 for
sake of generality; however this fact is not essential, since
Δx2 , Δx1 is enough to ensureν2 , ν1. Hence the defor-
mation ofΔx as a function of time entails changing average

displacement velocity, bouncing frequency of the particle and
thus its momentum as well. To draw such a conclusion two
essential elements have implemented the initial definition of
delocalization range: the presence of a particle and the size
change ofΔx. Since however no assumption has been made
about times and range sizes, nor aboutvx andv′x, these proper-
ties do not define themselves any state allowed to the particle;
nothing about arbitrary range sizes, frequencies and veloci-
ties can be related to an integer number. Despite the intuitive
fact that the particle dynamics has changed,n still appears
unexplainable. This conclusion is important because, for the
reasons introduced in section 2, justn entails the chance of
measuring a physical observable of the particle. Overcoming
this indeterminacy requires thus a further condition or cons-
traint onν1 andν2, e.g. on the change of energy or momen-
tum of the particle during the aforesaid time range. In effect,
this condition is a crucial step to allow the transition from
an unphysical “virtual” state towards an observable state: if
for instance to definen concur the values of momentum or
energy related toν1 andν2, then the sought number of sta-
tes should correspondingly represent just the allowed eigen-
values of momentum or energy of the particle. The fact that
a unique range is inadequate to definen, justifies reasonably
the idea of introducing a further range ancillary toΔx able
to represent inR the values of a second dynamical variable.
Apart from this intuitive conclusion, it is necessary to explain
why two arbitrary ranges of allowed dynamical variables are
necessary to define the sought observable state of the particle.
A reasonable idea is to examine the concept itself of measu-
rement process. It is known that this concept is replaced in
quantum mechanics by that of interaction, whose effect is to
perturb the early state of the particle under test. The dyna-
mical variables of the unperturbed free particle inR represent
the initial boundary condition as a function of which is deter-
mined the effect of the interaction between particle and ob-
server. Let the intensity of the local perturbation, whatever it
might be, depend in general on the current local position and
momentum of the particle; then the observer records an out-
come somehow related to the boundary condition describing
the particle before the measurement process. Since however
the initial dynamical variables were unknown, they remain
unpredictable and unknown after the measurement process as
well; any correlation between initial and final state of the par-
ticle is impossible, simply because the former is in fact un-
defined. Renouncing “a priori” to know the local values of
conjugate dynamical variables compels thus introducing ran-
ges of their allowed values. Despite the lack of information
about the sought correlation and kind of interaction, let us
show that even so the concept of measurement allows defi-
ning the number of states, which in fact makes actual the pro-
perties of the particles. Regard to this purpose the aforesaid
xo andxt respectively as coordinates of the particle before and
after the measurement process; in agreement with eqs. (1,1),
both are random, unknown and unpredictable, whereas du-
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ring the interaction even intermediate values are expected to
fall between these extremal boundaries. Considerations ana-
logous toxt− xo hold also for the conjugate momentum range
pt − po, whose boundary valuespo and pt are related to the
momentum of the particle before and after the measurement
process. Howeverxt − xo andpt − po, although fulfilling the
requirements of both measurement process and eqs. (1,1),
cannot be directly related themselves toΔx andΔpx; the for-
mer are indeed uncorrelated and thus still unable to justifyn,
the central aim of the present discussion. Let us introduce
thus the probabilitiesΠx andΠpx that the values of both dy-
namical variables change during the measurement process in
such a way that

xt − xo→ measurement→ Δx

pt − po→ measurement→ Δpx

where the usual notationsΔx andΔpx refer to ranges compli-
ant with eqs. (1,1). This suggests writing

Πx = Δx/(Δx+ Δx′), Πpx = Δpx/(Δpx + Δp′x), (3,1)

whereΔx′ andΔp′x are ancillary ranges consistent with the
conditionsΠx → 0 for Δx → 0 andΠx → 1 for Δx → ∞;
analogous considerations hold of course for the momentum
probability too. By definition thereforeΔx′ > 0 andΔp′x > 0,
in agreement with the idea that all ranges in the present model
are positive. The physical meaning ofΔx′ andΔp′x appears
noting that initially, i.e. before definingn, space delocaliza-
tion and momentum ranges are unrelated. Let us regard then
Δx+Δx′ = xt− xo andΔpx+Δp′x = pt− po as the unperturbed
early ranges, whose respective final sizes are justΔx andΔpx

of eqs. (1,1). So eqs. (3,1) concern the probability that the
particle is eventually inΔx resulting after the measurement
driven perturbation of the earlyΔx + Δx′, whereas an analo-
gous explanation holds of course forΠpx as well. The total
probabilityΠn = ΠxΠpx for space delocalization and momen-
tum ranges fulfilling eqs. (1,1) is thus

Πn = ΔxΔpx/(ΔxΔpx + ΔxΔp′x + ΔpxΔx′ + Δp′xΔx′). (3,2)

In eq. (3,2)Πn is expressed as a function ofΔx andΔpx

that will bring us to eqs. (1,1) although starting from initial
larger ranges still unrelated, whence the notation. First of all
note that eq. (3,2) requires (Δx/

√
Πn)(Δpx/

√
Πn) > Δx′Δp′x.

Since all ranges appearing in this inequality are arbitrary, the
left hand side can be shortly written asδxδpx whatever the
specific values ofΠx , 0 andΠpx , 0 might be; these last po-
sitions are straightforward consequences of the previous con-
siderations. Second, also note that the probability of quantum
interest is the square root

√
Πn =

√
ΠxΠpx of that defined

classically as ratio between favorable and total chances; this
point will be further concerned in section 6. Third, by defini-
tion the product of ranges at right hand side of the inequality

cannot be made equal to zero; this would contradict the con-
cept of uncertainty, which must hold for any ranges of any
size not simultaneously vanishing. Soδxδpx > 0 requires the
existence of a valueconst′ > 0 such that

δxδpx > const′ ⇒ δεδt > const′. (3,3)

The second equation is obtained from the first likewise
as in eqs. (1,1). This is in effect the uncertainty principle
with the value ofconst′ of the order of the Plank constant;
this inequality is then direct consequence of the probabilistic
definition of eqs. (3,1) and supports the idea that the pertur-
bation induced by the measurement process shrinks the initial
uncorrelated rangesΔx + Δx′ andΔpx + Δp′x to the correla-
ted onesΔx andΔpx of eqs. (1,1). The fact that eqs. (3,3)
concern by definition observable states ensures that effecti-
vely

√
Πn , 0. Eventually, together with eq. (3,2) must in

principle exist also the probability

Π′n = 1− Πn. (3,4)

Note that eq. (3,2) admits in principleΔx′ << Δx and
Δx′ >> Δx, together with analogous features ofΔp′x; so both
limit probabilities can tend to 0 or to 1. Thus it is possible
to regard eq. (3,2) as the effective chance of getting an ei-
genvalue from the measurement process and eq. (3,4) as that
of not getting any eigenvalue. Both account for well known
outcomes of wave mechanics, e.g.: (i) eq. (3,4) accounts for
eigenvalues that actually do not exist, see for instance the pre-
vious conclusions about thex andy components of angular
momentum once having determinedMz; (ii) when a quan-
tum states is described by a superposition of several eigen-
functions, several eigenvalues exist whose respective actual
occurrence is probabilistic, and so on. These chances must
be inferred case by case when exploiting eqs. (1,1) through
specific reasonings like that of section 2. The physical me-
aning of

√
Πn will also be shortly discussed in the next sec-

tion 6; so eqs. (3,2) and (3,4) do not deserve further com-
ments here. Now instead let us pose a question before pro-
ceeding on: why just shrinking and not expanding further the
initial unrelated ranges? Apart from ther fact that the ranges
are by definition all positive, the second chance would mean
Δx + Δx′ andΔpx + Δp′x defined by negativeΔx′ andΔp′x,
which in turn would exclude the possibility of defining the
probabilitiesΠx andΠpx themselves. Besides this inconsis-
tency, a plain consideration further clarifies the question. The
measurement process tries to determine a physical property.
Expanding the early unrelated ranges would mean decreasing
our degree of knowledge about the particle, whose dynami-
cal variables would oscillate within wider ranges of possible
values; if so, the concept of measurement would be itself an
oxymoron. Shrinking the early ranges, instead, is the best
compromise offered by the nature to us during what we call
“measurement process”: while being forbidden the exact lo-
cal values of the classical physics we must content ourselves,
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at least, of reduced ranges of values for conjugate dynami-
cal variables to which correspond however numbers of states.
We must accept therefore the probabilities of eqs. (3,1) as the
best we can get from a measurement process; this is what tells
us the Heisenberg inequality just obtained from our probabi-
listic knowledge of the reality around us. To proceed further
exploit again the arbitrariness of all ranges so far introduced
in order to rewrite eq. (3,2) in various possible ways. In the
first wayΠ = ΔxΔpx/(Δx′′Δp′′x ), beingΔx′′Δp′′x ≥ ΔxΔpx

the sum of all addends at denominator. This suggests that
ΔxΔpx = αconst, whereconstis a constant andα a parame-
ter to be defined consistently with the actual product of the
resulting uncertainties. Indeed this position allows writing in
general

Δx′′Δp′′x = α′′const, Δx′′′Δp′′′x = α′′′const (3,5)

and so forth, depending on the values of the range products
at left hand side. Let for instance beα′′′ ≤ α′′; eliminating
constfrom these equations one findsΔx′′′Δp′′′x /(Δx′′Δp′′x ) =
α′′′/α′′ i.e. the sought form ofΠn. A further possibility of re-
writing eq. (3,2) isΠn = ΔxΔpx/(4Δx§Δp§x) in the particular
case where all terms at denominator of eq. (3,2) are equal to
that here indicated with the unique notationΔx§Δp§x; there is
indeed no reason to discard also this chance, which must be
therefore included in our definition ofΠn. Eventually, another
consequence of the arbitrariness in definingΔx′ and thusΔx′′

andΔx′′′ of eqs. (3,5) must be taken into account:Δx′ could
have been even rewritten itself asΔx′ = Δx§ + Δx§§ + ∙ ∙ ∙,
with several addends again arbitrary; in this case the number
of addends at denominator of eq. (3,2) would have been any
integern rather than 4. All these requirements are easily in-
cluded in the definition ofΠn simply puttingα ≡ n, so that
eqs. (3,5) readΔx′′Δp′′x = n′′constand so forth withn ar-
bitrary integer; in other words,n corresponds to the arbitrary
number of possible subdivisions of the early ranges induced
by the measurement process. This result effectively leads to
both eqs. (1,1), which merely specify the value ofconstas
that of ~. Note eventually that dividing more and more the
initial intervalΔx′ into an increasing number of intervalsΔx§,
Δx§§, . . . means considering smaller and smaller sized ran-
ges, to which corresponds an increasing numbern; since a
smaller and smaller range actually tends to the limit of a local
coordinate better and better defined, one realizes thatn→ ∞
corresponds to the deterministic limit of the classical physics.
Once more, the same holds for the other ranges. Since eqs.
(1,1) are adequate to describe the existence of eigenvalues,
one concludes that the measurement process is in fact consis-
tent with the existence of experimental observables despite
the initial uncertainties of both dynamical variables. Note
that the reasoning above did not exploit any specific feature
of the momentum; in other words, instead of the momentum
range the reasoning could have identically exploited directly
the perturbation of the velocityvx of the particle under obser-
vation, i.e. a velocity range. The question about why we have

in fact introduced just the momentum is irrelevant, as it rests
merely on the particular choice of the physical dimension of
const; regarding this latter as a productconst§m, involving m
times another constant, one would still find eqs. (3,5) with the
form Δx′′Δp′′x = n′′const§m i.e. Δx′′Δv′′x = n′′const§. Two
further considerations are instead by far more relevant. The
first is that eqs. (1,1) compel regarding any observable as the
consequence of the measurement process itself, rather than as
intrinsic feature of matter; no pre-existing state, and thusn,
was indeed definable for the particle before the measurement.
The conclusion thatn characterizing the eigenvalues is conse-
quence of the measurement process, rules the realism out of
the quantum world. The second relevant feature of eqs.(1,1),
which clearly appears recalling the results of section 2, con-
cerns the localism. The particular example of the angular mo-
mentum has been introduced before any further consideration
of central interest for the purposes of the present paper just to
show that the local dynamical variables do not play any role
in determining the observable properties of reality around us,
as the experimental properties we measure are related to the
eigenvalues and thus to the number of allowed states only.
So the local values of dynamical variables become unphysi-
cal once accepting eqs. (1,1) to formulate quantum problems:
nothing measurable corresponds to the local values. Hence,
in lack of local information, the concept of distance is unphy-
sical itself in the quantum world. For instance, in [15] the
Newton and Coulomb forces between two interacting mas-
ses or charges have been inferred replacing the dependence
on their classical distancex−2

12 with the dependence onΔx−2:
according to eqs. (1,1), the space range includes all possible
local distances between the interacting particles whose coor-
dinates fall withinΔx. Regarded from this point of view, the
EPR paradox is unphysical itself: it is impossible to define a
superluminal distance conflicting with the exchange of infor-
mation about the spin orientation of two particles arbitrarily
apart each other. Whatever their distance might be, a rangeΔx
including both of them certainly exists because its size is by
definition arbitrary. Once regarding two particles withinΔx,
however, the concept of their local distance fails together with
that of the respective local coordinates; in principle nobody
knows or can measure how far they might actually be. For this
reason it would be appropriate to describe the EPR gedanke-
nexperiment as an action at a spooky distance, instead of a
spooky action at a distance. Moreover the concept of entan-
glement appears itself implicitly inherent the present appro-
ach, as even particles at superluminal distance must behave
consistently with their chance of being anywhere and thus of
exchanging information as if they would actually be at very
short distance. In this respect, just the quantum entanglement
is itself the best demonstration of the correctness of the pre-
sent point of view based exclusively on the eqs. (1,1), which
thus exclude “a priori” both realism and localism from the
quantum world; all this clearly appears in section 2. Also the
Aharonov-Bohm effect is immediately understandable in the
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frame of the present reasoning: an electrically charged par-
ticle is affected by an electro-magnetic field even when it is
confined in a region where both electric and magnetic fields
are zero. Actually it is hereand there just like a wave pro-
pagating through, and thus filling, all available delocalization
range. The previous considerations show indeed that regar-
ding a quantum particle hereor there is physically illusory;
assigning a specific location is an idea arbitrarily and incor-
rectly extrapolated from the classical physics to the quantum
world.

4 The Bell inequality

At this point, the exposition brings unavoidably into the mind
the Bell inequality. The non-locality and non-reality of the
results inferred from eqs. (1,1) suggest emphasizing the con-
nection between the considerations of section 3 and the Bell
inequality. To highlight this link let us rewrite the eqs. (1,1)
as

Δx
Δx1

Δpx

Δp1
= n,

Δt
Δt1

Δε

Δε1
= n, n ≥ 1, (4,1)

where the subscript “1” meansn = 1. In this way~ does no
longer appear explicitly in the expression of the number of
states. Eqs. (4,1) appear therefore as an appropriate star-
ting point to examine the relationship between eqs. (1,1)
and Bell inequality, which has indeed general character not
specifically related to the quantum theory. Considering for
sake of brevity the first equation only (the second is indeed
its straightforward consequence) and taking the logarithms of
both sides one finds

log

(
Δx
Δx1

)

+ log

(
Δpx

Δp1

)

≥ 0. (4,2)

This equation presents a formal analogy with the Bell-like
inequality, [9]

N(A, Bn) + N(B,Cn) ≥ N(A,Cn), (4,3)

where the subscript “n” stands for “not”. Its demonstration
is amazingly simple. Whatever the propertiesA, B and C
might represent, the inequalityN(A, Bn,C)+N(An, B,Cn) ≥ 0
expressing the sum of the respective numbers of occurrences/

non-occurrences possible forA, B andC is self-evident. Add
to both sides the sumN(A, Bn,Cn) + N(A, B,Cn) expressing
further numbers of occurrences/non-occurrences possible for
B andC and note that terms likeN(A, Bn,C) + N(A, Bn,Cn)
read actuallyN(A, Bn); the notation emphasizes a resulting
term no longer distinguished according to either propertyC,
i.e. the sum including both chances allowed forC with the
sameA andBn discriminates in fact the occurrences/non-oc-
currences ofA and B only. So one infers immediately the
inequality (4,3) that can be more expressively rewritten as

Nn(A, Bn) + (Nn(B,Cn) − Nn(A,Cn)) ≥ 0 (4,4)

with notationsNn for reasons that will be clear soon. Compa-
ring the inequalities (4,2) and (4,4) requires emphasizing first
of all what “not” stands for. In eqs. (3,1) the rangesΔx′ and
Δp′x additional toΔx andΔpx have been introduced to define
the probabilityΠx that after the measurement interaction the
particle delocalization is described byΔx and no longer by
Δx + Δx′, while an analogous idea holds also forΠpx; as we
have shown, just the probabilities that both initial ranges sh-
rink to new ranges fulfilling eqs. (1,1) entail the numbers of
statesn and thus the existence of the respective eigenvalues.
This suggests thatB andBn describe respectively the chances
of leaving the initial delocalization range unchanged or not
after the perturbation induced by the observer, whereasC and
Cn concern in an analogous way the momentum ranges of the
particle. As regardsA, it represents the existence of an eigen-
value of the particle; of courseAn means that delocalization
and momentum ranges of the particle remain unchanged and
so unrelated, thus not corresponding to any number of states.
The notationNn relates thus the inequality (4,4) to any possi-
ble eigenvalue. For instance: sincen requires that are verified
both favorable probabilities (3,1), it is reasonable to think that
the various probabilitiesPn corresponding to eq. (4,4) fulfill
also the condition

Pn(A, Bn)Pn(A,Cn) + Pn(An, B)Pn(An,C) = 1. (4,5)

In effect, it is possible to normalize eq. (4,4) be means
of an appropriate numerical factor in order to express the
various numbersNn of occurrences/non-occurrences through
their respective probabilitiesPn for one particle only. The
first addend of eq. (4,5) represents the probability of getting
an eigenvalue as a consequence of the measurement process,
the second does not; in fact this idea was already introduced
through the probabilitiesΠn andΠ′n of eqs. (3,2) and (3,4).
The sum of both chances that correspond to the Bell-like ine-
quality

Pn(A, Bn) + Pn(B,Cn) − Pn(A,Cn) ≥ 0

must be of course equal to 1 in eq. (4,5). Let us try now to
correlate term by term eqs. (4,2) and (4,4); the latter concerns
directly the numbers of occurrences/non-occurrences leading
to then-th number of states allowed for one particle. This
correlation yields

Δx = Δx1 exp(Nn(A, Bn)) ,

Δpx = Δp1 exp(Nn(B,Cn) − Nn(A,Cn)) .

To verify if these equations can be simultaneously fulfil-
led, let us multiply them side by side; recalling that by defi-
nition Δx1Δp1 = ~, one obtains

n = exp(Qn) ,

Qn = Nn(A, Bn) + Nn(B,Cn) − Nn(A,Cn) ≥ 0. (4,6)
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So the result is thatn must be equal just to the exponen-
tial of the numberQn of occurrences/non-occurrences of the
Bell-like inequality. It is clear however that in general the
first equation (4,6) is false. Even admitting the chance that it
is effectively verified for one among the possible numbers of
states, sayn§, by an appropriate valueQn§ , what about other
numbers of states like for instancen§ − 1 orn§ + 1? It is clear
that a hypothesis should be made on the respectiveQn§−1 and
Qn§+1. However the Bell-like inequality (4,3) does not pros-
pect itself any indication about such a hypothesis, which the-
refore would require an “ad hoc” assumption valid for all ar-
bitrary integersn progressively increasing from 1 by steps of
1 until to infinity. Note in this respect that the impossibility of
eqs. (1,1) to fulfil the Bell-like inequality is in fact due to the
quantization ofn; if this latter could take any non-quantized
value, then eq. (4,6) would be fulfilled in principle whatever
Qn might be. Hence is just the quantization of the eigenvalues
that makes itself non-real and non-local the quantum world.
In effect for n → ∞ the numbern approximates better and
better a continuous variable of the classical physics, whence
the realism and localism of the macroscopic classical world.

5 Uncertainty and special relativity

After having justified why the uncertainty ranges of position
and momentum entail non-locality and non-reality, remains
the concept of time and energy uncertainty to be better explai-
ned in the frame of such a conceptual context. Consider that
also the time measurement requires a macroscopic apparatus,
whose outcome is nothing else but the time of the observer.
The question arises: is the observer time coincident with that
of the particle? This question can be answered considering
first that during the measurement process eqs. (1,1) apply
to different reference systems, about which no hypothesis is
made. Suppose that eqs. (1,1) refer to the particle; we must
rewrite them asΔx′Δp′x = n′~ = Δε′Δt′ for the observer. Let
R andR′ be the respective reference systems; in both cases
the ranges are completely arbitrary by definition, as concerns
their sizes and analytical form. For instance it is not possi-

ble to establish ifΔx = xo + vxΔt or if Δx =

√
x2

o + (vxΔt)2

or anything else. The same holds also for the momentum
range and for the energy range. Moreovern andn′ are not as-
signed values, rather they are mere notations to indicate any
integer unspecified and unspecifiable. Son and n′ remain
indistinguishable despite any integer of either reference sys-
tem might turn into a different integer in the other reference
system. Hence the arbitrariness of the analytical form of the
ranges does not contradict the validity of eqs. (1,1) in dif-
ferent reference systems despite the chance of their possible
size changes; the uncertainty equations (1,1) hold identically
in Rand inR′, regardless of whether they refer to particle and
observer in the respective reference systems. So, whatever
the sizes ofΔx of the particle andΔx′ of the observer might
be, in principle eqs. (1,1) do not require that the time ranges

Δt andΔt′ coincide. Recall now that the time range was in-
troduced in section 1 to infer eqs. (1,1) through the positions
Δt = Δx/vx, which thus requires analogouslyΔt′ = Δx′/v′x,
and note that both signs are allowed for the velocity compo-
nentsvx and v′x defined inR and R′. This means that with
respect to the originO of R we expectΔx± vxΔt = 0 depen-
ding on whether the particle moves leftwards or rightwards.
A possible position to summarize into a unique equation these
chances regardless of either sign ofvx is Δx2 − v2xΔt2 = 0; to
this result corresponds of course an analogous expression in
R′, i.e.Δx′2 − v′x

2Δt′2 = 0. Hence it is possible to write

Δx′2 − v′x
2
Δt′2 = 0 = Δx2 − vx

2Δt2. (5,1)

Both vx andv′x are reminiscent of the respective reference
systems where they have been initially defined. Since no
constraint is required for these velocities, both arbitrary by
definition, the last equation allows replacingvx and v′x with
any other values of velocity still defined inRandR′; so

Δx′2−v′′x
2
Δt′2 = δs2

v′′,v′′′ = Δx2−v′′′x
2
Δt2 δs2

v′′,v′′′ , 0. (5,2)

Being unchanged the delocalization range sizes at right
hand side, the intervalδs2

v′′,v′′′ is no longer equal to zero once
having replacedvx

2 with v′′′x
2; yet this does not hinder that

this interval is still equal to the expression at left hand side
if v′x is replaced by another appropriate velocityv′′x also de-
fined in R′; thus remains unchanged the analytical form of
eqs. (5,1) and (5,2). In this way we have found a unique
intervalδs2

v′′,v′′′ common to both reference systemsR andR′.
Yet this result is not a property of an interval defined by un-
certainty ranges only, as it involves the presence of a particle
through its displacement velocity; however it is interesting
the fact thatδs2

v′,′v′′′ does not require specific values ofv′′x
2

andv′′′x
2, which are indeed arbitrary like the ranges themsel-

ves. In the paper [15], was identified a velocity invariant in
any reference system, calledvx

max, i.e. the maximum average
velocity with which any particle can displace in anyΔx. This
suggest the chance of expressing eqs. (5,2) just through this
velocity, which will be called from now onc. If in particular
we replacev′′x

2 andv′′′x
2 with c, then

Δx′c
2 − c2Δt′c

2
= δs2

c = Δxc
2 − c2Δtc

2 δsc , 0. (5,3)

This result contains new delocalization ranges that can be
chosen in order to generalize the previous result; this can be
certainly done in agreement with this appropriate choice of
the velocity, to which refers indeed the subscriptc. In general
eq. (5,3) holds forδsc not necessarily equal to zero and re-
presents a real step onwards with respect to eq. (5,2) because
of the peculiar property ofc, which is defined regardless of a
specific reference system. The only quantities that depend on
R areΔxc andΔtc that defineδsc regardless of the presence
itself of any kind of particle thanks to the universal character
of c. In conclusion, the present discussion allowed to find a
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relationship that describes the form of an interval invariant in
RandR′, thus in any other reference system. Since this result
has been obtained from eqs. (1,1), it is also compliant with
the requirements of non-locality and non-reality previously
introduced. The interval rule is a fundamental statement of
special relativity, for instance it allows to infer the Lorentz
transformations of space, time, momentum and energy [18].
However, apart from the formal analogy, the ranges introdu-
ced here have fully quantum physical meaning, i.e. they are
uncertainty ranges; instead the ranges of relativity have the
deterministic character of classical physics, i.e. they are de-
fined as a function of selected local coordinates in principle
exactly known. Therefore eq. (5,3) shows that even the re-
lativity can be made compliant with the requirements of the
quantum world provided that the local dynamical variables
be discarded as done here and the macroscopic determinis-
tic ranges take the physical meaning of uncertainty ranges.
This crucial step, although abstractly simple, is certainly non-
trivial as concerns the different way of regarding the concep-
tual basis of relativity. The next considerations concern just
the consequences of this conclusion. From eq. (5,3) and ac-
cording to eqs. (1,1) one infers, omitting for simplicity the
subscriptsc andx from now on but still intending thatv is a
component of average velocity along an arbitrary axis,

c2Δt′2

c2Δt2
=

(v/c)2 − 1

(v′/c)2 − 1
, v = Δx/Δt, v′ = Δx′/Δt′.

(5,4)
Putting in this equationc→ ∞, i.e. in the non-relativistic

limit, Δt′ → Δt; as expected, without a finite light speed one
finds the absolute time of Newton. Suppose nowR andR′

displacing each other at constant rateV such that in either of
them, say inR, the particle is at rest. In the particular case
v = 0, therefore,v′ is just the rateV with which R displaces
with respect toR′; of course it is also identically possible
to put v′ = 0, in which casev = −V. Since we have two
equivalent ways to regardv andv′, let us exploit for instance
the first chance to find the transformation properties of the
time range and the second chance for the space range; in the
latter case it is convenient to put in eq. (5,3)δsc = 0 to infer
directlycΔtc = Δxc andcΔt′c = Δx′c. One finds then

Δt′ = Δt
(
1− (V/c)2

)−1/2
, Δx′c = Δxc

(
1− (V/c)2

)1/2
.

