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Piñol M. A Model of Dust-like Spherically Symmetric Gravitational Collapse without

Event Horizon Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

Rossler O. E. The c-global Revival in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340



Information for Authors and Subscribers

Progress in Physics has been created for publications on advanced studies in

theoretical and experimental physics, including related themes from mathe-

matics and astronomy. All submitted papers should be professional, in good

English, containing a brief review of a problem and obtained results.

All submissions should be designed in LATEX format using Progress in

Physics template. This template can be downloaded from Progress in Physics

home page http://www.ptep-online.com. Abstract and the necessary informa-

tion about author(s) should be included into the papers. To submit a paper,

mail the file(s) to the Editor-in-Chief.

All submitted papers should be as brief as possible. Short articles are

preferable. Large papers can also be considered in exceptional cases. Letters

related to the publications in the journal or to the events among the science

community can be applied to the section Letters to Progress in Physics.

All that has been accepted for the online issue of Progress in Physics is

printed in the paper version of the journal. To order printed issues, contact

the Editors.

This journal is non-commercial, academic edition. It is printed from pri-

vate donations. (Look for the current author fee in the online version of the

journal.)



Issue 4 (October) PROGRESS IN PHYSICS Volume 11 (2015)

Dislocations in the Spacetime Continuum:
Framework for Quantum Physics

Pierre A. Millette
PierreAMillette@alumni.uottawa.ca, Ottawa, Canada

This paper provides a framework for the physical description of physical processes at
the quantum level based on dislocations in the spacetime continuum within STCED
(Spacetime Continuum Elastodynamics). In this framework, photon and particle self-
energies and interactions are mediated by the strain energy density of the dislocations,
replacing the role played by virtual particles in QED. We postulate that the spacetime
continuum has a granularity characterized by a length b0 corresponding to the smallest
STC elementary Burgers dislocation-displacement vector. Screw dislocations corre-
sponding to transverse displacements are identified with photons, and edge dislocations
corresponding to longitudinal displacements are identified with particles. Mixed dislo-
cations give rise to wave-particle duality. The strain energy density of the dislocations
are calculated and proposed to explain the QED problem of mass renormalization.

1 Introduction

In a previous paper [1], the deformable medium properties
of the spacetime continuum (STC) led us to expect dislo-
cations, disclinations and other defects to be present in the
STC. The effects of such defects would be expected to ma-
nifest themselves mostly at the microscopic level. In this pa-
per, we present a framework to show that dislocations in the
spacetime continuum are the basis of quantum physics. This
paper lays the framework to develop a theory of the physi-
cal processes that underlie Quantum Electrodynamics (QED).
The theory does not result in the same formalism as QED,
but rather results in an alternative formulation that provides
a physical description of physical processes at the quantum
level. This framework allows the theory to be fleshed out in
subsequent investigations.

1.1 Elastodynamics of the Spacetime Continuum

As shown in a previous paper [1], General Relativity leads us
to consider the spacetime continuum as a deformable contin-
uum, which allows for the application of continuum mechan-
ical methods and results to the analysis of its deformations.
The Elastodynamics of the Spacetime Continuum (STCED)
[1–7] is based on analyzing the spacetime continuum within
a continuum mechanical and general relativistic framework.

The combination of all spacetime continuum deforma-
tions results in the geometry of the STC. The geometry of
the spacetime continuum of General Relativity resulting from
the energy-momentum stress tensor can thus be seen to be a
representation of the deformation of the spacetime continuum
resulting from the strains generated by the energy-momentum
stress tensor.

As shown in [1], for an isotropic and homogeneous space-
time continuum, the STC is characterized by the stress-strain
relation

2µ̄0ε
µν + λ̄0g

µνε = T µν (1)

where T µν is the energy-momentum stress tensor, εµν is the
resulting strain tensor, and

ε = εαα (2)

is the trace of the strain tensor obtained by contraction. The
volume dilatation ε is defined as the change in volume per
original volume [8, see pp. 149–152] and is an invariant of
the strain tensor. λ̄0 and µ̄0 are the Lamé elastic constants of
the spacetime continuum: µ̄0 is the shear modulus and λ̄0 is
expressed in terms of κ̄0, the bulk modulus:

λ̄0 = κ̄0 − µ̄0/2 (3)

in a four-dimensional continuum.
As shown in [1], energy propagates in the spacetime con-

tinuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invari-
ant change in volume of the spacetime continuum which is
the source of the associated rest-mass energy density of the
deformation. On the other hand, distortions correspond to a
change of shape of the spacetime continuum without a change
in volume and are thus massless. Thus deformations propa-
gate in the spacetime continuum by longitudinal (dilatation)
and transverse (distortion) wave displacements.

This provides a natural explanation for wave-particle du-
ality, with the transverse mode corresponding to the wave
aspects of the deformation and the longitudinal mode corre-
sponding to the particle aspects of the deformation [7]. The
rest-mass energy density of the longitudinal mode is given
by [1, see Eq.(32)]

ρc2 = 4κ̄0ε (4)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is
the bulk modulus of the STC (the resistance of the spacetime
continuum to dilatations), and ε is the volume dilatation.

This equation demonstrates that rest-mass energy density
arises from the volume dilatation of the spacetime continuum.
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The rest-mass energy is equivalent to the energy required to
dilate the volume of the spacetime continuum. It is a measure
of the energy stored in the spacetime continuum as mass. The
volume dilatation is an invariant, as is the rest-mass energy
density.

This is an important result as it demonstrates that mass is
not independent of the spacetime continuum, but rather mass
is part of the spacetime continuum fabric itself. Mass results
from the dilatation of the STC in the longitudinal propagation
of energy-momentum in the spacetime continuum. Matter
does not warp spacetime, but rather, matter is warped space-
time (i.e. dilated spacetime). The universe consists of the
spacetime continuum and energy-momentum that propagates
in it by deformation of its (STC) structure.

Note that in this paper, we denote the STCED spacetime
continuum constants κ̄0, λ̄0, µ̄0, ρ̄0 with a diacritical mark over
the symbols to differentiate them from similar symbols used
in other fields of Physics. This allows us to retain existing
symbols such as µ0 for the electromagnetic permeability of
free space, compared to the Lamé elastic constant µ̄0 used to
denote the spacetime continuum shear modulus.

1.2 Defects in the Spacetime Continuum

As discussed in [1], given that the spacetime continuum be-
haves as a deformable medium, there is no reason not to ex-
pect dislocations, disclinations and other defects to be present
in the STC. Dislocations in the spacetime continuum repre-
sent the fundamental displacement processes that occur in its
structure. These fundamental displacement processes should
thus correspond to basic quantum phenomena and provide a
framework for the description of quantum physics in STCED.

Defect theory has been the subject of investigation since
the first half of the XXth century and is a well-developed dis-
cipline in continuum mechanics [9–14]. The recent formula-
tion of defects in solids in based on gauge theory [15, 16].

The last quarter of the XXth century has seen the investi-
gation of spacetime defects in the context of string theory,
particularly cosmic strings [17, 18], and cosmic expansion
[20, 21]. Teleparallel spacetime with defects [18, 22, 23] has
resulted in a differential geometry of defects, which can be
folded into the Einstein-Cartan Theory (ECT) of gravitation,
an extension of Einstein’s theory of gravitation that includes
torsion [19, 20]. Recently, the phenomenology of spacetime
defects has been considered in the context of quantum grav-
ity [24–26].

In this paper, we investigate dislocations in the spacetime
continuum in the context of STCED. The approach followed
till now by investigators has been to use Einstein-Cartan dif-
ferential geometry, with dislocations (translational deformati-
ons) impacting curvature and disclinations (rotational defor-
mations) impacting torsion. The dislocation itself is modelled
via the line element ds2 [17]. In this paper, we investigate
spacetime continuum dislocations using the underlying dis-

placements uν and the energy-momentum stress tensor. We
thus work from the RHS of the general relativistic equation
(the stress tensor side) rather than the LHS (the geometric
tensor side). It should be noted that the general relativistic
equation used can be the standard Einstein equation or a suit-
ably modified version, as in Einstein-Cartan or Teleparallel
formulations.

In Section 2 of this paper, we review the basic physical
characteristics and dynamics of dislocations in the spacetime
continuum. The energy-momentum stress tensor is consid-
ered in Section 2.2. This is followed by a detailed review of
stationary and moving screw and edge dislocations in Sec-
tions 3, 4 and 5, along with their strain energy density as cal-
culated from STCED. The framework of quantum physics,
based on dislocations in the spacetime continuum is covered
in Section 6. Screw dislocations in quantum physics are con-
sidered in Section 6.2 and edge dislocations are covered in
Section 6.3. Section 7 covers dislocation interactions in quan-
tum physics, and Section 8 provides physical explanations of
QED phenomena provided by dislocations in the STC. Sec-
tion 9 summarizes the framework presented in this paper for
the development of a physical description of physical pro-
cesses at the quantum level, based on dislocations in the spa-
cetime continuum within the theory of the Elastodynamics of
the Spacetime Continuum (STCED).

2 Dislocations in the Spacetime Continuum

A dislocation is characterized by its dislocation-displacement
vector, known as the Burgers vector, bµ in a four-dimensional
continuum, defined positive in the direction of a vector ξµ tan-
gent to the dislocation line in the spacetime continuum [14,
see pp.17–24].

A Burgers circuit encloses the dislocation. A similar ref-
erence circuit can be drawn to enclose a region free of dislo-
cation (see Fig. 1). The Burgers vector is the vector required
to make the Burgers circuit equivalent to the reference circuit
(see Fig. 2). It is a measure of the displacement between the
initial and final points of the circuit due to the dislocation.

It is important to note that there are two conventions used
to define the Burgers vector. In this paper, we use the con-
vention used by Hirth [14] referred to as the local Burgers
vector. The local Burgers vector is equivalently given by the
line integral

bµ =

∮
C

∂uµ

∂s
ds (5)

taken in a right-handed sense relative to ξµ, where uµ is the
displacement vector.

A dislocation is thus characterized by a line direction ξµ

and a Burgers vector bµ. There are two types of dislocations:
an edge dislocation for which bµξµ = 0 and a screw disloca-
tion which can be right-handed for which bµξµ = b, or left-
handed for which bµξµ = −b, where b is the magnitude of the
Burgers vector. Arbitrary mixed dislocations can be decom-

288 Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics
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Fig. 1: A reference circuit in a region free of dislocation, S: start, F:
finish
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posed into a screw component, along vector ξµ, and an edge
component, perpendicular to vector ξµ.

The edge dislocation was first proposed by Orowan [27],
Polanyi [28] and Taylor [29] in 1934, while the screw dislo-
cation was proposed by Burgers [30] in 1939. In this paper,
we extend the concept of dislocations to the elastodynamics
of the spacetime continuum. Edge dislocations correspond
to dilatations (longitudinal displacements) and hence have an
associated rest-mass energy, while screw dislocations corre-
spond to distortions (transverse displacements) and are mass-
less [1].

2.1 Dislocation dynamics

In three-dimensional space, the dynamic equation is written
as [31, see pp. 88–89],

T i j
, j = −Xi + ρ̄0üi (6)

where ρ̄0 is the spacetime continuum density, Xi is the volume
(or body) force, the comma (,) represents differentiation and
u̇ denotes the derivative with respect to time. Substituting for
εµν = 1

2 (uµ;ν + uν;µ) in (1), using (2) and uµ;µ = εµµ = ε in this
equation, we obtain

µ̄0
−→
∇2ui + (µ̄0 + λ̄0)ε;i = −Xi + ρ̄0üi (7)

which, upon converting the time derivative to indicial nota-
tion and rearranging, is written as

µ̄0
−→
∇2ui − ρ̄0c2ui

,00 + (µ̄0 + λ̄0)ε;i = −Xi. (8)

We use the arrow above the nabla symbol to indicate the 3-
dimensional gradient whereas the 4-dimensional gradient is

Fig. 2: A dislocation showing the Burgers vector bµ, direction vector
ξµ which points into the paper and the Burgers circuit, S: start, F:
finish
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written with no arrow. Using the relation [1]

c =

√
µ̄0

ρ̄0
(9)

in the above, (8) becomes

µ̄0(
−→
∇2ui − ui

,00) + (µ̄0 + λ̄0)ε;i = −Xi (10)

and, combining the space and time derivatives, we obtain

µ̄0∇
2ui + (µ̄0 + λ̄0)ε;i = −Xi. (11)

This equation is the space portion of the STCED displacement
wave equation (51) of [1]

µ̄0∇
2uν + (µ̄0 + λ̄0)ε;ν = −Xν. (12)

Hence the dynamics of the spacetime continuum is described
by the dynamic equation (12), which includes the accelera-
tions from the applied forces.

In this analysis, we consider the simpler problem of dis-
locations moving in an isotropic continuum with no volume
force. Then (12) becomes

µ̄0 ∇
2uν + (µ̄0 + λ̄0)ε;ν = 0, (13)

where ∇2 is the four-dimensional operator and the semi-colon
(;) represents covariant differentiation.

Separating uν into its longitudinal (irrotational) compo-
nent uν

‖
and its transverse (solenoidal) component uν⊥ using

the Helmholtz theorem in four dimensions [32] according to

uν = uν
‖

+ uν⊥, (14)

Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics 289
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(12) can be separated into a screw dislocation displacement
(transverse) equation

µ̄0 ∇
2uν⊥ = 0 (15)

and an edge dislocation displacement (longitudinal) equation

∇2uν
‖

= −
µ̄0 + λ̄0

µ̄0
ε;ν. (16)

2.2 The energy-momentum stress tensor

The components of the energy-momentum stress tensor are
given by [33]:

T 00 = H

T 0 j = s j

T i0 = gi

T i j = σi j

(17)

where H is the total energy density, s j is the energy flux vec-
tor, gi is the momentum density vector, and σi j is the Cauchy
stress tensor which is the ith component of force per unit area
at x j.

From the stress tensor T µν, we can calculate the strain
tensor εµν and then calculate the strain energy density of the
dislocations. As shown in [3], for a general anisotropic con-
tinuum in four dimensions, the spacetime continuum is ap-
proximated by a deformable linear elastic medium that obeys
Hooke’s law [31, see pp. 50–53]

Eµναβεαβ = T µν (18)

where Eµναβ is the elastic moduli tensor. For an isotropic and
homogeneous medium, the elastic moduli tensor simplifies
to [31]:

Eµναβ = λ̄0

(
gµνgαβ

)
+ µ̄0

(
gµαgνβ + gµβgνα

)
. (19)

For the metric tensor gµν, we use the flat spacetime diag-
onal metric ηµν with signature (– + + +) as the STC is locally
flat at the microscopic level. Substituting for (19) into (18)
and expanding, we obtain

T 00 = (λ̄0 + 2µ̄0) ε00 − λ̄0 ε
11 − λ̄0 ε

22 − λ̄0 ε
33

T 11 = −λ̄0 ε
00 + (λ̄0 + 2µ̄0) ε11 + λ̄0 ε

22 + λ̄0 ε
33

T 22 = −λ̄0 ε
00 + λ̄0 ε

11 + (λ̄0 + 2µ̄0) ε22 + λ̄0 ε
33

T 33 = −λ̄0 ε
00 + λ̄0 ε

11 + λ̄0 ε
22 + (λ̄0 + 2µ̄0) ε33

T µν = 2µ̄0 ε
µν, µ , ν.

(20)

In terms of the stress tensor, the inverse of (20) is given
by

ε00 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 00+

+ λ̄0 (T 11 + T 22 + T 33)
]

ε11 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 11+

+ λ̄0 (T 00 − T 22 − T 33)
]

ε22 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 22+

+ λ̄0 (T 00 − T 11 − T 33)
]

ε33 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 33+

+ λ̄0 (T 00 − T 11 − T 22)
]

εµν =
1

2µ̄0
T µν, µ , ν.

(21)

where T i j = σi j. We calculate ε = εαα from the values of
(21). Using ηµν, (3) and Tα

α = ρc2 from [2], we obtain (4)
as required. This confirms the validity of the strain tensor in
terms of the energy-momentum stress tensor as given by (21).

Eshelby [34–36] introduced an elastic field energy-mo-
mentum tensor for continuous media to deal with cases where
defects (such as dislocations) lead to changes in configura-
tion. The displacements uν are considered to correspond to a
field defined at points xµ of the spacetime continuum. This
tensor was first derived by Morse and Feshback [37] for an
isotropic elastic medium, using dyadics. The energy flux vec-
tor s j and the field momentum density vector gi are then given
by [34, 37]:

s j = −u̇k σk j

gi = ρ̄0 uk,i u̇k

bi j = L δi j − uk,i σk j

(22)

where ρ̄0 is the density of the medium, in this case the space-
time continuum, L is the Lagrangian equal to K−W where W
is the strain energy density and K is the kinetic energy den-
sity (H = K + W), and bi j is known as the Eshelby stress
tensor [38, see p. 27]. If the energy-momentum stress tensor
is symmetric, then gi = si. In this paper, we consider the
case where there are no changes in configuration, and use the
energy-momentum stress tensor given by (17) and (20).

290 Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics
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Fig. 3: A stationary screw dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates [14, see p. 60].

3 Screw dislocation

3.1 Stationary screw dislocation

We consider a stationary screw dislocation in the spacetime
continuum, with cylindrical polar coordinates (r, θ, z), with
the dislocation line along the z-axis (see Fig. 3). Then the
Burgers vector is along the z-axis and is given by br = bθ =

0, bz = b, the magnitude of the Burgers vector. The only
non-zero component of the deformations is given by [14, see
pp. 60–61] [13, see p. 51]

uz =
b

2π
θ =

b
2π

tan−1 y

x
. (23)

This solution satisfies the screw dislocation displacement eq-
uation (15).

Similarly, the only non-zero components of the stress and
strain tensors are given by

σθz =
b

2π
µ̄0

r

εθz =
b

4π
1
r

(24)

respectively.

3.2 Moving screw dislocation

We now consider the previous screw dislocation, moving a-
long the x-axis, parallel to the dislocation, at a constant speed
vx = v. Equation (13) then simplifies to the wave equation
for massless transverse shear waves for the displacements uz

along the z-axis, with speed ct = c given by (9), where ct

is the speed of the transverse waves corresponding to c the
speed of light.

If coordinate system (x′, y′, z′, t′) is attached to the uni-
formly moving screw dislocation, then the transformation be-
tween the stationary and the moving screw dislocation is gi-

ven by [14]

x′ =
x − vt

(1 − v2/c2)1/2

y′ = y

z′ = z

t′ =
t − vx/c2

(1 − v2/c2)1/2 .

(25)

which is the special relativistic transformation.
The only non-zero component of the deformation in carte-

sian coordinates is given by [14, see pp. 184–185]

uz =
b

2π
tan−1 γy

x − vt
, (26)

where

γ =

√
1 −

v2

c2 . (27)

This solution also satisfies the screw dislocation displacement
equation (15). It simplifies to the case of the stationary screw
dislocation when the speed v = 0.

Similarly, the only non-zero components of the stress ten-
sor in cartesian coordinates are given by [14]

σxz = −
bµ̄0

2π
γy

(x − vt)2 + γ2y2

σyz =
bµ̄0

2π
γ(x − vt)

(x − vt)2 + γ2y2 .

(28)

The only non-zero components of the strain tensor in car-
tesian coordinates are derived from εµν = 1

2 (uµ;ν+uν;µ) [1, see
Eq.(41)]:

εxz = −
b

4π
γy

(x − vt)2 + γ2y2

εyz =
b

4π
γ(x − vt)

(x − vt)2 + γ2y2 ,

(29)

in an isotropic continuum.
Non-zero components involving time are given by

εtz = εzt =
1
2

(
∂uz

∂(ct)
+
∂ut

∂z

)
εtz =

b
4π

v

c
γy

(x − vt)2 + γ2y2

(30)

where ut = 0 has been used. This assumes that the screw
dislocation is fully formed and moving with velocity v as de-
scribed. Using (20), the non-zero stress components involv-
ing time are given by

σtz = σzt =
bµ̄0

2π
v

c
γy

(x − vt)2 + γ2y2 . (31)

Screw dislocations are thus found to be Lorentz invariant.

Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics 291



Volume 11 (2015) PROGRESS IN PHYSICS Issue 4 (October)

3.3 Screw dislocation strain energy density

We consider the stationary screw dislocation in the space-
time continuum of Section 3.1, with cylindrical polar coor-
dinates (r, θ, z), with the dislocation line along the z-axis and
the Burgers vector along the z-axis bz = b.

Then the strain energy density of the screw dislocation
is given by the transverse distortion energy density [1, see
Eq. (74)]

E⊥ = µ̄0 eαβeαβ (32)

where from [1, see Eq. (33)],

eαβ = εαβ − esg
αβ (33)

where es = 1
4ε

α
α is the dilatation which for a screw dislo-

cation is equal to 0. The screw dislocation is thus massless
(E‖ = 0).

The non-zero components of the strain tensor are as de-
fined in (24). Hence

E⊥ = µ̄0

(
εθz

2 + εzθ
2
)
. (34)

Substituting from (24),

E⊥ =
µ̄0 b2

8π2

1
r2 = E. (35)

We now consider the more general case of the moving
screw dislocation in the spacetime continuum of Section 3.2,
with cartesian coordinates (x, y, z). The non-zero components
of the strain tensor are as defined in (29) and (30). Substitut-
ing in (32), the equation becomes [1, see Eqs.(114–115)]

E⊥ = 2µ̄0

(
−εtz

2 + εxz
2 + εyz

2
)
. (36)

Substituting from (29) and (30) into (36), the screw disloca-
tion strain energy density becomes

E⊥ =
µ̄0 b2

8π2

γ2

(x − vt)2 + γ2y2 = E. (37)

This equation simplifies to (35) in the case where v = 0, as
expected. In addition, the energy density (which is quadratic
in energy as per [1, see Eq.(76)]) is multiplied by the special
relativistic γ factor.

4 Edge dislocation

4.1 Stationary edge dislocation

We consider a stationary edge dislocation in the spacetime
continuum in cartesian coordinates (x, y, z), with the disloca-
tion line along the z-axis and the Burgers vector bx = b, by =

bz = 0 (see Fig. 4). Then the non-zero components of the
deformations are given in cartesian coordinates by [14, see

Fig. 4: A stationary edge dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates [14, see p. 74].

p. 78]

ux =
b

2π

(
tan−1 y

x
+
µ̄0 + λ̄0

2µ̄0 + λ̄0

xy
x2 + y2

)
uy = −

b
2π

(
1
2

µ̄0

2µ̄0 + λ̄0
log(x2 + y2)+

+
1
2
µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
.

(38)

This solution results in a non-zero R.H.S. of the edge dislo-
cation displacement equation (16) as required. Equation (16)
can be evaluated to give a value of ε in agreement with the
results of Section 4.3 as shown in that section.

The cylindrical polar coordinate description of the edge
dislocation is more complex than the cartesian coordinate de-
scription. We thus use cartesian coordinates in the follow-
ing sections, transforming to polar coordinate expressions as
warranted. The non-zero components of the stress tensor in
cartesian coordinates are given by [14, see p. 76]

σxx = −
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(3x2 + y2)
(x2 + y2)2

σyy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(x2 − y2)
(x2 + y2)2

σzz =
1
2

λ̄0

µ̄0 + λ̄0

(
σxx + σyy

)
= −

bµ̄0

π

λ̄0

2µ̄0 + λ̄0

y

x2 + y2

σxy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)
(x2 + y2)2 .

(39)

The non-zero components of the strain tensor in carte-
sian coordinates are derived from εµν = 1

2 (uµ;ν + uν;µ) [1, see

292 Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics



Issue 4 (October) PROGRESS IN PHYSICS Volume 11 (2015)

Eq.(41)]:

εxx = −
b

2π
y

x2 + y2

(
1 +

µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
= −

by
2π

(3µ̄0 + 2λ̄0)x2 + µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εyy = −
b

2π
µ̄0

2µ̄0 + λ̄0

y

x2 + y2

(
1 −

µ̄0 + λ̄0

µ̄0

2x2

x2 + y2

)
=

by
2π

(µ̄0 + 2λ̄0)x2 − µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εxy =
b

2π
µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)
(x2 + y2)2

(40)

in an isotropic continuum.

4.2 Moving edge dislocation

We now consider the previous edge dislocation, moving a-
long the x-axis, parallel to the z-axis, along the slip plane
x−z, at a constant speed vx = v. The solutions of (13) for the
moving edge dislocation then include both longitudinal and
transverse components. The only non-zero components of the
deformations in cartesian coordinates are given by [11, see
pp. 39–40] [39, see pp. 218–219]

ux =
bc2

πv2

(
tan−1 γly

x − vt
− α2 tan−1 γy

x − vt

)
uy =

bc2

2πv2

(
γl log

[
(x − vt)2 + γ2

l y
2
]
−

−
α2

γ
log

[
(x − vt)2 + γ2y2

] )
,

(41)

where

α =

√
1 −

v2

2c2 , (42)

γl =

√
1 −

v2

c2
l

(43)

and cl is the speed of longitudinal deformations given by

cl =

√
2µ̄0 + λ̄0

ρ̄0
. (44)

This solution again results in a non-zero R.H.S. of the edge
dislocation displacement equation (16) as required, and (16)
can be evaluated to give a value of ε as in Section 4.3. This
solution simplifies to the case of the stationary edge disloca-
tion when the speed v = 0.

