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On the Propagation of Light in an Expanding Universe

Yuri Heymann
3 rue Chandieu, 1202 Geneva, Switzerland. E-mail: y.heyr@arahoo.com

The equation of the propagation of light in an expanding ©rse is derived based on
the definition of comoving distances. A numerical methodrigppsed to solve this

equation jointly with the Friedmann equation. As the equatbf the propagation of

lightin an expanding Universe defines a horizon of the visihiverse, this puts a con-
straint on cosmological models in order to be consistert aitupper limit for redshifts

observed from galaxies. This puzzle is challenging curegpgnsionist cosmological
models.

1 Introduction As H(t) = &/a, (1) leads to:

Euclidean Distances were introduced in [1] in order to deriv ay =y H(D) 5)
the galactic density profile which is the evolution of galac- X=y ’

tic density over time. We define the Euclidean Distance @¥mbining (3), (4) and (5) we get:

the equivalent distance that would be traversed by a photon

between the time it is emitted and the time it reaches the ob- dy

server if there were no expansion of the Universe. The co- at = —C+Hy. 6)
moving distance is the distance between two points measured ) ) .

along a path defined at the present cosmological time. MRerey is the_Euclldean Distance between the observer and
comoving distance between objects moving with the Hubldn0ton moving towards the observer. _

flow is deemed to remain constant in time. The Euclidean W& have just derived the equation of the propagation of

Distance is also the proper distance at the time of emissli§t in @n expanding Universe from the definition of comov-

for a source of light, which is the comoving distance muumg.dlstanctgys. This equation defines a horizon of the visible
plied by the scale factor at the time of emission. From tHiiverse atg = 0.
relationship, the equation of the propagation of light irean

panding Universe is derived 3 Numerical method to compute Euclidean Distances

from the Friedmann equation
2 Equation of the propagation of light in an expanding  Equation (6) can be solved numerically using a discretizati
Universe method. Let us sdt= T, — T with Ty, the hypothetical time

As the Euclidean Distance is the proper distance at the tif{ace the big bang, and the light travel time between ob-
light was emitted from a source of light, it is equal to the c§€rver and the photon. Therefodt,= —dT, and (6) can be
moving distance times the scale factor at the time of emmissigeWritten as follows:

By convention the scale factor is equal to one at the present dy
time. Therefore, we have gt - ¢~ HMy. (7)
y =a)yx. @) By discretization over small intervalsT , (7) leads to:
and
T dt Yntl “Yn _ o _ H(Ty)
= Yn . (8)
v=c[ & @ AT "
t=Tp-T a(t)

wherey is the comoving distancg,the Euclidean Distance, Therefore, we obtain:
a the scale factofTy, the time from the hypothetical big bang
(which is the present time), and the light travel time be-
tween observer and the source of light.

By differentiating (1) with respect to time we get:

Yni1 = CAT +yn (1 - H(Tp) AT), 9

with initial conditions:yo = 0 andTy = 0, andT;1 = Tn +
AT.

dy The Friedmann equation expresstas a function of red-

dt - dx+ax. 3) shift z. We still need a description ¢f as a function off in
ot di _ dy Cdy order to solve (9). For this purpose we compute a curve for
Asl = _ftl f(hdtleads tog = i f(tz) - g f(ta), from (2) the light travel timeT versus redshifz using the Friedmann
we get: . . ; - .
) C equation, with (11). Then we fit an empirical equation for
X = Ta) (4) H(T) over the curveH(2) versusT.

Yuri Heymann. On the Propagation of Light in an Expandingudrse 3
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The light travel time versus redshift is computed as fatomoving distance and proper distance do not track the prop-

lows (derived frondt = da/a):

agation of light through the Hubble flow. The puzzle of the

propagation of light in an expanding Universe and the haorizo

T (10)

fl da
c —_—.
1/(1+2) @

BecauseH = a/a, (10) can be rewritten as follows:

1
da
S
1@+ HA

This integral is solved numerically using a solver such as
Matlab.

The Friedmann equation that is used in this problem is as
follows: 3.

(11)
1,

H=Hy VQra? + Qua3+ Qa2+Q,, (12)
with Qg the radiation energy density today,, the matter
density today() the spatial curvature density today, &dd 4
a cosmological constant for the vacuum energy density today
We may alternatively expres$as a function of redshift from
cosmological redshift relationship by setting= ﬁz where
the scale factor is equal to unity as the present time.

4 Resultsand discussion

First let us solve the above problem with the assumptions
used in the lambda-cdm model [2]. The radiation energy
density is generally considered neglegible, hefige= 0.
The common assumption in the lambda-cdm is Qatis
equal to zero, an@, = 1 - Qp. To obtain a description

of H as a function ofT, we fit a polynomial function of
order six to theH(2) curve, which gives the following em-
pirical formula forQy = 0.3 andHg = 71kms!*Mpc?:
H(T) = 0.074663-0.049672T +0.056296T 2~0.021203T 3+
0.0036443T“-0.00029054r °+0.0000088134 %, with T in

Glyr and H(T) in Glyr~1. From the discretization method
(9) we obtain an horizon of the visible Universe at redshift
z = 1.6. A variant of the lambda-cdm model would be to re-
move the cosmological constant for the vacuum energy den-
sity (Q4 = 0), and replace this term by the spatial curvature
densityQy = 1 — Qy. This variant gives almost the same re-
sult with a horizon of the visible Universe at redshift 1.5.

On the other hand iH is constant over time, the horizon of
the visible Universe would have a redshift that tends to infin
ity.

The results obtained with the equation we derived for the
propagation of light solved jointly with the Friedmann equa
tion are inconsistent with observations as it is common to ob
serve galaxies with redshifts up to 6, and more recently be-
yond 8.5 [3]. This problem has been raised in the past — the
recession velocity of all galaxies wite 1.5 has been found
to exceed the speed of light in all viable cosmological mod-
els [4]. A calculation based on null geodesics using gravita
tional radius is proposed in [5]. Their hypothesis is that th

of the visible Universe appears to be an interesting chgdélen
for current expansionist cosmological models.

Submitted on February 16, 2012ccepted on February 23, 2013

References

Heymann Y. Building galactic density profileBrogress in Physics
2011, v. 4, 63-67.

Wright E. L. A Cosmology Calculator for the World Wide Wethe
Publications of the Astronomical Society of the Pagifio06, v.118,
1711-1715.

Ellis R.S., McLure R.J., Dunlop J.S., Robertson B.E., Ofp
Schenker M. A., Koekemoer A., Bowler R.A. A., Ouchi M., Roger
A.B., Curtis-Lake E., Schneider E., Charlot S., Stark DFRrlanetto
S.R., and Cirasuolo M. The abundance of star-forming gesaixi the
redshift range 8.5-12: new results from the 2012 Hubblealiteep
field campaignThe Astrophysical Journal Letterg013, v. 763, 1-6.

Davis T. and Lineweaver C.H. Expanding Confusion: Comitig+
conceptions of Cosmological Horizons and the Superlumiihadan-
sion of the UniversePublications of the Astronomical Society of Aus-
tralia, 2004, v. 21, 97-109.

5. Bikwa O., Melia F., and Shevchuk A. Photon Geodesics in FRW-

mologies.Monthly Notices of the Royal Astronomical Socie2912,
v.421, 3356-3361.

Yuri Heymann. On the Propagation of Light in an Expandingudrse



July, 2013 PROGRESS IN PHYSICS Volume 3

On the Luminosity Distance and the Hubble Constant

Yuri Heymann
3 rue Chandieu, 1202 Geneva, Switzerland. E-mail: y.heyr@arahoo.com

By differentiating luminosity distance with respect to time usisgstandard formula
we find that the peculiar velocity is a time varying velocifylight. Therefore, a new
definition of the luminosity distance is provided such the peculiar velocity is equal
to c. Using this definition a Hubble constady = 67.3km s Mpc™? is obtained from

supernovae data.

1 Introduction Using (1) we get: _ .

The luminosity distance is an important concept in cosmol- %X _2 re. (6)
ogy as this is the distance measure obtained from supernovae a a

data using the distance modulus. The standard formulaB§caused = 28 = 142, equation (6) can be rewritten as
the luminosity distance id. = (1 + 2)dy = dw/a, where follows: a

d, is the luminosity distance ardi, the comoving transverse 2X= —Hr_. @)

distance [1, p.421]. As shown below this definition implies .

that the peculiar velocity is a time varying velocity of ligh ~ COmPining (4), (5) and (7) we get:

and therefore a new definition is proposed where the speed of dr. C

light is constant. ar —ztHmn (8)

2 Definition of the luminosity distance and the peculiar The termH r._ represents the expansion for the radius of our
velocity from light propagation sphere, and; is the peculiar velocity. From light propaga-

. . ... tion we see that the standard formula of luminosity distance
From there we will use the notatiop for the luminosity dis- . ~ . . . . .
implies a time varying velocity of light.

tance as it represents the radius of a sphere for light paipag A new equation is proposed for the luminosity distance

ing from the center which is the point of emission of the light . o A
CT where the peculiar velocity is always equaktaConsidering
source. The standard formula of the luminosity distancafor . : . .
. . ) asphere of radiug for the propagation of light emitted from

flat Universe is as follows:

a point at the center, and that the sphere inflates over time du

r. = X , (1) tothe expansion of the Universe and the velocity of light, we
a obtain: q
r/
and o gt dTL =c+Hr[, (9)
=C -, 2 . i .
X o a @ with boundary conditiom; = 0 atT = 0. Wherer| is the

wherery is the luminosity distance, the comoving distance,luminosity distanceT the light travel time between emission
athe scale factor at the time of emissiarthe time which is and reception of the light source, ahidthe Hubble constant
equal to zero at the origin set at the center of the sphere frahtimeT.

\év::fhh light is emitted, anth the time when light reaches the3 Solving the equation of the luminosity distance

Let us apply the change of coordinales: to—t, whereT In this section we assume that the Hubble constant does not
is the light travel time between the observer and the photwary over time and is always equallth.

Hencedt = —dT, and (2) can be rewritten as follows: By integrating (9) we get:
0 dT T daT r = i (ex —
= — — JRE— L — p('_i() T) 1) . (10)
X =-c¢ - a c . ) Ho

This equation can be rewritten as follows:

- : 1 H
dr a - = 0
L_x_2¢ (4) T = Ho In(1+ c I’L). (11)

ar " a a2
As| = féz £(t) dt leads tod = % f(t,) - % f(ty), from (3) ;I;)r;livt\j;pressmn of the light travel time versus redshift is as

we get: 1 g4a 1
. _C T:f — =—1In(1+2. 12
X =3 ®) 1+ Ha  Ho (1+2 (12)

By differentiating (1) with respect 6 we get:

Yuri Heymann. On the Luminosity Distance and the Hubble @amts 5
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By combining (11) and (12) we get:
o C
re = He Z. (13)

4 Calculation of the Hubble constant from supernovae
data

Let us compute the Hubble constant from supernovae using
the relationship in (13) . In order to compute the luminosity
distance we use the redshift adjusted distance modulus pro-
vided in [2] which is as follows:

m-M = -5+5logr| +25log(1+2). (14)

The distance modulys = m— M is the diference between
the apparent magnitudeand the absolute magnitudié

16

d=14652
10 q R%=0999

luminosity distance Glyr
[=2]
L

0 T T T T T T T T T T
0 01 02 03 04 05 06 07 08 09 1 11
redshift

Fig. 1: Luminosity distance in Glyr versus redshift plot farper-
novae. Data source: htffsupernova.lbl.goWniory

In Fig. 1 we have a plot of the luminosity distance versus
redshift that was obtained with (14) using supernovae data.
This plot is rectilinear with a slope of 1856 where the lumi-
nosity distance is expressed@yr (billion light years). The
Hubble constant which is the inverse of the slope from (13) is
equal toHg = 67.3kms1Mpc.

5 Conclusion

In this study it has been shown that the standard formula of
the luminosity distance implies that the peculiar velogta

time varying velocity of light. Given our choice for the lumi
nosity distance equation which is based on a peculiar \gloci
always equal ta, we find that the solution to this equation
requires a Hubble constant that does not change over time in
order to fit the supernovae data.

Submitted on February 16, 2013ccepted on February 23, 2013
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Electric Dipole Antenna: A Source of Gravitational Radiation

Chifu E. Ndikilar and Lawan S. Taufa
*Physics Department, Federal University Dutse, Nigeria
TPhysics Department, Bayero University Kano, Nigeria

E-mail: ebenechifu@yahoo.com

In this article, the gravitational scalar potential due mooscillating electric dipole an-
tenna placed in empty space is derived. The gravitatiorteipial obtained propagates
as a wave. The gravitational waves have phase velocity equbk speed of light in
vacuum ¢€) at the equatorial plane of the electric dipole antennakemlectromagnetic
waves from the dipole antenna that cancel out at the eqahjgdne due to charge
symmetry.

1 Introduction

Gravitational waves were predicted to exist by Albert Egirst
in 1916 on the basis of the General Theory of Relativity. The
are usually produced in an interaction between two or mc
compact masses. Such interactions include the binaryafrbi
two black holes, a merge of two galaxies, or two neutron stz
orbiting each other. As the black holes, stars, or galaxieis o
each other, they send out waves of “gravitational radiétio
that reach the Earth. A lot offferts have been made ovel
the years to detect these very weak waves. In this artic
we show theoretically, how the gravitational potential of a
electric dipole antenna placed in empty space propagate:
gravitational waves.

2 Gravitational radiation from an electric dipole an-
tenna

Fig. 1: Amplified diagram of an electric dipole antenna.

Recall that an electric dipole antenna is a pair of conduct-
ing bodies (usually spheres or rectangular plates) of fing@ereN is the number of electrons moving in the dipole an-
Capacitance connected by a thin wire of neg||g|b|e Capa@nna andﬂe is the electronic mass. For this mass distribu-
tance through an oscillator. The charges reside on the cbD, the gravitational field equation can be written as [2]
ducting bodies (electrodes) but may travel from one to the 0 ifr>R
) . 2

other through the wire. The oscillator causes the charges to Voo = { 47Gpo ifr<R (2)
be built up on the electrodes such that at any time they are
equal and opposite and the variation is sinusoidal with angu Now, consider a unit mass placed at a p&in empty
lar frequencyw [1]. space, far & from the electric dipole as in figure 1, then by

Let the electric dipole antenna be represented by a pailNsiwton’s dynamical theory, the gravitational scalar ptiggn
spheres seperated by a distasegith a sinusoidal charg® @ atRat any timet can be defined as
as shown in figure 1. — —

If the total mass of each sphere at any timeMig and o(r,1) = G:\rﬂa_(rri] D, G:\rﬂli(rrg] )
its radiusRs and assuming an instantaneous mass distribution a b

which varies with the motion of electrons, then at each tinf@ maintain equal and opposite charges at the electrodes, th
t, the mass densityp is given by sinusoidal movement of electrons must be in such a way that

the masses of the two spheres are the same and determined at

3)

po = Mo+ pesinwt (1) pointRto be given by
where — _ ot
o~ Mo Ma(fa, t) = Mp(f, t) = Mog("). 4)
0= "3
4nRS Thus, the gravitational potential Rtbecomes
and
_ Nme _ GMgg“®)  GMpg“)
pe= 47RS o(r,t) = r + rb . (5)

Chifu E.N. and L.S.Taura. Electric Dipole Antenna: A Soun€&ravitational Radiation 7
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Using the fact that gravitationaffects propagate at the e For
speed of light from General Relativity [3], equation (5) can stcod 0 > 16r222

be written as it is clear that

jo(t-2) jolt-2)
GMoe + GMoe . (6) s4co§6) o

D(7,t) =
.9 ra Mo arcta

From figure 1 and the cosine rule it can be shown that o ) o
Thus in this case, the phase velocity of the gravitational

Fa~T— gcose =r (1 - 23 cos@) potential isc.
r o If s*cog 6 is not much greater than %t? then the
and s s phase velocity of propagation s larger tha his pro-
p =~ r+ > cosf = r(l + o cos@) vides a crucial condition for the propagation of gravi-

tational waves from an electric dipole antenna at veloc-

and assuming that> sthen ities greater than the speed of light.

L R ey ) ¢ At the equatorial plane of the electric dipole antenna,
c c 2 6=7%and
Iy r s _ 2GMo 1t
t——=t-- - —cosh. 8 CDr,t:—e'“( o).
c c 2 ®) .9 r
Substituting equations (7) and (8) into equation (6) yields This indicates that at the equatorial plane; the gravita-
s " tional wave propagates at a phase velocitg,afnlike
_ GMo i ot ez cost @ 2 cost . i .
(1) = —2gwlt-o) + 9) in the case of electromagnetic waves, where fields of
r 1-5cos§ 1-5cosd the two electrodes cancel out each other due to charge
. . symmetry.
wherel = % = £. 1is the wavelength of the gravitational y y o i .
wave. e Also, the gravitational field varies al% and thus the

wave dies out as one moves away from the dipole an-
tenna. This is in agreement with the prediction by
Astrophysicists that as gravitational waves travel from
galaxies towards the Earth, their intensities dieamd
2GMo ¢t is? they become too weak when they get to planet Earth.
Toe'”“’E) (/T t o cog 9) . (10) y 9 .

3 Conclusion

Series expansion of the exponential term and denomina-
tor of the fractions in the brackets of equation (9) to the firs
power of 3 and? yields

o(r. 1) =

Equation (10) is valid provided << r ands << A for arbi-
trary sandaA.
But from complex analysis it can be shown that,

The major significance of this article is that, although the

electric dipole antenna is not made up of massive compact
bodies, the generation of gravitational radiation has been
& cod 9)1/2 o shown theoretically. Hence, this article highlights thetfa

16r2 (11) that gravitational radiation can be produced by an intéact
of two masses irrespective of their sizes. The use of gravita
where tional potential which is a dynamical parameter also sigsifi
M) ) that the existence of gravitational waves can also be prestlic
1l6r2a2 using Newton'’s theory of gravitation.
Thus equation (10) becomes,

/T+§c0526=(/12+
4r

o = arcta

Submitted on February 07, 2012ccepted on February 27, 2013
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The Heisenberg Uncertainty Principle and the Nyquist-Shannon
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The derivation of the Heisenberg Uncertainty Principle @jUrom the Uncertainty
Theorem of Fourier Transform theory demonstrates that tHe ldrises from the de-
pendency of momentum on wave number that exists at the quaettel. It also es-
tablishes that the HUP is purely a relationship between fieetive widths of Fourier
transform pairs of variables (i.e. conjugate variablesp Mite that the HUP is not a
quantum mechanical measurement principée se We introduce the Quantum Me-
chanical equivalent of the Nyquist-Shannon Sampling Témoof Fourier Transform
theory, and show that it is a better principle to describentieasurement limitations of
Quantum Mechanics. We show that Brillouin zones in SolideS®ysics are a manifes-
tation of the Nyquist-Shannon Sampling Theorem at the gquaté¢vel. By comparison
with other fields where Fourier Transform theory is used, wippse that we need to
discern between measurement limitations and inherentdtions when interpreting the
impact of the HUP on the nature of the quantum level. We furginepose that while
measurement limitations result in our perception of indeteism at the quantum level,
there is no evidence that there are any inherent limitatirise quantum level, based
on the Nyquist-Shannon Sampling Theorem.

1 Introduction wheref is the function of interest anfli is its Fourier trans-

The Heisenberg Uncertainty Principle is a cornerstone af qfo™- W(T) is the gfective width of functionf, defined by

ntum mechanics. As noted by Hughes [1, see pp. 265-266], fw If(W2[u - M()]2du
the interpretation of the Principle varies IW(f)]? = ==—
. o . [ 1f(u)Pdu
e from expressing a limitation on measurement as orig- oo
inally derived by Heisenberg [2] (Heisenberg’s micraandM(f) is the mean ordinate defined by
scope), . ,
¢ to being the variance of a measurement carried out on M(f) = LX, If(Wl“udu 3)
an ensemble of particles [3] [4], L‘X’ [f(u)l2du ’
¢ to being inherent to a microsystem [5], meaning essen- , ,
tially that there is an indeterminism to the natural world | Nere are several points that must be noted with respect

which is a basic characteristic of the quantum level, t© this derivation: _ _ _
Eq.(1) applies to a Fourier transform pair of variables.

Greenstein retains only the first and last alternativesédsé, Sl'aking the simple case of timteand frequency to illustrate

p.51]. the point: If we consider the functiohto be the function that

_ However, the Heisenberg Uncertainty Principle can be qgsripes a time function then the width of the function,
rived from considerations which clearly demonstate theg¢h W(f), can be denoted a&/(f) = At. The Fourier transform

interpretations of the principle are not required by itsimat ¢ 4,nctiont is the frequency function and the width of this

matical formulation. This derivation, based on the appiet® ¢, \tion can be denoted A4(®) = W(») = Av. Substituting
of Fourier methods, is given in various mathematical and A1), the Uncertainty Theorem then yields

gineering textbooks, for example [7, see p. 141].

(@)

i o ) , AtAv = 1/2. 4
2 Consistent derivation of the Heisenberg Uncertainty

Principle However, if one wishes to use the circular frequeacy

In the Fourier transform literature, the Heisenberg Ureiest 27 instéad, (4) becomes

ty Principle is derived from a general theorem of Fourier the AtAw > 7. (5)

ory called the Uncertainty Theorem [7]. This theorem states

that the &ective width of a function times thefective width It is thus necessary to take special care to clearly idetttdy

of its transform cannot be less than a minimum value givEourier transform variable used as it impacts the R.H.S. of

by the resulting Uncertainty relation (see for example [8] fhd
W(f)W(f) > 1/2 (1) pp.21-22)).

Pierre A. Millette. The Heisenberg Uncertainty Principtelahe Nyquist-Shannon Sampling Theorem 9
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Equations (4) and (5) above correspond to the followinvglue7i/2 is used instead of the valdg2 obtained in this

definitions of the Fourier transform respectively [8]: analysis. The application of (4) to circular variables.(us-
Equation (4): ing w in (4) instead of (5)) would result in the (incorrect)
. expression
f(t) = f f(v) exp(2rivt)dy (6) AtAw > 1/2 (14)
_o; and the more commonly encountered (incorrect) expression
fo)y= | f(t) exp2zivt)dt 7
) j:oo () exp-2rivy % AEAt > 1/2. (15)
Equation (5): : - I
However, Heisenberg’s original derivation [2] had the R.
1 e H.S. of (13) approximately equal tg and Greenstein’s re-
O = 27 j:w f(w) exp(wt)dw 8) derivation [6, see p.47] of Heisenberg's principle resirits

the valueh/2. Kennard's formal derivation [12] using stan-
{(w) _ fm f(t) exp(iwt)dt 9) dard deviations established the valuéif? used today. This
—oo would thus seem to be the reason for the use of the val2e
Sometimes the factor/2x is distributed between the twoln the formulation of the Heisenberg Uncertainty Principle
integrals (the Fourier and the Inverse Fourier Transform In Recently, Schurmann et al [13] have shown that in the
tegrals) as 1vV2x. In Physics, (8) and (9) are preferred, agase of a single slit @iraction experiment, the standard devi-
this eliminates the cumbersome factor afil the exponen- ation of the momentum typically does not exist. They derive
tial (see for example [10, p. 12]), but care must then be takég conditions under which the standard deviation of the mo-
to ensure the resulting factor of4x in (8) is propagated for- mentum is finite, and show that the R.H.S. of the resulting
ward in derivations using that definition. inequality satisfies (13). It thus seems that (13) is the more
Using the relatiorE = hy, whereh is Planck’s constant, general formulation of the Heisenberg Uncertainty Pritegip
in (4) above, or the relatioE = 7w, wheresi = h/2x, in  While the expression with the valug’2 derived using stan-
(5) above, one obtains the same statement of the Heisenl§@fg deviations is a more specific case.

Uncertainty Principle namely Whether one uses/2 orh/2 has little impact on the Hei-
senberg Uncertainty Principle as the R.H.S. is used to geovi
AEAt > h/2 (10) anorder of magnitude estimate of tHEeet considered. How-

. ever, the diference becomes evident when we apply our re-
in both cases. N . _ ~ sults to the Brillouin zone formulation of Solid State Phogsi
Similarly for the positionx, if we consider the function (a5 will be seen in Section 5) since this now impacts calcula-

f to be the function that describes the positionf a parti-  {jons resulting from models that can be compared with exper-
cle, then the width of the functioWy(f), can be denoted asjyental values.

W(f) = Ax. The Fourier transform of functioris the func-

tion X = /l_l a.nd the W|dth Of thIS fUnCtion can be denOted @ |nterpretati0n of the Hamnberg Uncertajnty Princi-
W(X) = W(1™1) = A(171) which we write asA~? for brevity. ple

You will note that we have not used the wavenumber function o . .
k, as this is usually defined &s= 27/ (see for example [11] This derivation demonstrates that the Heisenberg Unceytai

and references). Substituting in (1), we obtain the refatio Principle arises becaugseandp form a Fourier transform pair
of variables. It is a characteristic of Quantum Mechanies th

AXALL > 1/2. (11) conjugate variables are Fourier transform pairs of vaesbl

Thus the Heisenberg Uncertainty Principle arises becdgse t

In terms of the wavenumbér (11) becomes momentump of a quantum patrticle is proportional to the de
Broglie wave numbek of the particle. If momentum was

AXAK > . (12) not proportional to wave number, the Heisenberg Uncestaint

. ... Principle would not exist for those variables.
Given that the momentum of a quantum patrticle is given __ ; . .
by p = h/4 or by p = ik, both (11) and (12) can be express This argument elucidates why the Heisenberg Uncertainty
yp= yp=nk P elgrinciple exists. Can it shed light on the meaning of the
as . . L2 . .
Heisenberg Uncertainty Principle in relation to the basie n
ture of the quantum level? First, we note that the Uncenaint
Equations (10) and (13) are bothffdirent statements of thePrinciple, according to Fourier transform theory, relates
Heisenberg Uncertainty Principle. effective width of Fourier transform pairs of functions or vari
The R.H.S. of these equations idfdrent from the usual ables. It is not a measurement theorper se It does not
statement of the Heisenberg Uncertainty Principle whege thescribe what happens when Fourier transform variables are

AXAp > h/2. (13)
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measured, only that theiffective widths must satisfy the Un-where Yk is the constant of proportionality of (20) given by
certainty Principle.

Indeed, as pointed out by Omneés [14, see p.57], "it is K = 2_6 \/EzgagcRH 22)
quite legitimate to write down an eigenstate of energy at a 3V3

well-defined time”. Omnes ascribes this seeming violatibn ) o
the Heisenberg Uncertainty Principle to the fact that time'{"€T€Z is the nuclear charge of the hydrogenic iens the

not an observable obtained from an operator like momentJ€-Structure constant, ait is the hydrogen Rydberg con-
but rather a parameter. Greenstein [6, see p. 65] makesfg't- Eliminating the middle term, (21) becomes
same argument. However, timenultiplied by the speed of h. In(n)
light cis a component of the 4-vectgt and energy divided Emnz 5 k=5~ (23)
by c is a component of the energy-momentum 4-ve&ér
The time component of these 4-vectors should not be treafgablying L'Hopital’s rule, the R.H.S. of the above equatio
differently than the space component. The operator verisusf order
parameter argument is weak. _ _ RHS ~ O(i) asn — oo (24)

What Omnés’ example shows is that the impact of the ef- n°
fective widthsAt andAE of the Heisenberg Uncertainty Prinyhile the L.H.S. is of order [16, see p. 9]
ciple depends on the observation of the time functiamd
of the energy functiork that is performed. A time interval
At can be associated with the time functioduring which is
measured the energy eigenstate funciomhich itself has a
certain widthAE, with both widths Q) satisfying (10). This Given that (24) tends to zero faster than (25), (23) is satlsfi
example demonstrates that the Heisenberg Uncertainty PBAth 7, the lifetime of the atom in energy eigenstateand
ciple is not a measurement theorem as often used. RatH,transition energfmn for the transition between states
it is a relationship between thefective widths of Fourier andm satisfy the conditions for observation of the spectral
transform pairs of variables that can have an impact on i emission. Thus for the time intervat, given by (16),
observation of those variables. associated with the time functian for the transition energy

A more stringent scenario for the impact of the energfgnction Emn which itself has a certain widthE, given by
time Heisenberg Uncertainty Principle is one where the tirfik/), bothA’s satisfy (10) as expected, given the observation
and energy functions are small quantities. For example, @fespectral line emission.
consider the impact aft on the observation af;, the lifetime
of an atom in energy eigenstateand the impact oAE on
the transition energlnn, for a transition between statesind
m during spectral line emission. The conditions to be able Ad the quantum level, one must interact to some degree with a

1
L.H.S. ~ o(ﬁ) asn — oo (25)

4 Quantum measurements and the Nyquist-Shannon
Sampling Theorem

observer, andEq, are: quantum system to perform a measurement. When describing
the action of measurements of Fourier transform variables,
™ > At (16) one can consider two limiting measurement cases: 1) trunca-
E.n> AE. (17) tion of the variable time series as a result of a fully intérag

measurement or 2) sampling of the variable time series at in-
Using (10) in (16), tervals which we consider to be regular in this analysis, in
the case of minimally interacting measurements. As we will

n > At > h/(2AE). (18) see, the action of sampling allows for measurements that oth

Hence ferwise YVOU|d not be possible in the case of a single minimal
h1 interaction.

AE > 20 (19) It should be noted that the intermediate case of a partial

neasurement interaction resulting for example in a transfe
more constrained in the limit of large Using the following of energy or momentum to a particle can be considered as

hydrogenic asymptotic expression far from Millette et al the truncatllon of the original tlme series and the initiatio
[15] of a new time series after the interaction. The advantage

As statenincreases, the lifetims, decreases. Eq.(19) is thu

ns of decomposing measurement actions in this fashion is that
Tn ~ m (20) their impact on Fourier transform variables can be desdribe
_ by the Nyquist-Shannon Sampling Theorem of Fourier trans-
into (19), (17) becomes form theory. This theorem is a measurement theorem for
h. In(n) Fourier transform variables based on sampling and trumcati
Emn> AE 2 s k—- (21) operations.

Pierre A. Millette. The Heisenberg Uncertainty Principtelahe Nyquist-Shannon Sampling Theorem 11
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The Nyquist-Shannon Sampling Theorem is fundamentaheresp is the p-domain sampling rate and thevalues can
to the field of information theory, and is well known in diditabe measured up tgy (corresponding to the equality in the
signal processing and remote sensing [17]. In its most basguations above).
form, the theorem states that the rate of sampling of a signal Conversely, applying the theorem to the case where a par-
(or variable)fs must be greater than or equal to the Nyquistle's trajectory is sampled at a ratet, one can also write
sampling ratefs to avoid loss of information in the sampledrom (29), forX < %y, wherex'stands for either o™, k, or
signal, where the Nyquist sampling rate is equal to twice tha
of the highest frequency componeffitax, present in the sig- oxAt <172, forat <Ayt (34)
nal: or
fs > fs = 2fmax. (26) sxk<m, fork < k (35)
If the samplmg rate is Ies_s than that of (26), aliasing OSCUL 1ioh becomes
which results in a loss of information.
In general, natural signals are not infinite in duration and, oxp<h/2, forp<pn (36)
during measurement, sampling is also accompanied by trun-
cation of the signal. There is thus loss of information dgrirwheredx is the x-domain sampling rate arkl, is the wave
a typical measurement process. The Nyquist-Shannon Saomber range that can be measured. For the case where the
pling theorem elucidates the relationship between thege®cequality holds, we havky = 7/6x whereky is the Nyquist
of sampling and truncating a variable and ttikeet this ac- wave number, the maximum wave number that can be mea-
tion has on its Fourier transform [18, see p.83]. ffeet, it sured with asx sampling interval.
explains what happens to the information content of a vari- Sampling in one domain leads to truncation in the other.
able when its conjugate is measured. Sampling §x) and truncation Xy) in one domain leads to
Sampling a variable at a ratesx will result in the mea- truncation ky) and sampling dk) respectively in the other.
surement of its conjugate variabté&ing limited to its max- As x andk form a Fourier transform pair in quantum mechan-
imum Nyquist range valugy~as given by the Nyquist-Shan-cs, the Nyquist-Shannon Sampling theorem must also apply
non Sampling theorem: to this pair of conjugate variables. Similar relations can b
derived for theE andv pair of conjugate variables.

X < Xy (27)
5 Implications of the Nyquist-Shannon Sampling Theo-
where rem at the quantum level
= 1/(26%). (28) Equations (32) and (35) lead to the following measurement
Combining these two equations, we get the relation behaviors at the quantum level:
Lower-bound limit: If the position of a particle is mea-
Xox<1/2, forX< Xn. (29) sured over an intervady, its wave number cannot be resolved

with a resolution better than sampling réteas given by (32)
Conversely, truncating a variableat a maximum valuey  with x = xy. If the momentum of a particle is measured over
(x < xn) will result in its conjugate variablg Being sampled an intervalky, its position cannot be resolved with a resolu-
at a ratesX given by the Nyquist-Shannon Sampling theoretion better than sampling raé as given by (35) withk = ky.

0% = 1/(2xn) resulting in the relation Upper-bound limit:If the position of a particle is sampled
. at a ratesx, wave numbers up tky can be resolved, while
6Xx<1/2, forx<xn. (30) wave numbers larger tha cannot be resolved as given by

(35). If the momentum of a particle is sampled at a &e

The impact of the Nyquist-Shannon Sampling theoremi,gihs up toxy can be resolved, while lengths longer than
now considered for a particle’s positiocrand momentunp. xn cannot be resolved as given by (32).

Applying the theorem to the case where a particle’s rajgcto  The |ower-bound limit is similar to how the Heisenberg

is truncated toc, we can write from (30), fok < xu, Uncertainty Principle is usually expressed when it is used a

a measurement principle, although it is not strictly equiva

lent. The Nyquist-Shannon Sampling Theorem provides the

proper formulation and limitations of this type of measure-

ment.

The upper-bound limit suggests &fdrent type of quan-
which becomes tum measurement: regular sampling of a particle’s position
or momentum. In this case, one can obtain as accurate a mea-

xop<h/2, forx< xy (33) surement of the Fourier transform variable as desired, up to

X611 <1/2, forx< xy (31)

or
xok <m, forx< xy (32)

12 Pierre A. Millette. The Heisenberg Uncertainty Prineiphd the Nyquist-Shannon Sampling Theorem
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the Nyquist-Shannon Sampling limit bf2 (i.e. in the inter- 6 Measurement limitationsand inherent limitations

val f h/2]). le of this oh in Solid S It is important to dfferentiate between the measurement lim-
n example o this p €nomenon occurs in Sofl ta1'tt_(§\ti0ns that arise from the properties of Fourier transfor
Physics where the translational symmetry of atomsin a s irs previously considered, and any inherent limitatibras

resulting from the regular lattice spacing, is equivalena may or may not exist for those same variables independently

effective sampling of the atoms of the solid and gives rise 8P the measurement process. Quantum theory currently as-
the Brillouin zone forwhich the v_alid valugs bare governe_d sumes that the inherent limitations are the same as the mea-
by (35). Settingx = a, the_latt|ce spacing, and_EXtend'ngurement limitations. This assumption needs to be re-exami
by symmetry thd(_ values to include the symmetric negativiey pased on the improved understanding obtained from the
values, one obtains [19, see p. 34], [20, see p.100], [10, gfibct of the Uncertainty and Sampling Theorems in other ap-
p.21]: plications.

-n/a<k<n/a (37) The properties of Fourier transform pairs considered in
the previous sections do not mean that the underlying quanti
ties we are measuring are inherently limited by our measure-

(38) ment limitations. On the contrary, we know from experience

This is called the reduced zone scheme ayualis called the N Other applications that our measurement limitations oo n

Brillouin zone boundary [21, see p. 307]. The Brillouin zend€Presentan inherent limitation on the measured quasiitie

of Solid State Physics are thus a manifestation of the Nyquisourier Transform theory: for example, in Digital SignabPr

Shannon Sampling theorem at the quantum level. cessing, a signal is c_ontlnuous even th_ough our measqrement
In essence, this is a theory of measurement for variab?ésthe s_|gnal “?S“'ts In d|screte_and aliased values_ of dichit

that are Fourier transform pairs. The resolution of our mer§§OIUt'on subject to the Nyquist-Shannon Sampling Theo-

surements is governed by limitations that arise from the Ny (anqlog and dig_ital repres_entation of the signal). The e
quist-Shannon Sampling theorem. Equations (32) and ( tive width of the signal and its transform are relatedhsy t

are recognized as measurement relationships for quantuficertainty theorem. Even though the time and frequency

mechanical conjugate variables. Currently, Quantum Mecffyolution O.f a 3|gnal that We measure 1S limited by our mea-
nics only considers the Uncertainty Theorem but not the Sa?H_rement limitations, f[he tlme_domam and frequency domain
pling Theorem. The two theorems are applicable to Quantﬁmnals are both continuous, independently of how we mea-
Mechanics and haveftiérent interpretations: the Uncertaint?ure them. o

Theorem defines a relationship between the widths of conju- 1 N€ measurement limitations apply equally to the macro-
gate variables, while the Sampling Theorem establishes s&fPPIC level and to the quantum level as they are derived from

pling and truncation measurement relationships forccrrt}mgthe properties of Fourier transform pairs of variables \Wwhic
variables. are the same at all scales. However, at the quantum level, con

The valuesx is a sampled measurement and as a resit’y to our macro_s_copic environmentt we cannot percewe th
can resolve values qf up to its Nyquist valugy given by underlying quantities other than by instrumented measure-

the Nyquist-Shannon Sampling theorem, (36). This is a sP?—entS' I_—|e_nce during a measurement process, the quantum
prising result as the momentum can be resolved up to figel IS limited by our measurement I!mqatlons. Howeyer,
Nyquist value, in apparent contradiction to the Heisenbe‘?fgsr_m_”“g_that th?ﬂe measé)ure_mehntllmltatllons r?phresermnh
Uncertainty Principle. Yet this result is known to be cotre t "_“”'ta“ons and form a basic ¢ ar_a_cterlsnc of the quamt

as demonstrated by the Brillouin zones formulation of Sol 8"6' IS an assu_mptlon thatis nOtJUSt'fle.d based on the prec_e
State Physics. Physically this result can be understood 9 considerations. Indeed, the Nyquist-Shannon Sampling

the sampling measurement operation which builds up the rﬂ'g_eorem of F_ourler Transform thgory shows that the rahge of
mentum information during the sampling process, up to 4 lues of variables below the Heisenberg Uncertainty Rrinc

Nyquist limit py. It must be remembered that the Nyquisﬂe value ofh/2 is accessible under sampling measurement
limit depends on the sampling rasix as per the Nyquist- conditions, as demonstrated by the Brillouin zones formula

Shannon Sampling theorem, (36). The Nyquist value mdgn of Solid State Physics.
also satisfy (26) to avoid loss of information in the samglin
process, due to aliasing.

This improved understanding of the Heisenberg Uncer-
tainty Principle and its sampling counterpart allows udao-c Brillouin zone analysis in Solid State Physics demonssrate
ify its interpretation. This is based on our understandifig that one can arbitrarily measukefrom 0 up to its Nyquist
the behavior of the Uncertainty Theorem and the Nyquiditnit, as long as the variable is sampled at a constant rate
Shannon Sampling Theorem in other applications such as,(father than performing a singbemeasurement). The Ny-
example, Digital Signal Processing. quist-Shannon Sampling Theorem can thus be considered to

or alternatively
k<|rn/al.

7 Overlap of the Heisenberg Uncertainty Principle and
the Nyquist-Shannon Sampling Theorem
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cover the range that the Heisenberg Uncertainty Principle ég new experimental conditions beyond the Brillouin zone
cludes. example from Solid State Physics considered in this paper,
However, one should recognize that the coverage res@allowing a unique vista into a range of variable values previ
from two disparate theorems, and one should be careful aosly considered unreachable due to the Heisenberg Uncer-
to try to tie the two Theorems at their value of overlagThe tainty Principle. Regular sampling of position allows us to
reason is that one expression involves the widths of comgugdetermine momentum below its Nyquist limit, and similarly
variables as determined by (1) to (3), while the other ingslvthe regular sampling of momentum will allow us to determine
sampling a variable and truncating its conjugate, or vigsare position below its Nyquist limit.
as determined by (32) and (35). The equations are not contin- Submitted on February 21, 2012ccepted on March 04, 2013
uous at the point of overlagp. Indeed, any relation obtained
would apply only at the overlap and would have no appli-
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The Cause of the Increased L uminosity Distances of Supernovae
Recorded in the Cosmological Data

Emmanuil Manousos
Astrophysics Laboratory , Faculty of Physics, National Kaghodistrian University of Athens,

Panepistimiopolis, GR 15783 Zographos, Athens, GreegealE-emanoussos@phys.uoa.gr
The law of selfvariations quantitatively determines aldlimcrease of the masses and
charges as the common cause of quantum and cosmologicamkaa. It predicts and
explains the totality of the cosmological data. In this@etive present the prediction of
the law concerning the increased luminosity distancessidt astronomical objects.
The prediction we make is in agreement with the cosmologlata for the luminosity
distances of type la supernovae.

1 Introduction microcosm, the fact that the luminosity distances of distan

The science of Physics possesses today a plethora of kn@gfronomical objects will always be measured larger than th
edge that allows us to seek the first principles governingph hctual dlstancgsl. It is this last prediction that we pregent
ical reality. We can search for a small number of proposttio e c_urrent article. . ) ) }
axioms that could reproduce the totality of our knowledge in Since the obs_ervatlons of distant astronomical O_bJECtS cor
Physics. The theory of selfvariations has emerged alorsg lﬁspond to_past time, the rest masses of the ma_terlal [Eerticl
line of reasoning. in these objects are smaller than the corresponding magses w
We make two hypotheses: The rest masses and eledBfasure in the laboratory, due to the selfvariations. There
charges of the material particles increase slightly wita tf°re: the energy resulting from fusion and fission in distant
passage of time (selfvariations), and the consequenchisof¢Stronomical objects is less than expected. These distant a
increase propagate in four-dimensional spacetime witma vijonomical ObJeCtS_ are fuelled W_'th a smaller than e_xpect_ed
ishing arc length. Starting from these two hypotheses we c&mount of energy in order to emit the glectromagnetlc radia-
clude that the selfvariations occur in a strictly defined maW)_n we obse_rve today from .Earth..Th|s fact reduces the lu-
ner. We call the quantitative mathematical determinatibn @inosity of distant astronomical objects. _
the way in which the selfvariations occur, the law of selivar I the last decade of the previous century two independent
ations. research groups under A.G. Riess and S. Perlmutter, mea-
The law of selfvariations contains an exceptionally Iargté‘red the decrease of the luminosity for a large number of
amount of data and information. It is related to the quantJ¥Pe€ 12 supernovae at great distances. In order to explain th
phenomena, the potential fields, and the cosmological dQservational data within the framework of the standard cos
With the evidence we have in our disposal, and the matfological model, the hypothesis of dark energy was intro-
matical calculations we have performed, we can propose ed. )
law of selfvariations as the common cause of quantum phe- e have today a large amount of observational data con-
nomena and cosmological data. The consequences of thel[§ing the decrease of luminosity at large distances. Al
of selfvariations extend from the microcosm up to the obs&f€S€ measurements result in a specific diagram correlating

vations we conduct billions of light years away. Equation the luminosity-distance with the redshift of distant asom-
ical objects. This diagram, as it results from the cosmalalgi

24 11} data, is exactly the same with the one predicted theorBtical
MoC™ + 'hE =0, by the law of selfvariations. In the next paragraph we presen

the diagram that we theoretically predict.
with unique unkown the rest masg of particles, both con-

tains as physical information, and justifies, the whole aerp2 The luminosity distances of distant astronomical ob-

of the current cosmological observational data. jects will always be measured greater than their real
Specifically for the cosmological data, the law of selfvari- distances

ations predicts and justifies: the redshift of distant a8~ 114 jaw of selfvariations [1,2] predicts the relation

ical objects and Hubble’s law, the cosmic microwave back-

ground radiation, the large-scale structures of mattehén t C A

Universe, the fact that the Universe is flat, the fact that the r=gin (m ’

total energy-content of the Universe is zero, the fact that t

very early Universe went through a phase of ionization, thetween the distangeand the redshift of distant astronom-

arrow of time in the macrocosm and its breakdown in theal objects. For the dimensionless paraméteit holds that

Emmanuil Manousos. The Cause of the Increased Luminos#itabies of Supernovae Recorded in the Cosmological Data 15
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A — 17, since it obeys the inequality %
, B
—— <A<, g
1+z <k
for every value of the redshit The parametek is constant, -
and is related to the Hubble paramdtktthrough equation 31
kA T o
—— =H. 3
1-A z 8
The law of selfvariations predicts that the eneE{y) re- g8
sulting from fusion, and which powers the distant astronot N
ical objects, is decreased compared with the corresponc =1
energyE measured in the laboratory, according to relation ]
E o
E(9=——. : . : ;
@ 1+z 0.0 0.5 1.0 15

z
Because of this, the luminosity of distant astronomical ob-

jects is decreased, relative to the expected one. This has Rig. 1: The diagram oR = R(2) for A = 0.975, A = 0.990, A =
conseguence that the luminosity distanBesf distant astro- 0.995,A = 0.999,H = 60 knys Mpc,c = 3x 10° kmys up toz = 1.5.
nomical objects are measured larger than the actual desarihe measurement of the luminosity distances of type la saper
r, R> r. From the mathematical calculations [1, 2] we obtafpnfirms the theoretical prediction of the law of selfvadas.

R=rvl+z,
b he di 4 References
etween the distancé&sandr.
Combini h . . he | . . 1. Manousos E. Acommon underlying cause for quantum phenarued
_ ompining the p_reV|ous equatlo_ns We_ get the um|n03|ty cosmological data. viXra:1302.0115 v2.
distanceR as a function of the redshittof distant astronom- 2. Manousos E. The theory of self-variations. A continudighsincrease

ical objects: of the charges and the rest masses of the particles canrexipéatos-
mological dataNuovo Cimento B, 2007, 359-388.
_CAV1+z A ) 3

— n . Adam G. Riess et al. Observational Evidence from Supaeéer an
1-AH \1-(1+2(1-A

Accelerating Universe and a Cosmological Constaing Astronomical
i o i Journal, 1998, v. 29 (3), 423-428.
In the diagram in figure 1 we present the diagranio# 4. Perlmutter, S. et al. Measurements of Omega and Lambda 4@
R(? for A = 0.975,A = 0.990,A = 0.995,A = 0.999, High-Redshift Supernova@he Astrophysical Journal, 1999, v. 517 (2),
H = 60knysMpc,c = 3 x 10°km/s up toz = 1.5. In or- 565-586.
der to explain the inconsistency of the Standard Cosmologi-
cal Model with the diagram in figure 1, the existence of dark
energy was invented and introduced.
Type la supernovae are astronomical objects for which we
can measure their luminosity distance for great distarntles.
measurements already conducted [3, 4] agree with the dia-
gramin figure 1.
In the measurements conducted for the determination of
the Hubble parametét, the consequences of equatin=
r v1+ z have not been taken into account. For small values
of the redshiftz, the valueH = 60knysMpc results. The
measurements made up to date, have included astronomical
objects with a high redshift thus raising the value of param-
eterH to between 72 and 74 kisWMpc. Today we perform
measurements of very high accuracy. Taking into consider-
ation the consequences of equat®i: r V1 + z, we predict
that the value of parameterwill be measured independently
of the redshiftz of the astronomical object. We, of course, re-
fer to measurements of the parametiethat are based on the
luminosity distance of the astronomical objects.
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Intrinsic Charges and the Strong Force
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According to a revised quantum electrodynamic theory, there are models of leptons
such as the electron which possess both a net integrated electric charge and a much
larger intrinsic charge of both polarities. From estimates based on such models, the
corresponding Coulomb force due to the intrinsic charges then becomes two orders of
magnitude larger than that due to the conventional net charge. This intrinsic charge
force can also have the features of a short-range interaction. If these results would
generally hold true, the intrinsic charge force could either interact with a strong force of
different origin and character, or could possibly become identical with the strong force.

1 Introduction

According to quantum mechanics there exists a nonzero low-
est energy level, the Zero Point Energy. The vacuum is there-
fore not merely an empty space, but includes a “photon gas”
of related electromagnetic vacuum fluctuations. The pressure
of this gas is a physical reality, as demonstrated by the force
between two metal plates proposed by Casimir [1] and first
confirmed experimentally by Lamoreaux [2].

These circumstances have formed the starting point of
a revised quantum electrodynamical approach by the author
[3]. In the latter a nonzero electric field divergence divE is
introduced in the vacuum state. In its turn, the nonzero elec-
tric field divergence admits an additional degree of freedom
into the electromagnetic field equations. The latter then pos-
sess new solutions both in the steady and the time-dependent
states, having applications to modified models of leptons and
photons.

In this paper an example is given in Section 2 on the con-
sequences of a nonzero electric field divergence in a steady
state. It demonstrates that the local variations of the charge
density p=g(div E can result in considerable intrinsic charges
of both signs, being much larger than the total net integrated
charge. The possible effects of the intrinsic charges on the
Coulomb interaction will then be outlined in Section 3, first
in respect to the magnitude of the resulting forces, and then
to the range of the same forces in a simple “Gedanken experi-
ment”. In Section 4 a comparison is finally made to the strong
nuclear force.

2 An Example given by the Revised Electron Model

In the revised quantum electrodynamic theory there are
steady states which do not exist in conventional theory [3].
These states include net as well as intrinsic electric charges,
electric currents, static electromagnetic fields and related
forces. To illustrate the resulting charge distributions, an ex-
ample is here taken from a corresponding electron model.
The features of the model will shortly be summarized here,
with reference to details in the original descriptions [3].

In the revised theory the field configuration is shown to

Bo Lehnert. Intrinsic Charges and the Strong Force

become derivable from a generating function

F=GyG(p,0) G=R(p) T(© (1)

in spherical coordinates (r,6,¢) of an axisymmetric case
being independent of the angle ¢. Here Gy stands for a char-
acteristic amplitude, p = r/ry with ry as a characteristic radial
length, and

R=p7e™” 2)

T=1+a;sinf+a;cos20+azsin36+ascosdf +... (3)

v>0

with ay, ay, as, ...as constant amplitude factors. The radial
function R has to be divergent at the origin r =0 to result in
a net integrated charge. Thereby a revised renormalisation
procedure is applied to make this divergence result in a finite
net integrated charge. This leads to forms of the net charge gy,
magnetic moment My, rest mass mp, and angular momentum
(spin) s¢ as given by

qo = 2megc,gAg, “4)
1 &0
50 = Eﬂ(c—z)CchAs, 5)
2
Momo = (@) CApAuAn. (6)
C

Here C = + ¢, ¢, is a finite counter factor in the renor-
malisation process, and
T
A = f Iy do k=g, M,m,s @)
0
with Iy being functions of the amplitude factors of equation
(3) and the variable s = sin 6. The factor ¢, includes the am-
plitude G which can have either sign and becomes negative
in the case of the electron.
Two quantum conditions are considered here. The first

is so = + h/4m on the spin which results in a normalized net
charge

90
e

%

®)

e2

_ (foAé]l/z _ 2s&och
|2 =
A

17
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where e is the experimentally determined elementary charge oo L 7
and fy=137.036 is the inverted value of the fine-structure 4
constant. The second condition concerns the magnetic mo- 150 4
ment and becomes
MOmO — AMAm -1+ 6M (9) 100
4050 Aqu 50 4+
with 6y, =1/2nf;=0.0011614. Here it has to be observed 0
that the fourteenth term in equation (7.56) of Reference [3] 0 1'0 ! %'0 4'0 ;0 6{0 7’(] 8{0 (jo
should read —699.7897637a,as. ;
In the four-amplitude case (ay, a;, az, a4) the normalized ST
charge g* will here be studied with conditions (8) and (9) im- 100 L
posed, and as functions of a3 and a4 in azas-space. Then g*
is found to have a minimum for large positive values of as 150 +
and a4, within a narrow channel positioned around a plateau
defined by the experimental value ¢* =1. The width of the -200 T
channel is only a few percent of g*. At the plateau the ampli- 250

tude values are therefore replaced by

aw>1  i=1,23... (10)

a; = a;/ae

As an illustration of the resulting intrinsic and net elec-
tric charges, we now use an example where a; = — 1.91, a, =
-2.51, a3 =as = 1. The corresponding integrand I, of equa-
tion (7) in the plateau region then becomes

Iy = 25T —45°T — sDyT +

+25°DyT + 25D, (szT) — sDy (sszT) =
4495 + 2885 — 21595 — 1320s* +

+ 75595 + 1120s° — 57605’

(11)
with the operator

> cosh d
06>  sinf 66"
From the corresponding equation (7) this yields A, =4.600,
Ay =437, 4, 22832, A, =2648 and results in

AMAm

Dy = - (12)

= 1.017

q/ls

and g* = 1.046.