(5,5)
Actually the subscriptc could have been omitted in the

second equation; being arbitrary both time ranges of eq. (5,3),
it holds in fact for anyΔx andΔx′. The relevant remark is
however that to time dilation corresponds length contraction
in the primed reference system. It is also immediate to find
the expressions of momentum and energy of a free particle.
Let us consider first the following equalities obtained from
eqs. (1,1) in the particular casen = 1

Δp(v)Δx(v) = Δt(v)Δε(v) = Δt(c)Δε(c) = ~,

Δt(c) = Δtmin, Δε(c) = Δεmax.

The superscripts emphasize the values taken by the velo-
city v in the various cases; the subscripts emphasize that when
v = c the traveling time is minimum whereasΔε is maximum,
both consistently with~ and with the arbitraryΔp(v) andΔx(v)

describing a slower massive particle. These positions are im-
portant as they compel specifying how, in a given reference
system,Δp(v) andΔε(v) scale with respect toΔp(c) andΔε(c)

when v < c. SinceΔε(c) = cp(c)
2 − cp(c)

1 , thenε(c) = cp(c)

by definition; hereε(c) and p(c) are random local values of
energy and momentum within their own uncertainty ranges.
For a slower massive particleΔt(v) andΔε(v) scale likec/v and
v/c with respect toΔt(c) andε(c); hence, according to the for-
mer equality,ε(v) = ε(c)v/c requiresp(v) scaling with respect
to p(c) like cp(v) = ε(c)v/c, i.e. p(v) = ε(c)v/c2. Being p(v)

andε(c) random local quantities within the respective ranges,
the functional relationship between any possible value of mo-
mentum and energy must be

p = εv/c2. (5,6)

Momentum and energy of a free particle are constants
both in classical physics and in special relativity. However
eq. (5,6) is here a quantum result, which therefore must be
accordingly handled. Let us admit that during a short time
rangeδt even the energy of a free particle is allowed to fluc-
tuate randomly byδε. Eq. (5,6) is thus exploited to calculate
the link betweenδε and related values ofδp andδv during
the time transient where the fluctuation allows the particle
moving in altered way. Differentiating eq. (5,6) one finds
δε = c2δp/v−p(c/v)2δv: once having fixedp andv, this result
defines the functional dependence ofδε upon arbitraryδp and
δv = v2 − v1 defined by two arbitrary valuesv1 andv1. Sum-
mingδε and eq. (5,6) one findsε+ δε = c2(p+ δp)/v− εδv/v.
Note now that in generalδpδx = n~ reads identically (δp)2 =

n~δp/δx, whereas in an analogous way (δε)2 = n~δε/δt. Re-
gard in this way just the new rangesε + δε andp + δp; put-
ting δx = vδt and replacing in the last expression to calculate
δ(ε + δε)/δt, one finds

(n~)−1(Δε)2 = (n~)−1(Δpc)2 − εδω, (5,7)

Δε = ε + δε, Δp = p+ δp.

The last addend results becausev/δx has physical dimen-
sions of a frequencyω, so thatδv/δx = ω2 − ω1. Since
n~ωδε = δ(εn~ω) − εδ(n~ω), replacing this identity in the
last equation one finds (Δε)2 = (Δpc)2 + n~ωδε − δ(εn~ω).
Let us specify this result via the position

n~ω = δε (5,8)

which yields also (Δε)2−(Δpc)2 = (δε)2−δ(εδε). At left hand
side appear terms containing the rangesε+δε andp+δp only,
at right hand side the rangesδε andδponly; so it is reasonable
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to expect that the last equation splits into two equations linked
by a constant energyεo

(Δε)2 − (Δpc)2 = ε2
o = (δε)2 − δ(εδε).

Indeedεo agrees with both of them just because it does
not depend upon neither of them. Trivial manipulations show
that the first equation yields

p = ±
εov/c2

√
r2
ε − r2

p(v/c)2
, ε = ±

εo
√

r2
ε − r2

p(v/c)2
, (5,9)

r p = 1+
δp
p
, rε = 1+

δε

ε
.

As expected, eq. (5,6) results fulfilled even during the
transient. The value of the constantεo is immediately found
through the following boundary condition consequence of eq.
(5,6)

lim
v→0

p
v
=
εrest

c2
= m. (5,10)

Thenε2
o = ε2

rest. Eqs. (5,9) hold during the time transient
allowingδε; before and after that transient one must putδε =
0 andδp = 0 which yields the “standard” Einstein momentum
and energy of the particle, which are of course

ε2
Ein = c2p2

Ein + ε
2
rest, εrest = mc2, (5,11)

pEin = ±
mv

√
1− (v/c)2

, εEin = ±
mc2

√
1− (v/c)2

.

It is easy now to calculate the energy and momentum gaps
ε− εEin andp− pEin during the time transientδt as a function
of δp/p andδε/ε as follows

mv
√

r2
ε − r2

p(v/c)2
−

mv
√

1− (v/c)2
=
~

δl
, (5,12)

mc2

√
r2
ε − r2

p(v/c)2
−

mc2

√
1− (v/c)2

=
~

δt
.

These equations, which are nothing else but the uncer-
tainty equations of the fluctuation gaps, will be commented
and exploited in section 7. The chance of obtaining the eqs.
(5,6), (5,10) and (5,11) could be reasonably expected; in the
paper [15] it was shown that eqs. (1,1) only are enough to
infer the following corollaries: (i) equivalence of all inertial
reference systems in describing the physical laws, (ii) exis-
tence of a maximum average displacement rate allowed for
any particle in its delocalization range and (iii) invariance in
all reference systems of such a maximum velocity. These co-
rollaries are in fact the basic statements of special relativity.
Five further remarks are crucial in this respect: (i) the mass
m is not introduced here as the familiar concept of everyday
common experience, rather the mass is inferred itself as a

consequence of the uncertainty; (ii) the analytical expressions
of energy and momentum have been obtained without need of
any hypothesis additional to eqs. (1,1); (iii) the most repre-
sentative formulas of special relativity are here obtained as
straightforward consequences of the quantum uncertainty th-
rough trivial algebraic manipulations of eqs. (1,1) only; (iv)
eqs. (5,11) are typical expressions of particle behaviour of
matter, eq. (5,8) involves instead the wave behavior of matter
too, because the frequencyω is a typical property of waves;
unifying both properties into a unique equation leads to the
well known relativistic formulas; (v) uncertainty ranges only
appear in formulas coincident with that, well known, of the
special relativity.

Note in this respect that the Einstein deterministic appro-
ach excludes the random fluctuation of velocity, energy and
momentum, which is a typical quantum phenomenon; here
instead the well known eqs. (5,11) are particular cases only
of the more general eqs. (5,9) taking into account the pos-
sibility of fluctuations, in agreement with the fact that here
the Einstein intervals here are actually quantum uncertainty
ranges. Just this last statement opens the way to further con-
siderations, carried out in section 7. Before exploiting the
results of the present section, however, the next section 6 will
concern a further topic previously introduced: the possibility
of defining uncertainty sub-ranges included in larger ranges.
The aim is to clarify the physical meaning of such a further
way to regard the quantum uncertainty.

6 Uncertainty and operator formalism of wave mecha-
nics

It is well known that the uncertainty principle is a conse-
quence of the operator formalism of wave mechanics. This
section aims to emphasize that the reverse path is also pos-
sible: here we show how to infer the momentum and energy
wave equations starting from eqs. (1,1). This result is non-
trivial: it emphasizes that the fundamental basis of the present
theoretical approach leads also to the early wave equations
from which has been developed the modern formulation of
quantum mechanics. The uncertainty inherentΔx does not
prevent to define in principle the probabilityΠ = Π(x, t) that
the particle be in an arbitrary sub-rangeδx inside the total
range

δx
Δx

= Π, δx = x− xo, δx ≤ Δx, (6,1)

provided that hold forδx the same uncertainty features ofΔx;
so no hypothesis is made aboutδx. Moreoverx and xo are
both arbitrary and unknown likewise that ofΔx; there is no
chance of defining width or location ofδx within Δx or dis-
tinguishingδx with respect to any other possible sub-range.
In generalΠ is expected to depend on space coordinate and
time; yet we consider first the explicit dependence ofΠ on x
only, i.e. t is regarded as fixed parameter in correspondence
to which are examined the properties ofΠ as a function of
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x. Regard the width ofδx variable, withx current coordinate
andxo constant. The couples of coordinates definingΔx and
Δpx are instead considered fixed. Eqs. (6,1) yield

1
Δx

=
∂Π

∂x
, Π = Π(x, t). (6,2)

Let Π and 1− Π be the chances for the particle to be or
not withinδx and ben+ andn− the arbitrary numbers of states
consistent with the respective probabilities. Putting

δxΔp = n+~, (Δx− δx)Δp = n−~, n+ + n− = n, (6,3)

thenn+/n+ n−/n = 1; also, eq. (6,3) yields the identity

(1− Π)ΠΔp2 = n−n+~
2

(
∂Π

∂x

)2

. (6,4)

Puttingn+n− = n′ + n′′, wheren′ andn′′ are further arbi-
trary integers, eq. (6,4) splits as follows

ΠΔp2 = n′~2

(
∂Π

∂x

)2

, (6,5a)

Π2Δp2 = −n′′~2

(
∂Π

∂x

)2

. (6,5b)

Sincen+ and n− are by definition positive, at least one
amongn′ and n′′ or even both must be positive. Consider
separately the possible signs ofn′ andn′′.

Case (i)n′ > 0 andn′′ < 0. Eqs. (6,5) read alsoδxΔp =

(n′/n)~ andδx2Δp2 = |n′′| ~2 because of eqs. (6,1) and (6,2).
Moreover multiplying both sides of the latter by|n′′| and both
sides of the former byn§n/n′, with n§ arbitrary integer, one
finds

δx′′Δp = n′′~, δx§Δp = n§~,

whereδx′′ =
√
|n′′|δx andδx§ = (n§n/n′)δx. Also, (n′/n)2 =

|n′′| andΠ = |n′′| /n′. These results are mutually consistent
for any integers at right hand sides, because are arbitrary not
only n′ andn′′ but alsoδx; indeed the new uncertainty equa-
tions have an analogous form and physical meaning. Hence
eqs. (6,5) do not exclude each other and are both accepta-
ble; yet they are both formally analogous also to the initial
eq. (1,1), the only difference being the size of their space un-
certainty ranges only. In conclusion, being the sizes arbitrary
by definition, this combination of signs ofn′ andn′′ does not
entails anything new with respect to eq. (1,1), and thus has
no physical interest.

Case (ii)n′ < 0 andn′′ > 0. The right hand sides of both
eqs. (6,5) have negative sign, so neither of them can have
the same physical meaning of the initial eq. (1,1); they read
Π = − |n′| /n2 andΠ2 = −n′′/n2 because of eq. (6,2). Yet the
resultΠ = n′′/ |n′| = − |n′| /n2 is clearly absurd, so also this
combination of signs has no physical interest.

Case (iii)n′ > 0 andn′′ > 0. Eqs. (6,5) are now phy-
sically different, because their ratio would entailΠ negative.

Thus these equations cannot be combined together, because
of their different ways to describe the particle delocalized in
Δx; they must be considered separately. Eq. (6,5a) is concep-
tually analogous to eq. (1,1); eq. (6,5b) excludes eq. (6,2) and
admits the solutionΠ = A′ exp(±i(x − xo)Δp/~

√
n′′), being

A′ the integration constant. RewritingΠ = Aexp(±iϕδx/Δx)
with ϕ = n/

√
n′′, the probabilityΠ inferred here significantly

differs fromΠ of eq. (6,5a) despite the same notation; the for-
mer is indeed a complex function, the latter coincides instead
with eq. (6,1). Both are however definable in principle.Thus
eq. (6,5b) still retains the essential concept of delocalization
within an arbitrary uncertainty range, yet without concerning
itself the ability of regarding the particle as a corpuscle in any
specific point ofΔx.

The following discussion concerns the case (iii). To ac-
cept both eqs. (6,5) together, we must acknowledge their dif-
ferent form, i.e. their different way to describe the particle
delocalization insideΔx. This dual outcome reveals however
the inadequacy of regarding the particle as mere corpuscle
delocalized somewhere in its uncertainty range, as required
by eqs. (1,1). Despite the particle must be anyway randomly
moving inΔx, eq. (6,5b) is incompatible with the corpuscle-
like behaviour of eq. (6,5a). A further difficulty to regard to-
gether eqs. (6,5a) and (6,5b) is thatΠ defined by this latter is
not real, as insteadΠ∗Π = |const|2 does. Yet just this property
suggests a possible way out from this difficulty, i.e. supposing
that eq. (6,5b) requires a wave-like propagation of the parti-
cle: soΠ∗Π could stand for particle wave amplitude whereas
A′, in fact regarded here asA0A(t) without contradicting any
previous step, could define frequency and phase of the par-
ticle wave. This idea is confirmed rewriting the exponential
xΔp of Π astΔε dividing and multiplying by an arbitrary ve-
locity v in order that±ixΔp/~

√
n′′ turns into±itΔε/~

√
n′′.

SoA(t) results defined just by this requirement, i.e.

Π = A0 exp[±i(cx(x− xo)Δp+ ct(t − to)Δε)/~
√

n′′], (6,6)

beingcx andct arbitrary coefficients of the linear combination
expressing the most general way to unify the space and time
functions. Calculate∂2Π/∂x2 = −(cxΔp)2Π to extract the
real quantitycxΔp from Π, and then by analogy∂2Π/∂t2 =

−(ctΔε)2Π too; eliminatingΠ between these equations and
noting that by dimensional reasons (cxΔp/ctΔε)2 = v−2, the
result∂2Π/∂x2 − v−2∂2Π/∂t2 = 0 confirms, whateverv might
be, the wave-like character of particle delocalization provi-
ded by eq. (6,5b). A similar wave equation could not be
inferred from eq. (6,5a), according which the physical pro-
perties of the particle are related directly to the probabilityΠ

of eq. (6,1); instead, owing to the complex form ofΠ resul-
ting from eq. (6,5b), the physical properties of the wave are
related toΠ∗Π. It is possible to eliminate this discrepancy
introducing the complex function

√
Π in place ofΠ and re-

writing eq. (6,5b) as a function of the former instead of the
latter; this idea agrees with that already exploited to find eqs.
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(3,3). Dividing both sides byΠ, eq. (6,5b) reads


±~

∂
√
Π

∂x




2

= −
(
p§
√
Π
)2
, p§ = ±

Δp

2
√

n′′
. (6,7)

The notation emphasizes thatp§ does not depend onx
and is not a range; being defined as solution of the differen-
tial equation (6,7) only, its value is not longer related toΔp,
i.e. it is an eigenvalue of

√
Π. This is possible becausen′′ is

arbitrary likeΔp, which allows that the ratioΔp/2
√

n′′ beha-
ves as a well determined quantity specified just byp§, whose
value and signs correspond to either component of momen-
tum along thex-axis where are defined positiveδx andΔx.
Thus eq. (6,7) reads

±
~

i
∂
√
Π

∂x
= p§

√
Π,

√
Π =

√
A

√
exp(±iϕδx/Δx). (6,8)

So
√
Π
√
Π∗ expresses the probability to find the particle

so-mewhere inΔx. Write thus

√
Π
√
Π∗ = ±

~

ip§

√
Π∗∂
√
Π

∂x
.

The right hand side is real and yields
√
Π
√
Π∗ = δx0/Δx

= A0, beingδx0 = A0~ϕ/2p§. As a proper value ofA0 cer-
tainly exists such thatδx0 ≤ Δx, then

√
Π
√
Π∗ agrees with a

concept of probability similar to that of the initial definition
δx/Δx of eq. (6,1); yet this latter is replaced in the last equa-
tion by a constant value, which entails thus equal probability
to find the particle in any sub-rangeδx0 regardless of its size
and position withinΔx. The physical meaning of this result
is emphasized integrating both sides of eq. (6,8) with respect
to x in the sub-rangeδx0 = x02 − x01, which yields

p§ = ±




x02∫

x01

√
Π
√
Π∗dx




−1 x02∫

x01

(√
Π∗
~

i
∂

∂x

√
Π

)

dx. (6,9)

The average value of momentum is thus equal to the
eigenvalue expected for the steady motion of a free particle
(Ehre-nfest’s theorem), which suggests regardingδx0/Δx as
average probability that the particle is in the sub-rangeδx0.
It is clearly convenient therefore to defineA0 in order that
δx0 = Δx through ∫

√
Π
√
Π∗dx = 1, i.e. the momentum

eigenvalue concerns the certainty that the particle is really
delocalized in the total rangeΔx. Being this latter arbitrary,
it allows considering in general the particle from−∞ to ∞.
The physical information provided by eq. (6,5b) is thus re-
ally different from that of eq. (6,5a), although being unques-
tionable the consistency of eqs. (6,8) and (6,9) with the ini-
tial eq. (6,1) despite their different formulation: both come
indeed from the same uncertainty equations (1,1). So it is
not surprising that the uncertainty is still inherent

√
Π and

consistent with the eigenvaluep§. It is evident at this point

that the results hitherto inferred concern just the basic ideas
through which has been formulated the early quantum me-
chanics; it is enough to regard in general the wave functions
in analogous way, e.g. as it is shown below for the energy
eigenfunction. So, writeψ = const

√
Π andψ∗ = const

√
Π∗

to define the probability density of the particle within the vo-
lumeΔxΔyΔz; this is just the volume to normalizeψψ∗. Being
the uncertainty ranges arbitrary, this probability density con-
cerns actually the whole space allowed to the particle. The
normalization constant is inessential for the purposes of the
present paper and not explicitly concerned hereafter. The re-
sult of interest is that, after having introduced the probability
Π of eq. (1,1), one finds two distinct equations concurrently
inferred from the respective eqs. (6,5)

Δp§Δx§ = n§~, (6,10a)

~

i
∂
√
Π

∂x
= ±p§

√
Π. (6,10b)

Two comments about eqs. (6,10):
(i) eq. (6,10a) is conceptually equal to the initial eq. (1,1),

from which it trivially differs because of the size of the un-
certainty ranges and related number of states; (ii) eq. (6,10b)
defines a differential equation that calculates an eigenvalue of
momentum through the probability that the particle be in a
given point of its allowed rangeΔx§.
Eq. (6,10a) does not consider explicitly the particle, but only
its delocalization insideΔx§ and thus its phase space; the
same holds also for the momentum, whence the positions
(2,1) and the indistinguishability of identical particles whose
specific properties are disregarded “a priori”. The unique
information available concerns indeed the number of states
n§ consistent withΔx§ and Δp§ for any delocalized parti-
cle; nothing requires considering the local dynamical varia-
bles themselves. The point of view of eq. (6,10b) is dif-
ferent: it considers explicitly the sub-rangeδx through

√
Π

and thus, even without any hypothesis about size and posi-
tion of δx within Δx§, concerns directly the particle itself th-
rough its properties

√
Π
√
Π∗ andp§; both these latter are ex-

plicitly calculated solving the differential equation. Yet the
common derivation of both eqs. (6,10) from the initial eq.
(1,1) shows that actually the respective ways to describe the
particle must be consistent and conceptually equivalent, as in
effect it has been verified in section 2. This coincidence evi-
dences the conceptual link between properties of the particles
and phase space; it also clarifies why the quantum eigenva-
lues do not depend on the current values of the dynamical
variables of the particles, even though calculated solving the
differential equation (6,10b). InitiallyΠ was introduced in eq.
(6,1) as mere function of uncertainty ranges and sub-ranges
of the phase space; thereafter, however, it has taken through
the steps from eqs. (6,2) to (6,10) the physical meaning of
wave function

√
Π of the particle defining the momentum ei-

genvaluep§, which involves the mass of the particle. Eq.
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(6,10b) introduces the operator formalism of wave mecha-
nics. The approach starting directly from eqs. (1,1) has the-
refore more general character than the latter, which starts just
postulating eq. (6,10b) here found instead as a corollary: the
basic reason is that eq. (6,10a) contains less information than
eq. (6,10b). These equations can be now regarded together
once having acknowledged the kind of information inferred
from eqs. (1,1). On the one side eqs. (6,10) introduce the
wave/corpuscle dual nature of particles: eq. (6,10a) admits
that the particle is somewhere inΔx, even though renoun-
cing to know exactly where because of the delocalization;
eq. (6,10b) instead regards the particle as a wave propagating
within Δx thus still delocalized but excluding in principle the
unknown position of a material corpuscle. On the other side
eqs. (6,10) confirm that properties of particles and properties
of phase space must not be regarded separately, rather they
are intrinsically correlated: just for this reason the results of
section 2 show that the numbers of quantum states (proper-
ties of the phase space) coincide with the quantum numbers
that define the eigenvalues (properties of the wave function of
the particle). Further properties of

√
Π = ψ could be easily

found, e.g. the concept of parity or the fact that the arbitra-
riness of the coefficientscx andct previously introduced in
the early expressionΠ = A0 exp[±i(cxxΔp + cttΔε)/~

√
n′′]

allows to write the more general form for this equation

Π =
∑

j

A0 j exp[±i(cx jxΔpj + ct j tΔε j)/~
√

n′′ j ].

All these assertions are well known since the early birth
of the quantum theory and do not need further consideration
here for sake of brevity; their evolution brings the theory up
to today’s formulation. It is more interesting to examine the
same problem considering the time instead of the space co-
ordinate. The steps to find the energy operator are concep-
tually identical to those so far reported; yet one regards the
probability for the particle to be inδx at the timet, i.e. Π

is defined as ratio between the time rangeδt = t − to spent
within a fixedδx and the total time rangeΔt = t2 − t1 spent
elsewhere withinΔx. Let us write thenΠ = δt/Δt at fixed
coordinatex; eqs. (6,2) and (6,4) read nowΔt−1 = ∂Π/∂t
and (1− Π)ΠΔε2 = n−n+~2(∂Π/∂t)2. Replacing position and
momentum with time and energy in eq. (6,2), eqs. (6,7) read


±~

∂
√
Π

∂t




2

= −
(
ε§
√
Π
)2
, ε§ = ±

Δε

2
√

n′′
. (6,11)

The second eq. (6,8) reads now
√

A
√

exp(±iϕδt/Δt),
which however is disregarded here because it appears
included in eq. (6,6); the first eq. (6,8) becomes

−
~

i
∂
√
Π

∂t
= ±ε§

√
Π. (6,12)

With the upper sign at right hand side of eq. (6,12), the
classical Hamiltonian written with the help of eq. (6,8) is con-
sistent with the resultε§ = p§2/2m in the particular case of a

free particle having massmand momentump§. Yet the lower
sign, also allowed as a consequence of eq. (6,11), shows the
possibility of states with negative energy as well. The couple
of equations (6,10) turns into

Δt§Δε§ = n§~, (6,13a)

−
~

i
∂
√
Π

∂t
= ±ε§

√
Π. (6,13b)

For this couple of equations hold the same considerati-
ons carried out for the corresponding eqs. (6,10). This sec-
tion has shown that the operator formalism of wave mecha-
nics is consequence itself of the concept of uncertainty. On
the one side this result explains why the properties of quan-
tum particles can be obtained as shown in section 2 even
without solving any wave equation. On the other side it ap-
pears clearly that both chances of describing the quantum
world are nothing else but mirror consequences of the dual
wave/corpuscle behavior of particles. All considerations so
far carried out do not require knowing anything about the con-
cerned uncertainty ranges.

7 Heuristic aspects of quantum special relativity

Let us introduce now some comments about eqs. (5,9) and
(5,11) before exploiting eqs. (5,12). The momentum and
energy equations during the quantum fluctuation transient re-
written identically as follows

p(t) = ±
mve f f/r p

√
1− (ve f f/c)2

, ε(t) = ±
mc2/rε

√
1− (ve f f/c)2

, (7,1)

ve f f = rpv/rε, r p = r p(t), rε = rε(t),

evidence that the Einstein quantities of eqs. (5,11) turn into
new constant expressions calculated with an effective velo-
city and multiplied by the respective functions of time; the
previous velocityv does not longer appear explicitly into the
equations. Ifve f f is regarded as a constant, thenv turns into
a time variable without contradicting the Einstein equations,
whose deterministic character does not admit any fluctuation
and requires a steady value ofv; the fluctuation has been ins-
tead introduced by admitting the quantum meaning ofδε, δp
and δv. The notation of eqs. (7,1) emphasizes that energy
and momentum are functions of time during the transient; re-
gardingrε and r p like time variables is reasonable, because
according to eqs. (5,9)δε andδp are related torε andr p du-
ring the fluctuation. The physical meaning ofrε andr p is that
of describing the cycle of values of energy and momentum,
whereasr p/rε controls the range of transient values allowed
for the velocity. To be more specific, any energy fluctuation
is characterized by an initial timetin whereε(tin) = εEin that
successively increases toε(t) > εEin at t > tin and then de-
creases down to the initial valueεEin at the timetend. Note
now that during the fluctuation transient must hold the ine-
quality r p < rε; otherwise, beingv arbitrary e.g. very close
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to c, the chancer p > rε could entailε(t) imaginary although
being realεEin. This would actually mean that the fluctuation
is not allowed to occur. Thanks to the former inequality, ins-
tead,v can increase in principle even beyondc while still kee-
ping ve f f < c; this can happen during the time range between
tin andtend without divergent or imaginary quantities because
under square root of the transient formulas appearsve f f only.
This point is easily verified noting thatε(t)/p(t) = c2/v, as
already emphasized in section 5. Thus it must be also true
thatε(t)2 = c2p(t)2 + (mc2)2 likewise eq. (5,11). Trivial ma-
nipulations yield (v/c)2 = (r2

ε − 1)/(r2
p − 1); so if rε > r p then

is even allowed a valuev∗ > c without contradicting neither
eqs. (5,5) nor (5,11) that describe a steady behavior of the
particle. According to eqs. (5,7),r p < rε requires

δε(t)/δp(t) > εEin/pEin. (7,2)

From an intuitive point of view, the transient proceeds for
an observer in the lab frame according to the following steps:
(i) rp = rε = 1 at t = tin, i.e. hold eqs. (5,11) with a value
of ve f f = v < c uniquely fixed by the initial motion of the
particle; (ii) whenr p andrε start changing att > tin, the value
of ve f f is still constrained byve f f < c but nowv > ve f f ac-
cording to the inequality (7,2); (iii) at a later timet∗ < tend it
could even happen thatv∗ > c, although still beingve f f < c;
(iv) subsequentlyr p andrε tend again to 1 when the fluctua-
tion cycle ends att → tend while p(t)→ pEin andε(t)→ εEin,
i.e. v → ve f f < c. Thanks to the concept of quantum fluctua-
tion, therefore, the increase of velocityv∗ > c in the step (iii)
does not involve directly the value ofv appearing in the steady
formulas ofεEin andpEin, as indeed it results in eqs. (5,12); so
the superluminal step (iii) is in principle possible. However,
what about the chance of detecting it experimentally? Cer-
tainly the answer is not found via eqs. (7,1), which describe
local quantities at the random and unspecified timet; on the
other hand, since the particle travels,t is related to a corres-
pondingx, random and unspecified as well. Throughout this
paper it has been emphasized that information of physical in-
terest is obtainable through uncertainty ranges only; thus the
considerations just carried out, based on time and space local
coordinates, have worth only to guess and assess the possible
behavior of the particle at anytin ≤ t ≤ tend and better unders-
tand the physical results inferred by consequence. Coherently
with the approach so far followed, we discard once again the
local dynamical variables and pay attention to the respective
uncertainty ranges only. Exploit thus eqs. (5,12) to get infor-
mation comparable with the experience, puttingδt = tend− tin
andδl equal to the distance across which is measured the ve-
locity. In this way we can calculate anaverage velocity δl/δt
whose value depends upon how the experiment is carried out.
If δt is shorter than the timeτ for the particle to travel the
distanceδl, then the superluminal effect it is not detectable,
because the fluctuation starts and ends while the particle is
still traveling within δl; this means that the fluctuation is an
event entirely occurring within a space delocalization range.

