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LETTERS TO PROGRESS IN PHYSICS

General Relativity Theory Explains the Shnoll Effect and Makes Possible

Forecasting Earthquakes and Weather Cataclysms

Dmitri Rabounski and Larissa Borissova

E-mails: rabounski@ptep-online.com; borissova@ptep-online.com

The Shnoll effect manifests itself in the fine structure of the noise registered in very sta-

ble processes, where the magnitude of signal and the average noise remain unchanged.

It is found in the periodic fluctuation of the fine structure of the noise according to the

cosmic cycles connected with stars, the Sun, and the Moon. The Shnoll effect is ex-

plained herein, employing the framework of General Relativity, as the twin/entangled

synchronization states of the observer’s reference frame. The states are repeated while

the observer travels, in common with the Earth, through the cosmic grid of the geodesic

synchronization paths that connect his local reference frame with the reference frames

of other cosmic bodies. These synchronization periods match the periods that are man-

ifested due to the Shnoll effect, regardless of which process produces the noise. These

synchronization periods are expected to exist in the noise of natural processes of any

type (physics, biology, social, etc.) as well as in such artificial processes as computer-

software random-number generation. This conclusion accords with what was registered

according the Shnoll effect. The theory not only explains the Shnoll effect but also al-

lows for forecasting fluctuations in the stock exchange market, fluctuations of weather,

earthquakes, and other cataclysms.

1 The whole truth about the Shnoll effect

Fundamental misunderstandings of the Shnoll effect can be

found in published articles as reported by journalists and sci-

entists. Therefore, now is a good time to tell the whole truth

about the Shnoll effect, to dot all the i’s and to cross all the t’s.

We express our deep appreciation to Prof. Simon Shnoll, with

whom we have enjoyed many years of friendly acquaintance

and scientific collaboration.

The principal error in understanding the Shnoll effect is

that some people think it is a periodical fluctuation of the

magnitude of the signal that is measured. This is incorrect,

since the magnitude of the signal and the average noise re-

main the same during the long-term measurements done by

Shnoll and his workgroup. Further, such processes are specif-

ically chosen for the study that are very stable in time. Simply

put, nothing allegedly changes in the experiments which con-

tinue during days, months, and even years. The subject of

the measurement is the fine structure of the noise registered

in stable processes.

Every process contains noise. The noise originates due

to the influence of random factors and satisfies the Gaussian

distribution (i.e., the Gauss continuous distribution function

of the probability of the measured value between any two

moments of time). Gaussian distribution is attributed to any

random process, such as noise, and is based on the averag-

ing and smoothing of the noise fluctuation measured during

a long enough interval of time. Nevertheless, if considering

very small intervals of time, the real noise has a bizarre struc-

ture of the probability distribution function, which differs for

each interval of time. Each of these real functions being con-

sidered “per se” cannot be averaged to a Gaussian curve. This

is what Shnoll called the fine structure of noise and is the ob-

ject of research studies originally conducted by Simon Shnoll,

commencing in 1951–1954 to this day.

So, the magnitude of noise is measured in a very stable

process during a long enough duration of time (days, months,

and even years). Then the full row of the measured data is

taken under study. The full duration of time is split into small

intervals. A histogram of the probability distribution function

is then created for each of the small intervals. Each inter-

val of time has its own bizarre distribution function (form of

the histogram) that differs from Gaussian function. Never-

theless, Shnoll found that “paired histograms,” which have a

very similar (almost identical) form, exist along the row of the

measured data. That is, the histogram created for each inter-

val of time has its own “twin” which has a similar form. The

similar form was found in the histograms which were regis-

tered with the following periods of repetition connected with

stars, the Sun, and the Moon:

• 24 hours = 1440 min (solar day);

• 365 days = 525 600 min (calendar year);

• 23 hours, 56 min = 1436 min (stellar day);

• 365 days, 6 hours, 9 min = 525 969 min (stellar year);

• 24 hours, 50 min = 1490 min (lunar day);

• 27 days, 7 hours, 43 min = 39 343 min (lunar month);

• 31 days, 19 hours, 29 min = 45 809 min (period of the

lunar evection).
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Also, aside as the similar forms of histograms, appearance

the mirrored forms of histograms was registered by Shnoll

with periods of:

• 720 min (half of the calendar/solar day);

• 182 days, 12 hours = 262 800 min (half of the calen-

dar/solar year).

Shnoll called this phenomenon the “palindrome effect”. It is

one of Shnoll’s newest findings: despite his having started

the research studies in 1951, the possibility of the appearance

of the mirrored forms of histograms only came to his atten-

tion in 2004. The “palindrome effect” was first registered in

December 2007. Aside from these two periods of the “palin-

dromes”, a number of other palindrome cycles were found.

However, certain circumstances have not allowed a continua-

tion of these studies in full force yet.

As was shown by Shnoll after many experiments done

synchronously at different locations from South Pole to North

Pole, an appearance of the similar form (or the mirrored form)

of the histograms does not depend on the geographical lati-

tude, but depends only on the geographical longitude, i.e., the

same local time at the point of observation. In other words,

the Shnoll effect is manifested equally at any location on the

Earth’s surface, according to the local time, meaning the same

locations of the celestial objects in the sky with respect to the

visible horizon.

It is significant that the process producing the noise that

we measure can be absolutely anything. Initially, in 1951,

Shnoll started his research studies from measurements of the

speed of chemical reactions in the aqueous solutions of pro-

teins. Then many other biochemical processes attracted his

attention. After decades of successful findings, he focused on

such purely physical processes as α-decay and β-decay of the

atomic nuclei. It was shown that not only all the random natu-

ral processes of different origins, but even artificial processes

as random-number generation by computer software manifest

the Shnoll effect. In other words, this is a fundamental effect.

That in a nutshell is the whole truth about the Shnoll ef-

fect. A detailed history of these research studies can be found

in Shnoll’s book [1], which also contains hundreds of refer-

ences to the primary publications on this theme commencing

in the 1950s to this day. A brief description of the Shnoll

effect can also be found in his short presentation of 2006 [2].

A theoretical explanation of the Shnoll effect on the basis

of General Relativity follows. But first, we need to explain

two important misunderstandings which are popular among

the general public.

2 The two most popular mistakes in the understandings

of General Relativity

There are two main mistakes in the understanding of General

Relativity. These mistakes originate due to the popular ex-

planations of the theory provided by the reporters and other

writers unfamiliar with the details of Riemannian geometry.

The first is the prejudice that an absolute reference frame

allegedly is impossible according to Einstein’s theory. The

second is the prejudice that Einstein’s theory allegedly “pro-

hibits” speeds of information transfer faster than the speed of

light, including the instantaneous transfer of information.

These two prejudices originate due to the superficial ex-

planation of Einstein’s theory, which can be encountered in

the majority of books on the subject. The superficial explana-

tion limits the reader by the historical path in which Special

Relativity and General Relativity were created, and by the

simplest analysis of the basics of the theory of space-time-

matter. As a result, the aforementioned two prejudices be-

came widely popular among laymen as well as among the

scientists who did not study the special aspects of Einstein’s

theory connected with these two problems.

Nevertheless there are a number of fundamental research

studies that cover the aforementioned two problems in detail.

While these research results may be unknown to reporters or

the majority of the scientific community, relativists who work

in the field of reference frames and observable quantities have

long been aware of them.

So, in 1944 Abraham Zelmanov published his massive

theoretical study [3], where he first determined physical ob-

servable quantities as the projections of four-dimensional

quantities onto the line of time and the three-dimensional

spatial section of the observer’s reference frame. His mathe-

matical apparatus for calculating physically observable quan-

tities in the space-time of General Relativity then became

known as the theory of chronometric invariants [4, 5]. Roger

Penrose, Kip Thorne, and Stephen Hawking as young re-

searchers visited Zelmanov in Sternberg Astronomical Insti-

tute (Moscow), and listened to his presentations about physi-

cal reference frames and observable quantities at his seminar.

In particular, Zelmanov showed [3] that an absolute reference

frame is allowed in a finite closed universe, if such a reference

frame is linked to the global rotation or the global deforma-

tion of the universe.

Later, Zelmanov’s followers also voiced, in their scientific

presentations, the possibility of an absolute reference frame in

a finite closed universe.

It should be noted that an absolute reference frame is im-

possible in the space-time of Special Relativity. This is be-

cause Special Relativity considers the simplified version of

the four-dimensional pseudo-Riemannian space (space-time),

which is always infinite, and also is free of curvature, rota-

tion, and deformation. Therefore, an absolute reference frame

is allowed only in the space-time of General Relativity, and

only in those cosmological models where the universe exists

as a finite closed volume of space, which rotates or deforms

as a whole.

The second of the aforementioned prejudices claim that

Einstein’s theory allegedly “prohibits” the particles which

travel faster than light. This claim is not true. The theoretical

possibility of faster-than-light particles — tachyons — was
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first considered in 1958 by Frank Tangherlini, in the space-

time of Special Relativity. He presented this theoretical re-

search in his PhD thesis [6] prepared under the supervision

of Sidney Drell and Leonard Schiff, in the Department of

Physics at Stanford University. A similar theory of tachyons

in the framework of Special Relativity was suggested, inde-

pendently of Tanglerlini, in 1979 by Torgny Sjödin [7] (he

was a Swedish scientist working in Theoretical Physics De-

partment at Vrije Universiteit in Brussels). The most impor-

tant surveys on tachyons such as [8,9] referred to Tangherlini.

Tachyons were first illuminated in the journal publications on

the theory of relativity in a principal paper of 1960 [10], au-

thored by Jakov Terletski. Then a more detailed paper [11]

was published in 1962 by Bilaniuk, Deshpande, and Sudar-

shan. The term “tachyons” first appeared later, in 1967 by

Gerald Feinberg [12]. See the newest historical survey and

analysis of this problem in [13]. Detailed consideration of

tachyons in the space-time of General Relativity was included

in our books [14, 15].

The main problem with tachyons is that they cannot be

registered by means of direct experimentation by a regular

observer [16]. Really, regular observers synchronize their

reference frames by light signals. In this case, as was already

pointed out by Einstein, the speed of light is the ultimate max-

imum speed that can be registered by an observer: in this case

superluminal displacements cannot be registered. More pre-

cisely, in reference frames synchronized by light signals, any

superluminal displacement will still be registered as a light

signal. See [16] or §1.15 of our book [14] for details. This

problem arises not from the ideology of Einstein’s theory (as

many people erroneously think), but only from the general

theory of physical experiments.

So, as was explained by international experts on reference

frames, an absolute reference frame is allowed in the space-

time of General Relativity, in a finite closed universe, if such

a reference frame is linked to the global rotation or the global

deformation of the universe. But an absolute reference frame

is impossible in the space (space-time) of Special Relativity,

because the space is infinite, and is free of rotation and defor-

mation.

Faster-than-light particles (tachyons) are allowed in the

space (space-time) of both Special Relativity and General

Relativity. But superluminal speeds of such particles can-

not be registered by a regular observer because his reference

frame is synchronized to others by light signals. Such an ob-

server will register any superluminal motion as motion with

the speed of light.

Aside from the tachyon problem, there is also the problem

of the instant transfer of information. We mean the instant

transfer of information without applying quantum mechanics

methods (we call it non-quantum teleportation). This prob-

lem was first investigated by us, in 1991–1995. These theo-

retical results were first published in 2001, in the first edition

of our book [14]. A short explanation of the theory can also

be found in our presentation [17].

The know-how of our theoretical research was that we

considered the four-dimensional pseudo-Riemannian space

(the space-time of General Relativity) without any limitations

pre-imposed on the space geometry according to physical

sense or philosophical concepts. In other words, we stud-

ied the space-time of General Relativity “per se”. We found

that, in addition to the regular state of space-time, a fully de-

generate state is possible. From the point of view of a regular

observer, whose home is our regular space-time, the fully de-

generate space-time appears as a point: all four-dimensional

(space-time) intervals, all three-dimensional intervals, and all

intervals of time are zero therein. We therefore called the

fully degenerate space-time zero-space. But this fact does

not mean that zero-space is nonsense. Once the observer en-

ters zero-space, he sees that the space and time intervals are

nonzero therein.

We showed that zero-space is inhabited by light-like par-

ticles which are similar to regular photons. We called these

particles zero-particles. Zero-particles travel in zero-space

with the speed of light. But their motion is perceived by

a regular observer as instantaneous displacement. This is

one of the effects of relativity theory, which is due to the

space-time geometry. We only see that particles travel in-

stantaneously while they travel at the speed of light in their

home space (zero-space), which appears to us, the external

observers, as the space wherein all intervals of time and all

three-dimensional intervals are zero.

We also showed that the regular relation between energy

and momentum is not true for zero-particles. Zero-particles

bear the properties of virtual photons, which are known from

Quantum Electrodynamics (i.e., they transfer interactions be-

tween regular particles). This means that zero-particles play

the rôle of virtual photons, which are material carriers of in-

teraction between regular particles of our world.

Zero-space as a whole is connected to our regular space-

time in every point: at every point of our regular space-time,

we have full access to any location inside zero-space. Once

a regular photon has entered into such a zero-space “gate”

at one location of our regular space, it can be instantly con-

nected to another regular photon which has entered into a sim-

ilar “gate” at another location. This is a way for non-quantum

teleportation of photons.

We also showed that zero-particles manifest themselves

as standing light waves (stopped light) while zero-space as a

whole is filled with the global system of the standing light

waves (the world-hologram). This matches with what Lene

Hau registered in the frozen light experiment [18, 19]: there,

a light beam being stopped is “stored” in atomic vapor, re-

maining invisible to the observer until that moment of time

when it is set free again in its regularly “travelling state”. The

complete theory of stopped light according to General Rel-

ativity was first given in 2011, in our presentations [20, 21],

then again in 2012, in the third edition of our book [14]. The
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obtained theoretical results mean that the frozen light exper-

iment pioneered at Harvard by Lene Hau is an experimental

“foreword” to the discovery of zero-particles and, hence, a

way for non-quantum teleportation.

Until recently, teleportation has had an explanation given

only by Quantum Mechanics [22]. It was previously achieved

only in the strict quantum way: e.g., quantum teleportation of

photons, in 1998 [23], and of atoms, in 2004 [24, 25]. Now

the situation changes: with our theory we can find physical

conditions for non-quantum teleportation of photons, which

is not due to the probabilistic laws of Quantum Mechanics

but according to the laws of General Relativity following the

space-time geometry.

Thus, the instant transfer of information is allowed in the

space-time of General Relativity (though the real speeds of

the particles do not exceed the velocity of light). But this is

impossible in the space-time of Special Relativity, because it

is free of rotation and a gravitational field (whereas by con-

trast, the main physical condition of zero-space is a strong

gravitational potential or a near-light-speed rotation).

Of course, the general reader cannot find all these im-

portant details in general-purpose books explaining Einstein’s

theory. Special skills in Riemannian geometry are needed to

understand what has been written in the special publications

that we surveyed herein. It is not surprising, therefore, that

the majority of people are still puzzled by the aforementioned

prejudices and misunderstandings about Einstein’s theory.

3 General Relativity Theory explains the Shnoll effect:

the scanning of the world-hologram along the Earth’s

path in the cosmos

As we shall set forth, the instantaneous synchronization of re-

mote reference frames in our Universe via non-quantum tele-

portation has a direct connection with the Shnoll effect.

First, let us understand what is the Shnoll effect in terms

of the theory of relativity.

The form of a histogram obtained as a result from a series

of measurements of noise (note that the average magnitude

of the noise remains the same) shows the fine structure of

the countdown of the measured value, according to the struc-

ture of the physical coordinates and of the physical time of

the observer. It does not matter which type of processes pro-

duces the registered noise; only the physical reference frame

of the observer is substantial. In other words, the form of the

histogram’s resulting measurement of noise shows the fine

structure of the physical coordinates and of the physical time

of the observer. If two histograms’ resulting measurements

of noise taken at two different time intervals have the same

form, then two of these different states of the same system

that generates the noise are synchronized to each other. If

these two synchronized states appear periodically in the mo-

ments of time associated with the same coordinates of a cos-

mic body on the celestial sphere, the two synchronized states

are also synchronized with the cosmic body.

Therefore, we arrive at the following conclusion. In terms

of relativity theory, the Shnoll effect means that the reference

frame of a terrestrial observer is somehow synchronized with

remote cosmic bodies. This synchronization is done at each

moment of time with respect to coordinates connected with

stars (cycles of the stellar day and the sidereal year), and with

respect to the coordinates connected with the Sun (cycles of

the solar day and the calendar year). Also, the synchroniza-

tion condition (the form of the histogram) is repeated in the

reversed mode in time at each of two opposite points in the

Earth’s orbit around the Sun, and at each of two opposite

points of the observer’s location with respect to stars (due

to the daily rotation of the Earth): this is the “palindrome ef-

fect”, including the half-year and half-day palindromes.

Now the second question arises. How is this synchroniza-

tion accomplished? Regularly, and according to the initial

suggestion of Einstein (which was introduced in the frame-

work of Special Relativity), reference frames are synchro-

nized by light signals. But in the case of experiments where

the Schnoll effect was registered, the noise source and the

measurement equipment were located in a laboratory build-

ing under a massive roof. So the laboratory is surely isolated

from light signals and other (low-magnitude) electromagnetic

radiations which come from stars. . . The answer comes from

General Relativity.

First, as is known from General Relativity, two remote

reference frames can be synchronized through the shortest

path (known as geodesic line) connecting them in the space

(space-time). A geodesic path can be paved between any two

points at every fixed moment of time. If these points oscil-

late with respect to each other, the synchronized states are re-

peated with the period of the oscillation. In terms of a regular

terrestrial observer, who is located on the surface of the Earth,

this means that his reference frame can be synchronized with

the reference frame of a celestial object, which is located in

the depths of the cosmos, at any moment of time. Each single

state (moment of time) of the synchronization has twin states

of synchronization. The twin states are repeated due to the

daily rotation and to the yearly rotation of the observer (at

his location on the Earth’s surface) with respect to stars∗, with

respect to the Sun, and also due to his cyclic motion with re-

spect to the Moon. Thus the respective cycles of repetition of

the synchronized twin states of the observer’s reference frame

(the cycles of appearance of the similar forms of histograms)

must exist. The cycles of repetition of the twin states are, with

precision, to the nearest minute:

∗This refers to the International Celestial Reference System, which is

the standard celestial coordinate system centered at the barycentre of the So-

lar System, with axes that are fixed with respect to objects in far-reaches

of the cosmos. These coordinates are approximately the same as the equato-

rial coordinates on the celestial sphere. The International Celestial Reference

System is defined by the measured positions of more than two hundred extra-

galactic objects (mainly quasars). It is the standard stellar reference system

accepted by the International Astronomical Union.
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• Solar day (24 hours= 1440 min), the period of daily ro-

tation of the terrestrial observer together with the Earth

with respect to the Sun;

• Calendar year (365 days = 525 600 min), the period

of orbital revolution of the terrestrial observer together

with the Earth around the Sun;

• Sidereal (stellar) day: 23 hours, 56 min = 1436 min. It

is the period of daily rotation of the terrestrial observer,

together with the Earth with respect to stars;

• Sidereal (stellar) year: 365 days, 6 hours, 9 min =

525 969 min. It is the period of orbital revolution of

the terrestrial observer, together with the Earth around

the Sun with respect to stars;

• Lunar day (24 hours, 50 min = 1490 min), the period

between two observed moonrises. It is longer than a

24-hour solar day, because the Moon revolves around

the Earth in the same direction that the Earth rotates

around her own axis;

• Sidereal month: 27 days, 7 hours, 43 min = 39 343

min. It is the period of the Moon’s revolution around

the Earth with respect to stars;

• Period of the lunar evection (31 days, 19 hours, 29 min

= 45 809 min), which is the period of the oscillatory

deviation of the Moon’s orbit from its average position

with respect to the Earth.

Also, the cycles of reverse synchronization (appearance of the

mirrored forms of histograms, that means the “palindrome

effect”) shall exist according to the half-periods:

• Half of the solar day (12 hours = 720 min);

• Half of the calendar year (182 days, 12 hours= 262 800

min);

• Half of the stellar day (11 hours, 58 min = 718 min);

• Half of the sidereal year (182 days, 15 hours, 5 min =

262 985 min);

• Half of the lunar day (12 hours, 25 min = 745 min);

• Half of the sidereal month (13 days, 15 hours, 52 min

= 19 672 min);

• Half-period of the lunar evection (15 days, 21 hours, 45

min = 22 905 min).

Also there exist a number of other periods of appearance of

the synchronized states of the observer’s reference frame (ap-

pearance of the similar form of histograms), which manifest

cyclic synchronization with some other celestial objects. We

do not discuss them herein because of brevity of this presen-

tation.

Second. Synchronization is possible not only of light sig-

nals or other electromagnetic signals moving at the speed of

light. Instant synchronization of remote reference frames is

possible in the space-time of General Relativity [14,17]. This

can be done through zero-space — the fully degenerate space-

time. It will appear to a regular observer as a point; that is the

necessary condition of non-quantum teleportation at any dis-

tance in our world. Therefore the “non-quantum teleportation

channel” is constantly allowed between any two points of our

space. Zero-particles — the particles that are hosted by zero-

space — are material carriers in non-quantum teleportation.

Zero-particles are standing light waves (i.e. stopped light),

thus zero-space is filled with a global system of standing light

waves — the world-hologram of non-quantum teleportation

channels. According to space topology, there is univalent

mapping of zero-space (the world-hologram) onto our reg-

ular space (our universe). This means that the local physical

reference frame of a terrestrial observer, travelling together

with the Earth in the cosmos, “scans” the world-hologram of

teleportation channels.

Each point of the Earth’s surface, including the observer’s

location, makes a daily revolution around the Earth’s centre.

The Earth revolves around the Sun at a speed of 30 km/sec.

The Sun revolves, at a speed of 250 km/sec, around the centre

of our Galaxy called the Milky Way. As a result, the observer

located on the surface of the Earth travels in the Galaxy along

the highly elongated double helix (which is like the DNA he-

lix), through the cosmic grid of the “stargates” into the non-

quantum teleportation channels which instantly synchronize

his local reference frame with stars, the Sun, and other cosmic

objects. Because of the cycles of the turbinal motion of the

observer, each single stargate has its own twin respectively

to the periods of the motion. The states of the observer’s

reference frame at these twin locations, due to entering into

the same teleportation channel, are not only synchronized but

also entangled with each other.∗

The moments of a terrestrial observer’s entering into the

gate of the same teleportation channel are the same as the mo-

ments of repetition of the twin synchronized states of his local

reference frame. Therefore, it is obvious that the appearance

of the similar forms of histograms (and the appearance of the

mirrored forms of histograms) manifests not only the syn-

chronized (and, respectively, — reverse synchronized) twin

states of the observer’s reference frame, but also that these

states are entangled with each other.

Such a synchronization occurs regardless of whether the

observer sees the sky or is isolated in a laboratory building. It

is done by zero-particles through zero-space, independently

of the obstacles that can be met by electromagnetic signals in

our regular space.

Recall, the Shnoll effect is periodic repetition of a similar

form (or mirrored forms) of the histograms’ resulting mea-

surement of noise. Most of the periods that are expected

according to the theory and listed above coincide with the

periods registered by Shnoll and his workgroup [1]. These

are the solar day (1440 min), the stellar day (1436 min), the

calendar year (525 600 min), the stellar year (525 969 min),

∗In a sense similar to the quantum entangled states, according to Quan-

tum Mechanics.
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the lunar day (1490 min), the lunar month (registered as the

“near-27-day period”), and the period of the lunar evection

(45 809 min). The mirrored forms of histograms were regis-

tered with periods of half of a solar day (720 min), and half of

the calendar year (262 800 min), while analysis of the mea-

surements is still under development. Nevertheless, there are

enough coincidences of the theory with Shnoll’s experimen-

tal data.

We therefore conclude that the Shnoll effect manifests the

scanning of the world-hologram of the non-quantum telepor-

tation channels along the Earth’s path in the cosmos. So, the

Shnoll effect has been explained according to General Rela-

tivity Theory.

It is important to understand the following: to find entan-

gled moments of time (the “gates” into the same teleportation

channel in the cosmos), it does not matter which stable pro-

cess (which type of processes) produces the random noise that

we register. Not only natural processes, but also the processes

such as random-number generation by a computer’s software

will show the Shnoll effect, as well as such social phenomena

as fluctuations in the stock exchange market. This means that

the theoretical explanation that is given here on the basis of

General Relativity provides a theoretical ground for a wide

range of fundamental effects in physics, biology, geophysics,

social behaviour and other fields of science. This fact leads

us to a number of important sequels and applications, which

can be achieved from further research studies of the Shnoll

effect.

4 Forecasting earthquakes and other cataclysms on the

basis of the scanning of the Earth’s path in the cosmos

So, we have arrived at a conclusion that the Shnoll effect is

a fundamental effect, which is explained according to Gen-

eral Relativity. Therefore, we expect the Shnoll effect to be

found not just in noise that the terrestrial observer registers

in such processes as biochemical reactions or nuclear decay.

The noise of other terrestrial processes which have natural

and artificial origin should also show the Shnoll effect. Be-

cause practical applications are important, the following im-

portant types of noise should be taken into account:

• Random mass migrations of people;

• Fluctuations in the stock exchange market;

• Fluctuations of the sickness rate among the masses of

people, animals, and plants;

• Fluctuations of social unrest (local conflicts, etc.)

• Fluctuations of the Earth’s crust — earthquakes;

• Fluctuations of weather (weather events and weather

cataclysms);

• and many others.

Here within we’ve touched so far only on the last two items

on this list. These are earthquakes and weather.

Our planet Earth is so large that earthquakes can be con-

sidered as the noise fluctuations of the Earth’s crust, while

weather events and weather cataclysms are the noise fluctu-

ations in the atmosphere. Therefore, this is a proper back-

ground where the Shnoll effect should be manifested.

Indeed, there is a huge scientific study that shows the

statistical behaviour of background earthquakes and weather

events [26–32]. The study was done in the 1930–1940’s.

It was conducted by Nikolai Morozov, Hon. Member of the

USSR Academy of Sciences.∗

Morozov and his assistants analysed the observational

data about the background earthquakes and weather events

that were collected at all the world-known weather observato-

ries and seismic stations of the world (located from the equa-

tor to the extreme north and south). The observational data

were recorded throughout all periods of the systematic scien-

tific observations, during the second half of the 19th century

and the first half of the 20th century, which has then been

accessed from yearbooks of the observatories and stations.

In addition to the statistical behaviour of the background

earthquakes and weather events, Morozov found that air tem-

perature, barometric pressure, humidity and other geophys-

ical parameters depend on the height of the centre of our

Galaxy (and other compact star clusters in our Galaxy) above

the horizon. In other words, the weather factors depend on

the stellar (sidereal) time at the point of observations. As a

result, Morozov arrived at the following fundamental conclu-

sion. All previous forecasts of earthquakes and weather cata-

clysms did not give satisfying results because the forecasters

took into account only the influence of the Sun and Moon on

the Earth’s crust and the atmosphere (which influences were

dated according to solar time), while the influence of objects

in the farther-reaches of the cosmos, such as the centre of

our Galaxy and other (as visible and invisible) compact stel-

lar clusters, which are dated according to the stellar (sidereal)

time, were not taken into account.

We can therefore say that Morozov’s geophysical studies

show that we can surely consider micro-earthquakes as ran-

dom noise, which always exist in the Earth’s crust. The same

is true about weather where random noise is nothing but small

fluctuations of air temperature, barometric pressure, humid-

ity, etc.

A confirmation of the conclusion follows from Shnoll’s

experiments. Already by the 1980s, synchronous fluctuations

of forms of the histograms (the Shnoll effect) were registered

on the basis of seismic observations [33]. This means, ac-

cording to our theoretical explanation herein, that the twin en-

tangled synchronization states of the local physical reference

frame of the terrestrial observer (the Shnoll effect, according

to General Relativity) coincide with the seismic noise regis-

tered in the Earth’s crust.

∗This study was not continued after the death of its author, Prof. Moro-

zov, in 1946.
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Therefore, proceeding from our theoretical explanation of

the Shnoll effect, we can forecast how, where, and when pow-

erful earthquakes will appear in the Earth’s crust; how, where,

and when weather cataclysms will occur in the atmosphere.

Essentially, here’s how to go about doing it.

Two things are needed to understand this method. First,

we need to understand that every real observer has his own

local physical reference frame. The physical reference frame

consists of real coordinate grids spanning over the real phys-

ical bodies around him (his real reference bodies), and also

of the real clocks that are fixed on the real coordinate grids.∗

In the case of a terrestrial observer (us, for instance), the real

coordinate grids and clocks are connected with the physical

environment around us. Therefore, noise fluctuations of the

environment mean noise fluctuations of the real physical mea-

surement units of the observer.