The obtained value of A, corresponds to the net charge go
of equation (4). The detailed charge distribution as a function
of s is given by equation (11) and has been plotted in Fig.
1. According to the figure the negative part of the intrinsic
charge in the range 0 <6 < is estimated to have the corre-
sponding value A,_ = 117.3 . The positive part of the intrinsic
charge further corresponds to Ay, =A,_ + A, =121.9.

In the example given here there is thus an outbalanced
intrinsic charge proportional to A, =A,, — A,, plus a net in-
tegrated charge proportional to A,. The ratio between these
charges becomes

i,
in = —¢ - 13
Cin Aq (13)

18

Fig. 1: The local contribution I_qg of equation (10) to the electric
charge integral A, as a function of the polar coordinate 6, in the
range 0 < 6 <m/2 and with 6 given in degrees.

In the example of Fig. 1 it has the value ¢;, 226.5, thus
indicating that the intrinsic charge considerably exceeds the
net charge.

Also the electromagnetic force

f=p(E+CxB) (14)
per unit volume has to be taken into account. It consists of the
electrostatic and magnetostatic contributions pE and pC x B
where E and B are the electric and magnetic field strengths,
the velocity vector C has the modulus |[C|= + ¢ and c is the
velocity of light. In a cylindrically symmetric case the lo-
cal electric and magnetic contributions can outbalance each
other, but only partly in a spherical axisymmetric case [3]. In
the latter case the average radial force can on the other hand
be balanced at least for specific solutions of the field equa-
tions, but this requires further detailed analysis in every case.

3 Intrinsic Coulomb Forces

The intrinsic charge ratio c;, is likely to have consequences
when considering the mutual Coulomb forces.

3.1 General Aspects

For any distribution of electric charges the local contribution
Afi, to the mutual Coulomb force becomes

_ (Aq)(Aga)
dregrs,

Afiz (15)

where and Ag; and Ag, are two interacting charge elements
separated by the distance rj;. The charge ratio of equation

Bo Lehnert. Intrinsic Charges and the Strong Force
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(13) thus predicts that the intrinsic Coulomb forces in some
cases even may be represented by a factor cfn as compared to
those in a conventional analysis. For the values of Ci2n =702
in the example of Section 2 these forces could then roughly
be estimated to be more than two orders of magnitude larger
than the conventional ones. However, the effective magnitude
of the intrinsic charge force will also depend on the specific
geometry of the charge distribution, as being demonstrated by
a simple discussion in the following subsection.

3.2 A Gedanken Experiment

To crudely outline the forces which can arise from the in-
trinsic charges, a simple “Gedanken experiment” is now per-
formed according to Fig. 2. It concerns the interaction be-
tween two rigid mutually penetrable spherical configurations,
(1) and (), of charge +Q at their centra and charge —Q at
their peripheries. The resulting electrostatic field strengths
are E; and E,, and the external space is field-free. When these
configurations, being simulated as “particles”, are apart as in
Fig. 2(a), their mutual interaction force F|, remains zero. As
soon as particle () starts to penetrate particle (;), part of the
negative charge cloud at the periphery of particle () will in-
teract with the electric field E; of particle (;). This generates
an attractive force Fj; >0, as shown by Fig. 2(b). When par-
ticle (») further penetrates into the field region of particle (),
however, the mutual interaction force F1, <0 changes sign
and becomes repulsive as shown in Fig. 2(c). Between cases
(a) and (b) there is an equilibrium with Fj, =0.

The relative magnitude of the maximum force Fi, in the
case of Fig. 2(b) can be estimated by noticing that it is gen-
erated by the fraction g, of the charge —Q at the periphery
of particle (), in the field E; of particle (;). With the charge
ratio

en=2 (16)
e
of the particles (1) and (,) this yields an estimated ratio
fan =020}, (17)

between the intrinsic forces and those which would have been
present in a conventional case. With an estimated factor
g» = 1/4 for the fraction of negative charge of particle (3)
being present in the field E; of Fig. 2(b), and with ¢;, =702
due to the example of Section 2, this results in the force ratio
fn=176.

In reality, however, the mutual interaction in Fig. 2(b) and
Fig. 2(c) becomes more complex and includes a rearrange-
ment of the charge geometry. Thus, even if these simple
considerations are somewhat artificial, they appear to indi-
cate that the intrinsic Coulomb forces can become about two
orders of magnitude larger than the conventional ones. The
intrinsic forces can also in some cases have the character of a
short-range interaction.

Provided that the present model of charged leptons also
can be applied in a first crude approximation to a bound

Bo Lehnert. Intrinsic Charges and the Strong Force

(@

(b)

Fig. 2: “Gedanken experiment” where two rigid mutually penetrable
spherical configurations (“particles”), (;) and (), are approaching
each other. The “particles” have charges +Q at their centra, and —Q
at their peripheries, resulting in the internal electric field strengths E,
and E,. The mutual interaction force F, is zero when the particles
are apart in (a), F'1, > 0 is attractive when they first start to interact
in (b), and F; <0 is finally repulsive when they are close together
in (c).

quark, its characteristic radius r. can be estimated. It would
become r, = ¢,g/cc where ¢, and cg are counter factors of a
revised renormalisation procedure [3]. This results in radii in
the range 107! <, < 107! m for the u, d and s quarks.

4 A Comparison to the Strong Force

The strong force keeps the atomic nucleus together, and it
acts on its smallest constituents, the quarks. As concluded
from experiments on deep inelastic scattering of energetic
electrons by hadrons, the latter include the quarks. According
to reviews by French [4], Walker [5] and others, these strong
forces have the following features:

o They are primarily attractive.

e They seem to be essentially the same for neutrons and
protons.

e Their range is short and not greater than 2 x 10~ m.

e Within this range they are very strong, i.e. two orders
of magnitude larger than those due to conventional
electromagnetics.

The strong force can be compared to the intrinsic Coulomb
force discussed in this context, also in respect to a possible
quark model being somewhat similar to that of the electron as

19
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described in Section 2. The following points should then be
noticed:

e The present considerations suggest that the intrinsic
charge force can become two orders of magnitude
larger than that due to the conventional net charge. The
intrinsic charge force thus appears to be of the same or-
der as the strong force, and may also appear in terms
of a short-range interaction, on scales of the order of
1075 m.

o [t then follows that the intrinsic charge force either will
interact with a strong force of different origin and char-
acter, or will possibly become identical with the strong
force.

Submitted on March 22, 2013 / Accepted on March 22, 2013
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Using the Oblique-Length Contraction Factor, which is a generalization of Lorentz Con-

traction Factor, one shows several trigonometric relations between distorted and original
angles of a moving object lengths in the Special Theory of Relativity.

1 Introduction

The lengths at oblique angle to the motion are contracted with tan6 = ; o)
the Oblique-Length Contraction Factor OC(v, 6), defined as s
[1-2]: tan(180° — @) = —tanf = —— (6)
Y
- 2 cos? in2
0C(,0) = \/C(V) cos=6 +sin” 6 M After contraction of the side AB (and consequently contrac-
where C(v) is just Lorentz Factor: tion of the oblique side BC) one gets (Fig. 2):
V2 ¢
C(v)=/1-— €[0,1] for v € [0,c]. 2)
c
¢I
Of course o
0<0C(v,6) <1. 3) B'=f

The Oblique-Length Contraction Factor is a generalization of
Lorentz Contractor C(v), because: when 6 = 0, or the length

is moving along the motion direction, then OC(v,0) = C(v). 90° N\ 180° -0’

Similarly A Y=y C(v) B’ X
OC(v,m) = OC(v,2rt) = C(v). ) b

Also, if 8 = /2, or the length is perpendicular on the motion Fig. 2:

direction, then OC(v,n/2) = 1, i.e. no contraction occurs.
Similarly OC(v, 3) = 1.

2 Tangential relations between distorted acute angles vs. tan(180° — @) = —tan§’ = —’8—, =- A . @)
> . . Y yCO)
original acute angles of a right triangle
Let’s consider a right triangle with one of its legs along the ~LDeM: B
motion direction (Fig. 1). an(180° - 6) _yC») _ 1 ®
C tan(180° — 6) B C(v)’
Y
Therefore tanr — 6)
an(r —
t -0)=——""7+-—= 9
an(r — 0') ) ©)
8 and consequently
ki tan(6)
tan(6') = 10
an(6') o) (10)
or an(B)
an
tan(B’) = 11
\ an(B’) ) 1D
A X which is the Angle Distortion Equation, where 6 is the angle
formed by a side travelling along the motion direction and
Fig. 1: another side which is oblique on the motion direction.
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The angle 8 is increased (i.e. 6’ > ).
! C
tanp = Y and tang’ = 1/ =7 ) (12)

B B B

whence:
yC)

t 7

ne' _ B cw). (13)

tan ¢ Y

B
So we get the following Angle Distortion Equation: B’ y=yClv) A x
tang’ = tang - C(v) (14) Fig. 4:
or o
tanC’ = tanC - C(v) (15) and similarly
yC»)
where ¢ is the angle formed by one side which is perpendicu- tan ¢’ B
lar on the motion direction and the other one is oblique to the wng 7 C) (21
motion direction. B
The angle ¢ is decreased (i.e. ¢" < ¢). If the traveling .

right triangle is oriented the opposite way (Fig. 3) tang’ = tang - C(v). (22)

€

Fig. 3:

Y

tant9=é and tang = =. (16)
4 B

Similarly, after contraction of side AB (and consequently con-
traction of the oblique side BC) one gets (Fig. 4)

B B
tan@ = v = 5C0) 17
and , o)
;Y DAY
=L -r=r 18
tan ¢ 7 I (18)
B
tang  yC(v) 1
tang B T Cv) (19
Y
or o
tan¢ = o) (20

Therefore one got the same Angle Distortion Equations for a
right triangle traveling with one of its legs along the motion
direction.

3 Tangential relations between distorted angles vs.
original angles of a general triangle

Let’s suppose a general triangle AABC is travelling at speed
v along the side BC as in Fig. 5.

Fig. 5:

The height remains not contracted: AM = A’M’. We can split
this figure into two traveling right sub-triangles as in Fig. 6.

In the right triangles AA’M’B’ and respectively AA’M’'C’
one has

tan B tan C
tan B’ = d tanC’ = . 23
an co) and tan o) 23)
Also
tanA] = tanA;C(v) and tanA) = tan A,C(v). (24)
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A A A/ Af
1 2 1 )
X
B—M 1 €
Fig. 6: 5™ M ¢
Fig. 8:
AI
4 Other relations between the distorted angles and the
12 original angles
YI B 1. Another relation uses the Law of Sine in the triangles
d AABC and respectively AA’B'C’:
@ _F _7 @7
’ . sinA sinB sinC
B M £ X o 8 ¥ "
sinA’  sinB’  sinC’’ (28)
Fig. 7: After substituting
o =aC®) (29)
But B =BOCH.0) (30)
tan A’ + tan A’ " =vyOC(v,B) (31)
tanA’ = tan(A] +A)) = ——— 2 . y 7
1 —tan A} tan A} into the second relation one gets:
_ tanAIC(V) + tanAzC(V) CL'C(V) ~ ﬂﬁC(V, C) B 'yﬁC(V, B) -
1 —tanA;C(v) tan A,C(v) A - snB - snC (32)
= C()- tanA; + tan 4, Then we divide term by term the previous equalities:
1 — tan A; tan A,C(v)2 5
@ Y
tanA; + tan A —_—
% -(1 —tanA; tanAj) sinA  _ sinB__ _ _ sinC (33)
= C()  —= tanl 1 ti‘“ Az e aC(v) ~ BOC(,C) ~ yOC(v,B)
~tan A, tan A;,C(v) sin A’ sin B’ sin C’
Al +A 1 —tanA A
= C(»)- tan(4; +42) . tan 4, tan A2 . whence one has:
1 1 —tanA; tan A,C(v)?
sin A’ B sin B/
sinA-C(v)  sinB ﬁc,(v, 0) 34
1 -tanA;tanA, = L
tanA’ = C(v) - tan(A) - . 25 ~ sinC-0C(v,B)’
an Ot T T ALcor ) sinC- 6C(» B)
2. Another way:
We got , o , ’ o
A’=180°—(B"+C’) and A=180°-B+C) (35)
1 —tanA; tan A
tan A’ = tan(4) - C0) - - and tansa (26)

—tan A tan A,C(v)?
1 2C(v) an A’

Similarly we can split this Fig. 7 into two traveling right
sub-triangles as in Fig. 8.

Florentin Smarandache. Relations between Distorted and Original Angles in STR

tan[180° — (B’ + C")] = —tan(B’ + C’)

tan B’ + tan C’

1—-tan B’ - tan C’
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tan B N tan C
_ Cv) CW)
1 —tan B - tan C/C(v)*
1 tan B + tan C
"C(v) 1-tanB-tanC/C(v)2
tan(B + C) 1 —-tanBtanC
" C(») 1-tanB-tanC/C(v)?
—tan[180°—(B + C)] 1 —tanB-tanC
Cc) "1-tan B - tan C/C(v)
tan A 1 —tanB-tanC
C(v) 1—-tanB-tanC/C(v)?

We got

_tanA 1—-tanB-tanC

tanA’ = . .
M= C0) T—anB-@nC/CO)

(36)
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The Electron-Vacuum Coupling Force in the Dirac Electron Theory and its
Relation to the Zitter bewegung

William C. Daywitt
National Institute for Standards and Technology (retir&dulder, Colorado. E-mail: wcdaywitt@me.com

From the perspective of the Planck vacuum theory, this papgres that the standard
estimate of the onset radius for electron-positron paidpetion as the Dirac electron is
approached (in its rest frame) is significantly overestedaf he standard value is taken
to be the electron Compton radius, while the estimate defvare from the coupling
force is over four times smaller. The resulting separatibthe Compton radius from
the onset radius leads to a clear explanation of the zitiageng in terms of vacuum
dynamics, making the zitterbewegung a relevant part of léaetren theory.

1 DiracElectron can be defined for the De-PV system, except for tiieodilty

The size of the electron has been a long debated questior™fi€termining the integration constant _
classical physics the idea that the electron radijts purely The massive point charge-¢.,m) has two parts, its
electromagnetic leads to the calculation f:ha_rge €e.) and its massn. Thus, in addition to the_polar-
ization force (3), the De distorts the PV due to a gravitatlen
like attraction between its mass and the individual maskes o

82 —13
fo= 17 =282x10 @ the Planck particles in the PV. This curvature force is given

mc2

centimeters, while the electron’s Compton radius by [3]
mc? mc’G mm.G 5)
e2 eE 11 _T:_rG - r.r
rc = W = |'T]C2 = 386X 10_ (2)

wherem, andr, are the mass and Compton radius of the indi-
is larger by the factor /i (~ 137), wherex (= €?/€?) is the vidual Planck particles an@ is Newton’s gravitational con-
fine structure constant. The standard caveat at this poinsiant. G = €/n? ande? = r.m,c? are used in deriving the
the calculations is that, for any radius smaller thiarflike final ratio in (5).) This force is the force of attraction the
ro), classical considerations are irrelevant due to the ptessimassive point charge at) ~ 0 exerts on the negative-energy
appearance of electron-positron pairs. So the onset régliusPlanck particle at a radiusfrom that charge. Now the total
electron-position pair production is an important paranigt De distortion force becomes
the Dirac theory of the electron. What follows takes a dethil
look at the structure of the second ratio in (2) and suggests f mc? (6)
that an onset radius derived from the coupling force the®ira r2 r

electron (De) exerts on the vacuum state produces a better . . .
estimate of that radius and, as seen in the next section, tigroblem of the previous

_ h disappears. Part of the response to the De force
In the Planck vacuum (PV) theory [1] the prod@ét= paragrap o . X .
(~e)(=e) in (2) consists of two distinctively eierent (6) acting on the PV is hidden in the Dirac equation as the

charges. One of the bare charges belongs to the De (a nzlgggrbewegung. o

sive point chargee., m) that obeys the Dirac equation and [The averager) ~ 0 signifies a small, but unknown,
that is coupled to the Dirac vacuum [2]), and the other to thdius encircling the massive point chargee(m) and in
separate Planck particles constituting the PV negatiezegn which the electron mass is created (see the Appendix). This

state. In addition, it can be argued [3] that the force average is more properly expressedis?) < rc.]

ﬁ 3) 2 Dirac Equation
2
r The force diference in (6) vanishes at the De’s Compton ra-
is a polarization-distortion force that the free-space K&ts  dius
on the omnipresent PV state. Since this force exists between e
the electron charge and the individual Planck-particlegbs fe = mc2 (7)

within the PV, a potential

which is that radius where the polarization and curvature
V() = r efd (11 & 4 forces have the same magnitude. This is a central parame-
(N =- " r2 r= Yo ) ter in the theory of the electron-positron system, for tieer
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particle Dirac equation can be expressed as (ustng €) where the original free electron jumps into the positrorehol

[4,p. 74] and the electron from the pair becomes the new free elec-
tron. As this process takes place at a high rate, the regultin
: 0 cloud of “hide-and-seek” electrons is perceived as a spread
i€?| — +a-V|y =mc? or _ . . perc 1 as asp
* (cat @ )lﬁ sy out point electron with a radius~ rc/2. This radius is usu-

ally rounded &F tor ~ r¢. It is interesting that arbitrarily
replacingry in (4) byr. leads to the estimate=r./3.
Whatever the true magnitude of the onset radius, it is

h inth tf fthe De. th ‘ worth noting the following quantum electrodynamic conclu-
where, In the rest frame of the De, the parameieepresents sions [5, pp. 402—-403]: the interaction of the De with the

the radius of an imaginary sphere.surrogndmg the mass ntum vacuum spreads out the point-like nature of the De
point charge and on which the PV is undistorted (where d leads to a natural scalefor the model: the De in some

and’\fm) \rllanIIDSh)|5V ling f respects behaves as though it increases in size from a point
ow the De-PV coupling force particle to a particle with a radius of about angit is improb-

. 0
|rc(&+a~v)zﬁ=,&p (8)

@ m2 able that the electron has “structure”; and the apparertsipr
F(N=—=-— (9) of the De does not alter the fact that the electron in QED is
r r still regarded as a pure point particle. In addition to thase
leads, in place of (4), to the potential clusions, high-energy scattering experiments probinglisma
distances indicate that the electron, if not a point partid
r 1 1 & certainly not larger than about 14 cm (r/39, 000).
v(r) = _j; F(r)dr = (_ B r_c) * Except for the magnitude of the onset and spread radii,

the calculations in Sections 1 and 2 are mostly in agreement
with the spirit of the QED conclusions of the previous para-
graph. Also the earlier assumption at the end of Section 1,
with no undetermined constants. that (r)~ 0, is in line with the experimental result

Recalling that any siciently strong positive potential("e/39000) at the end of the previous paragraph.
acting on the vacuum state enables electron-positronpairp  SiNce the onset radius is an important concept in the elec-
duction to take place in free space (see any relativistiouis tron model, a definitive calculation of this radius is criitia
sion of the Klein Paradox, e.g. [4, p. 131]), itis reasonableunderstanding the electron —indeed, contrary to the standa
conclude that the point at which pairs may begin to show Yf§W: itis shown in the present paper that the Compton radius
as the De is approached is whaf@) = 2mc? since the posi- ' and the pair-creation onset radiug4.5 are twodistinctly
tive energy in free space and negative energy of the PV befifierent parameters, the first referring to the vanishing-

to overlap at this potential. Then solving (10) foyields the coupling-force sphere centered on the point electron §in it
quadrature formulas rest frame), and the second to the possible onset of electron

positron pairs. This separation of the Compton and onsét rad

re exp (c/r) _ (1) leads to a believable zitterbewegung model.

—mczln% (r<ro (10)

r

=_-In==3 or

r r re/r .
4 Zitterbewegung

either one of which producess r;/4.5. This pair-productio_n The zitterbewegung (a highly oscillatory, microscopic it

onsetradius is significantly smaller than the standardesé | ... velocity ¢) has been a long-time mathematical conun-

(r ~rc) because the curvature-force term in (9) compres tim. Barut and Bracken [6, p. 2458] reexamine the Schro-

the PV state, countering the poI_arization force that EXPalfinger calculations leading to the zitterbewegung andaapl
that state and exposes its energies to free space. Thls-|mH “microscopic momentum” vector with a “relative momen-

ta;}nt resul; ;mpllels t?at, for ?:yT r°t/4‘5' fthere (l:antbe 20 X tum” vector in the rest frame of the particle. Of interestéher
change ofiree electrons with electrons rom electronipist o e o resulting commutator brackets £ rcmc and

pairs associated with the PV state. ch = € are used)

3 QED Comparison [Q). Hi] = irccP; and
The standard estimate of the onset radius is based on virtual

electron-positron transitions and the time-energy uademt ‘ _ . mce? '
relation [5, p. 323] [P, Hir] = —4 r2 Qi (13)
ch & fe from the theory, wherej(= 1,2,3) andH, = mc?s is the
AtAE~h —  CAt~ AE-aE- 2 (12) Dirac Hamiltonian in the rest frame.
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Applying the Heisenberg-picture time derivative 5 Commentsand Summary

o The preceding calculations have separated the Compton ra-
A= ﬁ[Hr,A] (14) dius () from the onset radiug{/4.5), with the result that
the Compton radius is no longer associated with electron-
to the commutators in (13) leads to the “relative momenturpositron pair production, being outside the onset raditsisT
the zitterbewegung is not related to the pair-producticarch
acteristic of an over-stressed(() > 2mc?) PV state. Instead,
the zitterbewegung is seen to be the consequence of a PV-
resonance phenomenon (with the resonant frequeoay)2
which describes the dynamics of a harmonic oscillator wiissociated with the.-sphere. Also, most of the confusion

Pj=mQ; and sz-A(g)Qj (15)

angular frequency surrounding the zitterbewegung is the result of attempting
attribute the phenomenon directly to the dynamics of the-ele
4.¢ Vg remc? V2 2c tron particle rather than the dynamics of the vacuum state.
w= ( mr3 ) - ( mr3 ) B (16)  Finally, the zitterbewegung can now be seen, not as a mathe-

matical curiosity, but as an integral part of the Dirac elect
Since the Compton relation derives from the equality tfeory.

the polarization- and curvature-force magnitudes onrthe  The following picture of the Dirac electron emerges: cen-
sphere surrounding the massive point charge, the oscilldeyed at the origin of the rest frame is the massive pointgshar
dynamics must be due to a reaction of the PV to the De pwiith an dfective volumetric radiugér) ~ 0; surrounding this
turbing forcee?/r2—mc?/r, not to a direct dynamical involve- charge is a hypothetical sphere of radiygt.5 within which
ment of the massive point charge itself. This latter coriolus the positive energy of the free electron and the negative en-
is supported by the fact that the eigenvalues of(the)per- ergy of the PV overlap, allowing electron-positron pairbéo
ator are+c, outlawing the involvement of a massive particlexcited; surrounding this combination is a spherical ansul

whose velocity must be less that of radiusr¢/4.5 < r < r¢, where pair production does not oc-
The “spring constant”, 4£/r3), in (15) is easily shown to cur; and beyond the.-sphere( > r¢) is a region of diminish-
be related to the.-sphere, for = rc + Ar in (9) leads to ing PV stress, a compression that decreases with increasing

according to the force fference (9).
& mc?
(rc+ Ar)2  re+ Ar

F(rc +Ar) = Appendix: Electron Mass

The massless point charge is denoted-bg,) and the mas-
(€2/r3)Ar e sive point charge by—e., m), wherem is the electron mass.
~ (_) Ar (A7) Inthe PV theory this mass is an acquired property of the elec-

T @A TR . | d prog
_ _ _ tron, resulting from the point charge being driven by the ran
whereF(r¢) = 0, andAr < rc in the final ratio. dom electromagnetic zero-point background field [7, 8] - Fur
The Schrodinger “microscopic coordinate” thermore, the energy absorbed by the charge from the field

is re-radiated back into free space in a detailed-balanee ma
_j Z—Cizt} (18) ner, leaving the isotropy and spectral density of the zexiotp
background unchanged [9].

. . . ) The derived mass is
is retained in the Barut-Bracken analysis [6, eqgn. 19]. The

first part of this operator equation corresponds to the macro m= 4r € <(dr’/dt)2> (A1)
scopic motion of the massive point charge and the second part 9r2c2 c?

to the high-frequency zitterbewegung superimposed on Wﬁeree*r' is the dipole moment of the point chargee()
macroscopic motion. In the rest frame of the massive chaigey it/ = 0 as it is being driven by the zero point field.
(18) reduces to [6, eqn. 34]

The relative root-mean-square velocity of the charge withi
(ry~0is[7]

QU = 6(0]; = 0,(0)- Frexp|-1 25 20 19

_10-22
= =3t 100 (A2)

[<<dr'/dt>2>]”2 R

the nonvanishing of which emphasizes again that the zitter-
bewegung is not fundamentally associated with the motionvalfiich is vanishingly small because of the large density
the particle, as the particle leading to (19) is at rest. (The 1/r2) of Planck particles in the PV contributing simultane-
rest frame operatord, = mc?8 andH; ! = g/mc? are used ously to the zero-point background field; endowing the corre
in (19)). sponding field spectrum with frequencies as high-ag'r.,

Daywitt W.C. The Electron-Vacuum Coupling Force in the BiEdectron Theory and its Relation to the Zitterbewegung 27
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wherer, is the Planck length. It is predominately the high
frequencies in the spectrum that define the mass and pre-
vent the r-m-s velocity from significantly increasing in mag
nitude [10].

The squared charge in (A1) comes from squaring the
time derivative of the dipole momeatr’. Thus (Al) implies
thatthe center-of-mass and the center-of-charge are the same.

The question of centers often comes up in the discussion of
the zitterbewegung [11, pp. 62—64] and is a reflection of the
fact that the zitterbewegung is being explained in terms of
the massive-charge motion rather than tlegr2 resonance
associated with the,-sphere and the vacuum state.
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Geometrical Derivation of the Lepton PMNS Matrix Values
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The linear superposition of generators of the 3 discrete binary rotational subgroups
[332], [432], [532] of the Standard Model determine the PMNS matrix elements. The 6
leptons are 3-D entities representing these 3 groups, one group for each lepton family.

1 Introduction

Numerous attempts to derive the neutrino PMNS matrix from
various discrete group horizontal symmetries have led to par-
tial success. Herein I determine the true source of the PMNS
matrix elements by using the linear superposition of the gen-
erators for 3 discrete binary rotational subgroups of the Stan-
dard Model (SM) electroweak gauge group SU(2); x U(1)y.

In a series of articles [1-4] I have proposed 3 discrete bi-
nary rotational subgroups of the SM gauge group for 3 lepton
families in R? and the related 4 discrete binary rotational sub-
groups in R* for 4 quark families, one binary group for each
family. The generators for these 7 binary groups are quater-
nions operating in R?, in R*, and in C2. 1 use these binary
group quaternion generators to calculate the matrix elements
for the PMNS mixing matrix for the leptons.

In another article under preparation I use the same ap-
proach, with an important modification, to calculate the stan-
dard CKM mixing matrix for the quarks as well as a proposed
CKM4 mixing matrix for four quark families.

The SM local gauge group SU(2); x U(1)y x SU3)¢ de-
fines an electroweak(EW) interaction part and a color inter-
action part. The EW isospin states define the flavor of the
fundamental lepton and quark states. However, experiments
have determined that these left-handed flavor states are linear
superpositions of mass eigenstates.

For the 3 lepton families, one has the neutrino flavor states
Ves Vu» V7 and the mass states vy, v,, v3 related by the PMNS
matrix Uj;

Ve U el UeZ UeB Vi
Vu|=|Un Up Ugsl||»
Vr U‘rl UT2 U 3]1V3

From experiments [5], the PMNS angles have been estimated

to be
61, =32.6° —34.8°, 03 =8.5°-94°,

03 =37.2°-39.8°, 6=(0.77 - 1.36)x.

Consequently, for the normal hierarchy of neutrino masses,
one has the empirically determined PMNS matrix

0.822 0.547 —-0.150 + 0.038i
-0.356 +0.0198;  0.704 + 0.0131: 0.614
0.442 +0.0248; -0.452 + 0.0166i 0.774

Potter F. Geometrical Derivation of the Lepton PMNS Matrix Values

which can be compared to my resultant derived PMNS matrix
in the standard parametrization

0.817 0.557 —0.149¢7
-0.413 - 0.084¢®  0.605 — 0.057¢° —0.673
-0.383 + 0.090¢®  0.562 +0.061¢®  0.725

In the SM the EW isospin symmetry group that defines
the lepton and quark flavor states is assumed to be the Lie
group SU(2) with its two flavor eigenstates per family. In
this context there is no fundamental reason for Nature to have
more than one fermion family, and certainly no reason for
having 3 lepton families and at least 3 quark families. As far
as I know, this normal interpretation of the SM provides no
answer that dictates the actual number of families, although
the upper limit of 3 lepton families with low mass neutrinos
is well established via Z° decays and via analysis of the CMB
background. There are claims also that one cannot have more
than 15 fundamental fermions (plus 15 antifermions) without
violating certain cosmological constraints.

My geometrical approach makes a different choice, for I
utilize discrete binary rotational subgroups of SU(2) instead,
a different subgroup for each family. Each discrete binary
group has two eigenstates and three group generators, just like
SU(2). Whereas the three generators for the SU(2) Lie group
are essentially the 2 x 2 Pauli matrices, the three generators
for each of the 3 lepton discrete binary groups [332], [432],
[532], (also labeled 2T, 20, 2I) in R? and the 4 quark discrete
groups [333], [433], [343], [533], (also labeled 5-cell, 16-cell,
24-cell, 600-cell) in R* are not exactly the Pauli matrices.

I propose that this difference between the discrete sub-
group generators and the Pauli matrices is the fundamental
source of the lepton and the quark mixing matrices, and the
calculated results verify this conjecture. In other words, one
requires the mixing of the different family discrete groups in
order to have a complete set of three generators equivalent to
the three SU(2) generators, separately for the leptons and for
the quarks. The mixing matrices, PMNS and CKM4, express
this linear superposition of the discrete group generators.

2 The PMNS calculation

In order to calculate the PMNS values one can use either
unit quaternions or unitary 2x2 complex matrices. The unit
quaternion generators are equivalent to the SU(2) generators.
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The unit quaternion q = a + bi + cj + dk, where the coef-
ficients a, b, ¢, d are real numbers for the one real and three
imaginary axes. The unit quaternion spans the space R* while
the imaginary prime part spans the subspace R3. With i = j?
=k? = -1, the quaternion can be expressed as an SU(2) matrix

c+di
a— bi

a+ bi
—c+di

Both the quaternions and the SU(2) matrices operate in the
unitary plane C? with its two orthogonal complex axes, so the
quaternion can be written also as q = u + vj, withu = a + bi
and v = ¢ + di. The three Pauli matrices o, o, o, are the
simple quaternions Kk, j, and i, respectively.

For the three lepton families, each family representing its
own binary rotational group, [332], [432], and [532], two of
the three generators R;, i = 1, 2, 3, in each group are equiv-
alent to two of the three Pauli matrices. Therefore, only the
remaining generator for each lepton family contributes to the
mixing that produces the PMNS matrix. That is, in the nota-
tion of H.M.S. Coxeter [6], R; =j,R3 =1, and

R2=—icos7—r—jcos£+ksinz D
q p h
for the three binary groups [p q r] and the h values 4, 6, and
10, respectively.

Defining the golden ratio ¢ = ( V5+1)/2, the appropriate
generators R, are listed in the table. The sum of all three R,
generators should be k, so one has three equations for three
unknowns, thereby determining the listed multiplicative fac-
tor for each R, generator’s contribution to k after overall nor-
malization.

Table 1: Lepton Family Discrete Group Assignments

Family | Group R, Factor | Angle®
Vee | [332] | —3i=3j+ 5k | 0.2645 | 105.337
Vielt | [432] | —3i— pj+ 3k | 0.8012 | 36755
ver | 15321 | —Li-%j+ Sk | -0.5367 | 122.459

The resulting angles in the table are determined by the
arccosines of the factors, but they are twice the rotation angles
required in R3, a property of quaternion rotations. Using one-
half these angles produces

0, =52.67°, 0, =18.38°, 6;=061.23°, 2)
resulting in
010 =34.29°, 013 =-8.56°, 603 =-4285°. (3)
Note that | 6,5 - 13 | = | 63 | because of normalization.

Products of the sines and cosines of these angles in the
standard parameterization are the PMNS entries, producing

30

matrix values which compare favorably with the empirical
estimates, as shown earlier. One has sin? 6, = 0.3176 and
sin? 6;3 = 0.0221, both within 10~ of the empirically deter-
mined values from the neutrino experiments, according to the
Particle Data Group in 2012. However, sin? 63 = 0.4625 is
outside the PDG 1o range but agrees with the recent T2K [7]
estimate sin? 26,3 = 1.0, making | 63 | = 45° with 6 ~ 0.

3 Conclusions

This fit of the PMNS mixing matrix derived from the three
separate R, generators indicates that the lepton families faith-
fully represent the discrete binary rotational groups [332],
[432], and [532] in R? that were introduced first in my ge-
ometrical approach back in 1986 and expanded in detail over
the past two decades. In particular, the 6 lepton states are
linear superpositions of the two degenerate basis states in
each of the 3 groups. My approach within the realm of the
Standard Model local gauge group makes the ultimate unique
connection to the discrete group Weyl Eg x Weyl Eg in 10-D
spacetime and to the Golay-24 code in information theory [1].

One can conclude that leptons are 3-dimensional objects,
geometrically different from the quarks which require a 4-
dimensional space for their existence. Their mass ratios de-
rive from a mathematical syzygy relation to the j-invariant of
elliptic modular functions associated with these specific bi-
nary groups. In addition, one can predict that no more lepton
families exist because the appropriate binary rotational sym-
metry groups in 3-D space have been exhausted. However,
sterile neutrinos remain viable [1,4].
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A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass
can be deduced from an earlier elaborated revised quantum electrodynamical theory
which is based on linear symmetry breaking through a nonzero electric field divergence
in the vacuum state. This special particle is obtained from a composite longitudinal
solution based on a zero magnetic field strength and on a nonzero divergence but a van-
ishing curl of the electric field strength. The present theory further differs from that of
the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles
obtain their masses through an interaction with the Higgs field. An experimental proof
of the basic features of a Higgs-like particle thus supports the present theory, but does
not for certain confirm the process which would generate massive particles through a

Higgs field.

1 Introduction

As stated in a review by Quigg [1] among others, the Higgs
boson is a particle of zero electric charge and nonzero rest
mass. The magnitude of the mass is, however, so far not pre-
dicted by theory. Several authors and recently Garisto and
Argawal [2] have further pointed out that this particle is a
spin-zero boson.

In this investigation will be shown that a particle with
such basic properties can be deduced from an earlier elab-
orated revised quantum electrodynamical theory [3], and the
consequences of this will be further discussed here.

2 Steady Axisymmetric States of Revised Quantum
Electrodynamics

For the field equations of the revised theory to be used in this
context, reference is made to earlier detailed deductions [3].
The latter are based on a broken symmetry between the field
strengths E and B, through the introduction of a nonzero di-
vergence divE =p/gy as being based on the quantum me-
chanical Zero Point Energy of the vacuum state. In a spheri-
cal frame (r, 6, ¢) of reference in an axially symmetric steady
state with d/0¢ =0 and 9/0t =0, this leads to a magnetic vec-
tor potential A =(0,0,A) and a space charge current density
j=1(0,0,Cp) due to the source p. Here C = =+ ¢ represents the
two spin directions, with ¢ standing for the velocity constant
of light. Introducing the normalized radius p = r/ry with ry as
a characteristic length, and the separable generating function

F(r,0) = CA=¢ =GoG (p,0) = GoR(p)- T (0) (1)

where ¢ is the electrostatic potential, this yields

CA = —(sin0)> DF )
¢ = —[1+(in0) D|F 3)
_ & .
5= _%2_220[1 +(sm9)20]F )

with the operator

D = D,+Dy

9 (0
ap P dp

0> cosh d
062 sinf 96
The field strengths then become

Dy ®)

Dy =

1
B = curl A = curl [0, 0, -z (sin 6)* DF] (6)

(7

for an elementary mode generated by a given function F de-
termined by the radial and polar parts R(p) and T(8). Here
curl E =0.

As a first step we consider the convergence properties of R
and the symmetry properties of T with respect to the equato-
rial plane 6 =r/2. There are four alternatives of which there
is one with a divergent R at the origin p=0 and with a T
of top-bottom symmetry, thereby leading to a net integrated
electric charge g¢ and magnetic moment M. The other three
alternatives all lead to vanishing gy and M, [3], and we can
here choose any of these. Then the local electric field and its
divergence are still nonzero, whereas the net integrated elec-
tric charge vanishes.

As a second step two elementary modes (*) and (7) are
now considered for which C = + ¢ and there is the same func-
tion F. For these modes the corresponding field strengths are
related by

E=-V= V{ [1+(sin6)* D] F}

B*=-B~ E*=E" ®)
according to Equations (6) and (7). Since the field equations
are linear, the sum of the two solutions (*) and () also be-
comes a solution of the field equations, thereby resulting in
the field strengths

By=B"+B =0 )
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Ey=E*'+E = V{ [1 + (sin 6)? D] 2F}. (10) References

These strengths then stand for a “composite” mode having
zero integrated charge ¢g,, zero magnetic moment M), and
Zero spin sp, but a nonzero rest mass

4ney ., 1 2\ (4 5
mgy = 77‘0(;0],” = (ESOEWI gﬂl’o . (11)

Here E, = 6(Go/ro)*J,m, the dimensionless integral is

szfflmdpde I, = fg (12)
0 0
and
f(p.0) = = (sin®) D[1 + (sin6)* D| G (13)
g(p.0) = =[1+2(sin6)’ D| G (14)

when a convergent radial part R is now being chosen [3].

It has first to be observed that this composite mode can
be related to an option of the Higgs boson which is not truly
a fundamental particle but is built out of as yet unobserved
constituents, as also stated by Quigg [1]. Moreover, the van-
ishing magnetic field By of Equation (9) is in a way related
to the longitudinal “S-wave” of the earlier theory [3], as well
as to the longitudinal state of a massive boson mentioned by
Higgs [4]. Finally, the magnitude of the nonzero mass is so
far not predicted by theory [1]. From Equation (11) it should
be due to the energy density of an equivalent electric field E,,.
The absence of a magnetic field may also make the particle
highly unstable.

3 Discussion

An experimental proof of an existing Higgs-like particle with
zero net electric charge, zero spin, and nonzero rest mass
could thus be taken as support of the present revised quan-
tum electrodynamical theory [3]. The latter is characterized
by intrinsic linear symmetry breaking, leading in general to
nonzero rest masses of elementary particles.

Such a proof does on the other hand not for certain be-
come a full experimental confirmation also for the same parti-
cle to provide all other elementary particles with mass through
the completely different spontaneous nonlinear symmetry
breaking interaction between the Higgs field and massless
particle concepts of the Standard Model [1,4].

Possible the present approach [3] and that of Higgs [1,4]
could have a point in common. This is trough the Zero Point
Energy field being present all over space on one hand [3], and
a generally existing Higgs field in space on the other [1,4].
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Key to the Mystery of Dark Energy: Corrected Relationship between Luminosity
Distance and Redshift
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A new possible explanation to the luminosity distance (Dy) and redshift (Z) measure-
ments of type la supernovae (SNela) is developed. Instead of modifying the theory of
general relativity or the Friedmann equation of cosmology with an extra scalar field
or unknown energy component (e.g., dark energy), we re-examine the relationship be-
tween the luminosity distance and the cosmological redshift (D — Z). It is found that
the Dy, —Z relation previously applied to connect the cosmological model with the mea-
sured SNela data is only valid for nearby objects with Z < 1. The luminosity distances
of all distant SNela with Z > 1 had been underestimated. The newly derived Dy — Z re-
lation has an extra factor V1 + Z, with which the cosmological model exactly explains
all the SNela measurements without dark energy. This result indicates that our universe
has not accelerated and does not need dark energy at all.

1 Introduction

There are five possible ways to explain the luminosity dis-
tance (D) and redshift (Z) measurements of type la super-
novae (SNela) according to the general relativity (GR), which
derives the Friedmann equation (FE) with the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric of the 4D space-
time (Figure 1).

The most simple and direct way is the famous Lambda
Cold Dark Matter (ACDM) model, currently accepted as the
standard one, which introduces a cosmological constant A to
the field equation of GR (Eq. 1), referred as a candidate of
dark energy [1-2],

8nG

Gﬂv + Agﬂv = c_4T/1v’

ey
where G, is the Einsteinian curvature tensor of spacetime,
T,y is the energy-momentum tensor of matter, c is the light
speed in free space, and G is the gravitational constant. The
cosmological constant A was first introduced actually by Al-
bert Einstein himself into his field equation, Eq. (1), in order
to have a static universe about a century ago, and then dis-
carded after the universe was found to be expanding [3].

The second way that has also been comprehensively stud-
ied is the scalar-tensor (S-T) theory, which introduces a scalar
field @, usually time-dependent, to the action of spacetime
(S¢) [4-5]. This category includes also the four-dimensional
f(R), galileon, and five-dimensional Kaluza-Klein theories
with scalar fields [6-12]. The third way is the scalar perturba-
tion (SP) theory, which inputs perturbation scalars ¥ and @,
usually time-independent, into the FLRW metric rather than
into the action S¢ [13-15]. The S-T and SP theories may be
equivalent because both attempt to modify the curvature of
spacetime. The cosmological constant A can also be added to
S for a less curvature of spactime or to the action of matter
Sy for an extra energy component. The fourth possible way

is according the black hole universe (BHU) model, recently
developed by the author [16-18], in which the expansion and
acceleration of the universe are driven by the external energy.

The procedures that the above four models commonly fol-
low in the explanation of the SNela measurements include the
following four steps: (1) Modifying the FE with an appropri-
ate input of A, scalar field, perturbation, or external energy;
(2) Determining the expansion rates (Hubble parameter) of
the universe according to their modified FEs; (3) Submitting
their expansion rates into the Dy, — Z relation; (4) Comparing
the obtained redshift dependence of their luminosity distances
with the SNela measurements. Fitting the models to the data
determines the amount of the input such as Q5 ~ 0.73 for
the ACDM model [1-2] and M(¢) ~ 10'7 kg/s* for the BHU
model [18].

In this paper, a new and most probable explanation for
the SNela measurements is developed without attempting to
modify the theory of gravitation or the model of cosmology
by inserting one or more fields or constants into GR or FE.
Instead, we will re-examine the Dy — Z relationship that con-
nects the cosmological model with the SNela data. We will
derive a new Dy — Z relation and further compare this new
relation with the SNela measurements to examine whether or
not our universe needs the dark energy or has recently accel-
erated.

2 Mystery of Dark Energy

The greatest unsolved problem in the modern cosmology is
the mystery of dark energy [19]. This currently most accepted
hypothesis for the standard cosmological model to quantita-
tively explain the measurements of distant type Ia supernovae
strongly relies on the Dy, —Z relation that is used to bridge the
measured SNela data and the theoretical model of cosmology.
However, the D — Z relation that was usually applied to
analyze the measurements of distant type-Ia supernovae,
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Fig. 1: Flow chat for five possible ways to explain the luminosity
distance and redshift measurements of type Ia supernovae. They
are: (1) GR with the cosmological constant A; (2) Gravitational the-
ory with a scalar field @; (3) FLRW metric with perturbations @ and
¥; (4) Black hole universe model with increasing input of external
energy M > 0; and (5) Luminosity distance-redshift relation with a
factor of V1 + Z. This Study focuses on the fifth possible explana-
tion.

‘o dt

Dy, = c(1 + Z)R(t, —_—, 2
L= )()LRU) @)
is an approximate expression that is only valid for nearby ob-
jects with Z < 1 in a flat universe [20]. Here ¢, is the time
when the light is emitted, 7, is the time when the light is
observed, R(?) is the scale factor, which is defined from the

FLRW metric [21-24],

dr?
)

ds® = =c*di* + R*(1) [1

+ 2 (d6? + sin’ 9d¢2)] . (3)

and governed by the Friedmann equation [25],

kc? A

R(1) _ 8nGpu(1) A
R2(t) 3’

R2(t) 3

H*(t) = 4)
according to the standard cosmological model, where py(f)
is the matter density, k is the curvature (k = O for a flat
universe), A is the cosmological constant (or a candidate of
dark energy), the coordinates {¢, r, 8, ¢} are co-moving coordi-
nates, and H(t) is the Hubble parameter, which, at the present
time, is called the Hubble constant and measured at Hy ~ 70
km/s/Mpc [3, 26-27].

In the FLRW universe due to the time dependent scalar
factor, light gets redshifted. According to the theory of GR,
light travels on null geodesics (i.e., ds> = 0). Then along a
radial light path, we have

cdt dr

—_— 5
R(@) V1 = k2 &)

It follows from Eq. (5) that

f’v cdt f’vﬂ”v cdt fo dr

t R@) t,+0t, R@) n V1= krz.
Subtracting the first integral from the second and assuming
8t,, 8t, << R(t)/R(1), we get

(6)

st,  ot,
R(t,) R(t,)

(7

Since 6t, = 1/v, = A,/c and 6t, = 1/v, = A,/c, the
cosmological redshift Z can be determined according to the
scale factor R(t) as

Lezate v e RO

v, 6t, R(@)

®)

Here A and v are the light wavelength and frequency, respec-
tively. Light from a source object is redshifted because the
time interval or scale factor is increased. The reason for an in-
dividual photon to be observed with smaller frequency (or en-
ergy) is due to that the time interval of observation is greater.

The scale factor is related to the energy and curvature via
Eq. (4) and to the redshift via Eq. (8). In terms of Egs. (4)
and (8), the luminosity distance-redshift relation Eq. (2) can

be reformed as
Z ’
c(1+2) f dz
o H()

z
d "’

- (1+2) f - ,

Ho 0 VOu(1+27)3 +Qy

with 1 = Qy + Q. For an arbitrary k, Eq. (9) is generally

represented as

Dy

1

®)

C
DL ~ ——(1+2)S (\/|Qk| x
Ho V<] (10)
yA er ]
0 oA +2P + (1 +2)2+Q4)
where
sin(x), ifk<0
Sx)=4 x, ifk=0 (11
sinh(x), ifk>0

and 1 ZQM+Q/\ +Qk.

Comparing the luminosity distance and redshift measure-
ments of distant SNela with the luminosity distance-redshift
relation determined in terms of Egs. (2), (4), and (8) or Eq.
(9) or Eq. (10) with k = 0, two supernova research groups
[1-2], respectively, claimed that the universe has recently ac-
celerated, so that the universe is dominated (25 ~ 0.73) by
the dark energy.

However, re-examining the derivation of the luminosity
distance-redshift relation, Eq. (2) so that Egs. (9) and (10),
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Fig. 2: Quantities used in the calculation of parallaxes and apparent
luminosities [20]. The angles and the curvature of the light ray are
greatly exaggerated.

we find that this relation is just an approximate relation only
valid for nearby objects with Z < 1. Certainly, we cannot
use it to correctly figure out the measurements of distant type
Ia supernovae with Z > 1. In the following, we will derive a
new, more accurate and applicable also to distant objects, lu-
minosity distance-redshift relation, which is perfectly consis-
tent with all the measurements of type la supernovae without
the input dark energy.

3 New Dy — Z Relation

Now, the luminosity distance-redshift relation is derived by
following the standard method as shown by [20] that calcu-
lates the parallaxes and apparent luminosities according to
the path of light rays that leave from a source at ¢ = 7, and
r =r, = R(t,)r; and pass to the observer at ¢ = ¢, near r = 0
(see Figure 2). At the observation time ¢ = ¢,, the light source
locates at r = r, = R(t,)r;. Here, r; is the commoving dis-

tance defined by
r=c f "
e R0y

from the FLRW metric.
In the coordinate system x”* in which the light source is
at the origin, the ray path is given by a position vector

(12)

X = ip, (13)

where 7 is a fixed unit vector and p is a variable positive pa-
rameter describing positions along the path. The coordinate

system x"* can be transformed to another coordinate system
x* in which the observer is at the origin (e.g., the center of the
telescope) and the light source is at ¥;. In the observer coor-
dinate system, the ray path can be represented by (Eq. 14.4.2
of [20])

i

f=?+aﬁbmﬁm—@—@%ﬁW?@;“}(M)

2
1

For a flat universe (k = 0), the ray path in the coordinate
system (Eq. 14) can be simplified as

5)

=

X= + Xi.

The parametric equation of the ray path, given by substituting
Eq. (13) in Eq. (15), is then
Xp) = 7ip + X. (16)

The distance of light ray to the origin in the observer co-
ordinate system will be

fl o= @+ 2)- (7 +0)
\/x% +p2 = 2x1pc08

V(x1 = p)? + x1pd?,

where we have considered the angle ¢ between 7 and —X] is
small and thus cos ¢ ~ 1 — ¢?/2.
At the emission time #,, we have

a7

14

Pli=, =0, (18)
[Xli=s, = X1li=, = re = 1R(2e), (19)
Pli=s, = |€], (20)
while at the observation time ¢,, we have
Pli=ty = 1o = 11R(1,), 2D
|f|t=t0 =D, (22)
[Xili=i, = 10 = 1R(,), (23)
Pli=i, = 0 = |€|R(1,)/R(2,). (24)

Substituting the quantity properties Eqs. (21)-(24) at t = ¢,
into Eq. (17), we obtain the impact parameter as

R
b = R(t,)r0 =

(25)

To calculate apparent luminosities, we consider a circular
telescope mirror of radius b, placed with its center at the ori-
gin and its normal along the line of sight to the light source.
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The fraction of all emitted photons that reach the mirror is the
ratio of the solid angle to 4,
nb* R%(t,)

nle®
= . 26
4m 47”’% R4(t0) ( )

Since light is red-shifted, the energy or frequency of each
photon observed is reduced in comparison with the photon
emitted by a factor of R(¢.)/R(t,). This energy or frequency
reduction is equivalent to the increase of the time interval for
observation relative to that for emission. If the effect of the
redshift on the apparent luminosity is considered, then we
should not consider the effect of the time interval increase
on the apparent luminosity. This is also consistent with the
electromagnetic wave theory of light, from which the energy
emitted per unit time of emission is only one redshift factor
greater than the energy observed per unit time of observation.
Therefore, the total power P received by the mirror is the total
power emitted by the source, its absolute luminosity L, times
a factor R(z,)/R(t,), and times the fraction (Eq. 26):

_ b R
- 47”’% RS([,,).

