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Relativistically Correct Electromagnetic Energy Flow

Oliver Davis Johns
San Francisco State University, Department of Physics and Astronomy, Thornton Hall, 1600 Holloway Avenue, San Francisco, CA 94132 USA.

Email: ojohns@metacosmos.org

Detailed study of the energy and momentum carried by the electromagnetic field can
be a source of clues to possible new physics underlying the Maxwell equations. But
such study has been impeded by expressions for the parameters of the electromagnetic
energy flow that are inconsistent with the transformation rules of special relativity. This
paper begins by correcting a basic parameter, the local velocity of electromagnetic en-
ergy flow. This correction is derived by the direct application of the transformation
rules of special relativity. After this correction, the electromagnetic energy-momentum
tensor can then be expressed in a reference system comoving with the energy flow. This
tensor can be made diagonal in the comoving system, and brought into a canonical form
depending only on the energy density and one other parameter. The corrected energy
flow and its energy-momentum tensor are illustrated by a simple example using static
electric and magnetic fields. The proposal that electromagnetic momentum results from
the motion of a relativistic mass contained in the fields is examined in the context of the
corrected flow velocity. It is found that electromagnetic field momentum, though real,
cannot be explained as due only to the motion of relativistic mass. The paper concludes
that introducing the requirement of consistency with special relativity opens the study
of electromagnetic energy and momentum to new possibilities.

1 Introduction

The Feynman example of a rotating disk with a magnet at its
center and charged spheres on its perimeter provides a con-
vincing argument that, to preserve the principle of angular
momentum conservation, the field momentum of even a static
electromagnetic field must be considered physically real.∗

Since the energy density and momentum density of the
electromagnetic field are real, it is important to investigate
the details of the energy flow that they represent. Since spe-
cial relativity is the symmetry theory of electrodynamics, it is
essential that such investigations respect the transformation
laws of special relativity.

In Section 2 a previously proposed candidate expression
for a basic parameter, the velocity of energy flow at a given
point in the electromagnetic field, is shown to be inconsistent
with the transformation rules of special relativity and there-
fore incorrect. A corrected velocity expression is derived by
explicit use of these rules.

Section 3 derives the electromagnetic energy-momentum
tensor in a reference system comoving with this corrected ve-
locity, and shows that it can be made diagonal and reduced
to a canonical form that depends on two parameters derived
from the values of the electric and magnetic fields.

Section 4 illustrates the results of the previous sections
with an example using static electric and magnetic fields.

Section 5 considers the question of a relativistic mass den-
sity derived from the energy density of the electromagnetic

∗Feynman et al [4], Section 17-4, Section 27-6, and Figure 17-5. Quan-
titative matches of field to mechanical angular momentum are found, for
example, in Romer [12] and Boos [2].

field. It is found that this mass density does not correctly
relate the momentum density to the flow velocity. Electro-
magnetic field momentum, although real, is not due only to
the motion of relativistic mass.

Section 6 concludes that introducing the requirement of
special relativistic covariance into the study of the flow of
energy in electromagnetic fields opens up new possibilities
for investigation of such flows.

Electromagnetic formulas in this paper are taken from
Griffiths [6] and Jackson [7] with translation to Heaviside-
Lorentz units. I denote four-vectors as A = A0e0 + A where
e0 is the time unit vector and the three-vector part is un-
derstood to be A = A1e1 + A2e2 + A3e3. In the Einstein
summation convention, Greek indices range from 0 to 3, Ro-
man indices from 1 to 3. The Minkowski metric tensor is
ηαβ = ηαβ = diag(−1,+1,+1,+1). Three-vectors are written
with bold type A, and their magnitudes as A. Thus |A| = A.

2 Velocity of energy flow

We begin with a basic parameter of the electromagnetic field.
The flow velocity of the energy contained in the field at a
given event can be defined as the velocity of a comoving ob-
server who measures a zero energy flux there. Expressed in
the precise language of Lorentz boosts:†

The laboratory system coordinate velocity of the
flow of electromagnetic field energy at a given
event is the velocity V of a Lorentz boost that
transforms the laboratory reference system into
a reference system in which the Poynting energy

†The Lorentz boost formalism used here is defined in Appendix A.

Oliver Davis Johns. Relativistically Correct Electromagnetic Energy Flow 3
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flux vector is null at that event. An observer at
that event and at rest in this system, which we
call the comoving system and denote by primes,
therefore measures a zero energy flux. The zero
flux measurement indicates that this observer is
comoving with the flow of energy. Such an ob-
server has coordinate velocity V relative to the
laboratory∗, and therefore V is the laboratorysys-
tem coordinate velocity of the energy flow at the
given event.

A previously proposed† candidate for the laboratory sys-
tem coordinate velocity of the electromagnetic energy flow is
the momentum density divided by the relativistic mass (de-
fined as energy density divided by the square of the speed of
light). Denoting this velocity as ue gives

ue

c
=

G
(E/c)

=
2 (E × B)(
E2 + B2) (1)

where G = S/c2 = (E × B) /c is the linear momentum density
of an electromagnetic field with electric and magnetic field
vectors E and B and Poynting energy flux vector S. The E =(
E2 + B2

)
/2 is the electromagnetic energy density, and c is

the vacuum velocity of light.
If E/c and G were the time and space parts of a four-

vector, then a Lorentz boost from the laboratory system using
boost velocity V = ue would produce a comoving reference
system (denoted by primes) in which the space part of that
four-vector, that is G′ and hence the Poynting vector S′ =

c2G′, would vanish, indicating a system comoving with the
energy flow.‡ Thus ue would be the comoving velocity of the
energy flow.

However, E/c and G are not components of a four-vector.
There is no four-vector momentum density of the form G =

(E/c) e0 + G.
Rather, E and c G are the T 00 and T 0i components of the

second-rank electromagnetic energy-momentum tensor

Tαβ =


E c G1 c G2 c G3

c G1 M11 M12 M13
c G2 M21 M22 M23
c G3 M31 M32 M33

 (2)

where Mi j = −
(
EiE j + BiB j

)
+

1
2
δi j

(
E2 + B2

)
.

∗See Appendix A for a demonstration that any point at rest in the primed
system moves with laboratory system coordinate velocity V.

†In a discussion of the Poynting theorem in material media, but with
no special attention to Lorentz covariance, Born and Wolf [3] Section 14.2,
Eq. (8) identify ue as the velocity of energy transport or ray velocity. Section
B.2 of Smith [15] echoes Born and Wolf but provides no new derivation. (The
first edition of Born and Wolf’s text appeared in 1959.) Geppert [5] writes a
non-covariant equation with the same identification. More recently, Sebens
[13,14] relies on these and other sources to identify ue as the electromagnetic
mass flow velocity. (Following Sebens, expand (E − B)2 ≥ 0 and use the
definitions of E and G to prove that |ue | ≤ c.)

‡See Appendix A for a demonstration that G′ would be zero.

A related point is made by Rohrlich [11], using the so-
called von Laue theorem to argue that integrals of E/c and
G over hyperplanes may in some cases transform as four-
vectors. But we are treating these quantities locally, at a par-
ticular event. Von Laue’s theorem does not imply that the
local field functions E/c and G themselves transform as com-
ponents of a four-vector. They do not. Rather than attempting
to derive a four-vector from E/c and G, we show how to use
them in a relativistically correct manner as they are. See also
Section 6.3 of [10].

Since E and c G are components of Tαβ, contributions
to the boost transformation from the other components of
Tαβ would produce a comoving system in which G′ and the
Poynting vector would not vanish. The electromagnetic en-
ergy flow velocity is not ue.

The failure of ue to be the correct flow velocity can be
contrasted with the well-understood theory of theflow of elec-
tric charge. The charge density ρ and the current density vec-
tor J are shown by the divergence of the Maxwell field tensor
to form a four-vector of the form J = cρ e0 + J. In general,
J can be timelike, spacelike, or null. If spacelike, there is no
velocity vq less than the speed of light with J = ρ vq. But if
we consider, for example, a system in which all the moving
charges have the same sign, it can be shown that J is time-
like and hence the definition uq = J/ρ does produce a vector
of magnitude less than the speed of light. Then a Lorentz
boost with boost velocity V = uq indeed leads to a comoving
primed reference system in which the current flux density J′
vanishes§, and uq is therefore the correct flow velocity of the
moving charge.

But the fact that J transforms as a four-vector is crucial to
this argument. If it were not a four-vector transforming as in
Appendix A, the system reached by boost V = uq would have
a residual current flow J′ , 0, and uq would therefore not be
the correct flow velocity. The equation J = ρuq would still
follow from the definition of uq, but that formula would not
imply that uq is the correct velocity of the flowing charge.

The failure of ue as a candidate for the flow velocity of
electromagnetic energy is precisely because, unlike J, the ex-
pression written here in four-vector form G = (E/c) e0 + G
actually does not transform as a four-vector. The equation
G =

(
E/c2

)
ue (or equivalently S = Eue) still follows from

the definition of ue, but that formula does not imply that ue is
the correct velocity of the flowing energy.

However, the correct boost velocity V can be found by
starting from ue and applying a scalar correction factor. The
corrected velocity V will have the same direction as ue but
not the same magnitude. To find this corrected velocity V it
is best to turn to a direct method, using the transformation
rules for the fields E and B.

§Substitute cρ = J0 and J for G0 and G in Appendix A to see that J′
vanishes.
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The rules for transformation of electric and magnetic
fields by a boost with velocity V can be written in a special
relativistically correct but not manifestly covariant form as∗

E′ $ γ
(
E +

V
c
× B

)
+ (1 − γ)

V (V · E)
V2

B′ $ γ
(
B −

V
c
× E

)
+ (1 − γ)

V (V · B)
V2

(3)

where the Lorentz factor is γ =
(
1 − V2/c2

)−1/2
. The $ sym-

bol means that the components of the three-vector on the left
side of this symbol expressed in the primed coordinate system
are numerically equal to the components of the three-vector
on the right side of this symbol expressed in the original un-
primed system. If a′ $ c and b′ $ d, it is easily proved that:
(a) a′ × b′ $ c × d and (b) (a′ · b′) = (c · d).

Define the boost velocity V to be an unknown but rota-
tionally scalar quantity λ times ue

V = λue . (4)

Since ue and V are perpendicular to both the electric and
magnetic fields, it follows that (V · E) = (V · B) = 0. Thus,
(3) reduces to †

E′ $ γ
(
E +

V
c
× B

)
B′ $ γ

(
B −

V
c
× E

)
.

(5)

Insert (5) into the definition S′ = cE′×B′. Using (4) and then
(1) leads to‡

S′ = cE′ × B′ $ γ2c (E × B)
(
(u2

e/c
2) λ2 − 2λ + 1

)
. (6)

Notice that (6) verifies the statement above that ue is not
the comoving velocity of the energy flow. Setting λ = 1 in (4)
makes V = ue. But setting λ = 1 in (6) makes

S′ $ γ2c (E × B)
(
u2

e/c
2 − 1

)
when λ = 1 (7)

which is not zero, except in the unphysical limit ue = V = c.
For a second and more important use of (6), choose λ to

solve the quadratic equation
(
(u2

e/c
2)λ2 − 2λ + 1

)
= 0. Then

(6) makes S′ = 0. The solution is

λ =
1

(ue/c)2

{
1 −

√
1 − (ue/c)2

}
. (8)

From (4), the correct velocity of the energy flow is therefore

V = λue =
1

(ue/c)2

{
1 −

√
1 − (ue/c)2

}
ue (9)

∗See Section 11.10 of Jackson [7], eqn (11.149).
†Note that V′$V as defined in Appendix A, together with (5) and

property (b) of the symbol $ noted above, imply that (V′ · E′) = V ·
γ [E + (V/c) × B] = γ(V · E) = 0. Similarly, (V′ · B′) = 0.

‡See a detailed derivation of (6) in Appendix B.

where ue is defined in (1).
This V is the relativistically correct boost velocity from

the laboratory frame to the comoving reference frame in
which S′ = 0, and is therefore the laboratory system coor-
dinate velocity of the electromagnetic energy flow§.

Since both V and ue are parallel to the energy flux vector
S, the energy flow velocity can also be written as V = V (S/S )
where the magnitude V is given by¶

(V/c) =
1

(ue/c)

{
1 −

√
1 − (ue/c)2

}
. (10)

This equation can be inverted to give

(ue/c) =
2 (V/c)

1 + (V/c)2 (11)

which can be used to write the correction factor λ in (8) as a
function of the corrected velocity

λ =
1 + (V/c)2

2
. (12)

3 Comoving energy-momentum tensor

The derivation of a reference system comoving with the flow
of energy allows the electromagnetic energy-momentum ten-
sor to be examined in more detail. The energy-momentum
tensor in (2) can be transformed into the comoving (primed)
coordinate system that was produced by the Lorentz boost V.
In this system, the electromagnetic energy-momentum tensor
is represented by the tensor components T ′αβ in which the
cG′i elements are zero.

T ′αβ =


E′ 0 0 0
0 M′11 M′12 M′13
0 M′21 M′22 M′23
0 M′31 M′32 M′33

 (13)

where

E′ =
1
2

(
E′2 + B′2

)
= E

1 − (V/c)2

1 + (V/c)2

and M′i j = −
(
E′i E

′
j + B′i B

′
j

)
+ δi jE

′ .

(14)

We can now make another Lorentz transformation, an or-
thogonal spatial rotation at fixed time, to diagonalize the real,
symmetric sub-matrix Mi j in (13).

The required spatial rotation can be defined as the prod-
uct of two proper rotations. First rotate the coordinate sys-
tem to bring the e′3 axis into the V′ $ V direction. Denote

§Appendix C gives details of the comoving system for possible values
of (E · B) at a given event.

¶Footnote † on page 4 proves that 0 ≤ ue ≤ c. As ue/c increases from 0
to 1, (10) shows that V/c increases monotonically from 0 to 1, with V ≤ ue
at every point. It follows that 0 ≤ V ≤ c also.
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this rotated system by tildes. Rotations do not change three-
vectors, which are invariant objects under rotations. However,
rotations do change the components of three-vectors. Thus
Ṽ = V′, Ẽ = E′, and B̃ = B′, but in the tilde system Ṽ now
has components Ṽ1 = Ṽ2 = 0 and Ṽ3 = V . Then using Foot-
note † on page 5, we have 0 = (E′ · V′) = (Ẽ · Ṽ) = VẼ3.
Since the magnitude V , 0, it follows that Ẽ3 = 0. A similar
argument proves that B̃3 = 0. Thus the {33} component of the
energy-momentum tensor when expressed in the tilde system
is T̃ 33 = −

(
Ẽ2

3 + B̃2
3

)
+ Ẽ = Ẽ. The tensor from (13), when

expressed in the tilde system, becomes

T̃αβ =


Ẽ 0 0 0
0 M̃11 M̃12 0
0 M̃21 M̃22 0
0 0 0 Ẽ

 (15)

where Ẽ = E′.
Since the invariant trace of the electrodynamic energy-

momentum tensor vanishes∗, it follows from (15) that

0 = ηαβT̃αβ = −Ẽ + M̃11 + M̃22 + Ẽ (16)

and hence M̃11 = −M̃22. Also, the symmetry of the energy-
momentum tensor makes M̃21 = M̃12. Thus

T̃αβ =


Ẽ 0 0 0
0 −ψ̃ ξ̃ 0
0 ξ̃ ψ̃ 0
0 0 0 Ẽ

 (17)

where ψ̃ = M̃22 and ξ̃ = M̃12.
A second proper rotation, this time about the ẽ3 axis,

produces the final coordinate system, denoted with double
primes. After this rotation, E′′3 = Ẽ3 = 0, B′′3 = B̃3 = 0,
and V′′ = Ṽ has components V ′′1 = V ′′2 = 0 and V ′′3 = V . The
only effect of this second rotation is to diagonalize the matrix(
−ψ̃ ξ̃
ξ̃ ψ̃

)
. The energy momentum tensor then has its final,

diagonal form in the double-prime system

T ′′αβ =


E′′ 0 0 0
0 −a′′ 0 0
0 0 a′′ 0
0 0 0 E′′

 (18)

where E′′ = Ẽ = E′. The parameter a′′ has absolute value

|a′′| =
{
ψ̃2 + ξ̃2

}1/2
where ±

{
ψ̃2 + ξ̃2

}1/2
are the two eigenval-

ues of the matrix
(
−ψ̃ ξ̃
ξ̃ ψ̃

)
that were calculated during the

diagonalization process. The sign of a′′ depends on the di-
rections and relative magnitudes of the electric and magnetic
fields.

∗See Section 7.8 of Rindler [9].

The rotation that takes the system from the primed to the
double-primed system is then the product of the first and sec-
ond rotations. The various representations of the boost veloc-
ity are related by V′′ = Ve′′3 = Ṽ = Vẽ3 = V′$V where all of
these vectors have the same original magnitude V .

The energy-momentum tensor in the double-prime sys-
tem is diagonal and in a canonical form that depends only on
the energy density E′′ in the comoving system and one other
parameter a′′.

Section 4 shows that there are realistic electromagnetic
cases in which a′′ , 0 and hence the diagonal elements M′′ii
for i = 1, 2, 3 are not all equal, unlike the analogous ele-
ments in the energy-momentum tensor of a perfect fluid†, all
of which are equal by definition, a fact of relevance for future
studies that might attempt a fluid-dynamic model of electro-
dynamic energy flow.

4 Example: crossed static fields

Consider an example with static, perpendicular electric and
magnetic fields.‡ Choose the Cartesian axes of the laboratory
system so that E = E x̂ and B = B ŷ. Then (1) becomes

ue

c
=

(
2E B

E2 + B2

)
ẑ . (19)

The energy flow velocity is thus V = V ẑ where V = λ ue with
λ from (8). Inserting this V into (5) with the above values of
the electric and magnetic fields gives

E′′ $ γ
(
E −

VB
c

)
x̂

B′′ $ γ
(
B −

VE
c

)
ŷ .

(20)

Thus the definitions in (2) when applied in the double-prime
system give M′′i j = 0 for i , j and

M′′11 = −E′′1
2 + E′′ = −

1
2

(
E′′1

2
− B′′2

2
)

M′′22 = −B′′2
2 + E′′ =

1
2

(
E′′1

2
− B′′2

2
)

M′′33 = E′′ =
1
2

(
E′′1

2 + B′′2
2
)
.

(21)

where E′′1 and B′′2 are the components of E′′ and B′′, respec-
tively, in (20).

The step of rotating from primed to double-primed refer-
ence systems that was necessary to move from (13) to (18)
above was not necessary here due to a propitious choice of
original laboratory reference system. The Lorentz boost with
velocity V = V ẑ produces an already diagonal energy mo-
mentum tensor with M′′i j = 0 for i , j.

†See Part I, Chapter 2, Section 10 of Weinberg [16].
‡The center of a parallel plate capacitor at the center of a long solenoid,

for example.
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Consider the case E , B. From (19), this inequality im-
plies that ue < c and hence, from (10), that V < c, a physically
possible value. Also E , B implies, either from the invari-
ance of

(
E2 − B2

)
noted in Appendix C or directly from (20),

that 2M′′22 =
(
E′′1

2
− B′′2

2
)

=
(
E2 − B2

)
, 0. Thus E , B

implies that M′′11 = −M′′22 , 0 and hence that M′′11 , M′′22.
Comparing (21) to (14) and (18) shows that for the cross-

ed-field example with E,B, the energy-momentum tensor in
the double-prime system is (18) with

a′′ =
(
E2 − B2

)
/2 , 0

and E′′ = E
(
1 − (V/c)2

)
/
(
1 + (V/c)2

) (22)

where E =
(
E2 + B2

)
/2.

As asserted at the end of Section 3, the inequality E , B
in the crossed-field example shows a physically reasonable
case for which a′′ , 0 and the M′′ii for i = 1, 2, 3 are not all
equal.∗

There are questions about the interpretation of this exam-
ple globally†. In our use of this example, however, we need
not consider the question of so-called hidden momentum re-
quired to balance the total field momentum‡. Here, the only
relevant use of this example is to illustrate the correct local
definition of the energy flow velocity and comoving energy-
momentum tensor in a vacuum region where the fields are
well known — at the center of the parallel plate capacitor far
from the edges.

5 Relativistic mass density

The energy density E of either static or time-varying vacuum
electromagnetic fields can be used to define a relativistic mass
density§

Mrel = E/c2 . (23)

The adjective relativistic indicates that this mass density is
analogous to a single-particle relativistic mass mrel = γm =

e/c2 where e is the particle relativistic energy, m is the invari-
ant or rest mass of the particle, and γ =

(
1 − v2/c2

)−1/2
is the

Lorentz factor of its velocity v.
It follows from (23) that the flow velocity of the energy

E, the velocity V derived in Section 2 and summarized in (9),
must also be the flow velocity of the relativistic massMrel.

In the single-particle case, the same mrel can be used to
relate the momentum of the particle to its velocity, p = γmv =

∗Our use of this example is based on E , B. The case E = B , 0
would have to be approached as a limit, as discussed in Appendix C (c).
With E , 0 and B = E(1 + δ), retaining leading order in the small quantity
δ gives (ue/c) ≈ (1 − δ2/2), λ ≈ (1 − |δ|), (V/c) ≈ (1 − |δ|), (E′′/E2) ≈
|δ|, (T ′′αβ/E2) ≈ diag(|δ| , δ,−δ, |δ|), and

(
a′′/E2

)
≈ − δ.

†See McDonald [8] for calculation of the total field momentum of a
similar example.

‡See, for example, Babson et al [1].
§For example, see Section 3 of Sebens [13].

mrelv. However in the case of electromagnetic fields, the same
mass densityMrel cannot be used for both purposes.

Due to the correction of the flow velocity in Section 2,
which was necessitated by adherence to the transformation
rules of special relativity, the relation between momentum
density G and corrected flow velocity V is

G =

(
Mrel V
λ

)
,MrelV (24)

where λ is the correction factor in (12).
The inequality in (24) shows that the electromagnetic mo-

mentum density at an event is not equal to the electromag-
netic mass density at that event times the relativistically cor-
rect mass flow velocity there.

The explicit expression for the correction factor λ from
(12) quantifies the extent of the inequality. The effective mass
for momentum calculation is the larger value Mrel/λ rather
thanMrel

¶.
The failure ofMrelV to equal the momentum density G in

(24) suggests that vacuum electromagnetic field momentum
cannot be explained only by the motion of relativistic mass.
There must be another source of real electromagnetic field
momentum.

6 Conclusion

The electromagnetic field contains energy and momentum.
Calculation of the energy flow velocity and energy-momen-
tum tensor in a relativistically correct manner opens the sub-
ject to new insights into that energy and momentum. For
example, the energy-momentum tensor measured by an ob-
server comoving with the flow velocity is obtained in diag-
onal, canonical form suggestive of possible fluid dynamical
models. And the momentum density of the electromagnetic
field is shown to require some source other than the flow of
relativistic mass.

Appendix A: Lorentz boosts

Consider a Lorentz transformation from an unprimed coor-
dinate system (which we also refer to as the laboratory sys-
tem) with coordinates x = (x0, x1, x2, x3) to a primed coor-
dinate system with coordinates x′ = (x′0, x′1, x′2, x′3) where
x0 = ct and x′0 = ct′. The most general proper, homogeneous
Lorentz transformation from the unprimed to the primed sys-
tems can be written as a Lorentz boost times a rotation.‖

Definition of Lorentz boost

A Lorentz boost transformation is parameterized by a boost
velocity vector V with components (V1,V2,V3) and magni-
tude V =

(
V2

1 + V2
2 + V2

3

)1/2
. Using the Einstein summation

¶Note that (24) can be written as G = MeffV where, using (12), (14),
and (23),Meff =Mrel/λ = 2γ2(E′/c2) where γ = (1 − V2/c2)−1/2.

‖See Part I, Chapter 2, Section 1 of Weinberg [16].
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convention, it is written as x′α = Λα
β xβ where Λ0

0 = γ, Λ0
i =

Λi
0 = −γVi/c, and Λi

j = δi j + (γ − 1)ViV j/V2. The δi j is the

Kronecker delta function. Also γ =
(
1 − V2/c2

)−1/2
.

The inverse boost Λα
β is the same except for the substitu-

tion Vi → −Vi. Thus the inverse boost vector is (−V′) where
V′ $ V.

Meaning of the boost velocity V

The velocity V that parameterizes the Lorentz boost is also
the coordinate velocity, as measured from the unprimed labo-
ratory system, of any point that is at rest in the primed system.
In this sense, the entire primed system is moving with veloc-
ity V as observed from the laboratory system.

To see this, apply the inverse Lorentz boost to the differ-
entials of a point at rest in the primed system, dx′i = 0 for
i = 1, 2, 3, but dx′0 > 0. The result is dx0 = γdx′0 and
dxi = γ (Vi/c) dx′0. Thus dxi/dt = Vi, as was asserted.

Consequence of existence of a four-vector G

The discussion surrounding (2) shows that G = (E/c) e0 + G
is not a four-vector, despite being written in four-vector form
here. Its components instead transform as components of the
energy-momentum tensor. But suppose for a moment that it is
a four-vector. If so, then a Lorentz boost with a boost velocity
(ue/c) = G/ (E/c) would make the transformed space part of
G equal to zero.

As applied to a four-vector, the Lorentz boost transforma-
tion rule is G′α = Λα

β Gβ. Hence

G′i = Λi
0G0 + Λi

jG
j

= −γ
Vi

c
G0 + Gi + (γ − 1)

Vi

(
V jG j

)
V2 .

(25)

Replacing Vi/c by (ue)i /c = Gi/G0 in (25) makes G′i = 0, as
asserted.

Appendix B: Detailed derivation of Eq. (6) for S′

We have (1), (4) and (5) and (V · E) = (V · B) = 0. Inserting
(5) into S′ = c (E′ × B′) gives

S′ = cE′ × B′ $ cγ2 {(E × B) + f + g} (26)

where, omitting zero terms,

f = −E ×
(

V
c
× E

)
+

(
V
c
× B

)
× B

= −
(
E2 + B2

) V
c

= −λ
(
E2 + B2

) ue

c

= −λ
(
E2 + B2

) 2 (E × B)(
E2 + B2) = −2λ (E × B)

(27)

and, again omitting zero terms,

g = −

(
V
c
× B

)
×

(
V
c
× E

)
= −

V
c

{(
V
c
× B

)
· E

}
=

V
c

{
V
c
· (E × B)

}
= λ2

{
2 (E × B)(
E2 + B2)} {

ue

c
·

(
E2 + B2

2

)
ue

c

}
= λ2

(ue

c
·

ue

c

)
(E × B) = λ2

(ue

c

)2
(E × B) .

(28)

Collect terms and factor out E × B to get

S′ = cE′ × B′ $ γ2c (E × B)
{(ue

c

)2
λ2 − 2λ + 1

}
(29)

which is (6).

Appendix C: Detail of the comoving system

The comoving system is defined by S′ = c (E′×B′) = 0. Thus
|E′ × B′| = E′B′ sin θ′ = 0 where θ′ is the angle between E′
and B′ in the comoving system.

From Eqs (7.62) and (7.63) of Rindler [9], we have
(
E′2−

B′2
)

=
(
E2 − B2

)
and (E′ · B′) = (E · B). It follows that:

(a) An event with E · B , 0 has E′B′ , 0 and therefore
E′ and B′ must be either parallel or anti-parallel, θ′ = 0 or
θ′ = π, at this event;

(b) An event with 0 = (E · B) = (E′ · B′) = E′B′ cos θ′

cannot have E′B′ , 0 in the comoving system because that
would require both cos θ′ = 0 and sin θ′ = 0. Thus E′B′ = 0
and one of E′ and B′ must be zero. If E > B then E′ > B′ and
hence B′ = 0. If E < B then E′ < B′ and hence E′ = 0;

(c) If both 0 = E · B and E = B , 0 at an event, then both
E′B′ = 0 and E′ = B′, and therefore E′ = B′ = 0. But (1)
and (10) show that such an event also has ue/c = 1 and hence
V/c = 1. The case E = B , 0 and 0 = E ·B therefore must be
approached as a limit.

Received on Sept. 23, 2020
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Emissivity is a fundamental property of matter that measures the ratio of the thermal
radiation emanating from a thermodynamic surface to the radiation from an ideal black-
body surface at the same temperature and it takes values from 0 to 1. This property is
not a theoretically derived thermodynamic property of matter, but a posteriori justified
property that is derived from experiments after its need was found necessary in order to
balance up the theoretically expected radiation of a black-body at the same temperature
to that actually measured in the laboratory for a material body at the same temperature.
From a fundamental theoretical stand-point, we argue herein that emissivity may arise
due perhaps to the existence of non-zero finite lower and upper cut-off frequencies in the
thermal radiation of matter, thus leading to material bodies emitting not all the radiation
expected from them when compared to equivalent black-body surfaces. We demonstrate
that a non-zero lower limiting frequency is implied by the refractive index of materials,
while an upper limit frequency is adopted from Debye’s (1912) ingenious idea of an
upper limiting cut-off frequency which arises from the fact that the number of modes of
vibrations of a finite number of oscillators must be finite.

1 Introduction

Emissivity is a fundamental, intrinsic and inherent property
of all known materials. Commonly, one talks of the emis-
sivity of solid materials and as such, emissivity is a property
typically associated with solids. In reality, all forms (solid,
liquid, gas) of matter exhibit this property. In general, the
emissivity of a given material is defined as the ratio of the
thermal radiation from a surface to the radiation of an ideal
black surface at the same temperature. As presently obtain-
ing, this important property of matter – emissivity – has no
fundamental theoretical justification – it is an experimentally
derived property of matter. This article seeks to lay down a
theoretical framework and basis that not only justifies the ex-
istence of this property of matter, but to investigate this from
a purely theoretical standpoint.

To that end, in the present article, we conduct an initial
forensic analysis of the modern derivation of the Planck Ra-
diation Law (PRL) [1–3]. In this analysis, we identify two
loopholes in the derivation of the PRL, and these are:

1. Dispersion Relation Problem: The dispersion relation as-
sumed in the PRL is that of a photon in a vacuo, i.e.:

E = pc0, (1)

where: (E, p) are the (kinetic) energy and momentum of the
photon in question, and: c0 = 2.99792458 × 108 m s−1 is the
speed of light in vacuo (2018 CODATA∗). This Eq. (1), is
what is used in the derivation of the PRL in relation to the
energy and momentum of the photon in the interior of mate-
rial bodies. Without an iota of doubt, the interior of material

∗https://physics.nist.gov/cgi-bin/cuu/Value?c

bodies is certainly not a vacuo. This means that the disper-
sion relation (1) is not the appropriate dispersion relation to
describe these photons generated therein material bodies. We
need to use the correct equation – i.e. by replacing (1) with:

E = pc, (2)

where: c = c0/n; and here: c, is the speed of light in the
material (medium) whose refractive index is n and n: 0 < n <
1. This is the first correction to the PRL that we shall conduct.

2. Limits Problem: The second correction has to do with the
lower and upper limits in the integral leading to the PRL. As
one will notice (and most probably ignore) is that the deriva-
tion leading to the PRL does not have a finite upper limit
(i.e. νH = ∞) and at the same time, this same integral has
a lower bound limit of zero (i.e. νL = 0). What this means
is that the photons emitted by material bodies have wave-
lengths in the range – zero (νL = 0) to infinity (νH = ∞).
A zero frequency photon implies zero kinetic energy and an
infinite frequency photon implies an infinite kinetic energy of
the photon. The lower bound frequency (νL = 0) has serious
problems with Heisenberg’s uncertainty principle [4], while
the upper infinite frequency (νH = ∞) has obvious topologi-
cal defects with physical and natural reality as we know it.

Using the above two points of critique in the derivation of the
PRL, we shall advance a thesis which seeks to demonstrate
that, it is possible in principle to justify from a physical and
fundamental theoretical level the existence and the need of
the emissivity function of a material. There is no such effort
in the present literature where such an endeavour has been
attempted – this, at least is our view point derived from the
wider literature that we have managed to lay our hands on.
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Now, in closing this introductory section, we shall give a
synopsis of the remainder of this article. In §2 and §3, for
self-containment, instructive and completeness purposes, we
present an exposition of the Planck radiation theory and the
derivation of the Stefan-Boltzmann Law respectively, where
emphasis is made on the two points of critique to the Planck
theory that we made above. In §4, we present our deriva-
tion. In §5, a general discussion is presented. Lastly, in §6,
in a rather succinct manner, the conclusion drawn from the
present work is laid down.

2 Planck radiation theory

As was presented in the first article of this series [5], we shall
make the derivation of the PRL our point of departure. We
know that the number of quantum states dN in the momentum
volume space d3 p and physical volume space V , is given by:

dN =
2Vd3 p

h3 , (3)

where: h = 6.62607015× 10−34 J s is Planck’s constant (2018
CODATA∗). The factor 2 in (3) comes in because of the num-
ber of degrees of freedom of the photon: one for traverse and
the other for longitudinal polarisation – i.e. the photon has
two polarization states. Now, given that: d3 p = 4p2dp, it
follows that:

dN =
8πV p2dp

h3 , (4)

and further, given that for a photon of momentum pγ, energy
Eγ and frequency ν, its energy-momentum is such that: pγ =

Eγ/c0 = hν/c0, it follows from this, that the number of modes
in the frequency interval: ν to ν + dν is:

dN =

8πV
c3

0

 ν2dν. (5)

The actual number of occupied states dn is such that dn =

fBE(ν,T ) dN where:

fBE(ν,T ) =
1

ehν/kBT − 1
, (6)

is the Bose-Einstein probability function which for a temper-
ature T , gives the probability of occupation of a quantum
state whose energy is Eγ = hν and: kB = 1.38064852(79) ×
10−23 J K−1 is the Boltzmann constant (2018 CODATA†).
From the foregoing:

dn∗ =
8πV
c3

0

ν2dν
ehν/c0hBT − 1

, (7)

leading to the energy density: Bν(ν,T )dν = Eγdn∗/V , now
being given by:

Bν(ν,T )dν =
8πh
c3

0

ν3dν
ehν/kBT − 1

, (8)

∗https://physics.nist.gov/cgi-bin/cuu/Value?h
†https://physics.nist.gov/cgi-bin/cuu/Value?k

where: Bν(ν,T ) is the spectral irradiance given in terms of ν:
(8) is our sought-for PRL.

3 Stephan-Boltzmann law

Now, to derive the Stefan-Boltzmann Law (SBL) from (8),
we start by setting: x = hν/kBT . This setting implies that:
dν = kBTdx/h, thus substituting this into (8), we then have:

Bν(ν,T )dν =
8πk4

BT
4

h3c3
0

x3dx
ex − 1

. (9)

From the foregoing theory, the total energy density Etheo radi-
ated per unit time by a radiating body is such that:

Etheo =
c0

4

∫ νH=∞

νL=0
Bν(ν,T )dν,

=
2πk4

BT
4

h3c2
0

∫ ∞
0

x3dx
ex − 1

,

(10)

and given that:
∫ ∞

0 x2dx/(ex − 1) = π4/15, it follows that the
SBL will thus be given by:

Etheo = σ0T
4, (11)

where one can most easily deduce that the fundamental and
universal constant – the Stefan-Boltzmann constant: σ0 =

2π2k4
B/15h3c2

0. In terms of its actually experimentally mea-
sured value: σ0 = 5.670374419×10−8 W m−2 K−4 (2018 CO-
DATA‡).

Written as it appears in (11), the SBL is not compatible
with physical and natural reality as it needs to be supple-
mented with a new term – namely the emissivity ε, i.e.:

Eexp = εσ0T
4. (12)

The above result is what one gets from experiments. We shall
derive the emissivity function: ε = ε(ν,T ) from the funda-
mental soils of theory.