The non-zero components of the stress tensor in carte-
sian coordinates are given by [14, see pp. 189–190] [11, see

pp. 39–40]

σxx =
bc2y

πv2

(
λ̄0γ

3
l − (2µ̄0 + λ̄0)γl

(x − vt)2 + γ2
l y

2
+

+
2µ̄0α

2γ

(x − vt)2 + γ2y2

)
σyy =

bc2y

πv2

(
(2µ̄0 + λ̄0)γ3

l − λ̄0γl

(x − vt)2 + γ2
l y

2
−

−
2µ̄0α

2γ

(x − vt)2 + γ2y2

)
σzz =

1
2

λ̄0

µ̄0 + λ̄0

(
σxx + σyy

)
=
λ̄0b
π

c2

c2
l

−γly

(x − vt)2 + γ2
l y

2

=
b
π

λ̄0µ̄0

2µ̄0 + λ̄0

−γly

(x − vt)2 + γ2
l y

2

σxy =
µ̄0bc2(x − vt)

πv2

(
2γl

(x − vt)2 + γ2
l y

2
−

−
α2(γ + 1/γ)

(x − vt)2 + γ2y2

)
.

(45)

It is important to note that for a screw dislocation, the
stress on the plane x − vt = 0 becomes infinite at v = c.
This sets an upper limit on the speed of screw dislocations
in the spacetime continuum, and provides an explanation for
the speed of light limit. This upper limit also applies to edge
dislocations, as the shear stress becomes infinite everywhere
at v = c, even though the speed of longitudinal deformations
cl is greater than that of transverse deformations c [14, see
p. 191] [11, see p. 40].

The non-zero components of the strain tensor in carte-
sian coordinates are derived from εµν = 1

2 (uµ;ν + uν;µ) [1, see
Eq.(41)]:

εxx =
bc2y

πv2

(
−γl

(x − vt)2 + (γly)2 +
α2γ

(x − vt)2 + (γy)2

)
εyy =

bc2y

πv2

(
γ3

l

(x − vt)2 + (γly)2 −
α2γ

(x − vt)2 + (γy)2

)
εxy =

bc2(x − vt)
2πv2

(
2γl

(x − vt)2 + (γly)2−

−
α2(γ + 1/γ)

(x − vt)2 + (γy)2

)
(46)

in an isotropic continuum.
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Non-zero components involving time are given by

εtx = εxt =
1
2

(
∂ux

∂(ct)
+
∂ut

∂x

)
εty = εyt =

1
2

(
∂uy
∂(ct)

+
∂ut

∂y

)
εtx =

b
2π

c
v

(
γly

(x − vt)2 + γ2
l y

2
−

−α2 γy

(x − vt)2 + γ2y2

)
εty = −

b
2π

c
v

(
γl(x − vt)

(x − vt)2 + γ2
l y

2
−

−
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

)

(47)

where ut = 0 has been used. This assumes that the edge
dislocation is fully formed and moving with velocity v as de-
scribed. Using (20), the non-zero stress components involv-
ing time are given by

σtx =
bµ̄0

π

c
v

(
γly

(x − vt)2 + γ2
l y

2
−

−α2 γy

(x − vt)2 + γ2y2

)
σty = −

bµ̄0

π

c
v

(
γl(x − vt)

(x − vt)2 + γ2
l y

2
−

−
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

)
.

(48)

4.3 Edge dislocation strain energy density

As we have seen in Section 3.3, the screw dislocation is mass-
less as ε = 0 and hence E‖ = 0 for the screw dislocation: it
is a pure distortion, with no dilatation. In this section, we
evaluate the strain energy density of the edge dislocation.

As seen in [1, see Section 8.1], the strain energy density
of the spacetime continuum is separated into two terms: the
first one expresses the dilatation energy density (the mass lon-
gitudinal term) while the second one expresses the distortion
energy density (the massless transverse term):

E = E‖ + E⊥ (49)

where
E‖ =

1
2
κ̄0ε

2 ≡
1

32κ̄0

(
ρc2

)2
≡

1
2κ̄0

t2
s (50)

where ε is the volume dilatation and ρ is the mass energy
density of the edge dislocation, and

E⊥ = µ̄0eαβeαβ ≡
1

4µ̄0
tαβtαβ. (51)

where from [1, see Eq. (36)] the energy-momentum stress ten-
sor Tαβ is decomposed into a stress deviation tensor tαβ and a
scalar ts, according to

tαβ = Tαβ − tsg
αβ (52)

where ts = 1
4 Tα

α. Then the dilatation strain energy density
of the edge dislocation is given by the (massive) longitudinal
dilatation energy density (50) and the distortion (massless)
strain energy density of the edge dislocation is given by the
transverse distortion energy density (51).

4.3.1 Stationary edge dislocation energy density

We first consider the case of the stationary edge dislocation of
Section 4.1. The volume dilatation ε for the stationary edge
dislocation is given by

ε = εαα = εxx + εyy (53)

where the non-zero diagonal elements of the strain tensor are
obtained from (40). Substituting for εxx and εyy from (40),
we obtain

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 . (54)

In cylindrical polar coordinates, (54) is expressed as

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

sin θ
r
. (55)

We can disregard the negative sign in (54) and (55) as it can
be eliminated by using the FS/RH convention instead of the
SF/RH convention for the Burgers vector [14, see p. 22]).

As mentioned in Section 4.1, the volume dilatation ε can
be calculated from the edge dislocation displacement (longi-
tudinal) equation (16), viz.

∇2uν
‖

= −
µ̄0 + λ̄0

µ̄0
ε;ν.

For the x-component, this equation gives

∇2ux =
∂2ux

∂x2 +
∂2ux

∂y2 = −
µ̄0 + λ̄0

µ̄0
ε,x. (56)

Substituting for ux from (38), we obtain

∇2ux = −
2b
π

µ̄0 + λ̄0

2µ̄0 + λ̄0

xy
(x2 + y2)2 = −

µ̄0 + λ̄0

µ̄0
ε,x. (57)

Hence

ε,x =
2b
π

µ̄0

2µ̄0 + λ̄0

xy
(x2 + y2)2 (58)

and

ε =
2b
π

µ̄0

2µ̄0 + λ̄0

∫
xy

(x2 + y2)2 dx. (59)
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Evaluating the integral [40], we obtain

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 (60)

in agreement with (54).
Similarly for the y-component, substituting for uy from

(38), the equation

∇2uy =
∂2uy
∂x2 +

∂2uy
∂y2 = −

µ̄0 + λ̄0

µ̄0
ε,y (61)

gives

ε,y = −
b
π

µ̄0

2µ̄0 + λ̄0

x2 − y2

(x2 + y2)2 . (62)

Evaluating the integral [40]

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

∫
x2 − y2

(x2 + y2)2 dy, (63)

we obtain
ε = −

b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 (64)

again in agreement with (54).
The mass energy density is calculated from (4)

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε (65)

where (3) has been used. Substituting for ε from (54), the
mass energy density of the stationary edge dislocation is gi-
ven by

ρc2 =
4b
π

κ̄0µ̄0

2µ̄0 + λ̄0

y

x2 + y2 . (66)

In cylindrical polar coordinates, (66) is expressed as

ρc2 =
4b
π

κ̄0µ̄0

2µ̄0 + λ̄0

sin θ
r
. (67)

Using (54) in (50), the stationary edge dislocation longi-
tudinal dilatation strain energy density is then given by

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

y2

(x2 + y2)2 . (68)

In cylindrical polar coordinates, (68) is expressed as

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 . (69)

The distortion strain energy density is calculated from
(51). The expression is expanded using the non-zero elements
of the strain tensor (40) to give

E⊥ = µ̄0

(
exx

2 + eyy2 + exy
2 + eyx

2
)
. (70)

As seen previously in (33),

eαβ = εαβ − esg
αβ (71)

where es = 1
4ε is the volume dilatation calculated in (54) and

eαβeαβ =

(
εαβ −

1
4
εgαβ

) (
εαβ −

1
4
εgαβ

)
. (72)

For gαβ = ηαβ, the off-diagonal elements of the metric tensor
are 0, the diagonal elements are 1 and (70) becomes

E⊥ = µ̄0

(εxx −
1
4
ε

)2

+

(
εyy −

1
4
ε

)2

+ 2ε2
xy

 . (73)

Expanding the quadratic terms and making use of (53), (73)
becomes

E⊥ = µ̄0

(
ε2

xx + ε2
yy −

3
8
ε2 + 2ε2

xy

)
(74)

and finally

E⊥ = µ̄0

(
5
8
ε2 − 2εxxεyy + 2ε2

xy

)
. (75)

Substituting from (40) and (54) in the above,

E⊥ =
5
8

b2µ̄0

π2

(
µ̄0

2µ̄0 + λ̄0

)2
y2

(x2 + y2)2 +
b2µ̄0

2π2

y2
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)x4 − 2µ̄2

0x2y2 − µ̄2
0y

4
]

(2µ̄0 + λ̄0)2(x2 + y2)4
+

+
b2µ̄0

2π2

(
µ̄0 + λ̄0

2µ̄0 + λ̄0

)2 x2(x2 − y2)2

(x2 + y2)4 .

(76)

which becomes

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

1
(x2 + y2)4{

5
4
µ̄2

0 y
2 (x2 + y2)2 −

−y2
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)x4 − 2µ̄2

0 x2y2 − µ̄2
0 y

4
]
+

+ (µ̄0 + λ̄0)2 x2(x2 − y2)2
}
.

(77)

In cylindrical polar coordinates, (77) is expressed as

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −
sin2 θ

r2[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ−

−2µ̄2
0 cos2 θ sin2 θ − µ̄2

0 sin4 θ
]
+

+ (µ̄0 + λ̄0)2 cos2 θ

r2

(
cos2 θ − sin2 θ

)2
}

(78)
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or

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
.

(79)

4.3.2 Moving edge dislocation energy density

We next consider the general case of the moving edge disloca-
tion in the spacetime continuum of Section 4.2, with cartesian
coordinates (x, y, z). We first evaluate the volume dilatation ε
for the moving edge dislocation. The volume dilatation is
given by

ε = εαα = εxx + εyy (80)

where the non-zero diagonal elements of the strain tensor are
obtained from (46). Substituting for εxx and εyy from (46) in
(80), we notice that the transverse terms cancel out, and we
are left with the following longitudinal term:

ε =
bc2y

πv2

γ3
l − γl

(x − vt)2 + γ2
l y

2
(81)

This equation can be further reduced to

ε =
bc2

πv2

v2

cl
2

γly

(x − vt)2 + γ2
l y

2
(82)

and finally, using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (9) and (44)),

ε(xi, t) =
b

2π
2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2
. (83)

As seen previously, the mass energy density is calculated
from (65):

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε. (84)

Substituting for ε from (83), the mass energy density of an
edge dislocation is given by

ρ(xi, t) c2 =
b

2π
8κ̄0µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2
. (85)

Using (83) in (50), the edge dislocation longitudinal dilatation
strain energy density is then given by

E‖ =
1
2
κ̄0

 b
2π

2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

. (86)

The distortion strain energy density is calculated from
(51). The expression is expanded using the non-zero elements
of the strain tensor (46) and (47) and, from (71) and (72), we
obtain [1, see Eqs.(114–115)])

E⊥ = µ̄0

[ (
εxx −

1
4
ε

)2

+

(
εyy −

1
4
ε

)2

−2εtx
2 − 2εty

2 + 2ε2
xy

]
.

(87)

Expanding the quadratic terms and making use of (53) as in
(74), (87) becomes

E⊥ = µ̄0

(
ε2

xx + ε2
yy −

3
8
ε2 − 2εtx

2 − 2εty
2 + 2ε2

xy

)
. (88)

Substituting from (46), (47) and (82),

E⊥ = µ̄0

(
b

2π
c2

v2

)2 {
−

3
8

2 v2

cl
2

γly

(x − vt)2 + γ2
l y

2

2

+

+4
 −γly

(x − vt)2 + γ2
l y

2
+

α2γy

(x − vt)2 + γ2y2

2

+

+4
 γ3

l y

(x − vt)2 + γ2
l y

2
−

α2γy

(x − vt)2 + γ2y2

2

−

−2
v2

c2

 γly

(x − vt)2 + γ2
l y

2
− α2 γy

(x − vt)2 + γ2y2

2

−

−2
v2

c2

 −γl(x − vt)
(x − vt)2 + γ2

l y
2

+
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

2

+

+2
 2γl(x − vt)

(x − vt)2 + γ2
l y

2
−
α2(γ + 1/γ)(x − vt)

(x − vt)2 + γ2y2

2 }

(89)

which simplifies to

E⊥ = µ̄0
b2

2π2

c4

v4

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
.

(90)

We consider the above equations for the moving edge dis-
location in the limit as v→ 0. Then the terms

γy

(x − vt)2 + γ2y2 →
sin θ

r
(91)

and
x − vt

(x − vt)2 + γ2y2 →
cos θ

r
(92)
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in cylindrical polar coordinates. Similarly for the same terms
with γl instead of γ.

The volume dilatation obtained from (83) is then given in
cylindrical polar coordinates (r, θ, z) by

ε→
b

2π
2µ̄0

2µ̄0 + λ̄0

sin θ
r
. (93)

The mass energy density is obtained from (85) to give

ρc2 →
b

2π
8κ̄0µ̄0

2µ̄0 + λ̄0

sin θ
r
. (94)

From (86), the edge dislocation dilatation strain energy den-
sity is then given by

E‖ →
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 . (95)

These equations are in agreement with (55), (67) and (69)
respectively.

The edge dislocation distortion strain energy density in
the limit as v → 0 is obtained from (89) by making use of
(91) and (92) as follows:

E⊥ → µ̄0
b2

4π2

c4

v4

{
−

3
2
v4

cl
4

sin2 θ

r2 +

+4
(
−

sin θ
r

+ α2 sin θ
r

)2

+ 4
(
γ2

l
sin θ

r
− α2 sin θ

r

)2

−

−2
v2

c2

(
sin θ

r
− α2 sin θ

r

)2

−

−2
v2

c2

(
−γl

cos θ
r

+
α2

γ

cos θ
r

)2

+

+2
(
2γl

cos θ
r
− α2

(
γ +

1
γ

)
cos θ

r

)2 }
.

(96)

Simplifying,

E⊥ → µ̄0
b2

4π2

c4

v4

{
−

3
2
v4

cl
4

sin2 θ

r2 +

+4
(
−1 + α2

)2 sin2 θ

r2 + 4
(
γ2

l − α
2
)2 sin2 θ

r2 −

−2
v2

c2

(
1 − α2

)2 sin2 θ

r2 −

−2
v2

c2

(
−γl +

α2

γ

)2 cos2 θ

r2 +

+2
(
2γl − α

2
(
γ +

1
γ

))2 cos2 θ

r2

}
.

(97)

Using the definitions of γ2, γ2
l and α2 from (27), (42) and (43)

respectively, using the first term of the Taylor expansion for

γ and γl as v → 0, and neglecting the terms multiplied by
−2v2/c2 in (97) as they are of order v6/c6, (97) becomes

E⊥ → µ̄0
b2

4π2

c4

v4

{ [
−

3
2
v4

cl
4 +

v4

c4 +

+4
1 − v2

c2
l

− 1 +
v2

2c2

2 ]
sin2 θ

r2 +

+4
1 − 1

2
v2

c2
l

− 1 +
v2

2c2

2 cos2 θ

r2

}
.

(98)

Squaring and simplifying, we obtain

E⊥ → µ̄0
b2

4π2

c4

v4

{ 5
2
v4

cl
4 + 2

v4

c4 + 4
v4

c2
l c2

 sin2 θ

r2 +

+

 v4

cl
4 +

v4

c4 − 2
v4

c2
l c2

 cos2 θ

r2

} (99)

and further

E⊥ → µ̄0
b2

2π2

{ 1 + 2
c2

c2
l

+
5
4

c4

cl
4

 sin2 θ

r2 +

+
1
2

1 − 2
c2

c2
l

+
c4

cl
4

 cos2 θ

r2

}
.

(100)

Using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (9) and (44)), (100) be-

comes

E⊥ → µ̄0
b2

2π2

{(
1 +

2µ̄0

2µ̄0 + λ̄0
+

+
5
4

µ̄2
0

(2µ̄0 + λ̄0)2

)
sin2 θ

r2 +
1
2

(
1−

−
2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

)
cos2 θ

r2

}
.

(101)

This equation represents the impact of the time terms inclu-
ded in the calculation of (87) and the limit operation v → 0
used in (89).

5 Curved dislocations

In this section, we consider the equations for generally curved
dislocations generated by infinitesimal elements of a disloca-
tion. These allow us to handle complex dislocations that are
encountered in the spacetime continuum.

5.1 The Burgers displacement equation

The Burgers displacement equation for an infinitesimal ele-
ment of a dislocation dl = ξdl in vector notation is given
by [14, see p. 102]

u(r) =
b
4π

∫
A

R̂ · dA
R2 −

1
4π

∮
C

b × dl′

R
+

+
1

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
∇

[ ∮
C

(b × R) · dl′

R

] (102)
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where u is the displacement vector, r is the vector to the dis-
placed point, r′ is the vector to the dislocation infinitesimal
element dl′, R = r′ − r, b is the Burgers vector, and closed
loop C bounds the area A.

In tensor notation, (102) is given by

uµ(rν) = −
1

8π

∫
A

bµ
∂

∂x′α
(
∇′2R

)
dAα−

−
1

8π

∮
C

bβ εµβγ ∇′2R dx′γ−

−
1

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bβ εβαγ
∂2R

∂x′µ ∂x′α
dx′γ

(103)

where εαβγ is the permutation symbol, equal to 1 for cyclic
permutations, −1 for anti-cyclic permutations, and 0 for per-
mutations involving repeated indices. As noted by Hirth [14,
see p. 103], the first term of this equation gives a discontinuity
∆u = b over the surface A, while the two other terms are con-
tinuous except at the dislocation line. This equation is used
to calculate the displacement produced at a point r by an ar-
bitrary curved dislocation by integration over the dislocation
line.

5.2 The Peach and Koehler stress equation

The Peach and Koehler stress equation for an infinitesimal el-
ement of a dislocation is derived by differentiation of (103)
and substitution of the result in (20) [14, see p. 103–106]. In
this equation, the dislocation is defined continuous except at
the dislocation core, removing the discontinuity over the sur-
face A and allowing to express the stresses in terms of line
integrals alone.

σµν = −
µ̄0

8π

∮
C

bα εβαµ
∂

∂x′β
(
∇′2R

)
dx′ν−

−
µ̄0

8π

∮
C

bα εβαν
∂

∂x′β
(
∇′2R

)
dx′µ−

−
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bα εβαγ(
∂3R

∂x′β ∂x′µ∂x′ν
− δµν

∂

∂x′β
(
∇′2R

))
dx′γ.

(104)

This equation is used to calculate the stress field of an arbi-
trary curved dislocation by line integration.

6 Framework for quantum physics

In a solid, dislocations represent the fundamental displace-
ment processes that occur in its atomic structure. A solid
viewed in electron microscopy or other microscopic imaging
techniques is a tangle of screw and edge dislocations [10, see
p. 35 and accompanying pages]. Similarly, dislocations in the
spacetime continuum are taken to represent the fundamental
displacement processes that occur in its structure. These fun-
damental displacement processes should thus correspond to

basic quantum phenomena and provide a framework for the
description of quantum physics in STCED.

We find that dislocations have fundamental properties that
reflect those of particles at the quantum level. These include
self-energy and interactions mediated by the strain energy
density of the dislocations. The role played by virtual par-
ticles in Quantum Electrodynamics is replaced by the inter-
action of the energy density of the dislocations. This theory
is not perturbative as in QED, but rather calculated from ana-
lytical expressions. The analytical equations can become very
complicated, and in some cases, perturbative techniques are
used to simplify the calculations, but the availability of ana-
lytical expressions permit a better understanding of the fun-
damental processes involved.

Although the existence of virtual particles in QED is gen-
erally accepted, there are physicists who still question this in-
terpretation of QED perturbation expansions. Weingard [41]
“argues that if certain elements of the orthodox interpretation
of states in QM are applicable to QED, then it must be con-
cluded that virtual particles cannot exist. This follows from
the fact that the transition amplitudes correspond to super-
positions in which virtual particle type and number are not
sharp. Weingard argues further that analysis of the role of
measurement in resolving the superposition strengthens this
conclusion. He then demonstrates in detail how in the path in-
tegral formulation of field theory no creation and annihilation
operators need appear, yet virtual particles are still present.
This analysis shows that the question of the existence of vir-
tual particles is really the question of how to interpret the
propagators which appear in the perturbation expansion of
vacuum expectation values (scattering amplitudes).” [42]

The basic Feynman diagrams can be seen to represent
screw dislocations as photons, edge dislocations as particles,
and their interactions. The exchange of virtual particles in in-
teractions can be taken as the forces resulting from the over-
lap of the dislocations’ strain energy density, with suitably
modified diagrams. The perturbative expansions are also re-
placed by finite analytical expressions.

6.1 Quantization

The Burgers vector as defined by expression (5) has similari-
ties to the Bohr-Sommerfeld quantization rule∮

C
p dq = nh (105)

where q is the position canonical coordinate, p is the momen-
tum canonical coordinate and h is Planck’s constant. This
leads us to consider the following quantization rule for the
STC: at the quantum level, we assume that the spacetime
continuum has a granularity characterized by a length b0 cor-
responding to the smallest elementary Burgers dislocation-
displacement vector possible in the STC. The idea that the
existence of a shortest length in nature would lead to a natu-
ral cut-off to generate finite integrals in QED has been raised
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before [43]. The smallest elementary Burgers dislocation-
displacement vector introduced here provides a lower bound
as shown in the next section. Then the magnitude of a Burg-
ers vector can be expressed as a multiple of the elementary
Burgers vector:

b = nb0. (106)

We find that b is usually divided by 2π in dislocation equa-
tions, and hence we define

b̄ =
b

2π
, (107)

and similarly for the elementary Burgers dislocation-displa-
cement vector b0,

b̄0 =
b0

2π
. (108)

6.2 Screw dislocations in quantum physics

Screw dislocations in the spacetime continuum are identified
with massless, transverse deformations, specifically photons.
Consider the displacement of a stationary screw dislocation
as derived in Section 3.1:

uz =
b

2π
θ = b̄ θ. (109)

Taking the derivative with respect to time, we obtain

u̇z = vz =
b

2π
θ̇ =

b
2π

ω. (110)

The speed of the transverse displacement is c, the speed of
light. Substituting for ω = 2πν, (110) becomes

c = b ν. (111)

Hence
b = λ, (112)

the wavelength of the screw dislocation. This result is illus-
trated in Fig. 5. It is important to note that this relation applies
only to screw dislocations.

The strain energy density of the screw dislocation is given
by the transverse distortion energy density derived in Section
3.3. For a stationary screw dislocation, substituting (107) into
(35),

E⊥ =
µ̄0 b̄2

2
1
r2 . (113)

The total strain energy of the screw dislocation is then
given by

W⊥ =

∫
V
E⊥ dV (114)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz. Substituting for E⊥ from (113), (114)
becomes

W⊥ =

∫
V

µ̄0 b̄2

2r2 rdr dθ dz. (115)

Fig. 5: A wavelength of a screw dislocation.

From (106), b̄ can be taken out of the integral to give

W⊥ =
µ̄0 b̄2

2

∫ Λ

b

1
r

dr
∫
θ

dθ
∫

z
dz (116)

where Λ is a cut-off parameter corresponding to the radial
extent of the dislocation, limited by the average distance to
its nearest neighbours.

The strain energy per wavelength is then given by

W⊥
λ

=
µ̄0 b̄2

2
log

Λ

b

∫ 2π

0
dθ (117)

and finally
W⊥
λ

=
µ̄0 b2

4π
log

Λ

b
. (118)

The implications of the total strain energy of the screw
dislocation are discussed further in comparison to Quantum
Electrodynamics (QED) in Section 7.

6.3 Edge dislocations in quantum physics

The strain energy density of the edge dislocation is derived in
Section 4.3. The dilatation (massive) strain energy density of
the edge dislocation is given by the longitudinal strain energy
density (50) and the distortion (massless) strain energy den-
sity of the edge dislocation is given by the transverse strain
energy density (51).

For the stationary edge dislocation of (79), using (107)
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into (79), we have

E⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
.

(119)

The distortion strain energy of the edge dislocation is then
given by

W⊥ =

∫
V
E⊥ dV (120)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz. Substituting for E⊥ from (119) and tak-
ing b̄ out of the integral, (120) becomes

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2

∫
z

∫
θ

∫ Λ

b0

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
rdr dθ dz

(121)

where again Λ is a cut-off parameter corresponding to the ra-
dial extent of the dislocation, limited by the average distance
to its nearest neighbours.