Second, as follows from the theory of physical observable

quantities in General Relativity, if the fine structure of noises

in two physical reference frames match with each other, these

two reference frames are synchronized with each other.

Therefore, as we’ve shown above, the Shnoll effect mani-

fests the twin/entangled states of the local physical reference

frame of the observer. These twin/entangled states are in-

stantly synchronized with each other, along with other cos-

mic bodies located along the entire synchronization path in

the cosmos. If their physical reference frames are synchro-

nized at a very close frequency, a resonance of noise fluctu-

ations occurs. In this case, concerning seismic noise, a pow-

erful earthquake occurs in the background of the noise from

micro-earthquakes (that exist continuously and everywhere in

the Earth’s crust). Concerning the weather, this means that a

weather cataclysm occurs in the background of noise fluctua-

tions of the weather.

In other words, if one or more of the powerful cosmic

bodies appear on the same path of synchronization with a

terrestrial observer, noise fluctuations of these cosmic bod-

ies become synchronized with the background noise of the

observer’s physical reference frame. A resonance occurs in

the physical reference frame of the observer that is the local

environment in the point of his observation. The background

noise of the environment experiences a huge fluctuation: i.e.,

a powerful earthquake, a weather cataclysm, etc.

Thank to Morozov’s geophysical studies we conclude that

the Sun and the Moon are not the main “synchronizers” that

cause a significant resonance in the physical reference frame

of a terrestrial observer. We must therefore take into account

the convergence of several “celestial synchronizers” of the

Solar System and our Galaxy in one synchronization path.

Therefore, all that is required for forecasting earthquakes

and weather cataclysms, according to our theoretical expla-

nation of the Shnoll effect, is as follows.

∗See details about physical reference frames, and about physical observ-

able quantities in Zelmanov’s publications [3–5], or in our books [14, 15].

1. First step — daily registrations of the basic noise fluc-

tuations in different environments at different locations

on the Earth. Analysis of the measurements, according

to the histogram techniques that were used by Shnoll,

in order to fix the details of the periods as determined

by the Shnoll effect. In other words, this is the “scan-

ning” of the local space of the planet in order to create

the complex map of the background noise fluctuations

of different environments of the Earth, according to so-

lar time and stellar time;

2. Second step — creating a detailed list of the more or

less powerful cosmic sources, which can be the main

“synchronizers” affecting the physical reference frame

of a terrestrial observer. The stellar (sidereal) coordi-

nates of the cosmic sources, and their ephemerides will

be needed in the third stage of the forecasting;

3. Third step — determining the moments of time when

these celestial synchronizers converge on the same syn-

chronization path, that is, their crossing the celestial

meridian (hour circle) at approximately the same mo-

ment of time as the point of observation, then compar-

ing these with the moments of time of the noise fluc-

tuations registered due to the Shnoll effect (in the first

step). As a result we will find those celestial synchro-

nizers whose synchronization with the terrestrial envi-

ronment produces the most powerful effect;

4. Fourth step — calculate further convergences of the

most powerful synchronizers at every location on the

Earth’s surface. As a result, by taking into account the

delay time of interaction rate in the respective terres-

trial environment (the ground, the atmosphere, etc.),

we will be able to forecast where and when the reso-

nant states will occur in the Earth’s crust (earthquakes)

and in the atmosphere (weather cataclysms).

Forecasting the other events of the above list such as ran-

dom mass migrations of people, fluctuations in the stock ex-

change market, fluctuations of the sickness rate, fluctuations

of social unrest, and others, is possible analogously. The

events predicted according to this method may have differ-

ent periods of delay from the synchronization moment. The

delay time depends on inertia in the medium that is being

affected: the Earth’s crust, atmosphere, interaction in the so-

cial medium, etc. Therefore, despite this, the moments of the

resonant synchronization are the same for all processes that

are registered at the point of observation; the resonant fluc-

tuations will appear at different moments of time in different

environments (including the technogenic environments and

the social medium). Nevertheless the method of forecasting

remains consistent for all the events around us.

So, forecasting powerful earthquakes and weather cata-

clysms is possible on the basis of our theoretical explanation

of the Shnoll effect. Other practical applications of the the-
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ory and experiment are also possible, but they are outside the

scope of this short communication.

Acknowledgements

The authors are grateful to Prof. Simon Shnoll and his wife,

Prof. Maria Kondrashova, for years of fruitful scientific col-

laboration and friendly acquaintance. We are also thankful to

Prof. Joseph Hafele and Patrick Ivers for a discussion of these

issues and useful tips.

Submitted on January 25, 2014 / Accepted on January 27, 2014

References

1. Shnoll S. E. Cosmophysical Factors in Stochastic Processes. American

Research Press, Rehoboth (NM, USA), 2012.

2. Shnoll S. E. Changes in the fine structure of stochastic distributions as

a consequence of space-time fluctuations. Progress in Physics, 2006,

v. 2, issue 2, 39–45.

3. Zelmanov A. Chronometric Invariants. Dissertation, 1944. American

Research Press, Rehoboth (NM, USA), 2006.

4. Zelmanov A. L. Chronometric invariants and accompanying frames of

reference in the General Theory of Relativity. Soviet Physics Doklady,

1956, vol. 1, 227–230 (translated from Doklady Academii Nauk USSR,

1956, vol. 107, no. 6, 815–818).

5. Zelmanov A. L. On the relativistic theory of an anisotropic inhomo-

geneous universe. A 1957 Cosmogony Meeting thesis. The Abraham

Zelmanov Journal, 2008, vol. 1, 33–63.

6. Tangherlini F. R. The velocity of light in uniformly moving frame.

A dissertation. Stanford University, 1958. The Abraham Zelmanov

Journal, 2009, vol. 2, 44–110.
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The oldest enigma in fundamental particle physics is: Where do the observed masses

of elementary particles come from? Inspired by observation of the empirical particle

mass spectrum we propose that the masses of elementary particles arise solely due to

the self-interaction of the fields associated with a particle. We thus assume that the

mass is proportional to the strength of the interaction of the field with itself. A simple

application of this idea to the fermions is seen to yield a mass for the neutrino in line

with constraints from direct experimental upper limits and correct order of magnitude

predictions of mass separations between neutrinos, charged leptons and quarks. The

neutrino interacts only through the weak force, hence becomes light. The electron in-

teracts also via electromagnetism and accordingly becomes heavier. The quarks also

have strong interactions and become heavy. The photon is the only fundamental parti-

cle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, or

slightly larger due to a somewhat larger color charge. Including particles outside the

standard model proper, gravitons are not exactly massless, but very light due to their

very weak self-interaction. Some immediate and physically interesting consequences

arise: i) Gluons have an effective range ∼1 fm, physically explaining why QCD has

finite reach; ii) Gravity has an effective range ∼100 Mpc coinciding with the largest

known structures, the cosmic voids; iii) Gravitational waves undergo dispersion even in

vacuum, and have all five polarizations (not just the two of m = 0), which might explain

why they have not yet been detected.

The standard model of particle physics [1–4] is presently our

most fundamental tested [5] description of nature. Within the

standard model there are some 18 parameters (several more if

neutrinos are non-massless) which cannot be predicted but

must be supplied by experimental data in a global best-fit

fashion. There are coupling constants, mixing parameters,

and, above all, values for the different fundamental particle

masses. The theory is silent on where and how these param-

eters arise, and even more speculative theories, such as string

theory, have so far not been able to predict (postdict) their

values. Even if the Higgs particle is confirmed, and the Higgs

mechanism [6] is validated in one form or another, it still does

not explain “the origin of mass” as often erroneously stated.

Unknown/incalculable parameters for particle masses are in

the Higgs model replaced by equally unknown/incalculable

coupling constants to the Higgs field; the higher the coupling,

the larger the mass, while no coupling to the Higgs field gives

massless particles like the photon and gluons. So nothing is

gained in the fundamental understanding of masses. Fifteen

of the free parameters in the standard model are due to the

Higgs. Thirteen of them are in the fermion sector, and the

Higgs interactions with the fermions are not gauge invariant

so their strengths are arbitrary. So to make progress we must

understand masses.

There is no hope of predicting elementary masses from re-

normalized quantum field theory as the very process of renor-

malization itself forever hides any physical mass-generating

mechanism; the renormalized masses are taken as the exper-

imentally measured values, i.e. any possible physical con-

nection for predicting particle masses is lost. But surely, na-

ture herself is not singular, the infinities appearing in quantum

field theory instead arising from the less-than-perfect formu-

lation of the theory. If a truly non-perturbative description of

nature would be found it might be possible to calculate par-

ticle masses from first principles, but we still seem far from

such a description.

In this article we will instead take a more phenomenolog-

ical approach, but still be able to deduce a number of physical

results and some interesting consequences.

From standard (perturbative) quantum field theory, the lo-

west order contribution to the self-mass is [7] (see Fig. 1)

∆m = α

∫

ū γµK(1, 2)γµ u eipx12 δ(s2
12) d4x, (1)

where the loop integral is logarithmically UV divergent ∝
log( 1

r
) as the cut-off radius r → 0.∗ So (in perturbation the-

ory) the contribution is divergent but as all gauge fields di-

verge in the same way, the quotients are finite. (Another way

would be to assume that there exists a “shortest length” in

nature that would serve as a natural cut-off and give finite in-

tegrals.) As an aside, as all expressions are relativistically

invariant the usual relativistic factor γ = 1/
√

1 − v2/c2 is au-

tomatic if v , 0, i.e. if we are not in the rest frame of the

particle.

∗Also for a classical electron of radius r, ∆m = Cα ∝ α, but there the

coefficient is linearly divergent C ∝ 1/r. Additionally, the classical result is

exact, i.e. non-perturbative.
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Fig. 1: Feynman diagram for self-mass contribution from a gauge

field (squiggly line). Each vertex contributes one charge factor√
α ∝ q.

We will thus imagine the following pragmatic scenario:

a quantum field without any charges corresponds to a mass-

less particle; when charges, q, are attached the mass is m ∝
q2 ∝ α, where α is the relevant coupling constant. This sig-

nificantly reduces the number of ad hoc parameters. Also, the

lagrangian can still be completely massless (as in the Higgs

scenario), preserving attractive features such as gauge invari-

ance that would be broken by explicit mass terms, the gener-

ation of mass being a secondary physical phenomenon.

So we get

m(electron) ∝ αQED (2)

m(quark) ∝ αQCD (3)

m(neutrino) ∝ αQFD (4)

where the dominating coupling constant is αQED for quantum

electrodynamics, αQCD for quantum chromodynamics (strong

interactions) and αQFD for quantum flavordynamics (weak in-

teractions).

If we now assume that all gauge fields give a contribution

of roughly the same order of magnitude, so that the propor-

tionality factors cancel up to a constant of order unity (coming

from the different gauge groups), we get results for the quo-

tients of elementary masses without having to know the exact

(non-perturbative) contribution. Using the observed mass for

the electron, and αQED ∼ 137−1, αQCD ∼ 1, we get

m(quark) ≃ 50 MeV, (5)

(although physical quark masses are notoriously hard to de-

fine [8]) and pretending as if we knew nothing of the elec-

troweak theory (in order not to get entangled with the Higgs

mechanism again), using the old Fermi theory for weak inter-

actions (or quantum flavordynamics, QFD) as appropriate for

the low energies where observations of physical masses are

actually made, using the physical coupling derived from typi-

cal scattering cross sections or decay rates (τ−1 ∝ α2) , we get,

using τ−1
QFD
∼ 106s−1 (e.g. µ → eνµν̄e) and τ−1

QED
∼ 1016s−1

(e.g. π0 → γγ),

m(neutrino) ≃ 0.5 × 10−5MeV ≃ 5 eV. (6)

This is a prediction resulting from our simple assumption,

compatible with upper limits from direct experiments, where-

as in the Higgs model no predictions of masses are possible

(being connected to free parameters).

We see that we immediately get the right hierarchy of

masses, with the right magnitudes, which is encouraging con-

sidering the approximations made.

A clear indication of the relative effect of QED compared

to QCD is seen in the case of pions: π+ and π− both have mass

139.6 MeV, while the neutral pion π0 has a mass of 135 MeV.

The small difference ∆m = 4.6 MeV, attributable to QED,

predicts a charge radius ∼1 fm, consistent with scattering ex-

periments using pions.

One issue still remaining is why not m(Z) ∼ m(neutrino)

or m(W) ∼ m(electron). We take it as a sign that the interme-

diate vector bosons W and Z really are not fundamental, but

instead are composite [9, 10].

If we, disregarding renormalization issues, also include

the graviton as the force carrier of gravity (which is expected

to hold for weak gravitational fields) we see that QCD, QFD

and gravity all should disappear exponentially at sufficiently

large distances due to the non-zero physical masses of their

force carrier particles, only electromagnetism (QED) having

truly infinite reach as the physical mass of the photon is equal

to zero, as the photon carries no charge. The range can be

estimated by the Yukawa theory potential e−λmc/~/r, giving

λcuto f f ≃ ~/mc. This gives for the gluon with bare mass zero

(in the lagrangian), but physical mass m(gluon) , 0, the value

λcuto f f (QCD) ≃ 0.3 fm, which explains why QCD is only

active within nuclei, although the bare mass m = 0 naively

would give infinite reach as its coupling to the Higgs is zero.

Despite what many thinks, this problem has not been solved

[11].

For gravity, the same calculation leads to λcuto f f (gravity)

≃ 3×108 light-years, or 100 Mpc, which happens to coincide

with the largest known structures in the universe, the cosmic

voids [12]. The corresponding graviton mass is

m(graviton) ≃ 5 × 10−32 eV, (7)

well in line with the experimental upper limits [13]. Another

thing to keep in mind is that if/when gravity decouples, it will

appear as if the universe accelerates when going from the cou-

pled (decelerating) to the uncoupled (coasting) regime where

distance ≥ λcuto f f (gravity), perhaps making dark energy su-

perfluous as explanation for cosmic “acceleration” [14, 15].

If masses really originate in this way it might be possible to

include other interactions but the gravitational in an “equiva-

lence principle”, hence perhaps opening the door to a unified

description of all interactions.

The relation m(graviton) , 0 has other peculiar effects:

gravitational waves of different wavelengths (energies) would

travel at different velocities, smearing them out, the longer

the wavelength, the larger the effect. Also, not being strictly

massless, gravitons (spin s=2) should have 2s + 1 = 5 po-

larization states instead of the two conventionally assumed

helicity states if massless. This might be why gravitational

waves hitherto have escaped detection, as it would scramble

their signature.
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If we, just for the moment, tentatively reintroduce the per-

turbative running of coupling “constants” (renormalization

group) we obtain m(graviton) → ∞ as r → 0 implying that

(quantum) gravity gets a dynamical cutoff for small separa-

tions, as an increasingly more massive quantum is harder to

exchange, effectively making the interaction of gravity disap-

pear in that limit, perhaps showing a way out of the ultraviolet

divergencies of quantum gravity in a way reminiscent of how

massive vector bosons cured the Fermi theory.

We have not addressed the known replication of particles

into three generations of seemingly identical, but more mas-

sive, variants, the most exactly studied from an experimental

standpoint being the three charged leptons, i.e. (e, µ, τ), the

electron and its heavier “cousins” the muon and tauon.∗

A straightforward way would be to introduce some “gen-

eration charge” or quantum number, make e.g. a power-law

ansatz and fit to the observed values of the charged leptons

and deduce the masses of neutrinos and quarks in the higher

generations. That would, however, not bring us any closer to

a true understanding.

A more promising way could be to assume that the sta-

ble elementary particles of the first generation are exact soli-

ton solutions to the relevant quantum field theory, or its dual

[16], whereas unstable higher generation elementary particles

would be solitary wave (particle-like, but not stable) solutions

to the said quantum field theory. Unfortunately, there are no

known exact 3+1 dimensional soliton solutions to quantum

field theories, with non-trivial soliton scattering [16]. An-

other avenue would be to explore if Thom’s “catastrophe the-

ory” [17] (or other more general theories of bifurcation) ap-

plied to particle physics could spontaneously reproduce mul-

tiple generations, as it is known to include stable/unstable

multiple solutions. Thom’s theory states that all possible sud-

den jumps between the simplest attractors – points – are de-

termined by the elementary catstrophes, and the equilibrium

states of any dynamical system can in principle be described

as attractors. As one attractor gives way for another the sta-

bility of the system may be preserved, but often it is not. It

could be capable to generate masses spontaneously in a dif-

ferent and novel way compared to the Higgs mechanism. The

different charges, i.e. coupling constants, could define the

control surface, whereas the actual physical mass would de-

fine the behavior surface. Sudden bifurcations could signify

decay of previously stable elementary particles.

To summarize, our simple and physically compelling as-

sumption that particle masses are solely due to self-interact-

ions: i) Directly and simply gives the correct mass hierar-

chy between neutrinos, electrons and quarks. ii) Reduces the

number of ad hoc parameters in the standard model. iii) Qual-

∗Are there additional generations? Data on the decay width of the Z

indicate that there at least cannot be any additional light neutrinos. A fourth

neutrino would have to be very massive > mZ/2 ≃ 45 GeV. One might well

ask if the generation structure is a true aspect of nature, or just a result of our

incomplete understanding of the weak interaction [10].

itatively explains why the photon is the only massless funda-

mental particle, why QCD has short range, and why neutrinos

are not strictly massless. iv) Gives testable predictions, e.g.

regarding gravitons (gravitational waves).
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There are several arguments for the conventional form of the Zero Point Energy fre-

quency spectrum to be put in doubt. It has thus to be revised into that of a self-consistent

system in statistical equilibrium where the total energy density and the equivalent pres-

sure become finite. An extended form of the Casimir force is thereby proposed to be

used as a tool for determining the local magnitude of the same pressure. This can

be done in terms of measurements on the force between a pair polished plane plates

consisting of different metals, the plates having very small or zero air gaps. This corre-

sponds to the largest possible Casimir force. Even then, there may arise problems with

other adhering forces, possibly to be clarified in further experiments.

1 Introduction

The vacuum is not merely an empty space. Due to quantum

theory, there is a non-zero level of the ground state, the Zero

Point Energy (ZPE) as described by Schiff [1] among others.

An example of the related spectrum of vacuum fluctuations

was given by Casimir [2], who predicted that two metal plates

will attract each other when being separated by a sufficiently

small air gap. This prediction was first confirmed experimen-

tally by Lamoreaux [3].

In a number of investigations the author has called atten-

tion to the importance of ZPE in connection with fundamental

physics, on both the microscopic and the macroscopic scales.

This applies to revised quantum electrodynamics and its re-

lation to massive elementary particle models [4–6], as well

as to attempts of explaining the concepts of dark energy and

dark matter of the expanding universe [7, 8].

This paper presents an extended analysis of the ZPE fre-

quency spectrum and its effect on the Casimir force, thereby

leading to proposed experimental investigations on the fea-

tures of the same spectrum.

2 Frequency spectrum of the Zero Point Energy

The local Zero Point Energy density has to become derivable

from the frequency spectrum of an ensemble of ZPE photons.

Such a procedure has to be conducted in the same standard

way as for statistical systems in general, as described by Ter-

letskii [9] and Kennard [10] among others.

For a “gas” of ZPE photons the number of field oscilla-

tions per unit volume in the range (ν, ν+ dν) becomes

dn =
8π

c3
ν2 dν. (1)

This number can also be conceived to represent the various

“rooms” to be populated by the photon frequency distribution.

In finding the corresponding self-consistent and fully de-

termined contribution to the ZPE energy density, two points

have to be taken into account:

◦ The quantized energy of every single photon is

E0 =
1
2
hν.

◦ The photon population of the frequency states has to be

adapted to a statistical equilibrium, under the constraint

of a finite and given total energy density. The latter

corresponds to an average energy Ē0 =
1
2
hν̄ per photon

with a related average frequency ν̄.

Due to these points, the contribution to the energy density

within the range (ν, ν+ dν) becomes [7, 8]

du =
4πh

c3
ν3 exp

(

−
ν

ν̄

)

. (2)

Here the Boltzmann factor

PB = exp

(

−
E0

Ē0

)

= exp

(

−
ν

ν̄

)

(3)

is due to the probability of the various photon states in statis-

tical equilibrium.

In the present isotropic state, the contribution to the pres-

sure becomes dp= du/3. The local ZPE pressure then has the

total integrated value

p0 =
8πhν̄4

c3
(4)

as obtained from relation (2).

In the earlier conventional analysis, the factor (3) has been

missing, thus resulting in an infinite total ZPE energy den-

sity and pressure. Several investigators, such as Riess and

Turner [11] as well as Heitler [12], have thrown doubt upon

such an outcome. Attempts to circumambulate this irrelevant

result by introducing cutoff frequencies either at the Planck

length or at an arbitrary energy of 100 GeV, are hardly accept-

able. This omission does not only debouch into a physically

unacceptable result, but also represents an undetermined and

not self-consistent statistical system [7, 8].

3 Experimental possibilities

The average frequency ν̄ appearing in the factor (3) is an im-

portant but so far not determined basic parameter. It may have

a characteristic value in the environment of the Earth, or even

of our galaxy. It should therefore be investigated if this para-
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meter can be determined from experiments. This would re-

quire earlier experiments on the Casimir force to be extended.

Two options are here proposed for such investigations, all us-

ing polished plane metal plates:

◦ Air gaps of a smaller width than those in earlier ex-

periments, but being larger than the electromagnetic

skin depth of the plates, would extend the measurable

range. Thereby the insertion of insulating material of

very small thickness may be tested.

◦ The largest possible Casimir force is expected to oc-

cur at a vanishing air gap. In this case the skin depth

of the plates acts as an equivalent air gap. Even at

this maximum Casimir force, other surface and stick-

ing mechanisms such as by Van der Waals’ forces may

interfere with the measurements. To eliminate at least

part of these difficulties, any magnetic alloy should be

avoided as plate material in the first place. Further, as

pointed out by N. Abramson [13] and G. Brodin [14],

plates of different materials should be chosen to avoid

microscopic matching of the metal structures. Possi-

ble choices of plate material are Ag, Cu, Au, Al, Mg,

Mo, W, Zn, Ni, Cd, Sb, and Bi in order of decreasing

electric conductivity.

As a device for measurement of the Casimir force, a weight-

ing machine with two horizontal plates is proposed, in which

the weight of the upper plate is outbalanced and a vertical

Casimir force can be recorded.

4 The Casimir force

The Casimir force arises from the difference in pressure on

the out- and insides of the metal plates. Whereas the full ZPE

pressure acts at their outsides, there is a reduced pressure act-

ing on their insides, due to the boundary condition which sorts

out all frequencies below a limit ν̂. The latter corresponds to

wavelengths larger than λ̂= c/ν̂, as being further specified for

the two options defined in Sec. 3. The net Casimir pressure

thus becomes

p̂ =

∞
∫

0

dp −

∞
∫

ν̂

dp =
4πh

3c3

ν̂
∫

0

ν3 exp

(

−
ν

ν̄

)

dν (5)

due to the distribution (2). With x= ν/ν̄ and x̂= ν̂/ν̄ expres-

sion (5) obtains the form

p̂ = p0Π (x̂) (6)

where p0 is given by (4) and

Π =

x̂
∫

0

x3 exp (−x) dx =

= 1 −

(

1 + x̂ +
1

2
x̂2 +

1

6
x̂3

)

exp (−x̂) . (7)

4.1 Plates with an air gap

The first option concerns an air gap of the width a, being sub-

stantially larger than the skin depth of the plates at relevant

frequencies. Then the frequencies smaller than ν̂= c/2a and

wavelengths larger than λ̂= 2a are excluded. In the limit of

x̂≪ 1, Π then approaches the value x̂4/24, and the net pres-

sure becomes

p̂ �
πhc

48a4
(8)

being proportional to 1/a4 as earlier shown by Casimir [2].

For arbitrary values of x̂= c/2aν̄, the Casimir pressure (6)

can then for various gap widths be studied as a function of

ν̄. The set of obtained values of p̂ then leads to information

about the average frequency ν̄, within the limits of application

of this option.

4.2 Plates with zero air gap

With the second option of a vanishing air gap, the sum of

the skin depths at each plate plays the rôle of a total air gap.

Using two plates of different metals having the electric con-

ductivities σ1 and σ2, their skin depths at the frequency ν

become [15]

(δ1, δ2) =
1
√
πµ0ν

(

1
√
σ1

,
1
√
σ2

)

. (9)

The total skin depth can then be written as

δ1 + δ2 =
2
√
πµ0ν

1
√
σ12

(10)

where

σ12 =
4σ1σ2

σ1 + σ2 + 2
√
σ1σ2

. (11)

In the limiting case where half a wavelength λ/2= c/2ν is

equal to the total skin depth (10), the corresponding frequency

limit becomes

ν̂ =
µ0πc

2σ12

16
. (12)

Since λ varies as 1/ν and δ1 + δ2 as 1/
√
ν, it is seen that all

frequencies ν less than ν̂ are excluded by the boundary condi-

tion. Thus ν̂ represents the Casimir frequency limit, as in the

analogous case of a nonzero air gap.

With p0 given by (4), p̂ and Π by (6) and (7), ν̂ by (12),

and x̂= ν̂/ν̄, the Casimir pressure p̂ is obtained as a function

of the average frequency ν̄ for a given effective conductiv-

ity (11) of a pair of plates. Examples are given by (Ag/Cu,

Ni/Cd, Sb/Bi) for which σ12 = (60.5, 14.1, 1.26)× 106 A/Vm

and ν̂= (134, 31.2, 2.79)×1016 s−1 and λ̂= (2.23, 9.60, 107)×
10−10 m, respectively. The dependence of p̂ on ν̄ for the three

examples of metal plate combinations are demonstrated in

Fig. 1. The left-hand part of the figure relates to large val-

ues of x̂ for which p̂ nearly includes the full pressure (4), and
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Fig. 1: Casimir pressure p̂ as a function of the ZPE average fre-

quency ν̄ for the three metal plate combinations Ag/Cu, Ni/Cd, and

Sb/Bi.

for which there is a vanishing difference between the vari-

ous plate combinations. The right-hand part of the same fig-

ure corresponds on the other hand to small x̂ for which there

is a difference due to the various values of resistivity and ν̂.

This part leads to a pressure p̂ having the asymptotic limit

(πh/3c3) ν̂4 at large ν̄. To extend the range of resistivity de-

pendent Casimir pressures in respect to ν̄, plates with even

lower values of σ12 would have to be used. Provided that the

Casimir force is the dominant one, the measured pressure p̂

should thus be related to the same value of the average fre-

quency ν̄, then being independent of the choice of metal com-

binations. This would, in its turn, lead to an identification

of ν̄.

5 Conclusions

There are strong arguments for the frequency spectrum of

the Zero Point Energy to be determined by means of a self-

consistent system of statistical equilibrium in which there is

a finite total pressure and a related finite average frequency.

To investigate this state, an extended experimental analysis is

proposed, based on the largest possible Casimir force which

occurs on a pair of metal plates separated by a very small

or even vanishing air gap. Provided that these forces be-

come much stronger than those due to other possible adhering

mechanisms, the proposed measurements may give an esti-

mate of the average frequency defined in Section 2.
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In this paper we propose that the inertial masses of the proton and of the electron can be

associated to volumes of the unit cells of hyper-cubic lattices constructed in the momen-

tum space. The sizes of the edges of these cells are given by the Planck’s momentum

in the case of the electron, and by a modified Planck’s momentum in the case of the

proton. We introduce a “conservation of information principle” in order to obtain the

wave function which leads to this modified momentum. This modification is attributed

to the curvature of the space-time, and in doing this, the concept of the entropy of a

black hole has been considered. The obtained proton-electron mass ratio reproduces

various results of the literature, and compares well with the experimental findings.

1 Introduction

The volumes of certain associated symmetric spaces have

been used as a means to estimate the proton-electron mass

ratio, besides the ratios among leptons and mesons masses

[1–7]. Some of these papers [1–4] claim to present more

consistent physical interpretations of the particles mass ra-

tio, obtained through these geometric approaches. As was

pointed out by González-Martin, Smilga [1,4] obtained a vol-

ume factor from the decomposition of SO(3, 3) with respect to

the product group SO(3, 1) × SO(2). He calculated this vol-

ume factor that when compared with the volume factor of the

electron furnishes a proton-electron mass ratio very close to

known experimental result. The same evaluation was done

earlier by Wyler [7].

In this work we intend to pursue further on this subject,

by associating the masses of the proton and of the electron to

the volumes of unit cells in the momentum space, with each

unit cell having its appropriate size. For appropriate size we

mean that, the unit cell edge associated to the electron mass

is given by a characteristic momentum of the Planck’s scale.

On the other hand the unit cell related to the proton mass is

also evaluated with the aid of a Planck’s scale momentum,

but modified by the curvature of the space-time. The rea-

son to establish such differences is that the electron is usually

described through Quantum Electrodynamics (QED) [8], an

abelian field theory. Meanwhile the proton is described by

Quantum Chromodynamics (QCD) [9], a non-abelian field

theory, and we propose that this feature introduces a curvature

in space-time modifying the size of the cell of the momentum

space.

