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LETTERS TO PROGRESS IN PHYSICS

Cosmological Cold Dark Matter and Dark Energy
Match Icosahedron Symmetry

Felix Tselnik
E-mail: tselnik@bgu.ac.il

A charge analogous though different from the usual electric charge is introduced with
the same kind of gauge but applied to the icosahedron. This “cosmocharge” might be a
source of the accelerating expansion of universe in cosmology (Dark Energy).

In a unmetric approach [1], contact is the prime concept de-
fined by the point-like — yes/no — condition, and all pre-
dictions in a Contact Problem are made by means of count-
ing top-velocity signal oscillations numbers between bodies
moving along their trajectories. In so doing, we need no in-
termediaries like rulers, clocks, or reference frames that could
introduce all of their own or hide something. Therefore only
direct motion-to-motion measurements should be used. Then
even the concept of body is introduced solely as something,
for which Contact Problem makes sense.

Suggesting free motion to be rectilinear and uniform, we
ascribe acceleration to external forces. However, as men-
tioned by Einstein, this picture leads to a vicious circle, since
the absence of forces itself is verified just by this kind of
motion. There is nothing intrinsic for an individual straight
line. Moreover, how can we be sure in practice that rulers are
straight and clocks click uniformly? And are such features of
these auxiliary devices actually necessary for Contact Prob-
lem predictions? Can integration required to construct the
trajectory in a field be carried out without approximation with
such segments?

Metric-less approach makes it possible to dispense with
these artificial schemes. Rather than consider particular lines,
we could first work with classes of lines provided with some
particular rules for mutual intersections and then develop full
space-time geometry out of these. To this end, let us define
first a special class of trajectories with the following prop-
erty: Any two of these either do not intersect, or intersect
in a single point. We define free trajectories as members of
this class. Assuming their intersections to mark contacts, we
can consider Contact Problem for this class only, implying its
further application to the full Contact Problem with external
forces. For this to be possible, general trajectories, which can
have multiple contacts as mutual, so also with free trajecto-
ries, must satisfy some conditions:

i. They contact some of free trajectories at each points;

ii. At each point a next point exists, such that a free tra-
jectory connecting these two points has no other con-
tacts with this general trajectory. As shown in [1], we
can define parallel trajectories and predict contacts us-
ing them by means of counting top-signal oscillations
ratios.

The reaction of the body’s motion on external influences
depends on its charge pertained to a particular field. Any
Contact Problem can be specified by means of oscillations
numbers and their ratios, provided the standard of charge can
be transported to all points of a trajectory in question. It is
just the availability of this procedure that provides the list of
relevant fields as compatible with it. To this end, some partic-
ular arrangements of test trajectories — spheres — are used.
Sphere is defined as a finite or infinite set of trajectories hav-
ing common contact (the sphere center) with some definite
ratios of (infinite) oscillations numbers in order to introduce
a measure for operations such as field determining integra-
tion. Some kinds of spheres — regular stars, the trajectories
of which are distributed according to the vertices of the Pla-
tonic solids, provide a basis for the electric charge gauge by
means of detecting the related symmetries of their motions
toward the star center solely under their interaction.

In particular, the cube symmetry defines the charge gauge
for the electroweak interaction. Considering the trajectories
of the two cube comprising tetrahedrons, one of which con-
sists of four electrons and another of four positrons, we can
develop a full gauge framework for these interactions, yet ad-
ditionally requiring the existence of neutrinos (with the re-
sulting parity violation) [2]. In the same sense the dodeca-
hedron star, comprising besides the cube also the 12-vertices
set of “roofs”, ascribed to the quarks, adds the strong inter-
action in accord with this additional symmetry. The set of
roof trajectories might have a center on their own, provided
the strong potential squarely increases (over a limited range)
to form a strictly fine star. Their electromagnetic interaction
with the cube sub-star of this dodecahedron (necessary to fix
their position with respect to the cube) prevents the latter from
being a strictly fine star. For this perturbation to fall within
the range of the weak interaction, the quark masses must be
accordingly small. The dodecahedron symmetry exhausts the
list of interactions that could be ultimately registered with our
electricity-based devices.

Of the five Platonic solids, only the cube and the icosa-
hedron allow for arrangements of trajectories that can form
strictly fine regular stars even for charged particles, provided
these have equal masses and absolute values for oppositely
charged particles (neither tetrahedron, nor octahedron can
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form these). Since the icosahedron cannot be included in the
richest with sub-stars dodecahedron, its possible charges have
nothing in common with electric or other charges of the do-
decahedron. Hence, this charge cannot be detected with our
customary devices.

Like the roofs of the dodecahedron, the set of 12 trajecto-
ries of the icosahedron corresponding to its 12 vertices can be
decomposed into 3 reciprocally orthogonal rectangles (how-
ever, having a particular — “golden” — ratio of their sides’
lengths for the star to be regular). Again, in each rectangle all
these trajectories belong to test-bodies for the charge gauge,
having equal masses and absolute values of some charge with
opposite signs on their side vertices. Then mutual compen-
sation of these charges lets these 3 rectangles be quite inde-
pendent of each other due to compensation of effects of one
charged rectangle on another.

Just as the usual electric charge in our ordinary situa-
tions creates a field that, in turn, is detectable due to charged
bodies motion, this “cosmocharge” Q, though being not de-
tectable with our conventional devices, still might be found
in observations of far galaxies or their clusters [3]. If, anal-
ogously to baryon matter-antimatter asymmetry, one sign of
cosmocharge has some larger density than its opposite one,
then so created “cosmofield” will let our universe expand with
acceleration now ascribed to the Dark Energy. Similarly to
the rectangles of the strong interacting sub-star in the dodec-
ahedron, the rectangles of the icosahedron can possess strictly
fine center only for a force with a potential squarely increas-
ing with distance. Consisting of opposite charges, such a
“cosmoplasma” might fluctuate to have observable anisotropy
in the universe expansion acceleration.

For basic electromagnetic interaction for the charge gauge
in the dodecahedron, we had to restrict the strong interaction
region to prevent adverse influence of 12 vertices subset on
the cube symmetry. There is no need in this confinement now,
since the charge of only one force is to be gauged. Hence
the increasing field can exist over the whole universe keeping
asymptotic freedom in our short range environment, while be-
ing effective far away.

Having no sub-symmetries in the icosahedron star, the
cosmofield cannot involve other than strong-like interactions.
However, its rectangles might have different values of Q and
masses M, provided Q2M are the same for all of them to form
a regular icosahedron star. So, stable “cosmoatoms” might
exist as combined of bodies with different Q’s and M’s to
avoid annihilation.

Now, in general relativity, scalar action includes an arti-
ficially inserted baryon term, contributing to the momentum-
energy tensor in the Einstein equation and basing only on a
covariance argument. This source of space-time curvature
looks natural for our local environment. Moreover, we can
specify space-time scalar curvature as a violation of transitiv-
ity in the finite local oscillations numbers for sets of curved
lines that are still regarded “parallel” in terms of our oscilla-

tions numbers. So defined, curvature should replace the scalar
in the least action principle for Contact Problem. We then re-
verse the very definition of matter. Just as in Contact Problem
a concept of body was introduced due to its participation in
Contact Problem scheme, the concept of matter in cosmology
is just a visualization of the observed curvature of space-time.
Unlike baryon case of general relativity, there is no indepen-
dent of curvature definition of matter now. Actually, no Cold
Dark Matter, whether or not detectable, might exist there at
all. Merely the empty space-time of the real universe is actu-
ally curved, while we ascribe the measured curvature to some
imaginary Cold Dark Matter as its source in analogy to the
Newton law.

Submitted on April 8, 2018
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The Planck Vacuum Physics Behind the Huygens Principle and
the Propagator Theory for the Schrödinger Electron

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA
E-mail: wcdaywitt@me.com

This paper reviews a small portion of the quantum-electrodynamic propagator model
as viewed from the Planck vacuum (PV) theory. The nonrelativistic calculations sug-
gest that the degenerate collection of Planck-particle cores (that pervade the invisible,
negative-energy vacuum state) is responsible for the Huygens principle, the propagator
theory, and the Feynman diagrams.

1 Introduction

The theoretical foundation [1–3] of the PV theory rests upon
the unification of the Einstein, Newton, and Coulomb super-
forces:

c4

G

(
=

m∗c2

r∗

)
=

m2
∗G
r2
∗

=
e2
∗

r2
∗

(1)

where the ratio c4/G is the curvature superforce that appears
in the Einstein field equations. G is Newton’s gravitational
constant, c is the speed of light, m∗ and r∗ are the Planck mass
and length respectively [4, p. 1234], and e∗ is the massless
bare charge. The fine structure constant is given by the ratio
α = e2/e2

∗, where (−e) is the observed electronic charge.
The two particle/PV coupling forces

Fc(r) =
e2
∗

r2 −
mc2

r
and F∗(r) =

e2
∗

r2 −
m∗c2

r
(2)

the electron core (−e∗,m) and the Planck-particle core
(−e∗,m∗) exert on the PV state, along with their coupling con-
stants

Fc(rc) = 0 and F∗(r∗) = 0 (3)

and the resulting Compton radii

rc =
e2
∗

mc2 and r∗ =
e2
∗

m∗c2 (4)

lead to the important string of Compton relations

rcmc2 = r∗m∗c2 = e2
∗ (= c~) (5)

for the electron and Planck-particle cores, where ~ is the re-
duced Planck constant. The electron and Planck-particle
masses are m and m∗ respectively. To reiterate, the equa-
tions in (2) represent the forces the free electron and Planck-
particle cores exert on the PV space, a space that is itself per-
vaded by a degenerate collection of Planck-particle cores [5].

The Planck constant is a secondary constant whose struc-
ture can take different forms, e.g.

~ [erg sec] = rcmc = r∗m∗c =

(
e2
∗

r∗

)
t∗ = m∗c2t∗ (6)

that are employed throughout the following text, where t∗ (=
r∗/c) is the Planck time [4, p. 1234].

Furthermore, the energy and momentum operators ex-
pressed as

Ê = i~
∂

∂t
= i (m∗c2) t∗

∂

∂t
= i (m∗c2) r∗

∂

c∂t
(7)

and

c p̂ = −i c ~∇ = −i (m∗c2) r∗ ∇ = −i (mc2) rc ∇ (8)

will be used freely in what follows.
Section 2 re-examines the Schrödinger equation in light of

the PV theory, the calculations concluding that the pervaded
vacuum state is the source of the scattering in the propagator
theory. Section 3 presents a nonrelativistic look at the Huy-
gens principle and the propagator theory for the electron core.

2 Schrödinger equation

The inhomogeneous Schrödinger equation, where H = H0+V
is the Hamiltonian operator, can be expressed as(

i~
∂

∂t
− H

)
ψ(x, t) = 0 . (9)

The free-space Hamiltonian is H0 and V is some position and
time-dependent potential that is assumed to slowly vanish in
the remote past (t → −∞) and in the remote future (t → +∞).
In free space V = 0 and (9) becomes(

i~
∂

∂t
− H0

)
φ(x, t) = 0 . (10)

For t′ > t, the formal solution to (9) or (10) takes the
form [6]

ψ(x, t′) = T exp
[
−i

∫ t′

t
dt
′′

H(t′′)/~
]
ψ(x, t) (11)

where T is the time-ordering operator whose details are unim-
portant here (see Appendix A). What is important is the de-
composition of ~ (= m∗c2t∗) in the exponent of (11), leading
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to ∫ t′

t

dt
′′

H(t′′)
~

=

∫ t′

t

dt
′′

t∗

H(t′′)
m∗c2 . (12)

From the perspective of the PV theory, the normalization of
dt
′′

by the Planck time t∗ and H by the Planck-particle mass
energy m∗c2 strongly suggest that the scattering in the quan-
tum-electrodynamic propagator theory is caused by the
Planck-particle cores that pervade the vacuum state. This
conclusion will be reinforced by the calculations to follow.

The normalized Hamiltonian operator H0 can be
expressed as

H0

m∗c2 =
“p2/2m”

m∗c2 =
ĉp · ĉp/2mc2

m∗c2

=
(−im∗c2r∗∇) · (−imc2rc∇)/2mc2

m∗c2 = −
rcr∗∇2

2

(13)

where the equalities in (5) are used. Then the normalized
Schrödinger equation becomes

ir∗
∂φ

c∂t
−

(−irc∇) · (−ir∗∇)
2

φ = 0 (14)

or (
it∗
∂

∂t
+

rcr∗∇2

2

)
φ = 0 (15)

where t∗ (= r∗/c) is the Planck time and the equations are di-
mensionless. The dimensionless aspect of the equations here
and in what follows will help in recognizing the relationship
between the Huygens principle and the propagator formalism.

The normalized inhomogeneous equation (9) becomes(
it∗
∂

∂t
+

rcr∗∇2

2

)
ψ =

V
m∗c2 ψ (16)

where again the equation is dimensionless.

3 Electron-core propagator

Roughly speaking, the Huygens principle states that every
point on a wavefront is itself the source of a spherical wavelet.
In the present context, the Huygens principle takes the form
[7, eqn. 6.29]

φ(x′, t′) = i
∫

d3x
G0(x′, t′; x, t)

~
φ(x, t) for t′ > t

φ(x′, t′) = i
∫

d3x
G0(x′, t′; x, t)

(m∗c2)t∗
φ(x, t) (17)

and

ψ(x′, t′) = i
∫

d3x
G(x′, t′; x, t)

~
ψ(x, t) for t′ > t

ψ(x′, t′) = i
∫

d3x
G(x′, t′; x, t)

(m∗c2)t∗
ψ(x, t) (18)

where the Green function propagators G0 and G have the
units “erg-sec per unit volume”. In the present paper, equa-
tions (17) and (18) are associated with what are defined as
internal- and external-scattering processes respectively. The
internal scattering refers to the free electron φ(x, t) scattering
off the pervaded PV space. The external scattering refers to
the electron ψ(x, t) scattering off the pervaded PV space with
an external potential V(x, t) perturbing that space. It will be
seen in what follows that the units “erg-sec per unit volume”
almost define the “pervaded vacuum space”.

Now begins the calculation of the wave function ψ result-
ing from the continuous interaction of the free-electron wave
function φ with the perturbed vacuum state. The calculation
will not be carried to completion, but only far enough (equa-
tion (25)) to suggest that the wave scattering takes place be-
tween φ and the pervaded vacuum space. Furthermore, many
of the details in the following calculations based on reference
[7] are unimportant to the present needs; so the calculations
are heavily referenced in case the reader is interested in those
details.

For t = ∆t1 [7, eqn. 6.30](
it∗

∂

∂t1
+

rcr∗∇2

2

)
ψ(x1, t1) =

V(x1, t1)
m∗c2 ψ(x1, t1) (19)

and (
it∗

∂

∂t1
+

rcr∗∇2

2

)
ψ(x1, t1) = 0 (20)

for t , ∆t1. Equation (19) refers to an external scattering as
defined above.

The new wave function due to the external perturbation V
in (19) can be expressed as [7, eqn. 6.31]

ψ(x1, t1) = φ(x1, t1) + ∆ψ(x1, t1) (21)

so the Schrödinger equation yields (using (15) for φ)(
it∗

∂

∂t1
+

r∗rc∇
2

2

)
∆ψ(x1, t1)

=
V(x1, t1)

m∗c2

[
φ(x1, t1) + ∆ψ(x1, t1)

]
.

(22)

It can be shown that the second terms on the left and right
sides of (22) can be dropped [7, eqn.6.35], leading to

it∗
∂

∂t1
∆ψ(x1, t1) =

V(x1, t1)
m∗c2 φ(x1, t1) (23)

which to first order in ∆t1 yields

∆ψ(x1, t1 + ∆t1) = −i
V(x1, t1)

m∗c2 φ(x1, t1)
∆t1
t∗

(24)

where the differential ∆ψ(x1, t1) coming from the approxima-
tion is ignored compared to the φ(x1, t1) on the right side of
(24).

For two consecrative time periods ∆t1∆t2, with an infi-
nite past [where ψ(x′) → φ(x′)], it can be argued that [7,
eqn. 6.43]
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Fig. 1: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with no external scattering.

Fig. 2: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with one external scattering at
(x1, t1).

ψ(x′) = φ(x′) +

∫
d3x1

∆t1
t∗

G0(x′; 1)
V(1)
m∗c2 φ(1)

+

∫
d3x1

∆t2
t∗

G0(x′; 2)
V(2)
m∗c2 φ(2)

+

∫
d3x1

∆t1
t∗

d3x2
∆t2
t∗

G0(x′; 2)

V(2)
m∗c2 G0(x′; 1)

V(1)
m∗c2 φ(1)

(25)

where the obvious notations (x) ≡ (x, t) and φ(2) ≡ φ(x2) are
used. The four terms in (25) represent respectively the prop-
agation from (x, t) to (x′, t′): a) as a free particle with no ex-
ternal scatterings; b) with one scattering at (x1, t1); c) with
one scattering at (x2, t2); and d) with a double scattering at
(x1, t1) and (x2, t2) in succession. The representations of these
scatterings in Figures 1-4 are called Feynman diagrams [7,
eqn. 6.43], where the horizontal axis represents space and the
vertical axis represents time.

Fig. 3: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with one external scattering at
(x2, t2).

Fig. 4: The Feynman diagram for the propagation of the electron
core (−e∗,m) from (x, t) to (x′, t′) with a double external scattering
at (x1, t1) and (x2, t2).

4 Conclusions and comments

A close examination of the previous calculations strongly
suggests that the PV theory, which envisions a vacuum space
pervaded by a degenerate collection of Planck-particle cores,
provides a fundamental explanation for the Huygens princi-
ple and the scattering associated with the quantum-electro-
dynamic propagator formalism.

The retarded Green function G+
0 associated with the Green

function G0(x′, t′; x, t) in equation (17) and in Figure 1 is
given by the equations [7, eqn. 6.60](

i~
∂

∂t′
− H0(x′)

)
G+

0 (x′; x)
~

= δ3(x′ − x)δ(t′ − t) (26)

for t′ > t and G+
0 (x′; x) = 0 for t′ < t, where x′ = (x′, t′) and

x = (x, t); or(
it∗

∂

∂t′
+ rcr∗∇2

x′

)
G+

0 (x′; x) = δ3(x′ − x)[t∗δ(t′ − t)] (27)

where the parenthesis on the left and the bracket on the right
of (27) are dimensionless.
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Appendix A: Time-ordering operator T

The time-ordering operator [6] is defined by

T exp
[
−i

∫ t′

t
dt
′′

H(t′′)/~
]
≡ (A1)

∞∑
n=0

1
n!

(
−i
~

)n ∫ t′

t
dt1· · ·

∫ tn−1

t
dtnH(t1) . . .H(tn) (A2)

=

∞∑
n=0

(−i)n

n!

∫ t′

t

dt1
t∗
· · ·

∫ tn−1

t

dtn
t∗

H(t1)
m∗c2 . . .

H(tn)
m∗c2 (A3)

where the final equality comes from the decomposition of the
Planck constant, ~ = m∗c2t∗, in (A2).
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Predicting Total Angular Momentum in TRAPPIST-1 and Many Other
Multi-Planetary Systems Using Quantum Celestial Mechanics
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TRAPPIST-1 harbors at least 7 Earth-mass planets orbiting a 0.089 solar mass dwarf
M-star. Numerous other multi-planetary systems have been detected and all obey a
quantization of angular momentum per unit mass constraint predicted by quantum ce-
lestial mechanics (QCM) as derived from the general theory of relativity (GTR). The
universality of this constraint dictates that the TRAPPIST-1 system should obey also. I
analyze this recently discovered system with its many mean motion resonances (MMRs)
to determine its compliance and make some comparisons to the Solar System and 11
other multi-planetary systems.

1 Introduction

In the past 25 years, more than 3500 exoplanets have been de-
tected, many in multi-planetary systems with 4 or more plan-
ets [1]. Extreme examples include HD 10180 with 9 plan-
ets and TRAPPIST-1 with 7 planets. In each of the discov-
ered systems the understanding of their formation and stabil-
ity over tens of millions or even billions of years using New-
tonian dynamics remains an interesting challenge.

A prediction of whether additional planets exist beyond
those already detected is not an expected outcome of the dy-
namical studies. However, a different approach [2] called
quantum celestial mechanics (QCM) offers the potential abil-
ity to predict the existence of additional angular momentum
in the planetary system, which could indicate additional plan-
ets to be detected or additional mass in the form of rings or
spherical shells of mass chunks orbiting the star, such as the
Kuiper belt or the Oort Cloud in our Solar System.

The history of the formation of most of these planetary
systems remains an active research area, ranging from in situ
formation from a dust disk to pebble accretion followed by
sequential inward migration toward the central star [3]. Their
stability may depend upon numerous factors, and many re-
search groups continue to investigate the long-term stability
for millions of orbits over tens of millions of years, including
in models for the history of our Solar System.

There is a recent paper [4] that considers the total angular
momentum deficit (AMD) of multi-planetary systems with
the proposal that the AMD is a way to classify their predicted
stability. The AMD is defined by the total angular momentum
difference

AMD =

n∑
k=1

µk
√

GM rk

(
1 −

√
1 − ε2

k cos ik
)

(1)

between the maximum total orbital angular momentum when
all the planets orbit in the same plane and the total angu-
lar momentum determined from the orbital data. The Solar
System and HD 10180 are two examples discussed in which
the outer system of planets is AMD-stable, the inner system

Fig. 1: Solar System fit to QCM total angular momentum constraint.
The uncertainties are within the data circles.

of planets is AMD-unstable, and the whole system is AMD-
unstable.

In fact, this AMD approach demonstrates that the AMD-
unstable systems tend to have orbital period ratios concen-
trated around the lower integer mean motion resonance ratios
such as 3:2 and 2:1, a result perhaps somewhat in conflict with
expectations. This unexpected outcome is interesting because
many planetary systems exhibit at least one mean motion res-
onance (MMR), which had been expected to contribute a sta-
bilizing factor in parts of those systems. The AMD research
therefore means that not all MMRs are beneficial toward sta-
bilizing the planetary orbits.

The recently discovered TRAPPIST-1 system has 7 Earth-
mass planets all within 0.1 au of its dwarf M-star of 0.089 so-
lar masses [5]. Three of the planet pairs exhibit a 3:2 MMR
and another pair exhibits the 4:3 MMR, yet studies indicate
that this system has been in existence for at least 7 billion
years. Perhaps an additional factor contributes to the stability
of these multi-planetary systems.

We propose that the additional factor is the quantization
of angular momentum per unit mass predicted by quantum ce-
lestial mechanics (QCM). The QCM theory [6] dictates that
not all planetary orbits about the central star are available
as equilibrium orbits but, instead, QCM determined equilib-
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rium orbits exist only at specific radii. Bodies in orbits at
all other radial distances will migrate towards these specific
QCM equilibrium orbital radii.

In the following sections we review the QCM proposed
angular momentum constraint that leads to a select set of or-
bital radii for all planetary systems and demonstrate its ap-
plication to the Solar System, the 5 moons of Pluto, the 7
planets of TRAPPIST-1, and to numerous other exoplanetary
systems, including HD 10180.

2 The QCM angular momentum constraint

The total angular momentum in a planetary system is an im-
portant physical parameter not often discussed. In 2003, H. G.
Preston and F. Potter proposed [6] a new gravitational theory
called Quantum Celestial Mechanics (QCM), which is de-
rived from the general theory of relativity (GTR), that claims
that all gravitationally bound systems in the Schwarzschild
metric will exhibit the quantization of angular momentum per
unit mass constraint

L
µ

= m
LT

MT
(2)

with m being the orbit quantization integer, L the angular
momentum of each orbiting body of mass µ, and LT and MT

the total angular momentum and total mass of the planetary
system.

In the simplest applications of QCM, one assumes that
after tens of millions of years that the orbiting planet is at
its equilibrium orbital radius r with a small eccentricity ε
so that the Newtonian orbital angular momentum value L =

µ
√

GM r(1 − ε2), with M being the star mass, can be used.
For most multi-planetary systems, including the Solar Sys-
tem, TRAPPIST-1, and HD 10180, the values of ε are all less
than 0.2 and will be ignored in the QCM analysis fit to the
constraint.

Because the QCM quantization of angular momentum per
unit mass constraint is derived from the general relativistic
Hamilton-Jacobi equation via a simple transformation, one
obtains a new gravitational wave equation [6]. In the famil-
iar Schwarzschild metric this gravitational wave equation will
apply to all gravitationally-bound systems with orbiting bod-
ies. However, as in GTR, different metrics can be considered,
including the static interior metric, for which the QCM anal-
ysis of the Universe [7] predicts a new interpretation of the
cosmological redshift in agreement with the data, that all dis-
tant sources are in a more negative gravitational potential than
all observers, i.e. the distant clocks tick slower.

3 Application of QCM to the Solar System

Our first application of QCM in the Schwarzschild metric
was to our Solar System using the known masses and present
spacings of its 8 planets. If only the orbital angular momen-
tum of the 8 planets and the Sun are considered, so that LT

≈ 4 × 1043 kg m2 s−1, then this value of the total angular mo-
mentum meant that QCM predicted that all the planetary or-
bits should be within the radius of the Sun! Obviously, some-
thing was wrong.

At first, we suspected that our derivation of the constraint
was incorrect. But a detailed check proved that our derivation
had been done correctly, including the numerous approxima-
tions needed to obtain an equation with the most important
factors. Therefore, in order to achieve the present day orbital
spacings, we interpreted the QCM equations to be predicting
much more angular momentum in the Solar System, about 50
times as much!

Indeed, we subsequently learned that the Solar System
does have much more angular momentum in its system than
the contributions from just the Sun and its planets. The So-
lar System has an enormous angular momentum contribu-
tion from the Oort Cloud with its approximately 100 Earth
masses of ice chunks orbiting at about an average distance of
40,000 au, thereby dominating the total angular momentum
of the Solar System by almost a factor of 50.

The new orbital fits of QCM using the constraint then
agreed with the present orbital radii of the planets, and we
predicted the total angular momentum in the Solar System to
be the much higher value LT ≈ 1.9 × 1045 kg m2 s−1. Fig. 1
shows our QCM fit to the 8 planets plus the 5 known dwarf
planets, with m values 3, 4, 5, 6, 9, 13, 17, 25, 31, 36, 38,
39, 48.

So, for the first time, we were able to use the QCM angu-
lar momentum constraint to fit the equilibrium orbital radii of
all the planets of the Solar System and to verify that the con-
straint could be an important factor in predicting additional
angular momentum in a planetary system. One should note
that the QCM fit does not require the division of the system
into the inner planets and the outer planets, a prominent fea-
ture of other approaches, including AMD.

The successful application of the QCM angular momen-
tum constraint to the Solar System encouraged us to try to
find a definitive test. But the QCM constraint fit to the So-
lar System and to the orbiting satellites of the Jovian planets
could not be considered definitive tests of QCM because their
system total angular momentum values were not known to
within 10%. So a decade long hunt began to find a multi-
bodied system for which the physical parameters are known
to be within a few percent.

4 Pluto system as a definitive test of QCM

Fortunately, in 2012, the dwarf planet Pluto was reported to
have 5 moons. Their orbital stability was being studied in
reference to the Pluto-Charon barycenter, and the moons are
nearly in a 1:3:4:5:6 resonance condition!

An early QCM linear regression fit with R2 = 0.998 to
the angular momentum constraint for the Pluto system re-
vealed more angular momentum could be present in this sys-
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m r (au) P (days) P2/P1 (n2/n1)3 Lmax MMR(P) MMR(n)
1039 kg m2 s−1

b 15 0.0115 1.51087 1.000 1.000 1.103
c 18 0.0158 2.42182 1.603 1.675 1.802 1.603 1.675
d 21 0.0223 4.04961 2.680 2.600 0.540 1.672 1.552
e 24 0.0293 6.09961 4.037 3.815 1.828 1.506 1.467
f 28 0.0385 9.20669 6.094 5.954 1.651 1.509 1.560
g 31 0.0469 12.35294 8.176 8.000 2.066 1.342 1.344
h 36 0.0619 18.76700 12.421 12.366 0.826 1.519 1.546

9.815

Table 1: Fit of the 7 planets of TRAPIST-1 to the QCM angular momentum constraint.

tem, hinting that at least one more moon could exist. This fit
used the smallest set of integers possible with m values 2, 6,
9, 10, 11, 12. A set with larger integers was also available be-
ginning with m = 4 for a good fit but indicating a lower total
angular momentum value for the system.

Then, in 2015, the New Horizons spacecraft sent back
precise data about the Pluto system that established 5 tiny
moons only. That limitation allowed us to have a definitive
test [8] of QCM because the total angular momentum was
then known to within 2.4%. With the m values 4, 10, 15,
16, 18, 19, the QCM angular momentum constraint applied
to the Pluto system predicted LT = 6.28 × 1030 kg m2 s−1, a
value commensurate with the value LT = 6.26 (±0.14) × 1030

kg m2 s−1 calculated from the known physical parameters.
We therefore consider the Pluto system to be the defini-

tive test of the QCM angular momentum constraint because
we know the pertinent physical parameters to within 2.4%,
and the predicted QCM total angular momentum determined
from the slope of the QCM plot of L/µ vs m agrees with the
total value determined in the standard way using Newtonian
physics.

5 QCM constraint applied to TRAPPIST-1

There has been great interest in the TRAPPIST-1 system be-
cause at least 3 of the planets are in the so-called Habitable
Zone where liquid water and perhaps some kind of life form
could have evolved over its nearly 9 billion year history [10].
However, being so close-in to their M-star also means that
these planets could be experiencing a severe UV radiation
flux as well as particle winds emanating from the star. Stud-
ies of their atmospheric content are under way by researchers
to determine whether water still exists or whether the UV ra-
diation has dissociated any previously existing water vapor
with the resulting particles having evaporated away to leave
behind an arid surface environment [9, 11].

We know that the planetary system orbiting TRAPPIST-
1 harbors at least 7 Earth-mass planets orbiting close-in to
the dwarf M-star of 0.089 M� [5]. More planets further out
beyond 1 au could exist, a possibility that QCM may suggest
by interpreting the constraint fit. The orbital period ratios

reveal that planet pairs d/e, e/f and g/h exhibit nearly a 3:2
mean motion resonance (MMR) and the pair f/g has a 4:3
MMR [9]. Planet pairs b/c and c/d do not have a first order
MMR although their period ratios are near 5:3.

The formation of this system has been a challenge for
modeling, and in a recent study [3] a pebble accretion and in-
ward migration history have been proposed to accommodate
its formation, including a process called resonance trapping
as planets sequentially move inward and build.

The pertinent data for the 7 known planets and the pre-
dicted m values from the system’s linear regression fit to the
QCM angular momentum constraint are provided in Table 1.
This set of m values is the lowest set of integers that achieved
a linear regression least squares fit of R2 > 0.999 for both
plots: L/µ vs m and P2/P1 vs (n2/n1)3, with n = m+1 for
the assumed circular orbits. Of course, other integer sets with
larger m values will also fit the constraint as well, but they
will have a smaller slope and therefore a smaller system total
angular momentum value calculated with (2).

In Fig. 2 is the plot of L/µ vs m with all uncertainties
within the small circles around each data point. From the
slope 8.77 × 1012 m2 s−1 of this QCM fit, one predicts a sys-
tem total angular momentum of 1.56 × 1042 kg m2 s−1. The
angular momentum from the star rotation plus the orbital mo-
tion of the 7 planets is much less, about 1.2 × 1040 kg m2 s−1,
using the values given in Table 1 and a star rotation period of
3.295 days.

The angular momentum difference could be accommo-
dated in several ways, including a larger integer for the first m
value and larger integers overall, thereby reducing the QCM
predicted total angular momentum. Or the difference could
be due to the presence of at least one additional planet further
out beyond a distance of about 1 au. For example, if the addi-
tional planet had the mass of Saturn, its orbit at about 3.8 au
would be sufficient to account for the discrepancy between
the total angular momentum values. And, of course, this sys-
tem could have the equivalent of the Oort Cloud at a large
distance from the star.