27

The apparent luminosity / is the power per unit mirror area

P L R(t,)
l = — = . 28
mb*  Anrl R3(1,) (28)
Then the luminosity distance can be obtained
L\" R, "
DL =(—) =nRa,
L (4771) riR( )[R(te)}
‘o dt
= c(1 + 2)*R(1,) f —. (29)
. R@®

The Iuminosity distance Eq. (29) derived here is V1 +Z
times that we conventionally used, Eq. (2). This factor leads
to an explanation of type la supernova measurements without
dark energy. Using Eqs. (4) and (8) for a flat universe (k = 0)
without dark energy (A = 0), we can integrate Eq. (29) and
obtain the luminosity distance-redshift relation as

DL=£(1+Z)<\/1+Z—1). (30)
Hy
Eq. (30) dees not include any free parameter and reduces to
the Hubble law at Z < 1.

The two significant corrections, which have been made
in the above derivation of the luminosity distance in compar-
ison with the derivation done in [20] are: 1) € is not about
equal to |€] for a distant light source but increased by a fac-
tor R(t,)/R(t,), and 2) the light is red-shifted and the time
interval increases are equivalent in physics v, /v, = 6t./t, =
R(t,)/R(t,) and thus they reduce the apparent luminosity only

by R(t,)/R(t,) rather than its square. This is also supported
by the electromagnetic wave theory of light.

The early derivation, including the simplified version as
given in [28] and other cosmological books, the fraction of
the light received in a telescope of aperture 76> on earth is
nb? /[4nr? R (1,)] and so the factor 1/d? in the formula for the
apparent luminosity / was replaced by 1/[r;R*(f,)]. This re-
placement or modification for the apparent luminosity / was
made according to the view of the emitter rather than from
the view of the observer. From the view of the emitter (or a
person standing on the source object), all light rays radially
diverge from the source object isotropically and in straight
lines. All the photons emitted at #, reach the surface of the
sphere drawn around the source object by radius r;R(z,). The
angle of emission of a photon from the source object is equal
to the angle of incidence of the photon to the mirror of tele-
scope.

From the view of the observer, however, the source ob-
ject is moving away in an increasing speed. The light rays
travel in curved lines and anisotropically as shown in Figure
2. The angle of emission of a photon from the source object
|€] is smaller than the angle of incidence of the photon to the
mirror of telescope 6 by a factor of R(¢,)/R(¢,). That is, from
the view of the observer, the factor 1/d? in the formula for
! must be replaced with 1/[r%R4(t,,) /R%(t,)] as shown in Eq.
(26). On the other hand, according the electromagnetic wave
theory, the energy of radiation does not depend on the fre-
quency. Only the increase of time interval would reduce the
apparent luminosity. This may be examinable in experiments
using a sound wave.

Figure 3 plots the luminosity distance-redshift relation
(red line) along with the type la supernova measurements
(blue dots. Credit: Union 2.1 compilation of 580 SNIA data
from Supernova Cosmology Project). In this plot the Hubble
constant is chosen to be Hy ~ 70 km/s/Mpc. In the upper
panel of Figure 3, the distance modulus, which is defined by
u1 = 5log,, D1 — 5 with Dy, in parsecs, is plotted as a function
of redshift; while in the lower panel of Figure 3, the distance
modulus difference between the measured SNela data and an-
alytical results derived from Eq. (30). The chi-square statistic
is obtained as

2
580 ( obs _ lhe)
M M
2

~ 589. 31

Then the reduced chi-square is given by sze 4 = 389/580 ~
1.015. It is seen that the derived luminosity distance-redshift
relation is perfectly consistent with the measurements of type
Ia supernovae. Therefore, with the new luminosity distance-
redshift relation, the SNela measurements do not show the
existence of dark energy.

The analysis and measurements for the structure and weak
lensing of the CMB might not be accurate enough as were
thought to provide an independent check or evidence on the
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Fig. 3: Luminosity distance-redshift relation of type la supernovae.
Blue dots are measurements credited by the Union2 compilation of
580 SNela data from Supernova Cosmology Project. Red lines are
analytical results from this study. The upper panel plots the distance
modulus as a function of redshift, while the lower panel plots the
distance modulus difference between the measurement data and the-
oretical results.

existence of dark energy [29-30]. Recently, Sawangwit and
Shank [31-32] looked at the CMB observations and find the
errors in the data to be much larger than previously thought.
The CMB power spectrum is very sensitive to the beam pro-
files. If their results are further confirmed to be correct, then
it will also become less likely that dark energy dominates the
universe.

4 Summary

The luminosity distance-redshift relation that we previously
applied to connect the models with the SNela measurements
is an approximate expression only valid for nearby objects.
This is because that the traditional derivation of the D; —Z re-
lation has the following two defects: (1) the light emitting an-
gle is about equal to the light incident angle, which is not true
for light from a distant source object according to the view

of the observer on the earth, and (2) the redshift of light and
the increase of time interval doubly reduce the energy flux
of the received light, which is physically incorrect because
the redshift of light is caused by the increase of time inter-
val. The electromagnetic wave theory of light also supports
that the apparent luminosity is reduced only by one redshift
factor due to the time interval increase. We have corrected
these defects and derived a new relationship between lumi-
nosity distance and redshift with a factor of V1 +Z. With
this new Dy — Z relation, we have perfectly explained the
SNela measurements according to the standard cosmological
model without dark energy (A = 0). Therefore, we can con-
clude that the universe has not accelerated and does not need
the dark energy at all. The luminosity distance-redshift rela-
tion often used previously is only valid for nearby objects and
thus the luminosity distances of all distant type Ia supernovae
had been underestimated. This study provides us a possible
solution to the mystery of dark energy.
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The spins, transition energies, rotational frequencies, kinematic and dynamic moment
of inertia of rotational bands of signature partners pairs of odd—A superdeformed bands
in A~190 region were calculated by proposing a simple model based on collective rota-
tional model. Simulated search program was written to determine the model parameters.
The calculated results agree with experimental data for fourteen signature partner pairs
in Hg/T1/Pb/Bi/nuclei. We investigated the Al=1 signature splitting by extracted the
difference between the average transitions [+2 — I and I — I-2 energies in one band
and the transition I+1 — I-1 energies in its signature partner. Most of the signature
partners in this region show large amplitude staggering. The signature splitting has the
effect of increasing dynamical moment of inertia J? for favored band and decreasing J>

for the unfavored band.

1 Introduction

Since the first observation of superdeformation in 32Dy [1]
and in 191Hg [2] more than 350 settled SD bands in more
than 100 nuclei have been will established in several mass re-
gions of nuclear chart A~190, 150, 130 [3-6]. With the aid
of large y-ray detectors arrays, new regions of SD nuclei have
been discovered encircle mass A~80, 60, 70, 90 regions. The
A~190 mass region is of special interest, more than 85 SD
bands have now been observed in this mass region alone in
Au, Hg, TIl, Pb, Bi and Po nuclei. The SD states in A~190
mass region have been observed down to quite low spin also
many SD bands in the A~190 show the same smooth rise in
the dynamical moment of inertia as rotational frequency in-
crease, which is associated [7-9] with the successive gradual
alignments of a pair of nucleons occupying specific high-N
intruder orbitals in the presence of pairing correlations.

Spin assignment is one of the most difficult and still un-
solved problems in the study of nuclear superdeformation, be-
cause spins have not been determined experimentally in SD
nuclei. This is due to the difficulty of establishing the exci-
tation of a SD band into known yrast states. Several related
approaches to assign the spins of SD bands in terms of there
observed y-ray energies were proposed [10-28]. For all ap-
proaches an extrapolation fitting procedure was used.

The development of large y-ray arrays has allowed exper-
imentalists to find new phenomena at high angular momenta.
For example some SD nuclear bands in mass regions A~150
and A~190 show an unexpected regular staggering effects in
the transition energies E, (a zigzag behavior as a function of
rotational frequency or spin). At high rotational frequencies a
AI=2 staggering was observed [29-39]. It has attracted much
attention and interest, and has thus become one of the most
frequently debated subjects.

The AI=2 rotational bands are perturbed and two Al=4
rotational sequences emerge with an energy splitting of about

some hundred eV. This is commonly called Al=4 bifurcation
or as C4 oscillation, because the SD-energy levels are conse-
quently separated into two spin sequences with spin values I,
Io+4, [p+8,... and Ip+2, Ip+6, Ip+10,.. . respectively.

Many Al=1 signature splitting have been observed in ND
nuclei for different bands, like odd-even staggering (OES) in
the gamma vibrational band at low spin [40], the beat odd-
even Al=1 staggering patterns observed in the octuple bands
[41] and the Al=1 odd-even staggering structure of alternat-
ing parity bands in even-even nuclei [42,43].

There is another kind of staggering happens in SD odd-A
nuclei, the AI=1 signature splitting in signature partner pairs.
It was seen that most of SD rotational bands in odd-A nuclei
in the A~190 region are signature partners [44-53]. Most of
these signature partners show large amplitude signature split-
ting and the bandhead moments of inertia of each pair are
almost identical.

2 Sketch of the Model

In the model used, the excitation energy of a SD State E(I)
and spin I is expressed as:

1”2=1(1+1)=an E™I). (1)

With 7 [1 (I + 1)]"2. If we restrict to three terms only, then
I(I+ 1) = by + biE(I) + byEX(I). )

Solving for E(I) we get the two-parameters formula for E(I)

E(I) = Eg +a([1 +bI(I + 1)]'?) 3)
with a,b and Eg simply expressed by by, b; and b,
1
a= Z—bz[bf — 4byb,]'? )
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4b
b= 2—2 )
b2 — dbyb,
by
Eg=a- 2L
0=a= 5 (0)

where b characterizes the nuclear softness.

The rigid rotor limit corresponds to b—0 and a, E keep-
ing finite. The value of the parameter a increases slowly with
I. Tt is expected that a better expression may be obtained if a
weak I dependence of the parameter a is taken into account.
So equation (3) is tentatively modified as follows:

Edy=a([1+b(DI+ D" =1)+cld+1) (]
with an additional parameter c. Leading to a form for the
gamma transition energies

E() = a([1+bI(I+D)]'? = [1+b(I-2)(I-1)]'7?)

+2c(21+1). ®)

The kinematic J' and dynamic J> moment of inertia as-
sociated with the a, b, ¢, formula are:

J' = ab[l + bI(I + 1)]‘/2+2i )
C

1
J? =ab[l +bII + DPP* + o (10)
C

The bandhead moment of inertia is

hz

Jo= ab +2¢’
Each SD nucleus is described by three adjustable parameters
a, b and ¢ which are determined by fitting procedure of all
known levels.

For the SD bands, one can extract the rotational frequen-
cy, dynamic and kinematic moment of inertia by using the
experimental intra band E, transition energies as follows:

fiw = %[Ey(l +2) + Ey(D)] (11)
> o AR
S = AE, 12)
R2Q2I1-1)
1 _
J-1=——— (13)

Y

where
E,=E()-E(I-2),

AE, = E,(I +2) — E,(I).

It is seen that whereas the extracted J' depends on I pro-
position, J? does not.

3 Analysis of AI=1 signature splitting in SD signature
partner

To investigate the AI=1 staggering in signature partner pairs
of odd SD band, one must extract the differences between the
average transition I+2—1I and [—1I-2 energies in one band
the transition I+1—1 and [-—I-1 energies in the signature
partner

NE() = 3E,U+2— D+ E( — 1-2)

—2E,(I+1 — I-1)|
where E, (I) is proposed in equation (8).

4 Numerical Calculation and Discussions

Our selected data set includes fourteen signature partner pairs
in ten odd SD nuclei in the A~ 190 mass region, namely:

191Hg (SD2, SD3)
193Hg (SD3, SD4)
193T] (SD1, SD2)
193pp (SD5, SD6)
197p}, (SD1, SD2)

193Hg (SD1, SD2)
195Hg (SD3, SD4)
19571 (SD1, SD2)
195pp, (SD1, SD2)
197Bj (SD2, SD3)

193Hg(SD3, SD4)
19ITI(SD1, SD2)
193ph(SD3, SD4)
195ph(SD3, SD4)

The experimental transition energies are taken from ref-
erence [3]. To parameterize the spins of the SD bands, we
assumed various values for the bandhead spin I for each SD
band and the model parameters a, b and ¢ are adjusted by us-
ing a computer simulated search program in order to obtain a
minimum root mean square deviation

N exp T heor 1/2
1y ES(I) - EThor(D)
N AES(I)

i=1

X:

Of the calculated energies E;”l from the observed ener-
gies E,"”, where N is the number of data points considered
and AE," is the uncertainty of the y-transition energies. The
fitting procedure was repeated with spin /j fixed at the nearest
half integer.

Table (1) gives the optimized model parameters a, b, c,
the bandhead spin proposition I and the lowest transition en-
ergies E,, (Ip+2 — Iy) for each SD band.

The systematic behavior of kinematic J' and dynamic J>
moments of inertia are guideline for the spin prediction and
to understand the properties of the SD bands. We studied the
variation of J'and J?as a function of rotational frequency Aw.
The value of J'and J? approaches each other at the bandhead
spin Iy . The J' moment of inertia is found to be smaller
than that of J? for all values of 7iw. Both J'and J? plots
are concave upwards. In general the bandhead moments of
inertia in our selected signature partners odd-A SD nuclei
Jo = (94 + Hh MeV~! are longer than that of the yrast SD
bands in neighboring even-even nuclei. The best fitted param-
eters were used to calculate the theoretical transition energies
extracted from our proposed model.
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Table 1: The calculated best model parameters a, b, ¢ and suggested bandhead spins I for our selected signature partners in the odd SD

nuclei in A =~ 190 region.

SD Bands a b c Iy E,
MeV 1074 MeV | MeV B keV
9THg(SD2) | 19074.6639 3.0809 2.3765 10.5 | 2524
9THg(SD3) | 15810.8517 3.6987 2.4037 115 | 272
193Hg(SD1) | 1569.7883 23.4445 3.7662 9.5 | 2332
19Hg(SD2) | 12654.6097 43858 2.6051 10.5 | 254
19Hg(SD3) | 12243.4329 4.4984 2.6289 9.5 | 2335
19Hg(SD4) | 12654.6098 43858 2.6051 10.5 | 254
19Hg(SD3) | 72779.9405 1.8708 -0.9723 10.5 | 284.5
19Hg(SD4) | 22034.6647 24110 2.4673 15.5 | 3419
9ITISD1) | 307519.2819 | 0.7272 -5.7903 11.5 | 276.77
9ITI(SD2) | 249002.6385 | 0.8532 -5.2350 12.5 | 296.75
193T1(SD1) | 13573.6592 3.7666 2.6759 9.5 | 2273
193T1(SD2) | 6380.8736 5.3776 3.5196 8.5 | 206.6
195TI(SD1) | 6380.8738 5.3776 3.5196 55 | 146.2
195TI(SD2) | 33124.3911 2.4266 1.2551 6.5 | 1675
193pp(SD3) | 4702.3802 6.2778 3.8243 10.5 | 251.5
193pp(SD4) | 16892.1756 3.5957 2.2986 11.5 | 273
193pp(SD3) | 4337.5276 8.2523 3.6196 8.5 | 2132
193ph(SD6) | 3574.7877 94219 3.7378 9.5 | 2346
195pp(SD1) | 600.9413 13.4593 4.6737 7.5 | 162.58
195pp(SD2) | 15864555.765 | 0.0139 -5.9659 6.5 | 182.13
195pp(SD3) | 2362.3559 13.4225 3.9167 7.5 | 1982
195pp(SD4) | 18884.3711 3.5500 2.0732 8.5 | 213.6
97pp(SD1) | 9713.0371 2.5870 3.8497 7.5 | 183.7
197pp(SD2) | 724986.6813 | 0.1798 -1.3692 6.5 | 204.6
197Bi (SD2) | 6.09E+08 8.24E-07 | -245.7806 | 8.5 | 166.2
197Bi (SD3) | 6.09E+08 8.24E-07 | -245.7806 | 9.5 | 186.7

To investigate the Al=1 signature splitting, the difference
between the averaged transitions [+2—I and I-—I-2 ener-
gies in one band and the transition I+1—1I-1 energies in its
signature partner A%E,(I) are determined and its value as a
function of spin I for each signature partner pairs are plotted
in figure (1). Most of there signature partners show large am-
plitude staggering with the exception of '**Hg (SD1, SD2),
193pb (SD5, SD6) and !*°Pb (SD3, SD4).

A clear out amplification of A?E(I) is seen in '*3Pb (SD3,
SD4). For most cases one finds that AZE(I) is very small at
lower spins, increasing faster and faster as the spin I increase.
The of A’E(I) in '3T1 (SD1, SD2) and '*T1 (SD1, SD2) are
remarkable similar.

5 Conclusion

The nuclear superdeformed rotational bands of signature part-
ners of odd-mass number in the A~190 region have been
studied in the framework of a simple formula based on col-
lective rotational model containing three parameters. The for-
mula connected directly the unknown spin and the energy of

the level the spins of the observed levels were extracted by
assuming various values to the lowest spin of the bandhead at
the nearest half integer. The optimized three parameters have
been deduced by using a computer simulated search program
in order to obtain a minimum root mean square deviation of
the calculated transition energies from the measured energies.

The calculated transition energies, level, spins, rotational
frequencies, kinematic and dynamic moments of inertia are
examined for fourteen signature partner pairs. To investigate
the Al=1 signature splitting for each signature partner pair,
we calculated the difference between the average transitions
[+2 —I and I-—I-2 energies in one band and the transition
I+1—I-1 energies in its signature partner. Most of the signa-
ture partners in this region show large amplitude Al=1 stag-
gering.

Submitted on April 6, 2013 / Accepted on April 19, 2013

References

1. Twin PJ., Nyak B.M. Observation of a Discrete-Line Superdeformed
Band up to 607 in 152Dy. Physical Review Letters, 1986, v.57, 811-
814.

Khalaf A.M. et al. Al=1 Signature Splitting in Signature Partners of Odd Mass Superdeformed Nuclei 41



Volume 3

PROGRESS IN PHYSICS

July, 2013

10 MIHg(SD25D3) LB 80 40 1$3Hg(SD-1,5D-2)
: i1 :
£ £
z0 =
e 4 | .
< <
-10 spin I(&) -40 spin I(k)
) 100 1 Ha(SD-3.5D-
ﬁ 9 Hg(SD-3.5D4) “Hg(SD-3.8D-4)
= 294
22 g
= 0 g
fig [=
R =
=
-40 spin (k) -100 spin (k)
10 20
HITI(SD-1,5D-2) HITY(SD-1,5D-2)
il :
N aafhll g
=1 FEYYY V vlv =
b 18 38 =
=
-10 spin I{k) -20 spin I(f)
0 THSD-1.5D-2) 20 BIPR(SD-3,5D-4
z
£
= 2 48
z
-20 SpinI(k) 20 spin I(k)
1 20 1Ph(SD-1SD-2)
153Ph(SD-5,5D-6)

AT (D (Kev)

spinI(k)

-1 spin I(k)

4 } 15Ph (SD-3,5D4)

2
7, s VMMMV
=
Elﬁvv 13\1qu¥8 38
Fa spin I(k) 40 spinI()

>0 1Ph(SD-1,5D-2) 100 % Bi(SD-2,5D-3)

% 50
AAAAARAT

A () (Kev)

ATy (KeV)

spin I(k)

- ﬁ JATATRTRTAVATATEE

Spinl (k)

Fig. 1: The Al=1 signature splitting in some signature partners of
odd-A superdeformed nuclei.

2. Moore E. E, Janssens R.V.F et al. Observation of superdeformation in
191Hg. Physical Review Letters, 1989, v. 63, 360-363.

3. Singh Balraj. Table of Superdeformed Nuclear Bands and Fission Iso-
mers. Nuclear Data Sheets, 2006, v. 107 1-224.

4. Singh Balraj, Zywine Roy, Richard B. Firestone. Table of Superde-
formed Nuclear Bands and Fission Isomers. Nuclear Data Sheets, 2002,
v.97 (1), 241-592.

5. Han X.L. and Wu C.L. At. Data NUCLEAR SUPERDEFORMATION
DATA TABLES. Nuclear Data Tables, 1996, v. 117, 117.

6. Singh B., Firestone R.B., Chu S.Y.E. Table of superdeformed nuclear
bands and fission isomers. Egypt Journal of Physics, 1996, v. 78, 1-177.

7. Ye D., Janssens R.V.E. et al. Superdeformed band in '*?Hg. Physics
Review , 1990, v.C41, R13-R17.

8. Riley M.A., Cullen D.M. et al. Multiple superdeformed bands in
194Hg and their dynamical moments of inertia. Nuclear Physics, 1990,
v.A512, 178-188.

9. Drigert M.W., Carpenter M.P. et al. Superdeformed bands in '8%1°0Hg.
Nuclear Physics, 1991, v. A530, 452-474.

10. Stephens E.S. Spin alignment in superdeformed rotational bands. Nu-
clear Physics , 1990, v. A520 c91-c104.
11. Becker J.A., N. Roy, Henry E.A. et al. Level spin and moments of

inertia in superdeformed nuclei near A=194. Nuclear Physics, 1990,
v. A520, c187—c194.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

. J. E. Draper J.E., Stephens E.S. et al. J Superdeformation in

. Draper J.E., Stephens E.S. et al. Spins in superdeformed bands in the

mass 190 region 190 region. Physics Review , 1990, v.C42, R1791—
R1795.
196,198 pp,.

ibid, 1991, v.42, R179.

. ZengJ.Y., Meng J. et al. Spin determination and quantized alignment in

the superdeformed bands in 152Dy, I51Th, and 199Gd. Physical Review,
1991, v. C44, R1745-R1748.

. BeckerJ.A., Henry E.A. et al. Level spin for superdeformed nuclei near

A=194. Physical Review , 1992, v.C46, 889-903.

. Piepenbring R., Protasov K.V. Superfluid liquid model with triplet

pairing for superdeformed in A 130-150 region. Z Physics , 1993,
v. A347(7), 27-35.

Xu Furong , Hu Jimin et al. Cranking Bohr-Mottelson Hamiltonian ap-
plied to superdeformed bands in A 190 region. Physical Review, 1994,
v. C49, 1449-1453.

Fan H-Y., Jing S.-C. Even and Odd Binomial States. Communications
in Theoretical Physics, 1995, v.24, 125-128.

Hegazi A.M., Ghoniem M.H., Khalaf A.M. Superdeformation in 154g;
Egypt Journal of Physics, 1999, v.30 (3), 293-R1174.

Khalaf A.M. et al. Band Head of the Superdeformed Bands in the A ~
150 Mass region Nuclei. Egypt Journal of Physics, 2002, v.33 (1), 67—
87.

Khalaf A.M. et al. Spin Prediction and Systematics of Moments of in-
ertia of superdeformed Nuclear Rotational Band in the Mass Region
A~190. Egypt Journal of Physics, 2002, v.33 (3), 585-602.

Khalaf A.M. et al. Deascription of Rotational Bands in Superdeformed
Nuclei by Using Two-parameter Empirical Formula. Egypt Journal of
Physics, 2003, v. 34 (2), 159-177.

Khalaf A.M. et al. Properties of Superdeformed Rotational Bands of
Odd Nuclei in the Mass-190 Region Using Harris Expansion. Egypt
Journal of Physics, 2003, v. 34 (2), 195-215.

Khalaf A.M. et al. Analysis of Rotational Bands in Superdeformed
Nuclei Using sdg Interacting Boson Model. Egypt Journal of Physics,
2004, v.34 (1), 79-104.

Khalaf A.M. and Sirag M.M. Prediction of Nuclear Superdeformed
Rotational Bands Using Incremental Alignments. Egypt Journal of
Physics, 2006, v.37 (3), 277-293.

Khalaf A.M., Allam M.A., Saber E. Rotational Bands of Superde-
formed Nuclei in Framework of Variable Moment of Inertia Model.
Egypt Jurnal of Physics, 2006, v.73 (3), 195.

Khalaf A.M., Allam M.A., Saber E. Signature Partners in Odd Superde-
formed Nuclei in Mass Region A~190. Egypt Journal of Physics, 2008,
v.39 (1), 41-65.

Khalaf A.M., Allam M.A. and Sirag M.M. Bandhead Spin Determi-
nation and Moments of inertia of Superdeformed Nuclei in Mass Re-
gion 60-90 Using Variable Moment of inertia Model. Egypt Journal of
Physics, 2010, v. 41 (2), 13-27.

Flibotte S. et al. A/= 4 bifurcation in a superdeformed band: Evidence
for a C4 symmetry band. Physical Review Letters, 1993, v.71, 4299—
4302.

Cederwall B. et al. New features of superdeformed bands in '**Hg.
Physica Scripta, 1994, v.72 3150-3153.

Flibotte S. Hackman G. et al. Multi-particle excitations in the superde-
formed '*°Gd nucleus. Nuclear Physics, 1995, v. A584, 373-396.

Carpenter M.P,, Janssens R.V.F. Identification of the unfavored N=7
superdeformed band in '°'Hg. Physical Review , 1995, v.51, 2400
2405.

Bernstein L.A. and Hughes J.R. Superdeformation in '>*Er. Physical
Review, 1995, v.C52, R1171-R1174.

42 Khalaf A.M. et al. Al=1 Signature Splitting in Signature Partners of Odd Mass Superdeformed Nuclei



July, 2013

PROGRESS IN PHYSICS

Volume 3

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

Khalaf A.M. et al. Al=1 Signature Splitting in Signature Partners of Odd Mass Superdeformed Nuclei

de Angelis G. and Wyss R. Spectroscopy in the second well of the
148Gd nucleus Two quasiparticle and collective excitations. Physical
Review, 1996, v. C35, 679-688.

Fischer S.M., Carpenter M.P. et al. Alignment additivity in the two-
quasiparticle superdeformed bands of '92Tl. Physical Review, 1996,
v.C35, 2126—2133.

Semple A.T., Nolan PJ. Energy Staggering in Superdeformed bands
in 131Ce, 132Ce and '3 Ce. Physical Review Letter, 1996, v.76, 3671—
3674.

Kriicken R., Hackman G. et al. Test of AI=2 staggering in the superde-
formed bands of '**Hg. Physical Review, 1996, v. C45, R2109-R2113.

Cederwall B. et al. PROPERTIES OF SUPERDEFORMED BANDS
IN DY-153. Physical Review, 1995, v. B346, 244-250.

Haslip D.S., Flibotte S., and de France G. A/=4 Bifurcation in Identi-
cal Superdeformed Bands. Physical Review Letters, 1997, v.78, 3447—
3450.

Singh M., Bihari C. et al. Evidence of rigid triaxiality in some xenon
nuclei. Canadian Journal of Physics, 1995, v. 85 (8), 899-910.

Bonatsos D., Daskaloyannis C. AI=1 staggering in octupole bands of
light actinides: “Beat” patterns. Physics Letters, 2000, v. C62, 24301—
24313.

Wiedenhover I, Janssens R.V.F. et al. Octupole Correlations in the Pu
Isotopes: From Vibration to Static Deformation. Physical Review Let-
ters, 1999, v. 83, 2143-2146.

Minkov N., Yotov P., Drenska S. Parity shift and beat staggering struc-
ture of octupole bands in a collective model for quadrupole-octupole
deformed nuclei. Journal of Physics G — Nuclear Physics, 2006, v. 32,
497-503.

Duprat J. Azaiez F. et al. M1 transitions between superdeformed states
in 19°TI: the fingerprint of the i132 proton intruder orbital. Physical
Letter , 1994, v.B341, 6-11.

Joyce M.J. et al. First measurement of magnetic properties in a su-
perdeformed nucleus:'®3Hg. Physical Review Letters, 1993, v.71,
2176-2179.

Hughes J.R., Becker J.R. et al. Superdeformation in '°*Pb and the ef-
fects of the N=7 intruder orbital. Physical Review , 1990, v. C51, R447—
R451.

Farris L.P., Henry E.A. et al. Neutron blocking and delayed proton
pair alignment in superdeformed '*>Pb. Physical Review, 1996, v.C
51, R2288-R2292.

Baunem S. et al. The i13/, proton intruder orbital in the superdeformed
19371 nucleus: Effective magnetic moment and blocking of proton pair-
ing. Physical Review, 1996, v.C53, R9-R13.

Carpenter M.P., Janssens R.V.F. and Flocard H. Identification of the
unfavored N=7 superdeformed band in '°'Hg. Physical Review, 1995,
v. C51, 2400-2405.

Joyce MLJ., Sharpey-Schafer J.V. and Flocard H. The N = 7 unfavoured
superdeformed band in '®3Hg; coriolis splitting and neutron shell struc-
ture at extreme deformation Physical Letter, 1999, v. B340, 150-154.
Joyce M.J., Sharpey-Schafer and Riley M.A. Microscopic study of the
properties of identical bands in the A=150 mass region Physical Re-
view, 1999, v.C59, 3120-3127.

Hackman G. and Kriicken R. Structure of superdeformed bands in
195Hg Physical Review, 1997, v.C55, 148-154.

Clark R.M., Bouneau S. et al. Superdeformation in the bismuth nuclei.
Physical Review, 1995, v.C51, R1052-R1056.

Hibbert I.M., Wadsworth R. et al. Superdeformed structures in
197.198py, Physical Review, 1996, v. C54, 2253-2258.

43



Volume 3

PROGRESS IN PHYSICS

July, 2013

Nuclear Shape Transition Using Interacting Boson Model with the Intrinsic
Coherent State

A.M. Khalaf*, H.S. Hamdy" and M.M. El Sawy*

*Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. E-mail: ali_khalaf43 @hotmail.com
"Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
¥Demonstrator at Basic Science department, Engineering Faculty, The British University, Cairo, Egypt. E-mail: maiamy4 @ gmail.com

The values of the potential energy surface (PES) for the even-even isotopic chains of
Nd/Sm/Gd/Dy are studied systematically using the simplified form of interacting boson
model (IBM) with intrinsic coherent state. The critical points have been determined
for each isotope chain. The phase diagrams exhibits first-order shape phase transition
from spherical U(5) to deformed axial symmetric prolate SU(3) when moving from

light isotopes to heavy ones.

1 Introduction

We note that in the interacting boson model-1 (IBM-1) [1,2]
one describes an even-even nucleus as a system of N bosons
able to occupy two levels, one with angular momentum re-
stricted to zero (s boson) and one with angular momentum 2
(d boson).

The bosons are assumed to interact via a two-body resid-
ual interaction. Denoting by b; (i=1,...,6) the creation (anni-
hilation) operators for bosons (b; = s,by ¢ = d) it is easy
to see that the 36 operators G;;- = bj'bif close under the Lie
algebra of U(6). This simple model allows the utilization of
algebraic symmetric for approaching different type of nuclear
spectra, known as dynamical symmetries and corresponding
to un-harmonic vibrator (U(5) Symmetry) [3], rigid deforma-
tions (SU(3) Symmetry) [4] and y-instability (O(6) Symme-
try) [5]. In these special cases it is possible to find analytical
solutions of the boson Hamiltonian and deal with small de-
viations from these symmetries using different perturbation
methods.

However, real nuclei may deviate considerably from the
simple dynamical limits. This is represented in the Casten
triangle [1-6] with vertices corresponding to the standard dy-
namical symmetries and the sides of the triangle represent
direct transition between the limiting cases, whereas all com-
plex transition regions are contained in the area. Phase tran-
sitions between these shapes were studied, and it is known
that the phase transition from U(5) to O(6) is second order,
while any other transitions within the Casten triangle from a
spherical to deformed shape is first order [7-23].

Now, there is a class of symmetries that are formulated
in terms of the Bohr Hamiltonian and that can be applied to
critical point situation [24-26]. In particular, at the critical
point from spherical to y-unstable shapes, called E(5) [24], at
the critical point from spherical to axially deformed shapes,
called X(5) [25] and the critical point from axially deformed
shapes to triaxial shapes, called Y(5) [26]. Since the intro-
duction of these limits many theoretical [27-32] and experi-
mental [33-39] studies have been presented in order to look

for nuclei that exhibit the properties of critically and to clas-
sify the corresponding phase transitions. Many studies have
extended these original models to more complex situations
[40-44].

The relation between the Bohr-Mottelson collective
model [45] and the IBM was established [46,47] on the ba-
sis of an intrinsic (or coherent) state for the IBM. Via this
coherent state formalism, a potential energy surface (PES)
E(B, y) in the quadruple deformation variables 8 and y can
be derived for any IBM Hamiltonian and the equilibrium de-
formation parameters 3y and g are then found by minimizing
E(B, y). The deformation parameter S measures the axial de-
viation from sphericity, while the angle variable y controls
the departure from axial symmetry.

In the present work, we investigate shape phase transition
within the IBM-1 using coherent state formalism for various
rare earth isotopic chains. The paper is organized as follows.
First the IBM and the symmetry triangle used in the present
work is briefly described in section 2. In this variation of the
IBM, the coherent state approach is treated to produce PES’s
in section 3. The location of the critical point in the shape
transition is identified in section 4. We review the concept of
dynamical symmetry in section 5. In section 6 a systematic
study of isotopic chains on Nd/Sm/Gd/Dy related to the U(5)-
SU(3) shape transition is given and main conclusions arising
from the present results are discussed.

2 The IBM-1 Hamiltonian and Coherent State

Denoting by C,[G] the n”-order Casmir operator of the Lie
group G, the general sd-IBM Hamiltonian with up to two-
body interactions can be written in the following form:

H

eCilUGS] + ki Co[US)]
kyCo[O(5)] + k3C2[O(3)]
kyCo[SUB)] + ks[O(6)]

ey

+ +

The Casmir operators are defined by the following equations

CilUB)] = hq 2
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G LUB)] = a(ig +4) 3)

| A
G[005)] =4 [E(L'L + T3.T3)] “4)

C2[0(3)] = 2(L.L) o)

2 AA 3 .
GISUG =3 [Z(QQ) + Z(L-L)} (6)

N

where 71y, P L, Q and T3 are the boson number, pairing, an-
gular momentum, quadruple and octuple operators defined as

C2[0(6)] = 2[N(N + 4) — 4(P.P)]

g = (d'd)® ®)

01 a1
P= E(dd) - z(ss) O]
Olxl = [d'5 + s'd)? + x[d' xd]® (10)
I = V10[d" xd]?V (11)
T5 = [d"xd]® (12)

where s7(s) and d'(d) are monopole and quadruple boson
creation (annihilation) operators respectively. The study of
shape phase transition in even-even nuclei can be well done
from the simple two parameter IBM Hamiltonian, the well
known consistent-Q Hamiltonian

H = iy = kQ() - O(x). (13)
The symbol (-) represents the scalar product and the scaler
product of two operators with angular momentum L is defined
as T,.T, = EM(—I)MTLMTL_M where T corresponds to the
M component of the operator 7.

The Hamiltonian of equation (13) describes the main fea-
tures of collective nuclei, it contains the dynamical symme-
tries of the IBM for spherical choices of the coefficients &, k
and y, and allows to describe the transitional regions between
any of symmetry limits as well. In discussing phase transi-
tions, it is convenient to introduce the control parameter 7,

such as:
n le

-5 Nk
where N is the total number of boson. Hamiltonian(1) can be
written in the second form

(14)

-1 4 A
H = C iy = —000-000)|. (1)

With
clk

T= Nk

The second form equation (15) avoids the infinities inher-
ent in the use of the ratio of £/k as n varies from 0 to 1. The
factor C in equation (15) is only a scale factor and 7 and y
are therefore the two parameters that determine the structure.
The values of the control parameter 1 ranges from 0 to 1 and
y is located in the interval of — V7/2 (-1.32) to V7/2 (+1.32).

Let us consider the Hamiltonian of equation (5) and the
effects of its two parameters 77 and y. Clearly, one of the most
important features of the IBM is the existence of three dis-
tinct dynamical symmetries (DS), each representing a well
defined phase of nuclear collective motion. The three DS
are: the U(5) symmetry for spherical vibrational nuclei (7=1),
the SU(3) symmetry for prolate deformed nuclei (=0, y=
- \/7/2) and the O(6) symmetry for y-unstable deformed nu-
clei (=0, y=0), the SU(3) symmetry for oblate deformed nu-
clei corresponding to (n=0, y=+ V7/2). For intermediate val-
ues of the control parameters 7 and y, the potential energy
surface (PES) function will describe a certain point on the
IBM symmetry triangle located between the three limits.

Comparing the simplified Hamiltonian equation (15) with
equation (1) we see that only two terms of the general form
are considered. Rewriting equation (15) in the form of equa-
tion (1), we get:

C =&+ Nk,

(16)

H =

2 V71
n+ ﬁ(l —n)x[x+ 7]] CiU(5)]
2 V7
+ﬁ(1 - TI)X(X + T]CZ[U(S)]

1 3 2,
+N(77— 1)(1 + ﬁ/\“r 7X )C2[0(5)]

1
+on = (r+2V7) GG

1
——m—-1yC[SUQB
+\/7N(77 WCISUE)]

1 2
—(1=n|1+—|C[O06)].
3¢ n)( + \/7)5] 2[0(6)]

a7)

In IBM-1, the intrinsic coherent normalized state of a nu-
cleus with N valence bosons outside the doubly-closed shell
state is given by:

1 N
INBy) = ——=(T£)"|0) (18)
VN €
where |0) denotes the boson vacuum, and
rf- 1 s+ Bcosyd + Lﬁsiny(d* +d' )|, (19
C \/Tﬁz 0 \/E 2 -2

Here 8 > 0 and 0 < y < x/3 are intrinsic shape parame-
ters. We get the PES by calculating the expectation value of
Hamiltonian (17) on the boson condensate equation (18). The
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corresponding PES as a function of the deformations 8 and y 7 = 0.900 n = 0.820
is given by: c.o4 0.04
0.03 0.03
n
EN Boy) = w 0.02 - & 002
STLXLPY) = 1 0.01 - ﬂ 0.01 p
= S50-n+—-=
e (1+ 522 ° Ous 04 14
{[NT]—(I —77)(4N+)(2—8)],82 (20) 06 04 1.4
(2N +5)
+[Np—-(1 —n)(TX2—4 B
~ 7 3 7 =10.818 - 17=0.80
HAN(L =) \2B? cos 37} oo 041
3 Location of the Critical Symmetries “ 003 @ 02
i a
Minimization of the PES equation (20) with respect to S8 for a 002 B
given values of the control parameters r and y, gives the equi- 0.01 B J 1
librium value 8,. The phase transition is signaled by the con- 0 -6 i 1t
ditionat 8 =0 08 0.4 1.4 02
d’E
— =0, 21
7 @1
which fixes the critical value of the control parameter 1. The
critical point in the above equation (20) is given by the value
of 7 where the coefficient at 8> vanishes, i.e.
AN +x* -8
critical = Tx7 .5 o 22
Neritical SN+,2-8 (22)
At this value, the second S derivative for 8 = 0 changes
its sign, which means that 8 = 0 maximum becomes a local

minimum. Note that the critical point (22) depends on y;, it
changes between: n(— \/7/2) = (16N — 25)/(20N — 25) at
U(S)-SU(3) side if the symmetry triangle, and n(0) = (16N —
32)/(20N — 32) at the U(5)-O(6) side, condition (12) gives in
the case of large-N limit the value 4/5.

If we ignore the contribution of one-body term of the
quadruple-quadruple interaction and in large N limit (N-1=N)
and y = 0, equation (20) takes the form

E(N,n.x.B) = 157 [5'7 4444/ 78x(1-n) o

2
+p (n - 7)(2(1—77))} :

The deformation parameter 8 = 0 is always a stationary
point. For < 4/5, 8 = 0 is a maximum, while for n > 4/5,
it becomes a minimum. In the case of n = 4/5, 8 = 0 is an
inflection point. The n = 4/5 is the point at which a mini-
mum at 8 = 0 starts to develop and defines the antispinodal
line. For y # 0, there exists a region, where two minima, one
spherical and one deformed, coexist. This region is defined by
the point at which the § = 0 minimum appears (antispinodal
point) and the point at which the 8 # 0 minimum appears
(spinodal point). For n = 1, the system is in the symmetry

46

Fig. 1: Potential energy surface (PES) equation (3) for N=10 cal-
culated with IBM without normalization along the axial trajectory
v = 0°,60° as a function of the shape parameter 5. The curves
describe the first order shape phase transition between spherical to
prolate deformed U(5)-SU(3) for control parameter 1: = 0.900,
n = 0.820 (spinodal), n = 0.818 (critical point), n = 0.800 (antispin-
odal) and 7 = 0.750.

7 =0.817 n=02819
0.04 0.04
0.03 0.03
i i
a 0.02 p 0.02 -
0.01 0.01
0 F 0 ]
-0.6 0.4 1.4 0.6 0.4 14

Fig. 2: For two cases in the coexistence region n = 0.817 and
n=0.819.

phase since the PES has a unique minimum at 8 = 0. When
n decreases, one reaches the spinodal point = 0.820361 for
X =- V7/2 as illustrated in Fig. (1) for boson number N=10.
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1 =0.900 n = 0.820
0.04 0.04
0.03 0.03
[
W 0.02 &8 oo
o. o
0.01 0.01
B B
0 0
05 01 03 -0.5 01 03
n =0.818 1 =10.80
0.04 0.04
0.03
0.03
0 0 002
W g.02 w
. Q oo
0.01 ; .
0 20105 01 0z B
05 01 03
BETA -0.02
s 1 0z B
w004
0.08
0.2
0.16

Fig. 3: For y = 0.

In the coexistence region, the critical point is at the situa-
tion in which both minima of spherical point is at the situation
in which both minima of spherical and deformed are degen-
erate. At the critical point, the two degenerated minima are
at By = 0 and By = — V7/4 and their energy is equal to zero.
The critical point line is at 7, = (4 + 2/7/\/2)/(5 + 2/7/\(2).

The y = —\/7/2 provides . = 9/11 (0.818181). Ac-
cording to the previous analysis, a first order phase transition
appears for n # 0, y # 0, while for y = 0 there is an iso-
lated point of second order phase transition as a function of
n. Spinodal, antispinodal and critical point coincide at the
critical value n = 4/5.

We show in Figures (1,2,3) a sketch at this evolution for
the special case y = — V7 /2, the two cases in the coexistence
region and for y = 0. From Figure (3), we observe the evo-
lution from the spherical potential = 0.9, whose minima
is found at 8 = 0 to potentials with well-deformed minima
n = 0.75. For intermediate 1 values one finds a set of po-
tential energy curves which are practically degenerated along
the prolate axis in the interval [0, 0.4]. These curves show two
minima, on spherical and a prolate deformed one. In partic-
ular, for = 0.81818, the spherical and the prolate deformed
minima are degenerate and this condition defines precisely
the critical point of the first order phase transition where the

order parameter is the deformation g.

For n = 1,the Hamiltonian H of equation (15) reduces to
the U(5) limit of the IBM corresponds to a spherical shape
with vibration

HU(S)) = ay. 24)
The PES of H is given by:
N, 2
EU®)) = I +ﬁﬁ2- (25)

The equilibrium value of the deformation parameter 3 is eas-
ily obtained by solving 0E/dB = 0 to give S, = 0 which
corresponds to a spherical shape.

Forn = 0 and y = ¥ V7/2, the schematic Hamiltonian
of equation (15) reproduces the SU(3) Limit corresponds to a
shape of ellipsoid with rotation (or axial rotation)

1 4 A
H(SUQ)) = N 0. Q0. (26)
If we eliminate the contributions of the one-body terms of
quadruple-quadruple interaction, for this case the PES of H is
given by:

WN-1) , 1 3
E ) =—-54 =B +£2V2Bcos3y). (27
(SU3)) a+ﬁy(ﬁ+2ﬁ V2 cos3y). (27)
The equilibrium values are given by solving % = g—g =0

to give B, = V2 andy, = 0 for y = —\/7/2andby,8€ =2
and y, = /3 for y = V7/2 corresponding to prolate and
oblate deformed shape respectively.

For n = 0 and y = 0, one recovers the O(6) limit corre-
sponds to y-unstable

1 4 A
H(0(6)) = -5 Q0 = 0).Q( = 0). (28)

Eliminating the one-body terms, the PES depends only on 8

W -1

E(0(6)) = ———>4p. 29
(OO =~ 58 (29)
The equilibrium value is given by 8. = 1, corresponding to
a y-unstable deformed shape. For intermediate values of the
control parameters 7 and y, the PES function will describe a
certain point on the IBM symmetry triangle, located between

the three limits.

4 First-Order U(5)-SU(3) Phase Transition in Nd/Sm/
Gd/Dy Rare Earth Nuclei

In a first order phase transition, the state of the rearrangement
happens, which means that there involves an irregularity at
the critical point.

The study is carried out considering specific isotopic
chains of even-even rare earth nuclei ¢oNd, ¢2Sm, ¢Gd and
66Dy displaying first order phase transition from sphericity to
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Fig. 4: PES for first order shape phase transition between spheri- 4- 4-
cal to prolate deformed U(5)-SU(3) for Neodymium isotope chain 8- 4. oo 2 4 & 4. 2- 2 4
144-13 Nd (with N, = 5 proton bosons and N, = 1 — 6 neutron E 'ER o 12-
bosons). 16- . 16-
20-
20- 54
29- 28
axial symmetric deformed U(S)-SU(3). That is for the nuclei 28- a2- 3
included in this study; all chains begin as vibrational with en- B s
ergy ratio Ry = E(4])/E(2]) near 2.0 and move towards
rotational R4/2) = 3.33 as neutron number' is increased. For Fig. 5: The same as Fig. (4) but for Samarium isotope chain
control parameter n = 1, we g.et t.he U(5).11m1t anq forn =0 146-160Sm (with N, = 6 proton bosons and N, = 1-8 neutron
and y = —V7/2 the SU(3) limit. For intermediate values bosons).

of the control parameters 7 and y, the PES function will de-
scribe a certain point on the IBM symmetry triangle, located
between the U(5) and SU(3) limits. To describe a phase tran-
sition, one has to establish the values of the control parameter
for each nucleus.

For our rare- earth nuclei, we keep y at the fixed value
x = —V7/2, because some Gd isotopes clearly exhibit the
character of the SU(3) dynamical symmetry. This assumption

is very successful in describing the Sm nuclei which form
neighboring nuclei.

The system passes from the U(5) to the SU(3) limit when
the number of bosons is increasing from N=6 towards N=17.
The values of the control parameter 7 is adjusted for each nu-
cleus by using a computer simulated search program in order
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Fig. 6: The same as Fig. (4) but for Gadolinium isotope chain 166
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20-
to describe the gradual change in the structure as boson num- gg—
ber is varied and to reproduce the properties of the selected 32
states of positive parity excitation (27,47, 67,8],07,27,47, 36- B
27,37 and 47) and the two neutron separation energies of all
isotopes in each isotopic chain. Typically, n decreasing from
1 to 0 as boson number increases and the nuclei evolve from Fig. 7: The same as Fig. (4) but for Dysprosium isotope chain
vibrational to rotational as expected. This trend is observed "*'¢Dy (with N, = 8 proton bosons and N, = 1-9 neutron
for the studied isotopic chains and illustrated in figures (4-7) bosons).

by plotting the PES from Hamiltonian (12) as a function of
quadruple deformation parameter § for different values of the
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Fig. 8: Position of the absolute minima £3,,;, versus the total number
of bosons N from N =6to N = 17.

Table 1: Neutron Number.

Nucleus 1/Neris
66Dy 0.08183 | 0.07339 | 0.04166 | 0.00993
64Gd 0.08183 | 0.07339 | 0.04166 | 0.00993
62Sm 0.0982 | 0.08807 0.5 0.01192
eoNd 0.10911 | 0.09786 | 0.55555 | 0.01324
N 84 86 88 90
Nucleus 1/Neris
66Dy 0.00149 | 0.0002 | 0.0000 | 0.0000
64Gd 0.00149 | 0.0002 | 0.0000 | 0.0000
62Sm 0.00179 | 0.00024 | 0.00003 | 0.0000
soNd 0.00199 | 0.00027
N 92 94 96 98

the control parameter 77 and varying boson number N.

Here, we observe that the transition from spherical to pro-
late deformed occurs between N=9 and N=12. In the
144-134Nd, the nuclei '46~15°Nd are transitional isotopes be-
tween the spherical nucleus '**Nd and the well prolate de-
formed nuclei '%2-1%*Nd. The '"°Gd nucleus still shows a vi-
brational structure while '%°-192Gd are considered as rather
good SU(3) example.

The '98-192Gd are corresponds to 7 = 0. One can observe
a sudden transition in the Gd isotopes from a vibrational re-
gion into the rotational SU(3) limit. The control parameter
n for each nucleus is shown in Table (1). The position of the
absolute minimum S,,,;,(N) of the different PES’s is illustrated
in Figure (8).

Table (1) lists values of the control parameter 77/N,,; for
each Nd/Sm/Gd/Dy isotopic chain as a function of the neu-
tron number.

50

5 Conclusion

In the present paper we have analyzed systematically the
PES’s for the even-even Nd/Sm/Gd/Dy isotopes using the
simplified form of IBM in its sd-boson interaction. We have
analyzed the critical points of the shape phase transitional re-
gion U(5)-SU(3) in the space of two control parameters 7 and
X-

In all isotopic chains one observes a change from spher-
ical U(5) shape to axially symmetric deformed shape SU(3)
when moving from the lighter to the heavier isotopes.
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According to recent work [13, 14], the Neptune Adams ring main arc Fraternité is re-
garded as captured by the corotation elliptic resonance (CER) potential of Galatea. The
minor arcs Egalité (2,1), Liberté, and Courage are located at positions where the time
averaged forces, due to the 42-43 corotation-Lindblad resonances under the central field
of Neptune, vanish. With adequately chosen Fraternité mass and Galatea eccentricity,
this model gives minor arc locations compatible to observed positions, and allows a
dynamic transport of materials among arcs. To complement this model, the effect of
self-gravity of Fraternité, with a distributed mass, is evaluated together with the CER
potential to account for its 10° longitudinal span. Although self-gravity is the collective
action of all the particles in the arc, each individual particle will see the self-potential
with a central maximum as an external potential generated by other particles.

1 Introduction

From the very first observations of the Neptune Adams ring
arcs [6, 12], plus the subsequent observations [2, 11], the A-
dams arcs seemed to change in arc locations and in bright-
ness. More recently, these dynamic natures of the arcs, Fra-
ternité, Egalité (2,1), Liberté, and Courage, have been con-
firmed beyond any doubt in another ground observation [1].
Measuring from the center of the main arc Fraternité, they
extend a total of about 40° ahead of Fraternité. Occasion-
ally, some arcs flare up and others fade away. Furthermore,
the arc configuration appears to be changing in time as well.
The leading arc Courage appears to have leaped over to an-
other CER site recently [1]. Although the twin arc Egalité
(2,1) is small, it is a very bright arc. According to de Pater et
al [1], its relative intensity to Fraternité varied from 17 per-
cent higher in 2002 to seven percent lower in 2003 totaling
a 24 percent relative change over a short period of time. The
angular span of the twin arc Egalité appeared to be 30 percent
larger in 2005 and 1999 publications than in 1989 Voyager 2
results. This widening of Egalité was accompanied by a cor-
responding narrowing of Fraternité, which indicated a likely
exchange of material between the two. As for Liberté, 1999
data showed it was about 3° ahead of its position in Voyager 2
pictures. For the 2005 results, the 2002 data appeared to show
Liberté as a twin arc separated by about 4.5° with the leading
twin at the original Voyager 1989 location, while in 2003 it
returned again as one single arc at the Voyager location. With
respect to the normally low intensity arc Courage, it flared in
intensity to become as bright as Liberté in 1998 indicating a
possible exchange of material between the two arcs. Most in-
terestingly, it was observed in the 2005 data that Courage has
moved 8° ahead from 31.2° to 39.7° [1].