2 A conjecture about the conservation of the informa-

tion

If we consider a black hole of radius r, its entropy is given by

the well known Bekenstein-Hawking [10–12] formula

S =
A

4
=
πr2

L2
Pl

, (1)

where LPl is Planck’s length.

Let us write a “law of the conservation of the information”

in the form

S + I = C. (2)

In (2), C is a constant. Now we propose to associate the quan-

tity of information, I, to the logarithm of a density of proba-

bilityΨ2, whereΨ is a wave function associated to this curved

space-time. We have

πr2

L2
Pl

+ ln(Ψ2) = C. (3)

Equation (3) leads to

Ψ = Ψ0 exp













−

π r2

L2
Pl













. (4)

In order to better examine the content ofΨ it is convenient

to interpret it as a ground-state wave function of a kind of one-

dimensional harmonic oscillator. Inserting this function and

its second derivative in a Schrödinger equation for a particle

of mass M, we have

−

~
2

2M













π
2r2

L4
Pl













Ψ +
~

2

2M













π

L2
Pl













Ψ + VΨ = ǫ0Ψ. (5)

Making the identification of the “r-squared” and the “inde-

pendent of r” terms, we have

1

2

~
2
π

2

ML4
Pl

r2 =
1

2
kr2 = V(r) (6)

and
~

2
π

2ML2
Pl

= ǫ0 =
1

2
~ω. (7)

By taking

LPl =
~

MPl

and M ≡ MPl, (8)

we get

~ω = πMPl c2 = <p> c (9)
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with

<p> = πMPl c. (10)

We interpret (10) as the size of the unit cell in the curved

momentum space. Equation (9) can be seen as the difference

in energy levels in the curved space, namely ~ω being related

to the emission (absorption) of a boson of momentum <p>.

3 Estimate of the proton-electron mass ratio

As was pointed out by Wesson [13], Einstein’s Equivalence

Principle (EEP) may be a direct consequence of an extra di-

mension. Yet according to Wesson, a null path in five space-

time dimensions (5-D) can describe a massive particle which

usually lives in four dimensions. This null path conditions in

5-D can encompass both the gravitational mass of this par-

ticle (related to its Schwarzschild radius) as well its inertial

mass (related to its Compton length).

Partially inspired in Wesson work [13], we will assume

that particle masses are tied to some type of unit cell in a

five-dimensional momentum space lattice. First let us con-

sider the electron. The field theory which deals with the elec-

tron is the (abelian) QED [8]. We imagine that the amount of

inertial mass of the electron (me) is proportional to the five-

dimensional volume of the unit cell in the momentum space

lattice, which size is given by the Planck’s characteristic mo-

mentum, namely

p = MPl c, (11)

and

V5 = p5 = (MPl c)5
. (12)

Therefore we write

me = KV5 = K (MPl c)5
. (13)

On the other hand the proton is a hadron which structure

is described by QCD [9,14], a non-abelian field theory. QCD

has in common with General Relativity (GR), the fact that

both are known to be non-linear theories. It seems that in

evaluating the proton mass, a curved space-time must be con-

sidered. This leads to a modified size of the unit cell in the

momentum space lattice. Looking at the wave function given

by (4) and the structure of energy levels implied by it, we have

obtained <p> given by (10). But the curvature of a space

seems not to be displayed by a mathematical object such as a

volume. Then we propose that the inertial mass of the proton

mp is proportional to a five-surface area in the curved momen-

tum space lattice, this surface area being a derivative from a

six-volume. Therefore we write

<V6> = <p>6 (14)

<S 5> =
d<V6>

d<p>
= 6<p>5 (15)

and

mp = K <S 5> = K 6π5 (MPl c)5
. (16)

In writing (16) we have used (10), and considered that the

proportionality constant K is the same as that used in deter-

mining the electron mass. By comparing (13) and (16), we

finally obtain
mp

me

= 6π5
≈ 1836.12. (17)

The ratio given by (17) has been previously obtained by var-

ious authors, and compares relatively well with the experi-

mental values (please see [1,3,4] and references cited in those

papers).

Submitted on January 21, 2014 / Accepted on February 6, 2014

References
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In this study we first evaluate the time between collisions related to the transport prop-
erties in liquid water, provided by the protons motion tied to the hydrogen bonds. As
water is an essential substance for the establishment of life in the living beings, we
take this time as the basic unit to measure some kinds of retention time related to their
memory. Besides this, integration is an important feature associated to the operation of
the memory. Then we consider two possible ways of doing integration and an average
between them. One of these characteristic times, the Darwin time, is given by adding
over the N basic units which forms the memory. The other possibility, the recent time,
is obtained by considering a kind of time-like random walk running over the N basic
units. Finally we perform a geometric average between these two times and call it gen-
erations’ time. As a means to estimate these characteristic times, we take the number of
protons contained in a volume of water compatible with the dimensions of the portion
of the brain responsible by its memory.

1 Introduction

It seems that water is fundamental to the flourishing of life
[1], and the hydrogen-bond kinetics [2] plays an important
role in the establishment of the transport properties of this
liquid. Besides this, living beings which exhibit the property
of to replicate, must have this feature encoded in its memory.
In electronic computers, electrical currents are the agents re-
sponsible for writing or deleting the information stored in its
memory. In this paper we propose that, in the living beings
case, the protonic currents do this job. In order to accomplish
this we will treat protonic currents in close analogy with the
electrical currents in metals.

First we will evaluate the averaged time between colli-
sions for protonic currents and after we will use this time in
an integration sense, in order to find characteristic times of
persistency of the information registered in the living beings
memories. By integration sense we mean that we are looking
for physical properties which depend on the whole system,
a kind of cooperative effect, or an emergent property of the
collective of particles.

2 Electrical conductivity through protons

Drude formula for the electrical conductivity of metals can be
written as

σ =
e2nτ
M
, (1)

where e is the quantum of electric charge, n is the number
of charge carriers per unit of volume, τ is the average time
between collisions and M is the mass of the charge carriers.

Besides this in reference [3], starting from Landauer’s
paradigm: conduction is transmission [4], the relation for the
electrical conductivity can be put in the form

σ =
e2

πℏℓ0
. (2)

where ℓ0 is the size of the channel of conduction. In the case
of the charge carrier being the proton, the maximum conduc-
tivity is reached when the length, ℓ0, becomes equal to the
reduced Compton wavelength of it, namely

ℓ0 =
ℏ

Mc
. (3)

Inserting equation (3) into equation (2) we get

σmax =
e2Mc
πℏ2 . (4)

Making the identification between the two relations for
the electrical conductivity, namely equating equation (1) to
equation (4), and solving for τ, we obtain for the maximum
time between collisions the expression

τmax = τ =
M2c
nπℏ2 . (5)

It would be worth to evaluate numerically equation (5). In
order to do this we consider that water molecules in the liq-
uid state are relatively closed packed. Therefore by taking
n = 1029 m−3, which seems to be an acceptable number for
n, we get

τ = 2.7 × 10−7 s. (6)

This time interval is seven orders of magnitude greater than
the time between collisions of electrons in metallic copper at
room temperature [5].

3 Hydrogen bond and the transport properties of liquid
water

As far we know, protonic currents have not been directly mea-
sured in water. Indeed, equation (5) for the maximum time
between collisions, does not show explicit dependency on the
quantum of electric charge e.
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Meanwhile, from equation (27) of reference [5], we have

λ2
F = λC ℓ . (7)

In equation (7), λF, λC and ℓ, are respectively the Fermi
and Compton wavelengths and the mean free path of the par-
ticle responsible by the transport property in water. Besides
this, Luzar and Chandler [2] pointed out that: “In the hydro-
gen — bond definition employed by them, two water molec-
ules separated by less than 3.5Å can be either bond or not
bonded, depending upon their relative orientations. At large
separations, a bond cannot be formed.” This information
comes from the first coordination shell of water, as measured
by its oxygen-oxygen radial distribution function. We will
idealize a lattice of water molecules, and by considering its
Fermi length λF = 3.5Å, and by taking λC equal to the reduced
Compton length of the proton, we obtain from equation (7)

ℓ = 6.2 × 10−4 m. (8)

Equation (8) is an estimate of the proton mean free path in
water. If we write

ℓ = VFτ (9)

where VF is a kind of Fermi velocity of the system and solving
for VF, we find after using equations (6) and (8)

VF ≈ 2300 m/s. (10)

We observe that this value of VF is comparable with the speed
of sound in water, approximately 1500 m/s. Therefore this
time between collisions estimated for the proton motion per-
forming the hydrogen bond in water seems to make some
sense.

4 Three characteristic times tied to the living beings

Recently Max Tegmark [6] published a paper entitled Con-
sciousness as a State of Matter. Tegmark was inspired in a
work by Giulio Tononi [7]: Consciousness as Integrated In-
formation: A Provisional Manifesto. According to Tegmark
[6], Tononi [7] stated that for an information processing sys-
tem to be conscious, it needs to have two distinct properties:

1. Have the ability to store a long amount of information;
2. This information must be integrated into unified whole.
Besides this, as was pointed out by Tegmark [6]: “Natural

selection suggests that self-reproducing information process-
ing systems will evolve integration if it is useful for them,
regardless of whether they are conscious or not”. In this work
we are interested in look at the integrated effects with respect
to time intervals, taking in account the great number N of ba-
sic units which compose the whole. By whole, we consider
for instance, a substantial part of the brain of a living being
responsible by its memory. We assume that the characteris-
tic times are measured in terms of units of time-base. This
unit will be taking as the time between collisions of the pro-
tons motion, related to the transport properties of water and
associated to the hydrogen-bond dynamics.

4.1 Integrated time: first possibility

Let us to take a time-like string of N unit cells or basic units.
We suppose that the time elapsed, τR, for the information
sweep the whole string can be computed by considering a
kind of Brownian motion on this time-like string. Then we
can write

τR = N
1
2 τ. (11)

Eighteen grams of liquid water occupies a volume of approxi-
mately 18 cm3 and contains 2NA protons, where NA stands for
Avogrado number. We assume that this volume corresponds
to a portion of the human brain compatible with the size of
the region of memory storage. As a means to estimate τR, let
us put numbers in (11) and we get

τR = (2NA)
1
2 τ ≈ 3 × 105 s. (12)

The time interval, given by equation (12), corresponds ap-
proximately to the duration of 3.5 days and perhaps can be
associated to the recent memory of the human brain. If the
volume of the memory’s device is ten times smaller, namely
1.8 cm3, the value of τR is reduced to approximately one day.

As a means of comparison, we cite a statement quoted in
a paper by S. Mapa and H. E. Borges [8] that a type of mem-
ory which they call working memory, may persist by one or
more hours. Meanwhile, with chemical aids this time can be
extended, as we can find in the words of Yassa and collab-
orators [9]: “We report for the first time a specific effect of
caffeine on reducing forgetting over 24 hours”.

4.2 Integrated time: second possibility

Another possibility to consider for the integrated time is as-
suming that the overall time is the sum over the basic time
units. Thinking in this way it is possible to write

τD = Nτ . (13)

If we take (2NA)/10 protons of 1.8 grams of water, we obtain
for τD,

τD ≈ 3.2 × 1016 ≈ 109 years. (14)

We will call τD the Darwin’s time. This choice can be
based in the following reasoning. According to Joyce [10]:
“The oldest rocks that provide clues to life’s distant past are
3.6 × 109 years old and by that time cellular life seems al-
ready to be established!” Another interesting paper about the
origins of life can be found in reference [11].

4.3 Third characteristic time

The two characteristic times we have discussed before were
associated by us to the recent memory time τR (order of mag-
nitude of one day) and the Darwin’s time τD (order of magni-
tude of one billion of years), this last one related to the estab-
lishment of life on earth. We judge interesting to consider an-
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other characteristic time corresponding to the geometric av-
erage of the two times we just described. We write

τG = (τDτR)
1
2 = N

3
4 τ . (15)

Inserting N = 1.2×1023, the number of protons contained
in 1.8 cm3 of water and the unit of time interval τ = 2.7 ×
10−7 s in equation (15), we obtain for the generations’ time
τD the value

τG = 1700 years. (16)

If we estimate a mean lifetime of the human beings as 70
years, the above number corresponds to approximately 24
generations.

5 Analogy with the polymer physics

Two characteristic times we have described in this paper can
be thought in analogy with polymer physics [12]. In four
dimensions, the scaling relation of polymers reproduces that
of a single random walk.

If we think about a time-like string of time-length τD,
composed by “monomers” having the duration of a unit-time
τ, we have after N steps the relation

τR = (τDτ)
1
2 = N

1
2 τ . (17)

We remember that τD is given by equation (13). Therefore
the Darwin’s time τD corresponds to the time-length of the
string and the recent time τR looks similar to the end to end
distance (equivalent to the gyration radius of polymers).

6 Concluding remarks

This work has been developed through two steps. In the first
one, an averaged time τ between collisions was calculated,
taking in account the proton current associated to the hydro-
gen bond in liquid water. As the human body, in particular its
brain, is constituted in great extension by this liquid, it seems
that any physical process occurring in it must consider the
relevancy of water in supporting this task. Perhaps the above
reasoning could be extended to all living beings. The falsifi-
ability of the calculated τ was verified by obtaining a kind of
Fermi velocity which is comparable to the sound velocity in
liquid water.

In the second step we considered an important property
of memory, namely its integrability. By taking a number N of
hydrogen bonds contained in a volume of water representa-
tive of the memory device of the living beings, we was able to
associate two characteristic times to them. The integrability
given by simple addition of unit-base time gives the Darwin
time which grows linearly with N. Another kind of integra-
tion, a time-like random walk, leads to the recent memory
time which grows with the square root of N. An intermediate
time interval given by the geometric average of the last two
ones was also evaluated and we call it generation’s time.

Although this work may sound very speculative, we think
that it perhaps could inspire other more robust research on the
present subject.
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formação e evocação de memórias em criaturas artificiais. http://
www.dca.fee.unicamp.br/∼gudwin/courses/IA889/2011/IA889-05.pdf

9. Borota D., Murray E., Kiceli G., Chang A., Watabe J. M., Ly M.,
Toscano J. P., Yassa M. A. Post-study caffeine administration enhances
memory consolidation in humans. Nature Neuroscience, 2014, v. 17,
201–203.

10. Joyce G. F. RNA evolution and the origin of life. Nature, 16
March 1989, v. 338, 217–224. http://www.its.caltech.edu/∼bch176/
Joyce1989.pdf

11. Damineli A. and Damineli D. S. C. Origens da vida. Estudos
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New Experiments Call for a Continuous Absorption Alternative to Quantum
Mechanics – The Unquantum Effect
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A famous beam-split coincidence test of the photon model was performed with γ-rays
instead of visible light. A similar test was performed to split α-rays. In both tests, co-
incidence rates greatly exceed chance, leading to an unquantum effect. In contradiction
to quantum theory and the photon model, these new results are strong evidence of the
long abandoned accumulation hypothesis, also known as the loading theory. Attention
is drawn to assumptions applied to past key experiments that led to quantum mechan-
ics. The history of the loading theory is outlined, and a few key experiment equations
are derived, now free of wave-particle duality. Quantum theory usually works because
there is a subtle difference between quantized and thresholded absorption.

1 Introduction

Since Einstein’s photoelectric work of 1905, quantum me-
chanics (QM) has endured despite its bizarre implications be-
cause no strong experimental evidence has been put forth to
refute it. Such new evidence is presented in detail here.

By QM and the photon model, a singly emitted photon
of energy h νL must not trigger two coincident detections in a
beam-split coincidence test (see p. 50 in [1] and p. 39 in [2])
where h is Planck’s constant of action, and νL is frequency
of the electromagnetic wave. Beam-split coincidence tests
of past have seemingly confirmed QM by measuring only an
accidental chance coincidence rate [3–6].

Here, new beam-split coincidence experiments use γ-rays
instead of visible light. The detectors employed have high
“energy” resolution, whereby their pulse-height is propor-
tional to νL. The γ-ray detection-pulses were within a full-
height window, indicating we are not dealing with frequency
down-conversion.

To measure such an unquantum effect implies that a
fraction of pre-loaded energy was present in the detector
molecules preceding the event of an incoming classical pulse
of radiant energy. It is called the accumulation hypothesis or
the loading theory [7–12] (see p. 47 in [12]). The pre-loaded
energy came from previous absorption that did not yet fill up
to a threshold. The unquantum tests give us a choice: we
either give up an always-applicable particle-energy conser-
vation, or give up energy conservation altogether. We uphold
energy conservation.

A beam-split coincidence test compares an expected
chance coincidence rate Rc to a measured experimental co-
incidence rate Re. Prior tests [3–6] all gave Re/Rc = 1. Past
authors admitted that exceeding unity would contradict QM.
These unquantum experiments are the only tests known to re-
veal Re/Rc > 1. This clearly contradicts the one-to-one “Born
rule” probability prediction of QM.

It is counterintuitive to attempt to contradict the photon
model with what was thought to be the most particle-like

form of light, γ-rays. Prior tests have only pitted QM against
an overly classical model that did not consider a pre-loaded
state. A beam-split coincidence test with γ-rays is fair to both
the loading theory and photon theory. The loading theory
takes h as a maximum. This idea of action allowed below
h is algebraically equivalent to “Planck’s second theory” of
1911 [9, 10, 14, 15]. There, Planck took action as a property
of matter, not light (see p. 136 in [10]). The unquantum ef-
fect implies that it was a false assumption to think h is due
to a property of light. The loading theory assumes light is
quantized at energy h νL only at the instant of emission, but
thereafter spreads classically.

Similar new beam-split tests with α-rays, contradicting
QM with Re/Rc > 1, are also described herein. This is im-
portant because both matter and light display wave-particle
duality, and its resolution requires experiment and theory for
both.

2 Gamma-ray beam-split tests

In a test of unambiguous distinction between QM and the
loading theory, the detection mechanism must adequately
handle both time and energy in a beam-split coincidence test
with two detectors, as shown in the following analysis. Sur-
prisingly, discussions of pulse “energy” (height) resolution
have not been addressed in past tests [3–6] which were per-
formed with visible light, and one test with x-rays. Refer-
ring to Fig. 1 we will analyze a photomultiplier tube (PMT)
pulse-height response to monochromatic visible light [16]. A
single channel analyzer (SCA) is a filter instrument that out-
puts a window of pulse heights ∆Ewindow to be measured; LL
is lower level and UL is upper level (italic symbols denote
notation in figures). If we set LL to less than half Emean, one
could argue we favored the loading theory, because a down-
conversion might take place that would record coincidences
in both detectors. Also, if LL were set too low, one could
argue we were recording false coincidences due to noise. If
we set LL higher than half Emean, one could argue we were
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Fig. 1: PMT pulse-height response. Data according to [16].

unfair to the loading theory by eliminating too many pulses
that would have caused coincidences. Therefore a fair test re-
quires high pulse-height resolution: Emean ≫ ∆Ewindow. This
criterion is not possible with a PMT or any visible light detec-
tor, but is easily met with γ-rays and scintillation detectors.

A high photoelectric effect detector-efficiency for the cho-
sen γ-ray frequency was judged to enhance the unquantum ef-
fect, and this proved true. The single 88 keV γ-ray emitted in
spontaneous decay from cadmium-109 (109Cd), and detected
with NaI(Tl) scintillators fit this criterion (see p. 717 [17]) and
worked well. All radioisotopes used were low-level license-
exempt.

A γ test of July 5, 2004 (see Fig. 6 in [18]) will be de-
scribed in detail, and others briefly. After spontaneous de-
cay by electron capture, 109Cd becomes stable 109Ag. 109Cd
also emits an x-ray, far below LL. We know that only one
γ is emitted at a time, from a coincidence test with the γ
source placed between two facing detectors that cover close
to 4π solid angle (see p. 693 [19]). That test only revealed the
chance rate, measured by

Rc = R1 R2 τ , (1)

where R1 and R2 are the singles rates from each detector, and
τ is the chosen time window within which coincident events
are counted.

The test was performed with two detectors like those
shown in Fig. 2, each being an NaI(Tl) crystal coupled to a
PMT. The 109Cd source was inside a tin collimator placed di-
rectly in front of detector #1, a custom made 4 mm thick 40 ×
40 mm crystal. Directly behind detector #1 was detector #2,
a 1.5′′ Bicron NaI-PMT. We call this thin-and-thick detector
arrangement tandem geometry. This test was performed in-
side a lead shield [20] that lowered the background rate 1/31.
Referring to Fig. 3, components for each of the two detector
channels are an Ortec 460 shaping amplifier, an Ortec 551
SCA, and an HP 5334 counter. For each detector channel,
singles rates R1 and R2 were measured by calculating (counter
pulses)/(test duration). A four channel Lecroy LT344 digital

Fig. 2: Two γ-ray detectors in tandem geometry; a demonstrator
unit. Detector #1 was used with other components for data shown.

storage oscilloscope (DSO) with histogram software, moni-
tored the analog pulses from each shaping amplifier on Ch1
(channel 1) and Ch2, and from the timing pulse outputs from
each SCA on Ch3 and Ch4. Stored images of each triggered
analog pulse assured that the number of misshaped pulses was
well below 1%. Misshaped pulses can occur from pulse over-
lap and cosmic rays. This DSO can update pulse-height E
and time difference ∆t histograms after each triggered sweep.
To assure exceeding particle-energy conservation, LL on each
SCA window was set to ∼ 2/3 of the 109Cd γ characteristic
pulse-height.

Data for this test is mostly from Fig. 4, a screen capture
from the DSO. A control test with no source present is ∆t his-
togram trace B of 16 counts/40.1 ks = 0.0004/s, a background
rate to be subtracted. With τ taken as 185 ns, the chance rate
from Eq. 1 was (291/s)(30/s)(185 ns) = Rc = 0.0016/s. From
trace A and numbers on Fig. 4, Re = 295/5.5 ks − 0.0004/s
= 0.053/s. The unquantum effect was Re/Rc = 33.5 times
greater than chance. The described test is not some special
case. Much critical scrutiny [18, 20] was taken to eliminate
possible sources of artifact, including: faulty instruments,
contamination by 113Cd in the 109Cd, fluorescence effects,
cosmic rays, possibility of discovering stimulated emission,
pile-up errors, and PMT artifacts. Hundreds of similar tests
and repeats of various form have successfully defied QM.
These tests include those with different sources (57Co, 241Am,
pair-annihilation γ from 22Na [21], 54Mn, 137Cs) and different
detectors (NaI, high purity germanium, bismuth germinate,
CsI), different geometries, and different collimator materials.

109Cd was prepared in two chemical states of matter (see
Fig. 11 in [18]). A salt state was prepared by evaporating an
isotope solution. A metal state was prepared by electroplating
the isotope in solution onto the end of a platinum wire. The
unquantum effect from the salt state was 5 times greater than
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Fig. 3: γ-ray coincidence experiment.

from the metal state. This discovery measures how chemistry
affects nuclear electron capture in isotope decay. We theorize
that γ from the salt-crystaline source are more coherent and
that the unquantum effect is enhanced by coherent waves. The
singles spectrum did not measurably change with this chem-
ical state change, so this sensitivity is due to the unquantum
effect. A similar effect was reported [22] but was not nearly
as sensitive or simple.

The unquantum effect is sensitive to distance (see Fig.
8–9 in [18]). A longer γwavelength from 241Am shows an en-
hanced unquantum effect when placed closer to the detectors,
while a shorter γ wavelength from 137Cs shows an enhanced
effect when placed farther from the detector. Therefore, we
can see how the spreading cone of a classical γ defines an area
that matches the size of the microscopic scatterer (electron).
We can measure how the short spatial and temporal qualities
of a classical spreading γ wave-packet trigger the unquantum
effect.

In addition to tandem geometry, a beam-split geometry
was explored successfully. Different materials were tested
to split an energy-fraction of a classical γ to one side, while
the remaining ray passed through (see Fig. 12 in [18]). This
beam-split geometry was developed into a spectroscopy
whereby the pulse-height spectrum of the second detector
was expanded. A non-shifted spectrum-peak indicates elastic
Rayleigh scattering. A shifted spectrum-peak indicates non-
elastic Compton scattering.

In beam-split geometry, crystals of silicon and germa-
nium were explored with an apertured γ path to obtain angle
resolution (see Fig. 13 in [18]). The unquantum effect var-

Fig. 4: γ-ray ∆t from DSO.

ied with crystal orientation to reveal a new form of crystal-
lography. This was not Bragg reflection from atomic planes,
but rather from periodicity smaller than inter-atomic distance,
perhaps electron-orbital structure.

The unquantum effect is sensitive to temperature of the
beam-splitter (see Fig. 18 in [18]). A liquid nitrogen cooled
slab of aluminum delivered a 50% greater unquantum effect,
as expected.

Magnetic effects were explored with coincident deflected
pulse-height analysis (see Fig. 14–16 in [18]) in beam-split
geometry. A ferrite scatterer in a magnetic gap revealed en-
hanced Rayleigh scattering, indicating a stiff scatterer, as one
would expect. A diamagnetic scatterer in a magnetic gap
revealed enhanced Compton scattering, indicating a flexible
scatterer, as expected.

The unquantum effect’s increase/decrease response to
several physical variables in the direction that made physical
sense solidifies its fundamental validity. Each of the above
mentioned modes of unquantum measurement represents a
useful exciting discovery.

There is a simple way to measure the unquantum effect
with a single NaI-PMT detector and a pulse-height analyzer
[20]. Measure the 109Cd sum-peak’s count rate within a pre-
set ∆E window that is set at twice 88 keV, and compare to
chance. The result approached chance × 2.

Our most impressive γ-split test [21] used 22Na emitting a
positron that annihilates into two 511 keV γ. The decay also
emits a stronger γ that was caught in a third detector. In this
triple-coincidence test Rc = R1 R2 R3 τ12 τ23. Only one from
each pair of annihilation γ-rays were then captured by two
detectors in tandem. Here Re/Rc = 963. Energy = h ν is still
true as a threshold value, but these experiments say there are
no photons.
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Fig. 5: α-split test in vacuum chamber.

3 Alpha-ray beam-split tests
241Am in spontaneous decay emits a single 5.5 MeV α-ray
and a 59.6 keV γ. An α is a helium nucleus. This sounds
like a particle, but consider a helium nuclear matter-wave. If
the wave was probabilistic, the particle would go one way
or another, and coincidence rates would only approximate
chance. I performed hundreds of various tests in four vacuum
chamber rebuilds. Two silicon Ortec surface barrier detec-
tors with adequate pulse-height resolution were employed in
a circuit nearly identical to Fig. 3. Fig. 5 shows the detectors
and pre-amplifiers in the vacuum chamber. These tests were
performed under computer CPU control by a program writ-
ten in QUICKBASIC to interact with the DSO through a GPIB
interface. Both SCA LL settings were at 1/3 of the charac-
teristic α pulse-height, because it was found that an α-split
usually maintains particle-energy conservation. The coinci-
dence time-window was τ = 100 ns. The ∆t histograms of
Fig. 6 were from DSO screen captures.

Data of Fig. 6-a was a two hour control test with the two
detectors at right angles to each other and the 241Am cen-
trally located. Only the chance rate was measured, assuring
that only one α was emitted at a time. This arrangement is
adequate, and 4π solid angle capture is not practical with α.
Any sign of a peak is a quick way to see if chance is exceeded.
Background tests of up to 48 hours with no source gave a zero
coincidence count.

Data of Fig. 6-b (Nov. 13, 2006) was from the arrange-
ment of Fig. 5 using two layers of 24 carat gold leaf over
the front of detector #1. Mounted on the rim of detector #2
were 241Am sources, shaded to not affect detector #2. Every
analog detector pulse in coincidence was perfectly shaped.
Rc = 9.8×10−6/s, and Re/Rc = 105 times greater than chance.

From collision experiments, the α requires ∼ 7 MeV per
nucleon to break into components, and even more for gold
[17]. It would take 14 MeV to create two deuterons. The only
energy available is from the α’s 5.5 MeV kinetic energy. So

Fig. 6: α-ray ∆t plots.

Fig. 7: Coincident α pulse-height pairs,

for any model of nuclear splitting there is not enough energy
to cause a conventional nuclear split. Also plotted from the
CPU program and data from the test of Fig. 6-b is data re-
plotted in Fig. 7. Fig. 7 depicts pulse heights plotted as dots
on a two dimensional graph to show coincident pulse heights
from both detectors. The transmitted and reflected pulse-
height singles spectra were carefully pasted into the figure.
We can see that most of the a pulses (dots) are near the half-
height marks; α usually splits into two lower kinetic-energy
He matter-waves. Six dots, circled, clearly exceeded particle-
energy conservation. Counting just these 6, we still exceed
chance: Re/Rc = 3.97. This is a sensational contradiction of
QM because it circumvents the argument that a particle-like
split, such as splitting into two deuterons, is somehow still at
play.