Yet nothing is known about what happens within this uncer-
tainty range. In this case, when considering the average velo-
city of the particle, we can only acknowledge that this latter
is anyway smaller thanc, whereas any information about any
possible event allowed to occur withinδl remains in fact unac-
cessible; moreover eqs. (5,12) do not have themselves phy-
sical meaning, as they attempt to get physical insight within
an uncertainty range. If howeverδt is longer thanτ, then the
superluminal effect is at least in principle detectable without
contradicting the previous reasoning, because now the fluctu-
ation extends throughout all the rangeδl and beyond; it is no
longer a local event hidden by the uncertainty. So if the ave-
rage velocity is measured in these experimental conditions,
i.e. withδl sufficiently short orδt sufficiently long, the super-
luminal effect is in principle detectable. Note in this respect
that a small value ofm in the second eq. (5,12) corresponds
to a longer time at right hand side, so the inequality (7,2) is
more easily fulfilled for a particle not too heavy than for a he-
avy particle; indeed the former typically travels with values of
v closer toc than the latter for energy reasons and also entails
a longerδt, so it could effectively overcome the superluminal
transition threshold fulfilling more likely the conditionδt > τ.
Once fulfilling these conditions, a light particle appears trave-
ling the space rangeδl = v∗δt at speedv∗ > c in the laboratory
reference system even during a moderate energy fluctuation
and without violating any principle of quantum special rela-
tivity formulated in section 5; indeedδl/δt does not calculate
ve f f but the average transient ofv. As a clarifying compari-
son recall thatδε does not violate the energy conservation, it
is simply a temporary derogation to this latter allowed by the
uncertainty principle only; why not should something simi-
lar happen also for the velocity, if this latter does not cause
divergent or imaginary results? Anyway, for the comparison
with the experiment are enough just the two equations (5,12)
that relate in the laboratory frame the distanceδl traveled by
the particle to the timeδt during which the transient is still in
progress; their ratio, assumed physically consistent with the
time length of the fluctuation transient, reads

δl
δt

=

mc2
√

r2
ε−(rpv/c)2

− mc2
√

1−(v/c)2

mv√
r2
ε−(rpv/c)2

− mv√
1−(v/c)2

= c
c
v
.

Sincev < c, thenδl/δt > c, which demonstrates a su-
perluminal particle transfer during the quantum fluctuation
cycle. If for instancev = 0.99c thenδl/δt = 1.01c. Note
that instead the speed of the photonv = c remains identi-
cally, universally and invariantly equal toc. Eqs. (5,5) have
been written through time and space uncertainty ranges only.
The Einstein relativity specifies the time rangeΔt = t − to
through a current time coordinatet and a lower boundary
to = xoV/c2; both times have a deterministic physical mea-
ning. This last result could be easily guessed also here, thin-
king that evento must depend onV/c and must be related to
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the correspondingxo. Thus a valueV > c would change the
signs ofΔt andΔt′ in eq. (5,5), i.e. the concept itself of se-
quence “before” and “after”. Apart from the fact that such a
conclusion would be illusory in the present theoretical frame
because the uncertainty discards “a priori” the local coordi-
nates, it is also essential in this respect a further remark. As
shown before, the lack of physical information aboutt andto
and t − to does not prevent to infer the relativistic formulas
of energy and momentum: yet, even specifyingto = xoV/c2,
the possible time-reversal during the quantum fluctuation cy-
cle does not affect any result previously obtained. First of
all because actually this cycle has not been specified, i.e. ex-
changingtend with tin does not change any step of the pre-
vious reasoning; moreover if the cycle starts with an initial
energyεEin and ends with the same final energyεEin, any dis-
crimination between beginning and ending of the cycle se-
ems unphysical. Therefore, since the possible time reversal
should be a local effect concerning the quantum fluctuation
only, all the conclusions hitherto obtained still hold. Also
note thatδl/δt = εEin/pEin = c2/v; so the inequality (7,2)
readsδε/δp > δl/δt as well, i.e. δε/δl > δp/δt: the left
hand side represents the force acting on the particle due to its
fluctuation driven energy gap along its path, the right hand
side represents the force due to the momentum change during
the fluctuation time length. Saying that the former is greater
than the latter means an excess force with respect to the mere
momentum change having fully quantum origin, necessarily
due to nothing else but the fluctuation in the case of a free
particle. It seems reasonable to assume that just this excess
force justifies the superluminal effect. As expected, neither
δl nor δt enter explicitly into the calculation of the velocity;
the ratio between two uncertainty ranges provides of course
an average value during the transient, which is in effect al-
lowed in the frame of the present approach. It is interesting to
emphasize that a givenδε/δl, related to the energy growing
along the path traveled by the particle, could be at increasing
δl not greater thanδp/δt, related to the given fluctuation time
length; this is becauseδl andδt are two independent quan-
tities, the former related to the experimental apparatus, the
latter to a feature of the fluctuation. Ifδl increases up to a lar-
ger valueΔl such thatδε/Δl < δp/δt the superluminal effect
is not observable. Indeed this is just in line with the previ-
ous considerations recalling that: (i) the effect is detectable
if at the end of the path of the particle withinδl the fluctu-
ation is still in progress; (ii) if instead the fluctuation cycle
ends while the particle is still traveling insideδl, then it beco-
mes an event occurring within an uncertainty range and thus,
as such, unobservable. If the model is correct, this is what
to expect imagining to increase the size ofδl up toΔl: the
same kind of observation should yield a positive outcome if
carried out in the experimental situation (i), but certainly a
negative outcome if carried out in the experimental situation
(ii). This also suggests a possible way to verify the conside-
rations just carried out: to detect the same velocity fluctua-

tion event of not-heavy particles with two detectors located
in two different laboratories. Although the concept of their
respective “distances” from the source is illusory for the re-
asons introduced in sections 3, it remains nevertheless still
true that different locations, wherever they might be, provide
different chances for the uncertainty of revealing or hiding
experimentally the superluminal transition. Thus the random
occurring/non-occurring of the superluminal effect should not
be ascribed to human experimental errors but to a further pro-
babilistic weirdness of the quantum world.

8 Discussion

The ordinary formulation of quantum mechanics contains the
classical physics as a limit case but needs this latter to be for-
mulated [17]. Regarding instead eqs. (1,1) as expressions of a
fundamental principle of nature, and not as mere by-products
of the commutation rules of operators, this ambiguous link
between classical and quantum physics is bypassed. Section 6
has shown that eqs. (1,1) entail as a corollary the operator for-
malism of wave mechanics; yet the present approach appears
more general than that based on this latter. As shown in sec-
tions 4 and 5, it automatically introduces since the beginning
the non-locality and non-reality into the description of quan-
tum systems. In principle the quantum uncertainty does not
prevent knowing exactly one dynamical variable only; being
the size of all ranges arbitrary by definition, one must admit
even the chanceΔx→ 0 that means local position of a parti-
cle exactly known. The same reasoning holds separately for
the momentum as well. Independent ranges however do not
provide physical information on the observable properties of
the quantum world. These observables require abandoning
separate certainties independently allowed; the physical me-
aning of the ranges changes when considering together two
conjugate dynamical variables, which also means discarding
the classical realism and localism as well but gaining the ei-
genvalues. Does the moon exist regardless of whether one
observes it? According to the approach sketched in section 2
this question should be better reformulated, for instance as
follows: do the properties of the moon we know exist re-
gardless of a possible observer? Yet if nobody observes the
moon, nobody could define the properties “we know”; these
latter are the outcomes of some kind of measurement, i.e.
they are triggered themselves by a previous measurement in-
teraction. Repeating this reasoning back in the time the con-
clusion is that before the first recording of light beam esca-
ping from the moon nobody would even know the existence
of the moon; in which case would become physically irrele-
vant the prospective physical properties of an object still to
be discovered. In this sense it appears understandable that the
properties we know exist when observations are carried out.
Hence what we call moon is just the result of an interaction
between an observer and an object sufficiently close to the
Earth to be observable. As concerns the localism it is appro-
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priate to think about an action at a spooky distance, since the
local coordinates defining the distance are actually an arbi-
trary extrapolation to the quantum world of a classical way of
thinking. This idea appeared since the early times of birth of
quantum mechanics, when the deterministic concept of tra-
jectory was irreversibly abandoned. The operator formalism
requires a wave function of time and space coordinates; these
latter identify in turn a region of space where however has
physical meaning the mere probability density to find the par-
ticle only. Thus the wave function denies the classical me-
aning of the local coordinates, e.g. position and momentum
or energy and time, as a function of which is however itself
calculated. In this respect the present approach formulates an
even more indeterministic and drastic view of the reality: to
discard the local values since the beginning. In this sense, eqs.
(1,1) seem a step ahead with respect to the operator forma-
lism; even though seemingly more agnostic, they avoid han-
dling the local variables to define and solve the appropriate
wave equations from which are extracted the eigenvalues, i.e.
the observables, in a probabilistic conceptual context. Here
indeed we refuse “a priori” the physical usefulness of intro-
ducing time and space local coordinates and, in general, local
quantities that do no longer appear in the eigenvalues; yet,
even so the results are identical. This suggests that actually is
the uncertainty the fundamental concept behind the results, a
sort of essential information directly related to the knowledge
we can afford; for instance, the arbitrariness of the quantum
numbers of wave mechanics, due to the mathematical featu-
res of the solutions of differential equations, is replaced by
that of the number of states; indeed the results show that the
latter have a physical meaning identical to the former. Eqs.
(1,1) provide these numbers since the beginning. This is the
reason of the straightforward character of the present appro-
ach, which indeed does not require solving any differential
equation but proceeds through trivial algebraic manipulations
of the formulae. The arbitrariness seems a concept with nega-
tive valence, especially in science; yet it played an essential
role in deriving eqs. (3,5) from eq. (3,2); on this step are ba-
sed eqs. (1,1). The section 2 shows that these equations plug
the classical definition of angular momentum into the quan-
tum world thanks to two concepts: introducing the number of
states and eliminating local information. The section 6 has
shown why the indistinguishability of identical particles is a
natural consequence of these premises; in the operator for-
malism instead it must be purposely introduced as a postulate
and appropriately handled from a mathematical point of view,
recall for instance the early Slater determinants. Moreover the
section 4 has shown why the present approach entails inheren-
tly even the non-locality and the non-reality of the quantum
world: while evidencing their link with the quantization of the
physical observables, these weird features are automatically
required by eqs. (1,1) throughn. Eventually, let us empha-
size that the present way of regarding the quantum world is
compatible with the special relativity. The paper [15] has in-

ferred its basic principles as corollaries, in section 7 some re-
sults particularly significant have been obtained: the invariant
interval, the Lorentz transformations of time and length, the
energy and momentum equations of a free particle, the rest
energy of particle, the existence of antimatter and the con-
cept of mass itself. The key idea underlying these results is
the way to regard the relativistic intervals: to discard their
deterministic definition, early introduced by Einstein, and re-
gard them as uncertainty ranges. As shown before, this sim-
ple conceptual step is enough to plug into the quantum world
even the special relativity. Moreover, the quantum way to
infer the relativistic equations has opened the way to admit
a typical quantum phenomenon, the energy fluctuation, able
to account for unexpected effects otherwise precluded by the
early deterministic basis of special relativity formulated by
Einstein.

9 Conclusion

The approach based uniquely on eqs. (1,1) contains inheren-
tly the requirements of non-locality and non-reality that cha-
racterize the quantum world. This kind of approach is also
consistent with the special relativity, whose basic statements
were found as corollaries in previous paper.
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It is shown how the fractal paths of SR = scale relativity (following Nottale) can be
introduced into a TD = thermodynamic context (following Asadov-Kechkin).

1 Preliminary remarks

The SR program of Nottale et al (cf. [1]) has produced a mar-
velous structure for describing quantum phenomena on the
QM type paths of Hausdorff dimension two (see below). Due
to a standard Hamiltonian TD dictionary (cf. [2]) an exten-
sion to TD phenomena seems plausible. However among the
various extensive and intensive variables of TD it seems un-
clear which to embelish with fractality. We avoid this feature
by going to [3] which describes the arrow of time in con-
nection with QM and gravity. This introduces a complex
time (1A) τ = t − (i~/2)β where β = 1/kT with k = kB

the Bolzmann constant and a complex Hamiltonian (1B) H =
E − (i~Γ/2) where E is a standard energy term, e.g. (1C) E ∼
(1/2)mv2+W(x). One recalls that complex time has appeared
frequently in mathematical physics. We will show how frac-
tality can be introduced into the equations of [3] without re-
sorting to several complex variables or quaternions.

Thus from [3] one has equations

H = E −
(

i~
2
Γ

)
; τ = t − i~

2
β; [E,Γ] = [H,H†] = 0; (1.1)

Ψ = exp−
iHτ
~ ψ; Pn =

wn

Z
;wn = ρnexp[−Enβ+Γnt];

i~∂τΨ = HΨ;Ψ =
∑

Cnψn;

Hn = En −
i~
2
Γn; [H,H†] = 0;

Eψn = Enψn;Γψn = Γnψn; (ψn, ψk) = δnk.

One could introduce another complex variable here, say j
with j2 = −1, but this can be avoided.

Now go to the SR theory and recall the equations

d̂
dt
=

1
2

(
d+
dt
+

d−
dt

)
− i

2

(
d+
dt
− d−

dt

)
; (1.2)

V = d̂x
dt
= V − iU =

1
2

(v+ + v−) − i
2

(v+ − v−);

d̂
dt
= ∂t +V · ∇ − iD∆;

H = m
2
V2 − imD∇ ·V +W =

1
2m
P2 − iD ·P+W; (1.3)

H = V · P − iD∇ · P − L;

V̂ = V − iD∇; (∂t + V̂ · ∇)V = −∇W
m

; (1.4)

U = D∇log(P); P = |ψ|2; ψ = eiS/2mD;

Q = −2mD2∆
√

P
√

P
; (1.5)

V = −2iD∇[log(ψ)]; S0 = 2mD;

D2∆ψ + iD∂tψ −
W
2m

ψ = 0; (1.6)

dV
dt
=

F
m
= U · ∇U +D∆U.

This has been written for 3 space dimensions but we will
restrict attention to a 1-D space based on x below.

We will combine the ideas in (1.1) and (1.2) in Section
2 below. Note here Q is the QP = quantum potential (see
e.g. [5–8] for background).

2 Combination and interaction

From (1.2)-(1.6) we see that the fractal paths in one space
dimension have Hausdorff dimension 2 and we note that U
in (1.2) is related to an osmotic velocity and completely de-
termines the QP Q. Note that these equations (1.2)-(1.6)
produce a macro-quantum mechanics (where D = ~/2m for
QM). It is known that a QP represents a stabilizing organiza-
tional anti-diffusion force which suggests an important con-
nection between the fractal picture above and biological pro-
cesses involving life (cf. [1, 9–13]). We also refer to [14–16]
for probabalistic aspects of quantum mechanics and entropy
and recommend a number of papers of Agop et al (cf. [17])
which deal with fractality (usually involving Hausdorff di-
mension 2 or 3) in differential equations such as Ginzburg-
Landau, Korteweg de-Vries, and Navier-Stokes; this work
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includes some formulations in Weyl-Dirac geometry (Feoli-
Gregorash-Papini-Wood formulation) involving super-
conductivity in a gravitational context.

Now let us imagine that W ∼ W and V ∼ v so that the
energy terms in the real part of the SE arising from (1.2)-(1.6)
will take the form

E ∼ 1
2

mV2 +W +Q (2.1)

and we identify this with E in the TD problem where

Q = −2mD2∆
√

P
√

P
; P = |Ψ|2. (2.2)

One arrives at QM forD = ~/2m as mentioned above and
one notes that the mean value Ē used in the analysis of [3]
will now have the form

Ē =
1
2

∫
mV2Pdx +

∫
|W|2Pdx +

∫
QPdx (2.3)

and the last term
∫
QPdx has a special meaning in terms of

Fisher information as developed in [5–7, 19–21]. In fact one
has ∫

QPdx = −2mD2
∫

∂2
x

√
P

√
P

Pdx = (2.4)

= −D
2

2

∫ 2P′′

P
−

(
P′

P

)2 Pdx =
mD2

2

∫
(P′)2

P
dx

In the quantum situationD = ~/2m leading to∫
QPdx =

~2

8m

∫
(P′)2

P
dx =

~2

8m
FI (2.5)

where FI denotes Fisher information (cf. [7, 21]). And this
term can be construed as a contribution from fractality.

One can now sketch very briefly the treatment of [3] based
on (1.1). Thus one constructs a generalized QM (with arrow
of time and connections to gravity for which we refer to [3]).
The eigenvalues En, Γn, in (1.1) are exploited with

ρn = |Cn|2; Pn =
wn

Z
;

Ψ =
∑

Cnψn; wn = ρne−Enβ+Γnt. (2.6)

One considers two special systems:

1. First let the eigenvectors Γn all be the same (decay free
system) and then wn = ρnexp[−Enβ] which means that
β is actually the inverse absolute temperature (multi-
plied by kB) when En is identified with the n-th energy
level and the system is decay free.

2. Next let all the En be the same so wn = ρnexp[−Γnt]
and all the ΓN have the sense of decay parameters if t is
the conventional physical time.

Thus the solution space of the theory space can be decom-
posed into the direct sum of subspaces which have a given
value of the energy or of the decay parameter. It is seen that
for β = constant the dynamical equation for the basis proba-
bilities is

dPn

dt
= −(Γn − Γ̄)Pn;

dΓ̄
dt
= −D2

Γ; D2
Γ = (Γ − Γ̄)2. (2.7)

From (2.7) one sees that Γ̄(t) is not increasing which
means that the isothermal regime of evolution has an arrow
of time, which is related to the average value of the decay
operator. Thus Pn increases if Γ̄ > Γn and decreases when
Γ̄ < Γn. One can also show that in the general case of β = β(t)
the dynamical equations for the Pn have the form

dPn

dt
= −

[
Γn − Γ̄ + (En − Ē)

dβ
dt

]
Pn. (2.8)

Here the specific function dβ/dt must be specified or ex-
tracted from a regime condition f (t, β, Ā(t, β)) = 0 for some
observable A (e.g. Ē = constant is an adiabatic condition). In
the adiabatic case for example when Ē =

∑
n EnPn = constant

there results
dβ
dt
= −ET − ĒT̄

D2
E

(2.9)

where DE denotes a dispersion of the energy operator E. Us-
ing (2.8)-(2.9) one obtains

dΓ̄
dt
= −D2

Γ

1 − (ET − ĒT̄ )2

D2
E

D2
Γ

 ≥ 0. (2.10)

Subsequently classical dynamics is considered for ~ → 0
and connections to gravity are indicated with kinematically
independent geometric and thermal times (cf. [3]).
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In this note, we present a proof to the Van Aubel Theorem in the Einstein Relativistic
Velocity Model of Hyperbolic Geometry.

1 Introduction

Hyperbolic Geometry appeared in the first half of the 19th

century as an attempt to understand Euclid’s axiomatic basis
of Geometry. It is also known as a type of non-Euclidean Ge-
ometry, being in many respects similar to Euclidean Geom-
etry. Hyperbolic Geometry includes similar concepts as dis-
tance and angle. Both these geometries have many results in
common but many are different. There are known many mod-
els for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic veloc-
ity model, etc. Here, in this study, we give hyperbolic version
of Van Aubel theorem. The well-known Van Aubel theorem
states that if ABC is a triangle and AD, BE,CF are concurrent
cevians at P, then AP

PD =
AE
EC +

AF
FB (see [1, p. 271]).

Let D denote the complex unit disc in complex z - plane,
i.e.

D = {z ∈ C : |z| < 1}.
The most general Möbius transformation of D is

z→ eiθ z0 + z
1 + z0z

= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the
Möbius transformation of the disc to be viewed as a Möbius
left gyrotranslation

z→ z0 ⊕ z =
z0 + z
1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D,
and z0 is the complex conjugate of z0. Let Aut(D,⊕) be the
automorphism group of the grupoid (D,⊕). If we define

gyr : D × D→ Aut(D,⊕), gyr[a, b] =
a ⊕ b
b ⊕ a

=
1 + ab
1 + ab

,

then is true gyrocommutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:

1. gyr[u, v]a· gyr[u, v]b = a · b for all points
a,b,u, v ∈G.

2. G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and
all points a ∈G:

(G1) 1 ⊗ a = a

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4)
|r| ⊗ a
∥r ⊗ a∥ =

a
∥a∥

(G5) gyr[u, v](r ⊗ a) = r ⊗ gyr[u, v]a

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

3. Real vector space structure (∥G∥ ,⊕,⊗) for the set ∥G∥
of onedimensional “vectors”

∥G∥ = {± ∥a∥ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such
that for all r ∈ R and a,b ∈ G,

(G7) ∥r ⊗ a∥ = |r| ⊗ ∥a∥

(G8) ∥a ⊕ b∥ ≤ ∥a∥ ⊕ ∥b∥

Definition 1. Let ABC be a gyrotriangle with sides a, b, c
in an Einstein gyrovector space (Vs,⊕,⊗), and let ha, hb, hc

be three altitudes of ABC drawn from vertices A, B,C per-
pendicular to their opposite sides a, b, c or their extension,
respectively. The number

S ABC = γaaγha ha = γbbγhb hb = γccγhc hc

is called the gyrotriangle constant of gyrotriangle ABC (here

γv =
1√

1 − ∥v∥
2

s2

is the gamma factor).

(See [2, p. 558].)
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Theorem 1. (The Gyrotriangle Constant Principle)
Let A1BC and A2BC be two gyrotriangles in a Einstein gy-
rovector plane (R2

s ,⊕,⊗), A1 , A2 such that the two gyroseg-
ments A1A2 and BC, or their extensions, intersect at a point
P ∈ R2

s . Then,
γ|A1P| |A1P|
γ|A2P| |A2P| =

S A1BC

S A2BC
.

(See [2, p. 563].)

Theorem 2. (The Hyperbolic Theorem of Menelaus in Ein-
stein Gyrovector Space)
Let a1, a2, and a3 be three non-gyrocollinear points in an Ein-
stein gyrovector space (Vs,⊕,⊗). If a gyroline meets the sides
of gyrotriangle a1a2a3 at points a12, a13, a23, then

γ⊖a1⊕a12 ∥⊖a1 ⊕ a12∥
γ⊖a2⊕a12 ∥⊖a2 ⊕ a12∥

· γ⊖a2⊕a23 ∥⊖a2 ⊕ a23∥
γ⊖a3⊕a23 ∥⊖a3 ⊕ a23∥

·

γ⊖a3⊕a13 ∥⊖a3 ⊕ a13∥
γ⊖a1⊕a13 ∥⊖a1 ⊕ a13∥

= 1

(See [2, p. 463].)

Theorem 3. (The Gyrotriangle Bisector Theorem)
Let ABC be a gyrotriangle in an Einstein gyrovector space
(Vs,⊕,⊗), and let P be a point lying on side BC of the gyro-
triangle such that AP is a bisector of gyroangle ]BAC. Then,

γ|BP| |BP|
γ|PC| |PC| =

γ|AB| |AB|
γ|AC| |AC|

(See [3, p. 150].) For further details we refer to the recent
book of A. Ungar [2].

2 Main results

In this section, we prove Van Aubel’s theorem in hyperbolic
geometry.

Theorem 4. If the point P does lie on any side of the hyper-
bolic triangle ABC, and BC meets AP in D, CA meets BP in
E, and AB meets CP in F, then

γ|AP| |AP|
γ|PD| |PD| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

· γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| .

Proof. If we use the Menelaus’s theorem in the h-triangles
ADC and ABD for the h-lines BPE, and CPF respectively,
then

γ|AP| |AP|
γ|PD| |PD| =

γ|AE| |AE|
γ|EC| |EC| ·

γ|BC| |BC|
γ|BD| |BD| (1)

and
γ|AP| |AP|
γ|PD| |PD| =

γ|FB| |FB|
γ|FA| |FA| ·

γ|BC| |BC|
γ|CD| |CD| (2)

From (1) and (2), we have

2 · γ|AP| |AP|
γ|PD| |PD| =

γ|AE| |AE|
γ|EC| |EC| ·

γ|BC| |BC|
γ|BD| |BD|+

γ|FA| |FA|
γ|FB| |FB| ·

γ|BC| |BC|
γ|CD| |CD| ,

the conclusion follows. �

Corollary 1. Let G be the centroid of the hyperbolic trian-
gle ABC, and D, E, F are the midpoints of hyperbolic sides
BC,CA, and AC respectively. Then,

γ|AG| |AG|
γ|GD| |GD| =

γ|BC| |BC|
2

[
1

γ|BD| |BD| +
1

γ|CD| |CD|

]
. (3)

Proof. If we use theorem 4 for the triangle ABC and the cen-
troid G, we have

γ|AG| |AG|
γ|GD| |GD| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| ,

the conclusion follows. �

Corollary 2. Let I be the incenter of the hyperbolic triangle
ABC, and let the angle bisectors be AD, BE, and CF. Then,

γ|AI| |AI|
γ|ID| |ID| =

1
2

[
γ|AB| |AB|
γ|BD| |BD| +

γ|AC| |AC|
γ|CD| |CD|

]
. (4)

Proof. If we use theorem 3 for the triangle ABC, we have

γ|AE| |AE|
γ|EC| |EC| =

γ|AB| |AB|
γ|BC| |BC| , and

γ|AF| |AF|
γ|FB| |FB| =

γ|AC| |AC|
γ|BC| |BC| . (5)

If we use theorem 4 for the triangle ABC and the incenter
I, we have

γ|AI| |AI|
γ|ID| |ID| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| .