According to the prevailing theories, based on the restrict-
ed three-body framework (Neptune-Galatea-arcs) with a con-
servative disturbing potential, these arcs are radially and lon-

gitudinally confined by the corotation resonance potential of
the inner moon Galatea. In order to account for these arcs, the
84/86 corotation resonance due to the inclination of Galatea
(CIR) had been invoked to give a potential site of 4.18° [4].
Later on, because of its eccentricity (CER), the 42/43 reso-
nance was considered giving a resonant site of 8.37° on the
Adams ring arcs [3,5, 10]. The arc particles librate about the
potential maximum imposed by the corotational resonance
satellite Galatea. Dissipated energy of the particle is replen-
ished by the Lindblad resonance. Nevertheless, well estab-
lished as it is, there are several difficulties. Firstly, with Fra-
ternité centered at the potential maximum spanning approxi-
mately 5° on each side, it crosses two unstable potential poi-
nts which ought to reduce the angular spread. Secondly, the
minor arcs leading ahead of Fraternité are mislocated with
the CIR or CER potential maxima. Furthermore, should the
arcs were confined by the corotation potential, there ought to
be arcs in other locations along the Adams ring distributed
randomly instead of clustered near Fraternité.

2 Time-dependent arcs

Recently, there is a model that considers Fraternité as being
captured by the CER potential of Galatea. With Fraternité
having a finite mass, the minor arcs are clustered at locations
along the Adams ring where the time averaged force vanishes
under the corotation-Lindblad resonances [13, 14]. The finite
mass of Fraternité has been suggested by Namouni [9] and
Porco [10] to pull on the pericenter precession of Galatea to
account for the mismatch between the CER pattern speed and
the mean motion of the arcs. The arc locations are determined
by the Lindblad resonance reaction of the arc itself. Because
the force vanishes only on a time averaged base, as compar-
ing to the stationary CER potential in the rotating frame, the
arc material could migrate on a long time scale from one site
to another leading to flaring of some arcs and fading of oth-
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ers. This could also generate twin arcs (Egalité, Liberté) and
displace Courage from 31.2° to 39.7° (resonant jump) [1], as
required by observations. Although there are only arcs in the
leading positions ahead, arcs in the trailing positions behind
could be allowed in this model. According to this Lindblad
reaction model, only Fraternité f is confined by the externally
imposed CER potential of Galatea x which reads

Gm, 1 a1 o
O, = o 5 (Zn + axa—ax) a—x b1/2(a’) e, cosry, (1)
where 7, = (ry,6,) and 7 = (r, 0) are the position vectors of

Galatea x and Fraternité mass distribution, a, and a are the
respective semi-major axes, ¢, and e, are the arguments of
perihelion and eccentricity of x, ¢, = (n6 — (n — 1)6; — ¢.)
is the corotation resonance variable, b(l';)z(a) is the Laplace
coefficient, @ = a,/a < 1, and n = 43. With a, = 61952.60
km, a = 62932.85 km, and @ = 0.98444 [2, 11], the CER

potential is

o, = Gm,

34 e,cosyy. 2)

Ay

To complement this model, we consider the self-gravity of
Fraternité, which has a distributed mass, on the CER potential
to account for its longitudinal 10° arc span. We first consider
a qualitative spherical self-gravity physical model to grasp the
10° arc span. We begin with the Gauss law of the gravitational
field

3)

“

Under a qualitative physical model of arc span, we take a
spherical uniform mass distribution of radius ry. Solving for
the potential ®(r,) inside the sphere with p(?) = py and out-
side the sphere with p(#) = 0 respectively, where r, is mea-
sured from the center of Fraternité, and matching the potential
and the gravitational field across the boundary, we get

V- g(¥) = —4nGp(7),
g = +Vo.

lG 3 *2 G ’
oy = LML) 3O g ch )
- 2 ry \ro 2 n

Gmf
(I)f:+ o rog < Iy < 00, (6)

This potential shows a normal 1/r, decaying form for ry < r.,
but a 72 form for r, < ro. Writing in terms of a, and m,, we
have for 0 < r, < rg, 00 < 86,

o, = _l Gmy ax (r_*)2 N E Gmy

2 a, ry \ry 2 n

@)

2
_ _LGmymy a, (_) o) + 2 G My ax
o 2 a, my ry
and for ry < r, < 00, 66y < 60,
Gmf Ay

(Df = + =
’ ay Ty

Gm,my 1
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Fig. 1: The CER sinusoidal potential of Galatea in thick line, the
self-potential of Fraternité with spherical model in thin line, and the
sum of the two in thick line are plotted in units of Gm,/a,.

where r, is now taken on the longitudinal direction along the
arc, so that we can write r, = ad6 and ry = ad6, with 60 as the
angular span in radian. Taking m,/m, = 1073, e, = 107, and
00y = 5° = 0.087rad, which are within the estimates of the
arc parameters [9], we have plotted in Fig. 1 the sinusoidal
CER potential in thick line with a minimum around 60 = 4°
and the self-potential in thin line in units of Gm,/a,. The su-
perposition of the two in thick line is also shown in the same
figure. The superimposed potential has a maximum at the
center and a minimum around 66 = 5°. Although self-gravity
is resulted from all the particles of the arc, each individual
particle will see the self-potential as an external potential.
The particles will girate in stable orbit about the central maxi-
mum of the superpositioned CER potential and self-potential.

3 Self-gravity

We now present an elongated ellipsoid model of self-gravity.
For an ellipsoidal mass distribution with uniform density pg

over a volume

L\ 2 2\2

CRCRE

ai a as
where a; > a, > a3, the potential in space for the gravita-
tional field §(7) have been addressed in honorable treatises
such as Kellogg [7] and Landau and Lifshitz [8]. Here, we
follow the celebrated original work of Kellogg [7] especially

in Section 6 of Chapter 7. The potential in space of this ho-
mogeneous ellipsoid is given by

®)

(I)f(X, y,2) = Gpomayaras x

foo da |:1 .X2 yz ZZ (10)
o TPV d+1 ad+a a+a|
where

o) = (at +A) (a3 + ) (a3 + 1), (11)
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and where A parameterizes a family of ellipsoids. Consider a
prolate ellipsoid with a; > a, = a3. This ellipsoid has a cir-
cular cross section on the y-z plane and an axis of symmetry
in x. The y-z plane of x = 0 is the equatorial plane. In this
prolate case, the self-potential inside and outside the ellipsoid
is given respectively by [7, Exercise 6, p.196]

O(n.r) = G Vi¥/g 1
X, r) = Po 3 ajazas f2 X
1 (2a; - F\'?
2 2 2 1
[(4)( - 2r —f ) ﬁ ]n(—zal +f) (12)
4a% (2x2 - r2) —2f2x2}
2a; (4a% —fz) '
4 1
DOr(x,r) = Gp()?alazcg ]sz
1 s—f 1/2
2 2 2
[(4x -2r —f)ﬁln(“_f) + (13)

§2 (2x2 - r2) - 2f2x2
s (s* = 1?) ]

where
2
Y oo o
5| = a-a
2=+

f is the distance between the two foci, r is the perpendicular
distance to the axis of symmetry, s is the sum of distances
from the two foci to the point of interest 7. The inside po-
tential can be obtained from the outside potential by using
s = 2a;. To evaluate the potential on the axis of symmetry,
we take r = 0. Denoting m; = po(4n/3)ajaas and consider-
ing a; > a,, we get

G 2 2
O = ~ 2 e g (290) | (290
a, 4a a 66y
(14)
Gmy a, 2a,
+ — In|—], 00 <606y,
a, 4a; a
G 1 2 :
Op(x) = — R ™ XHS2) (S8
: a, 4a; |2 x—f12]\66y
G (15)
66 mys oay 1 x+ f/2
=1+ =1 , 06y <00,
(590)] ay 4a 2 n(x—f/Z) 0

for the self-potential inside and outside the ellipsoid respec-
tively. Taking again ms/m, = 1073, with a, = 61952.60km
for Galatea, and semi-major axes a; = 5500km and a, =
55 km, the CER potenial, the self-potential, and the superpo-
sition of the two with a minimum around 66 = 5° are shown
in Fig. 2.
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© 1 1
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: * |
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Fig. 2: The CER sinusoidal potential of Galatea in thick line, the
self-potential of Fraternité with ellipsoidal model in thin line, and
the sum of the two in thick line are plotted in units of Gm,/a,.

With Fraternité 1 x 1073 of the mass of Galatea, the self-
potential actually exceeds the CER potential in magnitude, as
shown in Fig. 2. Each test mass would be librating around
the potential maximum, dominated by the self-gravity of the
collective mass distribution. Should Fraternité be elongated
further while maintaining the total mass, it would increase the
semi-major axis a; of the ellipsoid. This would reduce the
amplitude of the self-potential of (14) through the (a,/4a;)
factor in the constant term, and weaken the self-potential. The
elongation would feed the minor arcs. With this self-gravity
model, not just the minor arcs are dynamically changing [1],
the main arc Fraternité could be under a dynamical process as
well.

4 Conclusions

In order to explain the 10° arc span of Fraternité, we draw
attention to the fact that Fraternité, as an arc, has a significant
mass. This mass is a distributed mass, instead of a point-like
mass, such that its self-gravity should be taken into consid-
erations to account for its angular span. We have used two
models to evaluate the self-potential in the longitudinal direc-
tion. First is the tutorial spherical model, as a proof of prin-
ciple study, with a uniform mass distribution over a sphere
of radius ry. Second is the elongated ellipsoidal model for a
more realistic evaluation. Using the accepted range of Fra-
ternité parameters, the ellipsoid model shows that the self-
potential of the arc could be the cause of its angular span. For
a longer arc, the ellipsoid gets longer and the ratio a; /a, be-
comes larger. Eventually, for a complete ring, the ellipsoid
is infinitely long and the self-potential in the longitudinal di-
rection becomes constant. The effects of self-gravity are felt
only in the transverse direction for a planetary ring.
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An explanation is proposed that probabilistic factors cause the existence of the stable
planetary orbits and electronic ones. It is confirmed when constructing frequency dis-

tributions of relevant virials.

Why there are stable planetary orbits and electronic ones, and
how are they formed at all? This is all the more incomprehen-
sible because the centrifugal forces and gravitational forces
(or electrostatic ones for the atom) have a different depen-
dence on the distance that leads only to an unstable equi-
librium. Sure, there are some hidden factors, they may be
probabilistic ones.

Thus, K.I. Dombrowski has revealed a possible connec-
tion of the sizes of planetary orbits to density of rational num-
bers on the number axis [1]. On the other hand, S.E. Shnoll
has experimentally observed dependence of the fine structure
of the normal distributions of various physical processes upon
the algorithms that determine these processes [2]. It can be
assumed that discrete nature of the normal distributions (and,
apparently, any others) has a fundamental character.

An array of numbers that are the result of some compu-
tation algorithm can be analyzed by means of the frequency
distribution®. As an example, one considers the distribution
of orbits in the Bohr’s atom planetary model and in the solar
system.

It is known the orbital radii of the electron in the Bohr’s
atom to be proportional to the squares of integers. Though
the existence of the orbits, i.e. the certain electronic levels, is
due to quantum laws, however, this fact can also be explained
by probabilistic factors.

According to the Bohr’s model and proceeding from the
balance of the Coulomb’s and centrifugal forces, the orbital
radii of the electron are in the simplest case proportional to
expression (z/v)?, where z can be regarded as a geometric
mean value between the number of the elementary charges
of a nucleus and electrons interacting with each other, and v
is the orbital velocity of the electron in some dimensionless
units.

Let z and v take arbitrary values, for example, from 1 to
100. Then the frequency distribution of the array of values of
the function (z/v)? has the form shown in Fig. 1.

One can see that the peaks of the first order along the Y-
axis (i.e. the most probable value) have next in values of the

“Frequency distributions provide a possibility for bonding the probabil-
ity of the appearance of numerical values of a function in the area where it
exists. That is, the frequency distributions show the reproducibility of nu-
merical values of the function due to allowed varying its arguments. There
is a ready-to-use function “frequency” in Excel©); any other software can be
applied as well.
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Fig. 1: Frequency distribution obtained with number of the numeri-
cal values in the scale 9,800 (of those, nonzero intervals are 3,300).

function (z/v)2 along the X-axis: 1, 4, 9, 16, etc., that is,
orbital radii in the Bohr’s atom are proportional to the squares
of integers, i.e. to the squares of electronic orbit numbers.
Such distributions (or quadratic parts thereof) were also found
in other, more complicated cases.

Let one consider the distribution of the planetary orbits
in the solar system. Their stability can to some extent be
explained by the phenomenon of orbital resonance, but this
explanation is certainly not enough. As for the well-known
Titius-Bode formula, then it should not be found in any of the
known laws.

The equation relating the orbital radius of a planet Ry, its
orbital velocity vy and the mass M of a central body is:

_M
Sy
0

Ry ey

V,

where vy is the gravitational constant.

In this case it would seem the frequency distribution for
the orbit positions cannot be built because the function has
only one variable argument vy, while others are permanent.
However, one can assume that during formation of the solar
system the mass of the central body has not been equivalent
to a point with a mass equal to the mass of the Sun, and other
disturbing factors could have been.
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Fig. 2: Frequency distribution obtained with number of the numer-
ical values in the scale 110,000 (of those, nonzero intervals are
48,800), j=0.5...1.8,v=0.02...2.

Therefore one can introduce a varied factor j in the for-
mula and write (1) as follows:

R=-.

@

where R is the radius of the planetary orbit in astronomical
units (a.u.), v is the orbital velocity in the units of the orbital
velocity of the Earth.

Fig. 2 shows an example of the frequency distribution of
the array of values of the function (2) at j = 0.5...1.8 with
a step 0.025 and at v = 0.05...2 with a step 0.01. Although
the form of the distribution depends on the range of variation
Jj and v, the number of intervals they are divided, split range
mode (step-by-step or random), and the number of processed
values, but in all cases the amplitude peaks or the frequency
concentrations are revealed on graphs.

In Fig. 2 from left to right the peaks of the first order (the
highest) are located at the radii (in a.u.): 0.39, 0.50 (a possible
orbit), 0.70, 1.0, 1.55, 2.75, 6.2, 12.3, 18.7 (a second-order
peak), 25, 31 (a second-order peak), 50, and 74. Moreover,
most of the values are in good agreement with the actual or-
bital radii of the planets. In comparison, their actual values
are: 0.39, 0.72, 1, 1.52, 2.5-3.0, 5.2, 9.54, 19.2, 30.6, 30-50,
38-98, including the asteroids orbit (2.5-3.0) and the tenth
planet orbit (38-98).

Of course, such simple simulation can not give a com-
plete numerical coincidence. The more important thing is
a possibility for the frequency distributions to determine the
most probable values of the functions describing various pro-
cesses or objects; therefore, the most stable (preferred) states
of these processes or objects can also be determined [3, 4].

Submitted on April 25, 2013 / Accepted on May 10, 2013

References
1. Dombrowski K.I. Rational numbers distribution and resonance.
Progress in Physics, 2005, v. 1, 65-67.

2. Shnoll S.E. Cosmic physical factors in random processes. Svenska
fysikarkivet, Stockholm, 2009.

3. Belyakov A.V. Is the field of numbers a real physical field? On the
frequent distribution and masses of the elementary particles. Progress
in Physics, 2010, v. 3, 53—-60.

4. Belyakov A. V. Finding the fine structure of the solutions of complicate
logical probabilistic problems. Progress in Physics, 2010, v. 4, 36-39.

Anatoly V. Belyakov. Probabilistic Factors as a Possible Reason of the Stability of Planetary and Electronic Orbits 57



Volume 3 PROGRESS IN PHYSICS July, 2013

Double Surface and Atom Or bit

JaneZApringer
Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU.IEinfa@lekarna-springer.si

Previously Progr. Phys., 2013, v. 2, 105-106), one introduced the double surfaceemod
to explain the heterogeneous curvature of the present wbrlthis paper one investi-
gates the strength of the mentioned concept in the light hifeg the stable electron
orbits around the atom nucleus. The conclusion is that the@af the elliptic side of
the proposed double surfacfears the possibility of providing the uniform motion of
the electron on the atom orbit as well as prevents the eleiting into the nucleus.

1 Theoretical background The greatest finite elliptic radius is a half of the Compton
The double surface [1] has the elliptic and hyperbolic Sia\éavelength of the electron:

where the path with its translation and rotation compor&nt [ 1

is provided. According to this concept we have to deal with Ry = 5 (6)

two different paths whose average is a mirror of the inverse o o _ )

fine structure constant. The fact that the elliptic pattan T_he smallest eII|p_t|C r_adlus is a little bit greater than tiees-
equal its translation componen{1] seems to be crucial for Sical €lectron radius itself:

forming the stable electron orbits around the atom nucleus. 1 1 1

S Razo = 860 > Telectron = =) ~ —86l 02" (7)
1.1 Thegélliptic side

The path on the elliptic side of the double surface can be ciLé? The hyperbolic sde
scribed with the sphere law of cosines: The path on the hyperbolic side of the double surface can be
described with the hyperbolic law of cosines:

S n bis
cosﬁ = COS— COS— . (1)

s n T
R R > = — =
coshR coshR coshR . (8)

On the Ieft,sdeno_tes the eII|pt|_c path. On the rightand %n the left,sdenotes the hyperbolic path. On the righgnd
& denote the translation and rotation component of that pa . )
) 7 denote the translation and rotation component of that path,
respectively [2]. .
At s = n the elliptic radiusk has the potency to occu espectively [2].
the infinit_e values sFi)nce P Y Py According to the double surface model [1] where the char-
' acteristic values for the path and its translation compboen
5 Bohr orbit ares = 137.072031: -- andn = 137, the hyper-
@) bolic radiusRis calculated by the equation (8) as the only one

o : : and finite:
The elliptic radius expressed in Compton wavelengths of the

electron is then related to the arbitrary natural nunthéy

T T
cos— =1, when = =2mr.
R ’ R

Rhyperbolic ~ 71,520117 Compton wavelengths of the electron (9)

1 2 Physical consequences on the atom level
Retiptic = om where me Np. (3) y =

2 Inthe double surface model Bohr radius expressed in the unit
For the electron only the first 431 radii are physically plau$f Compton wavelengths of the electron is deduced from the
ble unless one cannotimagine that the sphere could be sm&§rage path on the elliptic and hyperbolic side of the orbit

than the physical body itself. In the units of Compton wave- 1 1 1
_ @iiptic * Yyperbolic @~

lengths of the electron the selected elliptic radii are t&etn Reonr = y =5 (10)
T
Retipic = Ro,R1, Ro -+, Razo The diference betweeml ., ande; L . onthe fifth dec-
1 1 1 (4) imal which was important for predicting the exact inverse fin
=00, =, =, +» —— > lgectron - structure previously [1], is not significant enough to beetak
2’4 860 . . . o
into account in the calculations made in this paper. From the
The greatest elliptic radius is infinite: relation (3) and (4) is seen that the radius of the elliptitesi
of the double surface is greater than Bohr radius only once,
Ry = 0. (5) i.e. whenRgjipic = 0. The infinite elliptic radius allows the
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electron to move uniformly on Bohr orbit. On the other hand
the 430 finite elliptic radii do not permit the electron tolfal
into the nucleus, because they are always much smaller than
Bohr radius:

Ru.2..-430 < Reonr,
(11)

Ll CRewr2281

SINCe 3. 2> """ 860

The conclusion would be the same, if the number of the finite
elliptic radii is infinite.

Thus according to the present concept the electron is clos-
ed on the elliptic sphere of the multi-sizable radius. Itstiohy
is to be in some way glued on Bohr orbit in the Hydrogen
atom. In other atoms the similar phenomenon is expected,
because their atomic radii are greater than the Bohr one and
therefore still greater than the finite elliptic ones:

Ratom 2 Reonr > Ry 2, ...430. (12)

3 Conclusion

The infinite elliptic radius of the double surface enables th
uniform motion of the electron on the atom orbit. The finite
radii prevent the electron falling into the nucleus. Frois th
point of view the concept of the double surface with its el-
liptic side as a sphere of the multi-sizable radius satisfies
demand for forming the stable electron orbits around theato
nucleus.

Respecting Plato the correct theory is only one amongst many
ones revealed in the realm of the reasonableideas.
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Multi-planet Exosystems All Obey Orbital Angular Momentum Quantization
per Unit Mass predicted by Quantum Celestial Mechanics (QCM)

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646 USA. E-mail: frank11hb@yahoo.com

Quantum celestial mechanics (QCM) predicts that all orbiting bodies in gravitationally
bound systems exhibit the quantization of orbital angular momentum per unit mass.
I show that the 15 known multi-planet systems with four or more planets obey this
QCM prediction. This angular momentum constraint could be the explanation for their
orbital stability for billions of years, suggesting that viable models of the formation and
evolution of gravitational systems must include QCM.

1 Introduction

According to recent calculations, our Solar System is unsta-
ble [1] and should have existed for only a few 100 million
years! However, the Solar System has existed for more than
4.5 billion years. Obviously, some fundamental physics con-
cept is missing. H. G. Preston and I have proposed [2] that
the missing constraint is the quantization of orbital angular
momentum per unit mass for all orbiting bodies in gravita-
tionally bound systems. Herein I establish that all 15 known
multi-planetary systems with four or more planets exhibit this
constraint.

In several previous papers [2—4] we derived Quantum Ce-
lestial Mechanics (QCM) from the general theory of relativ-
ity and successfully applied QCM to numerous gravitation-
ally bound systems, including the planets of the Solar Sys-
tem, the moons of the Jovian Planets, the five moons of Pluto,
the Galaxy rotation velocity, gravitational lensing, clusters of
galaxies, the cosmological redshift of the Universe, the cir-
cumbinary planet Kepler-16, and the S-stars at our Galaxy
center.

QCM predicts that a body of mass u orbiting a central
massive object in a gravitationally bound system obeys the
angular momentum L per unit mass quantization condition

— =mcH (1)
with m an integer and c the speed of light. The Preston grav-
itational distance H requires only two physical parameters to
determine all the possible QCM states in the system, the sys-
tem’s total angular momentum L7 and its total mass Mr:

He LT )

M TC
In order to use this restriction, one assumes that the or-
biting body is at or near its QCM equilibrium orbital radius
r and that the orbital eccentricity € is low so that our nearly
circular orbit approximation leading to these particular equa-
tions holds true. Therefore, the L of the orbiting body will

agree with its Newtonian value L = u+/GM7r(1 — €2).

10 y = 0.2292x + 0.0298
R? = 0.9997
8
) 6
Rl |
4
2
0
0 10 20 30 40
QCM m value

Fig. 1: The HD10180 System fit to QCM.

Every Newtonian orbit is an equilibrium orbit, but not so
for QCM orbits. For a body not at the QCM equilibrium or-
bital radius for the QCM state or for particles near the QCM
equilibrium orbital radius that could collect into a massive
body, there exists a small QCM acceleration. Usually a time
frame of tens or hundreds of millions of years are needed to
achieve dynamic QCM equilibrium with its extremely small
remnant radial oscillations. Therefore, QCM is expected to
play an important role in the formation and eventual stability
of multi-planetary systems over billions of years.

For circular orbits or nearly circular orbits there is a prin-
cipal number n = m + 1 associated with the energy per unit
mass quantization for a QCM state

E, __ne _ GMp )
u 8n2H? 2n°L3

with r,, the Schwarzschild radius of the system. The derived
Schrodinger-like gravitational wave equation dictates all the
physics via solutions that are hydrogen-like wave functions.
The QCM fit to the orbital parameters of all known plan-
ets of a multi-planet system determines the total angular mo-
mentum of that system, a value which can be used to pre-
dict whether more planets can be expected and/or whether
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the equivalent of an Oort cloud is required. Recall that for our
own Solar System the Oort Cloud dominates the total angular
momentum, being a factor of at least 50 greater than the total
planetary orbital momentum. Without the Oort Cloud angular
momentum, QCM predicts that all the planetary orbital radii
would be within the radius of the Sun! By including the an-
gular momentum of the Oort Cloud, QCM suggests that the
planets formed near to their present orbital radii.

Many exoplanetary systems have their Jupiter size planets
at extremely small orbital radii, within about 1.5 AU from
the star, with many more smaller planets even closer. There
is the question of why such massive planets are so close to
their star. One possible answer is that the system total angular
momentum value is low compared to the QCM value needed
to “push” the system further out. That is, QCM predicts that
a larger total angular momentum for the system means larger
QCM orbital spacings.

2 Multi-planetary results

Multi-planet systems are in the database called the Exoplan-
ets Data Explorer [5], but complete data sets for HD 10180
[6], HD 40307 [7], Tau Ceti [8], GJ 676A [9], and Upsilon
Andromedae [10] are only in research articles. There are
hundreds of two and three planet systems which I choose to
exclude herein even though they also exhibit the QCM con-
straint. As more planets orbiting these systems are identified,
their fits to the QCM prediction can be determined.

In Table 1 are listed the host star, the star mass in solar
units, the number of planets N, their QCM m values, and the
slope b for L/ = bx + a in the plot of L' = L/u versus
m for all the planets of the particular system. The plot for
HD10180 is shown as an example, with the uncertainty bars
for L’ within the circle data points. By using both the semi-
major axis and the orbital period as constraints, one obtains a
linear regression fit with R* > 0.999. The system’s predicted
total angular momentum Ly = b My multiplied by 10" kg
m?/s.

From the QCM predicted Ly values, one learns that these
15 multi-planet systems have more angular momentum which
is to be contributed by additional orbiting bodies such as plan-
ets and/or the equivalent of the Oort Cloud.

3 Conclusions

All the 15 analyzed multi-planet systems obey the QCM or-
bital angular momentum per unit mass quantization condi-
tion. The integers for the m values are not sequential, imply-
ing that the history of each system plays an important role
in which orbital states are occupied. For example, mass de-
pletion in a region caused by the faster formation of a large
planet might not leave enough mass for another planet to form
at a nearby QCM equilibrium orbital radius.

The resulting fits are evidence that the quantization of or-
bital angular momentum per unit mass is an important phys-

Table 1: QCM Multi-Planet m Values

System Mass | N | m Values b

HD 10180 | 1.055 | 9 | 3,5,6,7,10,11,14,24,37 | 0.23
Sun 1 8 | 3.4,5,6,12,17,25,31 0.77
HD 40307 | 0.752 | 6 | 8,11,14,17,20,29 0.10
Kepler-11 | 0954 | 6 | 10,11,13,15,17,23 0.13
Kepler-20 | 0912 | 5 | 14,17,21,25,40 0.06
Kepler-33 | 1.291 | 5 | 8,11,13,15,16 0.16
Kepler-62 | 0.690 | 5 | 6,8,9,17,22 0.14
Tau Ceti 0.783 | 5 | 8,11,16,19,30 0.15
55 Cancri | 1.026 | 5 | 4,10,16,27,76 0.13
GJ 581 0311 | 4 | 7.9,12,21 0.05
GJ 676A | 0.71 4 | 3,6,20,34 0.25
GJ 876 0.334 | 4 | 5,13,17,22 0.07
HR 8799 1.472 | 4 | 12,16,20,27 1.65
Mu Arae 1.077 | 4 | 4,12,15,29 0.38
Ups Andr | 1.01 4 | 2,10,18,27 0.42

ical factor in planetary systems and should not be ignored in
studies of their formation, stability, and evolution.
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In this paper, we consider the Einstein field equations viighcosmological term. If we

assume that this termis slightly varying, it induces a vactackground field filling the

space. In this case, inspection shows that the gravitdtii@héis no longer represented
by a pseudo-tensor, but appears on the right hand side ofaldecfijuations as a true
tensor together with the bare mass tensor thus restorirgathe conservation condition
as obeyed by the Einstein tensor.

Introduction although we restrict our study to neutral massive flow.

: - : . In this respect, it is shown that the gravitational field of a
Soon after his theory of General Relativity was published in_ . ) .
1916, Einstein rapidly turned to the unifying of the grawitamasswe body is no Ionger dgscrlbed bp%udo—.tensolbut
' pears as @ue tensorin the field equations as it should be,

tional field with electromagnetism (which at that time Wa%porderto balance the conceptually conserved propertyef t
considered as the second fundamental field). ) . P y prop
. . %Esteln tensor.
The quest for such an universal scheme ended in 1 To achieve this qoal we do:
with the Einstein-Schrodinger theory (see for examplé [1] _ 9 h _ _ _
definitely abandoned since as the quantum field theories® We first formulate the field equations with a massive
gained the increasing successes and have been long substan- source in density notation;

tiated by numerous experimental confirmations. e We write the conservation law for the Einstein tensor
Basically, the unified principle adopted by the successive  density derived from the Bianchi identities, which
authors (Kaluza-Klein, Weyl, Eddington, et al.) reliecheit cannot apply to the energy-momentum tensor density

on extra dimensions, or on an extension of the Riemannian as a source;
theory with additional space-time curvatures introduced t
yield the electromagnetic field characteristics, and wiieze
stress-energy tensor regarded as provisional, will betaven
ally absent [2, 3, 4].

Total geometrization of matter and electromagnetism was
anyhow the original focus. ¢

To understand this long period of research, one should re-
member that Einstein always claimed that the energy-
momentum tensoisf which can appear in the right hand side
of his field equations, was “clumsy”; in short, he considered
this form as an unsatisfactory solution which had to fifett
ently in his equations.

Einstein’s argument is actually strongly supported by t
following fact: while his tensor exhibits eonceptuallycon- 1.1 The tensor representation
ii;v\?vf“g:]olzzcg’s"’}[% ?ﬁ;:)er‘:‘/pvsgg'Q%S;jrsrsisnggsg?;:?? In the General Theory of Relativity (GR), it is well known

) " that by varying the action

When pure matter is the source, the problem has been
“cured” by introducing the so-called “pseudo-tensor” that S = Lgd*x,
“conveniently” describes the gravitational field of this ssa
so that the four-momentum of both matter and its gravity fiejghere theLagrangian densitys given by
is conserved.

e We then include a variable term that supersedes the so-
called cosmological termgay, in the field equations,
still complying with the conservation property of the
Einstein tensor density in GR;

Under this latter assumption, we will then formally
show that the gravity field of a massive source is no
longer described by a vanishinggeudo tensobut it
reduces to a true tensor describingersistentvac-
uum background field resulting from the existence of
the variable term.

Hle The field equations in General Relativity

Unfortunately by essence this pseudo-tensor cannot ap- Le = v=9 G*({%} {8e) + {3} {5} - (1.1)
pear in the field equations, and so the obvious physical tefec
emphasized by Einstein, still remains to-day as a stumbling g = det||gapll (1.2)
block.

In this paper, we tackle this problems by proceeding gue infers thesymmetric Einstein tensor
follows: in contrast to the previous theories, the energy- 1
momentum tensor of the source is here strengthened, Gab = Rap — > gabR, (1.3)
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where 2 The conservation identities

2.1 Tensor version for the Einstein tensor
Roc = a {pef — Oc{fa) + {bef {3a) — {bal (& (1.4)
{bc} {ba} {bC} {da} {ba} {dc} From the Bianchi identities applied to the Riemann tensor

is theRicci tensomvith its contractiorR, thecurvature scalay . . .
while {,} denote the Christel Symbols of the second kind. ;i + Rl + Rigip = 0 (2.1)

The 10source free field equatiorsse we infer the conservation conditions which apply to the Ein-

Gap = 0. (1.5) stein tensor withoug, and hereinafter denoted by
The second rank Einstein tengdgy, is symmetric and is G =R - % giR. (2.2)
only function of the metric tensor componeptg and their
first and second order derivatives. The Einstein tensor thus satisfies intrinsically the conser
The relation vation law:
VaGi=0 (1.6) Va°Gp =0. (2.3)

is the conservation identities provided that the tetizgrhas 2.2 Tensor density version for the Einstein tensor

the form [5] In the same way, we start with the Einstein tensor density

1 without the cosmological term
Gab = K|Ran — > gan(R—2A) |, (1.7)
"G = R I R (2.4)

. _ . 2
k is a constant, which is here taken 1, is usually named cos-

mological constanA. With (2.3), let us write down
When a source is present, the field equations become

3:.°Gp
) e T R R ARSI = B NEC R
Gab = Rab — 5 gabR — gabA = # Ta, (1.8)
which is easily found to be
whereTy, is the energy-momentum tensor of the source. a
3°G2 1 G gea = 0 (2.5)
1.2 The tensor density representation V-9 2 * '
We first set b b usingdgai = — gangicdg*® anddg @ = — gy °dgy. the formula
9% =+-g99 (1.9) (2.5) can be also written as
and the Einstein tensor density is 1
02°GE - > G®20p gea = O. (2.6)
G®= y=gG®, Gf=+-gGg, (1.10)

The latter equation is the conservation condition’®2°
R = =g R (1.11) which is equivalent to (2.3).

In density notations, the field equations with the sourge3 Conservation of the energy-momentum tensor

(1.8) will read 2.3.1 Problem statement

Ga = Ravb _ 1 gPR = g = % T2, (1.12) Letus consider the energy-momentum tensor for neutral mat-
2 ter densityp:
Here in place of the constant cosmological terin Tab = pUalp (2.7)

which should be here represented/by/~g, we have intro- as the right hand side of the field equations
duced ascalar densitydenoted as

1
OG = - = R = T . 28
N (1.13) ab = Rab 5 9abR = #Tap (2.8)
Unlike A, the scalag is slightly variable and represents The conservation condition for this tensor are written
the Lagrangiancharacterizing a specifimcuum background 1 1

VaTg = aaTg - = Tacab gac = O (2.9)

field as will be shown below. 2

=
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with the tensor density 2.3.2 The gravity pseudo-tensor

In order to follow this way, Landau and Lifshitz [6] started

a_ [—Ta
To= V=9 Tp. (2.10) from the unsuitable tensor equation (2.9)

However, across a given hypersurf , the integral 1 1
g yp A g ViTK = —— 3T = 2 T3 g = O.

Ve T2
P = fTab V-9 dSy (2.11) They thus consider a special choice of a set of the coor-
dinates which cancels out all first derivatives of theat a
is conserved only when given 4-space-time point.
In this system, the energy-momentum tensor expression
8aT2 =0, (2.12) isgiven by
. 1 . .
ik _ -1 ik ed ie kd
From (2.6) inspection still shows that =2, de(~9) [ad (-9) (g 9 -99 )] (2.17)
1_q As {Le} are postulated to be zero at the considered point,
daTp = =T Jcd (2.13) -1 ativa i
2 we may extract the factor¢) -+ from the derivative in the

. o o latter equation, so
but here, unlike the Einstein tens®B,, which is conceptu-

ally conservedV,°G] = 0), the conditions (—g) T = geHke = % e (adHiked)_
VaTg =0 The quantity
Hiked = (_g) (g g®d = giegkd (2.18)
of 9.TE=0 ( )

can be regarded as a “double tensor density” and is often
are thus never satisfied in a general coordinates system. referred to, as the “superpotential of Landau-Lifshitz].[7
Therefore, the Einstein tenséG,, which intrinsically Now, in any other arbitrary system, generally
obeys a conservation condition, is related with a massive te ke iK
sor Tap(p) which obviouslyfails to satisfy the same require- 9eH™ ~(-g) T" # 0,

ment and so, we will have to bring a small tensor correctifjn
°Gab = % Tab. (2.14) (Landau-Lifshitz pseudo-tensor) which is accepted aserepr
senting the gravitational field of matter:

As a matter of fact, a correct formulation would consist e Kk
of explicitly writing down the mass density with its gravity 9eH™ = (~9) (T + tLL)'
field, i.e. with a pseudo-tensdgg) fieid-

As is known, the hampseudo-tensas chosen since this
quantity can be transformed away by a suitable choice of co- o [(-g) (TH+t¥)] =0, (2.19)
ordinates.

Hence, we should write

This equation implies the condition

which is the conservation law for the classical total four-
momentum vector density of both matter and gravitational
field written as

P = f (-9) (T* +t¥)| dS, (2.20)
This is classically interpreted by requiring that tiogal [ ( LL)]
4-momentum vectoP? of matterwith its gravitational field (compare with (2.11)).

Gap = [(Tab)matter+ (tab)field] . (2.15)

After a tedious calculation, the final form of the symmet-

P? = [(T®)matter + t*) ieta| V=g dSs (2.16) ric tensort as a function of they, is found to be
o1 _ 1
must be together conserved (—g)tk = = [9"79"21 _ .‘l!|| g|fnrrq]+ 5 glkglmg!npg?]m _

*Some authors [8] state that integrati\ﬁTik = Qyields a conservation

law for a vectorP2 = TaPK, when the metric admits a Killing vectds:
P2 = TabK, + TaKyp, and sinceT2 is symmetric, we have for the Lie 1 ) )

; ; ' ! il _km ik Im nr Pq
derivativeKpa = 1Lkgap = 0, thenP3, = 0. + 8 (29 g —99g )(29npgqr - gpqgnr) g g,m]- (2.21)

- (g"gmng'fgyrp + gk'gmngi,?)yTp) + 9im g”pgi,'n gkg' +
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Therefore, the Einstein field equations can be eventuallg obtain
written in the form:

; oLg dLe |
_ o — (T dgi = Ok —~ - —dg" =
H*ed | = 2 (~g) (T +£2). (2.22) T T o™ 9T
L dLe dg’

Unfortunately, the quantity} which now appears on the = Ok W —OLE,
right hand side of the field equations as it should be, is not a
true tensor that is

Hence, we are once more faced with a contradiction: the _ OLedn(0g™)
left hand side of the field equations for a massive source is a — x(T")matterdmgil = Ik L"g — oK Lg| =
true tensor, while the right hand side is not, which reveals a (kg")
major inconsistency within the theory. = 22Ok (tfy) fiela (3.4)
2.4 Introduction of a background field tensor where () iels denotes the field tensor density extracted from
Let us now try to remove this ambiguity. ILedm(dg")

We start by writing the global energy-momentum tensor 25¢(th) fiela = g okLe (3.5)
density of the massive source splitting up bare matter and kg
pure field: so, that we have the explicit canonical form

T2 = (Ta) + (ta)f' Id- (2.23) )
. b b r-natter b |fe ’ 1 6LE6m(6g'|) ;

The field tensor densitytd)fieiq is in turn composed of (th) fietd = 2| o0 omLe (3.6)

two parts:gravity field+ vacuum background field kg
and where
(t2) field = (t8)gravity + (t3)backgroundfield (2.24) L

with ak(-r:()matter = z (TEk)matterakgei = —ak(tr)field-

Ev-g (2.25) that is, the required conservation relation

(tab)backyround field = = Jab = Jab .-
2 2 . )
According to the standard theory, we next re-formulate O [(T‘ Jmatter + (ti)”e'd] =0. (3.7)
the field equations with baremassive source Then, re-instating the terrs according to (2.24) and

1 (2.25), the gravitational field tensor density now reads:
G*=R"- 2 gabR - gabS' = %(Tab)matter (2.26) i
1 [0Ledm(0g")
K ot EUm _ <k _
under the form (tm)orauity = 2%[ FIEYD) on(le =2 (3:8)
G - R _ 1 g%R = (T matter + ¢ . (2.27) The presence of the scalar densjtycharacterizing the
2 background field is here of central importance, as it means
o . . _ . . that (tﬁq)gravity can never be zero in contrast to the classical the-
3 Expliciting the field equations in density notation ory, and as a result, it constitutesrae tensor Such a grav-
3.1 Taking account of the Lagrangian= ity field never completely cancels out, but far from its matte

source, it sharply decreases down to the level of the back-
ground field described by the tensor densif?)()adgmundﬁe.d.
1 In addition, we clearly see thgtrepresents thiagrang-
Aa(TE)matter = > (T°d)matte,6b Jcd- (3.1) ian densitycharacterizing the background field, thus lending
support to our initial hypothesis regarding the lagran@an
In this picture, the vacuum is permanently filled with this

Reverting to (2.13), we now write for tHeare matter tensor
density

Inspection then shows that

| 1 homogeneous background energy field ensuring a smooth
Ridg" = V=g [—R'e + 3 Q'ER] dgie = continuity with the gravitational field of a neighbouring ssa
= —2(T*)matterdgie. (3.2) 3.2 Classical formulation
Taking now into account the Lagrangian formulation fof/hen the ternE is kept constant like the cosmological term
Ry, which is A, the tensor density (3.8) reduces to
_oLe ole  OLe 1 [OLedm(0g")

~sSLel.  (3.9)

i — = O0k———c — —, 3.3 tk ity = 5 i
R|I 69" ka(akg") 69" ( ) ( m)pseudgra ity 2 5(6kg'l)
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which is just the classicaravity pseudo-tensor densitiyat whereTZ are the skew components of the energy-momentum
may now vanish in a given space-time point. tensor (3.17), which implicitly contains the gravity fiett].

In this case, expressed with the explicit form of the La- Now, we formulate (3.18) under the equivalent form:
grangian density g written in (1.1), the expression (3.9) be-

comes: PO = Py = f (TE+ T2+ T2-TY)aV. (3.19)

1 -
() pseudorasity= — |1} Omg" — {i | omg™ — % Le|. (3.10)
PSR 2 [{”} " {”} ; K ] In the immediate vicinity of the mass, it is easy, to show
This is themixed Einstein-Dirac pseudo-tensor densityat generalizing (3.19) leads to the 4-momentum vectdr tha

[9] which is not symmetric ok andm, and is therefore notincludes the right hand side of (3.12):
suitable for basing a definition of angular momentum on.

3.3 Field equations Pa = f[(Tg)matter+ (tg)grauity] dsb- (3-20)

The field equations with a massive source, which are Far from the source, we have obviously

1
Gab — Rab _ =
2 9
may be now eventually re-written

PR- g% = u(T¥)maen (3.11) X
(Pa)baclyround field = f [(ta)bactgroundfield]dsb, (3.21)

where ([g)bac,@,,oundﬁe.d is a true tensor density, and the con-
servation law applied t®? holds for all configurations, in
gecordance with (3.7) and (3.16).

. 1
G® = R~ 5 g™R = [ (T)matter + (t*)yrauy| (3.12)

with the explicit appearance of the gravity field as defined

(3.8) and which is now represented byrae tensor density.
Like we emphasized above, far from the mass, the "source

free” field equations should always retain a non zero rigintthis short paper, we have sketched here a possible way out

Conclusions and outlook

hand side of the gravitational field pseudo-tensor.
ab b ab ab From the beginning of General Relativity, the cosmologi-
G™=R"- 29 R = #(t™)backround ield (3.13) cal constant has played an unsavory role. Einstein included

this constant in his theory, because he wanted to have a cos-
mological model of the Universe which he wrongly thought
static.

But to-day, a cosmological term seems to be badly needed

In this case, the conservation law applied to the right halftfxplain some astronomical observed clues, within thizbas

which are the analogue of (1.7):

G =R® - % 9*R-g*, = 0. (3.14)

side of the tensor field equations is straightforward: dynamical expanding model of Robertson-Walker [11], even
though its occurrence was never clearly explained.
Va(t)background field = Va(E 6@) -0, (3.15) Hoyvever, there is no rease@npriori to consider this cos-
‘ 2x mological term as constant everywhere.
from which readily follows In this respect, the background field hypothesis is reward-

ing in terms of several physical advantages:

Aa(td)baclground field = 6a(% 53) =0. (3.16) e The ill-defined gravitational pseudo-tensor is now
a true tensor, and it appears explicitly in the field equa-
tions with a massive source;

We would like now to give a simple but instructive picture o The background persistent homogeneous energy field
of the situation where a static mass is placed in the vacuum s then formally shown to be a consequence of the
background energy field. Let us write the energy-momentum  apove derivation and it is actually regarded as the
tensor for matter and its graVitational field as in (312) (Sharp|y decreasing) continuation of any mass gravity

Tab = (pUaUp)matter + (tab)gravity- (3.17) field tensor;

In virtue of the principle of equivalence, atpare mass
of volumeV together with its gravitational fieldcan be ex-
pressed through the time component of a 4-momer&m
according to

3.4 Physical description

e The inferred global energy-momentum tensor intrinsi-
cally satisfies the conservation law as well as the back-
ground field alone in the source free field equations,
without introducing any other arbitrary ingredients or
modification of the General Theory of Relativity.

PO = f(T1l + T22 + Tg3 - T(())) V-g adV, (3.18) Submitted on: May 04, 2013Accepted on: May 18, 2013
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The Role of Evection in Optical Measurements of Light Beam Dftection
from the Sun’s Disk (the Einstein Hfect)

Sergey N. Shapovalov

SCC RF Arctic and Antarctic Research Institute. 38 Bering &t Petersburg 199397, Russia
E-mail: shapovalov@aari.ru, tek7 (812) 3373157

The relationship between the optical results of light beaffedtion from the disk of the
Sun @¢) obtained during observations of the total solar eclipfesn 1919 till 1973,
and the evection, the major perturbation from the Sun, bas¢de theory of the Moon’s
motion, is analysed. The dependencé@fupon the temporal changes of the evection
was found. The expectath optical results for the total solar eclipses, for the period
from 22.09.2003 till 29.12.2103, were calculated. Basedhencomparison of calcu-
lated evection values with fluctuations of intensity of sakdiation within 603-607
nm range obtained through the spectral observations on is@ation in Antarctica,
the modulatory role of the evection in deflecting the lighhmeat the near-Earth space
was concluded.

Optical measurements of the star beam deflection from the 25.02.1952: (1.70, 1.82),
Sun disk were pgrformed by a number of. researchers during  02.10.1959: (2.17),

the total solar ecllpseg, from 29.05.1919till 30//.06.1%3] 30.06.1973: (1.66).

the purpose of checking th# angle value (I75”) obtained ] i
by Einstein, following his development of the General The- Qbservatlons referrlng_to the date 19.06.1936 should be
ory of Relativity (GTR) [1]. In case the radio measuremeng®nsidered as ikectual, since the absolute vglue error ex-
only are considered in the practical estimates of the Eimste®€ds 200%. To date, the list of known errors includes:
effect, 6 values match with the theory within 1% range [2]. — Deviation of the Sun’s shape from the sphericity,
For example, an average value 0f3’(+0.07") was obtained 9.2"x107%;

in radar measurements of Mercury, Venus_ and Mgr;, whereas_ The Earth’s motion along the ecliptic.@8’+1072);
measurements of quasars and pulsars using raqllo intedferom Beam refraction in the atmosphere of the Su6Q@’);
etry produced an estimate of78’(+0.08). Deflection of the ) ) ] )

beam from the Sun disk is described by the equation: — Refraction and dispersion in the Earth atmosphere

(0.017-0.1");
Sp = _&MZ@ , 1) — Offset of the observer from the Sun-Moon-Earth line;
RoC — The influence of the gravitational field of the Moon and
where the “minus” sign corresponds to the deflection of the the Earth during the total eclipse event, by an addition
beam to the center of the SuB; = 6.67-10°* Hxm?/kg? is to the relativistic beam deflection.@~104);
the gravitational constanil, = 1.99-10°° kg is the mass of __ \wavelength dependence of the light bean¥(210-%):;

the Sun;c = 310 nys is the speed of lighR, = 6.96-10°
m is the radius of the Sun.
Based on the optical observations of the eight total so

— Dependence on solar activity;
— Astroclimatic characteristics of a particular observati

lar eclipses, the author’s average result together withnéi-co station;
dence interval of measurements mafgs- 1.83+ 0.40,and  — Additive error caused by inaccurate scale matching be-
the recalculated measurement resuftis= 2.0+0.13, which, tween the day and night astroimageg).

in view of the low accuracy and the considerable spread of |t should be noted that through the historysgfmeasure-
measurements, is consistent with the GTR. According to #nts the list of errors has expanded considerably; however
published data [3-10], the resultsdf optical measurementsthe accuracy of estimates is not yet improved. Summing the
for the total solar eclipses observed from 19109 till 1973eveyalues of all the errors, the magnitude of the total coreecti

as follows: is apparently insignificant. Therefore, dispersiodgfesults
29.05.1919: (1.98,0.93, 1.61), is probably due to the influence of some unknown factors.
21.09.1922: (1.42, 1.75, 2.16, 1.72, 1.83, 1.77), The major solar-induced disturbances are described by

] terms in the formula of the geocentric ecliptic longitude of
09.05.1929: (2.24), the Moon [11, 12]. Full description of this formula includes

19.06.1936: (2.73, 2.13, 1.28), 1,500 terms [13], where evection, variation and annual in-
20.05.1947: (2.01), equality are the most important. When limited to the largest
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Fig. 1: Comparison of the evection angle values with theltesti optical measurements taken as average
values and excluding errors for the dates of the total salgrses, 1919-1973.

in amplitude terms, the formula is as follows: moon and full moon), this term is subtracted from the senior
_ _ term of the equation (3), and it is added in quadrature. @urin
A=L+6.289Fsinl - 1.274 sin(l - 2D) + the new moon and full moon[2 = 0°, or 360 (3), which is
+0.658 sin2 + 0.214 sin2 — the same in the context of trigonometric functions. In thet fir
—0.186°sinl’ — 0.114 sin 2F ) and last quarterd) = 9C°, or 270 (4). So, the known man-

ifestations of the evection in the near-Earth space metil/at
whereL is the mean longitude (void of the periodic distutthe studies of its contribution to the resultssgfassessments
bances) of the Moon in the orbit, D, I’, F are the main obtained during observations of the total solar eclipsesnf
arguments in the lunar theory. 19191ill 1973.

In the first five inequalities of the formula (2), the terms  Theevection values were calculated upon the Julian dates
bearing cofiicients 6.289 and 0.214 are determined by &f the total solar eclipses. Fig. 1 shows a comparison of
lipticity of unperturbed (Keplerian) orbit, whereas thens the evection angle values with the results of optical messur
with coeficients 1.274 (evection, 31.8 days), 0.658 (varifents taken as average values and excluding errors for the
tion, 14.8 days) and 0.186 (annual inequality, 186.2 days) dates of the total solar eclipses. Anomalous resulés'0
caused by gravitational perturbations from the Sun. The §2919) and 2.73(1936) were omitted from the calculations
riods of these inequalities, according to the theory of orotiof average values, as they fell outside the range of average
of the Moon, exist in the short-period nutation of the Earthresult and the confidence interval of all measurements.
axis, as well [14]. In this paper we consider the contributio Fig. 2 shows the distribution of dependency of optical
of the evection, the main and the |argest in amp"tude p,ert[ﬁsults from the evection. Continuous curve, which inctude
bation from the Sun, as the most significant deviation of tRe93’ (1919) and 2.73 (1936) values, represents averaging
true motion of the Moon from its motion defined by Kepler'f results depending on the evection and is described as:
Iaws.. Evection was discovered by Ptolemy (2A_D) when ob- 56(M) = 1.7227+ 0.2058x + 0.3163x%2. 5)
serving the Moon in the 1st and 3rd quarters (in quadrature
points). The physical explanation of the evection was devel The dotted curve, which excludes 0793919) and 2.73
oped by Newton. Evection can be represented adfardi (1936) values, represents averaging of results depending o
ence in the equation of the center [13] generated by the tata evection and is described as follows:

1.27# sin(l — 2D):

5¢(E) = 1.723+ 0.316X2. (6)
& = 5.02 sinl + 0214 sin2, ®) As demonstrated in the Figurép(M) has a lower left-
e, = 7.56 sinl + 0.214 sin 2. 4) hand shift againséy(E) characterized by the term 0.20%8

(5), due to the low values obtained during the observations
This dfect is determined by the gravitational influence of thef 1919 ¢ = 0.93”) and 1936 §¢ = 1.28”). Accord-
Sun to the Moon. In syzygial points of the lunar orbit (neimg to 6¢(E) distribution in Fig. 2, deflection of beams in
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3.0

. Eclipses 6p(E) | Eclipses 6¢(E) | Eclipses 6¢(E)

b ugipoibyvror il 23.11.2003| 1.75 | 26.12.2038| 2.02 | 03.08.2073| 2.11
e 08.04.2005| 2.24 | 21.06.2039| 1.82 | 27.01.2074] 2.23
8 03.10.2005| 2.09 | 15.12.2039| 1.72 | 24.07.2074] 2.13
g 29.03.2006| 1.89 | 30.04.2041| 2.23 | 16.01.2075| 2.03
£ 22.09.2006| 1.74 | 25.10.2041| 2.01 | 13.07.2075| 1.76
2 '8 07.02.2008| 2.22 | 20.04.2042| 1.81 | 06.01.2076] 1.73
5 18 01.08.2008| 2.16 | 14.10.2042| 1.72 | 22.05.2077| 2.19
Iy 26.01.2009| 1.88 | 28.02.2044 2.22 | 15.11.2077| 2.02

22.07.2009| 1.74 | 23.08.2044| 2.09 | 11.05.2078| 1.83
15.01.2010| 1.75 | 16.02.2045| 1.89 | 04.11.2078| 1.72
11.07.2010| 1.9 12.08.2045| 1.74 01.05.2079| 1.86
20.05.2012| 1.78 05.02.2046| 1.74 24.10.2079| 1.96
13.11.2012| 1.72 | 02.08.2046| 1.98 | 10.03.2081| 1.82
Fig. 2: Distribution ofée values according to thevection values, 10.05.2013| 1.91 | 11.06.2048| 1.74 | 03.09.2081| 1.72
1919-1973:6¢(M) averaged optical results dependent on the evet-03.11.2013| 2.11 | 05.12.2048] 1.75 | 27.02.2082| 1.79
tion, 0.93' (1919) and 2.73(1936) values includedp(E) averaged [ 59 032016] 1.92 | 31.052049| 1.89 | 24.08.2082| 2.07
optical results dependent on the evection, 0.6319) and 2.73
(1936) values excluded.