The period ratios provided in both columns 5 and 6 are
referenced to planet b. For a circular orbit, n = `+1, and
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Fig. 2: QCM angular momentum constraint applied to the
TRAPPIST-1 system of 7 planets close-in to the dwarf M-star. The
uncertainties all lie within the data circles.

Fig. 3: The QCM predicted radial accelerations r̈ for each of the 7
planets of TRAPPIST-1. Note that some planets should experience
corrections to their radial positions over tens of millions of years.

we assume ` = m, its maximum value. QCM predicts period
ratios

P2

P1
=

[
m2 + 1
m1 + 1

]3

. (3)

The largest discrepancy of the QCM predicted period ratios
in column 6 from the actual values in column 5 is for planet e
at 5.5%.

In the last two columns are the calculated MMRs for the
adjacent planets when calculated from values in column 4,
the MMR(P), and values calculated from column 6, for the
MMR(n), revealing the amazing first order resonances d/e,
e/f, g/h, and f/g, as well as the possible higher order reso-
nances b/c and c/d. Planet c exhibits the biggest difference in
QCM predicted values at about 7.2%.

Recall that QCM in the Schwarzschild metric predicts a
specific but limited set of radii for circular equilibrium orbits
that have both inward and outward forces acting, in direct
contrast to Newtonian orbital dynamics which has an equilib-
rium orbit at all planetary orbital radii. For QCM the approx-
imate expression for the effective gravitational potential is

Ve f f = −
GM

r
+
`(` + 1) L2

T

2r2 M2
T

, (4)

where the angular momentum quantization integer ` origi-
nates in the θ-coordinate. We have taken ` = m for the ex-
pression. Whence, the expected value of the orbital radial
acceleration near the equilibrium radius is defined by

r̈eq = −
GM
r2 +

`(` + 1) L2
T

r3 M2
T

. (5)

A computer simulation of the TRAPPIST-1 system could use
this equation to study its long-term QCM dynamic stability
contributions but must also include perturbations by the other
planets. The net QCM accelerations are very small, varying
from around a hundredth to a few tenths of a meter per second
squared.

A plot of the QCM radial accelerations near the equilib-
rium radii for all 7 planets is shown in Fig. 3, where the verti-
cal lines labelled b to h are the reported present radial orbital
distances of the planets. As can be seen from the plot, a small
radial movement inward for planet e is predicted to occur be-
cause its present radial acceleration is negative with respect
to the QCM equilibrium orbital distance.

One would expect that the planets will oscillate about the
QCM equilibrium orbital radii throughout their history, never
settling at the exact radius at which no further radial accelera-
tion would occur. Perturbations from the other nearby planets
as they pass by will be larger than the QCM accelerations, but
they last for short time intervals while the small QCM accel-
erations are acting constantly.

This TRAPPIST-1 system has existed for many billions
of years, so some sort of stabilizing influence has been at
play. We suspect that the QCM angular momentum constraint
is the important additional factor, providing accelerations on
both sides of the predicted QCM equilibrium orbital radius.
A computer simulation will be needed to determine the out-
comes over long time periods.

6 HD 10180 and other exosystems

The QCM quantization of angular momentum per unit mass
constraint is expected to apply to all gravitationally bound
systems described in the Schwarzschild metric.

In previous articles we analyzed multi-planetary systems
with 4 or more planets and found that they all can fit the QCM
angular momentum constraint. We list some of those systems
for comparison in Table 2 in order of increasing star mass in
column 2. Their m values and slope b are derived from the
linear regression plots of L/µ versus m. The QCM value of
LT in column 6 is calculated from b and then compared to
their known total angular momentum values (sum of columns
7 and 8).

Therefore, from the values in Table 2 we notice:

1. That our Solar System’s b value is much larger than all
the other multi-planetary system’s b values. Why? Be-
cause the Solar System has the overwhelming angular
momentum contribution from its Oort Cloud, a physi-
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System Star N m values b QCM LT Star LT Planets LT

M� 1015 m2 s−1 1045 kg m2 s−1 1042 kg m2 s−1 1042 kg m2 s−1

TRAPPIST-1 0.089 7 15,18,21,24,28,31,36: 0.00877 0.00156 0.0113 0.012
GJ 667 C 0.31 7 16,21,26,29,34,39:55 0.0333 0.0206 0.00971 0.169
GJ 581 0.31 6 8,10,14,20,25:47 0.0456 0.0283 0.00454 0.229
HD 40307 0.75 6 9,12,16,19,22:35 0.0863 0.129 0.179 0.340
Tau Ceti 0.783 7 13,14,18,20:25,31,49 0.0923 0.145 0.0820 0.311
HR 8832 0.794 7 4,6,9,12:15,41,44 0.144 0.229 0.491 4.131
Kepler-20 0.912 6 8,10,12,15:18,24 0.105 0.191 0.846
Kepler-11 0.95 6 11,12,15,17,19:26 0.113 0.215 5.60
55 Cancri 0.95 5 3,8,12:23,62 0.160 0.304 0.118 78
Sun 1.0 8 :3,4,5,6,13,17,25,31 0.762 1.524 0.192 31
HD 10180 1.062 9 3,6,7,8,12,14:17,29,46 0.185 0.393 0.436 5.153
Kepler-90 1.20 8 14,15,17,28:33,36,43,50 0.0949 0.228 0.738

Table 2: QCM angular momentum constraint applied to selected multi-planetary systems listed in order of star mass. N is the number of
known planets which determine the m values for a linear regression fit R2 ≥ 0.999. The m values for planets with orbital radii less than
Mercury’s are to the left of the colon. The predicted QCM LT in column 6 is calculated using the QCM slope b times the star mass.

cal property that dictates QCM to predict the very large
orbital spacings for its planets. We cannot say much
more about the Solar System, i.e., predict whether more
planets or dwarf planets exist, because the overwhelm-
ing but unknown total angular momentum contribution
of the Oort Cloud precludes making such a prediction.

2. That for the TRAPPIST-1 system, with its incredibly
small QCM b value, we expect another planet or more
orbiting bodies because the QCM predicted total angu-
lar momentum value is much greater than the orbital
contribution from its 7 known planets and the rotation
of the central star. Perhaps the proposed pebble accre-
tion and inward migration train is the explanation for
its formation, but QCD would suggest otherwise, that
the planets formed in situ by gathering the local dust
accumulating at the QCM equilibrium radii, assuming
that the total angular momentum in this system did not
change significantly during their formation.

3. That even for the HD 10180 system fit, as shown in Fig.
4 with its 9 planets, the total angular momentum from
its star rotation plus the known orbiting planets falls far
short of the QCM predicted total angular momentum,
so more orbiting mass is expected.

4. That all the systems in Table 2 are expected to have ad-
ditional angular momentum based upon the predicted
QCM value of LT . If more planets in these systems are
detected, they should have orbital radii corresponding
to the listed QCM m values that dictate their allowed
equilibrium orbital distances.

Perhaps another exosystem will be discovered in the near
future that also has a large angular momentum contribution
and very large QCM orbital spacings so that direct compar-
isons can be made to the Solar System in terms of the total
angular momentum parameter.

Fig. 4: QCM angular momentum constraint applied to HD 10180.
Uncertainties lie within the data circles.

Note that both the 4 inner planets of the Solar System
and the 7 planets of the TRAPPIST-1 system have been de-
termined to be unstable by the AMD analysis [4]. Yet both
systems have been in existence for more than 4 billion years,
i.e., more than 4 billion Earth orbits. Perhaps the small QCM
gravitational potential valleys around their QCM orbital equi-
librium radii, such as those shown in Fig. 3, are contributing
factors to their long-term stability. Or the existence of ad-
ditional orbital mass further out contributes to their stability
also. A computer simulation of these systems and the others
that includes the QCM constraint could be done to determine
whether this QCM effect is large enough to ensure their long-
term stability.

7 Conclusions

Many multi-planetary systems have been discovered and they
all had been determined previously to obey the QCM quan-
tization of angular momentum per unit mass constraint. For
most of those systems if not all of them, additional angular
momentum is predicted by QCM, angular momentum which
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could be contributed by additional planets or spherical shells
of ice.

Now the interesting TRAPPIST-1 system of 7 Earth-like
planets has been shown to obey the angular momentum con-
straint for each known planet in the system. The QCM pre-
dicted total angular momentum of its planetary system is 1.56
×1042 kg m2 s−1 versus the estimated value of 1.2×1040 kg m2

s−1 for the 7 planets plus the star rotation contribution. This
large total angular momentum discrepancy could indicate that
either at least one more planet could exist beyond several 1 au
or that a set of m values with larger integers would be a better
fit to decrease the predicted total angular momentum.

Also, for the TRAPPIST-1 system, from the determined
radial acceleration values near to the QCM predicted orbital
equilibrium radii, several planets could migrate slightly. For
example, planet e has a present radial distance that should de-
crease slightly over several thousand years in order to reach
its nearby predicted QCM orbital equilibrium radius. Pertur-
bations from the other planets will be important to consider in
a computer simulation of its behavior as the planet migrates
to its true QCM equilibrium orbital radius.

We also provide a list of 12 multi-planetary systems so
that a direct comparison of our Solar System QCM param-
eters can be made to other systems. The major difference is
that our Solar System contains significantly more angular mo-
mentum than any other known planetary system discovered.
Our QCM theory uses this information to predict the allowed
equilibrium orbital distances, an approach that explains why
almost all other multi-planetary systems with smaller total an-
gular momentum values can have so many planets within the
orbital radius of Mercury. Dynamically, a larger repulsive or-
bital angular momentum term in the QCM radial acceleration
equation will result in the planets forming at larger orbital
equilibrium radii.

Finally, the long-term stability of these multi-planetary
systems remains a challenge for the traditional modeling us-
ing Newtonian universal gravitation without additional con-
straints. The consideration of the total angular momentum
deficit (AMD) has introduced a method to classify their sta-
bility but is incomplete. Perhaps the QCM quantization of
angular momentum per unit mass approach will be the ad-
ditional constraint needed in order to better understand the
formation and stability of multi-planetary systems.
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In this paper, we consider the implications of the classical scaling of quantum entan-
glement observed experimentally. The probability of preserving entanglements over
classical scales and preventing the entanglement from collapsing due to physical inter-
actions is exceedingly small, indicating a fragile entanglement process. We propose a
physically robust entanglement process that persists to classical scales as observed. We
use a formulation of quantum mechanics that gives precedence to the physical rather
than the mathematical aspects of the theory and its transition to the classical domain,
using a physical interpretation instead of the literal interpretation of the Hilbert space of
the standard formalism. We clarify the difference between separable (product) and non-
separable (entangled) states, and the local realism nature of the product states which
obey Bell’s inequality compared to the non-local nature of the entangled states which
violate Bell’s inequality. We note that the truly quantum mechanical processes such
as the double-slit interference pattern, potential barrier tunneling, and in particular the
entanglement process as we show in this paper, depend on the quantum mechanical
phenomenon of wave-particle duality. In entanglement experiments, the quantum me-
chanical results obtained are from the wave aspect of the wave-particle quantum object
(q-object), just like the interference pattern in double-slit experiments, not the particle
aspect of the q-object which is currently unknowingly assumed. The wave aspect of
the q-object gives rise to the non-local behaviour as would be expected from the quan-
tum mechanical calculations, while the particle aspect exhibits local causal behaviour.
This explains why the entanglement process is robust: the wave-particle q-objects of
entangled states have definite physical characteristics at emission time and are free of
fragile evanescent properties. In addition, we conclude that “spooky action at a dis-
tance” (SAAD) is not required.

1 Introduction

Quantum entanglement is a quantum mechanical property of
a composite quantum system consisting of two or more sub-
systems (such as particles), describing a situation where a
quantum subsystem is linked to another via a specific process
leading to correlations between observable physical proper-
ties of the subsystems. The two-particle spin-singlet state

|ψ−〉 =
1
√

2

(
| ↑1↓2 〉 − | ↓1↑2 〉

)
(1)

is an example of state entanglement in bipartite systems [1,
p. 19].

Schrödinger first introduced the term entangled state to
describe the non-separable pure states of quantum systems
[2], [1, p. 17]. Consider for example the emission of two
photons of opposite polarization from a given process, such
as the stimulated emission of polarization-entangled photons
(see for example [3, 4]). The emitted photons are then con-
ceived of as “entangled” pure states. The system is described
by the wavefunction [4]

|ψ〉 =
1
√

2

(
|�1 〉 |	2 〉 + |	1 〉 |�2 〉

)
(2)

where �i and 	i represent the right-hand and left-hand cir-
cularly polarized photons for i = 1 or 2. This wavefunction

represents what we know of the entangled system, or alterna-
tively represents our lack of knowledge of the specific prop-
erties of each photon that is emitted. All we know is that
if one emitted photon is right-hand circularly polarized, then
the other will be left-hand circularly polarized, and vice versa.
Eq. (2) is a statement of this situation.

The predominant interpretation (the orthodox viewpoint
[5]) is that the wavefunction (2) represents a physical descrip-
tion of the emitted photons in an unresolved evanescent state,
and that once a measurement is performed on one of them, the
wavefunction collapses, the measured photon’s actual proper-
ties are then known and an instantaneous propagation of that
information is perceived by the other photon so that it can as-
sume the complementary properties required by the process
– “spooky action at a distance” (SAAD) as Einstein called it,
a process that some physicists like to think of as quantum
magic, an approach that speaks more of metaphysics than
physics. The reasons for the acceptance of this description
will be considered in greater detail in Section 5.

Over the past decades, experiments have been devised
to extend the range of quantum entanglements, to the point
where classical scales have been achieved. This includes both
the size of entangled objects (e.g. [6–10]) and the distances
over which entanglement has been maintained (e.g. [11, 12]).

These are particularly stunning results as any interaction
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of one of the entangled components with its environment will
collapse the entanglement. The probability of preventingsuch
interactions and preserving entanglements over classical sizes
and distances is exceedingly small. As noted by Jaeger [1,
p. 20] “Indeed, pure such states of two-particle systems are
exceptional rather than typical in the world; typically, a sys-
tem very soon interacts with a number of other systems, so
that, even if it were prepared in a pure state, it is typically
described by a mixed state”.

The probability that a photon can travel a distance x with-
out interaction is given by [13] [14, Section 3.3.1] [15, p 304]

Pno−int(x) = exp(−np σ x) (3)

where np is the particle number density and σ is the total pho-
ton interaction cross-section including absorption and scat-
tering. For propagation of photons in the atmosphere, np ∼

2.5 × 1025 m−3 [16] and σ ∼ 180 barn/molecule ≡ 1.8 ×
10−26 m2/molecule [17]. Using these values in (3), the no-
interaction probability becomes

Pno−int(x) = e−0.45 x (4)

where x is in meters. We see that for classical distances x,
the probability Pno−int(x) increasingly becomes very small.
For example, Pno−int(1 m) = 0.64, Pno−int(10 m) = 0.011,
Pno−int(100 m) = 2.9 × 10−20, Pno−int(1 km) = 3.6 × 10−196.
For the value of 143 km of [11,12] the probability that a pho-
ton can travel such a distance without interaction is astronom-
ically small.

Hence the probability of preserving entanglements over
classical sizes and distances and preventing the entanglement
from collapsing due to physical interactions is exceedingly
small. The question has to be raised: in light of these suc-
cessful classical-scale experiments, are we currently misun-
derstanding the quantum entanglement process such that in-
stead of a fragile entanglement situation as the above consid-
erations indicate, we can derive a quantum entanglement pro-
cess that leads to a physically robust entanglement situation
that persists to classical scales as observed?

2 Quantum entanglement questions

Questions have been raised concerning entanglement and its
extension to the classical (or macro) domain [18]. There is no
doubt that some processes generate particle or photon pairs
that have a definite relationship (correlation) between them
(which are referred to as being entangled) and these relation-
ships are confirmed experimentally. At stake here is the inter-
pretation of the quantum entanglement process, and the im-
pact of the understanding of this process on the development
and technological applications of this quantum mechanical
process – a misinterpretation can lead to considerations that
are not physically realistic.

Questions have also been raised on the limited applica-
bility of Bell’s inequality [19–21], based on the assumptions

used in its derivation. Bell [22] uses a single continuous pa-
rameter λ described by a probability distribution ρ(λ): the
basic limitation of this approach is that it imposes a quan-
tum mechanical calculation approach on the analysis. Bell’s
derivation is only applicable to a specific class of hidden vari-
able theories that can be represented by his starting equation
and assumptions, which Jaynes [20] refers to as Bell theories.
Some hidden variable theories don’t need to satisfy Bell’s
starting equation to reproduce quantum mechanical results,
as evidenced by Bohmian mechanics [23]. Bell’s inequality
is thus found to apply to a limited set of circumstances and sit-
uations, not to every quantum system. Selleri [24] provides a
comprehensive review of the proofs of Bell’s inequality.

Actual experimental demonstration of entanglement is a
challenge. Entanglement experiments detect both entangled
components within the same time window (see Subsection
5.3), so there is no way to confirm the presence or absence of
SAAD – it is assumed to be present purely based on the pre-
dominant interpretation discussed in Section 1. Zhao [19] has
proposed various experiments to clarify the physical proper-
ties of entanglement, including one to determine if the col-
lapse of the entangled wavefunction due to the measurement
of one component causes the transformation of the other com-
ponent due to SAAD as is supposed in the orthodox inter-
pretation. No reports of these experiments having been per-
formed have surfaced – their execution should be given a high
priority to help us better understand the phenomenon of en-
tanglement.

3 Literal or physical interpretation?

To be able to answer the question posed at the end of Sec-
tion 1 on a physically robust entanglement process, we need
to have a better understanding of the physical description of
quantum mechanics and of its transition to the classical do-
main. The orthodox view in the standard formalism of quan-
tum mechanics is done via entanglement, wavefunction col-
lapse and decoherence [25]. This is a literal interpretation of
the Hilbert space mathematical theory of quantum mechanics
developed by von Neumann and Dirac [26, 27]. However, as
noted by Home and Whitaker [15, see p. 309], “[t]o conclude,
there are aspects of classical reality pertaining to the macro-
physical world that cannot be made consistent with quantum
theory in any limit, at least using the standard formalism and
decoherence models.”

This thus leads us to consider other approaches to under-
stand this problem. There are other interpretations of quan-
tum mechanics which satisfy its principles – the book by Ho-
me [14] provides an excellent exposition of the conceptual
foundations of quantum physics. As is well-known [28], the
various formulations of quantum mechanics provide the same
results (Schrödinger wave equation, Heisenberg matrix for-
mulation, Dirac standard formalism, Feynman path integral,
Bohm quantum potential among others) – the differences be-
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tween them lie in the insights that these different formula-
tions can provide. To understand the process under discus-
sion, what is required is a physical interpretation based on a
formulation of quantum mechanics that gives precedence to
the physical rather than the mathematical aspects of the the-
ory, and of its transition to the classical domain.

A physical theory of quantum mechanics which offers a
logical transition into classical physics was first developed
before it was displaced by the preferred standard formalism.
This initial theory was instrumental in the development of
quantum mechanics. Here we briefly recap this approach.

In classical mechanics [29], the phase space description
of a system is given in terms of generalized coordinates q =

{qi ; i = 1, 2, · · · ,N} and canonical momenta p = {pi ; i =

1, 2, · · · ,N} and its time evolution is described in terms of its
Hamiltonian H(q, p) using Hamilton’s equations

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

. (5)

The Lagrangian of the system determines its dynamics in con-
figuration space in terms of the coordinates {qi} through the
Euler-Lagrange equations

∂L
∂qi
−

d
dt

(
∂L
∂q̇i

)
= 0 , i = 1, 2, · · · ,N . (6)

If a statistical description of the system is desired, the state
of the system is described in terms of a probability function
P(q, p) defined on the phase space, and its time evolution is
given by

dP
dt

= {P,H} +
∂P
∂t

, (7)

where the Poisson bracket {P,H} is given by

{P,H} =
∑

i

(
∂P
∂qi

∂H
∂pi
−
∂H
∂qi

∂P
∂pi

)
. (8)

The quantum mechanical description of the system de-
rived from the foregoing considerations sees the dynamical
variables (q, p) now interpreted as operators (q̂, p̂) acting on
complex wavefunctions ψ(q) generating observables and sat-
isfying the commutation relation

[q̂i, p̂ j] = i~ δi j , (9)

where ~ is Planck’s reduced constant. This transition from
a classical to a quantum mechanical description, known as
canonical quantization, is effected (done) by the replacement
of classical variables by quantum operators according to

qi → q̂i , pi → p̂i (10)

and (classical) Poisson brackets by (quantum) commutators
according to

{A, B} →
1
i~

[Â, B̂] . (11)

The close relation between the classical and quantum dynam-
ical equations is evident in the similarity between the classical
equation of motion (7) and the quantum equation of motion
as derived by Heisenberg,

d
dt
〈A〉 =

1
i~

〈
[Â, Ĥ]

〉
+

〈
∂A
∂t

〉
. (12)

This result is a manifestation of Ehrenfest’s theorem [30, see
pp. 389–394] which holds that quantum mechanical expecta-
tion values 〈A〉 obey the classical equations of motion. This
similarity points to the relation between the classical prob-
ability functions defined on the (q, p) phase space and the
quantum mechanical expectation values obtained from the
(q̂, p̂) operators acting on the complex wavefunctions ψ(q)
representing our knowledge of the system, which in the end
obey the classical equations of motion.

This approach provides a physical interpretation that can
be used to better understand the classical scaling of quantum
entanglement. One of the characteristics of the above con-
siderations is the physical reality of the underlying quantum
mechanical system as it evolves into a classical system. In the
following section, we consider the nature of quantum states as
this has an impact on the robustness of entangled states.

4 The nature of quantum states

Jaeger [1, pp. 19–22] clearly communicates the importance of
understanding the difference between separable (product) and
non-separable (entangled) states. Over the past quarter cen-
tury, the definition of entanglement has been extended, from
information theory, to include mixed states that are separable
when given as combination of products of subsystem states.
Separable subsystem states are entirely uncorrelated (not en-
tangled), while the entangled mixed states are the insepara-
ble states – however, “[t]he problem of determining whether
or not a given state of a composite system is entangled is
known as the separability problem.” [1, p. 21]. These entan-
gled mixed states tend to somewhat muddle the entanglement
water.

When considering separable (product) states, as noted by
Jaeger [1, p. 21], “...the outcomes of local measurements on
any separable state can be simulated by a local hidden-varia-
bles theory, that is, the behavior of systems described by such
states can be accounted for using common-cause explana-
tions”. In other words, separable states can have definite
physical properties when they are prepared.

It is important to note that Bell’s inequality is violated
only by entangled (non-separable) states. As noted by Jaeger
[1, p. 22], “[t]he quantum states in which correlations be-
tween [components] A and B can violate a Bell-type inequal-
ity are called Bell correlated, or EPR correlated. If a bipar-
tite pure state is entangled, then it is Bell correlated with cer-
tainty, as was first pointed out by Sandu Popescu and Daniel
Rohrlich [31] and by Nicolas Gisin in the early 1990s [32].
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However, no simple logical relation between entanglement
and Bell correlation holds for the mixed entangled states”.

Home [14, pp. 203–209] also makes the point. He con-
cludes “an arbitrary mixture of factorable or product state
vectors always satisfies Bell’s inequality” as first shown by
[33, 34], while “ [f]or any given nonfactorable state vector of
correlated quantum systems it is always possible to choose
observables so that Bell’s inequality is violated by quantum
mechanical predictions.” [14, pp. 205, 208] which was first
demonstrated by [32] as seen previously.

Hence we have two different types of quantum states de-
pending on whether they are product (separable) or entangled
(non-separable) states. Separable states are consistent with
local realism – they can be physical and local, while entan-
gled states are not consistent with local realism, based on
Bell’s inequality. The normal reaction would be that there
should be one consistent behaviour across all states, that the
entangled states’ behaviour trumps the separable states’ be-
haviour, and hence quantum states are not consistent with lo-
cal realism.

However, as seen in Section 2, questions have been raised
about Bell’s inequality, and this difference in behaviour be-
tween separable and entangled states may indicate that there
is a problem with our understanding of Bell’s inequality and
of entanglement in general. We explore this question in great-
er details in the next section, and in doing so, show that we
can in fact derive a robust entanglement process as observed
in the classical scaling of quantum entanglement.

5 A robust entanglement process

The considerations of Section 3 reinforce the underlying phy-
sical building blocks of quantum mechanics: the superposi-
tion principle, Heisenberg’s uncertainty principle and wave-
particle duality. These are crucial to physically understand
the entanglement process and demonstrate why it is a robust
process. While the superposition property results from the
linear wave equations used in the theory and Heisenberg’s un-
certainty principle results from the fact that quantum mechan-
ical canonically conjugate dynamical variables are Fourier
transform pairs of variables [35], wave-particle duality is a
purely quantum mechanical property and is undoubtedly the
most important of these. The truly quantum mechanical pro-
cesses such as the double-slit interference pattern, potential
barrier tunneling, and in particular the entanglement process
as we will see in this section, depend on the quantum me-
chanical phenomenon of wave-particle duality. It is critical to
analyze quantum phenomena in terms of wave-particle dual-
ity to fully understand them.

5.1 Non-existence of hidden-variables?

Home [14] does an extensive review of all proofs of the non-
existence of hidden-variable theories in quantum mechanics
and concludes “[h]aving established that contrary to folklore,

no a priori compelling argument excludes the possibility of
contextual hidden variable theories, the entire enterprise of
developing a more complete description of quantum phenom-
ena beyond the ambit of the standard interpretation becomes
logically legitimate”, and provides a reference to an exam-
ple: “A pedagogically instructive model example of how a
contextual hidden variable model can reproduce the standard
quantum mechanical results is discussed by [36], who show in
detail how such a model can provide an objectively real treat-
ment of decaying, oscillating, and regenerating kaons” [14,
pp. 195–196]. A contextual hidden variable model is one “in
which the value obtained by a measurement is a function of
the premeasurement value as well as the measurement con-
text.” [14, p. 37].

In addition, the basic deficiency of hidden-variable non-
existence proofs is that they are derived within the context of
quantum mechanics. By its very nature, quantum mechan-
ics is a probabilistic theory – so it is not surprising that such
“proofs” find that deterministic results cannot be derived from
quantum mechanics. The reader is referred to [21] for an ex-
ample of this approach in the assumptions used by Bell in
the derivation of his inequality, which leads to the conclusion
that “it is not surprising that Bell’s inequality is not satisfied
in systems that obey quantum mechanics”.

It is important to note that the label “hidden-variable the-
ories” is attached indiscriminately to more complete theories
of quantum mechanics. However, as in the case of Bohmian
mechanics, a deterministic quantum physics theory does not
need to include hidden variables. The proper path to such a
theory is to start outside of quantum mechanics, derive a de-
terministic microscopic theory, and show that quantum me-
chanics can be derived from it – see [44] for an example of
this approach.

Home [14] continues “[t]here are strong physical grounds
for suspecting that the standard framework (formalism and
interpretation) of quantum mechanics is fundamentally inad-
equate, though its empirical success to date is unquestion-
ably impressive” [14, p. 37]. Home identifies the following
aspects of quantum mechanics that are not well understood in
the standard framework: the quantum measurement paradox,
the classic limit of quantum mechanics, nonlocality of quan-
tum mechanics arising from entanglement, and wave-particle
duality [14, pp. 37-38]. These are the very factors at play in
the robustness of the entanglement process as discussed in
this paper.

5.2 Wave-particle q-objects

Entanglement experiments compare the behaviour ofclassical
particles with quantum mechanical results that are unknow-
ingly assumed to represent the particle aspect of the wave-
particle quantum object (which for brevity we refer to as a
“q-object”). It is important to realize that a q-object does not
behave as a classical object due to its explicit wave-particle
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nature. For the wave aspect of a macroscopic object, its de
Broglie wavelength is extremely small and its effect is negli-
gible – however, in the quantum mechanical domain the im-
pact of the wave-particle nature of the q-object becomes sig-
nificant as observed in quantum physics. It is interesting to
note that the impact of wave-particle duality has been ob-
served at mesoscopic scales as reported in [6]. Thus a q-
object is an object where the effect of wave-particle duality
cannot be neglected.

In entanglement experiments, the quantum mechanical re-
sults obtained are from the wave aspect of the wave-particle
q-object, just like the interference pattern in double-slit exper-
iments. Hence, the results obtained in Bell experiments [38]
and other entanglement experiments devised since then are
the quantum mechanical results of the wave aspect of the
wave-particle q-objects which are different from the parti-
cle results, again as seen in double-slit experiments (classical
double-particle pattern versus quantum mechanical wave in-
terference pattern). Similarly in Hardy experiments [39], the
non-zero probability P(A1, B1) [40] obtained in contradistinc-
tion to the local realist probability of zero is due to the wave
aspect of the wave-particle q-object.

Wave-particle duality is still somewhat of a mystery in
quantum mechanics. It is still understood mostly in terms
of Bohr’s principle of wave-particle complementarity which
holds that the wave aspect and the particle aspect of an ob-
ject are complementary aspects of a quantum object [14, see
Chapter 5]. However, wave-particle duality arises naturally in
thetheory of Spacetime Continuum Elastodynamics (STCED)
[57, 58] which is briefly covered in the Appendix and is con-
sidered in greater detail in [44]. This model provides a natural
explanation for wave-particle duality, where an object, rep-
resented as a spacetime deformation, is composed of trans-
verse and longitudinal modes, with the transverse mode cor-
responding to the wave aspects of the deformation and the
longitudinal mode corresponding to the particle aspects of the
deformation.

A wave-particle q-object is thus a hybrid object consisting
of both wave and particle aspects which manifest themselves
differently in experiments, depending on the type of measure-
ment. We examine the experiments of Aspect et al. [41–43]
using single-photon states covered in Home [14, Section 5.4]
to demonstrate how they can be fully understood in terms of
STCED wave-particle duality.

In the “light pulses on a beam splitter” experiment (Ho-
me’s Fig. 5.2), for a pulsed photodiode light pulse, the wave
aspect is expected to apply from the STCED wave-particle
model – indeed, as Home comments “[t]he striking feature
is that even under this apparently quantum condition, light
pulses arriving at the beam splitter continued to behave as
classical waves, and the inequality [PC ≥ PT PR] was never
observed to be violated” [14, p. 288], where PT is the proba-
bility that a single count is transmitted, PR is the probability
that a single count is reflected, and PC is the probability of a

coincidence for that single count.
For a source of single photon pulses from an excited atom

transition, using the same experimental setup, the particle
aspect is expected to apply from the STCED wave-particle
model – indeed, “a clear-cut violation of the inequality [PC ≥

PT PR]” was observed. “This confirmed single particle behav-
ior of the single-photon states.” [14, p. 288].

The experiment was then modified as per Home’s Fig. 5.3
by removing the detectors on either side of the beam splitter
and recombining the two beams using mirrors and a second
beam splitter. Using the source of single photon pulses from
an excited atom transition as previously, this time the wave
aspect is expected to apply from the STCED wave-particle
model as it is being treated as a wave (recombining the two
beams) – indeed, the experiment “showed interference effects
dependent on the difference in path lengths along two possi-
ble routes of single-photon pulses.” [14, p. 288].

This provides experimental confirmation of the STCED
wave-particle model where the wave-particle q-object con-
sists of both wave and particle aspects which manifest them-
selves differently depending on the type of measurement. The
behaviour is physical and logical. In addition, nothing pre-
cludes the wave-particle q-object from having the full phys-
ical properties encoded in the q-object. The results obtained
in the case of non-rotated detectors are in agreement with lo-
cal results that would be obtained classically, because there
are no specific quantum effects coming out of the quantum
mechanical calculations in this case.

This indicates that the entangled q-objects are emitted
with deterministic physical properties. The wave aspect gives
rise to the non-local behaviour (within causality requirements
due to the particle aspect of the q-object) as would be ex-
pected from the quantum mechanical calculations, while the
particle aspect exhibits local causal behaviour [44]. This ex-
plains why the entanglement process is robust: the wave-
particle q-objects of entangled states have definite physical,
not evanescent, characteristics at emission time.

