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Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA, 92646, USA. E-mail: frank11hb@yahoo.com

The Pluto satellite system of the planet plus five moons is shown to obey the quan-
tum celestial mechanics (QCM) angular momentum per mass quantization condition
predicted for any gravitationally bound system.

The Pluto satellite system has at least five moons, Charon,
P5, Nix, P4, and Hydra, and they are nearly in a 1:3:4:5:6 res-
onance condition! Before the recent detection of P5, Youdin
et al. [1] (2012) analyzed the orbital behavior of the other
four moons via standard Newtonian gravitation and found
regions of orbital stability using distances from the Pluto-
Charon barycenter.

I report here that these five moons each exhibit angular
momentum quantization per mass in amazing agreement with
the prediction of the quantum celestial mechanics (QCM)
proposed by H. G. Preston and F. Potter [2,3] in 2003. QCM
predicts that bodies orbiting a central massive object in grav-
itationally bound systems obey the angular momentum L per
mass y quantization condition

— =mcH,
U
with m an integer and ¢ the speed of light. For most systems
studied, m is an integer less than 20. The Preston gravitational
distance H defined by the system total angular momentum
divided by its total mass

ey

" Mrc @

provides a characteristic QCM distance scale for the system.

At the QCM equilibrium orbital radius, the L of the or-
biting body agrees with its Newtonian value y VGM7r. One
assumes that after tens of millions of years that the orbiting
body is at or near its QCM equilibrium orbital radius r and
that the orbital eccentricity is low so that our nearly circu-
lar orbit approximation leading to these particular equations
holds true. For the Pluto system, Hydra has the largest eccen-
tricity of 0.0051 and an m value of 12.

Details about the derivation of QCM from the general rel-
ativistic Hamilton-Jacobi equation and its applications to or-
biting bodies in the Schwarzschild metric approximation and
to the Universe in the the interior metric can be found in our
original 2003 paper [2] titled “Exploring Large-scale Gravi-
tational Quantization without 7 in Planetary Systems, Galax-
ies, and the Universe”. Further applications to gravitational
lensing [4], clusters of galaxies [5], the cosmological redshift
as a gravitational redshift [6], exoplanetary systems and the
Kepler-16 circumbinary system [7] all support this QCM ap-
proach.
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Fig. 1: The Pluto System fit to QCM

Table 1: Pluto system orbital parameters

rx 10°m | period (d) | € m | Pp/P
Pluto 2.035 6.387230 | 0.0022 | 2
Charon | 17.536 6.387230 | 0.0022 | 6 1
P5 42. 20.2 ~0 9 2915
Nix 48.708 24.856 0.0030 | 10 | 3.880
P4 59. 32.1 ~0 11 | 5.038
Hydra | 64.749 38.206 0.0051 | 12 | 6.405

The important physical parameters of the Pluto system
satellites from NASA, ESA, and M. Showalter (SETI Insti-
tute) et al. [8] as listed at Wikipedia are given in the table. The
system total mass is essentially the combined mass of Pluto
(13.05 x 10*!' kg) and Charon (1.52 x 10*' kg). The QCM
values of m in the next to last column were determined by
the best linear regression fit (R* = 0.998) to the angular mo-
mentum quantization per mass equation and are shown in the
figure as L’ = L/uc plotted against m with slope H = 2.258
meters. Using distances from the center of Pluto instead of
from the barycenter produces the same m values (R*> = 0.995)
but a slightly different slope.

In QCM the orbital resonance condition is given by the
period ratio given in the last column calculated from

Py (my+1)

P, (m + 13 )

With Charon as the reference, this system of moons has nearly
a 1:3:4:5:6 commensuration, with the last moon Hydra having

Franklin Potter. Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass 3
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the largest discrepancy of almost 7%. If Hydra moves further
out from the barycenter toward its QCM equilibrium orbital
radius for m = 12 in the next few million years, then its posi-
tion on the plot will improve but its m value will remain the
same. Note also that P5 at m = 9 may move slightly closer
to the barycenter. Dynamic analysis via the appropriate QCM
equations will be reported later. Note that additional moons
of Pluto may be found at non-occupied m values.

The QCM plot reveals that not all possible m values are
occupied by moons of Pluto and at the same time predicts or-
bital radii where additional moons are expected to be. The
present system configuration depends upon its history of for-
mation and its subsequent evolution, both processes being de-
pendent upon the dictates of QCM. Recall [2] that the satellite
systems of the Jovian planets were shown to obey QCM, with
some QCM orbital states occupied by more than one moon.

15

12

L

Fig. 2: The Solar System fit to QCM

I show in Fig. 2 the linear regression plot (r* = 0.999) for
the Solar System, this time with 8 planets plus the largest 5
additional minor planets Ceres, Pluto, Haumea, Makemake,
and Eris. From the fit, the slope gives us a Solar System total
angular momentum of about 1.78 x 10* kg m?/s, far exceed-
ing the angular momentum contributions of the planets by a
factor of at least 50! Less than a hundred Earth masses at
the 50,000-100,000 A.U. distance of the Oort Cloud there-
fore determines the angular momentum of the Solar System.
Similar analyses have been done for numerous exoplanet sys-
tems [7] with multiple planets with the result that additional
angular momentum is required, meaning that more planets
and/or the equivalent of an Oort Cloud are to be expected.

The existence of angular momentum per mass quantiza-
tion dictates also that the energy per mass quantization for a
QCM state obeys

2.2
E rgc

244
G™M;

- 2n2LT2

u Sm2H?

“

with n = m + 1 for circular orbits and Schwarzschild radius
rg. One expects H > r, for the Schwarzschild approxima-
tion to be acceptable, a condition upheld by the Pluto system,
the Solar System, and all exoplanet systems. The correspond-

ing QCM state wave functions are confluent hypergeometric
functions that reduce to hydrogen-like wave functions for cir-
cular orbits. Therefore, a QCM energy state exists for each
n > 2. A body in a QCM state but not yet at the equilibrium
radius for its m value will slowly drift toward this radius over
significant time periods because the QCM accelerations are
small.

In retrospect, the Pluto system is probably more like a
binary system than a system with a single central mass, with
the moons beyond Charon in circumbinary orbits around the
barycenter. As such, I was surprised to find such a good fit to
the QCM angular momentum restriction which was derived
for the single dominant mass system. Additional moons of
Pluto, should they exist, can provide some more insight into
the application of QCM to this gravitationally bound system.

Meanwhile, the identification of additional exoplanets in
nearby systems, particularly circumbinary planets, promises
to create an interesting challenge for establishing QCM as a
viable approach toward a better understanding of gravitation
theory at all size scales.
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On the Decomposition of the Spacetime Metric Tensor

and of Tensor Fields in Strained Spacetime

Pierre A. Millette

University of Ottawa (alumnus), K4A 2C3 747, Ottawa, CANADA. E-mail: PierreAMillette @alumni.uottawa.ca

‘We propose a natural decomposition of the spacetime metric tensor of General Relativ-
ity into a background and a dynamical part based on an analysis from first principles
of the effect of a test mass on the background metric. We find that the presence of
mass results in strains in the spacetime continuum. Those strains correspond to the dy-
namical part of the spacetime metric tensor. We then apply the stress-strain relation of
Continuum Mechanics to the spacetime continuum to show that rest-mass energy den-
sity arises from the volume dilatation of the spacetime continuum. Finally we propose
a natural decomposition of tensor fields in strained spacetime, in terms of dilatations
and distortions. We show that dilatations correspond to rest-mass energy density, while
distortions correspond to massless shear transverse waves. We note that this decom-
position in a massive dilatation and a massless transverse wave distortion, where both
are present in spacetime continuum deformations, is somewhat reminiscent of wave-
particle duality. We note that these results are considered to be local effects in the
particular reference frame of the observer. In addition, the applicability of the proposed

metric to the Einstein field equations remains open.

1 Introduction

We first demonstrate from first principles that spacetime is
strained by the presence of mass. Strained spacetime has been
explored recently by Tartaglia et al. in the cosmological con-
text, as an extension of the spacetime Lagrangian to obtain a
generalized Einstein equation [1,2]. Instead, in this analysis,
we consider strained spacetime within the framework of Con-
tinuum Mechanics and General Relativity. This allows for the
application of continuum mechanical results to the spacetime
continuum. In particular, this provides a natural decomposi-
tion of the spacetime metric tensor and of spacetime tensor
fields, both of which are still unresolved and are the subject
of continuing investigations (see for example [3-7]).

2 Decomposition of the Spacetime Metric Tensor

There is no straightforward definition of local energy density
of the gravitational field in General Relativity [8, see p. 84,
p-286] [6,9, 10]. This arises because the spacetime metric
tensor includes both the background spacetime metric and the
local dynamical effects of the gravitational field. No natu-
ral way of decomposing the spacetime metric tensor into its
background and dynamical parts is known.

In this section, we propose a natural decomposition of the
spacetime metric tensor into a background and a dynamical
part. This is derived from first principles by introducing a
test mass in the spacetime continuum described by the back-
ground metric, and calculating the effect of this test mass on
the metric.

Consider the diagram of Figure 1. Points A and B of the
spacetime continuum, with coordinates x* and x* + dx* re-

spectively, are separated by the infinitesimal line element
ds* = Gy Ax'dx” (1)

where g, is the metric tensor describing the background state
of the spacetime continuum.

We now introduce a test mass in the spacetime continuum.
This results in the displacement of point A to A, where the
displacement is written as #*. Similarly, the displacement of
point B to B is written as u* + du*. The infinitesimal line

. —~ =. . 2
element between points A and B is given by ds .
By reference to Figure 1, the infinitesimal line element

Js2 can be expressed in terms of the background metric tensor
as
s’ = gu(dx + du)(dx’ + du’), 2)

Multiplying out the terms in parentheses, we get

s’ = gu(dr'dx’ + dx'du’ + du'dx’ + du'di’).  (3)

Expressing the differentials du as a function of x, this equa-
tion becomes

~2
ds = g (dx'dx’ + dx" u’., dx® + v, dx"dx"+
4)
+ 1 dx w5 dxP)
where the semicolon (;) denotes covariant differentiation. Re-

arranging the dummy indices, this expression can be written
as

~2
ds = (Gguy + Gua Uy + Jov U i + gop u(’;ﬂuﬂ;v) dx'dx’ (5)

and lowering indices, the equation becomes

ds = (Guv + Uy + Uy + U llgy) dxHdx”. (6)

Pierre A. Millette. On the Decomposition of the Spacetime Metric Tensor and of Tensor Fields in Strained Spacetime 5
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Fig. 1: Effect of a test mass on the background metric tensor

B x* + dx* + u* + dut

The expression u,,,, + u,,, + u®,u,;, is equivalent to the
definition of the strain tensor & of Continuum Mechanics.
The strain &' is expressed in terms of the displacements u"
of a continuum through the kinematic relation [11, see p. 149]
[12, see pp. 23-28]:

g = %(u’“" +u + uuyY). (7)
Substituting for & from Eq.(7) into Eq.(6), we get
s’ = (g + 28 dr'dx’. 8)
Setting [12, see p. 24]
Guv = Gy + 2 &y ©)
then Eq.(8) becomes
ds’ =Gy drdx’ (10)

where g, is the metric tensor describing the spacetime con-
tinuum with the test mass.

Given that g, is the background metric tensor describing
the background state of the continuum, and g,, is the space-
time metric tensor describing the final state of the continuum
with the test mass, then 2 g, must represent the dynamical
part of the spacetime metric tensor due to the test mass:

dyn

Guv (11)

We are thus led to the conclusion that the presence of mass
results in strains in the spacetime continuum. Those strains
correspond to the dynamical part of the spacetime metric ten-
sor. Hence the applied stresses from mass (i.e. the energy-
momentum stress tensor) result in strains in the spacetime
continuum, that is strained spacetime.

=2&u.

3 Rest-Mass Energy Relation

The introduction of strains in the spacetime continuum as a
result of the energy-momentum stress tensor allows us to use
by analogy results from Continuum Mechanics, in particular
the stress-strain relation, to provide a better understanding of
strained spacetime.

The stress-strain relation for an isotropic and homoge-
neous spacetime continuum can be written as [12, see pp.
50-53]:

Qpoet” + Agge = T (12)

where T is the energy-momentum stress tensor, & is the
resulting strain tensor, and

e=¢&% (13)
is the trace of the strain tensor obtained by contraction. &
is the volume dilatation defined as the change in volume per
original volume [11, see p. 149-152] and is an invariant of
the strain tensor. Ay and g are the Lamé elastic constants of
the spacetime continuum: g is the shear modulus and A is
expressed in terms of kg, the bulk modulus:

Ao = ko — po/2 14

in a four-dimensional continuum. The contraction of Eq.(12)
yields the relation

2o +20)e = T = T. (15)

The time-time component 7% of the energy-momentum
stress tensor represents the total energy density given by [13,
see pp. 37-41]

1) = [ @pE, S p) (16)
where E, = (p*c* + p*c®)'/2, p is the rest-mass energy den-
sity, c is the speed of light, p is the momentum 3-vector and
f(x*, p) is the distribution function representing the number
of particles in a small phase space volume d>xd>p. The space-
space components 7"/ of the energy-momentum stress tensor
represent the stresses within the medium given by

ij _ 2 3 Pipj
T = [ d'pp—f(.p). (17)
P

They are the components of the net force acting across a
unit area of a surface, across the x' planes in the case where
i=j.

In the simple case of a particle, they are given by [14, see
p.117]

T = po'df (18)

where v' are the spatial components of velocity. If the parti-
cles are subject to forces, these stresses must be included in
the energy-momentum stress tensor.

6 Pierre A. Millette. On the Decomposition of the Spacetime Metric Tensor and of Tensor Fields in Strained Spacetime
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Explicitly separating the time-time and the space-space
components, the trace of the energy-momentum stress tensor
is written as

7% =T% + T';. (19)

Substituting from Eq.(16) and Eq.(17), using the metric

" of signature (+ - - -), we obtain:

k 3 p*c
1) = f @p(E, - Z5)fkm Qo)
P
which simplifies to
k
Taa/(xk) :p2C4 fd3pf(x 7p) (21)
Ep
Using the relation [13, see p. 37]
1 xk
_ _ fd3pf( ,P) 22)
Ehar(-xk) EP
in equation Eq.(21), we obtain the relation
2.4
T () = 25— (23)
Epar(xF)

where E;W(x") is the Lorentz invariant harmonic mean of the
energy of the particles at x*.

In the harmonic mean of the energy of the particles Enars
the momentum contribution p will tend to average out and be
dominated by the mass term pcz, so that we can write

Fhar(xk) = pcz' (24)
Substituting for Epar in Eq.(23), we obtain the relation
T (x*) =~ pc?. (25)

The total rest-mass energy density of the system is obtained
by integrating over all space:

T, = f d*x T, (x). (26)

The expression for the trace derived from Eq.(19) depends

on the composition of the sources of the gravitational field.

Considering the energy-momentum stress tensor of the elec-

tromagnetic field, we can show that 7%, = 0 as expected for
massless photons, while

T = %(E2 + 3B

is the total energy density, where ¢ is the electromagnetic
permittivity of free space, and E and B have their usual sig-
nificance.

Hence T¢, corresponds to the invariant rest-mass energy
density and we write

T% =T = pc? 27)

where p is the rest-mass energy density. Using Eq.(27) into
Eq.(15), the relation between the invariant volume dilatation
€ and the invariant rest-mass energy density becomes

2(uo + 2A0)e = pc? (28)
or, in terms of the bulk modulus «g,
4xoe = pc?. (29)

This equation demonstrates that rest-mass energy density
arises from the volume dilatation of the spacetime continuum.
The rest-mass energy is equivalent to the energy required to
dilate the volume of the spacetime continuum, and is a mea-
sure of the energy stored in the spacetime continuum as vol-
ume dilatation. «( represents the resistance of the spacetime
continuum to dilatation. The volume dilatation is an invariant,
as is the rest-mass energy density.

4 Decomposition of Tensor Fields in Strained Spacetime

As opposed to vector fields which can be decomposed into
longitudinal (irrotational) and transverse (solenoidal) compo-
nents using the Helmholtz representation theorem [11, see
pp- 260-261], the decomposition of spacetime tensor fields
can be done in many ways (see for example [3-5,7]).

The application of Continuum Mechanics to a strained
spacetime continuum offers a natural decomposition of tensor
fields, in terms of dilatations and distortions [12, see pp. 58—
60]. A dilatation corresponds to a change of volume of the
spacetime continuum without a change of shape (as seen in
Section 3) while a distortion corresponds to a change of shape
of the spacetime continuum without a change in volume. Di-
latations correspond to longitudinal displacements and distor-
tions correspond to transverse displacements [11, see p. 260].

The strain tensor " can thus be decomposed into a strain
deviation tensor e*” (the distortion) and a scalar e (the dilata-
tion) according to [12, see pp. 58—60]:

& =" + eg"” 30)
where
e, =&, —edt, (€2))
1, 1
e = ZE a = ZS. (32)

Similarly, the energy-momentum stress tensor 7+” is de-
composed into a stress deviation tensor # and a scalar ¢ ac-
cording to

™ =" + tg"" (33)
where similarly
#,=TH, — 1", (34)
t= 1T” (35)
=77

Pierre A. Millette. On the Decomposition of the Spacetime Metric Tensor and of Tensor Fields in Strained Spacetime 7
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Using Eq.(30) to Eq.(35) into the strain-stress relation of
Eq.(12) and making use of Eq.(15) and Eq.(14), we obtain
separated dilatation and distortion relations respectively:

dilatation : t = 2(ug + 24p)e = 4kpe = ko€
(36)
distortion : # = 2uget”.

The distortion-dilatation decomposition is evident in the
dependence of the dilatation relation on the bulk modulus «q
and of the distortion relation on the shear modulus yy. As
shown in Section 3, the dilatation relation of Eq.(36) corre-
sponds to rest-mass energy, while the distortion relation is
traceless and thus massless, and corresponds to shear trans-
Verse waves.

This decomposition in a massive dilatation and a massless
transverse wave distortion, where both are present in space-
time continuum deformations, is somewhat reminiscent of
wave-particle duality. This could explain why dilatation-mea-
suring apparatus measure the massive ’particle’ properties of
the deformation, while distortion-measuring apparatus mea-
sure the massless transverse 'wave’ properties of the defor-
mation.

5 Conclusion

In this paper, we have proposed a natural decomposition of
the spacetime metric tensor into a background and a dynami-
cal part based on an analysis from first principles, of the im-
pact of introducing a test mass in the spacetime continuum.
We have found that the presence of mass results in strains
in the spacetime continuum. Those strains correspond to the
dynamical part of the spacetime metric tensor.

We have applied the stress-strain relation of Continuum
Mechanics to the spacetime continuum to show that rest-mass
energy density arises from the volume dilatation of the space-
time continuum.

Finally we have proposed a natural decomposition of ten-
sor fields in strained spacetime, in terms of dilatations and
distortions. We have shown that dilatations correspond to
rest-mass energy density, while distortions correspond to ma-
ssless shear transverse waves. We have noted that this de-
composition in a dilatation with rest-mass energy density and
a massless transverse wave distortion, where both are simul-
taneously present in spacetime continuum deformations, is
somewhat reminiscent of wave-particle duality.

It should be noted that these results are considered to be
local effects in the particular reference frame of the observer.
In addition, the applicability of the proposed metric to the
Einstein field equations remains open.

Submitted on August 5, 2012 / Accepted on August 08, 2012
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Quantum Constraints on a Charged Particle Structure

Eliahu Comay
Charactell Ltd., PO Box 39019, Tel-Aviv, 61390, Israel. Bimelicomay@post.tau.ac.il

The crucial role of a Lorentz scalar Lagrangian density whdanension is [~4]
(h=c=1) in a construction of a quantum theory is explained. It$uont that quan-
tum functions used in this kind of Lagrangian density havefinite dimension. It is
explained why quantum functions that have the dimensiot] [cannot describe parti-
cles that carry electric charge. Itis shown that the 4-cuméa quantum particle should
satisfy further requirements. It follows that the pion ahe\W* must be composite par-
ticles. This outcome is inconsistent with the electrowdwdoty. It is also argued that
the 125GeV particle found recently by two LHC collaborations is not ayg boson
but att meson.

1 Introduction following expansion of the phase,

The fundamental role of mathematics in the structure of the- 0 )

oretical physics is regarded as an indisputable elemetieof t p(a) = Z aa', 1)
theory [1]. This principle is utilized here. The analysiies i=0

on spec!al relatlvny_ and derives constrglnts on thel smtmﬂact.the inequalitya, # 0 holds for two or more values of the
of equations of motion of quantum particles. The discussi :

examines the dimensions of wave functions and explains w Y The requirement stating that all terms of a physical ex-

spin-0 and spin-1 elementary qu_antgm particles cann_oy _CargFession must have the same dimension and the form of the
an electric charge. This conclusion is relevant to the itglid .

fthe elect Kth dtoth . f t r (lght hand side of (1) prove thatmust be dimensionless. By
otthe electroweak theory and o tne meaning of recent LSy o5y e token, in a relativistic quantum thearynust also
concerning the existence of a particle having a mass of

a Lorentz scalar. (The possibility of using a pseudoscala
GeV[2,3]. factor is not discussed here because this work aims to ex-
Units where =c=1 are used in this work. Hence, onlyymine the parity conserving electromagnetic interactagizs
one dimension is required and it is the length, denoted by [quantum mechanical particle.) It is shown below how these
For example, mass, energy and momentum have the dimgis requirements impose dramatic constraints on acceptabl
sion L], etc. Greek indices run from 0 to 3 and the diagongliantum mechanical equations of motion of a charged parti-

metric used i, = (1, -1, -1, -1). The symbo}, denotes the ¢je.
partial diferentiation with respect t&* and an upper dotde-  Eyidently, a pure number satisfies the two requirements.
notes a_dfe_rentiation with respect to time. The summatiofgwever, a pure number is inadequate for our purpose, be-
convention is used for Greek indices. cause the phase varies with the particle’s energy and momen-
The second section shows that quantum functions hav@i@. The standard method of constructing a quantum theory
definite dimension. This property is used in the third sectigs to use the Plank’s constamtwhich has the dimension of
where it is proved that Klein-Gordon (KG) fields and those action, and to define the phase as the action divided by
of the W= particle have no self-consistent Hamiltonian. Thi In the units used heré,= 1 and the action is dimension-
final section contains a discussion of the significance of tlegs. Thus, a relativistic quantum theory satisfies the avo r
results obtained in this work. guirements presented above if it is derived from a Lagrangia
density.£ that is a Lorentz scalar having the dimensiar.