Evaluating the integral over r,

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫
z

∫ 2π

0

{
5
4
µ̄2

0 sin2 θ−

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ sin2 θ−

−2µ̄2
0 cos2 θ sin4 θ − µ̄2

0 sin6 θ
]
+

+(µ̄0 + λ̄0)2 cos2 2θ cos2 θ

}
dθ dz.

(122)

Evaluating the integral over θ [40], we obtain (123) at the
top of the next page. Applying the limits of the integration,
both the coefficients of λ̄2

0 and µ̄0λ̄0 are equal to 0 and only the
coefficient of µ̄2

0 is non-zero. Equation (123) then becomes

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫ `

0

9π
4
µ̄2

0 dz. (124)

where ` is the length of the edge dislocation.

Evaluating the integral over z, we obtain the stationary
edge dislocation transverse strain energy per unit length

W⊥
`

=
9π
2

b̄2µ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
. (125)

We find that the stationary edge dislocation transverse strain
energy per unit length (where we have added the label E)

WE
⊥

`
=

9
8π

b2µ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
(126)

is similar to the stationary screw dislocation transverse strain
energy per unit length

WS
⊥

`
=

1
4π

b2µ̄0 log
Λ

b0
(127)

except for the proportionality constant.
Similarly, the longitudinal strain energy of the stationary

edge dislocation is given by

WE
‖ =

∫
V
E‖ dV. (128)

Substituting for E‖ from (69), this equation becomes

WE
‖ =

∫
V

b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 dV. (129)

Similarly to the previous derivation, this integral gives

WE
‖

`
=

1
2π

b2 κ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
. (130)

The total strain energy of the stationary screw and edge
dislocations have similar functional forms, with the differ-
ence residing in the proportionality constants. This is due
to the simpler nature of the stationary dislocations and their
cylindrical polar symmetry. This similarity is not present for
the general case of moving dislocations as evidenced in equa-
tions (37), (86) and (90).

For the moving edge dislocation in the limit as v → 0,
subsituting for (101) in (120) and using (107), we have

WE
⊥ → 2b̄2µ̄0

∫
z

∫
θ

∫ Λ

b0

rdr dθ dz{ 1 +
2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 sin2 θ

r2 +

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 cos2 θ

r2

} (131)

where again Λ is a cut-off parameter corresponding to the ra-
dial extent of the dislocation, limited by the average distance
to its nearest neighbours.
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W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫
z

[
5
4
µ̄2

0

(
θ

2
−

1
4

sin 2θ
)
−

−(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)
(
θ

16
+

1
64

sin 2θ −
1
64

sin 4θ −
1

192
sin 6θ

)
+

+2µ̄2
0

(
θ

16
−

1
64

sin 2θ −
1

64
sin 4θ +

1
192

sin 6θ
)
+

+µ̄2
0

(
5θ
16
−

15
64

sin 2θ +
3

64
sin 4θ −

1
192

sin 6θ
)
+

+(µ̄0 + λ̄0)2
(
θ

4
+

3
16

sin 2θ +
1

16
sin 4θ +

1
48

sin 6θ
) ]2π

0
dz

(123)

Evaluating the integral over r,

WE
⊥ → 2b̄2µ̄0 log

Λ

b0

∫
z

∫ 2π

0
dθ dz{ 1 +

2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 sin2 θ+

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 cos2 θ

}
.

(132)

Evaluating the integral over θ [40] and applying the limits of
the integration, we obtain

WE
⊥ → 2b̄2µ̄0 log

Λ

b0

∫ `

0
dz{ 1 +

2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 (π) +

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 (π)
} (133)

and evaluating the integral over z, we obtain the moving edge
dislocation transverse strain energy per unit length in the limit
as v→ 0

WE
⊥

`
→

3
4π

b2µ̄0

(
1 +

2
3

µ̄0

2µ̄0 + λ̄0
+

+
7
6

µ̄2
0

(2µ̄0 + λ̄0)2

)
log

Λ

b0

(134)

where ` is the length of the edge dislocation.

6.4 Strain energy of moving dislocations

In the general case of moving dislocations, the derivation of
the screw dislocation transverse strain energy and the edge
dislocation transverse and longitudinal strain energies is more
difficult. In this section, we provide an overview discussion
of the topic.

6.4.1 Screw dislocation transverse strain energy

The transverse strain energy of a moving screw dislocation,
which also corresponds to its total strain energy, is given by

WS
⊥ =

∫
V
ES
⊥ dV (135)

where the strain energy density ES
⊥ is given by (113), viz.

ES
⊥ =

1
2

b̄2 µ̄0
γ2

(x − vt)2 + γ2y2 (136)

and V is the 4-dimensional volume of the screw dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for ES
⊥, (135) becomes

WS
⊥ =

∫
V

1
2

b̄2 µ̄0
γ2

(x − vt)2 + γ2y2 dx dy dz d(ct). (137)

As before, b̄ is taken out of the integral from (106), and the
integral over z is handled by considering the strain energy per
unit length of the dislocation:

WS
⊥

`
=

b̄2 µ̄0

2

∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

γ2

(x − vt)2 + γ2y2 dx dy d(ct) (138)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

Evaluating the integral over x [40],

WS
⊥

`
=

b̄2 µ̄0

2
γ2

∫
ct

∫
y

dy d(ct)

[
1
γy

arctan
(

x − vt
γy

) ]√Λ2−y2

√
y2−b2

(139)
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where the limits corresponding to the maximum cut-off pa-
rameter Λ and minimum cut-off parameter b are stated ex-
plicitly. Applying the limits of the integration, we obtain

WS
⊥

`
=

b̄2 µ̄0

2
γ2

∫
ct

∫
y

dy d(ct){
1
γy

arctan

 √
Λ2 − y2 − vt

γy

−
−

1
γy

arctan

 √
y2 − b2 − vt

γy

 }.
(140)

This integration over y is not elementary and likely does
not lead to a closed analytical form. If we consider the fol-
lowing simpler integral, the solution is given by∫

y

1
γy

arctan
(

x − vt
γy

)
dy =

−
i
2

[
Li2

(
−i

x − vt
γy

)
− Li2

(
i

x − vt
γy

)] (141)

where Lin(x) is the polylogarithm function. As pointed out
in [44], “[t]he polylogarithm arises in Feynman diagram inte-
grals (and, in particular, in the computation of quantum elec-
trodynamics corrections to the electrons gyromagnetic ratio),
and the special cases n = 2 and n = 3 are called the dilog-
arithm and the trilogarithm, respectively.” This is a further
indication that the interaction of strain energies are the phys-
ical source of quantum interaction phenomena described by
Feynman diagrams as will be seen in Section 7.

6.4.2 Edge dislocation longitudinal strain energy

The longitudinal strain energy of a moving edge dislocation
is given by

WE
‖ =

∫
V
EE
‖ dV (142)

where the strain energy density EE
⊥ is given by (86), viz.

EE
‖ =

1
2
κ̄0 b̄2

 2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

(143)

and V is the 4-dimensional volume of the edge dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for EE
‖

, (142) becomes

WE
‖ =

∫
V

1
2
κ̄0 b̄2

 2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

dx dy dz d(ct).

(144)

As before, b̄ is taken out of the integral from (106), and the
integral over z is handled by considering the strain energy per

unit length of the dislocation:

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

(γly)2(
(x − vt)2 + γ2

l y
2
)2 dx dy d(ct)

(145)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

The integrand has a functional form similar to that of
(138), and a similar solution behaviour is expected. Evalu-
ating the integral over x [40],

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct)[
1
2

x − vt
(x − vt)2 + (γly)2 +

+
1

2γly
arctan

(
x − vt
γly

) ]√Λ2−y2

√
y2−b2

(146)

where the limits corresponding to the maximum cut-off pa-
rameter Λ and minimum cut-off parameter b are stated ex-
plicitly. Applying the limits of the integration, we obtain

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct){
1
2

√
Λ2 − y2 − vt

(
√

Λ2 − y2 − vt)2 + (γly)2
−

−
1
2

√
y2 − b2 − vt

(
√
y2 − b2 − vt)2 + (γly)2

+

+
1

2γly
arctan

 √
Λ2 − y2 − vt

γly

−
−

1
2γly

arctan

 √
y2 − b2 − vt

γly

 }.

(147)

This integration over y is again found to be intractable,
including that of (140), and likely does not lead to a closed
analytical form. In the arctan Λ integral of (140) and (147),
we can make the approximation

√
Λ2 − y2 ' Λ and evaluate

this term as seen in (141):∫
y

1
γly

arctan
(
Λ − vt
γly

)
dy =

−
i
2

[
Li2

(
−i

Λ − vt
γly

)
− Li2

(
i

Λ − vt
γly

)] (148)

where Lin(x) is the polylogarithm function as seen previously.
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6.4.3 Edge dislocation transverse strain energy

The transverse strain energy of a moving edge dislocation is
given by

WE
⊥ =

∫
V
EE
⊥ dV (149)

where the strain energy density EE
⊥ is given by (90), viz.

EE
⊥ = 2µ̄0 b̄2 c4

v4

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
(150)

and V is the 4-dimensional volume of the edge dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for EE
⊥ as before, taking b̄ out of the integral

from (106), and handling the integral over z by considering
the strain energy per unit length of the dislocation, (149) be-
comes

WE
⊥

`
= 2µ̄0 b̄2 c4

v4

∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

dx dy d(ct)

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
(151)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

Again, the integrand has functional forms similar to that
of (138) and (145). A similar, but more complex, solution
behaviour is expected, due to the additional complexity of
(151).

7 Dislocation interactions in quantum physics

As mentioned is Section 6, the basic Feynman diagrams can
be seen to represent screw dislocations as photons, edge dislo-
cations as particles, and their interactions. More specifically,
the external legs of Feynman diagrams that are on mass-shell
representing real particles correspond to dislocations, while
the virtual off mass-shell particles are replaced by the inter-
action of the strain energy densities. The exchange of virtual

particles in QED interactions can be taken as the perturba-
tion expansion representation of the forces resulting from the
overlap of the strain energy density of the dislocations. The
Feynman diagram propagators are replaced by the dislocation
strain energy density interaction expressions.

The properties of Burgers vectors and dislocations [14,
see pp. 25-26] have rules similar to those of Feynman dia-
grams, but not equivalent as virtual particles are replaced by
dislocation strain energy density interactions. A Burgers vec-
tor is invariant along a dislocation line. Two Burgers circuits
are equivalent if one can be deformed into the other with-
out crossing dislocation lines. The resultant Burgers vector
within equivalent Burgers circuits is the same.

Dislocation nodes are points where multiple dislocations
meet. If all the dislocation vectors ξi are taken to be positive
away from a node, then

N∑
i=1

ξi = 0 (152)

for the N dislocations meeting at the node. Burgers vectors
are conserved at dislocation nodes.

In this section, we consider the interactions of disloca-
tions which are seen to result from the force resulting from
the overlap of their strain energy density in the STC [14, see
p. 112].

7.1 Parallel dislocation interactions

From Hirth [14, see pp. 117-118], the energy of interaction
per unit length between parallel dislocations (including screw
and edge dislocation components) is given by

W12

`
= −

µ̄0

2π
(b1 · ξ) (b2 · ξ) log

R
RΛ

−

−
µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ) log

R
RΛ

−

−
µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

[(b1 × ξ) · R] [(b2 × ξ) · R]
R2

(153)

where ξ is parallel to the z axis, (bi · ξ) are the screw compo-
nents, (bi × ξ) are the edge components, R is the separation
between the dislocations, and RΛ is the distance from which
the dislocations are brought together, resulting in the decrease
in energy of the “system”.

The components of the interaction force per unit length
between the parallel dislocations are obtained by differentia-
tion:

FR

`
= −

∂(W12/`)
∂R

Fθ

`
= −

1
R
∂(W12/`)

∂θ
.

(154)

Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics 303



Volume 11 (2015) PROGRESS IN PHYSICS Issue 4 (October)

Substituting from (153), (154) becomes

FR

`
=

µ̄0

2πR
(b1 · ξ) (b2 · ξ) +

+
µ̄0

πR
µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ)

Fθ

`
=

µ̄0

πR3

µ̄0 + λ̄0

2µ̄0 + λ̄0

[
(b1 · R) [(b2 × R) · ξ] +

+ (b2 · R) [(b1 × R) · ξ]
]
.

(155)

7.2 Curved dislocation interactions

In this section, we extend the investigation of curved disloca-
tions initiated in Section 5, to the interaction energy and in-
teraction force between curved dislocations [14, see pp. 106-
110]. The derivation considers the interaction between two
dislocation loops, but has much more extensive applications,
being extendable to the interaction energy between two arbi-
trarily positioned segments of dislocation lines.

If a dislocation loop 1 is brought in the vicinity of an-
other dislocation loop 2, the stresses originating from loop
2 do work −W12 on loop 1 where W12 is the interaction en-
ergy between the two dislocation loops. The work done on
loop 1 represents a decrease in the strain energy of the to-
tal system. In that case, if W12 is negative, the energy of the
system decreases and an attractive force exists between the
loops [14, see p. 106].

The interaction energy between the two dislocation loops
is given by [14, see p. 108]

W12 = −
µ̄0

2π

∮
C1

∮
C2

(b1 × b2) · (dl1 × dl2)
R

+

+
µ̄0

4π

∮
C1

∮
C2

(b1 · dl1) (b2 · dl2)
R

+

+
µ̄0

2π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1

∮
C2

(b1 × dl1) · T · (b2 × dl2)
R

(156)

where T is given by

Ti j =
∂2R
∂xi∂x j

. (157)

The force produced by an external stress acting on a dis-
location loop is given by [14, see p. 109]

dF = (b · σ) × dl (158)

where σ is the stress tensor in the medium, b is the Burgers
vector, and dl is the dislocation element. This equation can
be used with (104) to determine the interaction force between
dislocation segments.

As each element dl of a dislocation loop is acted upon by
the forces caused by the stress of the other elements of the

dislocation loop, the work done against these corresponds to
the self-energy of the dislocation loop. The self-energy of a
dislocation loop can be calculated from (156) to give [14, see
p. 110]

Wsel f =
µ̄0

8π

∮
C1=C

∮
C2=C

(b · dl1) (b · dl2)
R

+

+
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1=C

∮
C2=C

(b × dl1) · T · (b × dl2)
R

(159)
where T is as defined in (157).

More complicated expressions can be obtained for inter-
actions between two non-parallel straight dislocations [14,
see pp. 121-123] and between a straight segment of a disloca-
tion and a differential element of another dislocation [14, see
pp. 124-131]. This latter derivation can be used for more ar-
bitrary dislocation interactions.

7.3 Physical application of dislocation interactions

In Quantum Electrodynamics, these correspond to particle-
particle and particle-photon interactions, which are taken to
be mediated by virtual particles. This is in keeping with
the QED picture, but as shown above, particle-particle and
particle-photon interactions physically result from the overlap
of their strain energy density which results in an interaction
force. Again, this improved understanding of the physical
nature of dislocation interactions demonstrates that the inter-
actions do not need to be represented by virtual particle ex-
change as discussed in Section 6.

This theory provides a straightforward physical explana-
tion of particle-particle and particle-photon interactions that
is not based on perturbation theory, but rather on a direct eval-
uation of the interactions.

7.4 Photons and screw dislocation interactions

Screw dislocations interact via the force resulting from the
overlap of the strain energy density of the dislocations in the
STC [14, see p. 112].

As seen in Section 6.2, screw dislocations in the space-
time continuum are identified with the massless, transverse
deformations, photons. As pointed out in [45], it has been
known since the 1960s that photons can interact with each
other in atomic media much like massive particles do. A
review of collective effects in photon-photon interactions is
given in [46].

In QED, photon-photon interactions are known as photon-
photon scattering, which is thought to be mediated by virtual
particles. This is in keeping with the QED picture, but as
shown in this work, photon-photon interactions physically re-
sult from the overlap of their strain energy density. This im-
proved understanding of the physical nature of photon-photon
interactions demonstrates that the interaction does not need to
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be represented by virtual particle exchanges, in that the nature
of the physical processes involved is now understood.

From (153), the energy of interaction per unit length be-
tween parallel screw dislocations (photons) is given by

W ss
12

`
= −

µ̄0

2π
(b1 · ξ) (b2 · ξ) log

R
RΛ

(160)

where ξ is parallel to the z axis, (bi · ξ) are the screw compo-
nents, R is the separation between the dislocations, and RΛ is
the distance from which the dislocations are brought together,
resulting in the reduction in the energy of the 2-photon “sys-
tem”.

From (155), the components of the interaction force per
unit length between the parallel screw dislocations are given
by:

F ss
R

`
=

µ̄0

2πR
(b1 · ξ) (b2 · ξ)

F ss
θ

`
= 0.

(161)

The interaction force is radial in nature, independent of the
angle θ, as expected.

8 Physical explanations of QED phenomena

As we have seen in previous sections, spacetime continuum
dislocations have fundamental properties that reflect those of
phenomena at the quantum level. In particular, the improved
understanding of the physical nature of interactions mediated
by the strain energy density of the dislocations. The role
played by virtual particles in Quantum Electrodynamics is
replaced by the work done by the forces resulting from the
dislocation stresses, and the resulting interaction of the strain
energy density of the dislocations. In this section, we exam-
ine the physical explanation of QED phenomena provided by
this theory, including self-energy and mass renormalization.

8.1 Dislocation self-energy and QED self energies

Dislocation self energies are found to be similar in structure to
Quantum Electrodynamics self energies. They are also diver-
gent if integrated over all of spacetime, with the divergence
being logarithmic in nature. However, contrary to QED, dis-
location self energies are bounded by the density of dislo-
cations present in the spacetime continuum, which results in
an upperbound to the integral of half the average distance be-
tween dislocations. As mentioned by Hirth [14], this has little
impact on the accuracy of the results due to the logarithmic
dependence.

The dislocation self-energy is related to the dislocation
self-force. The dislocation self-force arises from the force
on an element in a dislocation caused by other segments of
the same dislocation line. This process provides an explana-
tion for the QED self-energies without the need to resort to

the emission/absorption of virtual particles. It can be under-
stood, and is particular to, dislocation dynamics as disloca-
tions are defects that extend in the spacetime continuum [14,
see p. 131]. Self-energy of a straight-dislocation segment of
length L is given by [14, see p. 161]:

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L

(
log

L
b
− 1

)
,

(162)

where there is no interaction between two elements of the
segment when they are within ±b, or equivalently

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L log

L
eb
,

(163)

where e = 2.71828... . These equations provide analytic ex-
pressions for the non-perturbative calculation of quantum self
energies and interaction energies, and eliminate the need for
the virtual particle interpretation.

In particular, the pure screw (photon) self-energy

WS
sel f =

µ̄0

4π
(b · ξ)2 L log

L
eb

(164)

and the pure edge (particle) self-energy

WE
sel f =

µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2 L log

L
eb

(165)

are obtained from (163), while (163) is also the appropriate
equation to use for the dual wave-particle “system”.

8.2 Dislocation strain energy and QED mass renormal-
ization

This approach also resolves and eliminates the mass renor-
malization problem. This problem arises in QED due to the
incomplete description of particle energies at the quantum
level. This paper shows that the strain energy density of an
edge dislocation, which corresponds to a particle, consists of
a longitudinal dilatation mass density term and a transverse
distortion energy density term, as shown in (49), (50), and
(51).

QED, in its formulation, only uses the transverse distor-
tion strain energy density in its calculations. This is referred
to as the bare mass m0. However, there is no dilatation mass
density term used in QED, and hence no possibility of prop-
erly deriving the mass. The bare mass m0 is thus renormalized
by replacing it with the actual experimental mass m. Using
the longitudinal dilatation mass density term as in this paper
will provide the correct mass m and eliminate the need for
mass renormalization.
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9 Discussion and conclusion

This paper provides a framework for the physical description
of physical processes at the quantum level based on dislo-
cations in the spacetime continuum within the theory of the
Elastodynamics of the Spacetime Continuum (STCED).

We postulate that the spacetime continuum has a granu-
larity characterized by a length b0 corresponding to the small-
est elementary Burgers dislocation-displacement vector pos-
sible. One inference that comes out of this paper is that the
basic structure of spacetime consists of a lattice of cells of
size b0, rather than the “quantum foam” currently preferred
in the literature. The “quantum foam” view may well be a
representation of the disturbances and fragmentation of the
b0 lattice due to dislocations and other defects in the space-
time continuum.

There are two types of dislocations: Edge dislocations
correspond to dilatations (longitudinal displacements) which
have an associated rest-mass energy, and are identified with
particles. Screw dislocations correspond to distortions (trans-
verse displacements) which are massless and are identified
with photons when not associated with an edge dislocation.
Arbitrary mixed dislocations can be decomposed into a screw
component and an edge component, giving rise to wave-parti-
cle duality.

We consider both stationary and moving dislocations, and
find that stationary dislocations are simpler to work with due
to their cylindrical polar symmetry, but are of limited appli-
cability. Moving screw dislocations are found to be Lorentz
invariant. Moving edge dislocations involve both the speed of
light corresponding to transverse displacements and the speed
of longitudinal displacements cl. However, the speed of light
c upper limit also applies to edge dislocations, as the shear
stress becomes infinite everywhere at v = c, even though the
speed of longitudinal deformations cl is greater than that of
transverse deformations c.

We calculate the strain energy density of both stationary
and moving screw and edge dislocations. The strain energy
density of the screw dislocation is given by the transverse dis-
tortion energy density, and does not have a mass component.
On the other hand, the dilatation strain energy density of the
edge dislocation is given by the (massive) longitudinal dilata-
tion energy density, and the distortion (massless) strain en-
ergy density of the edge dislocation is given by the transverse
distortion energy density. This provides a solution to the mass
renormalization problem in QED. Quantum Electrodynamics
only uses the equivalent of the transverse distortion strain en-
ergy density in its calculations, and hence has no possibility
of properly deriving the mass, which is in the longitudinal di-
latation massive strain energy density term that is not used in
QED.

The theory provides an alternative model for Quantum
Electrodynamics processes, without the mathematical forma-
lism of QED. In this framework, self-energies and interac-

tions are mediated by the strain energy density of the disloca-
tions. The role played by virtual particles in Quantum Elec-
trodynamics is replaced by the interaction of the strain energy
densities of the dislocations. This theory is not perturbative
as in QED, but rather calculated from analytical expressions.
The analytical equations can become very complicated, and
in some cases, perturbative techniques will need to be used to
simplify the calculations, but the availability of analytical ex-
pressions permits a better understanding of the fundamental
physical processes involved.

We provide examples of dislocation-dislocation interac-
tions, applicable to photon-photon, photon-particle, and par-
ticle-particle interactions, and of dislocation self-energy cal-
culations, applicable to photons and particles. These equa-
tions provide analytical expressions for the non-perturbative
calculation of quantum self energies and interaction energies,
and provides a physical process replacement for the virtual
particle interpretation used in QED.

The theory proposed in this paper is formulated in a for-
malism based on Continuum Mechanics and General Rela-
tivity. This formalism is different from that used in Quantum
Mechanics and Quantum Electrodynamics, and is currently
absent of quantum states and uncertainties as is common-
place in quantum physics. Both formalisms are believed to be
equivalent representations of the same physical phenomena.
It may well be that as the theory is developed further, the for-
malism of orthonormal basis function sets in Hilbert spaces
will be introduced to facilitate the solution of problems.

As shown in [47], it is a characteristic of Quantum Me-
chanics that conjugate variables are Fourier transform pairs of
variables. The Heisenberg Uncertainty Principle thus arises
because the momentum p of a particle is proportional to its
de Broglie wave number k. Consequently, we need to differ-
entiate between the measurement limitations that arise from
the properties of Fourier transform pairs of conjugate vari-
ables, and any inherent limitations that may or may not ex-
ist at the quantum level, independently of the measurement
process. Quantum theory currently assumes that the inher-
ent limitations are the same as the measurement limitations.
As shown in [47], quantum measurement limitations affect
our perception of the quantum environment only, and are not
inherent limitations of the quantum level, i.e. there exists a
physical world, independently of an observer or a measure-
ment, as seen here. See also the comments in [48, pp. 3–15].

This framework lays the foundation to develop a theory
of the physical description of physical processes at the quan-
tum level, based on dislocations in the spacetime continuum,
within the theory of the Elastodynamics of the Spacetime
Continuum. The basis of this framework is given in this ini-
tial paper. This framework allows the theory to be fleshed
out in subsequent investigations. Disclinations in the space-
time continuum are expected to introduce new physical pro-
cesses at the quantum level, to be worked out in future in-
vestigations. Additional spacetime continuum fundamental
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processes based on ongoing physical defect theory investiga-
tions will emerge as they are applied to STCED, and will lead
to further explanation of current quantum physics challenges.
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31. Flügge W. Tensor Analysis and Continuum Mechanics. Springer-
Verlag, New York, 1972.

32. Woodside D.A. Uniqueness theorems for classical four-vector fields in
Euclidean and Minkowski spaces. Journal of Mathematical Physics,
1999, v. 40, 4911—4943.