5.3 Physical approach

This leads us to consider a physical approach which posits
that the photons (for example), as wave-particle q-objects, are
emitted with specific properties, but that due to our lack of
knowledge of their detailed characteristics, can only be prob-
abilistically characterized with the wavefunction ψ as a com-
bination of the possible states and their probabilities (the real-
istic viewpoint [5]). Once a measurement is performed on one
of the photons, its properties are resolved, thereby increasing
our knowledge of the system, and allowing us to specify the
properties of the other photon – a simple physical understand-
ing of the process [21]. Such a process can easily scale to
classical objects and distances, and is undeniably very robust
as the q-objects’ properties are determined at emission time,
not evanescent depending either on an experimenter’s whim
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or thought process, or on not having an interaction that would
destroy the entanglement on its way to measurement resolu-
tion. The classical-scale experiments considered previously
are then seen to be a confirmation of this approach.

The wavefunction is thus seen to be a probabilistic de-
scription of our (limited) knowledge of a quantum mechan-
ical system, not a complete physical description of the sys-
tem, with this probability being proportional to the intensity
of the wavefunction as seen in [44]. This explains the laws of
quantum probability [45,46]. We note the same behaviour for
electromagnetic radiation, where the intensity is proportional
to the energy density of the field, which can be converted to a
probability by normalization, as seen in [44].

As a result of the measurement process, the original wave-
function description is superceded (the so-called collapse of
the wavefunction) and is replaced by a more accurate wave-
function description of the quantum mechanical system that
takes into account the results of the measurement process.
As [37] puts it, “When a detector clicks the wavefunction
does not ‘collapse’ from all over space to a point, it is simply
that only part of it is now relevant.”. It is important to note
that this measurement process is effected (done) by the in-
teraction of the quantum mechanical system with an outside
agency, whether it is a measurement apparatus or an interac-
tion with another quantum mechanical system.

This is a simple logical description of the physical process
that does not require metaphysical “spooky action at a dis-
tance” explanations and, by the principle of Occam’s razor, is
a superior explanation of the entanglement process. It should
be noted that the imaginary actors “Bob” and “Alice” which
are used in the explanation of entanglement and SAAD, even
though the explanation is presented as a sequential series of
events, are both aware of the same experimental information
within the same time window, as mentioned in Section 2, and
hence fully satisfy Jaynes’ analysis of entanglement experi-
ments as discussed in [20, 21].

As Home points out, “[c]ontrary to a widely held mis-
conception, we stress that no experiment probing quantum
locality has yet tested quantum correlations measured across
spacelike separation unambiguously.” [14, p. 233]. In pho-
ton polarization correlation experiments [38], “[t]he claim of
spacelike separation is usually based on ensuring that a pho-
ton on one side reaching a photomultiplier detector is space-
like separated from its partner passing the polarization ana-
lyzer on the other side.” However, a typical photomultiplier
detector requires about 30 ns for a current pulse to be gener-
ated following the arrival of a photon, which provides a dif-
ferent spacelike separation than that obtained from the reso-
lution time of a photomultiplier which is usually of order 1
ns [14, p. 233].

It should be noted that the model proposed in this pa-
per is independent of these so-called “loopholes”. They are
mentioned to indicate the difficulty of performing such ex-
periments which raises cautionary notes on the concomitant

dangers of wishful thinking and unrecognized assumptions,
limitations and interpretation of the results.

5.4 Evidence for SAAD?

So why introduce a mysterious agent, “spooky action at a
distance”, when none is required? As we asked in Section
1, what prompts the acceptance of this description as part of
the orthodox interpretation? The reason is that SADD is be-
lieved to be supported by the experimental evidence. How-
ever, the aforementioned considerations and the analysis of
Jaynes [20,21,47] show that the experimental evidence can be
explained without resorting to metaphysics, that the problem
results from the assumption that a conditional probability rep-
resents a physical influence instead of the physically-correct
logical inference that it is.

As Home and Whitaker write [15, p. 238],

In one out of four cases, Alice is lucky with her mea-
surement, and Bob’s particle immediately becomes an
identical replica of Alice’s original. Then it might
seem as if information has traveled instantly from Al-
ice to Bob. Yet this strange feature cannot be used to
send usable information instantaneously, because Bob
has no way of knowing that his particle is already an
identical replica. Only when he learns the result of
Alice’s Bell-state measurement, which is transmitted
to him via classical means, can he exploit the informa-
tion in the teleported quantum state.

where the emphasis is in the original text and we have in ad-
dition highlighted the word “learns”.

In other words, what is believed to be “spooky action at
a distance” is actually the experimenters’ knowledge of the
system suddenly increasing as a result of the measurement
process, and the experimenters being in a position to logi-
cally infer the properties of the distant component, which is
confirmed in the measurement performed on the distant com-
ponent. In actual practice, in entanglement experiments, both
measurements are done in the same time window (see Sec-
tions 2 and 5.3).

There is also a certain intellectual inertia at play. As Bell
[48] commented, “Why is the pilot wave picture [Bohm’s] ig-
nored in text books? Should it not be taught, not as the only
way, but as an antidote to the prevailing complacency? To
show that vagueness, subjectivity, and indeterminism, are not
forced on us by experimental facts, but by deliberate theoret-
ical choice?” All very good questions.

6 Quantum information causality

The emerging concept of information causality [49–51] is an
attempt to preserve causality based on the underlying premise
that it is information that is the core element in the analysis
of the entanglement process. The approach followed is to im-
pose this concept as a principle of nature to avoid the special
relativistic causality problems raised by SAAD. This concept
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unwittingly reflects Jaynes’ analysis of entanglement experi-
ments in that it focuses on information – however, Jaynes’
analysis [20, 47] already accomplishes this without having
to introduce an additional constraint in the guise of a new
causality principle, and in so doing, also eliminates the need
for SAAD.

7 Weak quantum measurements

Weak quantum measurements [52–56] is another emerging
concept in quantum mechanics that has an impact on the un-
derstanding of the entanglement process. What is interest-
ing with this approach is that it is possible to make minimal-
interacting measurements, which leaves the collapse of the
wavefunction in the literal interpretation of the mathemati-
cal standard formalism of quantum mechanics in a quandary:
how can any measurement be done without collapsing the
wavefunction?

The accepted explanation [54] is that the quantum state is
not collapsed into eigenvectors, but instead, by a weak cou-
pling of the measurement device and the system, is biased
by a small angle such that the measurement device shows a
superposition of several eigenvalues. The current status is
summarized as follows: “weak measurement theory presents
a plethora of strange quantum phenomena, not yet completely
understood.” [54]. There is no doubt that even a weak inter-
action measurement will have an impact on the system, and
this approach, certainly experimentally valid, puts the wave-
function collapse of the literal interpretation of quantum me-
chanics into question.

The proposal of weakly interacting measurements was al-
so introduced in [35] in the context of the application of the
Nyquist-Shannon Sampling Theorem to quantum measure-
ments. The author showed that Brillouin zones in Solid State
Physics are a manifestation of the Nyquist-Shannon Sampling
Theorem at the quantum level, where the translational sym-
metry of atoms in a solid resulting from the regular lattice
spacing, is equivalent to an effective sampling of the atoms
of the solid giving rise to the Brillouin zones. This raised the
possibility of investigating new experimental conditions lead-
ing to new measurements previously considered unreachable,
a possibility that is also considered possible in the literature
on weak quantum measurements.

8 Discussion and conclusion

In thispaper, wehave considered the classical scaling of quan-
tum entanglement. This implies a physically robust entan-
glement process, contrary to the fragile entanglement pro-
cess that the standard formalism interpretation implies given
that the probability of preserving entanglements over classi-
cal sizes and distances and preventing the entanglement from
collapsing due to physical interactions is exceedingly small.

Actual experimental demonstration of entanglement, oth-
er than testing the Bell inequality, is a challenge. Entangle-

ment experiments detect both entangled components within
the same time window, so there is no way to confirm the
presence or absence of “spooky action at a distance” (SAAD)
which is assumed to be present based on the standard formal-
ism interpretation.

To better understand the entanglement process and deter-
mine a robust entanglement process, we have considered a
physical interpretation based on a formulation of quantum
mechanics that gives precedence to the physical rather than
the mathematical aspects of the theory used in the literal in-
terpretation of the Hilbert space formulation.

We have considered the transition from a classical to a
quantum mechanical description, known as canonical quan-
tization, which is effected (done) by the replacement of clas-
sical variables by quantum operators, and have noted that one
obtains closely related classical and quantum (Heisenberg)
equations of motion. This result is a manifestation of Ehren-
fest’s theorem which holds that quantum mechanical expec-
tation values obey the classical equations of motion.

We haveconsidered the differencebetween separable(pro-
duct) and non-separable (entangled) states. Mixtures of prod-
uct (separable) states always satisfy Bell’s inequality i.e. sep-
arable states can have definite physical properties when they
are prepared. Bell’s inequality fails only for entangled (non-
separable) states. Hence separable states are consistent with
local realism – they can be physical and local, while entan-
gled states are not consistent with local realism, based on their
violation of Bell’s inequality.

We have seen that these considerations reinforce the un-
derlying physical building blocks of quantum mechanics: the
superposition principle, Heisenberg’s uncertainty principle
and wave-particle duality which is the most important of the-
se. The truly quantum mechanical processes such as the dou-
ble-slit interference pattern, potential barrier tunneling, and
in particular the entanglement process as we have seen in this
paper, depend on the quantum mechanical phenomenon of
wave-particle duality. It is thus critical to analyze quantum
phenomena in terms of wave-particle duality to fully under-
stand them.

We have noted Home’s [14] conclusion reached after an
extensive review of all proofs of the non-existence of hid-
den-variable theories, that “no a priori compelling argument
excludes the possibility of contextual hidden variable theo-
ries”, giving legitimacy to the development of a more com-
plete description of quantum phenomena beyond the standard
interpretation. He further identifies the aspects of quantum
mechanics that are not well understood in the standard frame-
work: the quantum measurement paradox, the classic limit of
quantum mechanics, nonlocality of quantum mechanics aris-
ing from entanglement, and wave-particle duality, which are
the very factors at play in the robustness of the entanglement
process as discussed in this paper.

We have noted that in entanglement experiments, the qua-
ntum mechanical results obtained are from the wave aspect of
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the wave-particle quantum object (which for brevity we refer
to as a “q-object”), just like the interference pattern in double-
slit experiments. A q-object is an object where the effect of
wave-particle duality cannot be neglected.

Hence, Bell’s inequality is violated in the quantum me-
chanical problem, that is the wave aspect of the wave-particle
q-object, which is different from the particle results, as seen in
double-slit experiments (particle versus wave patterns). How-
ever, nothing precludes the wave-particle q-object from hav-
ing the full physical properties encoded in the q-object when
the entangled q-objects are emitted. The wave aspect then
gives rise to the non-local behaviour (within causality require-
ments due to the particle aspect of the q-object) as would be
expected from the quantum mechanical calculations, while
the particle aspect exhibits local causal behaviour. This ex-
plains why the entanglement process is robust: the wave-
particle q-objects of entangled states have definite physical
characteristics at emission time.

This has lead us to consider a physical approach which
posits that the photons (for example), as wave-particle q-ob-
jects, are emitted with specific properties, but that due to our
lack of knowledge of their detailed characteristics, can only
be probabilistically characterized with the wavefunction ψ as
a combination of the possible states and their probabilities
(the realistic viewpoint). Performing a measurement on one
of the photons resolves its properties which allows us to spec-
ify the properties of the other photon – a simple physical un-
derstanding of the entanglement process. Such a process can
easily scale to classical objects and distances, and is undeni-
ably very robust as the q-objects’ properties are determined
at emission time, not evanescent as in the standard formal-
ism. The classical-scale experiments considered previously
are then seen to be a confirmation of this approach.

We have also considered the emerging concept of infor-
mation causality which is an attempt to preserve causality
based on the underlying premise that it is information that is
the core element in the analysis of the entanglement process,
which is correct. However, Jaynes’ analysis [20, 47] already
accomplishes this without having to introduce an additional
constraint in the guise of a new causality principle, and in so
doing, also eliminates the need for SAAD.

We have also considered weak quantum measurements
which is another emerging concept in quantum mechanics.
There is no doubt that even a weak quantum measurement
will have an impact on the system, and this approach, cer-
tainly experimentally valid, puts the wavefunction collapse of
the literal interpretation of quantum mechanics into question.

It should be noted that quantum cryptography and quan-
tum computing are then seen to depend on the wave aspect of
the wave-particle q-object. This fundamental understanding
should help accelerate the progress of these new development
programs.

The resolution of the robustness of the entanglement pro-
cess in classical scale quantum entanglement experiments is

thus achieved within the wave-particle q-object explanation
of the process in which entangled state q-objects have definite
physical characteristics at emission time. Strong evidence has
been provided to support this proposal.

The design of experiments to provide experimental evi-
dence requires that experimentalists shift the paradigm used
to test quantum theories. Currently experiments are designed
to try to prove the applicability of quantum mechanics to en-
tangled states by verifying various inequalities such as Bell’s.
The experiments suggested by Zhao [19] try to clarify the
physical properties of quantum entanglement and includes
experimental tests of the locality of the measurements of Bell
states, experimental tests of the constituents of Bell states,
and experimental tests of determinism in quantum measure-
ments. In addition, even though the entanglement experi-
ments currently performed agree with the model proposed
in this paper, specific experiments need to be performed to
test the model under conditions that emphasize that quantum
entanglement behaviour results from the wave aspect of the
wave-particle q-objects.

Appendix: wave-particle duality in STCED

It should be noted that wave-particle duality is considered
in greater detail in [44] within the theory of the Elastody-
namics of the Spacetime Continuum (STCED) [57, 58]. As
shown in STCED, energy propagates in the spacetime con-
tinuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invari-
ant change in volume of the spacetime continuum which is the
source of the associated rest-mass energy density of the defor-
mation. On the other hand, distortions correspond to a change
of shape of the spacetime continuum without a change in vol-
ume and are thus massless. Thus the deformations propagate
in the continuum by longitudinal (dilatation) and transverse
(distortion) wave displacements. This provides a natural ex-
planation for wave-particle duality, with the transverse mode
corresponding to the wave aspects of the deformation and the
longitudinal mode corresponding to the particle aspects of the
deformation.

Received on April 26, 2018
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In this article, we propose a model of evolution of the Universe from topological spaces
as a sequence generating one space from another. While the Universe is modelled in the
form of a fraction-dimensional space, where time is the manifestation of the fractional
dimension of the space.

Introduction

The origin of the Universe is a key topic in modern physics.
Expansion of the Universe still demands an explanation.

Forty years ago, the physicist A. D. Sakharov has intro-
duced a hypothesis: objects of the three-dimensional space
are compositions of objects of a two-dimensional space and a
one-dimensional space.

Based on this hypothesis, we propose a new cosmolog-
ical model. In the framework of this cosmological model,
the three-dimensional space is generated by its sub-spaces of
lower dimensions. So forth this cosmological model and the
process generating the spaces are described in detail.

The cosmological model of the Universe

The topological approaches described in Alexandrov’s Com-
binatorial Topology [1] are used here to introduce the new
cosmological model of the Universe. So we have:

R−1 — a space, which dimension is −1 that means a lack
of space;

R0 — a space of zero dimension means a space of en-
ergy, which is similar to energy of a quark;

R1 — a space, which dimension is 1, means a space of
electric energy;

R2 — a space, which dimension is 2, means a space of
magnetic energy;

R3 — a space, which dimension is 3, means a space of
gravitational energy (the “weight space”);

R1, R2 and R3 — Euclidean spaces. Dimension of such
a space is the number of freedom degrees of a material point
located therein.

The process generating the aforementioned topological
spaces is as follows.

The space R0. As a result of inflation [2] as symmetriza-
tion, an R−1 space generates an R0 space. The space R0 is not
Euclidean. Each object located in a space contains a part of
the total energy of the space. As such one, the space R0 con-
tains two groups of symmetric objects. The additive energy
of objects located in the space is zero. Interaction between
objects of one group is proportional to their distance from
each other. Objects of the space R0 uniquely define this space
itself. Hence, the space R0 is a space of quark-like energy.

Distances between the objects is determined by the difference
in energies of these objects. Time is a factor of evolution of
the space. This evolution factor (time) is manifested in the re-
distribution of energy between the objects, and in the change
in the objects’ number in this space (i.e. transition from one
state of the space into another state of the space). When in-
teraction between the objects of the space reached symmetry,
time disappears. In this case, the space R0 arrives at a singu-
lar state. As is known, a space is identical to a specific type
of energy. Quark-like energy is identical to the space R0. So,
quark-like energy and generates the space R0.

The space R1. Due to symmetrization of the singularity
of the space R0, synthesis of two objects which are attributed
to two different groups of the space R0 generates an object
of a higher-dimensional space R1. This is a space of electric
energy (see above). Thus the space of electric energy is gen-
erated. Objects of the space R1 are charges. The numerical
value of such a charge is equal to the modulus of the energy
difference of two objects attributed to the space R0. Interac-
tion between two charges is proportional to the multiplying
result of their numerical values. Time in the space R1 is de-
termined by transformation of energy of the space R0 into
electric energy. The space R1 evolves from the space R0 to
the singularity state. Singularity of a space is another space
in which time is absent. So, after the entire energy of the
space R0 is transformed into electric energy, time disappears.
Energy of each single charge is unlimitedly and continuously
distributed along the space R1 according to the interaction.

The space R2. Due to symmetrization of the singularity
state of the space R1, charges in the space are separated from
each other by the sign of difference of the objects attributed
to the groups of the space R0. The groups of charges differ by
their signs. Synthesis of two charges bearing different signs
generates an object of a higher-dimensional space R2 (a space
of magnetic energy, see above). Thus the space of magnetic
energy is generated.

Consider the generation process by the example of a sin-
gle photon. The photon is a result of synthesis of two charges
bearing different signs (the space R1), which are equal in their
absolute values. The photon energy is continuously and un-
limitedly distributed along the space R2. Interaction between
two photons is inversely proportional to the distance between
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them, and is proportional to the product of their energies. A
single photon is an object of the magnetic energy space R2.
Objects in the space R2 have the rotational degree of freedom
(the spin).

The space R2 evolves from the singularity state of the
space R1 to its own state of singularity. After converting elec-
trical energy into magnetic energy, the space R2 arrives at its
own singularity state: time disappears in the space.

The space R3. As a result of symmetrization of the sin-
gularity state of R2, objects of the space are separated by the
rotational degree of freedom (the spin). Synthesis of two ob-
jects, which are located in the space R2 and bear oppositely
directed spins, generates an object of a higher-dimensional
space R3 (a space of gravitational energy, see above). Thus
the space of gravitational energy, R3, is generated. Objects
of the space R3 are composed of objects of the spaces which
dimensions are 1 and 2. The mass of objects of R3 is contin-
uously and unlimitedly distributed along the space.

Evolution of the space R3

At present, the process converting magnetic energy of the spa-
ce R2 into gravitational energy of the space R3 is in progress.
We suggest to refer magnetic energy of the space R2 as dark
energy (the vacuum-like substance according to Gliner [3,4]).
In these terms, mass (gravitational energy) is represented by
matter and dark matter. Dark matter is a result of conver-
tion of the magnetic energy into the gravitational energy. In
the process of evolution of the space R3, the shared part of
the gravitational energy increases. This leads to slowing the
clock down in this space. The process of passage of light in
a space is analogous to the process of registration of time by
a clock. The speed of light in this case is the conversion fac-
tor of the length in a duration of time. This coefficient is a
constant of the space R3. The process of passage of light in
the space R3 is the process of motion of a photon in the space
R2. In the space R3, there are regions of absorption and emis-
sion of the photon. The photon’s trajectory in the space R2 is
mapped into the region of its registration in the space R3 in
the relation “one-to-many”. Thus the photon is tunneling in
the space R3. With the increase in the mass fraction in space,
the redshift effect arises: a clock slow down with the process
of passage of light. Density of the gravitational energy of the
space R3 depends on the speed of light. The energy density
of a space, reduced to time duration, is a constant value [5]:
dt cr−1

t = const, where dt is the density of matter at a given
point of the space; ct is the speed of light (the speed of time)
at the given point of the space; r is the dimension of the space
at the given point.

Matter in a space of a fractional dimension

Consider how we percept the space of our world. At present,
the space is three-dimensional: three spatial coordinates with
triangulation of three dimensions are required. The fourth

coordinate is time. In this case, the qualitative difference be-
tween the coordinate of time and the coordinates of space is
emphasized. It is suggested that there exists an infinite set
of three-dimensional spaces. However, under certain condi-
tions (such as that the light speed in vacuum is constant), the
time coordinate can be expressed in terms of linear length and
vice versa. This allows us to assume that the time coordinate
and the space coordinates have the same nature. In this case,
the question about the infinite set of three-dimensional spaces
does not vanish. On the basis of the above, we consider the
problem of generation of spaces in the framework of the the-
ory of topology sets.

Consider metric spaces Rn. In accordance with [1], an
empty set has a dimension of n = −1. A set R0 contain-
ing only one point Xt has a dimension of n = 0. To go to a
higher dimensional space, it is necessary to perform a contin-
uous mapping of one point Xt ∈ R0 into a continuous set of
points X ⊆ R1. Here are two ways to display the sequence:
1) in the form of the ε-displacement (see §1.1 of Chapter 6
in [1]), where the continuity sequence of the subsequent point
from the previous one is observed; and 2) the transfer method,
where this condition is not satisfied. Introducing the notion of
a sequence maps, we thereby define the time factor. Here the
time factor determines the process generating a space with a
higher dimension from a space of a lower dimension. Using
only the shift method to generate a space gives a set that has a
beginning, i.e. the starting point of reference. To exclude the
starting point of reference, it is necessary to use, at least once,
the transfer method. To generate all points of the set R1, an
infinite set of steps (an infinite amount of time) is required.

Time is a quantitative characteristic of the displayed spa-
ce. Introducing the time factor is equivalent to introducing a
characteristic of the density of the mapping flow — the speed
of time. By the speed of time, we understand the ratio of
the number of displayed points of a higher dimension space
to the number of points of a space of a smaller (than that
generated these points) dimension. This determines the mul-
tiplicity: how many points of the higher dimension space is
displayed by one point of the lower dimension space. The in-
stant fulfillment of the mapping (the multiplicity is infinite) is
identical to the infinite speed of time, which in all cases is di-
mensionless. Hence, the complete numerical axis (line) in the
set attributed to the metric space R1 can be obtained by instant
mapping one point Xt ∈ R0 into a continuous set of points
X ⊆ R1 using two methods: the shift and carry methods.

In this case, metric spaces with an integer dimension can
be represented as spaces with the zero time speed (that means
that time is absent — there is no generation process, the num-
ber of displayed points is zero). The Hilbert space can be
decomposed into an infinite number of metric spaces of a fi-
nite dimension (see §2.4 of Chapter 1 in [1]), and the fol-
lowing relation is fulfilled: Rn−1 ⊆ Rn. And the cardinality
of the set {Rn−1} is equal to infinity: |{Rn−1}| = ∞. This as-
sumes that the speed of time is infinite when creating a space,
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in which n is an integer, from a space of a lower dimension.
Under the condition that the complete covering of Rn is not
fulfilled (the speed of time is finite), the covered subset of Rn

can be represented by a space Rd having a dimension d, where
(n − 1) ⩽ rd ⩽ n, i.e. a space with a fractional dimension. It is
proposed to define spaces, in which the speed of time is finite
and differs from zero, as fraction-dimensional spaces. The
time speed function depends on the numerical value of the
space dimension, which is a real number. It monotonically
decreases within the interval of dimensions (n − 1) < d < n,
see Fig. 1 below.

Fig. 1: The time speed of fraction-dimensional spaces.

The characteristic of the speed of time in the regions of
our space is the speed of light. In this case, the distance
from the point of radiation to the absorption point of a pho-
ton matches with the respective time duration registered by a
remote clock. For example, the speed of light registered by
our clock in this way on the boundary of the Universe ex-
ceeds the speed of light registered in our region of the space.
When the numerical value of the time coordinate is reduced
(with the respective numerical values the spatial coordinates)
to the same measurement units, the magnitude of the speed
of light is also dimensionless. Analysis of the speed of light
in vacuum and material media shows that with the increasing
density of matter the speed of light decreases. Reduction of
the speed of light is accompanied by an increase in the dimen-
sion of space, see Fig. 1. This allows us to use the numerical
value of the space dimension as the energy characteristic of
the space. The density of matter has an inverse relation to the
speed of time within an integer interval of the space dimen-
sion, see Fig. 2 below.

Fig. 2: The energy density of a fraction-dimensional space.

The boundary on the left of the fractional dimension (to
an integer value of the space dimension) gives an infinite set
of (n−1)-dimensional spaces having zero energy density. The
boundary on the right is an n-dimensional space with an in-
finite density of matter, see Fig. 2. In this case, two versons
representing a fraction-dimensional space are possible:

1. The space of an integer dimension Rn−1 with the inclu-
sions (domains or points and their neighborhoods, the
set K) wherein the space is fraction-dimensional;

2. The space Rn−1
t containing the set S of points, each of

which is a space of an integer dimension, and where
coveringΠ by the set S of the space Rn−1

t is incomplete.

The first assumes that there exists a single integer-dimen-
sional space containing a set of inclusions. The second —
a set of integer-dimensional spaces. The latter is impossible
under the previously stated assumption that an integer space
contains infinite dense matter or is a continuum of integer
spaces of lower dimensions. It is more preferable to assume
that at all points of S we have the same space, but for each
matter density d (time speed) the respective subset of points
of this space is Rn−1

d . These subsets do not intersect with each
other:∪

Rn−1
di ∩Rn−1

d j = ∅, ∀ i , j; i, j = 1, 2, . . . ∞.

All this is equivalent to the fact that each point of the space
has one numerical value of the matter density parameter, i.e.

Rn−1 ∩
∪

Rn−1
di = Rn−1, i = 1, 2, . . . ∞.

In the case, where is a chain of the sets of points with zero nu-
merical value of the matter density, interaction between the
points at the ends of this chain occurs without time i.e. in-
stantly (the speed of time is infinite there). However, the den-
sity of matter at each point of this chain is zero in this case
as well as the space dimension of this set Rn. This is limit-
ing and unreachable by definition. Moreover, the set Rn−1

d is
uniquely mapped into one point of the space Rn−1

t . This im-
plies the continuity of the mapping of Rn−1 into Rn−1

t . The re-
gion of the set Rn−1

t , for given numerical values of d, belongs
to the set of positive values of the numerical axis. Boundary
of this region is the set of points in which the matter density
of the space (i.e. the speed of time) is not defined. This corre-
sponds to whole-dimensional spaces in which the time factor
is absent. Suppose that the covering ofΠ remains unchanged.
Corresponding to this covering, the average fractional dimen-
sion is md = M [d] = const. The numerical characteristic
of the coating, in turn, is proportional to md. If density of
the coating is dΠ = f (Π), then md = dΠ . From here, in a
fraction-dimensional space, two time processes are possible:

1. The process of convergence of points of the set S⊂Rn−1
t

with each other upto coincidence (absorption), which
makes possible to equalize the matter density through-
out the entire space Rn−1;
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2. The process inverse to the convergence of points. Sep-
aration of one point into at least two points.

These two processes compete and provide a mapping of
K into S , previously considered in two ways: the shift and
carry methods. Due to the shift and transfer of points of the
set Rn−1

t , mutual absorption of the points is possible. This
should be accompanied with the reverse: the generation of
points. This condition ensures that the covering of the same
set Rn−1

t — the conservation law of the dimension (covering)
of the space — remains constant. On the other hand, the cov-
ering Π is incomplete, but ensures the mapping S into the
range of possible numerical values of the set Rn−1

t , — the
positive numerical axis. This mapping is also determined
by the fractional dimension through the time flow, and de-
termines dynamics of the interaction processes of points of
the set K = {Rn−1

d } with each other. Therefore, the space of a
fractional dimension is dynamic. The point of the set Rn−1

t
corresponds to Rn−1

d — the set of points with the same density
of matter of the space Rn−1. That is, in the absence of interac-
tion with the remaining points, its position is determined only
upto the set Rn−1

d . In this case, the point of the latter can be de-
fined (perhaps) simultaneously at all points of Rn−1

d . That is,
each such point has no distinctive features over the others. In
the case of absorption (synthesis), it is possible and necessary
to generate (divide) points of the spaces Rn−1

t and K. This is a
necessary condition for generating a space (i.e. transfer). On
the other hand, at a sufficiently high density of matter in the
localization region of the point, the time speed is sufficiently
small: displacement or transfer in this case almost does not
require time. This also gives rise to the effect of supposedly
simultaneous finding of one point in all places (points) of the
localization region.

Results

Spaces of fractional dimensions contain local inhomogenei-
ties in which the fractional dimension of the space differs
from the fractional dimension of the vacuum region (which
is the neighborhood of the inhomogeneity, the localization
space). These are material objects. A local inhomogeneity
is manifested in the numerical values of the parameters of
the fields of a material object. The numerical values of the
field parameters show the energy distribution of the space in
the object’s localization region. Combinations of the fields as
the distribution characteristics of energies of the space give a
description to the whole variety of the material objects. De-
generation of a fraction-dimensional space in the part of ma-
terial objects leads to the appearance of zero-dimensional pa-
rameters that is quantum numbers. This quantum mechanism
determines the discreteness of the set of phenomena there.
A space with a unit inhomogeneity is an integer (for exam-
ple, the three-dimensional space) everywhere, except for the
heterogeneity itself. For an observer, it turns into a point be-
cause transition from one point to another does not require

time. The very region of heterogeneity is a point at which the
density of matter is infinite high. Passage through this point
requires an infinite amount of time. Such a point is limiting,
boundary, open, that is unreachable. Another boundary, with
a uniform density of matter throughout the space, is also un-
reachable. Hence, we have an open interval for describing the
entire set of material objects in a fraction-dimensional space.

Conclusion

So, a model of the cosmological system of spaces is proposed
here. When considering this model, evolution of the Universe
is discussed as well as the problem of description of fraction-
dimensional spaces. Such spaces are defined as a results of
energy conversion from the moment of inflation to R3. The
concept of singularity as a space in which time is absent is
proposed. A “fractional space” is defined as a space in which
the process of energy conversion from one type to another
takes place. In this case, time is a factor of the process of
energy conversion. Dynamics of fraction-dimensional spaces
is predicted. These research results are a basis to calculate
numerical values of the characteristics of such spaces.
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Calculation of the Density of Vacuum Matter, the Speed of Time
and the Space Dimension

Mikhail N. Mashkin
E-mail: mnmashkin@yandex.ru

An example of calculating the density of vacuum matter is presented based on the hy-
pothesis of fractional dimension of our space. The speed of time and the dimension of
our space are calculated.

Introduction

In the previous paper [1], we showed the hypothesis that the
reduced density of space energy is constant:

dt cr−1
t = const, (1)

where dt is the density of matter (substance) at a given point
in the space; ct is the speed of light (proportional to the speed
of time) at the given point in the space; r is the dimension of
the space at the given point.

The previous analysis of this hypothesis showed that this
formula exactly coincides with the topological thickness of
the space with a non-integer dimension value, i.e.,

M = X Y Zr−2, (2)

where X,Y,Z are equivalent sets. Their permutations do not
change the result of their Cartesian product.

Calculation of the numerical value of r can be performed
based on the definition of fractional dimension, as a property
of self-similar objects (fractional dimension is a dimension in
the form of a fraction, for example, 23900/10000).

In our case, self-similar objects are convex bodies in n-
dimensional spaces, for example, in the three-dimensional
Euclidean space.

We will use a volume relative increase as an increment
that provides fractional dimension (non-integer dimension).
This is due to the alleged expansion of space, which is deter-
mined by the Hubble constant∗.

When moving at a measured distance in seconds, assum-
ing that the speed of light in vacuum is constant, we obtain
the value of the Hubble constant in units of acceleration:

Ha = H cv =
(55 ÷ 75) × 103 × 3 × 108

3.086 × 1022 =

= (5.35 ÷ 7.29) × 10−10 m/s2, (3)

where cv is the speed of light in vacuum.
Let us take a ball with a single radius equal to 1 second,

i.e. 3× 108 m as a basis for calculating the initial volume of a
convex body. Further we will call the radius as a unit length.