(6)

From (5) and (6), we have

γ|AI| |AI|
γ|ID| |ID| =

γ|BC| |BC|
2

·
γ|AB| |AB|
γ|BC| |BC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|AC| |AC|
γ|BC| |BC| ·

1
γ|CD| |CD| ,

the conclusion follows. �
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The Einstein relativistic velocity model is another model
of hyperbolic geometry. Many of the theorems of Euclidean
geometry are relatively similar form in the Einstein relativis-
tic velocity model, Aubel’s theorem for gyrotriangle is an
example in this respect. In the Euclidean limit of large s,
s → ∞, gamma factor γv reduces to 1, so that the gyroequal-
ity (1) reduces to the

|AP|
|PD| =

|BC|
2

[
|AE|
|EC| ·

1
|BD| +

|FA|
|FB| ·

1
|CD|

]
in Euclidean geometry. We observe that the previous equality
is a equivalent form to the Van Aubel’s theorem of euclidian
geometry.
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Rossi’s Reactors – Reality or Fiction?
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A tabletop prototype of a new kind of nuclear device was demonstrated at the University
of Bologna, several months ago. It generated thermal energy at the rate of 12 kW. A set
of one hundred of such interconnected devices, able to generate energy at a much higher
rate (up to 1000 kW) is said to be now commercially available. The inventor claims that
the energy was produced via nuclear fusion of hydrogen and nickel. This note addresses
conceptual difficulties associated with such interpretation. Experimental facts reported
by the inventor seem to conflict with accepted knowledge. This, however, should not
be a justification for the rejection of experimental data. Refutations and confirmations
should be based on independently performed experiments.

1 Introduction

An interesting website, describing an ongoing research
project, has been created by an Italian engineer Andrea Rossi
[1]. He is the inventor of a tabletop device in which pow-
dered nickel, mixed with common hydrogen, reported to gen-
erate thermal energy at the rate of 12 kW, for six months. A
large percentage of nickel was said to be converted into cop-
per, during that time. The device was recently demonstrated
at the University of Bologna. The most obvious questions,
raised by the reported features of the reactor are:

1. What lowers the coulomb barrier, between the atomic
nuclei of hydrogen and nickel?

2. Is the reported accumulation of copper consistent with
the well known half-lives of radioactive copper
byproducts?

3. Is the measurable isotopic composition of nickel, in
spent fuel, consistent with the amount of released
energy?

4. The radiation level, outside the operating 12 kW reac-
tor, was said to be comparable to that due to cosmic
rays. Spent fuel, removed from the reactor, one hour
after the shutdown, was found to be not radioactive [1].
How can these purported facts be explained?

Results from earlier experiments (2008 and 2009) are de-
scribed in [2]. In one case the device was used to heat a “small
factory” (probably two or three rooms) for one year.

2 Reported 2011 results

One demonstration of the device – January 14, 2011, at the
University of Bologna – is described in [3–5]. Subsequent
experiments – February 10, and March 29, 2011 – are de-
scribed in [6–8]. In both cases the apparatus consisted of
a cylinder containing nickel. Pure hydrogen was forced to
flow through the hot nickel powder. The amount of powder
was 100 grams [8, 9], or slightly more than one cubic inch,
depending on the level of compression. Reactions between
nickel and hydrogen turned out to be extremely exothermic,

generating thermal energy at the rate of about 12.4 kW. This
was 31 times higher than the rate at which electric energy was
supplied, to operate the equipment [4].

In the February experiment the amount of thermal energy
was determined from the flow rate of cooling water, and the
difference between its input and output temperature. In the
January experiment the water flow rate was slower; the enter-
ing water was a liquid, the escaping water was a vapor. The
amount of thermal energy released was determined from the
amount of liquid water (initially at 15 oC) transformed into
101 oC vapor. Rossi claims that most heat is produced from
nuclear reactions:

p + Ni→ Cu,

where p is nothing but ionized hydrogen. This is very sur-
prising because the temperature of hydrogen was below the
melting point of nickel. Addressing this issue in [10] Rossi
reported that about 30% of nickel was turned into copper, af-
ter six months of uninterrupted operation. A schematc dia-
gram of the reactor, and additional details are in [11, 12].

Comment 1
Many physicists have studied fusion of protons with nickel
nuclei. But their protons had much higher energies, such as
14.3 MeV [13]. Rossi’s protons, by contrast, had very low
energies, close to 0.04 eV. The probability of nuclear fusion,
expressed in terms of measurable cross sections, is known
to decrease rapidly when the energy is lowered. How can
0.04 eV protons fuse with nickel, whose atomic number is
28? Rossi is convinced that this is due a catalyst added to the
powdered nickel. The nature of the catalyst has not been dis-
closed. This prevents attempts to replicate the experiments, or
to discuss the topic theoretically. Secrecy might make sense
in some business situations, but it is not consistent with sci-
entific methodology.

Comment 2
How can 30% of nickel in Rossi’s reactor be transmuted into
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copper? This seems to be impossible, even if the coulomb
barrier is somehow reduced to zero by his catalyst. To justify
this let us focus on the 58Ni and 60Ni isotopes–they consti-
tute 94.1% of the nickel initially loaded into the device. The
reactions, by which copper is produced, from these isotopes,
would be:

p + 58Ni→ 59Cu (half-life is 3.2 s) (A)

and
p + 60Ni→ 61Cu (half-life is 3.3 h) (B)

The reported amount of accumulated copper – 30% of the
initial nickel being turned into copper, after six months of
operation–would indeed be possible, via reactions (A) and
(B), if the produced copper isotopes were stable, or had half-
lives much longer than six months. But this is not the case,
as shown above. The produced copper isotopes, 59Cu and
61Cu, rapidly decay into 59Ni and 61Ni. Each reaction, in
other words, would lead to accumulation of these isotopes of
nickel, not to accumulation of copper, as reported by Rossi.
The accumulation of copper would practically stop after sev-
eral half-lives. Note that 63Cu and 65Cu, if produced from fu-
sion of protons with 62Ni and 64Ni, would be stable. But nat-
ural abundance of these isotopes of nickel, 3.63% and 0.92%,
respectively, is too low to be consistent with the claimed ac-
cumulation of 30% of copper.

Comment 3
How much of the original 58Ni should be destroyed, after six
months of continuous operation, in order to generate ther-
mal energy at the rate of 12 kW? Let us again assume that
Coulomb barriers are somehow reduced to zero by Rossi’s
secret catalyst. The 58Ni is 68% of the total. On that basis
one can assume that 68% of 12 kW is due to the radioac-
tive decay of 59Cu, and its radioactive daughter, 59Ni. Thus
P′1 = 0.68 × 12 = 8.16 kW. This is the thermal power. The
nuclear power P1 must be larger, because neutrinos and some
gamma rays do escape from the vessel. As a rough estimate,
assume that the nuclear power is

P1 = 16 kW = 16,000 J/s = 1017 MeV/s.

The excited 59Cu, from the reaction (A), releases 3.8 MeV
of energy, as one can verify using a table of known atomic
masses. In the same way one can verify that the energy re-
leased from its radioactive daughter, 59Ni, is 4.8 MeV. In
other words, each transformation of 58Ni into 60Ni releases
3.8 + 4.8 = 8.6 MeV of nuclear energy.

The number of reactions (A) should thus be equal to
1017/8.6 = 1.16× 1016 per second. Multiplying this result by
the number of seconds in six months (1.55 × 107) one finds
that the total number of destroyed 58Ni nuclei is 1.80×1023, or
17.4 grams. A similar estimate can be made for other initially
present nickel isotopes. The overall conclusion is that the iso-
topic composition of nickel, after six months of operation, at

the 12 kW level, would change drastically, if the reaction A
were responsible for the heat produced in the reactor invented
by Rossi.

The amount of 59Ni, for example, would increase from
0% (natural abundance) to 17.4%. The amount of 58Ni, on
the other hand, would be reduced from 68% (natural abun-
dance) to 50.6%. The isotopic composition of nickel in spent
fuel was measured, according to [1], but results remain “priv-
ileged information”.

Comment 4
The level of radioactivity, next to the reactor generating heat
at the rate of 12 kW, was reported as not much higher than
the natural background [5]. Is this consistent with reaction
(A) being responsible for most of the heat? The answer is
negative. How can this be justified? In the steady state the
rate at which radioactive atoms, in this case 59Cu, are decay-
ing is the same as the rate at which they are produced. That
rate, as shown in Comment 3, is 1.16×1016 atoms per second.
In other words, the expected activity is

1.16 × 1016/3.7 × 1010 = 313, 000 Curies.

The emitted radiation would include gamma rays of 1.3
MeV, able to escape. The level of radiation, next to the reac-
tor, would depend on the wall thickness. It would certainly
exceed the background by many orders of magnitude. Ab-
sence of excessive gamma radiation might be an indication
that the reactions producing heat were different from the p+Ni
fusion.

3 Addendum

Note that the reported fuel power density of 120 W/g would
be at least ten times higher than in a fuel element of a nu-
clear reactor based on 235U. What can be more desirable than
higher safety and lower cost? Did Rossi really invent a new
kind of nuclear reactor? Logical speculations, such as those
above, are not sufficient to answer this question. Only inde-
pendently performed experiments can do this.

Rossi’s claims, if confirmed, would present a challenge to
theoretical physicists. Physics, unlike mathematics, is based
on confirmed experimental facts, not on axioms. Newly dis-
covered facts often lead to improvements of accepted theo-
ries. Let’s hope that Rossi’s incredible results can be inde-
pendently confirmed in the near future.
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The quantum Goos-Hanchen effect in graphene is investigated. The Goos-Hanchen
phase shift is derived by solving the Dirac eigenvalue differential equation. This phase
shift varies with the angle of incidence of the quasiparticle Dirac fermions on the bar-
rier. Calculations show that the dependence of the phase shift on the angle of incidence
is sensitive to the variation of the energy gap of graphene, the applied magnetic field
and the frequency of the electromagnetic waves. The present results show that the con-
ducting states in the sidebands is very effective in the phase shift for frequencies of the
applied electromagnetic field. This investigation is very important for the application of
graphene in nanoelectronics and nanophotonics.

1 Introduction

In recent years, the interest in novel device structures able to
surmount the miniaturization limits imposed by silicon based
transistors has led researchers to explore alternative technolo-
gies such as those originated in the field of semiconducting
quantum dots, nanowire, graphene and carbon nanotubes
[1, 2]. Graphene [3, 4] consists of a monolayer of carbon
atoms forming a two-dimensional honeycomb lattice.

Graphene has been intensively studied due to its fascinat-
ing physical properties and potential applications in the field
of nanoelectronics and another different field, for example,
biosensor, hydrogen storage, and so on [5, 6]. In graphene,
the energy bands touch the Fermi energy at six discrete points
at the edges of the hexagonal Brillouin zone. Out of these
six Fermi points, only two are inequivalent, they are com-
monly referred to as K and K´ points [7]. The quasiparticle
excitation about K & K´ points obey linear Dirac like energy
dispersion [8]. The presence of such Dirac like quasiparticle
is expected to lead to a number of unusual electronic proper-
ties in graphene including relativistic quantum Hall effect [9],
quasi-relativistic Klein tunneling [10, 11] and the lateral shift
of these Dirac quasi-particles in graphene, which is known as
Goos-Hanchen effect, Bragg reflector and wave guides [12–
15]. The present paper is devoted to investigate the quantum
Goos-Hanchen effect in graphene, taking into consideration
the effect of electromagnetic waves of wide range of frequen-
cies and magnetic field.

2 The Model

The transport of quasiparticle Dirac Fermions in monolayer
graphene through a barrier of height, Vb, and width, d, is
described by the following Dirac Hamiltonian, Ho, which is
given as [4, 16]:

Ho = −i~v fσ∇ + Vb, (1)

where v f is the Fermi velocity and σ = (σx, σy) are the Pauli
matrices. Since the graphene is connected to two leads and

applying a top gate with gate voltage, Vg. Also, the trans-
port of quasiparticle Dirac fermions are influenced by apply-
ing both magnetic field, B, and an electromagnetic field of
amplitude, Vac, and of wide range of frequencies, ω. So, ac-
cordingly Eq. (1) can be rewritten as follows:

H = −i~v fσ∇ + Vb + eVsd + eVg + eVac cos(ωt) +
~eB
2m∗
, (2)

where Vsd is the bias voltage, ~ is reduced Planck’s constant
and m∗ is the effective mass of quasiparticle Dirac fermions.
Now, due to transmission of these quasi-particles Dirac
fermions, a transition from central band to side-bands at
energies [11, 17] E ± n~ω, where n is an integer with val-
ues 0,±1,±2, . . .. The Dirac fermions Hamiltonian, H, (Eq.
2) operates in space of the two-component eigenfunction, Ψ,
where Dirac eigenvalue differential equation is given by [11]:

HΨ (r) = EΨ(r), (3)

where E is the scattered energy of quasi-particle Dirac
fermions. The solution of Eq. (3) gives the following eigen-
functions [11,18]. The eigenfunction of incident quasi-particle
Dirac fermions is

Ψin(r) =
∞∑

n=1

Jn

(eVac

~ω

)
[A + B] , (4)

where

A =
(

1
seiφ

)
exp

(
i(kxx + kyy)

)
,

B = r
(

1
−se−iφ

)
exp

(
i(−kxx + kyy)

)
,

Jn is the nth order of Bessel function of first kind and the
eigenfunction for the transmitted quasiparticle Dirac fermions
through the barrier is given by:

Ψtr (r) =
∞∑

n=1

Jn

(eVac

~ω

)
t
(

1
seiφ

)
exp

(
i(kxx + kyy)

)
(5)
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In Eqs. (4, 5), r and t are the reflection and transmission
amplitude respectively and S = Sgn(E) is the signum function
of E. The components of the wave vectors kx and ky outside
the barrier are expressed in terms of the angle of incidence,
φ, of the quasiparticles Dirac fermions as:

kx = k f cosφ, ky = k f sinφ, (6)

where k f is the Fermi wave vector. The eigenfunction Ψb

inside the region of the barrier is given by:

Ψb(r) =
∞∑

n=1

Jn

(eVac

~ω

)
[C + D] , (7)

where

C =
(
α

s
′
βeiθ

)
exp

(
i(qxx + kyy)

)
,

D = r
(

α
−s

′
βe−iθ

)
exp

(
i(−qxx + kyy)

)
,

qx = (k
′2
f − k2

y)
1
2 , (8a)

and

θ = tan−1
(

ky
qx

)
(8b)

in which

k′f =

√
(Vb − ε)2 −

ε2
g

2
~v f

, (9)

where εg is the energy gap and ε is expressed as

ε = E − eVg − n~ω − eVsd − Vb +
~eB
2m∗

(10)

In Eq. (7), the parameters s
′
, α, and β are given by:

s
′
= sgn (E − Vb) (11)

α =

√√√√√√√√√√√√√√√√1 +

s
′
εg

2~v f√
k′2f +

ε2
g

4(~v f )2

(12)

This parameter, α, corresponds to K-point. Also, β is
given by

β =

√√√√√√√√√√√√√√√√1 −

s
′
εg

2~v f√
k′2f +

ε2
g

4(~v f )2

(13)

This parameter, β, corresponds to K′-point. Now, in or-
der to find an expression for both the transmission coefficient,

t, (Eq. 5) and the corresponding Goos-Hanchen phase shift,
Φ, this is done by applying the boundary conditions at the
boundaries of the barrier [11,18]. This gives the transmission
coefficient, t, as:

t =
∞∑

n=1

Jn

(eVac

~ω

)
×

[
1

cos(qxd) − F

]
, (14)

where

F = i(s
′
sγ sec (φ) sec (θ) + tan(φ) tan(θ)) sin(qxd)

and γ is expressed as:

γ =

√
ε2
g

4(~v f )2 + k′2f

k′f
(15)

The transmission coefficient, t, is related to the Goos-
Hanchen phase shift, Φ, [12, 18] as:

t =
eiϕ

f
, (16)

where f is the Gaussian envelop of the shifted wave of quasi-
particle Dirac fermions [12,18,19]. So, the expression for the
phase shift is given by:

Φ = tan−1
[
sin (θ) sin (φ) + ss′γ

cos(θ)cos(φ)
tan(qxd)

]
, (17)

where d is the width of the barrier. We notice that the phase
shift, Φ (Eq. 17) depends on the angle of incidence, ϕ of the
quasiparticle Dirac fermion and on the barrier of height, Vb,
and its width, d, and other parameters considered, for exam-
ple, the energy gap, εg, the magnetic field, B, gate voltage, Vg,
and the external pulsed photons of wide range of frequencies.

3 Results and Discussion

Numerical calculations are performed for phase shift, Φ,
(Eq. 17) as shown below. For monolayer graphene, the val-
ues of both barrier height, Vb, and its width are respectively
Vb = 120 meV and d = 80 nm [16, 18, 19]. Also, the value of
the Fermi-velocity, v f is approximately 106 m/s, and the ef-
fective mass of quasiparticle Dirac fermions is approximately
m∗ = 0.054 me [16, 18, 19]. The engineering of band gap
of graphene generates a pathway for possible graphene-based
nanoelectronics and nanophotonics devices. It is possible to
open and tune the band gap of graphene by applying electric
field [20] or by doping [21]. So, in our calculations we take
the value of the energy gap of graphene to be εg = 0 eV, 0.03
eV, 0.05 eV [22].

The features of our results are the following:
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Fig. 1: The variation of Goos-Hanchen phase shift, Φ, with angle of
incidence, ϕ, at different values of energy gap.

Fig. 2: The variation of Goos- Hanchen phase shift, Φ, with angle
of incidence, ϕ, at different values of gate voltage.

1. Fig. 1, shows the dependence of the Goos-Hanchen
phase shift, Φ, on the angle of incidence ϕ at different
values of energy gap, εg. As shown from the figure
that the phase shift, Φ, decreases as the angle of inci-
dence, ϕ, increase for the considered values of the en-
ergy gap, εg. It must be noticed that for εg = 0.05eV,
for angle of incidence ϕ ≈1.335 rad, the phase shift, Φ ,
increases from -1.571 rad to 1.549 rad and then slightly
decreases. This result shows the strong dependence of
Goos-Hanchen phase shift on the engineered band gap
of graphene [18, 23]. This result shows that the phase
shift, Φ , can be enhanced by certain energy gap at the
Dirac points.

2. Fig. 2 shows the dependence of the phase shift, Φ, on
the angle of incidence, ϕ , at different values of the gate

voltage, Vg. As shown from the figure that for large
values of gate voltage, Vg, for example, Vg = 1V, the
phase shift, Φ , decreases as the angle of incidence,
ϕ, increase and phase shift takes only positive values.
While for values of Vg = 0V or Vg = -0.5V, the value
of phase shift oscillates between negative and positive
values. It is well known that the tunneling of quasipar-
ticle Dirac fermions could be controlled by changing
the barrier height, Vb, this could be easily implemented
by applying a gate voltage, Vg, to graphene [11,24–26].

3. Fig. 3 shows the dependence of the phase shift, Φ, on
the angle of incidence, ϕ ,at different values of mag-
netic field, B. As shown from the figure that for B =
0.5 T, the phase shift decreases gradually as the angle
of incidence, ϕ , increases to value Φ = 1.335 rad and
then increases to Φ = 1.549 rad at ϕ = 1.374 rad and
very slightly decreases. While for values B = 5 T and
10 T the value of the phase shift, Φ, is negative and
decreases up to Phi = -1.561 rad when ϕ = 0.8635rad
(when B = 5T) and then increases to Φ = 1.529 rad
when ϕ = 0.902 rad and then decreases as the angle of
incidence increases. For B = 10 T, the value of phase
shift is negative and decreases as the value of ϕ in-
creases up to ϕ = 0.432 rad and increases up to Φ =
1.547 rad and ϕ = 0.471 rad and decreases as the an-
gle of incidence increases. This result shows that how
a magnetic field modifies the transport of quasiparticle
Dirac fermions in graphene with certain barrier height
and certain energy gap [26].

4. Fig. 4 shows the variation of the phase shift, Φ, at dif-
ferent values of frequencies, ν , of the pulsed electro-
magnetic field. As shown from the figure, for higher
frequencies 400 THz, 800 THz and 1000 THz, the value
of the phase shift, Φ, decreases as the angle of inci-
dence increases. We notice that in this range of fre-
quencies, the value of phase shift is negative. While
for microwave frequencies, MW = 300 GHz the value
of the phase shift, Φ, decreases as the angle of inci-
dence increases up to ϕ = 1.021 rad and then the phase
shift increases up to Φ = 1.55 rad and ϕ = 1.06 rad and
then decreases gradually.

This result shows that the conducting states in the side
bands can be effective in the Goos-Hanchen phase shift for a
certain frequency of the applied electromagnetic signal [27].
This result is very important for tailoring graphene for pho-
tonic nano-devices.

The present results show that the Goos-Hanchen phase
shift can be modulated by both intrinsic parameters, for ex-
ample, the barrier height, the energy gap and the extrinsic
parameters, for example, magnetic field and the induced pho-
tons of electromagnetic field. The present research is very
important for the applications of graphene in different nano-
electronics and nanophotonic devices.
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Fig. 3: The variation of Goos-Hanchen phase shift, Φ, with angle of
incidence, ϕ, at different values of magnetic field.

Fig. 4: The variation of Goos-Hanchen phase shift, Φ, with angle
of incidence, ϕ, at different values of electromagnetic wave frequen-
cies.
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The spin transport characteristics through a mesoscopic device are investigated under
the effect of an AC-field. This device consists of two-diluted magnetic semiconductor
(DMS) leads and a nonmagnetic semiconducting quantum dot. The conductance for
both spin parallel and antiparallel alignment in the two DMS leads is deduced. The
corresponding equations for giant magnetoresistance (GMR) and spin polarization (SP)
are also deduced. Calculations show an oscillatory behavior of the present studied pa-
rameters. These oscillations are due to the coupling of photon energy and spin-up &
spin-down subbands and also due to Fano-resonance. This research work is very im-
portant for spintronic devices.

1 Introduction

The field of semiconductor spintronics has attracted a great
deal of attention during the past decade because of its po-
tential applications in new generations of nanoelectronic de-
vices, lasers, and integrated magnetic sensors [1, 2]. In ad-
dition, magnetic resonant tunneling diodes (RTDs) can also
help us to more deeply understand the role of spin degree of
freedom of the tunneling electron and the quantum size ef-
fects on spin transport processes [3–5]. By employing such a
magnetic RTD, an effective injection of spin-polarized elec-
trons into nonmagnetic semiconductors can be demonstrated
[6]. A unique combination of magnetic and semiconducting
properties makes diluted magnetic semiconductors (DMSs)
very attractive for various spintronics applications [7, 8]. The
II-VI diluted magnetic semiconductors are known to be good
candidates for effective spin injection into a non-magnetic
semiconductor because their spin polarization can be easily
detected [9, 10]. The authors investigated the spin transport
characteristics through mesoscopic devices under the effect
of an electromagnetic field of wide range of frequencies [11–
14].

The aim of the present paper is to investigate the spin
transport characteristics through a mesoscopic device under
the effect of both electromagnetic field of different frequen-
cies and magnetic field. This investigated device is made of
diluted magnetic semiconductor and semiconducting quan-
tum dot.

2 The Model

The investigated mesoscopic device in the present paper is
consisted of a semiconducting quantum dot connected to two
diluted magnetic semiconductor leads. The spin-transport of
electrons through such device is conducted under the effect
of both electromagnetic wave of wide range of frequencies
and magnetic effect. It is desired to deduce an expression for
spin-polarization and giant magnetoresistance. This is done

as follows:
The Hamiltonian, H, describing the spin transport of elec-

trons through such device can be written as:

H = − ~
2

2m∗
d2

dx2 + eVsd + eVg + EF + Vb

+ eVac cos(ωt) ± 1
2
gµBσB +

N2e2

2C
± σho,

(1)

where m∗ is the effective mass of electron, ~ is the reduced
Planck’s constant, Vsd is the source-drain voltage (bias volt-
age), Vg is the gate voltage, EF is the Fermi-energy, Vb is the
barrier height at the interface between the leads and the quan-
tum dot, Vac is the amplitude of the applied AC-field with
frequency ω, g is the Landé factor of the diluted magnetic
semiconductor, µB is Bohr magneton, B is the applied mag-
netic field, σ-Pauli matrices of spin, and ho is the exchange
field of the diluted magnetic semiconductor. In eq. (1), the
term (N2e2/2C) represents the Coulomb charging energy of
the quantum dot in which e is the electron charge, N is the
number of electrons tunneled through the quantum dot, and C
is the capacitance of the quantum dot. So, the corresponding
Schrödinger equation for such transport is

Hψ = Eψ, (2)

with the solution for the eigenfunction, ψ(x), in the corre-
sponding regions of the device can be expressed as [15]:

ψ (x) =



[
A1eik1 x + B1e−ik1 x

]
Jn

(
eVac
~ω

)
e−inωt, x < 0[

A2Ai (ρ (x)) + B2Bi (ρ (x))
]

Jn

(
eVac
~ω

)
× e−inωt, 0 < x < d
A3eik2 xJn

(
eVac
~ω

)
e−inωt, x > d

(3)

where Ai(ρ(x)) is the Airy function and its complement is
Bi(ρ(x)) [16]. In eqs. (3), the parameter Jn(eVac/~ω) rep-
resents the nth order Bessel function of the first kind. The
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solutions of eqs. (3) must be generated by the presence of
the different side-bands “n” which come with phase factor
e−inωt [11–14], and d represents the diameter of the quantum
dot. Also, the parameters k1, k2 and ρ(x) in eqs. (3) are:

k1 =

√
2m∗

~2 (E + n~ω + Vb + σho), (4)

n = 0, ± 1, ± 2, ± 3 . . .

k2 =

√
2m∗
~2 (Vb + eVsd + eVg + EF +

N2e2

2C +

n~ω ± 1
2gµBBσ ± σho)

(5)

and

ρ (x) =
d

eVsdΦ
( EF + Vb + eVsd

( x
d

)
+ eVg+

N2e2

2C
+

1
2
gµBBσ + E )

(6)

in which Φ is given by

Φ =
3
√
~2d

2m∗eVsd
. (7)

Now, the tunneling probability, Γ(E), could be obtained
by applying the boundary conditions to the eigenfunctions
(eq. (3)) and their derivative at the boundaries of the junc-
tion [11–14]. We get the following expression for the tunnel-
ing probability, Γ(E), which is:

Γ(E) =
∞∑

n=1

J2
n

(eVac

~ω

)
·
{

4k1k2

π2Φ2

[
α2k2

1k2
2 + β

2m∗
2
k2

1

]−1
}
, (8)

where α and β are given by:

α = Ai (ρ(0)) · Bi (ρ(d)) − Bi (ρ(0)) · Ai (ρ(d)) , (9)

and

β=
1
Φm∗

[
Ai (ρ(0)) · Bi′ (ρ(d)) − Bi (ρ(0)) · Ai′ (ρ(d))

]
, (10)

where Ai′(ρ(x)) is the first derivative of the Airy function and
Bi′(ρ(x)) is the first derivative of its complement. Now, the
conductance, G, of the present device is expressed in terms of
the tunneling probability, Γ(E), through the following equa-
tion as [11–14, 17]:

G =
2e2

h
sin (φ)

EF+n~ω∫
EF

dE
(
−∂ fFD

∂E

)
· Γ (E), (11)

where ϕ is the phase of the scattered electrons and the factor
(−∂ fFD/∂E) is the first derivative of the Fermi-Dirac distribu-
tion function and it is given by:

(
−∂ fFD

∂E

)
= (4kBT )−1 cosh−2

(
E − EF + n~ω

2kBT

)
, (12)

where kB is the Boltzmann constant and T is the absolute
temperature. The spin polarization, SP, and giant magneto-
resistance, GMR, are expressed in terms of the conductance,
G, as follows [18]:

S p =
G↑↑ −G↑↓
G↑↑ +G↑↓

, (13)

and

GMR =
G↑↑ −G↑↓

G↑↑
, (14)

where G↑↑ is the conductance when the magnetization of the
two diluted magnetic-semiconductor leads are in parallel
alignments, while G↑↓ is the conductance for the case of an-
tiparallel alignment of the magnetization in the leads. The
indicator ↑ corresponds to spin up and also ↓ corresponds to
spin down.