4 Derivation

In this section, we shall in two parts, i.e. §4.1 and §4.2, de-
rive a relation that connects the emissivity function with the
refractive index of the given material and both the upper and
lower limits in the energy of the photon.

4.1 Dispersion relation problem

In the derivation of the PRL, i.e. (8), and as well as the SBL,
i.e. (11), we have used the vacuo dispersion relation (1) for
the photon. As stated in the introductory section, this is not
correct as one is supposed to use the correct non-vacuo pho-
ton dispersion relation (2). If we do the correct thing and

‡https://physics.nist.gov/cgi-bin/cuu/Value?sigma
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instead use (2) in the derivation of the PRL, instead of the
PRL given in (8), we will obtain the new revised PRL:

Bν(ν,T )dν =
8πh
c3

ν3dν
ehν/kBT − 1

,

=
8πh
c3

0

n3ν3dν
ehν/kBT − 1

.

(13)

The difference between (13) and (8), is the introduction of the
refractive index, n.

Now, from this new PRL (13) together with the correct
non-vacuo photon dispersion relation (2), one obtains the fol-
lowing refractive index modified SBL:

Eexp =
c0

4

∫ νH

νL

cBν(ν,T )dν
c0

=
c0

4

∫ νH

νL

Bν(ν,T )dν
n

, (14)

where in (14), we have not set the limits (νH = ∞; νL = 0),
but have left this as a task to be dealt with in §4.2.

Now – proceeding to institute in (14) the substitution:
x = hν/kBT , and remembering that the refractive index n is a
function of ν and possibly T as well (i.e. n = n(ν,T ) = n(x)),
it follows that (14) will reduce to:

Eexp = σ0T
4
∫ xH

xL

15
π4

x3n2(x)dx
ex − 1

. (15)

With Eexp now written as it has been written in (15), one can
reasonably identify the emissivity function as:

ε =
15
π4

∫ xH

xL

x3n2(x)dx
ex − 1

= ε(x) = ε(ν,T ). (16)

In this way, the emissivity has not been introduced as a result
of an experimental requirement, but foisted by subtle theo-
retical requirements to do with the (obvious but neglected)
shortcomings stated in the introduction section.

Our intention in the present article is not to investigate this
newly-derived emissivity function (16), but merely to make a
statement to the effect that the emissivity function can be de-
rived from the fundamental soils of theoretical physics. We
shall slate for the next installation, the task to test the emis-
sivity function (16) against real data. In the subsequent sub-
section, we will now deal with the issue of the limits in the
integral (16).

4.2 Limits problem

As stated previously, a photon frequency of zero (i.e. photon
with zero energy) does not make sense especially in the face
of Heisenberg’s [4] uncertainty limit. To obtain a reasonable
estimate of this, one can appeal to logical reasoning by simply
asking the question: What is the largest wavelength of a pho-
ton that can travel in a medium with a mean inter-molecular
spacing: ` = `(T )? We know that the speed of our photon is c
and that this speed is such that it is equal to: λν, where λ is the

wavelength of our photon. In order for the smooth passage of
the photon in such a medium, it is reasonable to assume that
the wavelength of the photon be at most equal to one half of
the mean spacing of the given medium, i.e. λmax = `/2. Given
that: c = λν, it follows that we must have: νL = 2c0/n`.

Now, in establishing the upper limiting frequency that
must enter the integral leading to the PRL, we will use the
reasoning already laid down by Debye [9]. As is well known,
in November of 1907, Einstein [10] proposed the first rea-
sonably good model of the Heat Capacity of a Solid that em-
ployed the then nascent concept of quantization of energy.
Einstein’s [10] motivation was really not to propose a rigor-
ous working model of a solid but to promote the then strange
Quanta Hypothesis that had been promulgated earlier by
Planck [1–3] and had been given breath to by him in his land-
mark and 1921 Nobel Prize winning 1905 explanation of the
Photoelectric Effect [11].

In his model of a solid, Einstein [10] made three funda-
mental assumptions: (1) Each atom in the lattice is an inde-
pendent 3D quantum harmonic oscillator and the energy of
this oscillator is quantized, (2) All atoms oscillate with the
same fundamental frequency of vibration and (3) The prob-
ability of occupation of any given microstate is given by the
Boltzmann thermodynamic probability. In summing up (in-
tegrating) all the energies of these oscillators, Einstein’s os-
cillators have a minimum of zero frequency and an infinity
frequency for a maximum frequency. While Einstein’s [10]
model gave a reasonably good fit to data, Debye [9] realized
that Einstein’s limits of integration where non-physical, espe-
cially the upper limiting frequency: νH = ∞. So, in construct-
ing a revised (modified) version of Einstein’s [10] model, De-
bye [9] had to correct this by limiting the upper frequency νH.

Debye [9] required that for the N oscillators – each with
three degrees of freedom – the sum total of the modes of vi-
bration must equal 3N. That is to say, if g(ν) is the density of
states, then: ∫ νH

νL

g(ν)dν = 3N. (17)

Debye [9] set: νL = 0 because in reality: νL ' 0 and keeping
νL as non-zero in his model did not bring in any significant
improvement to the model, so he simply set this equal zero.
Thus from (17), Debye [9] could calculate νH, and this maxi-
mum frequency one obtains from this calculation is known as
the Debye frequency and symbolized νD.

For the photons under probe (in the present article), the
density of states: g(ν) = dN/dν can be calculated from (5)∗,
and so doing one obtains: g(ν) = 8πVν2/c3. Since a photon
has two degrees of freedom, accordingly, N photons will have

∗The reader must remember to substitute c in place of c0 because in the
foregoing calculation, we have disposed of the vacuo dispersion relation (1),
and adopted the non-vacuo dispersion relation (2).
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2N degrees of freedom, hence:∫ νH

νL

8πVν2dν
c3 =

8πV
c3

0

∫ νH

νL

n3(ν,T )ν2dν = 2N. (18)

Since νL is known, νH can be known if n(ν,T ) is known. In
the present article, we have no intention of evaluating the
model, i.e. (16) and (18), that we have just set because we
are yet to make further modifications where we shall include
possible non-zero photon mass effects. For now, all we want
to do is to show that one can demonstrate from a most funda-
mental level, that the emissivity function ε can be furnished
with solid theoretical foundations rather than have this func-
tion as an experimental construct with no solid fundamental
theoretical basis.

5 Discussion

The main aim of this paper has been to seek a fundamental
and foundational basis and justification for the existence of
the emissivity property of matter from the soils of fundamen-
tal theoretical physics. We are of the view that the grounds
for such an endeavour have herein been set. Our final the-
oretically derived expression for the emissivity is given in
(16). This expression we arrived at by revising the traditional
derivation of the PRL as articulated in the introduction sec-
tion. This emissivity function, i.e. (16), here derived has three
free parameters associated with it and these parameters are:

1. The lower cut-off frequency: νL. The meaning of which is
that there exists in this material medium in question, a Lower
Cutoff Frequency (νL) below which frequency the body does
not emit.

2. The upper frequency: νH. The meaning of which is that there
exists in this material medium in question, an Upper Cut-
off Frequency (νH) above which frequency the body does not
emit.

3. The refractive index: n of the given material.

Of these three free adjustable parameters, the refractive in-
dex is less free as an adjustable parameter as there are already
experimentally verified models of this quantity (see e.g. [12–
14]). However, the lower (νL) and upper (νH) frequencies can
be fixed to suit the given material, thus one can in principle fit
the emissivity function (16) to the experimentally measured
emissivity of a given material medium. When we say one can
in principle fit the emissivity function (16) to the experimen-
tally measured emissivity of a given material medium, we do
not mean in an arbitrary manner, but that one will have to
work out a realistic model that leads to a theory that fits to the
data. In closing, allow us to say that in our next instalment, an
attempt to fit the herein derived emissivity function, i.e. (16),
to real data will be made.

6 Conclusion

Without the dictation of experience, it is possible in principle
to justify by way of solid physical arguments and from a bona

fide fundamental theoretic level, the existence and the need of
the emissivity function for natural material.
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Remark to Approach to the Schwarzschild Metric
with SL(2,R) Group Decomposition

Alexander Kritov
E-mail: alex@kritov.ru

1 Remark to Section 5

1. The SL(2,C)∗ group definition. Let thegroup SL(2,C)∗

be a subgroup of SL(2,C) with an element Z′ ∈ SL(2,C)∗

such as

Z′ =
{[

a1 a2
a3 a4

]
: a1, a4 ∈ Re, a2, a3 ∈ Im, det(Z′) = 1

}
.

The definition reflects the general Jacobian matrix form as
given by (12) in [1].

2. The proof of the isomorphism of SL(2,C)∗ to SL(2,R).
The mapping (13) in [1] can be equivalently defined by the
function that sends element of Z′ ∈ SL(2,C)∗ to Z ∈ SL(2,R)

Z = T · Z′ · T−1

where

T =
[ √
−i 0
0

√
i

]
T−1 =

[ √
i 0

0
√
−i

]
det(T) = 1.

The function is clearly a group homomorphism since

T · Z′1 · Z
′
2 · T

−1 = T · Z′1 · T
−1 · T · Z′2 · T

−1 = Z1 · Z2

for all Z1,Z2 ∈ SL(2,R). It is obviously surjective. At last, as
the inverse mapping

Z′ = T−1 · Z · T

that sends any element of SL(2,R) to SL(2,C)∗ is well defined
it proves the injectivity. Hence, as a bijective homomorphism
is shown, it finalizes the proof of SL(2,C)∗ � SL(2,R) men-
tioned in Section 5.

2 Corrections

The typo in the expression (10). The expression should
evidently read with cosh2(β) as follows

gµν =

 −
(
1 − v2

)
0

0
(
1 − v2

)−1


=

[
−cosh−2(β) 0

0 cosh2(β)

]
.

(10)

Section 5. A more appropriate notation for the Lorentz/
Minkowski basis for SL(2,R) is R1(2) as the group consists of
the real numbers.
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The Substantive Model of the Proton According to J. Wheeler’s
Geometrodynamic Concept

Anatoly V. Belyakov
E-mail: belyakov.lih@gmail.com

The review article presents the proton structure in accordance with the model based
on a mechanistic interpretation of Wheeler’s geometrodynamics. It is shown that this
model gives a physically justified interpretation of the concepts introduced in quantum
chromodynamics, such as “quark”, “color”, and also excludes the problem of confine-
ment and others. The main parameters of the proton are calculated, namely: its mass,
magnetic moment, lifetime, the proton-neutron mass difference, and also an analytical
formula for its radius is derived. Typical lifetimes for various classes of elementary par-
ticles have been determined. Successful usage of the model gives reason to assume the
model can be used for development a more rational theory of strong interactions instead
of QCD.

1 Introduction

The internal structure of elementary particles, in particular
of the proton, and their interactions with each other are con-
sidered in the theory of strong interactions (quantum chro-
modynamics). In QCD, there are no complete substantive
models of the physical systems under consideration; instead,
idealized virtual particles and quasiparticles (quarks, gluons)
are introduced, as well as the concepts of an abstract image
(“color”) are appealed. QCD is based only on the observed
properties of hadrons. It is assumed, that in hadrons inter-
action processes the numerous laws of conservation and re-
distribution (the amount of matter, energy, momentum, an-
gular momentum, electric charge, magnetic flux and others)
must simultaneously be fulfilled and various conditions must
be observed.

In the absence of essential real models of elementary par-
ticles, the standard theory uses the approach of quantum me-
chanics: the properties of quarks and hadrons are simply de-
scribed using wave functions and unitary symmetry combina-
torics. The combination rules has formally been derived us-
ing the mathematical apparatus of quantum field theory and
confirmed by experiments (there are 17 parameters that can-
not be derived from the theory). However, it is not known
why their physical nature is exactly this. In particular, it is
not known why quarks can exist only in a bound state (“con-
finement”), which is recognized as one of the seven problems
of the millennium.

This article shows the possibility of replacing the abstract
QCD concepts applied to elementary particles with the parti-
cles real physical parameters. In contrast to the quantum the-
ory, which states that micro-phenomena cannot be understood
in any way from the point of view of our world scale, the
mechanistic interpretation of Wheeler’s idea first of all pre-
supposes the presence of uniform or similar natural laws that
are reproduced at different scale levels of matter. These laws,
or at least their macroanalogues, are revealed in the structure

of elementary particles. Therefore, there is reason to believe
that the model based on Wheeler’s idea can be used to con-
struct a more rational theory of strong interactions instead of
QCD.

2 On the macroanalogues

According to Wheeler’s concept charges are considered as
singular points on a three-dimensional surface, connected by
a “wormhole” or vortex current tubes of the drain-source type,
forming a generally closed contour, which a physical vacuum
or some medium circulates along. From a purely mechanistic
viewpoint the charge is proportional to the momentum of this
medium in its motion along the vortex current tube contour,
the spin, respectively, is proportional to the angular momen-
tum of this medium relative to the contour longitudinal axis,
while the magnetic interaction of the conductors is analogous
to the forces acting between the current tubes.

The work [1] shows the possibility and expediency of
introducing the “Coulombless” system of units and replac-
ing the Coulomb with momentum. This approach allows us-
ing of well-known physical macroanalogues. The space and
medium unit elements in the model are: an element with an
electron mass me and size re and a vortex tube with a linear
density ε0 = me/re.

Microparticles are likened to vortex formations in an ideal
liquid, where a vortex funnel (conditionally it is a surface X)
is a fermion analogue with mass mx, and a vortex thread in
depth below the surface (conditionally it is a region Y) is a
boson analogue with mass my, length ly, radius r, and periph-
eral speed v. The vortex thread, in turn, is capable of twisting
into a spiral forming subsequent structures (current tubes). In
a real medium, these structures oscillate, transforming into
each other (oscillation of oscillators); it is assumed that this
is accompanied by the “packing” of the bosonic thread into
a fermionic form. Apparently, fermion particles retain the
bosonic part with half spin, which determines their magnetic
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and spin properties, and in the bosonic form the spin is re-
stored to an integer value.

By the well-known physical analogy, the vortex tube of
a contour, crossing over the surface of a liquid, creates ring
waves or contours of the next order. Thus, interconnected
contours are formed. Therefore, any particle seems to have
two quantum numbers, depending on how one consider it: as
a fermion (the analog of the proton being part of the greater
contour of the subsequent family of particles) or as a bo-
son (the mass of the contour of the previous family of par-
ticles). Thus, three generations of elementary particles as
shown in [2] to form and there cannot be more. The mi-
croparticle itself is no longer considered as a point object and
is characterized by the parameters of its own contour with a
quantum number n.

The parameters of a bosonic vortex thread (or a contour
with mass M) are determined in dimensionless units: in the
fractions of the electron mass me, its classical radius re, and
the speed of light c:

my = ly = (an)2, (1)

v =
c1/3

0

(an)2 , (2)

r =
c2/3

0

(an)4 , (3)

where a is the inverse fine structure constant, c0 is the dimen-
sionless light velocity c/[m/sec].

In [3] a closed proton-electron contour is considered.
From the condition of equality of the medium motion energy
along the contour Mv2 and the ultimate electron energy mec2

the charge numerical value as the vortex current tube momen-
tum and the projection angle value are determined. The pro-
jection angle value turned out to be complementary to the
Weinberg angle qw ≈ 28.7◦. Such a contour is “standard”
and has parameters: the main quantum number n = c1/3

0 /a =

4.884, mass M = c2/3
0 = 4.48 × 105, and the charge value

(momentum)

e0 = mec4/3
0 cos qw× [m/sec] = 1.602×10−19 kg×m/sec. (4)

One can state therefore that the vortex current tube is
formed by three vortex threads rotating around the common
longitudinal axis. These threads are finite structures. They
possess, by necessity, the right and left rotation; the last
thread (it is evidently double one) possesses summary null
rotation. These threads can be associated with vector bosons
W+, W−, Z0.

For the rotating unidirectional currents vortex threads
with the condition of the magnetic and inertial (centrifugal)
forces equilibrium their peripheral velocity v0 is derived. If
there are unit parameters, then it is true [2]:

v0 =
re

(2π)1/2 × [sec]
= 1.124 × 10−15 m/sec. (5)

This speed does not depend on the vortex threads length
and on the distance between them. Thus, having some def-
inite mass and length, bosonic vortex tubes do not have a
certain configuration and shape. The latter indicates the dif-
ference between bosonic vortex tubes and their physical ana-
logue; this is also the physical reason for their difference from
fermions in that bosons do not obey the Pauli exclusion prin-
ciple.

3 The proton and its parameters

With the extremely dense packing of a bosonic thread into a
fermionic form, as shown in [2], the proton and electron own
quantum numbers have the following values:

np =

(
2c0

a5

)1/4

= 0.3338 , (6)

ne =

(
2c0

a5

)1/8

= 0.5777 . (7)

It was found that the relative mass of any fermion mx with
an arbitrary quantum number nx is determined by the ratio:

mx =

(
ne

nx

)14

. (8)

For a proton, as it turned out (with slight simplifications),
its fermionic and boson masses are equal, mx = my = 2090,
which is the reason for its minimum baryon mass and its sta-
bility. When corrected by the Weinberg angle cosine, the pro-
ton relative mass is determined quite accurately, i.e. mp =

2090 × cos qw = 1836.
The charged particle included in a circulation contour is

the place where a medium flow intersects the boundary be-
tween X- and Y-regions; there occurs a phase transformation.
In this case, the fermionic and boson densities become equal,
and the parameters of the medium acquire density and veloc-
ity critical values. The values of these critical parameters can
be attributed to some quasiparticle — a quark that exists only
in the phase transition region, which in fact is the part of the
proton mass obtaining critical parameters. Moreover, in order
to comply with the critical parameters at the standard contour
energy mec2, it is necessary to split the general contour cur-
rent in the proton region into three parts (calculated value is
3.2). Under these conditions, the total quark mass mk is 12.9.
At the same time, as shown in [2] and [4], this mass depends
on the interaction conditions and can take a minimum value
equal to the electron mass.

In addition, the conditions for the flow continuity and
charge constancy in any cross section of the contour (there
must be three current lines) require the reverse circulation
currents in the proton region to arise, which can be inter-
preted as the presence of zones with different charge signs in
the proton. Using the minimal number of non-recurrent force
current lines, one can schematically express current lines in a
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Fig. 1: A scheme of the proton: distribution of the current lines
inside the proton.

proton in an unique way, as shown the Fig. 1. As seen, there
exist two critical sections with a conditionally plus current
(on the scheme up) and one section with a conditionally mi-
nus current (on the scheme down), where three current lines
correspond to a general current in the scheme. Consequently,
the proton fermionic surface for an external observer is as
follows: the regions where force lines intersect the critical
sections on the line 0–0 inside a proton will be projected onto
the proton surface in the form of +2/3, +2/3, −1/3 of the total
charge in according to the number and direction of the force
lines crossing this surface. It would be more correct to as-
sociate quarks not with critical sections, but with stable ring
currents containing, as follows from the diagram, one or two
closed unit contours intersecting the critical sections.

Obviously, the proton parts in the critical sections have
the velocity c and radius re, and they must have the bosonic
vortex tubes of such length ly that their own momentum
would be equal to the momentum (charge) of an electron e0.
Assuming that the vortex tube linear density for critical con-
ditions is proportional to the average quark mass 1

3 mk, we can
write:

1
3

mk
me

re
lyrec = e0 . (9)

Bearing in mind that in a “Coulombless” system the
charge has the dimension of momentum and substituting the
known parameter values, we find ly = 136.4. Thus, the rel-
ative bosonic part length is actually equal to a, its unexcited
mass is ame, respectively, the vortex tube angular momentum
(spin) is equal to amecre = h/2π = ~. Thus, the structures
inside the proton are found with the relative length ly and bo-
son mass my, numerically equal to a, and the spin, equal to
~. Apparently, there are pairs of such boson tubes with the
mass equal to that of a pion and with the counter-directional
rotation that compensates for the spin. Depending on the cur-

rents impulse direction, they can form the pions family or be
part of other mesons, which are supposed to exist in the close
environment of protons in the form of a virtual meson “coat”.

The magnetic moment of the proton µp in this model is
calculated in accordance with its definition, where µp is the
product (charge × velocity × path) and is determined by the
bosonic configuration of the proton. The peripheral speed of
the vortex threads relative to the Y-axis is v, the path is πr.
Revealing v and r through (2) and (3), we finally get:

µp =
πc0e0cre

(anp)6 = 1.39 × 10−26 Am2. (10)

For an electron, the path is the Bohr radius, and (10) takes
the form:

µe =
πc0e0cRB

(ane)6 = 9.30 × 10−24 Am2. (11)

Only closed current lines remain in the neutron. The mag-
netic moment of the neutron equals two thirds of the pro-
ton’s magnetic moment, i.e. proportional to the number of
intersections of the critical sections by current lines (six in-
stead of nine, existing in a proton, see Fig. 1) and is equal
to −0.92 × 10−26 Am2. Naturally, the magnetic moment sign
changes in addition, because three positive open current lines
are removed. The obtained values differ slightly from the ac-
tual ones, since the parameters np and ne are determined with
some simplifications.

The neutron-proton mass difference arises due to the ac-
quisition of additional mass-energy by the neutron when the
proton absorbs the electron. In [2] it was assumed that in
the proton-neutron transition state one of the quark contours
is located at the intersection of X–Y regions, and, becoming
axisymmetric, increases itself to the maximum value mmax.
In this case, keeping in mind (1) and (3), its parameters are
ly = r = c2/9

0 = mmax = 76.5. The difference between the ki-
netic energies of rotation of the excited contour and the initial
quark contour with an average mass 1

2 mk should correspond
(when corrected by the cosine of the Weinberg angle) to the
proton-neutron mass difference ∆m:(

mmaxv
2
max −

1
2

mkv
2
k

)
cos qw = ∆m. (12)

Indeed, proceeding from their relative masses 76.5 and
12.9/2 and calculating their quantum numbers and velocities
by (8) and (2), as a result, after substituting all quantities in
(12), we find ∆m = 2.51, which coincides with the actual
value (2.53).

The exact size of the proton was determined in recent ex-
periments [5]. It is significant that within the framework of
this model, which does not use a complex mathematical appa-
ratus and, in fact, is not a physical and mathematical model,
but rather is a physical and logical one, it was possible to
obtain an analytical formula for the proton size, proceeding
from general laws only.
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So, in [6] it was found that a single contour or a vortex
tube having the momentum equivalent to the electron charge
contains ni = 3 single vortex threads, and the formula is ob-
tained:

ni =

{(
mec2/3

0 re

)
/
(
(2π)1/2 × [sec2]

)}1/3{
(2π)1/2γm2

e/r2
e
}1/3 = 2.973 ≈ 3. (13)

The formula is the cubic root of the ratio of the inertial
forces, arising during the acceleration of the standard bo-
son contour mass and acting towards the periphery (the value
re/

(
(2π)1/2 × [sec]

)
is the rotation speed of the vortex threads

relative to the contour longitudinal axis), to the gravity forces
acting between masses of the size me at the distance re. The
numerator is a constant value, so the formula depends only on
the gravity forces, that is, on the interacting masses and the
distance between them. It was shown in [4] that this ratio (or
its modification for arbitrary m and r) can serve as a coupling
constant equivalent, since it indicates the strength of bonds
between the proton structure elements (quarks).

Moreover, it is the equality of these forces that determines
the proton radius rp and makes it possible to obtain an ex-
act analytical formula under the condition mk = me. Let us
specify formula (13) under the assumption that the quarks are
located at the corners of a regular triangle and that each of
them is affected by the sum of two projections of forces, and
also take into account that rp is the size of the circumscribed
circle. Then the formula is written in the form of equality of
the dynamic and gravitational forces:

mec2/3
0 re

2π × [sec2]
=

2 sin 60◦γm2
e

(rp sin 60◦)2 , (14)

whence we get:

rp =
(8πγε0)1/2 × [sec]

31/4c1/3
0

= 0.836 × 10−15 m, (15)

which exactly coincides with the proton charge radius value
obtained in the recent experiments (0.833 femtometers, with
an uncertainty of ±0.010 femtometers [5]). Thus, the boson
mass of the standard contour, which is in the Y region and
is, as it were, hidden, having the value mec2/3

0 , determines
not only the proton charge and spin, but also its radius. Note
that this radius is determined for the proton in the hydrogen
composition, but not for a single proton, where it can have a
greater value. It is important that the formula (15) contains
the gravitational constant; in papers [2, 7, 8] the necessity of
introducing gravity into the microcosm is shown, in particu-
lar, to determine the neutrino mass.

Thus, there is a sufficient set of parameters for the pro-
ton internal structure to describe the strong interaction. The
concepts of fractional charge, quarks and color find here their
physical representation. Indeed, there are two different ring

currents or circuits (quarks u and d), the force lines of which
are projected onto the proton outer surface in the form of frac-
tional charges, and three different critical sections (“colored”
quarks). Moreover, as the contour currents can be directed
in the opposite direction, forming antiquarks, so the vortex
tubes in the critical sections can have the opposite direction
of rotation, creating an “anticolor”. It is obvious that the pro-
posed proton structure in the form of a field lines unique con-
figuration no longer requires the confinement existence and,
consequently, the filling of the proton region with the “sea”
of virtual quarks and gluons.

In fact, the concept originating from the hydrodynamics
of a continuous inviscid media is proposed here and this anal-
ogy turned out to be correct. Moreover, it has been estab-
lished that the light velocity can be calculated by the equation
describing the wave propagation on a liquid surface [9].

4 On the elementary particles lifetime

The microparticles decay probability and their lifetimes de-
pend on many factors. The most important of them is the
type of interaction (electromagnetic, weak, strong), which is
responsible for the decay that occurs. The lifetimes of el-
ementary particles differ extremely strongly: 10−6 . . . 10−25

seconds, at that most of them are grouped according to their
lifetimes in rather narrow intervals. This model has objec-
tive parameters that allow one to estimate the microparticle
various classes lifetime. Further there are calculated values,
in general, corresponding to the average lifetimes for these
classes.

The microparticle lifetime t (except for resonances and
W, Z bosons) can be estimated as the time it takes to run
around with a velocity v over the entire “stretched” contour
length [7]:

t =
a8n8

c0

re

c
. (16)

But W, Z bosons and resonances decay even before the
final spiral structure is formed, i.e. they are, as it were, not
completely particles. W, Z bosons have the shortest decay
time, and it is determined by the time it takes to run with the
speed of light around the electron vortex tube with the radius
r. Bearing in mind (3),

tmin = π
re

c
c2/3

0

(ane)4 = 3.4 × 10−25 sec. (17)

For numerous resonances the lifetime correlates well with
the run time with the light velocity of the contour radius ly/2π.
Since ly = my, then

t =
myre

2πc
. (18)

For example, for Y , J/Ψ, η-particles with masses my =

19700, 6056, 1074 values t = 2.95 × 10−20, 0.91 × 10−20,
0.30 × 10−20 seconds.
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In the group of heavy hadrons, particles contain unsta-
ble heavy quarks, and they decay through rapid weak decays.
Then, in formula (16) for a weak decay n must be minimal,
i.e. equal to 1.643 [7], and t = 2.1 × 10−13 seconds.

Light and “strange” hadrons are more stable, and in for-
mula (16) the parameter n should have the value of its own Y-
contour [4]. For a group, on average, n ≈ 3.5, and t ≈ 10−10

seconds.
Particles that decay due to strong interaction, for example

η and π0-particles, live only within the proton or electron own
contours. Therefore, for them, when substituting the values
of np and ne in (16), the values of t is about 6 × 10−19 and
5 × 10−17 seconds.

Finally, during the electromagnetic decay of light charged
particles (pions, kaons) the contour with large n and, accord-
ingly, with the largest value of t manages to form.

As for the neutron lifetime, it is assumed [2] that the neu-
tron loses the acquired mass-energy ∆mc2 gradually with
fractions of mev

2c2 for a time per each fraction equal to the
vortex threads rotation period inside the current tube re/v0.
Bearing in mind (2) and (5), we obtain the duration of the
total energy dissipation by the neutron:

t = (2π)1/2 ∆m
cos qw

a4n4
e

c2/3
0

× [sec] = 629 sec. (19)

The same duration is determined by the time constant -
the return duration of the excited axisymmetric contour with
the total length πc2/9

0 to its initial state due to its constituent
current lines rotation with the speed v0:

t =
πc2/9

0 re

v0
= 604 sec. (20)

The neutron half-life is about 609 seconds. Thus, the con-
sistency of formulas (12), (19), (20) with each other and their
results with the actual values of the neutron lifetime and the
neutron-proton mass difference confirm the accepted model
of proton-neutron transitions.

5 Conclusion

In the articles concerning the microworld and, in particular,
the proton properties, it has been established that there are
only three generations of elementary particles. The param-
eters of the proton (mass, magnetic moment, charge radius,
proton lifetime, neutron-proton mass difference) are deter-
mined. A physical explanation is proposed for such abstract
images as quarks and their confinement, “color”, pions
“coat”, etc. The results were obtained within the framework
of the elementary model based on the mechanistic interpreta-
tion of Wheeler’s geometrodynamics. Wherein the balances
between the main interactions and general patterns were only
used, moreover, without adding any empirical coefficients.

The model can be used as a basis for constructing the
theory of strong interactions, which can be an alternative for

QCD. In a possible new theory, the interpretation of the con-
cepts and results obtained, which form the model basis, can
be performed in some terms of electrodynamics (or some
other) on the basis of a suitable mathematical apparatus.
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We begin with the comprehensive review of the basics of the Lorentz, (extended)
Poincaré Groups and O(3,2) and O(4,1). On the basis of the Gelfand-Tsetlin-Sokolik-
Silagadze research [1-3], we investigate the definitions of the discrete symmetry oper-
ators both on the classical level, and in the secondary-quantization scheme. We study
physical content within several bases: light-front form formulation, helicity basis, an-
gular momentum basis, on several practical examples. The conclusion is that we have
ambiguities in the definitions of the corresponding operators P, C; T, which lead to dif-
ferent physical consequences.
Talk presented at the LXII Congreso Nacional de Fı́sica. 6–11/10/2019. Villahermosa,
Tab., México.

1 The standard definitions

The Lorentz Group conserves the interval ds2 = dxµdxµ in
the 4-space with respect to (pseudo) Euclidean rotations. The
Poincaré Group includes translations in the Minkowski space.
The extended Poincaré Group includes discrete transforma-
tions, the unitary C, P, and the antiunitary T in quantum field
theory (QFT). The P is the space inversion: x0 → x0, x→ −x.
The T is the time reversal: x0 → −x0, x → x. The C is the
electric charge conjugation. It is related to the PT operation:
x0 → −x0, x → −x. The interval is also conserved under
these operations. In QFT, the eigenvalues of the combined
CPT are also invariants.

While [4] presented the derivation method to obtain the
field operator ab initio, we define the field operator [5, 6] in
the pseudo-Euclidean metrics as follows:

Ψ(x) =
∑

h

∫
d3p

(2π)32Ep[
uh(p)ah(p)e−ip·x + vh(p)b†h(p)e+ip·x

]
.

(1)

Hence, the Dirac equation is:[
iγµ∂µ − m

]
Ψ(x) = 0 . (2)

At least, 3 methods of its derivation exist [7–9]:

• the Dirac method (the Hamiltonian should be linear in
∂/∂xi, and be compatible with E2

p − p2c2 = m2c4);

• the Sakurai one (based on the equation (Ep−σ ·p)(Ep +

σ · p) φ = m2φ);

• the Ryder one (the relation between 2-spinors at rest is
φR(0) = ±φL(0) and boosts).

It has solutions of positive energies and negative energies.
The latter are reinterpreted as the antiparticles.

Ep =

√
p2 + m2, c = ~ = 1, gµν = diag{1,−1,−1,−1} .

The solutions in the momentum representation are: uh(p) =

column(φh
R(p), φh

L(p)). Next,

uh =

(
exp(+σ ·ϕ) φh

R(0)
exp(−σ ·ϕ) φh

L(0)

)
, vh(p) = γ5uh(p) , (3)

where cosh(ϕ) = Ep/m, sinh(ϕ) = |p|/m, ϕ̂ = p/|p|, and h is
the polarization index. It is shown that the parity operator can
be chosen as

P = eiαsγ0R, γ0 =

(
0 1
1 0

)
, (4)

because[
iγµ∂′µ − m

]
Ψ(xµ

′

) = 0 , (change of variables) , (5)

where
Ψ(xµ

′

) = AΨ(xµ) , (linearity) . (6)

These conditions can be satisfied by the γ0 matrix in the Weyl
basis. R can be chosen

R ≡ (θ → π − θ, φ→ π + φ, r → r) .

For fermions, it is well known that a particle and an antipar-
ticle have opposite eigenvalues of the parity operator in this
(1/2, 0) ⊕ (0, 1/2) representation of the Lorentz Group. In
QFT we should have:

UPψ(x)U†P = eiαsγ0ψ(x′) . (7)

So,
UPah(p)U†P = e+iαs ah(p′) ,

UPbh(p)U†P = −e−iαs bh(p′) .
(8)

The operator UP can be constructed in the usual way, see [5]
and [6]. The charge operator interchanges the particle and the
antiparticle. For example, in the Dirac case on the classical
level:

u↑ → −v↓, u↓ → +v↑ , v↑ → +u↓, v↓ → −u↑ . (9)
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Thus, we can write, thanks to E. Wigner:

C1/2 = eiαc

(
0 iΘ
−iΘ 0

)
K , Θ =

(
0 −1
1 0

)
= −iσ2 . (10)

In QFT, we should have:

UCψ(x)U†C = eiαcCψ†(x) . (11)

So [5],

UCah(p)U†C = e+iαc bh(p) , UCbh(p)U†C = e−iαc ah(p) . (12)

See however [11], where two possibilities for the charge con-
jugation operator have been proposed.

The time reversal operator is antiunitary (see Wigner and
[4]). Let us remind that the operator of hermitian conjugation
does not act on c-numbers on the left side of (13) below. This
fact is connected with the properties of an antiunitary opera-

tor:
[
V

T
λA(V

T
)−1

]†
=

[
λ∗V

T
A(V

T
)−1

]†
= λ

[
V

T
A†(V

T
)−1

]
.

[
V

T

[1/2]Ψ(xµ)(V
T

[1/2])
−1

]†
= S (T ) Ψ†(x′′

µ

) . (13)

We can see that C and P anticommute in the Dirac case:

{C, P}+ = 0 , P2 = 1 ,C2 = 1 , (14)

and (CPT ) = ±1. However, we present the opposite case
later, where (CPT ) = ±i, which is related to the commutation
(anticommutation) of the C and P operators.

The table on p. 157 of [5] gives us the properties of the
scalar, 4-vector, tensor, axial-vector and pseudoscalar under
these transformations in the case of the “Dirac-like parity”
definitions. However, see the next Section.

2 Anomalous representations of the inversion group

The previous Section perfectly describes the CPT properties
of the charged fermions. Nevertheless, the authors of [1,2,10]
proposed another class of representations of the full Lorentz
Group long ago. As it was shown recently, it may be ap-
plied to the (anti)bosons of the opposite parities, and to the
(anti)fermions of undefined parities. The latter are not the
eigenstates of the parity operator, but they are the eigenstates
of the charge-conjugate operator. Gelfand, Tsetlin and Soko-
lik noted that there exist representations of the full Lorentz
Group of the anomalous parity. Originally, this concept was
intended to be applied to explain the decay of K−mesons.