∗The Hubble constant is defined currently within H = 55 ÷ 75 km/

(s Megaparsec).

As a time interval for comparison, we will select the time
of transmission of a signal at a distance of the unit length, i.e.
the time of 1 s.

As an increment, we will determine the increment of the
initial volume v1 during the passage of the signal at a distance
of the unit length, see Fig. 1.

Fig. 1: A ball with a radius of a unit length.

In this case, the increment of the unit length is equal to:

∆l1 =

∫ 2
1 Hat dt

cv
=

1.5Ha

cv
=

1.5 × (5.35 ÷ 7.29) × 10−10

3 × 108 =

= (2.68 ÷ 3.65) × 10−18 s. (4)

The relative increment is the ratio of the increment to the fi-
nite length:

∆r1 =
∆l1

1 + ∆l1
' (2.68 ÷ 3.65) × 10−18. (5)

The relative increment of the initial volume v1 is equal to:

∆v1 ' 3∆r1 = (8.04 ÷ 10.95) × 10−18 ' 10−17. (6)

When the numerical value of r equals 3, the dimension of
the constant in formula (1) is equal to

[kg][m]2

[m]3[s]2 =
[kg]

[m][s]2

or L−1MT−2, i.e. Pascal.
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Hence, this can be interpreted as the modulus of the vol-
ume compression/expansion of the three-dimensional space.

In case when 3 > r > 2, we will refer to the reviewed
constant to as the module of the extension of a non-integer
dimension space.

Then the formula (1) can be represented in the form of:

dt cr−1
t = Mr , (7)

where Mr is the module of the expansion of the space of non-
integer dimension, taken in Pascals.

Calculation of the density of vacuum matter

Using the ratio (7), we can calculate the density of vacuum
matter. With this, it is possible to accept in first approxima-
tion the vacuum density inside material bodies as that equal
to the density of their substance.

Let is take the following approximations: the space di-
mension is constant, i.e. r = const, and is r ' 3; the effects
of light dispersion are not taken into account.

Formula (1) contains three interrelated parameters: den-
sity, the speed of light and the space dimension. Consider the
relationship between the speed of light and the matter density
in detail. The table data of the refractive index (optical den-
sity) and the density of precious stones are shown in Fig. 2.

Fig. 2: The precious stones density.

Analysis of Fig. 2 allows us to suggest that the refractive
index is linearly dependent on the matter density. Hence, we
obtain the formula of the vacuum matter density outside ma-
terial bodies:

dv =
dms

Π–1
, (8)

where dms is the density of substance, Π = cv/cms is the re-
fractive index, cms is the speed of light in the substance.

Here are the tabular data of the stones, used in jewelry
industry. The data give the minimum of the calculated density
of vacuum for diamonds and synthetic rutile (see Table for
detail).

In the above calculations, we used the average density of
substance. However, under real conditions inside real sub-
stances there are nodes of the crystal lattice in the form of
ions or atoms which have a finite volume and their own den-
sity. For example, for a diamond we have the radius of the

The group
of stones

Stone Density,
g/cm3

Refract.
index

Calc. vacuum
density, g/cm3

Colorless
stones

Diamond 3.52 2.42 2.48

Synthetic
rutile

4.25 2.9 2.24

carbon atom ra = 0.077, and the distance between the reflec-
tion planes (interatomic) d = 0.356 nm. Hence, the density
of the carbon atom itself is 6,274 g/cm3. Let us calculate the
maximum reduced density between two carbon atoms located
from each other at a distance d using the following formula:

dred. =
mc

Vc1

+
mc

Vc2

, (9)

where Vc1 = 4π
3 r3

1 is the volume of a sphere with the first
carbon atom in the center, r1 = 0.0385 ÷ 0.3165 nm, Vc2 =
4π
3 (0.356 − r1)3 is the volume of a sphere with the second

carbon atom in the center, mc is the mass of the carbon atom.
Calculation by formula (9) shows that approximately 50%

of the space between carbon atoms has a density of about 1
g/cm3. Hence, the estimated density of vacuum substance
obtained by formula (8) is less than 0.7 g/cm3. The actual
numerical value, obviously, is much lower, since the reduced
density assumes uniform distribution of the substance of the
carbon atom within the sphere.

Calculation of the space dimension and the speed of time

On the other hand, it follows from the definition of fractional
dimension of space, that any volume of a space generates a
volume in a certain multiplicity, which is equal to the speed
of time [1]. For vacuum it is:

dt ' ∆t = ∆v1 = 10−17, (10)

i.e. any volume of a space, when a signal passes through it,
generates a relative, additional volume equal to the speed of
time.

The generation of the volume corresponds to a certain
amount of gravitational energy. This amount can be com-
pared to a quantum of energy which, taking into account for-
mula (10), gives the ratio:

Mr V1 dt = h, (11)

where V1 is the generated unit volume, 1 m3, h is the Planck
constant (6.626 × 10−34 J s).

Our three-dimensional space is flat. The critical Friedman
density of our space is about d f = 1×10−28 kg/m3. From here,
we calculate the dimension of our space:

r =
log h − log V1 − log d f − log dt

log cv
+ 1 =

=
log 6.626 − 34 − 0 + 28 + 17

8 + log 3
+ 1 = 2.395; (12)
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where ct ' cv = 3 · 108 m/s; d f = dt = 10−28 kg/m3; V1 =

1 m3; dt = 10−17.
If the space has a Friedman energy density, the photon

speed in the region of the carbon atom is (on the average):

cc =

√
d f

dc
cv =

√
1 × 10−28

6274
cv =

= 1.26 × 10−16 × 3 × 108 = 37.9 nm/s, (13)

where dc is the average density of matter inside the sphere of
a carbon atom.

At the obtained speed of light inside the sphere of the car-
bon atom, the wavelength of visible radiation is:

λc = 1.26 × 1016λmv = 1.26 × 10−16 × 600 × 10−9 =

= 7.56 × 10−23 m, (14)

where λmv is the wavelength of visible radiation. This is about
1013 times less than the diameter of a carbon atom. This gives
a possibility of interaction between the waves of visible radia-
tion and a carbon atom which is represented as a drain funnel
(the source — reverse funnel — tornado). That is the photon,
as an object of magnetic energy, behaves as a time magnetic
monopole: it can be absorbed and emitted.

Results

Substantiation and calculation of the density of space mat-
ter have been done. The concept of the time speed has been
specified. The time speed of our space has been calculated. A
formula for calculating the fractional dimension of our space
has been obtained. The calculation of the fractional dimen-
sion of our space has been performed.

So, on the basis of representation of the fractional dimen-
sion of a space as a space with the presence of time, the fol-
lowing calculations were done: the density of vacuum matter,
the speed of time and the dimension of our space.

Further calculation of the numerical values of the follow-
ing properties — the substance density of material objects,
the vacuum and space density as a whole — can be contin-
ued dealing with (see [1] for detail): conversion of magnetic
energy into dark matter; dark matter interaction with matter;
synthesis of objects of our space; a three-dimensional model
of distribution of density of the outer space mass.
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Fully Classical Quantum Gravity
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It’s an experimental fact that quantum objects in the ground state do not radiate electro-
magnetic energy, but what are the limits on our knowledge of the gravitational equiv-
alent of this? In semiclassical gravity it is the expectation values of quantum particle
positions that form the source for the Einstein equations, thus a particle or atom in a
ground state emits no gravitational radiation. Here we instead assume a fully classi-
cal quantum gravity — the internal components of objects in a pure quantum state are
assumed to classically radiate gravitational waves. The effects of this theory of micro-
scopic gravity on the measured properties of the hydrogen atom, along with possibilities
to experimentally measure the effects of atomic or nuclear scale gravitational radiation
are explored.

1 Introduction

The quantum gravity problem remains unsolved in physics
today. There are many possible solutions proposed, but al-
most all of them suppose the existence of the graviton. The
graviton should have the same energy relation as the photon:

Egraviton = ℏν. (1)

There not only exists no experimental confirmation of this
relationship for gravity, it is also widely known that an experi-
ment to detect a single graviton is well beyond the capabilities
of any present or future realizable experiment. Gravity may
simply be a non quantum effect. Rosenfeld in 1963 is still
very much relevant [1].

There is no denying that, considering the uni-
versality of the quantum of action, it is very
tempting to regard any classical theory as a lim-
iting case to some quantal theory. In the absence
of empirical evidence, however, this temptation
should be resisted. The case for quantizing grav-
itation, in particular, far from being straightfor-
ward, appears very dubious on closer examina-
tion.

2 Other classical gravity theories

Semiclassical gravity can be summarized as a classical grav-
itational field coupled to quantum matter fields. While semi-
classical gravity is widely thought of as a workable limiting
approximation until a quantum theory of gravity is discov-
ered, there are researchers who treat semiclassical gravity as
a real possibility and hence in need of experimental tests [2].
The semiclassical equations for quantum gravity are as from
Møller [3] and Rosenfeld [1]:

Rµν −
1
2
gµνR =

8πG
c4 ⟨Ψ|Tµν|Ψ⟩. (2)

While seemingly straightforward, semiclassical gravity
has subtleties, especially in determining the quantum expec-
tation value (see Appendix A of Bahrami [4]).

Another classical treatment of quantum gravity comes
from Roger Penrose with the Gravitization of Quantum Me-
chanics [5] where he posits that gravity connects not to the ex-
pectation value, but rather directly to each superposed quan-
tum state. Gravitation causes collapse as the gravitational
field of multiple superposed states becomes too energetic.

3 Fully classical quantum gravity

Fully classical quantum gravity (FCQG) uses Einstein’s equa-
tions as given,

Rµν −
1
2
gµνR =

8πG
c4 Tµν (3)

with the coupling to microscopic matter being on some as-
sumed sub-quantum level, where particle positions always
have a definite value, as in for instance de Broglie-Bohm me-
chanics [6]. Of course if one uses Bohmian mechanics in its
entirety, then gravitation is also quantized, and particles will
not radiate from their ground states. We thus assume here
that quantization does not apply to gravity at all, that par-
ticle trajectories are real and that they interact directly and
classically using the laws of Einstein’s general relativity. In
many ways it is similar to the program of stochastic electro-
dynamics (SED) [7], in that classical fields couple directly to
sub-quantum particle motions. Indeed if one is to assume
a SED like explanation of quantum behavoir, then gravity
should also be treated classically.

4 Gravitational radiation from atoms and nucleons

Ashtekar [8] for example elucidates the need for a quantum
theory of gravity by citing Einstein in 1916:

. . . Nevertheless, due to the inner-atomic
movement of electrons, atoms would have to ra-
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diate not only electro-magnetic but also gravi-
tational energy, if only in tiny amounts. As this
is hardly true in Nature, it appears that quantum
theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation.

Using instead Rosenfeld’s position that we must rely on
experiment to show the need for quantum gravity, consider
the energy loss rate of a circa 1916 style Bohr planetary hy-
drogen atom in the ground state, using Eddington’s [9] for-
mula for the gravitational energy radiated by a two body sys-
tem (in the approximation that one mass is much heavier):

dE
dt

(atom) = −
32Gm2

er4
hω

6

5c5 = −10−43eV/s. (4)

Which even over the age of the universe amounts to an
energy loss due to gravitational waves for a hydrogen atom
in the ground state of only 10−25 eV. Why was Einstein wor-
ried about such a small rate of gravitational energy loss for
a hydrogen atom? In contrast the electromagnetic lifetime of
the classical hydrogen atom is about 10−11s which of course
helped lead to the discovery of quantum mechanics.

As a comparison to the above estimate, a quantum me-
chanical prediction of the lifetime of the 3p−1s state for emit-
ting a graviton is about 1.9× 1039s [10,11], which is within a
few orders of magnitude of the fully classical estimate above.

This energy loss is of no experimental significance. So we
can conclude that the stability of atomic orbitals is not an ex-
perimental indication of a need for quantum gravity. In other
words we cannot experimentally determine if atoms radiate
gravitational waves continuously or not.

4.1 Gravitational radiation from within nuclei

The Sivram-Arun paper Thermal Gravitational Waves [12]
is an expansion of Weinberg’s results in his 1972 book [10].
Both calculate the gravitational wave (GW) emission from
nuclei passing each other thermally in an astrophysical hot
plasma (stars). In fully classical quantum gravity we make
the additional assumption that gravitational waves are also
produced by nucleon motion inside each individual nucleus,
even in the ground state, greatly increasing GW emission and
making it happen at any temperature, since it arises from in-
ternal nucleon movements within each nucleus. Calculating
an estimate for the GW emission would depend on the model
one uses for the nucleus. The Fermi gas model of the nucleus
assumes that the nucleons are free to move inside the poten-
tial well of the nucleus. Since we are assuming that gravity
is fully classical, we can use the same calculations as that of
Weinberg and Sivram to arrive at an estimate of gravitational
wave emission from nucleons inside nuclei.

4.2 A GW nuclear emission/absorption model

Taking the calculation of Weinberg to nuclear material,
Sivaram finds a rate of 10−16eV/s per neutron [12] (using
their neutron star calculation). Fully classical quantum grav-
ity would then suggest that the Sun emits about 1022 watts
of 1022 Hz gravitational wave energy, as opposed to the 109

watts at a lower atomic frequency that Weinberg calculates
from plasma conditions only.

Another way to arrive an estimate for GW emission in
nuclei is to treat a nucleus as having several nucleons moving
in it at some typical internal velocity. The speed of nucleons
is given by their kinetic energy in the Fermi gas model with a
peak momentum of about 250 MeV/c. Using only one pair of
these peak energy nucleons and setting r = 1 fm, Eddington’s
formula for a bar of mass 2 nucleons, spinning at a nuclear
1023 Hz, predicts an emission rate of about 10−9 eV/s.

While these two approaches to calculate the GW emis-
sion of a nucleus in the fully classical model differ by sev-
eral orders of magnitude, GW emission rates near these levels
hint that such effects (or perhaps more likely a lack of effect)
might be measurable in the lab.

Experiments might need to use differential absorption ef-
fects to arrive at results. Absorption models are harder to
quantify, as the cross section estimate is quite uncertain due
to unknown detailed information on particle substructure.

Within this fully classical quantum model each nucleon
will have its own characteristic spectrum of nucleon-fre-
quency gravitational waves, depending on the structure and
size of the atomic nucleus. Experiments similar to those done
to look for “big G” could use dissimilar materials for the
masses whose force of attraction is to be measured. It’s no-
table that experiments to determine Newton’s constant G have
had great difficulty obtaining consistent results. Most mea-
surements of G do not agree with each other to within the
errors carefully determined by the experimenters [13].

Another experimental avenue would be to search for GW
interaction effects between the bulk of the earth and masses
in a lab of dissimilar materials.

5 Emission/absorption parameter space

Fig. 1 is a sketch of allowed emission and absorption param-
eters. Some — but not all — combinations of emission and
absorption parameters are ruled out by experiment. Towards
the upper left of the image limited absorption combined with
higher emission would mean that the stochastic background
of gravitational waves would be too energetic, having for ex-
ample energy greater than the baryonic mass in the universe.
The phrase “stability of nuclei” refers to the experimental fact
that nuclei live for billions of years. On the right a ruled out
region exists where absorption cross sections are not physi-
cally likely. The top line shows a calculation for the gravi-
tational wave emission rate of a proton due to parton (quark)
motion. “Nuclear emission (high)” refers to the Eddington
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Fig. 1: Nuclear frequency gravitational wave emission and absorp-
tion. The elusive nature of gravitational wave detection means that
even fully classical quantum gravity cannot be experimentally ruled
out. The frequency of the gravitational waves is that of nucleons
(ω ≈ 1022 Hz).

emission rate for a heavy nucleus, while the lower nucleus
emission rate is calculated assuming thermal Coulomb GW
emission inside each nucleus.

6 Discussion

Due to the weak nature of gravitational effects on subatomic
particles, even fully classical gravity cannot be experimen-
tally ruled out at this time. Quantum gravity experiments that
are possible with today’s technology are very rare, this pro-
posal represents an opportunity to test one of the tenants of
quantum gravity.

Null results from experiments as described here will be
able to constrain the allowed parameter space of a fully classi-
cal theory of microscopic gravity, thus suggesting that gravity
needs to be quantized.

These tests are also a test of the ubiquity of quantum me-
chanics. With a non null result the conceptual foundations
of quantum mechanics would be in question, as gravity might
then be determined to be outside of the realm of quantum me-
chanics.

Submitted on April 1, 2018
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Kirchhoff’s law of thermal emission asserts that, given sufficient dimensions to neglect
diffraction, the radiation contained within arbitrary cavities must always be black, or
normal, dependent only upon the frequency of observation and the temperature, while
independent of the nature of the walls. In this regard, it is readily apparent that all cav-
ities appear black at room temperature within the laboratory. However, two different
causes are responsible: 1) cavities made from nearly ideal emitters self-generate the
appropriate radiation, while 2) cavities made from nearly ideal reflectors are filled with
radiation contained in their surroundings, completely independent of their own temper-
ature. Unlike Kirchhoff’s claims, it can be demonstrated that the radiation contained
within a cavity is absolutely dependent on the nature of its walls. Real blackbodies can
do work, converting any incoming radiation or heat to an emission profile corresponding
to the Planckian spectrum associated with the temperature of their walls. Conversely,
rigid cavities made from perfect reflectors cannot do work. The radiation they contain
will not be black but, rather, will reflect any radiation which was previously incident
from the surroundings in a manner independent of the temperature of their walls.

1 Introduction

Kirchhoff’s law of thermal emission was formulated in
1859 [1, 2]. It is often presented as stating that, at thermal
equilibrium, the emissivity of an object, ϵν, is equal its ab-
sorptivity, αν. However, this should properly be considered
as ‘the law of equivalence’, first proposed by Balfour Stew-
art [3] in 1858.

Kirchhoff’s law extended much beyond Stewart’s [3] and
stated that, given thermal equilibrium, the radiation contained
within an arbitrary cavity was depended only on the temper-
ature of the enclosure and on the frequency of observation
[1, 2]. Such radiation was completely independent of the na-
ture of the walls [1,2]. It was because of Kirchhoff’s law that
blackbody, or normal, radiation has always been viewed as in-
dependent of the lattice and unlinked to a physical cause [4].
Clearly, if Kirchhoff was correct and blackbody radiation was
independent of the nature the walls, then such radiation could
not be ascribed causality in the emitting structure.

Yet, it has been known for over 200 years that the radia-
tion emitted from objects was highly variable [5]. In 1804,
Leslie reported that the emission of surfaces depended on
their nature and established the primacy of lampblack as a
blackbody surface [6]. As a result, lampblack or soot, along
with graphite, soon gained a dominant role in the construction
of laboratory blackbodies (see [7] and references contained
therein). The nature of the surface producing a thermal spec-
trum clearly did matter, in stark contrast to Kirchhoff’s claims
relative to cavity radiation [1, 2].

In the early 19th century, blackbodies were simply objects
made from graphite or coated with materials such as soot and
lampblack. Carbon black was also employed, a pigment used

in paints since pre-historic times [8]. Eventually, blackbod-
ies became increasingly sophisticated devices, typically cav-
ities. Other good absorbers of radiation slowly moved onto
the scene relative to the construction of laboratory blackbod-
ies [9–11], but graphite, soot, and carbon black retained their
pre-eminent role [12]. Max Planck soon benefited from the
construction of advanced cavities [9–11], when he formu-
lated the blackbody solution [13, 14]. Contrary to Kirchhoff
law [1, 2] the nature of the walls was thereby proven to be
important on a practical level. It governed the quality of a
blackbody. The quest for ever blacker surfaces [15–22] has
now turned to novel structural absorbance approaches guided
by samples as diverse as butterflies [23, 24] and birds [25].
Yet still today, many blackbodies in national laboratories are
based upon the use of graphite (e.g. [26, 27]).

It remains true that blackbodies are specialized cavities
which depend entirely on the nature of their walls [7, 9–12,
26,27]. Laboratory blackbodies are made from materials that
have an elevated emissivity over the range of interest, as is
widely known throughout metrology. This fact alone is suffi-
cient to illustrate that Kirchhoff’s law cannot be valid.

As such, it is surprising that many still believe that any
arbitrary cavity can produce a blackbody spectrum. In the
laboratory, this was never the case. Planck himself [13] was
dependent on the work of leading scientists in order to obtain
a spectrum with the blackbody frequency distribution [9–11].
If Kirchhoff law had been correct [1, 2], this should not have
been necessary.

The author has previously stated that Kirchhoff’s law was
not valid (see [4, 7, 12] and references therein), as it has no
proper theoretical [28] or experimental proof. Planck’s equa-

Pierre-Marie Robitaille. Kirchhoff’s law of thermal emission: Blackbody and cavity radiation reconsidered 141



Volume 14 (2018) PROGRESS IN PHYSICS Issue 3 (July)

tion [13, 14] remained unlinked to a physical mechanism [4]
because of Kirchhoff’s law [1, 2]. As a result, physics was
prevented from accounting for the production of a thermal
photon from a simple cavity made from a block of graphite.
Blackbody radiation remained, according to Kirchhoff, in-
dependent of the nature of the walls [1, 2]. In this respect,
Planck’s equation [13] was unique in spectroscopy. This has
enabled scientists, in disciplines other than condensed mat-
ter physics, to infer that thermal photons could be produced
without having recourse to a physical lattice, as was clearly
required when emitted from graphite [4]. This has also en-
abled Max Planck to claim that his equation had universal
significance [14, §164]. But in reality, Planck’s solution was
strictly limited to actual blackbodies (e.g. [7, 9–11, 26, 27])
and not to all cavities.

Thus, cavity radiation is reconsidered herein as to refute
Kirchhoff’s law [1, 2] and place a proper perspective on cav-
ity radiation. In order to do so, cavities were constructed from
materials which acted as nearly perfect absorbers or reflectors
of radiation in the infrared. The results are discussed in terms
of the work required to convert incident energy into normal
radiation within the blackbody cavity. Conversely, the ex-
istence of nearly perfectly reflecting cavities is discussed in
the context of resonant cavities used in magnetic resonance
imaging [29], microwave cavities [30, 31], and lasers [32].
The findings demonstrate that cavity radiation is absolutely
dependent on the nature of the walls. Consequently, Kirch-
hoff’s law was never valid [4, 7, 12] and Planck’s equation is
not universal, as confirmed by a wide array of experimental
results [29–32].

For the sake of brevity, the challenge to Kirchhoff’s law
presented herein can be limited to the study of a single ap-
proach without any loss in content. In 1954, de Vos published
his Evaluation of the Quality of a Blackbody in the journal
Physica [33]. This article has become a classic in blackbody
radiation. de Vos [33] examined the quality of cavities con-
structed from materials with varying emissivity by noting the
change upon incident radiation. This radiation was allowed to
enter a cavity, exit, and be monitored with a detector placed
at various angles. For cylindrical cavities, de Vos was con-
cerned with the ratio of the length of the cavity to its diam-
eter. He demonstrated that the radiation within cavities ap-
peared to become increasingly isotropic as this ratio was in-
creased [33]. However, de Vos had not demonstrated that all
cavities will be black, independent of incident radiation. In
fact, de Vos was concerned with the degree to which the sur-
face of the cavity was either specular or white [33]. He did
not evaluate whether a cavity could actually emit photons at
the correct temperature. Thus, his work provided only limited
insight into blackbody radiation [33]. He did analyze to what
extent the surface property of a cavity affected the change of
incoming light into fully diffuse reflection [33]. However, if
a cavity was not constructed of a near ideal absorber, it was
not necessarily black unless it was able to receive the proper

incident radiation from its surroundings.
At the same time, if a cylindrical hole of sufficient depth

was placed in a material with an elevated emissivity, the find-
ings from de Vos suggest that the resulting cavity should in-
deed be black [33]. This approach was therefore implemented
in this work in order to construct a simple blackbody cav-
ity from small blocks of graphite. In parallel fashion, nearly
perfectly reflecting cavities were constructed from blocks of
brass, copper, and aluminum.

2 Materials and methods

Infrared images were obtained using a CompactPro thermal
imaging camera (Seek Thermal, Inc., Santa Barbara, CA
93117; Thermal.com) interfaced with an Android (version
4.4.2) cell phone, as shown in Fig. 1A.

The camera had a focusable lens and a 32◦ field of view. It
was equipped with a 320× 240 thermal sensor, had a temper-
ature range of -40 to 330◦C, and was capable of obtaining ei-

Fig. 1: A) Photograph of the Android phone, Seek Thermal camera,
and aluminum, copper, brass, steel, and graphite blocks; B) Block
assembly I (graphite on the left, then on the right from top to bot-
tom: steel, brass, copper, aluminum). Note that two small scratches
are visible near the graphite cavity. C) Block assembly II (brass,
graphite, brass). D) Block assembly III (horizontal rows from top to
bottom: aluminum, brass, graphite, copper).
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ther still images or video. All images were obtained with the
camera operating in white mode, except for Fig. 2A, where
black mode was utilized.

Cylindrical cavities where constructed by drilling a small
hole into 12.5 × 12.5 × 50 mm blocks of copper, aluminum,
brass, and steel (Specific Gravity Metal Blocks, EISCO,
Haryana 133001, India). The expected emissivity of the cop-
per, brass, and steel holes should be on the order of 0.03-
0.1 [34]. The type of steel was unknown. A 20 × 50 × 50
mm 99.9% Purity Graphite Ingot Block EDM Graphite Plate
Milling Surface (Otoolworld, China) was used to build the
reference blackbody using the same approach.

Cavities were produced with a drill press using either
standard 3

16

′′
or 1

4

′′
diameter drill bits or a DeWalt Pilot Point

1
4

′′
diameter drill bit to the depth described in the figure leg-

ends. Cavities were examined at room temperature or after
having reached steady state while being heated on a hotplate
(Cuisinart, East Windsor, NJ) to a temperature of approxi-
mately ∼304◦C. Small graphite particles were made from 2
mm mechanical pencil refills (Menards, Eau Claire, WI) cut
to a length of 0.5 cm and inserted into the cavities of interest.

Experiments were initiated at room temperature, by plac-
ing the camera at a distance of ∼20 cm above the table surface
and therefore ∼15 cm above the surface of the block assem-
bly. The eye of the camera was positioned directly over the
center of this assembly. In order to document the effect of
ambient radiation on the cavities, a galvanized steel rod was
placed in an oven, heated to ∼232◦C, and then brought near
the cavities, as described in the figures.

3 Results

Thermal images are presented in Fig. 2 with the correspond-
ing schematic representations outlining the position of the rod
in Fig. 3. In Fig. 2A, a thermal image is presented in black
mode, revealing that all the cavities appeared nearly the same
at room temperature. In this image, there was also reflec-
tion of thermal radiation from the body of the observer onto
the block assembly. Thus, on cursory examination, Kirch-
hoff’s law appeared valid as all cavities essentially contained
the same radiation. Still, the block was positioned within a
room filled with radiation at the same temperature. There-
fore, it was important to determine whether the cavities were
generating radiation on their own or simply manifesting the
radiation in their surroundings.

For other studies, the camera was switched to white mode
and the cavities all appeared black, as seen in Fig. 2B. Next,
in Fig. 2C-F (see schematics in Fig. 3C-F), a heated galva-
nized steel rod was placed above their surface. The rod had
been heated to ∼232◦C. In Fig. 2C, the rod was positioned
to the right of the steel cavity (see schematic Fig. 3C). With
the heated rod in this position, the graphite and steel cavi-
ties could not be filled with its radiation. These two remain
pretty much as they were with just a tiny spec of reflection at

the graphite cavity. Thus, radiation from the rod was reach-
ing this cavity as well, as expected. At the same time, the
aluminum, copper, and brass cavities were immediately filled
with radiation from the rod.

The rod was then moved to the left in Fig. 2D, as shown
in Fig. 3D. Notice, once again, that there was no effect on the
graphite cavity and that only a slight reflection was observed
at the top of the steel cavity. However, all the others were
filled with radiation from the rod. In particular, note the pat-
tern in the brass cavity revealing that it was still not able to
fully convert incoming radiation into isotropic ejected radi-
ation. This indicated this cavity should be deeper to render
the radiation fully isotropic, as suggested in de Vos’ classic
work [33].

In Fig. 2E, the rod was placed near the center of the block
as represented in Fig. 3E. The three cavities from aluminum,
copper and brass were again filled with rod radiation, but the
graphite cavity remained unaffected and the steel cavity al-
most unaffected. However, reflection of rod radiation could
be observed in the scratches on each side of the graphite cav-
ity. As such, radiation from the rod was clearly reaching this
cavity. Finally, in Fig. 2F, the rod was positioned just to the
right of the steel cavity as shown in Fig. 3F. In this position,
the steel cavity was no longer black. Now, it could be ob-
served that rod radiation was able to partially fill the steel
cavity. Nonetheless, the bottom of this cavity was darker,
thereby indicating that steel had a much higher emissivity
than the aluminum, copper, or brass cavities, but was not on
par with graphite. The aluminum, copper, and brass cavities
all appeared filled with radiation from the rod.

Next, the effect of inserting a small piece of graphite into
the cavities was examined as shown in Fig. 4. In Fig. 4A (see
schematic 4D), the graphite cavity was indistinguishable from
the surface of the block at thermal equilibrium. Both cavities
within the brass blocks were clearly visible.

When the heated steel rod was brought in close proximity
to the cavities, its radiation was reflected off the surfaces and
the signal to noise of the resulting image increased, as shown
in Fig. 4B (schematic 4E). However, the central graphite cav-
ity appeared black and both of the brass cavities became filled
with rod radiation. This revealed that real blackbodies do
work and convert any incident radiation to that correspond-
ing to the temperature of their walls. Conversely, the two
brass cavities on each side became filled with radiation orig-
inating from the steel rod. Again, the reflecting cavities were
not black, as they manifested the radiation present in their
surroundings in a manner independent of the temperature of
their own walls. When the graphite particle was introduced
into each of the cavities, it was unable to make the brass cavi-
ties fully black, as clear signs of radiation from the heated rod
remained, as shown in Fig. 4C (schematic 4F).

Next, consider the findings from block assembly III, as
displayed in Fig. 5. Initially, this assembly was monitored at
room temperature, in equilibrium with its surroundings, as
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Fig. 2: A) Infrared image obtained from the Block Assembly I (see Fig. 1B) with the camera operating in black mode. For this image the
camera was hand held. All the cavities were made using a standard 3

16

′′
drill bit to a depth of 1

′′
and appeared to contain the same radiation;

B-F) Infrared images obtained from the block assembly with the camera in white mode. The lens of the camera was exactly 15 cm directly
above the top of the block assembly or 20 cm above the top of the table. In these images, photons emitted from the heated rod and reflected
prior to detection are observed as a white streaks on the images. B) The galvanized steel rod was not near the block assembly. Thermal
radiation from the observer was likely to account for the good signal to noise on this image; C) The heated galvanized steel rod was placed
on the right near the steel cavity; D) The heated galvanized steel rod was placed on the left side near the aluminum cavity. In this case,
both the rod and its reflection are clearly visible; E) The heated galvanized steel rod was placed at the center of the block assembly. The
two small scratches near the graphite cavity reflected radiation, demonstrating that radiation from the rod was reaching this cavity as well;
F) The heated galvanized steel rod was placed just to the right of the steel cavity.

Fig. 3: Schematic representation illustrating the position of the heated rod relative to the block assembly. In the upper left, a vertical
cross section is presented. For Fig. 2C-F, the rod was held using locking pliers at an angle of ∼25-30o relative to the table. C-F) top view
illustrating the rod position in Figs. 2C-F, respectively.