3 Results and Discussion

Numerical calculations to eqs. (11, 13 and 14), taking into
consideration the two cases for parallel and antiparallel spins
of quasiparticles in the two leads. In the present calculations,
we take the case of quantum dot as GaAs and the two leads
as diluted magnetic semiconductors GaMnAs. The values for
the quantum dot are [11–14,19–21]: EF = 0.75 eV, C = 10−16

F and d = 2 nm, Vb = 0.3 eV. The value of the exchange field,
ho, for GaMnAs is -1 eV and g = 2 [18–22].

The features of the present results:

1. Figs. 1a, 1b show the variation of the conductance with
the induced photon of the frequency range 1012 − 1014

Hz. The range of frequency is in the infra-red range
at different values of gate voltage, Vg. Fig. 1a is for
the case of the parallel alignment of spin in the two di-
luted magnetic semiconductor leads, while Fig. 1b for
antiparallel case. As shown from these figures that an
oscillatory behavior of the conductance with the fre-
quency for the two cases. It must be noted the peak
height of the conductance (for the two cases) increases
as the frequency of the induced photons. Also, the
trend of the dependence is a Lorentzian shape for each
range of frequencies. These results are due to photon-
spin-up and spin-down subbands coupling. This cou-
pling will be enhanced as the frequency of the induced
photon increases.

2. Fig. 2a shows the variation of the giant magnetoresis-
tance, GMR, with the frequency of the induced photon
at different values of gate voltage, Vg. As shown from
the figure, random oscillations of GMR with random
peak heights. GMR attains a maximum value ∼ 30%
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(a)

(b)

Fig. 1: The variation of conductance with frequency at two different gate voltages for (a) parallel spin alignment and (b) antiparallel spin
alignment.
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(a) (b)

Fig. 2: The variation of (a) GMR and (b) SP with frequency at two different gate voltages.

at ν = 2.585×1013 Hz (Vg = 0.35 V) and GMR attains
a maximum value ∼ 22% at ν = 2.615× 1013 Hz (Vg =

0.1 V).
3. Fig. 2b shows the variation of the spin polarization, SP,

with the frequency of the induced photon at different
values of gate voltage, Vg. As shown from the figure,
random oscillations of spin polarization with random
peak heights. SP attains a maximum value ∼ 17.6% at
ν = 2.585×1013 Hz (Vg = 0.35 V), and also SP attains a
maximum value ∼ 12.6% at ν = 2.615×1013 Hz (Vg =

0.1 V).

These random oscillations for both GMR & SP might be
due to spin precession and spin flip of quasiparticles which
are influenced strongly as the coupling between the photon
energy and spin-up & spin-down subbands in quantum dot.

Also, these results show that the position and line shape
of the resonance are very sensitive to the spin relaxation rate
of the tunneled quasiparticles [23,24] through the whole junc-
tion.

In general, the oscillatory behavior of the investigated
physical quantities might be due to Fano-resonance as the
spin transport is performed from continuum states of dilute
magnetic semiconductor leads to the discrete states of non-
magnetic semiconducting quantum dots [14, 25].

So, our analysis of the spin polarization and giant mag-
netoresistance can be potentially useful to achieve a coherent
spintronic device by optimally adjusting the material param-
eters. The present research is practically very useful in digital
storage and magneto-optic sensor technology.
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The Upper Limit of the Periodic Table of Elements Points out to the “Long”
Version of the Table, Instead of the “Short” One

Albert Khazan
E-mail: albkhazan@gmail.com

Herein we present an analysis of the internal constitution of the “short” and “long”
forms of the Periodic Table of Elements. As a result, we conclude that the second
(long) version is more correct. We also suggest a long version of the Table consisting of
8 periods and 18 groups, with the last (heaviest) element being element No. 155, which
closes the Table.

1 Introduction

Many research papers have been written about the discov-
ery of the Periodic Law of Elements. Many spectacular ver-
sions of this law have likewise been suggested. However the
main representation of this law is still now a two-dimensional
table consisting of cells (each single cell manifests a single
element). The cells are joined into periods along the hori-
zontal axis (each row represents a single period), while the
cells are joined into groups along the vertical axis (each col-
umn represents a single group). The resulting system is rep-
resented in three different forms: the “short version” (short-
period version); the “long version” (long-period version); and
the “super-long version” (extended version), wherein each
single period occupies a whole row.

Our task in this paper is the consideration of the first two
versions of the Periodic System.

There are hundreds of papers discussing the different ver-
sions of the Periodic Table, most of whom have been sug-
gested by Mark R. Leach [1].

To avoid any form of misunderstanding of the terminol-
ogy, we should keep in mind that, in each individual case, the
Periodic Law sets up the fundamental dependence between
the numerical value of the atomic nucleus and the proper-
ties of the element, while the Periodic System shows how we
should use this law in particular conditions. The Periodic Ta-
ble is a graphical manifestation of this system.

On March 1, 1869, Dmitri Mendeleev suggested the first
“long” version of his Table of Elements. Later, in Decem-
ber of 1970, he published another, “short” version of the Ta-
ble. His theory was based on atomic masses of the elements.
Therefore, he formulated the Periodic Law as follows:

“Properties of plain bodies, and also forms and properties
of compounds of the elements, have a periodic dependence on
the numerical values of the atomic masses of the elements”.

After the internal constitution of each individual atom had
been discovered, this formulation was changed to:

“Properties of plain substances, and also forms and prop-
erties of compounds of the elements, have a periodic depen-
dence from the numerical value of the electric charge of the
respective nucleus”.

All elements in the Periodic Table have been numbered,
beginning with number one. These are the so-called atomic
numbers. Further, we will use our data about the upper limit
of the Periodic Table [2–4], when continuing both the short
and long versions of the Table upto their natural end, which
is manifested by element No. 155.

2 The short version of the Periodic Table

2.1 The Periods

The Periodic System of Elements is presented with the Pe-
riodic Table (see Table 1), wherein the horizontal rows are
known as Periods. The first three Periods are referred to as
“short ones”, while the last five — “long ones”. The ele-
ments are distributed in the Periods as follows: Period 1 —
by 2 elements, Periods 2 and 3 — by 8 elements in each, Pe-
riods 4 and 5 — by 18 elements in each, Periods 6 and 7 —
by 32 elements in each, Period 8 — by 37 elements. Herein
we mean that Period 7 is full upto its end, while Period 8
has been introduced according to our calculation. Each sin-
gle Period (except for Hydrogen) starts with an alkaline metal
and then ends with a noble gas. In Periods 6 and 7, within
the numbers 58–71 and 90–103, families of Lanthanoids and
Actinides are located, respectively. They are placed on the
bottom of the Table, and are marked by stars. Chemical prop-
erties of Lanthanides are similar to each other: for instance,
they all are “reaction-possible” metals — they react with wa-
ter, while producing Hydroxide and Hydrogen. Proceeding
from this fact we conclude that Lanthanides have a very man-
ifested horizontal analogy in the Table. Actinides, in their
compounds, manifest more different orders of oxidation. For
instance, Actinium has the oxidation order +3, while Ura-
nium — only +3, +4, +5, and +6. Experimentally studying
chemical properties of Actinides is a very complicate task
due to very high instability of their nuclei. Elements of the
same Period have very close numerical values of their atomic
masses, but different physical and chemical properties. With
these, and depending on the length of the particular Period —
each small one consists of one row, while each long one con-
sists of two rows (the upper even row, and the lower odd row),
— the rate of change of the properties is smoother and slower
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in the second case. In the even rows of the long Periods (the
rows 4, 6, 8, and 10 of the Table), only metals are located.
In the odd rows of the long Periods (these are the rows 5, 7,
and 9), properties of the elements change from left to right in
the same row as well as those of the typical elements of the
Table.

The main sign according to which the elements of the long
Periods are split into two rows is their oxidation order: the
same numerical values of it are repeated in the same Period
with increase of atomic mass of the elements. For instance,
in Period 4, the oxidation order of the elements from K to Mn
changes from +1 to +7, then a triad of Fe, Co, Ni follows
(they are elements of an odd row), after whom the same in-
crease of the oxidation order is observed in the elements from
Cu to Br (these are elements of an odd row). Such distribu-
tion of the elements is also repeated in the other long Periods.
Forms of compounds of the elements are twice repeated in
them as well. As is known, the number of each single Pe-
riod of the Table is determined by the number of electronic
shells (energetic levels) of the elements. The energetic levels
are then split into sub-levels, which differ from each one by
the coupling energy with the nucleus. According to the mod-
ern reference data, the number of the sub-levels is n, but not
bigger than 4. However, if taking Seaborg’s suggestion about
two additional Periods of 50 elements in each into account,
then the ultimate high number of the electrons at an energetic
level, according to the formula N = 2n2, should be 50 (under
n = 5). Hence, the quantum mechanical calculations require
correction.

2.2 The Groups

The Periodic Table of Elements contains 8 Groups of the ele-
ments. The Groups are numbered by Roman numbers. They
are located along the vertical axis of the Table. Number of
each single Group is connected with the oxidation order of the
elements consisting it (the oxidation number is manifested in
the compounds of the elements). As a rule, the positive high-
est oxidation order of the elements is equal to the number of
that Group which covers them. An exception is Fluorine: its
oxidation number is −1. Of the elements of Group VIII, the
oxidation order +8 is only known for Osmium, Ruthenium,
and Xenon. Number of each single Group depends on the
number of the valence electrons in the external shell of the
atom. However it is equally possible to Hydrogen, due to
the possibility of its atom to loose or catch the electron, to
be equally located in Group I or Group VII. Rest elements in
their Groups are split into the main and auxiliary sub-groups.
Groups I, II, II include the elements of the left side of all Pe-
riods, while Groups V, VI, VII — the elements located in the
right side. The elements which occupy the middle side of the
long Periods are known as the transferring elements. They
have properties which differ from the properties of the ele-
ments of the short Periods. They are considered, separately,

as Groups IVa, Va, VIa, VIII, which include by three ele-
ments of each respective long Period Ib, IIb, IIIb, IVb. The
main sub-groups consist of the typical elements (the elements
of Periods 2 and 3) and those elements of the long Periods
which are similar to them according to their chemical proper-
ties. The auxiliary sub-groups consist of only metals — the
elements f the long Periods. Group VIII differs from the oth-
ers. Aside for the main sub-group of Helium (noble gases),
it contains three shell sub-groups of Fe, Co, and Ni. Chem-
ical properties of the elements of the main and auxilary sub-
groups differ very much. For instance, in Group VII, the main
sub-group consists of non-metals F, Cl, Br, I, At, while the
auxiliary subgroup consists of metals Mn, Tc, Re. Thus, the
sub-groups join most similar elements of the Table altogether.
Properties of the elements in the sub-groups change, respec-
tively: from up to down, the metalic properties strengthen,
while the non-metalic properties become weak. It is obvious
that the metalic properties are most expressed on Fr then on
Cs, while the non-metalic properties are most expressed on F
then on O [5].

2.3 Electron configuration of the atoms, and the Periodic
Table

The periodic change of the properties of the elements by in-
crease of the ordinal number is explained as the periodic
change of their atoms’ structure, namely by a number of elec-
trons at their outer energetic levels. Elements are divided into
seven periods (eight according to our dates) in accordance
with energetic levels in electron shells. The electron shell of
Period 1 contains one energetic level, Period 2 contains two
energetic levels, Period 3 — three, Period 4 — 4, and so on.
Every Period of the Periodic System of Elements begins with
elements whose atoms, each, have one electron at the outer
level, and ends with elements whose atoms, each, have at the
outer shell 2 (for Period 1) or 8 electrons (for all subsequent
Periods). Outer shells of elements (Li, Na, Ka, Rb, Cs); (Be,
Mg, Ca, Sr); (F, Cl, Br, I); (He, Ne, Ar, Kr, Xe) have a sim-
ilar structure. The number of the main sub-Groups is deter-
mined by the maximal number of elements at the energetic
level which equals 8. The number of common elements (el-
ements of auxiliary sub-Groups) is determined by maximal
electrons at d-sub-level, and it equals 10 for every large Pe-
riod (see Table 2).

As far as one of auxiliary sub-Groups of the Periodic Ta-
ble of Elements contains at once three common elements with
similar chemical properties (so called triads Fe-Co-Ni, Ru-
Rh-Pd, Os-Ir-Pt), then the number, as of common sub-Groups
as main ones, equals 8. The number of Lanthanoids and Ac-
tinides placed at the foot of the Periodic Table as independent
rows equals the maximum number of electrons at the f-Sub-
level in analogy with common elements, i.e. it equals 14.

A Period begins with an element the atom of which con-
tains one s-electron at the outer level: this is hydrogen in Pe-
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Table 1: The standard (long) version of the Periodic Table of Elements.

Albert Khazan. The Upper Limit of the Periodic Table of Elements Points out to the “Long” Version of the Table 47



Volume 1 PROGRESS IN PHYSICS January, 2012

Table 2: The suggested (short) version of the Periodic Table of Elements, up to No. 155.
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Fig. 1: Experience of the System of the Elements, based on their atomic mass (the table, according to Mendeleev). Dependence of the
atomic mass from the number of the elements (the graphs, according to the suggested formulation). The triangles mean the beginning of
each Period.

Fig. 2: Deviation of the modern (suggested) dependence of the atomic mass from the number of the elements from Mendeleev’s data.
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riod 1, and alkaline metals in the others. A Period ends with
precious gas: helium (1s2) in Period 1.

Detailed studies of the structure of an atom are not the aim
of our paper, therefore we draw common conclusions con-
cerning the corresponding locations of elements in blocks:

1. s-elements: electrons fill s-sub-shells of the outer level;
two first elements of every Period are related to them;

2. p-elements: electrons fill p-sub-shells of the outer
level; six last elements of every Period are related to
them;

3. d-elements: electrons fill s-sub-shells of the outer
level; they are elements of inserted decades of big Peri-
ods placed between s- and p-elements (they are called
also common elements);

4. f-elements: electrons fill f-sub-shells; they are Lan-
thanoids and Actinides.

3 Drawbacks of the short version and advantages of the
long version of the Periodic Table

The “short” form of the Table was cancelled officially by
IUPAC in 1989. But it is still used in Russian information
and educational literature, must probably, according to a tra-
dition. But it follows by detailed consideration that it contains
some moot points.

In particular, Group VIII contains in the common Group,
together with precious gases (the main sub-Group), triads of
elements, which have precisely expressed the properties of
metals. The contradiction here is that the triad Fe, Co, Ni is
near families of platinum metals although their properties dif-
fer from the properties of Groups of iron. Group I contains
alkaline metals having very strong chemical activity, but si-
multaneously the sub-Group “b” contains copper, silver and
gold which have not these properties but possess excellent
electric conductivity. Besides gold, silver and platinum, met-
als have very weak chemical activity.

Group VII, where nearby halogens such metals as man-
ganese, technezium and renium are placed, is also incorrect,
because in the same Group two sub-Groups of elements pos-
sessing absolutely different properties are collected.

The “short” Table is sufficiently informative but it is dif-
ficult in terms of use due to the presence of the “long” and
the “short” Groups, i.e. the small and big Periods divided
by even and odd lines. It is very difficult to place f-elements
inside eight Groups.

The “long” form of the Table consisting of 18 Groups
was confirmed by IUPAC in 1989. Defect characteristics of
the “short” Table were removed here: the sub-Groups are ex-
cepted, Periods consist of one stitch, elements are composed
of blocks, the families of iron and platinum metals have dis-
appeared, and so on.

The known Periodic Table consisting of 118 elements and
7 Periods where our dates for Period 8 are added must

contain: 17 s-elements, 42 p-elements, 50 d-elements, 42 f-
elements, and 4 g-elements.

The number 17 for s-elements follows from the fact that
two of them are in Group I and Group II of Period 8, while
element No. 155 (the last s-element, 17-th) is in Period 9 and
Group I (the sole) closes the Table.

The extended Table consisting of blocks containing the
number of elements calculated by us is published in [4].

3.1 From the Periodic Law to the Hyperbolic Law and
the upper limit of the Periodic System

A note by Mendeleev, in March of 1869, was published and
sent in Russian and French to scientists, titled “Experience of
Systems of Elements Founded on Their Atomic Weights and
Chemical Similarity” (with “atomic weight” to be understood
as “atomic mass” here and in the future). This date is consid-
ered as the discovery date of the periodic law of chemical el-
ements. The author dedicated the next two years to the work
in this direction, which was a correction of atomic masses, an
elaboration of studies about the periodical properties of ele-
ments, about the rôle of Groups, of big and small Periods, as
well as about the places of chemical combinations in the Ta-
ble. As a result, “Mendeleev’s Natural System of Elements”
which was the first periodic table of chemical elements was
published in the first edition of his book “The Foundations of
Chemistry”, in 1871.

It is necessary to note that the dates published in the ta-
ble of “Experience of Systems of Elements Founded on Their
Atomic Weights and Chemical Similarity” permits us to use
them in order to prove the correctness of Mendeleev’s work.

The comprehensive table based the book “Experience of
System of Element Found on Their Atomic Weight and
Chemical Similarity”, in terms of the dependence of each
atomic mass on the number of the corresponding element,
has been built by us and showed on Fig. 1. Because then it
was not known yet that the ordinal number of each element
characterizes its charge, it was simply the case that an ele-
ment possessing a minimal mass was allowed to be designed
as No. 1, and this order is conserved in the future: the next,
in terms of mass, element will be designated as No. 2, the
third as No. 3, and so on. Thus the ordinal number, which
was attributed to the element after the theory of the atom was
constructed has here another numerical value — symbolizing
order of priority. The Table on Fig. 1 is the same as the one
composed by Mendeleev, and the elements and the numbers
are placed as the points on the arc where the triangles desig-
nate the beginning of the Periods. As is clear, the arc goes
smoothly, preceding the elements and the atomic mass ∼100,
and after that it deviates preceding Ba. The trend line equa-
tion can be easily described by the multinomial of the third
degree, i.e. by R2 = 0.9847, in spite of a strong jump in the
region of Lantanides. It should be noted that the part of the
arc preceding Ba has R2 = 0.999. It means that the direction
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of the trend line after Ba reflects correctly the further course
of our dependence, which allows us to calculate easily the
atomic weights of other elements.

It should be noted that the trend line of the curve con-
structed according to contemporary dates has R2 = 0.9868. In
order that compare the dependence of the atomic mass from
the ordinal number according to contemporary dates and the
dates of Mendeleev the graph of was constructed (see Fig. 2).
As is clear, the maximal deviations (3–4%) are observed for
6 cases, (1–1.5%) — for 8 cases, the others are placed lower.
Because the common number of elements is 60, this spread is
negligible for the those time.

As follows from the indicated dates, Mendeleev showed
by means of his works concerning the Periodic Law that it is
true for 60–70 elements, opening the way for the extension of
the Table up to No. 118.

But our studies of the Periodic Table distinctly show that
a hyperbolic law takes place in it. The law determines the
upper limit of the Table through element No. 155. This fact
is indisputable and it is justified by numerous publications.

4 Conclusion

If it was allowed in the 1950s that a maximum value of an
ordinal number in Periodic Table could not exceed the value
Z = 110 due to a spontaneous division of the nucleus, then
in the 1960s theoreticians proposed the hypothesis that the
atomic nucleus could have anomalously high stability. Sea-
borg called these regions “islands of stability” in a “sea of
instability”. He hoped for a possible synthesis of super-
elements inside these regions, “. . . but until [now] the prob-
lem of the upper bound of the Periodic System [remains]
unsolved” (and so: at that time)!

Since in order to solve any problem it is necessary to
know a final goal and to define its bounds, we have realized
experimental studies and constructed a mathematical appara-
tus for the determination of the upper bound of the Periodic
Table. According to our calculations, the last element is esti-
mated and its location is determined: Period 9, Group I, with
atomic mass of 411.66 (approximately), for which Z = 155.
The earlier-proposed extended tables by Seaborg for 168 and
216 elements simply cannot be realized, because only 155
elements can be in the Table, in its entirety.
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We report the application of quantum celestial mechanics (QCM) to the Kepler-16 cir-
cumbinary system which has a single planet orbiting binary stars with the important
system parameters known to within one percent. Other gravitationally bound systems
such as the Solar System of planets and the Jovian satellite systems have large uncertain-
ties in their total angular momentum. Therefore, Kepler-16 allows us for the first time
to determine whether the QCM predicted angular momentum per mass quantization is
valid.

1 Introduction

We report a precision test of quantum celestial mechanics
(QCM) in the Kepler-16 circumbinary system that has planet-
b orbiting its two central stars at a distance of 0.70 AU from
the barycenter. QCM, proposed in 2003 by H.G. Preston
and F. Potter [1] as an extension of Einstein’s general the-
ory of relativity, predicts angular momentum per mass quan-
tization states for bodies orbiting a central mass in all grav-
itationally bound systems with the defining equation in the
Schwarzschild metric being

L
µ
= m

LT

MT
. (1)

Here µ is the mass of the orbiting body with orbital angular
momentum L and MT is the total mass of the bound system
with total angular momentum LT . We calculate that the quan-
tization integer m = 10, an amazing result with about a 1%
uncertainty. Note that in all systems tested, we assume that
the orbiting bodies have been in stable orbits for at least a 100
million years.

Kepler-16 is the first solar system type for which the total
mass and the total angular momentum are both known accu-
rately enough to allow a test of the angular momentum per
mass quantization condition to within a few percent. The ad-
vantage this system has over all others is that the binary stars
in revolution at its center contribute more than 99.5% of the
system’s total angular momentum. Moreover, more orbiting
bodies may be detected in the future to provide the acid test
of the theory because our precision result should improve.

2 Brief Review

Contrary to popular statements in the literature about plan-
etary orbital angular momentum, the angular momentum of
the Oort Cloud dominates the total angular momentum of the
Solar System, being about 60 times the angular momentum
of the orbiting planets, but its value has high uncertainty. The
Jovian planets have differential internal rotations which bring
their angular momentum uncertainties to more than 10% also.
The Earth-Moon and Pluto-Charon systems have known val-
ues and a fit can be made to m = 65 and m = 9, respectively,

but the application of the Schwarzschild metric is question-
able in systems for which a reduced mass must be used. In
addition, there is not another orbiting body for prediction pur-
poses.

The Mars-Phobos-Deimos system offers a test of the an-
gular momentum condition. We find that m = 61 for Phobos
and m = 97 for Deimos, with uncertainties less than about 4%.
The Schwarzschild metric is a good approximation here but
the integers are very large and therefore somewhat unsatisfac-
tory for a definitive test. We would prefer to find a system for
which the m values that fit are small integers, if possible.

We have applied the equation to many multiplanet exosys-
tems and found that the fits all predict additional undetected
angular momentum. Such solar systems can be expected to
have an additional planet and/or the equivalent of an Oort
Cloud that contributes significant orbital angular momentum.
Examples include: Kepler-18, HR 8799, HIP 57274, Gliese
581, 55Cnc, Kepler-11, PSR 1257, HD 10180, HD 125612,
HD 69830, 47 Uma, and 61 Vir.

Other confirmed circumbinary systems with one or two
known planets are either dominated by the planetary angular
momentum or the planets contribute about 50%, rendering
their fits unsuitable for a precision test: HW Virginis, NNSer-
pentis, and DP Leonis.

Our original article [1] contains the derivation of QCM
from the general relativistic Hamilton-Jacobi equation and its
new gravitational wave equation for any metric. Our first
application, to the Solar System without knowledge of the
Oort Cloud angular momentum, predicted that all the plane-
tary orbits should be within the Sun’s radius! Subsequently,
we learned about the Oort Cloud and were able to produce
two excellent QCM linear regression fits with R2 > 0.999 for
m sets (1) 2,3,4,5,9,13,19,24,28; (2) 3,4,5,6,11,15,21,26,30.
Therefore, we predict a total angular momentum for the Solar
System LS S ≈ 1.9 x 1045 kg m2/s with the planets contributing
only Lpl = 3.1 x 1043 kg m2/s.

Several follow-up articles verify its application to galax-
ies without requiring ’dark matter’ for gravitational lensing
by the galaxy quantization states [2], the quantization state of
baryonic mass in clusters of galaxies [3], and how the cosmo-
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logical redshift is interpreted as a gravitational redshift that
agrees with the accelerated expansion of the Universe [4].
That is, QCM applied to the Universe with the interior met-
ric dictates that every observer at distance r from the source
sees the light originating from an effective negative potential
V(r) ≈ -kr2 c2/[2(1-kr2)2], meaning the clocks run slower at
the distant source.

In the Schwarzschild metric the QCM wave equation re-
duces to a Schrödinger-like equation that predicts quantiza-
tion states for the angular momentum per mass and for the en-
ergy per mass. There is no Planck’s constant per se but instead
each system has its unique constant H = LT /MT c, a character-
istic distance for the gravitationally bound system. Important
physical quantities can be related to H and the Schwarzschild
radius. In the single free particle limit, such as a free electron,
the QCM equation reduces to the standard quantum mechan-
ical Schrödinger equation. Note that QCM is not quantum
gravity.

3 The Kepler-16 System

We have been waiting about 10 years for a gravitationally
bound system for which its total angular momentum per to-
tal mass is known to about 1%. Finally, in September, 2011,
the Kepler-16 system was reported [5] with two stars, star A
and star B, separated by 0.22 AU and a planet called planet-b
orbiting their barycenter at 0.70 AU. The list below provides
the important physical parameters of this system.