33. Misner C. W., Thorne K. S., Wheeler J. A. (1973). Gravitation, W. H.
Freeman and Co., San Francisco, pp.137–138.

34. Eshelby J. D. Energy Relations and the Energy-Momentum Tensor in
Continuum Mechanics. in Kanninen M. F., Adler W. F., Rosenfield
A. R. and Jaffee R. I., eds. Inelastic Behavior of Solids. McGraw-Hill,
New York, 1970, pp. 77–115.

35. Eshelby J. D. The Elastic Energy-Momentum Tensor. Journal of Elas-
ticity, 1975, v. 5, 321–335.

36. Eshelby J. D. The Energy-Momentum Tensor of Complex Continua.
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A Planck Vacuum Pilot Model for Inelastic Electron-Proton Scattering

William C. Daywitt
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This paper describes the scattering of an incident electron from a proton initially at
rest, under the assumptions: that the structureless electron interacts directly with the
proton and its structure; that the energy and “size” of the electron are determined by
its de Broglie radii; and that the shape of the inelastic scattering curve depends upon
how deeply the electron core penetrates the proton structure. Deep inelastic scattering
ends when the electron is small enough (energetic enough) to penetrate and destroy the
proton core and its derived mass.

1 Introduction

The current theory describing electron-proton (e-p) scatter-
ing is the Standard Model theory, where the incident electron
interacts with the proton via the exchange of a single virtual
photon [1, p. 160]. The present paper offers an alternative the-
ory that is based on the emerging Planck vacuum (PV) theory,
where the electron interacts directly with the proton [2–5].

In the PV theory both the electron and proton particles are
assumed to possess an invisible (vacuum) substructure, while
in addition the proton possesses a visible free-space struc-
ture due to its positive charge acting on the degenerate PV
quasi-continuum (Appendix A). The particle / PV forces and
potentials, and their corresponding Compton and de Broglie
radii, are associated with this vacuum substructure. The term
“structure” by itself refers in what follows exclusively to the
free-space proton structure.

2 Electron energy and size

The electron core (−e∗,me) exerts the two-term coupling for-
ce

(−e∗)(−e∗)
r2 − mec2

r
(1)

on the PV state, where the first (−e∗) belongs to the electron
and the second (−e∗) to the separate Planck particles making
up the PV continuum. This force difference vanishes

e2
∗

r2
e
− mec2

re
= 0 (2)

at the electron Compton radius re (= e2
∗/mec2). Treating this

vanishing force as a Lorentz invariant constant then leads to
the important Compton-(de Broglie) relations for the electron
[6]

re · mec2 = rd · cp = rL · E = e2
∗ (= c~) (3)

where p (= meγv) and E (= meγc2) are the relativistic mo-
mentum and energy of the electron, and e∗ is the massless
bare charge. The radii rd (= re/βγ) and rL (= re/γ) are the
electron de Broglie radii in the space and time directions on
the Minkowski space-time diagram, where β = v/c < 1 and
γ = 1/

√
1 − β2.

From (3) the size of the electron is taken to be the de
Broglie radii

rd =
re

βγ
≈ re

γ
= rL (4)

where the approximation applies to the high energy (β ≈ 1)
calculations of the present paper. With (4) inserted into (3),

cp =
e2
∗

rd
≈ e2

∗
rL

= E (5)

leading to

E = cp =
e2
∗

rd
. (6)

Thus to reduce the electron size to the proton Compton radius
(rd = rp) requires an electron energy equal to E = e2

∗/rp.
The comparisons to follow utilize

E =
e2
∗

rd
=

e2
∗

rp

rp

rd
= mpc2 rp

rd
(7)

to convert electron energies to rd/rp ratios. The Lorentz in-
variance of (2) ensures that equations (3) and (7) apply in any
inertial reference frame.

3 Proton structure

The proton substructure arises from the two-term coupling
force [7]

(e∗)(−e∗)
r2 +

mpc2

r
(8)

the proton core (e∗,mp) exerts on the PV state, where the force
vanishes at the proton Compton radius rp (= e2

∗/mpc2).
The proton also possesses a free-space structure (in con-

tradistinction to the electron) in the form of a spherical rest-
frame “collar” surrounding the proton core (Appendix A).
This collar may affect the formation of the proton de Broglie
radii; if, indeed, these radii even exist for the proton. Either
way, the following scattering calculations employ only the
proton Compton radius from the vanishing of (8).
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Fig. 1: A highly schematic cross section of the proton structure and
four electron-core “trajectories”. The radii rp and r2 (= rp/3.15)
represent respectively the proton Compton radius of the substructure
and the outer radius of the free-space proton structure.

4 e-p scattering

A highly schematic diagram of the proton cross section is pre-
sented in Fig. 1, where rp is the substructure Compton radius
for reference, r2 (= rp/3.15) is the outer radius of the proton
structure on whose surface resides the apparent charge e of
the proton, and r0 is the radius of the proton core. The lat-
ter radius is assumed to be no larger than rp/39000 [7]. Also
shown are four electron-core “trajectories” A, B, C, and D,
where A and B are propagating in free space and thus repre-
sent two elastic e-p scatterings.

Trajectory C (r0 < rd < r2) goes through the proton
structure, where the electron continuously looses energy (due
to excitations of that structure) between its entry and exit
points c and c′. Furthermore, since the electron possesses a de
Broglie radius (with a corresponding de Broglie wavelength
2πrd), it exhibits a wave-like nature throughout the trajectory.
This wave-like nature, and the finite length (c-c’) of the tra-
versed section, produce a resonance within the measured scat-
tering data.

Finally, when the electron energy is great enough (rd �
r0) to allow the electron core to penetrate the proton core, this
highly energized electron destroys the proton core, leading to
the destruction of the proton mass and Compton radius, with
a resulting hadron debris field (see Fig. 8.13 in [1, p. 199]).

Fig. 2 shows the experimental scattering data for a beam
of 4.879 GeV electrons (rd = rp/5.2 in (7)) from a proton
at rest. The elastic peak at the far right of the figure is rep-
resented by B in Fig. 1 with rd = r2. (This elastic peak is
shifted down from the incident electron energy 4.879 GeV
to approximately 4.55 GeV (rd = rp/4.9) by recoil effects.)
From the far right to approximately 2.9 GeV on the left the
scattering is represented by C in Fig. 1, where the destruction
of the proton core has not yet taken place. The three inelastic

Fig. 2: Elastic and inelastic electron scattering from protons, where
E′ represents the energy of the scattered electron [9, p. 14] [10]. The
scattering angle is 10◦. Electron loss increases from right to left.

resonance peaks from left to right in the figure correspond to
rd ≈ rp/(3.8, 4.1, 4.5) from (7).

Fig. 3 shows a repetition of Fig. 2 in a different format, for
various scattering angles of the electron. Once more, the de-
struction of the proton core has not taken place, but the idea of
the resonance scattering in the second and fourth paragraphs
above is reinforced by the set of five three-peaked curves in
the figure. The curves become monotonic when the trajectory
between c and c′ is deep enough to prevent constructive and
destructive interference between reflections at c and c′. Fur-
thermore, when the trajectory is deeper still, D (rd ≤ r0), the
electron core will scatter off the proton core.

Again, the proton core is destroyed when E � mpc2

(rd � r0). In this case the incident electron energy is suffi-
cient to overcome the loss sustained in crossing the structure
interval (r2 − r0 ≈ r2) to penetrate the proton core.

Appendix A: Structure

This appendix is a brief review of why the proton is structured
and the electron is not [7].

The electron and proton are assumed to exert the two cou-
pling forces

F(r) = ±
(

e2
∗

r2 −
mc2

r

)
(A1)

on the PV state, where the plus and minus signs refer to the
electron and proton respectively. In effect the negative charge
of the electron core (−e∗,me) in (1) repels the negative PV
charges (−e∗) away from this core; while the positive charge
in the proton core (e∗,mp) attracts the PV charges. These
oppositely charged Coulomb forces (the first terms in (A1)),
close to their respective cores, are the fundamental cause of
the structureless electron and the structured proton.

The potential energies associated with (A1) are defined
by [7]

V(r) − V0 =

∫ r

0+

F(r′) dr′ with V(rc) = 0 (A2)
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Fig. 3: Inelastic e-p scattering as a function of electron scattering
angle [9, p. 17] [11]. Electron loss increases from left to right

where rc (= e2
∗/mc2) is the Compton radius of either particle

and the 0+ accounts for the finite (but small) size of the cores.
This definition leads to

Vp(r) ≥ 0 and Ve(r) ≤ 0 (A3)

where Vp and Ve are the proton / and electron / PV coupling
potentials.

It is shown in the Klein paradox [8, p. 127] that a suffi-
ciently strong positive potential acting on the vacuum state
can force a portion of that state into free space, where that
part of the vacuum can then be attacked by free-space parti-
cles. Thus the positive and negative potentials in (A3) imply
that the proton core, but not the electron core, forces a small
spherical (in the core’s rest frame) portion of the vacuum into
the free space around the proton core. This free-space vacuum
“collar” is identified in the PV theory as the proton structure.
Furthermore, this structure leads to an apparent spread in the
charge e∗ of the proton core (Appendix B).

Appendix B: Charge spread

The polarization of the proton structure by the proton core
leads to an apparent spread of the proton charge that is rough-
ly expressed in the proton electric field as

Ep(r) =
e(r)
r2 (B1)

where the spread is

e(r) =


e∗ , r < r0
< e∗ , r0 < r < r2
e = α1/2e∗ , r2 ≤ r

(B2)

r2 = rp/3.15, and α (≈ 1/137) is the fine structure constant.
The radius r2 defines the outer extent of the proton structure.

An important characteristic of this result is the large charge
gradient

∆e
∆r

=
e − e∗
r2 − r0

≈ −e∗(1 −
√
α)

r2
≈ −0.92e∗

r2
(B3)

between the core charge e∗ and the observed proton charge
e at r2. This result explains a similar gradient in the QED
spread depicted in Fig. 11.6 of [9, p. 319].
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Antiparticles and Charge Conjugation in the Planck Vacuum Theory
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This short paper defines charge conjugation in terms of the Planck vacuum substructure
rather than the particle equation of motion. As such, the corresponding operator applies
to the proton as well as the electron. Results show that, like their electron and pro-
ton counterparts, the positron is structureless while the antiproton possesses a structure
consisting of a small vacuum “collar” surrounding its charged core.

1 Introduction

At present the Planck vacuum (PV) theory includes a model
for both the electron and proton and the PV state to which
these two particles are coupled [1]. But there is a problem:
while the theory suggests a source for the negative bare char-
ge (−e∗) of the electron (the current PV state itself), it is mute
when it comes to the positive bare charge (e∗) of the proton.
What follows assumes a bifurcated vacuum state that includes
both negative and positive bare charges (∓e∗). This bifur-
cated state is understood to mean that at each point in free
space there exists a PV subspace consisting of a charge dou-
blet (∓e∗), to either branch of which a free particle charge can
be coupled.

The charge conjugation operator C from the quantum the-
ory is an operator that changes particles into antiparticles, and
visa versa [2, p. 118]. An analogous operator is defined below
to expand the PV model to include the particle-antiparticle
symmetries and a source for the proton charge (e∗).

2 Charge conjugation

The electron and proton cores, (−e∗,me) and (e∗,mp) respec-
tively, exert the two particle/PV coupling forces

±

(
e2
∗

r2 −
mc2

r

)
(1)

on the PV state, where the plus and minus signs in (1) refer
to the electron and proton respectively. At their respective
Compton radii these forces reduce to

Fe =
(−e∗)(−e∗)

r2
e

−
mec2

re
=

e2
∗

r2
e
−

mec2

re
= 0 (2)

and

Fp =
(e∗)(−e∗)

r2
p

+
mpc2

rp
= −

e2
∗

r2
p
−

mpc2

rp

 = 0 (3)

where re (= e2
∗/mec2) and rp (= e2

∗/mpc2) are the electron and
proton Compton radii. The first (−e∗) and second (−e∗) in (2)
belong to the electron core and PV charges respectively. The
charge (e∗) in (3) belongs to the proton core. The vanishing
forces Fe and Fp are Lorentz invariant constants; and the two

forces on the right side of (2) are the “weak” forces, while the
two on the right side of (3) are the “strong” forces.

If it is assumed that the charge conjugation operator C′

applies only to free-particle charges, then from (2) and (3)

C′Fe =
(e∗)(−e∗)

r2
e

−
mec2

re
= −

(
e2
∗

r2
e

+
mec2

re

)
, 0 (4)

and

C′Fp =
(−e∗)(−e∗)

r2
p

+
mpc2

rp
=

e2
∗

r2
p

+
mpc2

rp
, 0 (5)

both of which destroy the electron and proton Compton radii
because the equations are nonvanishing. Since the correspon-
ding antiparticles should possess a Compton radius like their
particle counterparts, the C′ operator is not a valid charge
conjugation operator.

If it is assumed, however, that the charge conjugation op-
erator C applies to both the free-space particle charge and the
PV charge doublet, then (2) and (3) yield

CFe =
(e∗)(e∗)

r2
e
−

mec2

re
=

e2
∗

r2
e
−

mec2

re
= 0 (6)

and

CFp =
(−e∗)(e∗)

r2
p

+
mpc2

rp
= −

e2
∗

r2
p
−

mpc2

rp

 = 0 (7)

where both the electron and proton Compton radii are pre-
served in their antiparticles. Equations (6) and (7) imply
that the equations in (1) are also the antiparticle/PV coupling
forces. It is clear from the first charges in (6) and (7), (e∗)
and (−e∗), that the positron is positively charged and that the
antiproton carries a negative charge.

3 Comments

The second charges (−e∗) in the first terms of (2) and (3),
and the second charges (e∗) in the first terms of (6) and (7),
suggest that free particles and their antiparticles exist in two
separate spaces, corresponding respectively to the negative
and positive branches of the PV charge doublet.

In addition to the C operator preserving electron and pro-
ton Compton radii, the form of the first terms in (6) and (7)
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imply that the positron is structureless and that the antiproton
has structure [1, App. A]. This mirrors those same qualities
in the electron and proton, the first terms in (2) and (3).

As an aside, it is interesting to apply C to the electron
equation of motion. The Dirac equation for the electron can
be expressed as [2, p. 74]

ic~
(
∂

c∂t
+ αα · ∇

)
ψ = mec2βψ (8)

or, using c~ = e2
∗,[

i(−e∗)(−e∗)
(
∂

c∂t
+ αα · ∇

)
− mec2β

]
ψ = 0 (9)

where the first (−e∗) belongs to the electron and the second
to the negative branch of the PV charge doublet. The corre-
sponding positron equation of motion is then obtained from
the charge conjugation of (9)

C
[
i(−e∗)(−e∗)

(
∂

c∂t
+ αα · ∇

)
− mec2β

]
ψ

=

[
i(e∗)(e∗)

(
∂

c∂t
+ αα · ∇

)
− mec2β

]
ψc = 0 (10)

where ψc is the positron spinor that obeys the same equation
(9) as the electron spinor ψ. Due to the second (e∗) in (10), it
is clear that the positron belongs in the positive branch of the
PV doublet.

The same calculations in (8)–(10) are not applicable to the
proton particle because, due to the vacuum “collar” (of radius
rp/3.15) surrounding the proton core (e∗,mp), the proton does
not obey a Dirac equation of motion. In effect, the proton
cannot be modeled as a point charge because of this “collar”,
even though its core (e∗,mp) is orders-of-magnitude smaller
than its Compton radius rp.
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and the Derivation of Planck’s Constant
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In a previous paper, a framework for the physical description of physical processes at

the quantum level based on dislocations in the spacetime continuum within STCED

(Spacetime Continuum Elastodynamics) was proposed and it was postulated that the

spacetime continuum has a granularity characterized by a length b0 corresponding to

the smallest elementary Burgers dislocation vector possible. Based on the identification

of screw dislocations in the spacetime continuum with photons, the relation between

the Burgers constant b0 and Planck’s constant h is determined. Planck’s constant is

expressed in terms of the spacetime continuum constants. The calculated value of b0 is

found to be equivalent to the Planck length within the approximations of the derivation.

Numerical values of the spacetime constants κ̄0, µ̄0 and ρ̄0 are derived. A consistent

set of the spacetime constants is proposed based on the Burgers spacetime dislocation

constant b0 being equivalent to the Planck length ℓP.

1 Introduction

A previous paper [1] provided a framework for the phys-

ical description of physical processes at the quantum level

based on dislocations in the spacetime continuum within the

theory of the Elastodynamics of the Spacetime Continuum

(STCED). Dislocations in the spacetime continuum represent

the fundamental displacement processes that occur in its stru-

cture, corresponding to basic quantum phenomena and quan-

tum physics in STCED.

Spacetime Continuum Elastodynamics (STCED) [2–5] is

based on analyzing the spacetime continuum within a con-

tinuum mechanical and general relativistic framework. As

shown in [2], for an isotropic and homogeneous spacetime

continuum, the STC is characterized by the stress-strain rela-

tion

2µ̄0ε
µν + λ̄0g

µνε = T µν (1)

where T µν is the energy-momentum stress tensor, εµν is the

resulting strain tensor, and

ε = εαα (2)

is the trace of the strain tensor obtained by contraction. λ̄0 and

µ̄0 are the Lamé elastic constants of the spacetime continuum:

µ̄0 is the shear modulus and λ̄0 is expressed in terms of κ̄0, the

bulk modulus:

λ̄0 = κ̄0 − µ̄0/2 (3)

in a four-dimensional continuum.

A dislocation is characterized by its dislocation vector,

known as the Burgers vector, bµ in a four-dimensional con-

tinuum, defined positive in the direction of a vector ξµ tangent

to the dislocation line in the spacetime continuum [6, pp. 17–

24].

As discussed in [1], the spacetime continuum, at the quan-

tum level, is assumed to have a granularity characterized by

a length b0 corresponding to the smallest elementary Burgers

dislocation vector possible in the STC. Then the magnitude

of a Burgers vector can be expressed as a multiple of the ele-

mentary Burgers vector:

b = nb0. (4)

We find that b is often divided by 2π in dislocation equations,

and hence the constant

b̄ =
b

2π
, (5)

is also defined.

In this paper, we explore the relation between the space-

time Burgers dislocation constant b0 and Planck’s constant,

and derive the value of the spacetime continuum constants.

2 Screw dislocations in quantum physics

There are two types of dislocations [1]: 1) Edge dislocations

corresponding to dilatations, longitudinal displacements with

an associated rest-mass energy, are identified with particles,

and 2) screw dislocations corresponding to distortions, trans-

verse displacements which are massless, are identified with

photons. Arbitrary mixed dislocations can be decomposed

into a screw component and an edge component, giving rise

to wave-particle duality [5].

Hence screw dislocations in the spacetime continuum are

massless, transverse deformations, and are identified specif-

ically with photons. As shown in [1], the screw dislocation

Burgers vector is equal to the wavelength of the screw dislo-

cation

b = λ. (6)

This result is illustrated in Fig. 1.

If we consider a stationary screw dislocation in the space-

time continuum, with cylindrical polar coordinates (r, θ, z),
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Fig. 1: A wavelength of a screw dislocation.

with the dislocation line along the z-axis (see Fig. 2), then the

Burgers vector is along the z-axis and is given by br = bθ = 0,

bz = b, the magnitude of the Burgers vector.

The only non-zero component of the deformation is given

by [6, pp. 60–61]

uz =
b

2π
θ = b̄ tan−1 y

x
. (7)

Similarly, the only non-zero components of the stress and

strain tensors are given by

σθz =
b

2π

µ̄0

r

εθz =
b

4π

1

r

(8)

respectively.

The strain energy density of the screw dislocation is given

by the transverse distortion energy density [2, Eq. (74)]. The

non-zero components of the strain tensor are as defined in (8).

Hence

E⊥ = µ̄0

(
εθz

2 + εzθ
2
)
. (9)

Substituting from (8),

E⊥ =
µ̄0 b2

8π2

1

r2
= E. (10)

3 Planck’s constant

Based on our identification of screw dislocations in the space-

time continuum with photons, we can determine the relation

between the Burgers constant b0 and Planck’s constant h.

Even though the photon is massless, its energy is given by

the strain energy density of the screw dislocation, equivalent

to the transverse distortion energy density. As shown in [2,

Eq. (147)],

p̂2c2 = 32κ̄0 E⊥, (11)

where p̂ is the momentum density. For a screw dislocation,

substituting for E⊥ from (10) in (11), we obtain

p̂2c2 = 32κ̄0
µ̄0 b2

8π2

1

r2
. (12)

The kinetic energy density p̂c has to be equivalent to the

wave energy density ĥν for the screw dislocation (photon):

p̂c = ĥν. (13)

The photon’s energy is given by

hν =

∫

V

ĥν dV = ĥνV (14)

where V is the volume of the screw dislocation. We consider

the smallest Burgers dislocation vector possible and replace b

with the elementary Burgers dislocation vector b0 and V with

the smallest volume V0 to derive Planck’s constant. Combin-

ing (14), (13) and (12), (14) becomes

h =

√
16κ̄0 µ̄0 b0

2

(2πr)2

V0

ν
. (15)

Using (6), the frequency ν = c/λ becomes ν = c/b0 for

the smallest Burgers dislocation vector considered. Substitut-

ing into (15), the equation becomes

h =
4
√
κ̄0 µ̄0 b0

2πr

V0b0

c
. (16)

The volume of one wavelength of the screw dislocation can

be approximated by a cylinder and, using (6), written as

V = πr2λ = πr2b, (17)

which in the limit as b→ b0, becomes

V0 = πr
2b0. (18)

Substituting for V0 into (16), the equation becomes

h =
4
√
κ̄0 µ̄0 b0

2πr

πr2b2
0

c
. (19)

Fig. 2: A stationary screw dislocation in cylindrical polar coordi-

nates (r, θ, z) [6, p. 60].
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Simplifying,

h =
2
√
κ̄0 µ̄0

c
rb3

0, (20)

and in the limit as r approaches b0, becomes

h = 2

√
κ̄0 µ̄0 b4

0

c
(21)

where the units of h are J-s as expected. This is the basic def-

inition of Planck’s constant h in terms of the Lamé spacetime

constants and the Burgers spacetime dislocation constant b0.

This relation can be further simplified using µ̄0 = 32κ̄0
from [2, Eq. (150)]. Then

h = 8
√

2
κ̄0 b0

4

c
=

1

2
√

2

µ̄0 b0
4

c
. (22)

Numerically,

µ̄0 b0
4 = 2

√
2 hc = 5.8 × 10−25 J m. (23)

The value of the spacetime shear modulus µ̄0 is not a known

physical constant, neither is the value of the spacetime bulk

modulus κ̄0. However, Macken [8] has derived a value of κ̄0 =

4.6×10113 J/m3 which as we will see in Section 4 is expected

to be a valid estimate. Using µ̄0 = 32κ̄0 from Millette [2,

Eq. (150)], this yields a value of

µ̄0 = 1.5 × 10115 J/m3. (24)

Note that the units can be expressed equivalently as N/m2 or

J/m3. Substituting for µ̄0 in (23), we obtain the value of the

elementary Burgers vector

b0 = 1.4 × 10−35 m. (25)

This value compares very favorably with the Planck length

1.6 × 10−35 m. Given the approximations used in its deriva-

tion, this suggests that the elementary Burgers vector b0 and

the Planck length are equivalent.

With these constants, we are now in a position to calculate

the remaining unknown spacetime constant, the density of the

spacetime continuum ρ̄0. Using the relation [2]

c =

√
µ̄0

ρ̄0

, (26)

the density of the spacetime continuum is

ρ̄0 = 1.7 × 1098 kg/m3. (27)

4 Analytic form of constants b0 and κ̄0

Blair [7, p. 3–4] writes Einstein’s field equation as

T =
c4

8πG
G,

where T is the stress energy tensor, G is the Einstein curvature

tensor and G is the universal gravitational constant. He notes

the very large value of the proportionality constant. This leads

him to point out that spacetime is an elastic medium that can

support waves, but its extremely high stiffness means that ex-

tremely small amplitude waves have a very high energy den-

sity. He notes that the coupling constant c4/8πG can be con-

sidered as a modulus of elasticity for spacetime, and identifies

the quantity c3/G with the characteristic impedance of space-

time [7, p. 45].

From this, Macken [8] derives an “interactive bulk modu-

lus of spacetime”, which we identify with the spacetime con-

tinuum bulk modulus, given by

κ̄0 =
c7

~G2
. (28)

The result obtained for the numerical value of b0 and its close

correspondance to the Planck length suggests that the value

of κ̄0 proposed in [8] is correct. From Millette [2, Eq. (150)]

we then have

µ̄0 = 32
c7

~G2
. (29)

From (23), we can write

b0
4 = 2

√
2

hc

µ̄0

. (30)

Substituting from (29), this relation becomes

b0
4 =

√
2π

8

~
2G2

c6
(31)

and finally

b0 =

(
π

4
√

2

) 1
4

√
~G

c3
= 0.86 ℓP (32)

where ℓP is Planck’s length, defined as [9]

ℓP =

√
~G

c3
. (33)

Hence, as mentioned in Section 3, this suggests that the ele-

mentary Burgers dislocation vector b0 and the Planck length

ℓP are equivalent within the approximations of the derivation.