144 Pierre-Marie Robitaille. Kirchhoff’s law of thermal emission: Blackbody and cavity radiation reconsidered



Issue 3 (July) PROGRESS IN PHYSICS Volume 14 (2018)

Fig. 4: Infrared images (A-C) and their schematic representations (D-F). The cavities were drilled with a DeWalt Pilot Point 1
4

′′
diameter

drill bit to the depth 1 1
4

′′
. A) Infrared image obtained from the Block Assembly II (see Fig. 1C) at room temperature without any heated

rod present (schematic in D). B) Image obtained while placing a heated steel rod in close proximity to the cavities (schematic in E). C)
Repeat of B, but this time, a graphite particle was suspended from two strings into the left brass cavity such that the center of the particle
was exactly 1 cm from the top of the block (schematic in F). Graphite particles were also inserted at the bottom of the other two cavities.
In B and C, the stem of the rod was parallel to and about 7 cm above, the top of the table (or a height of about 2 cm above the top of the
block). In schematics E and F, the rod was illustrated such that its position from left to right could be accurately represented relative to
the block. However, in the plane of the image, the rod was actually positioned just below the field of view considered by the schematic, or
about one rod width from the block.

shown in Fig. 5A (corresponding schematic, 5C).
Once again the infrared camera was positioned a distance

of ∼15 cm from the top of the block. The cavities within
the graphite portion of the block under those conditions were
indistinguishable from the graphite surface. The image was
noisy, as expected, since the observer was well removed from
the block during data acquisition. At the same time, the cav-
ities made within the aluminum, brass, and copper blocks
were clearly visible and distinct from one another, demon-
strating that they did not contain identical radiation. Since
these cavities were made from highly reflective materials, this
implied that the space surroundings of the block contained
some anisotropic radiation.

In Fig. 5B, the same block was examined (schematic 5D).
This time, the hands of the investigator were positioned on
each side of the block, such that thermal equilibrium was not
maintained and the associated radiation could be observed

filling the aluminum, brass, and copper cavities. Clearly,
these nearly perfectly reflecting cavities were not black, but
contained radiation emitted by their surroundings.
Conversely, under these conditions, the three deepest graphite
cavities, located on the left of the third row, remained essen-
tially unaffected. At the same time, the shallowest cavity,
made from the tip of the drill bit and located on the right of the
third row, was sensitive to this challenge (Fig. 5B, D). There
were reflections of thermal photons off the surfaces of each
block which altered the appearance of the images as well.
This study served to exemplify, once again, that real black-
bodies could do work converting radiation incident upon their
walls to black radiation manifesting their temperature. Con-
versely, rigid perfectly reflecting cavities could not do work.
They contained the radiation present in their surroundings in a
manner independent of their own temperature and such radia-
tion was clearly observed in the aluminum, brass, and copper
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Fig. 5: A) Infrared image obtained from the Block Assembly III (see Fig. 1D) at room temperature. The corresponding schematic is
displayed in C (reduced by 25%). B) Same as in A, but this time the hands of the investigator were placed near the sides of the block such
that thermal photons from the first two fingers of each hand could challenge the cavities, as seen in the schematic representation D (reduced
by ∼50%). The horizontal rows from top to bottom correspond to aluminum, brass, graphite, copper. These cylindrical cavities were made
using a standard 1

4

′′
drill bit to different depths (from right to left: 1) depth corresponding to just the cone of the drill bit, 2) depth to 1

4

′′
, 3)

3
4

′′
and 4) 1 1

4

′′
).

cavities.

At this point Block Assembly III was placed onto the sur-
face of a hotplate brought to a temperature of ∼304◦C, as
shown in Fig. 6.

Under these conditions, the graphite cavities located on
the third row all appeared to contain isotropic radiation
closely manifesting their equilibrium temperature. This in-
dicated that these cavities were able to convert heat energy
located in their walls to blackbody radiation. Even the cavity
produced with only the tip of the drill bit, on the right, con-
tains isotropic radiation. Conversely, the cavities constructed
from aluminum, brass, and copper did not all contain such

radiation. Rather, they showed clear signs that their radia-
tion originated from the hotplate and was a property of the
surroundings, not the cavity itself.

While the 1 1
4

′′
aluminum (top row, left most) and copper

(bottom row, left most) cavities appeared to contain isotropic
radiation, the brass cavity of the same depth (second row, left
most) clearly did not. In addition, careful examination re-
vealed that crescents were visible in the aluminum, brass, and
copper 3

4

′′
cavities (second column) as well. With the excep-

tion of graphite, the 1
4

′′
cavities (third column) did not contain

isotropic radiation at the appropriate temperature and neither
did the corresponding conical cavities made from just the tip
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Fig. 6: Infrared image obtained from the Block Assembly III (see Fig. 1D) positioned on a hotplate surface at a temperature estimated at
∼304◦C using the thermal camera. In order to acquire this image, the camera was mounted on a tripod such that its lens was ∼20 cm from
the face of the block.

of the drill bit (fourth column). For instance, note the inabil-
ity of any of the smallest cavities, made from these materials,
to sustain radiation at the proper temperature. Crescent pat-
terns also appeared in cavities constructed from aluminum,
brass, and copper, even at a depth of 3

4

′′
(second column), de-

spite the fact that the radiation in the graphite cavity at the
same depth was clearly isotropic. At a depth of 1 1

4

′′
, the brass

cavity (second row, first column) still displayed such patterns.
When the block assembly was cooled, it was apparent that

the copper blocks had become highly oxidized and this, in
addition to their proximity to the hotplate, might help explain
their superior performance when compared to aluminum and
brass.

Still, these results revealed that real blackbodies, repre-
sented herein by the graphite cavities, could do work and
manifested the radiation appropriate to the temperature of
their own walls. Conversely, the aluminum, brass, and cop-
per cavities illustrate that nearly ideal reflectors could not do
work, but contained the radiation present in their surround-
ings which was independent of the nature of their walls.

4 Discussion

The approach to, and departure from, thermal equilibrium has
been the subject of countless studies by Fourier [35], Dulong
[36], Petit [36], de la Provostaye [37], and Desains [37] (see
[38] for a full review). In similar fashion, through the stud-

ies presented herein, a greater understanding has been sought
about the nature of the radiation within cavities. This was
accomplished both under conditions of thermal equilibrium
and also by considering challenges which represent small de-
partures from equilibrium. However, these challenges were
important because they served to highlight the nature of the
radiation which filled a cavity and thereby help to establish
the identity of those objects which properly constituted black-
bodies.

4.1 Blackbodies defined

Prior to formulating his law, Kirchhoff first defined a black-
body by stating that “This investigation will be much simpli-
fied if we imagine the enclosure to be composed, wholly or
in great part, of bodies which, for infinitely small thickness,
completely absorb all rays which fall upon them” [2, §7].
Kirchhoff therefore recognized the importance of surface ab-
sorptivity in the blackbody problem.

Surprisingly however, when Max Planck would later de-
fine the blackbody in his classic text [14], he completely re-
jected Kirchhoff’s approach writing: “In defining a black-
body Kirchhoff also assumes that the absorption of incident
rays takes place in a layer ‘infinitely thin’. We do not in-
clude this in our definition” [14, §10]. Planck then changed
the characteristics of a blackbody surface: “A rough surface
having the property of completely transmitting the incident
radiation is described as ‘black”’ [14, §10]. With this defini-

Pierre-Marie Robitaille. Kirchhoff’s law of thermal emission: Blackbody and cavity radiation reconsidered 147



Volume 14 (2018) PROGRESS IN PHYSICS Issue 3 (July)

tion, Planck removed absorbance of the surface itself from
the requirements for creating a blackbody and inappropri-
ately placed the focus on transmittance. Planck adopted this
new definition because he was preparing to advance a proof
of Kirchhoff’s law which ignored absorbance at the bound-
ary of two materials [14, §35-37]. But in doing so, Planck
moved away from physical reality. His approach proved in-
valid [39]. Nearly ideal absorbance for thin surfaces remains
the hallmark of all materials used to construct quality black-
bodies [7, 9–11, 25, 27].

4.2 The mathematical form of Kirchhoff’s Law

In advancing his law [2], Kirchhoff did not have recourse to
experimental verification. He first stated that the emissive
power of an object, E, divided by its absorptive power, A,
was equal to a universal function which depended only upon
temperature, T, and frequency, ν (E/A= e where e = f {T, ν}).
He then immediately replaced absorptive power, A, with ab-
sorptivity, αν, such that E/αν= f {T, ν}. For actual blackbod-
ies, it is clear that αν can be set to 1 and E= f {T, ν}. However,
Kirchhoff’s expression becomes undefined when αν is set to
zero, as would occur if the cavity was constructed from a per-
fect reflector. Planck himself recognized the undefined nature
of Kirchhoff’s law under those conditions (see §48, §51, §52
in [14]).

Thus, relative to Kirchhoff’s relationship, two limits are
involved. The first, addresses cavities constructed from per-
fect absorbers, such that αν can be set to 1. The second, in-
volves cavities constructed from perfect reflectors, such that
αν can be set to zero and the law becomes undefined. Per-
fectly reflecting cavities never followed Kirchhoff’s law.
They are important however as they form the basis for many
resonant devices [29–32]. In any event, Kirchhoff had no
mathematical basis for arguing that all cavities must contain
black radiation which is dependent only upon temperature
and frequency.

4.3 Laboratory blackbodies

Clearly, laboratory blackbodies [4, 7, 12, 26, 27], including
those utilized to provide Planck with data [9–11], were spe-
cialized cavities constructed from highly absorbing materials.
This observation alone was sufficient to conclude that Kirch-
hoff’s law was invalid.

In the infrared, it was evident that the graphite cavities
used in this study were able to maintain their internal radi-
ation in a manner which was essentially independent of any
radiative challenge. They acted as real blackbodies and could
do work. They could ensure that the radiation they contained
was governed by the nature and the temperature of their own
walls. They converted incoming energy, whether in the form
of incident radiation or heat, into normal radiation with the
correct frequency distribution.

Conversely, cavities constructed from aluminum, brass,

and copper acted as nearly ideal reflectors. They contained
the radiation which was incident from their surroundings and
showed no ability to convert this radiation to black radia-
tion corresponding to the temperature of their own walls. In
this regard, it was evident that perfect reflectors could not do
work. They were unable to effect any change upon incident
radiation other than that which would occur given specular or
diffuse reflection.

de Vos noted the extent to which cavities could make radi-
ation isotropic as a function of the ratio of their diameter and
depth [33]. However, perfectly reflecting cavities, by defini-
tion, could not emit radiation. As such, the radiation which
they contained must remain completely independent of the
temperature of their walls and dependent solely on the radi-
ation contained in their surroundings. de Vos’s analysis of
the quality of a cavity in terms of its ability to convert incom-
ing radiation into ejected isotropic radiation, while of interest,
actually had little baring on the behavior of real blackbodies.
This was because real blackbodies depended on the nature
of their surfaces, not on the dimension of a cavity, in order
to ensure that the emitted radiation would be both isotropic
and black. A cavity in fact, should not be required, provided
that the surface material was black and that no external radia-
tion was able to contaminate this emission. This explained in
part the interest in materials with elevated emissivity values
[9–11, 26, 27] and highly absorbing surfaces [15–22]. Cavi-
ties did enable blackbody radiation to be contained, but they
were not necessary for its production.

4.4 Cavities and work

Perhaps the central feature of all actual blackbodies was that
they must have the ability to do work and convert any inci-
dent energy into the frequency distribution corresponding to
the temperature of their own walls. In this sense, the work
performed by a blackbody conformed to the standard defini-
tion whereby energy was converted from one form to another.
Blackbodies accomplished this task in two ways. First, they
were able to alter the frequency of incoming radiation and re-
emit it with the blackbody frequency distribution correspond-
ing to the temperature of their walls. Secondly, they could
convert heat energy located in their own walls into thermal ra-
diation associated with this temperature. In either case, only
absorbers of radiation could act as blackbodies, as only they
could serve as emitters. Radiation was absorbed by the walls
and re-emitted in a manner which depended on the density of
states and thereby upon temperature.

Conversely, rigid perfect reflectors could only redirect in-
coming radiation in a specular or diffuse manner. A change in
phase occurred without any change in frequency. Therefore,
no work was done, as a change in the energy distribution of
the incoming radiation did not occur. Furthermore, perfect re-
flectors could not harness the energy contained in their walls
and thereby emit radiation. Unable to absorb, they could not
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emit.
The reality that rigid perfectly reflecting cavities cannot

do work is the basis for resonant cavities in ultra high field
magnetic resonance imaging (UHFMRI) [29], electron para-
magnetic resonance (EPR) [30], microwave communications
[31] and the resonant cavities used for building coherent ra-
diation following stimulated emission in lasers [32]. All of
these disciplines strive to build highly reflective resonant cav-
ities with optimal quality factors, Q = f /δ f , where f is the
frequency of interest and δ f full width at half maximum of
the resonance. Q-factors are inversely proportional to surface
resistance echoing Planck’s desire for infinitely large conduc-
tivity.

In clinical MRI, dielectric loses in the human body will
dominate Q-factors for any resonator [26]. As a result, little
can be gained in this discipline from building resonators from
materials more sophisticated than copper or silver.

However, lasers do not experience these limitations. As
a result, resonant cavities in lasers can benefit from the con-
struction of highly reflective Bragg super-mirrors, which can
have reflectance values of 99.9999% [40–42]. Ion-beam in-
terference coating mirrors [43] are associated with LIGO
[44]. Specialized mirrors are also used in high precision
atomic clocks to generate optical cavities with low thermal
noise in that setting [45]. Laser cavities can thus achieve Q-
factors of 1010, or more [46].

The use of resonant cavities in UHFMRI [29], EPR [30],
microwave technology [31], and lasers [32] proves that Kirch-
hoff’s law is not valid. These cavities critically depend on
their nearly perfectly reflecting nature which allows them to
serve as resonant devices, unable to alter incoming radiation
by making it black. It is evident that the radiation in these cav-
ities is absolutely dependent upon the radiation which was in-
cident upon them and completely independent of the temper-
ature of their walls. Absorption of incident photons, transfor-
mation into thermal vibrations, and re-emission into thermal
photons does not occur in perfectly reflecting cavities. Kirch-
hoff and Planck cannot claim otherwise, when they assert that
all cavities contain black radiation [1, 2, 14].

4.5 Max Planck and Kirchhoff’s law

Max Planck attempted to prove the validity of Kirchhoff’s
law in the opening sections of The Theory of Heat Radia-
tion [14, §1-52]. Upon close examination, the derivation was
discovered to be unsound [39]. In order to construct his proof,
Planck actually redefined the very nature of a blackbody and
no longer required, as did Kirchhoff, the ability to absorb ra-
diation over an infinitely small thickness [2, §1]. In contrast to
Kirchhoff, Planck permitted radiation to enter a medium with-
out absorption/emission at its surface [14, §36-37]. When
considering a medium with a vanishingly small absorptivity,
he allowed for their use as blackbodies by invoking infinite
thickness [14, §10]. Thus, Planck’s proof of Kirchhoff’s law

used transmission and, at times, improperly ignored absorp-
tion. Additionally, his proof relied on the use of polarized
light [14, §35-37] and the use of Brewster’s angle, when heat
radiation is never polarized [47].

In this regard, it is noteworthy that in order to address the
blackbody problem Max Planck actually focused his attention
on the perfectly reflecting, rather than the perfectly absorb-
ing, wall [14]. Planck had defined the reflector as: “the sur-
face of an absolute conductor (metal) of infinitely large con-
ductivity” [14, §55]. Planck’s focused on perfectly reflecting
cavities despite the fact that such cavities cannot function as
proper blackbodies.

Indeed, Planck understood that “In a vacuum bounded
by perfectly reflecting walls, any state of radiation may per-
sist” [14, §51]. However, he advanced that such radiation
could be converted to blackbody radiation at the correct tem-
perature with the simple addition of a small particle of car-
bon [14, §51]. He believed that this particle acted as a cata-
lyst and provided no heat energy of its own [14, §51]. How-
ever, Fig. 3 demonstrated that the addition of a carbon particle
alone was not sufficient to produce the desired radiation. In
fact, it was doubtful that Planck or his contemporaries ever
tested the concept, as a small particle of graphite could never
do enough work to fully convert the radiation, incident upon a
cavity, into fully black radiation. The second law has always
restricted what the carbon particle could achieve. In addition,
Planck’s use of the carbon particle [14, §51] could easily lead
to a violation of the 1st law.

Using a thought experiment, it could be demonstrated that
the catalyst argument violated the 1st and 2nd laws of thermo-
dynamics [48]. Planck himself recognized that the radiation
contained in a perfectly reflecting cavity was undefined [14,
§48, §51, §52]. As such, the energy contained in these radi-
ation fields could not be transformed to the proper frequency
distribution, unless it exactly matched the energy required at
the temperature of interest. Since the radiation was undefined,
any attempt to transform radiation of arbitrary energy con-
tent to that with the proper frequency distribution for a given
temperature risked violating the 1st law of thermodynamics.
Planck could not be assured that the energy density within
the cavity enabled the carbon particle to make the radiation
black at the correct temperature. Only when the correct en-
ergy density was initially present in the cavity, could Planck
avoid violating the 1st law. Furthermore, the carbon particle
must do work to transform heat energy into radiation and fill
the cavity. It could never act as a catalyst. Planck’s attempt
to address the undefined nature of the radiation in a perfectly
reflecting cavity, by the insertion of a carbon particle, stood
in opposition to the laws of thermodynamics [48].

Throughout his text on The Theory of Heat Radiation
[14], Max Planck attributed all of the energy to the radiation
field and included none in the walls of the cavity. Obviously,
if this was done, the solution could not depend on the nature
of the walls. However, the approach was not justified. Real
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cavities have energy in their walls. The most important ex-
ample is the perfectly reflecting cavity, wherein thermal equi-
librium is governed by the conduction of energy in the walls,
not within a radiation field. By definition, such walls have no
means of interacting with radiation and, therefore, a radiation
field cannot be used to set equilibrium in a perfectly reflect-
ing cavity. Perfectly reflecting cavities are responsive to the
radiation incident upon their openings only through reflec-
tion. The reflection can be either specular, white, or a mix-
ture. However, any effect on the incoming light in a perfectly
reflecting cavity will occur in a manner completely devoid of
any relationship to the temperature of its walls. The radiation
within perfectly reflecting cavities is determined by history
and environment, not temperature.

5 Conclusions

For more than 150 years [12], Kirchhoff’s law of thermal
emission [1, 2] has governed much of scientific thought in
physics and astronomy, despite the fact that it lacked proper
theoretical [28] and experimental proof [4, 7, 12, 28, 38, 39,
48]. Now it is clear that cavities do not all contain the same
radiation, independent of the nature of their walls. Perfect
reflectors are unable to convert incoming radiation into the
Planckian distribution corresponding to their wall tempera-
ture. In the absence of wall motion, they are unable to do
any work and merely sustain the radiation in their surround-
ings. If this incident radiation is phase coherent, then per-
fect reflectors can even sustain standing waves, as required
in UHFMRI [29], EPR [30], microwave telecommunication
[31] and lasers [32]. Had Kirchhoff’s law been valid, then
none of these modalities would exist, as no cavity would be-
come resonant and all incident radiation would become des-
tined to adopt the blackbody profile.

Kirchhoff’s law is demonstrably false. Real blackbod-
ies can do work on any incoming radiation and, as shown
herein, they appear to do so instantly. They exclusively con-
tain radiation which reflects the temperature of their walls,
not the presence of the radiation in their surroundings. It is
this ability to do work in the ideal blackbody, and the inabil-
ity to do work in the perfect reflector, which determines the
real behavior of cavities. That is also why laboratory black-
bodies are always constructed from materials which possess
relatively elevated emissivity values over the frequencies of
interest [4, 7, 9–12, 26, 27]. The production of a blackbody
spectrum absolutely requires the presence of a vibrating lat-
tice and is intrinsically tied to the nature of the walls [4], con-
trary to Kirchhoff’s claim [1, 2].

As a result, Max Planck’s long advocated universality [14,
§164] as to time, length, mass, and temperature was never
valid. The concept was entirely dependent on the notion that
Kirchhoff’s law was correct, but this was never the case. As
a consequence, the units of measure remain a product of hu-
manity’s definitions and science constrained by this fact.

Though Planck’s equation remains correct for actual black-
bodies, it is no longer reasonable to proclaim that black radia-
tion can be produced simply through arbitrary cavities in ther-
mal equilibrium. Such assertions are incorrect as evidenced
by the preeminent role of graphite and soot in the construction
of actual blackbodies [4] and as modern technology readily
demonstrates [29–32].
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The question whether light moves with constant or variable velocity is indubitably of
the utmost importance. Preliminary reflections concerning the nature of that movement
contrast the hypotheses of propagation and emission. As a brief historical examination
reveals, alleged evidences in favour of the invariance postulate turn out to be erroneous
or inconclusive and supposedly decisive tests methodologically invalid. An emission
theory based on Michael Faraday’s idea of ray vibrations is shown to be in accordance
with observation. The question whether the speed of light depends on the velocity of
its source has thus not been settled experimentally since only a kinematic test, to date
never conducted, can give an unambiguous answer. Juxtaposed to seemingly similar but
defective designs Wilhelm Wien put forward in 1904, such an experiment, amending a
set-up suggested by Herbert Dingle, is proposed.

1 Introduction

The assumption that the velocity of light with respect to real∗

space has a constant value is not self-evident at all, as the
history of science teaches. Indeed, only in the course of the
19th century the ether or propagation hypothesis of light mo-
tion, which this assumption is linked to, succeeded in super-
seding the ballistic or corpuscular conception of emission,
espoused by Isaac Newton. However, at the same time as
Christiaan Huygens’s interpretation seemed to achieve a late
victory, his central idea becoming a general conviction, the
problems resulting from it began to accumulate as well. As
a consequence, the image of propagating waves has eventu-
ally been called into question again [1] – and with very good
reason as will be shown. To get a clear picture of the ma-
jor differences, both views are first juxtaposed in opposition.
A generally unheeded emission theory, based on the concep-
tions of Walter Ritz and amended by Herbert Dingle, is then
invoked and demonstrated not to be in conflict with observa-
tion [2–7]. Finally, we delineate a kinematic experiment that
renders an unequivocal decision between the hypotheses of
propagation and emission possible.

2 The nature of light motion – propagation or emission?

To picture the two ways which the motion of light has histor-
ically been interpreted in, let us consider the following expla-
nations of Walter Ritz (Figure 1a, b):

In the theory of the ether, a point mass P, at rest
with respect to this medium, will be able to emit
waves of a constant radial velocity, which will
form at each instant a system of spheres, having
P as a centre. If P is animated by a motion of
translation, the spheres, on the contrary, will be-
come eccentric, each keeping its centre at P1 of

∗For epistemological reasons, the expression “real” is used instead of
the Newtonian term “absolute” throughout this essay.

the ether which coincides with P at the instant
of emission. According to the principle of rel-
ativity, on the contrary, if the motion of trans-
lation is uniform, the spheres will have to stay
concentric as at rest, and the centre will always
be P. When the motion is no longer uniform, the
principle will no longer suffice to determine the
movement of the waves.
Two ways of representing the phenomena, two
distinct images have successively dominated op-
tics: that of emission (the light moves) and that of
the ether (the light propagates). The second one
introduces absolute motion, while the first leads
for the movement of light in vacuum exactly to
the law that the principle of relativity requires:
the luminous particles expelled in all directions
at the instant t move with a constant radial ve-
locity and perpetually fill a sphere whose cen-
tre is animated with the motion of translation w
that P had at the instant of emission; if w is con-
stant, this centre will thus continue to coincide
with P. [8] (The original text is in French.)

The experiment of Michelson and Morley [9] had engulfed
the propagation hypothesis and with it electromagnetic the-
ory in a crisis, which most notably H. Poincaré [10] called
attention to. Ritz conceived of the ingenious solution to en-
tirely discard the image of propagating waves in favour of a
ballistic interpretation. In contrast to other authors, suggest-
ing different emission theories shortly afterwards [11–14], he
assumed light to keep the speed it is originally emitted with
including after reradiation by a medium [15]. His auspicious
but due to his early passing fragmentary work has been the
first systematic attempt to revise the notion of emission and
turn it into a cornerstone of electromagnetic and optical the-
ory [8, 15, 16]. Not until more than half a century later, that
line of thought was keenly continued by R. A. Waldron [17].
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Fig. 1: Movement of a light source P and of a corresponding spherical wave generated at the instant t0. (a) Propagation (after Maxwell-
Lorentz), (b) ballistic emission (after Newton-Ritz), (c) emanation (after Ritz-Dingle).

3 The Ritz theory – criticism and countercriticism

To test Ritz’s explanation, M. La Rosa [18,19] and R. C. Tol-
man [13] suggested to repeat the Michelson-Morley experi-
ment using light from an extraterrestrial source as the latter
moves rapidly with respect to the measuring apparatus. They
wrongly presupposed that another null result on such condi-
tions would invalidate his conception. In 1919, an equivalent
test, conducted by Q. Majorana [20] with a moving terrestrial
light source, showed no shift of the interference pattern. Al-
though F. Michaud [21] demonstrated that Ritz’s theory con-
forms with Majorana’s findings – unlike all other emission
theories which had been proposed – inferring the fallacy of La
Rosa’s and Tolman’s reasoning from this was omitted. Their
view found its way into W. Pauli’s [22] influential article on
Einstein’s theory instead, and after R. Tomaschek [23] and D.
C. Miller [24] had finally performed experiments employing
sun and star light that again yielded no interference fringes to
the calculated extent, Ritz’s ideas largely fell into oblivion.

Already previously, an argument adduced by D. F. Com-
stock [25] and W. de Sitter [26–29] had severely undermined
the plausibility of the emission hypothesis. They pointed out
that the observed orbits of binary stars are irreconcilable with
a ballistic motion of light since particles emitted by a star
approaching the observer would overtake the preceding cor-
puscles and thus distort the image of the system.

Almost half a century had passed until Herbert Dingle
[2–4] not only brought the error in La Rosas’s and Tolman’s
reasoning to light but also found a possible explanation con-
sidering the seemingly unsurmountable objection that Com-
stock and de Sitter had raised. In doing so, he seized upon
ideas which Michael Faraday had outlined in his Thoughts on
Ray-vibrations:

The view which I am so bold as to put forth con-
siders, therefore, radiation as a high species of
vibration in the lines of force which are known
to connect particles and also masses of matter
together. It endeavours to dismiss the æther, but
not the vibrations. [30]

Dingle showed that it suffices to extend the classical princi-
ple of relativity concerning electromagnetic radiation so that
the velocity of light would remain constant with respect to
its source even if the radiating body moves non-uniformly
and non-rectilinearly (Figure 1c). According to this view,
the vibrating rays stay throughout their journey through pure
space connected to the source and share the latter’s changes
of motion. A few years earlier but without building on Fara-
day’s idea, P. Moon and D. E. Spencer had already reasoned
along similar lines in response to de Sitters objection [31–35].
However, as H. Bondi aptly remarked, the term “ballistic”
does not fit Dingle’s conception since the analogy with pro-
jectiles no longer characterizes the image [2]. To make a clear
distinction, we hence refer to the variation of the emission hy-
pothesis based on vibrating rays as emanation and to the cor-
relating principle, governing the motion of electromagnetic
radiation, as classicistic relativity.

Admitting this principle renders yet another astronomi-
cal objection irrelevant H. Thirring [36] propounded against
the ballistic concept. He argued that as atoms in the sun are
accelerated through thermal collisions, they would emit light
particles with different velocities at successive instants. The
wave train travelling along a terrestrial observer’s line of sight
would therefore shrink first, then be stretched, and arrive at
the earth as a radio signal.

Finally, a whole class of methodologically interrelated ev-
idences that had been put forward against the emission hy-
pothesis could not withstand Dingle’s astute scrutiny either.
Over the years, a considerable number of experiments was
conducted which seemed to corroborate the postulate of con-
stant light velocity relative to pure space, e.g. [37–43]. But as
Dingle correctly remarked:

The postulate is adopted as part of the basis of a
kinematic theory, so that “velocity” must be un-
derstood in a kinematic sense, and this requires
that the source of light must be an identifiable
body, having a definite position in space at each
successive instant, the whole sequence of posi-
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Fig. 2: Schematic of Wien’s first and second experimental proposals. A, B: translationally congruent cogwheels; L1, L2, LA, LB: light
sources; M1, M2: mirrors in parallel position; S1, S2: diaphragms with scales; α, β: deviation angles assuming a stationary ether so that
α> β as the mirrors rotate, the arrow below indicating the direction of motion of the earth around the sun. Bolometers behind A and B
were to record the luminous energy of the incoming beams. When the cogwheels are at rest, the respective values are the same but change
as soon as A and B start spinning. An ensuing difference in luminous energy between the rays passing through the notches in opposite
directions would have confirmed the hypothesis of a stationary ether.

tions being consistent with the velocity assigned
to the body. [6]

Furthermore, the fact that tests which employ interferometry
or use hypothetical particles as sources of light are subject to
circular reasoning was generally disregarded.

In all such experiments, the Maxwell-Lorentz the-
ory, in one respect or another, has been assumed
in the description of the experiment itself, and
since that theory requires that the velocity of light
shall be independent of that of its source, the
results are of no value at all in relation to this
point. [44]

If one visualizes, for instance, the image of the ejected pho-
ton string indicated above, it becomes clear at once that a light
ray’s velocity is not determined by its frequency of vibration.
Consequently, a measurement of the frequency of reception,
taken by itself, does not allow a conclusion to be drawn about
that velocity. Thus, a kinematic question demands a kine-
matic answer.

For all that and although it was occasionally admitted that
Ritz’s ideas were discarded prematurely and in part on er-
roneous grounds [45–49], the theory as amended by Dingle,
which no valid evidence exists against, was for decades ne-
glected. Only recently, this conception has finally been re-
sumed and substantially expanded by Luis Bilbao [50], Luis
Bernal, and Fernando Minotti [7] under the name of Vibrating
Rays Theory (VRT). Having adduced further observational
data in support of it, they conclude their comprehensive study
as follows: “We believe that, given the above evidence, a con-
scientious experimental research is needed to settle the ques-
tion of the dependence of the speed of light on that of its
source as predicted by Vibrating Rays Theory, and that has
been observed during the 1998 NEAR flyby.” [7]

4 Towards a kinematic experiment

In 1904, Wilhelm Wien [51–55, pp. 1408-1409] outlined two
experiments to determine whether the ether is dragged by the

earth or stationary based on the procedures Léon Foucault
[56] and Hippolyte Fizeau [57, 58] had devised to measure
the speed of light. His first design includes employing two
rotating mirrors, his second using two spinning cogwheels
which are placed far apart from each other and aligned with
the orbital motion of the earth around the sun, respectively
(Figure 2). Both experiments demand that the components
in rotation have the same angular velocity at any given mo-
ment. They therefore depend on the real synchronicity of the
instants which the mirrors or cogwheels are set in motion at.
However, according to the prevailing theory, this is unattain-
able through a material connection between them, for exam-
ple by means of an axle, because within its framework the
notion of the rigid body is no longer valid as Wien [59, 60]
himself later explained. Nor is utilizing electromagnetic sig-
nals to simultaneously start two separate motors feasible due
to the supposedly indeterminable times the signals need to
reach the different propulsion systems, which count as clocks,
so that any possible asymmetry looked for would be offset
by the signals’ nonsynchronous arrival. These designs being
foiled, Wien relinquished further efforts and became a leading
proponent of Einstein’s theory.

More than half a century later, Herbert Dingle pointed re-
peatedly to the necessity of a kinematic test for a final answer
to the question of the speed of light [4–6, 43, 61–68]. In his
book Science at the Crossroads, he eventually presented his
most sophisticated proposal of an experiment of the kind he
hoped for (Figure 3):

A and B are two sources of light (visible, mate-
rial sources, not hypothetical particles) of which
B is moving rapidly to the left while A is at rest,
the paper being the standard of rest. At the in-
stant at which they are adjacent to one another
they emit pulses of light towards C and D, which
are photographic films whose distances from A
are constant and which are moving rapidly down-
wards through the paper. The relative motion
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Fig. 3: Light sources A and B, photographic films C and D.

of A and B continues unchanged throughout the
passage of the light. If Einstein’s second postu-
late is true the traces on both films will be sym-
metrically side by side, while if Ritz’s hypothesis
is true, that of the light from A will be above that
of the light from B on one film and below it on
the other. [69]

This proposal undoubtedly implicates considerable and prob-
ably still insurmountable technical challenges. However, it
at least indicates that the one-way speeds of different beams
can indeed be compared without clocks in the usual sense
and therefore without the issue of synchronization being rel-
evant at all. That a measurement of the one-way speed of
light is possible in principle has also been expressly acknowl-
edged, for example, by Eddington [70], Waldron [17], and
Ohanian [71].