Star A:

Mass = 0.6897 ± 0.0035 solar masses

Orbital radius = 0.05092 ± 0.00027 AU

Period = 41.079220 ± 0.000078 days

Angular momentum = (1.4247 ± 0.0170) x 1044 m2/s

Star B:

Mass = 0.20255 ± 0.00066 solar masses

Orbital radius = 0.17339 ± 0.00115 AU

Period = 41.079220 ± 0.000078 days

Angular momentum = (4.8514 ± 0.0632) x 1044 m2/s

planet-b:

Mass = 0.333 ± 0.0016 Jupiter masses

Orbital radius = 0.7048 ± 0.0011 AU

Period = 228.776 ± 0.037 days

Angular momentum = (2.2479 ± 0.1080) x 1042 m2/s

Kepler-16 system:

LT /MT = (3.517± 0.011) x 1014 m2/s

Lb/Mb = (3.555± 0.036) x 1015 m2/s

Note that although the planet mass value has about a 5%
uncertainty, this large uncertainty is excluded from the equa-
tion because the planet mass divides out in Lb/µb. Our result
for the QCM angular momentum per mass quantization inte-
ger is

m = 10.1 ± 0.1. (2)

Therefore, we have determined that planet-b is in the m = 10
quantization state with a maximum uncertainty of less than
2%. In Einstein’s general theory of relativity and in New-
tonian gravitation there is no a priori reason for m to be an
integer, so its value could have been anywhere.

4 Comments

As good as this result has been, the acid test for QCM is yet
to come. We need to detect at least one more planet in the
Kepler-16 system to determine whether the QCM prediction
leads to its correct angular momentum value, i.e., an integer
multiple of LT /MT equal to the classical value at radius r.

Assuming that QCM passes the acid test, we wish to point
out that the existence of quantization states of angular mo-
mentum per mass and energy per mass are important con-
cepts for the formation of stars, planets, solar systems, galax-
ies, and clusters of galaxies. Models ignoring QCM will be
incomplete and will need speculative inventions such as dark
matter and perhaps dark energy to preserve traditional incom-
plete approaches toward ’understanding’ these gravitational
systems.

An additional gravitational test of QCM would be a lab-
oratory experiment with a slowly rotating attractor mass pro-
ducing a repulsive effect to counteract the Newtonian attrac-
tion at specific rotation frequencies for the given separation
distance to the affected mass. We are in the process of search-
ing for this behavior.
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The potential energy surfaces, V(β, γ), for a series of Xenon isotopes 122−134Xe have
been calculated. The relatively flat potential to 130Xe and energy ratio E+41

/E+21
= 2.2

show E(5) symmetry to the nucleus which is laying in the transition region from γ-
soft to vibrational characters. The interacting boson approximation model (IBA − 1)
has been used in calculating levels energy and electromagnetic transition probabilities
B(E2)′s. Back bending is observed for 122−130Xe. The calculated values are compared
to the available experimental data and show reasonable agreement.

1 Introduction

The chain of 122−134Xe isotopes is of great interest because of
the existence of transitional nuclei where the nuclear structure
changes from rotational to vibrational shapes. Many authors
studied this area of isotopes experimentally and theoretically.

Experimentally, the mass of 122−134Xe isotopes [1] were
detected on line using mass separator ISOLDE/CERN while
the lifetimes of the low lying states in 122−134Xe were mea-
sured using Doppler-Shift [2] technique.

Theoretically, many authors studied this series of isotopes
useing different theoretical models as algebric sp(4) shell
model [3], cranked Strutinsky method [4], relativistic mean
field theory [5, 6], isospin-dependent lattice gas model [7, 8],
general Bohr Hamiltonian [9], quadrupole-quadrupole plus
pairing model [10], cranked Hartree-Fock-Bogoliubov model
[11, 12] and interacting boson approximation model [13, 17].
They reported:

1. the reduced transition probabilities for Yrast spectra up
to I+ = 10;

2. the existance of shape transitions as well as E(5) and
X(5) symmetry nuclei,

3. the occurrence of backbending in 122−130Xe nuclei, and

4. M1 transition probabilities between the mixed-
symmetry and fully symmetric states.

2 Interacting Boson Approximation Model

The IBA-1 model [18] was applied to the positive parity low-
lying states in even-even 122−134Xe isotopes. The proton, π,
and neutron, ν, bosons are treated as one boson and the sys-
tem is considered as an interaction between s-bosons and d-
bosons. Creation (s†d†) and annihilation (sd̃) operators are
for s and d bosons. The Hamiltonian employed for the present
calculation is given as:

H = EPS · nd + PAIR · (P · P)+

+ 1
2 ELL · (L · L) + 1

2 QQ · (Q · Q)+

+5OCT · (T3 · T3) + 5HEX · (T4 · T4),
(1)

where

P · p = 1
2


{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x{

(ss)(0)
0 −

√
5(d̃d̃)(0)

0

}


(0)

0

, (2)

L · L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q · Q =
√

5


{

(S †d̃ + d†s)(2) −
√

7
2

(d†d̃)(2)
}

x{
(s†d̃ + +d̃s)(2) −

√
7

2
(d†d̃)(2)

}


(0)

0

, (4)

T3 · T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 · T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

In the previous formulas, nd is the number of bosons; P·P,
L · L, Q ·Q, T3 · T3 and T4 · T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX are the strengths of the pairing, angu-
lar momentum, quadrupole, octupole and hexadecupole inter-
actions.

3 Results and discussion

3.1 The potential energy surfaces, (PESs)

The PESs [19], V(β, γ), for Xenon isotopes as a function
of the deformation parameters β and γ have been calculated
using :
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Fig. 1: Contour plot of the potential energy surfaces for 122−134Xe nuclei.

Fig. 2: Potential energy surfaces for 122−134Xe nuclei at γ = 0o (Prolate) and γ = 60o (Oblate).

Salah A. Eid and Sohair M. Diab. Nuclear Structure of 122−134Xe Isotopes 55



Volume 1 PROGRESS IN PHYSICS January, 2012

nucleus EPS PAIR ELL QQ OCT HEX E2S D(eb) E2DD(eb)
122Xe 0.4700 0.0000 0.0216 −0.0200 0.0000 0.00000 0.1390 −0.4112
124Xe 0.4680 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1280 −0.3786
126Xe 0.4490 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1260 −0.3727
128Xe 0.4720 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1410 −0.4171
130Xe 0.5420 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1500 −0.4437
132Xe 0.6450 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1460 −0.4319
134Xe 0.8020 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1480 −0.4378

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

I+i I+f
122Xe 124Xe 126Xe 128Xe 130Xe 132Xe 134Xe

01
∗Exp. 21 1.40(6) 0.96(6) 0.770(25) 0.750(40) 0.65(5) 0.460(30) 0.34(6)

01 Theo. 21 1.4038 0.9651 0.7691 0.7575 0.6575 0.4684 0.3451

21 01 0.2808 0.1930 0.1538 0.1515 0.1315 0.0937 0.0690

22 01 0.0057 0.0033 0.0022 0.0015 0.0007 0.0002 0.0001

22 02 0.1552 0.0979 0.0741 0.0684 0.0567 0.0412 0.0343

23 01 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000

23 02 0.1640 0.1278 0.1047 0.1077 0.0926 0.0583 0.0298

23 03 0.0465 0.0248 0.0161 0.0133 0.0113 0.0091 0.0086

24 03 0.0766 0.0355 0.0198 0.0121 0.0064 0.0025 ——

24 04 0.1031 0.0886 0.0784 0.0867 0.0839 0.0683 ——

41 21 0.5297 0.3583 0.2787 0.2650 0.2186 0.1447 0.0941

41 22 0.0487 0.0316 0.0239 0.0227 0.0194 0.0145 0.0124

41 23 0.0737 0.0562 0.0452 0.0456 0.0386 0.0240 0.0122

61 41 0.6735 0.4529 0.3448 0.3183 0.2482 0.1465 0.0714

61 42 0.0476 0.0326 0.0254 0.0259 0.0244 0.0198 0.0182

61 43 0.0563 0.0428 0.0337 0.0332 0.0261 0.0127 ——

81 61 0.7369 0.4875 0.3586 0.3139 0.2199 0.0979 ——

81 62 0.0409 0.0290 0.0230 0.0246 0.0248 0.0214 ——

81 63 0.0438 0.0319 0.0237 0.0210 0.0127 —— ——

101 81 0.7363 0.4717 0.3269 0.2567 0.1362 —— ——

101 82 0.0347 0.0252 0.0202 0.0223 0.0237 —— ——

Table 2: Theoretically calculated reduced transition probabilities, B(E2)′s in e2 b2. *Ref. [27]
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Fig. 3: Comparison between experimental [20–26] and theoretical (IBA) energy levels.

Fig. 4: Back bending in 122−134Xe isotopes.
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ENΠNν (β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β2(1 + β2) + β2(1 + β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{
[X̄πX̄νβ2] + Nν(Nν − 1)

(
1
10

c0 +
1
7

c2

)
β2

}
,

(7)

where

X̄ρ =
(

2
7

)0.5
Xρ, ρ = π orν . (8)

The calculated PESs, V(β, γ), for Xenon series of isotopes
are presented in Fig. 1 and Fig. 2. They show that 122−128Xe
nuclei are deformed and the two wells on both oblate and
prolate sides are nearly equals and O(6) characters is expected
to these nuclei. 130Xe has flat potential energy, Fig. 2, which
indicates that the nucleus is E(5) symmetry and confirmed by
the energy ratio R = E+41

/E+21
= 2.2 as well as it is laying also

in the transition from γ- unstable, O(6), to vibrational, U(5),
nuclei while, 132,134Xe are vibrational like nuclei.

3.2 Energy spectra and transition rates

IBA-1 model has been used in calculating the energy of the
positive parity low-lying levels of Xenon series of isotopes.
Comparison between the experimental spectra [20–26] and
our calculations, using values of the model parameters given
in Table 1, are illustrated in Fig. 3. The agreement between
the low-laying calculated energy levels and their correspond-
ing experimental values is fairly good but for higher states
theoretical values are slightly higher. We believe that is due to
the change of the projection of the angular momentum which
may be due to band crossing and change in angular momen-
tum.

The electric quadrupole transition operator [18] employed
in this study is given by:

T (E2) = E2S D · (s†d̃ + d†s)(2) +
1
√

5
E2DD · (d†d̃)(2) . (9)

The reduced electric quadrupole transition rates between
Ii → I f states are given by

B(E2, Ii − I f ) =
[< I f ∥ T (E2) ∥ Ii >]2

2Ii + 1
. (10)

Unfortunately there is no enough measurements of elec-
tromagnetic transition rates B(E2) for these series of nuclei.
The only measured B(E2, 0+1 → 2+1 )’s are presented, in Ta-
ble 2 for comparison to the calculated values. The parame-
ters E2S D and E2DD, displayed in Table 1, are used in the
present calculation of the transition rates B(E2)′s and then
normalized to the experimentally known ones [27]. In our
calculations we did not introduce any new parameters.

3.3 Back bending

The moment of inertia J and energy parameters ~ω are calcu-
lated [28]using equations (11, 12):

2J
~2 =

4I − 2
∆E(I → I − 2)

, (11)

(~ω)2 = (I2 − I + 1)
[
∆E(I → I − 2)

(2I − 1)

]2

. (12)

The plots in Fig. 4 show back bending for 122−126Xe at
I+ = 10 while at I+ = 12 for 128,130Xe and this is in agreement
with the work done by other authors [29]. Back bending in
Xenon isotopes in higher states is explained [10] as due to
partial rotational alignment of a pair of neutrons in the 1h1/2
neutron orbit near the Fermi surface.

4 Conclusions

The IBA-1 model has been applied successfully to 122−134Xe
isotopes and we have got:

1. The ground state bands are successfully reproduced;

2. The potential energy surfaces are calculated and show
O(6) characters to 122−128Xe isotopes where the prolate
and oblate depths are equal;

3. Flat potential energy to 130Xe and energy ratios con-
firmed that the nucleus is an E(5) symmetry;

4. 132,134Xe nuclei show vibrational-like characters;

5. Electromagnetic transition rates, B(E2)′s, are
calculated, then normalized to experimental B(E2, 01−
21) values and then compared to the available data, and

6. Back bending for 122−126Xe have been observed at an-
gular momentum I+ = 10 and at I+ = 12 for 128,130Xe.
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The structure of a bound state of several Dirac particles is discussed. Relying on solid
mathematical arguments of the Wigner-Racah algebra, it is proved the a non-negligible
number of configurations is required for a description of this kind of systems. At
present, the main results are not widely known and this is the underlying reason for
the phenomenon called the proton spin crisis.

1 Introduction

Once upon a midnight dreary,
while I pondered weak and weary,
Over many a quaint and curious
volume of forgotten lore... [1].

The main objective if this work is to prove that the multi-
configuration structure of a bound state of several Dirac par-
ticles plays an extremely important role. The existence of
such a multi-configuration structure was already known many
decades ago [2, 3] and early electronic computers were used
for providing a numerical proof of this issue [4]. (Note that
the first edition of [2] was published in 1935.) Unfortunately,
this scientific evidence has not found its way to contempo-
rary textbooks of physics and has become a kind of a for-
gotten lore. For example, [5] uses a single configuration and
remarks that the error is about 5 per cent [5, see a comment on
p. 234]. Here [6, see p. 116] is a notable exception. The paper
proves the main points of this issue and shows its far reaching
meaning and its relevance to physical problems that are still
unsettled. In doing so the paper aims to make a contribution
to the correction of this situation.

It is well known that quantum mechanics explains the
Mendeleev periodic table of chemical elements. The shell
structure of electrons provides an easy interpretation of chem-
ical properties of noble gases (a full shell), halogens (a full
shell minus 1), alkali metals (a full shell + 1) etc. The stan-
dard explanation of the Mendeleev periodic table uses a sin-
gle configuration for a description of the electronic states of
each chemical element. Thus, for example, the helium and the
lithium atoms are described by the 1s2 and 1s22s configura-
tions, respectively. At this point the following problem arises:
Does the unique configuration structure of an atomic ground
state make an acceptable description of its quantum mechani-
cal system or is it just a useful pedagogical explanation of the
Mendeleev periodic table? The answer to this problem cer-
tainly must be obtained from a mathematical analysis of the
quantum mechanical state of systems that contain more than
one electron. By describing an outline of this task, the present
work proves beyond any doubt that an atomic state of more
than one electron has a multi-configuration structure and that
no single configuration dominates the system.

The conclusion stated above has two important aspects.
First, It is clear that a correct understanding of the structure
of any fundamental physical system is a vital theoretical as-
set for every physicist. Next, it turns out that the lack of
an adequate awareness of this physical evidence has already
caused the phenomenon called the “proton spin crisis” [7]
which haunts the particle physics community for decades.
The measurements published in [7] show that quarks carry
a very small portion of the proton’s spin and this evidence
has been regarded as a surprise. Now, it is shown in this work
that the multiconfiguration structure found in atomic states is
not a specific property of the Coulomb interaction. Thus, it
is expected to be also found in any bound state of three spin
1/2 quarks, like it is found in bound states of several spin 1/2
electrons. For this reason, one can state that if the experiment
described in [7] would have shown that quarks carry the en-
tire proton’s spin then this result should have been regarded
as a real crisis of fundamental quantum mechanical princi-
ples.

In this work, units where ~= c= 1 are used. The second
section contains a brief description of the main properties of a
bound state of several Dirac particles that are required for the
discussion. The underlying mathematical reasons for the mul-
ticonfiguration structure of states are discussed in the third
section. Some aspects of the results are pointed out in the last
section.

2 General Arguments

The main objective of this work is to find a reliable math-
ematical method for describing the ground state of a bound
system of spin 1/2 particles. Applying Wigner’s analysis of
the Poincare group [8, 9], one concludes that the total mass
(namely, energy) and the total spin are good quantum num-
bers. Thus, one assumes that an energy operator (namely,
a Hamiltonian) exists. For this reason, one can construct a
Hilbert space of functions that can be used for describing the
given system as an eigenfunction of the Hamiltonian. Evi-
dently, in the system’s rest frame, an energy eigenfunction
has the time dependent factor exp(−iEt). This factor can be
removed and the basis of the Hilbert space contains time in-
dependent functions.

The fact that every relatively stable state has a well de-
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fined total spin J can be used for making a considerable sim-
plification of the problem. Thus, one uses a basis for the
Hilbert space that is made of functions that have the required
spin J and ignores all functions that do not satisfy this con-
dition. Evidently, a smaller Hilbert space reduces the amount
of technical work needed for finding the Hamiltonian’s eigen-
functions. An additional argument holds for systems whose
state is determined by a parity conserving interaction, like
the strong and the electromagnetic interactions. Thus, one
can use functions that have a well defined parity and build
the Hilbert space only from functions that have the required
parity. This procedure makes a further simplification of the
problem.

The notion of a configuration of a system of several Dirac
particles is a useful mathematical tool that satisfies the two
requirements stated above [2, see p. 113] and [10, see p. 245].
A configuration is written in the form of a product of single
particle wave functions describing the corresponding radial
and orbital state of each particle belonging to the system (the
m quantum number is ignored). For atomic systems a non-
relativistic notation is commonly used and the values of the
nl quantum numbers denote a configuration, like 1s22s1. In
relativistic cases the variables nl j [10, see p. 245] are used.
In the latter case, the variables n jπ (here π denotes parity and
it takes the values ±1) is an equivalent notation for a rela-
tivistic configuration because l = j ± 1/2 and the numerical
parity of the l-value of a Dirac spinor upper part defines the
single particle’s parity. (This work uses the n jπ notation.) Ev-
idently, any acceptable configuration must be consistent with
the Pauli exclusion principle.

For any given state where the total spin J and parity are
given, one can use configurations that are consistent with J
and the product of the single-particle parity equals the par-
ity of the system. The total angular momentum J is obtained
from an application of the law of vector addition of angular
momentum [2, see p. 56] and [10, see p. 95]. Here the tri-
angular condition holds [10, see p. 98]. Thus, for example,
an acceptable configuration for the two-electron 0+ ground
state of the helium atom must take the form n1 jπ1

1 n2 jπ2
2 , where

j1 = j2 and π1 = π2. Similarly, a description of a 2-electron
state where Jπ = 3+ cannot contain a configuration of the form
n1

1
2
+ n2

3
2
+, because the two J values 1/2 and 3/2 can only

yield a total J = 1 or J = 2.
At this point the structure of the relevant Hilbert space

is known. It is made of configurations that satisfy certain
requirements. This is one of the useful properties of using
configurations - the relevant Hilbert space is smaller because
many configurations can be ignored due to the total spin and
parity requirements. Obviously, a smaller Hilbert space in-
dicates shorter computational efforts. Thus, the framework
needed for the analysis is established. The problem of find-
ing how many configurations are required for an acceptable
description of an atomic state is discussed in the following
section.

3 The Multi-Configuration Structure of Atomic States

The purpose of this section is to outline a proof that shows
why a bound state of several electrons takes the form of a lin-
ear combination of terms, each of which belongs to a specific
configuration. For this purpose, the Hamiltonian matrix is
constructed for a Hilbert space whose basis is made of func-
tions that take a configuration form. Evidently, non-vanishing
off-diagonal matrix elements prove that the required state is a
linear combination of configurations. It is shown that this
property holds even for the simplest atomic state of more
than one electron, namely the Jπ = 0+ ground state of the 2-
electron Helium atom.

It is explained in the previous section that the required
Hilbert space contains functions that have the given total spin
and parity. The form of a two electron function is written as
follows

χ(r1, r2) = Fi(r1)Fk(r2)( jπ1
1 jπ2

2 JM). (1)

Here, Fi(r1), Fk(r2) denote radial functions of the appropriate
electron, j1, j2, π1, π2 denote the single particle spin and par-
ity of the electrons, respectively, J is the total spin obtained
by using the appropriate Clebsch-Gordan coefficients [2, 10]
and M denotes the magnetic quantum number of the total an-
gular momentum,

Let us use the principles described in the previous sec-
tion and try to find the structure of the helium atom ground
state. Thus, due to the triangular rule [10, see p. 98] and in
order to be consistent with J = 0, we must use configurations
where j1 = j2. Similarly, in order to have an even total parity,
we must use configurations where the two electrons have the
same parity. Thus, the required Hilbert space contains func-
tions of the following form

χ(r1, r2) = Fi(r1)Fk(r2)( jπ jπ00), (2)

where j is a positive number of the form j = n+ 1/2, n is an
integer and π= ± 1.

The angular parts of any two different functions of (2) are
orthogonal. Hence, off-diagonal matrix elements of any pure
radial operator vanish. Since the following discussion is fo-
cused on finding off-diagonal matrix elements of the Hamil-
tonian, radial coordinates and radial operators are not always
shown explicitly in expressions.

At this point one can use a given Hamiltonian and con-
struct its matrix. Before doing this assignment one has to find
a practical procedure that can be used for overcoming the in-
finite number of configurations that can be obtained from the
different values of n, j and π. For this purpose one organizes
the configurations of (2) in an ascending order of j and exam-
ines a Hilbert subspace made of the first N0 functions, where
N0 is a positive integer. Here a finite Hamiltonian matrix is
obtained and one can diagonalize it, find the smallest eigen-
value E0 and its associated eigenfunction Ψ0. The quantities
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found here represent an approximation for the required solu-
tion. Let this approximate solution be denoted in this form

{E0,Ψ0}. (3)

In order to evaluate the goodness of this approximation, one
replaces N0 by N1 =N0 + 1 and repeats the procedure. The
new solution {E1,Ψ1} is a better approximation because it
relies on a larger Hilbert subspace. The difference between
these solutions provides an estimate for the goodness of the
solutions obtained. This procedure can be repeated for an in-
creasing value of Ni. Thus, if a satisfactory approximation is
reached for a certain value of Ni then one may terminate the
calculation and use the solution obtained from this procedure
as a good approximation to the accurate solution.

Now we are ready to examine the Hamiltonian’s matrix
elements. This examination demonstrates the advantage of
using configurations as a basis for the Hilbert space. Thus, the
angular part of the kinetic energy of each electron takes the
form found for the hydrogen atom and only diagonal matrix
elements do not vanish. The same result is obtained for the
spherically symmetric radial potential operator Ze2/r of the
nucleus. It follows that off-diagonal matrix elements can be
obtained only from the interaction between the two electrons.
(This quantity does not exist for the one electron hydrogen
atom and for this reason, each of the hydrogen atom eigen-
functions takes the form of a unique configuration.) In a full
relativistic case the two-electron interaction takes the form
of Breit interaction [11, see p. 170]. which contains the in-
stantaneous ordinary Coulomb term and a velocity-dependent
term. The existence and the results of the Hamiltonian’s off-
diagonal matrix elements are the main objective of this dis-
cussion and it is shown below that for this purpose the exam-
ination of the relatively simple Coulomb term is enough.

Thus, one has to write the 1/r12 operator in a form that is
suitable for a calculation that uses the single particle indepen-
dent variables r1, r2 of the configurations (2). This objective
is achieved by carrying out a tensor expansion of the inter-
action [10, see p. 208]. For the specific case of the Coulomb
interaction, one obtains [12, see p. 114]

1
r12
=

∞∑
k=0

rk
<

rk+1
>

Pk(cos θ12). (4)

Here r< and r> denote the smaller and the larger values of
r1 and r2, respectively and θ12 is the angle between them.
Pk(cos θ12) is the Legendre polynomial of order k. At this
point one uses the addition theorem for spherical harmon-
ics [10, see p. 113]

Pk(cos θ12) =
4π

2k + 1

k∑
m=−k

(−1)mYk,−m(θ1, ϕ1)Yk,m(θ2, ϕ2) (5)

and obtains an expansion of the appropriate Legendre poly-
nomial Pk(cos θ12) of (4) in terms of spherical harmonics that

depend on single particle angular variables. This analysis
shows how matrix elements can be obtained for a Hilbert
space whose basis is made of functions that are an appropriate
set of configurations.

At this point the wave functions of the Hilbert space basis
as well as the Hamiltonian operator depend on the radial and
the angular coordinates of single particle functions. The main
objective of this section is to explain why the electronic states
are described as a linear combination of configurations. It is
shown above that the configurations of the Hilbert space ba-
sis are eigenfunctions of the operators representing the kinetic
energy and the interaction with the spherically symmetric po-
tential of the nucleus. Hence, the discussion is limited to the
two particle operator (4) that depends on the expansion (5).

Let us find, for example, the off-diagonal matrix element
of the configurations ((1 1

2
+)200) and ((2 3

2
−)200) of the Hilbert

space basis (2). Consider the 2-electron Coulomb interaction
obtained for the upper (large) component of the Dirac spinor.
Thus, 1

2
+ is a spatial s-wave and 3

2
− is a spatial p-wave. The

Wigner-Racah algebra provides explicit formulas for expres-
sions that depend on the angular coordinates. Now, as stated
above, the main objective of the discussion is to show that
off-diagonal matrix elements do not vanish. For this purpose,
only the main points of the calculation are written and readers
can use explicit reference for working out the details.

The formal form of the angular component of the off-
diagonal matrix element is

Hi j =< j1 j2JM| 1
r12
| j ′1 j ′2JM > . (6)

Here j1, j2 of the ket are angular momentum values of the
first and the second electron, respectively and they are cou-
pled to a total J, M. The bra has an analogous structure. In
the particular case discussed here J =M = 0 and (6) takes the
form

Hi j =<
1
2

1
2 00| 1

r12
| 32

3
2 00 > . (7)

The following points describe the steps used in the calcu-
lation of (7).

1. The Wigner-Eckart theorem shows that (6) can be cast
into a product of a Wigner 3j symbol and a reduced
matrix element [10, see p. 117]

2. In (4), the expansion (5) of 1/r12 is a scalar product of
two tensors [10, see p. 128].

3. The reduced matrix element of such a scalar product
can be put in the form of a product of a Racah coeffi-
cient and two reduced matrix elements that depend on
the first and the second electron, respectively [10, see
p. 129].

4. Each of these reduced matrix elements takes the form
< sl j||Yk ||sl′ j′ > where sl denote single particle spin
and spatial angular momentum that are coupled to the
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particle’s total angular momentum j. In the specific
case discussed here it is < 1

2 0 1
2 ||Y1|| 12 1 3

2 >. The value of
the last expression can be readily obtained as a product
of a square root of an integer and a Wigner 3 j symbol
[10, see p. 521]. The final value is

< 1
2 0 1

2 ||Y1|| 12 1 3
2 >=

−2
√

4π
. (8)

This discussion shows that the Hamiltonian’s off diagonal
matrix elements do not vanish for the J = 0 ground state of
the He atom. It means that a single configuration does not
describe accurately this state. The next step is to carry out an
explicit calculation and find out how good is the usage of a
single configuration. This task has already been carried out
[4] and it was proved that the description of the ground state
of the He atom requires many configurations. Here radial
and angular excitations take place and no single configuration
plays a dominant role.