5 Recommended constants

Starting from the statement that the Burgers spacetime dislo-

cation constant b0 is equivalent to the Planck length ℓP, we

derive the constant of proportionality of (21). We thus set

h = k

√
κ̄0 µ̄0 b4

0

c
(34)
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where k is the improved constant of proportionality for the

relation. Substituting for κ̄0 from (28), for µ̄0 from (29), and

setting b0 = ℓP from (33), the equation becomes

h = k
√

32
c7

~G2

1

c

~
2G2

c6
(35)

from which we obtain

k =
π

2
√

2
. (36)

Hence, with the Burgers spacetime dislocation constant

b0 equivalent to the Planck length ℓP, the basic definition of

Planck’s constant h in terms of the Lamé spacetime constants

and the Burgers spacetime dislocation constant b0 is given by

h =
π

2
√

2

√
κ̄0 µ̄0 b4

0

c
. (37)

In terms of κ̄0, we have

h = 2π
κ̄0 b4

0

c
(38)

or

~ =
κ̄0 b4

0

c
(39)

and in terms of µ̄0, we have

h =
π

16

µ̄0 b4
0

c
. (40)

As stated, the Burgers spacetime dislocation constant b0 is

given by

b0 = ℓP =

√
~G

c3
(41)

and the spacetime continuum Lamé constants are as per (28)

and (29):

κ̄0 =
c7

~G2

µ̄0 = 32
c7

~G2
.

(42)

It is recommended that the relations in this section be retained

as the official definition of these constants.

6 Discussion and conclusion

We have expressed Planck’s constant in terms of the space-

time continuum constants κ̄0, µ̄0, b0, and the speed of light

c. The calculated value of b0 compares very favorably with

the Planck length and suggests that the elementary Burgers

vector b0 and the Planck length are equivalent within the ap-

proximations of the derivation. An estimate of the numerical

values of the spacetime constants κ̄0, µ̄0 and ρ̄0 is also ob-

tained, based on Macken’s [8] derived value of κ̄0 which is

found to be a valid estimate, given the agreement between b0

and the Planck length ℓP.

A consistent set of recommended spacetime constants is

obtained based on setting the Burgers spacetime dislocation

constant b0 equivalent to the Planck length ℓP.
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Quantum Gravity Experiments
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A new quantum gravity experiment is reported with the data confirming the generali-
sation of the Schrödinger equation to include the interaction of the wave function with
dynamical space. Dynamical space turbulence, via this interaction process, raises and
lowers the energy of the electron wave function, which is detected by observing conse-
quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener
diodes. This process has previously been reported and enabled the measurement of the
speed of the dynamical space flow, which is consistent with numerous other detection
experiments. The interaction process is dependent on the angle between the dynamical
space flow velocity and the direction of the electron flow in the diode, and this depen-
dence is experimentally demonstrated. This interaction process explains gravity as an
emergent quantum process, so unifying quantum phenomena and gravity. Gravitational
waves are easily detected.

1 Introduction

The quantum theory of gravity explains the gravitational ac-
celeration of matter as caused by the refraction of quantum
waves by the time dependence and spatial inhomogeneities
of the dynamical space flow [1]. This has been tested against
numerous experimental gravitational phenomena [2]: bore
hole g anomalies, flat spiral galaxy rotation curves, black
hole systematics and star orbit data [3], lensing of light by
stars and galaxies, expanding universe supernova redshift-
brightness data without need for dark matter or dark energy
[4], anisotropic Brownian motion [5], directional dependence
of nuclear decay rates [6]. The key initial experiments de-
tected the dynamical space using light speed anisotropy gas-
mode Michelson optical interferometers and EM speed aniso-
tropy in RF coaxial cables. More recently quantum detectors
have been discovered that directly detected the space flow [7,
8]. All these different experimental techniques reveal a turbu-
lent space flow speed from direction RA ∼ 4.5hrs, Dec=80◦S,
with a speed of ∼500 km/s. These velocities are moderated
over a year by the orbital motion of the Earth.

The dynamical space quantum detectors, which use re-
verse biased Zener Diodes, Fig. 1 and Fig. 2, have given rise
to a new critical test of the quantum theory of gravity, re-
ported herein, namely an orientation dependent effect, which
directly tests the modified Schrödinger equation which in-
cludes the effects of the dynamical space. This uses collo-
cated quantum detectors which are either in parallel configu-
ration or anti-parallel configuration, Fig. 3.

2 Quantum gravity

Dynamical space is a phenomenon repeatedly detected by
a variety of experimental techniques [2]. The Schrödinger
equation must be extended to include the dynamical space by
using the Euler time derivative ∂/∂t → ∂/∂t +v(r, t)·∇, where
v(r, t) is the classical field description of the dynamical space

Fig. 1: Left: Circuit of Zener Diode Space Flow Detector, showing
1.5 V AA battery, two 1N4728A zener diodes operating in reverse
bias mode, and having a Zener voltage of 3.3 V, and resistor R=

10 KΩ. Voltage V across resistor is measured and used to determine
the turbulent space flow driven fluctuating tunnelling current through
the Zener diodes. Correlated currents from two collocated detectors
are shown in Fig. 4. Right: Photo of detector with 5 Zener diodes in
parallel.

velocity:

i~
∂ψ(r, t)
∂t

= −
~2

2m
∇2ψ(r, t) + V(r, t)ψ(r, t)

−i~v(r, t)·∇ψ(r, t) .
(1)

Here v(r, t) is the velocity field describing the dynami-
cal space at a classical field level, and the coordinates r give
the relative location of ψ(r, t) and v(r, t), relative to a Eu-
clidean embedding space, and also used by an observer to
locate structures. This is not an aether embedded in a non-
dynamical space, but a dynamical space which induces an
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Fig. 2: Electron wave function after barrier quantum transmission
and reflection from the LHS, with p and n denoting semiconduc-
tor type, showing partially transmitted component and partially re-
flected component, when the diode is operated in reverse-bias mode,
as shown in Fig. 1. Space flow fluctuations raise and lower the en-
ergy of the incident wave function, which changes the relative mag-
nitude of these two components.

Fig. 3: Left: Two collocated detectors in parallel configuration,
Right: anti-parallel configuration. The corresponding data is shown
in Fig. 4. The data in Fig. 5 was obtained with one of the detectors in
the parallel configuration shifted by 1cm, and together aligned with
the Earth’s spin axis.

embedding space or coordinate system. The Euler deriva-
tive was first introduced by Euler in 1757 when beginning the
study of fluids, and ensures that fluid dynamics are relative
to the fluid, and not fixed relative to an observer. Hertz in
1890 introduced this Euler derivative into Maxwell’s EM the-
ory, but was unaware of the meaning of v(r, t). The detection
of the dynamical space then mandates the use of the Euler
derivative in the Schrödinger equation [1].

A significant effect follows from (1), namely the emer-
gence of gravity as a quantum effect: an Ehrenfest wave-
packet analysis reveals the classical limit and shows that the
acceleration of a localised wave packet, due to the space terms
alone, when V(r, t) = 0, given by g = d2<r>/dt2, gives [1]

g(r, t) =
∂v
∂t

+ (v· ∇)v (2)

That derivation showed that the acceleration is independent
of the mass m: whence we have the derivation of the Weak
Equivalence Principle, discovered experimentally by Galileo.

Note that the emergent quantum-theoretic matter acceler-
ation in (2), is also, and independently, the constituent accel-

Fig. 4: Correlated current fluctuations, as indicated by voltage across
resistor R, and with DSO operated with 1 MΩ AC input, and no
filters. Top: From two collocated parallel detectors, as shown in
Fig. 1. Bottom: Anti-correlated current fluctuations from the two
collocated but anti-parallel detectors, also shown in Fig. 1. This data
confirms the dynamical consequences of the −i~v · ∇ψ term in the
new Schrödinger equation. This term is the origin of the quantum
gravity.

eration a(r, t) of the space flow velocity field,

a(r, t) = lim
∆t→0

v(r + v(r, t)∆t, t + ∆t) − v(r, t)
∆t

=
∂v
∂t

+ (v·∇)v .
(3)

which describes the acceleration of a constituent element of
space by tracking its change in velocity. This means that
space has a structure that permits its velocity to be defined
and detected, which experimentally has been done. This then
suggests, from (2) and (3), that the simplest dynamical equa-
tion for v(r, t) is

∇·

(
∂v
∂t

+ (v·∇)v
)

= −4πGρ(r, t); ∇ × v = 0 (4)

because it then gives ∇.g = −4πGρ(r, t), ∇ × g = 0, which
is Newton’s inverse square law of gravity in differential form.
Hence the fundamental insight is that Newton’s gravitational
acceleration field g(r, t) for matter is really the acceleration
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Fig. 5: Correlated current fluctuations, as indicated by voltage across
resistor R, and with DSO operated with 1 MΩ AC input, and no
filters. Detectors in parallel configuration, and orientated parallel to
Earth axis , but offset by 1 cm, and plotted with a time offset of 20 ns,
implying a speed of 500 km/s.

field a(r, t) of the structured dynamical space and that quan-
tum matter acquires that acceleration because it is fundamen-
tally a wave effect, and the wave is refracted by the acceler-
ations of space. While (4) is the simplest 3-space dynamical
equation, this derivation permits further terms which main-
tain Newton’s inverse square law external to a spherical mass,
but which otherwise leads to new observed aspects of gravity,
which have previously been ascribed to “dark matter”, but
which are now revealed to be a dynamical aspect of space.

3 Quantum gravity directional experiment

The presence of the −i~v ·∇ dynamical space term provides
a critical test of the emergent quantum gravity theory. For
plane wave electrons, ψ ∼ e(ik·r−iωt), the space interaction
term changes the energy of the electrons, for uniform v,

E = ~ω→ ~ω + ~k · v (5)

This space induced energy shift changes the potential energy
barrier electron quantum tunnelling amplitudes in a reverse-
biased Zener diode, Fig. 2. This effect is easily measured by
means of the circuit in Fig. 1. A critical implication is that
the electron tunnelling current must depend on the angle θ
between k and v, as in in k·v = kv cos θ. To test this effect two
collocated detectors were arranged as in Fig. 3, with parallel
and anti-parallel configurations. The resulting currents are
shown in Fig. 4, and confirm this angle dependence effect.

As well if one of the detectors in the parallel configura-
tion is moved by 1 cm, then a time delay effect of 20 ns is
detected, as in Fig. 5. This corresponds to a spatial speed of
∼500 km/s from a S direction, as detected in numerous other
experiments.

Fig. 6: Typical frequency spectrum data, showing Log[S [ f ]] plotted
against Log[ f ] from the current fluctuation data, showing slope of
−1.0, as the solid plot, revealing a 1/f spectrum, typical of Johnson
1/f electronic systems “noise”, and so explaining the origin of John-
son noise [10] , and also demonstrating again the fractal structure of
the dynamical space.

Most electronic devices exhibit Johnson noise [10], where
the electron current has a characteristic 1/f spectrum. The ori-
gin of this noise has never been explained until now. The fre-
quency spectrum for one of the current fluctuations in Fig. 4
is shown in Fig. 6, and exhibits a 1/f spectrum. This implies
that Johnson noise is a consequence of the fractal structure of
the space flow.

4 Conclusions

The experimental detection of dynamical space required gen-
eralisation of Maxwell’s EM Theory, Schrödinger’s Quan-
tum Theory and a corresponding generalisation of the Dirac
Quantum Theory [9], and the determination of a dynamical
theory for space. As a consequence it has been discovered
that gravity is an emergent quantum effect. Here we have
reported new key tests of this quantum theory of gravity by
detecting predicted angle dependencies of quantum barrier
electron tunnelling currents. The fluctuating electron cur-
rents amount to the detection of wave effects of the dynamical
space: gravitational waves [11].
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Astrophysical black holes are by now routinely identified with metrics representing eter-

nal black holes obtained as exact mathematical solutions of Einstein’s field equations.

However, the mere existence and discovery of stationary solutions is no guarantee that

they can be attained through dynamical processes. If a straightforward physical caveat

is respected throughout a spacetime manifold then the ingress of matter across an event

horizon is prohibited, in accordance with Einstein’s expectation. As black hole forma-

tion and growth would be inhibited, the various pathological traits of black holes such as

information loss, closed timelike curves and singularities of infinite mass density would

be obviated. Gravitational collapse would not terminate with the formation of black

holes possessing event horizons but asymptotically slow as the maximal time dilation

between any pair of worldlines tends towards infinity. The remnants might be better

described as dark holes, often indistinguishable from black holes except in certain as-

trophysically important cases. The absence of trapped surfaces circumvents topological

censorship, with potentially observable consequences for astronomy, as exemplified by

the remarkable electromagnetic characteristics, extreme energetics and abrupt extinc-

tion of quasars within low redshift galaxies.

1 Introduction

Quasars are exceptionally luminous objects located at cos-

mological distances [1]. Rapid fluctuations in their emissions

arguably provide the most compelling hints that black holes

of some description exist in nature. The empirically deter-

mined “M-sigma relation” points to a causal kinematic con-

nection between black hole growth and galactic evolution,

with motions of nearby gas and stars providing irrefutable

evidence that 106 ∼ 109 M⊙ black hole candidates are present

[2]. This has led many researchers to conclude that the uni-

verse is home to a multitude of black holes conforming to

one of the stationary, asymptotically flat, black hole metrics

– in accordance with the claim of a leading relativist that the

“black holes of nature are the most perfect macroscopic ob-

jects that are in the universe” [3].

Potentially pre-dating the earliest stars, quasars may have

fostered galaxy formation [4]. However, the question of how

their central engines operate remains clouded in considerable

uncertainty. Furthermore, astronomical observations have not

been satisfactorily reconciled with theory. For instance, the

abrupt cessation of quasar activity during the early universe

calls for some efficient shutdown mechanism [5]. It is now

generally believed that virtually all galactic nuclei harbour a

supermassive black hole, most galaxies have undergone a pe-

riod of quasar activity in the past, black holes have at present

scarcely lost any mass through Hawking radiation and a heal-

thy fraction of galaxies are still rich in gas. It is therefore puz-

zling that the temporary revival of quasar activity is not occa-

sionally observed, especially within gas-rich galaxy clusters.

A glaring inconsistency arises with the currently in vogue

gas-starvation model of quasar extinction.

Karl Schwarzschild provided the first solution to the field

equations of general relativity (GR), obtaining a spherically

symmetric metric describing an eternal black hole∗ with an

event horizon [6]. After lengthy deliberation, Einstein re-

mained dismissive of the notion that objects with an event

horizon might actually exist in nature, pointing out that a

clock arriving at an event horizon would totally cease to ad-

vance compared to more remotely situated clocks [7]. The

more interesting case of dynamic gravitational collapse with-

in GR, abandoning the assumption of stationary geometry,

was tackled analytically that same year by Oppenheimer &

Snyder [8]. The mathematical results, as valid now as they

ever were [9], establish that from the perspective of a dis-

tant observer the implosion initially accelerates until the con-

traction becomes relativistic, whereupon the implosion rate

declines – ultimately halting just as the critical radius is ap-

proached. From this vantage, an event horizon only forms in

an asymptotic sense, after the infinite passage of time.

Oppenheimer & Snyder also commented on their results

from the perspective of the infalling matter. They found that

as external time approaches infinity, the proper time along

the worldline of an infalling particle tends towards some fi-

nite value. They then considered what might happen at later

proper times of the infalling particle, apparently without pau-

sing to consider whether time could physically continue to

advance for the infalling particle: “after this time an observer

comoving with the matter would not be able to send a light

signal from the star”. It is currently fashionable to ignore

Einstein’s objection regarding infinite time dilation. But is

∗The term “black hole” was not coined until some years after Einstein’s

departure, the alternative “frozen star” had previously been widely used.

R. J. Spivey. Dispelling Black Hole Pathologies through Theory and Observation 321



Volume 11 (2015) PROGRESS IN PHYSICS Issue 4 (October)

that wise? The field of black hole physics is by now plagued

by a variety of serious difficulties. Closed timelike curves

seem to be unavoidable within rotating black hole spacetimes,

with potentially disturbing connotations for causality and he-

nce physics at its most fundamental level. The notion that

information might be captured and destroyed by black holes

has also troubled theoretical physicists for decades [10, 11].

This “information paradox” recently led to the suggestion that

black holes only possess apparent horizons [12] as opposed to

genuine event horizons: features traditionally regarded as the

defining hallmarks of true black holes [13].

There is also a widespread expectation that naturally oc-

curring black holes lack “hair” and comply with the princi-

ple of topological censorship [14], rapidly settling down ei-

ther to a Kerr-Newman or, more realistically, a Kerr geome-

try corresponding to an electrically uncharged, rotating black

hole. As will be discussed, astronomical observations cast

significant doubt on the reliability of this common assump-

tion. Moreover, due to the generality of results obtained in

dynamical collapse scenarios such as Oppenheimer & Sny-

der considered, there is a suspicion that Einstein was right:

it may be difficult or impossible to produce stationary black

holes through physically realistic processes.

The goal of this work is to argue that these various con-

ceptual problems can vanish, without departing from Ein-

stein’s gravitational theory, if a straightforward physical con-

sideration is respected throughout a spacetime manifold. This

caveat does not impinge upon general covariance and the ma-

thematical apparatus of general relativity is unchanged. A

discussion then follows of why quasar observations support

the contention that black holes lack event horizons and might

be better described as dark holes.

2 The Schwarzschild black hole

The Schwarzschild metric represents a non-rotating eternal

black hole with the spherically symmetric spacetime

ds2 =

(

1−
rs

r

)

c2dt2
−

(

1−
rs

r

)−1

dr2
−r2(dθ2+sin2 θdφ2) (1)

where ds is the spacetime interval, t represents the proper

time of a stationary clock at spatial infinity, (r, θ, φ) are the

usual spherical coordinates (2πr being the circumference of a

circle at radius r). The event horizon is located at r = rs =

2Gm/c2, known as the Schwarzschild radius of a black hole.

The gravitating mass of the black hole, m, is concentrated at

the origin.

As is well-known, if the metric is expressed in this way it

has a coordinate singularity at r = rs, the (critical) radius

of the event horizon, despite the lack of matter there (the

spacetime itself is only singular at r = 0). The exterior so-

lution, r > rs, accurately approximates the spacetime outside

a spherically symmetric star [15]. This region is well-behaved

and suffices for the present discussion.

For a particle following a timelike worldline, ds2 ≡ c2dτ2

where τ is the proper time of the particle and dτ ≡ 0 for null

particles (light rays). Therefore, along the worldline of any

particle, ds2
> 0, and the following inequality must hold:

(

1 −
rs

r

)

c2dt2
>

(

1 −
rs

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2)

It is convenient to rearrange this expression to obtain

1
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r
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r2
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dθ
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2

+
r2 sin2 θ

1 − rs
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dφ
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2

6 c2. (3)

The Schwarzschild metric is asymptotically flat and, for

regions far outside the event horizon, r ≫ rs, the effects of

gravitational time dilation are negligible. One then finds that

(dr/dt)2 + r2 (dθ/dt)2 + r2 sin2 θ (dφ/dt)2
6 c2 which, con-

sidering the spherical coordinate system, confirms the expec-

tation that the speed of light is insurmountable in special rel-

ativity, with the possible exception of tachyonic particles.

3 Spacetime coherency

Spacetime is a four-dimensional continuum, a differentiable

and connected Lorentzian manifold. In general relativity it

is dynamically acted upon by gravitation so as to alter the

geodesics of motion. General relativity is a global theory: the

presence of mass-energy does not merely influence the local

spacetime, but the entire spacetime manifold. Thus, grav-

ity’s range is limited only by the size of the universe. Gen-

eral relativity abides by the principle of general covariance

allowing its physical laws to be expressed independently of

coordinates.

The order in which events occur is observer-dependent in

both special and general relativity. Nevertheless, the relative

rate at which time elapses along two worldlines (i.e. time di-

lation/contraction) can be uniquely defined whether the sep-

aration between the worldlines is timelike, null or spacelike.

Time dilation is a non-local, coordinate-independent quantity

encoding genuine physics which is necessary for global con-

sistency. For an arbitrary number n of distinct test particles

with proper times τ1, τ2 . . . τn, it must hold that

dτ1

dτn

×

n−1
∏

i=1

dτi+1

dτi

= 1. (4)

If general relativity is applied to the universe then the

proper elapsed time, τ, along any worldline cannot exceed the

time since the big bang, even if the universe is spatially infi-

nite. Hence, along any worldline, the proper time τ < ∞ and

the proper distance ℓ < ∞. Recognising that proper time τ is

an affine parameter along the worldline xα(τ), for a specified

spacetime manifold the demand of finite proper time along all

worldlines within the universe can be formally stated as

∀ xα(τ) : τ < ∞. (5)
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It should be self-evident that this constraint will be sat-

isfied by any physically realistic spacetime manifold. Non-

compliance, as would occur once the advancement of proper

times along any pair of worldlines could not proceed in tan-

dem, would break the global coherency and connectedness of

the spacetime continuum. Such a basic physical requirement

must have priority over all “philosophical” concerns, an issue

returned to in the discussion. Spacetime is not merely a local

union of space and time but a global one. Failure to appre-

ciate that localised physics can have wider implications for

a spacetime manifold may be at the root of some persistent

confusions in current black hole research.

4 Time dilation between arbitrary particles

For lightlike particles, the Schwarzschild metric provides a

relationship involving two time coordinates t and τ
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= αc2
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1
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. (6)

The parameter α is defined as α ≡ 1 − rs/r for the range

r > rs so that α is strictly positive with 0 < α 6 1. This

expression allows the time dilation relative to Schwarzschild

time t, a coordinate independent physical quantity, to be de-

termined for an arbitrarily moving test particle located any-

where outside the event horizon.

Although particles travelling at the speed of light experi-

ence no passage of proper time (dτ = 0), photons travelling

radially towards the event horizon are eventually brought to a

halt since the original metric then reduces to (dr/dt)2 = α2c2

and, in the limit as r → rs, one sees that α → 0. This repre-

sents a worst case scenario since, for non-radial motion of the

photon, (dr/dt)2 < α2c2. For a purely radial ingoing photon,

dr/dt = −αc and so the minimum Schwarzschild time, ∆tmin,

required for a photon to travel from an initial radius r0 to a

final radius r∗, with r0 > r∗ > rs, is given by

∆tmin = t∗ − t0 =

∫ r∗

r0

(

dt

dr

)

dr =

∫ r0

r∗

dr

αc

=
1

c

∫ r0

r∗

r dr

r − rs

=
r0 − r∗

c
+

rs

c
ln

(

r0 − rs

r∗ − rs

)

. (7)

Due to the denominator in the logarithm term, as r∗ →

rs, this time interval grows without limit. Hence, regard-

less of the location at which photons are emitted outside the

black hole, gravitational time dilation prohibits them reach-

ing the event horizon in finite time according to the clock of

a Schwarzschild observer.

In order to broaden this result, a quantity v is now defined

such that

v2 =
1

α2

(

dr

dt

)2

+
r2

α

(

dθ

dt

)2

+
r2 sin2 θ

α

(

dφ

dt

)2

. (8)

With reference to (3), it is apparent that one can write

v2 6 c2. This is consistent with v representing a physical

velocity whose magnitude, corrected for relative motion and

gravitational time dilation, remains bounded by the speed of

light. It can then be seen from (6) that

(dτ/dt)2 = α(c2 − v2)

and consequently 0 6 (dτ/dt)2
6 1. The time dilation relation

between two arbitrary worldlines with proper times τ1 and

τ2 exploring the exterior Schwarzschild geometry can there-

fore be obtained from formula (9) where α1 = 1 − rs/r1 and

α2 = 1 − rs/r2 with subscripts referring to worldlines 1 and 2

respectively. Thus, α1 and α2 have the same range as α such

that consideration is strictly restricted to the region external

to the event horizon. Since v2
1
6 c2 and v2

2
6 c2, neither the

numerator nor denominator of (9) can be negative under any

circumstances.

If a timelike particle following worldline 2 approaches the

event horizon, r2 → rs, then α2 → 0 with the numerator of

(9) remaining positive. For a timelike observer moving along

worldline 1 sufficiently distant from the event horizon that

α1 ≫ α2 it is then apparent that dτ2/dτ1 → 0, meaning that

proper time ceases to advance along worldline 2. Noting that

timelike particles take longer to approach the event horizon

than light rays and that dτ1/dt remains finite for any time-

like observer comfortably outside the event horizon, one may

conclude that

According to any external observer following a

timelike worldline, light rays and timelike par-

ticles require infinite proper time to reach the

event horizon of a Schwarzschild black hole.

Because (5) must be respected it follows that

Since infalling particles cannot experience the

passage of time beyond that corresponding to in-

finite proper time along all other worldlines, they

are incapable of penetrating the event horizon of

a Schwarzschild black hole.

These statements are completely independent of the (arbi-

trary) choice of coordinate system. Furthermore, they do not

require that observers be either stationary or infinitely remote.