Indeed, in this case, the action
2 The dimensions of quantum fields

In this section some fundamental properties of quantum the- S= f£d4X” (2)

ory are used for deriving the dimensions of quantum fields. A

massive quantum mechanical particle is described by a wave dimensionless Lorentz scalar. It is shown below how
functiony(x*). The phase(«) is an important factor of(x*) the dimensionl[~*] of £ defines the dimension of quantum
because it determines the form of an interference pattem. fields.

the present discussion it is enough to demand that the phaséeing aware of these requirements, let us find the dimen-
is an analytic function which can be expanded in a power s#en of the quantum functions used for a description of three
ries that contains more than one term. It means that in #ieds of quantum particles. The Dirac Lagrangian density of

Eliahu Comay. Quantum Constraints on a Charged Particletsie 9
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a free spin-12 particle is [4, see p. 54] e. Finally, the outgoing particles depart. Relativistiaszl
- sical mechanics and classical electrodynamics describe
L= yly'io, - mly. ®3) the motion.
Here the operator has the dimensitny and the Dirac wave Evidently, in this kind of experiment, energy and momen-
functiony has the dimensiorL[%/2]. tum of the initial and the final states are well defined quan-
The Klein-Gordon Lagrangian density of a free spin4ities and their final state values abide by the law of energy-
particle is [4, see p. 38] momentum conservation. It means that the specific values of
. , . the energy-momentum of the final state agree with the corre-
L=¢,4.9" - ey . (4 sponding quantities of the initial state. Now, the initintiahe

final states are connected by processes that are described by
. : : RQM and QFT. In particular, the process of new patrticle cre-
functiong has the dimensiorif2]. < .
, A o . ation is described only by QFT. Hence, RQM and QFT must
The electrically charged spin\” particle is described “tell” the final state what are the precise initial values loé t

by a 4-vector functionW,. W, and the electromagnetic
4-potentialA, are linear combinations of related quantitie nergy—mome_ntum. Itfollows that RQM as well as QFT_must
use field functions that have a self-consistent Hamiltonian

[5, see p.518]. Evidently, they have the same dimension. The HamiltoniarH and the de Broglie relations between

Hence, like the KG field, the dimension ¥4, is [L™Y]. ficle’ ; dit " old
The dimension of each of these fields is used in the da particie’s energy-momentum and Its wave properties yie

cussions presented in the rest of this work. {ﬁe fundamental equation of quantum mechanics

. . , O
3 Consequences of the dimensions of quantum fields IE = Hy. (5)

Before analyzing the consequences of the dimension of quan-—rhe Hamiltonian densityH is derived from the Lagran-

tum fields and of the associated wave functions, it is requir&an density by the following well known Legendre transfor-
to realize the Hamiltonian’s role in quantum theories. The

following lines explain why the Hamiltonian is an indispens ation - 0L

able element of Relativistic Quantum Mechanics (RQM) and H = Z 'piwi -L

of Quantum Field Theory (QFT). This status of the Hamilto- . . ' .

nian is required for the analysis presented below. where the indexruns on all functlons. . .
The significance of hierarchical relationships that hold be Th_e standard }‘orm of reprgsentmg_the Interaction OT an

tween physical theories is discussed in the literatureds, Electric cha_rge with external fields relies on the following

pp.1-6] and [7, see pp. 85, 86]. The foundation of the argltrjgnsformatlon [8, see p.10]

ment can be described as follows. Physical theories take the 0 .0 ,

form of differential equations. These equations can be exam- “ioa g~ eAX). 7

ined in appropriate limits. Now RQM is a limit of QFT' The Now let us examine the electromagnetic interaction of the

former holds for cases where the number of particles cantRe

regarded as a constant of the motion. Therefore, if examme(jee kinds of quantum mechanical particle described in the

in this limit, OFT must agree with ROM. By the same tOker;?rewous section. This is done by adding an interaction term

. - . . - Lint to the Lagrangian density. As explained above, this term
the classical limit of RQM must agree with classical physmé'”t grang v P o
: ; must be a Lorentz scalar whose dimensionlis®*]. The
This matter has been recognized by the founders of quantum . d i f the el - .
mechanics who have proven that the classical limit of quarre1-qUIre orm o ¢ c electromagnetic llnteracfuon term rep-
resents the interaction of charged particles with elecagm

tum mecr_lamcs agrees_wnh classical p.hy.S'CS' The fOIIOW'Hgtic fieldsandthe interaction of electromagnetic fields with
example illustrates the importance of this issue. Let usexa

. . X . . charged particles. This term is written as follows [9, se&5p.
ine an inelastic scattering event. The chronological oader gedp [ e

this process is as follows: Line = — A (8)

a. First, two particles move in external electromagnefigre i is the 4-current of the quantum particle aydis the
fields. Relativistic classical mechanics and ClaSSiCéﬂectromagnetic 4-potential.
electrodynamics describe the motion. Charge conservation requires thjasatisfies the continu-
b. The two particles are very close to each other. RQl equation
describes the process. =0 9)

c. The two particles collide and interact. New particles The 0-component of the 4-vectgt represents density. It
are created. The process is described by QFT. follows that its dimension is[ 3] and the electromagnetic in-

d. Particle creation ends but particles are still very closeraction (8) is a term of the Lagrangian density. For thés re
to one another. RQM describes the state. son, it is a Lorentz scalar whose dimensionlis*]. Hence,

Here the operator has the dimensianj] and the KG wave

: (6)
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a quantum particle can carry electric charge provided a self Two results are directly obtained from the foregoing dis-
consistent 4-current can be defined for it. Furthermorelfa seussion. The Fock space, which denotes the occupation num-
consistent definition of density is also required for a carcst ber of particles in appropriate states, is based on fungtién
tion the Hilbert space where density is used for defining ttse associated Hilbert space. Hence, in the case of K@ or

inner product. function there are very serious problems with the construc-
It is well known that a self-consistent 4-current can ken of a Fock space because these functions have no Hilbert
defined for a Dirac particle [8, see pp. 8,9,23,24] space. Therefore, one also wonders what is the meaning of
— the creation and the annihilation operators of QFT.
" = epyry. (10) Another result refers to the 4-current. Thus, both the KG

This exoression has broperties that are consistent equations and thé/ function have a 4-current that satisfies
IS exp ! properti : Y [11, see p.12] and [12, see p. 199]. However, the contra-

general requirements of a quantum theoryj In particular, t ictions derived above prove the following important princ
4-current is related to a construction of a Hilbert spacaeHe S . . o
le: The continuity relatior(9) is just a necessary condition

N i )
the d_ensnyp_ v is the_ 0 compone_nt of the 4-current (10). AFor an acceptable 4-current. This condition is noff&ient
required, this quantity has the dimensidrij]. Thus, elec- :

L . ) : : and one must also confirm that a theory that uses a 4-current
tromagnetic interactions of charged spif2-Dirac particles

are properly described by the Dirac equation candidate is contradiction free.
Let us turn to the case of a charged KGWF particle. The contradictions which are described above hold for the

+ 1 1 1 -
Here the appropriate wave function has the dimensiof[[ KG and thew=* particles provided that these particles are ele

- ) . mentary pointlike quantum mechanical objects which are de-
This dimension proves that it cannot be used for constrgctin y P q )

) X 2 ~"scribed by a function of the form(x*). Hence,in order to
a self-con3|§tent Hilbert space. Indeedgieienote afunptlon avoid contradictions with the existence of charged piond an
of such a Hilbert space and létbe an operator operating o

this space. Then, the expectation valu®a$ r.wi’ one must demand that the piqns and th?ame compos-
' ' ite particles.Several aspects of this conclusion are discussed
i 3 in the next section. It should also be noted that the resiilts o
<0>= f¢ Ogd . (11) this section are consistent with Dirac’s lifelong objentim

the KG equation [13].
Now, < O > andO have the same dimension. Therefore

¢ must have the dimensiom.{*2]. This requirement is not 4 Discussion

satisfied by the function of a KG particle or byW" because an examination of textbooks provides a simple argument sup-
here the dimension i [*]. Hence, there is no Hilbert spacgorting the main conclusion of this work. Indeed, quantum
for a KG or W particle. For this reason, there is also ngyechanics is known for more than 80 years. It turns out that
Hamiltonian for these functions, because a Hamiltoniamis e Hamiltonian problem of the hydrogen atom of a Dirac par-
operator operating on a Hilbert space. Analogous results gf|e is discussed adequately in relevant textbooks [8,B]
presented for the specific case of the KG equation [10].  contrast, in spite of the long duration of quantum mechanics
The dimensionl[~*] of the KG and thé\* functions also a5 4 valid theory, an appropriate discussion of the Hamilto-
yields another very serious mathematical problem. Indeedpjan solution of a hydrogen-like atom of a relativistic elec
order to have a dimensioh %], their Lagrangian density hasyrically charged integral spin particle is not presentetbit-

terms that aréilinearin derivatives with respect to the spaceygoks. Note that the operator on the left hand side of the KG
time coordinates. Thus, the KG Lagrangian density is (4) agguation [14, see p. 886]

theWH Lagrangian density takes the following form [11, see . .
p.307] 0y +ieA)g" (0, +ieA)p = —mPe (13)

1 is notrelated to a Hamiltonian because (13) is a Lorentz scalar
Lw = —Z(ava = 0, W,, + gW, x W,)2. (12) whereas the Hamiltonian is a 0-component of a 4-vector.

An analogous situation holds for the Hilbert and the Fock

As is well known, an operation of the Legendre trangpaces that are created from functions on which the Hamil-

formation (6) on a Lagrangian density thatiiisear in time  tonian operates. Thus, in the case of a Dirac particle, the

derivatives yields an expression thatiislependentf time  densityyfy is the 0-component of the conserved 4-current

derivatives. Thus, the Dirac Lagrangian density (3) yielgg0). This expression is suitable for a definition of the iditb
a Hamiltonian that is free of time derivatives. On the Othgbace inner product of any pair of integrab|e functions

hand, the Hamiltonian density of the KG av# particles de-

pends on time derivatives. Indeed, using (5) , one infers tha (lp?,.pj) = f‘/’?‘/’i d3x. (14)

for these particles, the Hamiltonian density depends gaiadr

ically on the Hamiltonian. Hence, there is no explicit expre  Indeed, it is derivative free and this property enables the
sion for the Hamiltonian of the KG and thg particles. usage of the Heisenberg picture which is based on time-
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independent functions. Integration properties prove ¢h4} the W* have integral spin and dimensiohft]. However,

is linear inzp;" andy;. Thus, in order to have a self-consistent Hilbert and Fock spaces, a
: : : : function describing an elementary massive particle mugt ha
(@ + by, vj) =a(y;, ¢) + by, ¥j). the dimension [[-¥2]. Neither a KG function nor th&w

+ _ _ function satisfies this requirement.
Furthermore, ;. i) sa real non-negative number that van- e conclusion stating that the continuity equation (9) is
ishes if and only ify; = 0. These properties are required fror8n|y anecessary conditiorequired from a physically accept-

a Hilbert space inner product. It turns out that the construg, e 4_cyrrent and that further consistency tests must be ca
tion of a Hilbert space is the cormerstone used for calaatieq ¢, Jooks like a new result of this work that has a gehera
successful solutions of the Dirac equation and of its assOGhnificance

ated Pauli and Schroedinger equations as well. Before discussing the state of th¢* charged particles,

By contrast, in the case of particles having an integr} ;s examine the strength of strong interactions. Eacheof t
spin, one cannot find in the literature an exphcn CO”SFruﬁillowing arguments proves that strong interactions yetd
tion of a Hilbert space. Indeed, the'f] dimension of their tremely relativistic bound states and that the interacpiart

functions proves that the simple definition of an inner progs iha ‘Hamiltonian swallows a large portion of the quarks’
uct in the formfcpi*q),- d®x has the dimensionL] which is

unacceptable. An application of the 0-component of these
particles 4-current [11, see p.12] and [12, see p.199] is notA'
free of contradictions. Thus, the time derivative included
these expressions prevents the usage of the Heisenberg pic-
ture. Relation roves that in the case of a charged frrtic ) " .
the density deggnpds axternalquantities. These q%an!ﬁes itable to_ add th? mass of two quarks because the in-
may vary in time and for this reason it cannot be used in a creased interaction is very strong.

definition of a Hilbert space inner product. In the case of theB. The mass of the meson is about five times greater
WH function, the expression is inconsistent with the lingarit ~ than the pion’s mass. Now these mesorfiediby the

Antiquarks have been measured directly in the proton
[15, see p. 282]. This is a clear proof of the extremely
relativistic state of hadrons. Indeed, for reducing the
overall mass of the proton, it is energetically “prof-

required from a Hilbert space inner product. relative spin alignment of their quark constituents. Ev-
The results found in this work apply to particles described  idently, spin interaction is a relativistidfect and the
by a function of the form significantr, p mass diference indicates that strong in-
teractions are very strong indeed.
Y (x). (15) C. The pion is made of a,d quark-antiquark pair and

its mass is about 14deV. Measurements show that

Their dependence on a single set of four space-time coordi-
there are mesons made of thel flavors whose mass

nates¢* means that they describe an elementary pointlike par- | :
ticle. For example, this kind of function cannot adequately IS 9reater than 2000leV [6]. Hence, strong interac-
describe a pion because this particle is not an elementary pa  {10NS consume most of the original mass of quarks.
ticle but a quark-antiquark bound state. Thus, it consists o D. Let us examine the pion and find an estimate for the
quark-antiquark pair which are describedttw functions of intensity of its interactions. The first objective is to
the form (15). For this reason, one function of the form (15)  find an estimate for the strength of the momentum of
cannot describe a pion simply because a description of a pion the pion’s quarks. The calculation is done in units of
should use a larger number of degrees of freedom. It follows ~ fm, and 1fm™ ~ 200MeV. The pion’s spatial size is

that the existence of &, which is a spin-0 charged particle, ~ Somewhatsmaller than that of the proton [16]. Thus, let
does not provide an experimental refutation of the thecakti us assume that the pion’s quark-antiquark pair are en-
results obtained above. closed inside a box whose size i2 2mand the pion’s

Some general aspects of this work are pointed out here. quark wave function vanishes on its boundary. For the
There are two kinds of objects in electrodynamics of Dirac ~ X-component, one finds that the smallest absolute value

particles: massive charged spif2particles and charge-free of the momentum is obtained from a function of the
photons. The dimension of a Dirac functionis{/2] and the form sin(rx/2.2). Hence, the absolute value of this
dimension of the electromagnetic 4-potentiallis). Now, component of the momentum #g2.2. Thus, for the
the spin of any interaction carrying particle must take de-in three spatial coordinates, one multiplies this number
gral value in order that the matrix element connectingahiti by V3 and another factor of 2 accounts for the quark-
and final states should not vanish. The dimension of an inter- ~ antiquark pair. It follows that the absolute value of the
action carrying particle must b& ] so that the Lagrangian momentum enclosed inside a pion is

density. interaction ter.m have Fhe dimensidrr). T.h.ese | p| ~ 1000MeV. (16)
properties must be valid for particles that carry any kinghef

teraction between Dirac-like particles. Hence, the piams a This value of the momentum is much greater than the
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pion’s mass. It means that the system is extremalytcome is consistent with the Higgs boson inherent contra-
relativistic and (16) is regarded as the quarks’ kinetilictions which are discussed elsewhere [10].

energy. Thus, the interaction consumes abgidtdd
the kinetic energyand the entire mass of the quark-
antiquark pair. In other word, the pion’s kinetic energ
is about 7 times greater than its final mass. Itis interest-
ing to compare these values to the corresponding quaﬁ'—
tities of the positronium, which is an electron-positron
system bound by the electromagnetic force. Here the
ratio of the kinetic energy to the final mass is about
7/1000000. On the basis of this evidence one concludes
that strong interactions must be much stronger than the

experimental mass of the pion.
4,

Relying on these arguments and on the theoretical con-
clusion stating that th&/* must be composite objects, it is 5.
concluded that th&/* particles contain one top quark. Thus,
the W+ is a superposition of three meson familiéd; tsand &
tb. Here the top quark mass is 1@V and the mass of the
W is 80GeV[16]. The diference indicates the amount swal- "
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We analyze the recent no go theorem by Pusey, Barrett and Rudolph (PBR) concerning
ontic and epistemic hidden variables. We define two fundamental requirements for the
validity of the result. We finally compare the models satisfying the theorem with the
historical hidden variable approach proposed by de Broglie and Bohm.

1 Introduction

Recently, a new no go theorem by M. Pusey, J. Barret and
T. Rudolph (PBR in the following) was published [1]. The
result concerns ontic versus epistemic interpretations of quan-
tum mechanics. Epistemic means here knowledge by oppo-
sition to “ontic” or ontological and is connected with the sta-
tistical interpretation defended by Einstein. This of course
stirred much debates and discussions to define the condition
of validity of this fundamental theorem. Here, we discuss two
fundamental requirements necessary for the demonstration of
the result and also discuss the impact of the result on possible
hidden variable models. In particular, we will stress the dif-
ference between the models satisfying the PBR theorem and
those who apparently contradict its generality.

2 The axioms of the PBR theorem

In order to identify the main assumptions and conclusions of
the PBR theorem we first briefly restate the original reason-
ing of ref. 1 in a slightly different language. In the simplest
version PBR considered two non orthogonal pure quantum
states [¥;) = |0) and [¥,) = [|0) + [1)]/ V2 belonging to a
2-dimensional Hilbert space E with basis vectors {|0), |1)}.
Using a specific (nonlocal) measurement M with basis |£;)
(i€[l,2,3,4]) in E ® E (see their equation 1 in [1]) they de-
duced that (&,|¥; ® ¥1) = (&Y @ ¥2) = (&GP0 F)) =
(&4|¥2 @ W) = 0. In a second step they introduced hypo-
thetical “Bell’s like” hidden variables A and wrote implicitly
the probability of occurrence Py (¢;; j, k) = K&IY; ® P2 in
the form:

Py (&is j. k) = f Pu(&ild, )0 j(Dor(A")dAd Y ey
where i € [1,2,3,4] and j, k € [1,2]. One of the fundamen-
tal axiom used by PBR (axiom 1) is an independence crite-
rion at the preparation which reads g;x(4, ") = 0;(D)ox(4").
In these equations we introduced the conditional “transition”
probabilities Py, (&1, A”) for the outcomes &; supposing the
hidden state A, A" associated with the two independent Q-bits
are given. The fundamental point here is that Py (&1, ") is
independent of ¥;,¥,. This a very natural looking-like ax-
iom (axiom 2) which was implicit in ref. 1 and was not fur-
ther discussed by the authors. We will see later what are the
consequence of its abandonment.

For now, from the definitions and axioms we obtain:
[ Pu(&1A, )01 (D)1 (A)dAdA’ = 0
[ Pu(&lA, )01 (D)ox(X)dAdA’ = 0
[ Pu(&lA, )21 (A)dAdA’ = 0
[ Pu(&ld, 1)02(D)or(X)dAdA’ = 0

The first line implies Py (£1]4, ") = 0 if o1 (D)o (") # 0.
This condition is always satisfied if 2 and A’ are in the support
of p; in the A-space and A’-space. Similarly, the fourth line
implies Py(é4l1, ") = 0 if g3(2)2(1") # 0 which is again
always satisfied if A and A’ are in the support of o, in the A-
space and A’-space. Finally, the second and third lines imply
Pu(&ld, ) = 0if 01()oa(') # 0 and Py(&l, ) = 0 if
01(Dox (1) # 0.

Taken separately these four conditions are not problem-
atic. But, in order to be true simultaneously and then to have

3)

for a same pair of 4,4" (with [i = 1,2,3,4]) the conditions
require that the supports of 0; and g, intersect. If this is the
case Eq. 3 will be true for any pair 1, A’ in the intersection.

However, this is impossible since from probability con-
servation we must have fz‘l‘ Py (&ila, A7) = 1 for every pair
A, A’. Therefore, we must necessarily have

(@)

Pyu(&lA,4) =0

0@ -0 =0 Vv “)

i.e. that o; and g, have nonintersecting supports in the A-
space. Indeed, it is then obvious to see that Eq. 2 is satisfied
if Eq. 4 is true. This constitutes the PBR theorem for the
particular case of independent prepared states ¥, ¥, defined
before. PBR generalized their results for more arbitrary states
using similar and astute procedures described in ref. 1.

If this theorem is true it would apparently make hidden
variables completely redundant since it would be always pos-
sible to define a bijection or relation of equivalence between
the A space and the Hilbert space: (loosely speaking we could
in principle make the correspondence 4 < ). Therefore it
would be as if A is nothing but a new name for ¥ itself. This
would justify the label “ontic” given to this kind of interpreta-
tion in opposition to “epistemic” interpretations ruled out by
the PBR result.
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However, the PBR conclusion stated like that is too strong
as it can be shown by carefully examining the assumptions
necessary for the derivation of the theorem. Indeed, using the
independence criterion and the well known Bayes-Laplace
formula for conditional probability we deduce that the most
general Bell’s hidden variable probability space should obey
the following rule

Py(&is jik) = f Py (&Y, Wi, 4, )0 j(Dok(A)dAdA” (5)

in which, in contrast to equation 1, the transition probabilities
Py(&lYj, Wk, A, ') now depend explicitly on the considered
quantum states \¥';, Wx. We point out that unlike A, ¥ is in this
more general approach not a stochastic variable. This differ-
ence is particularly clear in the ontological interpretation of
ref. 3 where ¥ plays the role of a dynamic guiding wave for
the stochastic motion of the particle. Clearly, relaxing this
PBR premise has a direct effect since we lose the ingredient
necessary for the demonstration of Eq. 4. (more precisely we
are no longer allowed to compare the product states [¥; ® P)
as it was done in ref. 1). Indeed, in order for Eq. 2 to be simul-
taneously true for the four states & (where Py (&Y, Wk, 4, ')
now replace Py (|4, A")) we must have

} . (6

Obviously, due to the explicit ¥ dependencies, Eq. 6 doesn’t
anymore enter in conflict with the conservation probability
rule and therefore doesn’t imply Eq. 4. In other words the
reasoning leading to PBR theorem doesn’t run if we abandon
the axiom stating that

PM(§1|\P1"1113/LA’) = O’ PM(§2|\P19‘1125/LA’) =0
PM(§3|\P2’ ‘{Ils/lv ﬁ’) = O’ PM(§4|\P29 ‘1125/17 ﬁ’) =0

PM(§i|\Pj’qus /l, /l/) = PM(é‘:l'/l, /l/) (7)

i.e. that the dynamic should be independent of ¥y, ¥,. This
analysis clearly shows that Eq. 7 is a fundamental prerequisite
(as important as the independence criterion at the preparation)
for the validity of the PBR theorem [4]. In our knowledge this
point was not yet discussed [5].