The examples are: one can note that in the (1/2, 1/2) rep-
resentation (or for xµ) the operators of the space inversion
(t01), the time reversal (t10) and the combined space-time in-
version (t11) are commutative. They form the inversion group
together with the unit element. Let us search the projec-
tive representations of the Lorentz group combined with the
discrete group. As opposed to the usual case, t01t10 = t11,

t10t11 = t01, t01t11 = t10, for instance, one can drop the con-
dition of commutativity, and one can form the projective rep-
resentation with T10T01 = −T11, or T11T11 = −1, see the full
table in [1]. They noted that there are two normal-parity (in
their notation) and two anomalous parity representations for
(bi)spinors. Then, they extended the concept of the anoma-
lous parity to any representation of the proper Lorentz Group
characterized by the numbers (k0, k1) and (−k0, k1)∗. When

[Ti′k′ ,Ti′′k′′ ]+ = 0 , (15)

this is the case of the anomalous parity (later, this was con-
firmed by Nigam and Foldy [12]). G. Sokolik noted that this
concept is related to the concept of the 5-D representations of
the proper orthogonal group with pseudo-Euclidean metrics.
For example,

T10 ∼ H54 = exp(iπI54/2) ,
T11 ∼ H43H21 = exp(iπI43) exp(iπI21) , (16)
T01 = T11T10 .

T10, T01, T11 leave invariant the extended 8-component Dirac
equation only (compare with [13] and [14]):

Γµ∂
µψ + mψ = 0 , Γµ =

(
γµ 0
0 −γµ

)
. (17)

They claimed relations to the concepts (known in that time):

• istopic spin;
• fusion theory;
• the non-linear Heisenberg theory

were mentioned. The corresponding matrix representations
of the anomalous-parity representations have been presented:

T01 =

(
0 I
I 0

)
, T10 =

(
0 −I
I 0

)
, T11 =

(
I 0
0 −I

)
, (18)

and

T01 =

(
0 −iI
iI 0

)
, T10 =

(
0 iI
iI 0

)
, T11 =

(
I 0
0 −I

)
. (19)

Later Wigner [10] repeated their results in the Istanbul School
lectures (1962), and Silagadze [3] rediscovered and applied
this possibility in 1992. The conclusion of these papers is: we
noted that both new versions of the representations of the full
Lorentz Group (commuting spinor and anticommuting boson
representations) lead to the doubling of the dimensionality of
the ψ−function.

3 The self/anti-self charge conjugate states

The content of this Section contains the material of [11]. The
conclusions are: we have constructed another explicit exam-
ple of the BWW-GTS theory. The matter of physical dy-
namics connected with this mathematical construct should be
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solved in the future, dependent on what gauge interactions
with potential fields we introduce [14] and what experimen-
tal setup we choose.
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A solution of electromagnetic four-potential for polarized photon is obtained by solving
its wave equations in elliptic cylindrical coordinates. An explicit energy wave function
for the photon is presented in the form of a linear combination of the electric field and
magnetic field from the solution. This wave function is used to calculate the angular
momentum value of the photon. The elliptic coordinate parameter, a, for the photon is
considered to be equal to a quarter of its wavelength.

1 Introduction

Photon as a quantum of light has attracted many researchers
to develop explanations on its behaviors and to experiment to
determine its properties. The photon as a fundamental wave-
particle which moves at the speed of light serves like a mes-
senger traveling from one place to another, which is neces-
sary for the physical world to work properly. The classical
view on light is provided by Maxwell’s theory of electromag-
netism [1], hence light is considered as a bundle of electro-
magnetic transverse waves. The particle view of light in mod-
ern physics may be provided by Einstein [2], so a photon has
not only energy but also momentum. Work has been done to
unify these two views. An expression for photon wave func-
tion is introduced by using the Riemann-Silberstein vector
which is a linear combination of the electric field and mag-
netic field of the photon. An overview of the work on photon
wave function is available in [3].

A photon has wave-particle duality which may be explain-
ed by a single entity as a joint wave-particle [4]. A more
specific view on the electromagnetic structure for the photon
is presented in [5], which is for circularly polarized photons.
Hence the photon in circular polarization may be viewed as
a charged moving electric capacitor with electric charge dis-
tributed circularly on its cylindrical surface of radius λ/2π,
where λ is the wavelength of the photon.

In this article, we present our theoretical study on polar-
ized photons. It is well known that polarized light has the
property of certain orientation which may be generated by an
optical polarizer. Recent experiment [6] shows that the trans-
mission intensity of polarized light strongly correlates to the
orientation of elliptically-shaped holes on the transmission
plate. This as an example indicates that the transverse field
strength of photons in the polarized light is not circularly dis-
tributed evenly as different from that of circularly polarized
photons. The novelty of this article is on: the wave equation
for the photon is solved within the elliptic cylindrical coordi-
nates; an explicit photon energy wave function is presented
based on the expression of Riemann-Silberstein vector wave
function (in the next section); quantum expressions of the en-
ergy density, energy current density and the angular momen-
tum or spin density for the photon are derived from the wave

function. We are not aware of such work in the literature.
This article is divided into the following sections: Intro-

duction, Method, Results and Discussions, and Conclusion.
The Introduction section provides a brief overview on our cur-
rent understanding of the photon.

In the Method section, we will use similar method as
in [5]. First we obtain a solution for the electromagnetic four-
potential by solving the wave equations in elliptic cylindrical
coordinates. The electromagnetic four-potential generally in-
cludes a scalar potential, which is an electric potential divided
by the speed of light, and a vector potential. Then show to get
the electric field and magnetic field from the solution of the
four-potential; an explicit energy wave function for the pho-
ton is presented as a linear combination of the electric field
and magnetic field; other expressions such as photon energy
density, energy current density and angular momentum den-
sity are derived based on quantum mechanics.

In the Results and Discussions section we show the results
for the photon expressions developed in the previous section,
such as the four-potential, electromagnetic fields, the wave
function, energy and energy current densities, and angular
momentum for the photon; fairly detailed work is presented
in evaluating the angular momentum value for the photon;
some particularities are discussed. The Conclusion section
provides a brief summary of the work presented in this arti-
cle. We use MKS units in this work.

2 Method

In the space region where there are no other free electric
charge and electric current, the electric potential ψ and the
vector potential A satisfy the following wave equations, re-
spectively,

1
c2

∂2ψ

∂t2 − ∇
2ψ = 0 , (1)

1
c2

∂2A
∂t2 − ∇

2A = 0 , (2)

where c is the speed of light, t is time, ∇2 is the Laplacian
operator, and 1

c2
∂2

∂t2−∇
2 is D’Alembert’s operator which is also

written as �. In obtaining these equations the set of Maxwell
equations with Lorenz gauge is employed. The Lorenz gauge
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Fig. 1: A drawing of the elliptic cylindrical coordinate system to-
gether with the cartesian coordinates, where µ̂, ν̂, and ẑ are unit vec-
tors for the coordinate system and a is a length parameter that marks
the focal points on x of the ellipse. The major axis of the ellipse is
x. The wave symbol represents a photon moving in the direction of
the positive z axis at the speed of light c.

is given by

∇ · A +
1
c2

∂ψ

∂t
= 0 . (3)

Eqs. (1) and (2) are satisfied with solutions for traveling wa-
ves.

For the polarized photon, we solve (1) and (2) in elliptic
cylindrical coordinates as shown in Fig. 1. Where the rela-
tionships between the cartesian and elliptic cylindrical coor-
dinates are

x = a cosh µ cos ν ,

y = a sinh µ sin ν ,

z = z ,

(4)

where x, y, z are cartesian coordinate values and µ ν, z are el-
liptic cylindrical coordinate values, a is a length parameter
which specifies the focal points of the ellipse, µ ∈ (0,∞) and
ν ∈ (0, 2π). The value of a will be considered later to be pro-
portional to the wavelength of the photon. The scale factors
are

hµ = hν = aγ ,

hz = 1 ,
(5)

where γ =

√
sinh2 µ + sin2 ν.

We find for this particular case that the vector potential A
has a z component only so A = ẑAz and ∇2A = ẑ∇2Az, where
ẑ is the unit vector for the z axis. The Laplacian operator ∇2

for the elliptic cylindrical coordinates is expressed as

∇2 =
1

a2γ2

(
∂2

∂µ2 +
∂2

∂ν2

)
+
∂2

∂z2 . (6)

Hence (1) and (2) in the elliptic cylindrical coordinates
are satisfied with the following general solution:

f = f0 e−µ sin(φ) , (7)

where f is a general quantity that may represent either ψ or
Az here, f0 is the corresponding constant, φ = kz + ν−ωt, and
k = ω/c, and ω is the angular frequency of the photon. We
choose the “−” sign in the exponential function to make the
solution to be limited in space. Here we let the photon travel
in the z direction. And we arbitrarily choose the sine function
here, one may choose cosine function as well but the results
should be similar. By using the Lorenz gauge we have the
following relationship for the electric potential constant, ψ0,
and the vector potential constant, A0, as

A0 = ψ0/c . (8)

Once we have the solution of the four-potential we can
calculate [7] the electric field E and magnetic field B using
the following equations,

E = −∇ψ −
∂A
∂t

= −
1

aγ

(
µ̂
∂

∂µ
+ ν̂

∂

∂ν

)
ψ , (9)

B = ∇ × A =
1

aγ

(
µ̂
∂

∂ν
− ν̂

∂

∂µ

)
Az , (10)

where µ̂, ν̂ are unit vectors for µ and ν, respectively, and “×”
represents the vector cross operator. In deriving (9) for the
electric field, we used this case relationship:

∂ψ

∂z
+
∂Az

∂t
= 0.

Both the electric field E and magnetic field B are vectors
with µ and ν components, which are perpendicular to the di-
rection of the wave propagation. They represent transverse
waves.

As we know, a photon is a packet of energy in electromag-
netic field form and moves at the speed of light. This means
that the electric field E or the magnetic field B of the photon
can not exist alone and they are both like two faces of one
body. We have the following expression of the electromag-
netic field F suit for the photon

F =
1
√

2

(
√
εE + i

B
√

u

)
, (11)

where ε is the permittivity and u is the permeability in the
space region where photon absorption is negligible, and i is
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the imaginary unit. This expression is known as the Riemann-
Silbertein vector and was introduced as a photon wave func-
tion in [8]. Here the choice of “+” sign for the imaginary part
is arbitrary, one may choose “−” for similar results. Like E
or B, F is also a vector which satisfies the wave equation and
also represents a transverse traveling wave. The field F is a
complex vector in general and is characterized as a quantum
vector wave function. Hence methods developed in quantum
mechanics may be employed here [9]. By the dimensional
analysis we know that F represents an energy density wave
function. In the following we use F to derive expressions for
energy and current densities and then the angular momentum
for the photon. For clarity, the cartesian coordinates are used
in the following work. We start from the wave equations:

1
c2

∂2F
∂t2 − ∇

2F = 0 , (12)

and
1
c2

∂2F∗

∂t2 − ∇
2F∗ = 0 , (13)

where F∗ is the conjugate of F. And

F = x̂Fx + ŷFy , (14)

where x̂ and ŷ are unit vectors and Fx, Fy are the field com-
ponents for x and y axes, respectively. As a transverse wave,
F has x and y components only and the z component, Fz is
zero. Since our original solution for F is in elliptic coordi-
nates with components of µ and ν, we may convert those to x
and y components using the following matrix multiplication,µ̂

ν̂

 =
1
γ

 sinh µ cos ν cosh µ sin ν

− cosh µ sin ν sinh µ cos ν

 x̂ŷ
 . (15)

Since Fx and Fy are explicit functions of µ and ν, in order
to do their derivatives with respect to x and y we need partial
derivatives of µ and ν to x and y by using the following matrix
form:δµ

δν

 =
1

aγ2

 sinh µ cos ν cosh µ sin ν

− cosh µ sin ν sinh µ cos ν

 δx

δy

 , (16)

where δ is a tiny increment. In obtaining (16), we first do the
tiny variations of (4) for x and y to µ and ν to get a conversion
matrix between the two coordinate systems. And then find
the inverse matrix as in (16). Eq. (15) is equivalent to (16) if
we replace each variation together with its scale factor such
as aγ in the latter equation by the corresponding unit vector.

As is common in quantum mechanics to find the energy
density and the energy current density for the photon, we do
this operation:

F∗ · (12) − F · (13) , (17)

where “·” represents the dot product operator and “*” is the
complex conjugate symbol, and

F∗ · ∇2F =

x,y,z∑
i

Fi
∗ ∇2Fi , (18)

where the summation is over the three cartesian components.
By a few mathematical operations, we have the following
form of energy current and density continuity equation:

∇ · j +
∂ρ

∂t
= 0 (19)

with

j =
c2

2iω

x,y,z∑
i

(Fi ∇Fi
∗ − Fi

∗ ∇Fi) (20)

and

ρ =
1

2iω

(
F∗ ·

∂F
∂t
− F ·

∂F∗

∂t

)
= F · F∗ , (21)

where j is the energy current density and ρ is the energy den-
sity for the photon, ∇ = x̂ ∂

∂x + ŷ ∂
∂y

+ ẑ ∂
∂z . The photon propa-

gation phase factor is e−iφ in this case (see next section) and
∂F
∂t = iωF. The energy density ρ is positive.

Now the angular momentum increment for the photon is

dS = ẑ
(
x jy − y jx

) dV
c2 , (22)

where S is the angular momentum vector or spin for the pho-
ton, jx/c2 and jy/c2 are the momentum densities in the x and
y directions, respectively, and dV is the tiny volume in space.
Notice that j needs to be divided by c2 to be converted to the
momentum density. The angular momentum for the photon
in the present case has only the z component and zero x and
y components. Eq. (22) may be rewritten in the form of spin
momentum density as

dS
dV

=
1
c2

(
x jy − y jx

)
. (23)

In the next section we present results using relationships
developed here and also provide discussions on the results.

3 Results and Discussions

To start this section we first present the mathematical solu-
tion of the four-potential for the polarized photon, which are
two traveling wave functions, one for the electric potential
ψ, which is a scalar, and the other for the vector potential A.
These functions are desirable since they are limited in space
and show wave-particle duality with a limited length. These
basic representations are important since, from which we may
derive other physical quantities for the photon, such as elec-
tromagnetic fields and the spin angular momentum.

Now the solution for the four-potential in elliptic cylindri-
cal coordinates is

ψ = ψ0 e−µ sin(φ) (24)
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and
A = ẑA0 e−µ sin(φ) , (25)

where we assume that the photon travels in the z direction.
The vector potential in this case has only a z component.

The choice of the sine function here is arbitrary, one may use
the cosine function but the result should be similar since they
only have a phase difference of π/2. Notice that (24) and
(25) are in the same form with corresponding magnitude, and
with the same phase change in both space and time. Since
the physical meaning of the electric potential ψ is clear, c2A
may be interpreted as an electric potential current or the total-
electric-potential current density flowing in the same direc-
tion as the photon, which satisfy the continuity equation given
by the Lorenz gauge condition (3). Hence the Lorenz gauge
may be considered as the conservation of the total-electric-
potential, a physical quantity of the integration of electric po-
tential in the whole space. With the Lorenz gauge, we can get
the relationship between the two constants as in (8)

Comparing with that of circularly polarized photons [5],
the strength of the four-potential for the elliptically polarized
photon decreases exponentially with µ in the single space re-
gion, while the other is divided into two regions by a param-
eter r0 and decreases with 1/r for r > r0, where r is the radial
value in polar cylindrical coordinates. As a result, the po-
tential strength for the polarized photon with certain energy
decreases quicker with distance from its center than that for
circularly polarized photon, and hence the polarized photon
may occupy less space.

Now we present expressions for the electric and magnetic
fields using (9) and (10):

E=
ψ0 e−µ

aγ
[µ̂ sin(φ) − ν̂ cos(φ)] , (26)

and

B=
A0 e−µ

aγ
[µ̂ cos(φ) + ν̂ sin(φ)] . (27)

These results of E and B show that they are transverse
waves and are perpendicular to each other. The energy den-
sity in classical theory for the photon is

ρ =
1
2

(
εE2 +

B2

u

)
=
εψ0

2

a2γ2 e−2µ (28)

and the Poynting vector is

P =
E × B

u
= ẑ

cεψ0
2

a2γ2 e−2µ , (29)

where, in converting A0, we used (8). These quantities are fi-
nite in space and are physically meaningful. The magnitudes
of these quantities decrease exponentially with 2µ. Since the
factor a2γ2 is equal to the combination of scale factors for
both µ and ν, it can be canceled in each space integration by
the same volume factor as shown later. With the Poynting

vector, the photon may be viewed as a packet of energy mov-
ing at the speed of light along its propagation direction.

Since a photon is actually a quantum entity in modern
physics view, we need an integral expression as (11). This is
a linear combination of both the electric field and magnetic
field for the elliptically polarized photon. Therefore we have
a photon wave function. There are at least two advantages
to have the wave function. First it can be used to calculate
the value of the angular momentum for the photon; secondly
it may be used to calculate the penetration probability for the
photon in a sub-wavelength hole since in the view of quantum
mechanics it represents the photon probability distribution.
But in this article, we aim at the angular momentum value for
the photon with the wave function.

In the following, we first obtain an explicit wave function
using the developed expression in last section, (11), secondly
derive the component expressions for energy current densi-
ties, and finally calculate the angular momentum value for
the photon. This procedure has been first applied success-
fully to the circularly polarized photon. In this article, we
report results on elliptically polarized photon.

By inserting results from (26) and (27) into (11), we have
a photon wave function:

F =

√
εψ0 e−iφ

√
2aγ

e−µ(iµ̂ − ν̂) . (30)

Using the unit vector conversion (15), we have the cartesian
components of F as

Fx =

√
εψ0 e−iφ

√
2aγ2

e−µ(i sinh µ cos ν + cosh µ sin ν) , (31)

Fx
∗ =

√
εψ0 eiφ

√
2aγ2

e−µ(−i sinh µ cos ν + cosh µ sin ν) , (32)

Fy = iFx , (33)

and Fz is zero.
Due to the simple relationship between Fy and Fx, we

have
Fy
∗ ∇Fy = Fx

∗ ∇Fx (34)

and
Fy ∇Fy

∗ = Fx ∇Fx
∗ . (35)

Hence in this case, (20) becomes

j =
c2

iω
(Fx ∇Fx

∗ − Fx
∗ ∇Fx) (36)

and the work is reduced to one component. Furthermore since

Fx ∇Fx
∗ = (Fx

∗ ∇Fx)∗ , (37)

we have

j = −
2c2

ω
Im(Fx

∗ ∇Fx) , (38)
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where “Im” means taking the real value of the imaginary part.
And similarly, (21) becomes

ρ = F · F∗ = 2Fx · Fx
∗ . (39)

Now insertimg (31) and (32) into (39), we have

ρ =
εψ0

2

a2γ2 e−2µ , (40)

which is the same as that of (28) for photon energy density.
Now we do integration of (40) in space with the tiny volume,
dV = a2γ2dµdνdz. Assuming the photon length is nλ, where
λ is the wavelength of the photon and n may be a positive
integer, but is not exactly determined in the present work. The
result should be equal to the photon energy ~ω, where ~ is the
reduced Planck constant. By doing that, we determine the
electric potential constant to be

ψ0 =

√
2~c
εn

1
λ
. (41)

Now we evaluate the energy current densities for the pho-
ton. Fx contains z explicitly in φ of the exponential func-
tion, therefore the derivative with z is simple. We have ∂Fx

∂z =

−ikFx and

jz =
cεψ0

2

a2γ2 e−2µ , (42)

which is consistent with the Poynting vector (29).
And from (38), we have

jx = −
2c2

ω
Im

(
Fx
∗ ∂Fx

∂x

)
(43)

and

jy = −
2c2

ω
Im

(
Fx
∗ ∂Fx

∂y

)
. (44)

The work is now turned to calculate ∂Fx
∂x and ∂Fx

∂y
. Because Fx

contains explicit variables of µ and ν, we need the following
equations to calculate the cartesian derivatives,

∂Fx

∂x
=
∂Fx

∂µ

∂µ

∂x
+
∂Fx

∂ν

∂ν

∂x
(45)

and
∂Fx

∂y
=
∂Fx

∂µ

∂µ

∂y
+
∂Fx

∂ν

∂ν

∂y
, (46)

where ∂µ
∂x ,

∂ν
∂x ,

∂µ
∂y
, ∂ν
∂y

may be obtained from (16). We find that

∂Fx

∂µ
= β

[
i
(
cosh µ − sinh µ − 2

sinh2 µ cosh µ
γ2

)
cos ν+

+

(
sinh µ − cosh µ − 2

sinh µ cosh2 µ

γ2

)
sin ν

]
,

(47)

∂Fx

∂ν
= β

[
− i

(
cosh µ + sinh µ + 2

sinh µ cos2 ν

γ2

)
sin ν+

+

(
cosh µ + sinh µ − 2

cosh µ sin2 ν

γ2

)
cos ν

]
,

(48)

where β =
√
εψ0e−µe−iφ/

√
2aγ2.

Now the cartesian derivatives are

∂Fx

∂x
= β′

[
i
(

cosh2 µ sin2 ν−

− sinh2 µ cos2 ν + sinh µ cosh µ−

− 2 sinh µ cosh µ cos2 ν
sinh2 µ − sin2 ν

γ2

)
−

− sin ν cos ν
(
1 + 2 sinh µ cosh µ+

+2 cosh2 µ
sinh2 µ − sin2 ν

γ2

) ]
,

(49)

∂Fx

∂y
= β′

[
i sin ν cos ν

(
1 − 2 sinh µ cosh µ−

−2 sinh2 µ
cosh2 µ + cos2 ν

γ2

)
+

+ sinh2 µ cos2 ν − cosh2 µ sin2 ν + sinh µ cosh µ−

− 2 sinh µ cosh µ sin2 ν
cosh2 µ + cos2 ν

γ2

]
,

(50)

where β′ =
√
εψ0e−µe−iφ/

√
2a2γ4. These expressions are a

little bit long but manageable. The purpose here is to serve as
check points to guide the reader to the final correct results.

Using (43) and (44), we have

jx = −β′′ sin ν
(
cosh µ + sinh µ

cosh2 µ + cos2 ν

γ2

)
, (51)

jy = β′′ cos ν
(
sinh µ + cosh µ

sinh2 µ − sin2 ν

γ2

)
, (52)

where β′′ = c2εψ0
2e−2µ/ωa3γ4.

Now using (23), we have

dS
dV

= αe−2µ
(

sinh µ cosh µ
γ2 +

+
sinh2 µ cosh2 µ − sin2 ν cos2 ν

γ4

)
,

(53)

where α = εψ0
2/ωa2γ2.

To calculate the spin value, we integrate (53) in the whole
space. There are two parts to be integrated on the right hand
side of the equation. This integration is a bit challenging since
each integration part is divergent at µ = 0 and ν = 0, π. To
avoid this problem we work around by first doing the integra-
tion of the second part which fortunately produces an exact
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term to cancel the first part and the remaining is finite and
manageable. We now show the integration of the second part:

I =

∫ nλ

0

∫ ∞

0

∫ 2π

0
dz dµ dν

e−2µ sinh2 µ cosh2 µ − sin2 ν cos2 ν

γ4

= nλ
∫ ∞

0

∫ 2π

0
dµ dν

e−2µ sinh2 µ cosh2 µ − sin2 ν cos2 ν

γ4 ,

(54)

where the scale factors in the integration volume are canceled
within the α factor and we omit the rest of the constants here
for simplicity. This integration may be further separated into
sub-integration as

I1 =

∫ ∞

0

∫ 2π

0
e−2µ sinh2 µ cosh2 µ

(sinh2 µ + sin2 ν)2
dµ dν (55)

and

I2 =

∫ ∞

0

∫ 2π

0
e−2µ sin2 ν cos2 ν

(sinh2 µ + sin2 ν)2
dµ dν . (56)

These may be done by the partial integration method: for (55)
first integrate with µ and for (56) first integrate with ν. Hence
we have

I1 = −

∫ ∞

0

∫ 2π

0
e−2µ sinh µ cosh µ

sinh2 µ + sin2 ν
dµ dν+

+
1
2

∫ ∞

0

∫ 2π

0
e−2µ sinh2 µ + cosh2 µ

sinh2 µ + sin2 ν
dµ dν−

−
1
2

[
e−2µ sinh µ cosh µ

∫ 2π

0

dν

sinh2 µ + sin2 ν

] ∣∣∣∣∣∣∞
0

(57)

and

I2 =
1
2

∫ ∞

0

∫ 2π

0
e−2µ cos2 ν − sin2 ν

sinh2 µ + sin2 ν
dµ dν . (58)

Now the last integration term in (57) is zero at both µ = 0 and
µ→ ∞. Hence (54) becomes

I = −nλ
∫ ∞

0

∫ 2π

0
e−2µ sinh µ cosh µ

sinh2 µ + sin2 ν
dµ dν+

+ nλ
∫ ∞

0

∫ 2π

0
e−2µ dµ dν ,

(59)

where the second integration term is the second integration
term of (57) minus that of (58). And finally by finishing the
second integration we have

I = −

∫ nλ

0

∫ ∞

0

∫ 2π

0
e−2µ sinh µ cosh µ

γ2 dz dµ dν + nλπ. (60)

The first integration term in (60) cancels exactly the integra-
tion of the first part in (53) so the angular momentum for the
photon is

S =
εψ0

2

ω
nλπ = ~ , (61)

where we used (41). The value of spin or the angular mo-
mentum calculated here for the elliptically polarized photon
is indeed ~.

Before concluding this section we consider the elliptic co-
ordinate parameter a for the photon. The divergence of the
electric field (26) is zero everywhere except at the two focal
points (x = ±a). This leads us to believe that electricity may
only exist in these two focal points formed traveling lines.
To further consider the value of a we take a look at that for
circularly polarized photon [5]. In that case the electromag-
netic field occupies two space regions divided by r0 with the
center core region carrying zero angular momentum for spin
one. The elliptically polarized photon may be understood as
transformed from the circularly polarized photon with its core
region collapsed by its energy popped out without change in
its length of circumference. If that is the case then a = λ/4.

4 Conclusion

To conclude this article we summarize what has been pre-
sented here. First, we have solved the wave equations for the
electromagnetic four-potential in the elliptic cylindrical coor-
dinates for the polarized photon. The solution for each po-
tential is an electromagnetic traveling wave and its transverse
strength decreases exponentially with µ. These expressions
for the four-potential are simple but essential representations
since they may be used to obtain other physical quantities for
the polarized photon.

We first obtained the electric field and magnetic field for
the photon from the four-potential solution. Then we have
presented the energy wave function explicitly, which is a lin-
ear combination of the electric field and magnetic field. Using
concepts from quantum mechanics, we first derived expres-
sions then evaluated for photon energy, energy current, and
angular momentum densities. Work is shown particularly in
calculating the value of the angular momentum or spin for the
photon. Considerations are given about the value of the ellip-
tic coordinate parameter a which may be equal to a quarter of
the photon wavelength.
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The second-order equation in the (1/2, 0)⊕ (0, 1/2) representation of the Lorentz group
has been proposed by A. Barut in the 70s [1]. It permits to explain the mass splitting
of leptons (e, µ, τ). The interest is growing in this model (see, for instance, the papers
by S. Kruglov [2] and J. P. Vigier et al. [3, 4]). We note some additional points of this
model.

The Barut main equation is[
iγµ∂µ + α2∂

µ∂µ − κ
]

Ψ = 0 , (1)

where α2 and κ are the constants later related to the anoma-
lous magnetic moment and mass, respectively. The matrices
γµ are defined by the anticommutation relation:

γµγν + γνγµ = 2gµν , (2)

gµν is the metrics of the Minkowski space, µ, ν = 0, 1, 2, 3.
The equation represents a theory with the conserved current
that is linear in 15 generators of the 4-dimensional represen-
tation of the O(4, 2) group, Nab = i

2γaγb, γa = {γµ, γ5, i}.
Instead of 4 solutions, (1) has 8 solutions with the correct

relativistic relation E = ±

√
p2 + m2

i . In fact, it describes
states of different masses (the second one is m2 = 1/α2 −

m1 = me(1 + 3/2α), α is the fine structure constant), pro-
vided that the certain physical condition is imposed on α2 =

(1/m1)(2α/3)/(1 + 4α/3), the parameter (the anomalous ma-
gentic moment should be equal to 4α/3). One can also gener-
alize the formalism to include the third state, theτ-lepton [1b].
Barut has indicated the possibility of including γ5 terms (e.g.
∼ γ5κ

′).
The most general form of spinor relations in the (1/2, 0)⊕

(0, 1/2) representation has been given by Dvoeglazov [5]. It
was possible to derive the Barut equation from first principles
[6]. Let us reveal the connections with other models. For
instance, in [3, 7] the following equation has been studied:[(

i∂̂ − eÂ
) (

i∂̂ − eÂ
)
− m2

]
Ψ =[(

i∂µ − eAµ

)
(i∂µ − eAµ) − 1

2 eσµνFµν − m2
]

Ψ = 0
(3)

for the 4-component spinor Ψ. Â = γµAµ; Aµ is the 4-vector
potential; e is electric charge; Fµν is the electromagnetic ten-
sor. σµν = i

2 [γµ, γν]−. This is the Feynman-Gell-Mann equa-
tion. In the free case we have the Lagrangian (see Eq. (9) of
[3c]):

L0 = (i∂̂Ψ)(i∂̂Ψ) − m2ΨΨ . (4)

Let us re-write (1) into the form:∗[
iγµ∂µ + a∂µ∂µ + b

]
Ψ = 0 . (5)

∗Of course, one could admit p4, p6 etc. in the Dirac equation too. The
dispersion relations will be more complicated [6].

So, one should calculate (p2 = p2
0 − p2)

Det
(

b − ap2 p0 + σ · p
p0 − σ · p b − ap2

)
= 0 (6)

in order to find energy-momentum-mass relations. Thus, [(b−
ap2)2 − p2]2 = 0 and if a = 0, b = ±m we come to the well-
known relation p2 = p2

0 − p2 = m2 with four Dirac solutions.
However, in the general case a , 0 we have

p2 =
(2ab + 1) ±

√
4ab + 1

2a2 > 0 , (7)

that signifies that we do not have tachyons. However, the
above result implies that we cannot just put a = 0 in the so-
lutions, while it was formally possible in (5). When a → 0
then† p2 → ∞; when a → ±∞ then p2 → 0. It should be
stressed that the limit in the equation does not always coin-
cide with the limit in the solutions. So, the questions arise
when we consider limits, such as Dirac → Weyl, and Proca
→ Maxwell. The similar method has also been presented by
S. Kruglov for bosons [8]. Other fact should be mentioned:
when 4ab = −1 we have only the solutions with p2 = 4b2.
For instance, b = m/2, a = −1/2m, p2 = m2. Next, I just
want to mention one Barut omission. While we can write
√

4ab + 1
a2 = m2

2 − m2
1 , and

2ab + 1
a2 = m2

2 + m2
1 , (8)

but m2 and m1 should not necessarily be associated with mµ,e

(or mτ,µ). They may be associated with their superpositions,
and applied to neutrino mixing, or quark mixing.

The lepton mass splitting has also been studied by Markov
[9] on using the concept of both positive and negative masses
in the Dirac equation. Next, obviously we can calculate ano-
malous magnetic moments in this scheme (on using, for in-
stance, methods of [10, 11]).

We previously noted:

• The Barut equation is a sum of the Dirac equation and
the Feynman-Gell-Mann equation.

• Recently, it was suggested to associate an analogue of
(4) with dark matter, provided that Ψ is composed of

†a has dimensionality [1/m], b has dimensionality [m].
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the self/anti-self charge conjugate spinors, and it has
the dimension [energy]1 in the unit system c = ~ =

1. The interaction Lagrangian is LH ∼ gΨ̄Ψφ2, φ is a
scalar field.

• The term ∼ ΨσµνΨFµν will affect the photon propaga-
tion, and non-local terms will appear in higher orders.

• However, it was shown in [3b,c] that a) the Mott cross-
section formula (which represents the Coulomb scatter-
ing up to the order ∼ e2) is still valid; b) the hydrogen
spectrum is not much disturbed; if the electromagnetic
field is weak the corrections are small.

• The solutions are the eigenstates of the γ5 operator.
• In general, the current J0 is not the positive-defined

quantity, since the general solution Ψ = c1Ψ+ + c2Ψ−,
where [iγµ∂µ ± m]Ψ± = 0, see also [9].

• We obtained the Barut-like equations of the 2nd order
and 3rd order in derivatives.

• We obtained dynamical invariants for the free Barut
field on the classical and quantum level.

• We found relations with other models(such as theFeyn-
man-Gell-Mann equation).

• As a result of analysis of dynamical invariants, we can
state that at the free level, the term ∼ ∂µΨσµν∂νΨ in the
Lagrangian does not contribute.

• However, the interaction terms ∼ Ψ̄σµν∂νΨAµ will con-
tribute when we construct the Feynman diagrams and
the S -matrix. In the curved space (the 4-momentum
Lobachevsky space), the influence of such terms has
been investigated in the Skachkov work [10,11]. Brief-
ly, the contribution will be such as if the 4-potential
were to interact with some “renormalized” spin. Per-
haps, this explains why Barut used the classical anoma-
lous magnetic moment g ∼ 4α/3 instead of α/2π.
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It is shown by experimental data that a causal connection between the categories mass
and time, as well as between the categories electric current and time is given. The
equation of the mass–time relation, valuated together with the constant of the velocity
of light c and the length–mass relation of Planck LE/ME, results in a specific, single
number related equation of the units mass, length and time without any dimension, thus
representing unreality. It is made evident that the unified equation of the basic units,
which reflects the not explicable experimental findings of the Quantum-Hall-Effect
(QHE, i.e. KE), the findings of the physical description of vision and sound and also
the third law of Kepler, yields the possibility to describe the essence of time. It is shown
that the Hubble time TU,E and the Earth-related time tE should be considered to be the
fundamental factor of realization of masses between unreality and reality. Based on the
presented description of the essence of the phenomenon time, the difference between
time and frequency is disclosed.

1 Introduction

The MOS transistors as an amplifier of electric signals was
developed after the second world war in the USA by W. Shoc-
kley, W. H. Brattain and J. Bardeen. Its economic importance
is given by its extraordinary ability of miniaturization. This
fact was the start of a world-wide rapid technical development
at all areas of economy. The extensive studies of the specific
properties of these MOS transistors led to the observation of
the Quantum-Hall-Effect (QHE) in 1980 by K. von Klitzing,
thus named Klitzing-Effect (KE) [1]. This effect, observed
at low temperatures, disclosed on the one hand the existence
of a macroscopic quantization at discrete states, given by the
quantization of resistivity of the MOS module in form of
Rxx = h/ie2 (here, h is the Planck-constant, e the charge of
electron, and i the quantum-number), and on the other hand
the existence of a simultaneous, i.e. contemporaneous condi-
tion of an unresistance Rxx = 0 ohm. Both these effects, espe-
cially the contemporaneity of Rxx = h/ie2 and Rxx = 0 ohm,
was at that time not foreseen by the given theory, i.e. also
quantum mechanical theory.