Indeed, observers could be relatively close to the event hori-

zon without violating the assumption that α1 ≫ α2. There is

no optical illusion at play associated with the time of flight of

photons – the conclusion holds for inanimate clocks lacking

the faculty of vision just as well as it does for conventional

observers.

Note also that there is no need for any special synchroni-

sation procedure between the two particles: infinite time di-

lation prevents the ingress of matter across an event horizon

as long as external clocks continue to mark time. If τ2 = 0

at the commencement of worldline 2 and the event horizon is

approached as τ2 → τh, a finite proper time, then regardless

of where and when worldline 1 commences it is still true that
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τ1 → ∞ as τ2 → τh. This is manifestly so because

τ1(τ2 → τh) =

∫ τh

0

(

dτ1

dτ2

)

dτ2

=

∫ τh

0

(

dτ2

dτ1

)−1

dτ2 → ∞. (10)

Proper times separating events along worldlines are in-

variant quantities, as are infinitesimal proper times. Thus, the

same can be said of the ratio of the rate of passage of proper

times along distinct worldlines. If the previous calculation

were to be repeated using so-called horizon-penetrating coor-

dinates (e.g. Lemaı̂tre, Novikov, Gullstrand-Painlevé, Krus-

kal-Szekeres, ingoing Eddington-Finkelstein [16]) the same

results would of course be obtained by virtue of general co-

variance. The fact that the time dilation approaches infinity

as r2 → rs has nothing to do with the Schwarzschild coordi-

nate singularity at rs, the coordinates being regular and well-

behaved for all r > rs, a range that was entirely adequate for

the purposes of this analysis.

Therefore, contrary to some common assertions, an as-

tronaut could not fall into a black hole without incident. Al-

though τ2 would remain finite in such circumstances, τ1 wo-

uld approach infinity as τ2 → τh. The astronaut encoun-

ters no immediate physical impediment at the event horizon

but, due to the demand of global coherency and the need

for proper times along worldlines to remain finite in (5), the

condition τ2 6 τh must be respected. Thus, the worldline

of the astronaut would terminate as τ2 → τh, correspond-

ing to a situation in which the spacetime manifold totally

ceases to evolve. The astronaut simply would not experience

proper times later than τh which, in effect, would be the mo-

ment when his or her worldline reaches future timelike infin-

ity within the Schwarzschild spacetime. Times τ2 > τh would

necessarily be fictitious and unphysical due to violation of (5).

For all τ2 < τh, there is no consistency problem. One is

not obliged to make an either or selection, exclusively choos-

ing between the infalling or remote observer perspectives –

they are mutually compatible projections of a globally coher-

ent spacetime manifold. However, if one insists on abandon-

ing coherency to consider the physically impossible case τ2 >

τh, a choice is then mandatory but the results are physically

meaningless. That infalling matter indefinitely hovers above

the horizon from the perspective of a distant Schwarzschild

observer is a well-established result [15, 17]. In order to fur-

ther clarify matters, it has been extended here to arbitrarily

situated and potentially moving external observers who may

be in quite close proximity to the event horizon.

The impermeability of the event horizon due to time dila-

tion effects has in recent years been highlighted in the context

of the black hole information paradox [18]. Furthermore, sev-

eral core arguments promulgating that belief that event hori-

zons are traversable have been dispelled [19]. While it is well-

known that nothing can escape from a black hole, this anal-

ysis suggests that event horizons cannot be traversed in any

direction whilst offering a readily comprehensible explana-

tion as to why that is. Although angular momentum has been

ignored here for simplicity, one would not expect its influ-

ence to alter the conclusions. Rotation would only represent

an additional barrier, further hindering the arrival of particles

at the event horizon of a Kerr black hole.

5 Dynamically formed black holes

A classic general relativity textbook originally published four

decades ago argued that eternal black holes provide an ex-

cellent approximation to the outcome of gravitational col-

lapse [15]. This advice may have been taken a tad too lit-

erally. Clearly, if event horizons are bidirectionally imperme-

able then the black hole information paradox would be triv-

ially resolved. The interior geometry of the Schwarzschild

metric may satisfy the field equations, but the constraint (5)

suggests it cannot be arrived at through gravitational collapse,

it is merely a hypothetical arrangement. Spacetime coherency

issues aside, the equivalent rest mass energy of the Schwarz-

schild singularity goes no way towards counterbalancing its

gravitational potential energy which, by any realistic assess-

ment, is infinitely negative. Therefore, a Schwarzschild black

hole and a collapsing star of the same mass forming a dark

hole frozen in time have vastly different energies and are hen-

ce inequivalent on energy conservation grounds.

If the proper time for an infalling particle is advanced

without regard for physics elsewhere then the spacetime can

decouple and become non-connected, leading to a host of

conceptual difficulties. For physically realistic gravitational

collapse, however, it is not that infalling matter would hover

in suspension above an event horizon – but that an event hori-

zon would never form, in keeping with the external observer

perspective of Oppenheimer & Snyder’s analysis. However,

in the unlikely event that the universe were host to fully-

formed eternal black holes, their event horizons would be-

have as impenetrable barriers to infalling matter. Due to time-

reversal symmetry, the geometry of spacetime in general rel-

ativity is as much a function of the future distribution of mass

and energy as the past distribution, endowing the theory with

a teleological quality. Thus, the event horizons of such hypo-
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thetical black holes could in principle expand in anticipation

of infalling matter so that time dilation halts the ingress of

matter sooner than it might otherwise do. Notice that such

expansion need not involve any increase in the gravitational

potential of infalling matter since the potential near the event

horizon is independent of black hole mass.

Hawking radiation arises due to separation of virtual par-

ticle pairs in the vicinity of a black hole event horizon [20],

causing eternal black holes to evaporate with a perfect ther-

mal spectrum, devoid of information content. Conversely,

frozen stars with their rich, history-dependent structure, are

able to radiate in the regular black body manner – thus avoid-

ing information loss [21]. However, this issue is of lesser

importance to the present discussion than the need for space-

time to remain coherent and connected. Black hole research

has not led to many testable predictions but this consideration

can have readily observable astronomical implications.

6 Topological admissibility

Trapped surfaces are defined as surfaces from which light

rays initially pointing outwards are obliged to converge in-

wardly. The existence of a trapped surface is a precondition of

several well-known theorems in general relativity. The event

horizon of a Schwarzschild black hole is a null surface inside

which surfaces equidistant from the horizon are all trapped.

According to the Penrose-Hawking singularity theorems [22–

24], a trapped surface inevitably leads to a geodesically in-

complete spacetime manifold, implying the imminent forma-

tion of a singularity. However, if time dilation and global

spacetime considerations prohibit the formation of event hori-

zons then trapped surfaces cannot naturally arise and the sin-

gularity theorems have no physical relevance. By the same

logic, the closed timelike curves of rotating eternal black ho-

les would be avoided. Speculations concerning the physics

internal to an event horizon are invulnerable to falsification

and hence, strictly speaking, outside the scope of empirical

science. However, although the presence of event horizons

cannot be directly verified [13], evidence of their non-existen-

ce could in principle be obtained.

Like the singularity theorems, the principle of topological

censorship [14] assumes the presence of a trapped surface.

Therefore, if time dilation guards against event horizon for-

mation, the gravitational collapse of a rapidly spinning cloud

of gas would be capable of forming an axisymmetric structure

of toroidal topology. Due to its dynamic nature, this scenario

also falls outside the scope of earlier constraints on black hole

topology [25, 26]. If physically realistic astrophysical black

holes can be toroidal, the astronomical implications could be

observable from afar.

Amongst the most energetic phenomena of the universe,

quasars outshine galaxies by as many as three orders of mag-

nitude. They were most abundant at redshifts of z ∼ 2 when

the universe was less than 20% its present age and are sig-

nificantly more scarce by now [27]. They create bipolar out-

flows [28], axially aligned relativistic jets penetrating inter-

galactic space and ultimately forming gigantic radio lobes as

their energy is dissipated. Often chaotically turbulent, the

jets are comprised of electrically charged particles which can

form knots via magnetohydrodynamic processes. The ori-

entation of the jets exhibits long-term stability, hinting at a

direct dependency on the angular momentum vector of a su-

permassive black hole as opposed to that of an accretion disk

of relatively low mass which is vulnerable to significant dis-

ruption by the assimilation of roving stars. This is another

weakness of models seeking to account for jet formation in

terms of a magnetised accretion disk.

The discovery of various metrics describing stationary sp-

acetimes in which black holes are completely described by

mass, angular momentum and electromagnetic charge alone

led to the “no-hair conjecture”. Though the Schwarzschild

and Kerr-Newman metrics are lacking in “follicles”, it is very

natural to expect macroscopic departures from these metrics

during realistic collapse scenarios. Furthermore, since the

formation of trapped surfaces would violate spacetime co-

herency (5), crucial assumptions underpinning the singularity

theorems and the principle of topological censorship may not

apply.

Providing its assumptions are satisfied, topological cen-

sorship requires the central aperture of a toroidal black hole

to seal up so rapidly that a ray of light lacks sufficient time to

traverse it. Numerical simulations have provided some sup-

port for this [29]. However, computational approaches almost

invariably adopt horizon-penetrating coordinates and fail to

enforce the physical requirement (5). Instead, event horizons

are located retrospectively after simulations terminate, with-

out global consistency checks.

Theoretically, metrics describing black holes with toroi-

dal event horizons have been obtained for anti-de Sitter back-

grounds with a negatively valued cosmological constant. In

such situations,Λ can be arbitrarily small [30]. Thus, toroidal

event horizons are only marginally prohibited when consid-

ering eternal black holes in asymptotically flat spacetimes.

However, if trapped surfaces cannot realistically form dur-

ing gravitational collapse then topological censorship is by-

passed entirely, leaving the toroidal dark hole (TDH) a viable

possibility. Most stars capable of undergoing core collapse

are massive, hence rapidly reaching the ends of their life-

cycles. They are likely to retain sufficient angular momen-

tum from their formation that during implosion their cores

will adopt a toroidal geometry, if only transiently. A toroidal

core can be supported by degeneracy (electron/neutron) pres-

sure but, for very massive and rapidly rotating stars, direct

collapse to a TDH is conceivable. Any of these eventuali-

ties could have potentially explosive consequences, scattering

ejecta deep into space [31].

The angular momentum of a Kerr black hole is bounded

by |J| 6 GM2/c. In the field of black hole thermodynam-
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ics, the temperature at which the event horizon radiates is

proportional to its surface gravity. This vanishes for an ex-

tremal black hole, implying extremality is unattainable by the

third law of black hole thermodynamics. However, for a TDH

lacking an event horizon, angular momentum should approxi-

mately scale with the major radius of the torus. Thus, the Kerr

bounds, −GM2/c < J < GM2/c, could easily be exceeded.

Accumulation of angular momentum beyond the Kerr limit

may buffer TDH topology, even if accretion is erratic. Ev-

idence has recently emerged of a supermassive black hole

within a galactic nucleus rotating at a near extremal rate [32].

Nature possesses only two long range forces and, of the

two, electromagnetism is far stronger than gravity. Further-

more, gravity is purely attractive, making it ill-suited as a

mechanism for launching relativistic jets of charged parti-

cles flowing directly away from a supermassive black hole.

Therefore, it is virtually certain that electromagnetism is pri-

marily responsible for jet production. There are no magnetic

monopoles in nature but electrically charged particles make

up all atoms. That ultrarelativistic jets of charged particles

can be sustained for millions of years strongly suggests that

the central black hole must itself be electrically charged.

Traditional models have nevertheless taken black holes to

be electrically neutral due to common assumptions regarding

their topology and the fact that plasma of a surrounding accre-

tion disk can swiftly neutralise any electrical charge accumu-

lating on a spheroidal black hole. A charged (Kerr-Newman)

black hole would necessarily possess a magnetosphere due to

its rotation but its flux lines would lead directly to the event

horizon: oppositely charged particles would be strongly at-

tracted to it, spiralling along the lines of magnetic flux to

swiftly neutralise the black hole. Hence, theorists have strug-

gled to explain the extreme energetics of quasars. The pop-

ular Blandford-Znajek mechanism [33] appeals to a strongly

magnetised accretion disk whose flux lines thread the event

horizon of an electrically neutral, Kerr black hole, enabling

some coupling to its rotational energy. However, the model

has been criticised because one would not expect an accre-

tion disk to become strongly magnetised and the degree of

magnetisation required seems infeasibly large [34].

The difficulty is overcome in the TDH case, a strong can-

didate for the central engine of quasars [31]. It has been

previously proposed that a toroidal black hole might be sta-

bilised by quantum gravitational effects [35] but in the present

work there is no need for any departure from classical gen-

eral relativity. If a TDH amasses an electrical charge, e.g.

via the proton-electron charge/mass ratio disparity, neutrali-

sation processes involving ambient plasma particles will be

suppressed due to topological considerations. Flux lines of

the induced dipolar magnetosphere along which charged par-

ticles tend to spiral would not lead towards the TDH. Instead,

they would locally run parallel to its surface, as depicted in

figure 1. Plasma from an orbiting accretion disk would be

channelled along the flux lines towards the central aperture,

Fig. 1: A rotating toroidal black hole with a non-zero electrical

charge generates a magnetic field whose flux lines are capable of

resisting a neutralising flow of charged particles from the plasma of

an orbiting accretion disk or imploding star. Flux lines point away

from the black hole along the rotation axis where, due to extraction

of the black hole’s rotational energy, biaxial jets may be launched

from the central aperture.

the region where the magnetic flux density is highest: the

only location where the flux lines lead directly away from the

TDH. Conditions for particle ejection are likely to be most

favourable at a small displacement along the rotation axis ei-

ther side of the symmetry plane. There, the magnetic field

remains strong and aligned with the observed jets – but grav-

itational time dilation is less pronounced [31]. The relatively

gentle decline in flux with axial displacement can be seen,

for example, by considering the magnetic field strength, B(z),

of a current, I, flowing along a circular path of radius r at a

distance z along the axis from the centre of symmetry:

B(z) =
µ0Ir2

2(z2 + r2)3/2
≈

µ0I

r(2 + 3z2/r2)
for z ≪ r. (11)

For a current loop spread over a toroidal surface, the flux

density within the central aperture, Bap, whose radius is a

can, due to the conservation of charge on the torus and the

integrated flux threading the aperture, be approximated by

Bap ≈ (r/a)2B(0) ≈ µ0Ir/2a2. Thus, the magnetic field would

be strongly amplified when the torus approaches pinch-off,

a ≪ r. Plasma magnetically siphoned into the aperture from

the surrounding accretion disk could interact directly with the

TDH via this magnetosphere. Furthermore, the lack of an

actual event horizon would not preclude an ergoregion [36].

Hence, energy extraction via the Penrose process [37] may

also contribute somewhat towards jet production. With lower

mass electrons being preferentially ejected, a net charge on

the TDH could be reliably maintained, thereby supporting the

black hole’s magnetosphere. Emitted particles would tend to
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emerge in cones around the rotation axis, their convergence

assisted by magnetohydrodynamic focusing. A population of

neutral atoms and free neutrons in the accretion flow could

feed TDH growth and support its long-term rotation against

angular momentum losses.

Additional support for this model comes from the ob-

served dichotomy between active and quiescent galaxies and

the curious fact that quasars have distinctly finite lifetimes.

Given that many galaxies still have ample reserves of gas to

sustain accretion disks around supermassive black holes, and

that the masses of these black holes cannot have decreased

appreciably with time, it is puzzling that quasar activity is in

such steep decline in the low redshift universe. One would

expect nearby supermassive black holes, in particular those

present in galaxy clusters, to at least feast upon stray mat-

ter sporadically. Only ∼10% of the primordial gas in galaxy

clusters has so far been utilised by star formation. For com-

parison, the figure for the Milky Way is closer to 90%. Nearly

all galaxies harbour supermassive black holes so one wonders

where are the vestigial traces of radio lobes caused by fleet-

ing flares? Observational data suggests that once a quasar

becomes quiescent there is little or no prospect of activity

being revived: the galactic nucleus not only seems dormant,

but utterly defunct. With regards to this finite lifetime riddle

and the apparent lack of even temporary revival of quasar ac-

tivity in quiescent galaxies, a topological transition offers a

very natural and appealing hysteresis mechanism [31,38,39].

It has long been appreciated that this is a difficulty for more

conventional models [40].

Once a dark hole grows too large, even a steadily sup-

plied accretion disc cannot maintain sufficient influx of an-

gular momentum to sustain the geometry. In addition, the

angular momentum of the TDH is continually being sapped

by jet generation. Closure of the central aperture is not eas-

ily reversed, especially as the ensuing charge neutralisation

is rapid when flux lines lead directly to the dark hole. A po-

tential explanation can also be found here for the gamma-ray

burst phenomenon, relatively short-lived affairs compared to

most supernovae. Such events may correspond to the tempo-

rary formation of a TDH/toroidal neutron degenerate struc-

ture during the core collapse of a massive spinning star.

7 Discussion

The development of general relativity was one of the great-

est triumphs not only of theoretical physics but of all science,

providing a description of gravitation compatible with the no-

tion that space and time are part of a unified four dimensional

continuum with experimentally verifiable implications. How-

ever, as with any intrinsically mathematical theory of physics,

its interpretation must be guided by physical considerations

and one should not lose sight of the scientific method. In-

deed, some existing solutions in general relativity are already

widely regarded as unphysical. Examples include the Tipler

cylinder and the Gödel metric, which exhibits closed timelike

curves threading all events within its spacetime. It is possi-

ble that Einstein’s intuition was correct and that all metrics

describing eternal black holes should be similarly regarded

with a healthy degree of scepticism and replaced with a new

dark hole paradigm.

The present work has attempted to reconcile astronomi-

cally observed characteristics of quasars, which have inspired

suggestions that their central engines may not abide by topo-

logical censorship, with a theoretical understanding of why

that might be. A global constraint has been highlighted whi-

ch, if respected everywhere within a spacetime manifold, ho-

lds considerable promise for resolving other long-standing

problems in black hole research. It requires merely that the

advancement of proper time along any worldline never ne-

cessitates the physically impossible advancement of proper

time along any other worldline. In many circumstances this

is trivially satisfied, but the situation changes radically within

a spacetime containing pairs of timelike worldlines for which

the relative time dilation grows without limit. Some parti-

cle worldlines will then reach future timelike infinity in finite

proper time, much as light rays/photons do. Worldlines of

timelike particles can thereby be truncated. In the case of par-

ticles approaching the event horizon of an eternal black hole,

this is a consequence of their asymptotically approached ap-

parent velocity – particles moving at the speed of light expe-

rience no passage of time. On the other hand, if a spacetime

manifold is initially free of event horizons or singularities, it

will always remain free of them. A picture emerges of gen-

eral relativity as a remarkably benign theory of gravitation

gracefully accommodating all eventualities. Analytical solu-

tions to the field equations of general relativity are confined to

highly idealised situations. More complex and realistic sce-

narios can only be studied numerically. Nevertheless, the ba-

sic conclusions drawn here concerning the non-formation of

event horizons for spherically symmetric situations are likely

to carry through to more general circumstances.

The present proposal differs significantly from the grav-

astar model [41] which invokes new physics, replacing the

interior black hole region with a de Sitter spacetime blend-

ing into the exterior Schwarzschild geometry via a carefully-

tailored transition layer [42]. It is also distinct from the eter-

nally collapsing object (ECO) scenario [43, 44] in that grav-

itational collapse can be stabilised without recourse to ra-

diation pressure. Furthermore, there is no need to invoke

the presence of some “firewall” or exotic new physics at or

near the horizon in order to overcome the information para-

dox [45].

For several decades now, black holes with event horizons

have been seriously entertained despite the lack of a single

mathematical example of an event horizon forming in finite

universal time and their dismissal by the architect of general

relativity. There is a deep-seated expectation amongst rel-

ativists that all observers should enjoy equal status but one
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must not overlook the fact that general relativity is a theory

in which global relationships exist between observers. By

tracing the progress of an infalling observer beyond the event

horizon, as Oppenheimer & Snyder did, one forsakes con-

cern for external observers. In such situations, the worldlines

of external observers must magically transcend what is, for

them, future timelike infinity – and indeed, therefore, future

timelike infinity for the entire spacetime manifold. Thus, the

original notion of a “democracy” amongst observers is naı̈ve

if one interprets it in a purely local manner, eschewing the

original spirit of relativity.

The proper times along all worldlines should remain finite

in any physically realistic spacetime manifold. Whilst self-

evidently true, this has profound repercussions for gravita-

tional collapse. Global relationships within a spacetime man-

ifold override local considerations. This can arrest dynam-

ical collapse, prohibiting both the initial formation of event

horizons and the ingestion of matter across pre-existing event

horizons. Hence, any theorems reliant on the presence of

trapped surfaces may have no physical bearing. Prevailing ex-

pectations that gravitational collapse inevitably leads to sin-

gularities and event horizons appear to be in error and fears

that black holes destroy information misplaced. Furthermore,

if topological censorship is circumvented, then electrically-

charged toroidal dark holes could form the central engines

of quasars, consistent with astronomical observations. Thus,

quasars may already provide intriguing hints that nature’s bla-

ck holes lack event horizons, and that various physically dis-

turbing pathologies associated with traditional black hole mo-

dels are obviated in realistic situations – without need for any

adjustment to Einstein’s theory of gravitation.

Submitted on August 23, 2015 / Accepted on August 25, 2015
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LETTERS TO PROGRESS IN PHYSICS

Reservations on Cahill’s Quantum Gravity Experiment

Anton L. Vrba

Ryde, Isle of Wight, Great Britain. E-mail: vrba@iow.onl

Cahill reports in Progr. Phys., 2015, v.11(4), 317–320 [1] on the correlations of the

random noise generated by two Zener diodes, when they are linearly displaced or dif-

ferently orientated. His conclusions that this could be a detection, and evidence, of

quantum gravity variations are exciting, however in my opinion premature.

Semiconductor diodes have provided means for generating

noise [2] used in a variety of applications including cryp-

tography, signal jamming, sound masking, and instrument

calibration. The diode noise is usually amplified by factors

greater than 100 [3] to obtain a signals around the −50 dBm

levels, which are of same order magnitude that Cahill reports.

Referring to Cahill’s Figure 1, we can observe the inter-

nal arrangement of the apparatus consisting of a parallel con-

nected array of five diodes, which are serially connected to the

sensing resistor, switch and battery — these components, in

that particular arrangement, form an EM-sensing loop having

a substantial cross-section. There is no local amplification,

and buffering, of the noise signal contrary to Zener-diode

based noise generators. Figure 3, presumably, depicts the ex-

perimental configurations. In my Fig. 1 (guided by Cahill’s

Figure 3 right hand side) I reconstructed the experimental

electrical circuit diagrams of the inverted arrangement on a

common plane formed by the electrical loops defined by the

battery, Zener diode and resistor. From this figure it is evi-

dent that any EM-induced currents, marked Im, would induce

signals, marked Vm. These are of opposite polarity in the

inverted apparatus, as Cahill observed.

In my opinion, the experiment needs to be performed with

apparatus that reduce the effects of EM-induced interference

to a minimum, achieved by a symmetrical arrangement of the

diode array around the sensing resistor, as well as a soft steel

enclosure to ensure magnetic and electrical shielding. For

those wishing to duplicate the experiment, I propose arrang-

ing the components as sketched in Fig. 2, with the edition of a

decoupling filter, comprising of a resister R1 and the four ca-

pacitors marked C, that reduces the effect of induced EM in-

terference in the electrical loop formed by the battery circuit.

The noise-signal, generated by the four Zener diodes Z1–4,

is detected over R2. All components should be nicely, and

compactly, sandwiched between two printed circuit boards to

ensure symmetry around the longitudinal axis of R2. An EM-

induced current in, say, the loop Z1-C-R2 would be of the

same magnitude as induced in R2-C-Z2 and thus canceling

across R2.

Submitted on August 23, 2015 / Accepted on August 26, 2015

Fig. 1: Inverted Experimental Configuration

Fig. 2: Proposed Component Arrangement
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A Model of Dust-like Spherically Symmetric Gravitational Collapse
without Event Horizon Formation

Miquel Piñol

Unidad de Medicina Intensiva, Hospital La Fe, 46026, Valencia, Spain. E-mail: miquel.pinyol@gmail.com

Some dynamical aspects of gravitational collapse are explored in this paper. A time-
dependent spherically symmetric metric is proposed and the corresponding Einstein
field equations are derived. An ultrarelativistic dust-like stress-momentum tensor is
considered to obtain analytical solutions of these equations, with the perfect fluid con-
sisting of two purely radial fluxes — the inwards flux of collapsing matter and the
outwards flux of thermally emitted radiation. Thermal emission is calculated by means
of a simplistic but illustrative model of uninteracting collapsing shells. Our results show
an asymptotic approach to a maximal space-time deformation without the formation of
event horizons. The size of the body is slightly larger than the Schwarzschild radius
during most of its lifetime, so that there is no contradiction with either observations or
previous theorems on black holes. The relation of the latter with our results is scruti-
nized in detail.