In search for alternative explanations, we found none and
conclude: an α matter-wave can split and continuous absorp-
tion can fill a pre-loaded state of He up to a detection thresh-
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old. Also, the α-split test demonstrates how the loading the-
ory applies to historical interference and diffraction tests with
electrons, neutrons, and atoms [23, 24]. Several other mate-
rials were tested in transmission and reflection geometries to
reveal the usefulness of this matter-wave unquantum effect in
material science [21]. It is not necessary to use gold to exceed
chance, but many materials tested just gave chance.

4 History of the loading theory and its misinterpretation

A believable report of such disruptive experimental results
requires an accompanying historical and theoretical analysis.

Lenard [7, 8] recognized a pre-loaded state in the photo-
electric (PE) effect with his trigger hypothesis. Most physi-
cists ignored this idea in favor of Einstein’s light quanta [25]
because the PE equation worked. Planck (see Eq. 14 in [9],
and p. 161 in [10]) explored a loading theory in a derivation of
his black body law that recognized continuous absorption and
explosive emission. Sommerfeld and Debye [11] explored
an electron speeding up in a spiral around a nucleus during
resonant light absorption. Millikan (see p. 253 in [13] de-
scribed the loading theory, complete with its pre-loaded state
in 1947, but assumed that its workings were “terribly difficult
to conceive.” In the author’s extensive search, physics liter-
ature thereafter only treats a crippled version of the loading
theory with no consideration of a pre-loaded state.

Most physics textbooks (e.g. [26], p. 79) and literature
(e.g. [27]) routinely use photoelectric response time as evi-
dence that the loading theory is not workable. Effectively,
students are taught to think there is no such thing as a pre-
loaded state. Using a known light intensity, they calculate
the time an atom-sized absorber needs to soak up enough en-
ergy to emit an electron. One finds a surprisingly long ac-
cumulation time (the longest response time). They claim no
such long response time is observed, and often quote ∼ 1 ns,
the shortest response time from the 1928 work of Lawrence
and Beams [28] (L&B). Such arguments unfairly compare a
shortest experimental response time with a longest calculated
response time. An absorber pre-loaded to near threshold ex-
plains the shortest response times. The longest response time
from L&B was ∼ 60 ns. L&B did not report their light inten-
sity, so it is not fair to compare their results to an arbitrary cal-
culation. Energy conservation must be upheld, so an appro-
priate calculation is to measure the longest response time and
the light intensity, assume the loading theory starting from an
unloaded state, and calculate the effective size of the loading
complex. The loading theory was the first and obvious model
considered for our earliest experiments in modern physics.
There is no excuse for the misrepresentation outlined here.

5 A workable loading theory

For brevity, the theory is elaborated for the charge matter-
wave. If we develop three principles, we will find they explain
both the quantum and unquantum experiments [29]:

1. de Broglie’s wavelength equation is modified to the
wavelength of a beat or standing-wave envelope-func-
tion of Ψ;

2. Planck’s constant h, electron charge e, and mass con-
stants like the electron mass me are maximum thresh-
olds whereby emission is quantized but absorption is
continuous and thresholded;

3. Ratios h/e, e/m, h/m, in our equations are conserved
as the matter-wave expands and thins-out.

In de Broglie’s derivation of his famous wavelength equa-
tion (see. p. 3 in [30])

λΨ =
h

me vp
, (2)

he devised a frequency equation

hνΨ = me c2, (3)

and a velocity equation

vp VΨ = c2. (4)

For equations (2–4), subscript Ψ is for either a matter-
wave or a probabilistic wave, λΨ is the phase wavelength, νΨ
the phase frequency, vp the particle velocity, VΨ the phase
velocity, and me the electron mass. Equations (3) and (4)
remain widely accepted, but have serious problems. Equa-
tion (3) is only true when using νL instead of νΨ to calculate
a mass equivalent. If we measure vp, λΨ, and me for mat-
ter diffraction, equation (3) fails. Our experimental equations
use h associated with kinetic energy, or momentum, not mass-
equivalent energy.

As for equation (4), one might attempt to extract it from
the Lorentz transformation equation of time by dimensional
analysis, but its derivation independent of equations (2) or (3)
has not been found by the author. Nevertheless, it describes
an infinite VΨ in any particle’s rest frame. Many physicists use
equation (4) to justify the probability interpretation of QM,
(see p. 89 in [31]) but this leads to “spooky action at a dis-
tance” we are all well aware of.

A much more reasonable frequency equation is the PE ef-
fect equation hνL =

1/2 mev
2
p, with the work function not yet

encountered. It is very reasonable to understand that some-
thing about charge is oscillating at the frequency of its emitted
light, but just how to replace νL with a charge frequency re-
quires insight. Recall the Balmer or Rydberg equation of the
hydrogen spectrum in terms of frequency in its simplest form:
νL = νΨ2 − νΨ1. Here νΨ is frequency of a non-probabilistic Ψ
matter-wave. The hydrogen atom is telling us that the re-
lationship between νL and νΨ is about difference-frequencies
and beats. Consider that this difference-frequency property
is fundamental to free charge as well as atomically bound
charge. Beats, constructed from superimposing two sine
waves are understood from a trigonometric identity to equal
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an averaged Ψ wave modulated by a modulator wave M, as
graphed in Fig. 8. If we take M as the coupling of light to
charge we see that there are two beats per modulator wave,
and we can write a relationship between light frequency and
the frequency of charge beats: 2νL = νg. Group velocity is
commonly substituted for particle velocity, so vp = vg. Sub-
stituting the last two equations into the PE equation makes
hνg = mev

2
g. Groups are periodic, so we apply νg = vg/λg to

derive a wavelength equation (principle 1):

λg =
h

me vg
. (5)

Notice that both the PE equation and equation (5) have
h/me. Recall several equations applicable to so-called “wave
properties of particles”: Lorentz force, PE, Compton effect,
Aharonov-Bohm effect, others. They all have ratios like e/m,
h/m, h/e. Examining h/me ≡ Qh/m, if action is less than
h and mass is less than me and the proportion is conserved,
we would not be able to tell if those values went below our
thresholds (h,m, e) while the charge-wave spreads out and
diffracts (principles 2 & 3). Therefore we can write equation
(5) as λg = Qh/m/vg and the PE equation as νL =

1/2 Qm/h vg
2.

At threshold, mgroup = me and at sub-threshold we use Q
ratios to emphasize wave nature (Q for quotient). To under-
stand the PE effect without photons, visualize the pre-loaded
state in the Qm/h ratio. Energy loads up to threshold and an
electron is emitted explosively (principle 2); thereafter, the
charge-wave can spread classically.

The Compton effect is often claimed to require QM treat-
ment. A classical treatment is in Compton and Allison’s book
(see p. 232 in [12]) based upon a Bragg grating of envelopes
from standing de Broglie waves. However, the envelopes
were weak. If charge structures were inherently composed of
beats of length d, it would naturally create a plausible Bragg
grating. Use the Bragg diffraction equation λL = 2d sin(ϕ/2),
where ϕ is deflection angle. Substitute for d, λg from equation
(5). Solve for vg and insert into the Doppler shift equation
∆λL/λL = (vg/c) sin(ϕ/2). Simplify using the trigonometric
identity sin2 θ = [1 − cos(2θ)]/2 and Qh/m to yield

∆λL =
Qh/m

c
(1 − cos(ϕ)),

the Compton effect equation.
Also related to the Compton effect are popular accounts

of the test by Bothe and Geiger. The measured coincidence
rate was not a one-to-one particle-like effect as often claimed,
but rather the coincidence rate was ∼ 1/11 [32].

What about quantized charge experiments? Measure-
ments of e are performed upon ensembles of many atoms,
such as in the Millikan oil drop experiment, and earlier by
J. J. Thompson. Granted, electron detectors go click, but that
is the same threshold effect demonstrated by the unquantum
α-split experiments. From evidence of charge diffraction

Fig. 8: Illustration of the concept of matter and antimatter. (a) Two
positron beats. (b) Two electron beats.

alone, it was a poor assumption to think charge was always
quantized at e. Charge, capable of spreading out as a wave
with a fixed e/me ratio for any unit of volume, loading up,
and detected at threshold e, would remain consistent with our
observations. Furthermore, the electron need not be relatively
small. Chemists performing Electron Spin Resonance mea-
surements often model the electron to be as large as a ben-
zene ring. A QM electron would predict a smeared-out ESR
spectrum.

The following is a list of famous experiments and prin-
ciples re-analyzed with this newly developed Loading The-
ory (LT) by the author [29]: PE effect, Compton effect, shot
noise, black body theory, spin, elementary charge quantiza-
tion, charge & atom diffraction, uncertainty principle, ex-
clusion principle, Bothe-Geiger experiment, Compton-Simon
experiment, and the nature of antimatter, as envisioned in
Fig. 8. The LT visualizes these fundamental issues, now free
of wave-particle duality.

The LT supported by the unquantum effect easily resolves
the enigma of the double-slit experiment. The wave of light or
matter would load-up, and show itself as a click at a threshold.

These realizations lead to matter having two states: (1) a
contained wave in a particle state, and (2) a spreading matter-
wave that is not a particle at all, yet carries the wave-form
matching a loading-up particle. One may protest by quot-
ing experiments in support of QM, such as giant molecule
diffraction, EPR tests, and quantum cryptography. My anal-
ysis of major flaws in such tests, and elaboration of topics
outlined here, are freely viewable from my posted essays and
at www.unquantum.net.

Submitted on October 11, 2013 / Accepted on February 23, 2014
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The negative parity states of octupole vibrational bands in Tungsten and Osmium nuclei
have perturbed structure. To explore the ∆I = 1 staggering, we plotted the gamma
transitional energy over spin (EGOS) versus I2. Such a plot exhibit large deviation from
a linear I(I+1) dependence E(I) = A[I(I+1)]+B[I(I+1)]2 and effectively splits into two
different curves for odd and even spin states and a staggering pattern is found. The odd-
spin members Iπ = 1−, 3−, 5−, . . . were displaced relatively to the even-spin members
Iπ = 2−, 4−, 6−, . . . i.e. the odd levels do not lie at the energies predicted by the pure
rotator fit to the even levels, but all of them lie systematically above or all of them lie
systematically below the predicted energies because the odd-spin states can be aligned
completely, while the even-spin states can only be aligned partially. Also the ∆I = 1
staggering effect has been clearly investigated by examining the usual backbeding plot.

1 Introduction

The properties of nuclear rotational bands built on octupole
degrees of freedom have been extensively studied within var-
ious microscopic as will as macroscopic model approaches
in nuclear structure [1–6]. It is will known that heavy nuclei
have low-lying Kπ = 0− octupole deformed bands [7,8]. The-
oretical works of such bands have been presented in frame-
work of cranked random phase approximation (RPA) [9, 10],
the collective model [5], the interacting boson model (IBM)
[3, 11], the variable moment of inertia (VMI) model [12] and
the alpha particle cluster model [4, 13]. The IBM and the ex-
otic cluster models address the existence of negative parity
bands with Kπ , 0−.

Several staggering effects are known in nuclear spectros-
copy. The ∆I = 2 staggering has been observed and inter-
preted in superdeformed (SD) nuclei [14–22], where the lev-
els with I = I0 + 2, I0 + 6, I0 + 10, . . . are displaced relatively
to the levels with I = I0, I0 + 4, I0 + 8, . . ., i.e. the level with
angular momentum I is displaced relatively to its neighbors
with angular momentum I ± 2. There is another kind of stag-
gering happening in SD odd-A nuclei, the ∆I = 1 signature
splitting in signature partners pairs [23].

The ∆I = 1 Staggering in odd normal deformed (ND) nu-
clei is familiar for a long time [24–28], where the rotational
bands with K = 1/2 separate into signature partners, i.e. the
levels with I = 3/2, 7/2, 11/2, . . . are displaced relatively to
the levels with I = 1/2, 5/2, 9/2, . . .. In this paper, we will
investigate another type of ∆I = 1 energy staggering occur-
ring in the negative parity octupole bands of even-even nu-
clei, where the levels with odd spin Iπ = 1−, 3−, 5−, . . . are
displaced relatively to the levels with even spin Iπ = 2−, 4−,
6−, . . .. This is more strikingly revealed when one makes the
usual backbending plot of the energies in which the kine-
matic moment of inertia is plotted against the square of ro-
tational frequency. The negative parity octupole band breaks

into even and odd-spin bands with, however, very little back-
bending tendency.

2 Outline of the Theory of ∆I = 1 Energy Staggering

To analyze the ∆I = 1 energy staggering in collective bands,
several tests have been considered in the literature. In our
analysis, the basic staggering parameter is the gamma tran-
sitional energy over spin (EGOS=Eγ(I)/I) of the transitional
energies in a ∆I = 1, where E(I) is the energy of the state of
the spin I, and Eγ(I) denotes the dipole transition energy

Eγ(I) = E(I) − E(I − 1). (1)

The level energies in a band can be more realistic parameter-
ize by two-term rotational formula as a reference

E(I) = A[I(I + 1)] + B[I(I + 1)]2. (2)

The first two-term represents the perfect purely collective
rigid rotational energy, where A denotes the inertial param-
eter A = ℏ/2J (where J is the kinematic moment of inertia).
The introduction of the second term is based on the assump-
tion that, on rotation, the moment of inertia of the nucleus
increases as does the quadratic function of the square of the
angular velocity of rotation of the nucleus.

It is interesting to discuss the energy levels by plotting
EGOS against spin. This is not helpful to identify the struc-
ture of the nucleus, but also to see clearly changes as a func-
tion of spin. For pure rotator, the energies of the yrast states
are:

E(I) = A[I(I + 1)]. (3)

Then the E2 γ-ray energies are given by

Eγ(I) = A[4I − 2] (4)

which yield

EGOS = A
(
4 − 2

I

)
. (5)
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Table 1: The adopted best model parameters A and B for our selected octupole vibrational bands.

178W 180W 176Os 178Os 180Os 182Os
A (keV) 13.637 13.027 9.665 10.083 11.796 9.491
B (eV) -13.821 -8.517 -2.223 -3.032 -8.607 0.140

In units of A, EGOS evolves from 3 for I = 2 up to 4 for high
I, and so gradually increasing and asymptotic function of I.

EGOS for our proposed reference formula (2) is given by

EGOS = 2A + 4BI2. (6)

The EGOS when plotted against I2, it represent a straight line
of intercept 2A and slope 4B. Practically, the plot splits into
two different curves for the odd and even spin states respec-
tively. To see fine variation in the plot (EGOS & I2), we use
the staggering parameter

e(I) = EGOS −
(
2A + 4BI2

)
ref

(7)

where the unknown A and B are determined by minimizing
the function F

F(I, A, B) =
∑

I

|e(I)|2. (8)

The summation over spin in equation (8) is taken in step of
∆I = 1. The function F has a minimum value when all its
partial derivatives with respect to A and B vanish (∂F/∂A =
0, ∂F/∂B = 0), this leads to

2nA + 4
∑

I

I2B =
∑

I

EGOS (I) (9)

2
∑

I

I2A + 4
∑

I

I4B =
∑

I

I2EGOS (I) (10)

where n is the number of data points.
The behavior of the octupole band is most clearly illus-

trated by a conventional backbending plot. For each ∆I = 2
value, the effective nuclear kinematic moment of inertia is
plotted versus the square of the rotational frequency. If we
consider the variation of the kinematic moment of inertia J(1)

with angular momentum I, we can write

2J(1)

ℏ2 =
4I − 2

E(I) − E(I − 2)
. (11)

Lets us define the rotational frequency ℏω as a derivative
of the energy E(I) with respect to the angular momentum
[I(I + 1)]1/2,

ℏω =
dE

d[I(I + 1)]1/2 (12)

usually we adopt the relation

(ℏω)2 =
4(I2 − I + 1)
(2J(1)/ℏ2)2 . (13)

3 Numerical Calculation and Discusion

Our selected octupole bands are namely: 178W, 180W, 176Os,
178Os, 180Os and 182Os. The optimized model parameters A
and B for each nucleus have been adjusted by using a com-
puer simulation search program to fit the calculated theoret-
ical energies Ecal(Ii), with the corresponding experimental
ones Eexp(Ii). The procedure of fitting is repeated for sev-
eral trail values A and B to minimize the standard quantity χ
which represent the root mean square deviation

χ =

 1
N

N∑
i=1

(
Eexp(Ii) − ECal(Ii)
△Eexp(Ii)

)21/2

where N is the number of data points and ∆Eexp(Ii) are the
experimental errors. The best optimized parameters are listed
in table (1). The negative parity octupole bands have sev-
eral interesting characteristics, the most obvious of which is
the staggering effect. In this paper the ∆I = 1 staggering
is evident on a plot of staggering parameter e(I) against I2

and illustrated in figure (1), the band effectively splits into an
odd- and even-spin sequence with a slight favoring in energy
for the odd-spin states. In terms of an alignment of the an-
gular momentum of the octupole vibration, the odd energy
favoring can be understood since the odd-spin states can be
aligned completely (I ∼ R + 3, where R = 0, 2, 4, . . . is the
collective rotation), while the even spins can only be aligned
partially (I ∼ R + 2). As expected from a good rotor model,
the γ-ray transition energy Eγ(I) increases with increasing the
angular momentum I. It is found in some rotational deformed
nuclei that the transition energy decreases with increasing I,
this anomalous behavior is called nuclear backbending. In
order to represent this backbending, one prefers to plot twice
the kinematic moment of inertia 2J(1)/ℏ2 versus the square of
the rotational frequency (ℏω)2. Figure (2) shows the back-
bending plot for our selected octupole bands. It is seen that
the bands are essentially separate into odd and even spin se-
quences which shows the effects of rotation alignment. The
increase in Coriolis effects is due to the lowering of the Fermi
level, then these effects depress the odd spin states relative
to the even spin states. When the Coriolis effects are large
compered with the octupole correlations effected through the
residual interaction, it becomes inappropriate to identify these
bands as octupole bands (decoupled two quasiparticle bands).
These are bands in which the intrinsic spin has been aligned
with the rotational spin through the decoupling action of the
Coriolis force.
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Fig. 1: The odd-even ∆I = 1 energy staggering parameters e(I)
versus I2 for negative parity states of octupole vibrational bands in
doubly even nuclei 178,180W and 176,178,180,182Os.

Fig. 2: Plot of twice Kinematic moment of inertia 2J(1) against the
square of the rotational frequency (ℏω)2 for the negative parity bands
in 178,180W and 176,178,180,182Os isotopes.

4 Conclusion

In negative parity octupole bands of even-even W/Os nuclei,
the levels with odd spins Iπ = 1−, 3−, 5−, ... are displaced rel-
atively to the levels with even spins Iπ = 2−, 4−, 6−, .... The
effect is called ∆I = 1 staggering and its magnitude is clearly
larger than the experimental errors. The phase and amplitude
of the splitting is due to rotation particle Corialis coupling.
Our proposed two terms formula provided us with informa-
tion about the effective moment of inertia.
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One introduces an ansatz for the expansion factor a(t) = e(H(t)t−H0T0)/β for our Universe
in the spirit of the FLRW model; β is a constant to be determined. Considering that
the ingredients acting on the Universe expansion (t > 4 × 1012 s ≈ 1.3 × 10−5 Gyr) are
mainly matter (baryons plus dark matter) and dark energy, one uses the current mea-
sured values of Hubble constant H0, the Universe current age T0, matter density param-
eter Ωm(T0) and dark energy parameter ΩΛ(T0) together with the Friedmann equations
to find β = 0.5804 and that our Universe may have had a negative expansion accelera-
tion up to the age T⋆ = 3.214 Gyr (matter era) and positive after that (dark energy era),
leading to an eternal expansion. An interaction between matter and dark energy is found
to exist. The deceleration q(t) has been found to be q(T⋆) = 0 and q(T0) = −0.570.

1 Introduction

The Cosmological Principle states that the Universe is spa-
tially homogeneous and isotropic on sufficiently large scale
[1–4] and [7]. This is expressed by the Friedmann spacetime
metric:

ds2 = ℜ2(t) dψ2+ℜ2(t) f 2
k (ψ)

(
dθ2 + sin2θ dϕ2

)
−c2dt2, (1)

where ψ, θ and ϕ are comoving space coordinates (0 ≤ ψ ≤
π, f or closed Universe, 0 ≤ ψ ≤ ∞, f or open and f lat Uni-
verse, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π), t is the proper time shown by
any observer clock in the comoving system. ℜ(t) is the scale
factor in units of distance; actually ℜ(t) is the radius of cur-
vature of the Universe. The proper time t may be identified
with the cosmic time. In terms of the usual expansion factor

a(t) =
ℜ(t)
ℜ(T0)

, (2)

being T0 the current age of the Universe, equation (1) be-
comes

ds2 = ℜ2(T0) a2(t)(
dψ2 + f 2

k (ψ)
(
dθ2 + sin2θ dϕ2

))
− c2dt2,

(3)

f 2
k (ψ) assumes the following expressions:

f 2
k (ψ)


f 2
1 (ψ) = sin2ψ (closed Universe)

f 2
0 (ψ) = ψ2 (flat Universe)
f 2
−1(ψ) = sinh2ψ (open Universe)

(4)

The expansion process one will be considering here is the one
started by the time of 4 × 1012 s ≈ 1.3×10−5 Gyr when the so
called matter era began. Right before that, the Universe went
through the so called radiation era. In this paper one consid-
ers only the role of the matter (baryonic and non-baryonic)
and the dark energy.

2 Einstein’s field equations

Let one uses Einstein’s Field Equations [5], with the inclusion
of the Λ “cosmological constant” term.

Gµν = Rµν −
1
2
gµν R =

8πG
c4

(
Tµν + TΛµν

)
(5)

where gµν is the metric tensor, Rµν is the Ricci tensor, R is the
Ricci scalar curvature, Tµν is the energy-momentum tensor,
and, TΛµν the dark-energy-momentum tensor,

TΛµν = ρΛc2gµν, (6)

ρΛ =
Λc2

8πG
; (7)

Λ is the “cosmological constant”, which will be here allowed
to vary with time. The metric tensor for the metric above,
equation (3), is

(gµν) =


ℜ2(t) 0 0 0

0 ℜ2(t) f 2
k (ψ) 0 0

0 0 ℜ2(t) f 2
k (ψ)sin2θ 0

0 0 0 −c2

 (8)

where

ℜ(t) = ℜ(T0) a(t). (9)

The Ricci tensor is given by

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + Γ

η
µνΓ

λ
ηλ − Γ

η
µλΓ

λ
ην (10)

where the Christoffel symbols Γλµν are

Γλµν =
1
2
gλσ

(
∂µgσν + ∂νgσµ − ∂σgµν

)
. (11)

The Ricci scalar curvature is given by

R = gµνRµν , (12)
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and the energy-momentum tensor is

Tµν =
(
ρm +

1
c2 pm

)
uµuν + pmgµν , (13)

where ρm is the matter density and pm is the matter pressure,
both only time dependent. By making straightforward calcu-
lations, one gets

R = 6

 k
ℜ2(T0)a2(t)

+
1
c2

( ȧ(t)
a(t)

)2

+
ä(t)
a(t)


= 6

K(t) +
1
c2

( ȧ(t)
a(t)

)2

+
ä(t)
a(t)

 . (14)

Here K(t) is Gaussian curvature at cosmic time t:

K(t) =
k
ℜ2(t)

=
k

ℜ2(T0) a2(t)
. (15)

The Einstein’s field equations are

Gii =
8πG
c4

(
Tii + TΛii

)
↔

−
c2K(t) +

(
ȧ(t)
a(t)

)2

+ 2
ä(t)
a(t)

 = 8πG
(

1
c2 pm − ρΛ

) (16)

and
Gtt =

8πG
c4

(
Ttt + TΛtt

)
↔

3

c2K(t) +
(

ȧ(t)
a(t)

)2 = 8πG (ρm + ρΛ)

(17)

where i = (ψ, θ, ϕ); all off-diagonal terms are null. The equa-
tion of state for dark energy is

pΛ = −ρΛc2. (18)

Simple manipulation of equations above leads to

ä(t)
a(t)

= −4πG
3

(
ρm + 3

1
c2 pm − 2ρΛ

)
, (19)

(
ȧ(t)
a(t)

)2

+ c2K(t) =
8πG

3
(ρm + ρΛ) . (20)

Equations (19-20) are known as Friedmann equations. Hav-
ing in account that

ȧ(t)
a(t)
= H(t), (21)

ä(t)
a(t)

= Ḣ(t) + H2(t), (22)

where H(t) is time dependent Hubble parameter, and that
pressure pm = 0 (matter is treated as dust), one has

Ḣ(t) + H2(t) =
8πG

3

(
−1

2
ρm + ρΛ

)
, (23)

c2K(t) + H2(t) =
8πG

3
(ρm + ρΛ) , (24)

or
Ḣ(t)
H2(t)

+ 1 =
1
ρcrit

(
−1

2
ρm + ρΛ

)
, (25)

c2K(t)
H2(t)

+ 1 =
1
ρcrit

(ρm + ρΛ) , (26)

where

ρcrit =
3H2(t)
8πG

(27)

is the so called critical density. From equations (25-26) one
obtains, after simple algebra,

ρm =
1

4πG

(
c2K(t) − Ḣ(t)

)
, (28)

ρΛ =
1

4πG

(
1
2

c2K(t) +
3
2

H2(t) + Ḣ(t)
)
, (29)

or,

Ωm =

(
2
3

c2K(t)
H2(t)

− 2
3

Ḣ(t)
H2(t)

)
, (30)

ΩΛ =

(
1
3

c2K(t)
H2(t)

+
2
3

Ḣ(t)
H2(t)

+ 1
)
, (31)

where Ωm = ρm/ρcrit and ΩΛ = ρΛ/ρcrit are, respectively, the
cosmological matter and dark energy density parameters.

The Ricci scalar curvature stands as

R = 6
(
K(t) +

1
c2

(
2H2(t) + Ḣ(t)

))
. (32)

3 The ansatz

Now let one introduces the following ansatz for the expansion
factor:

a(t) = e(H(t)t − H0T0)/β (33)

where T0 is the current age of the Universe, H0 = H(T0)
is the Hubble constant, and β is a constant parameter to be
determined. From equations (21-23) one obtains

H(t) = H0

(
t

T0

)β−1

(34)

Ḣ(t) = H(t)
1
t

(β − 1) . (35)

By inserting equations (34-35) into equation (25) one has:

β − 1
H0t

(
t

T0

)1−β
+ 1 =

1
ρcrit

(
−1

2
ρm + ρΛ

)
(36)

β − 1
H0T0

(
t

T0

)−β
= −1

2
Ωm + ΩΛ − 1 (37)
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Fig. 1: a(t) = e
1
β

((
t

T0

)β
−1

)
H0T0

Fig. 2: H(t) = H0

(
t

T0

)β−1

Since β is assumed to be a constant, and, thatΩm(T0), ΩΛ(T0)
and H(T0) = H0 are measured quantities, one has for t = T0,

β − 1
H0T0

= −1
2
Ωm(T0) + ΩΛ(T0) − 1 (38)

which solved for β gives

β = 1 + H0T0

(
−1

2
Ωm(T0) + ΩΛ(T0) − 1

)
= 0.5804. (39)

where

H0 = 69.32 kms−1Mpc−1 = 0.0709 Gyr−1,

T0 = 13.772 Gyr,

Ωm(T0) = 0.2865 and ΩΛ(T0) = 0.7135 [6].
The plot of the expansion acceleration

ä(t) =
(
Ḣ(t) + H2(t)

)
a(t) (40)

as function of t = age of the Universe reveals that for t < T⋆,
the acceleration is negative and for t > T⋆, the acceleration is
positive. See Figure (4). This means that when the Universe
is younger than T⋆, the regular gravitation overcomes dark
energy, and after T⋆, dark energy overcomes gravitation. The
result is an eternal positive accelerated expansion after T⋆ =
3.214 Gyr. See ahead.

Fig. 3: ȧ(t) = a(t) H0

(
t

T0

)β−1

Fig. 4: ä(t) = a(t)
(
H0

(
t

T0

)β − (1 − β) 1
t

)
H0

(
t

T0

)β−1

Fig. 5: q(t) = −
(
1 + 1

H0T0
(β − 1)

(
t

T0

)−β)
In fact, by setting equation (40) to zero and just solving it

for t,

H(t)
1
t

(β − 1) + H2(t) = 0, (41)

one gets

t = T⋆ = T0

(
1 − β
H0T0

) 1
β

= 3.214 Gyr . (42)

From equation (26), one writes

c2k
ℜ2(t)H2(t)

= Ωm + ΩΛ − 1. (43)

The known recently measured values of Ωm(T0) and ΩΛ(T0)
[6] do not allow one to say, from above equation, that the
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Fig. 6: Left hand side of equation (43) is plotted for some values of
ℜ(T0). At the current Universe age T0 = 13.772 Gyr, the right side
of the referred equation has the margin of error equal to ±0.0191.