1.0 1919

=6 3oy, I +SD

8
14 12 -10 -08 06 -04 -02 00 02 04 06 08 10 12 14
Evection 1.27sin(I-2D)

01.09.2016| 2.02 25.11.2049| 2.17 03.07.2084| 1.72
26.02.2017| 2.23 20.05.2050| 2.22 27.12.2084| 1.79
21.08.2017| 2.23 30.03.2052| 1.91 22.06.2085| 1.98
02.07.2019| 2.03 22.09.2052| 2.01 16.12.2085| 2.16
26.12.2019| 2.2 20.03.2053| 2.23 11.06.2086| 2.24
21.06.2020( 2.18 12.09.2053| 2.2 21.04.2088| 1.99
14.12.2020| 2.11 24.07.2055| 2.11 14.10.2088| 2.09
10.06.2021| 1.82 16.01.2056| 2.19 10.04.2089| 2.24
04.12.2021| 1.72 12.07.2056| 2.19 04.10.2089| 2.14
20.04.2023| 2.22 05.01.2057| 2.02 23.09.2090| 1.77
ifh4-10.2023| 2.1 01.07.2057| 1.83 15.08.2091| 2.18
08.04.2024| 1.89 26.12.2057| 1.73 07.02.2092| 2.23
02.10.2024| 1.75 11.05.2059| 2.23 03.08.2092| 2.13

the evection extremes:{.274°) should correspond téy ~
2.25+10%, and t&S¢ ~ 1.72 in case of 0, i.e., conform to the
Einstein result. Using the expression (6), the expeégedhl-
ues calculated for optical observations at the dates obtiaé t
solar eclipse, from 23.11.2003 till 29.12.2103, are prasin
in Table 1.

Along with the deviations in the motion of the Moon from
the Keplerian orbit and the short-period nutation of thetlEar
axis, the evection mechanism is detected in spectral ze
observations of the atmosphere at Novolazarevskayarstal
(Antarctica). These observations are aimed to investitate
fluctuations of energy and intensity of scattered solar UV ra 17:02:2026| 2.22 | 05.11.2059| 2.01 | 27.01.2093| 1.94
diation under the 11-year SA cycle. Measurements of flug-12.08.2026| 2.17 | 30.04.2060| 1.82 | 23.07.2093| 1.77
tuations are recorded in the following ranges: 303-305 nin96.02.2027| 1.88 | 24.10.2060| 1.72 | 16.01.2094| 1.73
331-332.5 nm, 329.5-334 nm, 336-345 nm, 297-307 nﬂ92.08.2027 1.74 20.04.2061| 1.86 02.06.2095| 2.19
321-331 nm, 297-330 nm, and 603-607 nm, during the p026.01.2028| 1.74 | 13.10.2061| 1.96 | 27.11.2095| 1.93
lar summer (September — February). Detailed description|0£2.07.2028| 1.99 | 28.02.2063| 1.81 | 22.05.2096| 1.76
the methodology of observations is cited in [15]. 01.06.2030| 1.74 | 24.08.2063| 1.72 | 15.11.2096| 1.73

To test the influence of the evection factor on variations25.11.2030| 1.75 | 17.02.2064| 1.79 | 11.05.2097| 1.85
of the light flux, fluctuations measurements in the range 0f21.05.2031| 1.9 12.08.2064| 1.98 | 04.11.2097| 2.05
603-607 nm (as the most proximate band to the central pp4.11.2031| 2.1 22.06.2066| 1.74 | 21.03.2099| 1.82
of the solar spectrum) were selected from the available se$9.05.2032| 2.23 | 17.12.2066| 1.8 14.09.2099| 1.72
of registered channels. Based on the observations during thso.03.2033| 1.78 | 11.06.2067| 1.89 | 10.03.2100| 1.78
polar summer 2007—-2008 and 2008-2009, data analysis| @f.03.2034| 1.91 | 06.12.2067| 2.17 | 04.09.2100| 2.06
the intensity channel was performed, in average daily stan12.09.2034] 2.02 | 31.05.2068| 2.24 | 28.02.2101| 2.21
dard deviation (SD) units, to build the time series and FﬂBVi 09.03.2035| 2.23 11.04.2070| 2 15.07.2102| 1.72
temporal comparison with the calculated values of the eveCp, 992035 219 | 04.10.2070| 2.1 08.01.2103] 1.79
tion. Figs. 3 and 4 show the distribution pattern of SD valu€S3 075037 2.12 | 31.03.2071| 2.23 | 04.07.2103| 1.97
(603-607 nm), to be compared with the evection changes.[ =1 2038 219 | 23.002071] 2.2 2912.2103| 2.22

The figures show a reasonably good phase and periotig; 57 20381 2.19 | 12.09.2072| 1.77
matching between the SD (603—607 nm) dynamics and the
evection changes during the polar summer of 2007-2008ble 1: Expectedsy results for the total solar eclipses, from
However, Fig. 4 shows the broken phase matching at certa®i11.2003 till 12.29.2103.
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Fig. 3: Comparison of temporal changes in the evection aadatkerage daily standard deviation (SD)
of radiation intensity in the 603-607 nm (9 pt. mov. aver.yhge, for the period from 01.09.2007 till

28.02.2008.

1.5 T . 0.60

1.0}, 1 0.55
® 05f 050 £
o N~
2 3
2 0.45 E
g 0.0 c
= ™
3 8
w .05 0.40 o
n

1.0} 1 0.35

15 . ! . 0.30

1 33 65 97 129 161
Serial number of the day (01.09.2008- 28.02.2009)
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extended sections. In our view, such failures may be related In a brief discussion of relationship betwe&pn and the

to the SA stages. Among the above errdis,dependence evection, previously disregarded in research practice; a 3
from SA and astroclimatic characteristics of observatian sbody Einstein model should be mentioned, which considers
tions remain understudied. Astroclimatic characteristice the Earth and the Moon as point-like objects. This model is
determined by the weather conditions and optical propertisndeniable in the evaluation of mass gravitation of thetizart

of the atmosphere and both are connected with the SA maieon and the Sun. The major solar disturbances cause devi-
festations. Although the mechanism of Sfeets on the sur- ation from the Keplerian orbit of the Moon motion and, at the
face layer of the atmosphere remains unclear to date, this ceame time, deviations in the Earth axis in the short-peried n
nection is revealed by the long-term observations of weatla&tion (31.8 and 14.8 days), provide periodic gravitatioma
services. fluence on the Earth—Moon system. Obviously, this influence
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is manifested in the Einsteinffect through the modulation

property of optical beams.

Conclusions

— The values oby optical results reveal statistical corre-

lation with the temporal change of the evection;

— In the evection extreme point&1.274), deflection of

optical beams from the solar disk is expected to ap-

proachsy ~ 2.25+ 10%;

— When the evection values 0°, it is expected to ap-

proachsy = 1.72 + 10%;

— In conformity with §¢(E), introduction of correction

for the evection into the formula (1) is justified.
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Mass and Charge Selfvariation: A Common Underlying Cause for Quantum
Phenomena and Cosmological Data
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The physical theories of the last century do not possess the completeness necessary in
order to justify the quantum phenomena and the cosmological data. In this article, we
present the law of selfvariations and suggest it as the common cause of quantum and
cosmological phenomena. There is an intermediate state between matter and the photon,
which is the cause of quantum phenomena. The cosmological data are condensed in a
single equation with one unknown. The consequences of the law of selfvariations extend
from the microcosm to the observations we make billions of light-years away.
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1 Introduction

The study we present in the current edition is based on two
assumptions that are taken as axioms. The first assumption is
that the rest masses myg and electric charges g of material par-
ticles increase with the passage of time (selfvariations). The
second assumption is that the consequences of the selfvari-
ations propagate through four-dimensional spacetime with a
zero arc length: dS? = 0. The set of consequences arising
from these two assumptions constitutes the “theory of self-
variations”.

An immediate consequence of the statements-axioms we
have introduced, is the concept of the generalized photon: a
particle carrying energy E, linear momentum P, and moving
with velocity v, of magnitude ||v|| = ¢, in every inertial frame
of reference. The generalized photon correlates the material
particle with its surrounding spacetime. In its simplest ver-
sion, the generalized photon is emitted by the material parti-
cle into its surrounding spacetime. When the material particle
is electrically charged, the generalized photon, apart from en-
ergy and momentum, also carries electric charge.

In figure 1, the arbitrary motion of a material point parti-
cle moving with velocity u in an inertial frame of reference
O(x,y, z,t) is represented.

A generalized photon is emitted by the material particle

at time w = ¢ — £, from point E(x,(w), y,w), z,(w), w), and
arrives at time ¢ at point A(x, y, z, ). The velocity of the gen-
eralized photon in Figure 1, is

vU=-r
r

where r = ||r||. We express the vector Z in the trigono-
metric form

Uy

¢ Ccoso
U vl/ .
— =|—|=|sindcosw]|.
c c . .

sin d sin w
U,
c

Furthermore, we define the following two vectors

—sinéd
B =|cosdcosw
cos d sin w

and
0

—sinw|.
COS w

'y:

The vectors l;’, B,y constitute a right-handed, orthonor-
mal vector basis that accompanies the generalized photon in
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z A(xyzt) . . .
and electric current of density j
r .
J=pv.
R 200 2 u(w) The Lienard-Wiechert potentials
P(xy(t). % (1), z(t).t)
v 4
u(t) v-u
47T801"(] - —2)
BW) ¢
() v and
A= 4 T
47rsoc2r(1 -— )
C
are not compatible with the theory of selfvariations. There-
0(0,0,0,H X fore, they are replaced by the potentials of the selfvariations

Fig. 1: A material point particle moving arbitrarily. As the ma-
terial particle moves from point E(x,(w),y,(w),z,(w),w) to point
P(x,(1),y,(t),z,(1),1), the generalized photon moves from point
E(xp(w), yp(w), z,(w), w) to point A(x, y, z, ).

its motion. The consequences of the selfvariations are ex-
pressed as functions of the parameters w =  — g, r,0,w. The
basic study of the selfvariations leads to two fundamental the-
orems: the “Fundamental Mathematical Theorem”, and the
“Trajectory Representation Theorem”. The first theorem al-
lows us to correlate any change in energy manifested on the
material particle at point E(x,(w), y,(w), z,(w), w) with a cor-
responding change in energy at point A(x, y, z,t) of Figure 1.
The second theorem represents the tangent vector, the curva-
ture and the torsion of the trajectory of the material particle
onto the geometric characteristics of the generalized photon
in the surrounding spacetime. The two theorems allow us to
express quantitatively the consequences of the selfvariations
on the surrounding spacetime of the material particle. As a
consequence of the selfvariations, in the surrounding space-
time of the material particle there is energy of density D

1
p=_2m
ow vout
4ry3r? (l - —2)
¢
and momentum of density J
v
J= D;
where
_ 1
y - uz >
-z

and u = u(w).
If the material particle is electrically charged, then in
the surrounding spacetime there is also electric charge of

density p
aq 1

u2
Q(l ‘?)

cu\2 u\2
47rsor(1 L 2u) 4renc’ (1 2t zu)
¢ c

qv-a)

v
A=V
2

where @ = a(w) is the acceleration of the material particle.
The potentials of the selfvariations are separated into two
individual pairs

V, = 5
u
47T80r(1 - —2)
c
v
Au = Vuc_2
and )
vV, = ACAIL ~
v-u
47r80c3(1 - —2)
c
v
Ay =V,—.
2

The (V,, A,) pair gives the electromagnetic field (g,, B,) that
accompanies the electrically charged material particle

v u
u = -u3(z_2)
47T80r2(1— 2)

C
2
1- 2

q( c2) u v

u = — X —.

v c ¢

The (V,, A,) pair gives the electromagnetic radiation

v

—a
q v u
_ C
€a = 2 vul\y )¢
4 2,(1 v-u 1 - Cc Cc
negc2r 3 2
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v The study we presented up to this point has been con-
q - u_ v v . s L .
B, = ou TR (— X —) - —Xaf. ducted without a quantitative determination of the selfvaria-
47T8()}"(1 - —2) I- e ¢ ¢ ¢ tions. We made the assumption of the selfvariations in order
c

The pair (V,, A,) of the electromagnetic radiation potentials
does not depend on the distance r. For each couple (g, B) the
following relation holds

v
B=—2X8.
C

The energy-momentum tensor for the generalized photon that
results from the selfvariation of the rest mass mg of the mate-
rial particle is given by the matrix @

2

c cuy  cyy e
2
D = Dluce vy wuwy, v,
== 2
c? |vye  vyuy v, 115,121Z
(Vo VS VR V% VR U
where
c 0
1
Uy v ..
v, =120 i,j=0,1,2,3.
v, v

The energy-momentum tensor for the generalized photon
that results from the selfvariation of the electric charge g of
the material particle is given by the matrix ®%

W eS¢ 5, cS; 2 U, cy, cv,
. 2
Ol = cS, o1 O o3 PV |u,c UL U, Ui
=1 - 2
¢S, o Oxn Oon 2 |vye vy v, v,
cS, 03 Oxn 03 U, VU Uy u2

where (S4,5,,5;) =S = g& X B is the Poynting vector,
W=t (8 +*B?)
2

and
Oap = 0 (—sasﬁ — czB[,Bﬁ + Wéaﬁ)

15
6Qﬁ = { 0’

where a,8 = 1,2,3 and

if a=p
if «#p

(e1,82,83) = (ex,8y,8) = €
(B19B29 B3) = (Bx, Bys BZ) = B

The energy-momentum tensors @/ give us important in-
formation about the energy content of the surrounding space-
time of the material particle. Furthermore, they are related
with the gravitational and the electromagnetic interaction. As
we progress in our study however, it becomes evident that
there is information about the energy content and the proper-
ties of spacetime, that is not contained within the ®Y tensors.

to undertake the relevant calculations, but we have not deter-
mined quantitatively the rate at which they evolve, i.e. the
% and g—;’). In order to study the consequences of the self-
variations, we have to quantitatively determine these rates.

The quantitative determination of the selfvariations is
made on the basis of the total energy E; and the total mo-
mentum Pg emitted simultaneously in all directions, by the
material particle. The rest mass mg and the electric charge ¢
of the material particle vary according to the operators

0 i

—- ——E,
ot - h

V- iPs
h
where A is Planck’s constant, and 7 = % The law of selfvari-
ations expresses a continuous interaction between the mate-
rial particle and the generalized photons.

The partial contribution of an individual generalized pho-
ton to the law of selfvariations is determined by the percen-
tage-function ®@. Due to this, function ® has a fundamental
role in the energy content of the generalized photon.

The energy E and momentum P of the generalized photon
that is related to the selfvariation of the rest mass myg of the
material particle, are given by the equations

in omy 0D
E=p—" 90 5%
1 = ¥ W moow ot

C2
S L L WL

1— VU ymgcow ¢
c2

The equations that give the energy and momentum of the gen-
eralized photon that is related to the selfvariation of the elec-
tric charge of the material particle, are of similar form.

The energy E and the momentum P of the generalized
photon do not obey the simple relation
v

PzEg

That relation is a special case of the general relation

v  ihod
p=£— 22
¢z r s

ih 00
B rsind dw
The generalized photon determines the relation of the mate-
rial particle with the surrounding spacetime. Furthermore,
it is related with the energy content of spacetime and, hence,
with the very properties of spacetime. Because of this, a large
part of the study we present in the present edition concerns the
generalized photon and its properties. The resulting equations
contain an exceptionally large body of data and information.
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Thus, we shall confine ourselves to a brief report for the struc-
ture and the properties of the generalized photon.

The generalized photon carries four energy-momentum
pairs, each of which transforms autonomously, independently
of the rest, according to Lorentz-Einstein. Two of these pairs
do not possess rest energy, do not depend on the distance r
from the material particle, are defined both on the material
particle and on the surrounding spacetime, while they do not
possess intrinsic angular momentum (spin). The other two
energy-momentum pairs have, respectively, rest energy

ch 00
i__

r 06

ch 62
“rsind dw’

Their energy and momentum are inversely proportional to the
distance r from the material particle, they are not defined on
the material particle but only on the surrounding spacetime,
while they possess intrinsic angular momentum (spin), given
respectively by
—ih
06
ih 00
siné dw"

The total intrinsic angular momentum S of the generalized
photon is given by relation

ih 00

sin d dw

i
as "

The intrinsic angular momentum of the generalized photon
exhibits some remarkable properties. The first is that it does
not depend on the distance r from the material particle, while
it is also defined on the material particle itself. Furthermore,

the component
., 0D

S, =ih £
in the direction of the velocity of the material particle, re-
mains invariant under the action of the Lorentz-Einstein trans-
formations and is, therefore, constant in all inertial reference
frames. Another property of the intrinsic angular momentum
of the generalized photon is that it does not vanish even if
we consider that the material particle is motionless. In other
words, the generalized photon carries intrinsic angular mo-
mentum even in the inertial reference frame in which the ma-
terial particle is at rest. In that sense, we can characterize
the intrinsic angular momentum of the generalized photon as
“rest angular momentum”. One final property, which is not
included in the present edition is the following: during the
interaction of the generalized photon with a material particle,
the variation AS of the angular momentum of the generalized
photon manifests a component along the direction of the vec-
tor ¥.

Of particular interest is the fact that the generalized pho-
ton, in its general version, implies the existence of rest energy
in the surrounding spacetime of the material particle. The ex-
istence of this energy results as a general consequence of the
equations of the theory of selfvariations.

We remind that the law of the selfvariations has been
stated on the basis of the total energy E and the total momen-
tum Py of the generalized photons emitted simultaneously and
in all directions by the material particle. We can easily prove
that between the energy E and the momentum Py the follow-
ing relation holds

u
P = E,—
S S‘Cz

where u = u(w) is the velocity of the material particle at the
moment of emission of the generalized photons. The energy
E, is always correlated with a rest energy Ey (Ey # 0) through
equation E; = yEy, where y = 11 = Therefore, in the en-
2

ergy E;, which results from the aggregation of the generalized
photons, a rest mass of % # 0is implicit. The law of selfvari-
ations expresses exactly the interaction between the rest mass
my of the material particle, and the rest mass % that results
from the aggregation of the generalized photons.

The physical object that results from the aggregation of
the generalized photons, always accompanies the material
particle. Because of this, we named it “accompanying par-
ticle”. The accompanying particle has rest mass %, while
in the part of spacetime it occupies it holds that dS? = 0.
The combination % #+ 0 and dS? = 0, leads to the conclu-
sion that the accompanying particle corresponds to an inter-
mediate state between “matter” (% # 0) and the “photon”
(dS? = 0). This intermediate state of matter is the cause of
quantum phenomena, and its prediction constitutes one of the
most important results of the theory of selfvariations.

In Nature, the system material particle-accompanying
particle exists and behaves as a “generalized particle” which
extends in a part of spacetime. The part of space occupied
by the generalized particle can be the point where the mate-
rial particle is located, or it can extend up to an infinite dis-
tance away from the material particle. In the part of spacetime
where the generalized particle extends, the trajectories and
velocities of the generalized photons are altered with respect
to the strictly defined trajectories and velocities presented in
Figure 1. There is an extreme case where the concepts of tra-
jectory and velocity of the generalized photon become mean-
ingless; they are not defined. The same is true for the trajec-
tory and velocity of the material particle in case it is located
in the part of spacetime occupied by the generalized parti-
cle. This prediction provides us with the basic idea about the
method we have to develop in order to study the generalized
particle.

One way in which to study the internal structure and phys-
ical properties of the generalized particle, is to eliminate the
velocity, which also represents the trajectory, from the equa-
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tions of the theory of selfvariations. This elimination of the
velocity can be accomplished in several ways. One is to intro-
duce into the equations of the theory of selfvariations the po-
tential energy U of the material particle. The resulting equa-
tion is the time-independent wave equation of Schrédinger

B 2my(e — U)‘I’.

2q _
VY = 7

The differential equations of the theory of selfvariations are of
first order. When we convert them to second order equations,
we can eliminate the velocity without having to introduce po-
tential energy, or any other physical quantity, into the equa-
tions. The elimination of velocity leads to the Klein-Gordon
equation. As a special case of the Klein-Gordon for my = 0,
we get the wave equation

OV
c2or?

=0

which appears in Maxwell’s theory of electromagnetism.

Observing the way in which we use Schrodinger’s opera-
tors in quantum mechanics, we realize that, what we are pri-
marily doing, is to eliminate the kinematic characteristics of
the material particle from the resulting differential equations.
Dirac does the same thing in the method he develops, in com-
bination, of course, with his additional assumptions, in order
to derive his eponymous equation.

In order to study the internal structure of the generalized
particle we have to answer specific questions. These ques-
tions, and more generally all the issues concerning the gen-
eralized particle, are completely different from the ones we
usually have to answer when we study physical reality.

The material particle can be located at any position in the
part of spacetime it occupies. Judging by the success of quan-
tum mechanics and by the high accuracy calculations it per-
mits, we conclude that statistical interpretation is one way
of studying the internal structure of the generalized particle.
However, the theory of selfvariations poses a question, the
answer to which, leads us to an unknown territory of physical
reality.

In order to study the internal structure of the generalized
particle we have to answer the question, how is the total rest
mass of the generalized particle distributed between the mate-
rial particle (mg) and the accompanying particle (%) During
the quantitative determination of this particular distribution,
the Schrodinger and Klein-Gordon equations show up, to-
gether with the wave equation of Maxwell’s electromagnetic
theory. In the part of spacetime occupied by the generalized
particle, an external cause suffices to shift the rest mass to-
wards either the material particle or the accompanying par-
ticle. In the first case, the generalized particle behaves as a
material particle, which moves on a defined trajectory, with
defined velocity, energy, etc. In the second case, the gener-
alized particle spreads in spacetime, while the consequences

of the aggregation of the generalized photons are intensified.
This is the phenomenon we observe in the double-slit experi-
ment.

The law of selfvariations results in the differential equa-
tion .

(m()c2 + lh@) =0
mo

the only unknown being the rest mass my of the material par-
ticles. This simple equation contains as information and ra-
tionalizes, the totality of the cosmological data within a Uni-
verse that is flat and static, with the exception of a very slight
variation of the fine structure constant predicted by the equa-
tions of the theory of selfvariations for observations at dis-
tances greater than 6 x 10° ly. The redshift z of a distant
astronomical object located at distance r is given by equation

1 —Aexp (— ]z)
R WY
“= 1-A

where k is a constant and A is a scalar parameter that obeys
the inequality

= <A<l

1+z
for every value of the redshift z. Therefore, the value of pa-
rameter A is close to 1, with A < 1. The distance r = r(z) of
a distant astronomical object as a function of the redshift z, is

given by equation

¢ | A
" n(A—z(l —A))'

In figure 2 we present the plot of the function r = r(z) for
A = 0.900,A = 0.950,A = 0.990,A = 0999 up to z = 5.
We observe that, as we increase the value of parameter A,
the curve tends to become a straight line. This result is not
accidental. It is proven that, for A — 17, function r = r(z)
gives Hubble’s law.

The energy E(z) which fuels the radiance of astronomical
objects, and which originates from the process of fusion, and
generally from the conversion of mass into energy, is smaller
than the corresponding energy E in our galaxy, according to
equation
1+z
Therefore, the intrinsic luminosity of the astronomical object
is lower than the standard luminosity we use. As a con-
sequence, the luminosity distance R we measure is in fact
greater than the real distance r of distant astronomical ob-
jects. The relevant calculations lead to equation

R=rV1+z

Consideration the arithmetic values of the parameters that
factor into function R = R(z), we obtain equation

R=5000zV1 +z

E(z) =
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Fig. 2: The plot r = r(z) of the distance of an astronomical object as
a function of redshift z, for A = 0.900,A = 0.950,A = 0.990,A =
0.999. As the value of the parameter A is increased, the curve r =
r(z) tends to a straight line.

where the luminosity distance R is given in Mpc. In figure 3
we present the plot of function R = R(z) up to z = 1.5.

Type 1, supernovae are cosmological objects for which
we can measure the luminosity distance at great distances.
At the end of the last century, these measurements were per-
formed by the independent scientific groups of Adam J. Riess
and Saul Perlmutter. The graph that results from those mea-
surements, exactly matches diagram in figure 3, which is the-
oretically predicted by the law of selfvariations. The con-
cept of dark energy was invented in order to justify the in-
consistency between the Standard Cosmological Model and
diagram in figure 3.

At cosmological scales, the rest mass m(r) with which
an astronomical object exerts gravitational action at distance
r from itself, is given by equation

0.001
1 — 0.999¢-2x107"r

where my is the laboratory value of the rest mass. The dis-
tance r is measured in Mpc.

For values of r of the order of kpc, it turns out that mgy =
mo(r). For r = 100 kpc we get my(r) = 0.99999 my. Con-
sequently, the strength of the gravitational interaction is not
affected on the scale of galactic distances. The selfvariations
do not affect the stability of the solar system and of galaxies.

On the contrary, at distances of the order of magnitude of
Mpc, a clearly smaller value of mass mg(r) compared to my,
is predicted. For r = 100 Mpc we get mo(r) = 0.98 my. For
even larger distances, the ratio m&—(r) becomes even smaller.
For an astronomical object located at a distance correspond-
ing to redshift z = 9, it is % = 0.1. The strength of the

mo(r) = my

redshift z

Fig. 3: The plot of the luminosity distance R of astronomical objects
as a function of the redshift z. The measurement of the luminosity
distances of type 1, supernova, confirms the theoretical prediction of
the law of selfvariations.

gravitational interaction exerted by an astronomical object
with z = 9 on our galaxy is just 10% of the expected. For
still greater distances, the gravitational interaction practically
vanishes. This is why gravity cannot play the role attributed
to it by the Standard Cosmological Model.

The Thomson scattering coefficient

87 ¢*
0= ———
3 m(z)c2

as well as the Klein-Nishina scattering coefficient

3 myc? ! 2F N 1
o==-0; nl—s |+ =
8 E mOC2 2

obtain different values, namely

oiry = 4O
3 mg(r)c2
and ,
3 mo(r)c 2E(r) 1
o(r)= gO‘T(V) E() [ln (mo(r)cz) + 5}

respectively, at distant astronomical objects. The mathemati-
cal calculations give

2

kr

1 -Aexp (——

o(r)  or c
- 1-A

o o
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At very large distances (r — o), and equivalently for the very
early Universe, we get

0(r > 00) o(r—o0) 1YV
o B o “li1-4/)-

Because of the inequality 1+ < A < 1 we see that A — 17
and, therefore, the Thomson and Klein-Nishina scattering co-
efficients obtain enormous values in the very early Universe.
Consequently, in its very early stages, the Universe went
through a phase during which it was opaque to electromag-
netic radiation. The cosmic microwave background radiation
originates from that period. The theory of selfvariations pre-
dicts that, in that phase, the temperature of the Universe was
slightly above 0 K. Furthermore, it predicts that the cosmic
microwave background radiation originates from the whole
extent of the space occupied by the Universe.

The ionization and excitation energy X,,(r) = X, (z) of the
atoms of distant astronomical objects differs from the labora-
tory value X, according to equation

X
1+z

Xu(2) =

This equation has consequences regarding the degree of ion-
ization of distant astronomical objects. In other words, the
redshift z affects the degree of ionization of atoms in distant
astronomical objects. Boltzmann’s formula

Nn gﬂ ( Xn )
D I exp (-
N g KT

gives the number of excited atoms N, that occupy the energy
level n on a stellar surface which is in thermodynamic equi-
librium. With X, we denote the excitation energy from the
ground energy level 1 to the energy level n, T denotes the tem-
perature of the stellar surface in Kelvins K = 1.38 x 10’23% is
Boltzmann’s constant, and g, is the degree of degeneracy of
energy level n (that is, the number of energy levels in which
the energy level n splits in a magnetic field). At distant astro-
nomical objects Boltzmann’s formula becomes

— = Zexpl-—+—].
N g PRI 12

From this equation it follows that the degree of ionization
at distant astronomical objects is greater than expected. The
mathematical calculations lead to the conclusion that the Uni-
verse went through a phase of ionization. The dependence
of the degree of ionization, as well as of the Thomson and
Klein-Nishina scattering coefficients, on the redshift z, de-
mands an overall re-evaluation of the electromagnetic spectra
we receive from distant astronomical objects.

The law of selfvariations correctly predicts the structures
in the Universe. It predicts the monstrous webs of matter in
between vast expanses of empty space which we observe with

current observational instruments. At smaller scales, it pre-
dicts galaxies and galactic clusters.

The theory of selfvariations also solves a fundamental
problem concerning physical reality, which the physical the-
ories of the last century were unable to solve: the arrow of
time is included within the equations of the theory of selfvari-
ations. The Universe comes from the vacuum and evolves to-
wards a particular direction defined by the selfvariations. As
mentioned earlier, at cosmological scales, all the equations
resulting from the law of selfvariations give at the limit, for
r — oo, that the initial form of the Universe only slightly dif-
fers from the vacuum at a temperature of 0 K. The origin of
matter from the vacuum, in combination with the principles
of conservation, with which the law of selfvariations agrees,
necessitate that the energy content of the Universe remains
zero. The selfvariations continually “remove” the Universe
from the state of the vacuum, while at the same time the Uni-
verse remains consistent with its origin.

In contrast to what happens at the macrocosm, the equa-
tions predict that in the laboratory the arrow of time does not
exist. This prediction definitively solves the problem with the
arrow of time.

A measure of the future evolution of the Universe is the
rate of increase of the redshift z predicted by the law of self-
variations. Substituting the arithmetic values of the parame-
ters into the corresponding equation, we get

z=27-63x10"year !

It is very characteristic the fact that one simple differential
equation, having as a unique unknown the rest mass, con-
tains as information, and at the same time justifies, the total-
ity of the cosmological data, as we observe and record them,
from the time of Hubble up to the present. Generally, the
equations of the theory of Selfvariations contain an extremely
large amount of data and information.

2 The study of the selfvariations for an arbitrarily
moving point particle

2.1 Introduction

In this article we present the fundamental study for the mathe-
matical background of the theory of selfvariations. We prove
a set of equations which permits us the following: We can
represent in the surrounding spacetime of a material particle
any kinematic characteristic which concerns the material par-
ticle. At every point of spacetime, the velocity, the accelera-
tion, the tangent vector, the curvature and the torsion of the
trajectory of the material particle can be mapped in a one-to-
one correspondence. This mapping allows us to take the next
step: we exactly determine the contribution of the material
particle to the energy content of the surrounding spacetime.
What emerges is a continuous interaction of every material
particle with the surrounding spacetime. The equations are
proven for a material point particle in arbitrary motion. We
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present a more general statement of the equations in the para-
graph 8.

2.2 Arbitrarily moving material point particle

The theory of selfvariations is based upon two hypotheses
which are taken as axioms.

a) The rest mass and the electric charge of the material
particles increase slightly with the passage of time. We shall
call this increase “selfvariations”.

b) The consequences of the selfvariations propagate
within the four-dimensional spacetime with a vanishing four-
dimensional arc length:

ds? = 0.

In an inertial frame of reference, according to the second
postulate, the velocity of propagation of the selfvariations re-
mains constant as a vector

Uy
v = |y, | = constant. €Y)
Uz
This vector has magnitude
vl = fv2 + UZ +vl=c. 2)

The selfvariations cause energy changes to every mate-
rial particle and, as a consequence, energy, linear momen-
tum and angular momentum propagate into the surrounding
spacetime.

We shall later call the carrier of this energy, “generalized
photon”. Initially, we will refer to the generalized photon as a
signal emitted by the material particle, moving with velocity
v, and, as our study advances, its properties as a real physical
object will be revealed.

We consider an inertial frame of reference S (0, x,y, z, 1)
and a material point particle moving with velocity u as de-
picted in figure 4.

At moment ¢, when the particle is located at point

P(xp(t), yp(t)’ Zp(t)a D,

the rest mass mg and the electric charge g of the particle
act at point A(x, y, z, ) with the value they had at time Ar =
@ = £, when the material particle was located at E(x,(t - 7),
Yp(t = %), zp(t = £),t = L). During the time interval At = £ the
material particle moved from point E to point P, while the
generalized photon moved from point E to point A. We now

denote
r

w=t—-. 3)

c

Hence, the coordinates of E are
E(xp(w), yp(w), zp(w), w). @)

z A(xyzt)
r

(W), 1o (W), (W) W) E u(w)
POt % ().2:(8).9)
u()

(W)
% ()

0(0,0,0,) X

Fig. 4: Material point particle in arbitrary motion. As the
material particle moves from point E(x,(w),y,(w), z,(w), w) to
point P(x,(1), y,(t),z,(1), 1), a generalized photon moves from point
E(xp(w), y,(w), z,(w), w) to point A(x,y,z,t).

The vector r = EA of figure 4 is given by

B B Xp(w)
r=EA=|y-yp(w) (5)
z—zp(w)

The velocity of propagation of the selfvariations v is given by

x = xp(w)
v=-r=-|y—y,(w]. (6)
r
z—zp(w)

Here,

r=|irl = \/(x — ) + (v - gw) + (- zw). D

The velocity u = u(w) of the material particle at point E,
where it emitted the generalized photon, is

dxp(w)
dw

dyp(w)
dw |

de(w)
dw

®)

u=ulw) =

From equation (7) we have

or ) 1 d.x,;(w) ow
% = % [2 ((x = xp(w)) (_ dw E))]
) dy,(w) dw
o5 [2 ((y ~ yp(w)) (_ dw E))]

1 dz,(w) ow
" [2 (<Z‘ZP<“’>> (‘WE))
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Taking into account equations (5) and (6) we have
or w
a = W

And with equation (3) we get

or 1 or
a = )(I‘E)

Taking into consideration that f = %,
(6) we obtain

as deduced by equation

Q v-u ] or
or c

- o

and finally
or v-u

- = 9
ot (1 _ u) ©)
o2
where u = u(w) and v - w = u,u, + uyu, + uu,.

Similarly, starting from equation (7) and differentiating
with respect to x, y, z we get

or
ox
or 1 v
Vr=|—|= —. 10
"lay|T v {10
or c?
0z
From equation (3) we obtain initially
ow 1
i ﬁ (11
-
Similarly, from equation (3) we have
Y = V(t— f) -1y,
c c
and, in combination with equation (10), we get
Vuw = ! 12
w = —mv. ( )
1= Q5
c

From equation (7) and after differentiating with respect to
x, we get

or 1 O0xp(w)
w - o [Z(x - x,(w)) (1 T Tax )] -
[(y Yp(w)) Wy )]

0
—i [2<z () Z”(w)]

Equivalently,
or 1 dx,(w) dw
e ot
d.l/p(w) ow
-= [(y !/p(w))( Bx)]
dz,(w) dw
T [(Z B Zp(w))( dw 5)]
and also,
2_” _ X = xp(w) 1 ow [(x xp(w) (dxp(w) )]
x r
1 ow .'/p( w)

d
) + - z,,(w))( Z”;w) )] .

i [(y - yp(w))( I

Taking into account equations (8) and (6) we arrive at

or v, _v-u ow
ax ¢ c Ox
and substituting
ow___w
0x cz(l_v-zu)z
C
as inferred from equation (12), we finally obtain
or 1
R TATIC (13)
(1)
c

Following the same procedure differentiating with respect
to y and z, we finally have

1 v
v-u
(1_ c2)

Differentiating with respect to time 7, we obtain from
equation (5)

Vr = (14)

0x,(w) dx,,(w) ow
o dw o1
(9_1‘ _ 3yp(w) _ dyp(w) ow
o | o | | dw ar|
0xp(w) dxp(w) ow
o dw at
Taking into consideration equation (8) g—f = %‘f u, and in

combination with equation (11), we finally get

or 1
=——u

ot v-u
(1_ cz)

5)

From equation (6) we successively obtain

vU=-r
r
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ov _ ¢ (9rr N cor where,
o r2ot r ot ov, Ov, Ov,
ov 10r cor ox 0y 0z
o Ll (16) ov, Ov, O,
ot rat r ot graddv=|— — —
L o . ox Jdy 0z
taking into account that v = “r. Substituting into equation du. Ou, v,
(16) the quantity ‘3—;, from equation (9), and ‘;—‘;, from (15), we ox 6_y 5{
finally obtain relation
1 0 0
ol _
o _ (" “) v—ul. (17) =0 1 0
ot (1 _ 0 0 1
c?
] ) a1 ;B a3p
Starting from equation (6) we get a@B =B @b abl. Q1)
a1 Py asfs

C
w=;u—%WD

This holds for any two arbitrary vectors

(22)

(23)

and differentiating with respect to x we get o
1 1
Ouy c or O0xp(w) o= ‘cxz and B = LZ}
g = rz a (x )Cp(w)) + - (1 - ax a3 3
duy,  cor { dxp(w) dw We now have Vv = %”‘ + %U” + a_ and from equations (19)
i r R R U e o we get
Since dx(;‘iw) = u,, as arises from equation (8), we have Vo = 3¢ N vy — vy) + vy (uy — vy) + v (u, — v
that Ouy ¢ Or ow ’ cr (1 - vc.zu)
i = ) o —(x = x,(w)) + 1- uxa
Uy + Uity + — (R + 2 +0?
and considering that £ = —ﬁvx from equation (13), and Vv = 3¢ " Unlla T Uylly T Vel (U" % UZ)
, v-u
that % = 62(11%)1& from equation (12), we get Cr(l T2 )
and since v} + v + 02 = ¢* and v, + vyt + vcit; = U -, We
2 . see that
aU"z_#Jrf |4 Uxtlx 3¢ v-u-c?
ox v-u r v-u Vv= — 4 ———
- 21222 v-u
cr(l ) c (1 ) r
c? ¢ (1 S )
and finally 5 Finally, we arrive at relation
Uy — E Ux(ux - Ux) . (18)
ox r v-u _2c
cr|\l-— Vv=—.
c r
Working similarly, we finally obtain Now, we consider the curl of vector v
< Uiiu, _uv-iu , for i=j dv, Iy,
o, cr( - —2) 0x 0z
s ¢ (19) v, .
0x; (Ui = v; for i% i Vxv=curlv= -—1.
cr(l - 7) c')vy Ouy
Ax oy

where 7, j = 1,2,3 and (x1, x2, x3) = (X, ¥, 2).

Equations (19) can be summarized in equation [1-3]

Taking into account equations (19) we obtain

(20) Vxv=curlv=
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where, 5
vu; = vy Qi WP o123 31)
vXu=|vu— v, Ox; 62(1_U.u)
Uxlly — Uylly c?
h = d
We now consider the acceleration vector where (x1, 3, %3) = (¥,4,2), an
1
dux(w) grade = -—————— Zeb. (32)
dw c (1 _ _2) C
du(w) duy(w c
a=aw) = o ;—() (25) The equations of this paragraph express the fact that in
Ju L(Uw) every inertial reference frame the velocity v of the selfvaria-
dz— tions remains constant as a vector with magnitude |[v|| = c.
w

of the material particle at the moment w, located at point E of
figure 4. We have that

ou, Ou,(w) du,(w)ow ow
= = — = Qy——
ot ot dw Ot ot
and since, from equation (11), it is % = 17',%2.,, we get a{;‘; =
]i’%u . Working similarly for the differentials % and %, we
get
ou
— = ———qQ. (26)
o ,_vu

c2

For the differentiation of the velocity u = u(w) with re-
spect to x, y, z we initially get

ou, Ou(w) du(w)ow ow
= = — = Q.
Ox Ox dw Ox “ox
. . . l‘)w _ Uy
Similarly, from equation (12) we have that 5% = ————

Ux @y
cz(l—L;) ’

Working simila}ly we finally obtain

hence % = -
X

ou; vja; ..
B S ,j=1,2,3. 27
el 7
Al - —
2
Here we use the notation (x1, x2, x3) = (x,y,2) .
From equation (27) we obtain
1 v
gradu = _ﬁ_ ®u. (28)
r(l - —2) ¢
c
We now consider the vector
d
b = b(w) = 2@ (29)

dw

Working as we did in order to prove equations (17), (26)
and (27), we arrive at relations

oa 1

ot ., v-ua
- =—=
o2

b (30)

It can easily be proven that all the equations are consistent
with the Lorentz-Einstein transformations, as we pass from
one inertial reference frame to another. The equations we
have proven are fundamental for the theory of selfvariations.
As we advance our study, we will find that they allow us to
correlate any physical quantity defined on the material par-
ticle, with any physical quantity defined on the surrounding
spacetime. Using the concept of information, we can cor-
relate any information concerning the material particle with
any information concerning the surrounding spacetime. Part
of this information are the potential fields, while the quantum
phenomena arise spontaneously.

2.3 The trigonometric form of the velocity of
selfvariations

Starting from equation (2) we get “%“ = 1 for every iner-
tial reference frame. We express the unit vector ¥ into the

trigonometric form

where 6 = d(x,y,z,t) and w = w(x,y,zt) are functions of
the coordinates x,y,z,¢ in an inertial frame of reference
SO, x,y,2z,1).

From equation (33) we see that

Ccos o
sin 0 cos w
sin 0 sin w

ol

(33)

o |F o & |F

Y _ coso = zel (34a)
c c
v
4 =sindcosw = geg (34b)
C C
Y _ sind sinw = ge3 (34¢)
Cc C
where
1 0 0
e1=fc= 0 . ez=g= 1 . e3=2= 0
0 0 1
We now consider the vectors
—sind
B =| cosdcosw 35)
cos d sin w
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and
0 0 0 0
y=| —sinw |. (36) V~(2): — (cos 8) +— (sin & cos ) +— (sin d sinw) =
COS W c] Ox Jy 0z

It is easily proven that the set of vectors {%, 8, y} form a
right-handed orthonormal vector basis which is defined at ev-
ery point A of figure 4. Furthermore, the following relations

hold: P
v
% (z) =#

% (g) = sindy
op v
5=
B
dw
dy
85
dy
dw
Differentiating the vectors %, 8,y with respect to x, y, z, t

c’

we obtain the following equations:

(37)

= —sinég —cosop
c

V~(§)=,B~V5+sin6'y-Va) (384)
0 (v\ 06 ow
Z(Z)== iné— b
6t(c) 8t'3+sm66t7 (38b)
Vx Z=Vsx B +sinsVw®y (38¢)
c
grad g:Vé @B +sindVw 7y (38d)
v
V-B=—-——V§+cosdy-Vw (39a)
c

B d0 v ow
rz__ZZ — b
o o +c0568t'y (39b)
VxB =2 x Vs - cosy x Vo (39¢)

c

gradB=-V6® g +cosoVw ®y (394d)
Voy= —sinéng—coséﬂ-Vw (40a)

oy . Owv ow
——=-—sind—— —cosd— 40b
ot o ot c o8 61‘6 (40b)
V><)/=sin62 X Vw + cosof X Vw (40c)

c

grad y = —sin6Vw ® g —cosoVw ® . (40d)

We prove indicatively equation (38)(a). The rest of the
equations are proven along similar lines. Taking into account
equation (33) we get

) 00 06 .
—sind— + cosSd— CoS w + cosSd— Sin w
ox oy 0z

0 0
+0- sinésina)—w + sinécosw—w
dy 0z

and considering equations (35) and (36), as well as relations

15} ow
Ox dx
Vs = 9 , Vo = dw
oy oy
15}) ow
dz Bz

we finally obtain

V-(g):ﬂ-V6+sin67-w.

c

We now expand the vector of velocity u =
respect to the vector basis {7, B, y} as

u (w) with

u=u@ =u? rwpruy =(u-2) @ ppra-y
C c/ ¢

and combining with equations (17) we get

9 (4)- ;vu) [ME_(ug) @) -y

ot \c r(]_7 ¢ ¢
0 1
E(E) = ————[W-BB+@-y)y].

C v-u
==
r( c2

Considering equations (38)(b) we get

06 . Ow 1
5B Hsind—ory = —(—v,u) [-B)B+u-y)7]
r 1——2
c
and finally
00 u-p
o s [ vm @D
(l_ c? )
.0 u-y
smé(9 = v 42)
(-
c

because of the linear independence of the vectors 8 and y.
‘We now write vectors Vo and Vw as a linear combination
of vectors % B.y.

Vo= +KB+ Ly (43)
C
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Vo = b= + MB+ Ny. (44)

We combine equations (17) and (20), and get relation

“Jo-ul+

0

e e [

r(1
c

U®(u—v) v=

v
p m(;@(u—v))v.
o2
Using the identity
(@@P)c=(x-c)p (45)

which holds for every set of vectors @, 8, ¢, we see that

2 (%) 4 (eraa 2)u -
ot \c gra c v=

r(l _IM) [(vc.gu)v—u] + %v+@(u—u) -

c? c?
1 v-u 1 1
vt-v—-—v =
v-u (cz) r v-u
r(l— c? ) r(l— c? )
1 v-u v-u
( U‘”)[( c? )+(1_ c? )_I]U:O'
r(l - ——
o2

That is,

0 (v v

2(¥) + (grad —) - 0. 46
i () (e 5 o)
Into equation (45) we replace g (IL—’) from equation (38)(b),
and grad ¥ from equation (38)(d), and obtain

ow

%ﬁ + sind %

y+(V6Q@B+sinsVw®y)v =0.

Using the identity (45) we get

w

%,B + sind £

y+@-Vo)B+sind(v-Vw)y =0

and due to the linear independence of the vectors 8 and y we
see that

09
E+U-V6—O an
ow
& v Vw=0. 4
8t+v w=0 (48)

Combining equations (47) and (43) we obtain

)
—+4=0
8t+1
R
YT e

Through equation (41) we have that
_uwB
(1-7)
and replacing into equation (43) we get
_uwB
(-7

Performing the corresponding combinations, we arrive at
equation

A =

V5 = Y KB+ Ly. (49)
C

Vo= ——Y 2 MB+Ny. (50)
sin 6r(1 - —2) ¢
c
We shall now prove that K = %, L=0,M=0,N= ﬁ,
hence equations (49) and (50) obtain their final form
u-f v 1
rfl - —
2
u-y v 1
Vo = vzt o 57" (52)
sin6r(1 ——2)C rsm
c

We will prove that K = %, L = 0. In a similar manner we
can also calculate the factors M, N. From equation (34)(a) we
successively obtain

v
cosd = —
¢

— Sin6Ve = v(ﬁ).
c
We calculate V (UT) from equations (19), hence we have

1 x — Ux
—sinéVé = —e; — T Y
r

v-u
1__)0
r( c?
1
wheree; =| 0 |.

0
We take the inner product of equation (53) with vector 8
and obtain

(53)

1
—singB-Vo = —e; - B.
r
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From equation (49) we have - V6 = K, hence we have
) 1
—sindK = —e; - .
r
From equation (35) we obtain
e - =—siné.

Therefore,
. 1 .
—sindK = — (—sind).
r

Finally, we obtain

1
K=-.
r

We take the inner product of equation (53) with vector y
and obtain

1
—sindy - Vo = —e; - y.
r

From equation (49) it holds that y - Vé = L, hence
) 1
—sindL = —e; - y.
r

From equation (36) we see that e; - y = 0, therefore
—sindL = 0, and finally L = 0.

The equations of this paragraph promote the theory of
selfvariations considerably, and their fundamental character
will become obvious as our study continues. One first fun-
damental conclusion emerges from equations (47) and (48).
The functions 6 = 6 (x,y,z,1) and w = w (¥, y, z, t) remain in-
variable on the trajectory of the generalized photon. Through
equations (33), (35) and (36) we conclude that the vector ba-
sis {Z, 8,7} accompanies without change, that is remaining
constant, the motion of the generalized photon. We can, of
course, straightforwardly prove that

J (v v
51 (5)+{emaa Z)o =0

0,

6—? +(grad B)v =0
0
(’)_}t/ +(grad y)v =0

by combining equations (38), (39) and (40) with equations

(51) and (52).

(54)

2.4 The generalized photon as a geometric object.
Representation of the trajectory of a material point
particle

In the present paragraph we shall look for points A; in the
neighborhood of point A (x, y, z, ) of figure 4, for which the
velocity of the generalized photon is the same with the ve-
locity at point A (x, y, z, ) at the same moment 7. We use the
notation

—>
AA; = dR (GR)

and we search for points A;, i.e. vector dR, such that

v(R+dR,t) =v(R,1). (56)

According to equations (33), equation (56) is equivalent
to the relations

S (R+dR,1) = 6 (R, 1) (57)

and

w(R+dR, 1) =w(R,1). (58)

After expanding the functions ¢ (R, f) and w (R, f) in Tay-
lor series up to the first order terms, we obtain

0 (R+dR,t) =6 (R, 1) +dR - V¢
w(R+dR, 1) =w(R,)) +dR - Vw.

Through equations (57) and (58) we have that

dR-V5=0 (59)

dR-Vw = 0. (60)

Combining equations (51) and (52) we obtain

t=Vo X sinoVw =
u-p v u-y
= F y+—a
v-u v-u
2(1 = ¢ 2(1 = d
r(l c2 ) r(l c? )
B u-f u-y v
2(p MYy v
" 2 2

taking into account that the set of the vectors {%, B,v} form a
right-handed orthonormal vector basis. We now have

v 1
,Bx;+ﬁﬂ><y=

1v

ﬁ_

r2c

e (e b U
o2
t= A _lu) [g (%) (E 8- (G "’)7]
o2
and from equation (41) we get
‘= ! (g—%)¢& 61)

2 ( 1 v- u)
c

According to equations (59) and (60) the vector dR is par-
allel to the vector ¢ # 0, hence we finally arrive at relation

dR”(E_‘_‘)
c c

Thus, we conclude that points A and A;, at which the gen-
eralized photon moves with the same velocity v, are arranged
parallel to the vector ¥ — . This conclusion is the result of
a more general theorem, which we present in the paragraph

(62)
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P

Fig. 5: A material point particle moves from point E to point P on
the curved trajectory C), in the time interval from w = ¢ — £ to 7. The
generalized photons emitted by the material particle with the same
velocity v, in the time interval At = t —w = %, are on curve C at

Pt
moment 7.