3 Discussion

Therefore, the PBR deduction presented in ref. 1 is actually
limited to a very specific class of W-epistemic interpretations.
It fits well with the XIX” like hidden variable models us-
ing Liouville and Boltzmann approaches (i.e. models where
the transition probabilities are independent of V') but it is not
in agreement with neo-classical interpretations, e.g. the one
proposed by de Broglie and Bohm [3], in which the transition
probabilities Py, (£]4, ) and the trajectories depend explicitly
and contextually on the quantum states ¥ (the de Broglie-
Bohm theory being deterministic these probabilities can only
reach values O or 1 for discrete observables £). As an illustra-
tion, in the de Broglie Bohm model for a single particle the

spatial position x plays the role of A. This model doesn’t re-
quire the condition 9;(2) - 02(1) = Kx|¥1))* - (x|¥)]> = O for
all A in clear contradiction with Eq. 4. We point out that our
reasoning doesn’t contradict the PBR theorem per se since the
central axiom associated with Eq. 7 is not true anymore for
the model considered. In other words, if we recognize the im-
portance of the second axiom discussed before (i.e. Eq. 7) the
PBR theorem becomes a general result which can be stated
like that:

i) If Eq. 7 applies then the deduction presented in ref. 1
shows that Eq. 4 results and therefore 4 < ¥ which means
that epistemic interpretation of ¥ are equivalent to ontic in-
terpretations. This means that a XIX"" like hidden variable
models is not really possible even if we accept Eq. 7 since we
don’t have any freedom on the hidden variable density p(1).

ii) However, if Eq. 7 doesn’t apply then the ontic state of
the wavefunction is already assumed - because it is a variable
used in the definition of Pj(£|4,¥). This shows that ontic
interpretation of W is necessary. This is exemplified in the
de Broglie-Bohm example: in this model, the "quantum po-
tential” is assumed to be a real physical field which depends
on the magnitude of the wavefunction, while the motion of
the Bohm particle depends on the wavefunction’s phase. This
means that the wavefunction has ontological status in such a
theory. This is consistent with the spirit of PBR’s paper, but
the authors didn’t discussed that fundamental point.

We also point out that in the de Broglie-Bohm ontological
approach the independence criterion at the preparation is re-
spected in the regime considered by PBR. As a consequence,
it is not needed to invoke retrocausality to save epistemic ap-
proaches.

It is important to stress how Eq. 4, which is a consequence
of Eq. 7, contradicts the spirit of most hidden variable ap-
proaches. Consider indeed, a wave packet which is split into
two well spatially localized waves ¥; and ¥, defined in two
isolated regions 1 and 2. Now, the experimentalist having ac-
cess to local measurements &; in region 1 can define probabil-
ities [¢&1[¥ ). In agreement with de Broglie and Bohm most
proponents of hidden variables would now say that the hid-
den variable A of the system actually present in box 1 should
not depends of the overall phase existing between ¥ and V5.
In particular the density of hidden variables oy(1) in region
1 should be the same for ¥ = ¥, + Y, and ¥ = ¥, - ¥,
since [{(&1|P)?> = [(&1|9)* for every local measurements &
in region 1. This is a weak form of separability which is ac-
cepted even within the so exotic de Broglie Bohm’s approach
but which is rejected for those models accepting Eq. 4.

This point can be stated differently. Considering the state
Y =¥ + ¥, previously discussed we can imagine a two-slits
like interference experiment in which the probability for de-
tecting outcomes Xy, ie., [{xo[¥)? vanish for some values xq
while [(xo|®)> do not. For those models satisfying Eq. 7 and
forgetting one instant PBR theorem we deduce that in the hy-
pothetical common support of gy, (1) and oy (1) we must have
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Py(&ld) = 0 since this transition probability should vanish
in the support of ¥. This allows us to present a “poor-man”
version of the PBR’s theorem: The support of gy, (1) can not
be completely included in the support of poy(A) since other-
wise Py (&yld) = 0 would implies [(xo|¥1)? = 0 in contradic-
tion with the definition. PBR’s theorem is stronger than that
since it shows that in the limit of validity of Eq. 7 the support
of oy, (1) and ow(4) are necessarily disjoints. Consequently,
for those particular models the hidden variables involved in
the observation of the observable & are not the same for the
two states ¥ and ;. This is fundamentally different from de
Broglie-Bohm approach where A (e.g. x(fy)) can be the same
for both states.

This can lead to an interesting form of quantum correla-
tion even with one single particle. Indeed, following the well
known scheme of the Wheeler Gedanken experiment one is
free at the last moment to either observe the interference pat-
tern (i.e. |(xo/¥)]*> = 0) or to block the path 2 and destroy
the interference (i.e. |(xo|¥1)]*> = 1/2). In the model used
by Bohm where ¥ acts as a guiding or pilot wave this is not
surprising: blocking the path 2 induces a subsequent change
in the propagation of the pilot wave which in turn affects the
particle trajectories. Therefore, the trajectories will not be the
same in these two experiments and there is no paradox. How-
ever, in the models considered by PBR there is no guiding
wave since ¥ serves only to label the non overlapping den-
sity functions of hidden variable oy, (1) and pw(1). Since the
beam block can be positioned after the particles leaved the
source the hidden variable are already predefined (i.e. they
are in the support of ow(1)). Therefore, the trajectories are
also predefined in those models and we apparently reach a
contradiction since we should have Py (&l1) = 0 while we
experimentally record particles with properties &,. The only
way to solve the paradox is to suppose that some mysterious
quantum influence is sent from the beam blocker to the parti-
cle in order to modify the path during the propagation and
correlate it with presence or absence of the beam blocker.
However, this will be just equivalent to the hypothesis of
the de Broglie-Bohm guiding wave and quantum potential
and contradicts apparently the spirit and the simplicity of ‘Y-
independent models satisfying Eq. 7.

4 An example

We point out that despite these apparent contradictions it is
easy to create an hidden variable model satisfying all the re-
quirements of PBR theorem. Let any state |¥) be defined
at time ¢ = 0 in the complete basis |k) of dimension N as
V) = ZkN Wilk) with W, = ¥ + i¥]. We introduce two
hidden variables A, and u as the N dimensional real vectors
A= [A, ..., Ayl and u = [ug, yo..., iy ]. We thus write the
probability Py (&,t, V) = KEU P of observing the out-

come £ at time ¢ as

N
| Pute o | o0 - ey - modda
k

= Py (&, (Y}, Wik = IZ:QSIUU)I/O‘I’;(I2 ®)
k

where U(r) is the Schrodinger evolution operator. Since ¥
can be arbitrary we thus generally have in this model

Pué, i k) = 1 Y (UK + i)
k

The explicit time variation is associated with the unitary
evolution U(¢) which thus automatically includes contextual
local or non local influences (coming from the beam blocker
for example). We remark that this model is of course very for-
mal and doesn’t provide a better understanding of the mech-
anism explaining the interaction processes. The hidden vari-
able model we proposed is actually based on a earlier version
shortly presented by Harrigan and Spekkens in ref. [2]. We
completed the model by fixing the evolution probabilities and
by considering the complex nature of wave function in the
Dirac distribution. Furthermore, this model doesn’t yet sat-
isfy the independence criterion if the quantum state is defined
as [P), = [¥)1 ® |¥), in the Hilbert tensor product space.
Indeed, the hidden variables A2, and pj» defined in Eq. 8
are global variables for the system 1,2. If we write

Ni,N,
W2 = > Wiowplnh @ 1p)2
n,p
Ni,N>
= Z Y1, Va2 pln) @ p)2

n,p

€))

the indices k previously used become a doublet of indices n, p
and the probability

Ni.N>
Pu(&,11¥%12) = | ) (EUDIn, phiaPram

np

in Eq. 8 reads now:

fPM(§:7 tl{/ll2;n,p, ,u12;n,p}n,p)

Ny N,

X 1_[ 1_[ (V12 = A12imp)

n p
17

X6(l}l12;n,p = H125n,p)d 12, pA 120, p

= Py ¥ Vi phe) (10)

which indeed doesn’t show any explicit separation of the hid-
den variables density of states for subsystems 1 and 2. How-
ever, in the case where Eq. 9 is valid we can alternatively
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introduce new hidden variable vectors Ay, A and u, (o such
that Py (&, t|¥12) reads now:

fPM(‘fa tl{/ll;m /lZ;p, Mi:ns ﬂZ;n}n,p)

Ny
x [ Jo¥1,, = A1)dC¥Y,, = pn)ddiadias.n

Ny

X 1_[ 5(‘{’/2;17 - /12;17)5(\1]/2/;;; = Ho;p)d Azndpin;)
p

W) (D)

Clearly here the density of probability 012(41, A2, i1, 42) can
be factorized as o1(41, u1) - 02(A2, 42) where

= Pu(E. (¥}, ¥25, .

N,
o1C, ) = [ [60¥],, = A6y, - pa)

N>
02, 2) = | [ 6C¥5,, = A2n)6C¥S, = ) (12)

Therefore, the independence criterion at the preparation (i.e.
axiom 1) is here fulfilled.

Additionally, since by definition Eq. 8 and 10 are equiva-
lent we have

P& (¥, W25, W7, W5, b p)

— ’ 1’
- PM(fa t|{l1112;n,pa \PIZ;n,p}nsP)'
Moreover, since ¥i., and ¥,,, can have any complex values

the following relation holds for any value of the hidden vari-
ables:

13)

Py(é, tl{/ll;m /12;1)’ ,Ul;mIJZ;n}n,p)

= PM(é‘:’ t|{/112;n,p’ﬂ12;n,p}n,p) (14)

with /112;,,,], + l',l.l]z;n,p = (/l];n + i,ul;n)(/lz;p + i/,lz;p). This clearly
define a bijection or relation of equivalence between the hid-
den variables [, u12] on the one side and [A1, u1, A2, u2] on
the second side. Therefore, we showed that it is always pos-
sible to define hidden variables satisfying the 2 PBR axioms:
1) statistical independence at the sources or preparation

0k(1,2") = (Do)

(if Eq. 9 is true) and ii) W-independence at the dynamic level,
i.e., satisfying Eq. 7. We point out that the example discussed
in this section proves that the PBR theorem is not only formal
since we explicitly proposed a hidden variable model satisfy-
ing the two requirements of PBR theorem. This model is very
important since it demonstrates that the de Broglie Bohm ap-
proach is not the only viable hidden variable theory. It is
interesting to observe that our model corresponds to the case
discussed in point i) of section 3 while Bohm’s approach cor-
responds to the point labeled ii) in the same section 3. Ad-
ditionally, the new model is fundamentally stochastic (since

the transition probabilities Pj;(£]1) have numerical values in
general different from 1 or 0) while Bohm’s approach is de-
terministic.

5 Conclusion

To conclude, we analyzed the PBR theorem and showed that
beside the important independence criterion already pointed
out in ref. 1 there is a second fundamental postulate associ-
ated with W-independence at the dynamic level (that is our
Eq. 7). We showed that by abandoning this prerequisite the
PBR conclusion collapses. We also analyzed the nature of
those models satisfying Eq. 7 and showed that despite their
classical motivations they also possess counter intuitive fea-
tures when compared for example to de Broglie Bohm model.
We finally constructed an explicit model satisfying the PBR
axioms. More studies would be be necessary to understand
the physical meaning of such hidden variable models.
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The motion of test and photons in the vicinity of a uniformly charged spherically sym-
metric mass distribution is studied using a newly developed relativistic dynamical ap-
proach. The derived expressions for the mechanical energy and acceleration vector of
test particles have correction terms of all orders of ¢2. The expression for the gravita-
tional spectral shift also has additional terms which are functions of the electric potential

on the sphere.

1 Introduction

In a recent article [1], the relativistic dynamical approach
to the study of classical mechanics in homogeneous spheri-
cal distributions of mass (Schwarzschild’s gravitational field)
was introduced. Here, the relativistic dynamical theory of a
combined gravitational and electric field within homogeneous
spherical distributions of mass is developed.

2 Motion of test particles

According to Maxwell’s theory of electromagnetism, the
electric potential energy for a particle of non-zero rest mass
in an electric field V, is given by

Ve=q®,, ey
where g is the electric charge of the particle and @, is the elec-
tric scalar potential. Also, from Newton’s dynamical theory,
it is postulated [2] that the instantaneous mechanical energy
for test particles in combined gravitational and electric fields
is defined by

(@)

where T is the total relativistic kinetic energy and V, is the
gravitational potential. From [1], T and V,, in Schwarzschild’s
gravitational field are given by

2\

(1 - —2) - 1] moc2
C

and the instantaneous relativistic gravitational potential en-

ergy (V,) for a particle of nonzero rest mass is

E=T+V,+V,,

T = 3

2\-1/2
u GMmy

Vy = mp®, = —(1 _c_2) > “)

where ®, = =CM s the gravitational scalar potential in a

spherically symmetric gravitational field, » > R, the radius
of the homogeneous sphere, G is the universal gravitational
constant, ¢ is the speed of light in vacuum, m,, is the passive
mass of the test particle, M is the mass of the static homoge-
neous spherical mass, my is the rest mass of the test particle

and u is the instantaneous velocity of the test particle. Also,
for a uniformly charged spherically symmetric mass the elec-
tric potential energy is given as

qQ

vV, =
¢ Adner’

®)

where Q is the total charge on the sphere and g is the charge
on the test particle. Thus, the instantaneous mechanical en-
ergy for the test particle can be written more explicitly as

2\-1/2
E = mocz[(l—GTM)(l—u—z) —1]+ 99
c’r c

Arepr
The expression for the instantaneous mechanical energy has
post Newton and post Einstein correction terms of all orders
of ¢™2. The relativistic dynamical equation of motion for par-
ticles of non-zero rest masses in combined electric and grav-
itational fields is given as [2]

(6)

45 _

e -m,V®, — gV,

)

where P is the instantaneous linear momentum of the test par-
ticles . Thus, in this field, the relativistic dynamical equation
of motion for test particles is given explicitly as

d 2\
Bl | 7l =
dr [( c2) M}

12 -2 _
- —(1 - —2) vo, - Lo, (8)
C my
or
_ 1 w?\! _
i+ gm(1-5) -
GM 2\
=7—nf(1—%) Vo, ©)
0

where a is the instantaneous acceleration vector of the test
particles and thus the time equation of motion is obtained as

1 w2\ d )
am+@(1 ——) g = 0. (10)

2
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The azimuthal equation of motion is where
L - L k=GM+£. (20)
isinf¢ +rcosfO¢ + rsinfd + drep

1 w2\ d 2

The polar equation of motion is given as

.1 A a
r9+m+—(1 ”—) L Py = 0

dr 12)

2c? c?

and the radial equation of motion is

1 2\ d
—[1-=] =Py, =
2C2( CZ) d‘r(u)u

", 012
¢ q(l—”—) Vo, (13)

a, +

As in [1], the equations have correction terms not found
in the general relativistic approach.It is also worth remarking
that the homogeneous charge distribution on the sphere and
the charge on the test particle affects only the radial compo-
nent of the motion and hence the other components are the
same as those of an uncharged sphere [1].

3 Motion of photons

From [1], it can be deduced that the instantaneous gravita-
tional potential energy of a photon is given as

hv GM
Vy=—— —.
9 2 r

(14)

The instantaneous electric potential energy of the photon is
given [2] as

hy —
v, = -2 Vo, (15)
c
or more explicitly in this field as
hv Q
Ve=—-— . 16
¢ c? 4neyr (16)

Also, the instantaneous kinetic energy of the photon [1] is
given as

T =hlv-vp). (17

Thus, the instantaneous mechanical energy of a photon in this
combined gravitational and electric field is obtained as

h
E= h(v—vo)—Tv(GM+ i) (18)
cr 4dre
Suppose at r = ry, E = E, then
kh
Ey = -2, (19)
Cc°ro

Thus, from the principle of conservation of mechanical en-
ergy

kh kh
—S = W =) - @D
c2ry cr
or .
k k\
vV = VO(I_Z_)(I_T) . (22)
c’ry c’r

Equation (22) is the expression for spectral shift in this field
with contributions from the gravitational and electric poten-
tials. It has corrections of all orders of ¢~2.

Also, for photons, the instantaneous linear momentum is
given [1] as

P=—u. (23)

W T

Hence, as in Newton’s dynamical theory, the equation of mo-
tion of photons in this field is obtained from equation (7) as

qc* <

— (Vi) = —v VD, — = V. (24)

dr
Thus the presence of an electric field introduces an additional
term to the expression for the equation of motion of photons.

4 Conclusion

This article provides a crucial link between gravitational and
electric fields. It also introduces, hither to unknown correc-
tions of all orders of ¢=2 to the expressions of instantaneous
mechanical energy, spectral shift and equations of motion for
test particles and photons in combined spherically symmetric
gravitational and electric field.
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The philosophical idea of a bipolar nature (the Chinese “Yin and Yang”) is combined
with the mathematical formalism of a fractal scaling model originally published by
M{ller in this journal. From this extension new rules for the calculation of proton and
electron resonances via continued fractions are derived. The set of the 117 most accu-
rately determined elementary particle masses (all with exror13%) was expressed
through this type of continued fractions. Only one outlier was found, in all other cases
the numerical errors were smaller than the standard deviation. Speaking in terms of
oscillation properties, the results suggest that the electron is an inverted or mirrored
oscillation state of the proton and vice versa. A complete description of elementary
particle masses by the model of oscillations in a chain system is only possible when
considering both, proton and electron resonances.

1 Introduction form of continued fractions. This underlying model was orig-

The mass distribution of elementary particles is still an uw_ally published by Miller [10-12], and its very basic idea
IS, to treat all protons as fundamental oscillators connected

solved myste_ry O.f physics. . Accord|_ng tho th? Standa{I%jroughthe physical vacuum. This leads to the idea of a chain
Model, mass is given by arbitrary variable couplings to thef!h
it]

s boson, and e couping s en adecuately aste LSO PO sl i an st o0
reproduce the experimentally observed mass. P 9 q P

. . trrough continued fractions. Particle masses are interpreted
However, the particle mass spectrum is not complete . ; .

. . S as proton resonance states and expressed in continued fraction
chaotic, and some groupings are clearly visible. Several

tempts have already been made to obtain equations to %gr_n. However, the results obtained in reference [9] were not
P y q completely satisfying since around 14% of the masses were

scribe regularities in the set of elementary particle massesc.)ut"ers’ i.e. could not be reproduced by this model.

danfgrr]tlglsttjgr%zri;eru“C:r{'lc]lgslctﬂgid t_r,:ﬁ Z?fsestf:n ;é_%ﬂ fun-"A more recent article [13] revealed that electron reso-
y parti ( Wi et nce states exist analogously which serves now as the basis

. ) . . a
seconds) with an inaccuracy of approximately 1% using tH)er further extensions of Mler's model. From this starting

equation me N point, the present article proposes a new version of the model
_particle _ — developed with the objective to reproduce all elementary par-
Melectron 20 ticle masses.

whereq is the fine structure constant {/137.036), and N is

an integer variable. 2 Data sources and computational details

Paasch [2] assigned each elementary particle mass a pgisisses of elementary particles (including the proton and
tion on a logarithmic spiral. As a result, particles then accglectron reference masses) were taken from the Particle Data
mulate on straight lines. Group website [14] and were expressed in GeV throughout

A study from India [3] revealed a tendency for succeghe whole article. An electronic version of these data is avail-
sive mass dferences between particles to be close to an uble for downloading. Quark masses were eliminated from
teger multiple or integer fraction of 29.315 MeV. The valughe list because it has not been possible to isolate quarks.
29.315 MeV is the mass flierence between a muon and a Some of the listed particle masses are extremely accurate
neutral pion. and others have a quite high measurement error. Figure 1

Even more recently Boris Tatiscfigpublished a series ofshows an overview of the particle masses and their standard
articles [4-8] dealing with fractal properties of elementadeviations (expressed in % of the particle mass). It can be
particle masses. He even predicted tentatively the massesmathly estimated that more or less 60% of the particles have
some still unobserved particles [5]. a standard deviation (SD) below 0.13%; this set of excellent

An other fractal scaling model was used in a previomeasurements consists of 117 particles and only this selection
article of the present author [9], and a set of 78 accuratelfyvery high quality data was used for the numerical analysis
measured elementary particle masses was expressed imattteextension of Nller's model.

20 A. Ries. A Bipolar Model of Oscillations in a Chain System for Elementary Particle Masses



October, 2012 PROGRESS IN PHYSICS Volume 4

107 . Table 1. Continued fraction representations of the lepton masses
. (x=-1.75083890054)
- Particle | Mass+ SD [GeV] Numerical
T 4 . Continued fraction representation(s) error [GeV]
8 electron | 510998910« 1074 + 1.3x 10711
s ] P[x; -6] 12, -6] 1.21x 10715
E 0.1 T R . . u 1.05658367 1071 + 4.0 10°°
o ] . e . P [x; 0] -6, -9, -e-1, 12, -6, -15] 2.45x 10710
o . o . : E[x 3|e+tl, e+1, -e-1, &1, 9, -48,
é ] T, e e et+l, -e-1] 3.06x 109
0014 ) oL L . - 177682+ 1.6 x 107
] ., R . : P[0;0|e+l,6,-e-1,el,-e1,-e1]| 452x10°
. . - P [x; 3| -e-1, -e-1, 231] 2.50x 1078
T T T T T T T T T T T T T T T
40 05 00 05 10 15 20 25 3.0 E[0;9]-e-1, 6, -e-1, -e-1, -6] 6.81x 10‘2
In(particle mass / proton mass) E[x/ 616, erl, -45] 192x10°

Fig. 1: Overview of particle masses on the logarithmic number line _ ) )
together with their standard deviations expressed in % of the ma&ple 2: Continued fraction representations of the boson masses
Note that a few particles with very low or high mass or percentafe= -1.75083890054)

error were omitted for clarity (e.g. electron, muon, proton, gauge ) )
b y (€9 ’ P » gaug Particle | Mass+ SD [GeV] Numerical
0SONS). Continued fraction representation(s) error [GeV]
wH 8.0399x 10! + 23 x 1072
For consistency with previous articles on this topic, the E[0;12]-81, e+l (24)] 323x10°
following abbreviations and conventions for the numerical | Z° 9.11876x 10' +2.1x 10°° ,
analysis hold: P[x; 6|9, -e-1, -15, -e-1,€1] 1.01x 1(T4
E [0; 12] 30, -6, (12)] 7.23x 10
Calculation method:
The considered particle mass is transformed into a continued
fraction according to the equations match the measured value almost exactly. In such cases this
Meoarr: Meonrr: denominator is then additionally given in brackets.
particle particle . i
INn——=p+5S, In——=p+S, The numerical error is always understood as the absolute
Melectron mproton

value of the diference between the measured particle mass
wherep is the phase shift and S is the continued fractiis ( @nd the mass calculated from the corresponding continued

Euler's number) fraction representation.
e In order to avoid machine based rounding errors, numer-
S=mp+ ———. (1) ical values of continued fractions were always calculated us-
m+——as— ing the the Lenz algorithm as indicated in reference [15].
Mt Outliers:
3 + ...