The exceptional importance of the QHE is given not only
by the observation of a macroscopical quantization, described
by the Rxx = h/ie2, but also by the unexpected finding of
the simultaneously given independence Rxx = 0 ohm at any
integral and fractional quantum number. Evidently, the ob-
served Rxx = h/ie2 effect yields the possibility to find a con-
nection to the state of physics before the year 1980, the year
of the observation of the QHE by K. von Klitzing (KE) [1],
but the Rxx = 0 ohm effect is a quite new observation within
the whole scientific field of being, showing the existence of
a state of space–mass–time independence. This finding has
been observed after a world-wide extensive experimental in-
vestigation of the QHE. This spectacular observation allows

to postulate that due to the independence of the Rxx = 0 ohm
effect on the integral as well as fractional quantum number
that especially this Rxx = 0 ohm effect represents the funda-
mental background of the QHE. This assumption will be con-
firmed in the following by the description of the essence of
time, especially by the unforeseen formulation of an equation
of space–mass–time independence.

The surprising observation of the existence of a state with-
out length, mass and time suggests a reform of the Interna-
tional System of Units (SI). It should be pointed out that a
reform of the SI was recently highly recommended by F. W.
Hehl and C. Lämmerzahl [2] with reference to physical re-
sults observed in the last centuries, and thus also to the exper-
imentally observed dependence of the value of the velocity
of light c on gravity. In [2] it was not borne in mind that the
value of c is given by a free choice [3], i.e. the numerical value
of c was determined by man, and “not by nature”. Thus the
free choice of the numerical value of c determines in the last
consequence the numerical value of the fundamental physical
constants. Moreover, when describing the effect of gravita-
tion on the number of velocity of light c we have to assume
that in agreement with the physical interpretation of vision
and sound [4, 5] the light-related distance refers to the local-
ized wavy 2D-state, thus including no gravity effects, whereas
the length-, i.e. mass-related distance, according to the third
law of Kepler, i.e. due to the three-dimensionality, includes
also the gravitational effects: Thus the different background
of the light-related distance and the gravity, i.e. mass-related
distance shows that the variability of the number of the ve-
locity of light c, caused by gravity, cannot influence the nu-
merical values of basic units. Furthermore, as will be demon-
strated in sections 4 and 5, these discoveries result in the gen-
eral validity of the following discussed equations and shows
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that this finding reveals the applicability of all explored fun-
damental constants at any place of the cosmos.

Unfortunately, also the weighty problem of the phenome-
non time was not incorporated in the extensive analysis of [2],
though Lee Smolin [6] has shown in The Trouble with Physics
that the main open question of the existing physics refers to
not knowing of the essence of the phenomenon time. There-
fore, in the presented analysis of the curious experimental ef-
fect of an existence of a state, being independent of a mass,
space and time, as well as of the lack of a basic interpretation
of the phenomenon time, it will be demonstrated that both
these problems of physics can be solved only together. It will
be shown in the next sections that the description of these
phenomena does not become possible before the demonstra-
tion of the unexpectedly given causal connection between the
category mass and frequency, as well as also between the cat-
egory electric current and frequency.

2 The background for the basic interpretation of time

To find a physical answer to the fundamental problems of
physics, we start with the analysis of the phenomenon time.
It will be shown that the physical description of the process of
vision and sound [4, 5], which demonstrates the existence of
a differentiation of the three-dimensional space DSS into the
two-dimensionality 2D, i.e. electromagnetism, and the one-
dimensionality 1D, i.e. length, i.e. gravitation, is extremely
helpful for the analysis of the phenomenon time. It has be-
come aware that the description of time is not dependent on
the wavelength of the used light, but solely on the frequency,
reflecting the electromagnetism. Based on the DSS-model,
in fact the source of the phenomenon time must refer to dy-
namics, i.e. to the electromagnetism, which is an effect of the
2D-state. The unit time is always noticeable merely in con-
nection with the category length [6]. This finding suggests
that the perception of the phenomenon time must be a re-
sult of the connection of the wave related 2D-state with the
real, i.e. 1D-state, which represents the state of observable
facts. The analysis of the process of vision has shown [4] that
the 1D-state, representing the gravity and thus also the cate-
gory length, relates to the effect of the gravitational constant
GE = c2(LE/ME), where LE is the Planck-length and ME the
Planck-mass and c the velocity of light. It is generally as-
sumed that the gravitational constant GE is valid at the whole
cosmos. From this decisive supposition follows that the re-
lation LE/ME, i.e. the fundamental connection between the
three-dimensionally related mass and the category length, is
describable in an extended form, given by

LE

ME
=

λC

M0,E
=
λG,E

MG,E
=

LU,E

MU,E
. (1)

Here λC is the Compton wave-length and M0,E the corres-
ponding to this length related mass, λG,E is the so-called ref-
erence length of the earth and MG,E the corresponding mass

of the earth, and finally LU,E the length of the cosmos and
MU,E its mass. The index E indicates that the explorations are
performed from an earth-related place.

It should be emphasized that (1) and thus also the relation
λC/M0,E represent the particular state of identity of the ob-
servable electromagnetism with gravitation. Considering the
model of the differentiated structure of space DSS [4, 5], this
state is given by the non-possibility to distinguish between the
2D-state and the 1D-state. But this specific condition does not
exist at the surface of the earth. The third law of Kepler [4],
which is related to the spatial three-dimensionality of the cos-
mos, shows that the relation between the square velocity of
light c2 and the square of the orbital speed at the surface of
the earth vE

2 (which reflects the difference between the elec-
tromagnetism and gravitation) is given by c2/vE

2 = aG,E. This
number aG,E, related to the surface of the earth, in [4] de-
scribed by (8) and (9) and formulated in agreement with (1),
is given by

aG,E =
ME RG,E

LE MG,E
=

M0,ERG,E

λCMG,E
=

RG,E

λG,E
, (2)

where RG,E is the radius of the earth and MG,E its mass.
It should be pointed out that according to the DSS-model

we have to proceed from the 1D, i.e. from the noticeable,
i.e real state. In the next sections, it is demonstrated that,
according to the spatial three-dimensionality, the 2D-state is
valued in a “square” relation to the 1D-state. Thus the fre-
quency fC, being related to the 2D-state, must be modified
on the surface of earth by (aG,E)1/2, resulting in a real value,
given by fE = fC(aG,E)−1/2. When we take the value fC =

1.235589964 × 1020 Hz for the velocity of light related fre-
quency, the value MG,E = 5.974 × 1024 kg for the mass of the
earth and the approximate value RG,E = 6.36 × 106 m [7] for
its radius RG,E, then, according to (2), we obtain for fE the
real value

fE = fC (aG,E)−1/2 = 3.26321(64) × 1015 Hz . (3a)

It is of great importance for our further analysis to compare
this experimentally established numerical value of fE with the
numerical value M0,E = λC(ME/LE), which refers to (1). As
known, the Compton-wavelength is given by

λC = 2.4263102389 × 10−12 m ,

and for the relation LE/ME we have the value

LE/ME = 7.42565(74) × 10−28 m kg−1.

This value of LE/ME was determined from the analysis of the
cosmos generally used, experimentally observed gravitation
constant GE = c2(LE/ME) = 6.67384(80) × 10−11 m3 /(kg s2)
[7]. Based on (1) and using these values, we obtain for M0,E
a 1D related value, given by

M0,E = λC (ME/LE) = 3.26746(86) × 1015 kg . (3b)
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The comparison of the “numerical” value fE, given by
(3a), with the “numerical” value M0,E, given by (3b), “aston-
ishingly” reveals a near identity of their numbers. This excep-
tional finding leads us to the dared assumption that a causal
connection between mass and frequency, i.e. time,
seems to be possible in being. This exceptional assumption
can be formulated by means of the spectacular equation

M0,E = fE . (4)

The comparison of the values of M0,E with fE shows that
the experimental value of fE is a little higher, but only about
0.13 %. This relatively small deviation is necessarily a con-
sequence of the fact that according to vision and sound the
effect of MG,E on the value of aG,E is a little lower, caused by
the reduced earth density at the surface. Therefore, indeed,
it is physically allowed to postulate that on the surface of the
earth an absolute numerical identity of M0,E with fE is given,
as proposed by (4).

It should be pointed out that the careful analysis of (4),
given in sections 3–5, shows that the proposed identity of the
limits of mass with frequency has to be valid not only on the
surface of the earth, but generally valid at the whole cosmos.
Thus, it should be considered that beside the physical con-
stants c and LE/ME, a third important, generally valid con-
stant should be effective, representing a connection of mass
with frequency. Due to the importance of this exceptional
postulate, experimental findings will be presented in the next
section to substantiate the validity of the extraordinary (4).

3 Experimental verifications of the identity of the mass–
time connection

3.1 The analysis of the limiting current of the Quantum-
Hall-Effect (QHE)

The limiting current of the QHE, obtained by the experimen-
tal investigation of W. Wittmann [8], is presented in Fig. 2.1
of [9], page 37. Assessing these data with respect to the pro-
cess of seeing and hearing, we have to conclude that the in-
vestigated electric current of the sample, the so-called source-
drain current ISD, being a real effect, must be related to the
1D-state, i.e. to frequency being in the real form of time, and
not to the 2D wave state. Therefore it must be concluded that
the factor of modification (aG,E)1/2 has to be in relation solely
to the source-drain frequency fSD and not also to the charge
of the electron e of the electric current, as former assumed
in [9]. This shows, formulated in a general form, that the lim-
iting frequency on the surface of the earth fE must be given
by (3a) and thus the limiting current I0,E by

I0,E = e fE = 5.23510(29) × 10−4 A . (5)

This theoretical value of the limiting current really agrees on
the whole with the experimental data of the QHE, as shown
and discussed on pages 39–40 of [9], together with the results

of the extension of the time-analysis, given in [10], part II,
pages 37–50. This particular finding demonstrates that the
basic unit ampere of the MKSA- or SI-system of basic units
must be considered to be a fix relation to the basic unit time,
and that by means of the electron charge e. From this fol-
lows that the limit voltage of the QHE V0,QHE is at the limit
resistivity R0,QHE = 2.581281 × 104 ohm given by V0,QHE =

13.51316(38) V and that the relation between the mass and
the charge of the electron results in me/e = (aG,E)1/2V0,QHE/c2,
which agrees with the experimental experience. These exper-
imental results suggest the striking conclusions that, on the
one side, the equation of the frequency indeed should be given
by fE = fC(aG,E)−1/2, as proposed in section 2 and thus sup-
porting the assumption of (4), and, on the other side, only a
reduced MKS basic system of units, i.e. without the category
“electric current”, should be taken into account in the physi-
cal science, being a far-reaching conclusion of the QHE.

3.2 The comparison of the mass–time relation effect with
the Hubble time TU,E

An indirect experimental confirmation of (4) can be obtained
when we interpret the connection between the mass M0,E and
the frequency fE as a fundamental coupling number, and that
seen in similarity to the speed of light c, and when we con-
sider the relation LE/ME also as a fundamental coupling num-
ber. The numerical value of the relation LE/ME is given by
the constant of gravity GE [7], where the factor c2 is based
on the value c = 2.99792458 × 108 m s−1 [9]. The fundamen-
tality of the numerical value of LE/ME was demonstrated by
the equation of the Hubble-effect [4]. Therefore, describing
the velocity of light as a fundamental coupling number be-
tween the categories length and time, given by the number
2.99792458 × 108, and the relation LE/ME as a fundamental
coupling number between categories length and mass, given
by the number 7.42565(74) × 10−28, thus the connection be-
tween the mass M0,E and the frequency fE, i.e. time, given by
(3a), (3b) and (4), has according to our analysis to be assessed
as a general valid fundamental coupling number between the
relation of the categories mass and time, describable by the
number 1.

Summarizing these propositions, a general valid funda-
mental connection between the categories length, time and
mass can be achieved by

1 m = 1/c = (1/2.99792458 × 108) s

= 3.335640952 × 10−9 s ,
(6a)

1 m = 1/(LE/ME)

= (1/7.42565(74) × 10−28) kg

= 1.346682(11) × 1027 kg

(6b)

and 1 kg = 1/(1 s)∗ , (6c)
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where we introduce a fundamental time (1 s)∗ in (6c), a con-
sequence of the assumption of the existence of a general valid
fundamental connection between the categories length, mass
and time. Thus (6a)–(6c) yield

(1 s2)∗ = (ME/LE) c = 4.03725(14) × 1035 s2 , (7)

being a square of the fundamental time. Thus the unit of
time, representing the fundamental coupling number, there-
fore must be given by

(1 s)∗ = 6.35393(69) × 1017 s , (8)

which must be considered to be a result, related to the freely
chosen value of c.

To get a further possibility to confirm the correctness of
our analysis and thus of (4), we start from the idea that this
specific time of (8), deduced from the numerical values c,
LE/ME and (4), correspond with the Hubble time TU,E.
Throughout the scientific literature, the Hubble time TU,E is
determined by means of the Hubble constant H0, determined
by telescopes. The value of the time of (8) corresponds with
the Hubble-value H0 = 48.564 km s−1 Mpc−1. Thus it is in-
teresting that the experimentally detected H0 values show the
Hubble constant, found in the last decades, to be between
H0 = 40 km s−1 Mpc−1 and H0 = 100 km s−1 Mpc−1 [11], and
the recently determined value shows to be [4]

H0 = 72.1 km s−1 Mpc−1.

It is now clear that the values of the experimental findings
of H0, according to the size, are identical with the size of
the theoretical value given by (8). Thus we can state that
the size-related agreement of the telescopes given TU,E values
with the theoretical value, given by (8), additionally proves
that the postulated identity of the category mass with the cat-
egory time, expressed by (4), indeed can be considered to be
experimentally verified.

4 The formulation of an equation of transformed basic
units without dimensions

As has been manifested in subsection 3.2, it is very interesting
that the generally valid limit values c and LE/ME yield in (7)
the square of the category time. As will be discussed in detail
in section 5, this odd finding can be solved when we take into
consideration both the experimental data of the QHE [1] and
the physical description of vision and sound [4, 5].

The KE shows the Rxx = 0 ohm effect, which manifests
the existence of an extraordinary state without any difference
between mass, length and time. To reflect this mysterious
experimental finding, a transformation of (6a)–(6c) is neces-
sary to achieve the basic units given simply by numbers. This

spectacular goal is attained by

1 m∗ = 2.11944(52) × 109 , (9a)

1 kg∗ = 1.573827(44) × 10−18 , (9b)

1 s∗ = 6.35393(69) × 1017 . (9c)

The numbers of (9a)–(9c) are obtained, when we use 1/c and
1/(LE/ME) as fundamental coupling numbers and when we
suppose that the time of (8) is identical with the limit time of
the cosmos TU,E. Thus the numbers of (9a)–(9c) are given by

1 m∗ =
1
c

(1 s)∗ , (10a)

1 kg∗ =
L

M c
(1 s)∗ , (10b)

1 kg∗ =
1

(1 s)∗
. (10c)

When starting from the cosmic length, given by LU,E =

c TU,E = 1.90486(24) × 1026 m and from the cosmic mass,
given according to (1) by

MU,E = (ME/LE) LU,E = (ME/LE) c TU,E

= 2.56524(41) × 1053 kg ,

and multiplying these values with the transformed basic units
1 m∗ and 1 kg∗ of (9a) and (9b), evidently we obtain the trans-
formed values of length LU,E

∗ and of mass MU,E
∗. Moreover,

when the square of the time of (8) is taken as the expres-
sion of the transformed cosmic time TU,E

∗2, then we obtain
– fully unexpected – for MU,E

∗, LU,E
∗ and TU,E

∗2 one and the
same number. This extremely spectacular observation results
in the possibility to connect the transformed expressions of
mass MU,E

∗, length LU,E
∗ and time TU,E

∗2 simply into one
equation, given by

MU,E
∗ = LU,E

∗ = TU,E
∗2 = 4.03725(14) × 1035 . (11)

It is evident that the spectacular non-dimensionality of
(11) represents a particular state of unreality, which indicates
the existence of an extraordinary state, seen in comparison
to the in reality given basic units mass, length and time. It
should be emphasized that this peculiar observation indeed
reflects the experimental finding of the Klitzing-Effect (KE).
The unexpected observation of the same number, resulting in
(11), suggests the general validity of unification of basic units
for the whole cosmos.

Besides, it should be emphasized that the disclosed possi-
bility in this section 4 to describe each basic unit only by the
same number can hardly be substantiated by the given phys-
ical argumentation in our times. Evidently, (11) is based on
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the proposed identity in section 2 of the category mass with
frequency, i.e. with the category time. But, in an extensive
manner valued, the reasoning of (11) can be indirectly sup-
ported by both the cosmological principle as well as by the
mathematically unsolvable three-body-problem, which sup-
ports the DSS-model [4, 5], and which are generally valid.
Moreover, a comprehensive analysis of (4) and (11) shows
that the used constancy of the velocity of light c in the whole
cosmos (reflecting the independence on the place of investiga-
tion) is only possible, when a universal validity of unification
of the basic units is given. This statement is discussed in the
next section.

5 The far-reaching findings about the category time

Based on all the data, shown in the preceding section 4, a
comprehensive interpretation of the category time is possible
by further analyzing the substance of (11). In fact, (8) to-
gether with (6a)–(6c), (9a)–(9c) and (11) yields a noticeable,
far-reaching expression, given by

MU,E = TU,E TU,E
∗2 = TU,E MU,E

∗ . (12)

Considering (8), (9c) and (10a)–(10c), then (11) and (12),
as well as the discussion of the results of the Hubble time
TU,E become more understandable for the interpretation of the
essence of time, when we further postulate that the cosmic
time TU,E complies the remarkable “numerical” identity

TU,E = TU,E
∗ . (13)

The identity of the limit numbers of the real and unreal cos-
mic times, given by TU,E and TU,E

∗, can be confirmed, when
analyzing (7) and (8) with respect to the results of vision and
sound. According to (11) and (12), and especially to (13),
the Hubble time TU,E should be considered to be a particu-
lar magnitude, being numerically quite different to both MU,E
and LU,E (the values of them are given in section 4) as well
as to MU,E

∗ and LU,E
∗. Moreover, it must be pointed out that

this specific exclusiveness of the cosmic time is also given in
(11), where the real time TU,E, being in unreal state, appears
in a “square”. This important fact is a consequence of the spe-
cific circumstance that TU,E, in contrast to MU,E

∗ and LU,E
∗,

is in this state used as a “real” magnitude, and that in form
of (1 s)∗. Thus, when we consider (12), it becomes evident
that the circumstance of TU,E can be in agreement with the
DSS-model about the square relation of the 2D-state to the
1D-state “only”, when the in (13) proposed numerical iden-
tity of the real and unreal cosmic time is given for the whole
cosmos. It is obvious that this disclosure is confirmed by the
existence of the Hubble effect [4].

Moreover, it should be pointed out that (11) and its gen-
eral validity is based solely on the proposition of the validity
of (4). It is given by the possibility to express the connection
of the mass with the frequency, given in the reality related

form by fC(aG,E)−1/2. The used rooty form of the gravita-
tional value aG,E is in full agreement with both the physical
description of vision and sound [4, 5], and also the third law
of Kepler, showing that the relation between the 2D-state and
the 1D-state is given inevitably in squared form. This obser-
vation demonstrates the generally validity of the difference
between the essence of frequency and time in the real state,
which in the last consequence approves the correctness of (4)
and (11).

All these discussed observations are important also for the
confirmation of the general validity of (12), which can be ob-
tained by comparison of this equation with the third law of
Kepler. Due to the third law of Kepler, the orbital time of
earth tG,E is given by [4]

tG,E = (aG,E)3/2 tE , (14)

where the specific time of earth tE with respect to (1) is de-
fined by

tE = λG,E/c = 1.4797 × 10−11 s . (15)

Starting from (12), the application of it to the particular con-
ditions of the earth yields the equation

MG,E = tE MU,E
∗ . (16)

Eqs. (12) and (16) demonstrate that the category time rep-
resents a connection of the real values of the masses MU,E
and MG,E with the unreal value MU,E

∗. Therefore, finally, we
can draw the striking and for our investigation of the essence
of time important conclusion that according to the effect of
KE [1] and the DSS-model [4, 5], the category time suggests
to be a magnitude to connect the 2D-state with the 1D-state,
thus to be a factor of realization between reality and unreality.

As has been shown, this description of the essence of time
is based on the proposed identity of the limit of mass with
the limit of frequency, formulated by (4) and experimentally
confirmed by many, quite different observations:

1. By the mysterious Klitzing-Effect (KE), which disclo-
ses the existence of an unresistance Rxx = 0 ohm at the
Quantum-Hall-Effect (QHE),

2. by the physical description of the process of seeing and
hearing [4, 5], resulting in the discovery of the DSS
structure of space,

3. by the value of the gravitational number of the surface
of the earth aG,E, determined from the mass and the
radius of the earth, which modifies the limits of mass
and frequency in (4),

4. by the results of the limiting current of the QHE [8, 9],
5. by the found approximate identity of the value of the

Hubble time TU,E, experimentally determined by tele-
scopes [4,11], with the theoretically deduced limit time
given by (8), which certifies the validity of the state-
ments of (4) and (11),
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6. by the coherence of the summarized result of the here
listed experimental observations with the third law of
Kepler [4], demonstrating that indeed the finding of the
DSS-state and the possibility of unification of the ba-
sic units are in a perfect agreement with the assumed
general validity of the third law of Kepler.

Considering all these experimental findings, the presented
model of the essence of time should be viewed as physically
confirmed.

6 Summarized conclusions
The physical description of vision and sound in form of the
DSS-model [4,5], reflecting the experimental data of the Klit-
zing-Effect (KE) [1], reveals that the phenomenon time is
given as a consequence of the interaction of the wave-related
2D-state with the 1D-state, i.e. the particular state, which
shows exclusively real circumstances. This finding is the
physical reasoning for the fact that the phenomenon time as
well as the frequency in real form are always observable sole-
ly in connection with the category length [6] [9, pp. 9–10].

The analysis of the experimental data of basic units shows
that surprisingly a generally valid identity of mass and fre-
quency can be supposed, theoretically described by (4) and
confirmed by different experimental data. These findings re-
sult in the possibility to formulate an equation, given by (11),
in which, astonishingly, the transformed categories mass,
length and time are given only by the same, single number,
referring in the last consequence to the existence of an unre-
ality in being. This observation has to be considered to be the
physical description of the mysterious experimental effect of
the Rxx = 0 ohm related Klitzing-Effect (KE), discovered in
the Quantum-Hall-Effect (QHE) [1].

The third law of Kepler proves that the phenomenon time
is observable onlyin the given state of the spatial three-dimen-
sionality. This circumstance points out that – with respect
to the DSS-model – the category time must be effective as a
mediator for the coupling of the 2D-state with the 1D-state,
thus being an important background of the realization of the
category mass.

Summarizing all the presented experimental findings, it is
allowed to conclude that the “unification” of the basic units
length, mass, time and electric current appears to be a physi-
cal fact. Based on this important discovery, we can state that
the phenomenon time is a dualistic factor, which is related
on the one side to the localized, i.e. real 1D-state, noticeable
as time, on the other side in the wavy, i.e. unreal 2D-state,
in realistic form known as frequency. Evidently, this finding
shows the existence of a substantial difference between time
and frequency, and that to be a physical legitimate circum-
stance.
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This survey tries to investigate the truths and deficiencies of prevalent philosophy about
Uncertainty Relations (UR) and Quantum Measurements (QMS). The respective philos-
ophy, known as being eclipsed by unfinished controversies, is revealed to be grounded
on six basic precepts. But one finds that all the respective precepts are discredited by
insurmountable deficiencies. So, in regard to UR, the alluded philosophy discloses one-
self to be an unjustified mythology. Then UR appear either as short-lived historical
conventions or as simple and limited mathematical formulas, without any essential sig-
nificance for physics. Such a finding reinforces the Dirac’s prediction that UR “in their
present form will not survive in the physics of future”. The noted facets of UR motivate
reconsiderations of associated debates on QMS. Mainly one reveals that, properly, UR
have not any essential connection with genuine descriptions of QMS. For such descrip-
tions, it is necessary that, mathematically, the quantum observables to be considered
as random variables. The measuring scenarios with a single sampling, such are wave
function collapse or Schrödinger’s cat thought experiment, are revealed as being useless
inventions. We propose to describe QMS as transmission processes for stochastic data.
Note that, for existing quantum debates, the above UR–QMS revaluations, offer a few
arguments for lucrative parsimony in approaches of matters. The unlucrative aspects of
those debates have to be reconsidered too, probably in more or less speculative visions.

Motto 1: “I think one can make a safe guess that uncertainty
relations in their present form will not survive in the physics
of future.”

P. A. M. Dirac, 1963

Motto 2: “The word ‘measurement’ has had such a damaging
effect on the discussions that . . . it should be banned alto-
gether in quantum mechanics.”

J. S. Bell, 1990

Foreword

A. The present review-study germinates from some of our
preceding more modest investigations some of them already
published in this journal, Progress in Physics. Also, it was
influenced by a number of opinions published by other sci-
entists (opinions which, usually, are ignored in mainstream
literature).

In the main, the study was stimulated by the known ex-
istence of numerous debates (unfinished controversies on un-
elucidated questions) regarding the foundations and interpre-
tation of Quantum Mechanics (QM). The considered debates
refer mainly to the significance of Uncertainty Relations (UR)
and to the associated descriptions of Quantum Measurements
(QMS). By their obstinate persistence, the mentioned debates
delay and obstruct the desired (and expected) clarifications
about some basic aspects of QM.

Within the here emerged text, we try to gather, system-
atize, improve, consolidate and mainly to present more

argued our non-conventional viewpoints about the existing
prevalent debates on UR, QMS and QM.
B. The here proposed article approaches step-by-step the fol-
lowing main items:

i.1 A consistent Introduction which points out:
(a) The nowadays existence of unfinished debates (dis-
putes and controversies) about the meaning of UR and
description of QMS;
(b) The today necessity for search the truth about own
philosophy of UR and description of QMS, regarded as
relevant pieces for foundations/interpretation of QM;

i.2 An inventory section which identifies the Basic Pre-
cepts of the prevalent philosophy regarding UR and
QMS;

i.3 A large section about most important deficiencies of
the mentioned precepts. Within the respective section
we concern on:
(a) Detailed examinations of deficiencies specific to the
respective precepts;
(b) Elucidation, piece by piece, of the real value/mean-
ing for each of the pointed out deficiencies;

i.4 A first concluding section about the true significance of
UR. In that section the current prevalent interpretation
of UR is proved to be nothing but a veritable myth with-
out any special or extraordinary value for physics. But
such a proof reinforces the Dirac’s prediction that UR
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“in their present form will not survive in the physics of
future”;

i.5 A section containing considerations on description of
QMS. The respective considerations are done in the
light of the debates about deficiencies of dominant phi-
losophy about UR. Also the measuring scenarios with
a single sampling, such are wave function collapse or
Schrödinger’s cat thought experiment, are revealed as
being superfluous fictions. We argue that the QMS de-
scriptions should be approached additionally compar-
atively with the description and interpretation of UR.
They must be discussed in new insights by regarding
the measurements as transmission processes for sto-
chastic data. (see our examples from Subsections 5.2
and 5.4 or from Appendices F and G);

i.6 A final section with some concluding remarks;
i.7 A supplementary section of Appendices containing:

(a) Technical/computational details — in seven cases,
respectively;
(b) A copy of “A private letter from the late scientist
J. S. Bell to the author”.

C. Notes:

I. Through the elucidations referred to in item i.3 we of-
fer genuine solutions for some controversial theoretical
problems such are:
(a) The adequate form of UR for the supposed rebel-
lious pairs of observables: Lz–ϕ (angular momentum
— azimuthal angle), N– φ (number-phase) and E–t
(energy-time);
(b) The case of macroscopic operators;
(c) The uniqueness (individuality) of Planck’s constant;

II. In its essence, the suggested revaluation of UR and
QMS philosophy does not disturb in any way the ba-
sic lucrative framework of usual QM (which keeps its
known specific concepts, principles, theoretical mod-
els, computing rules and studied systems);
Moreover, I try to give arguments for lucrative parsi-
mony in approaches of QM matters;
I believe that, to some extent, such a revaluation of
UR-QMS prevalent philosophy can be beneficent for
interpretation and understanding of QM. Potentially
that revaluation can bring at least a modest contribu-
tion to non-conventional investigations of some open
questions regarding views about UR, QMS, and QM.

III. My article tries to clarify certain past misunderstand-
ings, of historical, philosophical, and cultural
essence, which still persists in activities (of publishing
and mainly of teaching nature), connected with QM;

IV. As a significant aspect, in my paper, the discussions are
presented and detailed in forms accessible to readers
with knowledge of QM at a not-advanced level. That is
why in the version proposed here the article was con-

ceived (especially through a number of detailed Ap-
pendices) as an accessible teaching material for those
interested in QM education at undergraduate/graduate
levels.

D. I think that, by its theme, style and writing level, my paper
ensures the following desiderata:

• It approaches representative methodological and philo-
sophical topics concerning the structure and the growth
(interpretation and foundations) of QM investigated as
a significant constituent of natural sciences;

• It can give a starting forum for the exchange of views
and ideas among readers interested, in foundations of
QM regarded as an important constituent of modern
sciences;

• It identifies and highlights foundational issues, suggest-
ing constructive and genuine solutions for approached
problems;

• It offers a number of original opinions concerning some
controversial theoretical/philosophical scientific prob-
lems;

• It initiates and develops discussions on the philosophy
and epistemology of physics, at a level accessible to
a wide class of readers (scientists, teachers and even
students in physics, mathematics, chemistry or philos-
ophy);

• It provides an argued appeal toward an increasing re-
search field, namely to the one regarding the non-con-
ventional approach of QM interpretation and founda-
tions.

Given the above-mentioned aspects, I think that my article
can offer a modest contribution to newly rising investigations
on non-conventional views in quantum physics.

Braşov, November 26, 2020 Spiridon Dumitru

1 Introduction

Nearly a century until nowadays, in the publications regard-
ing Quantum Mechanics (QM) and even other areas, have
persisted discussions (debates and controversies) about the
meaning of Uncertainty Relations (UR). Moreover UR in
their entirety were ranked to a status of fundamental con-
cept named Uncertainty Principle (UP) (for a bibliography
of the better known specific publications see [1–12]). Mostly
the respective discussions have credited UR/UP with consid-
erable popularity and crucial importance, both in physics and
in other domains. The mentioned importance was highlighted
by compliments such as:

• UR are “expression of the most important principle of
the twentieth century Physics” [13],

• UP is “one of the cornerstones of quantum theory” [9];
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• UP “epitomizes quantum physics, even in the eyes of
the scientifically informed public” [7].

But, as a fact, in spite of such compliments, in scientific
literature of our days the essential aspects regarding UR/UP
remain as unsolved and misleading questions. Today keeps
their topicality many critiques reported during last decades,
like the next ones:

• UR “are probably the most controverted formula in the
whole of the theoretical physics” [14];

• “Still now, 80 years after its inception, there is no gen-
eral consensus over the scope and validity of this prin-
ciple (‘UP’)” [7];

• “Overcoming the early misunderstanding and confu-
sion, the concept (notion of uncertainty — i.e. of
UR/UP) “grew continuously and still remains an active
and fertile research field” [8].

Note that the above reminded appreciations (compliments
and critiques) regard mainly the own essence (intrinsic mean-
ing) of UR/UP. But, within many texts about QM fundamen-
tals, one finds also an adjacent topic which, historically, is a
direct sub-sequence of the debates about the mentioned
essence. The respective topic refers to the significance and
description of Quantum Measurements (QMS).

Marked by the previously noted points, during the deca-
des, the discussions about UR and QMS meaning and impli-
cations have generated a true prevalent philosophy (i.e. “a
group of theories and ideas related to the understanding of
a particular subject” [15]). For almost a century, the re-
spective philosophy dominates in mainstream physics pub-
lications and thinking. It obstructs (delays) the expected pro-
gresses in clarifying some of main aspects regarding the fun-
damentals/interpretation of QM respectively the essentials of
QMS problem. Add here the more alarming observation [16]
that: “there is still no consensus on . . . interpretation and
limitations of QM”. Then it becomes of immediate interest to
continue searches for finding the truth about own essence and
consecutive topics of the UR/UP and QMS matters.

A search of the alluded type can be done (or facilitated at
least) by a pertinent survey on deficiencies of the mentioned
philosophy. Such a survey (of modest extent) we intend to
present in this article. Our survey tries firstly to identify the
basic elements of nowadays prevalent views within UR and
QMS philosophy. Afterward we will investigate truth and
value of the respective elements. Within the investigation we
promote a number of re-considerations regarding the conven-
tional (and now dominant) views about UR and QMS mat-
ters. Mainly we reveal the fact that the alluded views are
discredited (and denied) by a whole class of insurmountable
deficiencies, overlooked in the mainstream literature. So our
survey aims to represent an unconventional analysis of the
actual dominant philosophy about UR and QMS.The above-
announced analysis germinated from some of our preceding

investigations (see [17–21] and references). Also, it was sti-
mulated by a number of opinions due to other scientists
(usually the respective opinions are ignored in dominant
literature, but here they are highlighted by specifying the
proper bibliographic sources). Through the present survey,
we try to gather, extend, systematize, improve and consoli-
date the results of our mentioned investigations in order to
present a more argued viewpoints about the approached top-
ics.

In our survey, when it is usefully, we will appeal to the so
called ’parsimony principle’(or ’law ’). The respective prin-
ciple (known also as Ockham’s razor) will be applied as a
heuristic method of simplicity which can be summarized [22]
by the next two desiderata:

• “Of two competing theories, the simpler explanation of
an entity is to be preferred”.

• “Entities are not to be multiplied beyond necessity”.

The mentioned principle will be accounted for in order
that the text to be easy understood for readers (including stu-
dents) not highly specialized.

By the present article-survey, through adequate arguments
and details, we try to elucidate what is in fact the true meaning
of UR, respectively to evaluate the genuine scientific aspects
regarding QMS.

From the conclusions resulting from this survey the most
important one is that, in its entirety, the actual prevalent phi-
losophy about UR must be regarded as a veritable myth with-
out any special or extraordinary status/significance for phys-
ics. This because, in reality, the UR reveal themselves to be
nothing but short-lived historical conventions (in empirical,
thought-experimental version) or simple and restricted for-
mulas (in theoretical approach). But such a conclusion come
in consonance, from another perspective, with the Dirac’s
guess [23] that: “uncertainty relations in their present form
will not survive in the physics of future”.

Add here the fact that, essentially, the above mentioned
re-evaluation of UR and QMS philosophy does not disturb
in any way the basic framework (principles, concepts, mod-
els and working rules) of usual QM. Furthermore, the QMS
description remains as a distinct and additional subject com-
paratively with the elements of QM in itself. Add here the ob-
servation that, for existing quantum debates, the above UR–
QMS revaluations give a few arguments for lucrative parsi-
mony in approaches of matters. The unlucrative aspects of
those debates have to be reconsidered, probably in more or
less speculative visions.

The mentioned description of QMS requires to regard
quantum observables* as true random variables. Also it must

*Drafting specifications: (i) In the next parts of this article, for nam-
ing a physical quantity, we shall use the term “observable” (promoted by the
UR and QMS philosophy literature), (ii) Also, according to the mainstream
publications, we adopt the titles “commuting” or “non-commuting” observ-
ables for the QM quantities described by operators which “commute” respec-
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be dissociated of some fictive QMS scenarios with a unique
sampling (such scenarios are schema with wave function col-
lapse and Schrödinger’s cat thought experiment). We recom-
mend to describe QMS as transmission processes of stochas-
tic data.