Fig. 7: Gaussian curvature K(t) = k

(ℜ(T0)a(t))2 and Ricci scalar cur-

vature R(t) = 6
(
K(t) + 1

c2 H(t)
(
2H(t) + 1

t (β − 1)
))

.

Universe is clearly flat (k = 0). The referred measured values
have a margin of error:

ΩΛ(T0) = 0.7135
{
+0.0095
−0.0096

Ωm(T0) = 0.2865
{
+0.0096
−0.0095

Considering also the margin of errors of the other measured
parameters [6], one cannot distinguish between k = 1, −1 or
0. The match between both sides of equations (43) requires
that, the today’s curvature radius of the Universe beℜ(T0) >
100 Gly, in the context of this paper. See Figure (6).

The so called deceleration parameter is

q(t) = − ä(t)a(t)
ȧ2(t)

= −
(

Ḣ(t)
H2(t)

+ 1
)

= −
1 + β − 1

H0T0

(
t

T0

)−β
(44)

which, at current Universe age is q(T0) = −0.570. See Figure
(5).

The expansion scalar factor a(t), Hubble parameter H(t),
expansion speed ȧ(t), expansion acceleration ä(t), and the de-
celeration parameter q(t) are plotted in Figures (1-5).

Fig. 8: Matter and dark energy density parameters for
k = 1, 0,−1: Ωm(t) = 2

3H2(t)

(
c2K(t) − (β − 1) H(t)

t

)
; ΩΛ(t) =

1
3H2(t)

(
c2K(t) + 2 (β − 1) H(t)

t + 3H2(t)
)
. The radius of curvature is

taken asℜ(T0) = 102 Gly.

Fig. 9: Matter and dark energy densities for k = 1, 0,−1: 6sssmmm
ρm(t) = 2

8πG

(
c2K(t) − (β − 1) H(t)

t

)
;

ρΛ(t) = 1
8πG

(
c2K(t) + 2 (β − 1) H(t)

t + 3H2(t)
)
.

The radius of curvature is taken asℜ(T0) = 102 Gly.

The sequence of Figures (7-10) shows the Gaussian K(t)
and R curvatures, matter density parameter Ωm(t), dark en-
ergy density parameter ΩΛ(t), matter density ρm(t), dark en-
ergy density ρΛ(t) and cosmological dark energy Λ(t).

The time derivatives of ρΛ(t) and ρm(t) reveal interesting
detail of the model in question:

ρ̇m + 3H
(
ρm +

1
c2 pm

)
= ρ̇m + 3Hρm = −Q (45)

ρ̇Λ + 3H
(
ρΛ +

1
c2 pΛ

)
= ρ̇Λ = Q (46)

Q = 2H
(

1
t2 (β − 2)(β − 1) + 3Ḣ − c2K

)
(47)

where pm = 0 and pΛ = −ρΛc2. This implies that

ρ̇m + ρ̇Λ = −3Hρm. (48)

The two perfect fluids interact with each other. In Figure (11)
one shows the plots for ρ̇m, ρ̇Λ and ρ̇m + ρ̇Λ as functions of
cosmic time.

96 Nilton Penha Silva. A Model for the Expansion of the Universe



Issue 2 (April) PROGRESS IN PHYSICS Volume 10 (2014)

Fig. 10: Dark energy Λ(t), in units of cm−2 for k = 1, 0,−1.
Λ(t) = 1

c2 8πG ρΛ(t). The radius of curvature is taken as ℜ(T0) =
102 Gly. The result for Λ(t) satisfies the following inequality:
|Λ| < 10−42cm−2 [4].

Fig. 11: Time derivatives of ρΛ, ρm and of the sum ρΛ + ρm for
k = 1, 0,−1. The radius of curvature is taken asℜ(T0) = 102 Gly.

4 Conclusion

The expression for the expansion factor a(t) = e
H0T0
β

((
t

T0

)β
−1

)
,

where β = 0.5804, constitutes a model for the expansion of
the Universe for t > 4 × 1012s ≈ 1.3 × 10−5Gyr in which
gravity dominates up to the Universe age of T∗ = 3.214 Gyr
and after that dark energy overcomes gravity and that persists
forever. The acceleration of expansion is negative in the first
part (matter era) and positive after that (dark energy era). The
mathematical expressions for dark energy and matter densi-
ties indicate a clear interaction between the two perfect fluids
(dark energy and matter). The classical deceleration parame-
ter q(t) is found to have the value q(T0) = −0.570 for the cur-
rent Universe age and the current radius of curvature should
beℜ(T0) > 100 Gly.
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The theoretical analysis of the existence of a limit mass for compact astronomic ob-

jects requires the solution of the Einstein’s equations of general relativity together with

an appropriate equation of state. Analytical solutions exist in some special cases like

the spherically symmetric static object without energy sources that is here considered.

Solutions, i.e. the spacetime metrics, can have a singular mathematical form (the so

called Schwarzschild metric due to Hilbert) or a nonsingular form (original work of

Schwarzschild). The former predicts a limit mass and, consequently, the existence of

black holes above this limit. Here it is shown that, the original Schwarzschild met-

ric permits compact objects, without mass limit, having reasonable values for central

density and pressure. The lack of a limit mass is also demonstrated analytically just

imposing reasonable conditions on the energy-matter density, of positivity and decreas-

ing with radius. Finally the ratio between proper mass and total mass tends to 2 for

high values of mass so that the binding energy reaches the limit m (total mass seen by a

distant observer). As it is known the negative binding energy reduces the gravitational

mass of the object; the limit of m for the binding energy provides a mechanism for stable

equilibrium of any amount of mass to contrast the gravitational collapse.

1 Introduction to nonsingular Schwarzschild metric

The fate of extremely compact objects in the universe is ruled

by the particular solutions of the Einstein’s equations. As it

is true that no all the mathematical theorems and statements

have a corresponding meaning in the physical world, at the

same time there is not a general rule, other than the verifi-

cation by means of experimental and observational data, to

establish, a priori, which mathematical solution must be dis-

carded and which must be accepted.

In the case of the basic static model for compact objects,

in the theory up to date the collapse is ruled by a specific so-

lution (called Schwarzschild solution but not given explicitly

by Schwarzschild, coming from the Hilbert’s interpretation

instead) that contains mathematical and thus physical singu-

larities leading to a mass limit for ordinary compact objects

and to the consequent black hole hypothesis (generalization

to rotating or charged objects contains as well the features of

singularity and horizon surface and it is not necessary in this

context).

However, a different interpretation of the solution (non-

singular), particularly the original Schwarzschild solution,

cannot be excluded if the completely different consequences

(the nonexistence of mass limit and thus of black holes) are

not yet demonstrated to be inconsistent with observational

data.

1.1 Possible solutions to the static problem

Karl Schwarzschild in 1916 [1, eq. 14, page 194] gave an ex-

act solution in vacuum to Einstein’s field equation determin-

ing the line element for systems with static spherical symme-

try (in units such that c = G = 1):

ds2 =

(

1− α
R(r)

)

dt2− dR(r)2

1− α
R(r)

−R(r)2
(

dθ2 + sin2θ dφ2
)

, (1)

where α is a constant depending on the value of the mass, that

can be obtained from the newtonian limit, and

R(r) = (r3 + σ)1/3 (2)

where σ (indicated with ρ in the original article) is a sec-

ond constant to be determined and r is the same radial vari-

able of the spherically symmetric Minkowski spacetime. Ma-

thematically, there are two possible solutions that satisfy Ein-

stein’s field equation in vacuum (Rµν = 0): one is given by

the class of infinite values of R(r) such that [2, 3]

R(r) = (|r − r0|n + αn)1/n
(3)

with arbitrary r0 and r , r0, the other is given by setting

R(r) = r. (4)

It is worth to note that all the solutions of the class (3) can

be obtained one from another by means of a simple coordi-

nate transformation as must be in general relativity, while the

solution (4) cannot be obtained from (3) and viceversa with

a simple coordinate transformation. So, since the actual so-

lution must be of course unique, the actual solution must be

chosen among the form (3) and the form (4). At this stage,

the only request that Rµν = 0 cannot discriminate about these

solutions, additional considerations must be examined: in the
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following it will be shown that, since R(r) is related to the

Gaussian curvature, it cannot be set equal to the radial co-

ordinate r as in (4) because this brings to unphysical conse-

quences.

The choices made, for example, by Schwarzschild [1]

(r0 = 0, r > r0, n = 3), by Brillouin [4] (r0 = 0, r > r0,

n = 1) and by Droste [5] (r0 = α, r > r0, n = 1) belong to

the class of solutions of the first kind (3); all the solutions of

this class share the same constant α in the denominator (or,

like in the Droste’s solution, the additional condition for va-

lidity that r > α) that prevents the metric to become singular

and to change signature so that they could be called a class of

“nonsingular” solutions.

The other possibility is the “singular” solution (4), due

to the contribution by Hilbert [6], leading to the so called

“Schwarzschild Solution”, that from now on will be called

Schwarzschild-Hilbert or “singular” solution, that sets n = 1,

r0 = α in (3), so that σ = 0 in (2) i.e. R = r; this is simi-

lar to the Droste’s solution but with no limitation on r so that

0 6 r 6 ∞. The line element in this case is the well known

Schwarzschild (-Hilbert) metric

ds2 =

(

1 − α
r

)

dt2 − dr2

1 − α
r

− r2
(

dθ2 + sin2θ dφ2
)

, (5)

where r is (supposed to be) the usual radial coordinates (but

it is actually related to the Gaussian curvature as it will be

shown later) running from zero to infinity and α is determined

from the Newtonian potential in the limit r → ∞, so that

α = 2m where m is the mass in geometrized units while its

complete expression would be m = GM/c2.

The consequences of the line element (5) are well known,

among them the existence of an “event horizon”, a not remov-

able singularity in r = 0, the change in the sign of the g00 and

g11 elements of the metric when 0 6 r 6 2m and the existence

of a mass limit for equilibrium of massive neutron cores [7]

and the consequent black hole hypothesis.

There is an open question about if there is an actual differ-

ence between all these solutions, leading to different physical

consequences. An example of this discussion can be find on

references [2, 3, 8, 9].

The present article will not enter deep into the question,

instead it must be intended as a contribute for understanding

the possible physical consequences, on compact objects, ap-

plying the nonsingular metric (1 and 2).

1.2 Some characteristics of the Schwarzschild metric

This article, will start from a “nonsingular” solution, the one

given by K. Schwarzschild [1] (1 and 2) (from now on, sim-

ply, Schwarzschild solution), that set (eq. 13 in [1])

σ = α3 = 8m3 (6)

so that the line element of the Schwarzschild Solution (1),

using the coordinate r, becomes

ds2 =

(

1 −
α

(r3 + σ)1/3

)

dt2 −
r4(r3 + σ)−4/3

1 − α

(r3 + σ)1/3

dr2−

− (r3 + σ)2/3
(

dθ2 + sin2θdφ2
)

,

(7)

where σ has been explicitly left in order to compare all the

subsequent formulas for this Schwarzschild metric (7) to the

ones derived from the Schwarzschild-Hilbert metric (5), by

simply setting σ = 0.

A first glance at the metric (7) indicates that there is no

singularity at r = 2m, no “event horizon” and no change of

sign (and of nature of the light cone) in the g00 and g11 ele-

ments of the metric. The “problem” has been moved to the

origin r = 0 with the choice σ = α3. Moreover, the behavior

of Schwarzschild metric, at the origin, is totally different from

the one of Schwarzschild-Hilbert metric: in this latter, indeed,

the presence of r in the denominator produces a mathemati-

cal, and consequently physical, not removable singularity, in

the former there is just a smooth vanishing of the g00 and g11

metric elements, since in Schwarzschild metric (7)

lim
r→0
g00 = 0; lim

r→0
g11 = 0. (8)

It worths to note that the expression of the “time” element

g00 in the limit r → 0 is analogous to the limit r → 2m of the

same element in metric (5), so that there is a coordinate time

(time measured by a distant observer) going to infinite while

a radially ingoing object would approach r = 0.

Both singular (4) and nonsingular (3) class of solutions

give similar results in the weak field limit, that is the limit

where all the experimental proofs for general relativity are

performed. For example, Schwarzschild, applied his metric

(7) to solve the problem of the observed anomaly in the per-

ihelion of Mercury. He found the exact solution ( [1] eq.18

p.195) and noticed that the approximate Einstein’s solution is

the exact one by substituting the Einstein radial coordinate r

with (r3+α3)1/3 = r(1+α3/r3)1/3; since the term within paren-

thesis differs from 1 by a quantity of the order of 10−12, the

actual level of precision of the measurements cannot make a

distinction between the two kind of metrics. Quite a different

behavior appears in the strong field limit as it will be shown

later.

1.3 Different nature of r and different centers of spheri-

cal symmetry for the two kind of metrics

The further analysis to discriminate among these two kind

of metrics involves the nature of the r coordinate that repre-

sents two very different quantities in the two metrics. In effect

can be demonstrated that, in the Schwarzschild metric (1), r

is the usual radial coordinate analogue of the coordinate in
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Minkowski space and r = 0 is the actual center of the config-

uration with a finite curvature: in the derivation of metric (1),

Schwarzschild never changes the nature of r (see [1] eq.7)

that corresponds to the radial coordinate of the Minkowski

space. r = 0 corresponds to the center of the distribution and

this is demonstrated if one looks at a curvature invariant, the

Kretschmann scalar, that is maximized at r = 0 as it is re-

quired. In effect, considering the nonsingular Schwarzschild

solution, its expression is

Rkr = RµνλξR
µνλξ =

12α2

(

r3 + α3
)2

(9)

that has a maximum finite value in r = 0 of Rkr(0) = 12/α4.

At the same time, the Gaussian Curvature is defined by

KS =
R1212

g
=

1

R2
=

1

(r3 + α3)2/3
(10)

so that for r = 0⇒ KS = 1/α2 so KS is finite at the center.

On the other side, the r of the Schwarzschild-hilbert met-

ric (5) it is not the radial coordinate neither a distance at all

but it is, actually, the square of the inverse of the Gaussian

curvature of a spherically symmetric geodesic surface in the

spatial section of the spacetime manifold because

KS H =
R1212

g
=

1

r2
. (11)

Where are the centers of spherical distribution for the two

kind of metric? The answer to this question can be given

by the quantity that represents the proper distance Rp(r) =
∫

g11dr.

In the Schwarzschild-Hilbert case (5),

Rp(r) =

∫

g11dr =

∫

1
√

1 − α
r

dr =

=
√

r
√

r − α + α ln
[

2
(√

r +
√

r − α
)]

+C

(12)

where C is a constant. The center rc of the distribution is

found setting the proper distance equal to zero (Rp(rc) = 0)

that happens for rc = α and C = −α ln
(

2
√
α
)

. Finally the

expression for the proper distance is [2, 3]

Rp(r) =
√

r
√

r − α + α ln

( √
r +
√

r − α
√
α

)

. (13)

So, in the Schwarzschild-Hilbert metric α ≡ 2m < r 6 ∞,

while the range of the proper distance is 0 6 Rp 6 ∞, there is

no meaning for r 6 2m coherently with its nature connected

with the Gaussian curvature and the center of the distribution

is rc = 2m.

This means that, if is given a Minkowski spacetime, whe-

re E3 is its Euclidean space, the center of the spherical sym-

metry is rc = 0 and r coincides with the proper distance Rp

and with the radius of Gaussian curvature RG, r = Rp = RG,

considering the metric manifold M3, that is the spatial part

of Schwarzschild-Hilbert spacetime, then the central point

Rp(rc) = 0 corresponds to the point rc = 2m in E3 that is

any point on a spherical surface centered in r = 0 with radius

r = 2m. Only in this way there is a one to one correspondence

between all points of E3 and M3.

In the Schwarzschild case (7) instead,

Rp(r) =

∫

g11dr =

∫

√

√

√

√

√

√

√
r4

(

r3 + α3
)− 4

3

1 − α
(

r3 + α3
)

1
3

dr =

=
(

r3 + α3
)− 1

3 ×
√

(

r3 + α3
)

4
3 − α

(

r3 + α3
)

+

+α ln

[

2
(

r3 + α3
)

1
6
+ 2

√

(

r3 + α3
)

1
3 − α

]

+C.

(14)

The center of the distribution rc if found setting Rp(rc) = 0

that is for rc = 0 and C = −α ln
(

2
√
α
)

so that the expression

for the proper distance is

Rp(r) =
(

r3 + α3
)− 1

3

√

(

r3 + α3
)

4
3 − α

(

r3 + α3
)

+

+α ln

























(

r3 + α3
)

1
6
+

√

(

r3 + α3
)

1
3 − α

√
α

























.

(15)

In conclusion, in Schwarzschild metric (1) r is the actual

radial coordinate that goes from 0 to∞ (whole manifold) and

r = 0 is recognized to be the center where the Kretschmann

scalar is maximized (9) and the Gaussian Curvature KS (r) =

1/R(r)2 is finite since it goes from KS (0) = 1/α2 to KS (∞) =

0. In Schwarzschild-Hilbert metric, (5) instead, r has nothing

to do with the radial coordinate or distance but it is actually

related to the Gaussian curvature KS H = 1/r2 and it is defined

only from 2m to ∞ as recognized by Droste [5].

2 Metric inside matter and equilibrium equations

Let’s consider a mass of degenerate matter (without source of

energy [10]) in a finite volume, the full treatment consists in

solving Einstein’s equations (equilibrium equations) together

with an appropriate equation of state for the matter. There are

well known studies dedicated to the analysis of equilibrium in

the strong field limit, for massive compact objects in the envi-

ronment of the singular Schwarzschild-Hilbert metric, where

neutron massive cores of neutron stars have been considered,

imposing different equations of state for the neutron matter.

Anyway, all these different equations of state, from the pi-

oneer and fundamental work of Oppenheimer and Volkoff [7]

to the more realistic models [11] [12], share an important

common characteristic: all these models, applied to the sin-

gular metric (5), predict some theoretical upper limit to a

100 Massimo Germano. Binding Energy and Equilibrium of Compact Objects



Issue 2 (April) PROGRESS IN PHYSICS Volume 10 (2014)

mass in equilibrium due to the intrinsic relativistic effect of

the metric itself, and a consequent final collapse above this

limit. The difference between these approaches regards the

value of the limit that can change from 0.7 solar masses in

the Oppenheimer-Volkoff (O-V) model to few solar masses

in the other models [13]. Above these limits nothing can stop

the object from the final collapse inside its “Schwarzschild”

radius 2m and then, because of the changing of sign, up to

a not avoidable final singularity, where curvature reaches an

infinite value and the known physics meets its limits.

In this article, one of these models will be considered, in

particular the O-V model in the environment of the nonsin-

gular Schwarzschild metric (7) in the form valid inside the

matter. The O-V model is not quite realistic because it con-

siders the neutrons as a Fermi gas; however, no matter which

model is considered, all the models predict a limit to the mass

because of the singular metric, while it will be shown that in a

nonsingular metric even the O-V model, that otherwise gives

the sharper limit to the mass (≈ 0.7 of solar mass), does not

show it, instead it gives the equilibrium radius for any value

of the mass.

The procedure will follow the original one given by Op-

penheimer and Volkoff so that the results can be directly com-

pared. The difference will be that the nonsingular Schwarz-

schild metric inside matter will be applied instead of the sin-

gular one and the equations derived from the latter can be

obtained from the former setting σ = 0.

Let’s consider the static metric (7) with spherical symme-

try, valid in empty space and set the g00 and g11 elements in

the general exponential form:

ds2 = eν(r)dt2 − eλ(r)dr2 −
(

r3 + σ
)2/3 (

dθ2 + sin2θdφ2
)

. (16)

Solving Einstein’s equations (see Appendix A) the metric

inside the matter is found:

ds2=













1− 2m(r)
(

r3 + 8m3
)1/3













dt2−
r4

(

r3 + 8m3
)−4/3

1− 2m(r)
(

r3 + 8m3
)1/3

dr2 −

−
(

r3 + 8m3
)2/3 (

dθ2 + sin2θdφ2
)

.

(17)

The system of equilibrium equations becomes:

dp(r)

dr
= −

(p(r) + ̺(r))
[

m(r) + 4π
(

r3 + σ
)

p(r)
]

(

r3 + σ
)4/3

r2













1 − 2m(r)
(

r3 + σ
)1/3













dm(r)

dr
= 4π̺(r)r2



















































. (18)

where σ = 8m3 and

m(r) =
1

2

(

r3 + 8m3
)1/3













1 − e−λ
r4

(

r3 + 8m3
)4/3













.

If one setsσ = 0 in the first equation of (18), then the Tolman-

Oppenheimer-Volkoff equation (A-4) can be obtained; equa-

tions (18) together with an equation of state ̺ = ̺(p) consti-

tute the system to be integrated.

3 Equation of state and numerical integration

Following the procedure by Oppenheimer and Volkoff [7],

the matter is considered to consist of particles with rest mass

µ0 obeying Fermi statistics, neglecting thermal energy and

forces between them; the equation of state can be put in the

parametric form

̺ = K (sinh(t) − t) ,

p =
1

3
K (sinh(t) − 8 sinh(t/2) + 3t) ,

where K = πµ4
0
c5(4h3 and t = 4 log( p̂/µ0c+ [1+ ( p̂/µ0c)2]1/2)

where p̂ is the maximum momentum in the Fermi distribution

related to the proper particle density N/V = 8π p̂3/(3h3).

Setting K = 1/4π the units of length a and of mass b are

fixed such that, for neutron gas,

a =
1

π

(

h

µ0c

)2/3
c

(µ0G)1/2
= 1.36 × 106cm (19)

and b = c2a/G = 1.83 × 1034g.

Finally the system of adimensional equations, renaming

the adimensional mass m(r) ≡ u(r), to be integrated are

du

dr
= r2 (sinh(t) − t)

dt

dr
= − 4(sinh(t) − 2 sinh(t/2))

r3 + 8m3

r2

[

(

r3 + 8m3
)1/3
− 2u

]

×

×

[

1
3

(

r3 + 8m3
)

(sinh(t) + 8 sinh(t/2) + 3t) + u
]

cosh(t) − 4 cosh(t/2) + 3











































































. (20)

This system is the analogous of the system integrated by

Oppenheimer and Volkoff ( [7], Eqs. 18 and 19) which can

be obtained setting σ ≡ α3 ≡ 8m3 = 0.

The procedure followed by Oppenheimer and Volkoff first

fixes the value t0 for the parameter t when r = 0 (determin-

ing central energy density and pressure), then the equations

in [7] are numerically integrated for several finite values of

t0. Another boundary condition can be obtained setting of

u(0) ≡ u0 = 0. The equations are integrated till a value of

r = rb for which t (and consequently the pressure) drops to 0,

representing the border radius of the matter distribution; the

corresponding value u(rb) = m is then, the value of the mass

that can stay in equilibrium with a radius rb and the imposed

central density.

In the original paper (O-V) the first 4 results for t0 equal

to 1, 2, 3 and 4 are reported in a table (table I in [7], reported
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Table 1: Comparison with Oppenheimer Volkoff table [7]; numbers

not in parenthesis are in units a and b defined in (19).

m(Ms) t0(̺0(1014g/cm3)) rb (km)

O-V 0.033 (0.30) 1.000 (1.014) 1.550 (21.1)

Eqs. (20) 0.033 (0.30) 1.006 (1.033) 1.506 (20.49)

O-V 0.066 (0.60) 2.000 (9.418) 0.980 (13.33)

Eqs. (20) 0.066 (0.60) 1.835 (6.923) 1.001 (13.61)

O-V 0.078 (0.71) 3.000 (40.62) 0.700 (9.52)

Eqs. (20) 0.078 (0.71) 2.166 (12.376) 0.861 (11.71)

here in table 1) together with an asymptotic value: the char-

acteristics of the results is that, starting from t0 = 1, the mass

is increasing for increasing t0 (the central density) but soon,

for t0 = 3, the mass reaches its maximum value calculated to

be Mmax = 0.71 solar masses.

Increasing further t0, causes a decreasing of values for the

mass (see [7], Fig. 1) so, for m < Mmax there are two values

for central density but only the lower value must be consid-

ered to describe stable neutron stars; the maximum mass is

thus considered the maximum possible mass for a stable equi-

librium configuration of neutron stars with a Fermi equation

of state as obtained by Oppenheimer and Volkoff. Different

equations of state give different values of the maximum mass

(till some units of solar masses) but anyway, as it will be seen

later, a limit exists and is due to the use of the singular metric.

In our case, the equations to be integrated (20) came from

the Schwarzschild nonsingular metric (17) so results can be

quite different: in particular, there is an additional parameter

that is the constant mass m, as seen by a distant observer. The

integration procedure must then be modified: first, the param-

eter m is set and a prove of integration is performed starting

from a low value of the central parameter t0; integration on r

ends at r = rb, the border radius, where t(rb) = 0 (null pres-

sure): if the starting value t0 is set too low, then the resulting

mass would be u(rb) < m. If this would be the case, then it

would be necessary to increase t0 to the minimum value such

that u(rb) = m. This minimum value t0 together with m fixed

and rb found, will be the correct values for central density

and pressure, mass and radius of the configuration in stable

equilibrium.

For low values of the mass, i.e. for weak gravitational

fields, results are expected to be similar to those of O-V while

for increasing mass values the nonsingular metric should lead

to results very different from those resulting from the singu-

lar one. In table I, the results are compared with the first three

values of O-V table. It can be noted that for the lower mass

(0.30 Ms), almost the same values are obtained for central

density and radius, while on increasing the mass, the two ap-

proaches diverge and the nonsingular one leads to a “softer”

equilibrium, with lower central density and greater radius,

with respect to the O-V calculation.

If the mass is further increased, the two metrics behave in

a complete different way: the O-V equations show a decreas-

Fig. 1: Central density and equilibrium radius vs. mass: (a) central

density shows a maximum; (b) equilibrium radius shows a mini-

mum, straight line represents the so called Schwarzschild radius for

that mass.

ing mass and a mass above the maximum found limit 0.71Ms

cannot be sustained in equilibrium. On conversely, the non-

singular Schwarzschild metric will permit equilibrium for in-

creasing masses and will not have a limit mass. The central

density indeed will meet a maximum limit and, then, will de-

crease for increasing masses. At the same time the radius,

instead of continuously decreasing for increasing masses as

in O-V case, will show a minimum to keep the equilibrium

configuration.

Let’s first consider the behavior of various parameters for

low masses: in Fig. 1 values of central density ρ0 and radius

rb for low masses (up to 20 solar masses) are plotted; turning

zones are clearly visible before the value of 2 solar masses

in which the central density reaches a maximum and the ra-

dius a minimum. In particular, the central density reaches the

maximum value of 1.048 × 1016g cm−3 at 1.84 solar masses

while the radius reaches the minimum value of 6.172 km at

1.47 solar masses. It can be noted, in Fig. 1(b), that, in this

zone, the equilibrium radius of the mass is below the value

rb < 2m where 2m here is the constant in the denominator

of the nonsingular metric and not a limit like the so called

“Schwarzschild” radius for the singular metric.

The behavior of ρ0 and rb is, thus, totally different from

the results obtained by Oppenheimer and Volkoff for the equi-

librium with the singular metric; an interpretation for this be-

havior could derive from recalling the concept of proper mass
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Mp, linked to the concept of gravitational binding energy EB:

the total mass m, i.e. the mass seen by a distant observer,

is defined by m =
∫ rb

0
4π̺(r)r2dr but if one integrates the

energy-density ̺ over the proper “local” volume, the proper

mass Mp of the system can be defined.

The proper volume element dτ is defined from dτ2 =

gi jdxidx j where i, j = 1, 2, 3 are only spatial coordinates.

The proper volume from the O-V singular metric (5) then is

dτS = 4πr2(1 − 2m/r)−1/2dr and the proper volume from the

actual Schwarzschild nonsingular metric (7) dτNS = 4πr2(1−
2m/(r3 +σ)1/3)−1/2dr; coherently can be defined respectively

as two proper masses MP:

MP
S =

∫ rb

0

̺4πr2(1 − 2m/r)−1/2dr (21)

and

MP
NS =

∫ rb

0

̺4πr2(1 − 2m/(r3 + σ)1/3)−1/2dr. (22)

The physical meaning of proper mass is connected with

the difference MP − m = EB where EB is the gravitational

binding energy ( [14] p. 126). In Fig. 2 the completely differ-

ent behavior of the binding energy is shown, in the cases of

singular solution and nonsingular solution: in the first case,

the binding energy increases dramatically (together with the

increasing of the central density to unphysical values) and

above the maximum mass limit of about 0.7 solar masses the

function becomes multivalued.