A particle mass is considered as an outlier (i.e. does not fit
The continued fraction representatips S is abbreviated into the here extended tfler model) when its mass, as cal-
as [p; no | Ny, N, ng, ... ], where the free linky is allowed to culated from the corresponding continued fraction represen-
be Q+3,+6,+9... and all partial denominatong can take tation provides a value outside the interval “particle mass
the values+1, —e-1, +6,+9, +12. ... In the tables these ab-standard deviation”.
breviations were marked with P or E, in order to indicate pro-
ton or electron resonance states. 3 Results and discussion
. For_practlcal reasons c_>n|y 18 partial denominators We%f:l Fundamental philosophical idea
etermined. Next, the particle mass was repeatedly calculatéd
from the continued fraction, every time considering one mo@hinese philosophy is dominated by the concept of “Yin and
partial denominator. As soon as the calculated mass va¥amg” describing an indivisible whole of two complementary
(on the linear scale) was in the interval “masstandard de- effects (male—female, day—night, good-bad, etc.). This means
viation”, no further denominators were considered and theat everything has two opposite poles, and both poles are
resulting fractions are displayed in the tables. In some rarecessary to understand the whole thing (e.g. male can only
cases, this procedure provides a mass value just a little bie-understood completely because female also exists as the
side the interval and considering the next denominator wowlpposite).

A. Ries. A Bipolar Model of Oscillations in a Chain System for Elementary Particle Masses 21
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Table 3: Continued fraction representations of the light unflavor&dble 4: Continued fraction representations of masses of the strange

mesons (x-1.75083890054) mesons (% -1.75083890054)
Particle Mass+ SD [GeV] Numerical Particle Mass+ SD [GeV] Numerical
Continued fraction representation(s) error [GeV] Continued fraction representation(s) error [GeV]
x* 1.3957018x 1071 +35x 1077 K* 4.93677x 101+ 1.6 x 10°°
P [x; 0]-18, 6, 6, (-117)] 7.67x 10710 P [0; 0| -e-1, -6, e-1, 45] 5.65x 1077
E[0;6]-6,-e-1, &1, -e-1, 48] 1.68x 1077 E [0; 6] e+1, -e-1, -e-1, 15, -e-1] 6.96x 1076
. 6
71.0 1.349766x 10—1 +6.0x 10—7 E [-X, 6 | -e-1,etl, e+l, 6, e+l, -6] 4.04x 10~
E [0; 6] -6, -6, -6, 6, -e-1] 2.49x% 1077 KO K, KO | 497614x 107 £24x 10
770 5.47853x% 10»1 +24% 10»5 E [-X; 6|-e-1,e+l, e+l, -e-1, -e-1, .
P[0:0]-6, et1, -e-1, 6, -e-1, 12] | 652x 1077 e+l erl] 4.73x10°
E[0;6]e+l, -e-1, &1, -6, -e-1, K*(892)* 8.9166x 1071 + 2.6 x 1074
erl, (24)] 251x 1077 P [0; 0| -54, e+1] 6.63x 107°
p(770P+ | 7.7549x 10 £ 34x 10°* E[x:6]-9,-6, 6] 613x10°
P [0; 0] -15, e+1, (-174)] 1.73x 1077 K*(892)° 8.9594% 101+ 22x 10
w(782f 7.8265x 1071 + 1.2 1074 P [0; 0] -60, er1, -e-1] 147x 107
P [0; 0| -15, (243)] 2.10% 1077 E[x6]-9,-e-1, -6] 548x 107
E[-x; 6]-6,-6, &1, -9, (135)] 451x 101 K2*(1430)" | 1.4256+15x 1073
' (958 9.5778x 1071 +6.0x 10°° P[0;0/6,6,-6] 7.56% 1cr:‘1
P [0’ Ol 132, (30)] 6.81 % 107 P [X, 3| -e-1, 6, 30] 1.08 x 104
E [-x; 6]-12, -e-1, -6, (-24)] 4.66x 1077 E[x 6115, -21] 140x 10°
¢(1020P 1.019455+ 2.0 x 1075 K2*(1430)0 14324+ 1.3x 1073 .
P [0; 033, -12, 1] 4.92x 1078 P[0; 0186, 6, 6] 3.72x 107
3 P [x; 3] -e-1, 6, 9, (-e-1)] 6.31x 1074
P [0;0]9, -21] 3.84x10*
P [x; 3] -e-1, er1, -6, (36)] 1.87x 107
E [-x; 6] 39, -e-1] 3.78x 104
f1(1285) 1.2818+ 6.0 x 1074
P[0:0]9, -9, -6] 246x% 1075 that the fundamental spectrum of proton resonances must
P[x; 3| -e-1, erl, -6, -e-1, e1] 9.88x Nj have an opposite, an anti-oscillation or inverted oscillation
E[x; 6136, -6] 1.20x 10 spectrum. What could it be?
-+ 4 . .
(13207 é‘%?gligsg_xllgl el el We know that these proton master-oscillations are stable,
ol el T 4 so the theorized counter-oscillations must belong to a particle
e-1, erl] 4.50x 10 - - c=d
P [x; 3] -e-1, er1, 186] 5.66x 1076 with similar lifetime than the proton. Consequently the elec-
E[x;6]27,-e-1, &1, -e-1] 298x 101 tron is the only particle that could be a manifestation of such
f1(14209 1.4264+9.0x 1074 an inverted oscillation.
. ~ ~ 6 . . .
E {2_’ g: fse’_(’i’ :’ 2( 43]9)] g'gji 1&5 Now the concept of an inverted oscillation must be trans-
E [_)'(. 6/15 ’_1’5] 3.29% 10-5 lated into a mathematical equation. According tdilMr's
(16900 | 16888+ 21x 103 standard model, we can express the electron mass as a proton
P [0; 0] e+1, er1, -e-1, (-51)] 195x 105 resonance and the proton mass as an electron resonance:
P [x; 3| -e-1, -6, -e-1, e1] 529x 1074
E[0;9]-e-1, e, 12] 8.78x 1074 n Melectron _ 0+
mproton ’

In physics we can find a number of analogous dualities, Moroton
for instance: positive and negative charges, north and south In———=p+S,
Melectron
magnetic poles, particles and antiparticles, emission and ab-
sorption of quanta, destructive and constructive interfererghere p is the phase shift (with value 0 or 1.5) and S the
of waves, nuclear fusion and fission, and in the widest ser®atinued fraction as discussed in previous papers (given in
also Newton'’s principle “actios reaction”. equation (1)). Obviously fop # 0, §, # Se, and this is the
From these observations an interesting question arisstarting point for the further modification of the model. We
does such a duality also exist in the model of oscillations irhave to adjust the phase shift (wherffelient from zero) in
chain system, and how must this model be extended to makeh a way that both continued fractions become opposite in
the “Yin-Yang” obvious and visible? the sense of oscillation information. This means that the de-
Applying this idea to Miller'’s model, it must be claimednominators of $and § must be the same, but with opposite
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sign. If

e charmed, and charmed strange mesonrs-x75083890054)
Sp =No + e ’ Particle Mass+ SD [GeV] Numerical
Ny + n e Continued fraction representation(s) error [GeV]
> +
N3+ ... D* 1.86957+ 1.6 x 1074
then must hold for § P[0; 0l e+1,12, 27] 292x10°°
E[0;9]-e-1,9, 39 5.45x 1070
e E[x; 6]6,-213] 1.95x 10°8
=—Ng+
Se 0 g+ € DO 1.86480+ 1.4 x 107
o+ P [0; 0| e+1, 12, -e-1, -6] 1.03x 1074
2" g+ .. E[0;9]-e-1,9,-12, el] 1.29% 10
_ o _ _ E[-x; 616, 129] 6.40x 1076
Mathematically it is now obvious that one equation must p«z007p | 200693+ 1.6 x 104
be modified by a minus sign and we have to write: P [0; 0| e+1, -18, -e-1, e1, -e-1] 859x 10°°
P [x; 3]|-6, 6, 15] 7.91x10°°
In Dotectron _ 1 5, @) E[0;9]-e-1,-78] 394x 108
Mproton E[-x;6|6,-e-1,6,e1, 6] 2.21x10°°
Moroton D*(2010)" | 201022+ 1.4x 10™*
In—/—"" = _p+S, ©) P [0; 0] e+1, -18, (-102)] 453% 107
Melectron P [x; 3]-6, 6, 6, (-21)] 5.72x 10°°
However, this is not yet a complete set of rules to find new E[0;9]-e-1,-63, (6)] 3.23x WZ
continued fraction representations of the proton and electrop; E[X 616, -e-1, 6;'12] 162x10°
in order to arrive at a conclusion, it is absolutely necessary toP1(2420f g?glg’li G-f x 1(1T 6. -c.1 6] 456 104
. . ;0le+l, -e-1, 6, -e-1, .56 %
develop further physical ideas. P 3]-9, -102] 3.68x 10-6
Idea 1 — Length of continued fractions E[0;9]-6, erl, -e-1,9, -e-1] 437x 1074
. . . . 4
The resulting continued fractions, 8nd S should be short. E[x 6letl, 27, el -e-1, el] 4.10x 107
A previous article already suggested that short fractions areD2*(24600 | 2.4626+7.0x 10 .
associated with stability [9]. However, the fractions must not E{gf gll egléj-l,lg]l, 18,-9] ggé: igs
ge tﬁo shortl. The fgndan;entr;l qsu?ator;n must behrepresented E [-x: 6 e+1, 348] 102x 105
y the simplest variant of a chain of oscillators. This is a sinf D2 (2460) | 24644+ 19x 103
gle mass hol_d via two mas_sless flexible strings between two P[0: 0| e+1, -e-1, &1, 24] 7 45% 10-5
motionless, fixed walls. This setup leads to 3 parameters de- P [x; 3]-9, -e-1, -e-1, (e1, 18)] 240x 1076
termining the eigenfrequency of the chain, the mass value and E[0;9]-6, e+1, -18] 114x% 10;‘
the two diferent lengths of the strings. Consequently the con- E[X 6]e+1, 663] 195x10°
tinued fraction also should have 3 free parameters (the freePs 1.96845+ 3.3x 10 ,
link and two denominators). This idea solves the conceptual E{S_’ g: _egléj“é('(:ls')]'ls)] géii i((;
problem of a “no information oscillation”. When express- E[0:9|-e-1, 42, 61, -e-1] 234% 104
ing the electron mass as a proton resonance, th p’;m = E[-x; 6|6, -e-1, -e-1, -6] 2.00x 1074
p + S, andp must not have values determiniSgas zero or | Dg+ 21123+ 50x 107
any other integer numbee8, +6, +9...). In such a case no P[x; 31-6,-12, -e-1] 4.00x lff:
continued fraction can be written down, and the oscillation E[0;9]-e-1,-9,6,-e-1, (-18, -45)]| 342x10°
d h E[-x; 6| e+1, e+l, -e-1, &1, -e-1,
would not have any property. e+l -e-1] 470% 10-4
Idea 2 - Small denominators _ N _ D*(2317)" | 2.3178+6.0x 1074
According to Miller's theory, a high positive or negative de- P [0; 0| e+1, -e-1, -27] 457x 10
nominator locates the data point in a fluctuating zone. Conse- E[0;9]-e-1,-e1 el -e1,-39] | 150x10°
quently the considered property should bfidilt to be kept | Dsi(2460) | 24595+ 6.0x 107 ]
constant. From all our observations, it is highly reasonable E{O?g: 85116-9-11,6;16)]12, (15)] é-%ﬁlax igs
. X, -9, -0, erl, (- . X
to believe that proton and electron masses are constant eyen E[0:9]-6. e+l, 12, er1, (12)] 4,66 10-6
over very long time s.cales. Therefore their masses cannot be E[x; 6] e+1, 189] 5.06% 10°5
IocaFed too deep inside a fluct'uatlon zone. In th|s stu.dy., theDsl(2536)+ 253528+ 20x 10-4
maximum value of the denominators was tentatively limited P[0; 0l e+l, -e-1, &1, -e-1, 1,
to +18. e+l, -6] 3.89x 10°°
. E[0;9]-6, 6, -36] 1.87x10°°
lﬁ?a 3 I_ Tlhe_ free link E[x 6|etl, -21, &1, -e-1, (-e-1)] | 1.88x 105
e calculation Melectron De*(2573)" | 25726+ 9.0x 107
In———~ -7.51 P [x; 3| -12, e+1, 15] 8.95x 105
proton E[0;9]-6,9, 6] 224% 1074
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Table 6: Continued fraction representations of masses of able 7: Continued fraction representations of masses otdhe
bottom mesons (including strange and charmed mesons) (mesons (x-1.75083890054)
-1.75083890054)

Particle Mass+ SD [GeV] Numerical
Particle Mass=+ SD [GeV] Numerical Continued fraction representation(s) | error [GeV]
Continued fraction representation(s) error [GeV] ne(1SP 20803+ 1.2 x 10-3
B* 527917+ 29x 1074 P [x; 3]-30, e+, -e-1] 6.56x 107°
P [x; 36, -9, 6, 6] 8.81x10°° E[0;9]-9, e+1, (-216)] 7.34% 1077
B0 5279504 3.0 x 10-4 E[-x; 6| e+1, -e-1, 18, -e-1,€1] 8.84x 104
P [x; 3|6, -9, 6, (33)] 456x% 1076 Jy(1SP | 3.096916+1.1x 1075
B0+ 53951+ 5.0 x 10-4 E[-x;6|e+l, -e-1, &1, 6, -e-1,e1, 6, .
P [x: 3|6, -6, -6, &1, er1] 1.09x 1074 e+l, (18)] 119x10°
B,*(57470+ | 5.743+5.0x 1073 Xeo(IPf | 341475+ 3.1x10°*
E[0:9]9, -e-1, -12] 295% 10-4 P [x; 3163, e+1, (57)] 6.99x 1078
5 ! ! : " . E[0; 9]-15, erl, -e-1, (-12)] 9.48x 1076
B 5.3663+ 6.0 x 10
° P [x; 36, -6, er1, e+, (9)] 493% 1078 Xxei(IPP | 351066+ 7.0x10°°
5 . L= ’3 : - no continued fraction found outlier
Bs* 54154+ 1.4x 10
) P [x: 3] 6, -e-1, -e-1, 12] 219%10°5 he(1PP | 352541+ 16x10°*
; il Rt i) " : - P [x; 3| 36, 6, (-24)] 1.94x 1076
B*(5840 5.8397+ 6.0 x 10 5
P [x; 3] e+1, e+l, -e-1, &1, -9, (-6)] | 4.08x 10°5 xe2(1Pf | 3556202 9.0x 10 .
P [x; 3]133,-9, e, -e-1, e-1] 752x 10"
B} 6.277+6.0x 1073 ] E [0; 9]-18, 21, -e-1] 5.36x 10°°
P [x; 3| e+1, 6, -153] 1.21x 10 3
E[0;9]6,6,-e-1, e1, (63)] 171x 106 ne(2SP | 363740x 10 6
E [0; 9|-21, (66)] 5.00% 10
w(2SY 3.68609+ 4.0 x 1075
E[0;9|-24, er1, e+l, e+l erl] 6.30x 1076
o ) ) (3770f | 377292+ 35x 1074
leads to a value between the principal nodes -6 and -9. Front’ E [0: 9]-30, e+1, (-12)] 590% 1075

this is follows that in the continued fractions, the free Imk PP | 39272 26x 107
Xc2 . + 2.

can only take the values6 and+9. P [x; 3| 15, -27] 147 % 10-4

E[0;9]-51,-9, er1] 1.10x 104

Idea 4 — Hfect of canceling denominators >
Elementary particles can be divided in two groups: the vast¥(4040f é@?igox 110 . 514 108
majority with an extremely short half-life, and a small set b 8112, &1, -e-1, (495)] X

ith ble | lifetime. Wh lyzing th E[0; 9] -108, -e-1] 5.66x 10°*
with comparapie longer liretime. en analyzing the mor /(41600 | 41530+ 30%10°3

;table particles with M!Ier’s standard modell, already a strik- P [x; 3] 12, -e-1, -e-1, (6)] 188x10°5
ing tendency can be discovered that especially the sum of the E [0; 9]915] 1.36x 10°°
free link and the first denominators tends to be zero. w(4415p | 4421+ 40% 1073

Examples: P [x; 3]9, 81] 482x 107
Thet can be interpreted as proton resonance and the full con- E[0;9142, -6] 364x 10

tinued fraction representation, as calculated by the computer

is: P [0; 0| e+1, 6, -e-1, e1, -e-1, -e-1, (6)]. Note that in the

end, every determination of a continued fraction results in an

infinite periodical alternating sequence of the denominatéhé sum equals zero.

e+l and -e-1, which is always omitted here. Without signifi- The full continued fraction for the? is:

cantly changing the mass value, the fraction can be rewrittéhf0; 0] -6, e+1, -e-1, 6, -e-1, 12, (-9, -12, -e-1+#, -e-1,

P [0; 0| e+1, 6, -e-1, e 1, -e-1, -e-1, (el, -6)], and then the -e-1, er1, -e-1, e-1, e+1)].

sum of all denominators equals zero. Again the first 4 denominators form a zero sum, then the 7
The full continued fraction for the charged pion is: denominator (-9) interrupts this canceling. Without signif-

E[0; 6] -6, -e-1, &1, -e-1, 48, (-e-1, 6, -24 4L, -e-1, 12)]. icant change of the numerical value, this fraction could be

It can be seen that the free link and the first 3 denominat§fortened and rewritten: P [0;|G6, e+1, -e-1, 6, -e-1, 12,

cancel successively. Then this changes. A minimal manigul2, e-1)].

lation leads to: When interpreting,® as electron resonance, again adding
E[O0; 6| -6, -e-1, &1, -e-1, 48, (-e-1, 6, -484€L, -6, e+1)].  the free link to the first 5 denominators gives zero:
The full continued fraction for the neutral pion is: E[0; 6| e+1, -e-1, &1, -6, -e-1, e-1, (24)]. We can add and

E[0; 6] -6, -6, -6, 6, -e-1, (12, -12,4, -e-1, -1, 45, 6)]. rewrite: E[0; 6/ e+1, -e-1, &1, -6, -e-1, &1, (24, -e-1, -24)].
Here we have only to eliminate the® ienominator (45) and A completely diferent case is the neutron; here the con-
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Table 8: Continued fraction representations of masses obithe Hypothesis:
mesons (x-1.75083890054)

Particle Mass+ SD [GeV] Numerical

Continued fraction representation(s) | error [GeV]
T(1Sy 9.46030+ 2.6 x 1074

P [0; 3| -e-1, -12, -87] 1.02x 1075

E[-x;9]-e-1, erl, -12, -63] 9.33%x 1078
xo(1PP 9.8594+ 5.0x 1074

E[0;9|e+l, -e-1,-e-1,e1,-9, -e-1] | 1.96x 10

E[-x;9]-e-1, erl, 6, -e-1, 6, e1] 3.40x% 104
xo1(1PYP 9.8928+ 4.0x 1074

E[0;9]|e+l, -e-1, -e-1, 6, (-75)] 452x 1078

E[-x;9]-e-1, erl, e+l, e+l, -12] 3.00x 10
xb2(1PY 9.9122+ 40x 1074

P [0; 3| -e-1, -6, &1, 15, -e-1] 8.26x 10°°

E[0; 9] e+l, -e-1, -e-1, 12, -6] 1.07x 1075

E[-x; 9]-e-1, er1, e+1, 6] 221x10°
T(2Sy 1.002326x 10! + 3.1 x 1074

P [0; 3| -e-1, -e-1, -e-1, €1, -75] 1.86x 1076

E[0; 9| e+1, -e-1, -6, &1, e+1,

e+l, (-18)] 1.28x 1076

E[-x;9]-e-1, erl, etl, -e-1, 6, -e-1,

e+l, -e-1, e] 2.49x% 104
xpo(2Pf 1.02325x 10! + 6.0 x 1074

P [0; 3| -e-1, -e-1, 327] 1.29% 1076

E [0; 9] e+1, -e-1, -30] 9.85x 107°

E[x;9]-e-1, 6, -e-1, -e-1, -e-1, -e-1]| 2.80x 104
xo1(2PY 1.02555x 10! + 5.0x 1074

P [0; 3| -e-1, -e-1, 30] 278x 1074

E[0; 9] e+1, -e-1, -54] 485x 1074

E[x;9]-e-1,6, -6, a1, -e-1, -6] 8.02x 107°
xo2(2PY 1.02686x 10! +5.0x 1074

P [0; 3| -e-1, -e-1, 21, -e-1, 9] 111x10°

E[0; 9| e+1, -e-1, -93] 2.07x10°

E[-x; 9] -e-1, 6, -6, 9, (-12)] 4.33x 107°
T(3Sf 1.03552x 10! + 5.0 x 1074

P [0; 3| -e-1, -e-1, 6, &1, 6] 394x10°°

E [-x; 9] -e-1, 6, -30, -e-1] 1.75x 1074
T(4Sy 1.05794x 10! + 1.2x 1072

P [0; 3|-e-1, -e-1, el, -e-1, &1,-15] | 9.28x 107>

E[0;9]|e+l, -e-1,6, a1, 21] 437x107°
(108609 | 1.0876x 10! + 1.1x 1072

E[0; 9] e+, -e-1, &1, 24] 8.32x 10°°
T(110209 | 1.1019x 10! +8.0x 1073

P [0; 3] -6, e+1, -e-1, 6, e-1] 3.60x 1073

E[0; 9] e+1, -e-1, &1, -6, (-18)] 3.89x10°°

tinued fraction is: P [0; Q 1974, -e-1, -e-1, (-24)]. As the

From all these examples we can theorize that for a perma-
nently stable particle such as the proton and electron, the sum
of the free link and all partial denominators must be zero.

3.2 Rules for constructing continued fractions

With these physical ideas, we can express the proton and elec-
tron through a very limited set of 10 pairs of continued frac-
tions (Table 12), which can all be written down. For every
continued fraction, the phase shift p can be calculated, so that
equations (2) and (3) hold. Then, new rules for the interpre-
tation of elementary particle masses can be derived. First, a
mass can be either a proton or an electron resonance, and sec-
ond, this newly found phase shift must now be considered.

When interpreting particle masses as proton resonance
states we write (x is the new phase shift):

In erthle

=(0 or X)+S 4
mproton ( ) ( )

and for electron resonances holds:

In mparticle

=0 or -x) +S. 5
Melectron ( ) ( )

The basic rule that the phase shift can be zero, is funda-
mental and will not be changed.