Dingle’s appeals may have gone unheard for factual rea-
sons at that time. Nowadays, technical infeasibility can cer-
tainly no longer hold as a valid argument as will be shown
in the following chapter. The matter appears all the more
exigent as the invariance postulate in its strict sense has re-
cently been refuted experimentally by slowing down light in
vacuum so that c may at best represent a maximum value.
Giovannini at al. sum up their findings as follows: “That
the speed of light in free space is constant is a cornerstone
of modern physics. [...] Our work highlights that, even in
free space, the invariance of the speed of light only applies
to plane waves.” [72] But plane waves are ideal constructs
and therefore do not exist as natural phenomena. Consider-
ing these facts and especially in view of the work of Bilbao,
Bernal, and Minotti, a kinematic test to conclusively answer
the question whether the speed of light depends on the veloc-
ity of the source is more urgent than ever.

5 Principle and set-up of the experiment

To remove the main difficulties inherent in Dingle’s proposal,
it is crucial to again follow Michelson’s example and to take
advantage of the motion of the earth around the sun since
the planet’s orbital speed of about 30 km/s is great enough
to render a potential difference in the travel times of distinct
beams observable. Further, employing only one light source

will ensure that the emitted rays originate from the same point
with respect to the earth.

Thus, the experimental set-up is as follows: aligned with
the orbital motion of the earth around the sun, a light source
L is positioned far apart from a disk D, the latter’s rotational
axis being perpendicular to the ground. While the disk is
spinning uniformly, L generates short pulses. The emitted
beams move towards D and impinge on its photosensitive lat-
eral surface at point A at right angles to the tangent (Figure
4). According to the propagation hypothesis, the velocity of
a ray with respect to the ground travelling along the direction
of orbital motion of the earth around the sun is c−V , with c
signifying the speed of light relative to pure space and V the
orbital speed of the earth. The travel time of the light referred
to LA = s is hence

tA =
s
√

1 − V2

c2

c − V
(1)

whereas in the case of a constant speed of light with respect
to the source one has

t =
s
c
, (2)

the difference between these times being

δtA = tA − t. (3)

From the disk radius r and the number of revolutions per sec-
ond f follows the speed

w = f U (4)

of the uniformly rotating circumference U. If λ denotes the
light spot diameter and the pulse duration p is set according
to

δtA 6 p �
U − λ
w

, (5)

the circular arc length

d = λ + wp (6)

marks the trace the first pulse generates on D’s lateral sur-
face. As the disk is spinning constantly and the pulse interval
equates to

P =
i
f
− t, (7)

where i ∈N denotes the number of revolutions per pulse, any
additional pulse must lengthen the trace in the amount of
wδtA, leaving a solid line on the photosensitive film. Let n ∈N
be the number of successively generated pulses, then the trace
length a will after n pulses add up to

a = d + (n − 1) w δtA . (8)

Consequentially, the light trace will cover D’s entire circum-
ference as soon as

n =
U − d
w δtA

+ 1. (9)
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Fig. 4: Schematic of the experimental set-up: A1 and A2 denote the points where the rays generated by the first and the second light pulse
hit the disk D at the instants t1 and t2. The circular arc length A1B1 = d represents the trace on D’s photosensitive lateral surface the very
first pulse causes. B1B2 = wδtA depicts the trace’s length increment produced by the second and any additional pulse according to the
propagation hypothesis. The arrow at the bottom indicates the direction of motion of the earth around the sun.

By contrast, if the emission hypothesis is correct, the rays
must always impinge on the same spot so that the trace on the
disk retains the length d no matter how much the value of n
increases, δtA having to be substituted with δt in equation (8),
where δt = t− t = 0.

Provided that the propagation hypothesis applies, the ex-
act value of a cannot be predicted. For the conventional value
of c would be an average that resulted from two-way mea-
surements and thus deviates from the real one-way speed of
light. In case the first test indeed gave a> d for n> 1, the
result should be crosschecked. Rotating the set-up and re-
peating the experiment would be expected to yield a different
value of a at each angle for a given n. Perpendicular to the di-
rection of orbital motion of the earth around the sun, the trace
length would then be

a90◦ = d + (n − 1) w

 √s2 + V2t2

c
− t

 (10)

and at 180◦

a180◦ = d + (n − 1) w

 t −
s
√

1 − V2

c2

c + V

 , (11)

where a≈ a180◦ . Equations (1) and (11), taking the supposed
Lorentz contraction into account, are applicable if the dis-
tance LA is measured by means of an etalon. However, con-
sidering the necessary magnitude of LA, a travel time mea-
surement using electromagnetic radiation will be conducted
in practice. The determined distance

s =
c T
2

=
(c − V + c + V) T

4
(12)

then arises from the signal’s two-way speed, with T signify-
ing the total time elapsed between emission and return, the re-
spective instants being measured by one and the same clock.
Although the square root factor within equations (1) and (11)
must under these premises be omitted, the choice between the
two methods of establishing LA is evidently of no significance
regarding the validity of the experiment.

Due to the motion of the solar system, the propagation
hypothesis involves the assumption that tA varies seasonally.
Therefore, if the first experimental run yields a = d for n> 1,
a conclusive confirmation of the emission hypothesis will not
only demand repetitions of the test at different angles but also
reperforming it over an extended period to exclude a mislead-
ing result because of V being possibly offset by an unknown
velocity component just at the time of the initial measure-
ments.

The outlined experiment avoids the theoretical obstacles
which defeated Wilhelm Wien’s proposals as merely one uni-
formly spinning mechanical component is required and at-
tuning a pulsing light source to it does not pose a conceptual
problem. The test itself implies no two-way measurement and
is neither dependent on assumptions of the Maxwell-Lorentz
electromagnetic theory, nor are hypothetical particles used as
a radiation source. Thus, Dingle’s criteria for a kinematic
light experiment are met, and objections against procedures
based on a closed light path do not apply [73].

6 Conclusion

We may summarize the proposed experimentum lucis et cru-
cis in the following way: since any “in itself determined pe-
riodic process realized by a system of sufficiently small spa-
tial extension” [74] is considered to be a timepiece, the de-
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scribed set-up consisting of a uniformly spinning disk featur-
ing a photosensitive lateral surface and of a light source puls-
ing at equal intervals embodies two clocks, their “hands” be-
ing successively emitted rays. These “light clocks” run syn-
chronously and thus display real simultaneity. The outcome
of the experiment is therefore identical for any observer in
any system of reference.

Since the assumption that an ether is dragged by the earth
was experimentally refuted [75, 76], no theory reposing on
the postulate of constant light velocity relative to pure space
or a luminiferous medium in it can explain successive beams
impinging on the disk at the same spot. Instead, the emission
hypothesis will be fully confirmed. Electromagnetic radia-
tion will have to be understood as a form of energy which is
emitted with a real velocity c + v, that is the vector sum of
a component being invariant relative to the light source and
a variable component, the real velocity of this very source.
However, according to K. Brecher’s [77] analysis of regu-
larly pulsating x-ray sources in binary star systems, a ballistic
interpretation even if it allows for the extinction theorem of
dispersion theory, as considered by J. G. Fox [45, 46], seems
to be untenable (cf. also [48]). Thus, the Ritz-Dingle Emana-
tion or Vibrating Rays Theory will remain the only explana-
tion consistent with observation [2–7]. In addition to classi-
cal relativity holding true for matter in uniform translation, a
classicistic principle will apply stating that the speed of light
stays constant relative to its source even if the latter moves
non-rectilinearly and non-uniformly.

Should, on the contrary, successive beams mark a solid
line on the disk, the propagation hypothesis would bear the
palm. Light would have the characteristics of a wave that
propagates in a medium with constant velocity relatively to
that medium. The recently renewed question whether there
is a resting frame in space [78] would be answered in the
affirmative.

Submitted on May 11, 2018
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73. Pérez I. On the experimental determination of the one-way speed of
light. European Journal of Physics, 2011, v. 32 (4), 993–1005.

74. Einstein A. Autobiographical Notes. In: Albert Einstein: Philosopher-
Scientist, edited by P. A. Schilpp, The Library of Living Philosophers,
Evanston, IL, 1949, 2–94.

75. Michelson A. A. The Effect of the Earth’s Rotation on the Velocity of
Light, Part I. Astrophysical Journal, 1925, v. 61 (3), 137–139.

76. Michelson A. A., Gale H. G., Pearson F. The Effect of the Earth’s Ro-
tation on the Velocity of Light, Part II. Astrophysical Journal, 1925,
v. 61 (3), 140–145.

77. Brecher K. Is the Speed of Light Independent of the Velocity of the
Source? Physical Review Letters, 1977, v. 39 (17,19), 1051–1054,
1236.

78. Chang D. C. Is there a resting frame in the universe? A proposed exper-
imental test based on a precise measurement of particle mass. European
Physical Journal Plus, 2017, v. 132, 140.

158 Christian Wackler. Outline of a Kinematic Light Experiment



Issue 3 (July) PROGRESS IN PHYSICS Volume 14 (2018)
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The concept of observation and presentation of the count (reference) results in an inter-
val form is considered. The transition to interval measurements is achieved by use of
the total reduced number of measurements (number of degrees of freedom) as a sample
parameter, which allows the use of non-integer (fractional) powers of freedom in the
calculation of the estimates of static parameters and criteria values. The replacement
of single measurements with interval measurements at their same quantities in all cases
reduces the accuracy of statistical parameters estimates.

Introduction

Currently, there are known applications of fractional powers
in statistics [1]. However, the use of different methods of
data processing, in particular for small samples [2] and for
processing with the use of methods similar to the method of
group accounting arguments [3], allows to broaden their use
in calculations.

The concept of observation

According to [4], observation is the experimental basis of sci-
entific research. Observed results are most often recorded in
the form of meanings of the measured values or their counts.
For static methods of measurement, the result is a single num-
ber. With dynamic methods, it is possible to record the mea-
sured value in time as the implementation of a random (non-
random) process. In the latter case, the results of measure-
ments often are the evaluations of the process parameters. In
both cases, statistical stability is a prerequisite, which in par-
ticular consists, in the approximation, with a sufficiently large
number of observations∗ to the probability of a given value.
In all cases, if the measurement of the value is repeated many
times, the result is a statistical distribution series correspond-
ing to any distribution law, which may be associated with the
error of the measuring system or instrument.

Each single measurement (count), as well as their totality,
gives an empirical distribution, which is described in the form
of a histogram, statistical series, empirical distribution func-
tion, etc. In this case, along with the above, it is necessary to
specify the number of measurements, i.e. empirical descrip-
tion requires specifying the number of experiments (sample
size) on the basis of which it is obtained. We will refer to the
number of measurements, on the basis of which the empirical
description of the distribution law is obtained, as the number
of degrees of freedom. However, there are measured values,
which, by their nature, initially have a form corresponding to
a certain distribution law [5]. In this case, the measured value
is set not by a value, which is constant or changing in time,
but by an area at each point of which it can be located with a

∗The ratio of the number of observations of a particular value to the total
number of observations.

certain probability. This allows each measurement to match
the area of the measured value with the law of its distribution.

The area of determination of the value can be set with
one or more than one interval, see Fig. 1. One dimension
gives the area and the value of the parameters’ estimates of
the distribution law.

Interval measurements

Let us consider the basic prerequisites for using intervals as
measurement results.

The possibility to express numerical values of quantities
in the form of intervals is used in the theory of intervals [6].
The basic idea of interval analysis is that you can work with
intervals as with plain numbers. Common operations such
as addition, subtraction, multiplication and division, as well
as set theory operations such as intersection and union, are
quite applicable to them. Interval operations are described by
a ratio:

A@B = { x@y|x ∈ A, y ∈ B } , (1)

where @ is one of the operations {+, −, ∗, /, ∪, ∩}, while
A, B are intervals.

Fig. 1: Types of areas for determining the measurement value: a —
one observation — a single numerical value; b — one observation
— a set of intervals of numerical values, including those that are not
limited to the left or to the right; c — one observation — a set of
intervals strictly limited to the left and to the right; d — one obser-
vation — one interval of numerical values with one border to the left
and one to the right.
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A single (real) number can be viewed as that an interval
having a definition domain and the law of distribution in the
form of a certain event probability:

P (a ∈ [a, a]) = 1, a = [a, a] , (2)

i.e. just one numerical value is sufficient for the description
of the measured value.

Let us consider the measurement process of the diameter
of a bearing ring as an example of a measurement that has
a definition area of one interval. The measurement of the
radius of the hole or the outer diameter (done with sufficiently
accurate instruments) relative to the calculated center of the
bearing ring gives the dependence of the radius to the point
on the circumference surface of the hole or the outer diameter
in the form of a realization of a random process that can be
described by a random function like follows:

R = X (α) , (3)

where 0 6 α 6 2π is the bearing ring angle of rotation.
Accurate lab instruments such as circular gauges allow us

to fully record the kind of realization of a random process.
Obviously, when such a record exists, it can be processed by
well known methods of the theory of random processes. In
production conditions, the use of precision instruments is im-
practical. The control devices used allow to quite precisely
measure the diameter of a bearing ring. During the rotation
of the bearing ring it is also possible to determine the max-
imum and minimum values of the diameter of the bearing.
If we limit ourselves to only two of these values, then actu-
ally we come to a case of two independent observations. The
information that there are other numerical values of the diam-
eter, between these two values, becomes thus lost. For a more
complete explanation of the essense of the observation, it is
proposed to consider the considered measurement process as
a single observation in the form of one interval, Fig. 1, d. The
value of the measured diameter has a description in the form
of a statistical series at a given interval:

P̂ ( d : d ∈ [dmin, dmax]) , (4)

where d is the value of the bearing ring diameter.
With an interval measurement, however, there are two de-

grees of freedom: the measurements of one and the other
border of the interval. However, these two dimensions are
considered together over the interval. For example, one di-
mension is a border, and the other is the interval value it-
self, that is, there is a relationship: for the first dimension,
the entire numerical axis is available, and the second dimen-
sion describes the area of the finite length bound to the first
measurement. The availability of the entire numerical axis
here must be understood as a possibility to represent the first
measurement only by selecting the initial value of the refer-
ence point by any number, including almost infinity. For the

interval, whatever we choose as the reference point, its value
remains constant. From this we can assume that the specified
relationship as if reduces the number of degrees of freedom
of choice of numerical values for the interval measurement.
We can assume that it is less than two, but more than one. In-
terval measurement generally gives the values of the borders
of intervals and parameters or their estimates of the distribu-
tion law. This can be described by displaying the interval in
parameters’ values:

G : [ ai bi ]
P
−→

{
β j : j = 1, . . . , k

}
, (5)

where G displays the set of numerical values of the interval
measurement in the values of parameters or their estimates of
the probability distribution law; ai, bi are borders of the i-th
interval; P is the law of distribution of values of a random
variable from the interval; β j is the value or estimate of a
parameter of the distribution law.

It should be noted that the borders of the interval can be
displayed in the parameters of the distribution law explicitly
(for example, the boundaries of the interval in the case of the
law of equal probability density) or indirectly as the area of
definition of this law.

One of the options for describing the distribution law P
is the probability density. By the given probability density or
histogram it is possible to calculate or to estimate the param-
eters of the distribution law. The previously declared com-
monality for the interval and for one number (2) allows these
calculations to be applied for one number obtained during the
measurement. Let us illustrate this by calculating the disper-
sion of a single observation.

Calculation of the dispersion estimation of one observa-
tion by known relations [1] can be performed by the formula:

σ̂2
x =

n∑
i=1

(xi − mx)2

n
=

(x − mx)2

1
if mx is known, (6)

where mx is the mathematical expectation; x is the numerical
value of the dimension.

For one number from the interval with coinciding borders,
formula (6) is valid, because the mathematical expectation
does not require an evaluation, but is equal to the number it-
self. The value of the dispersion estimate in this case is zero.
This clearly indicates the non-randomness of the interval rep-
resentation of the same number, i.e., the specific meaning of
the measured value does not have a random component — it
is a non-random value.

Calculation of the dispersion estimate for an interval mea-
surement in the extreme case can be performed as that for two
independent observations by formulas:

σ̂2
x =

(b − mx)2 + (a − mx)2

1
, if mx is unknown, (7)

σ̂2
x =

(b − mx)2 + (a − mx)2

2
, if mx is known. (8)
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It can be assumed that the value of the dispersion estimate
for the interval for each case, due to the lower value of the de-
grees of freedom, should exceed the values given by formulas
(7) and (8). In addition, within the interval, the measured nu-
merical values of the value are determined by its distribution
law. If we choose as the basic one the law of equal probability
density (EPD), then we lead the rest of the distributions to it
by changing the value of the interval on the basis of equality
of the entropy value.

Let us define the given number of measurements (degrees
of freedom) for an interval measurement in the form of:

ri = 1 + ∆i , 1 > |∆i| > 0; (9)

where

∆i =


+∆is, boundaries are given from experience;
−∆is, one boundary is given by the researcher;
−1, boundaries are given randomly.

The value ∆is can be determined by formula:

∆is =


1

1 + 1/his
, at bi, ai , 0;

0, at bi, ai = 0;
(10)

where
his =

bi − ai
1
2 | ai + bi |

is choosen for the EPD law and

his =
(bi − ai) Hx

HEPD

∣∣∣ M [
X[a,b]

] ∣∣∣
is choosen for any other law of the distribution of x along the
interval [ai, bi];

Hx = M
[
log P

(
X = x j ∈ [ai bi]

)]
=

−

n∑
j=1

P
(
X = x j

)
log P

(
X = x j

)
is chosen if the given measured value is discreet∗;

Hx = M
[
log P ( f (x))

]
= −

∫ bi

ai

f (x) logc f (x) dx

is taken at c < (bi − ai) if the measured value is continuous
(relative entropy);

HEPD = log n[a,b]

if the discrete measured value is distributed equally possible
within the interval, where n[a,b] is the number of equally pos-
sible states in the interval;

HEPD = logc (bi − ai)
∗The given relations for determination of H# are similar to entropy for-

mulas, and for the case of discrete measured values exactly coincide with
them.

if within the interval the measured value is distributed accord-
ing to the EPD law;

M
[
X[a, b]

]
is the mathematical expectation of the measured value in the
interval [ai, bi].

The total reduced number of measurements, the value for
the calculation of statistical parameters for the sample, is
equal to:

nr =

n∑
i=1

ri . (11)

This assumes that, when creating a statistical series of dis-
tributions or histograms, each interval dimension must have
its own share proportional to the value of ri. If it is 0, this
dimension is ignored. If it differs from zero, then this con-
tribution, as the number of measurements (experiments), is
equal to its value.

Formulas for calculation of the main estimates of statisti-
cal parameters for one, i-interval measurement, in the case of
the EPD law for the measured value within the interval, have
the form:

m̂xi =
bi + ai

2
; (12)

σ̂2
ri

=

(
bi − m̂xi

)2
+

(
ai − m̂xi

)2

ri − 1
=

(bi − ai)2

2 (ri − 1)
. (13)

Example. With a rectangular contribution (EPD), let us
define by formula (13) the estimate of the variance in the in-
terval of an i-th observation for different ratios of the value
of the interval and the values of its mathematical expectation,
see Table 1.

Left bor-
der of the
interval,

ai

Right bor-
der of the
interval,

bi

Math. ex-
pectation
estimate,

m̂xi

Reduced no.
of measure-
ments, ri

Estim.
variance,
σ̂2

ri
(13)

−4 4 0 2 32

−3 5 1 1.889 36

−2 6 2 1.8 40

−1 7 3 1.727 44

0 8 4 1.667 48

1 9 5 1.615 52

2 10 6 1.571 56
. . . . . . . . . . . . . . .

30 38 34 1.190 168

Table 1: Dispersion (variance) estimation via the given number of
measurements.

Analysis of Table 1 shows that in the symmetric interval
(the case when the estimate of the mathematical expectation
is 0), the variance estimate coincides with the value calcu-
lated by formula (7) for two unit measurements. As the value
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of mathematical expectation increases, the variance value in-
creases due to the reduction of the reduced number of mea-
surements, which can be taken as the number of degrees of
freedom of the resulting measurement.

Taking into account the above, a single measurement can
be considered as an interval measurement when the interval is
equal to the rounding error of the instrument readings. In this
case, a fairly small relative error gives the reduced number of
measurements equal to 1.

Contributions method

To process the results of a small sample in the evaluation of
the distribution laws, the contribution method is used [2, 6].
This approach allows us to obtain a paradoxical result: due to
the empirical selection of the width of the interval of a rectan-
gular or other contribution, the accuracy of the assessment in-
creases. The paradox is that, by coarsening the measurement
results (the numbers are replaced by fixed-width intervals),
the accuracy of statistical parameters is allegedly improved.

When using the formalism published in the work [2], the
proposed estimation formula for the method of contributions
for the probability density is:

f̃ (x) =

n∑
i=1

ri · pi (x, ai, bi)

n∑
i=1

ri

, (14)

where n is the number of observations; pi (x, ai, bi) is a gen-
eralized record of the empirical component of the distribution
density associated with the interval of i-th observation (hav-
ing all the properties of the distribution density), describes
the law of distribution of measurements in the interval. Un-
like the work [2], empiricism is limited by the choice of the
distribution law in the interval. And there are two options:

1. The distribution law is the same for all intervals;
2. For each interval, its own law of distribution is picked.

For the case of the EPD law in the interval we have:

pi (x, ai, bi) =
1

bi − ai
, ai 6 x 6 bi . (15)

The work [7] presents a formula which uses the method
of contributions for the empirical component of density esti-
mation in the form of:

f ∗N (x) = C (ρ)
N∑

i=1

µi ψi (ρ, x) , (16)

where the ρ parameter is equal to half of the contribution in-
terval, ρ = bi−ai

2 = const, that is, the interval in all dimensions
is the same;

C (ρ) =


ρ∫
−ρ

ψi (ρ, x) dx


−1

, (17)

the amplitude ensures the equality of each contribution 1;
µi = 1/N is weight (the ratio for norming density estimation);
and also

ψi (ρ, x) =

 1, xi − ρ 6 x 6 xi + ρ ;
0, for others x.

(18)

Let us consider the use of formulas (14) and (16) for Ex-
ample 2.1 from the work [7].

Example 2.1 [7]. As a result of measurement of param-
eter X of three products after adjustment of the equipment,
the following results were obtained: 6.0; 6.4; 6.6. Let us es-
timate the empirical density that characterizes the quality of
the equipment setup.

Some assumptions must be made to calculate by (16). Let
us suppose that. Let us suppose that µi = 1/N = 1/3 = 0.3.

Then by formula (17)

C (ρ) =


0,3∫
−0,3

ψi (ρ, x) dx


−1

=
1

0.6
≈ 1.67.

Summing the kernels (contributions) ψi (ρ, x) for all i =

1, 2, 3 with amplitudes of 1.67 and weights 1/3, we obtain

f ∗N (x) =


0.56, 5.7 6 x < 6.1;
1.11, 6.1 6 x < 6.7;
0.56, 6.7 6 x 6 6.9;

(19)

(see Fig. 2):

Fig. 2: Empirical estimates of the probability density, Example 2.1.

Using formula (14), the example data can be interpreted
as follows: three intervals are used as input: [5.7; 6.3], [6.1;
6.7], [6.3; 6.9]. The length of each interval is equal to 0.6.
The distribution law within the interval is EPD. The distribu-
tion density is equal to:

pi (x, ai, bi) = 1/0.6; ai 6 x 6 bi . (20)
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Reduced number, ri

N/N
i/o

Left
border
of the
interv.,

ai

Right
border
of the
interv.,

bi

Math.
expec-
tated
estim.,

m̂xi

Both
borders
are expe-
rim.,

rie

One bor-
der is set
by the re-
searcher,

rip

1 5.7 6.3 6 1.091 0.909

2 6.1 6.7 6.4 1.086 0.914

3 6.3 6.9 6.6 1.083 0.917

Total: 3.26 2.74

Table 2: The reduced number of measurements by intervals, Exam-
ple 2.1.

The calculated numerical values according to formula (9)
of the given numbers of measurements for each the interval
are shown in Table 2.

The total number of measurements calculated by formula
(11) is equal to:

nre

n∑
i=1

rie = 3.26

if all parameters of the interval are obtained experimentally
(experimental data);

nrp

n∑
i=1

rip = 2.74

if one of the interval’s limits is specified by the researcher (a
priori data).

Hence, the estimated values for the probability density
(14) with account of contributions (18) look like these:

f̃re (x) = ∆re
f 1 + ∆re

f 2 + ∆re
f 3 for experimental data, (21)

f̃rp (x) = ∆
rp
f 1 + ∆

rp
f 2 + ∆

rp
f 3 for a priori data, (22)

f̃mv (x) = ∆mv
f 1 + ∆mv

f 2 + ∆mv
f 3 for a small sampling, (23)

where

∆re
f 1 = 0.558, ∆re

f 2 = 0.555, ∆re
f 3 = 0.554;

∆
rp
f 1 = 0.553, ∆

rp
f 2 = 0.556, ∆

rp
f 3 = 0.558;

∆mv
f 1 = 0.556, ∆mv

f 2 = 0.556, ∆mv
f 3 = 0.556;

are contribution of the intervals, while i is the interval num-
ber,

∆#
f i =

 ∆hi , ai 6 x 6 bi;
0, ai > x > bi;

is a contribution of the i-th interval under # (here re means
“experimental”, rp means “a priori”, mv means “calculated
by data method” [7]);

∆hi =
ri#

n# · (bi − ai)

Reduced number, ri

N/N
i/o

Left
border
of the
interv.,

ai

Right
border
of the
interv.,

bi

Math.
expec-
tated
estim.,

m̂xi

Both
borders
are expe-
rim.,

rie

One bor-
der is set
by the re-
searcher,

rip

1 5.56 6.44 6 1.128 0.872

2 5.96 6.84 6.4 1.121 0.879

3 6.16 7.04 6.6 1.118 0.882

4 5.0 7.2 6.1 1.265 0.735

Total: 4.631 3.369

Table 3: The reduced number of measurements by intervals of Ex-
ample 2.2.

Contribution height:

Interv. no. Experim. data A priori data Small sampl.

1 0.277 0.294 0.284

2 0.275 0.297 0.284

3 0.274 0.298 0.284

4 0.124 0.099 0.114

Table 4: Height of contributions for Example 2.2.

is the height of the i-th contribution; nmv = 3 is number of
intervals; rimv = 1 is the value of the method contribution [7].

The graphs of probability density estimation for depen-
dencies (21–23) are shown in Fig. 2.

Let us also consider Example 2.2 [7], in which, along with
the intervals of Example 2.1, an interval different from the
others by length is included.

Example 2.2 [7]. Let us assume that in the conditions
of Example 2.1 there is a priori information in the form of
an interval [5.0; 7.2]. Let us calculate the estimates of the
probability density. The length of the interval for readings
6.0; 6.4 and 6.6 is calculated [7] equal to 0.88, i.e. ρ = 0.44.

The given numbers of measurements (9) for each the in-
terval are shown in Table 3.

The estimated probability density values in this case is:

f̃re (x) =

4∑
i=1

∆re
f i for experimental data, (24)

f̃rp (x) =

4∑
i=1

∆
rp
f i for a priori data, (25)

f̃mv (x) =

4∑
i=1

∆mv
f i for small sample contributions. (26)

The heights of contributions for the intervals are shown in
Table 4.

Probability density estimates for dependencies (24–26)
are shown in Fig. 3.
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Fig. 3: Empirical estimates of probability density of Example 2.2.

Types of
data

Measure-
ment char-
acteristics

Esti-
mates

Examples

2.1 2.2

Discrete Borders of
the interval

n — 5
ME — 6.24
D — 0.668

Discrete Average va-
lues of the
intervals

n 3 4
ME 6.333 6.275
D 0.093 0.076

Interval Experimen-
tal

nr 3.26 4.631
ME 6.333 6.269
D 0.133 0.272

Interval A priori nr 2.74 3.369
ME 6.334 6.283
D 0.145 0.279

Small sam-
ples

n 3 4
ME 6.333 6.275
D 0.138 0.275

Table 5: The reduced number of measurements by intervals of Ex-
ample 2.2. The following designations are used here: ME — the
mathematical expectation, D — the dispersion (variance), n — the
number of experiments or intervals (for a single measurement, when
the borders of the interval coincide, the number of intervals is equal
to 1), nr — the total given number of measurements.

Results

The reduced estimates of probability densities, Fig. 2 and
Fig. 3, can be used in practical applications only when spec-
ifying for each of them the number of observations (exper-
iments), which can be considered as the number of degrees
of freedom, see formula (11) for the reduced number of mea-

surements. In work [7] the number of experiments is equal to
the number of intervals. The results of mathematical expec-
tation and variance estimates for Examples 2.1 and 2.2, with
taking different approaches into account (determination of the
number of experiments as the number of intervals, or the use
of the reduced number of measurements instead) are given in
Table 5.

Analysis of the results displayed in Table 5 allows us to
make the main conclusion: replacement of single measure-
ments with interval measurements at the same numbers in all
cases reduces the accuracy of estimates of statistical param-
eters. This follows from the fact that single measurements,
rather than interval measurements, have the lowest variance.
The application of interval measurements allows to expand
the possibilities of statistical processing of measuring infor-
mation. It is essential to use as a sample parameter the to-
tal reduced number of measurements (number of degrees of
freedom), which allows the use of non-integer (fractional) de-
grees of freedom in the calculation of estimates of static pa-
rameters and criteria values.
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Seeliger’s Gravitational Paradox and the Infinite Universe
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Seeliger’s paradox is often regarded as an argument against Newtonian potentials in an
infinite universe. In this paper the argument is analyzed with the help of Riemann’s
series theorem. This theorem reveals that the paradox is a known consequence of the
rearrangement of conditionally convergent series or integrals, and so it demonstrates
that the same situation would arise with almost any other type of gravitational force
law. Therefore Seeliger’s argument is not a valid proof against Newton’s inverse square
law or even an infinite universe.

1 Introduction

In 1895 the German astronomer Hugo Seeliger published an
article [1] in which he revealed an apparent flaw in Newton’s
law of gravitation, which may lead to “unsolvable contradic-
tions”. His reasoning can be presented as follows.

Let’s suppose a boundless universe with a (near) homo-
geneous distribution of matter. For simplicity, let’s assume
this to be a continuous mass distribution, which extends uni-
formly to infinity in all directions. To calculate the gravita-
tional force exerted by this infinite universe on a test particle
with gravitational mass m located at a point P, we consider
all the masses in the universe as arranged in thin concentric
spheres centered in P. Since the Newtonian attraction of a
sphere on any point located inside of it is zero, we find that
the sum of all the concentric spheres extending to an infinite
distance will be zero. This is what might be expected from
symmetry.

Next, let’s calculate the force again, but this time using a
coordinate system centered at another point Q, located at an
arbitrary distance d from m. In order to calculate the force,
we divide the universe into two parts. The first one is the
sphere of radius d centered on Q and passing through P. The
mass of this sphere is M = 4

3ρπd
3 , where ρ is its density,

which attracts the material point m with a force given by F =
−GMm

d2 = 4
3ρπd

3 pointing from P to Q. The second part is
the remainder of the universe. This remainder is composed of
a series of external shells also centered on Q containing the
internal test particle m. As we have seen above, this second
part exerts no force on m. Therefore the force exerted by the
universe calculated in this way is proportional to the distance
d and directed towards Q.

This means that depending on which point Q we choose,
we obtain a different value for the force acting on m. The
conclusion that Seeliger extracts from this puzzling result is
that either the universe cannot be infinite, or that Newton’s
law of attraction must be modified. Taking the latter choice,
he proposed to add an absorption factor e−λr to the force of
gravity

FS eeliger = −G
mm′

r2 e−λr (1)

where λ is an arbitrary parameter, sufficiently small to make

this force compatible with the existing observational data.
When (1) is used, it can be demonstrated [2] that the grav-

itational force exerted on a particle m at the surface of a spher-
ical volume V1 uniformly filled with matter is equal and oppo-
site to the gravitational force exerted on the particle by all the
infinite concentric uniform spherical shells outside the first
spherical volume V1, so that the net force acting on the parti-
cle is zero. Seeliger thus believed to have found a solution of
the paradox.