On the other side, in the nonsingular case, the binding

energy increases smoothly with increasing mass and does not

indicate any mass limit. In Fig. 2 only low mass values are re-

ported but it will be shown later that, in the nonsingular case,

the binding energy for higher mass values increases linearly

with the mass and, considering that the ratio MP/m in Fig. 3

tends→ 2, the binding energy tends to the value m of the rest

mass.

Central (̺0) and average ̺AV ≡ M/( 4
3
πr3

b
) densities have

a similar behavior: starting from values of ̺0(0.184Ms) =

3.29 × 1013g/cm3 and ̺AV (0.184Ms) = 5.40 × 1012g/cm3,

reaching the maximum values of ̺0(1.84Ms) = 1.0476 ×
1016g/cm3 and ̺AV (2.30Ms) = 3.688× 1015g/cm3 and finally

reaching the values for the last considered mass, ̺0(3.68 ×
106Ms) = 1.243×1010g/cm3 and ̺AV (3.68×106Ms) = 8.687×
109g/cm3.

Behavior evidences the presence of a maximum for both

the densities and a decreasing for increasing masses: the cen-

tral density converges to the average density values which

decrease because volume grows with radius with an higher

power than the mass.

Integration of the system (20) admits solution with an

equilibrium radius for any amount of mass: in Fig. 3, higher

values of mass are considered till, as an example, a value

around 4 million of solar masses as it is supposed to be con-

centrated in the Milky Way’s center.

Fig. 2: Gravitational binding energy vs. mass: comparison between

Oppenheimer-Volkoff results [7] (multivalued line with circles) and

this article results (squares).

Fig. 3: Ratio between proper mass and mass vs. mass logarithm:

limit tends to value 2 corresponding to an efficiency of 100% of

mass conversion in gravitational binding energy

Together with the density decreasing with mass, there is

another peculiar behavior, the one referred to the ratio of

proper mass on mass: in Fig. 3 it is shown that this ratio tends

to the value 2, meaning that there ia a 100% efficiency in con-

verting mass into binding energy. The total mass of the com-

pact object includes both the rest-mass energy and the nega-

tive binding energy so that the mass of the collapsed object

is smaller than the sum of the component particles [15]. For

neutron stars this mass deficit can be as large as 25% [16] but

here it increases till 100% above 1 thousand of solar masses

(depending on the equation of state) and this can be the mech-

anism to support stable equilibrium for such objects.

4 Inequality for nonexistance of a limit mass

Numerical results show that there is not a mass limit for equi-

librium. This result can be seen also analytically trying to

find an upper limit for the mass, independently from the spe-

cific equation of state. This limit exists in the case of singular
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metric and it is possible to see that this limit does not exist

in the case of nonsingular metric following the procedure ex-

pressed, for example, by R.M. Wald [14, p. 130].

A first less sharp limit exists for the singular metric as

necessary condition for the metric to be static: a metric is

said to be static if it is stationary and, in addition, exists a

spacelike hypersurface Σ (orthogonal to the timelike Killing

vector field ξα); in order for Σ to be spacelike the necessary

condition for staticity is that the radial element of the metric

g11 would be greater than zero (in the following calculation,

it will be used the Wald notation of g11 ≡ h(r) and g00 ≡ f (r),

with the Suffix S to indicate the expression from the singular

metric and NS for the nonsingular one).

So for the two metrics (5) and (7) it will be

hS (r) =

(

1 − 2m(r)

r

)−1

(23)

and

hNS (r) = r4
(

r3 + σ
)−4/3

(

1 − 2m(r)

(r3 + σ)1/3

)−1

. (24)

The necessary condition for stability implies that, for a

given mass M and equilbrium radius rb, h(rb) > 0 so, it

clearly requires a limit for M only in the singular case, that

is M < rb/2 (eq. 6.2.32 in [14]) while, in the nonsingular

case, hNS (rb) > 0 is always satisfied for any value of M and

rb (considering that σ ≡ 8M3).

This limit for M (for the singular metric) can be sharpened

using the condition g00 ≡ f (r) > 0 that imposes the Killing

field ξα to be timelike everywhere. The term f (r) has the

form, for the singular and nonsingular metric, respectively

fS (r) =

(

1 − 2m(r)

r

)

fNS (r) =

(

1 − 2m(r)

(r3 + σ)1/3

)



































. (25)

Since f (r) must be greater than zero everywhere, it could

seem that it would be necessary to know the specific equation

of state for matter but, actually, the only conditions that must

be assumed are very basic i.e. the density must be such that

̺ > 0 and d̺/dr 6 0 while there is no need for whatsoever

assumption about pressure P.

Applying these conditions, the following inequalities are

obtained (see Appendix B): in the singular case it is found an

upper mass limit

M 6
4

9
rb , (26)

in the nonsingular case, instead, the following inequality is

found:

1 −












8M3

r3
b
+ 8M3













1
3

>
1

9













1 −
8M3

r3
b
+ 8M3













. (27)

Since it is always true that 0 6 8M3/(r3
b
+ 8M3) 6 1, the

inequality for the nonsingular case (27), i.e. the condition of

stability, is always satisfied for any values of both M and rb so

that there is no upper limit for the mass, to have equilibrium,

whatever would be the, reasonable, equation of state.

5 Conclusions

In conclusion, the application of the class of nonsingular sta-

tic spherically symmetric metrics (particularly the Schwarz-

schild solution [1]) to the problem of hydrostatic equilibrium

gives completely different solutions from those of the singular

case. In this latter, there is a mass limit (whose value depends

from the specific state equation) for dense cores of degen-

erate matter: above this limit, nothing can stop the config-

uration from a final gravitational collapse with formation of

event horizon and inner physical singularity. In the case of

nonsingular metric (that does not include the possibility of

an event horizon) instead, the equilibrium is always reached

whatever would be the amount of mass.

The application with a Fermi gas state equation, as in

the Oppenheimer-Volkoff work [7], shows that central den-

sity has the same behavior, for increasing mass, than average

density i.e. a maximum (with reasonable physical value), be-

fore reaching the 2 solar masses and then a decreasing. The

equilibrium radius of the system shows a minimum before

the 2 solar masses then grows with increasing masses but re-

maining well below the so called “Schwarzschild radius” for

that mass which, in the nonsingular metric environment, is

not the dimension of an event horizon but only a parameter

connecting the general relativistic metric with the newtonian

one. Proper mass of the system tends to the limit of twice

the mass. This means that the negative binding energy tends

to the limit of m counterbalancing the gravitational mass m.

This is a mechanism that can stop gravitational collapsing and

that can sustain stable equilibrium.

Considering experimental observations, weak field expe-

riments give same results, within errors, for the singular and

nonsingular metrics, while for strong fields, the nonsingular

metric admits stable configuration of greater amount of mass

while singular metrics admits black hole formation. Few ob-

servational, indirect, evidences for black holes existence have

been performed in years but it seems that an alternative hy-

pothesis of very compact degenerate matter configurations,

permitted by nonsingular metrics, could be compatible with

observations: let’s consider, for example, a single nonrotating

compact object of 9.2 solar masses (m=1 in units of (19)), in

the singular metric, it would be a black hole, no matter of

which state equation is used, and a “Schwarzschild radius”

rs = 27.17 km would define the horizon event whose sur-

face would have an infinite gravitational redshift and would

surround a pointlike singularity.

The application of nonsingular metric (with a Fermi equa-

tion of state) instead, would give a very compact object, of
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radius rb = 13.23km, made by ordinary (degenerate) matter

with a central density ̺0 = 13.23 × 1015g/cm3; the density

value is not far from the ordinary nuclear density, moreover a

more realistic state equation would keep density value within

reasonable physical limit.

Gravitational redshift factor f =
√−g11 (the ratio be-

tween wavelength observed at infinity and wavelength emit-

ted at distance r) at the surface of the matter configuration

would be f = 1.165. This redshift would correspond, in the

black hole case, to a redshift of a photon emitted ad distance

r = rs f 2/( f 2 − 1) = 3.8rs. This difference, theoretically,

could be observable but total luminosity would be so faint not

to permit direct observations while indirect observations due

to, for example, the accretion disk surrounding these com-

pact objects, would be very similar. The existence of com-

pact massive (several solar masses) objects could justify why

observed emissions from individuated neutron stars and black

hole candidates are so similar [17] despite the totally different

characteristics of a hard surface and an event horizon.

Recent observations involving magnetic fields of quasars

also put in doubt the existence of inner super-massive black

holes [18]. It must be remarked that at the state of the art there

is still no observational proof of a black hole event horizon

[19].

Lack of single compact objects of very great mass it is

due more to mechanism of formation of such object than to

some mass limit, anyway in the galactic’s centers there is

gravitational evidence for compact objects of millions of so-

lar masses. Let’s resume how it would be such an object in

the nonsingular model with a Fermi gas state equation (others

EOS would not change the qualitative features): considering

an object 3.6 millions of solar masses, it would have a radius

of about 58, 000 km that is the half percent of its estimated

“Schwarzschild radius” in the black hole hypothesis, a cen-

tral density ̺0 = 1.24 × 1010g/cm3 and a central pressure

P0 = 7.3 × 1016 Pa both smoothly decreasing outward.

Sagittarius A, the radio point source associated with the

dark mass located at the center of the Milky Way, is the best

studied black hole candidate to date, but till now has not be

possible to verify or to exclude the presence of a horizon [20].

The horizon existence has been inferred because a surface

emission, to remain undetected, would require large radiative

efficiencies, greater than 99.6% [21] anyway, this is actually

the phenomenon predicted by the application of nonsingular

metric, because, as seen in Fig. 3, the limit value of 2 for the

ratio MP/M means an efficiency limit of about 100%. This

could be justified, actually, by a not exotic object having a

hard surface, emissions and gravitational effects compatible

with observations, and that could be permitted because the

contribution of the negative binding energy.
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Appendix A

The only non vanishing components of the Einstein Tensor G

are G0
0
, G1

1
and G2

2
= G3

3
. Considering a matter that supports

no transverse stresses and has no mass motion then the energy

momentum components are [22] T 1
1
= T 2

2
= T 3

3
= −p and

T 0
0
= ̺ where p is the pressure and ̺ is the macroscopic

energy density measured in proper coordinates. So Einstein’s

equations are

G0
0 = 8πT 0

0 = 8π̺ = e−λ
[

λ′r2

r3 + σ
− r4

(r3 + σ)2
−

−
4rσ

(r3 + σ)2

]

+
1

(r3 + σ)2/3

(T00)

G1
1 = 8πT 1

1 = 8πp = e−λ
[

ν ′r2

r3 + σ
+

r4

(r3 + σ)2

]

−

− 1

(r3 + σ)2/3

(T11)

G2
2 = 8πT 2

2 = e−λ
[

(ν ′ − λ′)r2

2(r3 + σ)
−
λ′ν ′

4
+
ν ′ 2

4
+

+
2rσ

(r3 + σ)2
+
ν ′′

2

]

+
1

(r3 + σ)2/3

(T22)

where p, ̺, λ and ν are functions of r and the primes indi-

cates a differentiation with respect to r. Since T 1
1
= T 2

2
then

(T 1
1
− T 2

2
) × 2/r = 0 and from equations (T00) it is easy to

verify that

d

dr

(

−T 1
1

)

+
(

T 0
0 − T 1

1

) ν ′

2
=

(

T 1
1 − T 2

2

) 2

r
= 0 (A-1)

so that this latter equation can be read

dp

dr
= −

p + ̺

2
ν ′. (A-2)

Equations (T00), (T11) and (A-2) constitute the system of

equations to be solved and correspond to the ones in Oppen-

heimer Volkoff article [7, Eqs. 4,3 and 5] if σ is set equal to 0;

an opportune equation of state ̺ = ̺(p) must also be included

in the system.

Eliminating ν ′ in (T11) and (A-2), the hydrostatic equi-

librium equation in exponential form is

dp

dr
= − p + ̺

2
×

×
[

8πp eλ
(r3 + σ)

r2
+ eλ

(r3 + σ)1/3

r2
− r2

(r3 + σ)

]

.

(A-3)

If it is set σ = 0 and the singular metric (5) (inside the

matter) is considered where eλ(r) = (1 − 2m(r)/r)−1 (and con-

sequently m(r) = 1
2
r(1−e−λ)) then the Tolman-Oppenheimer-

Volkoff equilibrium equation is obtained

dp

dr
= −

(p(r) + ̺(r))
[

m(r) + 4πr3 p(r)
]

r2

(

1 −
2m(r)

r

) . (A-4)

In our case (A-3) instead, it is possible to give the correct

physical meaning to m(r) setting, for the nonsingular metric

inside the matter,

eλ(r) =
(r3 + σ)−4/3

1 − 2m(r)

(r3 + σ)1/3

r4; (A-5)

in effect, at the border r = rb there will be continuity with the

metric in vacuum (7) and (6) so that

eλ(rb) = eλ =
r4(r3 + 8m3)−4/3

1 − 2m

(r3 + 8m3)1/3

and m(rb) will assume its value m as seen by an external ob-

server

m(rb) =
1

2

(

r3
b+8m3

)1/3





















1−e−λ
r4

b
(

r3
b
+8m3

)4/3





















= m. (A-6)

Finally the Schwarzschild metric inside the matter (in conti-

nuity with (7) where it is set α = 2m(r) and σ = 8m3 so that

σ = α3 outside the matter) will be

ds2 =













1 − 2m(r)
(

r3 + 8m3
)1/3













dt2−

−
r4

(

r3 + 8m3
)−4/3

1 − 2m(r)
(

r3 + 8m3
)1/3

dr2−

−
(

r3 + 8m3
)2/3 (

dθ2 + sin2θdφ2
)

.

(A-7)

So, with eλ(r) given by (A-5), the equilibrium equation

(A-3) (that is the merging of the two Einstein’s equations

(T11) and (A-2)) and the other Einstein’s equation (T00) will

become respectively

dp(r)

dr
= −

(p(r) + ̺(r))
[

m(r) + 4π(r3 + σ)p(r)
]

(

r3 + σ
)4/3

r2













1 − 2m(r)
(

r3 + σ
)1/3













dm(r)

dr
= 4π̺(r)r2























































, (A-8)

where σ = 8m3.
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Appendix B

Pressure P can be eliminated from Einstein’s equations con-

sidering that G1
1
− G2

2
= 0, this, together with the definition

of h(r) (23) leads to the following equation for the singular

metric (using the notation by Wald, eq. 6.2.34 in [14])

d

dr















r−1hS (r)−1/2
d f

1/2

S
(r)

dr















=

=
[

fS (r)hS (r)
]1/2 d

dr

[

m(r)

r3

]

(B-1)

while, for the nonsingular metric

d

dr

[

(r3 + σ)−1/3hNS (r)−1/2 d fNS (r)1/2

dr

]

=

=
(r3 + σ)2/3

r2

[

fNS (r)hNS (r)
]1/2 d

dr

[

m(r)

r3 + σ

]

.

(B-2)

The right sides for both equations are proportional to the

derivative with respect to r of the average density, so because

the condition d̺/dr 6 0, the left sides must be both less or

equivalent to 0. Integrating the inequalities for the left sides,

inward from the border rb to a generic radius r we obtain

1

rh
1/2

S
(r)

d fS (r)1/2

dr
>

M

r3
b

, (B-3)

1

(r3 + σ)1/3h
1/2

NS
(r)

d f
1/2

NS
(r)

dr
>

M

r3
b
+ σ
. (B-4)

These inequalities can be integrated again inward from

rb to 0. The condition d̺/dr 6 0 implies that m(r) cannot be

smaller than the value it would have for a uniform density star

so, for the singular case, m(r) > Mr3/r3
b

and, for the nonsin-

gular one, m(r) > M(r3+σ)/(r3
b
+σ), so that inequalities (B-3

and B-4) become: for the singular case (Wald, eq. 6.2.39)

f
1/2

S
(0) 6

3

2

(

1 − 2M

rb

)1/2

− 1

2
(B-5)

and for the nonsingular case

f
1/2

NS
(0) 6

3

2













1 − 2M

(r3
b
+ σ)1/3













1/2

− 1

2













1 − 2Mσ2/3

r3
b
+ σ













(B-6)

(as usual for σ = 0 the two cases are equivalent). Finally, the

condition f 1/2(0) > 0 implies that, for the singular case, the

necessary condition for staticity involves a maximum limit

for the mass: from (B-5)

M 6
4

9
rb . (B-7)

For the nonsingular case instead, the stability condition

implies, from (B-6) and inserting the value σ ≡ 8m3, the

inequality

1 −












8M3

r3
b
+ 8M3













1
3

>
1

9













1 −
8M3

r3
b
+ 8M3













. (B-8)
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Addendum to “Phenomenological Derivation of the Schrödinger Equation”
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This addendum to the article [1] is crucial for understanding how the complex effective

action, despite its derivation based on classical concepts, prevents quantal particles to

move along extreme action trajectories. The reason relates to homogenous, isotropic

and unpredictable impulses received from the environment. These random impulses al-

lied to natural obedience to the dynamical principle imply that such particles are perma-

nently and randomly passing from an extreme action trajectory to another; all of them

belonging to the ensemble given by the stochastic Hamilton-Jacobi-Bohm equation.

Also, to correct a wrong interpretation concerning energy conservation, it is shown that

the remaining energy due to these permanent particle-medium interactions (absorption-

emission phenomena) is the so-called quantum potential.

1 Introduction

The central subject of the article [1] is: Quantal particles

(such as electrons), due to its interactions with the environ-

ment, move in accordance with the complex effective action

S e f f = S + i
~

2
ln P (1)

which was obtained following the classical Hamilton’s dy-

namical principle but considering the motion as a whole, that

is, taking averages. The resulting canonical equations coin-

cide with those extracted from the Schrödinger equation writ-

ing ψ=
√

P exp (iS/~), namely:

∂S

∂t
+
∇S · ∇S

2m
+ V + Q = 0 (2)

and
∂P

∂t
+ ∇ ·

(

P
∇S

m

)

= 0 , (3)

where

Q =
~

2

8m

∇P · ∇P

P2
− ~

2

4m

∇ · ∇P

P
(4)

is the quantum potential which, visibly, is the remaining en-

ergy of two distinct concurrent phenomena.

The main motivation for writing this addendum concerns

the result
∫

P

(

i
~

2

1

P

∂P

∂t

)

d3r = 0 (5)

which is not the expression of energy conservation, as argued

in connection with Eg. 23 of the article. In true, the null value

of this average means that the involved energy (the enclosed

quantity) does not remain in the particle; it is radiation, as will

be shown. In doing this, it is necessary to explain how Q — as

an energy resulting from the particle-medium interactions —

agrees with the energy conservation required by the so-called

quantum equilibrium.

Also, in the mentioned article the meaning of the effec-

tive action (1) is not so clear. It was derived supposing a

particle over a possible trajectory; what, in view of the re-

sults, must be true. On the other hand, a continuous trajec-

tory of elementary particles is an experimentally discredited

concept. So, there must be a link between these two oppos-

ing points of view. In true, there is, as will be seen. Indeed,

it will be shown that quantal particles occupies, sequentially

and instantly, just one point over different trajectories which

are randomically chosen in the ensemble (2). This means that

quantal particles don’t move along extreme action trajectories

but occupy trajectories (permited by the dynamical principle)

just for a moment.

The interacting medium — primarily responsible for

quantum effects — is the zero-point field (ZPF) which, ac-

cording to the classical description of the Casimir’s experi-

ment, is viewed as a homogeneous and isotropic distribution

of electromagnetic waves pervading all space. As the phases

of these waves are randomically distributed in the range

[0, 2π], then electrical charged particles (balanced or not) are

permanently receiving unpredictable impulses. This has two

main consequences: First, the accelerated charged particles

radiate all the absorbed energy. Second, the unpredictable im-

pulses prevent quantal particles to follow predictable paths.

Even so, the overall motion obeys the Hamilton’s principle

which is founded on trajectories. How can all this happen?

2 The quantum potential and the ensemble of virtual

trajectories

The answer to the above question lay in the fact that the nat-

ural behavior of any moving particle, at any time, is obeying

the classical dynamical principle. This must be interpreted as

follows: In the absence of random forces, they move along

extreme action trajectories. However, in the case of parti-

cles which are significantly affected by the ZPF the situation

is drastically modified. Indeed, homogeneous, isotropic and

random forces (including beck reaction forces) are not part of

the traditional classical description of the motion.

Here, it will be proved that the quantal motion occurs as

follows: Immediately before any particle-field random inter-
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action the particle is over a given trajectory (obedience to

the dynamical principle), but upon receiving an unpredictable

impulse it is withdrawing from this trajectory to an unpre-

dictable place. Again, in the new position it continues obey-

ing the dynamical principle; that is, the particle is over an-

other trajectory. As this is a permanent process, then the parti-

cle occupies these possible trajectories only instantly (virtual

trajectories). In a sense, we can say that the unpredictable

impulse has created initial conditions (arbitrary) for a new

trajectory.

In the light of the foregoing, at each position actually oc-

cupied by the particle pass an infinite number of such virtual

trajectories. This assumption is in agreement with the fol-

lowing facts: First, Eq. (2) represents an ensemble of unpre-

dictable trajectories; P(x, t) — preserving its uniqueness —

can take any value at x. Moreover, ∇P is not deterministic.

Second, energy and momentum in quantum mechanics are in-

dependent of coordinates. This means that everywhere there

are equivalent ensembles of partial derivatives ∂S/∂t and ∇S

— requiring continuous virtual functions S — which on av-

erage give the corresponding observed quantities. This state-

ment implies the same uncertainty everywhere (non locality).

Thirty, Probability density, classically, is defined over trajec-

tories; it is canonically conjugate to the action function S (this

remains valid in the equations above). Over extreme action

trajectories ∂P/∂t = 0 (we know where the particle is at the

time t). Therefore, if ∂P/∂t , 0, then it means that the particle

was “banned” from its trajectory.

To formally prove that the trajectories represented by the

virtual ensemble (2) are instantly visited by the particle, it is

necessary finding a valid expression which leads to the idea

that such trajectories (or momenta ∇S ) are randomly chosen

(or induced) where the particle is. This is better made after

knowing the meaning of the quantum potential.

If a moving particle is not actuated by random forces,

then, given the potential V and the initial conditions, we can

predict its extreme action trajectory. However, the presence

of random forces — exactly like that found in the ZPF —

modify this classical way to see the motion. This rupture re-

lates to the fact that now there is only a probability of finding

the particle at a given position at the time t.

Whenever a particle is removed from a given position by

random forces, the probability of find it there is diminished.

Consequently, as probability is a conserved quantity, this de-

crease of probability leads to the emergence of an outgoing

compensatory probability current. Formally, following stan-

dard techniques and considering the ZPF properties, at each

position there is a diffusion of probability density currents

(Pv), in such a way that

∂P

∂t
+ ∇ · (Pv) = 0 . (6)

In true, Pv represents all possible local outflows of mat-

ter whose velocities v have the directions of the vectors ∇P.

Therefore, all currents obey

Pv = α∇P, (7)

where α is a proportionality factor, to be determined.

Being the matter-field interaction conservative, then there

is no net momentum transfer to the particle. This implies that

the average probability density current is zero, i.e.

∫

P (Pv) d3r =

∫

P (α∇P) d3r = 0 . (8)

Integrating the second form by parts and considering that

P → 0 at infinity, we find that its null value is plenty satis-

fied if α is a constant. In true, it is an imaginary diffusion

constant because there is no effective dislocation of matter in

all directions (this is a single-particle description). In fact, in

accordance with the imaginary part of the effective action (1),

the unpredictable impulses received by the particle are given

by

mv = ∇
(

i
~

2
ln P

)

= i
~

2

∇P

P
, (9)

which, compared with (7), implies that α = i~/2m.

The consequent average kinetic energy induced by the

ZPF on the particle is

〈TZPF〉 =
∫

P

(

1

2
m |v|2

)

d3r , (10)

which considering (9), reads

〈TZPF〉 =
~

2

8m

∫

(∇P)2

P
d3r. (11)

However, the implicated acceleration makes the electrical

charge radiates. So, we must appeal to the general rule con-

cerning accelerated charged particles, namely: The change in

the kinetic energy in the absorption-emission process is equal

to the work done by the field minus the radiated energy. This

is the energy conservation implicit in the determination of the

Abraham-Lorentz back reaction force.

Therefore, varying the average kinetic energy, that is, tak-

ing the functional derivative of (11) with respect to P, we find

that the remaining energy due to particle-field interactions is

δ〈TZPF〉 =
~

2

8m

(

∇P · ∇P

P2
− 2
∇ · ∇P

P

)

, (12)

where, therefore, the first term relates to absorption of radia-

tion, and the second to emission.

Coincidentally, this remaining energy is the quantum po-

tential (4) which, therefore, is the expression of the required

energy conservation implied in the so-called quantum equi-

librium.

At this point we have sufficient valid information to prove

that extreme action trajectories are randomly chosen at each

position actually occupied by the particle.
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Indeed, the probability density conservation (6), consid-

ering (9), reads

∂P

∂t
+ i
~

2m
∇2P = 0 , (13)

which has the shape of a diffusion equation; local diffusion

of probability density currents or virtual outflows of matter at

the actual particle position.

The validity of this equation is unquestionable. In fact, it

is absolutely equivalent to Eq. (3), or

∂(ψ∗ψ)

∂t
+ i
~

2m
∇ · (ψ∗ ∇ψ − ψ∇ψ∗) = 0 , (14)

as can be proven from |∇ψ|2 = −ψ∗∇ψ and the parameterized

forms of S and P in terms of ψ.

Very important, the equations (13) and (3) represent the

same diffusion at each position x actually occupied. Equiv-

alently, these two ways of expressing probability conserva-

tion contain implicitly all possibilities for the particle flow at

x. As Eq. (3) expresses this in terms of ∇S , then ∇S must

represent all possible momenta at x. However, as these par-

tial derivatives require continuous action functions, then there

pass multiple virtual trajectories. One of them infallibly will

be occupied, but only for a moment because in the next posi-

tion the same phenomenon is repeated.

In this sence, the obedience to the dynamical principle,

implicit in the effective action (1), is traduced as follows: At

a given time the particle is over a trajectory represented by the

action S (real part), but at this very moment there is a choice

for the next motion, which is dictated by the probability de-

pendent local action (imaginary part). In other words, the

imaginary part chose the next action function (S ) represent-

ing another trajectory to be occupied during an infinitesimal

time; and so on.

Now, it is possible to correct the interpretation given to

(5) in the article [1]. Just rewrite Eq. (13) in the energy form

i
~

2

1

P

∂P

∂t
=
~

2

4m

∇ · ∇P

P
, (15)

which implies that

∫

all

P

(

i
~

2

1

P

∂P

∂t

)

d3r =

∫

all

P

(

~
2

4m

∇ · ∇P

P

)

d3r = 0 . (16)

Being the second member of (15) the emitted energy of

the balance (12), then the result (5) means that the involved

energy doesn’t remain in the particle.

3 Conslusion

The subsequent particle’s positions, randomly chosen in the

interactions, are on different trajectories. Therefore, there are

continuous trajectories, but never followed by quantal parti-

cles. They simply represent the obedience to the mechanical

principle, regardless of where the particle is. Nevertheless, as

these virtual trajectories are inherent to the Schrödinger pic-

ture, then it is expected that they — properly determined and

used as statistical tools - can give the same predictions. How-

ever, the convenience of such procedure needs to be better

discussed.

On the other hand, were highlighted permanent emissions

and absorptions of radiation, meaning that particles are actu-

ated by forces and back reaction forces, which, on average,

are zero. This explains why the interactions become trans-

parent in the quantum description. Nevertheless, speculating,

these permanent absorptions and emissions of electromag-

netic waves (a delicate asymmetry accompanying particles

everywhere) may be important to interpret certain properties

of matter.
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Motivated by the recently published “Oxford Questions” we review the foundational

character of the wave function collapse theme. We show that the respective theme, as

well as its twin analogue represented by the Schrödinger’s cat problem, are not real

scientific topics but plain and rather trivial fictions. Consequently, we suggest that the

related items of the “Oxford Questions” have to be perceived with some epistemic cau-

tion.

1 Introduction

The newly diffused The Oxford Questions on the Foundations

of Quantum Physics [1], known also as “Oxford Questions,

aims to formulate “a list of main open questions about the

foundations of quantum physics”. Within the respective list,

the issue “whether or not the ‘collapse of the wave packet’ is

a physical process” is approached in “several Oxford Ques-

tions: in particular, 1b, 2a, 2c, 3a, 3c and 5a”. The issue is

mainly brought into attention in 3c: “How can the progressive

collapse of the wave function be experimentally monitored?”.