Now for every of these 10 fierent phase shifts, the new
model must be checked. We have to find out to what extent
other elementary particles are compatible to one of these 10
new versions of the model and still accumulate in spectral
nodes. There is a set of 18 particle masses, which cannot be
expressed as proton or electron resonances with phase shift
zero; these arei~, K°, B, BY, B*%*, BY, Bs*0, Bo*(5840)°,
Ju(1SY, xa(1PP, he(1PP, A(15200, =0, £(1385), =-, A%,

Tp* O+ andZy*~. The question is now: which of the 10 possi-
ble phase shifts can reproduce these 18 masses best, with the
lowest number of outliers?

By trial and error it was found that there is indeed such a
“best possibility”, providing only one outlier:

e
In Melectron " (—6) i . (6)
Mproton 12+ —
-6
m
In PO 6y —— @)
Melectron -12+ 6

The phase shift x equals -1.75083890054 and the numer-

first denominator is very high, the following denominatorisal errors are very small (see Tables 1 and 9).

can make only minor changes of the numerical value of the Tables 1 to 11 show the continued fraction representa-
fraction. So here it would be easily possible adding denotiens for the considered data set (117 particles, 1@émint
inators to force the sum to be zero. Actually many particieasses) All possible fractions are given for both, proton and
representations fall in that category, so from looking only atectron resonances with the phase shifts O-nd~or com-
these examples, the fundamental idea of a vanishing sunpleteness, Table 12 displays the 10 alternative continued frac-
denominators does not come out at all.

tion representations together with the calculated phase shifts
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and the number of outliers when trying to reproduce the afokgye 9: Continued fraction representations of masses of thie N,

mentioned set of 18 masses.

to 14% outliers, which have been found with the standard
sion of Muller's model [9]. Since the spectra of electron ar
proton resonances overlap, most particles can even expre

A, X, E andQ baryons (x=-1.75083890054)
A single outlier is a very satisfying result when comparing

ell’s .
article
d

Mass+ SD [GeV]
Continued fraction representation(s

Numerical
) error [GeV]

s§ed

9.38272013x 1071 + 2.3x 10°8

as both, proton and electron resonances. This demonstrates E [x; 6]-12, 6] 222x 10712
th_at it ma_kes only_sense to a_nalyze high accuracy data, othep- 0.39565346¢ 101 + 23 x 10°8
wise easily a continued fraction representation can be found. P [0; 0] 1974, -e-1, -e-1, (-24)] 7.85x 10711
As expected, the principle of “Yin and Yang” has not beem1232y-0+++ | 1.2320+ 1.0x 103
found anymore in this set of particles. There are no other P[0;0]9, etl, -e-1, 1] 429% 107
pairs of particles with opposite oscillation information. [t PD:3l-e-l el -e-1,6,el,-e-l] | 712x107
seems to be that this fundamental concept is only applicable E[x6175] 861x10°
9 1.115683+ 6.0x 106
to longterm stable systems or processes. Further research’dn B [0, 0|15, 1. 15, -6] 9.92x 108
other data sets should confirm this. ’ —— .
A(14059 1.4051+ 1.3x 1073
. . . 5
3.3 Model discussion P[0;016, erl] 2501077
P [x; 3| -e-1, 6, -e-1, -e-1] 6.44x 10~
Is thg principle _of “Yin and Yang“ really necessary to obtain , 15209 15195+ 1.0 x 10-3
continued fraction representations for most elementary par- P [x; 3| -e-1, 15, e1] 571x 107
ticle masses? The critical reader could argue that alone|the E[x6]12,-e-1,el, -e-1] 436x10*
additional consideration of electron resonances greatly gm* 118937+ 7.0x 10°°
hances the chances to express particle masses via standard P[0:0/12, -6, 1, -e-1, 6] 570x10°°
continued fractions (with phase shift 0 an@8 This is true, | =° 1192642+ 2.4x 107 :
however, the author has found that the 14% outliers were very E [x; 6] 606] 124x10°
little reduced when considering such additional electron res— 1197449+ 30x 10°°
onances. So another phase shift is definitively required. Pe[g ?gl);)?’ 1,6, -e-1,€l, 5 89 109
~ Butare the electro_n resonances really necessary? Would E [x: 6321, -e-1] 122 10-5
it not be possible to write only 5(1385) 13828+ 4.0 x 104
Mparticle E [-x; 6|18, -15 (-e-1)] 8.96x 107°
In Mproton (0 orp)+S ®) ["s(3ssp 13837+ 1.0x 1073
P[0;0/6, e+l, -e-1, &1, -e-1] 6.88x 107
where p is just any other phase shiffftdrent from the stan- E[x; 6118, -12, (e-1, 60)] 295%10°8
dard value B (between 0 and-3)? This was exactly the| £(1385y 1.3872+ 5.0 x 1074
3, 4 H . 3, . -e- 4
author’s first attempt to modify kler’'s model. It was found P [0'_06| Gvse‘rlé e-l el e+l] 3-22X 1g4
that such phase shift does not exist. E[x 6118 -6, el] 1661
70 1.31486+ 2.0x 107
For that reason the problem can only be solved through 4
hvsical hil hical id = d phvsical P[0;0/9, -e-1, &1, -6] 1.42x 10
a new physical or philosophical idea. Every good physiga P [x. 3| -6-1, &1, -03] 286x 10-5
theory consists of two parts, equivalent to a soul and a body. E[-x; 6127, -9, e1] 153x% 104
The _soul represents a fundamental physi_cal _Iaw or a phjlgs- 132171+ 7.0x 10°5
sophical principle, while always mathematics is the body. P [x; 3| -e-1, er1, 45, e-1] 5.35x 10°°
From this viewpoint the aL_Jthgr is particularly satisfied=(1530p 153180+ 3.2 x 104
having found the “Yin-Yang” principle as an adequate exten- P [0; 0] 6, -6, (165)] 1.35x 1076
sion of the proton resonance concept. It clearly justifies the E[0;9]-e1,erl,-e-1, el -el, ;
importance of electron resonances and distinguishes ithe el el " 5.19x10°
model from numerology. £(1530y 1.5350+ 6.0 x 107 :
Regarding the selection of the appropriate phase shift, a P10:016, 6.9, (12)] 109> 107
garding pprop! p ik P [x; 3| -e-1, 21, 6] 1.01x 107
very critical reader could note that there is only one outlier E[0;9]-e-1, erl, -e-1, &1,
difference between -6, (-54)] 1.18x 10°°
Melectron ) ) Q- 1.67245+2.9x 1074
In———=1[x1;-91 -9,18] (2 outliers) P[0; 0] e+l, e+l, -e-1, &1, -e-1,
proton -e-1] 1.09x 1074
and the best variant PIx;3|-e-1,9, &1, -9] 150x 10°*
E [0; 9] -e-1, er1, 48] 1.23x 104
In Telectron _ 1o - _6112-6], (1 outlier)

Mproton
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Table 10: Continued fraction representations of masses of fable 11: Continued fraction representations of masses of the bot-

charmed baryons (¢-1.75083890054)

Particle Mass+ SD [GeV] Numerical

Continued fraction representation(s) | error [GeV]
AL 228646+ 1.4x 1074

E[x;6|e+l, 6,9, -e-1, (-e-1)] 8.64x 1078
Ac(2595) | 25954+ 6.0x 1074

P[x;3]-12, 9, er1] 5.64x 1074

E [0; 9] -6, 15, (66)] 1.23x 10

E[-x; 6| e+, -12, &1, -9] 1.13x 104
2o(2455)* | 2.45403+1.8x 1074

P [x; 3|-9, -6, -39] 851x 1077

E[0;9]-6, e+1,-9, e+, -e-1] 2.02x10°°

E [-x; 6] e+1, 105] 7.84x 107
(2455 24529+ 4.0x 1074

P [0; 0| e+1, -e-1, &1, 6, e+1, -e-1,

e+l] 2.84x 104

P [x; 31-9, -6, -9] 1.07x 104

E [-x; 6| e+1, 96] 1.02x 104
%.(24559 245376+ 1.8x 1074

P [x; 3] -9, -6, -24] 3.06x 107°

E[0;9]-6, erl, -9, erl, -e-1, 1] 1.48x 1074

E [-x; 6| e+, 102, (e-1)] 8.05x 107°
2:(2520)* | 25184+ 6.0x 1074

P[0; 0l e+1, -e-1, e, -e-1, -18] 144x 104

E[0;9]-6, 6, -e-1, &1, (18)] 1.05x 10°°

E [-x; 6| e+l, -27, &1, (6)] 1.68x 1075
2(2520) 25175+ 23x 1073

P[0;0|e+l,-e-1,e1,-e-1,-15,e1] | 1.01x10*

E[0; 9] -6, 6, -e-1, 1, (-6)] 7.02x 107

E[-x; 6]e+l, -27] 420x 1074
2:(2520§ 25180+ 5.0 x 1074

P[0;0|e+l, -e-1, &1, -e-1, -15] 2.46x 104

E[0; 9] -6, 6, -e-1, e1, (-21)] 8.75x 1076

E [-x; 6| e+l, -27, 6] 2.10x 107
=E 24678+ 4.0x 1074

P [0; 0| e+1, -e-1, e-1, 60] 5.29x% 1075

P [x; 3]-9, -e-1, -e-1, e1, e+1] 2.82x 104

E[0; 9]-6, e+1, -33] 8.89x 1076

E [-x; 6] e+1, -933] 1.45x 1076
=9 247088+ 3.4 x 1074

P [0; 0| e+1, -e-1, e-1, -162] 2.87x 1077

P [x; 3]-9, -e-1, -9, (-9)] 1.73x10°°

E [0; 9] -6, e+1, -141] 6.33x10°°

E [-x; 6] e+1, -294] 591x 107
crAl 25756+ 3.1x 1073

P [x; 3|-12, er1, 6] 433%x 10

E[0;9]-6,9, e1] 1.02x 1073

E [-x; 6| e+, -12, -e-1, 1] 1.40x 1073
=0 25779+ 2.9x 1073

P [x; 3|-12, e+1, e+1] 5.26x 1074

E[-x; 6| e+l, -12, -e-1] 8.16x 1074
Zc(2645P* | 26459+ 5.0x% 1074

P [x; 3]-12, -e-1, 9] 7.47x 1078

E [0; 9] -6, -39, (-330)] 1.13x10°8

E[-x; 6| e+l, -9, e+, 6] 250x 1074
Q9 2.6952+ 1.7 x 1073

P [x; 3]-15, e+1, -e-1, e-1] 6.84x 10°*

E [0;9]-6, -9, e+1, (-12)] 315x10°°

E [-x; 6| e+l, -6, er1] 9.61x 1074
Qc(27709 | 2.7659+2.0x 1073

E [0; 9] -6, -e-1, (93)] 9.99% 1076

E[-x; 6] e+, -6, erl, e+1] 3.47x10*

tom baryons (x-1.75083890054)

Particle Mass+ SD [GeV] Numerical

Continued fraction representation(s) error [GeV]
AD 56202+ 1.6x 1073

P[x; 3|6, e+l, -e-1, &1, 9] 1.25x 1074

E[0;9]9,-27] 3.49x 104
o 5.8078+27x 1073

E[0;9]9,-e-1, &1, -e-1, (-27)] 247x10°8
o 5.8152+ 2.0 x 1073

E[0;9]9, -e-1, &1, -e-1, &1,

(-e-1, 24)] 430x10°°
o+, Zp*0 | 5.8290+ 3.4 x 1073

P[x; 3| e+1, e+l, -e-1, e1] 8.39x 104
Tp*~ 5.8364+ 2.8 x 1072

P[x; 3| e+l, e+l, -e-1, &1, -6] 7.39% 10°°
g,° 5.7905+ 2.7 x 1073

E[0;9]9,-e-1,e1,9] 220x 104

Table 12: List of the 10 possible continued fraction representations
of the electron mass when considering the rules that denominators
must be small and their sum including the free link equals zero, to-

gether with their associate phase shifts and the number of outliers
when considering the following set of 18 particlgs;, K°, B*, B°,

B*0+, BY, Bs*®, Bo*(5840), Jy(1SY, xa (1P, ho(1PP, A(1520%,

30, £(1385), 27, A, Zp*O* andZy*~

Continued fraction representation phase shift number of
for In Telestion — y 4. 5 X outliers
proton

P [x; -9] 15, -6] 1.29770965366 | 3

P [x;-9] -6, 15] 1.95172884111| 5

P [x; -9] 18, -9] 1.33097940724 | 4

P [x;-9]-9, 18] 1.79175802145 | 2
u, X0

P [x; -6 -6, 12] -1.04460536299| 6

P[x; -6] 12, -6] -1.75083890054| 1
Xcl(lP)O

P [x; -6]-9, 15] -1.20718990898| 6

P [x; -6] 15, -9] -1.70037040878| 6

P [x;-6]18, -12] -1.66836807753| 3

P [x; -6]-12, 18] -1.2860171871 | 4

so one single outlier might not be figiently significant to
make a clear decision. Here it is now worth looking at the
outlier particles. In the first case, the two outliers are the
muon and th&®. The muon has a comparatively long mean
lifetime of 2.2us. So it is fare more stable than the average
elementary particle. Therefore it is reasonable to request that
the muon mass is reproduced by the model, i.e. the muon
must not be an outlier.

4 Conclusions

The here presented bipolar version ofuldr's continued
fraction model is so far the best description of elementary
particle masses. It demonstrates two facts: first, electron and

A. Ries. A Bipolar Model of Oscillations in a Chain System for Elementary Particle Masses 27



Volume 4 PROGRESS IN PHYSICS October, 2012

proton can be interpreted as a manifestation of the “Yin and
Yang” principle in nature. They both can be interpreted as
fundamental reference points in the model of a chain of har-
monic oscillations. Second, the proton resonance idea alone
is an incomplete concept and we have to recognize that elec-
tron resonances also play an important role in the universe.

These results can be obtained only when strictly consider-
ing the individual measurement errors of the particles and alll
similar future analyses should be based on the most accurate
data available.

Until now, this bipolar version of Nller's model has re-
produced only one data set. It is obvious that this alone can-
not be considered as a full proof of correctness of this model
variant and much more data should be analyzed.
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Galaxy S-Stars Exhibit Orbital Angular Momentum Quantization per Unit Mass

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646 USA. E-mail: frank11hb@yahoo.com
The innermost stars of our Galaxy, called S-stars, are in Keplerian orbits. Quantum
celestial mechanics (QCM) predicts orbital angular momentum quantizagioanit
massfor each of them. | determine the quantization integers for the 27 well-measured

S-stars and the total angular momentum of this nearly isolated QCM system within the
Galactic bulge.

1 Introduction 8F = ooeme /
The innermost stars of our Galaxy, called S-stars, are in Kep- 6 y =|02084+0 g ]
lerian orbits about a proposed [1] black hole of mass#033 .
million solar masses. Their orbital planes appear to have ran- ™= 4 I
dom orientations, their orbital eccentricities range from 0.131

to 0.963 with no apparent pattern, and their origins of forma-

tion remain an issue. The star labelled SO-2 has the smallest 0 3
semi-major axis of about 1020 AU and has been monitored 0 10 20 30 40 m
for one complete revolution of its orbit, thereby allowing a

determination of the position of the Galactic center Sgr A* at Fig. 1: QCM fit of S-stars at the Galactic Center.

a distance of 8.3% 0.36 kpc.
In this brief report | use the orbital distances of the 27
well-measured S-stars revolving about the Galactic Center_as . o
a test of the orbital angular momentum quantizapen unit 2" S-star Orbital Quantization

masspredicted by the quantum celestial mechanics (QCMhe pertinent orbital parameters [5] for the 27 S-stars are
introduced by H.G. Preston and F. Potter in 2003 [2, 3]. Fdted in Table 1. Note that some uncertainties in both the
the derivation of QCM from the general relativistic Hamiltonsemj-major axis column and in the eccentricity column are
Jacobi equation, see the published articles online [2,4].  quite a large percentage of the mean values. These uncertain-
In a Schwarzschild metric approximation, their proposeiés will become smaller as more of these stars complete their
gravitational wave equation (GWE) reduces to a 8dirger- orbits in the decades to come. More than an additional 100
like equation in ther-coordinate while the angular coordiS-stars are being studied in order to determine their orbital
nates ¢, ¢) dictate the angular momentum quantization pgarameters. S0-16, whose orbital parameters are still being
unit mass. In particular, a body of mas®rbiting a central determined, has come the closest [1] to the Galactic Center

massM has an orbital angular momentunthat obeys Sgr A* at 45 AU (6.75x 10" m) with a tangential velocity
L of 1.2x 10’ mysec!
— =mcH (1) | assume that each S-star is in a QCM equilibrium orbit
u

in order to use the Newtonian values for the plotbf L/uc
, T . versusm in Figure 1. The linear regression measure=R
wheremis the quantization integer awds the speed of light 0.8986 indicates an excellent fit. | did not take the proposed

We assume that over millions of years the orbit has readhefack hole mass foM but used one solar mass instead as a
a QCM equilibrium distance that agrees in angular momen-

o . ference. The slopE = 6.59 x 10’ meters for one solar
tum value with its Newtonian value = u VGMr. re . 1
H is the Preston gravitational distance, &afient con- oo which becometdgy; = 1.30x 107 meters (0.87 AU)

o for the proposed central black hole mass. For comparison, the
stant for each separate gravitationally bound system, equalt brop P

: : . . 0
the system'’s total angular momenturn divided by its total c%warzschll_d radius for this BH is 1.2710°° meters. )
massMr Stars having the same QCM values farsuch as the six

stars withm= 11, have orbits in dferent planes. l.e., their or-
(2) bital angular momentum vectors point irfférent directions.

There might be orbital resonances among stars witlerdint
Note thatH is not a universal constant, unlike and that m values even though their orbital planes have quitéedi
QCM is not quantum gravity. Also recall that the GWE in thent orientations. With much more S-star orbital data to be
free particle limit becomes the standard Salinger equation determined, future fits to the QCM angular momentum quan-
of quantum mechanics. tization constraint should be very interesting.

B MTC'
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S-star| m al’l € tance. The Preston gravitational distance for the Galdyy,
S0-2 | 7 | 0.123+0.001| 0.880+ 0.003 = 1.2 x 10'” meters, may be the partition distance between
S0-38| 7 | 0.139+ 0.041 | 0.802+ 0.041 this nearly isolated inner system and the rest of the Galaxy.
S0-211 9 | 0.213+ 0.041| 0.784+ 0.028 Therefore, this S-star system behaves as a nearly isolated
S0-5 | 10 | 0.250+ 0.042 | 0.842+ 0.017 system obeying QCM in the larger system called the Galaxy
S0-14| 10 | 0.256+ 0.010| 0.963+ 0.006 (or perhaps the Galaxy Bulge). Such QCM smaller systems
S0-18| 10 | 0.265+ 0.080 | 0.759+ 0.052 within larger QCM systems already exist in the Solar Sys-
S0-9 | 11| 0.293+ 0.050 | 0.825+ 0.020 tem, e.g., the satellite systems of the planets [2], including
S0-13! 11 | 0.297+ 0.012 | 0.490+ 0.023 the Jovian systems and the moons of Pluto [6]. Our Solar
S0-4 | 11| 0.298+ 0.019 | 0.406+ 0.022 System [6] is a QCM system out on one spiral arm of the
S0-31| 11 | 0.298+ 0.044 | 0.934+ 0.007 Galaxy, which is itself a QCM system requiring atdrent
S0-12| 11 | 0.308+ 0.008 | 0.900+ 0.003 metric [4]. This hierarchy of QCM systems even applies to
S0-17| 11 | 0.311+ 0.004 | 0.364+ 0.015 clusters of galaxies [7] and the Universe [8].
S0-29| 13| 0.397+ 0.335| 0.916+ 0.048 .
S0-33| 13 | 0.410+ 0.088 | 0.731+ 0.039 4 Final Comments
S0-8 | 13| 0.411+ 0.004 | 0.824+ 0.014 QCM predicts the orbital angular momentum quantization ex-
S0-6 | 14 | 0.436+ 0.153| 0.886+ 0.026 hibited by the 27 S-stars nearest the Galactic Center. The
S0-27| 14 | 0.454+ 0.078| 0.952+ 0.006 result does not disagree with the proposed black hole mass
S0-1 | 15 | 0.508+ 0.028 | 0.496+ 0.028 of about 4.3 million solar masses there. The consequence is
S0-19| 18 | 0.798+ 0.064 | 0.844+ 0.062 that the S-stars seem to be in their own nearly isolated QCM
S0-24| 21 | 1.060+ 0.178 | 0.933+ 0.010 gravitationally bound system within the larger system of the
S0-71| 21 | 1.061+0.765| 0.844+ 0.075 Galaxy and the Galaxy bulge.
S0-67| 21 | 1.095+ 0.102 | 0.368+ 0.041
S0-66| 23 | 1.210+ 0.126 | 0.178= 0.039 Acknowledgements
S0-87| 23 | 1.260+ 0.001 | 0.880+ 0.003 Generous support from Sciencegems.com is deeply appreci-
S0-96| 25| 1.545+ 0.209 | 0.131+ 0.054 ated.
S0-97| 30 | 2.186+ 0.844 | 0.302+ 0.308
S0-83| 34 | 2.785+ 0.234| 0.657+ 0.096 Submitted on September 04, 2012ccepted on September 07, 2012

Table 1: Galaxy Center S-star orbital parameters.
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Does the Equivalence between Gravitational Mass and Energy Survive
for a Quantum Body?
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We consider the simplest quantum composite body, a hydrogen atom, in the presence of
a weak external gravitational field. We show that passive gravitational mass operator of
the atom in the post-Newtonian approximation of general relativity does not commute
with its energy operator, taken in the absence of the field. Nevertheless, the equivalence
between the expectations values of passive gravitational mass and energy is shown to
survive at a macroscopic level for stationary quantum states. Breakdown of the equiva-
lence between passive gravitational mass and energy at a microscopic level for station-
ary quantum states can be experimentally detected by studying unusual electromagnetic
radiation, emitted by the atoms, supported and moved in the Earth gravitational field
with constant velocity, using spacecraft or satellite.

1 Introduction

Formulation of a successful quantum gravitation theory is
considered to be one of the most important problems in mod-
ern physics and the major step towards the so-called “Theory
of Everything”. On the other hand, fundamentals of general
relativity and quantum mechanics are so different that there is
a possibility that it will not be possible to unite these two the-
ories in a feasible future. In this difficult situation, it seems to
be important to suggest a combination of quantum mechan-
ics and some non-trivial approximation of general relativity.
In particular, this is important in the case where such theory
can be experimentally tested. To the best of our knowledge,
so far only quantum variant of the trivial Newtonian approxi-
mation of general relativity has been tested experimentally in
the famous COW [1] and ILL [2] experiments. As to such im-
portant and nontrivial quantum effects in general relativity as
the Hawking radiation [3] and the Unruh effect [4], they are
still very far from their direct and unequivocal experimental
confirmations.