2 Basic precepts of UR–QMS prevalent philosophy

Firstly it must be pointed out the fact that, in spite of its
prevalence inside of nowadays scientific debates, the actually
dominant philosophy about UR and QMS germinates mainly
from an old doctrine which can be called Conventional Inter-
pretation of UR (CIUR). The mentioned doctrine (or dogma)
was initiated by the Copenhagen School founders and, sub-
sequently, during nine decades, it was promoted (or even ex-
trapolated) by the direct as well indirect partisans (conform-
ists) of the respective school. Currently CIUR enjoys of a
considerable acceptance, primarily in QM studies but also in
other thinking areas. Moreover, today, within the normative
(mainstream/authoritarian) physics publications, CIUR domi-
nates the leading debates about foundations and interpretation
of QM.

But as a notable fact, in publications, CIUR doctrine, as
well as most aspects of UR and QMS philosophy, are pre-
sented rather through independent or disparate assertions but
not through a complete and systematized set of clearly de-
fined “precepts” (considered as “beliefs . . . accepted as au-
thoritative by some group or school” [24]). That is why, for
a fruitful survey of the UR–QMS philosophy, it is of direct
interest to identify such an set of Basic Precepts (BP) from
which the mentioned assertions turn out to be derived or ex-
trapolated. Note that the aforesaid set of precepts (i.e. the
true core of CIUR doctrine along with prevalent philosophy
of UR and QMS) can be collected by means of a careful ex-
amination of the today known publications. In its essence the
respective collection can be presented as follows.

The history regarding Conventional Interpretation of UR
(CIUR) began with two main generative elements which were
the following ones:

(i) Heisenberg’s “Thought-Experimental” (TE) relation:

∆T E A · ∆T E B � ~ or ∆T E A · ∆T E B > ~ ; (1)

(ii) Robertson-Schrödinger relation of theoretical origin:

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣ . (2)

For introducing relation (1) in [25, 26] were imagined
some “Thought Experiments” (TE) (or “gedanken” experi-
ments). The respective TE referred on simultaneous measure-
ments of two (canonically) conjugate observables A and B re-
garding a same quantum micro-particle. As such pairs of two

tively “do not commute”, (iii) For improving fluency of our text some of the
corresponding mathematical notations, formulas and proofs are summarized
briefly and unitary in few Appendices located in the final of the article.

observables were considered coordinate q and momentum p
respectively time t and energy E. Then the quantities ∆T E A
and ∆T E B were indicated as corresponding “uncertainties”
of the imagined measurements, while ~ denotes the Planck’s
constant.

Relation (2) was introduced in [27, 28] and it is depicted
as above in terms of traditional QM notations [29, 30]. The
main features of the respective notations are reminded briefly
below in Appendices A and B while some aspects regarding
the Dirac’s braket QM notations [29–32] are discussed in Ap-
pendix B.

Note here the fact that the right-hand side term from (2) is
dependent on Planck’s constant ~, e.g.

∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣ = ~ when
A and B are (canonically) conjugate.

Starting from the generative elements (1) and (2), CIUR
doctrine jointly with UR and QMS philosophy have been
evolved around the following Basic Precepts (BP):
• BP1: Quantities ∆T E A and ∆ΨA from relations (1) and

(2), have similar significances of measuring uncertain-
ties for the observable A. Consequently, the respective
relations should be regarded as having a same meaning
of Uncertainty Relations (UR) concerning the simulta-
neous measurements of observables A and B. Such a
regard is fortified much more by the fact that∣∣∣∣〈[Â, B̂]〉

Ψ

∣∣∣∣ = ~

when A and B are (canonically) conjugate.
• BP2: In case of a solitary observable A, for a micro-

particle, the quantities ∆T E A or ∆ΨA can have always
an unbounded small value. Therefore such an observ-
able should be considered as measurable without any
uncertainty in all cases of micro-particles (systems) and
states.
• BP3: For two commuting observables A and B (whose

operators Â and B̂ commute, i.e.
[
Â, B̂

]
= 0) relation

(2) allows for the product ∆ΨA · ∆ΨB to be no mat-
ter how small. Consequently the quantities ∆ΨA and
∆ΨB can be unlimited small at the same time. Such ob-
servables have to be regarded as being compatible, i.e.
measurable simultaneously and without interconnected
uncertainties, for any micro-particle (system) or state.
• BP4: In case of two non-commuting observables A and

B (described by operators Â and B̂ which do not com-
mute, i.e.

[
Â, B̂

]
, 0) the relation (2) shows that the

product ∆ΨA · ∆ΨB has as lower bound a non-null and
~-dependent quantity. Then the quantities ∆ΨA and
∆ΨB can be never reduced concomitantly to null values.
For that reason the respective observables must be ac-
counted as measurable simultaneously only with non-
null and interconnected uncertainties, for any situation
(particle/state). Viewed in a pair such observables are
proclaimed as being incompatible, respectively com-
plementary when they are (canonically) conjugate.
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• BP5: The main elements of CIUR doctrine and UR
philosophy show quantum particularities of uniqueness
comparatively with other non-quantum areas of phys-
ics. Such elements are the very existence of relations(1)
and (2), the above asserted measuring features and the
discriminating presence of the Planck’s constant ~.

• BP6: For glorifying the precepts BP1–BP5 and adopt-
ing the usages of dominant literature, UR philosophy in
its entirety should be ranked to a status of fundamental
concept named Uncertainty Principle (UP).

Add here the observation that, in their wholeness, CIUR
doctrine conjointly with UR and QMS prevalent philosophy
emerge completely from the assertions embedded in basic
precepts “BP1–“BP6.

3 Deficiencies (D) of the mentioned precepts

The above mentioned emergence conceals a less popularized
fact namely that each of the precepts BP1–BP6 is discredited
(and denied) by insurmountable deficiencies. Such a fact can
be revealed through a deep analysis of the respective precepts,
an analysis which is of major importance for an authentic and
fruitful survey of UR and QMS prevalent philosophy. That is
why here below we aim to reveal the most significant ones of
the mentioned deficiencies. They will be presented in a mean-
ingful ensemble, able to give an edifying global appreciation
regarding the mentioned philosophy. The referred ensemble
includes as distinct pieces the following Deficiencies (D):

3.1 D1: Provisional character of relation (1)

Now it must be noted firstly the aspect that, through an anal-
ysis of its origins, relation (1) shows only a provisional (tran-
sient) character. This because it was founded [25, 26] on
old resolution criterion from optics (introduced by Abe and
Rayleigh — see [33]). But the respective criterion was sur-
passed through the so-called super-resolution techniques
worked out in modern experimental physics (see [34–38] and
references). Then by means of of the mentioned techniques
can be imagined some interesting “Super-Resolution-
Thought-Experiments” (SRTE). Through such SRTE for two
(canonically) conjugate observables A and B, instead of TE-
uncertainties ∆T E A and ∆T E B from (1), it becomes possible to
discuss situations with some SRTE-uncertainties denoted as
∆S RT E A and ∆S RT E B. For the respective SRTE-uncertainties,
instead of Heisenberg’s restrictive formula (1) (first version),
can be suggested some CIUR-discordant relations like as

∆S RT E A · ∆S RT E B < ~. (3)

Note that an experimental example of discordant relation of
(3)-type was mentioned in [39] (where the UR (1) “would be
violated by close to two orders of magnitude”).

Now one observes that, from the our days scientific per-
spective, SRTE relations like (3) are suitable to replace the

old Heisenberg’s formula (1) (second version). But such suit-
ability invalidates a good part of the precept BP1 and, ad-
ditionally, it incriminates the CIUR doctrine and UR–QMS
philosophy in connection with one of their main (generative)
element.

It is surprising that, after invention of the super-resolution
techniques, the mainstream (normative /authoritarian) publi-
cations connected with UR–QMS philosophy avoided a just
and detailed evaluation of the respective techniques. Partic-
ularly, even after eight year after the result reported in [39],
almost all of the dominant publications omit to discuss the
respective result. The surprise is evidenced to a great extent
by the fact that parsimony desiderata noted in Section 1 of-
fer a viable argumentation for completing the evaluations and
discussions oft the mentioned kind.

Another infringement (violation) of Heisenberg’s relation
(1) was reported in [40] as an experimental result. That re-
port is criticized vehemently by CIUR partisans [12]. The
respective criticism is done in terms of a few un-argued (and
un-explained) accusatory-sentences. But it is expected that, if
they are justifiable, such kind of critiques should be grounded
on precise technical details and arguments. This in order that
they to be credible.

Curiously is also the fact that, over the past decades within
the UR philosophy, the debates have neglected the older crit-
icisms of the relation (1) due to K. Popper [41].

Taking into account the above revealed aspects one can
say that the precept BP1 proves oneself to be a misleading
(even harmful) basic element for CIUR doctrine and UR–
QMS philosophy. But such a proof is a first argument for
reporting that the respective doctrine and philosophy cannot
be accepted as solid (and credible) scientific constructions.

3.2 D2: Significance of quantities from relation (2)

The term “uncertainty” used within CIUR doctrine for quan-
tities ∆ΨA and ∆ΨB from (2) is groundlessly because of the
following considerations. According the theoretical frame-
work of QM, by their definitions, the respective quantities
signify genuinely the standard deviations of the observables
A and B regarded as random variables (see below Appendix
A). With such significances the alluded quantities refer to in-
trinsic (own) properties (known as fluctuations) of the con-
sidered particle but not to characteristics of the measurements
performed on respective particle. In fact, on a one hand, for a
measured particle in a given state (described by certain wave
function Ψ) the quantities ∆ΨA and ∆ΨB have unique and well
definite values. On the other hand for the same particle/state
the measuring uncertainties regarding the observables A and
B can be changed through the improvements or deterioration
of experimental devices/techniques.

The above revealed QM significances for quantities ∆ΨA
and ∆ΨB are genuinely preferable comparatively with the as-
sertions from the precepts BP1–BP4 promoted by CIUR doc-
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trine and UR–QMS philosophy. But such a preference is
completely congruent with the previously mentioned desider-
ata of parsimony principle.

3.3 D3: Limitations of relation (2)

Relation (2) has only limited validity within the complete the-
oretical framework of QM. This because, as it is detailed be-
low in Appendix A, for observables A and B, relation (2) is
only a restricted consequence of the generally valid Cauchy-
Schwarz formula, given in (A.2). From such a general for-
mula the relation (2) results iff (if and only if) in circum-
stances when the conditions (A.3) are satisfied. In the respec-
tive circumstances in addition to relation (2)/ (A.7) from (A.2)
arises also the formula (A.6). It is worthy to note that the
mentioned particularities regarding the validity of the rela-
tion (2) discredit indirectly the precept BP1 of CIUR doctrine
and UR–QMS philosophy. In their essence the specifications
recorded here are nothing but concretizations of parsimony
desiderata regarding the respective doctrine and philosophy.

3.4 D4: On solitary observables

It is surprising to find that, within UR–QMS philosophy de-
bates, the problem of solitary observables is not discussed
carefully. Particularly, were neglected discussions regarding
the measurements of such observables. This although the re-
spective discussions can be sub-summed to the question of
simultaneous measurements of two observables. Such a sub-
summation can be imagined by means of the Thought Exper-
iments (TE) which motivated the conventional relation (1).
Namely, for example, if in the respective TE it is of interest
only the quantity ∆T E A, by ignoring completely the quantity
∆T E B, one can say that ∆T E A can be unlimited small. There-
fore the observable A, regarded as a solitary variable, appears
as measurable without any uncertainty in all cases. But, on
the other hand, if the same solitary observable A is analyzed
in terms of relation (2), it cannot be associated with an un-
limited small value for the quantity ∆ΨA. This because, form
a QM perspective, ∆ΨA has a unique and well definite value,
evaluated through the corresponding wave function Ψ. Con-
sequently, even in the cases of solitary observables, the CIUR
doctrine and the UR–QMS philosophy cannot provide a clear
and unequivocal approach as it is suggested by precept BP2.

3.5 D5: About commutable observables

According to the precept BP3 for two observables A and B,
whose associated operators Â and B̂ are commutable, relation
(2), allows for the product ∆ΨA · ∆ΨB to be however small.
Then the quantities ∆ΨA and ∆ΨB can be unlimited small at
the same time. Such observables are supposed compatible,
they being measurable simultaneously and without intercon-
nected uncertainties for any micro-particle (system) or state.

But, as it was shown above in deficiency D2, the men-
tioned assertions from BP3, conflict with the genuine signifi-

cance of the quantities ∆ΨA and ∆ΨB. This because both ∆ΨA
and ∆ΨB have unique values, determined theoretically by the
wave function Ψ which describe the considered state of par-
ticle. Or it is possible to have some “rebellious situations”
in which the respective values of ∆ΨA and ∆ΨB to be simul-
taneously non-zero but finite entities, even the corresponding
observables are commutable.

Such a “rebellious situation” can be found [20] for the ob-
servables Px and Py (Cartesian moments) regarding a micro-
particle situated in a potential well of a rectangular 2D con-
figuration. If the well walls are inclined towards the X and
Y axes, the both the quantities ∆ΨPx and ∆ΨPy have non-
zero but finite values. In that situation for Px and Py, besides
the relation (2), it is satisfied however the formula (A.2) with∣∣∣(δΨP̂xΨ, δΨP̂xΨ

)∣∣∣ as a non-null quantity.
The above remarks show that, in fact, the cases of com-

mutable observables require to repudiate firmly the precept
BP3. Additionally we think that the same cases should be re-
garded in the spirit of parsimony principle desiderata, by their
consideration in QM terms reminded briefly in Appendices A
and B.

3.6 D6: Cases of angular observables Lz and ϕ

The precept BP4 stipulates that, as a principle, two non-
commutable observables A and B cannot be measured simul-
taneously because the product ∆ΨA·∆ΨB has a non-null lower
bound. But the respective stipulation is contradicted by some
rebellious pairs of observables. Such a pair, widely discussed,
is Lz–ϕ (angular momentum — azimuthal angle), regarded
in certain particular situations. The respective contradiction
was probably the most inciting subject of debates during the
history of CIUR doctrine and UR–QMS philosophy (see [5,
17–20, 42–55]). The mentioned debates regarded mainly the
quantum rotations which can be called “Lz-non-degenerate
— circular — rotations” (Lz-ndcr). But, besides of that sit-
uations, in QM framework can be discussed also other kinds
of rotations, of direct significance for Lz–ϕ pair. Such kinds
are the ones regarding the rotational eigenstates of a Quantum
Torsion Pendulum (QTP) and respectively the “Lz-degenerate
— spatial — rotations” (Lz-dsr). The true situations of the Lz–
ϕ pair in relation with all kinds of the mentioned rotations will
be discussed below in more details.

3.6.1 D6a: About non-degenerate circular rotations

Let us discuss now the cases of Lz-non-degenerate — circu-
lar — rotations (Lz-ndcr). As systems of with Lz-ndcr can be
quoted the following ones: (i) a particle (bead) on a circle,
(ii) an 1D rotator and (iii) non-degenerate spatial rotations of
a particle on a sphere or of an electron in a hydrogen atom re-
spectively. The mentioned spatial rotations are considered as
Lz-non-degenerate if the magnetic quantum number m (asso-
ciated with Lz) has a unique value (while, of course, all other
specific (orbital) quantum numbers have well-defined values).
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The rotations of respective systems are described through the
wave functions given by

Ψ (ϕ) = Ψm (ϕ) = (2π)−
1
2 · exp (imϕ) . (4)

Here ϕ is an ordinary polar coordinate (angle) with the cor-
responding mathematical characteristics [56] i.e. ϕ ∈ [0, 2π)
and number m gets only one value from the set m = 0,±1,
±2, . . . . Also in (4) the wave function Ψ(ϕ) = Ψm(ϕ) has the
property Ψ (0) = Ψm (2π − 0) := lim

ϕ→2π− 0
Ψm (ϕ).

In the same context, according to the known QM frame-
work [29], Lz and ϕ should be regarded as polar observables,
described by the conjugated operators and commutator repre-
sented as follows

L̂z = −i~
∂

∂ϕ
, ϕ̂ = ϕ·,

[
L̂z, ϕ̂

]
= −i~. (5)

Therefore the conventional relation (2) motivates as a direct
consequence the next formula

∆ΨLz · ∆Ψϕ >
~

2
. (6)

Now it is easy to observe that this last formula is explicitly
inapplicable in cases described by wave functions (4). This
because in such cases, for the quantities ∆ΨLz and ∆Ψϕ asso-
ciated with the pair Lz–ϕ, one obtains the following values

∆ΨLz = 0, ∆Ψϕ = π · (3)−
1
2 . (7)

But such values for ∆ΨLz and ∆Ψϕ are evidently incompatible
with the conventional relation (2)/(6).

In order to avoid the above revealed incompatibility in
many mainstream publications the CIUR partisans promoted
some unusual ideas such are:

• For Lz and ϕ operators and commutator, instead of cur-
rent expressions (5), it is conveniently to adopt other
new denotations (definitions).

• The formula (6) must be abandoned/proscribed and re-
placed by one (or more)“modified Lz–ϕ UR” able to
mime the conventional relation (2) for the Lz–ϕ pair.

The alluded ideas were promoted through the conception
of “impossibility of distinguishing . . . between two states of
angle differing by 2π”. But such a conception has not any
realistic sense in cases of circular rotations. This because
in such cases the angle ϕ has as physical range the inter-
val [0, 2π). Moreover in the respective cases the wave func-
tions (4) are normalized on the same interval but not on other
strange domains.

As regards the “modified Lz–ϕ UR”, along the years, by
means of some circumstantial (and more or less fictitious)
considerations, were proposed a lot of such relations. In terms
of usual QM notations (summarized below in Appendix A),

the alluded “modified Lz–ϕ UR” can be written generically as
follows

f (∆ΨL,∆Ψg (ϕ)) > ~ · 〈s (ϕ)〉Ψ . (8)

Here f (∆ΨL,∆Ψg (ϕ)), g (ϕ) and s (ϕ) denote some specially
invented functions depending on the corresponding argum-
ents. Note that some of the mostly known concrete examples
of relations (8) can be found collected in [55].

Now it should be noted the fact that the “modified Lz–ϕ
UR” such are (8) show some troubling features like the fol-
lowing ones:

• Regarded comparatively, the mentioned “modified Lz–
ϕ UR” are not mutually equivalent. This despite of the
fact that they were invented in order to substitute the
same proscribed formula (6). Consequently, none of
that modified relations, is agreed unanimously as a suit-
able model able to give such a substitution.

• Relations (8) are in fact ad hoc artifices without any
source in mathematical framework of QM. Then, if one
wants to preserve QM as a unitary theory, like it is ac-
credited in our days, the relations (8) must be regarded
as unconvincing and inconvenient (or even prejudicial)
inventions.

• In fact in relations (8) the relevant angular quantities
∆ΨLz and ∆Ψϕ are substituted more or less factitious
with the adjusting functions f (∆ΨLz,∆Ψg (ϕ)), g (ϕ)
and s (ϕ). But, from a genuine perspective, such substi-
tutions, and consequently the corresponding relations,
are only mathematical constructs but not elements with
useful physical significance. Of course that such con-
structs overload (or even impede) the scientific discus-
sions by additions of extraneous entities which are not
associated with true information about the real world.

Then, for a correct evaluation of the facts, all the aspects
regarding relations (8) versus (6) ought to be judged by tak-
ing into consideration the parsimony principle desideratum:
“Entities are not to be multiplied beyond necessity”. Such an
evaluation can be started by clarifying firstly the origin and
validity conditions of the formula (6) regarded as descendant
of conventional relation (2). For the respective clarification it
is usefully to see some QM elements briefly summarized in
Appendix A.

So it can be observed easy that, in its essence, the rela-
tions (2) follow from the generally valid formulas (A.2) per-
taining to the mathematical framework of QM. But, attention,
(2) results correctly from (A.2) iff (if and only if) when it is
satisfied the condition (A.3). In other cases (2) are not valid at
all. Such an invalidity is completely specific for the cases of
Lz–ϕ pair in relations with situations described by the wave
functions (4). This because in respective cases instead of con-
ditions (A.3) it is true the relation(

L̂zΨ, ϕ̂ Ψ
)

=
(
Ψ, L̂z ϕ̂ Ψ

)
+ i~. (9)
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Therefore, for systems described by the wave functions (4),
the formula (6) is invalid by its essence.

Now note that, even when the condition (A.3) is not sat-
isfied, according to the QM general formula (A.2), for the
discussed situations it is true the relation

∆ΨLz · ∆Ψϕ >
∣∣∣∣(δΨL̂zΨ, δΨ ϕ̂Ψ

)∣∣∣∣ (10)

written in compliance with definitions (4) and (5). But, atten-
tion, in respective situations the last relation (10) degenerates
into trivial equality “0=0”. Add here the fact that relation (10)
is completely equivalent with the formula (C.13) deductible
within Fourier analysis.

The above presented details argue undoubtedly the view
that in cases with Lz -ndcr the Lz–ϕ pair must to satisfy not
the troublesome formula (6) but the QM justified relation (10)
(which in fact reduces itself to banal equality “0=0”). Such
an argued view clarifies all disputes regarding the mentioned
cases. Moreover the same view disproves the idea of some
“entities . . . multiplied beyond necessity” (such are the mod-
ified UR (8)) intended to replace the inoperative relation (6).

3.6.2 D6b: Case of Quantum Torsion Pendulum (QTP)

The case of Quantum Torsion Pendulum (QTP) regards a
quantum harmonic oscillator with torsional rotations [19, 20,
55]. Such an oscillator can be considered as the simplest the-
oretical model for molecular twisting motion (“change in the
angle between the planes of two groups of atoms” [57]). For
a QTP oscillating around the z-axis the Hamiltonian operator
has the form

Ĥ =
1
2I

L̂2
z +

1
2

Iω2
0ϕ̂

2. (11)

Here ϕ denotes the twisting angle with domain ϕ ∈ (−∞,+∞)
while the operators L̂z and ϕ̂ obey the rules (5). The other
symbols from (11) are: I and ω0 represent the momentum of
inertia respectively the (undamped) resonant frequency (ω0 =
√
κ/I while κ = torsion elastic modulus).

By means of Schrödinger equation EΨ = ĤΨ one finds
that the QTP eigenstates are described by the wave functions

Ψn (ϕ) = Ψn (ξ) ∝ exp
(
−
ξ2

2

)
· Hn (ξ) , ξ = ϕ

√
Iω0

~
. (12)

These wave functions correspond to the oscillation quan-
tum numbers n = 0, 1, 2, 3, . . . and energy eigenvalues En =

~ω0

(
n + 1

2

)
. In (12) Hn (ξ) represent the Hermite polynomi-

als of ξ.
For each of the states (12) for observables Lz and ϕ asso-

ciated with the operators (5) one obtains the expressions

∆ϕ =

√
~

Iω0

(
n + 1

2

)
, ∆ Lz =

√
~Iω0

(
n + 1

2

)
,∣∣∣∣(Ψ, [L̂ z, ϕ̂

])∣∣∣∣ = ~,

∆ϕ · ∆ Lz = ~ ·
(
n + 1

2

)
.

(13)

These expressions show the fact that, for each QTP eigen-
state, the Lz–ϕ pair satisfies the relation (6)/(2). But note that
the respective fact is due to the circumstance that in the men-
tioned case, in relation with the wave functions (12), the oper-
ators L̂z and ϕ̂ satisfy a condition of (A.3) type, i.e.(
L̂zΨ, ϕ̂ Ψ

)
=

(
Ψ, L̂z ϕ̂ Ψ

)
.

3.6.3 D6c: On degenerate spatial rotations

Let us now regard the cases of Lz –degenerate-spatial-rota-
tions (Lz-dsr). Such kinds of rotations refer [20, 21, 55] to
states of: (i) a particle on a sphere, (ii) a 2D rotator and (iii)
an electron in a hydrogen atom. The respective rotations are
Lz-degenerate in sense that the magnetic quantum number m
(associated with Lz) has multiple values while the other quan-
tum numbers have unique values. A particle on a sphere or a
2D rotator are in a Lz -dsr when the orbital number l has a
unique value greater than zero while m can take all the values
m ∈ [−l,+l]. Then the corresponding rotations are described
through the global wave function

Ψ (ϕ) = Ψl (ϑ, ϕ) =

m= + l∑
m= − l

cm · Ylm (ϑ, ϕ) . (14)

Here ϑ and ϕ denote polar respectively azimuthal angles
with ϑ ∈ [0, π] and ϕ ∈ [0, 2π). In (14) Ylm (ϑ, ϕ) denote
spherical functions while cm are coefficients normalized
through the condition

∑m= + l
m= − l |cm|

2 = 1. Also the wave func-
tions Ψl(ϑ, ϕ) from (14) have the property Ψl (ϑ, 0) =

Ψl (ϑ, 2π − 0) := lim
ϕ→2π−0

Ψl (ϑ, ϕ). In a direct connection with

such a property the operators L̂z and ϕ̂ obey the rules (5).
Now let us regard what are the peculiarities of the Lz- dsr

cases in respect with the controversial relation (6). Principled,
such a regard demands that, by using the formulas (5) and
(14), to evaluate the corresponding expressions for the quan-
tities ∆ΨLz, ∆Ψϕ and

∣∣∣(Ψ, [L̂z, ϕ̂
]
Ψ
)∣∣∣. With the respective ex-

pressions one finds possibilities that the relation (6) to be or
not to be satisfied. Of course that such possibilities are condi-
tioned by the concrete values of the coefficients cm. But note
that, if the relation (6) is not satisfied, the fact appears because
essentially in such a situation the condition (A.3) is not ful-
filled. Add here the important observation that, independently
of validity for relation (6), in all cases of Lz -dsr the Lz–ϕ pair
obeys the prime QM relation (A.2) through adequate values
for the quantities ∆ΨLz, ∆Ψϕ and

∣∣∣(δΨL̂zΨ, δΨϕ̂ Ψ
)∣∣∣. The pre-

vious considerations offer a clear evaluation of the situation
for Lz- dsr cases relatively to the conventional relation (2) and
precept BP4.

Summing up of deficiencies D6 (including D6a, D6b and
D6c): The above discussion about the three kinds of rota-
tions reveals the deficiencies of the conventional relation (2)
and of the associated precept BP4 in regard with the non-
commutable observables Lz and ϕ. But such revealing is noth-
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ing but a direct and irrefutable incrimination of CIUR doc-
trine and UR–QMS philosophy.

3.7 D7: On number and phase observables

The pair N and φ (number and phase) is another couple of
rebellious non-commutable observables which contradict the
corresponding stipulation from the precept BP4 of UR–QMS
philosophy. That contradiction emerged in connection with
the associated operators N̂ and φ̂. The respective operators
were introduced by means of the ladder (lowering and rais-
ing) operators â and â+, destined to convert some QM calcu-
lations procedures from an analytical version to an algebraic
one. Through the respective connection, by taking as base the
relation

[
â, â+

]
= 1, it was inferred the commutation formula[

N̂, φ̂
]

= i.
The last noted formula motivated the idea that operators

N̂ and φ̂ must satisfy the conventional relation (2) with both
∆ΨN and ∆Ψφ as non-null quantities. But afterward it was
found the fact that, in the case of a harmonic oscillator eigen-
states, one obtains ∆ΨN = 0 and ∆Ψφ = π · (3)−

1
2 i.e. a

violation of the relation (2). Of course that such a fact leads
to a deadlock for harmonization of N–φ observables with the
CIUR doctrine and UR–QMS philosophy. Note that this
deadlock is completely analogous with the one regarding to
Lz–ϕ observables in the above discussed case of Lz-ndcr (Lz-
non-degenerate — circular — rotations).

For avoiding the mentioned N–φ deadlock in many pub-
lications were promoted various adjustments (see [6, 43, 48,
58–61] and references therein). But it is easy to observe that
the respective adjustments regarded the conventional relation
(2) as an absolute mark and tried to adapt accordingly the
pair N–φ for a description of a harmonic oscillator. So it was
suggested to replace the original operators N̂–φ̂ by some ad
hoc “adjusted” (adj) operators N̂ad j and φ̂ad j, able to generate
formulas resembling (more or less) with the conventional re-
lation (2) (examples of such adjusted operators can be found
in the literature of recent decades). However it is very doubt-
fully that the corresponding “adjusted observables” Nad j and
φad j can have natural (or even useful) physical significances.
Moreover, until now, it not exist a unanimously agreed con-
ception able to guarantee a true elucidation regarding the sta-
tus of number-phase observables relatively to terms of CIUR
doctrine and UR philosophy.

Our opinion is that a genuine clarification of the N–φ
problem can be done similarly with the above discussed sit-
uation of Lz–ϕ observables in the cases of Lz-ndcr. More
exactly we have to note that the disagreement of N–φ pair
with the conventional relation (2) results from fact that in
such a case the respective relation is mathematically incor-
rect. The aforesaid incorrectness is due mainly to the cir-
cumstance that, in cases of a linear oscillator eigenstates, the
N–φ pair does not satisfy the essential condition (A.3). This
because in that cases for the operators N̂–φ̂ is true the for-

mula
(
N̂ Ψ, φ̂ Ψ

)
=

(
Ψ, N̂ φ̂ Ψ

)
+ i which evidently infringes

the condition (A.3). But it should be pointed out that, even
in the mentioned cases, the N̂–φ̂ operators satisfy the primary
relation (A.2) which degenerates into trivial equality “0 = 0”.

We think that the above noted opinion gives a natural and
incontestable solution for the problem regarding the N–φ pair
versus the conventional relation (2). Accordingly the fictional
operators N̂ad j and φ̂ad j, of an ad hoc adjusted essence, proves
themselves to be nothing but “entities . . . multiplied beyond
necessity”.

So it can be said that the situation of observables N and
φ contradict directly the precept BP4 in connection with non-
commutable observables. Consequently, the respective situ-
ation invalidates completely one of basic elements of CIUR
doctrine and UR–QMS philosophy.

3.8 D8: Concerning the energy — time pair

Closely to the conventional views of CIUR doctrine and UR–
QMS philosophy the pair of observables E–t (energy-time)
was subject for a large number of controversial discussions
(e.g. in works [5, 6, 62–64], in their references and, certainly,
in many other publications). The alluded discussions were
generated within following circumstances. On one hand, ac-
cordingly to the mentioned views, E and t are regarded as
conjugated observables, having to be described by the next
operators and commutator

Ê = i~
∂

∂t
, t̂ = t·,

[
Ê, t̂

]
= i~. (15)

Then the operators Ê and t̂ should satisfy the conventional re-
lation (2) in a nontrivial version. On the other hand, because
of the fact that, in terms of usual QM, the time t is a deter-
ministic but not random variable, for any quantum situation
one finds the following expressions ∆ΨE = “a finite quantity”
respectively ∆Ψt ≡ 0. But these expressions invalidate the re-
lation (2) and consequently the E–t pair shows an anomaly in
respect with the alluded conventional ideas, especially with
the precept BP4. For avoiding the noted anomaly, within the
literature about E–t pair, it was substituted the unsuitable re-
lation (2) by some adjusted formulas written generically as
follows

Ξ E · Ξ t >
~

2
. (16)

The so introduced quantities ΞE and Ξt have various signif-
icances such are: (i) line-breadth and half-life of a decaying
excited state, (ii) frequency domain and temporal widths of a
wave packet, (iii) ΞE = ∆ΨE and Ξ t = ∆ΨA · (d〈A〉/dt)− 1, with
A = an arbitrary observable.

As regards the adjusted formulas (16) note firstly the fact
that various of their versions are not congruent with the orig-
inal conception of relation (2). Also the respective versions
are not mutually equivalent from a mathematical (theoreti-
cal) viewpoint. So they have no reasonable justification in
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the true QM framework. Moreover in specific literature none
of the formulas (16) is accepted unanimously as a correct (or
natural) substitute for conventional relation (2).

Now it is the place to present the following clarifying re-
marks. Even if the E–t pair is considered to be described by
the operators (15), according to the true QM terms, one finds
the relation (

ÊΨ, t̂Ψ
)

=
(
Ψ, Ê t̂Ψ

)
− i~. (17)

By comparing this relation with condition (A.3) one sees di-
rectly that the E-t pair cannot ever satisfy the respective con-
dition. This is the essential reason because of which for the
E–t pair the conventional relation (2) is not applicable at all.
Nevertheless, for the same pair described by the operators
(15), the QM relation (A.2) is always true. But because in
QM the time t is a deterministic (i.e. non-stochastic) variable
in all cases the respective true relation degenerates into the
trivial equality “0 = 0”.

The above noted comments lead to the next findings:

• In case of the E–t pair the conventional views (of CIUR
doctrine and UR–QMS philosophy) are completely
nonfunctional.
• Genuinely, within a true QM framework, the time t is

in fact a pure deterministic (non-stochastic) quantity
without any standard deviation (or fluctuation).

But, taken together, such findings about time-energy pair
must be reported as a serious and insurmountable deficiency
of CIUR doctrine and UR–QMS philosophy.

3.9 D9: Atypical analogues of UR (1) and (2)

By basic precept BP5 the UR philosophy claims idea that re-
lations (1) and (2) possess an essential typicality represented
by their QM uniqueness related with the systems of atomic
size. Consequently, the respective relations should not have
analogues in other areas of physics or for systems of radically
different sizes. But the respective idea is definitely denied by
some example that we will present below.

3.9.1 D9a: Classical Rayleigh formula

As a first example of an atypical analogue of the UR (1) can
be quoted the formula

sinα �
λ

d
(18)

which expresses [35, 39, 40, 65] the Rayleigh resolution cri-
terion from classical optics. In (18) α denotes the “angular
resolution”, λ is the wavelength of light, and d represents the
diameter of lens aperture. Note that criterion (18) was intro-
duced in classical optics in 1879, i.e. by long time before the
QM appeared. Later one relation (1) was introduced by tak-
ing in (18)d ∼ ∆T E · q for coordinate uncertainty, respectively
λ = (~/p) for momentum p (through wave-particle duality
formula) and p · sinα ∼ ∆T E · p for momentum uncertainty.

3.9.2 D9b: Classical “Gabor’s uncertainty relation”

An example of an atypical analog of (2) can be found within
the mathematical harmonic analysis in connection with a pair
of random quantities regarded as Fourier conjugated variables
(see [66, 67] and the Appendix C below). In non-quantum
physics such an analogue is known [67] as “Gabor’s uncer-
tainty relation” which can be represented through the relation

∆t · ∆ν >
1

4π
. (19)

This last relation (19) shows the fact that for a classical signal,
regarded as a wave packet (of acoustic or electromagnetic na-
ture), the product of the “uncertainties” (“irresolutions”) ∆t
and ∆ν in the time and frequency domains cannot be smaller
than a specific constant.

3.9.3 D9c: A relation regarding thermodynamic observ-
ables

Another example of an atypical similar of UR (2) is given by
the following classical formula

∆WA · ∆WB > |〈δWA · δWB〉W | (20)

showed as relation (D.3) in Appendix D of the present arti-
cle. The elements (notations and physical significances) im-
plied in (20) are those detailed in Appendix D. The respective
elements are specific to the phenomenological theory, initi-
ated by Einstein, about fluctuations of macroscopic thermo-
dynamic observables (see [20, 68–72] and Appendix D be-
low).