It is expected that, in the future, the Oxford Questions

will stimulate more or less extensive studies in both advanced

and pedagogic research. Previous to these studies, it is im-

portant to examine the correctness of the items gathered in

the Oxford Questions, particularly the ones pertaining to the

above-mentioned quantum collapse. Such an examination is

intended in this short paper, by using some ideas noted in

some of our recent works. Section 2 is focused on the theme

of Wave Function Collapse. Additionally, in Section 3, we

examine the case of Schrödinger’s Cat Thought Experiment

which in fact is a twin analogue of the Wave Function Col-

lapse. We find that both the Wave Function Collapse and the

Schrödinger’s Cat Thought Experiment are not real scientific

topics but only pure fictions.

The present paper ends in Section 4 with some closing

thoughts, particularly with the suggestion that, for real sci-

ence, the invalidated Oxford Questions items have to be re-

garded as needless.

2 On the wave function collapse

Historically speaking, the Wave Function Collapse concept

was brought into scientific debate by the conflict between the

following two suppositions:

s1 The old opinion that a Quantum Measurement of a

(sub)atomic observable should be regarded as a sin-

gle sampling (trial) which gives a unique deterministic

value. �

s2 The agreement, enforced by theoretical considerations,

is such that to describe such an observable one should

resort to probabilistic (non-deterministic) entities

represented by an operator together with a wave func-

tion. �

To avoid conflict between suppositions s1 and s2 it was

in diffused the thesis that, during a Quantum Measurement,

the corresponding wave function collapses into a particular

eigenfunction associated with a unique (deterministic) eigen-

value of the implied operator. Such a thesis has led to the

Wave Function Collapse concept regarded as a true dogma.

The respective concept was assumed, in different ways and

degrees, within a large number of mainstream publications

(see [2–8] and references therein). But, as a rule, the pre-

viously mentioned assumptions were (and still are) not ac-

companied with adequate elucidations concerning the initial

correctness of the alluded concept in relation to the natural

themes of Quantum Mechanics.

Now, explicitly or implicitly, the Oxford Questions [1] put

forward the problems:

p1 Whether or not the “collapse of the wave packet” is a

physical process. �

p2 How can the progressive collapse of the wave function

be experimentally monitored? �

p3 According to which theoretical scheme, justified by

physical reality alone, can a Wave Function Collapse be

described properly? (This is in the situation [6] where

a whole “zoo of collapse models” have already been

invented. �

In order to generate significant remarks on the above-

mentioned Oxford Questions problems p1–p3, now we wish

to bring into attention some ideas prefigured and to a certain

extent argued in our recent paper [9, 10]. We mainly pointed

out the ephemeral character (i.e. caducity) of the Wave Func-

tion Collapse concept. Basically our argumentations are

grounded on the following indubitable facts. Mathematically,

a quantum observable (described by a corresponding opera-
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tor) is a true random variable. Then, in a theoretical frame-

work, such a variable must be regarded as endowed with a

spectra of eigenvalues. For a given quantum state/system the

mentioned eigenvalues are associated with particular proba-

bilities incorporated within the wave function of the men-

tioned state/system. Consequently, from an experimental per-

spective, a measurement of a quantum observable requires an

adequate number of samplings finished through a significant

statistical group of data/outcomes. That is why one can con-

clude that the supposition s1 of the Wave Function Collapse

concept appears as a false premise while the whole respective

concept proves oneself to be a useless fiction.

The previously noted conclusion can be consolidated in-

directly by mentioning the quantum-classical probabilistic

similarity (see [11–14]) among quantum mechanical observ-

ables and macroscopic random variables, studied within the

thermodynamic theory of fluctuations. On the whole, a mac-

roscopic random variable is characterized by a continuous

spectra of values associated with an intrinsic probability den-

sity. Then, for measuring a macroscopic random variable, a

single experimental sampling delivering a unique value (re-

sult) is worthless. Such a sampling is not described as a col-

lapse of the mentioned probability density. Similarly, a quan-

tum measurement must not be represented as a wave func-

tion collapse. Moreover, a true experimental evaluation of

a macroscopic random variable requires an adequate lot of

samplings finished through a statistical set of individual re-

sults. A plausible model for a theoretical description of the

alluded evaluation can be done [14–16] through an informa-

tion transmission process. In the respective model, the mea-

sured system appears as an information source while the mea-

suring device plays the role of an information transmission

channel to the recorder of measurement data. As part of the

mentioned measuring process, the quantum mechanical oper-

ators (describing quantum observables) preserve their mathe-

matical expressions. Additionally, the transmission to the the

recorder of quantum probabilistic attributes is described by

means of linear transformations for probability density and

current(associated with the corresponding wave function).

Taking into account the above mentioned indubitable ar-

guments, we think that in natural perception the “collapse of

the wave function” cannot be considered as a physical pro-

cess. Consequently, the Wave Function Collapse concept

does not have the qualities of a real scientific topic, it be-

ing only a purely trivial and worthless fiction. Moreover, the

above noted problems p2 and p3 make no sense. That is why

the further studies expected to be raised by the Oxford Ques-

tions would be more appropriate if ignoring all the elements

regarding the Wave Function Collapse concept.

3 As regards the Schrödinger’s cat

Subsidiarily to the above considerations about the Wave

Function Collapse concept, some remarks can be brought into

question [9] concerning the famous Schrödinger’s Cat

Thought Experiment. The essential element in the respective

experiment is represented by a single decay of a radioactive

atom (which, through some macroscopic machinery, kills the

cat). But the individual lifetime of a single decaying atom

is a random variable. That is why the mentioned killing de-

cay is in fact a twin analogue of the above mentioned single

sampling taken into account in supposition s1 of the Wave

Functions Collapse concept. So, the previous considerations

reveal the notifiable fact that is useless (even forbidden) to

design experiments or actions that rely solely on a single de-

terministic sampling of a random variable (such is the decay

lifetime). Accordingly, the Schrödinger’s Cat Thought Ex-

periment appears as a twin analogue of the Wave Functions

Collapse i.e. as a fiction (figment) and a deontology without

any real scientific value.

The previously mentioned fictional character of the

Schrödinger’s Cat Thought Experiment can be argued once

more by observation [9] that it is possible to imagine a macro-

scopic thought-experiment completely analogous with Shrö-

dinger’s quantum one. Within the respective analogue, a

cousin of Schrödinger’s cat can be killed through launching a

single macroscopic ballistic projectile. More specifically, the

killing macroscopic machinery is activated by the reaching of

the projectile in a probable hitting point. But the respective

point has characteristics of a true macroscopic (non-quantum)

random variable. Consequently, the launching of a single pro-

jectile is a false premise, similar to the supposition s1 of the

Wave Function Collapse concept. Add here the known fact

that within the practice of traditional artillery (operating only

with macroscopic ballistic projectiles but not with propelled

missiles) designed for an expected destruction of a military

objective, one uses a considerable (statistical) number of pro-

jectiles but not a single one. So the whole situation with a

macroscopic killing projectile is completely analogous with

the Schrödinger’s Cat Thought Experiment which uses a sin-

gle quantum radioactive decay. Therefore, the acknowledged

classical experiment makes clear once more the fictional char-

acter of the Schrödinger’s Cat Thought Experiment.

According to the above-noted remarks, certain things

must be regarded as being worthless, i.e. allegations such

as: ”the Schrödinger’s cat thought experiment remains a top-

ical touchstone for all interpretations of quantum mechan-

ics”. Note that such or similar allegations can be found in

many science popularization texts, e.g. in the ones dissemi-

nated via the Internet.

4 Closing thoughts

Through the contents of the previous sections, we have

brought into attention a few significant remarks regarding the

themes of the Wave Function Collapse and the Schrödinger’s

Cat Thought Experiment. Through the respective remarks,

we argue that the mentioned themes are not real scientific
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topics but pure and trivial fictions. So we find that the Ox-

ford Questions have an important, prolonged drawback and,

consequently, their invalidated items have to be regarded as

needless things for science.
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This short paper derives the electron and proton Planck-vacuum coupling forces so that

both the electron and proton, and their antiparticles, possess a Compton radius and obey

the Dirac equation.

1 Introduction

The Dirac equation can be expressed as [1] [2]

e2
∗

(

i
∂

∂ct
+ αα · i∇

)

ψ = mc2βψ (1)

where in the Planck vacuum (PV) theory the coefficients e2
∗

and mc2 are particle-PV coupling constants associated with

the polarization and curvature forces

(±e∗)(−e∗)

r2
= ∓

e2
∗

r2
and

mm∗G

r∗r
=

mc2

r
(2)

where (±e∗) and mc2 are the charge and rest mass energy of

the free-space Dirac particles and (−e∗) refers to the separate

Planck particles making up the PV continuum. G is Newton’s

gravitational constant, m∗ and r∗ are the mass and Compton

radius of the Planck particles, and e∗ is the massless bare

charge. The ‘Dirac particles’ refer in the present paper to

the electron and proton and their respective antiparticles.

The coupling constants in (1) and (2) are presently asso-

ciated with the rest-frame coupling forces [3]

F(r) = ∓
e2
∗

r2
−

mc2

r
(3)

but there is a problem. The negative polarization force in (3)

is due to the positive charge in (±e∗) of (2) and yields the

equation

−e2
∗

(

i
∂

∂ct
+ αα · i∇

)

ψ = mc2βψ (4)

which, because of the negative sign, is not a Dirac equation.

Thus these coupling forces do not lead to a Dirac particle in

the positron and proton cases — nor can they produce their

corresponding Compton radii rc = e2
∗/mc2 from (3), where

F(rc) must vanish. So there is something wrong with these

coupling forces and, to resolve the problem, it is necessary to

look more closely at the foundation of the PV theory.

2 Single superforce

The two observations: “investigations point towards a com-

pelling idea, that all nature is ultimately controlled by the ac-

tivities of a single superforce”, and “[a living vacuum] holds

the key to a full understanding of the forces of nature” ; come

from Paul Davies’ popular 1984 book [4, p.104] entitled “Su-

perforce: The Search for a Grand Unified Theory of Nature”.

This living vacuum consists of a “seething ferment of virtual

particles”, and is “alive with throbbing energy and vitality”.

These statements form the foundation of the PV theory [5] [6]

that, among other things, derives the primary constants as-

sociated with Newton’s constant G (= e2
∗/m

2
∗), Planck’s re-

duced constant ~ (= e2
∗/c), and the fine structure constant

α (= e2/e2
∗).

The single-superforce idea is taken here to mean that the

superforces associated with General relativity [5] and the

Newton and Coulomb forces have the same magnitude. In

particular it is assumed that

m2
∗G

r2
∗

=
c4

G
= (±)

e2
∗

r2
∗

(5)

where the first, second, and third ratios are the superforces for

Newton’s gravitational force and General relativity, and the

free-space forces and superforces associated with the Cou-

lomb force.

Equating the first and second ratios in (5) leads to

c4

G
= (±)

m∗c
2

r∗
(6)

where, since c4 and G are positive-definite constants, the neg-

ative sign in (6) must refer to some other aspect of the ratio

— this other aspect is the c4/G association with the two-term

particle-PV coupling forces. Equating the second and third

ratios in (5) and using (6) yields

(±)
m∗c

2

r∗
= (±)

e2
∗

r2
∗

(7)

both sides of which are coupling forces.

Equating the first and third ratios in (5) gives

G =
e2
∗

m2
∗

(8)

as the definition of the secondary constant G in terms of the

primary constants e2
∗ and m2

∗.
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Using the curvature and polarization forces in (7), the

two-term coupling forces take the form

F(r∗) = (±)
e2
∗

r2
∗

(±)
m∗c

2

r∗
(9)

where the proper choice of the plus and minus signs leads to

coupling forces consistent with the existence of a Compton

radius. Thus the proper choice is

F(r∗) = ±

(

e2
∗

r2
∗

−
m∗c

2

r∗

)

(10)

defining coupling forces that vanish at the Compton radius

(r∗ = e2
∗/m∗c

2) of the Planck particle. The vanishing of (10)

reveals a basic property of the PV state that establishes how

the stable free-space particle interacts with the vacuum — i.e.,

via a two-term coupling force that generates a characteristic

Compton radius (rc = e2
∗/mc2) for the particle.

For the free-space electron and proton and their antipar-

ticles, the results of the previous paragraph suggest that their

coupling forces should be

F(r) = ±

(

e2
∗

r2
−

mec2

r

)

=

{

electron

positron
(11)

and

F(r) = ∓

(

e2
∗

r2
−

mpc2

r

)

=

{

proton

antiproton
(12)

where the plus and minus signs correspond to the particles

indicated on the right of the braces, and the subscripts ‘e’

and ‘p’ refer to the electron and proton respectively. These

coupling forces replace the problematic forces in (3). The

radius r in these equations is the radius from the free-space

Dirac particle to the separate particles of the PV.

The vanishing of equations (10)–(12) leads to the impor-

tant string of Compton relations

remec2 = rpmpc2 = r∗m∗c
2 = e2

∗ (= c~) (13)

relating the Dirac particles to the Planck particles.

3 Conclusions and comments

The forces (11) and (12) vanish at the electron and proton,

and their respective antiparticle, Compton radii

re =
e2
∗

mec2
and rp =

e2
∗

mpc2
(14)

and lead to the Dirac equations

±e2
∗

(

i
∂

∂ct
+ αα · i∇

)

ψ = ±mc2βψ . (15)

Dividing through by ±mc2 gives

rc

(

i
∂

∂ct
+ αα · i∇

)

ψ = βψ (16)

where the Compton radius rc (= e2
∗/mc2) and m now represent

any of the Dirac particles (rc = re, rp).

The particle-PV potential energy associated with the cou-

pling forces in (11) and (12) is defined as

V(r) = −

∫ r

rc

|F(r)| dr (17)

for r 6 rc, resulting in (using (13))

V(r)

mc2
=

rc

r
− 1 − ln

rc

r
(18)

where V(rc) = 0. The potential increases as the Dirac-particle

cores (±e∗,m) are approached (as r decreases), making the

negative energy vacuum susceptible to free-space (where the

cores reside) perturbations. This susceptibility leads to an

internal vacuum structure for the Dirac particles; where, in

the “The Dirac Proton and its Structure” calculations [6] [7],

quantitative confirmation for the preceding Dirac-particle cal-

culations is provided.
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Kirchhoff’s law of thermal emission states that cavity radiation must always be black,

or normal, irrespective of the nature of the walls. Arbitrary cavity radiation must be

solely dependent upon the equilibrium temperature and the frequency of observation.

Despite such theoretical claims, it is well established that laboratory blackbodies are

not constructed from arbitrary materials, but rather from nearly perfect absorbers of

radiation over the frequency of interest. In the laboratory, arbitrary cavities do not

contain black radiation. This experimental fact stands in direct conflict with Kirchhoff’s

formulation. Nonetheless, Kirchhoff’s law of thermal emission endures, in part, due to

Gedanken experiments whose errors in logic are difficult to ascertain. In this work,

thought experiments are discussed in order to expose some logical shortcomings. It will

be demonstrated that Kirchhoff’s law cannot be supported in this context.

If a space be entirely surrounded by bodies of the

same temperature, so that no rays can penetrate

through them, every pencil in the interior of the

space must be so constituted, in regard to its quality

and intensity, as if it had proceeded from a perfectly

black body of the same temperature, and must there-

fore be independent of the form and nature of the

bodies, being determined by temperature alone. . .

In the interior therefore of an opake red-hot body

of any temperature, the illumination is always the

same, whatever be the constitution of the body in

other respects.
Gustav Robert Kirchhoff, 1860 [1]

1 Introduction

Recently, the validity of Kirchhoff’s law [1, 2] and the uni-

versality of the laws of thermal emission [3–6] have been

brought into question [7–13]. This reformulation of an estab-

lished thermodynamic principle has repercussions throughout

the fields of physics and astronomy. The issues at hand not

only concern our understanding of the nature of the stars [14]

and the microwave background [15], but also the universal-

ity endowed upon Boltzmann’s and Planck’s constants [12].

Thus, although 150 years have passed since Kirchhoff’s law

was formulated [1,2], it is appropriate to carefully reconsider

its authenticity. In this respect, the author has argued against

the validity of this law of thermal emission [7–13].

Stewart’s law [16], not Kirchhoff’s [1, 2], properly ac-

counts for the equivalence between emissivity and absorptiv-

ity in thermal equilibrium. Unlike his contemporaries [1,2,6],

Stewart [16] does not require that all radiation within cavities

be black, or normal. In this work, the variable nature of cav-

ity radiation is affirmed by addressing a Gedanken experiment

which is often invoked to justify Kirchhoff’s law, either in the

classroom or within textbooks.

2 Experiment I: Two ideal cavities

In this experiment, two cavities of the same dimensions are

imagined to exist in an empty universe at the same tempera-

ture (see Fig. 1A). In order to ensure that the heat contained

within each cavity cannot escape, let us surround the exterior

of these enclosures with an adiabatic wall. The interior of

each cavity is then placed under vacuum to prevent convec-

tive processes. The inner surface of the first enclosure (cavity

1) is comprised of an ideal, or perfect, emitter (Emissivity

(ǫ)= 1, Reflectivity (ρ)= 0; at the frequency of interest). The

interior of cavity 2 is constructed from an ideal, or perfect,

reflector (ǫ = 0, ρ= 1; at the frequency of interest). For ped-

agogical purposes, a perfectly adiabatic structure is selected

for the inner wall of cavity 2. The cavities are in temperature

equilibrium with a third object in the same universe, which is

also surrounded by an adiabatic wall.

The physics community currently maintains that, under

these conditions, both cavities must contain black radiation,

in accordance with Kirchhoff’s law [1,2], despite the fact that

the second cavity, being fully adiabatic, acts as a perfect re-

flector and, hence, is unable to emit a single photon. How can

it be argued that cavity 2 is filled with black radiation?

Let the two cavities come into contact with one another

and place a small hole between them, as displayed in Fig. 1B.

When this occurs, photons must cross from cavity 1 (perfectly

emitting) into cavity 2 (perfectly reflective). Yet, if cavity 2

is devoid of black radiation, it will not be able to transfer a

photon back into the first cavity. As a result, since the first

cavity would be losing net photons into the second cavity, its

energy content or temperature would drop. Conversely, the

energy content of the second cavity would rise. This cannot

be permitted according to the zeroth law of thermodynamics,

since all three objects are already at the same temperature.

Consequently, it is argued that the perfectly reflecting cavity
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Fig. 1: Schematic representation of our thought experiments. A)

Two cavities are presented. Cavity 1 is constructed from a perfect

emitter (ǫ = 1, ρ= 0) surrounded by an adiabatic wall. Cavity 2 rep-

resents a perfect reflector (ǫ = 0, ρ= 1). In this case, we assume that

both the inner lining and the outer wall are fully adiabatic. B) The

cavities displayed in A are brought together and a small hole is made

between them in order to permit radiation to flow from one enclosure

into the other. C) Two cavities are presented which again have been

brought in contact with one another. The inner surface of cavity 1 is

constructed from graphite, or soot, and is assumed to act as a perfect

emitter (ǫ = 1, ρ= 0). The inner surface of cavity 2 is constructed

from silver which is assumed to act as a perfectly reflector (ǫ = 0,

ρ= 1). Both cavities are surrounded by adiabatic walls. However,

when the two cavities are brought together, the adiabatic walls be-

tween them are removed. This allows for direct thermal contact of

the two inner surfaces. A small hole is included to permit radiation

to move from one enclosure into the other.

must have contained black radiation all along, such that ra-

diative equilibrium could always be maintained and that the

temperature of the cavities can remain intact.

The error in such arguments must be found in permitting

net energy to be transferred from cavity 1 into cavity 2. This

cannot be allowed, simply based on the zeroth law of thermo-

dynamics, if both cavities are said to be at the same tempera-

ture. A logical misstep must have been made in this thought

experiment. The two cavities must not have been properly

conceived.

The problem can be attributed to the inner surface of the

second cavity and in the fact that both cavities must be sur-

rounded by an adiabatic wall to prevent the emission of pho-

tons into the surrounding empty universe. This was central

to maintaining the energy/temperature stability of each sub-

system.

In designing the second cavity from a perfectly adiabatic

wall, a physical regimen has been adopted which has no rela-

tionship to the best reflectors. Adiabatic walls are immune to

all thermal processes. As a consequence, scientists who in-

voke their use in this setting, fail to recognize that such walls

cannot be characterized with a temperature. Thus, if Kirch-

hoff’s law is invalid and there are actually no photons within

cavity 2, one cannot even set a temperature for the second sys-

tem. By default, adiabatic walls cannot store energy within

themselves. Namely, in addition to being perfectly reflective,

they cannot support thermal conduction or electron flow. This

stands in direct opposition to the known properties of the best

reflectors and real heat shields.∗

In reality, all good reflectors are also good conductors. As

a case in point, silver constitutes a very efficient reflector in

the infrared, but it is also one of the best electrical and thermal

conductors.†

Since the formulation of a law of physics must depend

upon the proper characterization of the physical world, one

must be careful not to invoke a mathematical or physical reg-

imen which has lost all relation to reality. The use of a fully

adiabatic perfectly reflecting cavity has not allowed for suffi-

cient degrees of freedom in which to store energy, as it cannot

sustain any phonons within its walls. The only degree of free-

dom which might be available to such a cavity would rest in

its ability to contain a radiation field. However, can cavity

2 actually have the ability to spontaneously generate such a

field, despite its complete lack of phonons and perfect reflec-

tion, simply driven by a law of physics which is currently

under question?

As cavity 2 is perfectly reflecting, the proper conclusion

remains that it cannot self-generate a single photon. Thus, it

should initially be devoid of a radiation field. Because it also

cannot hold any energy in its adiabatic walls, cavity 2 cannot

be characterized by any temperature.

Consequently, at the beginning of the experiment, cavity

2 cannot be in thermal equilibrium with cavity 1. Therefore,

cavity 1 is allowed to transfer photons into cavity 2, simply

because there is no thermal equilibrium initially. The temper-

ature of cavity 1 must drop, as it pumps photons into cavity 2.

Thus, cavity 1 falls out of thermal equilibrium with the third

object, and Kirchhoff’s law has not been proven.

Obviously, there are shortcomings in cavity 2. As such,

the cavities should be redesigned, such that the validity of

Kirchhoff’s law can be assessed from a slightly different per-

spective.

∗Superconducting magnets for MRI utilize heat shields in their interior

that may well represent the closest example of an adiabatic shield in na-

ture. Such shields are typically made from a highly reflective and conductive

metal. They are suspended in the interior of the cryostat using very thin

and insulating fiberglass rods which act to help eliminate all conductive ther-

mal contact between the shield and other portions of the magnet system (i.e.

the liquid helium Dewar containing the magnet windings, other heat shields,

the liquid nitrogen Dewar, the outer casing of the magnet, etc.). These heat

shields are typically suspended in a vacuum environment. This is done in

order to minimize any convective contact between the shield and the rest of

the magnet.
†Silver is amongst the best conductors with a resistivity of only ∼ 1.6 ×

10−8 Ω m at 300 K and of ∼ 0.001 × 10−8 Ω m at 4 K [17]. It is also an

excellent reflector in the infrared, our frequency range of interest.
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3 Experiment II: Two cavities in thermal contact

Once again, each cavity is surrounded, under vacuum, with

an adiabatic wall such that heat radiation cannot be lost into

the universe and the temperature of each cavity can be main-

tained. As before, these two cavities are in temperature equi-

librium with a third object in the same universe, which is also

surrounded by an adiabatic wall.

The inner surface of cavity 1, the perfectly emitting cav-

ity, will be constructed from graphite, or soot. These mate-

rials are known to be very good physical examples of black-

bodies in the laboratory [18–21]. Departure from physical

reality will consist solely in assuming that the emissivity of

the inner surface is perfect (ǫ = 1, ρ= 0).

Silver will be used to line the inner surface of cavity 2.

This metal is perhaps the best known reflector in the labo-

ratory. In parallel fashion, a single departure is made from

physical reality, namely in assuming that the reflectivity of

the silver interior will be perfect (ǫ = 0, ρ= 1), much like the

second cavity in section 2.

Each cavity has a total energy which is now equal to the

sum of the energy it contains in the photons it encloses and

in the phonons which exists in its walls.∗ In this sense, each

cavity is given access to only two possible degrees of free-

dom: 1) the vibrational/phonon system in its walls and 2) the

radiation field.

Since the systems must be in thermal equilibrium, net

conduction is forbidden in accordance with the requirements

set forth by Max Planck [6, p. 23].

Let us now bring the two cavities together. But this time,

before making the small hole, let us remove the adiabatic

outer wall from that section of the cavities which come into

direct contact. In this manner, thermal conduction can occur

between the two cavities, if necessary. Finally, let us make

the small hole and permit cavity 1 to transfer a photon into

cavity 2 (see Fig. 1C).

Under these conditions, if a photon from cavity 1 enters

cavity 2, an identical quantum of energy instantly propagates

from the second perfectly reflecting cavity, through conduc-

tion and phonon action, into the walls of the first cavity. In

a sense, cavity 1 has instantly converted this phonon into the

photon it just expelled. As a result, cavity 1 has simply acted

as a transformer of energy. It has taken phonon energy from

cavity 2, created a photon, and sent energy back into cavity 2.

Cavity 1 has not lost any net photons. The total energy of each

system does not change and the zeroth law is not violated.

Thus, when a small hole is made between the two enclo-

sures, each cavity eventually becomes filled with blackbody

radiation when thermal equilibrium is reestablished. This

conclusion has previously been demonstrated mathematically

[9] and was recognized long ago in the laboratory. The net

∗For the purpose of this discussion, the energy associated with the elec-

trons in conduction bands, or any other degree of freedom, can be neglected,

as these do not provide additional insight into this problem.

result is that no net energy has been exchanged. The temper-

ature does not change, and no laws of thermodynamics have

been violated. Yet, for the period of time when photon and

phonon transfer was occurring, the entire system fell out of

thermal equilibrium, even if temperature equilibrium was be-

ing maintained. Eventually however, thermal equilibrium is

re-established and both cavities are filled with black radiation.

Over the course of this experiment, something very im-

portant has occurred in cavity 2. The energy which this cav-

ity contained has been redistributed amongst its two degrees

of freedom. Although the net temperature of cavity 2 has not

changed, phonon energy has been lost to the radiation field.

This simple observation has consequences in physics, as it

signifies that the law of equipartition which characterizes so

much of statistical thermodynamics cannot hold. The energy

of a system is not necessarily distributed equally between all

of its available degrees of freedom.

It could be argued, of course, that a behavior has been de-

manded from real materials which can never exist. This is a

question of how closely physical reality can be modeled. Is

it a more grievous error to assume 1) that a perfectly adia-

batic cavity can exist, a material which cannot emit photons,

cannot sustain conduction in any form, or be associated with

any temperature, or 2) that graphite and silver come to rep-

resent two ‘perfect’ examples of emissivity and reflectivity,

respectively?

Relative to this question, it is clear that the construction

of a perfectly reflecting cavity from an ideally adiabatic wall

(Experiment I) constitutes the greater departure from physi-

cal reality. Adiabatic surfaces, with their inability to emit any

photons and their incapability of sustaining thermal or elec-

trical conduction simply are not approached by anything in

nature. It is impossible to state that a truly adiabatic wall is at

any given temperature, as temperature in the physical world

must be associated with energy content and adiabatic walls

contain none. They represent a convenient intellectual con-

cept and offer very little relative to properly modeling physi-

cal reality. For this reason, their use results in the finding that

all cavities must be filled with blackbody radiation, even if

their walls lack the physical ability to emit a single photon.

Obviously, a logical conflict has been produced which high-

lights that our model has deviated too far from physical real-

ity. As a result, it is unlikely that such a model (Experiment

I) provides a proper proving ground relative to the validity of

Kirchhoff’s formulation.

Conversely, it is known that laboratory blackbodies con-

structed from graphite, or soot (carbon black, lampblack),

can reach rather high emissivities over certain frequencies

[18–21]. The requirement that these materials can come to

have an emissivity of 1 is very close to reality. At the same

time, silver can manifest an excellent reflectivity over certain

frequencies. Silver surfaces are the best reflectors known. As

a result, the assumption that silver can exhibit a reflectivity

of 1, is not very far from experimental fact. In this regard,
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it must be concluded that Experiment II constitutes a much

better representation of nature. It is known that laboratory

blackbodies are always made from near perfect emitters of

radiation, like graphite or soot [10, 11]. They are never made

of excellent reflectors, such as silver [10, 11].

The silver cavity was initially devoid of any radiation,

precisely because it can emit none. It is only when it is

placed in contact with a perfectly absorbing cavity, that the

energy contained in its vibrational degrees of freedom can be

transformed into a radiation field. This directly highlights that

Kirchhoff’s formulation cannot be correct. We do not find an

equal ability to construct blackbody cavities in the laboratory

irrespective of the nature of the walls. Silver cavities cannot

hold black radiation unless they have been subjected to the

action of a perfect absorber [9].