4 Discussion

Several aspects of the conclusion obtained in the previous
section are discussed below.

Intuitively, the multiconfiguration structure of the ground
state may be regarded as a mistake. Indeed, the ground state
takes the lowest energy possible. Hence, how can a mixture
of a lower energy state and a higher energy state yield a com-
bined state whose energy is lower than either of the two single
mono-configuration states? The answer to this question relies
on a solid mathematical basis. Thus, a diagonalization of a
Hermitian matrix reduces the lowest eigenvalue and increases
the highest eigenvalue [12, see e.g. pp. 420–423]. Hence,
for a Hermitian matrix, any off-diagonal matrix element in-
creases the difference between the corresponding diagonal el-
ements. It means that the smaller diagonal element decreases
and the larger diagonal element increases. Since the Hamilto-
nian is a Hermitian operator, one concludes that if the Hilbert
space basis yields a non-diagonal Hamiltonian matrix then
the lowest eigenvalue ”favors” eigenfunctions that are a lin-
ear combination of the Hilbert space basis functions.

It is shown in the previous section that the non-vanishing
off-diagonal matrix elements rely on the two body Coulomb
interaction between electrons. Thus, the tensor expansion of
the interaction (4) casts the 2-body Coulomb interaction into
a series of Legendre polynomials where cosθ12 is the polyno-
mial’s argument. Evidently, any physically meaningful inter-
action depends on the distance between the interacting parti-
cles. Hence, an expansion in terms of the Legendre polyno-
mials can be obtained. This expansion proves that the math-
ematical procedure described in the previous section has a
comprehensive validity [10, see p. 208]. Thus, what is found
in the previous section for electrons in the He atom ground
state also holds for quarks in the proton. Moreover, the proton
is an extremely relativistic system of quarks and, as such, its

spin-dependent interactions are expected to be quite strong.
Evidently, spin dependent interactions make a contribution to
off-diagonal matrix elements. On the basis of this conclusion,
one infers that the proton’s quark state must be described by
a linear combination of many configurations.

A polarized proton experiment has been carried out where
the instantaneous spin direction of quarks was measured [7].
The measurements have shown that the total quark spin con-
stitutes a rather small fraction of the proton’s spin. This result
is in a complete agreement with the mathematical analysis
carried out above. Thus, the relativistic proton dynamics indi-
cates that the j j-coupling provides a better approach (and this
is the reason for the usage of this notation here). In each quark
configuration, spin and spatial angular momentum are cou-
pled to a total single particle j-value and the Clebsch-Gordan
coefficients determine the portion of spin-up and spin-down
of the quark. Next, The relativistic quark state indicates that,
unlike the case of the hydrogen atom, the lower part of the
Dirac spinor of quarks is quite large. As is well known, if in
the upper part of a Dirac spinor is l= j±1/2 then its lower part
is l= j ∓ 1/2. Hence, different Clebsch-Gordan coefficients
are used for the upper and the lower parts of the Dirac spinor.
Furthermore, in different configurations, different Clebsch-
Gordan coefficients are used for the single particle coupling
of the three quarks to the total proton’s spin and the overall
weight of the spin-up and spin-down components takes a sim-
ilar value. This argument indicates that the outcome of [7] is
quite obvious and that if the experiment would have yielded
a different conclusion where quarks carry the entire proton’s
spin then this result should have been regarded as a real crisis
of fundamental quantum mechanical principles. This discus-
sion also shows that the quite frequently used description of
the results of [7] as “the proton spin crisis” is unjustified.

Computers are based on quantum mechanical processes
that take place in solid state devices. Hence, it is clear that
people who have established the laws of quantum mechan-
ics had no access to the computational power of computers.
For this reason, several approximations have been contrived
in order to get an insight into atomic structure. A method that
deals with configurations is called central field approxima-
tion [5, see p. 225]. Here, for every electron, the actual field
of all other electrons is replaced by an approximate spheri-
cally symmetric radial field. Evidently, as explained in the
third section, such a radial field does not cause a configuration
mixture and, in this approximation, a single configuration is
used for describing atomic states. This approach is frequently
used in a description of the Mendeleev’s periodic table [5, see
pp. 240–247].

However, even in the early days of quantum mechanics,
the central field approximation has been regarded as an ap-
proximation and people have constructed mathematical tools
for treating the multi-configuration atomic structure which is
known as the Wigner-Racah algebra of angular momentum.
These mathematical tools have been used in the early days of
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electronic computers [4] and the result is quite clear: many
configurations are required even for the simplest case of the
ground state J = 0 of the 2-electron He atom and no single
configuration plays a dominant role. Today, this outcome
is still known [6, see p. 116] but unfortunately not widely
known. Thus, [6] is based on lectures delivered in a chemistry
department. On the other hand, the birth and the long dura-
tion of the idea concerning the proton spin crisis prove that
this fundamental physical issue is indeed not widely known.
This paper has been written for the purpose of improving the
present status.
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Discovery of Uniformly Expanding Universe
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Saul Perlmutter and the Brian Schmidt – Adam Riess teams reported that their
Friedmann-model GR-based analysis of their supernovae magnitude-redshift data re-
vealed a new phenomenon of “dark energy” which, it is claimed, forms 73% of the
energy/matter density of the present-epoch universe, and which is linked to the further
claim of an accelerating expansion of the universe. In 2011 Perlmutter, Schmidt and
Riess received the Nobel Prize in Physics “for the discovery of the accelerating ex-
pansion of the Universe through observations of distant supernovae”. Here it is shown
that (i) a generic model-independent analysis of this data reveals a uniformly expanding
universe, (ii) their analysis actually used Newtonian gravity, and finally (iii) the data,
as well as the CMB fluctuation data, does not require “dark energy” nor “dark matter”,
but instead reveals the phenomenon of a dynamical space, which is absent from the
Friedmann model.

1 Introduction

Observational determination of the time evolution of the scale
factor a(t) of the universe is fundamental to understanding the
dynamics of the universe. Measurement [1, 2] of supernovae
magnitude-redshifts provided that critical data, and it is a sim-
ple procedure to determine a(t) from that data. A secondary
process is then to test different dynamical theories of the uni-
verse against that data. However this did not happen, and not
for the 1st time in the history of astronomy was one predeter-
mined theory forced into the data fitting.

The 1st example was Ptolemy’s fitting of his geocentric
model of the solar system to the Babylonian planetary orbit
data. This then required, and correctly so, that the orbits have
epicycle components. This model persisted for some 1400
years, until the heliocentric model replaced the geocentric
model, and for which the epicycle phenomenon then evap-
orated - it was merely an artifact of the incorrect geocentric
model. It now appears that a similar confusion of data and
model has reappeared in analysing the supernovae data, for
again a simple and manifestly inadequate model of the uni-
verse, namely Newtonian gravity (NG), has been used. A
generic model-independent analysis of the data reveals that
the universe is undergoing a uniform expansion, see sect.2.
However use of the Newtonian gravity model has resulted in
a new collection of model-induced artifacts, namely “dark en-
ergy”, “dark matter”, and a claim that the universe expansion
is accelerating. These artifacts also disappear once we use a
model that replaces Newtonian gravity.

It is usually argued that General Relativity (GR) in the
form of the Friedmann equation is superior to NG, and it was
the Friedmann equation that was used in analysing the su-
pernovae data [1, 2]. However in sect.3 we derive the Fried-
mann equation from NG in a few simple steps. This hap-
pens because GR was constructed as a generalisation of NG,
and reduces to NG in the limit of low matter densities and

low speeds. Alternatively, in sect.4, we show in a few simple
steps, that the dynamical 3-space theory of space and gravity
yields a uniformly expanding universe, and so dispenses with
the “dark energy” and “dark matter” artifacts. The implica-
tion here, and in previous analyses of the dynamics of space
itself, shows that NG is a flawed model of gravity, even at the
level of laboratory measurements of G, bore-hole g anoma-
lies, galactic rotation, and so on. So the Friedmann equation
is based upon a flawed theory. This is in fact a major out-
come of the observations of supernova events, and needs to
be understood.

2 Model Independent Analysis Reveals Uniform Expan-
sion

The scale factor a(t) = r(t)/r(t0); (a(t0) ≡ 1 by definition),
where r(t) are galactic separations on a sufficiently large
scale, and t0 is the present moment age of the universe. It
describes the time evolution of the universe assuming a ho-
mogeneous and isotropic description. In principle it may be
directly extracted from magnitude-redshift data without the
use of any particular dynamical model for a(t). The redshift
is z = 1/a(t) − 1, and the Hubble function is H(t) = ȧ/a. We
define H(z) by changing variables from t to z. A dimension-
less luminosity distance is given by (see appendix)

dL(z) = (1 + z)
∫ z

0

H0dz′

H(z′)
. (1)

dL(z) takes account of the reduced photon flux and energy
loss caused by the expansion. Then the magnitude-redshift
observables are computable from a(t)

µ(z) = 5 log10 dL(z) + m, (2)

where m is determined by the intrinsic brightness of the SNe
Ia supernova. In principle this can be inverted to yield a(t),
without reference to any dynamical theory for a(t). A simple
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Fig. 1: Supernovae magnitude-redshift data. Upper curve (light
blue) is “dark energy” only ΩΛ = 1. Next curve (blue) is best fit
of “dark energy”-“dark-matter” ΩΛ = 0.73. Lowest curve (black)
is “dark matter” only ΩΛ = 0. 2nd lowest curve (red) is generic
uniformly expanding universe.

first analysis of the data tries a uniform expansion a(t) = t/t0,
which involves one parameter t0 = 1/H0, which sets the time
scale. Fig.1 shows that this uniform expansion (shown by red
plot) gives an excellent account of the data. We conclude that
the supernovae magnitude-redshift data reveals a uniformly
expanding universe. So why did [1, 2] report an accelerat-
ing expansion for the universe? The answer, according to the
Nobel Prize briefing notes, is because “the evolution of the
Universe is described by Einstein’s theory of general relativ-
ity” [3]. To the contrary we argue that the data should be used
to test possible theories of the universe, as in the usual scien-
tific method, and not a priori demand that one theory, with ad
hoc adjustments, be defined to be the only correct theory.

3 Newtonian Gravity Universe Model

The analysis in [1,2] used the GR-based Friedmann equation
for a(t)

ȧ2 =
8
3
πGa(t)2ρ(t), (3)

where ρ(t) is the matter/energy density. However this equa-
tion follows trivially from Newtonian gravity. Consider a uni-
form density of matter moving radially with speed v(r, t), at
distance r, away from an origin. The kinetic + gravitational
potential energy, with total energy E, of a test particle of mass

m is given by
1
2

mv2 − GmM(r)
r

= E, (4)

where M(r) = 4
3πr

3ρ is the mass enclosed within radius r -
this follows simply from Newton’s Inverse Square Law. Us-
ing r(t) = a(t)r0, v = ṙ and the so-called critical case E = 0,
immediately gives (3). The reason for this simple derivation
is that GR was constructed as a generalisation of NG that re-
duces to NG in the limit of low speeds and matter densities.
So the Friedmann equation inherits all of the known failures
of NG. As well the redshift z is a Doppler shift, caused by the
motion of the source relative to the observer. Consider then
some of the implications of (3): (i) if ρ = 0, i.e. no matter,
then there is no expanding universe possible: ȧ = 0. This
arises because (3) is about the effects of matter-matter grav-
itational attraction, and without matter there are no gravita-
tional effects. (ii) (3) is not about the expansion of space, for
it arises from NG in which matter moves through a Euclidean
and unchanging space, (iii) (3) requires, at t = t0, that

H2
0 =

8
3
πGρc, (5)

where ρc is the so-called critical density. However (5) is
strongly violated by the data: the observed baryonic matter
density is some 20 times smaller than ρc, and so ρ must be
padded out to satisfy (5), and (iv) (3) does not posses uni-
formly expanding solutions, unless ρ ∼ 1/a2, a form not con-
sidered in [1, 2]. To fit the data [1, 2] used the restricted ad
hoc form

ρ(a) = (
ΩM

a3 + ΩΛ)ρc, (6)

where ΩΛ is the “dark energy” composition parameter, and
ΩM is the “matter” composition parameter. There is no theo-
retical underpinning for this “dark energy”. The above H0−ρc

(5) relationship requires that ΩΛ + ΩM = 1, resulting in a
two parameter model: H0 and ΩΛ. Fitting the data, by solv-
ing (3), and then using (1) and (2), gives ΩΛ = 0.73, and
so ΩM = 0.27. This fitting is shown in Fig. 1. Essentially
ΩΛ = 0.73 is the value for which NG best mimics a uni-
formly expanding universe, despite its inherent weakness as a
model of a universe. The known baryonic matter density, cor-
responding to Ωm = 0.05, then requires that ΩM −Ωm = 0.22
be interpreted as the “dark matter” composition. However
(3) has another strange feature, namely that a(t), as a con-
sequence of the “dark energy” parametrisation, possess an
exponential component: neglecting ΩM , which becomes in-
creasingly valid into the future we get

a(t) ∼ eH0
√
ΩΛt. (7)

The Nobel Prize for Physics in 2011 was awarded for the
discovery of this “accelerated expansion of the universe”, de-
spite the fact that the model-independent analysis in sect. 2
shows no such effect.
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4 Dynamical Space Universe Model

A newer dynamical model of space describes the velocity of
this structured space, relative to an observer using coordinate
system r and t, by [5]

∇·
(
∂v
∂t
+ (v·∇)v

)
+
α

8

(
(trD)2 − tr(D2)

)
+

+
δ2

8
∇2

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ

∇ × v = 0, Di j =
∂vi
∂x j
. (8)

The 1st term involves the Euler constituent acceleration,
while the α− and δ− terms contain higher order derivative
terms. This dynamical theory is conjectured to arise from
a derivative expansion of a quantum foam theory of space.
Laboratory, geophysical and astronomical data show that α is
the fine structure constant, while δ appears to be a very small
Planck-like length. Quantum theory determines the “gravita-
tional” acceleration of quantum matter to be, as a quantum
wave refraction effect,

g =
∂v
∂t
+ (v · ∇)v+ (∇×v)×vR −

vR

1 −
v2

R

c2

1
2

d
dt

v2
R

c2

+ ..., (9)

where vR = v0−v is the velocity of matter relative to the local
space. Substituting the Hubble form v(r, t) = H(t)r, and then
H(t) = ȧ/a, we obtain

4aä + αȧ2 = −16
3
πGa2ρ. (10)

This has a number of key features: (i) even when ρ = 0,
i.e. no matter, a(t) , 0 and monotonically increasing. This is
because the space itself is a dynamical system, and the (small)
amount of actual baryonic matter merely slightly slows that
expansion, as the matter dissipates space. As well relation (5)
no longer applies, and so there is no “critical density”, (ii) the
redshift z is no longer a Doppler shift; now it is caused by the
expansion of the space removing energy from photons. Be-
cause of the small value of α = 1/137, the α term only plays
a significant role in extremely early epochs, but only if the
space is completely homogeneous∗. In the limit ρ → 0 and
neglecting the α term, we obtain the solution a(t) = t/t0. This
uniformly expanding universe solution is exactly the form di-
rectly determined in sect.2 from the supernovae data. It re-
quires neither “dark energy” nor “dark matter” – these effects
have evaporated, and are clearly revealed as nothing more
than artifacts of the NG model. The “accelerating expansion
of the universe” in the future has also disappeared.

∗Keeping the α term we obtain a(t) = (t/t0)1/(1+α/4)

Fig. 2: CMB angular power spectrum for (i) ΩΛ = 1 (light blue
curve), (ii) = 0.73 (dark blue curve), and (iii) = 0 (black curve),
confirming that the background space is uniformly expanding.

5 CMB Fluctuations

Another technique for determining the expansion rate of the
universe is to use the Cosmic Microwave Background (CMB)
temperature angular fluctuation spectrum. This spectrum is
computed as a perturbation of the plasma relative to an as-
sumed homogeneous background universe dynamical model.
The background model used is the Friedmann equation (3).
We show in Fig. 2 the angular fluctuation power spectrum
from CAMB (Code for Anisotropies in the Microwave Back-
ground), [6, 7], for the same three values ΩΛ = 0, 0.73 and 1,
as also used in Fig. 1. However, as already noted in sect. 3,
this homogeneous background dynamics is merely a New-
tonian gravity model, with “dark energy” and “dark matter”
used to pad out the critical density and mimic a uniform ex-
pansion. The Newtonian model and the dynamical 3-space
model give the same age for the universe, 13.7 Gyr, as they
both describe the same uniform expansion rate, with the mi-
nor variations in the Newtonian model expansion rate can-
celling out. However they give different decoupling times,
0.38 Myr for the Newtonian model and 1.4 Myr for the dy-
namical 3-space. So it is important to note that the decoupling
time is very model dependent.

6 Conclusions

The supernovae magnitude-redshift data is of great signifi-
cance to cosmology. It reveals, using a model-independent
analysis, that the universe is undergoing a uniform expan-
sion. This represents a major challenge to theories of the
universe, particularly as GR does not have such solutions.
We have also noted that GR, via the Friedmann equation, is
nothing more than Newtonian gravity applied to the gravita-
tional force between matter, essentially with galaxies as that
matter. To mimic the uniform expansion the canonical value
ΩΛ = 0.73 emerges by fitting the NG model to either the data,
or more revealingly, by fitting to the dynamical 3-space the-
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ory. However the ad hoc introduction of the “dark energy”
parameter results in a spurious accelerating expansion. These
spurious effects, “dark energy”, “dark matter”, and “accel-
erating expansion”, are reminiscent of Ptolemy’s epicycles
when an incorrect model of the solar system was forced to
fit the data, rather than using the data to test different models
of the solar system. This recurring failure to use the scien-
tific method resulted, in both cases, in deeply wrong theo-
ries being embellished and promoted as orthodoxy, with as-
tronomers now committing major resources to “explaining”
these new epicycles. The dynamical 3-space theory has been
extensively tested, from bore hole g anomalies, to supermas-
sive black holes and cosmic filaments. It gives a uniformly
expanding universe without the introduction of any ad hoc
parameters, and disagrees in general with Newtonian grav-
ity, even in the low matter density, low speed limits, while
nevertheless reproducing the NG restricted successes within
the solar system. Introducing “dark matter” and “dark en-
ergy” amounts to the belief that Newton had correctly and
completely described space and gravity some 300 years ago,
requiring only the identification of new matter/energy. The
supernova data is informing us that this is not so [8]. The use
of the ad hoc parametrisation in (6) is not sufficiently general
to give an unbiased fitting procedure, forcing an exponential
growth term which is not present in the data.
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8 Appendix: Luminosity Distance
To extract a(t) we need to describe the relationship between the
cosmological observables: the apparent energy-flux magnitudes and
redshifts, and in a model independent manner. We use the dynami-
cal space formalism, although the result, in (1) & (15), is generic and
was used in [1, 2]. First we take account of the reduction in photon
count caused by the expanding 3-space, as well as the accompany-
ing reduction in photon energy. To that end we first determine the
distance travelled by the light from a supernova event before detec-
tion. Using a choice of embedding-space coordinate system, with
r = 0 at the location of a supernova event at time t1, the speed of
light relative to this embedding space frame is c + v(r(t; t1), t), i.e.
c wrt the space itself, where r(t; t1) is the photon embedding-space
distance from the source. Then the distance travelled by the light at
time t, after emission at time t1, is determined implicitly by

r(t; t1) =
∫ t

t1

dt′(c + v(r(t′; t1), t′), (11)

which has the solution, on using v(r, t) = H(t)r,

r(t; t1) = ca(t)
∫ t

t1

dt′

a(t′)
. (12)

This distance gives directly the surface area 4πr(t; t1)2 of the
expanding sphere and so the decreasing photon count per unit area

on that surface. With t → t0 (and then dropping t0 in the notation),
a(t0) = 1 and a(t1) = 1/(1 + z(t1)) we obtain

r(z) = c
∫ z

0

dz′

H(z′)
. (13)

However because of the expansion the flux of photons is re-
duced by the factor 1/(1 + z) simply because they become spaced
further apart by the expansion. The photon flux is then given by
FP = LP/4π(1 + z)r(z)2 where LP is the source photon-number
luminosity. However usually the energy flux is measured, and the
energy of each photon is reduced by the factor 1/(1 + z) because of
the redshift. Then the energy flux is, in terms of the source energy
luminosity LE : FE = LE/4π(1 + z)2r(z)2 ≡ LE/4πrL(z)2 which de-
fines the effective energy-flux luminosity distance rL(z). Then the
energy-flux luminosity effective distance is

rL(z) = (1 + z)r(z) = c(1 + z)
∫ z

0

dz′

H(z′)
(14)

The dimensionless “energy-flux” luminosity effective
distance is then given by

dL(z) = (1 + z)
∫ z

0

H0dz′

H(z′)
. (15)

For the uniformly expanding universe H(z) = (1 + z)H0 and
dL(z) = (1 + z) ln(1 + z).
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On the Epistemological Nature of Genius and Individual Scientific Creation

Indranu Suhendro
http://www.zelmanov.org; e-mail: wings.of.solitude@gmail.com

This brief exposition summarizes a universally over-arching deepening of the epistemo-
logy of aesthetics (especially as regards the nature of Genius) as outlined in a particular
section of the Author’s work on an all-embracing, post-Kantian epistemological theory
of Reality and the Universe called “The Surjective Monad Theory of Reality” (SMTR),
which generalizes, in the utmost ontological sense, Kantianism, phenomenology, and a
paradigm of Reality called “Reflexive Monism” (RM).

Most people, both eruditically trained and untrained, are pro-
foundly mistaken in their belief about the nature of Genius,
especially in relation to the mere prevalence of talent and
the dominant structure of pedantry (i.e., a dominant world-
paradigm of mass-education, as opposed to authentic indi-
vidual education), the epistemological nature of the so-called
“scientific research”, and the entire psychologism thereof. By
“psychologism”, we mean an ultimately solipsistic, super-
tautological basis that manages to present science and
scientific-technological progress (let alone revolution in the
sciences), among others, to the world at large in the image of
a homogeneously working contingency of non-independent
scientists, political factors, and industrial games, as opposed
to single creative individuals in the profoundest sense.

Such a semi-popular image replete with “democratic-
spiritism” (not to be confused with democracy in and of it-
self), which easily captures unassuming, aspiring talents into
the underlying system, cannot be denuded for what it is, what
it is not, and what is universally, utterly other than it, except
by (advances in) epistemology. Until then, the utmost criti-
cal attitude towards the world of informative representations
(e.g., in the sense of Wittgenstein), if not the most universal
nature of philosophy, science, and art, is found among indi-
vidual epistemic geniuses alone — who know just “what is
what” absolutely independently of all “otherness”.

In the sense of the post-Kantian epistemological theory
of Reality outlined in [1], Genius is indeed not even a “su-
perlative of talent” and is separated from all else by an en-
tire world of noumena. In terms of the ontological, multi-
teleological reality alluded to therein, which embraces also
the eidetic-noumenal “surject” (or “qualon”, which is beyond
mere “omnijectivity” and “inter-subjectivity”) in addition to
the usual reflection (“object”), projection (“subject”), and an-
nihilation (“abject”) in a certain domain of epistemological
dimensionality (“prefect”), Genius is said to be “noumenal-
reflective” (“surjective”), while talent is termed “reflective-
projective” (“phenomenal-reflexive”). Thus, by itself, the
said epistemological framework qualifies itself as being post-
Hegelian in its sector of dialectics: by the very presence of
“surjection”, Genius is beyond the usual triplicity of thesis,

anti-thesis, and synthesis — and so beyond all multiplicity-
dependent, contingent, linear progression.

The universal logic (i.e., meta-logic) thereof, by which
our epistemological meta-structure surpasses Kantian philo-
sophy and Socratic-Hegelian dialectics entirely is four-fold,
anholonomic, and asymmetric in that the general surjective
representation of a universal entity, as regards its “place” in
Reality, is as follows:

(without, within, within-the-within, without-the-without).

Thus, for a given complete ontological entity A (and not
merely a phenomenologically abstract and concrete entity),
there exists the following four-fold eidetic representation:

{A} = {A, non-A, non-non-A, none of these} .

The above, being “twice-qualified ontological”, is not to
be confused with both four-fold phenomenological Buddhist
logic (of phenomena embedded in infinite contingency) and
Whiteheadian process philosophy. Rather, the first two ele-
ments, i.e., A (“without”) and non-A (“within”) are of the
phenomenological level (in the self-dual concrete and abstract
sense): given an object of contemplation (“without”), it is im-
possible to discern its causal, formative “interior” (“within”)
without considering the abstract contingency (inter-
connectedness) of all possible phenomenal existents; while
the last two ontologically, surjectively denote Universality
(“within-the-within”) and Reality (“without-the-without”),
respectively. These four constituents are hereby called “on-
tological categories” for simplicity. Therefore, an entity or
instance is called “universal” if and only if it is “four-fold
eidetically qualified”, and not just “two-fold phenomenologi-
cally qualified”.

That which is surely universally qualified as such is the
Universe itself, for which we have the following representa-
tion:

{the Universe} = {the Material Universe,

the Abstract Universe, the Universe-in-itself, Reality
}
.

Meanwhile, for Thought itself, we have
{
Thought

}
=

{
Thought, Anti-Thought, Unthought, Reality

}
,
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i.e., the Universe-in-itself corresponds to Unthought (not to
be confused arbitrarily with “irrationality”) in the sense that
the Universe as Unthought is a direct presentation (“surde-
termination”) of Reality and not a mere (phenomenological-
reflective) representation, rendering Reality unthinkable in
the first place, and so it is beyond both the Material Uni-
verse and the Abstract Universe, which are the domains of
the traditional sciences (with respect to which, therefore, pro-
gress always seems endlessly “infinite”). Note that, espe-
cially when an arbitrary “thought” other than a “truly uni-
versal thought” (peculiar to Genius) is considered, “thought”
and “anti-thought” always exist in a single phenomenological
contingency while their directions of causality (“momenta”)
differ.

This way, the Cartesian dictum, “I think therefore I am”,
should be replaced by a twice-qualified ontological thinker
(and universal observer) as follows: “I think therefore I am, I
am not, I am not-not, and none of these”.