Note that, from the perspective of mathematics (more ex-
actly of probability theory), the macroscopic formula (20) and
UR (2) are analogue relations, both of them regard the fluc-
tuations of the corresponding observables judged as random
variables. Moreover they describe the intrinsic properties of
considered systems (of macroscopic-thermodynamic respec-
tively quantum nature) but not aspects of measurements per-
formed on the respective systems. The corresponding mea-
surements can be described through a distinct approaches
modeled/depicted as transmission processes for stochastic
data (see below Appendix E and Section 5 in present article).

As regards the formula (20), the following notifications
should be done too. To a some extent the respective formula
can be considered as being member to a family of so called
“thermodynamic UR”, discussed in a number of publications
from the last century (see [78, 79] and references). Note that
the alluded membership is true only in respect with the “regu-
lar” subset of respective family, derivable from the Einstein’s
phenomenological theory. But the mentioned family includes
moreover a class of “irregular” relations. The most known
such an “irregular” relation regards the conjugate variables
energy U and temperature T of a thermodynamic system. It
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has [78] the form

∆U · ∆
(

1
T

)
> kB (21)

where kB denote the Boltzmann’s constant.
It must be noted now the reality that fluctuation formula

(20) and “irregular” relations like is (21) are completely dis-
similar, first of all, due to the important distinction between
reference frames of their definitions. The respective dissim-
ilarity is pointed out by the following aspects. On the one
hand, the quantities ∆WA and ∆WB from (20) are defined by
referring to the same state of the considered system. On the
other hand the quantities U and T which appear in (21) refer
to different states of a system, namely states characterized by
an energetic isolation respectively by a thermal contact. Due
mainly to the above mentioned dissimilarity: “a derivation of
the uncertainty relation (21) analogous to that of the usual
Heisenberg relations (i.e. UR (2)) is impossible” [78].

Add here the fact that, within associate literature, it was
reported a number of controversies about the aspects regard-
ing the possible similarities between the “thermodyna-
mic UR” (mainly from the same subset as (21)) and quantum
UR (2) (see [78] and references). Among respective aspects
can be quoted:

• compatibility of macroscopic observables,

• commutativity of thermodynamic variables and

• reconstruction of QM from hidden variables theories
similarly with the rebuilding of thermodynamics
through subjacent molecular considerations.

Note that the just mentioned aspects are not taken into
account (as relevant elements) for our present survey on defi-
ciencies of prevalent philosophy regarding UR and QMS.

3.9.4 D9d: On the so called macroscopic operators

In the spirit of conventional precept BP5 the uniqueness of
UR (2) consists in its strict specificity for micro-particles (of
atomic size), without analogues in cases of macroscopic sys-
tems. But, as it is pointed out through relation (D.12) from
Appendix D, in case of macroscopic thermodynamic system
studied in quantum statistical physics one finds the formula

∆ρA · ∆ρB >
1
2

∣∣∣∣〈[Â, B̂]〉
ρ

∣∣∣∣ . (22)

This last formula is similar with the conventional UR (2)
(more exactly, mathematically, with its primary versions
(A.7) and (B.4)). Due to such a similarity, probably, some
publications (e.g. [74] and references) have tried to regard
(22) as a macroscopic UR. But the respective regard was
found to be incompatible with the known UR–QMS philoso-
phy, mainly with the precept BP4.

The alluded incompatibility is pointed out by the follow-
ing facts. On the one hand, in spirit of UR philosophy (pre-
cepts BP1–BP4), the quantities ∆ρA and ∆ρB from
(22) should be considered as measuring uncertainties of mac-
roscopic observables A and B. Additionally when the oper-
ators Â and B̂ and do not commute (i.e. [Â, B̂] , 0), ac-
cording to (22), the quantities ∆ρA and ∆ρB can be never re-
duced concomitantly to null values. Consequently, in terms of
UR–QMS philosophy, for any situation, the non-commutable
macroscopic observables A and B are allowed to be measur-
able simultaneously only with non-null and interconnected
uncertainties. But, on the other hand, according to the clas-
sical physics any two macroscopic observables can be mea-
sured concurrently with unlimited accuracies and without any
interrelated uncertainties.

For avoiding the above noted incompatibility some par-
tisans of UR philosophy have suggested the following expe-
dient. Abrogation of (22) by replacement of genuine macro-
scopic operators Â and B̂ with another quasi-diagonal opera-
tors Â and B̂ (i.e. with operators whose representations in any
base are quasi-diagonal matrices). Such substituting opera-
tors should to commute and so the right hand term in (22) to
be (quasi) null (i.e.

∣∣∣〈[Â, B̂]〉
ρ

∣∣∣ ≈ 0). Through the mentioned
substitution the inconvenient relation (22) could be changed
with the more convenient formula

∆ρA · ∆ρB >
1
2

∣∣∣∣〈[Â, B̂]〉
ρ

∣∣∣∣ ≈ 0. (23)

Then it seems to be possible that the substituted macroscopic
uncertainties ∆ρA and ∆ρB to be reduced simultaneously to
arbitrarily small (even zero) values. Apparently, such a pos-
sibility should to harmonize the interpretation of the relation
(23) with the concepts of classical physics.

However, in fact, the above mentioned harmonization is
not possible and the suggested expedient is useless. This, at
least, due to the following reasons:

• Firstly, the relations (22) cannot be abrogated/substi-
tuted if the entire mathematical framework of quantum
statistical physics is not abrogated/substituted too.
• Secondly, in common practice of studies of quantum

statistical systems (e.g.such are the ones investigated
in [80, 81]) are used the genuine operators Â and B̂ but
not the quasi-diagonal ones Â and B̂.
• As a third reason, the following fact can be also noted.

Even in certain situations when the original operators
Â and B̂ are quasi-diagonal in the sense of the men-
tioned expedient, the relation (23) does not turn into a
form having a null term in the right hand side. Such a
situation can be found [20] in case regarding a macro-
scopic paramagnetic system made of a huge number
of independent 1/2-spins. In such a case as macro-
scopic operators appear the Cartesian components M̂α

(α = x, y, z) of the system magnetization. Note that the
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operators M̂α are quasi-diagonal in the sense required
by the aforesaid expedient/substitution. But, for all
that, the respective operators do not commute because
[M̂α, M̂β] = i~γ · εαβµ · M̂µ (γ = magneto-mechanical
factor and εαβµ denotes the Levi-Civita tensor).

By taking into account the above pointed out deficiencies
D9 (including D9a, D9b, D9c and D9d) one may record the
following conclusion. The relations (D.12)/(22) are relations
regarding macroscopic areas of physics but not pieces which
should be adapted to the requirements of prevalent philoso-
phy about UR and QMS.

3.10 D10: On the uniqueness of quantum measurements

Let us refer now to the uniqueness character of conventional
relations (1) and (2) with regard to the measurements pecu-
liarities at quantum level. The aforesaid character was largely
debated in literature and it has generated the still open ques-
tions about the main characteristics (conceptual relevance and
description procedures) of Quantum Measurements (QMS).
By promoting all the assertions from percepts BP1–BP4 the
UR–QMS philosophy tried to enforce the opinion that rela-
tions (1) and (2) are closely linked with the measuring partic-
ularities that are unique in quantum context, without any cor-
respondence (analogy) in non-quantum domains of physics.
The mentioned opinion, often promoted as a true dogma,
dominates the mainstream of existing publications.

On the other hand, as we have argued above through the
deficiencies D1–D9, the alluded opinion is completely un-
founded because, genuinely, the respective relations are:

• either an old-fashioned (and removable) empirical con-
vention (in case of (1)),

• or simple (non-magistral) theoretical formula (in case
of (2)).

Within UR–QMS prevalent philosophy, as a widespread
belief, the uniqueness peculiarities of QMS are motivated
through the so called “observer effect”. The respective effect
is presented as a perturbing influence of observer (by experi-
mental devices) on investigated systems and on measuring re-
sults. It is presumed to differentiate radically the QMS from
classical measurements (of macroscopic physics). Such ef-
fects are absolutely unavoidable and affected by notable un-
certainties in quantum contexts but entirely preventable and
with negligible inaccuracies in classical situations.

The above mentioned belief is categorically disproved by
the following observations. The “observer effect” appear not
only in QMS but also in some classical measurements (e.g.
[82] in electronics or in thermodynamics). Of course that in
classical cases the measuring inaccuracies can be made neg-
ligible (by adequate improvements of experimental devices
and/or procedures). It should be noted, that, in principle,
quantum uncertainties can be also diminished (for example,
with the super-resolution techniques discussed above in D1).

Then the idea of uniqueness quantum measuring charac-
ter for conventional relations (1) and (2), promoted by UR
philosophy through BP5, proves oneself as being a ground-
less fiction which should be disregarded. But such a disre-
gard come to fortify the J. Bell’s thinking [83, 84] that: “the
word ‘measurement’ should be avoided (or even . . . banned)
altogether in quantum mechanics”. Some annotations about
the respective thinking are given below in Section 5 where
we will present briefly a non-conventional approach of QMS
problems.

3.11 D11: On the uniqueness of Planck’s constant

Another aspect of quantum uniqueness invoked in precept
BP5 regards the presence of Planck’s constant ~ as a spe-
cific symbol in conventional quantum relations (1) and (2),
comparatively with a total absence of some similar symbols
in all classical (non-quantum) formulas. We shall examine
the alluded aspect in regard with the relation (2). Then of
prime importance is to notify the fact that, mathematically,
quantum observables from the relation (2) have a stochastic
(non-deterministic) character. But a completely similar char-
acter one finds in cases of macroscopic observables implied
in formula (20) regarding fluctuations specific to macroscopic
thermodynamic systems.

Both kinds of mentioned stochastic observables describe
fluctuations (at quantum respectively macroscopic scale).
The mentioned fluctuations are characterized quantitatively
by the corresponding standard deviations such are ∆ΨA or
∆WA. But, mathematically, the standard deviation indicates
quantitatively the stochasticity (randomness) degree of an ob-
servable. This in the sense that the alluded deviation has a
positive or null value as the corresponding observable is a
random or, alternatively, a deterministic (non-stochastic) vari-
able. Consequently the quantities ∆ΨA and ∆WA can be re-
garded as similar indicators of stochasticity for quantum re-
spectively macroscopic observables.

In principle for macroscopic thermal fluctuations the stan-
dard deviations like is ∆WA can have various expressions (de-
pending on system, state and observable). Apparently, it
would seem that the respective expressions do not contain any
common element. Nevertheless such an element can be found
as being materialized by the Boltzmann’s constant kB (see re-
lation (D.4) in Appendix D below and articles [71, 73]). So,
for any macroscopic fluctuating observable A, the quantity
(∆WA)2 (i.e. dispersion = square of the standard deviation)
appears as a product of Boltzmann’s constant kB with factors
which are independent of kB.

This means that the quantity (∆WA)2, in its quality of
quantitative indicator of thermal fluctuations, is directly pro-
portional with kB. Consequently (∆WA)2 has a non-null re-
spectively null value as kB , 0 or kB → 0 (Note that because
kB is a physical constant the limit kB → 0 means that the
quantities directly proportional with kB are negligible com-
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paratively with other quantities of same dimensionality but
independent of kB). On the other hand, the standard deviation
∆WA is a particular indicator for macroscopic stochasticity
revealed through thermal fluctuations.

Bringing together the above noted aspects it can be said
that kB has the qualities of an authentic generic indicator for
thermal stochasticity which is specific for classical macro-
scopic fluctuating systems.

Now let us discuss about the quantum stochasticity whose
particular indicators are the standard deviations ∆ΨA. Based
on the relations (13) one can say that in many situations the
expressions for dispersions (∆ΨA)2 consist in products of
Planck constant ~ with factors which are independent of ~.
Then, by analogy with the above discussed macroscopic sit-
uations, ~ places itself in the posture of generic indicator for
quantum stochasticity.

The mentioned roles as generic indicators for kB and ~ (in
direct connections with the quantities ∆WA and ∆ΨA) regard
the one-fold (simple) stochasticity, of thermal and quantum
nature respectively. But in physics is also known a twofold
(double) stochasticity, of a combined thermal and quantum
nature. Such a kind of stochasticity one finds in cases of
macroscopic thermodynamic systems composed of statistical
assemblies of quantum micro-particles. The alluded twofold
stochasticity can be evaluated in a way through the disper-
sions (∆ρA j)2 which estimate the level of fluctuations in the
mentioned systems (see [20, 73, 76] and Appendix D below).
As it is noted in relation (D.13) the dispersions (∆ρA j)2 can be
given through of products containing the function f(kB, ~) =

~ · coth
( ~ω

2kBT
)

and factors which are independent of both kB

and ~.
Then it results that kB and ~ considered together turn out

to be a couple of generic indicators for the twofold (dou-
ble) stochaticity of thermal and quantum nature. Such a kind
of stochaticity is significant or negligible in situations when
kB , 0 and ~ , 0 respectively if kB → 0 and ~→ 0.

Now we can note the indubitable remark that Planck’s
constant ~ has an authentic classical analog represented by the
Boltzmann’s constant kB, both ~ and kB having relevant sig-
nificances as generic indicators of stochaticity. But such an
analogy contradicts directly the basic precept BP5 of CIUR
doctrine and UR–QMS philosophy.

3.12 D12: On the excessive ranking of UR

The ranking of UR to a position of principle, is widespread in
the dominant literature, mainly through the authoritative and
normative writings of many leading scientists. Surprisingly
the respective ranking is argued merely in few occasions (e.g.
in [10]) but only partially and not convincingly.

However, in [10], it was signaled the fact that “over the
years, some authors and foremost K. Popper, have contested
this view, of such a . . . ‘ranking’ ”. The mentioned contes-
tation seems to have been motivated by the assertion: “un-

certainty relations cannot be granted the status of a princi-
ple on the grounds that they are derivable from the theory
(‘QM’), whereas one cannot obtain the theory from the un-
certainty relations”. The aforesaid motivation was minimized
and repudiated [10] through of the conventional (and preva-
lent) opinion that: “there are many statements in physical the-
ories which are called principles even though they are in fact
derivable from other statements in the theory in question”.
Note that in spite of the mentioned repudiation, it was added
in [10] the noteworthy observation that “Serious attempts to
build up quantum theory as a full-fledged Theory of Princi-
ple on the basis of the uncertainty principle have never been
carried out”.

As regards the above presented controversy our belief can
be expressed as follows. The Popper’s contestation of UR
ranking (i.e., in fact, of the precept BP6) has a genuine char-
acter while the opposing conventional opinion is nothing but a
questionable (and unfounded) attempt to preserve a predomi-
nant traditionalist doctrine (dogma).

Now, from another perspective, we wish to point out a
new important aspect. On the one hand a true scientific con-
ception attests indubitably the idea that: “A principle is state-
ment which is taken to be true at all times and all places
where it is applicable” [85]. On the other hand all previ-
ously proved deficiencies D1–D11 show that usual philosophy
of UR is not valid in a wide class of situations where they
should to be applied. Therefore such a philosophy cannot
provide (generate) a principle (fundamental concept) applica-
ble in an unquestionable manner for a large area of situations.
That is why it turns out to be totally unacceptable (and use-
less) the idea to raise the entire UR philosophy to a rank of
fundamental principle for QM.

Consequently, the precept BP6 shows oneself as being
nothing but an unjustified thesis. At the same time, from a
true scientific perspective, it is outside of acceptable usages
to put in practice an idea such is [10]: “we use the name “un-
certainty principle” simply because it is the most common
one in the literature”.

4 Which is really the true significance of UR?

Summing all the discussions incorporated within deficiencies
D1–D12 one can notify the following evident remarks:
• There are profound deficiencies regarding all the basic

elements and precepts of the conventional conceptions
(CIUR doctrine and UR–QMS philosophy).
• In their essence the respective deficiencies are unavoid-

able and insurmountable within own framework of re-
spective conceptions.
• Consequently the mentioned conceptions prove them-

selves as being undoubtedly in a failure situation which
impose their abandonment.

The above argued abandonment of conventional concep-
tions points out very clearly the indubitable ending of the ex-
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isting prevalent philosophy about UR. But a fair evaluation of
such an ending requires an adequate epilogue regarding the
future scientific status of the respective philosophy and of its
constitutive and associate concepts.

The alluded epilogue demands firstly, detailed re-evalua-
tions of the generative relations (1) and (2) from which have
been expanded themselves the mentioned philosophy and
concepts. The respective re-evaluations have to be done and
argued by taking into account all the aspects noted previously
within the texts of deficiencies D1–D12. Doing so one arrives
to the following observations:

• Relation (1) is nothing but an old-fashioned (and re-
movable) empirical convention. It persists as a piece
of historical reminiscence, destitute of any wonderful
status/significance for actual and future physics.
• Relation (2) proves to be only an ordinary QM formula,

of well-defined (but not universal) validity. In such a
posture it describes in a simple manner the connections
between fluctuation characteristics of two quantum ob-
servables.
• In fact the relations (1) and (2) have not any crucial

significance, for QM concretely and less so for physics
in general.
• Relations (1) and (2) or their “adjustments” have not

any connection with genuine descriptions of QMS.
• Particularly the respective relations do not depict in any

way the so called “observer effect” (i.e. perturbing in-
fluence of “experimenter” on the investigated system).

5 Considerations on quantum measurements

Besides the main discussions about the meaning of early re-
lations (1) and (2), the conventional UR philosophy gener-
ated also many collateral debates on Quantum Measurements
(QMS) (see [1–12, 86–88] and references). The respective
debates, still active in writings of many scientists, promoted
an appreciable diversity of viewpoints about conceptual sig-
nificance and practical importance of QMS. But in the same
context, were recorded observations like is the following one

• “Despite long efforts, no progress has been made . . .
for . . . the understanding of quantum mechanics, in
particular its measurement process and interpreta-
tion” [89].

Nevertheless, beyond the mentioned debates, the respective
subject of QMS involves also a matter of real interest for
physics. That matter regards the natural interest in developing
adequate theoretical description(s) for QMS, which should to
be proved through viable arguments and which have to be-
come of suitable utility for scientific and technical activities.

The above signaled situation have motivated interest for
both conventional and non-conventional approaches of QMS
problem. A modest non-conventional approach was put in
work progressively in our investigations over many years (see

[17–20, 47, 55, 90–94]). Here, as well as in all sections of
present article, we try to gather, extend, systematize and im-
prove the results of mentioned investigations in order to pre-
sent argued viewpoints about the main aspects of QMS mat-
ter.

5.1 D13: The incorrect association of QMS with UR

As a first main aspect of the so much debated QMS problem
is fact that it has a theoretical essence. Namely, it is focused
around the idea of developing a general theoretical model for
describing measurements on quantum systems. The respec-
tive model should have some similarity (a bit of reference)
with the one centered on Schrödinger equation within QM.

From the perspective of the such supposed similarity most
of publications promoted or accepted the opinion that QMS
have a basic essentiality for QM in itself. During the years
were recorded even assertions like the following one:

• ’the description of QMS is “probably the most impor-
tant part of the theory (QM)” ’ [5].

But note that both the mentioned opinion and assertion are
grounded on the belief that, mainly, the claimed essential-
ity/importance of QMS for QM is given by relations (1) and
(2) in terms of precepts BP1–BP6.

On the other hand, it is easy to see that the respective be-
lief is invalidated by the arguments from the entire collection
of deficiencies D1–D12 notified by us above in Section 3.

Now, besides the aforesaid notifications, for starting our
non-conventional approach of QMS subject, we take into ac-
count the following remarks of J. S. Bell:

• “I agree with what you say about the uncertainty prin-
ciple: it has to do with the uncertainty in predictions
rather the accuracy of ‘measurement’. I think in fact
that the word ‘measurement’ has been so abused in
quantum mechanics that it would good to avoid it al-
together” (see [83] and Appendix I below).

• “. . . The word (‘measurement’) has had such a dam-
aging effect on the discussions that . . . it should be
banned altogether in quantum mechanics” [84].

A similar account we give also to the next remark:

• “the procedures of measurement (comparison with
standards) has a part which cannot be described inside
the branch of physics where it is used”. [95]

The just noted remarks consolidate for us the following key
view:

• The significance of UR is an intrinsic question of QM
while the description of QMS constitutes an adjacent
but distinct subject comparatively with QM in itself.

As another reference element for starting our approach we
agree the following observation:
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• “it seems essential to the notion of measurement that
it answers a question about the given situation exist-
ing before the measurement. Whether the measurement
leaves the measured system unchanged or brings about
a new and different state of that system is a second and
independent question” [96].

In sense of above observation for a measured physical sys-
tem the “situation existing before the measurement” regards
the intrinsic properties of that system. The characteristics of
the respective properties play a role of input data (informa-
tion) for measuring actions. On the other hand for the same
system, the “answer (i.e. result) of measurement” is accu-
mulated in “output data (information)” that are provided by
measuring process. Correspondingly the whole measurement
can be considered as a transmission process for information
(stochastic data), while the measuring device appears as a
communication channel (viewed as in [97]).

So the whole image of a measurement can be depicted
through the scheme∣∣∣∣∣∣ input

data

〉
⇒

[
communication

channel

]
⇒

[
output
data

]
. (24)

For giving concrete descriptions of the above scheme in
cases of QMS (measurements on quantum systems) it should
also to take into view the next remark

• “To our best current knowledge the measurement pro-
cess in quantum mechanics is non-deterministic” [89].

In such a view the mentioned input and output data as well
the description of a QMS have to be presented by means of
some non-deterministic (stochastic or random) entities. For
a measured quantum system the totality of input data can be
considered as being comprised in its specific (intrinsic) wave
function Ψin, with known stochastic/probabilistic own signif-
icance. As regards the same system the output data should
be represented by some quantities having also stochastic fea-
tures. Formally, such quantities can be considered as being
incorporated in an output wave function Ψout. Then the mea-
suring process appear as communication channel which trans-
poses the wave function from a Ψin reading into a Ψout image.
So it can be suggested that, in case of a QMS, the scheme (24)
can be represented through the following generic pattern:∣∣∣∣∣∣ probabilistic

content of Ψin

〉
⇒

[
ŜCC

]
⇒

[
probabilistic

content of Ψout

]
(25)

where ŜCC, depicts the “Stochastic Communication Chan-
nel” regarded as an “operator” which describe the measuring
process.

The above suggested pattern regarding QMS can be par-
ticularized for various concrete situations by using QM ter-
minology. Two such particularization will be detailed below
in the Subsections 5.2 and 5.4.

5.2 On an observable with discrete spectrum

Let us refer to the case of a QMS for a single quantum ob-
servable A endowed with a non-degenerate discrete spectrum
of eigenvalues

{
a j

}n
j=1. The respective observable is described

by the operator Â which satisfy the equations Âϕ j = a j · ϕ j,
where

{
ϕ j

}n
j=1 signify the corresponding eigenfunctions.

If the set of eigenfunctions
{
ϕ j

}n
j=1 is regarded as an or-

thonormal basis the wave functions Ψin and Ψout can be rep-
resented as follows

Ψin =
n∑

j=1
α jϕ j,

n∑
j=1

∣∣∣α j

∣∣∣2 = 1,

Ψout =
n∑

k=1
βkϕk,

n∑
k=1
|βk |

2 = 1.

(26)

Then the the pattern (25) appears as a transformation of the
corresponding probabilities from in-readings

{
|α j|

2}n
j=1 into

out-images
{
|βk |

2}n
k=1. According to mathematics (probabil-

ity and information theories) the mentioned transformation
(i.e.the operator ŜCC) can be depicted by means of a dou-
bly stochastic matrix Mk j (k, j = 1, 2, . . . , n), interpreted as
in [98]. Such a depiction has the form

|βk |
2 =

n∑
j=1

Mk j ·
∣∣∣α j

∣∣∣2 (27)

where the matrix M jk satisfies the conditions

n∑
k=1

Mk j =

n∑
j=1

Mk j = 1.

As above described a QMS appear as being ideal respec-
tively non-ideal, accordingly as Mk j = δk j or Mk j , δk j,
where δk j denotes a Kronecker delta.

By using (26) and (27) for the η-expected values
〈
A
〉
η =(

Ψη, ÂΨη
)
, (η = in, out), of observable A one obtains

〈A〉in =
n∑

j=1
a j ·

∣∣∣α j

∣∣∣2,
〈A〉out =

n∑
k=1

ak · |βk |
2 =

n∑
k=1

n∑
j=1

ak · Mk j ·
∣∣∣α j

∣∣∣2 . (28)

In terms of above notations the error for the expected value of
A is:

E {〈A〉} = 〈A〉out −〈A〉in =

n∑
k=1

n∑
j=1

ak ·
(
Mk j − δk j

)
·
∣∣∣α j

∣∣∣2 (29)

where δ jk signifies a Kronecker delta.
Because, mathematically, the observable A is a random

variable it is characterized also by the standard deviations
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∆ηA (η = in, out), defined as follows

(∆inA)2 =
〈
(A − 〈A〉in)2

〉
in

=
n∑

j=1
a2

j ·
∣∣∣α j

∣∣∣2 − (
n∑

j=1
a j ·

∣∣∣α j

∣∣∣2)2

(∆outA)2 =
〈
(A − 〈A〉out)

2
〉

out

=
n∑

k=1

n∑
j=1

a2
k · Mk j ·

∣∣∣α j

∣∣∣2
−

(
n∑

k=1

n∑
j=1

ak · Mk j

∣∣∣α j

∣∣∣2)2

(30)

So for error E {∆A} of standard deviation regarding the
observable A one finds

E {∆ A} = ∆outA − ∆inA

=

√
n∑

k=1

n∑
j=1

a2
k · Mk j ·

∣∣∣α j

∣∣∣2 − (
n∑

k=1

n∑
j=1

ak · Mk j

∣∣∣α j

∣∣∣2)2

−

√
n∑

j=1
a2

j ·
∣∣∣α j

∣∣∣2 − (
n∑

j=1
a j ·

∣∣∣α j

∣∣∣2)2

.

(31)

Now note the fact that, to some extent, the above pre-
sented model of a QMS description has general features. This
because, excepting the conditions of being doubly stochas-
tic, the measuring matrix Mk j can consists of arbitrary com-
ponents. The mentioned generality/arbitrariness should be
reduced when one refers to the relatively accurate measure-
ments. Such a reduction can be modeled if the measuring
matrix elements Mk j are taken of the forms

Mk j = δk j + τk j,∣∣∣τk j

∣∣∣ << 1,
n∑

k=1
τk j =

n∑
j=1
τk j =0,

(32)

where δk j signifies the a Kronecker delta and τk j are real and
dimensionless quantities of (very) small values.

When the matrix elements M jk are approximated as in
(32) the errors E {〈A〉} and E {∆ A} from (29) and (31) can be
estimated through a direct calculation, respectively by means
of the first order term in Taylor series. Then one finds

E {〈A〉} =
n∑

k=1

n∑
j=1

ak · τk j ·
∣∣∣α j

∣∣∣2 ,
E {∆A} ≈

n∑
k=1

n∑
j=1

[
∂E(τk j)
∂τk j

]
τk j=0

· τk j,

(33)

where E
(
τk j

)
signifies the standard-deviation error E {∆ A}

from (31) in which one uses the approximations (32).
Relations (33) show that within mentioned approxima-

tions the parameters τ jk appear as significant indexes regard-
ing the measuring accuracies. So the discussed measurement

can be regarded as ideal when τk j = 0 for all k and j, respec-
tively as non-ideal when τk j , 0 at least for some values of k
or j.

5.3 D14: On the measuring scenarios with a unique sam-
pling

As it was pointed out in Subsection 5.1, a QMS is essentially a
non-deterministic process. Due to the mentioned essentiality,
the “result” of such a process must be represented in terms of
some stochastic (probabilistic) output data. But, surprisingly,
in conventional publications [99–106] a QMS is regarded as a
scenario (i.e. an imagined sequence of possible events) con-
ceived as a single sampling (i.e. as a unique-deterministic
selection from a set of random data). So regarded, a QMS
gives as its result (outcome) a single value in which falls
(collapses) the whole physical content of the measured ob-
servable. The referred falling scenarios are illustrated by two
widely debated themes regarding the Wave Function Collapse
(WFC) [99–103] respectively the Schrödinger’s Cat Thought
Experiment (SCTE) [104–106]. Historically, both the respec-
tive themes have occurred in a direct connection with the es-
tablishing of basic precepts BP1–BP6 of CIUR doctrine and
UR–QMS philosophy. Therefore, by taking into account the
deficiencies of precepts BP1–BP6, revealed above in Section
3, it is here the place to investigate also the possible deficien-
cies of the aforesaid scenarios.

Let us begin the announced investigation by referring to
the WFC-measuring-scenario. The respective scenarios ger-
minated from the hypothesis that, due to unavoidable mea-
suring perturbations, all QMS cause specific collapses (falls,
jumps) in states of the measured quantum systems. It can be
presented succinctly in usual terms of QM as follows.

Consider a measuring investigation focused on the sys-
tem and observable A discussed in the previous Subsection
5.2. For the respective system in WFC-scenario the “situa-
tion existing before measurement” is inscribed in its intrinsic
wave function Ψin. The probabilistic content of Ψin play the
role of input data (information) for investigation actions. But,
attention, within the WFC-scenario, the measuring actions
are imagined as providing as result an unique detertministic
outcome (udo) namely ak.

Note that ak is one of the eigenvalues
{
a j

}n
j=1 from the

spectrum of A. The eigenvalues
{
a j

}n
j=1 are defined through

the relations Âϕ j = a j · ϕ j ( j = 1, 2, . . . , n), where
{
ϕ j

}n
j=1

denote the eigenfunctions of operator Â associated to the ob-
servable A. Then, in terms detailed previously in Subsection
5.2, the whole WFC-scenario can be illustrated through the
following two schemes

∣∣∣∣∣{a j

}n

j=1
∪

{∣∣∣α j

∣∣∣2}n

j=1

〉
⇒

[
ûdo

]
⇒ ak, (34)
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∣∣∣∣∣∣∣∣Ψin =

n∑
j=1

α j · ϕ j

〉
⇒

[
ûdo

]
⇒ ϕk, (35)

where ûdo symbolize an operator which describe the mesur-
ing actions in WFC-scenario.

On the one hand, firstly, the schema (34) regards the mea-
surement of observable A. It show a falling of the respective
observable from a whole spectrum of values

{
a j

}n
j=1, having

probabilities
{∣∣∣α j

∣∣∣2}n
j=1 in measured state, to a unique value

ak as result of the scenario. Secondly, on the other hand, the
schema (35) refers to the evolution of the considered system
from a state “existing before the measurement” (at the begin-
ning of scenario) in an “after measurement” state (in the end
of scenario).

Specify here the fact that conventional publications (see
[99–103] and references) regard relation (35) as being the es-
sential symbol of WFC. That is why the mentioned publica-
tions tried to done analytical representations of the respective
relation considered as image of a dynamical physical process.
For such representations were promoted various inventions,
e.g. nonlinear extensions of Schrödinger equation or even ap-
peals to new kinds of fundamental physical constants.

The above mentioned WFC-scenario regarding QMS can
be admonished through the following remarks.

Firstly note that quantum observables are stochastic vari-
ables. Consequently a true measurement of such an observ-
able should be regarded as being provided not by an udo
(unique deterministic outcome) but by an adequate proba-
bilistic set of such outcomes. The data given by the respective
set are expected to provide relevant (and as complete as pos-
sible) information about the considered observables.

Secondly, the idea of describing QMS through an analyt-
ical representation of the WFC schema (35) proves oneself
as being an extravagance without solid arguments or credi-
ble hypotheses. Some main aspects of the respective extrav-
agance can be revealed by taking into account the stochastic
similitude between quantum and thermal (macroscopic) ran-
dom observables. Such a reveal we point out here as follows.

Let us refer to a macroscopic thermodynamic system de-
scribed in terms of phenomenological theory of fluctuations
(see below the Appendix D). For simplicity the system will
be considered to be characterized by a single macroscopic
thermodynamic observable A. Mathematically the macro-
scopic fluctuations of A are accounted by a real random vari-
able A and described by the probability density W = W(A).
Through the before specified terms can be pointed out the
analogy between measuring acts regarding the stochastic ob-
servables of quantum and macroscopic nature. An udo, spe-
cific to WFC-scenario, for a quantum observable was dis-
cussed succinctly above in connection with the relations (34)
and(35). A completely similar udo regarding a macroscopic
observable A can be depicted as follows. By means of an
udo for the variable A one obtains a unique value say A0.

Then for A the respective udo can be illustrated through the
following relations

|A ∈ (−∞,+∞)〉 ⇒
[
ûdo

]
⇒ A0, (36)

|W (A)〉 ⇒
[
ûdo

]
⇒ δ (A−A0) , (37)

where δ(X) denotes the Dirac’s δ-function of X.
In principle, the aspects of quantum and macroscopic ob-

servables, depicted by (34) and (35) respectively (36) and
(37) are completely similar. Therefore the discussions regard-
ing the two kinds of udo should be similarly too. But in the
macroscopic case the relation (37) is not considered at all as
illustrating a dynamic process. Moreover within the corre-
sponding macroscopic studies there is no interest for giving
an analytical representation (through some evolution equa-
tions) regarding a scenario of type (37). This even if for the
investigation of macroscopic observables one can use in prin-
ciple a subjacent description given by classical statistical me-
chanics. Then, by virtue of above noted similarity, it can be
said that the quantum scenario (35) should be not considered
as a dynamic process. Consequently the QM studies have to
be not concerned about the analytical representation (by some
evolution equations) of an udo as the one illustrated by (35).
Such regards about the scenario (35) are required, with all
the more, as QM is not complemented (until today) by any
subjacent theory of sub-quantum essence. Furthermore, for a
true physical approach, the result of the respective udo must
be gathered together with the answers of a significant statis-
tical group of many other akin udo. The respective answers
should allow to find adequate probabilistic estimators of the
investigated quantum observable.

Regarding the problem of QMS description, in the cate-
gory of falling scenarios, along with the WFC idea one finds
also the famous problem of SCTE (Schrödinger’s Cat
Thought Experiment). The respective problem, known also as
Schrödinger’s cat paradox, has retained the attention of many
debates over the decades (see [104–106] and references). The
essential element in SCTE is represented by a single decay of
an individual radioactive atom (which, through some macro-
scopic machinery, kills an initially living cat). But the indi-
vidual lifetime of a single decaying atom is a stochastic (ran-
dom) variable. That is why the mentioned killing decay is
in fact a twin analogue of the above mentioned udo taken
into account by the WFC-scenario. So, the above consid-
erations reveal the notifiable fact that, for a true evaluation
of a stochastic observable (such is the mentioned decay life-
time), is worthlessly to operate with an udo which gives an
unique result of measurement. Accordingly, the SCTE prob-
lem appears as a twin analogue of the IWFC-scenario, i.e. as
a fiction (figment) without any real scientific value.

The aforesaid fictional character of the SCTE can be
pointed out once more by observation [93,94] that it is possi-
ble to imagine a macroscopic thought-experiment completely
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analogous with the SCTE. Within the respective macroscopic
analogue, a cousin of Schrödinger’s cat can be killed through
launching a single macroscopic ballistic projectile. More spe-
cifically, the killing machinery is activated by an uncontrol-
lable (unobservable) sensor located within the “circular error
probable” (CEP) [109] of a ballistic projectile trajectory. The
hitting point of the projectile is expected to arrive within CEP
with the probability 50%. That is why the murderous action
of a single launched projectile is just as much unpredictable
as that of the unique radioactive atom within original SCTE.
Therefore, the mentioned macroscopic analogy makes clear
once more the fictional character of the SCTE.