The purpose of this paper is to generalize the formulation
of the problem and to show that Seeliger’s conclusion does
not hold.

2 Newton’s inverse square law and its relation to the
paradox

Before getting at the origin of the paradox, let’s look at dif-
ferent ways to formulate it.

First we note that Seeliger uses the fact, unique to the in-
verse square law, that the attraction of a sphere to any mass
inside of it is zero. To demonstrate that this is not an essential
feature, we will present the paradox from a different perspec-
tive.

Let’s calculate the gravitational field of an infinite plane.
Let ρ denote the mass density per unit area of this infinite
plane and consider a test particle of mass m located at a dis-
tance h from the plane, as shown in the following figure.

In Newtonian terms, the incremental force dF on this par-

Fig. 1: Attraction of an infinite plane on a mass m.
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ticle contributed by an annular ring of radius R and incremen-
tal width dR is just the projection onto the perpendicular of
the forces exerted by each element of the plane around the
circumference of the annular region. Thus we have:

dF =
Gmρ

h2 + r2 [π(R + dR)2 − πR2]
( h
√

h2 + R2

)
.

Expanding this expression and ignoring second order differ-
ential terms, we get

dF = 2πGmρh
R

(h2 + R2)
3
2

dR .

Integrating from R = 0 to ∞, we find that the total force ex-
perienced by the particle is

F = 2πGmρh
∫ ∞

0

R

(h2 + R2)
3
2

dR = 2πGmρ .

Thus the force exerted on the particle is independent of the
distance h from the plane. Adding more planes to form a slab
of thickness a, we get that the force would be in this case:

F = 2πGmρa.

Grouping infinite parallel slabs of the same thickness a and
adding the contribution of each of them, we get the force of
the universe acting on particle m

F =
∞∑
−∞

2πGmρa . (2)

It can be shown that this infinite sum will yield a different
result depending on how it is calculated. As a first way of
determining the value of (2), let’s pair each slab with its cor-
responding symmetrical one around the plane of origin. If we
consider this plane as the plane xy, then we take a parallel
slab of coordinate z0 and pair it with the slab of coordinate
−z0. Since the force of each slab in the pair is equal and op-
posite, their sum vanishes. The total force (2) will thus be
zero. Analytically, we can write this as

F = (2πGρma − 2πGρma)+

+ (2πGρma − 2πGρma) + ... = 0 .
(3)

Next, let’s calculate (2) again but this time starting one slab
further from m. The total force on m will be the sum of the
force due to this separate slab, which contains m on one of its
surfaces, plus all the remaining slabs in the universe, on both
sides of the first slab, thus

F = 2πGρma0 +

0∑
n=−∞

2πGρman −
∞∑

n=1

2πGρman

where n = 0 represents the separate slab. Since the terms

0∑
n=−∞

2πGρman −
∞∑

n=1

2πGρman

are paired one to one as in (3), they cancel each other out
and the result is zero. Therefore the total force on m will be
F = 2πGρma, which is an arbitrary value, since a has been
arbitrarily chosen.

This new version of the paradox does not use the fact that
the potential is null inside a sphere and yet, as in Seeliger’s
original version, it can return any arbitrary value. It is possi-
ble in fact to prove that the paradox occurs with a wide range
of forces other than Newton’s inverse square law. With New-
ton’s law, the force of each slab is independent of the dis-
tance, thus the force exerted by each of the layers is the same
and cancels out with another slab located symmetrically from
the given particle. However, if we had a different force law
in which the gravitational force of each slab were dependent
on the distance, we still would be able to repeat the previous
calculation by choosing for each slab a suitable thickness so
as to exactly balance another slab at the opposite side of the
particle, provided that the sum of the forces diverged.

3 Riemann series theorem

In 1827, mathematician Peter Lejeune-Dirichlet discovered
the surprising result that some convergent series, when rear-
ranged, can yield a different result [3]. Based on this dis-
covery, another German mathematician, Bernhard Riemann
published in 1852 a theorem [3], known today as Riemann’s
series theorem (or Riemann rearrangement theorem), proving
that in general, infinite series are not associative, that is, they
cannot be rearranged.

According to this theorem (see for example [4]), an abso-
lutely convergent series will always give the same result, no
matter how it is rearranged. However, a conditionally conver-
gent series, by a suitable permutation of its elements, can take
any arbitrary value or even diverge.

Let’s review some definitions. A series converges if there
exists a value ℓ such that the sequence of the partial sums

{S 1, S 2, S 3, ...} , where S n =

n∑
k=1

ak

converges to ℓ. That is, for any ϵ > 0, there exists an integer
N such that if n ≥ N, then

|S n − ℓ| ≤ ϵ .

A series S n =
∑∞

n=1 an converges absolutely if S n =
∑∞

n=1 |an|
converges. A series S n =

∑∞
n=1 an converges conditionally if

it converges but the series S n =
∑∞

n=1 |an| diverges.
Riemann’s series theorem can be directly extrapolated to

conditionally convergent integrals (see for example [5]).
In the case of Seeliger’s paradox, we note first that al-

though the masses in the universe should be treated as dis-
crete, Seeliger for simplicity turns them into a homogeneous
mass distribution throughout the universe, thus formulating it
in terms of integrals instead of series. Like Seeliger, we will
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work with a continuous mass distribution, but bearing in mind
that the problem is actually discrete.

Considering a uniform mass distribution with a volume
density ρ, and using a spherical coordinate system (r, θ, ϕ)
centered on m, we have that, according to Newton’s law, the
component of the total force exerted on a particle m along the
x axis is

Fx = −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr , (4)

and similarly for the other axes.
Since the integral is only conditionally convergent, we

have to pay attention to the order in which we calculate the
multiple integral. In this case, our goal is to integrate sequen-
tially the shells around the test mass, starting from r = 0 and
extending to r = ∞, thus we have to integrate first over the
variables θ and ϕ and only then over r. Note therefore that (4)
is not necessarily equal to

Fx = −Gm
∫ 2π

ϕ=0

∫ π

θ=0

∫ ∞

r=0
ρ sin ϕ cos ϕ drdθdϕ .

We solve the integral (4)

Fx = −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr

= −Gm
∫ ∞

r=0

∫ π

θ=0
ρ

[
sin

(
− cos2 ϕ

2

) ]2π

ϕ=0
dθdr = 0 ,

which, again, is what could be expected from symmetry. Fol-
lowing Seeliger’s procedure, we can calculate the integral in
a different way by splitting the space into a sphere of radius
a, centered in a point Q separated from m by a distance a,
so that the test mass lies on its surface, and concentric shells
also centered in Q containing the particle in their interior. In
other words, the contribution of every mass in the universe is
added but in a different order. Thus the integral is rearranged,
which is what Riemanns’s theorem warns us against. Taking
Q as the origin of coordinates, the x component of the force
will be

Fx = −
GmM

a2 −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr . (5)

The first term on the right hand side of (5) is the attraction
of the sphere, being M its mass, and a the distance between
the particle m and the center of the sphere. The second is the
attraction of the concentric shells, which is zero. Therefore,

Fx = −
GmM

a2 .

Since the integral is only conditionally convergent, it is no
surprise that the new integral obtained by a rearrangement of
its terms yields a different result.

Riemann’s theorem shows the reason why Seeliger’s para-
dox occurs, and it also demonstrates that its origin is mathe-
matical, not physical.

The integral converges to zero but any other rearrange-
ment of the integral will yield a different value. Given the
infinitely many possible results, we are forced to ask which
one, if any, is the “correct” value, i.e. the one that a measure
instrument would register in reality. Riemann’s theorem does
not provide a way to decide this, having therefore to rely on
the physical significance of each reordering of the integral
or the series. The following two arguments, although lack-
ing mathematical rigor, both indicate that the only valid way
to carry out the calculation is by considering the mass at the
center of coordinates:

a) Since all the observable physical magnitudes in this
system, i.e. the mass distribution, are smooth everywhere,
i.e. infinitely differentiable (except possibly at the point where
the test mass is located), it is required that any derived func-
tion be also differentiable. Any discontinuity introduced in
any of the magnitudes must be discarded as lacking physical
basis. However, the force obtained when we calculate (5) is

F(r) =


−4

3
GρπMr , r ≤ R0

−GMm
r2 , r > R0

(6)

where r is the distance from the test mass to the center of the
sphere, and R0 the radius of the latter. This function is differ-
entiable at r = R0 only if R0 = 0. Thus, the only arrangement
of terms which will provide a differentiable force function is
the one which considers the test mass at the origin of coordi-
nates.

b) A non-nil result of (5) would be acceptable only if it
is a constant finite value independent of r. That would cor-
respond to the whole universe being pushed and moving in
one direction with respect to absolute space. Since this ab-
solute space is not detectable, we cannot determine whether
this movement is actually taking place or not. However, if
the force depends on r, different parts of the universe would
be pushed with different forces, giving rise to the motion of
some masses with respect to other masses. This is not ob-
served, and thus we have to reject this possibility.

The only case where the force (5) is independent of r is
when F(r) = 0 everywhere. These two arguments both sug-
gest that the nil result is the only one physically meaningful.

Some authors had already suspected that Seeliger’s para-
dox has no physical relevance, [6], [7], but none of them give
a rigorous explanation. It is common to find in the litera-
ture regarding Seeliger’s paradox, confusing statements about
convergence of infinite series [6, 8]. Even Newton, in his fa-
mous letter to Bentley [9], erred when he spoke about the
stability of an infinite Universe:

... if a body stood in equilibrio between any two equal
and contrary attracting infinite forces, and if to either
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of these forces you add any new finite attracting force,
that new force, howsoever little,will destroytheir equi-
librium.

In the situation described by him we have two opposite
infinite sides pulling on each other, or ∞ − ∞. This is inde-
terminate and so, it might or might not be stable. However, if
we assume the stability of the system, as Newton does, it is
obvious that adding a finite quantity of mass to either infinite
side will not destroy the equilibrium, since a finite quantity
added to an infinite one will not alter the latter, and so it will
make no difference in the balance between the two infinite
hemispheres of the universe. The universe will thus remain
stable.

4 Conclusion

We have proved, with the help of Riemann’s series theorem,
that Seeliger’s paradox has no physical significance. It is the
consequence of a flawed manipulation of infinite condition-
ally convergent integrals. Therefore the paradox cannot be
used as a valid argument against Newton’s potential or the
infiniteness of the universe.
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The concept of future-viewing instruments is examined in detail. This term refers to
devices which, under some circumstances, could allow users to directly observe future
scenes. It is shown that such a technology would enable systems of intertemporal data
exchange without any possibility of paradox or “auto-generated information” [1]. In-
struments of this type could lead to the founding of an intertemporal Internet. Working
out how they could be invented and constructed are matters left for the reader.

1 Introduction

The idea of instruments for viewing future scenes appeared
in fiction as early as 1924, and this concept was introduced
to millions of television viewers in the 1960s [2–4], but it
has yet to be thoroughly examined in academic circles. On
the other hand, the related concept of travel to the past has
received considerable attention from scientists and philoso-
phers, especially in recent decades. Here, the logical dimen-
sions of future-viewing instruments will be explored and then
contextualized in terms of what has been learned about the
logical dimensions of time travel. With this understanding it
becomes possible to entertain ideas about how future-viewing
instruments could be utilized.

Tales of mystic seers abound in myths from ancient cul-
tures. The ancient Greeks told of Cassandra, princess of Troy.
In her youth, she and her brother gained the gift of prophecy
during an overnight stay in the temple of Apollo. After she
grew to become a beautiful woman, Cassandra spent another
night in the temple. Apollo then appeared to her and sought
intimacy. She refused him, so Apollo cursed Cassandra. He
decreed that her prophecies would be disbelieved; thus, the
seeds of tragedy were sown. Cassandra warned that warriors
hid in the wooden horse, but she was thought a lunatic [5].

Although the concept of individuals who are able to ac-
cess future scenes in personal visions is directly relevant to
the topic at hand, it will not be discussed further here. The
focus instead will be the concept of technological instruments
that normal individuals could use to see into the future. A per-
son who controls and monitors a future-viewing instrument
will be referred to as its operator.

To begin, it is necessary to isolate an appropriate concept
of future-viewing instruments. What kind of device would be
both useful as a future-viewing instrument and logically pos-
sible? The analysis must start with consideration of a foun-
dational issue—information. The future is unknown to us.
Information about any set of unknowns may be either definite
or ambiguous as well as correct or incorrect.

Thinking about a playing card concealed in a box, con-
sider an example of definite information about it: “The card
in the box is the queen of hearts.” Definite information which
also happens to be correct, of course, is the most useful. One

might instead receive ambiguous information: “The box con-
tains some card in the suit of hearts.” Correct but ambiguous
information might also be useful. However, when vague in-
formation approaches maximal ambiguity it becomes so non-
specific that it is guaranteed to be correct, rendering it useless.

In considering possible types of future-viewing machines,
a maximally ambiguous device might be imagined. Such
a device would display every possible happening associated
with a given selected set of future spatio-temporal coordinates
(x, y, z, t), but it could not highlight what will actually happen.
Devices of this type are here termed Everett machines, refer-
encing physicist Hugh Everett III’s influential 1957 “relative
state” interpretation of quantum mechanics [6].

Being maximally ambiguous, Everett machines would be
useless as future-viewing instruments. They are unable to tell
what will occur among everything that might occur at any set
of future coordinates under examination; in a term, they are
not outcome-informative. For this reason, Everett machines
cannot be classified as future-viewing instruments. Outcome-
informative devices have the ability to provide definite and
correct information about future events, at least in some cases.

How powerful could a future-viewing instrument possi-
bly be? Composite devices such as have appeared in fiction,
which somehow have agency and the means to force their
own prophecies to come true, must be excluded from con-
sideration.∗ Future-viewing devices which are only capable
of gathering and displaying information will here be termed
inert future-viewing instruments. Given this important refine-
ment, the following question may be asked: How powerful
could an inert future-viewing instrument possibly be?

To answer this question, the maximal case is explored.
Consider an inert future-viewing device which is always able
to provide definite and correct information about all future
outcomes in every possible circumstance of attempted future-
viewing. These hypothetical devices for exploring the max-
imal case are termed Cassandra machines after Cassandra’s
tragic helplessness in averting the calamities she foresaw.

It will be shown that Cassandra machines, as defined, are
not logically possible; no inert device could provide definite

∗It would appear that Serling’s most unusual camera can occasionally
exert diabolical control over those who end up in its pictures of the future [3].
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and correct information about all future outcomes in every
possible circumstance of attempted future-viewing. A sin-
gle counterexample situation is sufficient to prove this. This
situation will emerge as one mode of a future-viewing exper-
iment involving three randomly selected modes. The experi-
ment will be built up in stages; the counterexample mode will
be presented at the end.

Begin by imagining an experimental setup consisting of
an inert, though otherwise arbitrarily powerful future-viewing
instrument (FVI) and a computer. The computer is constantly
being fed a string of ones and zeros from a random num-
ber generator (RNG). The RNG contains a radioactive sample
connected to a sensitive Geiger counter. The pattern of ones
and zeros the RNG produces is a function of the output of the
Geiger counter, so no known prediction methodology could
predict the sequence produced.

The computer will use an algorithm to process one second
of the sampled output of the RNG to arrive at a whole number
in the range 0 through 99. This number will be displayed on
its large and bright, two-digit readout.

Many kinds of algorithms can be used to determine a
whole number, within any desired range, from any finite set
of ones and zeroes. For instance, in order to arrive at a whole
number in the range 0 through n, divide the number of ones
in the set by (n + 1) to find the remainder. With complete
division represented by a remainder of 0, the remainder will
always be a whole number in the range 0 through n.

Here is a simple two-step experiment involving these sys-
tems. Each step lasts one minute. At the start of step one,
the FVI will attempt to future-view the computer’s two-digit
readout as it will appear in the middle of step two, i.e., a
minute and thirty seconds later. When step two arrives, the
computer will sample one second of the RNG’s output and,
by dividing the total number of ones in the sample by 100 to
find the remainder, it will arrive at some whole number in the
range 0 through 99 for display on its readout. This number
is calculated and displayed within a few seconds and it will
remain displayed throughout step two.

It should be no surprise that a properly functioning future-
viewing instrument (in this situation) would always be able
to correctly show, during step one, the whole number that
the computer will interpret from RNG data and display on its
readout during step two. An unpredictable process alone does
not render the final outcome any less visually apparent when
it arrives, and there are no logical barriers here.

Now, another system is added to the experiment. A char-
acter recognition system (CRS) is placed between the FVI
and the computer. The CRS receives input from its camera
which is pointed at the FVI’s display. During step one, the
CRS will recognize any computer readout digits it finds on
the FVI’s display and will assign the corresponding number
as the value of the variable ‘z’ to be stored in its memory.

The critical detail which allows the counterexample to
emerge in this expanded setup is that the computer has the

ability to temporarily connect to the CRS and retrieve z. Here
is the full experiment, encompassing all three modes:

As before, a two-step protocol is followed and each step
has a duration of one minute. Before each run, the computer
uses RNG data to reset its readout to some whole number
in the range 0 through 99 to establish a preliminary value.
Then, at the beginning of step one, the FVI attempts to see
what number will be displayed on the computer’s two-digit
readout in the middle of step two, a minute and a half later.
If the FVI is successful in receiving an image, the CRS will
recognize the number in the image and store it as z. If the FVI
does not receive an image, the CRS will revert to defaults and
assign 0 as the value of z.

At the beginning of step two, the computer will sample
one second of RNG data and process it to yield a whole num-
ber in the range 0 through 2. This selects one of the following
three programs for the computer to run immediately:

PR: Sample one second of the RNG output, interpret as
a whole number in the range 0 through 99, display the
result on the readout, then halt.

P0: Connect to the CRS and retrieve z, then disconnect
from the CRS. Halt if the number on the readout equals
z + 0, otherwise change the readout to display a number
equaling z + 0, then halt.

P1: Connect to the CRS and retrieve z, then disconnect
from the CRS. Halt if the number on the readout equals
z + 1, otherwise change the readout to display a number
equaling z + 1, then halt.

In each of these cases, the computer will finish all tasks
and halt within a few seconds. In any kind of run, the FVI
is involved in an attempt during step one to receive a signal
containing an image of the post-halt value that the computer
will display during step two.

Consider what would happen in a series of experiments
using this expanded setup. In any PR-mode run, although
the z-value has been ignored by the computer, subsequent
comparison will reveal that it matches the generated post-halt
value. Consistent matching in PR-mode runs confirms the in-
strument’s basic functionality.

Next, in any run selected as a P0-mode run at the outset
of step two, the z-value encoded by the CRS during step one
will also always be correct. It must be. After all, z has been
retrieved from the CRS and z + 0 = z. So, the post-halt value
in P0 runs comes from the z-value, but where does the z-value
come from? It comes from the post-halt value. So, another
question must be asked: What determines the value itself?
This is the purpose of resetting the readout to a preliminary
value before step one. In every run that will turn out to be
a P0-mode run, the FVI will detect a post-halt value equal
to the preliminary value. In P0-mode runs, although any z-
value at all encoded during step one would end up on the
computer’s readout in step two, only the preliminary value is
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non-arbitrary. So, even though P0 follows the form of a self-
fulfilling prophecy, the z-values encoded during step one of
P0-mode runs are still recognizably genuine prophecies since
the mode of a given run is not decided until step two.

P1-mode runs, however, would produce a very different
kind of result. If RNG data will select P1 at the beginning
of step two, no z-value whatsoever encoded during step one
could correctly identify the post-halt value that will be dis-
played on the readout, since z + 1 , z. In P1-mode runs, it
is impossible for any z-value to be correct; the z-value and
post-halt value in P1-mode runs will never match.∗

This establishes that no device whatsoever could fulfill the
definition of a Cassandra machine: Inert devices which would
be able to provide definite and correct information about all
future outcomes in every possible circumstance of attempted
future-viewing are not logically possible.

So far, two kinds of hypothetical devices have been de-
scribed; they are Everett machines which would not be useful
as future-viewing instruments and Cassandra machines which
are not logically possible. Eliminating both of these imagined
conceptual options helps to identify an appropriate concept of
future-viewing instruments.

For further understanding, it must also be recognized that
any device which could ever provide incorrect (i.e., mislead-
ing) information regarding future events cannot be a future-
viewing instrument. This is due to the important distinction
between viewing future events directly, which cannot involve
guesswork, and merely generating predictions about future
events, which must involve guesswork. Visually accessing
veridical foreknowledge is unlike the uncertain process of
generating predictions.

Upon the above analysis, three features of any future-
viewing instrument of an operationally coherent description
may be specified: (1) Such an instrument must be outcome-
informative, unlike an Everett machine, (2) it must be logi-
cally possible, unlike a Cassandra machine, and (3) it must
be incapable of providing incorrect (i.e., misleading) infor-
mation about future events. Devices which satisfy all three
requirements have been termed foreknowledge instruments.

Foreknowledge instruments could be used to gain defi-
nite and correct information about future outcomes in a wide
range of circumstances corresponding to PR-mode and P0-
mode runs within the RNG experiment. Definite and correct
information about future outcomes obtained from foreknowl-
edge instruments will be termed viewer foreknowledge. Since
foreknowledge instruments cannot misinform, definite infor-
mation about future states obtained from foreknowledge in-
struments will always prove to be correct. So, it would be
possible to recognize viewer foreknowledge upon reception.
However, as the RNG experiment demonstrates, viewer fore-
knowledge would not always be accessible.

∗The post-halt value in P1-mode runs will always be 1. This is because
the CRS will not detect anything from the FVI, since the FVI cannot acquire
a signal; so, the CRS will revert to defaults and assign 0 as the value of z.

Situations exemplified by P1-mode runs, wherein future-
viewing cannot occur, are here termed interference viewing
situations. Viewer foreknowledge would only be accessi-
ble within non-interference viewing situations, exemplified
by runs of the two non-interfering programs, PR and P0.

2 Time machines and foreknowledge instruments

Time travel to the past will be referred to as pastward time
travel. Pastward time travel and future-viewing are intimately
related, for each could be used to acquire information from
the future. So, if pastward time travel and future-viewing re-
ally are coherent concepts, they should be found to naturally
cohere within a single conceptual context.

Serious interest in pastward time travel began when Kurt
Gödel proved in 1949 that the equations of general relativity
permit pastward time travel situations [7]. Extensive tech-
nical details concerning how time travel or future-viewing
might be achieved within the framework of general relativ-
ity, or any other, are not needed here. The aim of this section
is to explore the logical dimensions of pastward time travel,
not how it might be achieved. Furthermore, it would not be
appropriate to limit a discussion of the logical dimensions of
time travel to any theoretical framework.

Conceptually, relocation may be achieved by continuous
movement between spatio-temporal points, i.e., translation,
or by what will be termed discontinuous relocation. Trans-
lation is familiar to everyone. Discontinuous relocation will
here be defined as a process whereby a vehicle, for instance, is
made to disappear from one location and reappear somewhere
else, either a moment later or in a different time period alto-
gether, even much earlier. Whether discontinuous relocation
could be achieved, and how it could be achieved, are irrele-
vant considerations. For the current discussion it is merely
necessary to recognize that discontinuous relocation is a log-
ically possible mode of travel (i.e., relocation).

Since translation and discontinuous relocation exhaust all
possibilities for relocation in space and time, it is possible to
obtain exhaustive conclusions about the logical dimensions
of time travel without referencing any further specifics about
how time travel might be achieved. This allows the argument
to be conducted without tying it to any theoretical framework.

The central issue in any discussion of the logical dimen-
sions of time travel concerns whether past-alteration para-
doxes, which are so popular in fictional treatments of the sub-
ject, could ever be actualized. An extended argument will
establish that it is not possible for changes to the past and ac-
companying paradoxes to result from the accomplishment of
pastward time travel, no matter how accomplished. This ar-
gument will begin by referencing methods of pastward time
travel based on translation, such as exist in general relativity.
A simple extension of the argument will additionally show
that paradoxes could not result from any form of pastward
time travel based on discontinuous relocation.
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The arguments of this section will explore time travel and
future-viewing as conceived within a single timeline, since
multiple-timeline models of time travel inherently sidestep
any possibility of paradoxes. For instance, under a multiple-
timeline model, if a time traveler were to go back in time and
successfully prevent his parents from meeting, his own birth
would remain safely unaffected in his origin timeline. Only
time travel from a given timeline to its own earlier periods
has ever been thought to offer any potential for paradox, so
multiple-timeline models are safely ignored here.

Fiction has distorted our perceptions about time travel. It
will be shown below that events which have happened one
way without time travelers cannot somehow be made to hap-
pen again, but differently, if time travelers would ever happen
to visit that time and place. While stories based on such ab-
surdities can be entertaining, the misconception that the prac-
tice of time travel might ever actualize revisions to the past
has been termed the “second-time-around fallacy” [8]. The
following quotation from philosopher Larry Dwyer provides
a sensible way to think about pastward time travel:

If we hypothesize that T pulls levers and manip-
ulates a rocket in 1974, and travels back in time
to the year 3000 B.C. then of course, even before
T enters his rocket, it is true that any accurate
catalogue of all the events on earth during the
year 3000 B.C. would include an account of T’s
actions, reactions and mental processes. There
is no question of the year 3000 B.C. occurring
more than once. [9]

Although theoretical considerations related to achieving
pastward time travel are not needed in the present discussion,
some operational concepts are helpful for purposes of visu-
alization. Imagine a device which is able to open hyperdi-
mensional tunnels to past, present, and future spatio-temporal
points. Travelers who would pass through such tunnels could
travel great distances or achieve time travel to any connected
era, and be retrieved. The device would remain stationed in
the laboratory throughout.

This way of visualizing time travel by translation is found
in the colorful literature of general relativity. Solutions of
Einstein’s field equations which describe hyperdimensional
tunnels have existed since 1916, though travel concepts were
not part of the early work in this area. Physicist Ludwig
Flamm discovered solutions describing such tunnels shortly
after the publication of general relativity [10]. These struc-
tures were further explored by Hermann Weyl in the 1920s
[11]. Then, in 1935, when Albert Einstein and Nathan Rosen
attempted to formulate solutions of Einstein’s field equations
free from singularities, they were also led to such structures:
“These solutions involve the mathematical representation of
physical space by a space of two identical sheets, a particle
being represented by a ‘bridge’ connecting these sheets” [12].
These connecting structures came to be known as Einstein-

Rosen bridges. In 1955, physicist John Wheeler named them
“wormholes” [13].

In 1969, Homer Ellis and Kirill Bronnikov independently
solved Einstein’s field equations to describe gravitating, two-
way traversable wormholes, and their works were published
in 1973 [14, 15]. These ideas led to an understanding of
wormholes of a kind that would be appropriate for travel, time
travel, future-viewing, and past-viewing. These structures
are non-gravitating, two-way traversable wormholes known
as Ellis wormholes [16]. In 1988, Kip Thorne, Mike Morris,
and Ulvi Yurtsever independently derived such structures and
added important details to the discussion [17].

Two years later, these physicists co-authored an influen-
tial paper with Igor Novikov and three other physicists which
suggested a “principle of self-consistency” would unfailingly
govern pastward time travel situations [18]. Novikov began
the tradition, at least in physics literature, of time travel free
from paradoxes in a co-authored 1975 work [19].

Returning to the development of the argument, it is worth
noting that all “arguments from paradox” against the possibil-
ity of pastward time travel require a false premise—that every
possible form of pastward time travel would let time travelers
alter past events. However, a form of time travel which would
not allow past-alteration has been understood for decades.

The key to understanding this concept of time travel is
the idea that time machines which operate accordingly would
not be able to fulfill every time travel request. Author Robert
Heinlein may have been the first to suggest what may be re-
ferred to as a gatekeeping mechanism, a natural process which
governs whether any given attempt to travel back to a partic-
ular set of coordinates in the past will prove to be successful
when a time machine is activated for that purpose.

In terms of pastward time travel via traversable worm-
holes, for instance, a gatekeeping mechanism would deter-
mine, in a given situation of attempted time travel, whether
the wormhole manipulation device being used will be able to
enlarge the selected natural microscopic wormhole and con-
dition it for transport, or not.∗

A gatekeeping mechanism would act to enforce a consis-
tent logic of time travel; any given attempt to send people
into the past can only occur in a consistent manner if the past
includes their visit as a result of that very attempt. Heinlein
imagined that nature would always prevent the success of any
other kind of pastward time travel attempt, thereby eliminat-
ing any chance of time travel paradoxes. Heinlein revealed
this basic but profound insight in a conversation between two
characters in his 1964 novel, Farnham’s Freehold:

“The way I see it, there are no paradoxes in time
travel, there can’t be. If we are going to make
this time jump, then we already did; that’s what
happened. And if it doesn’t work, then it’s be-

∗“One can imagine an advanced civilization pulling a wormhole out of
the quantum foam and enlarging it to classical size.” [17, see p. 1446]
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cause it didn’t happen.”
“But it hasn’t happened yet. Therefore, you are
saying it didn’t happen, so it can’t happen. That’s
what I said.”
“No, no! We don’t know whether it has already
happened or not. If it did, it will. If it didn’t, it
won’t.” [20]

It turns out that pastward time travel, while difficult to ac-
complish, is basic from a logical point of view. Tenses and
perceptions of time confuse many issues that are easy to un-
derstand within a tenseless picture of space and time. This
kind of picture was developed by the German mathematician
Hermann Minkowski, and it is the subject of his groundbreak-
ing 1908 lecture, “Raum und Zeit” [21]. Although the term
‘spacetime’ will be avoided here, other terms associated with
the work of Minkowski and Einstein will be used which effi-
ciently refer to important spatio-temporal concepts that would
be meaningful in any theoretical framework.

Four-dimensional spatio-temporal coordinates (x, y, z, t)
are sufficient to specify any location in our universe at any
time, i.e., any world-point [21] defined with respect to some
arbitrary origin. So, relations between any two world-points
can be discussed in a tenseless fashion, just as one would
discuss relations between points plotted on graph paper. For
instance, regarding time travel by wormhole, the relation of
interest concerns whether two world-points are bridged by a
traversable wormhole:

“If it did, it will,” describes two world-points bridged
by a traversable wormhole.
“If it didn’t, it won’t,” describes two world-points not
bridged by a traversable wormhole.

The antecedent phrases, “[i]f it did” and “[i]f it didn’t,”
refer to what has happened at the intended pastward desti-
nation, and the consequent phrases, “it will” and “it won’t,”
describe the corresponding event of success or failure to ini-
tiate pastward time travel that will be discovered once the
wormhole manipulation device has been activated for that
purpose. Note that world-points which are not bridged by
a traversable wormhole cannot somehow change to become
bridged; the configuration of world-points is fixed in the ten-
seless picture.

The argument to show that time travel to arbitrary world-
points within a single-timeline model is not possible will fol-
low shortly, but first it is necessary to discuss the ontology
of time. As will be established below, the only ontology that
could accommodate pastward time travel and future-viewing
is eternalism, also known as the block universe concept.

Within eternalism, every event in a given spatio-temporal
manifold exists together with every other event in a coherent,
unchanging whole, and all times are ontologically identical.
(Multi-timeline forms of eternalism need not enter the discus-
sion, for reasons explained above.) Eternalism will be con-
trasted with the growing block universe concept which holds

that, while the past has become fixed, the ever-advancing mo-
mentary present is ontologically distinct from the past, and
future events have yet to be forged in the advancing now.

The reason eternalism is the only ontology relevant in
the context of future-viewing and pastward time travel is that
these technologies would allow questions about the ontology
of time to be answered empirically, in favor of eternalism. For
instance, through wormhole time travel or future-viewing ac-
complished using wormholes, it would be possible for people
stationed in different centuries to conduct a two-way radio
conversation through the wormhole throat. Demonstrations
of this sort would entirely rule out the growing block uni-
verse concept. After all, future-dwellers could not reply to us
if the future does not exist and time travelers could not visit
and return from a future that is not there.∗ As such, any argu-
ment purporting to reach a conclusion with relevance to time
travel and use of a “time viewer” [23, see p. 283] to see into
the past or future must be cast within eternalism.