The notion of gravitational mass of a composite body is
known to be non-trivial in general relativity and related to the
following paradoxes. If we consider a free photon with en-
ergy E and apply to it the so-called Tolman formula for grav-
itational mass [5], we will obtain m? = 2E/c? (i.e., two times
bigger value than the expected one) [6]. If a photon is con-
fined in a box with mirrors, then we have a composite body
at rest. In this case, as shown in Ref. [6], we have to take into
account a negative contribution to m? from stress in the box
walls to restore the Einstein equation, mY = E /c*. Tt is im-
portant that the later equation is restored only after averaging
over time. A role of the classical virial theorem in establish-
ing of the equivalence between averaged over time gravita-
tional mass and energy is discussed in detail in Refs. [7, 8] for
different types of classical composite bodies. In particular, for
electrostatically bound two bodies with bare masses m; and

my, it is shown that gravitational field is coupled to a combi-
nation 3K +2U, where K is kinetic energy, U is the Coulomb
potential energy. Since the classical virial theorem states that
the following time average is equal to zero, <2K +U >t: 0,
then we conclude that averaged over time gravitational mass
is proportional to the total amount of energy [7, 8]:

m?y = my +my + (3K +2U) /? = E/c. (1)
(m”), { ),

2 Goal

The main goal of our paper is to study a quantum problem
about passive gravitational mass of a composite body. As the
simplest example, we consider a hydrogen atom in the Earth
gravitational field, where we take into account only kinetic
and Coulomb potential energies of an electron in a curved
spacetime. We claim three main results in the paper (see also
Refs. [9, 10]). Our first result is that the equivalence between
passive gravitational mass and energy in the absence of grav-
itational field survives at a macroscopic level in a quantum
case. More strictly speaking, we show that the expectation
value of the mass is equal to E/c? for stationary quantum
states due to the quantum virial theorem. Our second result
is a breakdown of the equivalence between passive gravita-
tional mass and energy at a microscopic level for stationary
quantum states due to the fact that the mass operator does not
commute with energy operator, taken in the absence of grav-
itational field. As a result, there exist a non-zero probability
that a measurement of passive gravitational mass gives value,
which is different from E/c?, given by the Einstein equation.
Our third result is a suggestion of a realistic experiment to de-
tect this inequivalence by measurements of electromagnetic
radiation, emitted by a macroscopic ensemble of hydrogen
atoms, supported and moved in the Earth gravitational field,
using spacecraft or satellite.
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3 Gravitational Mass in Classical Physics

Below, we derive the Lagrangian and Hamiltonian of a hy-
drogen atom in the Earth gravitational field, taking into ac-
count couplings of kinetic and potential Coulomb energies of
an electron with a weak centrosymmetric gravitational field.
Note that we keep only terms of the order of 1/c¢* and dis-
regard magnetic force, radiation of both electromagnetic and
gravitational waves as well as all tidal and spin dependent ef-
fects. Let us write the interval in the Earth centrosymmetric
gravitational field, using the so-called weak field approxima-
tion [11]:

ds® = _(1+2%)(cdz)2 + (1—2%)(de +dy’ +d2),
C C
@
__oM
¢=-7

where G is the gravitational constant, c is the velocity of light,
M is the Earth mass, R is a distance between a center of the
Earth and a center of mass of a hydrogen atom (i.e., proton).
We pay attention that to calculate the Lagrangian (and later
— the Hamiltonian) in a linear with respect to a small pa-
rameter ¢(R)/c? approximation, we do not need to keep the
terms of the order of [¢(R)/c?])? in metric (2), in contrast to
the perihelion orbit procession calculations [11] .
Then, in the local proper spacetime coordinates,

X = (1 - C%)x, y = (1 - C%)y,
7= (1 - C%)z Y= (1 + %)t

the classical Lagrangian and action of an electron in a hydro-
gen atom have the following standard forms:

3

1 2
L= -mec 4 om (v + = S = fL'dt’, )
r

where m, is the bare electron mass, e and v’ are the elec-
tron charge and velocity, respectively; 7’ is a distance between
electron and proton. It is possible to show that the Lagrangian
(4) can be rewritten in coordinates (x, y, Z, ) as

(&)

1 e? v? e\ ¢
— 2 2
L=-m,c" + Emev + 7 — Mo — (3]716? - 27);
Let us calculate the Hamiltonian, corresponding to the La-
grangian (5), by means of a standard procedure, H(p,r) =
pv — L(v,r), where p = dL(v,r)/dv. As a result, we obtain:

2 2 2 2
p e p e\ ¢
S vmep (32— —22 )2,
2m, r med (2me r)c2

H:mec2+

(6)

where canonical momentum in a gravitational field is p =
mev(1 — 3¢/c?). [Note that, in the paper, we disregard all

tidal effects (i.e., we do not differentiate gravitational poten-
tial with respect to electron coordinates, r and r’, correspond-
ing to a position of an electron in the center of mass coor-
dinate system). It is possible to show that this means that
we consider the atom as a point-like body and disregard all
effects of the order of |¢/c?|(rz/R) ~ 10726, where rg is the
Bohr radius (i.e., a typical size of the atom).] From the Hamil-
tonian (6), averaged over time electron passive gravitational
mass, < mJ >, defined as its weight in a weak centrosym-
metric gravitational field (2), can be expressed as

2 2 2 2
p- e\ 1 p- e\ 1
<md> =m,+ -—— )5 +{2—=) 5
Me 1 " <2me r>lc2 <2me r>tc2
E
C_z’

=m, +

where E = p?>/2m, — €*/r is an electron energy. We pay at-
tention that averaged over time third term in Eq. (7) is equal
to zero due to the classical virial theorem. Thus, we conclude
that in classical physics averaged over time passive gravita-
tional mass of a composite body is equivalent to its energy,
taken in the absence of gravitational field [7, 8].

4 Gravitational Mass in Quantum Physics

The Hamiltonian (6) can be quantized by substituting a mo-
mentum operator, p = —i7id/dr, instead of canonical momen-
tum, p. It is convenient to write the quantized Hamiltonian in
the following form:

) 2
H=m,*+ 2‘:71 - 67 + g, ®)
e

where we introduce passive gravitational mass operator of an
electron to be proportional to its weight operator in a weak
centrosymmetric gravitational field (2),

o2 2 1 f)2 (32 1
M = m, + P\ 2 _C)
e =1 (2me r)c? 2m, 1 )c?

€))

Note that the first term in Eq. (9) corresponds to the bare elec-
tron mass, m,, the second term corresponds to the expected
electron energy contribution to the mass operator, whereas
the third nontrivial term is the virial contribution to the mass
operator. It is important that the operator (9) does not com-
mute with electron energy operator, taken in the absence of
the field. It is possible to show that Egs. (8), (9) can be also
obtained directly from the Dirac equation in a curved space-
time, corresponding to a weak centrosymmetric gravitational
field (2). For example, the Hamiltonian (8), (9) can be ob-
tained [9, 10] from the Hamiltonian (3.24) of Ref. [12], where
different physical problem is considered, by omitting all tidal
terms.

Below, we discuss some consequences of Eq. (9). Sup-
pose that we have a macroscopic ensemble of hydrogen atoms
with each of them being in a ground state with energy Ej.
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Then, as follows from Eq. (9), the expectation value of the
gravitational mass operator per one electron is

E p’ 2\ 1 E
_1+<2p —e—>—=me+ !

g
< >=m, + —
¢ c? 2m, r[c? c?

(10)

where the third term in Eq. (10) is zero in accordance with the
quantum virial theorem [13]. Therefore, we conclude that the
equivalence between passive gravitational mass and energy
in the absence of gravitational field survives at a macroscopic
level for stationary quantum states.

Let us discuss how Eqgs. (8), (9) break the equivalence be-
tween passive gravitational mass and energy at a microscopic
level. First of all, we recall that the mass operator (9) does
not commute with electron energy operator, taken in the ab-
sence of gravitational field. This means that, if we create a
quantum state of a hydrogen atom with definite energy, it will
not be characterized by definite passive gravitational mass.
In other words, a measurement of the mass in such quantum
state may give different values, which, as shown, are quan-
tized. Here, we illustrate the above mentioned inequivalence,
using the following thought experiment. Suppose thatat ¢ = 0
we create a ground state wave function of a hydrogen atom,
corresponding to the absence of gravitational field,

Y (r, 1) = Y (r) exp(—iE t/h). an
In a weak centrosymetric gravitational field (2), wave func-
tion (11) is not anymore a ground state of the Hamiltonian (8),
(9), where we treat gravitational field as a small perturbation
in an inertial system [7-12]. It is important that for inertial
observer, in accordance with Eq. (3), a general solution of the
Schrodinger equation, corresponding to the Hamiltonian (8),
(9), can be written as

V(0 = (1= ¢/ )" a,Bal(1 - ¢/cP)r]
n=1

x exp[—imec*(1 + ¢/c)t/h] 12)

x exp[—iE,(1 + ¢/cP)t/h].

We pay attention that wave function (12) is a series of
eigenfunctions of passive gravitational mass operator (9), if
we take into account only linear terms with respect to the pa-
rameter ¢/cz. Here, factor 1 — ¢/ 2 is due to a curvature of
space, whereas the term E, (1 + ¢/c?) represents the famous
red shift in gravitational field and is due to a curvature of time.
Y, (r) is a normalized wave function of an electron in a hydro-
gen atom in the absence of gravitational field, corresponding
to energy E,. [Note that, due to symmetry of our problem,
an electron from 1S ground state of a hydrogen atom can be
excited only into nS excited states. We also pay attention
that the wave function (12) contains a normalization factor

(1=g¢/c?)2]

In accordance with the basic principles of the quantum
mechanics, probability that, at ¢+ > 0, an electron occupies
excited state with energy mec2(1 + ¢/cz) +E,(1+ ¢/c2) is

2
|al’l| ’

f‘l”f(r)‘Pn[(l - ¢/)rld’r

4w%fﬂmwmwn

Py

an

13)

Note that it is possible to demonstrate that for a; in Eq. (13) a
linear term with respect to gravitational potential, ¢, is zero,
which is a consequence of the quantum virial theorem. Tak-
ing into account that the Hamiltonian is a Hermitian operator,
it is possible to show that for n # 1:

n,1

f ¥ (NP (r)d°r = V—’,

Tiwn,| (14)
hwn,l =E,-E|, n#l,
where V,, | is a matrix element of the virial operator,
R R f)2 2
Vil = f‘I’T(r)V(r)‘P,,(r)d%, V(r) = 22 - —. (15
me

It is important that, since the virial operator (15) does not
commute with the Hamiltonian, taken in the absence of grav-
itational field, the probabilities (13)—(15) are not equal to zero
forn # 1.

Let us discuss Egs. (12)—(15). We pay attention that they
directly demonstrate that there is a finite probability,

¢ 2 an 2
Pn: nz:(_) ( ’ ) ’ 1,
=) &, -5) " "

that, at # > 0, an electron occupies n-th (n # 1) energy
level, which breaks the expected Einstein equation, mZ =
m, + E;/c?. In fact, this means that measurement of pas-
sive gravitational mass (i.e., weight in the gravitational field
(2)) in a quantum state with a definite energy (11) gives the
following quantized values:

(16)

mi(n) = m, + Ey/*, (17)
corresponding to the probabilities (16). [Note that, as it fol-
lows from quantum mechanics, we have to calculate wave
function (12) in a linear approximation with respect to the
parameter ¢/ ¢? to obtain probabilities (16), (22), (23), which
are proportional to (¢/c?)>. A simple analysis shows that
an account in Eq. (12) terms of the order of (¢/c?)> would
change electron passive gravitational mass of the order of
(¢/c>)m, ~ 10~m,, which is much smaller than the distance
between the quantized values (17), 6mJ ~ *m, ~ 107*m,,
where «a is the fine structure constant.] We also point out
that, although the probabilities (16) are quadratic with respect
to gravitational potential and, thus, small, the changes of the
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passive gravitational mass (17) are large and of the order of
a*m,. We also pay attention that small values of probabili-
ties (16), P, ~ 107!8, do not contradict the existing E6tvos
type measurements [11], which have confirmed the equiva-
lence principle with the accuracy of the order of 1072-1013.
For our case, it is crucial that the excited levels of a hydro-
gen atom spontaneously decay with time, therefore, one can
detect the quantization law (17) by measuring electromag-
netic radiation, emitted by a macroscopic ensemble of hy-
drogen atoms. The above mentioned optical method is much
more sensitive than the Eotvos type measurements and we,
therefore, hope that it allows to detect the breakdown of the
equivalence between energy and passive gravitational mass,
revealed in the paper.

5 Suggested Experiment

Here, we describe a realistic experiment [9, 10]. We consider
a hydrogen atom to be in its ground state at = 0 and located
at distance R’ from a center of the Earth. The corresponding
wave function can be written as

Pi(r0) = (1 -2¢/ V2P [(1 - ¢’ /cP)r]

x exp[—imec (1 + ¢’ /cH)t/h) (18)

x exp—iE (1 + ¢’ /cH)t/h],

where ¢’ = ¢(R’). The atom is supported in the Earth gravita-
tional field and moved from the Earth with constants velocity,
v < ac, by spacecraft or satellite. As follows from Ref. [7],
the extra contributions to the Lagrangian (5) are small in this
case in an inertial system, related to a center of mass of a hy-
drogen atom (i.e., proton). Therefore, electron wave function
and time dependent perturbation for the Hamiltonian (8), (9)
in this inertial coordinate system can be expressed as

W0 = (1-2¢0 ) a1 = ¢' /)]
n=1
wexpl—imeX(1 + ¢ jAem 1
X exp[—iE,(1 + ¢’ [c)t/h],
’ _ ’ 62 2
U(r, 7 = w(3p_ _ 2@_)' (20)
c 2m, r

We pay attention that in a spacecraft (satellite), which
moves with constant velocity, gravitational force, which acts
on each hydrogen atom, is compensated by some non-gravi-
tational forces. This causes very small changes of a hydro-
gen atom energy levels and is not important for our calcu-
lations. Therefore, the atoms do not feel directly gravita-
tional acceleration, g, but feel, instead, gravitational poten-
tial, (R’ + vr), changing with time due to a spacecraft (satel-
lite) motion in the Earth gravitational field. Application of

the time-dependent quantum mechanical perturbation theory

gives the following solutions for functions a,(#) in Eq. (19):

PR) — p(R +vt) Vs
62 hwn,l

an(t) = exp(iwy1t), n# 1, (21)
where V), and w,, are given by Eqs. (14), (15); w,1 > v/R’.

It is important that, if excited levels of a hydrogen atom
were strictly stationary, then a probability to find the passive

gravitational mass to be quantized with n # 1 (17) would be

n# 1.

2 ’ _ 7\12
Vo ) DR+ = gROF )

A1 ct

Pn(t) :(

In reality, the excited levels spontaneously decay with time
and, therefore, it is possible to observe the quantization law
(17) indirectly by measuring electromagnetic radiation from
a macroscopic ensemble of the atoms. In this case, Eq. (22)
gives a probability that a hydrogen atom emits a photon with
frequency w,, = (E, — E1)/h during the time interval ¢. [We
note that dipole matrix elements for nS — 1S quantum tran-
sitions are zero. Nevertheless, the corresponding photons can
be emitted due to quadrupole effects.]

Let us estimate the probability (22). If the experiment
is done by using spacecraft or satellite, then we may have
[p(R" + vt)] < |¢p(R’)|. In this case Eq. (22) is reduced to
Eq. (16) and can be rewritten as

n

Vi )2 #R')

~ _ ‘nl :
P, = ~049x 1078 —"—], (2
( } : 2 0.49 x 10 ( 1), (3)

C

where, in Eq. (23), we use the following numerical values
of the Earth mass, M ~ 6 x 10** kg, and its radius, Ry =
6.36 x10% m. It is important that, although the probabilities
(23) are small, the number of photons, N, emitted by macro-
scopic ensemble of the atoms, can be large since the factor
V}f J(En—E )? is of the order of unity. For instance, for 1000
moles of hydrogen atoms, N is estimated as

n

2
N, =295x108[—"L_)  No; =09x 108, (24
1 (E El) 2.1 (24)

n

which can be experimentally detected, where N,,; stands for
a number of photons, emitted with energy hiw, | = E, — Ej.

6 Summary

To summarize, we have demonstrated that passive gravita-
tional mass of a composite quantum body is not equivalent
to its energy due to quantum fluctuations, if the mass is de-
fined to be proportional to a weight of the body. We have
also discussed a realistic experimental method to detect this
inequivalency. If the corresponding experiment is done, to
the best of our knowledge, it will be the first experiment,
which directly tests some nontrivial combination of general
relativity and quantum mechanics. We have also shown that
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the corresponding expectation values are equivalent to each
other for stationary quantum states. It is important that our
results are due to different couplings of kinetic and potential
energy with an external gravitational field. Therefore, the cur-
rent approach is completely different from that discussed in
Refs. [12, 14, 15], where small corrections to electron energy
levels are calculated for a free falling hydrogen atom [14, 15]
or for a hydrogen atom supported in a gravitational field [12].
Note that phenomena suggested in the paper are not restricted
by atomic physics, but also have to be observed in solid state,
nuclear, and particle physics.
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Genesis of the “Critical-Acceleration of MOND” and Its Role in
“Formation of Structures”
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As an attempt to explain the “flattening of galaxies rotation-curves”, Milgrom proposed
a Modification of Newtonian Dynamics MOND, in which he needed a new constant of
natureag , termed as “critical-acceleration-of MOND?, in his best-fit empirical formula.
But so far it has been an ad-hoc introduction of a new constant. Whereas this article pro-
poses: (i) a genesis of this constant; (ii) explains its recurrences in various physical sit-
uations; and (iii) its role in determining the size and radii of various structures, like: the
electron, the proton, the nucleus-of-atom, the globular-clusters, the spiral-galaxies, the
galactic-clusters and the whole universe. In this process we get a new interpretation of
“the cosmological-red-shift”, that the linear part of the cosmological-red-shift may not
be due to “metric-expansion-of-space”; and even the currently-believed “accelerated-
expansion” may be slowing down with time.

1 Introduction Wherem is mass of any piece of matter. That is, the relati-

The observations of “flattening of galaxies rotation Curveg&s?c-engrgy of any p'?ce of ma}tter of r’rjasslsheqyal o
are generally explained by assuming the presence of “ddR- c_osrnlc-?;avna}lona-potent(ljab-energy . Sot fe cosmic-
matter”, but there is no way to directly detect it other than igfavitational-force” experienced by every piece of matter Is:

presumed gravitationalffiect. M. Milgrom [1] proposed an GMym 2

alternative explanation for the “galaxies rotation curves”, by RS = m%. 3)
modifying Newton’s law of gravitation, for which he needed

an ad-hoc introduction of a new constant of nataggermed We know thatRyHp = ¢, so,Ry = ¢/Hg. HereHg is
as “critical-acceleration of MOND”, of the order of magniHubble’s constant; i.e.

tude: 12 x 10°1% meter per seconds squared. But so far it has GMam

been an ad-hoc introduction of a new constant; and there has kg
been no explanation for why its value is this much. Sivaram RS
noticed its recurrences in various physical situations. This H¥heremis mass of any object; artdocis a “cosmic-constant-
thor has been of the opinion that the matching of valueg of theacceleration”. Hoc = 6.87 x 10°1° metefsecond. In
“anomalous decelerations of the four space-probes”™: PiongRE next section we will see the recurrences of this “cosmic-

10, Pioneer-11, Galileo and Ulysses and the “decelerationghstant-of-acceleration” in various physical situations.
cosmologically-red-shifting-photons” can not be an acciden-

tal coincidence. Now, this article presents a genesis of tlis Observable recurrences of “the cosmic-constant-of-
“critical-acceleration of MOND”. And based on this gene- acceleration”

S'S’tthe tfr? rmatulbn of vfantous st:]ructlurs SI' I'kel thte eletchtron, .tgﬁer—galactic—photons experience the “cosmological red-
proton, the nucleus-ot-atom, the globular-clusters, the Spitglygy “\ve can express the cosmological red-shifin terms

galaxies, the galactic-clusters and the whole universe, are x5 . ajeration experienced by the photon [3, 4], as fol-

mH,Cc (4)

plained here. lows:

. . . . fo—f HoD
2 Genesis of the “critical acceleration of MOND” Z = .
R.K. Adair, in his book “Concepts in Physics” [2] has givep,
a derivation, that the sum of “gravitational-potential-energy” hAf  HoD
and “energy-of-mass’ of the whole universe is, strikingly, hf ¢
zero! i.e. MM ie

2 _ Moo _ o hf
Moc” - —p— =0 @) hAT = 2 (Hod)D. )

where Mo and R are total-mass and radius of the universgere: 1 js Plancks constantf, is frequency of photon at
respectively, an@ is Newton's gravitational constant; i.€.  tne time of its emissionf is the red-shifted frequency mea-

GMom sured on earttlg is Hubble’s constant, ard the luminosity-
R mc. () distance.
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Thatis, the loss in energy of the photon is equal to its masthen the extra-galactic-photon enters our own milky-way-
(hf/c?) times the acceleratiom = Hoc, times the distancB galaxy, the photon also experiences the gravitational-blue-
travelled by it. Where:Hy is Hubble-parameter. And theshift, because of the gravitational-pull of our galaxy. The
value of constant acceleratiaris: a = Hoc, a = 6.87x 107° photon of a given frequency, if it has come from a near-by-
meteysec. galaxy, then it gets more blue-shifted, compared to the pho-

Now, we will verify that the accelerations experiencetbn which has come from very-very far-distant-galaxy; so the
by the Pioneer-10, Pioneer-11, Galileo and Ulysses spagataxy which is at closer distance, appears at more closer
probes do match significantly with the “cosmic-constant-afistance, than the galaxies at far-away-distances. That is,
acceleration”. Slightly higher value of decelerations of thihe cosmic photon decelerated during its long inter-galactic-

space-probes is then explained. journey, and then accelerated because of the gravitational-pull
Carefully observed values of de-accelerations [5]: of our milky-way galaxy; so we measure slightly lesser value
For Pioneer-10: of Ho; Hoc = 6.87 x 1071% meter per seconds squared. But if
we could send the Hubble-like Space-Telescope out-side our
a=(809+02)x 10" m/s* = Hoc. (6) milky-way-galaxy, then the value ¢oc will match perfectly
) with the value of deceleration of all the four space-probes;
For Pioneer-11: = 8.5 1071% meters per seconds squared.