According to the above-noted remarks, it should be re-
garded as worthless statements some assertions such as: “The
Schrödinger’s cat thought experiment remains a defining
touchstone for modern interpretations of quantum mechan-
ics” [106]. Note that such or similar assertions can be found
in many popular publications or in the texts disseminated via
the Internet (e.g. [110]).

Therefore SCTE problem as well as its similar WFC idea,
discussed previously, prove themselves to be not real scien-
tific topics but rather useless exercises (fictive scenarios),
without any conceptual or practical significance.

5.4 About observables with continuous spectra

As it was noted in the beginning of this Section 5, for physics,
development of suitable models for QMS description present
a natural necessity. Above, in Subsection 5.2 of this article,
it is detailed such a model regarding the measurement of an
observable endowed with a discrete non-degenerate spectra.
Here below we try to propose a measuring model with similar
purpose (QMS description) but regarding observables having
continuous spectra of values.

As in case with discrete spectrum for here regarded mea-
suring situation we adopt the same generic pattern depicted
in (25). The probabilistic content of wave functions Ψin and
Ψout incorporate information (data) about the intrinsic state of
the measured system respectively concerning the results pro-
vided by measurement. We will restrict our considerations
to the measurements of orbital characteristics for a quantum
spin-less micro-particle, supposed in a unidirectional motion
along the x-axis. Note that the announced considerations
can be easily extended for measurements regarding systems
with spatial orbital motions. Then the wave functions Ψη

(η = in, out) will be taken of the form Ψη = Ψη(x) (note
that here we omit to specify the time t as visible variable be-
cause the considered state of system refers to a given ante-
measurement instant).

Note now the fact that according QM rules the wave func-
tions Ψη have only significance of probability amplitudes but
not a direct probability meaning. Therefore, in the case of
interest here, the picture (25) of QMS should be detailed not
in terms of wave functions Ψη, but by means of some entities

with direct probabilistic meanings. This especially because
the real measuring devices report the occurrence of some ran-
dom values for investigated observables. In usual terms of
QM entities with direct probabilistic significance are carriers
of stochasticity: probability densities ρη and probability cur-
rents jη (η = in, out). Let us write the wave functions Ψη as
Ψη

(
x
)

=
∣∣∣Ψη

(
x
)∣∣∣ ·exp

{
i Φη

(
x
)}

. Then, for a micro-particle with
mass m considered as measured system, the alluded ρη and jη
are given by relations:

ρη = ρη (x) =
∣∣∣Ψη (x)

∣∣∣2 ,
jη = jη (x) =

~

m

∣∣∣Ψη (x)
∣∣∣2 · ∇xΦη (x) ,

(38)

where ∇x = ∂
∂x .

Now it must to specify that ρη and jη refer to the positional
and the motional kinds of probabilities respectively. Exper-
imentally the two kinds can be regarded as measurable by
distinct devices and procedures. The situation is similar with
that of electricity studies where the aspects regarding position
and mobility of electrical charges are evaluated through com-
pletely different devices and procedures. Due to the afore-
said specifications it results that in fact the generic pattern
depicted in (25) has to be amended as follows

|ρin (x) ∪ jin (x)〉 ⇒
[
ŜCC

]
⇒

[
ρout (x) ∪ jout (x)

]
. (39)

Mathematical considerations about the relations (25) and
(E.1), (early referred also in [107]) can be applied by simi-
larity for the pattern (39). So the respective pattern (i.e. the
operator ŜCC)can be represented through the next two trans-
formations:

ρout (x) =
+∞∫
−∞

Γ (x, x′) · ρin (x′) · dx′,

jout (x) =
+∞∫
−∞

Λ (x, x′) · jin (x′) · dx′.

(40)

Here Γ (x, x′) and Λ (x, x′) represent the corresponding dou-
bly stochastic kernels (in sense defined in [108]). This means
that the kernels < = {Γ , Λ} satisfy the following relations
+∞∫
−∞

< (x, x′) dx =
+∞∫
−∞

< (x, x′) dx′ = 1. The mentioned ker-

nels incorporate some extra-QM elements regarding the char-
acteristics of measuring devices and procedures. Such ele-
ments do not belong to the usual QM framework which refers
to the intrinsic (own) characteristics of the measured micro-
particle (system).

Through the above considerations can be evaluated the
effects induced by QMS. The respective effects regards the
probabilistic estimators for orbital observables A j of consid-
ered quantum system. Such observables are described by the
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operators Â j ( j = 1, 2, . . . , n). As in case of classical measur-
ing model (see the Appendix E), without any loss of general-
ity, here one can suppose that the quantum observables have
identical spectra of values in both in-and out-situations. In
terms of QM the mentioned supposition means that the oper-
ators Â j have the same mathematical expressions in both in-
and out-readings, i.e. that the respective expressions remain
invariant under the transformations which describe QMS. In
the here discussed case of a system with rectilinear orbital
motion the mentioned expressions depend on x and ∇x.

So one can say that in the situations associated with the
wave functions Ψη = Ψη (x) (η = in, out) the mentioned
quantum observables A j, can characterized by the follow-
ing lower order estimators (or numerical parameters): mean
values

〈
A j

〉
η, correlations Cη

(
A j, Ak

)
and standard deviations

∆ηA j. We use the common notation ( f , g) for scalar product

of functions f and g, i.e. ( f , g) =
+∞∫
−∞

f ∗ (x) · g (x) · dx. Then

the mentioned estimators are defined by the relations〈
A j

〉
η

=
(
Ψη, Â jΨη

)
, δηÂ j = Â j −

〈
A j

〉
η
,

Cη

(
A j, Ak

)
=

(
δηÂ jΨη, δηÂkΨη

)
,

∆ηA j =

√
Cη

(
A j, A j

)
.

(41)

Note here the fact that, on the one hand, the in-version
of discussions the estimators (41) are calculated by means of
the wave function Ψin. The respective function is supposed
as being known from the considerations about the intrinsic
properties of the investigated system (e.g. by solving the cor-
responding Schrödinger equation).

On the other hand, apparently, the evaluation of estima-
tors (41) in η= out-version requires to operate with the wave
function Ψout. But the respective appearance can be surpassed
[20] through operations which use the probability density ρout

and current jout. So if an operator Â j does not depend on
∇x = ∂

∂x , i.e. Â j = Â j (x), in evaluating the scalar prod-
ucts from (41) can be used the evident equality Ψ∗outÂ jΨout =

Â j · ρout. Additionally, when Â j depends on ∇x = ∂
∂x , i.e.

Â j = Â j(∇x), in the same products the expressions of the type
Â j(∇x)Ψout(x) can be converted in terms of ρout(x) and jout(x).
Namely from (38) one finds directly:

∇x |Ψout (x)| = ∇x
√
ρout (x),

∇xΦout (x) =
m
~

jout (x)
ρout (x)

.
(42)

By a single or repeated application of these formulas, any
expression of type Â j(∇x)Ψout(x) can be transcribed in terms
of ρout and jout.

The aforesaid discussion should be supplemented by spe-
cifying some indicators able to characterize the errors (uncer-
tainties) of considered QMS. For the above quoted observ-

ables A j such indicators are the following ones:

E
{〈

A j

〉}
=

〈
A j

〉
out
−

〈
A j

〉
in

E
{
C

(
A j, Ak

)}
= Cout

(
A j, Ak

)
−Cin

(
A j, Ak

)
E

{
∆ A j

}
= ∆outA j − ∆inA j


(43)

The above presented model regarding the description of QMS
for observables with continuous spectra is illustrated on a
simple example in the Appendix G below.

6 Some concluding remarks

The present paper was motivated by the existence of many un-
clearnesses (unfinished controversies and unelucidated ques-
tions) about the prevalent UR–QMS philosophy. It was built
as a survey on deficiencies of respective philosophy. So were
re-evaluated the main ideas claimed within the mentioned
philosophy. The basic results of the respective re-evaluations
can be summarized through the following Concluding Re-
marks (CR):
• CR1: Firstly, through multiple arguments, we have

proved the observation that the UR (1) and (2) have not any
essential significance for physics. Namely the respective UR
are revealed as being either old-fashioned, short-lived (and
removable) conventions (in empirical, thought-experimental
justification) or simple (and limited) mathematical formulas
(in theoretical vision). But such an observation comes to ad-
vocate and consolidate the Dirac’s intuitive prediction [23]:
“I think one can make a safe guess that uncertainty relations
in their present form will not survive in the physics of fu-
ture”. Note that the respective prediction was founded not
on some considerations about the UR essence but on an in-
tuition about the future role in physics of Planck’s constant
~. Dirac predicted that ~ will become a derived (secondary)
quantity while c and e will remain as fundamental constants
(c = speed of light and e = elementary electric charge). �
• CR2: A significant idea that emerges from previous dis-

cussions is the one that neither UR (1) and (2) nor various
“generalizations” of them, have not any connection with gen-
uine descriptions of Quantum measurements (QMS). All the
respective descriptions should be considered as a distinct (and
additional) subject which must be investigated separately but
somewhat in association with QM. Examples of such descrip-
tion are presented briefly, in Subsection, 5.2 and 5.4, for ob-
servables having discrete respectively continuous spectra. �
• CR3: Note that, in all of their aspects, the discussions

from Subsection 5.2 and 5.4 have a theoretical essence. This
means that, the entities like wave function Ψin as well as the
measuring indicators M jk, Γ (x, x′) and Λ (x, x′), are nothing
but abstract concepts which enable elaboration of theoretical
models regarding the descriptions of QMS. On the one hand
Ψin refers to the intrinsic data about the studied system. It is
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evaluated by means of some known theoretic procedures (e.g.
by means of the corresponding Schrödinger equation). On the
other hand the indicators M jk, Γ (x, x′) and Λ (x, x′) are intro-
duced as theoretical entities for modeling the characteristics
of the considered measuring devices/processes. �
• CR4: Correlated with the previous CR2 and CR3 it must

be specified that, in relation with QMS, the inventions of
Wave Function Collapse (WFC) and Schrödinger’s Cat
Thought Experiment (SCTE) are nothing but unnatural falling
scenarios. Consequently, as we have argued above in Subsec-
tions 5.3, both idea of WFC and SCTE problem prove them-
selves as being not real scientific subjects but rather unneces-
sary figments.�
•CR5: It is interesting to note here the fact that the history

of quantum mechanics was abounded by an impressive num-
ber of publications related to UR–QMS philosophy. So, for
the years between 1935 and 1978, as regards EPR (Einstein-
Podolsky-Rosen) paradox, associated [112] with the situation
of non-commuting observables, some authors [113] noted
that “> 106 papers have been written” — i.e. > 63 papers
per day (!?). Also the same publishing abundance about QM
matters (including UR–QMS philosophy) motivates remarks
such are the following ones: “A theory whose formalism can
be written down on a napkin whilst attempts to interpret it fill
entire libraries. A theory that has seen astonishing experi-
mental conformation yet leaves us increasingly perplexed the
more we think about it. How can we know so well how to
apply this theory but disagree so vehemently about what it is
telling us?” [114]. Probably that, in some future, the alluded
abundance will be investigated from historic and sociological
perspectives.
• CR6: Over the years original UR (1) and (2) were sup-

plemented with many kinds of “generalizations” (see [115–
120] and references). Until today, the respective “generaliza-
tions” appear as being de facto only extrapolation mathemat-
ical “constructs” (often of impressive inventiveness). As a
rule, they are not pointed out as having significance for some
concrete physical questions (of conceptual or experimental
relevance). But the existence of such significance is abso-
lutely necessary in order to associate the mentioned “gener-
alizations” with matters of certain importance for physics. In
the light of the discussions from the present paper one can
say that the sole physical significance of some from the re-
ferred “generalizations” seems to be their meaning as quan-
titative indicators of fluctuations (i.e. of stochasticity). But
from a practical perspective among the respective indicators
of practical usage are only the ones of relative lower order.
Therefore, for tangible interests of physics, all the discussed
“generalizations” seem to be rather excessive pieces. They
remain only as interesting mathematical “constructs”, which
ignore the desideratum: “Entities are not to be multiplied be-
yond necessity”. �
• CR7: In discussions and revaluations proposed in this

article, we have referred only to the prevalent philosophy of

UR and QMS regarding primarily the foundations and inter-
pretation of QM. But, as it is known, the mentioned philos-
ophy has been extrapolated in other “extra muros” domains,
outside of QM. As aforesaid domains can be quoted the fol-
lowing ones: mathematical computations, biology and med-
ical sciences, economy and finance, human behavior, social
sciences and even politics. A relevant bibliography regarding
the mentioned extramural extrapolations can be accessed easy
via internet from Google sites. Note that our above reevalua-
tions of UR–QMS philosophy do not contain analyzes refer-
ring to the mentioned extrapolations. Such analyzes remain
as task for scientists working in the respective domains. Here
we want to point out only one noticeable aspect that differ-
entiates the extramural UR from the primary ones. On the
one hand, according to their origin, the primary UR from QM
are strongly associated with a cardinal marker represented by
the Planck constant ~. On the other hand, as far as we know,
for extramural extrapolations of UR, the existence of simi-
lar markers, represented by cardinal indicators of the corre-
sponding scientific domains, were not reported. �
• CR8: In their essence, the above argued revaluations of

UR and QMS, do not disturb in any way the basic framework
of usual QM. This means that QM keeps its known specific
elements: concepts (wave functions, operators) with their sig-
nificances (of stochastic essence), principles and theoretical
models (Schrödinger equation), computing rules (exact or ap-
proximate) and investigate systems (atoms, molecules, meso-
scopic structures). Note here the observation that, for nowa-
days existing quantum debates, the above revaluations of UR–
QMS, offer a few arguments for lucrative parsimony in ap-
proaches of matters. The unlucrative aspects of those debates
have to be reconsidered too, probably in more or less spec-
ulative visions. We recall here that the basic framework of
QM can be deduced [121] from direct physical considera-
tions, without appeals to ambiguous discussions about UR
or QMS. The alluded considerations start from real physical
facts (particle-wave duality of atomic size systems). Subse-
quently they use the continuity equations for genuine prob-
ability density and current. After that one obtains the whole
framework of QM (i.e. the Schrödinger equation, expressions
of operators as descriptors of quantum observables and all the
practical rules of QM regarded as a theoretical model for the
corresponding investigated systems).

In the mentioned perspective, we dare to believe that, to
some extent, the revaluations of UR and QMS promoted by
us can give modest support for genuine reconsiderations re-
garding the interpretation and foundations of QM.�

Appendices

A: A brief compendium of some QM elements

Here we remind briefly some significant elements, selected
from the usual theoretical framework [5, 29, 30] of Quantum
Mechanics (QM). In this appendix we use Traditional Nota-
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tions (TN), taken over from mathematical algebra developed
long before QM appeared. Few specifications about the more
recent Dirac’s braket formalism are given in Appendix B.

So, in terms of TN, we consider a QM micro-particle
whose state (of orbital nature) is described by the wave func-
tion Ψ. Two observables A j ( j = 1, 2) of the respective parti-
cle will be described by the operators Â j. The notation ( f , g)
will be used for the scalar (inner) product of the functions
f and g. Correspondingly, the quantities

〈
Â j

〉
Ψ =

(
Ψ, Â jΨ

)
and δΨÂ j = Â −

〈
Â j

〉
Ψ will depict the mean (expected) value

respectively the deviation-operator of the observable A j re-
garded as a random variable. Then, by denoting two observ-
ables with A1 = A and A2 = B, one can be written the follow-
ing formula:(

δΨÂΨ, δΨÂΨ
)
·
(
δΨB̂Ψ, δΨB̂Ψ

)
>

>
∣∣∣∣(δΨÂΨ, δΨB̂Ψ

)∣∣∣∣2 (A.1)

which is nothing but a relation of Cauchy-Schwarz type from
mathematics.

For an observable A j considered as a random variable, in a
mathematical sense, the quantity ∆ΨA j =

(
δΨÂ jΨ, δΨÂ jΨ

)1/2

signifies its standard deviation. From (A.1) it results directly
that the standard deviations ∆ΨA and ∆ΨB of the mentioned
observables satisfy the formula

∆ΨA · ∆ΨB >
∣∣∣∣(δΨÂΨ, δΨB̂Ψ

)∣∣∣∣ . (A.2)

This last formula, with quantities ∆ΨA and ∆ΨB regarded to-
gether, play an influential role in QM debates within UR and
QMS philosophy. That is why the relation (A.2) can be called
Cauchy-Schwarz Quantum Formula (CSQF). Note that for-
mulas (A.1) and (A.2) are always valid, i.e. for all observ-
ables, particles and states. Therefore they must be considered
as primary QM formulas.

For the discussions regarding the UR–QMS philosophy it
is helpful to present the particular versions of formula (A.1)
in the cases when the operators Â = Â1 and B̂ = Â2 satisfy
the conditions

iff :
(
Â jΨ, ÂkΨ

)
=

(
Ψ, Â jÂkΨ

)
, ( j, k = 1, 2) (A.3)

(where iff ≡ if and only if). In the alluded cases it is true the
next formula(

δΨÂ Ψ, δΨB̂ Ψ
)

= 1
2

(
Ψ,

{
δΨÂ , δΨB̂

}
Ψ
)

− i
2

(
Ψ, i

[
Â, B̂

]
Ψ
)
.

(A.4)

Here
{
Â, B̂

}
= ÂB̂+ B̂Â and

[
Â, B̂

]
= ÂB̂− B̂Â signify the anti-

commutator respectively commutator of the operators Â and
B̂. Now note the fact that the two terms from the right hand
side of (A.4) are purely real and strictly imaginary quantities
respectively. Therefore in the mentioned cases from (A.2)

follows directly the enlarged inequality

(∆ΨA)2 · (∆ΨB)2 > 1
4

∣∣∣∣〈{δΨÂ, δΨB̂
}〉

Ψ

∣∣∣∣2
+ 1

4

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣2 . (A.5)

Sometimes this relation is referred to as the Schrödinger in-
equality. It imply subsequently the next two truncated in-
equalities

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈{δΨÂ, δΨB̂
}〉

Ψ

∣∣∣∣ , (A.6)

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣ . (A.7)

One observes that (A.7) is nothing more than the conventional
Robertson-Schrödinger relation (2), commonly quoted in the
literature of CIUR doctrine and UR–QMS philosophy. Note
that in the respective literature besides the relation (2)/(A.7)
sometimes the formula (A.5) is also mentioned. But, as a fact,
the respective mention is not accompanied with the important
specification that formula (A.5) is valid iff (if and only if) the
condition (A.3) is fulfilled.

In the end of this appendix we note the cases of more
than two observables, i.e. for a set A j ( j = 1, 2, . . . , n; n >
3), when the quantities α jk =

(
δΨÂ jΨ, δΨÂkΨ

)
constitute the

components of a positive semi definite matrix. In such cases,
similarly with (A.1), are true the formulas

det
[(
δΨÂ jΨ, δΨÂkΨ

)]
> 0; ( j, k = 1, 2, . . . , n) (A.8)

where det
[
α jk

]
is the determinant whose components are the

quantities α jk.
Note that within dominant publications promoted by the

UR–QMS philosophy the interpretation of many-observable
relations (A.8) is frequently omitted. The omission is due
most probably to the fact that the idea of referring to simul-
taneous measurements for more than two observables is not
supported convincingly by the current practice of experimen-
tal physics.

Addendum

Sometimes, in QM practice, a wave function Ψ is represented
as a superposition of the form

Ψ =
∑

n

αn · ϕn,
∑

n

|αn|
2 = 1, (A.9)

were {ϕn} denote a complete set of orthonormal basic func-
tions for which (ϕn, ϕm) = δnm = a Kronecker delta.

Then, in a state described by Ψ, the mean value of an
observable A is written as

〈A〉Ψ =
∑
n,m

α∗n · Anm· αm, Anm =
(
ϕn, Âϕm

)
, (A.10)
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with Anm indicating the matrix elements of operator Â in rep-
resentation given by {ϕn}.

When {ϕn} are eigenfunctions of Â the following formulas
can be written

Â ϕn = an · ϕn, 〈A〉Ψ =
∑

n

|αn|
2 · an, (A.11)

where an signify the eigenvalue of Â in respect with the eigen-
function ϕn.

Note that the notations and formulas reminded in this Ad-
dendum can be used in connection with all quantities dis-
cussed above in present Appendix.

B: On the omission of conditions (A.3) within current lit-
erature

The mentioned omission is encountered in many generally
agreed publications on QM (especially in textbooks, e.g. in
[29]). It appears when the conventional Robertson-Schrödin-
ger relation (A.7) is established by starting from the correct
formula ∥∥∥∥((δΨÂ + iλδΨB̂

)
Ψ
)∥∥∥∥ > 0 (B.1)

for the norm || f || of function f =
(
δΨÂ + iλδΨB̂

)
Ψ. In (B.1)

are used the notations presented in the previous Appendix A
and λ denote a real and arbitrary parameter. In order to go on
from this last formula to the relation (A.5), it is presumed the
equality((

δΨÂ + iλδΨB̂
)
Ψ,

(
δΨÂ + iλδΨB̂

)
Ψ
)

=(
Ψ,

(
δΨÂ

)2
Ψ

)
+ λ2

(
Ψ,

(
δΨB̂

)2
Ψ

)
−iλ

(
Ψ,

[
Â, B̂

]
Ψ
)
.

(B.2)

Then, due to the fact that λ is a real and arbitrary quantity,
from (B.1) it results the relation〈(

δΨÂ
)2
〉

Ψ
·

〈(
δΨB̂

)2
〉

Ψ
>

1
4

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣2 . (B.3)

In terms of notations from Appendix A this last relation gives
directly the formula

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣ (B.4)

which is nothing but the relation (A.7) from the previous Ap-
pendix.

Observation: Note here the next two aspects: (i) Intro-
duction of (B.4) demands with necessity the existence of eq-
uality (B.2), (ii) The respective equality is true only when the
operators Â and B̂ satisfy the conditions (A.3). The noted as-
pects must be signalized as omissions of the current literature.

Another context in which appears the omission of condi-
tions (A.3) is connected with the “braket notation” frequently
used in QM literature. Within the respective notation, known

also as Dirac’s Notation (DN), the scalar (inner) product of
two functions f and g is depicted as 〈 f | g〉 (see [29–31]).
Of course DN was used in many texts regarding UR–QMS
philosophy. But it must be pointed out the fact that in those
texts the condition (A.3), justified in the previous Appendix,
is totally omitted and its implications are not analyzed at all.
It is easy to notice that such an omission is due to the fact
that, within the DN, both terms (from left-hand and right-
hand sides) of the condition (A.3) have the same transcrip-
tion, namely: (

Â jΨ, ÂkΨ
)

=
〈
Ψ

∣∣∣Â jÂk

∣∣∣ Ψ〉
and(
Ψ, Â jÂkΨ

)
=

〈
Ψ

∣∣∣Â jÂk

∣∣∣ Ψ〉
.

(B.5)

Obviously, such transcriptions create confusion and obstruct
the just consideration of the condition (A.3) for cases where
it is absolutely necessary in debates about UR–QMS philoso-
phy. In order to avoid the above mentioned confusion in [32]
we suggested that DN to be replaced by an Improved Dirac
Notation (IDN). For such an IDN we proposed, that within
scalar product of two functions f andg, to insert additionally
the symbol “•” so that the respective product to be depicted
as < f | • |g >. In such a way it becomes directly visible the
separation of the entities implied in that product. Then, inside
of IDN, the two terms from (A.3) are transcribed as(

Â jΨ, ÂkΨ
)

=
〈
Ψ

∣∣∣Â j • Âk

∣∣∣ Ψ〉
and(
Ψ, Â jÂkΨ

)
=

〈
Ψ

∣∣∣•Â jÂk

∣∣∣ Ψ〉 (B.6)

Now one observes that in terms of IDN the condition (A.3)
appears in the form

iff 〈Ψ| Â j • Âk |Ψ〉 = 〈Ψ| • Â jÂk |Ψ〉 (B.7)

which no longer generates confusions in discussions about
UR–QMS philosophy.

C: Classical “uncertainty relations” in Fourier analysis

In classical mathematical harmonic analysis it is known a re-
lation (often named theorem) which, in terms of here used
notations, is similar with the quantum UR depicted by rela-
tion (2). Through current mathematical representations the
respective relation can be introduced as follows.

Let be a pair of variables x and ξ, with domains x ∈
(−∞,+∞) and ξ ∈ (−∞,+∞), regarded as arguments of a
function f (x) respectively of its Fourier transform

f̃ (ξ) =

+∞∫
−∞

exp (−2iπξ · x) · f (x) · dx. (C.1)

If the norm
∥∥∥ f

∥∥∥ of f
(
x
)

has the property
∥∥∥ f

∥∥∥ = 1, both
∣∣∣ f (x)∣∣∣2

and
∣∣∣ f̃ (ξ)∣∣∣2 are probability density functions for x and ξ re-

garded as real random (stochastic) variables. The variances
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of such variables, evaluated through the corresponding prob-
abilities, can be noted as

〈(
x −

〈
x
〉2)〉 and

〈(
ξ −

〈
ξ
〉2)〉. The

respective variances express the effective widths of functions
f (x) and f̃ (ξ). Then [66] the aforesaid relation/theorem is
given by the formula〈(

x − 〈x〉2
)〉
·
〈(
ξ − 〈ξ〉2

)〉
>

1
16π2 . (C.2)

In mathematics this formula express the fact that: “A nonzero
function and its Fourier transform cannot both be sharply lo-
calized” [66].

Often formula (C.2) is transcribed in a equivalent variant
as follows

∆x · ∆ξ >
1

4π
(C.3)

where ∆x and ∆ξ denote the corresponding standard devi-
ations of x and ξ, defined through conventions like ∆x =√〈(

x −
〈
x
〉2)〉. In non-quantum physics a version of rela-

tion (C.3) appears in studies of classical signals (waves of
acoustic or electromagnetic nature) where x = t = time and
ξ = ν = f requency. The respective version is written as

∆t · ∆ν >
1

4π
(C.4)

and it is known [67] as “Gabor’s uncertainty relation”. This
last relation (C.4) means the fact that, for a classical signal
(regarded as a wave packet), the product of the “uncertainties”
(“irresolutions”) ∆t and ∆ν in time and frequency domains
cannot be smaller than a specific constant.

Formally the classical relation (C.3) can be transposed to
the case of “quantum wave packets” often discussed in in-
troductory/intuitive texts about QM. Such a transposition fo-
cuses on the pairs of conjugated observables q–p (coordinate-
momentum) respectively t–E (time-energy). The correspond-
ing transpositions can be obtained by setting in (C.4) the sub-
stitutions x = q and ξ = p

(
2π~

)−1 respectively x = t and
ξ = E

(
2π~

)−1. The substitutions of variable ξ are nothing
but the so called duality relations (regarding the wave-particle
connections). By means of the mentioned substitutions from
(C.4) one finds the following two relations

∆q · ∆p >
~

2
respectively ∆t · ∆E >

~

2
. (C.5)

These last formulas are similar with the conventional UR (2)
for the pairs of observables q–p respectively t–E. Note that
the mentioned similarity is admissible iff (if and only if) one
accepts the conventions

∣∣∣〈[q̂, p̂
]〉

Ψ

∣∣∣ = ~ and
∣∣∣〈[t̂, Ê]〉

Ψ

∣∣∣ = ~.
But attention, the last convention has no more than a “meta-
phoric” value. This because in usual QM framework the time
t is a deterministic but not random (stochastic) variable and,
genuinely, for the respective framework a time operator t̂ is
nothing but a senseless and fictitious concept (see also the
discussions from the deficiency D8).

Note that the classical relation (C.3) can be transposed
also in another quantum formula regarding the ground state of
a Quantum Torsion Pendulum (QTP) (see Subsection 3.6.2).
For respective transposition in (C.3) it should to take f (x) =

Ψ(ϕ), x = ϕ and ξ = Lz · (2π~)−1. So one obtains the formula

∆ϕ · ∆Lz >
~

2
(C.6)

which is nothing but the lowest level version of the last of
formulas (13)

Addendum

It is worth to mention here the fact that, in the Fourier analy-
sis, the x-unlimited relations (C.3) and (C.4) have correspon-
dent formulas in x-limited cases (when the variable x has a
finite domain of existence). The respective fact can be evi-
denced as follows.

Let be x ∈ [0, b), with b a finite quantity and function f (x)
having the property f (0) = f (b − 0) := lim

x→b− 0
f (x). Then

the quantities

cn =
1
√

b

b∫
0

exp (−iknx) · f (x) · dx (C.7)

represent the Fourier coefficients of f (x), with kn = n · 2π
b and

n denoting integers i.e. n ∈ Z.
Moreover if the measure | f (x)|2 dx denotes the infinitesi-

mal probability for x ∈ (x, x+dx) the quantity |cn|
2 signify the

discrete probability associated to the value kn. Then for func-
tions A = A(x) and B = B(kn), depending on x respectively
on kn, the mean (expected) values 〈A〉 and 〈B〉 are writen as
follows

〈A〉 =
b∫

0
A (x) · | f (x)|2 dx,

〈B〉 =
∑
n

B (kn) · |cn|
2 .

(C.8)

As the most used such mean (expected) values can be quoted
the following ones: first order moments

〈
x
〉

and
〈
kn

〉
=

〈
k
〉
,

variances
〈(

x −
〈
x
〉)2〉 and

〈(
kn −

〈
k
〉)2〉 respectively standard

deviations ∆x =

√〈(
x −

〈
x
〉)2〉 and ∆k =

√〈(
kn −

〈
k
〉)2〉.

In order to find the announced x-limited correspondents
of x-unlimited relations (C.3) and (C.4) we take into account
the following obvious formula

b∫
0

∣∣∣∣∣∣λ (x − 〈x〉) · f (x) +

(
d
dx
− i 〈k〉

)
· f (x)

∣∣∣∣∣∣2 · dx > 0 (C.9)

where λ is a real, finite and arbitrary parameter. By using
the above noted probabilistic properties of function f (x) and
coefficients cn from (C.9) one obtains the relation

λ2
〈
(x − 〈x〉)2

〉
+ λ

(
b | f (0)|2 − 1

)
+

〈
(k − 〈k〉)2

〉
> 0. (C.10)
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Due to the mentioned characteristics of λ, from this last rela-
tion one finds the next formulas for variances of x and kn〈

(x − 〈x〉)2
〉
·
〈
(kn − 〈k〉)2

〉
>

1
4

(
b | f (0)|2 − 1

)2
(C.11)

respectively for standard deviations of x and kn

∆x · ∆k >
1
2

∣∣∣∣(b | f (0)|2 − 1
)∣∣∣∣ . (C.12)

The formulas (C.11) and (C.12) are x-limited analogues
of the x-unlimited relations (C.2) and (C.3).

In the end we note that formula (C.12) is applicable in
cases of wave functions (4) regarding non-degenerate circular
rotations. For such cases the application of (C.12) is obtained
through the following substitutions: x→ ϕ, b→ 2π, f (x)→
Ψ (ϕ) and kn →

Lz
~

. So from (C.12) it results

∆ϕ · ∆Lz >
~

2

∣∣∣∣(2π |Ψ (0)|2 − 1
)∣∣∣∣ . (C.13)

This last formula in case of wave functions (4) degenerates
into trivial equality 0 = 0

D: On the fluctuations of thermodynamic observables

Thermodynamic systems are macroscopic bodies composed
by huge numbers of microscopic constituents (molecules and
atoms). As whole bodies or through by their macroscopic
parts such systems are described by so-called thermodynamic
observables. The alluded observables are viewed as deter-
ministic variables (in usual thermodynamics) respectively as
stochastic quantities (in statistical physics). In the last view
they are characterized by fluctuations (deviations from their
deterministic values studied within usual thermodynamics).
The mentioned fluctuations are investigated within the next
conceptual frameworks: (a) phenomenological approach, (b)
classical statistical mechanics, respectively (c) quantum sta-
tistical physics.

In phenomenological approach [68–72], proposed for the
first time by Einstein, the respective fluctuations can be de-
picted briefly as follows. Let be a system of the mentioned
kind, whose properties are described by a set of thermody-
namic observables A j ( j = 1, 2, 3, . . . , n). Each such observ-
able A j is characterized by a global fixed value A j, evalu-
able through the methods of deterministic usual thermody-
namics. Then the fluctuations of observables A j should be
discussed in terms of random variables A j = A j − A j ( j =

1, 2, . . . , n), endowed with continuous spectra of values such
are A j ∈ (−∞,+∞). The random characteristics of variables
A j, i.e. the fluctuations of observables A j, are depicted in
phenomenological approach through the probability density
W = W

( ~A)
, where the vector ~A signifies the set of all vari-

ables A j. Commonly for W = W
( ~A)

one uses distributions
of Gaussian type. The mean value (expected) value

〈
A j

〉
W

and the random deviation δWA j of the observable A j are〈
A j

〉
W

=
+∞∫
−∞

A j ·W
(
~A
)
· d ~A,

δWA j = A j −
〈
A j

〉
W

= A j.

(D.1)

Usually, the fluctuations of observables A j ( j = 1, 2, 3, . . . , n)
are characterized by a small number of numerical parameters
evaluable through the random deviations δWA j. Examples
of such parameters are: dispersions

〈(
δWA j

)2〉
W =

〈(
A j

)2〉
W

and their equivalents the standard deviations ∆WA j =√〈(
δWA j

)2〉
W , second order moments (correlations)

〈
δWA j ·

δWAk
〉

W ( j , k) or even [72] higher order moments (correla-
tions)

〈(
δWA j

)r
·
(
δWAk

)s〉
W , (r + s > 3).

The correlations
〈
δWA j · δWAk

〉
W ( j, k = 1, 2, . . . , n) con-

stitute the components of a positive semi definite matrix. The
respective components satisfy [70, 71] the following correla-
tion formulas

det
[〈
δWA j · δWAk

〉
W

]
> 0 , (D.2)

where det
[
α jk

]
denote the determinant whose components are

the quantities α jk. Particularly for two thermodynamic ob-
servables A1 = A and A2 = B from (D.2) one obtains

∆WA · ∆WB > |〈δWA · δWB〉W | (D.3)

where ∆W A =

√〈(
δW A

)2〉
W denotes the standard deviation of

observableA. Mathematically (in sense of probability theory)
this last classical formula is completely analogous with the
quantum UR (2).

Regarded in their detailed expressions the standard de-
viations like is ∆WA (introduced above) have an interesting
generic property. Namely they appear as being in a direct and
factorized dependence of Boltzmann’s constant kB. The re-
spective dependence has the following physical significance.
It is known the fact that, mathematically, for a given quan-
tity the standard deviation indicates its randomness. This in
the sense that the respective quantity is a random or, alter-
natively, a deterministic (non-random) variable according as
the alluded deviation has a positive or null value. Therefore
∆WA can be regarded as an indicator of randomness for the
thermodynamic observable A. But, for diverse cases (of ob-
servables, systems and states), the deviation ∆WA has various
expressions in which, apparently, no common element seems
to be implied. Nevertheless such an element can be found
out [20,73] as being materialized by the Boltzmann’s constant
kB. So, in Gaussian approximation within the framework of
phenomenological theory of fluctuations one finds [20, 73]

(∆WA)2 = kB ·
∑
α

∑
β

∂Ā

∂X̄α
·
∂Ā

∂X̄β
·

(
∂2S̄

∂X̄α∂X̄β

)− 1

. (D.4)

Now note that, a kind of non-quantum formulas com-
pletely similar with (D.2) and (D.3), can be reported also
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for the fluctuations of thermodynamic observables described
in terms of classical statistical mechanics. In the respective
terms the above phenomenological notations and relations
can be transcribed formally as follows. Instead of random
variablesA j should to operate with the phase space ensemble
denoted as µ of all coordinates and momenta of molecules/
atoms which compose the thermodynamic system. Also in-
stead of observablesA j = A j +A j needs to be use the random
functions of the form A j = A j(µ). Therewith the probability
density W = W( ~A) should to be replaced with the statisti-
cal distribution function w = w(µ). Then, in terms of afore-
said description of considered fluctuations, as example, can
be written the relation

∆wA · ∆wB > |〈δwA · δwB〉w| (D.5)

which is completely similar with (D.3). Add here the obser-
vation that the standard deviations ∆wA and ∆wB from (D.5)
have a factorization dependence on kB of type (D.4), similarly
with the case of quantities ∆WA and ∆WB from (D.3).