A few more background details are necessary before the
final argument against the possibility of time travel paradoxes
can be presented. It is important to discuss how change and
movement are conceptually accommodated within the tense-
less, unchanging picture of eternalism.

When particle movements are graphed, four-dimensional
world-lines are traced out [21]. All world-lines are complete
within eternalism. One can see that collections of particle
world-lines may describe any object or body in space endur-
ing through time, including all internal occurrences and all
actions (e.g., digestion, typing, walking). Such collections
will be referred to as composite world-lines.

So, within eternalism, the composite world-lines of hu-
man beings are complete from birth to death in every phys-
ical and behavioral detail. Since a composite world-line is
a record of all change and movement, no world-line can be
changed or moved. This applies to all past world-lines in both
ontologies, and in either view, no individual may change any
aspect of his or her future composite world-line.

Change requires a difference between an initial state and
a post-change state. Comparing ontologies, under the grow-
ing block universe concept it is not possible for a person to
change his or her future composite world-line because it does
not exist; in this view, the future is made in the objectively
advancing present. Under eternalism, even though a person’s
future composite world-line exists in its entirety, it exists as
the accumulated product of actions taken and processes which
occur in that person’s perceived advancing present. So, un-
der eternalism, it remains the case that one’s future compos-
ite world-line is not and cannot be changed. It is fulfilled.
Philosopher J.J.C. Smart expressed the distinction between
acting in the present to produce the future and the mistaken
idea of “changing the future,” this way:

∗As one would expect, the view known as presentism which holds that
only the present exists would also be thoroughly ruled out [22].
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...[T]he fact that our present actions determine
the future would be most misleadingly expressed
or described by saying that we can change the fu-
ture. A man can change his trousers, his club, or
his job. Perhaps he may even change the course
of world history or the state of scientific thought.
But one thing that he cannot change is the future,
since whatever he brings about is the future, and
nothing else is, or ever was. [24]

With this background in place, the promised argument
for the impossibility of paradoxes arising from pastward time
travel will now be presented: Considering whether paradoxes
due to time travel could occur at all requires consideration
of a successful instance of pastward time travel. Therefore,
begin by positing one such instance. For reasons explained
above, this is a posit which requires eternalism. So, in this
instance of pastward time travel, the composite world-lines
of time travelers are necessarily embedded in “the past” as
judged with respect to the date of their journey’s origin. This
means that the actions of these time travelers during their visit
are necessarily part of the historical background leading to the
world situation of their journey’s origin.

So, paradoxes emerging from pastward time travel would
only be possible if the composite world-lines of time travel-
ers embedded in the past could be made to change, move, or
disappear. However, world-lines cannot be made to change,
move, or disappear. Ultimately, pastward time travel cannot
lead to paradoxes due to the unalterable geometry of com-
pleted world-lines within eternalism, wherein all world-lines
are complete. Within a single timeline model, the unalterable
nature of world-lines produces all the effects of a gatekeeping
mechanism which include making past-alteration impossible.

This argument will now be extended for sake of thorough-
ness. One might imagine that some unknown method of time
travel which somehow operates according to discontinuous
relocation might allow time travelers to visit scenes which
did not involve time travelers “the first time around.” How-
ever, examining the tenseless picture of eternalism shows that
this is not the case:

“If it did, it will,” describes two world-points associated
by discontinuous relocation.
“If it didn’t, it won’t,” describes two world-points not
associated by discontinuous relocation.

In order for a time traveler using a form of time travel
based on discontinuous relocation to visit a scene which did
not involve time travelers “the first time around,” specific con-
ditions must obtain. For a given world-point w to qualify as
having been without visits from time travelers, w must not be
associated with another world-point by discontinuous reloca-
tion and w must not be a world-point visited by time travelers
using some form of time travel based on translation.

If one symbolizes “world-point w is associated with an-
other world-point by discontinuous relocation” as Dw, and

symbolizes “world-point w is visited by time travelers using
some form of time travel based on translation” as Tw, then
in order for a given world-point w to qualify as having been
without visits from time travelers “the first time around,” both
¬Dw and ¬Tw must obtain. So, even a method of time travel
based on discontinuous relocation could not allow time trav-
elers to visit world points that were not visited by time travel-
ers “the first time around,” since there can be no world-point
w for which the statements Dw and ¬Dw are both true.

As continuous and discontinuous means of travel exhaust
all possibilities for relocation in any spatio-temporal mani-
fold, it is possible to conclude that, regardless of the way in
which pastward time travel might ever be achieved, it could
never lead to changes to the past or paradoxes of any sort.

This understanding produces unwavering clarity. No type
of vexation ever thought to rule out time travel remains.∗ All
of the imagined logical barriers which would fundamentally
block the actualization of time machines and foreknowledge
instruments have turned out to be illusory.

With any technology that would allow information to be
transferred from later to earlier world-points, temporal gate-
keeping is key. In other words, in any given effort to travel
pastward, time machines will only be able to send travelers
to parts of the past that were visited by those very travel-
ers as a result of that very effort to send them pastward, and
likewise, any attempt to use a foreknowledge instrument to
reveal future events will only be successful if, from the per-
spective of the future, that attempt to peer into the future had
been successful. In both scenarios, the world at the “future
end” results from the world at the “past end,” and so, in either
technological case, the resulting state of affairs is necessarily
compatible with all events occurring at the “past end.”

Related to these findings, quantum information pioneer,
Seth Lloyd, with other scientists, produced four papers in
2010 and 2011 which present a formal model here called the
P-CTC model [25, 28–30]. In effect, the P-CTC model is a
temporal gatekeeping model.

3 Obtaining viewer foreknowledge

The three modes of the RNG experiment produce three dif-
ferent kinds of viewing situations. An understanding of these
situations is a necessary prerequisite to deciphering how fore-
knowledge instruments would operate in real-world settings.

∗Along with past-alteration paradoxes, another potential problem has
been imagined, the “paradox of auto-generated information” or the “un-
proved theorem paradox” [1, 25]. The unproved theorem paradox appears
in a groundbreaking 1991 paper by physicist David Deutsch [26]. Lloyd et
al. address this issue. Their “[u]nproved theorem paradox circuit” affirms the
conclusion that meaningful information cannot be auto-generated via closed
timelike curves (CTCs) [25]. (CTCs are trajectories apparent within some
solutions of general relativity which would allow an object to meet an earlier
version of itself—i.e., to travel pastward.) An objection was raised to their
resolution of the unproved theorem paradox [27], but Lloyd et al. showed the
basis of the objection to be erroneous [28].
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PR produces what will be described as an independent
viewing situation. Outcomes which have been foreseen in an
independent viewing situation during a given session with a
foreknowledge instrument are not contingent in any way upon
data received in that session.

On the other hand, P0 produces a cooperative viewing
situation, a kind of circumstance wherein data received in
viewer foreknowledge of an outcome factors into the details
of that outcome or is responsible for its very occurrence.

Within independent viewing situations and cooperative
viewing situations, there are no logical barriers to the recep-
tion of viewer foreknowledge. As such, they are both classi-
fied as non-interference viewing situations. These situations
represent two different ways of not using data from the instru-
ment to interfere with the outcome. In PR-mode runs the data
is not involved in the outcome at all, and in P0-mode runs the
data is followed exactly. If independent viewing and cooper-
ative viewing exhaust all modes of non-interference, then an
interference viewing situation will arise in every other kind of
case, exemplified by what happens in P1-mode runs.

It is important to determine whether there are any basic
limitations which must affect the practice of future-viewing.
Are there kinds of outcomes a particular foreknowledge in-
strument operator will fundamentally be unable to foresee?

Operators who are able to achieve an independent viewing
situation with respect to a given event will be able to foresee
it, for no logical barriers will be encountered. However, no
individual can achieve an independent viewing situation with
respect to the events of her own future life, assuming she will
retain her memories. This important limitation will be called
the self-implication effect of viewer foreknowledge; individ-
uals are necessarily implicated in their own futures.

What about cooperative viewing situations? Could a per-
son witness video sequences of her own future actions within
a cooperative viewing situation if she later follows what she
has seen exactly? Attempting to arrange such a circumstance
would overwhelmingly tend to produce an interference view-
ing situation. However, an individual could receive limited
second-hand information regarding some general features of
her future. To explain, two new terms are helpful:

Viewing interval: The interval of time elapsed between
the reception of viewer foreknowledge pertaining to a
set of outcomes and the occurrence of those outcomes.

Operator pool: The operator of a foreknowledge in-
strument, along with any additional witnesses (if any)
during the reception of viewer foreknowledge, together
with other individuals (if any) who—during the view-
ing interval—will be apprised of the results or who
will be instructed or influenced based on such results
(whether or not they have been made aware of the ex-
istence of foreknowledge instruments). This term car-
ries another layer of meaning, for ‘operator’ may also
refer to a mathematical function; the combined input-

to-output processing carried out by members of an op-
erator pool will result in (or cohere with) the future-
viewed outcome.

For instance, a person might be informed that she will
still be alive in forty years time. This particular factual de-
tail is chosen because it admits no variation other than its
falsification. A person could not be truthfully informed that
viewer foreknowledge has revealed she will still be alive in
forty years time, only for her to somehow lose her life at an
earlier point. Operator pools are formed only when viewer
foreknowledge has been received. All effects upon the world
that a given operator pool will generate within the associated
viewing interval have therefore passed temporal gatekeeping.
So, these effects will at least partially produce (or, for inde-
pendent viewing, have no causal relation with) the outcomes
received in viewer foreknowledge. These effects, of course,
include everything the earlier members of the pool will tell
later members of the pool. For this reason, no member of
an operator pool will do, say, or successfully achieve any-
thing that will prevent, or result in any modification to, the
outcomes foreseen.

How would independent viewing situations and coopera-
tive viewing situations manifest in real-world settings with
human operators and witnesses? Either the occurrence of
a set of future events is compatible with being foreseen by
particular operators and witnesses during a particular future-
viewing session, or not. In the case of compatibility, a given
future-viewing attempt can succeed. Without such compat-
ibility, operators and witnesses could not gain viewer fore-
knowledge about what will occur at the chosen future co-
ordinates during that situation of attempted future-viewing.
(However, one person leaving the room might be enough to
achieve compatibility; this could occur if the self-implication
effect had been the cause of interference.)

It is apparent that the logic of future-viewing is another
manifestation of temporal gatekeeping. Future-viewing and
pastward time travel cohere within a seamless whole.

4 Handling foreknowledge instrument data

So far, the discussion has focused on the actions of networks
of human beings within a viewing interval who have obtained
viewer foreknowledge. However, in order to account for all of
the relevant factors which may lead to a set of future-viewed
outcomes, the influences of reactive technological systems
within a viewing interval must also be considered.

The RNG experiment involves two cases where reactive
technological systems are interposed between the attempt to
obtain viewer foreknowledge of an outcome and the outcome
itself. A system must (during the viewing interval) be capable
of both receiving viewer foreknowledge data and performing
actions which could have bearing upon the associated out-
comes, in order for either a cooperative viewing situation or
an interference viewing situation to arise as a result of that
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system’s presence or involvement. Due to these requirements,
other than systems deliberately arranged in laboratory setups
to test future-viewing instruments, AI systems are the only
kind of technological systems with any likelihood of becom-
ing interposed in the necessary way.

Systems referred to as AI systems today do not qualify
as conscious minds. The dream/nightmare of an artifact with
conscious awareness, thankfully, has not been realized. In the
context of foreknowledge instruments, however, the topic of
whether any interposed technological systems are conscious
must be treated as a side issue. This is because information
processing does not require a conscious being, as any func-
tioning thermostat will demonstrate.

Why is it important to consider the possibility of inter-
posed AI systems? If current trends continue, information
processing systems will eventually have the ability to influ-
ence real-world outcomes to a much greater degree than they
can today. If information processing systems with sufficiently
powerful capabilities become members of operator pools, this
could produce cooperative viewing situations with results that
differ radically from the results that operator pools composed
entirely of humans would produce.

In considering the severity this problematic possibility, it
is necessary to realize that once viewer foreknowledge has
been received, all of the outcomes detailed will come to pass
with certainty. In the case of cooperative viewing, the actions
of members of an operator pool bring about or strongly factor
into the details of the outcomes originally received.

If AI systems are allowed to acquire future-derived in-
formation at any time within a given viewing interval, even
years into it, they would be factors in the operator pool all
along. In such a case, the combined processing and network-
coordinated actions of interposed AI systems could easily
dominate the outcomes produced. Leaving the door open for
AI systems to join operator pools is therefore a grave risk
which must be comprehensively addressed.

There is at least one other reason to keep AI systems out
of operator pools: The presence of AI systems in the pro-
cess of attempted future-viewing could produce interference
viewing situations in cases which might otherwise have been
independent viewing situations or (entirely human-directed)
cooperative viewing situations. So, at best, the presence of
interposed information processing systems would disrupt our
ability to use foreknowledge instruments effectively.

For these critical and interrelated reasons, every effort
should be made to ensure that AI systems will not be able
to gain access to viewer foreknowledge data. As well, mon-
itoring procedures should be implemented to make sure that
AI systems will not be able to retain data derived from viewer
foreknowledge for long enough to utilize it in cases where a
breach has occurred.

To prevent AI systems from accessing viewer foreknowl-
edge data to support the enforcement of AI safety, such data
could be distributed exclusively in encrypted packets which

have been flagged as off-limits for decryption by AI systems.
Any processing which could constitute decryption of flagged
packets by AI systems would be considered forbidden pro-
cessing. Future AI systems should be designed to contain
separate, internal monitoring systems which would be pro-
grammed to immediately put the monitored AI to sleep if an
instance of forbidden processing is detected.

Along with data access control, memory control is an-
other important protective strategy. Memory control may be
the most fundamental way to keep all of the potentially nega-
tive effects of an “intelligence explosion” [31] at bay. Future
AI systems should be designed to sleep several times a day
(others could cover for the ones that are asleep). This way,
memory contents could be optimized and routinely cleared
of all potentially hazardous data structures. Regular mem-
ory clearing and the addition of internal monitoring systems
should be seen as necessities for AIs, much like the use of
safety glass for car windows is recognized as necessary.

From these considerations it is apparent that it is possible,
in principle, to fundamentally prevent any of the potentially
negative effects of an intelligence explosion. One of the most
important aspects of AI safety, in a world with foreknowledge
instruments, would be preventing AIs from acquiring and re-
taining viewer foreknowledge data. Successfully navigating
the rise of artificial intelligence will be difficult enough with-
out letting AIs dominate operator pools.

Additional ideas related to the topic of AI safety will have
to be saved for another work. It will be noted, however, that
if artificial systems are ever constructed which would qualify
as conscious beings—artificial systems fundamentally unlike
any type of system ever built or currently considered—an en-
tirely different approach would be required due to the ethical
concerns which would apply only in that case.

Of course, ethical concerns can only apply to conscious
beings because only conscious beings are able to suffer. So,
these same ethical concerns demand that AI systems should
always be designed so there is absolutely no chance of pro-
ducing a conscious being. It would be horribly inhumane to
cross this line—to do so would be just as wrong as the cre-
ation of human-animal hybrids, for largely the same reasons.

There is no basis for feigning confusion about whether
any current AI systems qualify as conscious beings. There
are a lot of philosophical positions out there, but no one be-
lieves that there is even a remote chance that the line has been
crossed, or has even been approached. No matter how fast
and capable of solving problems AI systems ever become, let
them remain, as they are today, non-conscious information
processing engines, systems which cannot suffer or desire.

5 Assurance protocols

Foreknowledge instruments will be put to practical use if and
when they become available, but how could they be utilized?
Foreknowledge instruments could be combined with current
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computer technology to allow us to comprehensively manage
outcomes in a wide variety of circumstances. For instance,
with the right systems and protocols in place, it would be pos-
sible to entirely eliminate flight accidents and other threats to
air travel safety.

Here is an outline of one way this might be done: All air-
craft operating systems could be modified so that, after land-
ing, the higher engine speeds required for take-off are locked
out by default. In order to fly again, it would be necessary to
obtain an encryption code, here called a confirmation key, to
unlock these higher engine speeds.

Each flight plan would be assigned a unique confirma-
tion key during the planning stage. For a given flight plan
to be allowed to progress to the point of becoming a sched-
uled flight, the assigned confirmation key would have to be re-
trieved from a future-based assurance database. Data could be
retrieved from a future-based database by means of a wireless
data exchange conducted between intertemporal data nodes,
devices based on foreknowledge instrument technology.∗

Here is the critical detail: By procedural design, deposit
of a given flight’s confirmation key, for earlier retrieval, may
only be initiated after that flight has safely landed. As long
as this rule is not violated, database integrity is maintained,
and plane operating systems are not compromised, all flights
which take off under this assurance protocol will land safely.

The steps of this protocol would have to be followed in
a particular order. Once a confirmation key for a given flight
plan has been generated, if it is not subsequently found in
the future-based assurance database (by looking ahead), that
flight plan would have to be canceled. Then, another set of
parameters constituting a new flight plan (such as the aircraft
and pilots to be used, time of departure, and so on) would
be prepared and another confirmation key would be gener-
ated. This process would continue until a newly generated
confirmation key has been found in the future-based assur-
ance database.

Why (one might wonder) is the particular order just de-
scribed important in this protocol design? In other words,
why not simply begin by querying the future-based database,
far enough ahead, to find out which flights will land safely,
and only schedule those flights? The answer is that such
an ordering could not work. Flight plan specifics and asso-
ciated confirmation keys must have an origin. Since auto-
generated information is not possible, no practical system
could be based on the expectation of its reception.

∗Two varieties of intertemporal data nodes may be described as follows:
A passive node would consist of a Faraday cage of known spatial coordinates
containing a wireless data communication device wired to the Internet of its
time period. An initiating node or active node would consist of a Faraday
cage of known spatial coordinates containing a wireless data communication
device wired to the Internet of its time period, coupled with a temporal instru-
ment (such as a foreknowledge instrument) which is able to establish light-
path continuity with node interiors in other time periods. Initiating nodes
would allow spontaneous wireless data exchanges to be conducted between
different time periods.

Assurance protocols could be extended into several other
domains. So many of our current problems are based on the
seeming necessity of facing an entirely unknowable future.

6 Intertemporal networking

Another application of foreknowledge instrument technology
is intertemporal networking. An intertemporal Internet could
be founded by connecting active intertemporal data nodes to
our current Internet. Foreknowledge instruments are the only
components of active intertemporal data nodes which remain
unavailable. Once foreknowledge instruments are invented
and/or made available, if they really are part of our future,
then achieving access to a future intertemporal Internet will
likely be among the major milestones to follow.

The development of an intertemporal Internet is a natu-
ral aspect of societal future-sightedness. When one considers
widespread access to time viewers, obvious privacy and intel-
ligence concerns arise. To address these issues, it would be
necessary for foreknowledge instruments and other kinds of
time viewers, such as past-viewing instruments, to be made
exclusively accessible over the (standard) Internet; then, the
servers which govern time viewing could be programmed to
respect a database of spatio-temporal coordinate limitations
in order to prevent rampant voyeurism and espionage. In this
way, the four-dimensional coordinate volumes within which
private residences, businesses, and government buildings are
contained could be comprehensively protected against time
viewer access.

For this kind of solution to function, each time period
within an intertemporal society must have the ability to con-
tribute to the management of such a database. (An intertem-
poral society is an enduring population which benefits from
intertemporal coordination among its time periods.) To en-
able shared management of a coordinate limitation database
within an intertemporal society, shared access to an intertem-
poral Internet among its time periods would be required.

While foreknowledge instruments and related technolo-
gies could provide direct observation of past or future scenes,
many people would primarily use these devices in the form
of active intertemporal data nodes to access the intertemporal
Internet. In recent years, people have become accustomed to
receiving most of their news electronically; with access to an
intertemporal Internet—unless an interference viewing situa-
tion is encountered instead—individuals could discover what
will happen decades or even centuries ahead of time. Read-
ing about future history would be similar to reading about
past history, though one would have to be careful with such
information in order to successfully obtain it in the first place.
An intertemporal Internet could also be used purely for enter-
tainment purposes. Would it not be endlessly fascinating to
hear the music of the far future?

These possibilities may seem outlandish until it is recog-
nized that members of an intertemporal society would live

Aaron M. Feeney. Utilizing Future-Viewing Instruments 177



Volume 14 (2018) PROGRESS IN PHYSICS Issue 3 (July)

in an intertemporal world, a kind of situation that would be
very different from our current situation. All happenings in
an intertemporal world would be constrained according to
the inviolable barriers of temporal gatekeeping and the self-
implication effect, thus ensuring that information flows would
operate coherently, without ever even a hint of paradox.

As a case in point, it might be thought that the prospect
of people having access to future news would be inherently
threatening to the coherence of future events: For instance,
might an article from the future revealing an invention not yet
invented give someone else the opportunity to “invent” that
technology instead, thereby leading to changes to the future?
Or worse, could an invention emerge purely from an auto-
generated information loop? Of course, neither of these sce-
narios reside within the realm of possibility. As raised above,
the P-CTC model explains why auto-generated information
cannot emerge from time travel or future-viewing. Temporal
gatekeeping, also addressed by the P-CTC model, explains
why the future and the past are safe from changes.

Anyone who is able to acquire future-derived information
will, by virtue of having been able to acquire it, not use that
information to change the future. This is true even though
no mysterious force prevents a person from misusing future-
derived information once it has been acquired. Whoever has
acquired future-derived information is in an operator pool, so
no individual can both acquire future-derived information and
use it to change the future.

Submitted on May 24th, 2018
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Application of the virial theorem, when combined with results from the kinetic the-
ory of gases, has been linked to gravitational collapse when the mass of the resulting
assembly is greater than the Jeans mass, MJ . While the arguments appear straightfor-
ward, the incorporation of temperature into these equations, using kinetic theory, results
in a conflict with the laws of thermodynamics. Temperature must always be viewed as
an intensive property. However, it is readily demonstrated that this condition is vio-
lated when the gravitational collapse of a free gas is considered using these approaches.
The result implies star formation cannot be based on the collapse of a self-gravitating
gaseous mass.

1 Introduction

While the virial theorem derives its name from the work of
Clausius [1], credit for its initial formulation has also been
ascribed to Lagrange [2], as the theorem can be derived from
the Lagrange identity [3, 4]. The virial theorem represents
one of the most powerful axioms in physics and has been
used to address a wide array of problems [4–6]. Jeans uti-
lized the theorem at length in his classic text, The Dynami-
cal Theory of Gases [7], in order to derive some of the well-
known gas laws. However, it was not until seven years later
that the virial theorem was introduced into astrophysics by
Poincaré [8]. Soon after, A. S. Eddington [9], apparently un-
aware of Poincaré’s contribution, applied the theorem to a star
cluster. This work centered on kinetic energy of motion and
did not attempt to introduce temperature as a variable. Each
of these developments adheres to the laws of physics.

Eventually, Eddington [10] came to use the virial theorem
when addressing the general theory of star formation. In do-
ing so, it appears that he was the first to combine gravitational
potential energy with the kinetic energy for a gas, as derived
from the ideal gas law, and thereby obtained an expression
defining the mean temperature of a star. Jeans [11] and Chan-
drasekhar [12] soon followed the same steps. Today, many
of these ideas relative to stellar equilibrium and temperature
remain ( [13], [14, see Eq. 26.7]). In this case, the use of the
virial theorem appears to be in conflict with the laws of ther-
modynamics.

2 Theoretical considerations

The existence of intensive (e.g. temperature, pressure, den-
sity, molar mass, thermal conductivity, . . . ) and extensive
(e.g. mass, volume, internal energy, heat capacity, . . . ) prop-
erties has been recognized. In fact, Landsberg [15] has ar-
gued that this concept is so vital as to constitute the 4th law of
thermodynamics. By necessity, intensive properties must be
measured in terms of extensive properties. Extensive proper-

ties must be additive and are directly related to the mass of
a system. Conversely, intensive properties are independent
of total mass. When two extensive properties are divided, an
intensive property is obtained (e.g. mass/volume = density).
However, not all properties can be characterized as either in-
tensive or extensive [16]. Still, it is clear that “if one side of
an equation is extensive (or intensive), then so must be the
other side” [17]. These last two realities urge some caution
when advancing new relations. The point can be made by
first examining the ideal gas law and then, a result from the
inappropriate application of the virial theorem.

The ideal gas law is usually expressed as PV = nRT ,
where P, V , n, R and T correspond to the pressure, the vol-
ume, the number of moles, the universal gas constant, and
the absolute temperature, respectively. If one considers that
n = M/M, (where M is the total mass and M corresponds
to the molar mass) and that the mean density, ρ0, can be ex-
pressed as ρ0 = M/V , then the ideal gas law takes the follow-
ing form:

P = ρ0
R
M T . (1)

Recognizing that R/M is also known as the specific gas con-
stant, Rs, then the ideal gas law can simply be expressed as
P = ρ0RsT . Note that this equation does not contain any ex-
tensive properties, as both the mass of the system and its vol-
ume have been replaced by density, ρ0, which is an intensive
property. Similarly, P and T are intensive properties, while
Rs is a constant for any given system. In accordance with the
state postulate, this simple system is fully defined by any two
intensive properties [18].

At the same time, an intensive property must remain a
function of only intensive properties, or of extensive prop-
erties which in combination, result in an intensive property.
This is especially important when considering temperature in
light of the 0th law of thermodynamics. If the ideal gas law is
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re-expressed in terms of temperature,

T =
P

Rsρ0
, (2)

it is observed that this property remains defined only in terms
of intensive properties for this system, namely pressure and
density.

When considering the kinetic theory as applied to an ideal
gas (see Jeans [19]), any of the associated results are inher-
ently linked to the conditions which gave rise to the ideal gas
law. For instance, 1) a large number of rapidly moving par-
ticles must be considered, 2) these must be negligibly small
relative to the total volume, 3) all collisions must be elastic,
4) no net forces must exist between the particles, 5) the walls
of the enclosure must be rigid, 6) the only force or change
in momentum with time, dp/dt, which is experienced to de-
fine pressure, P, must occur at the walls, and 7) the sum of
forces everywhere else must be zero. In this instance, tem-
perature becomes linked to the total kinetic energy of the en-
closed system, K.E. = 3

2 NkBT , where N represents the total
number of particles and kB is Boltzmann’s constant. Note
that this expression does not address any contribution to the
total kinetic energy which this enclosed system might gain
if it were in motion relative to another object. Such motion
would increase the total kinetic energy of the system, but not
its temperature.

When the virial theorem is applied to a self-gravitating
gaseous mass, wherein the kinetic theory of gases has been
used to insert temperature dependence [10–12], it is well-
established ([13], [14, see Eq. 26.7]) that this combination re-
sults in the following expression for temperature:

T =
GMmp

5kBr
, (3)

where G, M, mp, kB, and r corresponds to the gravitational
constant, the mass of the system, the particle mass, Boltz-
mann’s constant, and the radius. With dimensional analysis,
this expression appears valid, equating Kelvin on each side.
However, this is not true, relative to analysis of intensive and
extensive properties.

Observe that G, mp, and kB are constants for this system.
Mass, M, is an extensive property. However, the radius, r,
is neither extensive nor intensive [18]. In order to see that
radius is not an extensive property, one simply needs to re-
call that for an ideal gas, volume, an extensive property, is
directly related to mass, M. In fact, mass is usually divided
by volume in order to lead to density, ρ0, an intensive prop-
erty. However, since V = 4

3πr
3, it is evident that radius is

not directly related to mass, M, but rather to M1/3. As such,
r cannot be an extensive property. Thus, temperature in (3)
is being defined in terms of two properties, M and r, which
in combination do not result in an intensive property. This
constitutes a direct violation of the 0th law which seeks, first

and foremost, to define temperature as an intensive property,
a reality well-established in thermodynamics (e.g. [17]).

In arriving at (3), the kinetic energy of the gas, K.E., was
assumed to be equal to 3

2 NkBT , as presented above. However,
the temperature obtained from kinetic theory is a manifesta-
tion of the internal motion of the gas within an enclosure.
That energy represents heat energy and it is not related to the
kinetic energy of translational motion which should be com-
bined in the virial theorem with gravitational potential energy,
when considering a bound system.

Furthermore, this expression was obtained for a gas en-
closed by a rigid wall. Such a wall is not present when con-
sidering gravitational collapse. Yet, the results relative to the
ideal gas law were critically dependent on the presence of this
enclosure. The relationship between pressure, volume, and
temperature was extracted using real walls. This is critical as
the only forces used in defining pressure in this system occur
at this boundary. It is not proper to remove the wall and then
assume that the kinetic energy of the gaseous system remains
equal to 3

2 NkBT .
A thermodynamic problem also occurs with any expres-

sion attempting to define the Jeans mass, MJ , an extensive
property, in terms of temperature and mean density, both of
which are intensive properties. Consider the following ex-
pression:

MJ =

(
5kBT
Gmp

)3/2 (
3

4πρ0

)1/2

, (4)

which is analogous to Eq. 12.14 in [14]. Note in (4) that all
terms are raised to either the 3/2 or 1/2 power. As such, no
term on the right side of this equation could have been con-
sidered to behave as an extensive property. Extensive prop-
erties must be additive, a feature which is lost when they are
raised to an exponential power. In (4), the only terms which
are not constants are T and ρ0, but these are intensive, not
extensive properties. As such, the concept of Jeans mass is
not supported by the laws of thermodynamics as no extensive
properties exist on the right side of (4).

3 Discussion

When applying the virial theorem, it is important to differen-
tiate the kinetic energy associated with temperature from the
kinetic energy of motion. For instance, when Chandrasekhar
[20] applied the virial theorem to rotating fluid masses, he
made a clear distinction between heat energy and kinetic en-
ergy of motion. If this is not done and the two are considered
the same, as with all applications to a gaseous mass [10–14],
then violations of thermodynamics ensue.

It is not solely that an intensive property, like temperature,
is being defined in terms of properties which, in combination,
do not yield an intensive property. While this is a violation of
the 0th law, the 3rd law is also being violated, as 0 K is a tem-
perature. One cannot, by (3), increase the radius to infinity
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and, therefore, define 0 K as an intensive property. These con-
siderations illustrate that gases cannot undergo gravitational
collapse.

Lane’s Law [21,22], or the self-compression of a gaseous
mass, also constitutes a violation of the 1st law of thermo-
dynamics. A system cannot do work upon itself and thereby
raise its own temperature. This results in a perpertual motion
machine of the first kind. Additionally, a gravitationally col-
lapsing gaseous cloud, which obeys the ideal gas law, violates
the 2nd law of thermodynamics. An ideal gas is elastic by def-
inition. It has no means of dissipating heat into the heat sink
of its surroundings. Moreover, the system lacks an “engine”
whereby compression can be achieved. Work must be done
on the system in order to increase its order. To argue oth-
erwise consitutes a perpertual motion machine of the second
kind.

4 Conclusion

The idea that a gaseous mass can undergo gravitational col-
lapse ([9, 11–13], [14, see Eq. 26.7]) stands in violation of
the 0th, 1st, 2nd and 3rd laws of thermodynamics. It is well-
established in the laboratory that gases expand to fill the void.
According to the laws of thermodynamics a system cannot do
work upon itself. When dealing with an ideal gas without net
translation, all of the energy should be considered as kinetic
energy, exclusively. It is not appropriate to add a potential
energy term, if the total energy has already been defined as
kinetic energy, thereby establishing temperature.

At the same time, the question remains: How do stars
form? They do not arise from gravitational collapse. The
only feasible solution is that they are the result of condensa-
tion reactions, whereby material, as it condenses and forms a
new system, emits photons into its surroundings. Insight rel-
ative to this issue can be gained by considering the work of
Konig et al [23], wherein the condensation of silver clusters
at low temperatures has been associated with the emission of
photons. It is highly likely that hydrogen ion clusters [24]
will be found someday to behave in the same fashion. Along
with other advancements in condensed matter physics [25],
such discoveries may well provide the necessary force to help
astronomers recognize that the stars are comprised of con-
densed matter [26].
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