Currently, the whole values of “anomalous accelerations
of the space-probes” are “explained” in terms of radiation-
pressure, gas-leakage. .. etc. So here we can explain the slight
differences in their values of decelerations in terms of radi-

a=(12+3)x 1070 my/s? = Hec. 8) ation-pressure, gas-leakage etc! Thus, the matching of values
of decelerations of all the four space-probes is itself an inter-
For Galileo: esting observation; and its matching with the deceleration of
cosmologically-red-shifting-photons can not be ignored by a
a=(8+3)x101° m/s® = Hoc. (9) scientific mind as a coincidence. There is one more interest-
ing thing about the value of this deceleration as first noticed
For Cosmologically-red-shifted-photon, by Milgrom, that: with this value of deceleration, an object
moving with the speed of light would come to rest exactly
(10) after the timeTy which is the age of the universe.

a=(856+0.15)x 1070 m/s? = Hyc. 7

For Ulysses:

a=6.87x101% m/s?> = Hyc.

This value of acceleration is also the “critical accelerar EFormation of structures

tion” of modified Newtonian dynamics MOND, Sivaram [6] has noticed that:

aO:H()C (11) GMO_G%_G%_G%
and the rate of “accelerated-expansion of the universe” RS 3 r2 2 (14)
_GM,e GMa GMgy
o ™ ot 42 B Ra R

According to Weinberg, mass of a fundamental-particle
can be obtained from the “fundamental-constants” as follows:
Mass of a fundamental-particle,

= the “critical-acceleration” of MOND
= Hgqc.

(Here: Mg andRy are mass and radius of the universe respec-

~ (h?Ho 3 tively, mp andr, are mass and radius of the protom, andre
- (E) are mass and radius of the electram, andr,, are mass and
radius of the nucleus of an atork},c andR,. are mass and
i.e. Gm radius of the globular-clusterdfl o and R,y are mass and
/moz = Hoc. (13) radius of the spiral-galaxies, aiM., andR., are mass and

radius of the galactic-clusters respectively).

That is, the self-gravitational-acceleration of Weinberg's [7] That is, the self-gravitational-pulling-force experienced

“fundamental-particle” is also equal to the “cosmic-constariy all the above bodies will be: Self-gravitational-force-F

of-acceleration”. (mass of the body, say a galaxy) times (a constant value of
deceleratiorHyc).

Reason why the apparent value of deceleration of the cos-  For the formation of a stable structure, the “self-gravita-

mic-photon is slightly small: tional-acceleration” of a body of mass should be equal to
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the value of “cosmic-constant-of-acceleratiadjc. In the a constant velocity. The above expression-22 is equal to Mil-
expressions of eq. 14 above we found that: at the “surfacgbm’s expression: of/r) = [(GM/r?)ag]'/? becauseny =

of the electron, the proton, the nucleus-of-atom, the gIobuIQMO/Rg. This is how we can explain the “flattening of galax-
clusters, the spiral-galaxies, and the galactic-clusters this cias-rotation-curves”.

dition is beautifully satisfied. That is: )
6 Conclusion

—5 = HoC. (15) We presented here the genesis or root of the “critical acceler-
R ation of MOND?”, that it follows from the equality of “gravi-
WhereM andR represent mass and radius of the above dgtional potential-energy” and “energy-of-mass” of the uni-
jects. And the size and radius of the above structures get ¥@ise; and showed that there are as many as fifteen phys-
cided as follows: i.e. ical situations where we find recurrences of this “cosmic-
constant-of-acceleration”. The sizes of various structures like

GM = HoeC = f the electron, the proton, the nucleus-of-atom, the globular-
R2 Ro clusters, the spiral-galaxies, the galactic-clusters and the
i o whole universe get decided based on the condition that: the
T GM “self-gravitational-acceleration” of them all should be equal
R = 2 to the “cosmic-constant-of-acceleratioHac. The flattening
ie. of galaxies rotation curves at the Qut skirts of _spiral galaxies
R = (raRo)Y2 (16) also emerge from the above-mentioned equality.

We are sure that the space-probes Pioneer-10 et al. did
whererg is “gravitational-radius” of the above objects. Thishow decelerations of the ordefopc. Now, similar to the
is how all the structures get formed, beginning from the elespace-probes, if the cosmologically red-shifting photons also
tron to the galactic-clusters. decelerate due to the “cosmic-gravitational-force” then the
linear part of the cosmological-red-shift may not be due to the
“metric-expansion-of-space”; only the recently-discovered
accelerated-expansion may be due to the “metric-expansion-
As seen in the expression-15, the condition for the formatiofrspace”; and its ratéloc suggests that even the receding
of a stable structure iSGM/R2 = Hoc whereM andR are galaxies may be getting decelerated like the space-probes!
mass and radius of a galaxy. That is, the centripetal acceldraus we may be able to explain even the “accelerated-ex-

5 Explanation for the “flattening of galaxies rotation-
curves”

tion at the surface of a structure is: pansion of the universe” without any need for dark-energy.
2 GM Submitted on: September 6, 2012&ccepted on: September 13, 2012
— = — =Hoc 17)
R R
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By using a computer simulated search program, the experimental gamma transition en-
ergies for superdeformed rotational bands (SDRB’spin 150 region are fitted to
proposed three-parameters model. The model parameters and the spin of the bandhead
were obtained for the selected ten SDRB’s nam&RGd (yrast and excited SD bands),
51T (yrast and excited SD band$)?Dy (yrast SD bands);**Gd (SD-1,SD-6)4°Gd
(SD-1),'*®Dy (SD-1) and“*®Eu (SD-1). The Kinematid® and dynamic)® moments

of inertia are studied as a function of the rotational frequéneyFrom the calculated
results, we notic that the excited SD bands have identical energies to #einedgh-

bours for the twinned SD bands ind86 nuclei. Also the analysis done allows us to
confirmAl = 2 staggering in the yrast SD bands'$iGd, 14°Gd, 1>°Dy, and'*®Eu and

in the excited SD bands df8Gd, by performing a staggering parameter analysis. For
each band, we calculated the deviation of the gamma ray energies from smooth ref-
erence representing the finitefférence approximation to the fourth derivative of the
gamma ray transition energies at a given spin.

1 Introduction retical interest [44, 45]. The first interpretation [46] to IB's

The superdeformed (SD) nuclei is one of the most interestivr\{als done within the framework of the strong coupling fimit

. . Hhe particle-rotor model, in which one or more particles are
topics of nuclear structure studies. Over the past two deca@%%pled to a rotating deformed core and follow the rotation

many superdeformed rotational bands (SDRB's) have beae labatically. Investigation also suggest that the phenomena

observed in several region of nuclear chart [1]. At present 8rip's may result from a cancelation of contributions to the

though a general understanding of these SDRB’s have b Tohent of inertia occurring in mean field method [47].

achieved, there are still many open problems. For examp eIn the present paper we suagest a three-particle model to
the spin, parity and excitation energy relative to the ground . pres paper we sugg parti

state of the SD bands have not yet been measured. The Qﬁ?—dmt the spins of the rotayonal pands and t'o study the prop-
ficulty lies with observing the very weak discrete transitione§rtles Of. the SDRB's gnd to'|nvest|gate the emstenalyelof. 2
which link SD levels with normal deformed (ND) levels. un>'adgenng and also lnvgstlgate the presence of IB's observed
til now, only several SD bands have been identified to exfrs]ttheA ~ 150 mass region.

the transition from SD levels to ND levels. Many theoretical "

approaches to predict the spins of these SD bands have beefluclear SDRB's in framework of three parameters ro-

proposed [2-11]. tational model

Several SDRB’s in thé\ ~ 150 region exhibit a ratherin the present work, the energies of the SD nuclear RI8I$
surprising feature of Al = 2 staggering [12—25] in its transi-as a function of the unknown spin | are expressed as:
tion energiesi.e. sequences of statedi#iring by four units of
angular momentum are displaced relative to each other. The E(I) = Eo + a[[L + biZ]¥2 — 1] + ci? 1)
phenomenon oAl = 2 staggering has attached much atten-
tion and interest, and has thus become one of the most fiéth i2 = I (I + 1), wherea, b andc are the parameters of the
guently considerable subjects. Within a short period, a canedel. The rotational frequendyw is defined as the deriva-
siderable a mounts offfert has been spent on understandive of the energy E with respect to the angular momenitum
ing its physical implication based on various theoretical ideas

[9,26-41]. Despite suchfferts, definite conclusions have not T dE
yet been reached until present time. di (2)
The discovery of the phenomenon of identical bands (IBs) =[2c+ ab[1 + bI(l + D]YZ(1(1 + 1))"Y2.

[42, 43] at high spin in SD states in even-even and odd-A

nuclei aroused a considerable interest. It was found that theTwo possible types of nuclear moments of inertia have
transition energies and moments of inertia in neighboring rheen suggested which reflect twdfdrent aspects of nuclear
clei much close than expected. This has created much théymamics. The kinematic moment of inert#", which is
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Table 1: The adopted best parameteis ¢ of the model and the band-head spin assignrhgof our ten SDRB'’s. The rms deviations are

also shown.

SD Band

Ey(l+2—-1) lo a b c §%
(keV) () (keV) (keV) (keV)

148Gd (SD-1) 699.9 31 | -0.313446E07 | 0.163069E-04 0.311027E02 | 7.387009E-01
(SD-6) 802.2 39 | -0.106162E06 | 0.107495E-03 0.105003E02 | 2.104025E-01
150Gd (SD-1) 815.0 47 | -0.148586E06 | -0.517219E-04] 0.954401E-01| 5.250988E-01
(SD-2) 727.9 31 | -0.617154E06 | -0.134929E-04 0.163288E-01 | 1.734822E-00
152Dy (SD-1) 602.4 26 | -0.144369E06 | 0.207972E-04 0.733270E01 | 5.217181E-01
149Gd (SD-1) 617.8 27.5| -0.825976E-05 | -0.698261E-04 0.285641E01 | 4.559227E-01
148Eu (SD-1) 747.7 29 | -0.131028E06 | 0.432608E-04 0.928191E01 | 7.010767E-01
51T (SD-1) 726.5 30.5| -0.852833E06 | -0.546382E-05 0.364770E01 | 2.023767E00
(SD-2) 602.1 26.5| -0.136986E-07 | -0.431179E-05 0.289128E01 | 6.644767E-01
153Dy (SD-1) 721.4 30.5| -0.671437E06 | -0.386442E-05 0.464507E01 | 2.171267E00

equal to the inverse of the slope of the curve of energy E ving rotational sequences, where the expected regular behav-

susi ior of the energy levels with respect to spin or to rotational
frequency is perturbed. The result is that the rotational se-

(3) Quence is split into two parts with states separatedlby 4
(bifurcation) shifting up in energy and the intermediate states
shifting down in energy. The curve found by smoothly inter-

and the dynamic moment of inerti#?, which is related to Polating the band energy of the spin sequence4,,1+8. . .is

the curvature in the curve of E versls somewhat displaced from the corresponding curve of the se-

quence +2, 1+6, 1+10....

To explore more clearly thal = 2 staggering, for each
band the deviation of the transition energies from a smooth
referenceAE, is determined by calculating the fourth deriva-
tive of the transition energids, (1) at a given spinl by

- dE
JO mi(—)"*
(dl)

2 12, 1
%[1+bl(l+l)] +Z:

2
hz(d—,\f)_l

2 o L @)
- 32 . —

ab[l +bl(l + 1)]”° + >

J@

For the SD bands, one can extract the rotational frequency,
dynamic and kinematic moment of inertia by using the exper-

imental interband E2 transition energies as follows: AR,(1) =

2(E,(1) - $[4E,(1 - 2) + 4E,(1 + 2)

®)
—E,(1 -4) - E,(I + 4)]).

1
ho = Z[Ey(l +2)+ E,(1], (5)
’ This expression was previously used in [15] and is identi-
JA) ﬂ (6) cal to the expression fa*E, (1) in Ref. [33]. We chose to the
AE, use the expression above in order to be able to follow higher
2 order changes in the moments of inertia of the SD bands.
D1 -1) = r2 -1) (7)
E, 4 Superdeformed identical bands
where A particularly striking feature of SD nuclei is the observation
of numerous bands with nearly identical transition energies
E, = E(0)-E(l-2), in nuclei difering by one or two mass unit [42—45]. To de-
AE, = E(+2)-E/() termine whether a pair of bands is identical or not, one must

compare the dynamical moment of inertia or compare the E2

It is seen that whereas the extract#® depends on | transition energies of the two bands.

proposition,J? does not. . _ _ .
5 Numerical calculations and discussions

3 Analysis of theAl = 2 staggering dfects Nine SDRB'’s observed in nuclei of mass numider 150

It has been found that some SD rotational bands firedint have been analyzed in terms of our three parameter model.
mass region show an unexpecteld= 2 staggering ects in The experimental transition energies are taken from Ref. [1].
the gamma ray energies [12-25]. Thieet is best seen inThe studied SDRB’s are namely:
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Fig. 1: Calculated Kinematid® (open circles) and dynamid®

: o\ . : i, o i ig® i )
(closed circles) moments of inertia as a function of rotational frEig- 2: Calculated Kinematig* (open circles) and dynamid

quencyfiw for the set of identical band§!Tb(SD-1), 15?Dy(SD-1) (closed circles) moments of inertia as a function of rotational
150Gd(SD-3) andS'Th(SD-2). ' " frequencyfiw for the SDRB's8Gd(SD-1, SD-6),14°Gd(SD-1),

153Dy(SD-1) and*“®Eu(SD-1).

150Gd(SD1, SD2)151Th(SD1, SD2)152Dy(SD1),248Gd(SD1, ,

SD6), 149Gd(SD1),15%Dy(SD1) and“8Eu(SD1). The dier- & b, c and the bandhead spipwere obtained by the adopted
ence between the SD bands in various mass region are f§rocedure. The procedure is repeated for several sets of
viously evident through the behavior of the dynamig& frail valuesa,b,c andlo. The spinlo is taken as the near-
and kinematicJ® moments of inertia seems to be very us€St integer number, then another fit with oriyb andc as

ful to the understanding of the properties of the SD bandikee parametgrs is made to determine their values. The lowest
The bandhead moment of inertig at J@ = J® s a sensi- Pandhead spify and the best parameters of the moaldd, c
tive guideline parameter for the spin proposition. for each band is listed in Table(1). The SD bands are identi-

A computer simulated search program has been used€d PY the lowest gamma transition enerdigglo + 2 — o)
get a minimum root mean square (rms) deviation between fiRserved. > . - _
experimental transition energi&§*® and the calculated ones ~ The dynamicall'> and kinematic)*> moments of iner-

derived from our present three parameter m(ﬁ;élt tia using our proposed model at the assigned spin values are
calculated as a function of rotational frequericy and illus-
o | ecal expyy + (2112 trated in Figs. (1,2).J@ mostly decrease with a great deal
1 EVH(H) - E; V(1) iati '
Y= = Z 9) of variation from nucleus to nucleus. The properties of the
N |4 SESN(1h) SD bands are mainly influenced by the number of the high-

N intruder orbitals occupied. For example the large slopes of
where N is the number of data points enters in the fitting prd®®) againstiw in %°Gd and'®'Tb are due to the occupation of
cedure andE; (i) is the uncertainties in the-transitions. 76, v7, orbitals, while in'>?Dy thex6, level is also occupied
For each SD band the optimized best fitted four parametarsi this leads to a more constal¥? againstiw. A plot of
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(*51T b(SD-2),52Dy(SD-1)) and t°°Gd(SD-2),%'T b(SD-1)). ° 04 06 08
fio (MeV)

J®@ againstiw for the excited SD band it?'Tb gives a curve Fig. 4: The calculatedh*E, staggering as a function of rota-
that is practically constant and which closely follows t8 tional frequencyZiw of the SDRB's *®Eu(SD-1), **%Gd(SD-6),
curved traced out by the yrast SD band32Dy but which is '*°Gd(SD-1).
very different from the yrast SD band H#'Tb. Similarly the
150Gd excited SD band ha¥? values which resemble thos . . .

. 61 . ole in the'>?Dy core. The orbitala6, andy7, are occupied
observed in thé>'Tb yrast SD band. It is concluded that th?e1 151Th, while in 152Dy the 76, level is occupied and this

N=86 isotones SD nuclei have identical supershell structurr?s. ) i .
P eads to a more constant in dynamic moment of ineitfa

. Clearly theJ® values for the excited SD bands are very sim-
Nucl Y E

15::((;;“5 ;St;?:g T 2 SéCIZe?ob:Tf — ilar to the yrast SD bands in theirZ, N=86 isotones. The
64 ( ),[( O G ),[( U QNICER) plot of percentage fierencesAE,/E, in transition energies
65 1D 7(3P[(4)°5)*1(1132)°  n(3)'[(4)*%5)*’I(i132)*  versus spin for the two paird*Tb(SD-2),152Dy(SD-1)) and
152, 231406 (152" 7M@) 10G)(152)°  (*°°Gd(SD-2),*'Th(SD-1)) are illustrated in Fig. (3).

7 Al =2 Staggering

6 Identical bands in the isotones nuclei 86 . .
Another result of the present work is the observation of a

A particularly Striking feature of SD nuclei is the Observati0ﬂ| =2 Staggering fectsin th@,_ray energieS, where the two
of a numerous bands with nearly identical transition energ@quences for spifs= 4j,4j + 1 (j=0,1,2,...) and = 4j + 2

in neighboring nuclei. Because of the large single particle ${20,1,2,...) are bifurcated. For each band the deviation of
gaps at 266 and N-86, the nucleus*>Dy is expected to be the y—ray energies from a smooth referens, is deter-

a very good doubly magic SD core. Thetdrence iny—ray mined by calculating the fourth derivative of theray ener-
energies\E, between transition in the two pairs 0HS86 iso- giesAE, (1) at a given spil\*E,.. The staggering in the-ray
tones (excited>'Tb (SD-2), yrast®?Dy (SD-1)) and (excited energies is indeed found for the SD bands'4fEu(SD-1),

19Gd (SD-2), yrast®'Tb (SD-1)) were calculated. 148Gd(SD-6) and“9Gd(SD-1) in Fig. (4).
The gamma transition energies of the excited band (SD-2)
in 1Tb are almost identical to that of the yrast band (SD-1) Submitted on June 11, 2012ccepted on June 25, 2012

in 152Dy. This twin band has been associated with a [3¢02]1
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Emergence of Particle Massesin Fractal Scaling Models of Matter

Hartmut Muller
Advanced Natural Research Institute in memoriam LeonhatdrEMunich, Germany. www.anr-institute.com

Based on a fractal scaling model of matter, that reprodugstematic features in
the distribution of elementary particle rest masses, thEeparesents natural oscilla-
tions in chain systems of harmonic quantum oscillators ashar@sm of particle mass

generation.
1 Introduction The logarithm of the W-boson-to-electron mass ratio is
1,71_12:
The origin of particle masses is one of the most importaAh?tJr72 12:
topics in modern physics. In this paper we won't discuss the In (Mw/Metectron = 12 (2)

current situation in the standard theory and the Higgs mecha pjaqq
nism. Based on a fractal scaling model [1] of natural oscillg, 4 in t

tions in chain systems of harmonic oscillators we present gy [12]. In addition, we have shown [9] that the masses of
alternative mechanism of mass generation. the most massive bodies in the Solar System are connected by
Possibly, natural oscillations of matter generate scalifgs scaling exponer%t. The scaling exponentﬁ% arises as
distributions of physical properties in veryfidirent process- consequence of natural oscillations in chain systems of sim
es. Fractal scaling models [2] of oscillation processe_mate ilar harmonic oscillators [2]. If the natural frequency afeo
based on any statements about the nature of the link or i@ymonic oscillator is known, one can calculate the coreplet
teraction between the elements of the osci_llating chair sygctal spectrum of natural frequencies of the chain system
tem. Therefore the model statements are quite generalit, Wipectral nodes arise on the distancel dbgarithmic units.
opens a wide field of possible applications. Near spectral nodes the spectral density reaches local maxi
Within the last 10 years many articles were publishedum and natural frequencies of the oscillating chain system
which show that scaling is a widely distributed natural phere distributed maximum densely. We suspect, that stable pa
nomenon [3-7]. As well, scaling is a general property of ificles correspond to main spectral nodes which represent ra
clusive distributions in high energy particle reaction$ {8 tional number logarithms.
the quantity of secondary particles increases in deperdenc The colossal dference between the life times of stable
on the logarithm of the collision energy. and “normal” particles is amazing. The life-time of a proton
Particularly, the observable mass distribution of cedéstis minimum 1§ times larger than the life of a neutron, al-
bodies is connected via scaling with the mass distributiontBough the mass fference between them is onlyl3% of
fundamental particles [9], that can be understood as econffie proton rest mass. From this point of view seems that the
bution to the fundamental link between quantum — and astggability of a particle is not connected with its mass.
physics. In the framework of the standard theory, the electron is
Based on observational data, Haramein, Hyson and Ragtable because it's the least massive particle with noa-zer
cher[10,11] discuss a scaling law for all organized mattier uelectric charge. Its decay would violate charge consermati
lizing the Schwarzschild condition, describing cosmotadji The proton is stable, because it's the lightest baryon aed th
to subatomic structures. From their point of view the univefiaryon number is conserved. Therefore the proton is the most
sality of scaling suggests an underlying polarizable stmedl important baryon, while the electron is the most important
vacuum of mini white and black holes. They discuss the mdapton and the proton-to-electron mass ratio can be under-
ner in which this structured vacuum can be described in tersisod as a fundamental physical constant. Within the standa
of resolution of scale analogous to a fractal scaling as asietheory, the W- and Z-bosons are elementary particles which
of renormalization at the Planck distance. mediate the weak force. The rest masses of all these patrticle
In the framework of our model [1], particles are resonaneee measured with high precision. The precise rest masses
states in chain systems of harmonic quantum oscillators afether elementary or stable particles (quarks, neutjiares
the masses of fundamental particles are connected by the swzarly unknown and not measured directly.
ing exponen%. For example, the logarithm of the proton-to- The life-times of electron and proton seem not measur-
electron mass ratio is%? but the logarithm of the W-boson-able. In addition, there is no comparison between the life of
to-proton mass ratio isi This means, they are connected byroton (proton> 10°° years) and the age of the visible universe

y within the eighties the scaling expon%mvas
he distribution of particle masses by V. A. Kolom-

the equation: (Tuniverse> 1010 years). Though, there is an interesting scale
similarity between the product of the proton lifgoton > 10%°
IN (Mw/M protor) = IN (Moroton/Metectror) — 3 (1) Yyears and the proton mass generating frequengyon, On
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the one side, and the product of the aggerse > 10'° years 2 1 a2 0 2z 1 2 2

2 R
of the visible universe and the Planck frequengyance on LML T I T TTTHETTT 70 7NN T T T T

the other side:

4 Fig. 1: The spectrum (7) on the first laye&R,, for|ne|=0,1,2,...
Wproton = Eproton/7i = 938 MeV/7 = 1.425- 1074 Hz 3) andnj1| = 2,3,4,... and, in addition, the second spectral layerX,

Wprotorproton > 10p0 with || =2 and|nz| =2, 3,4, ... (logarithmic representation).

wplanck= V(c®/hG) = 1.855- 10" Hz @) Fractal scaling models of natural oscillations are not
WPlanckuniverse> 100, based on any statements about the nature of the link or inter-

action between the elements of the oscillating chain system
For this reason we assume that our model could be useful
(5) also for the analysis of natural oscillations in chain syste
of harmonic quantum oscillators. We assume that in the case
Because the frequenciegoion andwpianckare fundamen- of natural oscillations the amplitudes are low, the ostdles
tal constants, the equation (5) means that possibly existara harmonic and the oscillation energydepends only on
fundamental connection between the age of the visible uthie frequencyX is the Planck constant):
verse and the proton life-time. E = how. (8)

If both products are of the same scale, we can write:

WprotonT proton = WPlanckl universe

2 Methods In the framework of our model (6) all particles are reso-
Based on the continued fraction method [13] we will searclance states of an oscillating chain system, in which to the
the natural frequencies of a chain system of many similar hascillation energy (8) corresponds the particle mass m:
monic oscillators in this form: 2

m = wh/c". 9)

wik = woo €XP Sjk)- 6 : : .
) . P& ) ) ©) In this connection the equation (9) means that quantum
~ wi Is a set of natural frequencies of a chain system @dcillations generate mass. Under consideration of (6) now
similar harmonic oscillatorsyoo is the natural angular oscil-we can create a fractal scaling model of the mass spectrum of
lation frequency of one oscillataBj is a set of finite contin- yogel particles. This mass spectrum is described by the same

ued fractions with integer elements: continued fraction 7, for gy = woo/C2:
1
Sik =njp + 1 =[nj0; N1, Njz, ..., njk] , (1) In (mjk/moo) = [njo; Nz, N2, . . ., njk]. (20)
np+——
i N + The frequency spectrum (7) and the mass spectrum (10)
g are isomorphic. The mass spectrum (10) is fractal and con-

i sequently it has a clear hierarchical structure, in whict-co

wheren, iz, N, ..., Nk € Z, j=0, 0. We investigate con- tinued fractions (7) of the formmjp; o] and [njp; 2, oo] define
tinued fractions (7) with a finite quantity of layers k, whictinain spectral nodes, as fig. 1 shows.

generate discrete spectra, because in this casjatep-
resent rational numbers. Possibly, the free linjgsand the
partial denominators;s, npp, ..., Nk could be interpreted asBased on (10) in the present paper we will calculate a list of
some kind of “quantum numbers”. The present paper followsodel particle masses which correspond to the main spectral
the Terskich [13] definition of a chain system, where the inodes and compare this list with rest masses of well measured
teraction between the elements proceeds only in their mos&ble and fundamental particles — hadrons, leptons, gauge
ment direction. Model spectra (7) are not only logarithmibosons and Higgs bosons.