8. For the case of a material point particle the theorem gives
relation (62).

In figure 4 and for the time interval from ¢ — g to t, i.e. for
t—*% < w < t, the generalized photons emitted by the material
point particle reside within a sphere with center

£fole- Dl D)l -0

and radius r = ||r||. During the same time interval the material
particle moved from point E to point P (x,,(t), yp(1), 2p(1), t).

We now consider a point E; in the neighborhood of point
E and on the trajectory C, of the material particle as it moves
from point E to point P, from which point E; was emitted the
generalized photon which at moment ¢ is located at point A;,
as depicted in figure 5.

Point E; has coordinates

r/ r/ r/ r/
E; Xp l‘—? »Yp l‘—? »Zp l‘—? ,l—? ,

where v = ¢r = <r'.
r r

The points E, P, A appear in figure 4 as well as in figure 5,
while the points E; and A; are shown in figure 5.

For the vector EL = dr we have, according to figure 5

dr:—(r—r')(g—z). (63)
c c

For the time interval dw, during which the material parti-
cle moved from point E to point E;, it is

dw:(t—r—’)—(t—r)= f—r—’,
c c c c
therefore from equation (63) we obtain

ZZ,-:dr:—cdw(E—E). (64)
c c

In figure 5 we consider curve C which includes all the
generalized photons emitted by the material particle during
the time interval from w = 7 — £ to ¢ towards a particular
direction % that is, with the same velocity v.

We now consider the tangent vector ¢ [4] of the curve C at
point A

u v
dr c ¢ u-v
= — = = (65)
lldrll  jju _ Y| -l
c ¢

as follows from equation (64). For the three-dimensional arc
length dS of curve C at point A we obtain from equation (64)
dS = ||dr|| = dwllu — v||. (66)

Now, we calculate the curvature k£ and the torsion 7 of
curve C at point A. First, we calculate the curvature vector k

dt dt 1 d -
=22 = (222 e
ds dwlu-vl |lu-vldw\lu-uv|
Taking into account that Z—Z =0, j—:} =aand |u-v| =

V2 +u? -2 (v - u), we calculate the vector

n_i_(u—v)x[ax(u—v)]
Skl e -vlll@-v)xell

(68)

Combining equations (65) and (68), we calculate vector
b = t X n appearing in the Frenet formulas:

uw-vyxXa
b= ——F—. 69
lw—v)xal 69)
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We remind that the Frenet equations . (u % da )
dw
dt T = Il (79)
as - " " NP P — - )?
dn Comparing equations (65), (68), (69), (71) and (72) for
5 —kt+1h (70) curve C, with equations (73), (76), (77), (78) and (79) for
db curve C,, we arrive at the following theorem:
— =-Tn
ds

uniquely determine the curve C. Having calculated vectors
t,n,b we now determine the curvature k and the torsion T
of curve C from equations (70). After the necessary calcula-
tions, we obtain

i Nl — vl el — [er- @ - )

(71)
llu — vl?
@ [(u —v) X d_a'
dw ’
= lu—vl*. (72

el llu = vI* = [(u - v) - a]?

We repeat the same procedure deriving vectors ¢, k, and
b, at point E of the curve C, of the material particle. For

|lze]| # O it is
u

t,=— (73)
P ]
while the three-dimensional arc length is
ds , = |lull dw. (74)
The curvature vector k), is given by
dt, 1 d ( u ) 1% u-a)
= —— = - —u
Pods,  lulidw\ll)
and finally,
u X (@ xXu)
= —— (75)
‘ e
From equation (75) we get for vector n,
0 = k, =u><(a/><u) (76)
P ]l Tl x u
From equations (73) and (76) we get vector
b,=t,xn,
uxa
b, = . a7
P e x ]

From the Frenet formulas (70) for curve C,, we get for
the curvature k, and the torsion 7,:

_ Vel el - - @)?

3
leel|

) (78)

Theorem 1. Trajectory representation theorem.
For every direction % the following hold:

1. The map f : u — u — v maps the trajectory C, of
the material particle to the curve C of the generalized
photons moving with velocity v

I (tp,np,bp,kp,‘rp) - (t,n bk 7).

2. The map f~' : u —v — u maps the curve C of the
generalized photons moving with velocity v to the curve
C, of the material particle:

b k) o (,my, by, k7).

According to the theorem (1), if we know the position
P (x,y, z,t) of the material particle at moment ¢ and the trajec-
tory C, at some past time, we can determine the distribution
of the generalized photons the material particle has emitted in
this specific past time. We know exactly how each kinematic
characteristic of the material particle maps to its surrounding
spacetime.

2.5 The fundamental mathematical theorem

The interaction of the material point particle with the sur-
rounding spacetime depends on the following four parame-
ters:

e The moment w = ¢ — % of emission of the general-
ized photon by the material particle. All the physical
quantities, such as the rest mass, the electric charge,
the velocity # = u (w) and the acceleration @ = a (w)
of the material particle depend upon the moment w of
the emission of the generalized photon.

e The distance r = ||r|| of the arbitrary point A (x, y, z, 1),
as depicted in figure 4, from the point of emission

E ()Cp (LU) »Yp (w) »Zp (w) P w)

of the generalized photon.
e The direction in space, i.e. the functions 6 = 6 (x, y, z, 1)
and w = w(x,y,z,1).

In this paragraph we will prove the fundamental equations
concerning these four parameters.

Initially we prove that the vectors Vw, V§ and Vw are
linearly independent. Let us suppose that

A Vw+ ,V6 + 3Vw =0,41, 45,4, €R.
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Taking into account equations (12), (51) and (52), we ob-
tain

1 v u-p v 1
“h e e T o A
C(l_ c? ) r(l— c? )
1 u-y v 1 _
+ s . v-u ;+rsin67 B
51n6r(1——2)
c

From the linear independence of the vectors g, B,y we
see that

-1 .
—1+/12M+/13 ,7 =
c r rsino
L

-
A3 B
rsing

Finally, we have A; = A, = A3 = 0. Therefore the vectors
Vw, V§, Vw are linearly independent.

‘We now focus our attention on the variation of the quanti-
ties w, 6, w and r on the trajectory of the material particle and
on the trajectory of the generalized photon. The following
two theorems hold:

Theorem 2.
0
a—lf+u~Vw=1 (80a)
)
—+u-Vo=0 80b
Fri (80b)
0
a—(;)+u~Vw=O (80c)
0
—:+uVr=O (80d)
Theorem 3.
(Z—If+v Vw=0 (81a)
06
— +v-V6=0 81b
o Y (81b)
0
a—‘;’w Vo =0 8lc)
or v
—+—-Vr= 81d
cot ’ (81d)
From equations (11) and (12) we have
{ v-u
ow 1 v-u )
E+H-Vw=1 v u ; U :1 TRET) =1
e ¢ (1_ c? ) 2
ow 1 4§
E+U'VUJ— TR T =0.
-
c c?

From equations (41) and (51) we have

3 +uVé = r(lu_.fc;zu)+u r(l(li'%)c_l;+%ﬁ

___up Ples) u.p
(-5 )

) (lliii—f) [+ 752 =0

= R

___uB (u-B) w v-pB_
-5 0T

since |[v]> = 2 and v - B = 0.

Similarly, starting from equations (42) and (52) we arrive
at equations (80)(c) and (81)(c).

From equations (9) and (10) we get

or u v-u u 1 v
— + -Vr=- + —1=0
cot ¢ Y PR AN B AL
c? c?
or vV v-u N 1 v
R —Vr =- — — | =
ot ¢ 2( v u) cl{_ VU
21 - — 1
2 o2
_ v-u 1 _
- v-u vou "
21 %
‘ (1 c2) c?

With the aid of the above theorems we can prove the fol-
lowing fundamental theorem:

Theorem 4. The Fundamental Mathematical Theorem. For
every function f = f(w, 6, w, r) the following hold:

A)
0 0
a—{ +u-Vf= % (82)
0 (,v v vof
5y (77) + (araa (£ ) = 250 (83)
d 0
=B + (d (B)u = BT (&)
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since %—Jf +u-Vf = %, according to equation (82) and fur-

9 () + (erad (ty)u =y o (85) thermore
ot ow P
) a,(") [eraa Ju -
of _of . Ow .
Ey +v Vf—car (86) atﬂ+sm66t7+(V6®,B+sméVw@y)u
according to equations (38)(b),(d). Hence we obtain
%(f2)+ (grad(fg))v vg—f 87)
C r

0 (v

0 af at ( ) (grad )

% (fB) + (grad (Ip)) v = 'Ba_ (88) 96 dw
t r —/3+sin5§y+(u-Vé)ﬁ+sin5(u-vw)y=

J of
E(fy)+(grad(f‘y))v=75. (89) (?;+u V6)ﬂ+sm6(aa— +u- Vw)y 0

We prove equations (82), (83) and (86). The rest of the
equations of the fundamental mathematical theorem are
proven similarly. For the proof of equation (82) we have

according to equations (80)(b),(c).
The proof of equation (86) goes as follows:

%+ Vf—ﬂa_w+ﬁ6_6+ﬁa_w+%a_r a—f-f-U-Vf:a—fa—w-f—a—f@.ya_fa_w a_fg
ot T owdt 950t dw o Or ot ot Owdt 950t Ow dt I it
_f 6_fV5 a_fv +a_fv ( fV6+6—fV +a—er)
ow 6 dw or ow ow or

af (36
Of (9w of (% ——f( )+—(—+ V6)
" ow (6 Vw)+aa o T Vo P 35\
af (or
| = Vo N It
+0 (6 T )+0r(at+ VV) 60) 61 or \ ot

.. . . Taking in nsideration ions (81
and taking into account equations (80) we obtain aking into consideration equations (81) we get

of (9f
af af +v-Vf=
— 4+ .Vf= —,
Il o “or
L . which is equation (86).
which is equation (82). . ) ) An immediate consequence of the theorem (4) is the fol-
In order to prove equation (83) we use the identity lowing lemma:
_ For every vector function F = F (w, 6, w, r) the following
grad (fa) = Vf® @ + f grad @ (90) relations hold:
which holds for every vector @ and scalar function f. We can oF oF
now prove equation (83) as: or +(grad F) -u = ow oD
0 oF oF
E (fv) (grad( ))uz E+(gradF)v:cE. (92)
ofv v The proof is done by writing the vector function F in the
e fat ( ) (f grad Tvie s ) form
Using identity (45) (@ ® b) ¢ = (@ - ¢) b we obtain F=F (w6 w,r v +Fy(w,6,w,r)B+ FsW,6,w, 1y
c
0 f v v v d Ivine the th
-+ f= ( ) (fgrad )u+(u-Vf)—: and applying the theorem.
ot ot ¢ The fundamental mathematical theorem determines the
of v v 0 (v q? variation of any scalar, vectorial and tensorial physical quan-
or tu-Vf|-+f ot ( ) (gra ) tity, both as defined on the material particle, as well as on the
af v surrounding spacetime. Of special interest are the applica-
Jw e tions of this theorem for the variations of the rest mass, the
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electric charge, the energy, the linear momentum, the angular
momentum, and any other conserved physical quantity, for
the system “material particle-generalized photon”. The fun-
damental theorem allows us to correlate the variations that
take place on the material particle with the corresponding
variations that take place in the surrounding spacetime.

2.6 The properties of the vector basis %, 8,y

The properties of the right-handed orthonormal vector basis
{2,B,y} are given by equations (38), (39) and (40). In these
equations we already know their second parts from the study
conducted in the preceding paragraphs. Thus, we can express
them in a simpler form.

The first of equations (38), (39) and (40) can be written
as:

(2)-2

R —cr(lu_'%) . ::;% (94)
ey Y

Voy Cr(l_%). (95)

Equation (93) results directly from equation (22). But we
can also prove it in a different way, starting from the first of
equations (38)

V-(g)zﬁ-V6+sin5y-Va).
C
With the help of equations (51) and (52) we obtain
1 1 2
V- (E) = — 4+ - = —
& r r r

taking into account that the set of the vectors {%, B,y} form a
right-handed, orthonormal vector basis.
From the first of equations (39) we obtain

V-g= —EV6+c0s6y'Vw.
c

Through equations (51) and (52) we get
u-pg cos o

cr(l B U‘M) rsing’
2

V-B=-

From the first of equations (40) we have that
Viy=- sin 62 Ve — cos 0B - V.
¢

Using equation (52) we see that
u-y
[ZER7AN
cr(l -z )
Accordingly we can write in a simpler form the rest of the

equations (38), (39) and (40), whenever it is demanded by the
mathematical calculations performed.

Vey=-

2.7 List of auxiliary equations

We prove the following auxiliary equations:

6(':%'”) = v-uy _UC_2ZZ (96)
1—7 C3l”(l——C2 )
. 2— .
O PR AL S O b CAL) RS
2fp VM r erf1- 2% ¢
¢ c? c2
8(0-0): v-b‘ V-uwv-o)-Ew-a) 98)
ot 1 v-u v-u
(-5
v-b c u-a-v-a
Vv -a)=- —v+ -+ ————v (99)
c2(1——v u) r cr(l——v u)
2 c?
where @ = a (w) = % and b = b (w) = % and u? = ||ul]*.
Indeed, it holds that
o) v
o o ot
owew_ v ou w
o ot ow ot
Through equations (25) and (11) we obtain
6(vou)_u8_v+ v-a
o o v
2
c
With the help of equation (17) we get
(- u) c [(v~u)2 ) v-a
= —u"|+
ot v-u C2 l_v-u
r(l— c? ) c?

and performing the necessary algebraic transformations we
obtain equation (96).
In order to prove equation (97) we start from the identity

V- u)= (gradTv)u + (gradTu) v

where grad”v and grad”u are the transpose matrices of grad v
and grad u.
From equations (20) and (28) we obtain

T
V(v~u): EI+W2®(ZJ—0) u—
r r(l— . )c
C
1 v r
T o (Z®0’) v
o(1-7F)
C
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T z
1
V- -u)= EI+ (u—v)®z u— v
v-u c
(1-7)
c
L (o)
1 v-u c Axy.z.1)
2 7R
Using identity (45) we get
y
c u-w-v) wv v-a v
V(v-u)—;u+ v o RIS
r(l— c? ) C(l_ c2 )
5 I
which is equation (97). We can similarly prove equations (98) 00,001 E P(ut,0,0,9) X

and (99). In order to prove the last equation we use equation
(32), in exactly the same manner we used equation (28). In
the same way, we can prove corresponding equations for all
of the inner products such as v - b, u - @ etc., that appear in the
equations of the theory of selfvariations.

3 The study of the selfvariations for a material point
particle moving with constant speed

3.1 Introduction

In this paragraph we present the study of the selfvariations for
a material point particle moving with constant speed. This
study was regarded as necessary for two reasons. The first
is that constant-speed motion is the simplest possible and,
therefore, we are studying the consequences of the selfvari-
ations in their simplest version. The second reason is that ar-
bitrary motion can be considered as a multitude of successive
constant-speed motions.

By studying the constant-speed motion of a material par-
ticle we can derive the Lorentz-Einstein transformations for
the physical quantities w, 6, w, r that appear in the equations
of the theory of selfvariations. Of special interest is the trans-
formation of the volume of the generalized photon, which dif-
fers from the volume transformation of material particles as
we know it within the framework of Special Relativity. Af-
ter having studied both the arbitrary motion, as well as the
constant-speed motion of the material particle, we have the
knowledge necessary for advancing our study in the forth-
coming paragraphs.

3.2 The case of a material point particle moving with
constant speed

We consider a material point particle with rest mass mq and
u
electric charge g, which moves with velocity # = | 0 | in
0
the inertial frame of reference S (0, x, y, z, 1), as depicted in
figure 6.
At moment ¢t when the material particle is at point P(ut, O,
0, 1), the rest mass my and the electric charge g of the mate-
rial particle act at point A (x,y, z,7) through the generalized

Fig. 6: Material point particle moving with constant speed along the
x axis of the inertial reference frame S (0, x,y, z, ). As the material
particle moves from point E to point P, during the time interval At =
¢, a generalized photon moves from point £ to point A.

photon that was emitted from point £ and arrived at point A
moving with velocity c. Therefore, the coordinates of point E
are ; .
E(ut --r0,0,7- —) (100)
c c
= o
where r = ||r|| = ”EAH Due to the selfvariations, the rest

mass mg and the electric charge g of the material particle act
at point A (x, y, z, t) with the value they had at time

-
w=t--
C

(101)

at point £ (ut - ‘—C‘r, 0,0,1— g) and not with the value they
have at point P (ut, 0,0, ¢) at time ¢. For the vector r we have

X—ut+*%r
e C
r=FEA= y (102)
Z

The magnitude of ||r|| = r can be derived from equations
(102) as

| =7 = y2§ (x — ut) +7\/72 (x—ut) +y2+22  (103)

1

where y = =.
1=

Combining (equations (102) and (103) we obtain

¥ (x —ut) + %7\/)/2 (x—ut)® + y? + 22
y
z

r =

(104)

The velocity v of the selfvariations has magnitude |jv]| = c,
and is parallel to the vector r, thus we have

y? (x—ut) +%y \/yz (x—ut)® +y*+z2
y
Z

. (105)
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The position vector R of point A (x, y, z, t) with respect to
point P (ut, 0, 0, t), where the material particle is located, is Y
— X —ut AKXy 2 )
R=PA= y (106) ¥z
z
From equation (106) we obtain r/R
z
IRI =R = JCe—un? + 2 + 2. (107)
From figure 6 we see that
R 0(0.00f) . X
E(0,0,0,f- L
r=EA+R P00 ©
r=-u+R Fig. 7: A material point particle remains at rest at the origin
0’(0,0,0,0,7) of the inertial reference frame S (0',x",y’, 7', ¢'). A
Finally, we obtain generalized photon moves from point E (O, 0,0,0,¢ — ’(—') and arrives
at point A (x',y’, 7, '), during the time interval A¢' = '(—/
v=u+-R (108)
r
and arrived at point A (x',y’,7’,¢’) moving with velocity c.
R=r (2 _ E) (109) Therefore, the coordinates of point E are
c ¢

Combining equations (100) and (101) we have for the co-
ordinates of point E

E (uw,0,0,w). (110)

The relations between the scalar, vectorial and tensorial

quantities of this paragraph can be derived by the correspond-

ing relations proven in the second paragraph, considering that

the acceleration of the material body vanishes, that is @ =
a(w) = 0, and that the velocity of the material particle is

u (w) u
u=uw) =0 =10
0 0

3.3 The case of a material point particle at rest

We consider an inertial reference frame S’ (0',x',y’,7,t)
u

0 | with respect to the inertial
0

reference frame S (0, x, y, z, t) of the previous paragraph. We
also suppose that for r = ¢’ = 0 the origins of the axes of coor-
dinates 0 and 0’ of these two frames coincide. In the way we
have chosen these two inertial frames, the material particle
is at rest in frame S’ or, equivalently, frame S’ accompanies
the material particle during its motion. Figure 7 is the one
corresponding to figure 6 for reference frame S’.

At moment ¢, when the material particle is located at
point P (0,0, 0, '), the mass m,, and the electric charge g of the
material particle act at point A (x',y’,7’,t") through the gen-
eralized photon that was emitted from point £ (0, 0,0,¢ — ’;)

moving with velocity u =

EOLQOJH-Q) (111)
c

— ..
where ¥ = ||F|]| = HEAH Due to the selfvariations, the rest

mass m, and the electric charge g of the material particle act
at point A (x’, y’, 7/, t') with the value they had at time

J

w=r-_ (112)
c
and not with the value they have at P (0,0, 0,1").
For the vector r’ it holds that
xl
—_
r=EA=| vy (113)
ZI
while its magnitude ||7’|| = r’ is given by
”r’” =7 = \x?+y?+72% (114)

The velocity of the selfvariations v” has magnitude |[v'|| =
¢, and is parallel to the vector 7/, therefore it is

c, c|”
vV==r==|vy (115)
T Z’

The position vector R’ of point A (x',y’, 7/, t’) with respect
to P (0,0,0, ), where the material particle is located, is given
by

/

x
ﬁ
R'=PA=| ¢y |=7.

“

Z

(116)
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From equation (116) we get ,
vl
& ==
HR’H =R = ”r’” =7 = \Jx?+y?+72 117) o8
Combining equations (111) and (112) we obtain for the sind’ cosw’ = (122)

coordinates of point £

E(0,0,0,u'). (118)

The relations between the scalar, vectorial and tensorial
quantities of this paragraph can be derived from the corre-
sponding relations we proved in the second paragraph, con-
sidering that the acceleration and the velocity of the material
particle vanish, thatise = @ (w) =0 and u = u (w) = 0.

3.4 Lorentz-Einstein transformations of the quantities
w,0,w,r

In this paragraph we shall study the way in which the fun-
damental physical quantities appearing in the equations of
the theory of selfvariations transform under the action of the
Lorentz-Einstein transformations [5-11].

In the way we have chosen the inertial reference frames
S and §’, the transformations of the coordinates in the four-
dimensional spacetime are given by the set of equations

x=y +ut)

y=vy
z=7
u /
t:y(t’—i——zx)
C
X' =vy(x—ut) (119)
y=y
7=z

, u
= Y (t - C—ZX)
1

The coordinates of point E are given by relation (110),
and are E (uw,0,0,w) for inertial frame S, and by relation
(118), and are E (0,0, 0,w’) for inertial frame S’. Applying
transformations (119) we obtain

where y =

w=yw. (120)

Indeed, based on the fourth equation of the first column of
transformations (119) for the coordinates of point E, we get

w=yW +u-0)
w=yw.
We now consider the trigonometric form of the velocity

v, as defined in paragraph 2.2. From equations (34) we get
for reference frames S and S’ respectively

coso = Y
c
. Uy
sind cosw = - (121)

Z

. . v
sindsinw =
Cc
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sind’ sinw’ =

oS s | &

From the Lorentz-Einstein transformations for the veloc-
ity we have

V. t+u , Ux—U
Ux = 7 Uy = uv
MUX 1 - X
1 2 c?
Yy , Yy
v, = ———8 [ —
y ’ Yy Uvy
x 1— (123)
7(1 t ) 7( c? )
v, ’ U;
UZ = ————— v, =

uv, ‘ uv,\’
7(1+ c2) 7(1— =

From transformation (123) and from equations (121) and
(122) the following transformations are derived for the func-
tions 6 = 6 (x,y,z,1t) and w = w(x,y, 2, 1):

u u

cosd — — cosd + —
cosd = ¢ cosd= —— €

1-%coss 1+ L cosd

c c

Y sin¢é . sin ¢’ (124)
sin¢’ = m s1n6=+

y(l——cosé) y(l+—cos§’)

c c

W =w w=uw.

We shall prove the first equation. The rest are proven sim-
ilarly.

From the first equation of the second column of transfor-
mations (123) we obtain

o = Uy — U
x = UV,
1- 2

c

Uy u

, -z
Vi ¢
¢ 1_22
cc

Through equations (122) and (121) we get

u
cosd — —
[
coso’ = 7 .
1——coso
c

From equation (117) and transformations (119) we see
that

r = \/y2 (x—ut)* +y2 + 22 (125)
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Combining equations (103) and (125) we get
r= 722 (x —ut) +yr

and since

v(x—ut)=x'

from transformations (119) we obtain

r= yzx’ +yr. (126)
c
From equation (115) we see that
’ C J
U, = —,X
r
L
X =r—=
Substituting into equation (126) we get
uv; / 7
r=y—r+yr
c
o, uv',
r=yr'|{1+ 2 |
From equation (122) we obtain
J u ’
r=1yr (1+—cos§)
c
and with the help of transformations (124) we get
cos o — “
r=yr'|1+— m ¢
€1-—-cosd
c
2
’ C
r=yr
1- 4 cos o
c
r/
r =
u
vy (1 — —cos 6)
c
r’:’yr(l—zcosé):yr(l—g). (127)
c c
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From transformations (124) we obtain

inod
sind’ = +
y(l——cosd)
c
s cosé(l—zcosd)—sinézsiné
&= = C C
cos 76 ” 5
y(l——cosé)
c
, cosé—z
, _ C
cos & - . 2
y(l——cosé)
c
u u
6__ ’ (5__
cos c ds cos C

u ds - 2
I—Ecosé y(l_’fcosé)
ds’ 1

y(l - E0056)
c

do

1

dé' = Ta’é. (128)
y(l - - cos6)
c

Repeating the same procedure we also arrive at relation

0 u 0
=y|l - —=cosd|— 12
a5’ 7( ¢ )05 (129)
among the operators % and a%-
From equation (109) we get
u? v-u
R=r 1+ C—2 — 27
u? u
R:r\/1+—2—2—cos6. (130)
c c

From equation (130) we are able, whenever it is neces-
sary, to derive the Lorentz-Einstein transformation of the
quantity R through the use of transformations (124) and (127).

We consider now the angle 6 between the vectors R and u,
as depicted in figure 6. From the law of sines for the triangle
EAP we have that

sin _ sin¢

r R

sind = r sin 6.
R

Using equation (130) we obtain

sin &

2
\/1+u—2—2zcos6
c c

sin® = (131)
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da /A
A dA
r/r
d
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K
- 8 u
g(é%%?{t)) x 0(0,0,00) E E P(ut0,0,1) X

Fig. 8: The infinitesimal volume of the generalized photon in the
vicinity of point A of the inertial reference frame S (0', x',y’, 7', t').
The material point particle is at position P (0,0, 0,#). The infinites-
imal surface of area dA’ is vertical to the vectors ¥ = PA and
r = PlA. The points P,A and A, are collinear.

From the familiar identity sin” 9+ cos? # = 1 we have that

u
cosd — —
c

- .
\/1+u—2—2zcosd
c c

From transformations (124) we can, after applying equa-
tions (131) and (132), derive the Lorentz-Einstein transfor-
mations for the quantities sin® and cos#. Furthermore, in
the inertial reference frame S’ it is @ = ¢’, as can be seen
from figure 7.

cost = (132)

3.5 The Lorentz-Einstein transformation of the volume
of the generalized photon

The generalized photon moves with velocity v of magnitude
[[vll = c in any inertial reference frame. This has as a conse-
quence that the following transformation does not hold:

dV’' =ydV.

This transformation holds for the volume dV of a material
particle that is at rest in the inertial reference frame S’. We
shall prove that the volume of the generalized photon trans-
forms according to relation

dv dv
dv’ = =

y(l - Ecosf)') y(l - %)
c c

for our chosen inertial reference frames S and S’.
In the region of point A (x’,y’,7’,¢’) of figure 7 we con-
sider the elementary area

(133)

dA’” = ?sin§’ds’do’

Fig. 9: Figure 8 as modulated in the inertial reference frame
S (0, x,y,z,1), in which the material particle moves with constant
speed. The points P,A and A, remain collinear, as results from the
Lorentz-Einstein transformations.

of a sphere with center O’ and radius . Furthermore, we
consider a point A; close to point A on line OA, as depicted
in figure 8.

The elementary volume of the generalized photon in the
inertial reference frame S’ is

dv’' =dA’

v 2 ’ 35 ’
AA1| =r'“sind'dd’dw

—
AA, } (134)
assuming that A; — A.

In figure 9 we present the volume dV occupied by the
generalized photon in the inertial frame of reference S .

The elementary area dA in S is

dA = r? sin §dédw

while the elementary volume dV is

— 5 . —
dV = dA ”HA1| = /2 sin 8dddw HHAIH (135)
since A; — A.

From the Lorentz-Einstein transformations it directly fol-
lows that points P,A,A;, which are collinear in reference
frame S’ are also collinear in reference frame S. The con-
clusions of paragraph 2.4 about the representation of the tra-
jectory of the material particle in the surrounding spacetime,
also lead to figure 9. Here, the trajectory of the material par-
ticle is on the x axis. We now use the following notation, as
depicted in figure 9.

r= HE{H (136)

= [

according to the notation we have established. Similarly, in
figure 8 we use the notation

137)
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r = ’ oA ’ (138)
—
Y = O’AIH. (139)

From figure 9 we have that
B R T R
and with equations (136) and (137) we get

— —
r = |EE|| + r+ || AT

T P L BT
From the triangle E|KE of figure 9 we see that
=]
Cosd = y—=
J=:2
PR = [Ffeoss aw

Similarly, we have that

r

c

u dw

7 -

since in the time interval Az = “—duw the point particle
moved from point E; to point E. Combining equations (141)

and (142) we obtain

Hﬁ(” — u dw cos 6. (143)

Combining equations (140) and (143) we also get
b 4 u
(| :cdw(l— Ecos&) (144)

since r| — r = cdw.
Combining equations (135) and (144) we get

dV = P sin 6d6dwcdw(1 — % cos 5). (145)
C
From figure 8 we have that

] - [o] -

and with equations (138) and (139) we get

—
O'A

—>
HAA|” =r—r =cdw'. (146)
Combining equations (135) and (146) we also get

dV' = r?sind’dé’dw’ cdw'. (147)

Combining equations (145) and (147) we get
% sin §'d6’ dw’ cdw’

r2 sin ddddwcdw (l _u cos 6)
c

dv’

av -

and with transformations (127), (124), (128) and (121) we get

’ 2

v =)
7,2(1_ZCOS(5) 1—;0055

dav’ 1

av

7(1 - Ecos.&)
c

dv

dV’' = — (148)
0% (1 — —cos 6)
c
u
This is equation (133). Given thatu = | O | we arrive at
0
relation vou uv "
— = ——=—cosd (149)
c cc ¢
since, according to equation (121), cos§ = .
Combining equations (148) and (149) we have
av av
av’ = u - v-u\’
y(l - —Cosd) y(l - —2)
c c
This is the final form of equation (133).
In the form v
(-
c

transformation (133) also holds in the case of a material par-
ticle in arbitrary motion. In figure 5 the length of the three-
dimensional arc EE; equals ”ﬁ” at first approximation, that
is, for an infinitesimal displacement of the material particle
from point E to point E;. Thus, we have exactly the situa-
tion we describe in figure 9. On the other hand, for a finite,

but not infinitesimal, displacement EE; of the material parti-
cle, the curvature k, (w) and the torsion 7, (w) of curve C, of
figure 5 enter the transformation of the volume.

4 The study of selfvariations at macroscopic scales
4.1 Introduction

In the present paragraph we study the consequences of the
selfvariations at macroscopic scales. The main conclusion we
derive is the existence of energy, momentum, electric charge
and electric current in the surrounding spacetime of the mate-
rial particle as a direct consequence of the selfvariations. We
calculate the density of energy, momentum, electric charge
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and electric current in the surrounding spacetime of an arbi-
trarily moving material point particle.

We present the four-dimensional electromagnetic poten-
tial which is compatible with the selfvariations. An important
element that emerges is the splitting of the electromagnetic
potential into two individual potentials, where the first one
gives the electromagnetic field that accompanies the material
particle in its motion, while the second one gives the electro-
magnetic radiation.

We prove that the selfvariations are compatible with the
principles of conservation of electric charge, energy, and mo-
mentum. This is accomplished through either direct calcula-
tion, based on the continuity equation, and also through the
energy-momentum tensor of the generalized photon. These
different approaches help the reader comprehend the physical
reality that prevails in the surrounding spacetime of material
particles.

In the preceding paragraphs we studied the generalized
photon as a geometric object. In this paragraph we shall see
for the first time that the generalized photon is a carrier of
energy, momentum, and electric charge. The density of elec-
tric charge and electric current in the surrounding spacetime
of the material particle is correlated with the electromagnetic
field that accompanies the material particle in its motion. The
electromagnetic radiation does not contribute to the density
of electric charge and electric current.

We calculate the energy-momentum tensor for the elec-
tromagnetic field and for the generalized photon. The energy-
momentum tensor describes the energy content of spacetime,
but only in macroscopic scales. In microscopic scales, the
energy-momentum tensor, as defined by the theory of Special
Relativity, cannot describe the energy content of spacetime.

4.2 The density of electric charge and electric current in
the surrounding spacetime of an electrically charged
point particle

In figure 6 the electric charge ¢ acts at point A(x, y, z, f) with
the value it had at point E. Thus, we have g = g (w). Hence,
it follows that

6q 6q ow
at ow or
dq
\% —Vuw
7= ow

and with equations (11) and (12) we have that

Bq 66] 1

_ 151
Cz
6q 1 v
Vg = _— 152
1 c[)wl v-u . (152)
2

According to Special Relativity and the symbols we use

in figure 6, the intensity € of the electric field at point A is

_
4regr’3

(153)

where R i 1s given by equation (106), r’ by equation (117), and
vy = —,. From Gauss’s law [12—-18] we obtain for the
Vi-z

electric charge density p at point A:

p=&V-¢&
Yq
=gV - R
p=2 (47rsor’3 )
vy (R Y
=-=V. R-V 154
4r (r’3) 4nR’3 e (154
We can easily prove that
R
V. (—3) =0. (155)
rl

We can avoid the calculation, if we take into account that,
ignoring the selfvariations, for constant electric charge g,
classical Electromagnetism predicts that p = 0 at point A.
This is equivalent with equation (155).

Combining equations (154) and (155) we get

Y
47tr3

p= R -Vq.

Using equation (152) we get

After applying equation (109) we have that

_ 0q yr v (v u)
- c6w4ﬂr,3 (1_u)c c ¢
2
aq yr 1 v-u
p=-21 @— )
cow 4mr’3 1 v-u c?
2
_Oq yr
cOw 4rr3’

Using transformation (127) we get
0 1
p=——L . (156)

w v-u\’
¢ 4y2r? (1 -— )
c

We can derive the same equation in a different way. We
will develop the second method in the next paragraph for the
calculation of the density of energy D due to the selfvariations
of the rest mass of the material particle, where we will not
be able to use Gauss’s law. The reader can easily apply the
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method of the next paragraph to the electric charge, and still
come up with equation (156).

The generalized photon moves with velocity v, therefore
the current density j is given by equation

J=pv (157

where the charge density p is given by equation (156). Equa-
tion (157) can also be easily inferred from Ampere’s law

oe
VX B =pyj+ ——.
HoJ 201
The intensity of the magnetic field B at point A of figure
6 is given initially by the Biot-Savart law:

(158)

u
BZ—ZXS.
C

(159)
Combining equations (153) and (109) we get

vg (v u)
&= rl=--—
4regr® \c ¢

and from equation (127) we have

q (v u)
&= -——.
v-uy\e ¢

3
dreyy?r? (1 -— )
c

(160)

From equation (160) we get

u v
c? c

and from equation (159) we get

B= C% X &. (161)

In equation (161) the velocity v of the generalized photon
refers to point A of figure 6. This has as a consequence that all
physical quantities B, v, & appearing in equation (161) refer
to the same point in spacetime. On the contrary, in equation
(159) the velocity u of the material particle does not refer to
point A, where the electromagnetic field is manifested. Equa-
tion (161) also holds for the case where the material particle
is in arbitrary motion, as we shall see in a later paragraph.

4.3 The density of energy and momentum in the sur-
rounding spacetime of a material point particle

In the case of the rest mass we cannot apply Gauss’s law in
order to calculate the energy density D in the surrounding
spacetime of the material particle. Because of this we will
develop a completely different proving procedure. We ini-
tially calculate the energy density D’ in the inertial reference
frame S’ in which the material particle is at rest. At point A
of figure 7 the energy density D’ due to the selfvariations is

, T , r+dr
mol|lt — — | —mo|t —
r_ C2 ¢ ¢ .

4nr2dr’

D

(162)

100

From equation (112) and for a specific time ¢ we have
that

d /
dw' = -
c
and equation (162) becomes
de dmo
’ dr’ dw’
D = c? =- . 163
¢ 4ry’? C471r’2 (163)

We now consider the Lorentz-Einstein transformations
for the energy E and the momentum P of the generalized
photon:

E =y (E' +uP,)

_ ’ u ’
P, = V(Px + C—zE )
P, =P,

P, =P,

E' =vy(E-uP,)

P, = y(Px - %E)
C

P, =P,

P/ =P..

(164)

Defining as dV the infinitesimal volume occupied by the
generalized photon at point A of figure 6 we have

p=1
dv
Applying the transformations (164) and (150) we get
v (dE’ + udP?%)

D=——
y(l——z)dV’
C

dE' +uZ dE’
D= — ¢
(1 - #)dv'
C
1 uv’,
t 2 dE
1— v-u dV/
6‘2

D=

’

uv,

1+

2
_ C ’
D=—5D.

] - c_2
From transformations (123) for the velocity we get

(165)

W M Uxmu
2 2 _ Wx

and since ’2—2" = % cos 9, we get

uv, 1

1+ =

62 2 U'u'
4 (1_ c2 )

(166)
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Combining equations (165) and (166) we have

1
D = 2D’
2(1 B U~u)
Y 2
and with (163) we get
dmo
1 du’
D=-
¢ v-u\?4nr?
?(1-75)
C

Applying transformations (120) and (127) we obtain

D= —c% ! e 167)
v 4ny3r? (1 - vc_zu)
The generalized photon moves with velocity v, so we
have v
J= DC—2 (168)

for the momentum density J at point A of figure 6.

Factor 0'”0 , which appears in the equations of this para-
graph, corresponds to factor 1n the equations of the previ-
ous paragraph. In figure 6, the rest mass my of the point par-
ticle acts on point A (x, y, x, t) with the value it had at point E,
namely my = my (w). Therefore, we have

Omy _ Omo w
ot ow ot

Vmg = %Vw
ow

and with equations (11) and (12), we get

omy _ Omy 1
ot B awl_v'”
2
¢ (169)
Vi _6m0 1 v
0~ cc?wl v-u e

These equations are analogous to equations (151) and (152)
for the electric charge.

4.4 The selfvariations are in accordance with the
principle of conservation of the electric charge

In figure 6 and for the time interval from w = ¢ — § to t,
the generalized photons emitted by the material particle are
contained within a sphere with centre E and radius r. In order
for the conservation of the electric charge to hold, we have to
prove the validity of equation:

q(,_f)zq(t)+fpd\/=q(t)+qi (170)
C Vv
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where V is the volume of the sphere with centre E and radius

r, and
qi = deV
v

is the electric charge, due to the selfvariations, contained
within the sphere. From equation (145), we get for the in-
finitesimal volume dV

(171)

AV = b2(1 ~ ¥ cos 5) sin sdodwedw
C

0<é6<nm

0<w<2r

0<b<r

r
tr—--<w<t
c

(172)

Combining equations (156) and (129) we get

__%a ! . (173)

3
¢ w4ﬂy2r2 (1 _Y COS5)
c

Combining equations (171) and (173) we also get

fv pdV

c8w _u

3
4y2b? (l — cos 6)
c

b’ (1 _u cos 6) sin 6dddwcdw
c

27
0
f f f sin d(ia’a)cdw
u
1——c056
c
0
4="53 f f sin — % _dsdw.  (174)
& 1 - — 056)
We now denote
1=1-"%coss. (175)
c
Thus, we have
CdA = sin6ds (176)
u
1-2<a<1+2 (177)
c c
So we have
c
. v —dA 144
T S 1+ 1 ¢
szdng ”/1_2:_5[71} =
0 (1 - Zcosé) - ‘LAl
¢ u
oz
cef L b e Te L2
B T u
c o0 lma 1-g
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and equation (174) becomes

_f_, 6qd
__[q(w)]t—ﬁ
qi = q(t—-) q ()

q)+gqi =q(t— g)

which is equation (170).
We can also prove the conservation of the electric charge
through the equation of continuity

dp
—+V-j=0. 178
o J (178)
Indeed, taking into account equation (157) we have
6p ap
+V.-j=—+V-
at = ot TV ov)
6p ap
V-j=— Y V-
o +V.j 5 +v-Vo+pV- v
and with equation (22) we get
ap ap 2¢
—+V.j=—+v-Vo+ —
ot = ot veye p

Applying equation (86) of the fundamental mathematical
theorem, for f = p, we get

p (9p 2c
—+V.j=c—+— 179
ot “or TP (79
From equation (173) we have
0, 2
A (180)
or r
Combining equations (179) and (180) we finally get
dp
— +V.j=0.
ot I

4.5 The selfvariations are in accordance with the conser-
vation principles of energy and momentum

In figure 6, for the time interval from w = ¢ — f to 7, the gen-
eralized photons emitted by the material particle due to the
selfvariation of the rest mass are contained within the sphere
with centre E and radius r. In order for the conservation of
energy to hold, it is enough to prove the validity of the fol-
lowing equation:

czymo(t—E)=czymo(t)+fDdV=c2m0(t)+E,- (181)
¢ v

where V is the volume of the sphere with centre E and radius

r, and
EiszdV (182)
1%

102

is the energy due to the selfvariation of the rest mass, which is
contained within the sphere. Combining equations (167) and
(129) we get
0 1
p=-c2" : (183)

4
v 4y3r2 (1 ~ % os 6)
c

Combining equations (182) and (183), and following the
notation of equation (172), we get

= —c f fz" dmy 1
B I~ ﬁw

4
y3 b2 (1 ~ ¥ cos 6)
c

b2 (1 ~ % os 5) sin 6dodwedw
Cc

21
E; = f f f 6m0 sing ——dédwdw
47r)/

— — oS 6)
0 )
Ei=-i f f Omo S0 saw. (184)
s cos 6)
Using the notation of equations (175), (176), and (177)
we have
T : 6 l+f
f S;n 3d5=f %da:
0 (1 - = cosé) 1=¢
Cc

c[1]" e 1 1|
2u | 22 17%_ 2u (14_5)2 (l_z)z B

Now (184) becomes

!
0
Ei:_CZ,yf mOd
—r Ow

Ei =~y Imol._,
E; = —czymo 1)+ czymo (t - f)
c
c*ymyg (t - Z) = cymy () + E;
c

which is equation (181).
The conservation of energy can also be proven using the
continuity equation

oD

+V- 0.
20t J=

(185)
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Indeed, if we take into account equation (168) we obtain P, = f f 3"10 cosdsinéd dsdwedw
oD oD =t 32 ( _u )
—+V-j=—+V-(D£) b*(1-—cosd
c2ot c2ot c? o

6m0 cos 6 sin§
oD . 0D P = 477 p déda)dw
% V'_]:2—6t+C—2VD+—VU Y 1——OS6)
and with equation (22) we have
0 6sino
9D . v.j= M)+—VD Dv% P = - f\f Omo _€0SOSING_ sy (191
2ot 2ot c? 27

Using equation (86) of the fundamental mathematical the-
orem for f = D, we get

oD oD D 2c
—+V.j= 186
2ot V= “Cor r (186)
From equation (183) we have
oD 2D
—_— = (187)
or r
Combining equations (186) and (187) we get
oD
—+V.j=0
20t J

In order to prove the conservation of momentum, it suf-
fices to prove the corresponding of equation (181), that is, it
is enough to prove equation

ymo(t—E)u=ym0(t)u+j;JdV:ymo(t)u+P,- (188)

P,:deV
14

is the momentum due to the selfvariation of the rest mass,
contained within the sphere of centre E and radius . Com-
bining equations (189) and (168) we obtain

P; = szdV
v C

We first work on the x-axis:

where
(189)

(190)

Using equation (121) we get

5
P, = f <y
174 C

and with equations (183) and (172) we get
T 21
el
0 Jo

cos o

4my3b? ( 1

! amo
-t ow

4
u

- - cos6)
c

b? (l _u cos 6) sin 0dddwcdw
c
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cos 0

Using the notation appearing in equations (175), (176),
and (177) we have

cosdsind 3d6:fl+g c_zl—/ld/lz
) 1

j(;( - uz A3

I—ECOS(S
c

2 1+4 2 1+% 1+
cf1 1 1]1 c 1] "¢
if' L FPpal By L S 1
u? - A2 2 A2 v ’11—%
2 2
(a2 -pogp
__ 4 C —
21 2 212 2
N
c C
o, N
! c c _
21 2 212 2
5]
c c
2c 1 1 _
I/l22 Lt2
1——2 l__2
C C
2c 2u
= ) -
u u\ C _H.4l
( 1+C_2)_ —2’}/—

and equation (181) becomes

L T—

Py = uymq (r - f) — uymo (1) (192)
c
Similarly for the y-axis we get
21
f f f 6m0 sin o — Y doédwdw
— —cos 6)
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and with equation (121)
vy .
— =sind cosw
c
we get

2 t
a 5
Py = f f ’"0 csin’ MO sdwdw.  (193)
= 4 056)

The presence of factor cos w causes integral (193) to van-
ish, and we have

Py =0. (194)
We can similarly prove that
P, =0. (195)
Given that
u
u=|0
0
equations (192), (194) and (195) can be written as
r
P; = uym (t - —) —uymyg (1)
c
which is equation (188).
From equation (181) we get
- fde - czy(mo (r - g) —my (r)). (196)
v
From equation (188) we also have
=f1dv:uy(m0(r—f)—mo(r)). (197)
Vv C
Combining equations (196) and (197) we get
P = E~ (198)
c
and
deV == DdV. (199)

Equations (198) and (199) hold for every volume V, i.e.
for every radius r of the sphere with centre E and radius r of
figure 6. Therefore, they also hold for r = 0, that is, on the
material particle at time w. Hence, the total energy E; and the
total momentum P; emitted by the material particle at time w
in all directions, are connected through the relation

P—E—

v (200)

where # = u (w). This equation has fundamental consequen-
ces for the material particle, and we shall encounter them as
our study continues.

104

4.6 The electromagnetic field in the macrocosm. The
electromagnetic potential of the selfvariations

Using the symbols at point A (x, y, z, t) of figure 4, the scalar
potential V and the vector potential A of the selfvariations are
given by the following equations:

uz
q(l } C_z) qv-a)
V= + (201)

a2 2
47T80l‘(1 - g) P oo (1 - #)
c c

A= v:—z. (202)

The intensity & of the electric field, and the intensity B of
the magnetic field arising from these two potentials, are given

by
w2
1- =
q( cz) v ou
= TR
471'807‘2(1——2)
c (203)
q (ZQ) v u
c
" u\t |y v'”(c_c)
47T8()r(1—c—2) 2
2
u
1= =
B q( c2) u v
= ——— X —
47rsor2(1—¥)c ¢
c (204)
(z2)
-
s [ (< E) -
47180r(1——2) 1 =

where u = u (w) is the velocity, and @ = @ (w) is the accel-

eration of the material particle. Furthermore, the density of
electric charge at point A is

aq 1

pP=—7

3
v 4y2r? (1 - _vczu)

(205)

exactly as given by equation (156).

In equations (203) and (204) we recognize the electro-
magnetic field as we know it experimentally, but also as pre-
dicted by the Lienard-Wiechert potentials. However, the elec-
tromagnetic potentials of the selfvariations have a fundamen-
tal characteristic that is not shared by the Lienard-Wiechert
potentials. Namely, they split into two individual couples of
potentials

V,= .
47r80r(1 - —2) (206)
C
v
Au =V.—
C2
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and and the general equations (203) and (204) can be proven sim-

V. = q-a) ilarly. We shall make use of the equations of paragraph 2.7.
“ 4 5 v-u\? From the (207) potentials we obtain
7E0C: (1 - 7) (207)
Av=Vos = . qv-a qv-a
@~ 2
The (206) potentials express the electromagnetic field 4,7806% 1__ 47T80CS ]__)
o
~ i 2 v ou 6 —_V q-a) 0 qv-a)
Eu = v-u3(2_2) “ o, VU ot s(, v-ou\?
dregr? (1 - _2) 4renc (1——2) 4drregc (1——2)
2C (208)
u
q(l_c_z) v v ~ qw-@ v
B, = T X~ 4 5(1 v-u\? ot
T w17
that accompanies the material particle in its motion. The
(207) potentials express the electromagnetic radiation - a) dq
Eq =— . Vg 2_(9tv -
(Za) dmeo (1 - 257
q c (U u )
&y = ———|-a
dre czr(l v~u)2 AL (v-a)
0 -—— o2 q v-a
(209) - v uy [V(” )+ 2 ”]‘
(va) dneg (1 - —2)
- c
B, = q m— A (EXE)_EXG (215)
47rsor(1——2) l-—— c cc 2g (v - @) g(vH o(v-u)
¢ ¢ 3 v-u\l 2 )" dor |
. . dmegcd (1 - ZE)
The (207) potential of the electromagnetic radiation does reoe c2
not depend on the distance r, while it vanishes for v - @ = 0.
Furthermore, for each couple of the electromagnetic field we q@-a) o
. . 2 at
can easily prove that equation (161) holds Angocs (1 v 2”)
c

B, = Kz X &, (210)
C

By = — X &. @11)
C

We remind the reader that the electromagnetic field can be
calculated from the electromagnetic potentials via equations

0A

=-VV - — 212
” (212)
B=VxA (213)
v
f?x
where VV = ‘2—‘; ,and VX A = curl A.
v
0z
We shall now prove equation
0A,
=-VVy - — 214
Sy (214)
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Combining equations (151) and (152) we get

9q

Vg+ —v=0 216
a9+ 55,V (216)

Combining equations (98) and (99) we get
V(v-a)+3(';'“)=f ICAT 217)

c?ot r cr
Combining equations (96) and (99) we get
o(v-u) (v- u)
V- =—- —ul. 218

-+ 20t r ( c? u) (18)

We substitute equations (216), (217) and (218) into equa-

tion (215) and we obtain
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=7 : v-u\? ga_(vc.ra)v "
47T8()C3(1—C—2)
2q(v- @) clw-uw
vouyr| e vouT
47T€()CS(1—C—2) .
_ q- @) [(v-u)v_ }
v-u\y| 2
4ﬂsoc4(1—c—2)
YR el
47T8()C3(1—C—2)
+ q(v.a’)v_u 3 [(vc.zu)v—u}
47rsoc4r(1 - —2)
c
&, = 4 .
Q@ — - )
47r80c2r(1 - g)
c
)  @W-uw-ao (v-a)
- 2 4(1 v-u)v_ 2(1 v-u)”
A1 - 21 -
c? c?
& q
@ 2
47raoc2r(l - _zu)
c
v-a) v-u (v-u
a+c2(1_"'”) (1_ 2 ) 2 U7
2
c
47raoczr(1 - 0—2) c? (1 - c_z)

which is equation (209) for the electric field &,.
In order to prove equations (208) we also need equations

V(u2)+Mv:O

219
2ot (219)
or v
\v =— 220
T c26tv C (220)

We can prove equation (219) as follows

o(u? ou?
V(u2)+ cgat)":%

e
T Ow

ou? (9wv
c2ow Ot

ow
Vw+ ——-v|=0.
YT 2o U)
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This results immediately from the combination of equa-
tions (11) and (12). Equation (220) results from the combina-
tion of equations (9) and (14).

In order to prove equation (205), we denote

w2
1—
e 2 (v u)
4neor? (1 - v~u)3 © ¢
c? (221)
1 (;a) v o u
. )y,
47Tsor(1 - _u) 1 5 © ¢
2 c
and
2
- 2 u_ v
9= vuyic ¢
47r£0r(1 - —2)
c
y (222)
. 1 ¢ (uxv) Yoo
“u\? vule ¢/ ¢
47180r(1 - 6—2) 2

Using the notation of equations (221) and (222), and from
equations (208) and (209) we obtain

8:814+8(¥=qf
B=B,+B, =qg.

From Gauss’s law we have

(223)
(224)

p=&V-&
and using equation (223) we have
p=&V-(qf)

p=&qV - f+eof - Vq.
From classical electromagnetism we know that

V.f=0.

(225)

Hence, equation (225) becomes
p=e&f Vq.

Using equation (216) we obtain

9q
p= —80%1) f (226)

From equation (221) we see that
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From equation (222) it immediately can be seen that

c (1 - ”_2) vg=0
2
v-f = ¢ 2 and from equation (230) we also obtain
4”8°r(1_ g ) V-B=0.
Combining equations (230) and (224) we have that
N 1 v-a) (1 v u) v
v-u veu \" 2 ) oq
_ - V-B=- - B. 231
r(l c2 ) ! c? czqﬁtv (231)
( uz) From equation (231) it follows that
cll-—=
2
v f= < +o. (227) V-B=0
v-u
r? (1 - 7) if and only if
v-B=0.