4 Conclusions

When properly analyzed, Gedanken experiments reveal that

Kirchhoff’s law of the thermal emission cannot be valid. The

proper analysis of cavity radiation must be open to realistic

treatments of energy balance within real materials. When

this is correctly accomplished, cavity radiation becomes ab-

solutely dependent on the nature of the enclosure. Phonon

transfer can balance photon transfer. As such, Kirchhoff’s law

holds no validity, either mathematically, in the experimental

setting, or in the context of thought experiments [7–13]. Cav-

ity radiation is not always black, but is absolutely dependent

on the nature of the enclosure. As demonstrated in Experi-

ment II, two cavities can be at the same temperature, but not

contain identical radiation. The introduction of black radia-

tion into opaque enclosures absolutely depends on the pres-

ence, or action, of a perfect emitter. Based on this presenta-

tion, the constants of Planck and Boltzmann are not univer-

sal [12].

Beyond Kirchhoff’s law, the analysis of cavity radiation

leads to the conclusion that the equipartition theorem cannot

be valid across all systems. The amount of energy associated

with a given degree of freedom at temperature equilibrium

is not necessarily equal to that contained in all other degrees

of freedom. The zeroth law of thermodynamics, by which

temperature is defined, is not concerned with radiation fields,

but simply temperature equilibrium. If two objects are at the

same temperature, they are by definition in thermal equilib-

rium, provided that their is no net emission, conduction, and

convection taking place in the systems of interest.

In Experiment II, a system is initially placed under tem-

perature and thermal equilibrium. It then is allowed to remain

under temperature equilibrium, while it temporarily falls out

of thermal equilibrium, as the small hole is created to en-

able the exchange of phonons and photons. At any time, if

the two cavities are physically separated and the hole filled,

they would immediately regain both temperature and thermal

equilibrium. At that point, the second cavity would contain

an arbitrary number of photons and not black radiation. It is

only if cavity 1 is given sufficient time to act that cavity II

will contain black radiation. However, the action of the first

cavity was absolutely critical to this transformation. A per-

fect emitter had to be present. It is not simply a question of

time, but of physical action by a perfect emitter.

Experiment II is indicating that it is not necessarily pos-

sible to equilibrate the energy contained within the degrees

of freedom within real materials. Under these conditions,

equipartition cannot hold. Equipartition requires that all de-

grees of freedom have the same ability to contain energy. This

cannot be correct. The most compelling example is illustrated

by the hydrogen and hydroxyl bonding systems within wa-

ter [14]. The force constants in these two systems are dras-

tically different. As a result, the hydrogen bonding system

is likely to be filled with energy at temperatures just above

absolute zero (∼3K). This is the reason, in fact, why the mi-

crowave background which surrounds the Earth does not vary

in intensity in response to seasonal changes [14]. Equiparti-

tion is also invalid in the photosphere, where dramatic differ-

ences in the energy content of the translational and vibrational

degrees of freedom are likely to exist [22].

Throughout his treatise on heat radiation [6], Max Planck

invoked a carbon particle, which he surmised to act as a sim-

ple catalyst (see [10] for a detailed review). However, he in-

serted a perfect emitter into his cavity. This particle could

then fill the cavity with black radiation, provided that it was

placed in physical contact with the energy source to be con-

verted. It did not matter how much carbon was inserted, as

this only governs the time involved. For this reason, when

Planck introduced the carbon particle into his cavity [6], it

was as if he had lined it completely with carbon [10]. He had

not demonstrated that all cavities contained black radiation,

only that all perfectly emitting cavities are black.
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This work is dedicated to my father, Noel Antoine Robitaille

(born on December 22, 1929). He devoted his life to the prac-

tice of family and emergency medicine, delivering over 800

babies and tending the medical needs of the communities in

which he resided, both in Canada and Iowa. He retired on

August 30, 2013, at the age of nearly 84, after having, for
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many years, served at his small clinic in LaPorte City and

making visits to the local nursing home. A few years ago,

as he walked with nostalgia in the cemetery of his village, he

recalled how so many buried there were once his patients and

friends. His daughter-in-law, to help lighten the atmosphere,

had inquired: “So Noel, do you think you were a good doc-

tor?”

In February 2014, he passed the 50 year anniversary of

receiving the rare privilege, as a white man, to be named an

honorary Indian Chief — “Kitchitouagegki”. He was the first

named by any of the Three First Nations: The Council of

Three Fires (Ojibway, Odawa, and Potawatomi). In describ-

ing the honor conferred upon him, Allen Toulouse recalled,

“His presence contributed to reducing the infant mortality

rate of the Sagamok First Nation (Reducing the number of

deaths during pregnancy for both the mothers and their ba-

bies). He also made many actions to improve the conditions

of the people of Sagamok — including having running water

and wells installed in the reserve in the early 1960s” [23]. It

appears that his elevation to Chief represents “the first official

case of a First Nation bestowing this honor upon a Caucasian

medical doctor in North-American history” [23].

Fig. 2: Noel Antoine Robitaille, honorary chief “Kitchitouagegki”.

Photo courtesy of Allen Toulouse and Christine Robitaille.
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4. Stefan J. Über die Beziehung zwischen der Wärmestrahlung
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Various parameters tied to the electrical conductivity of typical metals are estimated
and are expressed in terms of universal constants. It happens that they are close to
those found in metallic copper at room temperature. The fact that the realization of
the model occurs at room temperature is explained by using the Landauer’s erasure
principle. The averaged collision time of the electron of conduction is also thought as a
particle lifetime. Finally an analogy is established between the motion of the electron of
conduction and the cosmological constant problem, where a spherical surface of radius
equal to the electron mean free path has been thought as a surface horizon for the charge
carriers.

1 Introduction

Highly purified water is a bad electrical conductor. However,
the addition of small amounts of sodium chloride (NaCl) to
this liquid, can increase its electrical conductivity in a sub-
stantial way. At the ambient temperature (295K), the wa-
ter’s dielectric constant of 80, permits the Na+ and Cl- ions
to move freely through the liquid and this feature can ac-
count for the change in its conductive behavior. It seems
that the concentration of free charge carriers has the most
relevant role in determining the electrical conductivity of the
substances. But what to say about electrical conductivity in
metals? Isolated metallic atoms have their inner electrons
belonging to closed shells and hence tightly bound to their
corresponding atomic nucleus. However the electrons of the
outer most shell are weakly bonded to its respective nucleus.
When arranged in a crystal lattice structure, the bond weak-
ness of these outer electrons is enhanced due to the interac-
tions among neighbor atoms of the lattice, so that the elec-
trons of conduction are free to travel through the whole crys-
tal. Resistance to their motion is due to the thermal vibrations
(phonons) and defects provoked by the presence of impurities
and lattice dislocations. In a perfect crystal at zero absolute
temperature, these free electrons can be described by using
the quantum mechanical formalism of the Bloch waves [1,2].
The concentration of free electrons plays an important role in
the description of the electrical conductivity in metals.

2 Evaluation of typical parameters tied to the electrical

conductivity of metals

A possible way to estimate the concentration of conduction
electrons in a typical good metal will be next presented. An
alternative form to estimate the Casimir force between two
parallel uncharged metallic plates separated by a close dis-
tance d was developed in reference [3]. There, we considered
the cutting of a cubic cavity of edge d in a metallic block.
We imagined that the free electrons in metal as a gas of non-
relativistic particles confined by the vacuum pressure in the
interior of a cubic box of edge equal to d. On the other hand

as was pointed out by Jaffe [12], the Casimir force can be
calculated without reference to the vacuum fluctuations, and
like other observable effects in QED, it vanishes as the fine
structure constant α goes to zero.

In reference [3], we treated a non-relativistic Fermi gas
confined by the vacuum pressure B and found the relation

Bd3 =
2
5

Eav , (1)

where Eav stands for the average energy of the gas. Mean-
while it is convenient to consider that an equivalent way to
treat the problem is by taking in account the electromagnetic
interaction through the dependence of the energy levels of the
system on the fine structure constant α. We reproduce here
some steps of the reasons outlined in reference [3]. One of
the simplest models which exhibits energy levels dependence
on the fine structure α is the Bohr atom, namely

En = −
α2mc2

2n2
= −

E1

n2
. (2)

By taking the maximum occupied energy level equal to N
2 , we

get the maximum energy EM of the system

EM = −
4E1

N2
. (3)

The average energy could be estimated as

EF =
2
N

∫ N
2

1
(−) E1 n−2dn =

2
N

E1
2 − N

N
. (4)

In the limit, as N ≫ 1, we have

Eav = − 2
E1

N
. (5)

Now let us estimate the vacuum pressure. We have

Bd3 = −
2
5
α2mc2

N
=

2
5

Eav . (6)
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By taking p0 =
αmc

2 and λ0 =
h
p0
= 2h
αmc

, it is possible to
make the choice

N =
d

λ0
=
αmcd

2h
. (7)

Inserting equation (7) into equation (6), we obtain

B = −
8

5π
απ2
~c

d4
. (8)

Therefore we notice that by making the choice indicated by
equation (7), the explicit dependence of B on the electron
mass m and on the maximum quantum number N has dis-
appeared. The alternative way we have used in order to treat
the Casimir force problem, permit us to calculate a typical
density of charge carriers in good metals. Let us write

nd3 =
4π
3

N3 3! = 8πN3 . (9)

In equation (9), we have considered the volume of a sphere in
the N-space, and the possible number of permutations among
the Nx, Ny and Nz quantum numbers. Putting equation (7)
into equation (9) we obtain

n = π

(

αmc

h

)3
. (10)

Numerical evaluation of equation (10) gives n = 8.56 ×
1028 m−3, which could be compared with 8.45×1028 m−3, the
density of charge carriers in metallic copper [1, 2]. Mean-
while the Fermi energy of metals could be expressed as [1,4]

EF =
h2

8m

(

3n

π

)
2
3

. (11)

Inserting equation (10) into equation (11), we get

EF =
3

2
3

8
α2mc2. (12)

Numerical estimate of equation (12) gives EF = 7.07 eV,
which naturally is very close to the value found in metallic
copper.

In order to proceed further, let us compute the electrical
conductivity of a typical good metal. To do this we first sup-
pose that we have n scatters per unit of volume and by con-
sidering a prism shaped tube having longitudinal size equal
to the electron mean free path ℓ, width ℓF equal to half of
the Fermi wavelength of the electron, and thickness ℓC equal
to half of its Compton wavelength. If we consider that the
electrical conductivity always happens in a regime of charge
neutrality, the number of scatters per unit of volume will be
equal to the number density of charge carriers, and we can
write

nℓFℓCℓ = n
h

2mvF

h

2mc
vFτ = 1. (13)

In equation (13), ℓC stands for the wavelength of a pho-
ton with a momentum related to the creation of a electron-
positron pair and this corresponds to a minimum thickness of
the prism, which also implies in a maximum τ, the average
time between collisions. From equation (13) we obtain the
relation

nτ =
m2c

π2~2
. (14)

Now, Drude formula for the electrical conductivityσ is given
by ( Kittel [1])

σ =
e2nτ

m
. (15)

Inserting nτ of equation (14) into equation (15), we obtain

σ =
e2mc

π2~2
. (16)

Numerical estimate of the electrical resistivity ρ, gives ρ =
1
σ
= 1.57 × 10−8Ωm which can be compared with the resis-

tivity of the metallic copper measured at the temperature of
295 K, namely ρcopper = 1.70 × 10−8Ωm. From equation (10)
and equation (14) we also obtain the averaged time between
collisions

τ =
1
α3

4h

πmc2
. (17)

Numerical estimate of equation (17) gives τ = 2.65× 10−14s.
This umber must be compared with the value estimated of
τcopper = 2.5 × 10−14s, for copper at the room temperature as
quoted by Allen [2]. It is also interesting to write formulas
for the Fermi velocity vF and the electron mean free path ℓ.
We have

vF =

(

2EF

m

)
1
2

=
3

1
3

2
αc, (18)

and

ℓ = vFτ =
3

1
3 2h

α2πmc
. (19)

These relations for the quantities associated to the electrical
conduction in typical metals are exhibited in table 1, as well
their respective numerical estimates and are also compared
with the corresponding ones quoted for copper at the room
temperature.

3 Realization at the room temperature: a possible expla-

nation

It is an intriguing question why a model describing the elec-
trical conductivity of a typical good metal just realizes itself
in copper crystals at room temperature. The answer to this
question could be elaborated through these reasons.

• As was pointed out by Jacobs [9], Landauer’s era-
sure principle [8] states that: whenever a single bit of
information is erased, the entropy in the environment
to which the information storing system is connected
must increase at least kB ln 2, where kB is the Boltz-
mann’s constant;
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• A free electron in a metal travels in average a distance
equal to its mean free path, with a constant velocity vF ,
until to collide with the ionic vibrations (phonons). In
the collision process, the free electron looses its mem-
ory.

We think that we may associate to the Fermi energy EF , a
string of length equal to its Fermi wavelength, composed by
unit cells having a length equal to the Compton wavelength
of the electron. Let us to introduce a quasi-particle with a
mass-energy µc2 defined as

µc2 = EF

vF

c
. (20)

As we can see from equation (20), this quasi-particle has a
mass-energy equal to the Fermi energy divided by the number
of cells in the string. Defining

∆F = ∆U − T∆S =
1
2
µc2
− kB ln 2 . (21)

And after making the requirement that

∆F |T=T⋆ = 0 , (22)

we obtain the relation

E3
F =

(

kBT⋆
)2

2 (ln 2)2 mc2 . (23)

Putting EF = 7.1eV (table 1) and mc2 = 0.511MeV in equa-
tion (23) and solving for kBT⋆, we find

kBT⋆ = 26 meV (24)

The above number for the characteristic temperature T⋆ must
be compared with kBTRoom = 25 meV. Therefore the ob-
tained result for the characteristic temperature given by equa-
tion (24) seems to make sense to the fact that the realization
of the model for the electrical conductivity of good metals to
happen for copper crystals at the room temperature.

4 Three characteristic lenghts and the grow of a poly-

mer chain

In a paper dealing with the cosmological constant problem
[6], the time evolution of the universe world line was com-
pared with the growing of a polymer chain by making use
of a Flory-like free energy. It is possible to think the electron
mean free path as the length of a polymer chain, composed by
monomers of size equal to the Compton wavelength of elec-
tron. Within this analogy, the radius of gyration of the chain is
identified with the Fermi wavelength of electron. We consider
as in the de Gennes derivation [7] two contributions for the
Flory’s free energy. The first term which goes proportional
to N2

Rd , corresponds to a repulsive-like monomer-monomer in-
teraction. A second term which comes from an entropic con-
tribution, namely a logarithm of a Gaussian distribution (a

signature of a random walk process) goes as R2

(NλC )2 . We write

F =
N2λd

C

Rd
+

R2

Nλ2
C

, (25)

where F is a Flory-like free energy, λC is the Compton length,
N is the number of monomers in the chain, and d is the space-
time dimension. Setting ℓ = NλC and minimizing equation
(25) relative to R, we obtain for the radius of gyration Rg the
relation

Rg = ℓ
3

2+d λ
d−1
2+d

C
. (26)

We identify Rg(d = 4) with the Fermi length of the electron,
λF . We have

λF = (ℓλC)
1
2 . (27)

We observe that equation (27) , relating the three charac-
teristics lengths of the problem, agrees with the upper bound
to the electron mean free path found in reference [13]. Please
see equation (21) of the cited reference. It is worth to no-
tice that the agreement between both calculations occurs just
when the radius of gyration is evaluated in the space-time di-
mension d = 4.

5 High temperature behaviour of the collision time

It would be interesting to evaluate a relation expressing the
high temperature behavior of the collision time appearing in
the Drude formula for the electrical conductivity. By consid-
ering a viscous force which depends linearly on the velocity,
the power dissipated by this force can be written as

dE

dt
= −Fviscousv = −

1
τ

pv . (28)

The power dissipated by this viscous force acting on the
charge carrier will appear as an increasing in the internal en-
ergy of the lattice and we write

dU

dt
= −

dE

dt
=

1
τ

pv . (29)

By taking

p =
~

2R
and vdt = dR , (30)

where the first relation in equation (30) comes from the un-
certainty principle, we get

dU =
~

2τ
dR

R
. (31)

Performing the integration of equation (31) between the limits
R0 =

~

mc
and R1 =

~

mvF
, we obtain

∆U =
~

2τ
ln

c

vF
. (32)

Now, let us consider an entropy variation given by

∆S = kB ln 2D = DkB ln 2 . (33)
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In equation (33), we have written an entropy variation similar
to that considered in applying the Landauer’s erasure princi-
ple [8], but here putting D = 4, by taking in account the four
dimensions of the space-time. Taking the extremum of the
free energy, namely writing

∆F = ∆U − T∆S = 0 , (34)

and solving for τ, we have

τ =
~

8kBT
ln

c

vF
. (35)

In the case of copper
(

vF = 1.57 × 106m s−1
)

at the room tem-
perature (T = 300 K), we find

τcopper (300 K) = 2.4 × 10−14s. (36)

As we can see in table 1, the result of equation (36) is very
close to the room temperature mean collision time of the elec-
trons of conduction in copper, as quoted in the literature.

6 Average collision time as a particle lifetime

There are two characteristics linear momenta that we can as-
sociate to the free electrons responsible for the electrical con-
ductivity in good metals. They are: the Fermi momentum
mvF and the Compton momentum mc. By taking into account
that the free electron has a fermionic character, we will write
a non-linear Dirac-like equation describing the “motion” of
this particle. We have

∂Ψ

∂x
−

1
c

∂Ψ

∂t
=

mvF

~
Ψ −

mc

~
|Ψ⋆Ψ| Ψ . (37)

We see that equation (37) contains only first order derivatives
of the field Ψ. Besides this, the field Ψ has not a spinorial
character. Making the two sides of equation (37) equal to
zero and solving for |Ψ⋆Ψ|, we get

|Ψ⋆Ψ| =
vF

c
=

3
1
3

2
α . (38)

In obtaining equation (38), we also used the result for vF
shown in table 1. On the other hand in the collision process,
the free electron loss its memory. We may think that this fea-
ture looks similar to the annihilation of a particle- antiparticle
pair, each of mass-energy equal to EF . Putting this thing in a
form of the uncertainty principle yields

2EF∆t =
h

2
or

hν

2
= 2EF . (39)

Solving equation (39) for ν, we get

ν =
1
∆t
= 4

EF

h
=

3
2
3

2h
α2mc2. (40)

By combining the results of equation (38) and equation(40)
we obtain the line width Γ tied to the “particle” decay

Γ = ν |Ψ⋆Ψ| =
3

4h
α3mc2 . (41)

Finally the “particle” lifetime τ is given by

τ =
1
Γ
=

4h

3α3mc2
. (42)

Comparing τ giving by equation (42) with the time between
collisions shown in table 1, we verify that the present result
displays the number 3 in the denominator, instead of the num-
ber π which appears in table 1.

Table 1: Formulas related to the electrical conductivity of typical
metals, in terms of universal constants (this work). Numerical esti-
mates of them are compared with those quoted for Copper at room
temperature.

Formula Numerical
estimates

Copper at room tem-
peratures

n = π
(

αmc
h

)3
8.56× 1028 m−3 8.45×1028 m−3 [1,2]

EF =
3

2
3

8 α
2mc2 7.07 eV 7.0 eV [1]

ρ = 1
σ
= π

2
~

2

e2mc
1.57× 10−8Ωm 1.70×10−8Ωm [1,2]

τ = 1
α3

4h
πmc2 2.65 × 10−14 s 2.5×10−14 s [2,5]

vF =
3

1
3

2 αc 1.6× 106 m s−1 1.6 × 106 m s−1 [1]

ℓ = 3
1
3 2h
α2πmc

419Å 400Å [5]

7 Analogy with the cosmological constant problem

In this section we assume, for simplicity, that ~ = c = kB = 1.
One worth point we can consider now is the analogy that can
be made with the cosmological constant problem. Hsu and
Zee [10] have proposed an effective action Ae f f as a means to
deal with the cosmological constant problem. They wrote

Ae f f = −













ΛL4 +
M4

P

Λ













+ independent of Λ-terms, (43)

where MP is the Planck mass, L is the radius of the event
horizon of the universe and Λ is the cosmological constant.
Taking the extremum of this action they got

Λ =

(

MP

L

)2

. (44)
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We could think Ae f f above as a four-dimensional representa-
tion of a kind of free energy, where the first term plays the
role of the internal energy and the second one is related to the
entropy S . The absolute temperature is taken to be equal to
one. We propose that

Ω ∼ exp













M4
P

Λ













(45)

with
S = lnΩ. (46)

On the other hand, there is a proposal [11] that the universe
can be considered as a black hole with its entropy being eval-
uated by counting the number of cells contained in the area
of its event horizon (the holographic principle), namely

S universe ∼

(

L

LP

)2

= L2 M2
P . (47)

By considering the two equivalent ways of the entropy evalu-
ation, from equation (46) and equation (47) relations, we can
write

L2 M2
P =

M4
P

Λ
, (48)

which reproduces the results of Hsu and Zee [10], please see
equation (44). Turning to the problem of the electrical con-
ductivity in good metals, let us consider for instance in a cop-
per crystal an electron of the conduction band which just suf-
fered a collision. In the absence of an external electric field,
all the directions in the space have equal probability to be cho-
sen in a starting new free flight. Therefore if we take a sphere
centered at the point where the electron has been scattered,
with a radius equal to the electron mean free path, the surface
of this sphere may be considered as an event horizon for the
phenomena. Any electron starting from this center will be on
average scattered when striking the event horizon, loosing the
memory of its previous free flight. Besides this, all the lattice
sites of the metallic crystal are treated on equal footing, due
to the translational symmetry of the system. Based on the
previous discussion and inspired on the black hole physics,
let us to define the entropy related on the event horizon for
the electron of conduction in metals. We write

S Metal = π

(

ℓ

w

)2

, (49)

where ℓ is the electron mean free path and w is the equivalent
to the Planck length of the problem. It is possible to write
an action analogous to that of Hsu and Zee [10], in order to
describe the electrical conductivity in metals. We have

AMetal ∼

(

ΛMℓ
4 +

1
Λw4

)

. (50)

Making the equality between the two ways of writing the en-
tropy, namely equaling the entropy of a surface horizon of

radius ℓ and ultra-violet cutoff w with the last term of equa-
tion(50), we get

π

(

ℓ

w

)2

=
1
ΛMw4

, (51)

which leads to
Λ

(− 1
4 )

M
= π

1
4 (ℓw)

1
2 . (52)

Upon to identifyΛ(− 1
4 )

M
with the Fermi wavelength of the elec-

tron λF and w with its Compton wavelength λC , we obtain

λF = π
1
4 (ℓλC)

1
2 . (53)

Relation (53) must be compared with equation (27).
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In this work, the equation which properly governs cavity radiation is presented. Given

thermal equilibrium, the radiation contained within an arbitrary cavity depends upon the

nature of its walls, in addition to its temperature and its frequency of observation. With

this realization, the universality of cavity radiation collapses. The constants of Planck

and Boltzmann can no longer be viewed as universal.

Science enhances the moral value of life, because it

furthers a love of truth and reverence. . .

Max Planck, Where is Science Going? 1932 [1]

When Max Planck formulated his law [2, 3], he insisted that

cavity radiation must always be black or normal [3, Eqs. 27,

42], as first proposed by Gustav Robert Kirchhoff [4, 5]. The

laws of thermal emission [2–7] were considered universal in

nature. Based on Kirchhoff’s law [4, 5], cavity radiation was

said to be independent of the nature of the walls and deter-

mined solely by temperature and frequency. Provided that

the cavity walls were opaque, the radiation which it contained

was always of the same nature [2–5]. All cavities, even those

made from arbitrary materials, were endowed with this prop-

erty.

Cavity radiation gained an almost mystical quality and

Planck subsequently insisted that his equation had overar-

ching consequences throughout physics. The constants con-

tained within his formulation, those of Planck and Boltzmann

(h and k), became fundamental to all of physics, leading to the

development of Planck length, Planck mass, Planck time, and

Planck temperature [3, p. 175].

However, it can be demonstrated that cavity radiation is

not universal, but depends on the nature of the cavity itself [8–

15]. As such, the proper equation governing cavity radiation

is hereby presented.

It is appropriate to begin this treatment by considering

Kirchhoff’s law [3, Eqs. 27, 42]:

ǫν

κν

= f (T, ν) , (1)

where f (T, ν) is the function presented by Max Planck [3, Eq.

300].∗ In order to avoid confusion, Eq. 1 can be expressed by

∗Note that Max Planck refers to ǫν as the “emissionskoeffizienten” [3,

§26], which M. Masius translates as the “coefficient of emission”. Today, the

emission coefficient is also known as the emissivity of a material. Unfortu-

nately, it is also referred to by the symbol ǫν and this can lead to unintended

errors in addressing the law of emission. In Eq. 1, dimentional analysis

(see [3, Eq. 300]) reveals that Max Planck is referring to the emissive power,

denoted by E, and not to emissivity, usually denoted by ǫν. Still, at other

points within “The Theory of Heat Radiation” (e.g. see §49) he utilizes the

using the currently accepted symbols for emissive power, E,

and absorptivity, κν:

Eν

κν

= f (T, ν) . (2)

As Eq. 1 was hypothesized to be applicable to all cavities,

we can adopt the limits of two extremes, namely the “perfect

absorber” and the “perfect reflector”.†

First, the condition under which Kirchhoff’s law is often

presented, the “perfectly absorbing” cavity, can be considered

(emissivity (ǫν)= 1, absorptivity (κν)= 1, reflectivity (ρν)= 0;

at the frequency of interest, ν). In setting κν to 1, it is apparent

that the mathematical form of the Eq. 1 remains valid. Sec-

ond, if a “perfectly reflecting” cavity is utilized (ǫν = 0, κν = 0,

ρν = 1), it is immediately observed that, in setting κν to 0, Eqs.

1 and 2 become undefined. Max Planck also recognized this

problem, but chose to ignore its consequences (see § 48, 49).

Yet, this simple mathematical test indicates that arbitrary cav-

ities cannot be black, as Kirchhoff’s law cannot be valid over

all conditions.

It is also possible to invoke Stewart’s law of thermal emis-

sion [16] which states that, under conditions of thermal equi-

librium, the emissivity and absorptivity are equal:

ǫν = κν . (3)

Therefore, Eq. 2 can be expressed as follows:

Eν = ǫν · f (T, ν) . (4)

Once again, this expression never states that all cavities

contain black radiation. Rather, at thermal equilibrium, cavi-

ties contain raditation which will be reduced in intensity from

the Planck function by an amount which manifests the lower

symbol, E, to refer to emissive power or “the radiation emitted”. To fur-

ther complicate the question, in his Eq. 27, Max Planck refers to κν as the

“absorptionskoeffizienten” which M. Masius translates at the “coefficient of

absorption”. In this case, dimentional analysis reveals that he is indeed refer-

ring to absortivity, κν, and not to the absorptive power, A, of the medium.
†Perfectly absorbing or reflecting cavities do not exist in nature.

Nonetheless, they are hypothesized to exist in mathematical treatments of

blackbody radiation (see [3]).
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emissivity of the material involved. It is evident that a lower

emissivity is tied to a higher reflectivity, but the effect of re-

flection has not been properly included in Kirchhoff’s law.

For any material, the sum of the emissivity and reflectivity

is always equal to 1. This constitutes another formulation of

Stewart’s law [10, 16] which can also be expressed in terms

of emissivity or absorptivity:

ǫν + ρν = κν + ρν = 1 . (5)

With simple rearrangement, it is well known that absorp-

tivity, κν, and emissivity, ǫν, can be expressed as:

ǫν = κν = 1 − ρν. (6)

As such, let us substitute these relations into Eq. 2:

Eν

(1 − ρν)
= f (T, ν) . (7)

With simple rearrangement, the law for arbitrary cavity

radiation under conditions of thermal equilibrium, arises:

Eν = f (T, ν) − ρν · f (T, ν) . (8)

This law is now properly dependent on the nature of the

cavity walls, because it includes the reflectivity observed in

real materials.

Note that this expression is well known. Planck, for in-

stance, presents it in a slightly modified form [3, § 49]. How-

ever, he choses to dismiss its consequences. Still, it is evident

that when a cavity is constructed from a material which is

“perfectly absorbing”, the second term in Eq. 8 makes no

contribution (ρν · f (T, ν) = 0) and the emissive power is sim-

ply determined by the Planck function. If the cavity walls

are “perfectly reflecting”, Eq. 8, unlike Eq. 1 and 2, does

not become undefined, but rather, equal to 0. For all other

situations, the radiation contained within a cavity will be de-

pendent on the manner in which the reflection term is driven.

This will be discussed seperately.

Dedication

This work is dedicated to our mothers on whose knees we

learn the most important lesson: love.
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