1 Introduction

The aim of this paper is to discuss several open problems of
conceptual interest concerning black holes and, in particular,
to elaborate a simple model of dust-like spherically symmet-
ric gravitational collapse with account of both the inwards
flux of the collapsing matter and the outwards flux of emit-
ted thermal radiation. We illustrate how the latter may avoid
the formation of event horizons. The metric considered in
this work is time-dependent, unlike the Schwarzschild one.
Spherical polar coordinates will be used and there will be no
need for analytical extensions (such as the one given by the
Kruskal-Szekeres chart) because the occurrence of an event
horizon at the Schwarzschild radius will be avoided.

In Sec. 2 the main historical events concerning the devel-
opment of the well-known concept of black hole are reviewed
and its precise significance is shortly but precisely detailed. In
Sec. 3 some open problems of the common black hole model
are pointed out and their relationship with the corresponding
historical findings is emphasized. Section 4 deals with the
development of the metric of the present model: First of all,
in subsec. 4.1 a time-dependent spherically symmetric met-
ric in spherical polar coordinates is presented and the corre-
sponding Einstein field equations are specified. Secondly, a
dust-like energy momentum tensor for a purely radial motion
with account of an ultrarelativistic collapsing matter and ther-
mally emitted radiation is obtained in subsec. 4.2. Temporal
evolution of the metric components is studied in subsec. 4.3,
with the absence of emitted thermal radiation being detailed
as a particular case. Fourthly, in subsec. 4.4 it is shown that
there should exist a limit where the inwards flux of collaps-
ing matter and the outwards flux of thermal radiation become
compensated. It is also shown the asymptotic character of the
approximation to this limit. Some additional considerations
about the total mass and the edge of the collapsing body will

be made in subsec. 4.5. Finally, our results are discussed in
Sec. 5, paying a special attention to the plausibility of the
different hypothesis and the implications of their alternatives.

2 Important historical results concerning black holes

Several historical results in General Relativity led to the con-
cept of black hole. The following list includes some of the
most important ones:

1. K. Schwarzschild found in 1916 an exact solution of
the Einstein field equations describing the field created
by a point particle [1]. (According to Birkhoff’s theo-
rem, this solution is also valid for any spherically sym-
metric body at a distance larger than its radius [2].)

2. J. R. Oppenheimer and G. M. Volkoff discovered in
1939 the existence of upper limit for the mass of neu-
tron stars, above which gravitational collapse could not
be avoided [3].

3. In 1967 J. Wheeler used the term “black hole” to name
a “gravitationally completely collapsed star” [5].

4. S. Hawking and R. Penrose proved in 1970 that, un-
der certain circumstances, singularities could not be
avoided. This is known as the Hawking-Penrose the-
orem of singularity [6].
All these results concerning black holes arise basically
from Einstein’s General Relativity. On the other hand,
there exist two important features in the description of
black holes which require from both Thermodynamics
and Quantum Field Theory (QFT):

5. J. Bekenstein defined the entropy of black holes in 1972
and, based on thermodynamic grounds, deduced the
need for black-hole radiation [7].

6. In 1974 S. Hawking justified Bekenstein’s speculations
about the existence of black-hole radiation from the
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point of view of QFT. Hawking model implies the cre-
ation of particles of negative mass near the event hori-
zon of black holes. The conservation of information is
not clearly ensured by this model [8].

3 Some open problems in gravitational collapse

In this section we discuss if the previous historical results
genuinely imply the actual existence of black holes as physi-
cal objects. It is widely believed that these findings prove the
existence of black holes. The argument supporting black hole
formation is the following:

1. There exist stars which are massive enough to exceed
the Oppenheimer-Volkoff limit at the end of their “vital
cycle”. Those stars must finally enter collapse.

2. According to the Hawking-Penrose theorem of singu-
larity, all the mass inside an event horizon must reach a
single central point, that is, form a singularity.

3. The solution of the Einstein field equations for the met-
ric of a “point mass” is the Schwarzschild metric, that
describes a black hole.

Entering collapse, however, does not immediately lead to
the formation of an event horizon and, while the event hori-
zon is not formed, the Hawking-Penrose theorem of singu-
larity is not properly applicable (notice that one of its condi-
tions of application is equivalent either to the existence of an
event horizon, or to an expanding Universe taken as a whole).
Hence, a priori entering collapse must not necessarily lead to
a complete collapse.

Certainly, the period of time involved in the process of
collapse may be proven to be infinite from the point of view of
any external observer (that is, from our perspective on Earth).
On the other hand, a “free falling observer” would measure
a finite period of time for the collapse, at least if nothing de-
stroys it before reaching its goal [4, 10]. A well-known fea-
ture of General Relativity is that space and time are relative
but events are absolute. Consequently, it is necessary to rec-
oncile the observations from both reference frames.

It is usually assumed that the free falling observer actually
reaches the singularity in a finite time, and the infinite-lasting
collapse measured by the external observer is justified in the
following way: the free falling body has already reached the
central singularity, but as the light emitted from the body in-
side the black hole never escapes from it, we cannot see it
falling; furthermore, the light emitted near the event horizon
of the black hole comes to us with a great delay, making us
believe that it is still falling.

In fact, there are compelling reasons that make us doubt
about the previous explanation: The Schwarzschild metric
is symmetric under temporal inversion, which suggests that
trajectories in the corresponding space-time should be also
reversible, in contrast to the most common interpretation of
black holes and their event horizon. Furthermore, General

Relativity is not only intended to explain what an observer
“sees” in a given reference frame, but what truly “occurs” in
there. Additionally, S. Hawking defended the incompatibility
of event horizons with Quantum Mechanics [9].

Solution of this apparent paradox requires a careful analy-
sis of what an external observer would exactly see when look-
ing at a body free falling towards a black hole. On the one
hand, it would see the free-falling body approaching asymp-
totically to the event horizon of the black hole, without ever
crossing it. On the other hand, according to Hawking’s law of
black hole radiation, the observer should also see the whole
black hole evaporating in a very large, but finite period of
time. The evaporation of the whole mass of the black hole
must logically include that of the free-falling body as well.
Were it not to be like this, that is, if the crossing of the event
horizon had to be accomplished before the emission of ther-
mal radiation, it would never emit thermal radiation and the
laws of Thermodynamics would be infringed. As the tem-
poral order of causally-related events is always the same for
all reference frames, we must conclude that the free falling
observer should also observe its own complete evaporation
before having reached the event horizon. If it had reached the
singularity in a finite period of time, its complete evaporation
must have occurred in a finite and lesser period of time.

Not only should these considerations be valid for the free-
falling body approaching a black hole, but also for the pro-
cess of collapse itself [28]. Consequently, collapsing bod-
ies should never becomes black holes. On the contrary, they
should asymptotically tend to form an event horizon until the
time at which they become completely emitted in the form
of radiation. An equivalent thesis has already been defended
by Mitra [14–18], Robertson and Leiter [19–21], Vachaspati
et al. [11, 12], and by Piñol and López-Aylagas [13]. In ad-
dition, there exist some calculations in string theory which
point towards the same direction [22].

Thus, the metric of a collapsing body shall never be in a
strict sense Schwarzschild’s one (as it never completely col-
lapses) but a time-dependent metric. In the next section, we
solve the Einstein field equations of a time-dependent spher-
ically symmetric metric. Several simplifications are consid-
ered to make calculations plausible, but the essential Physics
of the problem is respected.

4 Deduction of a metric for gravitational collapse

4.1 Einstein field equations

As we have already pointed out, our goal in this paper is to
study the temporal evolution of a spherically symmetric grav-
itational collapse. Rotations and local inhomogeneities are
beyond the scope of the present work. Therefore, the starting
point shall be a time-dependent spherically symmetric metric,
which in spherical polar coordinates is given by the expres-
sion

dτ2 = eνdt2 − eλdr2 − r2dΩ2, (1)
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where ν = ν(r, t) and λ = λ(r, t). Notice that geometrized
units have been used (G = 1, c = 1). The corresponding Ein-
stein field equations for such metric are the following [23]:
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1
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Subtraction of 3 from 2 yields the identity

8π
(
T 0

0 − T 1
1

)
=

e−λ

r
(
ν′ + λ′

)
. (7)

It will be useful to define a function φ(r, t)

−2φ ≡ ν + λ (8)

so that

ν = −λ − 2φ , 8π
(
T 0

0 − T 1
1

)
=

e−λ

r
(
−2φ′

)
. (9)

A mathematical structure for the stress-momentum tensor
must be specified in order to solve the previous equations,
which will be discussed in next subsection.

4.2 A dust-like stress-momentum tensor of ultrarela-
tivistic particles

The stress-momentum tensor of a perfect fluid may be written
in terms of the energy density ρ, the pressure p and the four-
velocity uα as:

Tα
β = gβδ (ρ + p) uαuδ − ηαβ p . (10)

If the pressure appears to be very small compared to the
energy density, in the limit p → 0 one obtains the stress-
momentum tensor of dust:

Tα
β = gβδ ρ uα uδ. (11)

In our model we deal with a dust-like stress-momentum
tensor. For the sake of simplicity, we shall consider the per-
fect fluid splitting into two perfectly radial fluxes: a flux of in-
going collapsing matter and a second flux of outgoing thermal
radiation. Both the ingoing collapsing matter and the outgo-
ing thermal radiation are going to be dealt as ultrarelativistic

particles. It has been already established that the matter in
a process of gravitational collapse reaches celerities near the
speed of light [24]. It is also a well-known fact that, despite
photons being “massless”, a photon gas may be assimilated
to a gas of ultrarelativistic particles with an effective mass
density [25].

It could be expected that the relation between pressure
and mass-energy density should be given by the identity
p =

ρ
3 due to the particles being ultrarelativitic. A closer

insight into this points out that the above identity would only
be properly applicable to an isotropic gas and not to the higly
directed movement considered in the present work. The con-
sideration of two purely “radial” fluxes shall simplify calcula-
tions and it is in this sense that a “dust-like” stress-momentum
tensor may be used. A similar approach has been already
adopted by Borkar and Dhongle [26].

With account of the metric 1 the coefficients of the dust
energy-momentum tensor 11 become

T 0
0 = e−2φ e−λ ρ

(
u0

)2
, (12)

T 1
1 = − eλ ρ

(
u1

)2
, (13)

T 1
0 = e−2φ e−λ ρ u0 u1. (14)

For a purely radial movement (characterized by dΩ = 0)
Eq. 1 leads to the relation

dτ2 = e−2φe−λdt2 − eλdr2 (15)

which, with account of the identities dt
dτ ≡ u0 and dr

dτ ≡ u1,
becomes

1 = e−2φe−λ
(
u0

)2
− eλ

(
u1

)2
. (16)

Isolating
∣∣∣u1

∣∣∣ =

√(
u1)2, we obtain

∣∣∣u1
∣∣∣ = e−φe−λu0

1 − e2φeλ(
u0)2

 1
2

. (17)

In the ultrarelativistic limit u0 → ∞ (u0 � e2φeλ) the compo-
nent u1 of the four-velocity becomes∣∣∣u1

∣∣∣ = e−φe−λu0. (18)

Notice that this same relation could have been obtained by
imposing the identity dτ ∼ 0 in Eq. 15.

Concerning the sign of u1, it is clear that u1 < 0 for ingo-
ing matter and u1 < 0 for outgoing thermal radiation, i.e.

u1
in = −e−φ e−λ u0, (19)

u1
out = e−φ e−λ u0. (20)
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4.2.1 Stress-momentum tensor of the ingoing matter

If we denote the energy density of the infalling matter by ρin,
according to Eqs. 12, 13, 14 and 19 we have

T 0
0,in = e−2φ e−λ ρin

(
u0

)2
, (21)

T 1
1,in = −e−2φ e−λ ρin

(
u0

)2
= −T 0

0,in , (22)

T 1
0,in = −e−3φ e−2λ ρin

(
u0

)2
= −e−φ e−λ T 0

0,in . (23)

4.2.2 Stress-momentum tensor of the outgoing thermal
radiation

Denoting the energy density of the outgoing thermal radiation
by ρout, according to Eqs. 12, 13, 14 and 20 we obtain

T 0
0,out = e−2φ e−λ ρout

(
u0

)2
, (24)

T 1
1,out = −e−2φ e−λ ρout

(
u0

)2
= −T 0

0,out , (25)

T 1
0,out = e−3φ e−2λ ρout

(
u0

)2
= e−φ e−λ T 0

0,out . (26)

4.2.3 Total stress-momentum tensor of the collapsing
body

Addition of the stress-momentum tensors of both the infalling
matter and the outgoing thermal radiation leads to the to-
tal stress-momentum tensor of the collapsing body, which is
given by the expressions

T 0
0 = e−2φ e−λ (ρin + ρout)

(
u0

)2
, (27)

T 1
1 = −e−2φ e−λ (ρin + ρout)

(
u0

)2
= −T 0

0 , (28)

T 1
0 = −e−3φ e−2λ (ρin − ρout)

(
u0

)2
(29)

= −e−φ e−λ
(
ρin − ρout

ρin + ρout

)
T 0

0 .

Once the mathematical structure of the stress-momentum
tensor of the collapsing body is established, we are able to
study the temporal evolution of the collapse by solving the
Einstein field equations 2-6.

4.3 Temporal evolution of collapse

Substitution of T 1
0 by Eq. 27 in Eq. 6 leads to the following

equation:

−e−φ e−λ
(
ρin − ρout

ρin + ρout

)
8πT 0

0 = −e−λ
λ̇

r
. (30)

From this an expression for the temporal evolution of λ may
be isolated:

λ̇ = e−φ
(
ρin − ρout

ρin + ρout

)
8πrT 0

0 . (31)

Initially it is expected that ρin � ρout, as the amount of
energy emitted in the form of thermal radiation should rea-
sonably correspond to a very small proportion of the total en-
ergy of the collapsing body. In that case,

(
ρin−ρout
ρin+ρout

)
∼ 1 and

λ̇ ∼ e−φ
(
8πrT 0

0

)
, so that λ shall be a strictly increasing func-

tion with time and it is expected to acquire considerably large
values. In any case, for λ � 1 we have the asymptotic ex-
pression

8πT 0
0 =

1
r2 + O(e−λ) , (32)

and therefore,

λ̇ = e−φ
(
ρin − ρout

ρin + ρout

)
1
r

+ O(e−λ) . (33)

On the other hand, we need to estimate as well the value
of φ. From Eqs. 9 and 28 we obtain

φ′ = −
1
2

eλ 8πr
(
T 0

0 − T 1
1

)
= −eλ

(
8πrT 0

0

)
, (34)

which combined with Eq. 32 yields

φ′ = −
eλ

r
+

(
1
r
− λ′

)
∼ −

eλ

r
. (35)

According to Birkhoff’s theorem, outside the radius R of
the collapsing body the space-time geometry will be exactly
Schwarzschild-like, so that φ = 0 for r > R. Inside the col-
lapsing body T 0

0 > 0 and consequently φ′ < 0. This yields
φ > 0 for r < R and φ(R, t) = 0 because of the analytic char-
acter of this function.

Equations 33 and 35 are not trivial to resolve analytically.
For any time t, however, Eq. 33 and the fact that φ > 0 for
any r < R lead to the following inequality:

λ(t, r) < λ(0, r) +
t
r
. (36)

4.4 Asymptotic approach to a pseudo-stability phase

According to the results obtained in the previous section, for
any given time t the function λ(r, t) is analytic on the domain
r > 0. Nonetheless, as Eq. 36 is an inequality, no specific
values for this function have been provided.

It has been discussed that the ingoing flux of infalling
matter is initially expected to be much larger than the out-
going flux of thermal radiation. Despite this, as λ becomes
larger, according to Eq. 35 |φ′| must also increase. On the
other hand, as φ > 0 the ingoing flux must decrease accord-
ing to Eq. 23.

As the values of T 1
0,in may become as small as wanted, if λ

and φ were not upper bounded it would not be unreasonable
to think that the ingoing flux of infalling matter may even-
tually become compensated by the outgoing flux of thermal
radiation. It could be discussed as well that, according to Eq.
26, the flux of outgoing thermal radiation may also become
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arbitrarily small, but we proceed first to analyse the details
concerning the compesation of fluxes and the consequences
of this hypothesis.

The condition for the compensation of both fluxes is nat-
urally given by the equation

T 1
0,in,s + T 1

0,out,s = 0 . (37)

It must not be misunderstood as a transgression of Oppen-
heimer-Volkoff’s theorem. The star is not in equilibrium. It is
actually collapsing, as nothing prevents the infalling matter of
keeping in collapse. There would simply be an additional flux
(arguable in the basis of thermodynamic grounds, and justi-
fiable by the conversion of a portion of the collapsing matter
into thermal radiation due to the interaction of their respective
fields) that would compensate the energy interchange across
a given surface of r−radius.

In that hypothetical state of “stability”, from Eqs. 23 and
26 a relation between the energy densities ρin and ρout can be
derived

ρin,s = ρout,s =
1
2
ρs , (38)

where the subindex s stands for “stability” (notice that the
aforementioned relations are specific of that hypothetical
phase). Several considerations concerning the emission of
thermal radiation due to collapsing bodies must be made in
order to proceed further with the theoretical development.

4.4.1 A model of Hawking-like radiation

According to Hawking [8], the temperature of a black hole is
proportional to the inverse of its Schwarzschild radius (RS )
and the thermal radiation emission rate is proportional to the
inverse of the square of RS :

ṀH = −
k

R2
S

. (39)

We have denoted the thermal emission by ṀH as it implies a
loss in the total mass of the black hole.

In what follows, both the approach and the nomenclature
adopted in the study of the mass and its mathematical relation
with the components of the stress-momentum tensor and with
the functions ν(r, t) and λ(r, t) of the metric 1 are the ones
given in Ref. [23]. The total mass of a spherically symmetric
body of radius R is given by the following expression:

M =

∫ R

0
4πr2T 0

0 (r, t)dr. (40)

Analogously, the mass contained inside a surface of radius r
(concentric to the spherically symmetric body of interest) is
given by

m(r, t) =

∫ r

0
4πr̃2T 0

0 (r̃, t) dr̃. (41)

Comparing Eqs. 2 and 41, the following relation can be
set between m(r, t) and λ(r, t):

e−λ(r,t) = 1 −
2m(r, t)

r
, (42)

and therefore we have −e−λλ̇ = − 2ṁ
r or, equivalently,

λ̇ =
2ṁ
r

eλ. (43)

Despite the fact that there is solely “one” function λ(r, t),
it is useful to split λ̇ into the sum of λ̇in (due to the ingoing
flux ṁin of collapsing matter) and λ̇out (due to the outgoing
flux ṁout of thermal radiation). In so doing we obtain

λ̇ = λ̇in + λ̇out (44)

with
λ̇in =

2ṁin

r
eλ, λ̇out =

2ṁout

r
eλ. (45)

As pointed out before, the thermal emission of black holes
ṁH is given by Eq. 39. On the other hand, Vachaspati et al.
showed that the thermal emission of a collapsing shell ap-
proaching the Schwarzschild’s radius of a black hole would
follow a law of the same style [11]: according to their cal-
culations, the temperature of the collapsing shell turns out
to be proportional to the Hawking’s one (TV ∼ 2.4TH , where
TV stands for Vachaspati’s temperature and TH for Hawking’s
temperature).

With account of Eq. 42 the metric 1 becomes

dτ2 =

(
1 −

2m(r, t)
r

)
e−2φ(r,t) dt2 −

−

(
1 −

2m(r, t)
r

)−1

dr2 − r2 dΩ2,
(46)

where the resemblance with Schwarzschild’s metric results
evident. Certainly, there exist two main differences between
Eq. 46 and the Schwarzschild’s metric: 1) the mass is not a
constant, but a function of the radius. 2) there is an additional
factor e−2φ(r,t) in the coefficient g00.

However, if we 1) deal with motions whose variation in
the r-coordinate is small enough and 2) assume a temporal
proximity to the hypothetical stationary case that we postu-
lated (i.e., ṁ(r, t) ∼ 0 and φ̇(r, t) ∼ 0), then the metric 46 may
be locally transformed into the Scwarzschild’s one.

In fact, in the vicinity of a given radius Ra, where m(r, t) ∼
Ma and φ(r, t) ∼ Φa, we have

dτ2 ∼

(
1 −

2Ma

r

)
dt̃2 −

(
1 −

2Ma

r

)−1

dr2 − r2dΩ2, (47)

with
dt̃ ≡ e−Φa dt. (48)

At this point it is time to introduce our Hawking-like ra-
diation model. We will conceptually split the collapsing body
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into a sequence of concentric spherical shells, each of which
asymptotically approaches its corresponding radius r = 2Ma

in the coordinate system given by the metric 47. We as-
sume that these collapsing shells do not interact with each
other. Along the lines of Ref. [12] it can be deduced that
the radiation law obtained for a spherical shell asymptotically
approaching in time t the event horizon of a black hole is
also valid for any of the concentric shells asymptotically ap-
proaching in time t̃ its corresponding r = 2Ma radius in our
model. Consequently,

dmout

dt̃
= −

k
r2 (49)

and so

ṁout ≡
dmout

dt
=

dt̃
dt

dmout

dt̃
= −e−φ

k
r2 . (50)

From this, we straightforwardly obtain the identity

λ̇out =
2eλ

r

(
−e−φk

r2

)
= −e−φ

2k eλ

r3 . (51)

On the other hand, according to Eqs. 6 and 23 an equiva-
lent expression for λ̇in is given by

λ̇in = e−φ
(
8πrT 0

0,in

)
. (52)

From Eqs. 12, 21 and 32 we conclude that, asymptotically,

8πT 0
0,in =

ρin

ρin + ρout

1
r2 + O(e−λ) (53)

and therefore, with account of Eq. 38, we obtain

λ̇in = e−φ
(

ρin

ρin + ρout

)
1
r
' e−φ

1
2r

. (54)

The stability phase is naturally defined by the condition

λ̇s = 0 (55)

and therefore, from Eqs. 44, 51, 54 and 55 we obtain the re-
lation

−e−φs
2k eλs

r3 + e−φs
1
2r

= 0. (56)

Equivalently,

eλs =
1
4k

r2, (57)

from which a functional dependence of λ on r is obtained for
the stability phase

λs(r) = − ln (4k) + ln
(
r2

)
. (58)

Taking into account Eq. 35, from the previous equation
we easily obtain an expression for φs:

φ′s = −
eλs

r
= −

r
4k
. (59)

Integration over r with account of the contour condition
φ(R, t) = 0 ∀t discussed in the previous section yields the
identity

φs (r) =

∫ r

R
φ′s (r̃) dr̃ =

1
8k

(
R2 − r2

)
, (60)

and thus
e−φs(r) = e

−1
8k (R2−r2). (61)

It must be noticed that the existence of the postulated
stability phase is self-consistent and that it may be clearly
derived from equations 45: both

∣∣∣λ̇in

∣∣∣ and
∣∣∣λ̇out

∣∣∣ decrease as
φ(r, t) increases by a factor e−φ(r,t), but only

∣∣∣λ̇out

∣∣∣ increases as
λ(r, t) increases (by a factor eλ(r,t)). Consequently, even when
initially

∣∣∣λ̇out

∣∣∣ � ∣∣∣λ̇in

∣∣∣ at large enough times both quantities
should become of the same magnitude.

Nonetheless, a significant issue concerning the behaviour
of λ(r, t) for small values of r must be remarked. We are going
to deal it with detail in the following subsection.

4.4.2 Corrections to the equation of λs for small radii

From Eq. 42, as m(r, t) > 0 ∀r, t, it becomes evident that also
λ(r, t) must be > 0 ∀r, t. However, in Eq. 58, it can be checked
that it yields λs = 0 at r = 2

√
k and λs < 0 for r < 2

√
k.

Consequently, the mentioned expression cannot be valid for
small radii.

As it has been clearly established in subsec. 4.3, if no out-
wards flux of thermal radiation is taken into account the val-
ues of λ(r, t) would grow in an unlimited way. Thus, at large
times, it would become great enough to imply the T 0

0 compo-
nent of the stress-momentum tensor to approach the asymp-
totic expression given in Eq. 32. By contrast, in the previ-
ous subsection we have actually taken into account the emis-
sion of thermal radiation, and it has been performed with the
Hawking-like law specified in Eq. 39, which entails a most
prominent emission rate for inner shells. As a consequence,
λs values decrease at small radii (or, what is the same, it re-
sults to be a strictly increasing function with r).

For radii r � 2
√

k, all the calculations which have been
deduced after Eq. 32 are completely justified. Fortunately,
that corresponds to most values of r, since k � 1 (certainly,
the thermal evaporation process takes place at a considerably
slow rhythm).

Thus, the steps which we have followed in order to de-
termine λs(r) must be reviewed in order to obtain a valid ex-
pression for small radii. A suitable analytical solution to the
problem is far from being straightforward, but we are going
to analyse it a bit more of care in the following lines.