From equations (210) and (211) we get

-3 4 B=2xs. (232)
p= —50—2— C
v-u\’ ot
4reo (1 - c_z) Therefore, it holds that
and with equation (151) we finally obtain v-B=0
) or equivalently
g 1- = V-B=0.
T dw A ( ! v-u )3 Combining equations (226) and (223) we get
TTr -
2
q
=- - E. 233
which is equation (205), since P=m00,50 ¢ (233)
1 W2 From equation (233) it follows that
—=1-=
12 c2 p=0
Similarly we can prove equation if and only if
v-g=0.
V-B=0. (228)
From equation (209) for the electric field g,, we can im-
From equation (224) we have that mediately deduce that
V-B=V-(q9) v-g, =0. (234)

Therefore, the electromagnetic radiation does not con-
V.-B=gV-g+g-Vq. (229) tribute to the charge density p. On the contrary, for the electric

field g, that accompanies the material particle, it holds that
From classical electromagnetism we know that

v-g, #0
V.g=0.
as follows from equation (208).
Thus, equation (229) becomes From equation (232) we obtain
v
V.B:g.Vq BZEXS
and with equation (216) we obtain B2 = (ﬂ X 8)2
2
Jq s (U v
V'BZ—%U'g. (230) B Z(EXS)'(C—ZXS).
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After performing the necessary calculations we finally get We now denote the four-vector of velocity as
.e\2 0
& =B+ (“—8) . (235) v ¢
c v= 52 = Z* (241)
We end this paragraph with an interesting observation. ¥ U”
Comparing equations (208) for the electric field g, with equa- ¢
tion (65), we conclude that the vectors ¢ and &, are parallel. ;4 the four-vector of current density as
Then, the “trajectory representation theorem” informs us that
the direction of the electric field g, represents the tangential 7 o e
vector ¢, of the trajectory C,, of the material particle. ) 7! pv! PU
T=L 2 17 o2 |7 pv (242)
4.7 The energy-momentum tensor of the electro- 3 3 !
J pY pY;

magnetic field at macroscopic scales

The equations of this paragraph as well as of the remaining
paragraphs of this paragraph, could be stated differently, so
that they also hold for non-inertial reference frames. How-
ever, such a formulation does not serve the purposes of the
present edition. Therefore, we will formulate the equations
for an inertial reference frame, while simultaneously suggest-
ing the way in which the same equations can also be formu-
lated for a non-inertial reference frame.

From the axiomatic foundation of the theory of selfvaria-
tions, as stated in paragraph 2.2, we have that

ds?=0
or, equivalently,
gixdx'dx* =0 i,k=0,1,2,3 (236)
where
(x% 2" 2% 2 = (et x,y.2) (237)

and g;; are the components of the metric tensor. In equation
(236) we use the Einstein summation convention for the in-
dices i and k.

We denote
o dxt
= — 1 =0,1,2,3 238
v dt ! (238)
that is,
(vo,vl,vz,v3) = (c, Ux,vy,vz). (239)
From equation (236) we obtain
o dx" dx* B
9= g dr
and with equation (238) we get
g =0 ik=0,1,2,3. (240)

Using this notation, all the equations we will formulate
also hold for non-inertial reference frames if we replace dif-
ferentiation with respect to x* with covariant differentiation
with respect to x*, k=0,1,2,3.
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as results from equations (156) and (157). Also, according to
equations (201) and (202), the four-vector of the electromag-
netic potential is

V _
Voo %
C
0 \%4
Al KUI —_Ux
A=A 1= ¢ |2 ¢ (243)
A Tlv, Y
A Y P
1%
- Uz
L ¢ Cc

Subsequently we will symbolize the differentiation with
respect to % with (,k), k=0,1,2,3.
We now consider the tensor of the electromagnetic field

1 1
T = —|F“F) - Zg”VFaﬁFQﬁ)

- (244)

where g is the inverse of the matrix g, gug"” = 0,y

1 for u=v
Oy = (245)
0 for u#v
and F* is the Maxwell stress tensor
FY = AL - Afly. (246)

Using this notation and taking into account that in the sur-
rounding spacetime of the material particle there is an electric
current j, as given by equation (242), the energy-momentum
tensor [19-21] of the electromagnetic field is given by the
tensor

QY =TH — A, (247)
‘We now write the tensor 7*” in the form
W S, S5, cS;
i = | Sx (248)
cSy Top
cS;
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S =eyexB (249)

where S is the Poynting vector, and &€ and B are the intensities
of the electric and magnetic field, respectively. Taking into
account equations (210) and (211), as summarized in equa-
tion

B=Yxe (250)

c2

equation (249) becomes

(€ v-e
S =g 2 v—ao(T)s.

The Maxwell stress tensor o, is given by relation

251)

Tap = 80 (~Easp — *BaBp + Wop) (252)
where ¢4 is given by relation (245), and
_ 1 2 2 p2

W= 5.so(g +c*B?) (253)

Ex &1

E=1 & | =] &
&E; &3

B, B

B=| B, |=| B
B, B;

Combining equations (247) and (248), we arrive at the
energy-momentum tensor

W S, 5§, cS;
i = Sy ou o o3|
¢Sy, 021 O0xn 023
¢S, o031 Ooxn 03
5 (254)
c vy cyy  cu
PV | v v)zr Uy, Uz,
- 2
| vy yue Uy
UL Uy Uy UL

We shall now prove that the scalar potential, as given by
equation (201), satisfies the relation

6_V+U-VV:—U'8. (255)

ot

From equation (212) we have that

-v-g= —v[—VV—a—A
ot
—v-g= v(VV+ %)
ot
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Using equation (202) we have

—-v-g=v VV+8—VE+KQ(E)
cotc ¢ Ot\c
av V. 0 (v
—v-s=v-V AT
viesv V+6t+cv at(c)
vV Vo (v
we=v-VW+—4+ 2| Z
vresv +6t+206t(c)
—v-s:v-VV+8—V
ot

since v? = ¢2.

We will now prove the conservation of energy and mo-
mentum, as expressed by equation

u
L) (256)

ij _ 9%~
Jo ol

We begin with an observation which allows us to avoid
complex calculations. Equation (256) holds in classical elec-
tromagnetic theory, i.e. if we ignore the consequences of
the selfvariations and consider the electric charge g constant,
both in the electromagnetic potential, as well as in the inten-
sity of the electromagnetic field. Furthermore, p = 0 in equa-
tion (254). Therefore, it is enough to prove that in equation
(256) the factors resulting from the selfvariation of the elec-
tric charge g, also vanish. Certainly, in equation (254) it holds
that p # 0, where the charge density p is given by equation
(205).

The energy density W of the electromagnetic field as
given by equation (253), as well as the Poynting vector S,
given by equation (251), are proportional to g>. Therefore, in
our calculations we will have to take into consideration the
rate of change of the factor ¢>. From equations (151) and
(152) we have

o> g _ 29 dq
o =T TV ow
o2
2qg 0q v
V¢* =2qVq = ———— ——.
q qvyq U E e
2
Thus, we arrive at equations
aq* 2 9q , 2
— =—————q =-21
o~ U o a4
2
8_‘]2_ 122 a_qz_z,lvy 2
Ox c? oy 2
5E v (257)
—— =21-=¢"
0z c?
1 0
A= v-u_q'
1= Y% qow
2
c
109
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From equation (255), and for i = 0, we have that since
v-g
GOY GO G0 gO2 GO p=deo—==0. (259)
oxi  9x0 " ox! " ox? " ax3 Indeed, substituting the factor A from equations (257), we

0 0 0 0
C—at(W)a—x(CSx)-i- @(C‘Sy)+ 6_Z(CSZ)
1]0 n 0 0 0
-5 [@ (ch ) +a (oVcu,) +6_y (chvy) +3—Z (chvz)]

and using relations (257), which we apply on the quantities
W,S .S, S, which are proportional to g%, we get

oY
_ = 2AW + 20,8, + 241, S, + 20,8,
Ox/ y=y
Vidp 0 0 0
- [E + Ep (ov,) + @ (puy> + ER (pvz)}
2,V VY
c\ ot T ox Y oy ‘oz
000
o =20 (-W +ueS, + 0,8, + v.S:)
V{dp p(oV
——|E+v. Sy Ay A4
[&+ @M](«at+v )

and from the equation of continuity, as well as equation (254),
we get

APV
Ox/

and with equations (251) and (252) we get

= 20(-W+ S, +u, S, +u.S) + 2w e)
-

oY 1 1 V2 v-e\ U
axj = 2/180 _582 - EBZ + ?82 — UyxEyx (7) + _182

(v-a)+U§ 5 (v's)+ (v~8)
v — |+ =& —vg | — pl—
A 2 T 2 c

oD%
oxJ

4
82

1, 1,, vity, +v:
:—2/180|:—§8 —ECB +T —

v-g
-2 [— (v-8) (vxsx +vyEy, + vzsz)] +p (—)
c
and since it is v + vi + U? = ¢? and also
UiEx +UyE, U8, = U E,

we see that
DY 1, 1,, (v-g)? v-e
V) il Lo of22),
From equation (235) we obtain

oD% 1 (v-e\2 v-¢e
el
ox/ 802 c P

c
oY/ . .

: :(U 8)[p—/18()v 8]:0
ox/ c c
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have

v-e 1 dq wv-g
Aeo c v'“qc’)wgo c
l-—
c
v-g 1 dg v
Agg— = — (&, + &,).
‘90 c 1_ v-u qawgoc( u (Y)

From equation (234) we have
v-g, =0.
Hence, we see that

2 v-& &0

O =" Vv-u _a._

¢ 1Y " qgowce
o2

0q v

&y

and with equation (208) for the electric field g, we get

v-g &0 aq
Asg—— = U U g5y 3o\e @
c 1— ow 5 v-u\yc\c ¢
2 4repr (1——2)
c
2
1 - =
0 2
PR T B P
v-u c
w47rr2(1— 2)
c
2
v-g dq l_c_z
/leo—:—a— >
c w v-u
47rr2(1——2)
c

Applying equation (205) we get

v-g
Agp— =p
c

p— /Ls‘o2 =0.
c

The validity of equation (256) for i = 1,2,3 is proven
similarly.

In paragraph 4.5 we proved that the selfvariations are in
agreement with the conservation of energy and momentum.
The proof was done in two different ways: by direct calcu-
lation, and by applying the continuity equation. While it is
of interest that the two different proofs, both lead to the con-
clusion that the selfvariations are compatible with the conser-
vation principles of Physics, the calculation for the energy-
momentum tensor was done for a completely different, and
very substantial, reason. At macrocosmic scales, that is at
large distances from the material particle, where equations
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(151) and (152) hold, the energy-momentum tensor ®%/, as
given by equation (254), indeed contains all the information
about the energy content of spacetime. At microcosmic scales
the equations of the theory of selfvariations highlight addi-
tional parameters about the energy content of spacetime.
These parameters bring the quantum phenomena to the fore-
front.

4.8 The energy-momentum tensor of the generalized
photon at macrocosmic scales

In this paragraph we shall study the energy-momentum tensor
for the generalized photon that balances the selfvariation of
the rest mass of the material particle. Using our notation the
energy-momentum tensor is given by

2

c cuy oy, cyg

o D|wve V¥ wvw vw
@Y = 2 ch v ;1 ;Zy vxvz (259)

C Y yYx y yYz

U.C vU, Uy Ug

with the energy density D given by equation (167).
We shall prove the conservation of energy and momentum
as given by equation

Ol

ij _ _

Nl =0. (260)
For i = 0 we have
D% H@Y0  HPY  HDOZ  HPO
Oxi — Hx0 - Ox! * ox? * ox3

oY% 9 (D2 & (D 0 (D o (D
e vy (Few) g (G

axl cor +$ c? c
o0% 1[oD
(jxj = E [E +V- (DU):|

and with equation (168) we get

oD
— =0
oxJ

For i = 1 we have

B L0 A T L, ) RU N, ) R [ X
— = + + +

OxJ 0x0 Ox! 0x? 0x3
oDl 1[0 0 0
— == |=W x — (D xUx — (D x
o cziat( U)+[)x( U‘U)+6y( vvy)+
1[0
+ = (9_2 (DUxUz)}
oD 1[ (oD v,
W = ; UX(E +V(DU))+D( o +U'VUX):|

Manousos E. Mass and Charge Selfvariation: A Common Underlying Cause for Quantum Phenomena and Cosmological Data

and with equation (168) we get

oDl oD 1 _{0v,
2 Z v+ =D Vo,
B U(3t+ J)+c2 (at“’ ”)

and with (185) we arrive at

0D/ D (du,
ch—z(E'FU'VUX). (261)
From equation (33) we have
v, 0
8Ut +v-Vu, = £ (ccoso) +v-V(ccosod)
Ou . [08
(;Jt +v-Vu, = —csmé(a +v'V6)
and with equation (81)(b) we get
v,
+v-Vu, =0. 262
5 vV (262)
Combining equations (261) and (262), we see that
ol
=0

Ox/

We can similarly prove the validity of equation (259) for
i=2,3.

By comparing the results of the last two paragraphs we
find substantial differences between the generalized photon
that counterbalances the selfvariation of the electric charge
and the generalized photon that counterbalances the selfvari-
ation of the rest mass of the material particle. Within the
energy-momentum tensor of the first, there appears the elec-
tromagnetic field, as expressed by the first matrix of the sec-
ond part of equation (254). On the contrary, in the expression
of the energy-momentum tensor of equation (259), no cor-
responding matrix appears. Therefore, the generalized pho-
ton counterbalancing the rest mass does not correspond to a
kind of field with the structure and content of the electromag-
netic field. Furthermore, by comparing the second matrix of
equation (254) with the matrix of equation (259), we observe
that in place of the potential V in the first, the factor ¢ ap-
pears in the second. These observations hold even if we for-
mulate the equations for a non-inertial reference frame (we
have already suggested a way for formulating the equations
in non-inertial reference frames). By careful observation of
the equations appearing in paragraphs 4.2, 4.3 and 4.4, we re-
alize that the difference in the “behavior” of the couples (p, j)
and (D, J) is the result of the different way the electric charge
and the energy transform according to Lorentz-Einstein. It is
exactly this difference that is captured on tensors (254) and
(259). The generalized photon gives us the exact mechanism
of transport of energy and momentum from one material par-
ticle to the other. At the same time, it highlights the simi-
larities and differences between the electromagnetic and the
gravitational interaction.
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We could call the generalized photon that counterbalances
the selfvariation of the rest mass by a different name. In any
case it is obvious when we refer to the electric charge and
when we refer to the rest mass. We shall, therefore, keep the
name “generalized photon” for both cases.

The observation we made at the end of the previous para-
graph regarding the tensor given by equation (254), also holds
for tensor (259). It is valid at macrocosmic scales. At mi-
crocosmic scales, further parameters emerge from the the-
ory of selfvariations, which cannot be given by the energy-
momentum tensor.

4.9 The internality of the universe to the measurement
procedure

The selfvariations hypothesis brings to the foreground the
“internality of the Universe to the measurement procedure”.
Usually, in order to measure a physical quantity, we define
as unit an arbitrary quantity with which we compare other
physical quantities of the same kind. If the defined unit of
measurement depends on the rest mass or the electric charge,
then it is itself subject to the selfvariations. This fact must be
taken into account every time we perform a measurement.

The photon does not have rest mass or electric charge
and is, therefore, not affected by the selfvariations. The ev-
idence we have suggests that the selfvariations take place at
extremely slow rates. Therefore, the first consequence of the
selfvariations we expect to observe is the following: photons
with great lifetimes will be measured to have less energy than
expected.

The extremely slow rate of evolution of the selfvariations,
combined with the “internality of the Universe to the mea-
surement procedure”, do not allow their immediate observa-
tion in the laboratory. In the laboratory we only observe the
consequences of the selfvariations. These consequences are
the potential fields and the quantum phenomena.

5 The quantitative determination of the selfvariations
5.1 Introduction

In the present paragraph we develop the main axis of the
structure of the theory of selfvariations. We determine quan-
titatively the rate of evolution of the selfvariations, and for-
mulate the law of selfvariations.

The law of selfvariations dominates from the microcos-
mic scales up to the observations we conduct billions of light
years away. It reveals the causes of quantum phenomena,
while it contains as physical information the totality of the
cosmological observational data. At the same time, it sets
the path for understanding the interactions between material
particles.

The equations resulting from the law of selfvariations are
of fundamental nature for the science of Physics and the re-
lated Physical Sciences. They contain a large amount of phys-
ical information, which permits the full understanding of
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physical reality.

5.2 The law of selfvariations

The conclusions derived in the previous paragraphs refer to
the surrounding spacetime of the material particle. These
conclusions are grounded on the second proposition-axiom
of the theory of selfvariations, which states that

ds® =0. (263)

This proposition is equivalent to the relation |jv|]| = ¢
which holds in every inertial system of reference.

In figure 4 the rest mass my and the electric charge g of
the material particle act at point A(x,y,z,¢) with the value
they acquired at the moment w = 7 — £. Thus, we have that
my = my(w) and g = g(w). For the relevant calculations and
proofs we have taken into consideration the axioms of the the-
ory of selfvariations, but we have not yet defined the rate of
evolution of their manifestation. In order to study the con-
sequences of the selfvariations we have to determine quanti-
tatively the first proposition-axiom of the theory of selfvaria-
tions.

Equation (263), combined with the first proposition-
axiom of the selfvariations, leads directly to the concept of
the “generalized photon”. The material particle emits gener-
alized photons, and each generalized photon carries energyE
and momentum P, in order to counterbalance the change in
energy and momentum that results from the selfvariations of
the rest mass of the material particle. If the material parti-
cle also carries electric charge, then the generalized photon
carries electric charge as well, in order to counterbalance the
variation of the electric charge of the material particle due to
the selfvariations.

The rate of evolution of the selfvariations is determined
axiomatically with the help of the total energy E and the total
momentum P, which is emitted simultaneously and in all
directions by the material particle, according to the following
proposition-axiom: “The rest mass mg and the electric charge
q of every material particle vary according to the action of the
operators

0

i
= > -2E,

264
ot /] (264)

VH%R
where E; and P, denote the total energy and total momentum
of the generalized photons emitted simultaneously by the ma-
terial particle in all directions, and 7 = 2’—;, where £ is Planck’s
constant”.
Stated in the form of equations, relations (264) can be
written as
3]’)’!0 i
o0 R
(265)

i
Vmo = %PSWIQ
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and
aq i
—~ =—_F,
or ~ 0
) (266)
l
Vq = ;ngq

In equations (265) and (266) we use the same symbol for
the energy E; and the momentum P;. But these are not the
same physical quantities. In equations (265) the energy E;
and the momentum P; counterbalance the consequences of
the selfvariations of the rest mass. In equations (266) they
counterbalance the consequences of the selfvariations of the
electric charge. Later, we shall modify equation (266) in or-
der to make this difference transparent.

The emission of generalized photons by the material par-
ticle comes about, initially, as a consequence of the principles
of conservation of energy, momentum and electric charge.
The operators given in relations (264) determine the relation
between the material particle and the generalized photons, in-
dependently from the principles of conservation. Equations
(265) and (266) express in a quantitative manner the law of
selfvariations.

According to the law of selfvariations the rest mass my
and the electric charge ¢ are functions of time #, as well as of
the position of the material particle

mO = mO(Xp’ Ypﬁzp, t)

267
q = q(Xp’ Yp’Zp’ t)‘ ( )

The dependence of the rest mass and the electric charge,
not only on time, but also on the spatial position, is to be ex-
pected. Even if in some inertial frame of reference they only
depend on time, in another inertial frame of reference they
will also depend on the position, according to the Lorentz-
Einstein transformations.

From equation (200), and for # = 0, we take that P; = 0,
so that the second equation of the couple of equations (265)
gives Vg = 0, whereas the first equation can be written as

dmy lE
— = ——Eym,
dt nooo
m = —%Eol’ﬂo
Ey = in™0 (268)
Mo

Here, we denote the differentiation with respect to time by
(e), and we set E; = Ej (the necessity of denoting E; = Ey
will become apparent later on).

Furthermore, from the principle of conservation of energy
at the instant of emission of the generalized photons, we ob-
tain that

(moc* + Ep)® = 0. (269)
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Combining equations (268) and (269) we arrive at equa-
tion

(moc2 + ih@) -0 (270)

mo
Equation (270) both contains as physical information, and
justifies, the whole corpus of the current cosmological obser-
vational data, as described in paragraph 7.

5.3 The “percentage function” ©

The law of selfvariations expresses the total interaction of the
generalized photons, which are emitted simultaneously by the
material particle, with its rest mass and electric charge. How-
ever, in a particular direction %, the material particle emits
generalized photons of energy E and momentum P. There-
fore, we have to derive quantitatively the partial contribution
of a single generalized photon of energy E and momentum P
to the law of selfvariations.

We have to answer the following question:

“Which mathematical equation correlates the energy E
and the momentum P of a single generalized photon emit-
ted towards a particular direction g, to the selfvariations of
the rest mass my and the electric charge g of the material par-
ticle?”

Thus, we are seeking the form of equations (265) and
(266) that correspond to a single generalized photon.

Based on the law of selfvariations, the answer to this
physical problem can only be given by the following state-
ment:

“The partial contribution of a single generalized photon to
the selfvariations of the rest mass m and the electric charge
q of the material particle is given by any mathematical ex-
pression which agrees with the operators defined in equations
(264). If we sum the contributions of the single general-
ized photons towards all directions, during their simultaneous
emission by the material particle, we have to end up with the
equations given in (265) and (266)”.

Considering this physical problem from its mathematical
aspect, we can choose arbitrarily any mathematical expres-
sion giving the partial contribution of a single generalized
photon according to the law of selfvariations, which satisfies
the operators (264). Then, we can compare the results ob-
tained by our particular choice with physical reality. On the
other hand, we can choose the mathematical expression tak-
ing into account some specific physical criteria beforehand.

A fundamental case for the partial contribution of a gen-
eralized photon according to the law of selfvariations arises
from the following observation: A single generalized pho-
ton counterbalances only a percentage of the total energy,
momentum and electric charge that result from the selfvari-
ations. Therefore, we must examine whether the contribution
of a single generalized photon to the law of selfvariations is
correlated with a percentage ® of the rest mass my and elec-
tric charge g. In this case, the partial contribution to the law
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of selfvariations for a single generalized photon of energy E
and momentum P will be given by the set of equations

o(Odmy) _ —iEmo
ot i /] 271)
V((Dmo) = ﬁPmo
ADg) i
ot i hi 272)
V(®g) = £Pq.

Summing in all directions of emission of generalized pho-
tons in the first equation of the set of equations (271), we ob-
tain relations

&(Dmyp) j
2. Oltno :_%‘ZE'"O
g (D om) = o 3
gt(mqu)) = —%MOZE.

Since it holds that }} E = E; and the total percentage of
the contributions is 1, thatis Y, ® = 1, we get
(9m0 i
— = ——myE,.
ot n
This is the first equation of the set of equations (265).
Also, from the second equation of the set of equations
(271) we obtain relations

Z V(®mg) = % Z Py
V(> @my) = %mo >p
V(MOZ(D) = %mOZP

Since >, ® = 1 and ), P = Py, we see that

Vm() = %mOP 5.

This is the second of the equations given in (265).

We can perform the same procedure for equations (272)
as well. Therefore, a single generalized photon can contribute
to the selfvariation with a percentage @ of the rest mass or
the electric charge, and then this contribution is expressed by
equations (271) and (272).

From equations (271) we obtain

oD ]
+my— = —iEmO

ot ot fi
DVimg + mgVd = %Pmo.
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From equations (169) we also obtain

1 omy 0D i
OP———F—— +my— = ——E
1_U'u ow moﬁt h o
2
1 8mov i
—-O——— — — + myVD = — Pmy.
l_v'ucawc o pt o
2

Eliminating from the equations the quantity m,, we obtain

1 6m0 +3(D_ i
1Y % mow o h

2

1 Bmo v i
- ———— + Vb =-P.
1_”'”moc0wc hi

2

Finally, we arrive at the set of equations

ih 57}’!0 fol0)
E=®0— 2 4 jh—
1— VU 1100w i ot
2
.hc 5 (273)
P=o—" "o Y _inve.

1 = Y% mocow ¢
2

The function ® can be any mathematical function, defined
on the material particle and obeying relation

do=1

However, it has to be considered a function depending on
the direction in space, since this is implied by the summation
given in equation (274).

According to the operators defined in (264), the continu-
ous evolution of the selfvariations with the passage of time is
assured by the condition

(274)

E, #0. (275)

This condition is a straightforward consequence of the
first proposition-axiom of the theory of selfvariations.

We are seeking now to derive the relation between the
total momentum P, and the total energy E;. According to
equation (200) this relation can be written as
u

P, = E, (276)

2
Here, u denotes the velocity of the material particle at the
moment of the emission of the generalized photons.
This relation has to be reconsidered for the following rea-
son: During the proof of this relation in paragraph 4.3, we
have taken into consideration equation (168), that is equation

v
=D—.
J =
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This equation presupposes the validity of the condition

P-EZ 277)
c

for every single generalized photon emitted towards any di-
rection defined by ¥ , as depicted in figure 6. However, equa-
tions (273) reveal a more complex, and certainly different re-
lation, between the momentum P and the energy E of a single
generalized photon. Therefore, we have to reconsider the va-
lidity of equation (276), since we cannot base its proof on
equation (277). As we shall see immediately, equation (276)
is of general validity, and is compatible with the set of equa-
tions (273).

We consider a material point particle at rest, as depicted
in figure 7. In order for this particle to remain at rest, the total
momentum emitted simultaneously and towards all directions
has to vanish, that is

P, =0.

s

(278)

If the case were different, the material particle would un-
dergo an arbitrary motion, as a consequence of the princi-
ple of conservation of momentum. From equation (278), and
from the set of transformations (164) for the total energy E;
and the total momentum Py, we arrive at equation (276).
Thus, we have

E, =y(E, +uP)

; u
P, = y(PM + C—ZES)
Py, = P'Sy
P, =P,

Since, according to equation (278) it holds that

/ /

(Psx7Pst’P;z) =(0,0,0),
we obtain the following relations
E, = yE,
, u
PS)C = '}/ES;
Py =0

P, =0.

u
We also have thatu =| 0
0

, thus we obtain

Es = VE;

U
Ps = ’}/ESC—2
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Finally, we have
E, = VE.;

u
P, =E;—.
s ACZ

This is equation (276). Furthermore, we also obtain equa-
tion
Ey

Es =vE, = yE) = (279)

- —
o2
Here, we denote

E, = E. (280)

A material particle at rest can emit generalized photons
of different energies for different directions. If the gener-
alized photons emitted in opposite directions have opposite
momenta, the material particle will remain at rest. But the
momentum of a generalized photon can also be balanced by
two other generalized photons emitted towards appropriate
directions and with appropriate energies. In reality, there is
an infinite number of combinations of emmision of general-
ized photons, with infinite combinations of energies and di-
rections of emission. In each of these cases where equation
(278) holds, the particle remains at rest. The case of emission
of identical generalized photons in all directions by a material
particle at rest is only one among the infinite number of cases
satisfying equation (278).

Therefore, by rotating the unit vector ”(— around the point
particle at rest, as depicted in figure 7, we expect a change in
the energy of the generalized photons. Exactly this is shown
by equations (273), while at the same time they highlight
the factors defining the energy and momentum of each sin-
gle generalized photon.

5.4 The accompanying particle

In the previous paragraph we proved equations (276) and
(279):

u
P =E,>
E-_ Fo (281)
C

Equations (281) show that the total energy and momen-
tum emitted simultaneously and in all directions by the ma-
terial particle behaves as a particle moving with velocity u,
and accompanying the material particle. There is a definite
correspondence between equations (281) and equations

P =mu
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which give the momentum P and the mass m of the material accompanying particle”, given by
particle.

According to equations (281), the accompanying particle My = mgo + E—;)_ (284)
has rest energyEy. This is the rest energy E, from equation ¢
(280). Therefore, the accompanying particle has a rest mass We have that
given by 2y

‘. o . oMy 0 Ey

According to the first proposition-axiom of the theory of — = (mo + —)
selfvariations, the rest mass % of the accompanying particle ot ot c
changes with the passage of time. Hence, we seek the coun- % _ % " %
terparts of equations (265), which define the rate of change of ot o 2ot

the rest mass %, or equivalently the rest energy Ey. As such,
we obtain the corresponding form of equations (265)

an i 2 i > i m002
o _ L, 2E, =2 Ey= ~0¢ g
e LA e e
-z
. ' . (282)
VEy=— - muEy=—~ymouEy=—~ —" _y4E,
0 7 0 h?’ 0 0 7 uz 0-
-z

Equations (265) describe the effect of the generalized
photons on the rest mass of the material particle. In nature,
though, effects are always mutual. Hence, just as the general-
ized photons affect the material particle, the material particle
in turn affects the generalized photons, and these mutual in-
teractions must occur in the framework of the same physical
law. Therefore, from the outset the issue arises of the ex-
istence of a rest mass concealed within the operators (264),
and of a corresponding equation symmetrical to (265). The
quest for the partial contribution of a single generalized pho-
ton to the law of selfvariations revealed the existence of the

rest mass % and equations (282). The existence of the rest

mass % is predicted by the initial equations we formulated

for the macrocosmic scales, through equation (200).

A large part of the predictions of the theory of selfvari-
ations can be made without the aid of equations (282). For
example, the justification of the observational cosmological
data can be obtained from (270), which is proven indepen-
dently without resorting to equations (282). The same holds
for equations (273). However, the accompanying particle is a
direct consequence of the selfvariations. Indeed, if we com-
bine the second of equations (281) with relation (275) we see
immediately that

Eo #0. (283)

The rest mass £2 of the accompanying particle cannot
vanish. Therefore, in order to study the consequences of the
selfvariations in their totality, we have to take into account
the existence and the properties of the accompanying parti-
cle. In nature there is always the system “material particle-
accompanying particle”.

Let M, be the rest mass of the system “material particle-

116

Using the first equations of the sets of equations given in
(265) and (266), we obtain relation

oM, i i
— =—=Emy+ - Ey.
ot 7 sMo h?’mo 0

And using equation (279) we get

oM i i
6_t0 = =3 vEomo + 2ymoEq
(285)
oMy
at

Similarly, using the second equations of the sets of equa-

tions (265) and (282) we have that
VM = 0. (286)

From equations (285) and (286) we conclude that the rest
mass My of the system “material particle-accompanying par-
ticle” is a physical quantity not affected by the process of
the selfvariations. Therefore, we can use the rest mass M,
and the rest energy Moc? as a unit of measurement of mass
and energy, respectively. By this approach we circumvent the
methodological problems stemming from the principle of the
“internality of the universe with respect to the measurement
procedure”, as stated in paragraph 4.9.

The quantitative mathematical description of physical re-
ality depends on our ability to include in our equations the
consequences of the internality of the universe to the mea-
surement procedure. In the macrocosmic scales there is a very
simple way to accomplish this, as described in paragraph 7.
In the microcosmic scale we use as units of measurement of
mass and energy the quantities M, and Myc?, respectively.

We rewrite now equations (265) in the form

0 my _ i E my
ot\My) "\ My
v(M) - Lp (M)
M h M,
These equations have the exact same physical content as
equations (265). They give the rate of change of the rest mass

my, since the rest mass M is not affected by the selfvaria-
tions, according to equations (285) and (286). At the same

(287)
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time, these equations highlight the action of the operators (276), equations (288) can be written as

(264) on the complex number % € C, since the complex unit

) . . Mo dq i

i appears within the expressions of the operators. The same = = ——Vqgiq

procedure can be repeated for the case of equations (282) as ot h (290)
well, by introducing the number Af“z € C, and for the whole o u

. . oc Vg =-Vqi—q.

list of equations we have stated. I/

The accompanying particle has rest mass of magnitude
%, which comes from the sum of the contributions of the gen-
eralized photons emitted simultaneously by the material par-
ticle. This is the physical content of equations (281). There-
fore, the mechanism through which the selfvariations occur
plays a fundamental role for the determination of the physical
properties of the accompanying particle, and eventually for
the physical properties of the actual system “material particle-
accompanying particle”.

5.5 The symmetrical law for the electric charge

From the study already conducted in paragraph 4.2 it follows
that the generalized photons counterbalancing the selfvaria-
tion of the electric charge ¢ carry electric charge. Therefore,
the physical object resulting from their aggregation carries
electric charge g;.

The law of the selfvariations for the electric charge g is
given by equations (266)

0q i

o - Tt
. (288)
1

Vg=_-Pg.

q 7 sq

In these equations we denote with E and P, the total en-
ergy and momentum emitted by the material particle simulta-
neously in all directions, and which counterbalances the vari-
ations in energy resulting from the selfvariation of the elec-
tric charge. Although we have kept the same notation, these
quantites are not the same as the ones appearing in equations
(265).

In order to repeat the study conducted for the rest mass
for the case of the electric charge, we have to define the equa-
tions symmetrical to (266). That is, we have to formulate the
counterparts of equations (266) for the electric charge g;.

The law of selfvariations for the electric charge (288) has
to be modified so that it will define the interaction of the elec-
tric charges ¢ and ¢;, exactly as the law stated in equation
(265) determines the interaction of the rest masses m, and
%. Therefore, the second part of equation (288) has to be ex-
pressed such that the electric charge g; appears. This can only
be accomplished by the introduction of an electric potential V/
through equation

E, = Vg. (289)

With this notation, and taking into account equation
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Equations (290) and (288) have the same physical con-
tent, if and only if the electric potential V is independent of
the selfvariations.

Starting from equation (290), we can also deduce all
equations inferred in the previous paragraphs for the rest
mass, except now for the electric charge. The proof follows
similar paths, and we shall note repeat it here in full.

Firstly, it can be deduced that the potential V can be writ-
ten in the form

V=9V = (291)

The potential V| stays invariant under the action of the
Lorentz-Einstein transformations, and is independent of the
selfvariations. The corresponding expressions of equations
(268) and (270) are

gV = ind
q

in g\’
+—=| =0
(q VOQ)

The corresponding equations to the ones given in (273)
for the generalized photon, can be formulated as

(292)

in  dqg oD
E=0—" % 52
l_v'“q6w+l ot
2
s (293)
2 q v .
P=O————— —jhVO.
1Y% gcowe !
2

The corresponding equations to the equations (282), that
is, the corresponding form of the law expressed in (290), are

6qi i

- = zvVoqqi
ot h . (294)
Vo iy B
qi h7 Oqcz qi-
The corresponding relation to relation (283) is
q; # 0. (295)

The corresponding expression of equation (284), that is,
the electric charge Q of the system “material particle-accom-
panying particle” is

Q=q+q. (296)
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The corresponding equations to equations (285) and (286) and with equation (301), we get
take the form
0 _,
or (297) E:q)%% ih(@i%@i‘ﬂ@@)
c

The electric charge Q is not affected by the selfvariations.

5.6 Fundamental study of the generalized photon

In paragraph 4 we studied the consequences of the selfvaria-
tions in the surrounding spacetime of the material particle. In
that study we considered the validity of equation (168)

v
J = D;
which presupposes the validity of equation

P= EC% (298)
for the generalized photon.

We know by now that the energy E and the momentum
P of the generalized photon are not correlated through the
simple relation (298). For the generalized photon that results
from the selfvariation of the rest mass, equations (273) hold

E=0—— 79 L ipZ—
1= V% moow My
2
ihc omy v (299)
P=0 0 2 _ihveo.

1= Y% mocow ¢
2
For the generalized photon that results from the selfvaria-
tion of the electric charge, equations (293) hold

ih aq 0o
E=0——— 2 in—
1= V" gow o
2
ihc dq v (300)
p=o—" MY uvo
1=V " gcowe
-2

Equations (299) and (300) lead to a completely different
relation from (298), between the energy E and the momentum
P of a generalized photon.

We will study the generalized photon, as given in equa-
tions (299). The study of equations (300) is exactly the same.

The percentage-function ® depends on the direction %
and can, therefore, be written as ® = ® (6, w), and can also
depend on the moment, w = ¢ — f, of emission of the general-
ized photon, so that

D=0 w,dw). (301)

From the first of equations (299) we have

ih Omy o 0D
At U, i
1= V% moow ot
o2

E=0
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and with equations (11), (41) and (42) we get

in 6m0

1= Y% moow
2

E=0

(302)

From the second of equations (299), we have

in ﬁmo v
_ — —ihVOD
1 - U U mycow ¢ !

2

P=o

and with equation (301) we get

0D 0P

' @
p-o_t" amov—ih(a—Vw+—V6+—Vw

1— U U mocow c ow 06 ow

2
and with equations (12), (51) and (52), we get

ih 6m0 v
p=o—- T,
1= Y " mocow ¢

c2

in 0dv hod| u-B v

U aawe ra| _vEa
1 2 1 2
C C

+B- (303

in 00| u-y v+
rsinddw | _ YV ¥ 2 7|
2

‘We now denote

ih 6m0
1= Y " mpow
C2

ih omy v (304)

p=op—— 07U
1= Y% mocow ¢

2
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It is easy to prove that, in the case of constant-speed mo-
aD ih a0 ihu-B D o . "
Ep =ih— = —_— - —_—— tion with velocity u = | 0 |, each of the energy-momentum
o =i— U gy r(l_v,u)% y 0 gy
2 2
. ¢ ¢ pairs (E;, P;), (Ey, Py), (Es, Ps), (Ey, P,,) transforms auto-
— ihu -y 62 nomously, independently of the rest, according to the
r(l - g) siné dw Lorentz-Einstein transformations. Furthermore, an invariant
¢ amount of energy corresponds to each pair.
i oD v We shall calculate the four invariant amounts of energy. In
Py = —inVO = VU Gy 2 (305) the same way, we can prove the independent Lorentz-Einstein
- 2 transformations of the four energy-momentum pairs.
From equation (305) we have
ihod| u-B v
| T vaa AT v
r 1-—-°¢ E; - P} = E} - C°E} (—2)
c c
_ih 0P| u-y LA and since v* = ¢?, we get
rsinddw | _ YV ¥ 2 '
2 2_ 2p2 _
c E; —c°P; =0. (312)
With this notation, equations (302) and (303) can be writ- From equation (308) we have
ten as
E=E;+Eg )
P-per, (306 B -cp -5 - (Y)
c
Combining equations (302) and (303), we obtain relation
- . and from v? = ¢2, we get
v ihdd i [
P=E— -——B- — 307
2 796" rsinedw” 307) E2 - 2P = 0. (313)

relating the energy £ and momentum P of the generalized
photon.

The energy-momentum pair (Eg, Pg) can be decomposed
into three partial pairs

R (308)

(309)

(310)
_ in 00| u-y v+
“7 rsiné dw 1_”'”6’2 4
2

Eo=E,+Es+E,
P@ZPw+P§+Pw.

(311)
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From equation (309) we have

and since itisu - B =0, v = cz,ﬁz =1, we get

2 2p2
Es—c'Ps =~ v-u 00
72(1——2

2 (. @2 2
h(uﬂ))z(c?g)+

C

72 (u - B)> (aq>)2 (chc’)(l))z
+—)2 — | +|—==

v-u 0o r 9o
r? (1 -

s 0y [chADY

Ea—C P(S: 7% . (314)
Similarly, from equations (310) we get

B2 _2pr o 9P 2 (315)

@ @ \rsiné dw
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From the transformations (127) we get

ch 0D ch oD (1 u cos 6)
Ay - T 7 u s Y\ T
r 08 7r(1—z‘cosé) 06 ¢

C

hiw _cnio
r a8 yr s’

(316)

Therefore, the second part of equation (314) remains in-
variant according to the Lorentz-Einstein transformations.
From transformations (124) and (127) we have

ch 00 ch oD
rsind’ dw’ u siné ow
yr(l - - cosé) 0
¢ y(l — —cos 6)
c
ch 00 ch 0D
— = —. 317
r'sinéd’ 0w’  rsind dw (317)

Therefore, the second part of equation (315) remains in-
variant under the Lorentz-Einstein transformations.

From equation (307) we can calculate the total invariant
energy of the generalized photon

v _inoo
¢ r 06

. 2
ih 0D
E? PP =E*-*|E ——
rsind dw
and taking into consideration that the set of vectors %, 8,y
constitute an orthonormal basis, we get

2 2
B p = o gy (RO0) L (h 0P
r 00 rsind dw
B 2p chaq>2+ ch oD\’ G318)
“\roos rsind dw)

According to equations (316) and (317), the second part
of equation (318) remains invariant under the Lorentz-
Einstein transformations.

We will now prove that:

“In the case of constant-speed motion with velocity

i

pairs (E;, P;) , (Ey, Py,) correspond to a flow of energy and
momentum into the surrounding spacetime. On the contrary,
pairs (Es, Ps) and (E,,, P,,) correspond to a redistribution of
energy and momentum in the surrounding spacetime”.
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From equation (109) together with the second of equa-
tions (308), we get

ih omy v (v u
.
l_v'umoawczr c ¢
2
ih omy v-u
.
I_U'"mocawr c?
2
PR = ihr 20
mocow
R 0
f L (319)
r mocow

Similarly, from equation (109) together with the second
of equations (308) we get
R 0o
P, —=ih——
r

o (320)

We conclude that both the momentum P;, as well as the
momentum P, have a component along the direction of vec-
tor R, as depicted in Figure 6.

Combining equation (109) with the second of equations
(309), we get

iho®d| u-B v v u
P R=-200 (22
0 ros| vt B c c
2
and since ¥* = ¢? and v - B = 0, we obtain
LO00| u-B v(v u\ u-B
Ps R =—-in> __(___)__
0 165 1_”'”c2 c c c
2
u
_ 0D Eﬁ v-u\ u-f
2
c
Ps-R=0. (321)

Similarly, from equation (109) and the second of equa-
tions (310) we get

P, -R=0. (322)

Both the momentum P, and the momentum P, are ver-
tical to the vector R of Figure 6.

We will now prove that:

“The generalized photon carries intrinsic angular momen-
tum S, independent of the distance r. The component S, of
the intrinsic angular momentum S along the direction of the
motion of the material particle does not depend upon the ve-
locity u of the motion”.
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In Figure 4, the angular momentum S of the generalized From the fourth of equations (324) we have
photon with respect to the (constant) point of emission ,
E (x, ), yp (@) .2 (@), w) is So=~uxP,
S=rxp and with the second of equations (310) we get
and with equation (6) written in the form
r _ ih 00V u-y
- = +
r=-v sinddw e | Y ¥ 2 4
c2
we get
, , and since ¥ X y = —f3, we get
S=-vxXP=-vx(P;+P,+Ps +P,). (323)
¢ ¢ ih 00
. So = —7—8. 329
Denoting sindd a)ﬁ (329)
Si=-uXP Equation (325) can now be written as
SwZ—UXPw in 00 oo
=——pB-ih— 330
(324) sin (?a)'B ! 1) 4 (330)
Ss = —v X Ps
Cr We now calculate the component S, of the angular mo-
S, =-uxP, mentum S along the direction of motion of the material parti-
cle.
equation (323) can be written as For u # 0 we have
$=8;+S,+S5+S,. (325) _u
T
From the first of equations (324) we have e
p and with equation (330) we get
S,‘ = - X Pi
C .
u ih 00 0D
and with the second of equations (304) we get Su= | (sin 5 %'B - Zh% ) (33D
S; =0. (326) u
From the second of equations (324) we have For constant-speed motion with velocity u = | 0 ], and
0
S - r ux P taking into consideration equations (35) and (36), we obtain
c from equation (331)
and with the second of equations (308) we get ih oD
= — (—sind
S, = 0. (327) "= Sing dg S
From the third of equations (324) we have oD
Sy =—ih—. (332)
r ow
S5 = - X P(;
¢ u
and with the second of equations (309) we have In the case of constant-speed motion with velocity u# = [ 0 ],
0
9D v u-B v from the transformations of equations (124) v’ = w, we con-
Ss = —ih% “X|\— s th clude that the angular momentum S, does not depend on the
¢ 1- = ¢ inertial reference frame. Furthermore, it does not depend on
_ 0D v the angle 9, i.e. the angle formed between the direction of
S5 = —ih 95 ¢ xp emission 2 of the generalized photon and the velocity u of
. oy B the material particle in Figure 6.
and since itis ¢ X f =y, we get We will now study the changes in energy and momentum
oD that take place during the motion of the generalized photon
Ss = —lh%Y : (328)  with velocity v, after its emission by the material particle.
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From the fundamental mathematical theorem, specifically
from equation (86) for f = E;, f = E,, f = Esand f = E,,
we have

%-f-U-VEl:C%

ot or

aEw-f—U'VEw—Caﬂ
ot or
%+U'VE5—C%
aﬂ+v-VEa,—ca&
ot or

and with the first of equations (304), (308), (309) and (310),
we get

OE;
— + U~ VE, =0
ot
oE,
3 +v-VE, =0
5
T2 Ly VE;=-“E
ot v 0 P
% |\ .vE, =-CE,
ot r

Similarly, after combining equations (87), (88), (89) with
the second parts of equations (304), (308), (309) and (310),
we get

OP;
o + (grad P)v =0

aaﬁ + (grad Py,)v =0

ap . (334)
—° 4 (grad Ps)v = — - P;

ot r

P,
—— + (grad P,)v = —EPa,.
ot r

From the equations of this paragraph we conclude that
there are physical quantities that do not depend on the dis-
tance r. Such physical quantities are the energy-momentum
pairs (E;, P;) and (E,, P,), as well as the angular momenta
S and S,. These quantities are defined for r = 0, that is, on
the material particle. On the contrary, the energy-momentum
pairs (Es, Ps) and (E,,, P,), as well as the rest energies % ‘%’
and % g%’, are defined only in the surrounding spacetime of
the material particle, due to the appearance of the factor %
Furthermore, they vanish for r — +o0, while they attain large

values for small values of 7, i.e. close to the material particle.

5.7 The simplest case of a generalized photon

The simplest generalized photon arises in the case where the
percentage @ is constant:

oD
= -0
ot (335)
VO = 0.
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In this case, equations (299) and (300) are rewritten, re-
spectively

ih 6mo
E=0—F——
| — g moow
c
P 7] omy v (336)
B 1— VU mocow c
o2
in aq
E=0—" %
1= v U gow
2
c
R (337)
VU geow e’
1
2

From the second of equations (335) we obtain

Vo =0
and from equation (301) we get

fol0) oD oo
—V —Vé+ —Vow =
30 w + 5 0+ £ w=0
and from the linear independence of the vectors Vw, V9§, Vw

(paragraph 2.5) we get

0D

3_w_0

0D

— = 338
55 = ° (338)
0D

%—0.

Replacing equations (338) into the equations of the last
paragraph causes the energy-momentum pairs

(Ew’Pw)v(Eé’Pd):(vapw)

to become zero, the angular momentum S becomes zero, and
cho® 40 q _ch_ o0

so do the rest energies <* 9¢ —ir3 9, Lhe energy-mo-
mentum pair (E;, P;), as given by equations (336), does not
become zero. Therefore, the generalized photon is defined
for r = 0, i.e. on the material particle.

We shall now prove that the interaction of the material
particle with every generalized photon is instantaneous dur-
ing the moment w of the emission of the generalized photon.
More specifically, we shall prove that the generalized photon
keeps its energy E and moment P constant, after its emission
by the material particle.

From equation (86) of the fundamental mathematical
theorem, and for f = E, we have

oF oF
E +v-VE = CE.

From the first of equations (336), and since it holds that

my = my (w), we get

(339)

OE

o (340)
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and from equation (339) we see that

a—E+v-VE:0.

a (341)

From equation (341) we conclude that the energy E of the
generalized photon remains constant during its motion with
velocity v, after its emission by the material particle.

Combining equations (336) we obtain relation

P-EZ (342)
c
between the momentum P and energy E of the generalized

photon.
From equation (87) forf = £, we obtain

P

0 v v v OE
a(%)*(gfﬁd (Ez))"— cor

and with equations (340) and (342) we get

66_1; + (grad P)v = 0. (343)
From equation (343) we conclude that the momentum P

of the generalized photon remains constant during its motion

with velocity v, after its emission by the material particle.

According to equations (341) and (343), the generalized
photon does not exchange energy and momentum with the
material particle after its emission. The interaction between
the material particle and every generalized photon takes place
instantaneously at the moment of emission of the generalized
photon. Furthermore, according to equation (342), there is a
continuous flow of generalized photons moving with velocity
v, from the material particle into the surrounding spacetime,
on the condition, of course, that the percentage ® remains
constant.

We can undertake a similar study for the generalized pho-
ton resulting from the selfvariation of the electric charge. It
suffices to replace equations (336) with equations (337) in the
above study.

5.8 The cosmological data ‘“‘condensed” into a single
equation

In the inertial frame of reference S’, where the material par-
ticle is at rest, the first of equations (350) can be written as

(9m0 oD
E' = Oih—— +ihi—. 344
! moow’ ! or (344)
Summing in all directions of emission of generalized pho-
tons, and taking into consideration that ), E’ = Epand ), ® =
1, from equation (344) we obtain

P
Ey = in-20

. 345
moow’ (345)
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During the emission of the generalized photons by the
material particle it is ¥ = 0, and equation (3) can be writ-

ten as. w’ = t, therefore We get % = % = % = 11y, and
equation (345) can be written as
L
Eo = ih— (346)
my

which is equation (268).

In the inertial reference frame S’, where the material par-
ticle is at rest, and for ' = 0, hence for w’ = ¢, the first of
equations (282) can be written as

i

Ey = ﬁmocon. (347)
Eliminating the rest energy Ej, we get
(ih@) = %moczih@
my my
(lh@) = —m0c2
mo
(m@ v m0c2) ~0 (348)
Mo

which is equation (270).

In paragraph 5.2 we derived equation (270) by combining
equation (346) with the principle of conservation of energy.
In the derivation we conducted in this paragraph we combined
equation (346) with the symmetric law (282). Furthermore,
from the derivation procedure we have followed, it becomes
obvious that the percentage-function @ does not play any role
in equation (348), i.e. in equation (270).

If we borrow equation (394), Ey = iiH, from paragraph
7, and combine it with equation (346), we obtain :%g =H~
2x 10718571, In the cosmological data we observe the conse-
quences of the real increase of the rest masses of the material
particles, which takes place at an extremely slow rate.

In paragraph 7 the differential equation (348) is solved.
As we shall see, this equation contains as information the to-
tality of the cosmological data. The cosmological data are
“condensed” within a single equation.

5.9 The generalized particle

From the previous study it becomes evident that the selfvari-
ations correlate every material particle with the surrounding
spacetime. Fundamental physical characteristics of the ma-
terial particle, like the rest mass and the electric charge, are
correlated with spacetime. Furthermore, each material parti-
cle contributes to the energy content of spacetime in a strictly
defined manner.

The relation between the material particle and the sur-
rounding spacetime is determined by two fundamental physi-
cal objects predicted by the theory of selfvariations: the gen-
eralized photon and the accompanying particle. These two
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physical objects are related to each other since the accompa-
nying particle results from the aggregation of the generalized
photons. All the equations we have stated in the preceding
paragraphs and preceding paragraphs, concern the relation of
the material particle either with the generalized photon, or
with the accompanying particle.

In the surrounding spacetime of the material particle, and
for each generalized photon, we know exactly what is ex-
pressed by equation (263), dS? = 0: the generalized photon
moves with velocity v of magnitude ||v|| = ¢ in every inertial
frame of reference. According to the second statement-axiom
we have posed, equation dS? = 0 also holds for the accompa-
nying particle, which, as an aggregation of generalized pho-
tons, is related with the propagation of the selfvariations in
the four-dimensional spacetime. The question then arises, as
to how equation dS? = 0 is expressed in the part of spacetime
where the generalized photons aggregate.