3 Results

invariant, but also fractal, because the discrete hyperts- The model mass spectrum (10) is logarithmically sym-
tribution of natural frequenciesy repeats itself on each specmetric and the main spectral nodes arise on the distance of 1
tral layer. and% logarithmic units, as fig. 1 shows. The massgin (10)

The partial denominators run through positive and negprresponds to the main spectral ndig = [0; =], because
ative integer values. Ranges of relative low spectral dgndn (mgo/mgo) =0. Let’'s assume that gp is the electron rest
(spectral gaps) and ranges of relative high spectral densitass (610998910(13) MeYt? [14]. In this case (10) de-
(spectral nodes) arise on each spectral layer. In addiitret scribes the mass spectrum that corresponds to the natenxal fr
first spectral layer, fig. 1 shows the second spectral laye? k quency spectrum (7) of a chain system of vibrating electrons
with |nj¢| = 2 (logarithmic representation). Maximum spectr&urther stable or fundamental model particles correspond t
density areas (spectral nodes) arise automatically onighe tlirther main spectral nodes of the formgf co] and [njo; 2].
tance of integer and half logarithmic units. Actually, near the node [12p] we find the W- and Z-bosons,

Hartmut Milller. Emergence of Particle Masses in FractaliSg Models of Matter 45



Volume 4 PROGRESS IN PHYSICS October, 2012

S | calculated (10) mass-interval corresponding|  particle mass nc(MeV) In (m/mqo) d
mi.c? (MeV) particle [14,15]

[0; o0] 0.451-0.579| electron (ngp) | 0.510998910: 0.000000013 0.000 | 0.000
[7;2, 0] 815-1047 proton 93827203+ 0.00008 7.515| 0.015
[7;2, 0] 815-1047 neutron 939565346+ 0.000023 7.517| 0.017

[12; 0] 73395-94241f  W-boson 80398+ 25 11.966 | —0.034
[12; 0] 73395-94241 Z-boson 911876+ 2.1 12.092 | 0.092
[12; 2 o] 121008 — 155377 Higgs-boson? 125500+ 540 12.411 | -0.089
[13;00] 199509 — 256174 EWSB?
[51; 2 o] (1.048— 1.345)x 10?2 | Planck mass 1.22089(6)x 1072 51.528| 0.028

Table 1: The calculate8-values (7) of;l1 logarithmic units width and the corresponding calculatemtlel mass-intervals of main spectral
nodes for the electron calibrated model mass spectrum. &Viattbnd = In (m/mq) — S is indicated.

but near the node [7; 20] the proton and neutron masses, akhe rest mass of the most massive lepton (tauon) is near the
table 1 shows. maximum of the baryon and meson mass distributions.

Theoretically, a chain system of vibrating protons gener- In the framework of our model [1], the Planck frequency
ates the same spectrum (10). Also in this case, stable or fgRinckCOrresponds to a main spectral node of the model mass
damental model particles correspond to main spectral nogegctrum (10). Actually, relative to the proton mass gen-
of the form Jno; oo] and [njo; 2, 0], but relative to the elec- €rating frequencyuproton the Planck frequencypianck cor-
tron calibrated spectrum, they are movedH}4 logarithmic responds to the main node [44] of the frequency spec-
units. Actually, if my is the proton rest mass 929203(8) trum (6):
MeV/c? [14], then the electron corresponds to the node

3
[-7;-2, 0], but the W- and Z-bosons correspond to node |n “Planck _ 1.855x 10* ~

= > 44, 11
[4, 2, 00] Wproton 1.425x% 1024 ( )

Consequently, the core claims of our model don’t depend Relative to the electron mass generating frequ ne

on the selection of the calibration masggmif it is the rest Planck frequencywpianck corresponds to the spectral node
mass of a fundamental resonance state that corresponds[]g)l_aZ oo]:
e’ ’

main spectral node. As mentioned already, this is why t

model spectrum (10) is logarithmically symmetric. Planck 1.855x% 10%3

Because a chain system of any similar harmonic oscilla- In we  7.884x 1070 (12)

tors generates the spectrum (10hman be much less than ~515=44+75
the electron mass. Only one condition has to be fulfillegs m - - e
has to correspond to a main spectral node of the model spec-

o Ad
trum (10). On this background all particles can be integatet The Planck frequencieianck is € times larger than the
. . . roton mass generating frequengyowon and the same rela-

as resonance states in a chain system of harmonic quantum_, . .
. ) X . . tionship is between the Planck massdq« and the proton
oscillators, in which the rest mass of each single oscﬂlatroest mass )
goes to zero. In the framework of our oscillation model this Hotor

way can be understood the transition of massless to massive

states. In - =N Tea10w =
Within our model particles arise as resonance states in proton ' (13)
chain systems of harmonic quantum oscillators and theismas Mpianck = V(AC/G) = 2.177x 1078 kg.

distribution is logarithmically symmetric. In [1] we have-i
vestigated the distribution of hadrons (baryons and mgsons The Planck mass pnck = 21.77 ug corresponds to the

in dependence on their rest masses. We have shown thaf'@in node [44¢] of the proton calibrated mass spectrum
known baryons are distributed over an interval of 2 logarithl0) and therefore, probably, sk is the rest mass of a
mical units, of [7;2c0] to [9; 2, o0]. Maximum of baryons fundamental particle. In the framework of our model [1] the
occupy the logarithmic center [8; )] of this interval. Max- gravitational constant G is connected directly with thedfan
imum of mesons occupy the spectral nodesf$that split up mental particles masses. Now we can calculate G based on
the interval of [0o] to [12; o] between the electron and thdhe proton rest massggion
W- and Z-bosons proportionally (g In addition, we have

shown that the mass distribution of leptons isnifelient of -
the baryon and meson mass distributions, but follows them. (e*Mproton)?

hc (14)
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Resume

In the framework of the present model discrete scaling mass
distributions arise as result of natural oscillations iraich
systems of harmonic quantum oscillators. With high preci-
sion, the masses of known fundamental and stable particles
are connected by the model scaling facgorPresumably,

the complete mass distribution of particles is logarithattic
symmetric and, possibly, massive particles arise as resena
states in chain systems of quantum oscillators.

Within our model any chain system of harmonic quan-
tum oscillators generates the same mass spectrum (10) and
the corresponding to the spectral node [1,2»Pobservated
particle mass of 125 GeV [15] can be interpreted as resonance
state in a chain system of oscillating protons, for example.
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Resonance and Fractals on the Real Numbers Set
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The paper shown that notions of resonance and roughness of real physical systems in
applications to the real numbers set lead to existence of two complementary fractals on
the sets of rational and irrational numbers accordingly. Also was shown that power of
equivalence classes of rational numbers is connected with well known fact that reso-
nance appear more easily for pairs of frequencies, which are small natural numbers.

1 Introduction Is known that exists one-to-one correspondence betweth [0

Well known that resonance is relation of two frequencpesand_[l o) intervalg. l.e., any regularities thained from (2) on
andq, expressed by rational numbez Q: the interval [Q 1] will be als'o true and for interval [1o).
In caseN — co expression (2) leads to
=2 (1) |
q [N} > Q.

wherep, qe N andN is the set of natural numberg,is set of o o )
rational numbers. If is irrational number, i.er € Q*, where Apparently, in th|§ case no distribution avallgble, because ra-
Q" is set of ifrational numbers, resonance is impossible. tional numbers distributed along number axis densely.

Resonance definition as= Q leads to the next question.  For case of real physical system, conditlr- co means
For real physical system, g and, consequently,cannot be tha}t any parameter; of the_ system must be defined with in-
a fixed number due to immanent fluctuations of the systeffite accuracy. But in reality parameters values of the sys-
Consequently, conditione Q cannot be fulfilled all time be- t€mMs cannot be defined with such accuracy even if we have an
cause of irrational numbers, which fill densely neighborhodégal, infinite-accuracy measuring device. Such exact values
of any rational number. By these reasons, resonance coSHIPly don't exist because of quantum character of physical
tion r € Q cannot be fulfilled and resonance must be impos&gality.
ble. But it is known that in reality resonance exists. The ques- All this means that for considered physical phenomenon
tion is: in which way existence of resonance corresponds witH€sonance — we need to limit parameitén (2) by some
it's definition asr € Q? finite numberN. Fig. 1 presents numerical simulation of (2)

Also is known that resonance appear more easily for séh the first two cases of finitél: N=1, N=2, andN =3.
r € Q for which p andq are small numbers. As will be showrin the caseN =1 (Fig. 1) we have only one value=1, and
this experimental fact is closely connected with the questil@m (2) we can obtain:
stated above. 1

. N (Q@l==. i=1 a=1w ®)

2 Rational numbers distribution a
The question stated above for the first time was conside{g@he case oN = 2, analogously:
by Kyril Dombrowski [1]. He suppose that despite the fact

that rational numbers distributed densely along the number ., 1 @& o o
axis this distribution may be in some way non-uniform. In {fQi } - 1 amap+l’ =12 a,a=1c (4)
cited work K. Dombrowski used proposed by Khinchin [2] a + 2
procedure of constructing of rational numbers set, based on
the following continued fraction: For the casd&N = 3 we have
al 1 a 1 apaz+1
{Qi } - 1 (2) {QI } B 1 - a]_(azag + 1) + a3’
a + - 1 a + —
Pt —— a+ — ©)
1
a+— i=1,23; aa,a3=1, 0.

whereay, a,...,a=1LN, i=1 N. Continued fraction (2) It's easy to see that final set presented in Fig. 1c has a fractal
gives rational numbers, which belongs to interval 10 character. Vicinity of every line in Fig. 1b is isomorphic to
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Fig. 1: Rational (a)—(d) and irrational (e) — (f) numbers distribution.
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whole set in Fig. 1a. Consequently, vicinity of every linei =°
Fig. 1c is isomorphic to whole set in Fig. 1b. Apparently thi 7o
such regularity will be repeated on every next step of the
gorithm and we can conclude that (2), in the casdleb oo,
gives an example of mathematical fractal, which in the cg
of finite N gives an pre-fractal, which can be considered
physical fractal.

From Fig. 1c we can conclude that rational numbers f
the case of finiteN distributed along number axis inhomo
geneously. This conclusion proves density distribution of r  ° 2000 4000 5000 5000 10000 12000
tional numbers, constructed on the base of set presente.. ... . . . n

- . P Fig. 2: Numbers of integer divisors af
Fig. 1c, and given in Fig. 1d.

Summarizing, we can state that roughness of parameter s
of real physical system modeled by finitein (2) leads to
inhomogeous fractal distribution of rational numbers along T
number axis. As follows from Fig. 1d major maxima in the 4000 --i-==i= A froi
distribution defined by first steps of algorithm given in (3). 350 SR S S S SR U S S

60
50

40

? r |4|| ||1 H|||'
|| [l 1] (11 1]

Number of divisors of a

10 ¢

. . 3000
3 Equivalence classes of rational numbers and resonance

2500
Expression (1) can be rewrite in terms of wavelengitand

g, Which corresponds to frequencipgnda;: 2000

1600 f-----4-

r = E = %. (6) 1000
q P 500
Suppose, thatlg > 1. Then (6) means that wavelengthis 0 L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

an integer part ofl,. In this case resonance condition can be
write in the formaq moda, =0, or in more general form:

5000
nmodi =0, (7 450
wherei,neN, i,n=1, co. All i, which satisfy (7) gives integer 4001
divisors of natural numbaenr. Fig. 2 gives graphical represen- s
tation of numbers of integer divisors of obtained from (7).

Analogously to previous, roughness of physical system
in the case of (7) can be modeled if insteadned co will
be used conditiom— N, whereN is quite large, but finite 200
natural number. In this case we can directly calculate power ;-
of equivalence classes of which belong to segment [IN].
Result of the calculation faX = 5000 is given in Fig. 3.

As follows from Fig.3a—b the power of equivalence 50
classes is maximal only for first members of natural numbers oL
axis.

From our point of view this result can explain the fact (b)
that resonance appears easier wpeandq are small num-
bers. Really, for the larger power of equivalence classes ex@tt
the greater number of paipsandq (different physical situa-
tions), which gives the same value mfwhich finally make
this resonance relation more easy to appeatr. N

An interesting result, related to the power of equivalenegual A n-points segments. In this way we obtamr-] seg-
classes, is presented in Fig. 4. This result for the firsttime Wasis. The points in the segments was numerated from 1 to
described, but not explained in [3]. In Fig.4 are presented N
diagrams, obtained by means of the next procedure. An. Finally all points with the same number i segments

Number sequence, presented in Fig. 2, was divided omtere summarized.

3000

2500 +

1000

3: Power of equivalence classes ok 5000, (a); magnified
of (a) forN=100, (b). X-axis: value of N, Y-axis: power of
equivalence classes.
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Fig. 4: Diagrams constructed on the base of sequence, presented in Fig. 2. The lengffoofts segments pointed by number below the
diagrams.
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It can be seen from Fig. 4 that form of straight case when a3 = 0.3027756
An is a prime number diagram always have a line. Other-
wise presents some unique pattern. If we examine patterns, a4 = 0.2360679

displayed in Fig. 4, we can find that in the role of buildings
blocks, which define structure of the patterns with relatively
big An, serve the patterns obtained for relatively snigil

The patterns with smalin based on numbers with greateresults of calculations are presented in Fig. le. Grey lines
power of equivalence classes and therefore manifests itg@lfig. 1e give rational numbers distribution, which is identi-
trough summarizing process in contradiction from relativey) to Fig. 1c. Black lines give results of numerical calcula-

big values ofAn. tion, based on (9) fob = 1, 100. Bold black lines point cases
a1,...,d4.

o ] o ) As possible to see from Fig. 1le algebraic numbers with
Presented in Fig. 1c —d rational numbers distribution display@ws ofb have tendency became closer to rational maxima.
some rational maxima. Existence of such maxima means Hgfs result, indicate that such numbers, possibly, are not the
in the case of rational relations, which correspond to the Ma¥sst candidate for “the most irrational ones” [1].

"T‘a' resonance will appearmore easy and interact_ion betweeny, present work we don't state the task to find explicit
different parts of considered physical system will be MY&m of irrational numbers fractal. It is clear, that first ir-

gtrong. '; parametgrs of the systebrr: cobrrespond :‘O, the Mfional maxima must be connected with golden section. The
Ima, such system becomes unstable, because o Intera(:Eﬁl'%'stion is about the rest of the maxima. Fig. 1f gives another

which is maximal for this case. attempt to construct such maxima on the base of set, given by

_Analogously to rational maxima is interesting to considglheralized golden proportion [4]. It is obvious from Fig. 1f
existence of irrational maxima, which in opposition to '8hat this case also is far away from desired result
tional one, must correspond to minimal interaction between

parts of the system and to its maximal stability. Work [1] sup-
pose that irrational maxima correspond to minima in rational Summary

numbers distribution. In the r(_)le of “the most i_rrational NUNMK| results described in the paper are based on the notions of
bers” was proposed algebraic numbers, which are roots,@onance and roughness of real physical system. This no-
equation tions in applications to set of real numbers leads to existence
a®+ab+c=0. (8) of rational numbers distribution, which has fractal character.
Assume that = — 1. Then Maxi_rr_la_ of the distribution (Fig. 1d) gorrespond to m_axim_al
sensitivity of the system to external influences, maximal in-
1 1 Ve2+4-b teraction between parts of the system. Resonance phenomena
T a+b 1 = 2 - (9 are more stable and appear more easy(1) belong to ratio-
b+ — 1 nal maxima (Fig. 1d).
b+ br . Obtained rational numbers distribution (Fig. 1c—d) con-
tains also areas where density of rational numbers are mini-
Infinite continued fraction gives the worst approximation fanal. It's logically to suppose that such minima correspond to
irrational numberx the smaller is itk + 1 component. So, maxima in irrational numbers distribution. We suppose that
the worst approximation will be in the cabe- 1: such distribution exists and is complementary to distribution
of rational numbers. Maxima in such distribution correspond

4 On irrational numbers distribution

ay = 1 _ V5-1 06180339  (10) to high stability of the _system, m|n|mal mFeracUon beMeen
1 2 parts of the system, minimal interaction with surrounding.
1+ 1 Both irrational and rational numbers distribution are re-
1+ lated to the same physical system and must be consider to-
1+--- gether.

The casd= 1 corresponds to co-called golden section. Far- Question about explicit form of irrational numbers dis-
ther calculations on the base of (9) give: " Tribution remains open. At the moment we can only state

that main maxima in this distribution must corresponds to co-

called golden section (10).
1 V8-2 ' ,
@z = 1 = —— =04142135 Ideas about connection between resonance and rational
24— numbers distribution can be useful in [4-8] where used the
24 1 same mathematical apparatus, but initial postulates are based
o4 ... on the model of chain system.
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Atomic Masses of the Synthesed Elements (N0.104—-118)
being Compared to Albert Khazan’s Data

Albert Khazan
E-mail: albkhazan@gmail.com

Herein, the Hyperbolic Law of the Periodic System of Elersasiverified by new data
provided by theory and experiments.

A well-known dependence exist in the Periodic Table of Elady later as my first research conclusions were published in
ments. This dependence links atomic masses of chem@D7 [1]. These new elements — their characteristics obtai-
elements with their numbers in the Table. Our research sted experimentally (even if with large scattering of the eam
dies [1, 2] produced in the recent years showed that this deal values) — can be considered as the experimental verifi-
pendence continues onto also the region of the synthetic elgtion of the theory | suggested [1, 2], including the Hymerb
ments located, in the Table, from Period 7 upto the endlmfLaw in the Periodic Table of Elements, and the upper limit
Period 8. As is seen in Fig. 1, our calculations can be desafithe Table in element No.155.
bed by an equation whose dbeient of truth approximation
is R> = 0.99995. However the experimental data obtained
by the nuclear physicists, who synthesed the super-heavy @leferences
ments, manifest a large §catt_er|ng _WhICh g,IV(,eS no chance ‘.:LO Khazan A. Upper Limit in the Periodic Table of Elementsodtess in
get a clear dependence in this region. This is because their ppysics, 2007, v. 1, 38-41.
experiments were produced in the hard conditions, and only knazan A. Upper Limit in Mendeleev's Periodic Table — Etamh
single atoms were synthesed that makes no possibilities for No.155. American Research press, Rehoboth (NM), 2012.
any statistics. Despite this drawback, the nuclear phstsici 3. web Elements: the Periodic Table on hitpebelements.com
continue attempts to synthese more and more super-heavy
elements, still giving their characteristics to be unclear
posed. At the present day, 15 super-heavy elements (No.104—
118) were synthesed. Obtained portions of them are as mi-
croscopic as the single atoms [3]. Therefore, masses of the
products of the reactions are estimated on the basis of cal-
culations. Analysis of the calculated data being compased t
the data obtained on the basis of our theory is given in Fig. 2.
The upper arc shows theffirence between the atomic mas-
ses obtained on the basis of the experimental data (which are
unclear due to the large scattering) and our exact caloulsti
All given in the Atomic Units of Mass (A.U.M.).
In the upper arc of Fig. 2, these numerical values are con-
verted into percents. As is seen, this arc has a more smooth
shape, while there is absolutely not deviations for element
No. 105 and No. 106. Most of the deviations is less than 2%.
Only 5 points reach 2.5-3.6%. Proceeding from these results
we arrive at the following conclusion. Because our calcula-
tion was true on the previous numerical values, it should be
true in the present case as well. Hence, the problem rises due
to the complicate techniques of the experiments, not doubts
in our theory which was checked to be true along all elements
of the Periodic Table. It is important to note that our theore
tical prediction of element No.155 [1, 2], heavier of whom no
other elements can be formed, arrived after this.
Concerning the experimental checking of our theory.
There are super-heavy elements which were synthesed alre-
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Fig. 1: Dependence of the atomic masses of the elements iomtimeber in the Periodic Table. The experimental data (obthwith large
scattering of the numerical values) are shown as the cumeedair calculations are presented with the straight line.

Differences between the experimental and our theoretical
atomic masses, in A.U.M. and in percents
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