Firstly, the complete identity of T 0
0 in Eq. 2 must be used

instead of Eq. 32. Therefore, the expression for λin, instead
of the one specified in Eq. 54, according to 52 will be

λ̇in = e−φ
1
2r

(
1 − e−λ

(
1 − rλ′

))
. (62)
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From this, keeping the same radiation law of Eq. 39 and
the expression for λout of Eq. 51, it is not hard to follow that
the stability condition in Eq. 55 entails

eλs =
r2

4k

(
1 − e−λs

(
1 − rλ′s

))
. (63)

When λs � 1, Eq. 57 is recovered. As we had already
signalled, its resolution in the regions where the mentioned
limit ceases to be valid is far from being trivial. Nonetheless,
a possibility could consist in the application of an iterative
method. Instead of making eλs → 0, in the right side of the
equation we may use as a first approximation (well, actually
as a second approximation) the expression for λs obtained in
Eq. 58 (being its derivative λ′s = 2/r):

e∗λs ∼
r2

4k

(
1 −

4k
r2

(
1 − r

2
r

))
=

r2

4k
+ 1, (64)

where the asterisk (*) stands for “iterated”.
Thus,

λs∗ ∼ ln
(

r2

4k
+ 1

)
, (65)

which can be assimilated to Eq. 58 for large values, but that
has the advantage of accomplishing the necessary condition
λ(r, t) > 0 ∀r, t.

In the next subsection, we are not going to have longer
into account the corrections for small radii, but we will fo-
cus onto temporal variations of λ(r, t) when approaching the
stability phase described by 58 (only valid for r > 2

√
k).

4.4.3 Small variations of λ(r,t) before the stability phase

According to Eqs. 44, 51 and 54 we have

λ̇(r, t) = e−φ
(

1
2r
−

2keλ

r3

)
. (66)

In the stability phase, defined by Eq. 55, the functional
dependence of λ is given by Eq. 57. Now we proceed to study
small variations of λ(r, t) before it acquires the stability value,
that is,

λ(r, t) = λs(r) − λ∆(r, t) . (67)

Notice that, by definition, λ̇s(r) = 0. This fact implies

λ̇(r, t) = −λ̇∆(r, t) . (68)

Furthermore, because of the inequality λ∆ � λ, we will con-
sider φ ' φs. Therefore, from Eqs. 57, 66, 67 and 68 we
obtain the expression

λ̇∆ = −
e−φs

2r

(
1 − e−λ∆

)
. (69)

In the limit λ∆ � 1 we can approximate 1 − e−λ∆ ∼ λ∆,
so that

λ̇∆ = −
e−φs

2r
λ∆ + O

(
λ2

∆

)
, (70)

whose integration over t leads to the following solution

λ∆ = A(r) exp
(
−

e−φs

2r
t
)

= A(r) exp
(
−e

−1
8k (R2−r2) t

2r

)
, (71)

where A(r) is an arbitrary positive defined function depending
on the initial conditions of the problem.

Therefore, according to the hypothesis of the model, λ(r,t)
asymptotically approaches its stability value:

λ(r, t) = − ln(4k) + ln
(
r2

)
− A(r) exp

(
−e

−1
8k (R2−r2) t

2r

)
. (72)

4.5 Some considerations about the mass and the edge of
the collapsing body

From Eq. 19 the infalling velocity ṙin of any collapsing shell
in the present model is given by

ṙin ≡
dr
dt

=
dr
dτ

dτ
dt

=
u1

in

u0 = −e−φe−λ. (73)

According to Eqs. 42 and 73 and with account of the con-
tour condition φ(R, t) = 0 ∀t, the motion of the edge R of a
collapsing body of mass M must be given by the expression

Ṙ = −

(
1 −

2M
R

)
, (74)

whose solution for large enough times is

R = 2M + ∆R0e
−t
2M (75)

with ∆R0 being a constant depending on the initial conditions
of the collapse.

An important detail must be pointed out. In the previous
equations we have dealt with the total mass M of the collaps-
ing body as if it was a constant. It may be actually considered
constant in practice for long periods of time but, in fact, it
slowly diminishes due to the emission of thermal radiation,
unless the surrounding background presents a greater CMB
temperature or news amounts of infalling mass are provided.
Thus, having into account that RS = 2M, from Eq. 39,

Ṁ =
−k
R2

S

=
−k

4M2 . (76)

Therefore,

M(t) =

(
M3

0 −
3kt
4

) 1
3

, (77)

from which the evaporation time tv may be isolated:

tv =
4M3

0

3k
. (78)
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5 Discussion

The model of gravitational collapse presented in this paper
contains an important number of simplifications which have
allowed us to find analytical solutions of the coefficients of
the metric all over the space at any given time (for small ra-
dius values, we have seen that some special considerations
must be taken into account, but no essential contradiction is
risen). The results obtained are self-consistent and do not lead
to the formation of an event horizon, what would provide a
simpler interpretation of the information loss problem: if no
event horizon is formed, thermal radiation should be directly
emitted by the collapsing body. Hence, there is no need for
postulating a special mechanism of radiation such the one that
S. Hawking proposed ad hoc for black holes. Let us now anal-
yse more carefully the hypothesis that we have made, their
implications and the consequences that would have been de-
rived from making slightly different considerations.

Our starting point has been a time-dependent spherically
symmetric metric. It is a well-known fact that spherical sym-
metry is an almost universal approximate characteristic of any
celestial body. Two kind of phenomena certainly prevents it
from being perfect: the first one is rotation (which implies
the modification from spherical surfaces to ellipsoidal ones),
while the second one consists of the local inhomogeneities of
any real system.

Concerning rotation, it constitutes per se a very interest-
ing but mathematically complex problem. To deal properly
with a rotating process of gravitational collapse, a kind of
modified time dependent Kerr metric should be formulated
(in the same way that in this paper a kind of “time-dependent
Schwarzschild metric” has been proposed). From an intu-
itive point of view, however, one would expect that rotation
should lead to a genuinely slower collapsing process (due to
the “centrifugal” effect of angular momentum). Concerning
local inhomogeneities, a detailed study of the effect of small
perturbations on the metric could constitute another per se at-
tractive problem, but a priori it is not unreasonable to assume
that the emission of gravitational waves should tend to dimin-
ish these effects with time. This is a consequence of the “no
hair” theorem for black holes (even when we have found no
black hole in the mathematical development of this article).

About the temporal dependence of the metric coefficients,
it appears to be a strict logical requirement of the problem.
The displacement of the infalling matter along the collapsing
process must necessarily imply a temporal change in the met-
ric coefficients. In this sense, Schwarzschild metric -a good
solution for the stationary “punctual mass” problem- is not
the best choice for the question of collapse itself. In words
of J. A. Wheeler, “matter tells spacetime how to curve, and
curved spacetime tells matter how to move”. With our choice
of time-dependent metric, Kruskal-Szekeres coordinates are
not needed because the ordinary polar spherical coordinates
cover the entire spacetime manifold and the functions λ(r, t)

and ν(r, t) are analytic all over the space.

With respect to the choice of stress-momentum tensor,
its dust-like nature has been greatly aimed for the sake of
simplicity. As it has been already emphasized in the perti-
nent section, it seems paradoxal to consider simultaneously
the features of “dust-like” and “ultrarelativistic” because the
relation between pressure and energy density in an ultrarela-
tivistic gas turns out to be p = 1

3 ρ. Nonetheless, two subtle
points should be raised here: First of all, the concept of “ul-
trarelativistic dust” is not as strange as it appears to be, since a
privileged direction of motion has been considered (the ultra-
relativistic motion is highly “directed” towards purely radial
lines). Secondly, even if a relation of proportionality between
p and ρwould have been chosen, that would not have changed
the fact that all the other stress-momentum tensor components
could be expressed as a product of certain factors and T 0

0 . It
is straightforward to check that changing the aforementioned
factors would not alter drastically the subsequent mathemati-
cal development. As a matter of fact, the “linearity” between
T 1

0 and T 0
0 has allowed us to set a temporal dependence for λ.

In fact, as λ̇ turns out to be proportional to T 0
0 , the function λ

would only diverge if T 0
0 became infinite too. Nevertheless,

when λ increases T 0
0 does not diverge but tends to 1

8πr2 . In a
similar way, it may be proved that ν, or φ = − 1

2 (ν + λ), is also
a well-behaved function despite [reasonable] modifications in
the stress-momentum tensor.

Thus, whether we consider thermal radiation or not, the
study of the temporal evolution of a spherically symmetric
gravitational collapse in spherical polar coordinates does not
lead to incoherences, but constitutes a sensible alternative to
the usual black hole model. In addition, when thermal radi-
ation is considered, very high (but finite) values of λ are ob-
tained at any given r. Definitely, the radiation law proposed
in this paper has been deduced in a rather “heuristic” way
by assuming the extensibility of the calculations detailed in
Ref. [12] to a model of scarcely interacting collapsing shells.
Certainly, in the original paper by Vachaspati et al. the emis-
sion of radiation was calculated from a spherical Nambu-
Goto domain wall using the functional Schrödinger formal-
ism, with vacuum close to the wall. Therefore, our analytical
extension of their results to “inner shells” may be cautiously
considered, but it is a reasonable hypothesis, specially hav-
ing into account Birkhoff theorem (according to which, in a
system with spherical symmetry, the gravity in a surface is
basically determined by the mass of the matter contained in
the inner, not outer, shells). As a matter of fact, it is a much
more consistent assumption than some of those that may be
found in the published works, as the use of a strictu sensu
Hawking radiation in a process of gravitational collapse (as,
for instance, in Ref. [28]), as Hawking radiation implies (es-
sentialy, not just formally) a transition from vacuum, and in
truth a collapsing star is not void.

On the other hand, even if the genuine radiation law ap-
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peared to be completely different, it would still be true that an
asymptotic approach to a “stationary” phase (where the value
of λ would stop increasing) should happen. In fact, this phase
should be always reached just by assuming the reasonable hy-
pothesis that the outgoing flux of thermal radiation should not
diminish with time (the temperature of the collapsing body
should be expected to rise with the progression of collapse),
while the ingoing flux of collapsing matter should become
smaller as the spacetime deformation becomes larger.

In summary, even when several of the assumptions of the
model of gravitational collapse proposed in this paper may
be considered excessively “idealistic”, it provides an illustra-
tive description of how a time-dependent metric should be the
most logical choice for the study of gravitational collapse and
that the polar spherical coordinates of an asymptotic observer
(a scientific on the Earth, not an astronaut falling into a black
hole) are sufficient to cover the whole collapsing process.
The supposed completion of the collapsing process in a finite
proper time for a co-mobile observer would never be truly
accomplished due to the invariance of causal order for any
relativistic system (in a finite and lesser proper time, the co-
mobile observer would be fully evaporated by the emission
of thermal radiation). The astronomic objects already identi-
fied as “black holes” could equally correspond to “asymptot-
ically collapsing bodies”. Empirically, few differences would
be expected. From a theoretical point of view, the latter ones
may be obtained in a very natural way from the Einstein field
equations and avoid many of the paradoxes and illogical as-
pects of the former ones. Thus, according to Occam’s razor,
asymptotic collapse should be preferred to black holes.
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1. Schwarzschild K. Über das gravitationsfeld eines massenpunktes nach

der einsteinschen theorie. Sitzungsberichte der Königlich Preußischen
Akademie der Wissenschaften (Berlin), 1916, v. 1 Seite 189–196.

2. Birkhoff G. D., Langer R. E. Relativity and modern physics. Cambridge
MA: Harvard University Press, 1924.

3. Oppenheimer J. R., Volkoff G. M. On massive neutron cores. Physical
Review, 1939, v. 55 (4), 374.

4. Oppenheimer J. R., Snyder H. On continued gravitational contraction.
Physical Review, 1939, v. 56 (5), 455.

5. Wheeler J. A., Ford K. W. Geons, black holes, and quantum foam: a
life in physics. Norton and Company, New York, 1998.

6. Hawking S. W., Ellis G. F. R. The large scale structure of space-time
(Vol. 1). Cambridge university press, 1973.

7. Bekenstein J. D. Black holes and entropy. Physical Review D, 1973,
v. 7 (8), 2333.

8. Hawking S. W. Black hole explosions? Nature, 1974, v. 248 (5443),30–
31.

9. Hawking S. W. Information preservation and weather forecasting for
black holes. arXiv:1401. 5761, 2014.

10. Penrose R. Gravitational collapse: the role of general relativity. Birk-
beck College, London, 1969.

11. Vachaspati T., Stojkovic D., Krauss L.M. Observation of incipient black
holes and the information loss problem. Physical Review D, 2007,
v. 76 (2), 024005.

12. Vachaspati T., Stojkovic D., Krauss L.M. Quantum radiation from
quantum gravitational collapse. Physics Letters B, 2008, v. 663 (1),
107–110.
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E-mail: oeross00@yahoo.com

A return is proposed to the 6-years-long period before Einstein gave up on the global

constancy of the speed of light c in the vacuum. c-global remains implicit in Maxwell’s

equations and in quantum electrodynamics. Reluctantly, Einstein abandoned c-global

in 1911 after a 3 1
2

years long silence kept on gravitation during which he had tried in

vain to avoid the conclusion that c is only an everywhere locally but not a globally valid

constant of nature. It is shown that Einstein just overlooked a corollary to his own find-

ing of an optically reduced speed of an horizontal light ray downstairs in his constantly

accelerating long rocketship in outer space. The new corollary reads: slantedness rela-

tive to the tip of the locally horizontal light ray. Hence Einstein’s famous gravitational

redshift — the increase in wavelength compared to above of a vertically emitted light

ray — is accompanied by a proportional enlargement of space. The new horizontal size

increase is masked from above by the upwards slant valid relative to the tip. Einstein’s

gravitational time dilation thus goes hand in hand with an equal gravitational space di-

lation. Surprisingly, Quantum Mechanics enforces the same conclusion independently:

the reduced energy of the locally normal-appearing photons downstairs generates (via

Quantum Mechanics’ creation and annihilation operators) atoms of a proportionally re-

duced mass and hence proportionally enlarged size. Two disappointing implications

follow: c-global rules out both cosmological space expansion and black hole evap-

oration. The uplifting third implication is: c-global makes the equivalence principle

compatible with Quantum Mechanics for the first time. This new compatibility pre-

dictably extends to the implied “c-global-rescaled General Relativity”. Hence the “holy

grail of physics” is bound to exist. The cgr-GR only waits to be written down.

1 Foreword

The following text seems to represent a footnote on the early

prehistory of General Relativity, dealing only with long over-

hauled ways of thinking and of groping in the dark, because

since 1915 we have the indubitable final reality of the theory

of space and time in the large. The purpose of the present

note is to show that this is not so. In the very foundations of

the grandiose recipe, there is hidden a tiny minor oversight.

It has little influence on most implications, but it nonetheless

allows one to improve the theory eventually by at last putting

straight an element that belongs into it since 1915: the non-

globality of c.

Many specialists will strongly disagree with the view that

it could pay to return to the most early stage of this beautiful

superhuman theory to find a little oversight in it and repair it.

But this is exactly the purpose and aim of the following text.

As the reader will see, the consequences — if this friendly de-

tour into a long-gone stage of science is followed for the fun

of it for a short stretch since everything is maximally simple

on that level — are maximally far-reaching and rewarding.

Admittedly, such “nostalgic physics” à la Yul Brynner in

the movie “Westworld” is an unusual approach. It looks like

History of Science and has a dusty smell to it. But IF it un-

earths something that was really and actually overlooked, it

has an important role to play. So with this Foreword, which

owes its existence to a spirited written dialogue with the

Editor-in-Chief, the present note belongs into a twilight cate-

gory of theoretical physics. But it is the fruits that make re-

sults recognizable eventually. So if the result derived below, a

so far overlooked gravitational-redshift-proportional size in-

crease in gravitation, is correct — as is shown on the limited

level of knowledge available in 1907 below, aided only by an

independent development in physics that did not exist at the

time, quantum electrodynamics —, then a major progress in

today’s thinking occurs. So the paper which follows after this

acutely added preface is perhaps indeed worth the scrutiny of

the specialists.

It is rare that such a naive but rigorous spatial thinking

is used in theoretical physics. It reminds its author of the

early phase in chaos theory when “absurdly simple” geomet-

ric ideas, like overlaying two transparencies with an expand-

ing spiral drawn on each and defining straight threshold lines

of transitions between them, sufficed to catapult chaos the-

ory into the applied sciences. In that latter case, the special-

ists arrived at the same trick called “singular perturbation”

eventually. In the present case, a similar “canonization” is

hoped for.
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2 Introduction

Einstein’s biggest early discovery was an intuitive under-

standing of Maxwell’s c-global: he saw in his mind that a

light flash can expand as a sphere with the same speed c

around each of two observers who are passing by each other

at a high speed while the flash goes off at their feet at that

moment.

This logical impossibility (one expects two light spheres

around the two mutually fast receding observers) becomes a

logical truth if the simultaneities valid for the two runners

which coincide at the encounter, are mutually slanted as two

equal-rights cuts through the same light cone. This fact Ein-

stein was able to picture in his mind after a long nightly dis-

cussion with his by a few years older friend Michele Besso.

On the next morning, he excitedly returned to Besso’s front

door to tell him: “Thanks to you, I have solved the problem!”

This event Einstein reported to a Japanese audience 17 years

later when he had just received the news of his Nobel Prize.

His rare German phrase “Dank Dir” (thanks to you) got con-

founded with the conventional German phrase “danke Dir”

(thank you) in the ensuing translation — so the co-authorship

of Einstein’s lifelong friend Besso never became public.

The miracle of the individualized global constancy of c

fell in doubt with Einstein himself 2 1
2

years later, in Decem-

ber of 1907 [1], to be abandoned for good in mid-1911 [2].

By serendipity, c-global was retrieved a century later in 2007

as an allowed formal implication of the Schwarzschild met-

ric of General Relativity [3, 4]. Subsequently, c-global was

also discovered in the equivalence principle of Special Rela-

tivity [5], the very theory in which it had become questionable

in late 1907 and been abandoned in 1911.

3 Motivation

The return of c-global into the foundations is important be-

cause a “facelift of physics” is implicit. For instance, the

long-accepted paradigm of the Big Bang ceases to be ten-

able since it implies that two sufficiently distant objects on

the expanding “balloon” recede from each other at a superlu-

minal speed. As a second implication, black holes can now

no longer “evaporate” since the well-known infinite tempo-

ral distance of their surface (called horizon) from the out-

side world is, by virtue of the global c, accompanied by an

equally large spatial distance. Hence there can be no “tun-

neling” to the horizon anymore and thence no Hawking radi-

ation. Thirdly, metrology acquires a whole new face [5].

What is the best way to convince the reader that c-global

holds true again after a century? The answer lies in a return

to the early Einstein. In 1905, he had described two radically

new implications of c-global: the twins paradox (one twin

ageing faster as if in a Grimm Brothers’ fairy tale) and the

transversal Doppler effect, which had both been overlooked

by his great predecessors in the developing discovery of Spe-

cial Relativity, Lorentz and Poincaré.

4 Genealogy

The drama with c-global began in 1907 with the last step in

the discovery of the equivalence principle. The latter prin-

ciple [1, 6] had just yielded the absolutely incredible but in

retrospect true prediction of the gravitational redshift: inside

a constantly accelerating long rocketship in outer space de-

scribed by Special Relativity, a light pulse ascending with a

finite c from the bottom reaches the tip only when the latter

has picked up a fixed relative speed away from the original

emission point. The GPS satellites confirm this absurdly dar-

ing insight of “gravitational time dilation” downstairs every

minute.

Einstein’s look at a vertically emitted light ray was then

followed by his also having a look at a locally horizontal light

ray that hugs the flat bottom of the ignited rocketship. This

led him to his final discovery in the equivalence principle: a

horizontal light pulse automatically looks slowed by the grav-

itational redshift factor when watched from above [1] (see the

last unnumbered equation on the last-but-second page).

5 Main result

The second revolutionary finding of Einstein regarding grav-

itation is again absolutely correct notwithstanding its absur-

dity from a common-sense point of view. However, it hap-

pens to admit of a final touch. The latter takes the first Ein-

stein result (the fact that the bottom is in constant recession

relative to the tip) into account in the second (the apparent

transversal slowdown of c). The synthesis is that the locally

horizontal light ray hugging the floor is necessarily at the

same time slanted-upwards relative to the tip at every point

due to the continual falling-back of the bottom. Note that

when the light from the neighboring spatial cell downstairs

reaches the next, the latter is a bit faster already, etc. Ow-

ing to this new relative slant, the horizontal reduction of c

discovered by Einstein becomes a mere projection effect: the

new upwards slant restores c-global.

It is worth pointing out here that c-global formally under-

lies the equivalence principle from the outset since the latter is

exclusively based on Special Relativity with its built-in global

c. This fact was not sufficient, however, to directly rule out the

conclusion that c is locally reduced. The lack of confidence

shown has to do with the fact that the rocketship paradigm is

so impossibly hard to think-through in every respect [6].

The newly retrieved global speed of light c downstairs

in the equivalence principle now has its consequences: all

transversal lengths downstairs which at first sight look un-

changed from above are actually increased by the gravita-

tional redshift factor relative to the tip. They only look op-

tically compressed towards the original length by virtue of

the slant. The only readily visible consequence upstairs is the

seemingly reduced transversal speed of light c′ downstairs,

discovered by Einstein [1].
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6 Consistency

The new found transversal size increase downstairs matches

the increase in wavelength of all light emitted downstairs.

Moreover, these lower-energy photons emitted downstairs re-

main, with their locally unchanged-appearing frequencies, lo-

cally interconvertible with particles of matter (as in positron-

ium creation and annihilation) as a consequence of the much

later discovered quantum electrodynamics. Hence all local

atoms have a mass that is lower by the redshift factor valid

relative to above. This mass reduction, in turn, entails a pro-

portional size increase of these atoms via the Bohr radius for-

mula of Quantum Mechanics. Therefore, space is enlarged

downstairs, both by the c-global of Special Relativity and by

virtue of Quantum Mechanics, in an identical fashion. The

two theories confirm each other independently. The optically

unchanged-appearing horizontal distances downstairs with

their creeping c′ seen by Einstein do therefore indeed mask

a size increase proportional to the gravitational redshift.

Note that the thus doubly confirmed new Einstein effect of

“gravitational space dilation” exactly matches the old

Einstein effect of “gravitational time dilation” (implying c-

global). The equivalence principle thus becomes even more

powerful by the fact that the size change derived geometri-

cally in it via the laws of Special Relativity gets indepen-

dently confirmed by the creation and annihilation operators

of quantum electrodynamics.

Thus, the original interpretation of Einstein’s creeping ef-

fect (as a reduction in c [1, 2]) can be given up for good to

date. However, it is important to realize that in the days be-

fore the advent of quantum electrodynamics with its creation

and annihilation operators, the double-tiered consistency ob-

tained above was inaccessible. Hence the above-described

fractal-like relative local slant, which saves c-global on the

part of Special Relativity downstairs, was in the absence of

Quantum Mechanics’ own rest-mass-dependent size increase

impossible to spot. Einstein’s giving c-global up for good

in 1911 after more than 3 years of trying to preserve it was

therefore preprogrammed.

The new Einstein effect of “gravitational space dilation,”

when added to the old Einstein effect of “gravitational time

dilation” (so that c remains a global constant of nature), has

mind-boggling consequences like the two already mentioned

(no Big Bang and no Hawking evaporation). The second im-

plication is especially important in view of the fact that it ren-

ders the most hoped-for success of a currently running exper-

iment — generation of miniature black holes down on earth

— undetectable by virtue of the absence of their generally

expected Hawking signature. Any unrecognized success at

CERN will then grow exponentially inside earth [3]. So the

return to c-global implies “tangible consequences” for an ex-

periment rated innocuous in its last — still pre-c-global —

safety report LSAG of 2008. Einstein’s results are notorious

for entailing existential consequences.

7 Discussion

It is a good idea to “return to the mothers” from time to time,

poet Goethe advised. In the present case, a trip back to the

pioneer phase of relativistic gravitation theory was offered.

The retrieved crumb from Einstein’s table — c-global — is

still big enough to revolutionize cosmology and metrology.

All of this is only possible because in 1907, a young out-

sider dared think clearly in three dimensions with an almost

superhuman exactitude including motion effects and their en-

tailed delays — much as a computer-games freak of today

would do with the aid of modern simulation tools, cf. [7].

Composing the computer game “Einstein Rocket” and putting

it on the web will greatly aid physics. In this way, a modern

young Einstein may be enabled to let the only “to some ex-

tent accessible” [6] thought experiment of the younger Ein-

stein reveal its most important if presently still unfathomable

secret.

To conclude, a revolution in physics based on Einstein’s

early work was described. A corollary to his optically man-

ifest reduced speed of light c′ downstairs in gravitation was

pointed out — a gravitational-redshift proportional size

increase downstairs in gravity that is masked from above.

The new space dilation is proportional to the old time dila-

tion and thus restores c-global in accordance with the special-

relativistic nature of the equivalence principle of Einstein.

Consistency of the equivalence principle with Quantum Me-

chanics arises for the first time (the previous absence of this

feature had gone unnoticed). As a bonus, the new size dila-

tion predictably enables the long-missed unification of Gen-

eral Relativity with Quantum Mechanics — “the holy grail of

physics” [8].
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