Accordingly, Reality is such that: 1. It is One-Singular
and cannot be reduced to Unreality simply because “Reality-
in-itself does not mingle with Unreality” in the first place,
whether by necessity or by chance (i.e., unlike arbitrary phe-
nomenological entities mingling across time and space), for
otherwise (noumenal and phenomenal) “things”, even the
Universe itself, would cease to exist “as one and at once”
(at one “Now”) — and both Reality and Unreality too would
be Not —, which is absurd in a four-fold manner: before,
during, after, and without time. 2. It contains “things” and
yet these “things” contain it not, not merely in the spatio-
temporal sense but in the sense that Reality, as Moment,
always precedes and surpasses “things” behind, within, and
ahead of them, and “none of these at all”. 3. The “distance”,
i.e., meta-logical foliage, between the four ontological cate-
gories is thus asymmetric and anholonomic: phenomenally
approaching Reality (M) from the transitive entirety of phe-
nomena (O) will be substantially different from approaching
such phenomenal entirety (O) directly from Reality (M). In
other words:{OM} , {MO}. 4. There exists a meta-logical
exception in that there are surjective instances with respect to
which Reality is their exception just as they are Reality’s ex-
ceptions (singularities) everywhere in the Universe, i.e., they,
unlike others, exist in sheer eidetic-noumenal symmetry with
Reality and the Universe. Such an instance is none other than
Genius. 5. In the surjective-deterministic sense of Reality,
there exists an ultimate observer in the twice-qualified onto-
logical sense of Genius, as opposed to an arbitrary observer:
whether or not a leaf falls in a forest with apparently no obser-
ver around, it still falls simply because the Universe, in its ca-
pacity as an ultimate observer, observes it. This is because the
universal meta-structure is such that the Universe is without
both “inside” and “outside” with respect to the (noumenal)
entirety of the laws of Nature. This saves both common-sense
objectivity while, up to such non-arbitrary ontological qualifi-
cation, keeping intact the unification of observers and obser-

vables as found in both quantum mechanics and the monad
formalism of General Relativity (e.g., of Abraham Zelma-
nov). Otherwise, without such universal determination, one
is left with mere surrealism and omnijectivity, which, as we
have said, can in no way be a direct presentation of Reality-
in-itself.

All that, in a word, is symbolically-noumenally written in
a single “Reality equation” as follows:

M: N
(
U(g, dg)

)
∼ S

where M stands for Reality (Reality-in-itself, “Being-qua-
Being”), N for the Qualic Monad (Reality’s entirely pre-
reflexive, self-singular presentation of itself, i.e., with or
without the Universe and reflective world-foliages, or “Multi-
verse”), U for the noumenal Universe (the Universe-in-itself),
(g, dg) for Surjectivity and infinite self-differentiation (iso-
morphic to Genius — which is none other than surjective, ar-
chetypal insight and motion — and the “interior” of the Uni-
verse), and S for Suchness (Eidos).

Thus, by “Universe” — in this truly qualified sense of
Reality — we always mean “Such Universe”, where “Such”
is “Twice-That/There” (in terms of the phenomenal “without”
and the noumenal “without-the-without”) and “Universe” is
“Twice-This/Here” (in terms of the phenomenal “within” and
the noumenal “within-the-within”).

In this epistemology, the Universe — in the likeness of
Reality itself — is therefore most tangible and most elusive
at once: it is “that which draws near from farness and draws
far from nearness”. It takes Genius to truly comprehend this
as it is, for the relationship between the Universe and Genius
in this respect is like that between the entire cosmos and the
monopolar meta-particle.

Such is how our framework generalizes Kantianism (and
what not) by the presence of the self-singular monad (“sur-
ject” or “qualon”, i.e., the ultimate pre-reflexive singularity)
free of the inconsistent inner state of “singularity in and of
multiplicity” when it comes to phenomenologically defining
traditional “Kantian oneness” (due to which Kantianism ul-
timately fails to distinguish between — or simply transcend
— “a thing-in-itself” and “another thing-in-itself”, let alone
between all noumena). In addition, it also effortlessly surpas-
ses the analytical rigor of Wittgensteinian logic and eradicates
all discrepancies between “essentialism” and “existentialism”
on a highest possible ontological level.

As such, Genius belongs to a self-singular nature (self-
constitution) of not just psychological thought, but also of Re-
ality itself, independently of the entire contingency (and, of-
ten, over-determination) of tautologically constructed world-
representations by the majority of sentient beings. Such stric-
tly individual determination, of Genius, is thus called “sur-
jective”. This, while talent is always info-cognitively co-
dependent on the entirety of prevailing contingencies, i.e., on
the way a specific world is represented by them as “multiple
intelligences” (through theses and anti-theses).
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In other words, with respect to the Universe, Genius is
Reality’s very exception just as Reality is the very exception
of Genius. Just as Reality is One-Singular beyond reduci-
bility and reflexivity (mere reflection and projection), so is
Genius, and so is the “mirror”, i.e., the mirror in which the
surjective instance of Genius appears: the Universe itself. As
such, unlike the case of talent, there is indeed no such a thing
as “mathematical genius”, “physical genius”, “philosophical
genius”, “musical genius”, etc. as people are commonly, par-
tially, phenomenally used to these terms. Rather, Genius is
always universal and, by that very universality, it is solitary
and chanceless: such is the nature of universal creation known
as art, which is the quintessence (sine qua non) of genuine
philosophical, artistic, and scientific creation.

In physics especially, the universal weight of an instance
of scientific creation by an individual of Genius inevitably
differs from the rest of physicists simply because the former
moves — without residue and mere chance — as an epistemi-
cally solitary artist at the very universal level of “science-in-
itself”, and thus at the Universal Moment, by whose act the
artist is immensely self-rewarded without even seeking recog-
nition other than the necessity to move as the Universe cate-
gorically moves from the noumenal category to the phenome-
nal domain, while at best the latter is merely tautologically
interested in “the problems that are important according to
others” — ever at the risk of genuine originality (although, as
we have seen, Genius is not a matter of merely being situatio-
nal, but of the pan-Kierkegaardian infinite single-mindedness
of “I cannot do otherwise”, in contrast to talent).

Hence, silently in the face of Reality, Genius happens to
the Universe as much as the Universe happens to it, while
others can hardly notice, let alone imbibe, this epistemologi-
cal degree of universal solitariness.

That is, to paraphrase Einstein somehow,

“True science, if not art itself, consists in the following:
apply yourself entirely and fearlessly to what deeply in-
terests you the most, and not simply to what others —
no matter who — are interested in, as this is between
you and the Universe, not you and people. This is be-
cause every true philosopher (or profound thinker and
creator), who truly understands his own moments, has
his own Kant”.

Of course, depending on the epistemological dimensio-
nality of a given human endeavor or science, there are ins-
tances where “working as a group” is important and essen-
tial to progress (e.g., medicine, experimental psychology, and
engineering). But in fundamental abstract sciences, as fun-
damental as they are in relation to art and philosophy, there
should be no excuse as to the arbitrary, non-epistemological
“peer-group treatment” and “machination” to which true indi-
vidual geniuses are often subject, precisely because such in-
dividuals alone carry the very archetype of Universality and
Revolution, which is absolutely not a matter of societal trai-

ning and progress. Intrinsically, such an individual may in-
deed refuse the entirety of conventions of a particular soci-
ety of people and their agendas in order to infinitely eye the
noumenal-creative “science-in-itself”, instead of just partici-
pating in “big scientism” and its often excessive relative loud-
ness.

For instance, aside from the creation of fundamental the-
ories or mathematical methods, the eminent general relativist
who spear-headed the Soviet cosmological school, Abraham
Zelmanov, is said to have regarded writing mere academic ar-
ticles as a “waste of time” [5]. Also Einstein himself is known
to have principally disregarded the anonymous “peer-review”
system prevalent in the American system, as opposed to the
way things were done rather transparently, epistemologically,
and dialectically in Europe at the time his theories flourished:
so long as there are no mathematical and other fundamen-
tal flaws in a submitted scientific thesis containing some ge-
nuine novelty, a corresponding anti-thesis would simply be
presented by the scientific editor(s), and thereafter a common
synthesis should likely be reached by both the individual sci-
entist and the universally capable editor(s): such is the epis-
temologically universal way of disseminating novel scientific
ideas and progress, and of championing true academic free-
dom, as greatly opposed to all superficial excuses (especially
those made by fallible, anonymous observers). It was also
Einstein’s single-mindedness which made him unable to ac-
cept “quantum theory as Copenhagen sees it”, strongly be-
lieving in a more deterministic (geometric) fashion thereof
— a “fate” he shared with even de Broglie (who envisioned
a kind of hidden “thermostat medium” in quantum physics)
and Bohm (with his hidden-variable quantum theory), among
others.

This, while mere “crackpots” are easily seen in broad day-
light for themselves, and yet Genius is not even visible in the
blazing sun of the day as in the mirrorless depths of the night
— unless by way of sheer deliberation on the part of the in-
dividual of Genius himself. Indeed, of this — and after a
lengthy, peripheral epistemic discourse and logical ascension
— Wittgenstein himself would have said, “Up there, I am
senseless: you must understand me senselessly”. (See, e.g.,
[6]; during his entire solitary life, Wittgenstein only cared to
produce two condensed philosophical works — each being a
self-complete fundamental treatise written in a very unortho-
dox style — instead of writing mere philosophical “documen-
taries”.)

However, the situation with “Genius and people” is rather
helpless in any age due to the anholonomic, asymmetric na-
ture of Genius — and the entire Universe itself — with res-
pect to the rest of otherness, of which individuals of Genius
are acutely conscious: just as the distance between Reality
and “things” is not the same as that between “things” and
Reality, as we have seen, the distance between Genius and
people is not the same as that between people and Genius.
Thus, mere sense-projection often only makes things worse.
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To understand Genius, one must understand the noumenal
Universe within its very own solitary instant, while most pe-
ople, merely existing in groups and in definite contingency
of both stances of the “dogmatist” (of objective dogmatism)
and the “relativist” (of subjective relativism), are still far away
from such cognizance, not just in the phenomenal-progressive
sense, but in the entire ontological-noumenal sense. Still,
one must know the noumenal even better than Kant himself
understood it (and his entire epistemology), hence the ph-
rase, “to understand Kant is to simply surpass him, there is
no other way”. Needless to say, the same seems to hold
for most known physical theories as well — such as relati-
vity and quantum theory, — especially in terms of the truly
epistemological-universal construction of quantum gravity
and unified field theories.

Indeed, while some of the known geniuses of the past are
rather belatedly celebrated by people today (only to superfi-
cially project themselves on the past and to aggrandize their
own sense of historical continuity as such), they always tend
to neglect the geniuses of the present. This is precisely be-
cause they themselves, no matter how talented and bright,
are not geniuses and have no substantial resemblance with
them whatsoever: they are merely the product of the age. It is
in this rather secluded Schopenhauerian-Weiningerian sense
and infinite, silent understanding that Genius, more than
others, embraces tragedy willingly: he is absolutely not the
product of the age in the first place and he suffers most intui-
tively amidst people.

Hence, in any cosmic epoch, the so-called “Renaissance”
is that infinitely solitary period of Genius before everyone
else is capable of naming it, and not merely its subsequent,
timely crumbs as received by a particular culture (society).
It is the “mysterious” (as Einstein would have called it), not
“public space”.

A man of Genius is simply a universal volunteer on the
canvas of Reality, without ulterior motives whatsoever, and
without him, Reality would never “archetypally act upon it-
self” in and of the Universe: as such, he is most capable of
infinite differentiation (“noema” and creation) peculiar to his
singular Genus alone. Such Genus (“Kudos”) is transcendent
— not simply parallel or anti-parallel — with respect to all
species.

As long as the four-fold logic behind Reality, the Uni-
verse, the manifold world-imagery, and Genius is not reali-
zed, an “objective dogmatist” will always fall into a “sub-
jective relativist” (and mere sophist) soon enough, and vice
versa, for the horizon-forming duality of phenomenological
things remains as such, according to traditional “two-
dimensional” (or “two-and-a-half” at most) eruditic logic.
Such, then, only serves to yield a fallible observer, of whom
Genius has no need whatsoever. In this sense, art is indeed
most suitable to most geniuses than is academic science, pre-
cisely due to the more solitary noumenal-epistemological na-
ture (richness) of art and its practicality at large. But, whe-

never such a universal mind appears in scientific territories,
one must intimate the art of it all, without any “sophisticated
pretention” whatsoever, rather than simply dismiss the emer-
gent qualic unorthodoxy peculiar to Genius (for, as history
has shown, such only results in one’s shameful chagrin in
the face of Reality, whether immediately or eventually), of
which that one has no true understanding whether in short or
at length. (In this respect, one can simply imagine Kant and
Goethe — rather than Euler and Gauss — doing some par-
ticular sciences, apart from philosophy and art, and the pre-
dictable neglect and cold calculation of those who feel their
territories have been violated. Fortunately, this particular case
involving the two men and the rest of the world does not seem
to have taken place.)

Undoubtedly, the foregoing epistemological discourse
fully capable of mirroring “worlds”, “anti-worlds”, and “non-
worlds”, (by “world”, of course we also mean “thought” or
“paradigm”) from the universal standpoint of Reality itself,
is particularly relevant to the championing of scientific hu-
man rights as outlined in [2] as well as to the importance of
aprioristic and dialectical thinking in physics (and science in
general) as reflected, e.g., in [3] and [4].

All that — the Universe itself — is inevitably opposed to
mere communalism, especially in the post-modern era of “big
scientism”.
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Experimental study of the physical chemical properties and the technology of manufac-
turing chemically clean hexachloride of tungsten has led to unexpected results. It was
found that each element of the Periodic Table of Elements has its own hyperbola in the
graph “molecular mass — content of the element”. The hyperbolas differ according to
the atomic mass of the elements. Lagrange’s theorem shows that the tops of the hyper-
bolas approach to an upper limit. This upper limit means the heaviest element, which is
possible in the Table. According to the calculation, its atomic mass is 411.66, while its
number is 155.

1 Introduction

In the early 1960’s, I and my research group worked in the
Department of Rare, Radioactive Metals and Powder Metal-
lurgy at Moscow Institute of Steel and Alloys, Russia. We lo-
oked for a better technology of manufacturing the chemically
clean hexachlorid of tungsten (WCl6) through chlorination of
ferrotungsten. Then, in the 1970’s, I continued this experi-
mental research study at the Baikov Institute of Metallurgy,
Russian Academy of Sciences.

Our main task in this experimental search was to obtain
a purely oxygen-free product. Because the raw material we
worked with was resented as a many-component gaseous mix,
we studied behaviour of the vaporous medleys during filtering
them by saline method, distillation, and rectification. As a
result, the percent of mass of the metal we have obtained in
vaporous medley was 99.9% for W, 20.0% for Mo, 2.0% for
Fe [1–3].

After cleaning the obtained condensate with the afore-
mentioned methods, we have found a small inclusion of the
chloride compound of tungsten in it. This chloride compound
of tungsten differs from the hexachloride of tungsten in co-
lour and the boiling temperature, which was 348◦C for WCl6,
286◦C for WCl5, and 224◦C for WOCl4 [4]. The cleaned he-
xachloride of tungsten recovers to the powder metallic state
by hydrogen in the boiling layer, in plasma, precipitates as a
thin cover on a base in use. It is used for manufacturing alloys
with other metals through metalthermic method, etc. [5].

2 Results

In development of this technology, it was found that the the-
oretical (expected) results of the chemical analysis of the va-
porous medleys do not match the experimental results for a
little. This occurred due to some quantity of WO2Cl2 and
WOCl4 obtained in the process, which were used further for
manufacturing a high clean WO3 [6]. In order to keep control

on the product of the chemical reactions, we have drawn de-
pendencies of the content of tungsten, chlorine, and oxygen in
the compounds (per one gram-atom of each element). This is
necessary because, for example, the common quantity of the
chloride of tungsten in chlorides is presented with a broken
line (see Fig. 1) whose mathematical equation is impossible.
As was found, after our Fig. 1, the arc of the content of tungs-
ten is presented with an equilateral hyperbolaY = K/X whe-
rein its different compounds (in particular WO3) are located.
In analogy to this graph, the respective arcs were obtained for
chlorine and oxygen, which appeared as hyperbolas as well.

Further checking for the possibility of creating similar
functions for the other chemical elements manifested the fact
that each element of the Periodic Table of Elements has its
own hyperbola, which differs from the others according to the
atomic mass of the element. As an example, Fig. 2 shows the
hyperbolas created for the elements of Group 2, including the
hypothetical elements No.126 and No.164. As is known, an
equilateral hyperbola is symmetric with respect to the bisec-
tor of the angleXOY in the first quarter. Besides, the bisector
coincides with the real axis, while the point of intersection
of it with the hyperbola (the top point) is determined as the
square root fromK(X0 = Y0). Respectively, for instance, the
top point of the hyperbola of beryllium (atomic mass 9.0122)
is located atX0 = Y0 = 3.00203.

In chemistry, it is commonly assumed to calculate the
quantity of a reacted element in the parts of unit. There-
fore, the hyperbola of each element begins from the mass
of the element andY = 1. From here, through Lagrange’s
theorem, we calculate the top of the hyperbola of beryllium:
X = 60.9097,Y = 0.14796. Comparing the obtained coor-
dinates, it is easy to see thatX/X0 = 20.2895 andY0/Y =

20.2895, which is the inverse proportionality with a respec-
tive scaling coefficient. Tangent of the angle of inclination
of the real axis in the other (scaled) coordinates isY/X =

0.14796/60.9097= 0.00242917. The scaling coefficient al-
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Fig. 1: The common quantity of the chloride of tungsten in chlorides.

lowed us to create a line joining the tops of the hyperbolas,
located in the real axis (see Fig. 3). This is a straight crossing
the lineY = 1, where the atomic and molecular masses of an
element described by the hyperbolas are equal to each other
(K = X). This is only possible if the origin of the hyperbola
and its top meet each other at a single point where the content
Y takes maximal numerical value (according to the equation
Y = K/X). Atomic mass of this�ultimate� element, determi-
ned by the crossing point, was calculated with use of the sca-
ling coefficient and the tangent of inclination of the real axis:
X = Y/ tanα = 1/0.00242917= 411.663243. This calcu-
lated element is the last (heaviest of all theoretically possible
elements) in the Periodic Table of Elements becauseY cannot
exceed 1. The second important characteristic of the element
– its atomic number – was calculated through the equation of
the exponentY = 1.6089 exp1.0993x (R2 = 0.9966). The cal-
culated number of the last element is 155. With use of these
equations, the respective parameters of all other elements of
the Periodic Table can be calculated, including in the interval
of super-heavy elements No.114–No.155 [7,8].

3 Discussion

We see that on the basis of the initially experimental studies
of the chloride of tungsten, a new law was found in the Peri-
odic Table of Elements. This is the hyperbolic law, according
to which the contentY of any element (per 1 gram-atom) in
any chemical compound of a molecular massX can be descri-
bed by the equation of the positive branches of an equilateral
hyperbola of the kindY = K/X (whereY 6 1 andK 6 X).
The hyperbolas of the respective chemical elements lie in the
order of the increasing nuclear charge, and have a common

real axis which meets their tops. The tops, with distance from
the origin of the coordinates, approach the locationY = 1 and
K = X wherein atomic mass takes its maximally possible nu-
merical value, which indicates the last (heaviest) element of
the Periodic Table.

It should be noted that the new dependencies we pointed
out here have provided not only better conditions of applied
research, but also a possibility for re-considering our views
on the conditions of synthesis of super-heavy elements. If
already in 2003 theoretical physicists discussed properties of
elements with number near 400 whose nuclei contain until
900 neutrons each [9], in February 2009, after primary publi-
cation of our studies, they discuss the elements with numbers
not higher than 150–200 [10].
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In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we
can pass from Subluminal Physics to Superluminal Physics, and further to Instantaneous
Physics. In the lights of two consecutive successful CERN experiments with superlumi-
nal particles in the Fall of 2011, we believe that these two new fields of research should
begin developing.

1 Introduction

Let’s start by recalling the history of geometry in order to
connect it with the history of physics.

Then we present the way of S-denying a law (or theory)
and building a spectrum of spaces where the same physical
law (or theory) has different forms, then we mention the S-
multispace with its multistructure that may be used to the
Unified Field Theory by employing amultifield.

It is believed that the S-multispace with its multistructure
is the best candidate for 21st centuryTheory of Everythingin
any domain.

2 Geometry’s history

As in Non-Euclidean Geometry, there are models that vali-
date the hyperbolic geometric and of course invalidate the
Euclidean geometry, or models that validate the elliptic ge-
ometry and in consequence they invalidate the Euclidean ge-
ometry and the hyperbolic geometry.

Now, we can mix these geometries and construct a model
in which an axiom is partially validated and partially invalida-
ted, or the axiom is only invalidated but in multiple different
ways [1]. This operation produces a degree of negation of
an axiom, and such geometries are hybrid. We can in general
talk about thedegree of negation of a scientific entityP, where
P can be a theorem, lemma, property, theory, law, etc.

3 S-denying of a theory

Let’s consider a physical space S endowed with a set of phy-
sical laws L, noted by (S, L), such that all physical laws L are
valid in this space S.

Then, we construct another physical space (or model) S1

where a given law has a different form, afterwards another
space S2 where the same law has another form, and so on
until getting a spectrum of spaces where this law is different.

We thus investigate spaces where anomalies occur [2].

4 Multispace theory

In any domain of knowledge, multispace (or S-multispace)
with its multistructure is a finite or infinite (countable or un-

countable) union of many spaces that have various structures.
The spaces may overlap [3].

The notions of multispace (also spelt multi-space) and
multistructure (also spelt multi-structure) were introduced by
the author in 1969 under his idea of hybrid science: combi-
ning different fields into a unifying field (in particular combi-
nations of different geometric spaces such that at least one ge-
ometric axiom behaves differently in each such space), which
is closer to our real life world since we live in a heterogene-
ous multispace. Today, this idea is accepted by the world of
sciences. S-multispace is a qualitative notion, since it is too
large and includes both metric and non-metric spaces.

A such multispace can be used for example in physics for
the Unified Field Theory that tries to unite the gravitational,
electromagnetic, weak and strong interactions by construc-
ting a multifield formed by a gravitational field united with
an electromagnetic field united with a weak-interactions field
and united with a strong-interactions field.

Or in the parallel quantum computing and in the mu-bit
theory, in multi-entangled states or particles and up to multi-
entangles objects.

We also mention: the algebraic multispaces (multi-
groups, multi-rings, multi-vector spaces, multi-operation sys-
tems and multi-manifolds, also multi-voltage graphs, multi-
embedding of a graph in an n-manifold, etc.) or structures
included in other structures, geometric multispaces (combi-
nations of Euclidean and Non-Euclidean geometries into one
space as in S-geometries), theoretical physics, including the
Relativity Theory [4], the M-theory and the cosmology, then
multi-space models for p-branes and cosmology, etc.

The multispace is an extension of the neutrosophic lo-
gic and set, which derived from neutrosophy. Neutrosophy
(1995) is a generalization of dialectics in philosophy, and
takes into consideration not only an entity<A> and its op-
posite<antiA> as dialectics does, but also the neutralities
<neutA> in between. Neutrosophy combines all these th-
ree<A>, <antiA>, and<neutA> together. Neutrosophy is
a metaphilosophy.

Neutrosophic logic (1995), neutrosophic set (1995), and
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neutrosophic probability (1995) have, behind the classical va-
lues of truth and falsehood, a third component called indeter-
minacy (or neutrality, which is neither true nor false, or is
both true and false simultaneously — again a combination of
opposites: true and false in indeterminacy).

Neutrosophy and its derivatives are generalizations of the
paradoxism (1980), which is a vanguard in literature, arts, and
science, based on finding common things to opposite ideas
(i.e. combination of contradictory fields).

5 Physics history and the future

a) With respect to the size of spacethere are:Quantum
Physicswhich is referring to the subatomic space, the
Classical Physicsto our intuitive living space, while
Cosmologyto the giant universe;

b) With respect to the direct influence: theLocality, when
an object is directly influenced by its immediate sur-
roundings only, and theNonlocality, when an object
is directly influenced by another distant object without
any interaction mediator;

c) With respect to the speed: the Newtonian Physicsis
referred to low speeds, theTheory of Relativityto su-
bluminal speeds near to the speed of light, whileSuper-
luminal Physicswill be referred to speeds greater than
c, andInstantaneous Physicsto instantaneous motions
(infinite speeds).

A physical law has a form in Newtonian physics, another
form in Relativity Theory, and different form at Superluminal
theory, or at Infinite (Instantaneous) speeds — as above in the
S-Denying Theory spectrum.

We get new physics at superluminal speeds and other phy-
sics at a very very big speed (v � c) speeds or at instantane-
ous (infinite) traveling.

At the beginning we have to extend physical laws and for-
mulas to superluminal traveling and afterwards to instantane-
ous traveling.

For example, what/how would be Doppler effect if the
motion of an emitting source relative to an observer is greater
thanc, or v � c (much greater thanc), or even at instantane-
ous speed?

Also, what addition rule should be used for superluminal
speeds?

Then little by little we should extend existing classical
physical theories from subluminal to superluminal and ins-
tantaneous traveling.

For example: if possible how would the Theory of Rela-
tivity be adjusted to superluminal speeds?

Lately we need to found a general theory that unites all
theories at: law speeds, relativistic speeds, superluminal spe-
eds, and instantaneous speeds — as in the S-Multispace The-
ory.

6 Conclusion

Today, with many contradictory theories, we can reconcile
them by using the S-Multispace Theory.

We also propose investigating new research trends such as
Superluminal Physics and Instantaneous Physics. Papers in
these new fields of research should be e-mailed to the author
by July 01, 2012, to be published in a collective volume.
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In April 2011, Craig Alan Feinstein published a paper inProgress in Physicsentitled
“An elegant argument thatP , NP”. Since then, Craig Alan Feinstein has discovered
how to make that argument much simpler. In this letter, we present this argument.

In April 2011, I published a paper inProgress in Physicsen-
titled “An elegant argument thatP , NP” [1]. Since then, I
have discovered how to make that argument much simpler. In
this letter, I present this argument.

Consider the following problem: Let{s1, . . . , sn} be a set
of n integers andt be another integer. We want to determine
whether there exists a subset of{s1, . . . , sn} for which the sum
of its elements equalst. We shall consider the sum of the
elements of the empty set to be zero. This problem is called
the SUBSET-SUM problem [2].

Let k ∈ {1, . . . , n}. Then the SUBSET-SUM problem
is equivalent to determining whether there exist setsI+ ⊆
{1, . . . , k} andI− ⊆ {k+ 1, . . . , n} such that

∑

i∈I+
si = t −

∑

i∈I−
si .

There is nothing that can be done to make this equation sim-
pler. Then since there are 2k possible expressions on the left-
hand side of this equation and 2n−k possible expressions on
the right-hand side of this equation, we can find a lower-
bound for the worst-case running-time of an algorithm that
solves the SUBSET-SUM problem by minimizing 2k + 2n−k

subject tok ∈ {1, . . . , n}.
When we do this, we find that 2k+2n−k = 2bn/2c+2n−bn/2c =

Θ(
√

2n) is the solution, so it is impossible to solve the
SUBSET-SUM problem ino(

√
2n) time with a determinis-

tic and exact algorithm. This lower-bound is tight [1]. And
this conclusion implies thatP , NP [2].
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