The accompanying particle has rest energy Ey and, there-
fore, rest mass % # 0. The combination dS? = 0 and
L2 % 0 renders the accompanying particle an intermediate
state between “matter” and the “photon”. It is a completely
new physical object predicted by the theory of selfvariations,
which introduces us into an unknown territory of physical re-
ality. The first question we have to answer is how do the
relations dS? = 0 and % # 0 become compatible with each
other.

About the intermediate state of matter we can give the
following interpretation:

The aggregation of the generalized photons implies the
co-incidence of different points (dS? = 0) in the part of space-
time where the aggregation takes place. This interpretation is
in agreement with the strict application of the axioms of the
theory of selfvariations.

At this point we are required to make two observations
about the relation of the theory of selfvariations with the the-
ory of relativity. These observations have to do with the rela-
tion between the energy content and the properties of space-
time.

For the derivation of the Lorentz-Einstein transformations
we consider two observers who exchange signals moving
with velocity c. If we consider the exchange of signals mov-
ing with a different velocity, for example acoustic signals,
we end up with different transformations. Judging by the re-
sult, both on theoretical, and on experimental grounds, we
know that the transformations derived by the first method are
correct, whereas the transformations derived by the second
method are wrong.

The theory of selfvariations predicts the generalized pho-
ton in the surrounding spacetime of the material particles.
There is a continuous exchange of generalized photons be-
tween the material particles, in other words, a continuous
exchange of signals moving with velocity ¢. The exchange
of signals with velocity c is not simply a hypothesis we can
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make for the derivation of the Lorentz-Einstein transforma-
tions, but a continuous physical reality. Therefore, the theory
of selfvariations strengthens the theoretical background of the
special theory of relativity.

The general theory of relativity correlates the properties
of spacetime with its energy content. The theory of self-
variations gives us the detailed contribution of each mate-
rial particle to the energy content of spacetime. In the part
of spacetime where the aggregation of generalized photons
takes place, the material particle interacts with the accom-
panying particle. This interaction concerns a strictly distinct
subset of the total energy content of spacetime. While we as-
sume a unified spacetime, whose properties are defined by its
total energy content, each particle interacts and is correlated
with only a subset of the energy content of spacetime. In re-
ality, every material particle occupies its “own” spacetime.
For every material particle the properties of its “own” space-
time are determined by the generalized photons with which
it interacts. Therefore, the co-incidence of different points of
spacetime concerns the accompanying particle for every ma-
terial particle, and does not constitute a general property of
spacetime.

The law of selfvariations has been stated based on the ac-
companying particle. Relation (264), in combination with the
symmetric laws (282) and (290), expresses the continuous in-
teraction of the rest mass my and the electric charge g of the
material particle with the energy E of the accompanying par-
ticle. Therefore, we cannot refer just to the material particle,
or just to the accompanying particle. What exists in nature is
the system of the two particles, which behaves as a “general-
ized particle” that occupies a part of spacetime.

The co-incidence of different points in the part of space-
time occupied by the generalized particle alters the trajecto-
ries and velocities of the generalized photons compared to
the strictly defined trajectories and velocities we studied in
the preceding paragraphs. In the case of co-incidence of all
points belonging to this part of spacetime, the concepts of
trajectory and velocity of the generalized photons loose their
meaning. The trajectory and velocity of the material particle
will suffer the same consequences, if the material particle be-
longs to the part of spacetime where the aggregation of the
generalized photons takes place.

In Figures 4 and 6 imagine that, for the material particle,
the points of spacetime within the interior of a sphere of cen-
tre E and radius r coincide. The physical object in the interior
of the sphere constitutes a generalized particle with a specific
rest mass. In every point of the spherical surface, the gener-
alized photon moves with velocity v of magnitude |[v|| = c.
None of the axioms of special relativity and of the theory of
selfvariations are violated. Furthermore, the co-incidence of
different points of spacetime within the interior of the sphere,
concerns the material particle, and does not constitute a gen-
eral property of spacetime.

The investigation of the internal structure and physical
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properties of the generalized particle is the central issue for
the theory of selfvariations. We have to answer specific ques-
tions regarding the generalized particle, and develop specific
methods for the study of its physical properties.

A fundamental question concerns the distribution of the
total rest mass M, of the generalized particle, between the
material particle (m) and the accompanying particle (%) Of
equal importance is the size of the portion of spacetime occu-
pied by the generalized particle.

A basic method for the study of the generalized particle
is the elimination of the velocity, which also represents the
trajectory, from the equations of the theory of selfvariations.
It is not the only method, though. In the following paragraph
we present the basic study for the generalized particle.

6 The quantum phenomena as a consequence of the
selfvariations

6.1 Introduction

The intermediate state between “matter” and “photon” pre-
dicted by the theory of selfvariations, is responsible for the
quantum phenomena. The study of the generalized photon
leads to the Schrodinger and the Klein-Gordon equations, as
well as to the wave equation of Maxwell’s theory of electro-
magnetism.

The elimination of the kinematic characteristics of the
material particle from the equations of the selfvariations,
emerges as the fundamental method for the study of the gen-
eralized particle and, eventually, of quantum phenomena.
This is what is actually done by all the theories developed
during the last century in order to interpret quantum phenom-
ena.

The basic method for the study of the generalized particle
is complemented by the percentage-function ®. The @ func-
tion has to do with the generalized photon and, by extension,
with the generalized particle. Furthermore, it is related with
the interactions of the material particles. Function ® inex-
tricably links the quantum phenomena with the interactions
of the material particles. The investigation of its properties
furthers the theory of selfvariations beyond the bounds of the
present edition.

6.2 The distribution functions of the rest mass

According to equation (284)

M() =mgy + % (349)

the rest mass M of the generalized particle is equal to the
sum of the rest masses of the material particle (m) and the
accompanying particle (%) One way of studying the inner
structure of the generalized particle is to study how the rest
mass M, is distributed to each of the two particles. Knowing
the sum of the rest masses mg and %, it suffices to calculate

Manousos E. Mass and Charge Selfvariation: A Common Underlying Cause for Quantum Phenomena and Cosmological Data

one of the “distribution functions”, that is, one of the complex

_ mo _ _Eo _ moc”
number§ X = Y= o> Z = By
But it is
I’I’l06‘2 E() mocz + EO
X+V¥Y= 5+ 5 = 5
M()C M()C M()C

and with equation (349) we get X + ¥ = 1.
suffices to study either function ¥

Therefore, it

E
(1 (350)
M()C2
or function Z 5
nmyc
Z= 351
E, (351)
in order to determine the distribution of the rest mass M, into

Ey
mg and =
Initially, we will study the effects of the selfvariations on
the function Z. From equation (351) we have

(9_Z _ i(’imoc2
ot  Ey, ot

my 6‘2 OE 0
E; Ot

and with the firsts of equations (265) and (282) we get

0Z 1 ,  mc?i 2
— =—-—-F - — E
ot Eo sMoC E(Z) h7m00 0

and with equation (279) we get

0z 1 2 moc? i 2
= = yE - E
o1 Eo h?’ 0Mmopc E(z) h?’moc 0
0z i moc? 5

== +E

ot~ 1 E ¥ (moc’ + Eo)

and with equation (349) we get

0z i myc? Moc?
—_ = — C
ot h Ey Y¥o
and with equation (351)
0Z i
i —£7MOC2Z. (352)
From equation (351) we obtain
1 2
VZ = —Vmoc? — 22X VE,
Ey ES

and with the second of equations (265) and also (266) we get

1 i moc? i
VZ = ——Pngc* + —— —ymouE.
th spC E(Z) h)/mo 0

and with equation (276) we have

vze Lign o mci
Eo i
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Using equation (279) we get and with equation (350) we arrive at
vz- Ll g oc | VW = — L ymouw 355
Z = E hyEo 2moc + — E(Z) hymoqu = —ﬁymou . (355)
2
VZ = J moj y (E LU mo) u. The differential equations (354) and (355) have the advan-
h Ej tage that the rest mass mg of the material particle appears in
. their second part. This fact allows us to introduce additional
Th h 4
rough equation (349) we get conditions in order to solve the system of differential equa-
i moc? tions (354) and (355). We present this study in the following
VZ = - —)/M ou t h
h E2 Wwo paragraphs.
0 The distribution functions determine the distribution of
and with equation (351) we get the rest mass of the generalized particle between the mate-
; rial particle and the accompanying particle. For every point
VZ = £yMQuZ. (353) A (x,y,z,t)inthe part of spacetime where the generalized par-

The differential equations (352) and (353) offer the advan-
tage that the rest mass M, that appears on their second part,
does not depend on the selfvariations. On the other hand,
they also have a disadvantage. We do not know the additional
conditions we have to introduce for the rest mass M in order
to solve the system of differential equations (352) and (353).
These additional conditions are related to a more general in-
vestigation of the equations of the theory of selfvariations,
which is not included in the present edition.

We shall now study how the selfvariations affect function
Y. From equation (350) we have

0¥ _ o Ey

Ot \ Myc?
and with equation (285) we obtain

oY 1 0K

ot~ Moc? ot

and with the first of equations (282) we get
oY 1 i 2
— = ——— —YmyC

o~ Moc2n! 00

and from equation (350) we get

N i,
— = —ymyPV.
o w0

From equation (350) we have

vy = v (Lo
M()C2

and with equation (286) we obtain

(354)

V¥ =

oV E)

and using the second of equations (282) we get

VY = —iymoqu

= ()
1\4062 h
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ticle can reside, these distribution functions acquire specific
values. These values, in turn, define the values of the rest
masses mg and %

The behavior of the generalized particle can be influenced
by any cause that interacts with the generalized particle in the
part of spacetime it occupies. An external cause can redis-
tribute the rest mass of the generalized particle, directing it
either to the material particle, or to the accompanying parti-
cle. In the first case, the generalized particle will behave as
a material particle with a well-defined trajectory, energy, etc.
In the second case, the generalized particle will spread out
in spacetime, while the consequences resulting from the ag-
gregation of the generalized photons will be strengthened and
intensified. We observe such a case in the double-slit experi-
ment for the electron and for material particles in general (we
assume that the reader is familiar with the double-slit experi-
ment).

The study of the distribution functions is a fundamental
goal in order to understand the behavior of the generalized
particle.

6.3 The Schrodinger equation
From equation (354) we have

PY i
ok

6 amO

2

— + —yPY——

U R

and with equation (354) and the first of equations (265), we

get

Py 2204 . .

7 _Y hzo Y+ %ycz‘ll (—%Esmo)
and with equation (279) we get

62\11 yzmz 4 .

= e ()

PY _ vmct s YmcE,

o h? h?

Y Y2myct ( . EO)‘I’.

c?

2 (356)
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From equation (355) we have
VY = —%ymouV‘I’ - %y‘I’uVmg

and with equation (355) together with the second of equations
(265), we get

2,22 . .

m-u

™ ‘I’—Ly‘Pu(iEsimo)
B c?

VY = —
n2 h

and with equation (279) we get

2:12,2 . .
yomu l l u
vVyg=_--2° T——T(—E——)
2 R U\ 7R Mo
202,,2
e A O i 2 L
n? c?n?

2 2 E
Vo = 20 (g - ). (357)

We now consider the case where the rest mass M, is
mainly distributed to the material particle. This happens when

E
' 02 << 1
myc
or when
E() — 0.

Under these conditions equation (357) can be written as

y? mg u?

2wy
VY = i

(358)

We will now eliminate the velocity u from equation (358),
within the framework of the analysis we performed in para-
graph 5.9 for the generalized particle. For small velocities u,
itis y ~ 1, and equation (358) can be written as

m>u?

VY = -y
h2

(359)

Furthermore, denoting by & the constant sum of the ki-
netic energy %mou2 and the potential energy U = U (x,y,z)
of the material particle, we have

! 2+ U
—MolU =&
D) 0
2(e-U
Mzz(g_).
mo

Replacing factor u? into equation (359) we obtain

_2m0 (e - U)‘P

2g _
VY = "

(360)

which is the time-independent Schrédinger wave-function.
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Ey
oc?
set, and from equation (349) we obtain my — M, therefore

equation (360) can be written in the form
2My (e -
_2Mo(e=U)y,
72
From the derivation process we have followed it becomes

obvious that the Schrodinger equation only approximately de-
scribes the internal structure of the generalized particle.

From the initial conditions, ” << lorEy— 0, we

V2P = (361)

6.4 The Klein-Gordon equation

The way in which we chose to eliminate the velocity from
equation (358) had as a consequence the appearance of the
potential energy U in Schrodinger’s equation (360). We will
now eliminate the velocity # from function ¥in a different
manner. Combining equations (356) and (357), we obtain

Y

W—CZVZ‘P:
2. 4 2 2.2
v moc Ey Y moc u Ey
TR (mo_c_Z)\P“L 72 ( _C_Z)\P
o’y 4 2 E
G v =T (15 - )
and since y = 1 =, we get

52‘P 22 moc E()

gz ~CT = (- )
Y E
S -V m;f ( 0 C—f)lyzo (362)

Eo

In the case where

<< lor Ey — 0, equation (362)

myc?

can be written as
62\1’ 2w?2 moc4
e VY + "
which is the Klein-Gordon equation. With the conditions we
posed, it follows that my — M in equation (363).

Of particular interest is the case my = 0, where from equa-
tion (362) we obtain

¥Y=0

(363)

Y 2w
ﬁ —-cV'¥Y =0
e
VY - G55 =0 (364)

From equation (349) for my = 0 we get Ey = Myc?.
Therefore, all of the rest energy of the generalized particle
has shifted to the accompanying particle. Furthermore, we
get 9] = || 2
tial equation (364), we should modify the final solution such
that the wave-like behavior of a scalar quantity ¥ appears, for
which we demand that ||¥|| = 1.

H = 1. In every case we solve the differen-
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6.5 The central role of the percentage function @ in the
internal structure and the physical properties of the
generalized particle

According to equations (302) and (303) the energy E and the
momentum P of a single generalized photon depends on the
percentage function ®. Furthermore, according to equation
(330), the intrinsic angular momentum S of a single gener-
alized particle depends exclusively on the percentage func-
tion ®. The generalized particle emerges in the part of space-
time where the aggregation of the generalized photons takes
place. Therefore, the percentage function ® plays a funda-
mental role, both for the internal structure, as well as for the
physical properties of the generalized particle.

Function © allows the comprehension of the extent of the
portion of spacetime occupied by the generalized particle. In
paragraph 5.6 we determined the physical quantities that can
only be defined in the surrounding spacetime of the material
particle. These physical quantities are inversely proportional
to the distance r. Therefore, the space occupied by the gen-
eralized photon can extend to infinity, with the consequences,
of course, predicted by the corresponding equations for its en-
ergy, momentum, and angular momentum. Since each gener-
alized photon can extend to infinity, the same also holds for
the part of space where the aggregation of the generalized
photons takes place. Therefore, the generalized particle can
extend to infinity.

In the case of the simplest generalized photon, as we stud-
ied it in paragraph 5.7, there results an instantaneous interac-
tion of the material particle with the accompanying particle.
This interaction takes place at the instant of emission of the
generalized photon, exactly at the point where the material
point particle resides. Therefore, in this case the generalized
particle is a point particle.

In conclusion, we can say that the generalized particle can
extend from a point of spacetime up to an infinite distance
from the material particle. Furthermore, in each case, the ex-
tent of the part of spacetime in which the generalized particle
extends, is determined by the percentage function ®.

For the derivation of the Schrodinger and the Klein-
Gordon equations, we based our investigation on equation
(349), My = my+ % A fundamental piece of information, re-
lated with the function @, is missing from this equation. The
generalized photon carries rest energy, according to equations
(314) and (315), which depends on the function ® and the dis-
tance r. In other words, right from the start, the generalized
photon, and therefore the generalized particle, are correlated
with a rest energy in the surrounding spacetime of the ma-
terial particle. The rest mass corresponding to this rest en-
ergy does not appear in equation (349). For the same reason,
the angular momentum does not appear in the Schrédinger
and the Klein-Gordon equations, since the internal angular
momentum of the generalized photon depends exclusively on
function @, according to equation (330).
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Function ® expresses the potential of a material particle
to emit generalized photons of different energies for differ-
ent directions. Theoretically, we cannot predict exactly how
function @ depends on the internal structure of the material
particle. Quite likely we can do this by performing some
measurements. But we can predict theoretically an impor-
tant factor on which function @ depends, that results from the
continuous exchange of generalized photons between mate-
rial particles. This exchange of generalized photons is equiv-
alent to a variation of function ®. According to equations
(302), (303) and (330), the energy, momentum and intrinsic
angular momentum of the generalized photon are exactly cor-
related with the variation of function ®. We, therefore, come
to the conclusion that the quantum phenomena are interre-
lated with the interactions of the material particles, the con-
necting link being function ®. Function ® is related with the
interactions between material particles, but also with the en-
ergy of the generalized photons and, by extension, with the
generalized particle.

In paragraph 5.9 we referred to the fundamental method
for studying the generalized particle. We analyzed the reasons
for which we have to expunge the velocity from the equations
of the theory of selfvariations in order to study the internal
structure and the physical properties of the generalized parti-
cle. Of equal importance is the inclusion of function @ in the
study of the generalized particle.

Observing the Schrodinger operators [22-26], as used in
quantum mechanics, we realize that the first consequence of
their use is the elimination of the kinematic characteristics of
the material particle from the resulting differential equations.
Function @ does not appear in the final equations, since it
does not exist as a concept within the physical theories of the
last century. It is represented, though, by the physical quanti-
ties related with the interactions in which the material particle
participates, by the potential energy or the generalized mo-
mentum of the material particle. Analogous is the procedure
followed by Dirac [27] for the derivation of his eponymous
equation.

One of the questions about the generalized particle, to
which we deliberately did not refer in paragraph 5.9, is the
probability of finding the material particle at a specific mo-
ment, in a specific position in the part of spacetime occupied
by the generalized particle. There are many physical quan-
tities related with the Schrodinger operators. Judging by the
success of quantum mechanics, one way to study the gener-
alized particle is through statistical interpretation. We must
not forget, though, that a single cause suffices in order to shift
the rest energy of the generalized particle, either towards the
material particle, or towards the accompanying particle. One
and only cause is sufficient for the corpuscular or wave-like
behavior of the generalized particle to emerge.

By investigating the properties of function @ or by mak-
ing concrete hypotheses regarding function @, we can extend
our study of quantum phenomena and the interactions of par-
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ticles. On the contrary, in paragraph 5.8 we showed that equa-
tion (348) does not depend on function ®. This allows us to
solve it and investigate it completely. We present that study
in the next paragraph.

7 The cosmological data as a consequence of the
selfvariations

7.1 Introduction

The origin of matter is already recorded in the cosmological
observational data. We just lacked a fundamental piece of
information in order to decode it: the law of selfvariations.

The redshift of distant astronomical objects, the cosmic
microwave background radiation and the information
obtained by the analysis of this radiation, the increased lu-
minosity distances of supernovae, the large-scale, as well as
small-scale, structure of matter in the universe, the large-scale
isotropy and flatness of the universe, the slight variation of the
fine structure constant, and the arrow of time, all share the law
of selfvariations as a common cause.

The law of selfvariations contains as information the en-
tire corpus of the cosmological observational data, as we ob-
serve and record them since the time of Hubble. Behind the
barrage of interventions made in order to bring the Standard
Cosmological Model in agreement with the cosmological ob-
servational data, lies our ignorance about the fundamental law
of selfvariations. The physical theories of the past century do
not possess the necessary completeness in order to explain the
cosmological observational data.

The improved scientific observation instruments we pos-
sess record persistently, and with ever increasing detail, the
consequences of the law of selfvariations.

7.2 The fundamental equations

The cosmological data concern the observation of the Uni-
verse at long distances, that is, in the past. At a distant as-
tronomical object, located at a distance r from Earth, the rest
mass my (r) of a material particle in the past is smaller, com-
pared to the laboratory rest mass m of the same material par-
ticle we measure “now” on Earth. The electric charge g (r)
also differs from the laboratory value ¢ of the electric charge
as measured “now” on Earth. We calculate the quantity m (r)
as a function of my, and ¢ (r) as a function of ¢. In this man-
ner, we incorporate into our equations the consequences re-
sulting from the internality of the Universe to the process of
measurement.

In the following, and using the known physical laws, we
determine the consequences of the selfvariations for distant
astronomical objects. Furthermore, we can determine the
consequences of the selfvariations in the electromagnetic
spectra of the astronomical objects we receive “now” on
Earth. We shall prove that equation (348)

(moc2 + ih@) =0
my

(365)
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which holds for every material particle contains as informa-
tion the entirety of the cosmological data.

We will solve equation (365) for a material particle in the
case of a flat and static universe. This equation contains as
information the redshift of distant astronomical objects. Fur-
thermore, it predicts that the gravitational interaction cannot
play the role attributed to it by the Standard Cosmological
Model. It informs us that the gravitational interaction cannot
lead the Universe either to collapse or to expansion. Conse-
quently, there is no point of solving equation (365) within an
expanding Universe.

Equation (365) contains as information the fact that the
total energy of the Universe is zero. Therefore, after solving
the equation, it can be verified a posteriori that the Universe
is flat.

From equation (365) we have that

(moc2 + ih@) =0

mo
AN
(hmoc mo) =0
R L (366)
h my

Here, k is the constant of integration. From equation (366)
we see that
ikh 1

T2 1-expkt+p) (367)

mgy =

Here, u is the constant of integration.

Let us suppose that we observe “now” on Earth, the elec-
tromagnetic spectrum of an astronomical object located at a
distance r away from Earth. The emission of the electromag-
netic spectrum from the astronomical object took place be-
fore a time interval A7 = £. According to equation (367) the
rest mass mg(r) of the material particle at the moment of the
emission of the corresponding electromagnetic spectrum was

ikh 1

my = —— - . (368)
“1 —exp(k(t— —)+/1)
c
Combining equations (367) and (368) we have that
1 —exp (kt + p)
my(r) = my P r,u .
1- exp(k(t— —) +/,¢)
c
Setting
A =exp (kt + W) (369)
we obtain
1-A
mo(r) = my (370)

oV
1-Aexp (__r)
c

Equation (370) expresses the rest mass m(r) of the ma-
terial particle in the distant astronomical object and before a
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time interval A = £, compared with the laboratory value of
the rest mass myg of the same material particle. In this way
we include in the equations we state the consequences of the
internality of the Universe with respect to the measurement
process, as set forth in paragraph 4.9.

If we remove the imaginary unit i from equation (365), or
replace it by any arbitrary constant b # 0, we will again end
up with equations (369) and (370). The problems caused by
the internality of the Universe with respect to the measure-
ment procedure can only be evaded through equation (370).
Only after comparing the rest masses mg(r) and mgy can we
measure the consequences of the selfvariations.

From equation (369) we obtain for the parameter A

dA .
— = A =kA. 371
R (371)
From equation (367) we also obtain
= m kexp (kt + p)
0= —exp(kt +pu)’
Through equation (369) we see that
kA
I’h() = mol —A‘ (372)
Combining equations (268) and (372) we obtain
. kA
Ey = zhl — (373)

In the case of the electric charge the corresponding equa-
tion to equation (365) is the second of equations (292)

h .\ ®
@+Lﬁ)=o (374)
Voq
This gives us the corresponding solution
1-B
40 = g——— (375)
1 - Bexp (—L)
c
B =exp (kit +up) (376)
dB .
— =B=kB. 377
7 1 (377)

Here, k; and p; are the constants of integration.

The corresponding equation to equation (372) is equation
kB

- B

q=d7 (378)

Combining the first of equations (292) with equation
(378) we obtain

kB
qiVo = ih——.

T_g (379)
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This equation is the corresponding equation to equation
(373).

If we remove from equation (374) the imaginary unit i, or
if we replace it by any arbitrary constant b # 0, we will still
arrive at equations (375) and (376). The problems caused by
the internality of the Universe with respect to the measure-
ment procedure can only be evaded through equation (375).
We can only measure the consequences of the selfvariations
by comparing the electric charges ¢ (r) and g.

7.3 The redshift of the far distant astronomical objects

The wavelength A of the linear spectrum of an atom is in-
versely proportional to the factor moq®*, where my is the rest
mass and g the electric charge of the electron. We denote by
A the wavelength of the linear spectrum we observe “now”
on Earth, and which originates from the atoms of an astro-
nomical object located at distance r. With 1y we denote the
wavelength of the same kind of atom as measured in the lab-
oratory “now” on Earth.
We have that

% moq’

L mo(ng* ()’

Using equations (370) and (375) we obtain

4
1 —Aexp (—ﬁ) 1-Bexp (—m)
c

C
o= — — . (380)

For the redshift z of the astronomical object we obtain

_A-
z= 2
Pl
== -1
< T

Using equation (380) we see that

k k|
l—Aexp(——r) l—Bexp(—ﬂ)
c c

1-A 1-B

z= -1 (381)

This equation constitutes the full mathematical expres-
sion for the redshift z of the linear spectrum of distant as-
tronomical objects.

We shall now perform an approximation. From the cos-
mological data we know that the fine structure constant

&2

- dregch

remains constant for observations we make at very large dis-
tances from Earth. Therefore, the value of the electric charge
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q (r) differs minimally from the laboratory value g in the re-
gion of the Universe we observe. Therefore, we can write
equation (381) in a simpler form, that is

k
1-Aexp (__r)
c

- 1.
1-A

z= (382)

Here, we used the approximation g (r) = g.

Equation (382) holds for the regions of the Universe that
can be surveyed by the scientific observation instruments we
currently have at our disposal. We shall return to the issue of
the fine structure constant in another paragraph.

From equation (369) we see that
A>0. (383)

According to equation (382), and since the value of the
redshift z increases with the distance r, it holds that

k> 0. (384)
From equation (382), and for r — +oco , we obtain
1
max — T . 1
fmax = T4
A
max — —. 385
z T2 (385)

We have that zx > 0,A > 0, as given in relation (383),
thus we get

1-A>0
A<l (386)

Now, it holds that
z< Zmax -

Using equation (385) we obtain

A

< .
LST1Ca

Due to relation (386) we obtain

Z(1-A) <A

z-7A <A

z<(1+2A
z

1+z
Through relation (386) we finally arrive at

L<A<1.

1+z (387)

This inequality holds for every redshift z, and allows us to
estimate the range of values the parameter A acquires.
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From equation (382), and for = 0, we obtain z = 0, thus

k k
1 —Aexp (__r) kA exp (__r)
c c

,_dz_
. 1-A

==

c(1-A)
For r = 0 we get

kA

, dz
0= ZLO T e(1-A)

We expand equation (382) giving z = z(r) into a Taylor
series, and only to first order terms

z2(r) = z(0) + Z (0)

kA
Z(i’)—0+ mr
kA
cZ = I_Ar.

Comparing with Hubble’s law ¢z = Hr , we obtain

A
M

T—A (388)

where H is the Hubble parameter.

From equation (388) we obtain k = H I*TA. The range of
values of parameter A, as determined from inequality (387),
allows us to estimate the extremely small value of the con-
stant k. Now, according to equation (371), the parameter A
increases at an extremely slow rate, and remains practically
constant in the measurements we conduct.

For the energy E, which results during nuclear fission, nu-
clear fusion, and more generally, every case where the con-
version of rest mass into energy takes place, we obtain

m _ mo(r)c?

E moc?

Using equation (370) we see that

E() 1-A
E l—Aexp(—E)
C
E(r)=E 1-4 (389)

1 —Aexp (—E)
c

For the photons which result from the conversion of mass
into energy we have

ch
Y Er _ E
oy, ch T E@)
E
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Using equation (389) we obtain

1_Aexp(__)

Ay
/1_07 ] k
-
Aoy Aexp( C)
ﬂoy
1—Aexp(—¥)
=4 " 1. (390)

Equations (390) and (382) are identical. However, beyond
the limits reached by our current observations, the redshift z
of the linear spectrum is given in general by equation (381).
From equation (382) we obtain

k
1-Aexp (__r)
c

l+z=
. 1-A

(391
Combining equations (370) and (391) we have that
mo
= —. 392
mo(2) 1%z (392)

Combining equations (389) and (391) we see that

E
()= T+ (393)
Combining equations (373) and (388) we obtain

Eo = ihH (394)

for the laboratory value of the energy Ej.

7.4 The graphs of the functions r = r(z) and R = R(z)

From equation (382) we have that

l—Aexp(—E)

C
=—za !
A kr

“T1oa eXp(_?)

Solving for r we obtain

_C1 A
" “(A—z(l—A))'

This equation gives the distance r of the astronomical ob-
ject as a function of the redshift z.

From equation (388) we obtain k = H %, and after re-
placing the constant & into equation (395), we get

_e A
"TH1-A"\A

(395)

A
_Z(I_A)). (396)
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Fig. 10: The graph of distance r of a distant astronomical object as a
function of the redshift z. As we increase the value of the parameter
A from 0.900 to 0.999, the curve r = r(z) approaches a straight line.
km

The graph has been made with H = 6 Mpe
constant.

This equation is more convenient than equation (395),
since we know the value of the Hubble parameter H, as well
as the range of values of the parameter A from inequality
(387), that is

= <A<l
1+z

In Figure 10 we present the graph of the curve r = r(z)
for H = 60~ 11\(/[mc’ and for the values of A = 0.900, A = 0.950,
A =0.990, A = 0.999 up to z = 5. We observe that as the
value of the parameter A increases, the curve tends to be a

straight line.

We shall now prove that for A — 1~ the equivalent equa-
tions (382) and (396) tend to Hubble’s law

cz=Hr (397)

From equation (388) we have k = %H , and after substi-

tuting into equation (382), we obtain

1-AH
I = Aexp(-—=—r
-

- -1
. 1—-A

We denote by x = %, therefore x — 0* forA — 17, and
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1- exp(—x—) X+ l—exp(—x—) S -
___x+1 c S
= 1= 1
—_ l X (=]
x+1 S
Hr
X+ l—exp(—x—) o 5 o
l. — 1 — 1 C _ 1 % 2 o _|
A1—>ni1‘ (Z) XLI(I)I*' (Z) xl»r{)l" X % 8
S
. Hr Hr Hr N
lim (1+—exp(—x—)—1)=—. °
x—0* c c c s |
&
Equation (396) gives the distance r of the astronomical
object, when we know the value of its redshift z. On the other o

hand, if we measure the distance based on the luminosity of
the astronomical object, we shall always find it to be larger
than the one given by equation (396). The reason is simple:
The energy feeding the radiation of the astronomical objects
originates from nuclear fusion, and more generally, from the
conversion of rest mass into energy. According to equation
(389), this energy E (r) is less than the expected energy E.
Therefore, the luminosity of the astronomical object is itself
lower than the standard luminosity we use.

The luminosity distance R of an astronomical object is
defined by equation

1 dE

=R (398)

In this equation, J denotes the power per unit surface we
receive from the astronomical object, whereas the power %
refers to the “standard candle” we are using.

If the real distance of the astronomical object is r, then we

obtain for the power per unit surface J

1 dE(r)
T 4xrr dr (399)
From equations (398) and (399) we get
1 dE 1 dE(r)
R2dt 2 dt
Using equation (393) we have that
1de 1 1 dE
R2dt  rl+zdt
RP=r(1+2)
R=rvVv1l+z (400)
Combining equations (400) and (396) we see that
R=S A Tazm(—2 401)
“THI-A Ma—za-a)
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Fig. 11: The graph of the luminosity distance R of astronomical ob-
jects as a function of the redshift z. The measurement of the luminos-
ity distances of type la supernova confirms the theoretical prediction
of the law of selfvariations.

The measurements conducted for the determination of
Hubble’s constant H, have not taken into account the conse-
quences of equation (400). Even for the case of small values
of the redshift z it holds that R > r. The measurement of Hub-
ble’s parameter H with the use of the luminosity distances of
astronomical objects is correct only for very small values of
z, where it holds that R ~ r. Such measurements result in
a value of H = 60 Sll\‘,lrgc. Measurements performed have in-
cluded astronomical objects with large values of the redshift
z, thus increasing the value of the parameter H to values rang-
ing between 72 and 74 it

Today, we perform measurements with high accuracy.
Taking into consideration the consequences of equation (400)
we expect the parameter H to be measured close to 60811\‘4%,
independently of the redshift z of the astronomical object.
We, of course, refer to measurements of the parameter H, on
the basis of the luminosity distances of astronomical objects.

Equally well to equation (401) we can also use the equa-
tion which results after combining equations (400) and (397),
that is

C
R=—zVl+z 402
e z (402)
For H = 60 si‘,ﬁ;c andc =3 X 105]% this can be written as

R =5000z V1 +z. (403)

The luminosity distance R is given in Mpc. In the graph
of figure 11 we present the graph of the function R = R (z),
as given in equation (403) and up to values of the redshift
z=1.5.
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Type Ia supernova are cosmological objects for which we
can measure their luminosity distance R. Furthermore, this
measurement can be conducted at large distances, where the
consequences of equation (393) are measurable.

At the end of the last century this kind of measurements
were conducted by independent scientific groups. The graph
thet results from these measurements exactly matches graph
7.4.2 which is predicted theoretically by the theory of self-
variations. In order to explain the inconsistency of the Stan-
dard Cosmological Model with graph 7.4.2, the existence of
dark energy was invented and introduced [28-30].

7.5 Gravity cannot play the role attributed to it by the
Standard Cosmological Model

From equation (388) we obtain k = %H , and

1o (404)

k 1-AH
c

For H = 603, A = 0.999, ¢ = 3 x 10°X" we have that

N

1
k_ 2x 1077 — (405)
C

Mpc’
We replace this value of ’g into equation (370) and obtain

0.001

. 406
1-10.999 exp (-2 x 1077r) (406)

mg (r) = my

Here, the distance r is measured in Mpc.

For values of r of the order of magnitude of kpc, equation
(406) gives that mg (r) = my. Therefore, the strength of the
gravitational interaction is not affected in the scale of galactic
distances. For example, for distance r = 100 kpc, equation
(406) gives mg (r) = 0.99999 my. Therefore, the selfvaria-
tions do not affect the stability of the solar system, galaxies,
and galaxy clusters.

On the contrary, for distances of order of magnitude of
Mpc, equation (406) predicts a clearly smaller value of mg(r),
compared to my. For example, for r = 100 Mpc equation
(406) gives my(r) = 0.98 my. The strength of the gravitational
interaction exerted on our galaxy by a galaxy from a distance
of 100 Mpc is 98% of the expected. For r = 2 x 10> Mpc
equation (406) gives mo(r) = 0.7145 my. The strength of the
gravitational interaction exerted by a galaxy, which is located
at a distance of 2000 Mpc, on our galaxy is only 71.45% of
the expected.

Therefore, we conclude that due to the selfvariations the
gravitational interaction is weakened at cosmological dis-
tances and cannot play the role attributed to it by the Standard
Cosmological Model. The gravitational interaction domin-
ates and rules at a local level, at scales of a few hundreds or
thousands of kpc.

We note that if we chose a different value for the param-
eter A, from the values permitted by inequality (387), all the
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arithmetic values appearing in equation (406) shall be altered.
However, the same conclusions will be drawn about the rela-
tion between rest masses mg(r) and my.

The rest mass is given as a function of the redshift z from
equation (392)

my(z) = T2

For z = 0.1 we get my(z) = 0.9091 my, for z = 1 we
have mo(z) = 0.5 mgp, and for z = 9 we see that my(z) =
0.1 mg. The strength of the gravitational interaction exerted
by an astronomical object with redshift z = 9 on our galaxy
is only 10% of the expected.

For even greater distances the gravitational interaction

practically vanishes.

7.6 The very early Universe

All the equations we have stated in this paragraph are com-
patible with the condition r — oco. The equations are stated
in such a way that the condition r — oo offers us information
about the very early Universe.

For » — oo equation (370) gives

mo (r = o) = mp (1 —A). (407)

The inequality (387)

X <A<l
1+z
holds for every value of the redshift z, hence A — 1. There-
fore, from relation (407) we conclude that the initial form of
the Universe only slightly differs from the vacuum.
Similarly, from equation (375) we have that

q(r— o) — g -B). (408)

This relation does not lead to the same consequences as
relation (407). We know that the electric charge exists in op-
posite physical quantities in the Universe. Because of this, the
total electric charge of the Universe is zero. Relation (407)
informs as that the energy content of the very early Universe
also tends to zero. The very early Universe only slightly dif-
fers from the vacuum. It possesses, though, a very important
property which determines its evolution. It is temporally vari-
able due to the selfvariations.

The increase of the rest masses and the electric charges
destroys the initial homogeneity and state of rest, induces the
first minute motions of the particles, and shifts the system
to a temperature slightly above 0 K (temperature reflects the
kinetic state of the particles in the system). The evolution of
the selfvariations with the passage of time leads the Universe
to the form in which we observe it today.

In general, this is the prediction for the begining and evo-
lution of the Universe from the equations we have stated. This
prediction is also verified from the calculations presented in
the following paragraphs.
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7.7 The Universe is flat

From the principle of conservation of energy we conclude that
the total energy content of the Universe is constant, and re-
mains the same at every moment. Relation (407) informs us
that the energy content of the very early Universe tends to
zero. Therefore, the same holds today as we observe the Uni-
verse. Because of this, the Universe is flat.

The difference between the current state of the Universe
and its initial state is the following: The rest masses of par-
ticles have increased, but this increase is counterbalanced by
the generalized photons that flood spacetime, and by the
strengthening of all kinds of negative potential energies that
result as a consequence.

The observations conducted by the COBE and WMAP
satellites confirm that the Universe is flat. Other observational
data lead us to the same conclusion.

7.8 The origin of the cosmic microwave background
radiation

The laboratory value for the Thomson scattering coefficient
[31,32] is
_ 3 q*
or =3 m%cf
Here, g and my are the electric charge and the rest mass
of the electron, respectively. At a distant astronomical object
the Thomson coefficient is

(409)

81 ¢*(r)
()= ————. 410
7 (1) 3 my(r)c? (410)
Combining these equations we get that
T ) _ (_’"O )2(@)4. @11
07 mO(r) q

From the observations we have made on the variation of
the fine structure constant we know that, for large distances r,
it holds that ¢ (r) = g. Therefore, at a very good approxima-
tion, equation (411) can be written as

o (r) _( my )
o mo(r))
Using equation (370) we obtain that

2
1-Aexp (—E)
o (r) c

= . 412
o 1-A (412)

For very large distances (r — o0) very close to the initial
state of the Universe, and at a temperature of about 0 K, equa-
tion (412) gives

or(r—o0) (1 2
( A) . (413)

lo -
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But according to inequality (387), A — 1. Therefore, in
the very distant past, and for a temperature of the Universe
just slightly above 0 K, the Thomson scattering coefficient
acquires enormous values, rendering the Universe opaque.
The cosmic microwave background radiation we observe to-
day, originates in this phase of the evolution of the Universe.
The conditions we described refer to the whole expanse of
the Universe. That is why the cosmic microwave background
radiation seems to originate “from everywhere”.

Equation (412) gives the value of the scattering coefficient
at distant astronomical objects. Combining this equation with
equation (382) gives

Or (Z) — (1 +Z)2

T

(414)

This equation is easier to use, since it expresses the Thom-
son scattering coefficient as a function of the redshift z of the
distant astronomical object. We can also write equation (414)
in the form

(oS (Z) = O-T(l +Z)2 .

4

T e
o (2) = 3 e (1+2)7°

where e and m, denote the electric charge and the mass of the
electron, respectively.

The Thomson coefficient concerns the scattering of pho-
tons of low energy E. For high energy photons it is replaced
by the Klein-Nishina coefficient, given in the laboratory by

3 moc? n 2E +1
0'—80'T E m0C2

2
and by relation

(415)

(416)

3 mg (2) ¢?
o(2)= 3% (@ EQ

2E (2) 1
n + =
mo(2)c?) 2
for the distant astronomical object.
From equations (392) and (393) we obtain

] 417)

my(2) 2 moc?

E  E

Therefore, equation (417) can be written as

3 I’I’l002 2E 1
=0, (7) — |1 Z1.
o (2) 80— () 7 [n( 002)+2

Using equation (416) we have
o 0

@ 0@

Using equation (414) we take that
o) =0(+2)>. (418)

The two scattering coefficients depend in the same way
upon the redshift z, and the distance 7.
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7.9 The decrease of the atomic ionization energies at
distant astronomical objects

The ionization and excitation energy X,, of the atoms is pro-
portional to the factor moq*, where my is the rest mass of the
electron and g is its electric charge. Thus, we have

X () _mo() (¢’
Xn mo q '
After applying the familiar approximation g (r) = g we

obtain
Xn (r) - myg (l’)
Xn my ’
Using equation (370) we have

Xa 1-A
" _ . (419)
Xn ( kr)
1 -Aexp|——
¢
Through equation (382) we see that
Xy
X, () = —. 420
(2) T4z (420)

According to this equation the redshift z affects the rate of
ionization of the atoms in distant astronomical objects. Boltz-
mann’s equation

N n dn Xn
= exp( KT) “21)

expresses the number of the ionized atoms N, occupying
the energy level n in a stellar surface which is at thermody-
namic equilibrium. With X,, we denote the excitation energy
from the energy level 1 to the level n, T stands for the tem-
perature of the stellar surface in Kelvin, K = 1.38 x 10723 J/K
is Boltzmann’s constant, and g, is the degree of degeneracy
multiplicity of level n, that is, the number of energy levels
into which level n splits in the presence of a magnetic field.

Combining equations (420) and (421), we obtain for the
distant astronomical object relation

XI‘L
Xp(_KT(1+z))'

In the case of the hydrogen atom, for n = 2, X, = 10.15
eV =1624x 10717, g1 =2, g> = 8 and for a solar surface
temperature 7 ~ 6000 K, equation (421) shows that only one
atom out of 10% occupies the n = 2 state. At the same temper-
ature, equation (422) gives that for a redshift value of z = 1

we have % =2.2x107%, for z = 2 we have % =5.8x%x1073,

and for z = 5 we have % =0.15.

The conclusions drawn from the current and the previ-
ous paragraph demand a reexamination of the conclusions we
have drawn from the observation of the electromagnetic spec-
trum of distant astronomical objects.

Ny gn

e 422
N g (422)
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For very large distances, that is, in the very distant past,
equation (419) gives

X, (r—>00)=X,(1-A). (423)

This equation informs us that the very early Universe was

ionized at some stage [33]. The ionization energies of the

atoms had very small values. We can reach the same conclu-

sion if we substitute into equation (420) very large values of

the variable z, or if in equation (421) we replace the energy
X, with X, (1 — A).

7.10 On the fine structure constant

In the preceding paragraphs we saw that due to the manifes-
tation of the selfvariations, energy, momentum, angular mo-
mentum and electric charge flow from the material particles
to the surrounding spacetime. The first consequence of the
selfvariations is the potential to transfer energy, momentum,
angular momentum and electric charge from one material par-
ticle to another, i.e. the interaction between the material par-
ticles. The gravitational and electromagnetic interactions de-
termine the starting point for the quantitative determination of
the selfvariations. Because of this, we supposed that the rest
masses and the electric charges, and not any other physical
quantity, vary with the passage of time. We offer this remark
since, at cosmological scales, equation (365) justifies all of
the cosmological observational data we possess, and it could
be supposed that the electric charge remains constant. Such
an assumption cannot hold within the framework of the the-
ory of selfvariations, where the selfvariations of the electric
charge are responsible for the electromagnetic field.

By analyzing the electromagnetic spectra reaching Earth
from distant quasars from distances up to 6 x 10°ly [34-36],
the value of the fine structure constant o remains constant.
More precisely, there are indications of a very slight variation
of the parameter .

The parameter o depends on the electron charge ¢, as
given in

a= 7 .
dregch

(424)

Therefore, this parameter is not constant. We have

@) _ (g0
a \q |~

Using equation (375) we also have

2

1-B
k
1- Bexp(—i)
C

From this equation it can be inferred that the parameter
a(r) (essentially the electric chargeq (r)), remains constant

2
al) _ (M) = (425)

@ q
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for large distances r when the constant k; or the parameter B
acquire extremely small values. According to relation (408)
we have that

q(r— o) —q(l-B).

This relation can be written as
a(r = o) > a(l - B)>.

Therefore, the value of the electric charge and of the pa-
rameter « in the very early Universe are only determined by
the value of the parameter B. Hence, the parameter B has a
very small value, independently of the value of constant k.

For very small values of the parameter B we see that

q(r— o) - qg(l-B)—>q.

This prediction does not cause any problems at the initial
state of the Universe, since the electric charge exists in cou-
ples of opposite physical quantities. Such a relation cannot
hold for the case of the rest mass, and indeed we know that

z

— <A<
1+z

mo(r = o00) > my (1 —A) — 0.

From equation (376) we obtain B > 0. Thus, we arrive at
the conclusion that the parameterB acquires extremely small
positive values.

The extremely small value of the parameter B assures the
stability of the value of the parameter « for large distances
r. Hence, we turn our attention not to the arithmetic value
(which is likely to be extremely small, as is the case for the
constant k = 1‘TAH), but to the sign of the constant k.

For k; > 0 we obtain successively that

k1>0
_kr

<0
C

exp(—ki) <1, (B>0)
C
Bexp(—m) <B

C

—-Bexp (—]ﬂ) > -B
c

l—Bexp(—m)>l—B, (I—Bexp(—m)>0)
c c

1-B

k
1 - Bexp (—ﬁ)
c

From equation (425) we have that

< 1.

2
)<1 k1>0.
a q
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Therefore, for k; > 0 we will measure a slight decrease of
the parameter « at large distances. Similarly, it turns out that
for k; < 0 we will measure a slight increase of the parameter
a at large distances [37]

2
)>1, ky <O.
@ q

Based on the observational data we currently have, mea-
surements of the variation of the parameter a have to be con-
ducted for distances greater than 6 x 10° ly. The extremely
small value of the (positive) parameter B renders these mea-
surements difficult, in both cases.

7.11 The large structures in the Universe

The increase of the rest masses with the passage of time
strengthens the gravitational interaction and accumulates
matter towards various directions. The consequences of the
accumulation of matter depend upon the quantity of the ac-
cumulated matter, as well as on the volume it occupies. In
all cases, the total initial energy of the accumulated matter is
zero, according to relation (407).

At large scales, at distances of order of magnitude 10° ly,
the distribution of matter must have been determined by a
large-scale destruction of the absolute homogeneity of the
vacuum in the very early Universe. This explains the colossal
webs of matter through vast expances of empty space that we
observe with the modern observational instruments.

At smaller scales, within the dimensions of a galaxy, the
accumulation of matter increases the temperature, as a result
of the conversion of the gravitational potential energy into
heat. A percentage of the particles of matter accumulates in
a first central core of high temperature, while the remaining
percentage remains distributed in the surrounding space dur-
ing the period of accumulation. The slow rate at which the
selfvariations occur, strengthens, also at a slow rate, the mag-
nitude of the gravitational interaction, and allows a consider-
able percentage of the particles to remain in the surrounding
space.

A further accumulation of the first core will lead to the
formation of a second, more centralized core, until the tem-
perature reaches the point where nuclear fusion starts. The
initiation of nuclear fusion prevents the further accumulation
of matter.

We separated the process of the accumulation into two
phases, and we mentioned two cores for the following rea-
son: The initial percentage of matter which remained outside
the initial central core concerns the initial phase of the accu-
mulation and is at a low temperature, slightly above 0K [38].
However, the percentage of matter which stays outside the
second, and real central core, already has a high temperature.
If we take into account the very high value of the Reynolds
coefficient in this region, turbulent vortices will be generated.
Therefore, the formation of stars should occur in this region.
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In the final central core, the density of matter should be larger
than in the rest of the galaxy. Clusters of galaxies are formed
through similar processes.

Rough calculations give an equation correlating the mass
and the volume of a galaxy [39-42]. This relation is con-
sistent with the data we possess about galaxies (and galaxy
clusters). But in reality, the process of accumulation is not
separated into phases, but evolves in a continuous manner,
from its beginning up to the formation of a galaxy. There-
fore, we can only reach safe conclusions on the issue through
computer simulations.

7.12 The origin of matter and the arrow of time

The equations of the theory of selfvariations predict at the
limit, in the very distant past, that the beginning of the Uni-
verse was the vacuum. Therefore, we cannot consider a point
to be the beginning of the universe, as proposed by the Stan-
dard Cosmological Model. All the points within the Universe
are equivalent. The Universe originates “from everywhere”,
exactly as the cosmic microwave background radiation does
(paragraph 7.8). Which physical mechanism can lead to such
a result?

The theory of selfvariations predicts that the generalized
particle can behave in such a way. The correlation of the
vacuum with the condition dS> = 0 leads to such an
interpretation, as we analyzed it in paragraph 5.9 and in para-
graph 6.

What happens at the microcosm is a repetition at a local
level, in a region of spacetime, of the condition that dom-
inated throughout the spacetime occupied by the Universe
during its emergence from the vacuum. That is how the slight
perturbations of enormous spatial dimensions emerged within
the initial homogeneity of the vacuum.

These perturbations were recorded on the cosmic micro-
wave background radiation that followed (2.74 K) and which
also originates from the whole Universe, as discussed in para-
graph 7.8. Moreover, these perturbations are responsible for
the large-scale distribution of matter in the Universe (para-
graph 7.11).

The theory of selfvariations solves a fundamental prob-
lem of physical reality, which the physical theories of the last
century are unable to solve. The equations of the theory of
selfvariations include the arrow of time. The Universe origi-
nates from the vacuum and evolves towards a particular direc-
tion, which is determined by the selfvariations. The selfvari-
ations continuously “distance” the Universe from the state of
vacuum, but the Universe remains consistent with its origin:

The origin of matter from the vacuum, combined with the
principles of conservation, has as a consequence that the en-
ergy content of the Universe is zero.

In the laboratory, the internality of the Universe to the pro-
cess of measurement apparently “freezes” the time evolution
of the selfvariations. On the contrary, the consequences of
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the selfvariations are directly imprinted on the observations
we conduct at large distances. The Universe we observe to-
day, and the complex processes taking place in Nature, are the
results of the evolution of the selfvariations with the passage
of time.

7.13 The future evolution of the Universe

The range of values parameter A takes is given by inequality

(387)

= <A<l
1+z

Furthermore, equation (371) informs us that the parame-
ter A approaches unity at an exceptionally slow rate, due to
the extremely small value of the constant k = %H .

The parameter A appears in all of the equations we have
stated. Because of this, the evolution of this parameter
through time also determines the future evolution of the Uni-
verse, at least in the observations we will conduct in the far
future.

From equation (388) we have that

H:kA(l—A)+AA
(1-A)»>

Using equation (371) we obtain

kA
= k——>5
(I-4)
1 kA Y
TAll-A
o1,
H=—H.
A
ForA ~ 1,H = 60X =2 x 10718 ¢!

sMpc
H=4x107%72

The Hubble parameter varies at an extremely slow rate.
We shall now see how the redshift z varies with the pas-
sage of time. From equation (382) we get

1 —Aexp (—Iz)
c

S A |
. 1-A

il )

For the same distance r we have that
._( A )' | — _kr
“=\1za i
=l )
= ———|1-exp|——]|)

a-ar\ TP

(426)
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Using equation (371) we see that

e )
Z_(I—A)2 p ~ -

Considering equation (426) we obtain

.k

Z—l_AZ
.1 kA
Z—ZI_AZ.

Through equation (388) we arrive at

H
z= e (427)
For H=2x10"8s71 =63 x 107"'year ' and A ~ 1 we
obtain
z=2-63x10""year " (428)

The rate of increase of the redshift z is a measure with
which to evaluate the future evolution of the Universe.

8 The Topographic Theorem

For a material point particle, the velocity v of the selfvaria-
tions is defined by equation (6)

v="Sr. (429)
r
This equation refers solely to the material point particle.

On the contrary, equation (33)

v cos o
— =| sindcosw (