For describing the fluctuations of thermodynamic observ-
ables A j in framework of quantum statistical physics as prob-
abilities carrier instead of phenomenological density W =

W
(~A)

should to use [73–76] the quantum density operator ρ̂:

ρ̂ =
∑

k

pk |ψk〉 〈ψk | . (D.6)

Here
∣∣∣ψk

〉
(k = 1, 2, . . . ) denote the wave functions of pure

states of system and pk are the corresponding probabilities of
the respective states. In the same framework the above men-
tioned random variables A j are substituted with the thermo-
quantum operators Â j ( j = 1, 2, . . . , n). In framework of
quantum statistical physics the mean value

〈
A j

〉
ρ and random

deviation δρÂ j of observable A j are〈
A j

〉
ρ

=
∑
k
pk 〈ψk | Â j |ψk〉

= tr
(∑

k
pk |ψk〉 〈ψk | Â j

)
= tr

(
ρ̂ · Â j

)
,

δρÂ j = Â j −
〈
A j

〉
ρ
.

(D.7)

The deviations δρÂ j can be used in description of numeri-
cal parameters of fluctuations for observables A j in the men-
tioned framework. As such parameters can be quoted: dis-
persions

〈(
δρÂ j

)2〉
ρ and their equivalents standard deviations

∆ρA j =

√〈(
δρÂ j

)2〉
ρ, second order moments (correlations)〈

δρÂ j · δρÂk
〉
ρ (where j , k) or even higher order moments〈(

δρÂ j
)r
·
(
δρÂk

)s〉
ρ (where r + s > 3).

In case of two thermodynamic observables A and B, re-
garded in framework of quantum statistical physics, can be
introduced also a correlation relation similar with (D.3) and
(D.5). Such a relation can be introduced as follows. For the

corresponding thermo-quantum operators Â and B̂ it is evi-
dently true the relation∑

k

pk

〈(
δρÂ + iλ δρB̂

)
ψk

∣∣∣∣ (δρÂ + iλ δρB̂
)
ψk

〉
> 0 (D.8)

where λ is an arbitrary real parameter. If in respect with the
functions ψk the operators Â and B̂ satisfy the conditions of
type (A.3) one can write∑

k
pk

〈(
δρÂ + iλ δρB̂

)
ψk

∣∣∣∣ (δρÂ + iλ δρB̂
)
ψk

〉
=

∑
k
pk

〈
ψk

∣∣∣∣(δρÂ)2 ∣∣∣∣ ψk

〉
+ λ2 ∑

k
pk

〈
ψk

∣∣∣∣(δρB̂)2 ∣∣∣∣ ψk

〉
+ iλ

∑
k
pk

〈
ψk

∣∣∣∣(δρÂ · δρB̂ − δρB̂ · δρÂ) ∣∣∣∣ ψk

〉
.

(D.9)

Then from (D.8) it results the relation〈(
δρÂ

)2
〉
ρ

+ λ2
〈(
δρB̂

)2
〉
ρ

+ λ
〈
i
[
Â, B̂

]〉
ρ
> 0 (D.10)

where
[
Â, B̂

]
denotes the commutator of operators Â and B̂.

Because λ is an arbitrary real parameter from (D.10) one
obtains the relation〈(

δρÂ
)2
〉
ρ
·

〈(
δρB̂

)2
〉
ρ
>

1
4

〈
i
[
Â, B̂

]〉2

ρ
(D.11)

or the equivalent formula

∆ρA · ∆ρB >
1
2

∣∣∣∣〈[Â, B̂]〉
ρ

∣∣∣∣ . (D.12)

Now let us remind the fact that in quantum statistics the
above discussed thermo-quantum quantities

〈(
δρÂ j

)2〉
ρ and

∆ρA are proved to be connected directly with a quantity from
deterministic (simple thermodynamic) description of thermo-
dynamic observables. The respective connection is due by
the known fluctuation-dissipation theorem [76] which is ex-
pressed by the relation〈(

δρÂ
)2
〉
ρ

=
(
∆ρA

)2

=
~

2π

+∞∫
−∞

coth
(
~ω

2kBT

)
· X′′ (ω) · dω.

(D.13)

Here kB = the Boltzmann’s constant, ~ = Planck’s constant
and T = temperature of the considered system. Also in (D.13)
the quantity X′′(ω) denote the imaginary part of the suscep-
tibility associated with the observable A. Note that X′′(ω)
is a deterministic quantity which is defined primarily in non-
stochastic framework of macroscopic physics [77]. Due to
the respective definition it is completely independent of both
kB and ~.

In the end of this Appendix the following conclusion may
be recorded. All the relations (D.2), (D.3), (D.4), (D.10) and
(D.11) are formulas regarding macroscopic fluctuations but
not pieces which should be adapted to the UR–QMS philoso-
phy requirements.
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E: On the measurements of macroscopic fluctuations

The fluctuations parameters, defined above Appendix D, re-
fer to the characteristics of intrinsic nature for the consid-
ered macroscopic systems. But in practical actions, for the
same systems, one operates with global parameters, of double
source (origin). A first source is given by the intrinsic prop-
erties of systems. A second source is provided by the actions
of measuring devices. In such a vision a measurement can be
regarded as an transmission process of information (refering
to stochastic data). Consequently the data about the intrinsic
properties of measured system appear as input (in) informa-
tion while the global results of the corresponding measure-
ment represent the output (out) information.

Here below we will appeal to the aforesaid vision for giv-
ing (as in [91, 107]) a theoretical model regarding the mea-
surement of thermal fluctuations. The respective fluctuations
will be considered in a phenomenological approach (see Ap-
pendix D). For simplicity let us consider a system character-
ized by a single macroscopic observable A = A − A, whose
thermal fluctuations are impacted within the random variable
A having the spectrum A ∈ (−∞,+∞). The intrinsic fluc-
tuations of A is supposed to be described by the probabil-
ity distribution Win = Win(A) regarded as carrier of input-
information. The results of measurements are depicted by
the distribution Wout = Wout(A) regarded as bearer of out-
information. Then the measuring process may be symbol-
ized as a transformation of the form Win(A) → Wout(A). If
the measuring device is supposed to have stationary and lin-
ear characteristics, the mentioned transformation can be de-
scribed as follows:

Wout (A) =

+∞∫
−∞

K
(
A,A′

)
·Win

(
A′

)
· dA′ (E.1)

where K(A,A′) appears as a doubly stochastic kernel (in
sense defined in [108]). This means that K(A,A′) satisfy

the relations
+∞∫
−∞

K (A,A′) dA =
+∞∫
−∞

K (A,A′) dA′ = 1.

Add here the fact that, from a physical perspective, the
kernel K(A,A′) incorporates the theoretical description of
all the characteristics of the measuring device. Particularly,
for an ideal device which ensure Wout(A) = Win(A), it must
to have the expression K(A,A′) = δ(A − A′), where δ(X)
denote the Dirac’s δ-function of argument X.

By means of distributions Wη = Wη(A) (η = in; out) can
be introduced the corresponding η-numerical-characteristics
of thermal fluctuations of observable A = A + A. Such are
the η-mean (expected) value 〈A〉η and η - standard deviation
∆ηA defined through the relations

〈A〉η =
+∞∫
−∞

A ·Wη (A) · dA,(
∆ηA

)2
=

〈(
A− 〈A〉η

)2
〉
η
.

(E.2)

The above considerations allow to note some observations
about the measuring uncertainties (errors) regarding the fluc-
tuating macroscopic observableA. Firstly the η = in-versions
of the parameters (E.2) describe only the “intrinsic” proper-
ties of the measured system. Secondly the η = out-variants
of the same parameters incorporate composite information
about the respective system and considered measuring device.
That is why one can say that, in terms of the above discus-
sions, the measuring uncertainties of observable A should be
described by the following error indicators (characteristics)

E {〈A〉} = 〈A〉out − 〈A〉in ,

E {∆ A} = ∆out A − ∆in A.
(E.3)

Observe here that because A has stochastic characteris-
tics for a relevant description of its measuring uncertainties
it is completely insufficient the single indicator E {〈A〉}. An
adequate minimal such description requires at least the cou-
ple E {〈A〉} and E {∆ A}. For further approximations of errors
caused by measurements can be taken into account [111] the
higher order moments like the next ones

E {〈(δA)n〉} = 〈(δoutA)n〉out − 〈(δinA)n〉in (E.4)

where δηA = A − 〈A〉, η = in, out and n > 3.

F: An exemplification for subsection 5.2

For presenting the announced exemplification we will refer
to QMS of the energy for a particle of mass m, located in
an infinite square well potential of width L [29]. The intrin-
sic state of the microparticle will be considered as being de-

scribed by the in-wave function Ψin (x) =
n∑

j=1
α j · ϕ j (x). Here

ϕ j (x) denote the eigenfunctions associated to the energetic
eigenvalues a j = E j = = · j2 where = =

(
~2π2/ 2mL2

)
and

j = 1, 2, 3, . . . . In the considered in-wave function the quanti-
ties α j are probability amplitudes corresponding to the eigen-
values E j.

We will restrict our exemplification by taking into ac-
count only the following circumstances. So we take n = 3
as the upper value of the inner energy of the particle while
for the amplitudes α j we will consider the values which give(
|α j|

2) = (0.5 0.4 0.1).
Then the intrinsic characteristics of the particle energy are

described by the next mean value and the standard deviation

〈E〉in = 3 · =, ∆inE = 2.45 · =. (F.1)

Accordingly with discussions from Subsection 5.2, for
a particle in the mentioned intrinsic state, the measurement
of energy can be described as follows. We need to define a
model-expression for the matrix (Mk j) from (29). As a first
example, we will consider a measurement done with a device
endowed with flawed (FL) characteristics. Such devices, for
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instance, can be associated with a matrix (Mk j) having the
form (

Mk j

)
FL

=

 0.5 0.3 0.2
0.4 0.4 0.2
0.1 0.3 0.6

 . (F.2)

Thus the outcomes of measurement will be characterized by
probabilities

(
|βk |

2
)

FL
= (0.34 0.38 0.23). With such proba-

bilities, the measurement outcomes for energy will be charac-
terized by the next FL-expected-value and FL-standard-
deviation

〈E〉FL = 3.98 · =, ∆FL E = 3.04 · =. (F.3)

Consequently, for the measurement described by (F.2), the
error indicators (29) and (31) acquire the following FL-values

EFL {〈E〉} = 0.9 · =, EFL {∆ E} = 0.59 · =. (F.4)

If, for the above mentioned energy/particle, we want to de-
scribe a measurement done with a device having larger char-
acteristics of accuracy (ACC) one can proceed as follows. In
the spirit of the relations (31), for the matrix (Mk j) instead
of the formula (F.2) we appeal, for example, to the following
expression

(
Mk j

)
ACC

=

 0.95 0.03 0.02
−0.03 1.04 −0.01
0.08 −0.07 0.99

 . (F.5)

So, for the probabilities associated to the outcomes of ACC-
measurement, one obtains

(
|βk |

2)
ACC = (0.489 0.4 0.11).

Associated to the respective probabilities, the considered
ACC-measurement of energy is characterized by the next
ACC-expected value and ACC-standard-deviation

〈E〉ACC = 3.088 · =, ∆ACC E = 2.52 · =. (F.6)

By comparing values from (F.6) with those from (F.1) one
sees that the referred ACC-measurement is characterized by
the following error indicators

EACC {〈E〉} = 0.08·=, EACC {∆ E} = 0.07·=. (F.7)

Finally, by comparing the results reported in relations
(F.4) and (F.7), we can note the following remark. Within
the above theoretical description of measurement, the error
indicators (for both expected value and standard deviation)
are much smaller in the case dealing with higher accuracy
characteristics comparatively with the one regarding flawed
features.

G: Illustrations for subsection 5.4

In order to illustrate the model discussed in Subsection 5.4, in
connection with the description of QMS, let us present here
an exercise taken by abbreviation from our article [20] (more
computational details can be found in the respective article).

We will refer to a micro-particle of mass m having an one-
dimensional motion along the x-axis. Its in-wave-function
Ψin is taken of the form Ψin(x) = |Ψin(x)| · exp {iΦin(x)} where

|Ψin (x)| ∝ exp
{
−

(x − x0)2

4σ2

}
, Φin (x) = kx. (G.1)

Here as well as below in other relations from this Appendix
the explicit notations of normalization constants are omitted
(they can be added easy by the interested readers). According
to the wave function (G.1) the intrinsic features of the con-
sidered microparticle are described by the parameters x0, σ
and k.

Through expressions (G.1), by means of formulas (38),
it is simple to find the analytical expresions for probability
density ρin and current jin. As doubly stochastic kernels sug-
gested in (40) we propose here the next two formulas

Γ
(
x, x′

)
∝ exp

{
−

(x − x′)2

2γ2

}
, (G.2)

Λ
(
x, x′

)
∝ exp

{
−

(x − x′)2

2λ2

}
. (G.3)

Here parameters γ and λ depict the characteristics of measur-
ing devices/procedures. The values of the respective param-
eters are associated with an ideal measurement (when both γ
and λ tend toward zero), respectively with a nonideal mea-
surement (in cases when at least one of the two parameters is
not-null).

Then, by using the procedures presented within Subsec-
tion 5.4, it is easy to find the out-entities ρout, jout and Ψout.
By using the respective entities together with the functions
from (G.1) one can evaluate the out and in versions of mean
(expected) values and standard deviations for observables of
interest. The respective evaluations ensure estimations of the
corresponding error indicators. So, for x̂ = x· = coordinate
and p̂ = −i~∇x = momentum as operators (observables) of
interest, one obtains [20] the following error indicators

E {〈x〉} = 0, E {∆ x} =

√
σ2 + γ2 − σ, (G.4)

E {〈p〉} = 0,

E {∆ p} = ~

∣∣∣∣∣∣
[

k2(σ2+γ2)
√

(σ2+λ2)(σ2+2γ2−λ2)
−

−k2 + 1
4(σ2+γ2)

] 1
2
− k

∣∣∣∣∣∣ .
(G.5)

Let us now restrict in the wave function (G.1) to the situation

when x0 = 0 k = 0 and σ =

√
~

2mω . Then (G.1) describe the
ground state of a harmonic oscillator with m = mass and ω =

angular frequency. As observable of interest of such an os-
cillator we consider the energy described by the Hamiltonian
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Ĥ = − ~
2

2m
d2

dx2 + mω2

2 x2. For the respective observable one finds

〈H〉in =
~ω

2
, ∆inH = 0, (G.6)

〈H〉out =

ω
[
~2 +

(
~ + 2mωγ2

)2
]

4
(
~ + 2mωγ2) , (G.7)

∆outH =

√
2 mω2 γ2

(
~ + mωγ2

)
(
~ + 2mωγ2) , (G.8)

E {〈H〉} =
m2ω3γ4

~ + 2mωγ2 , (G.9)

E {∆H} = ∆outH =

√
2 mω2 γ2

(
~ + mωγ2

)
(
~ + 2 mωγ2) . (G.10)

H: A more comprehensive description of measuring er-
rors for random observables

In Subsections 5.2 and 5.4 or Appendices E, F and G, we
have discussed the measuring errors for random observables
of quantum respectively macroscopic nature. For descrip-
tion of that errors, were used as indicators only the lower or-
der probabilistic parameters (moments and correlations). But
those indicators give only first sequences, of limited value,
for a global picture of the considered errors. A more compre-
hensive such a picture can be done in terms of informational
entropies. Shortly, for the above discussed observables and
errors, the suggested depiction can be illustrated as follows.

Firstly let us refer to the case of a macroscopic random
observableA whose measurements are outlined in Appendix
E. The intrinsic characteristics (fluctuations) ofA are consid-
ered as being described by the probability distribution Win =

Win(A) regarded as carrier of input-information for measure-
ments. The results of measurements are depicted by the distri-
bution Wout = Wout(A) associated with the out-information of
measurements. The informational entropies Hη (η = in, out)
connected with the above noted distributions are defined
through the formulas

Hη (A) = −

+∞∫
−∞

Wη (A) · ln [W (A)] · dA. (H.1)

By taking into account the transformation (E.1), the main
properties of the doubly stochastic kernel K(A,A′), as well

the formula ln (X) 6 X − 1 one can write

Hout (A) −Hin (A)

= −
+∞∫
−∞

+∞∫
−∞

dA · dA′ · K (A,A′) ·Win (A′)

· ln
[
Wout (A)
Win (A′)

]
> −

+∞∫
−∞

+∞∫
−∞

dA · dA′ · K (A,A′) ·Win (A′)

·

[
Wout (A)
Win (A′)

− 1
]

= 0.

(H.2)

Therefore the errors specific of measurements for A in its
wholeness can be described through the comprehensive error
indicator

E {H (A)} = Hout (A) − Hin (A) > 0. (H.3)

This relationship shows that the measuring process can
be described by a non-negative change in the informational
entropy associated with the investigated observable. The sit-
uation when the respective change is null corresponds to the
case of an ideal measurement (free of errors), mentioned oth-
erwise in connection with the relationship (E.1).

Mostly, the macroscopic fluctuations described by the
here used observable A are investigated in the so-called
Gaussian approximations. Then the entities Win(A) and
K(A,A′) which appear in (E.1) are given by the following
formulas

Win (A) ∝ exp
{
−
A2

2a2

}
,

K (A, A′) ∝ exp
{
−

(A−A′)2

2b2

}
,

(H.4)

where the explicit indication of normalization constants are
omitted (the omission can be filled easily by interested read-
ers). In the first formula from (H.4) a denotes the standard
deviation of intrinsic fluctuations within the measured sys-
tem. The symbol b in the second expression from (H.4) de-
picts the precision parameter of measuring device. Of course,
for a scientifically acceptable measuring process, it must be
considered that b � a.

In the alluded cases with Gaussian approximations the
output distribution Wout(A) has the form

Wout (A) ∝ exp
{
−

A2

2
(
a2 + b2)} .

Then the comprehensive error indicator (H.3) becomes

E {H (A)} =
1
2

ln
(
1 +

b2

a2

)
≈

1
2
·

b2

a2 . (H.5)
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Now let us refer to the comprehensive informational depic-
tion for measuring errors in cases of random quantum ob-
servables. We start the announced reference by discussing the
case presented in Subsection 5.2, regarding the measurement
of a quantum observable endowed with a discrete spectrum of
eigenvalues. In the respective case the input and output data
characterizing the measurement are depicted by the following
corresponding probabilities

P
j
in =

∣∣∣α j

∣∣∣2 , P
j
out =

∣∣∣β j

∣∣∣2 , ( j = 1, 2, . . . , n) . (H.6)

These probabilities can be associated with the next informa-
tion entropies

H
(
Pη

)
= −

n∑
j=1

P j
η · ln

(
P

j
η

)
, (η = in, out) . (H.7)

Consequently, for an extensive description of measuring er-
rors for the specified quantum observable, can be used the
below comprehensive indicator

E {H (P)} = H (Pout) −H (Pin) . (H.8)

By taking into account the transformation (27), the basic
properties of doubly stochastic matrix M jk, plus the evident
formula ln (X) 6 X − 1, through some simple calculations
(similar to those appealed in (H.2) and (H.3), one finds:

E {H (P)} > 0. (H.9)

This formula corresponds to ideal or non-ideal measurements,
in cases of equality respectively of inequality.

Note that, in cases of examples presented in Appendix F
related with Subsection 5.2, the relation (H.8) takes the ex-
presions

E {H (P)FL} = H
((
|βk |

2
)

FL

)
−H

((
|α j|

2
))

= 0.131,

E {H (P)ACC} = H
((
|βk |

2
)

ACC

)
−H

((
|α j|

2
))

= 0.018.

(H.10)

The above expressions correspond to measurements with
characteristics of flawed respectively accurate types. The
same expressions show that, even in informational-entropic
approach, the measuring errors are higher in cases with
flawed characteristics comparatively with the ones having ac-
curate features.

Now let us note some things about the comprehensive de-
scription of measuring errors in cases approached in Subsec-
tion 5.4 and in Appendix G, regarding of quantum observ-
ables with continuous spectra. The corresponding measure-
ments, depicted through the transformations (40), can be as-
sociated with the following informational entopies

Hη (ρ) = −
+∞∫
−∞

ρη (x) · ln
(
ρη (x)

)
· dx,

Hη (| j|) = −
+∞∫
−∞

∣∣∣ jη (x)
∣∣∣ · ln (∣∣∣ jη (x)

∣∣∣) · dx,

(H.11)

where η = in, out. Related with the above entropies can be
introduced the next comprehensive error indicators

E {H (ρ)} = Hout (ρ) −Hin (ρ) ,

E {H (| j|)} = Hout (| j|) −Hin (| j|) .
(H.12)

Through some simple calculations (completely similar to the
ones used in (H.2) and (H.3)) one finds that the error indica-
tors (H.11) satisfy the relations

E {H (ρ)} > 0, E {H (| j|)} . > 0 (H.13)

These relations with equalities or inequalities refer to the
cases of ideal respectively non-ideal measurements.

In particular case of measurement illustrated in Appendix
G, associated with the doubly stochastic kernels (G.2) and
(G.3), the error indicators (H.12) become

E {H (ρ)} = ln

√
σ2 + γ2

σ2 ≈
1
2

(
γ

σ

)2
,

E {H (| j|)} = ln

√
σ2 + λ2

σ2 ≈
1
2

(
λ

σ

)2

.

(H.14)

The last expressions of these indicators imply the approxi-
mations γ � σ and λ � σ, specific to the supposition that
measuring devices have high accuracies. Of course that the
cases with γ = 0 and λ = 0 depict the ideal measurements.

In the case of a harmonic oscillator, mentioned in the end
of Appendix G, the first error indicator from (H.12) get the
expression

E {H (ρ)} = ln

√
~ + 2mωγ2

~
≈

mω
~

γ2. (H.15)

Submitted on November 26, 2020
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I: A private letter from the late scientist J. S. Bell to the present author
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In this paper, we reconsider the little-known but critically important physical process
of laser action occurring in the stellar atmospheres of Wolf-Rayet stars and, by exten-
sion, of QSOs, also known as quasars in the cosmological context. We review the use
of the Collisional-Radiative (non-LTE) model for hydrogenic and lithium-like ions to
calculate the energy level populations and the existing results for He I, He II, C III and
C IV, and for N V and O VI. We review the details of laser action in Wolf-Rayet stars,
as well as in QSOs. We note that taking QSOs to be local stellar objects eliminates the
problems associated with their cosmological interpretation. We propose that the termi-
nology quasar be used to refer to the cosmological interpretation and QSO to refer to
the stellar interpretation of Quasi-Stellar Objects. We introduce a new star type Q for
QSOs, similar to the star type W for Wolf-Rayet stars. We expand the Hertzsprung-
Russell diagram to include more massive and hotter stars of type Q and W beyond the
stars of type O B. The main sequence thus starts with stars of type Q W O B, followed
by the rest of the main sequence. Finally, we note the effort that will be required to
understand the classification and evolution of stars of type Q, as has been achieved for
Wolf-Rayet stars.

1 Introduction

In this paper, we reconsider a little-known but critically im-
portant physical process occurring in the stellar atmospheres
of Wolf-Rayet stars and, by extension, of Quasi-Stellar Ob-
jects (QSOs), also known as quasars in the cosmological con-
text. Wolf-Rayet stars are known to have an expanding enve-
lope of hot ionized gases, as the stellar atmosphere of the star
expands, resulting in mass loss.

If the speed of expansion is low, the expansion will be
closer to being isothermal, but as the speed of expansion in-
creases, the expansion will become adiabatic. Under those
conditions, as the plasma cools, population inversions will oc-
cur in the ionic energy levels due to free electron-ion recombi-
nation in higher ionic excited states. Some ionic energy level
transitions will undergo laser action [1] resulting in spectra
dominated by a small number of strong broad emission lines,
which becomes even more evident in QSOs.

2 Wolf-Rayet stars

Wolf-Rayet stars [2] are a type of stars that, like the super-
giants, have extended atmospheres whose thickness is an ap-
preciable fraction of their stellar radius [3, p. 243]. Charac-
teristic features in the visible spectra of many O and early B
stars, particularly supergiants, and WR stars provide evidence
that these objects have extensive envelopes, and that the ma-
terial generating the lines is flowing outward from the stellar
photosphere.

The number of WR stars in our galaxy is small: the 2001
VIIth catalog of galactic WR stars gave the number at 227
stars, comprised of 127 WN stars, 87 WC stars, 10 WN/WC
stars and 3 WO stars [4]. The subtypes are covered in the

spectra discussion later in this section. A 2006 update added
another 72 WR stars, including 45 WN stars, 26 WC stars and
one WO star [5]. The latest number from the August 2020
Galactic Wolf Rayet Catalogue v1.25 is 667 WR stars [6].

The existence of large-scale, rapid, and sometimes vio-
lent expansions of stellar atmospheres is well-established ob-
servationally [3, p. 471]. Beals [7, 8] first recognized that the
great breadths of lines in WR spectra, indicating velocities
of the order of 3 000 km/s, could be interpreted in terms of
rapid outflow of material. His suggestion that the flow was
driven by radiation pressure is supported by current dynam-
ical models. Further evidence for mass loss is provided by
infrared and radio continuum observations of several OB and
WR stars, which are most readily interpreted in terms of free-
free emission from an extended, optically-thick envelope hav-
ing a density profile consistent with steady outflow of the stel-
lar atmosphere [3, p. 550–551].

We know today, from a variety of observational evidence
from spacecraft and ground-based observatories, that in the
WR and Of stars and in many early-type supergiants, there
are massive trans-sonic stellar winds, that have very small
outward velocities in the deeper layers of the stars, but a large
outward acceleration producing very large velocities (v/c ≈
0.01) at great distances from the stars [3, pp. 471–472,550].
These flows are driven by radiation pressure acting on the
stellar atmosphere [3, p. 523].

Mass loss in stellar winds, particularly in the early-type
OB supergiants and WR stars, is well established [3, pp. 266,
523]. The analysis of line profiles and infrared emissions
imply estimated mass loss rates M of order 10−6 to 10−5

M� /year for O stars and perhaps up to 10−4 M� /year for
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WR stars [9, p. 628]. For comparison, mass loss rates for the
solar wind is about 10−14 M� /year. The flow velocities rise
from close to zero in the stellar photosphere to highly super-
sonic values within one stellar radius from the surface. The
3 000 km/s flow is thought to be driven by momentum input
to the ionized gas from the intense radiation force exerted by
the strong spectrum lines of these extremely luminous stars.

Series of extremely strong emission lines can be observed
in the spectra of WR stars. The spectra fall into two broad
classes: WN, which have prominent lines of nitrogen N and
helium He ions, with a very strong He II Pickering series
(n = 4 → n′), and essentially no lines of carbon C; and
WC, where the lines of carbon C and oxygen O are promi-
nent along with the helium He ions, while those of nitrogen
N seem to be practically absent [3, p. 485]. An additional
subtype WO with strong O VI lines has also recently been
added as a separate subtype. The spectra are characterized by
the dominance of emission lines, notable for the almost total
absence of hydrogen H lines [10].

3 Laser action in stellar atmospheres

In initial modelling calculations, Castor [11] used the escape
probability method of basic Sobolev theory to treat the trans-
fer of line radiation in a stellar envelope to provide a coarse
analysis of the spectral line formation in Wolf-Rayet stars
for a line formed in a two-level atom [3, p. 471–472]. He
then used this analysis to calculate the populations of the
first thirty levels of hydrogen-like He II ions under statistical
equilibrium with all radiative and collisional transitions in-
cluded [12]. He also applied this analysis to 14 terms and all
allowed transitions of helium-like C III ions; no case of laser
action was found in the calculations as the existing atomic
processes used did not provide sufficient pumping of the ex-
cited levels to maintain population inversion [13].

Mihalas [3, p. 485–490] carries out a complete multilevel
analysis of the spectrum of an ion using statistical equilibrium
equations that consider the radiative and collisional processes
contributing to the population of each ionic level under con-
sideration. Typically, the only free parameters in this analysis
are Te, the temperature of the free electrons corresponding to
the envelope temperature, ne, the free electron number density
and natom, the total number density of the species (element)
under consideration. The analysis is done under Local Ther-
modynamic Equilibrium (LTE) conditions, that is under con-
ditions in which each volume element of the plasma fulfills all
thermodynamic equilibrium laws derived for plasmas in com-
plete thermodynamic equilibrium (CTE) except for Planck’s
radiation law [40, p. 12–13].

3.1 Plasma lasers

The possibility of using a recombining plasma as an amplify-
ing medium of electromagnetic radiation was first suggested
by Gudzenko and Shelepin [14]. Calculations performed on

a hydrogen plasma [15, 17] subsequently confirmed this sug-
gestion. Such plasmas are called plasma lasers [18].

We consider the basic principles of operation of a plasma
laser. The mean time between electron collisions determines
the rate of establishment of the electron temperature within
a plasma. The smallness of the time between elastic col-
lisions in a dense plasma thus makes it possible, in prin-
ciple, to rapidly reduce the electron temperature of such a
plasma. For example, in plasma densities of order ni ∼ ne ∼

1015 − 1016 cm−3, a single distribution of the electrons is es-
tablished in a time of order τ ∼ 10−11 − 10−10 s [14], where ni

is the ion number density.
Rapid cooling of a strongly ionized plasma results in rapid

recombination of the electrons and the ions into highly ex-
cited ionic states. The subsequent relaxation of the electrons
to the ground state by spontaneous and non-radiative transi-
tions occurs in a time which, for the estimated values of the
plasma parameters used in this work, is larger than 10−7 s. At
those densities, electron-ion recombination occurs by three-
body recombination in a time shorter than 10−7 s such that a
rapid filling-up of the upper excited levels of the ions occurs.
Furthermore, since recombination into highly excited states
occurs much more rapidly than into lower states, the estab-
lishment of large population inversions is favored.

When large population inversions have been established
in the excited levels, the plasma is said to be in a stationary
drainage state. It is still substantially ionized. As an exam-
ple of the time involved, Gudzenko et al. [15] find that for
a dense low temperature plasma (Te ∼ 1000 − 6000 K and
ne-bound and free states ∼ 1013 − 1016 cm−3), cooled by a
factor of twenty, stationary drainage of the excited discrete
levels is established in a time ∼ 10−8 − 10−7 s. Stationary
drainage is maintained for a time ∼ 10−5 s, and is followed by
a stage in which the plasma is weakly ionized and the pop-
ulation densities of its levels return to normal. Gudzenko et
al. [17] find that the above conditions can be significantly re-
laxed; for example, the cooling can be done more slowly or
by stages [40, p. 42–43].

3.2 Adiabatic cooling of a plasma

Various mechanisms of free electron cooling can be used. The
method of interest to us, rapid cooling of a plasma by adia-
batic expansion, was first investigated by Gudzenko et al. [16]
both for magnetized and unmagnetized plasmas.

An example of this cooling mechanism is the adiabatic
expansion of a plasma jet in a vacuum. The advantage of
this method is that continuous amplification, and thus con-
tinuous operation of a laser is possible due to the fact that
the different stages of the recombining plasma decay at dif-
ferent times. Thus, as the plasma expands, the stages of the
recombination process outlined in the previous Section §3.1
are spread over space and the de-excited medium is thus re-
moved from the active lasing zone. Experimental evidence
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of laser action due to the adiabatic expansion of highly ion-
ized hydrogen or hydrogenic plasmas has been given by, for
example, [19] and [20].

Under adiabatic expansion conditions, the density n and
the temperature T of a gas are related by [17]

T n1−γ = constant (1)

where
γ = cP/cV (2)

is the ratio of the specific heat at constant pressure cP and the
specific heat at constant volume cV . For a monatomic gas and
for a fully ionized plasma of hydrogen, we use [17]

γ = 5/3 . (3)

However, it should be noted that the actual value of γ for a
plasma is slightly smaller than 5/3. Denoting the initial den-
sity and temperature of the plasma by n0 and T0 respectively,
and the final density and temperature by n and T respectively,
we characterize the expansion by the factor

fE =
n0

n
> 1 (4)

and the ensuing cooling of the plasma by the factor

fC =
T0

T
> 1 . (5)

Then from (1), we have the relation

fC = f γ−1
E (6)

under adiabatic expansion conditions. In this work, we use
fc = 5; then from (6) and (3), fE = 11.2 [40, p. 43–44].

4 The Collisional-Radiative (non-LTE) model

To calculate the non-equilibrium population of the ionic en-
ergy levels, we need to use a model that applies to non-LTE
plasmas. The Collisional-Radiative (CR) non-LTE model was
first proposed and applied to hydrogenic ions by Bates et
al. [21,22] and subsequently used by Bates and Kingston [23]
and McWhirter and Hearn [24]. It was first applied to helium
by Drawin and Emard [25], to lithium by Gordiets et al. [26],
and to cesium by Norcross and Stone [27].

The population densities of the energy levels of ions in
non-LTE plasmas must be obtained from the rate coefficients
of the individual collisional and radiative processes occurring
within the plasma, as summarized in Fig. 1. The physical pro-
cesses included in the CR model include:

• Collisional ionization by electron impact
Rate coefficient: S p(T ) cm3s−1

Number of processes: np ne S p(T ) cm−3s−1

• Three-body recombination
Rate coefficient: αp(T ) cm6s−1

Number of processes: n2
e ni αp(T ) cm−3s−1

Fig. 1: This figure provides a summary of the collisional and radia-
tive processes occurring within the plasma, where p and q are ionic
energy state labels; p ≷ q [40, p. 21].

• Radiative recombination
Rate coefficient: βp(T ) cm3s−1

Number of processes: ne ni βp(T ) cm−3s−1

• Collisional excitation by electron impact (p < q)
Rate coefficient: Cp→q(T ) cm3s−1

Number of processes: np ne Cp→q(T ) cm−3s−1

• Collisional de-excitation by electron impact (p < q)
Rate coefficient: Fq→p(T ) cm3s−1

Number of processes: nq ne Fq→p(T ) cm−3s−1

• Spontaneous transition (p < q)
Rate coefficient: Aq→p s−1

Number of processes: nq Aq→p cm−3s−1

The plasma is assumed to be optically thin such that all ra-
diation emitted within the plasma escapes without being ab-
sorbed. The following physical processes are thus neglected:

• Photoexcitation (p < q),

• Photoionization.

The differential equation describing the time variation of
the population density of a given ionic level p is then given
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by
dnp

dt
=

(
electrons entering level p

)
−

−
(
electrons leaving level p

)
.

(7)

The terms of (7) in parentheses include contributions from all
levels q < p, q > p, and continuum states. Substituting for
the collisional and radiative processes considered above, we
obtain the differential equation

ṅp =

p−1∑
q=1

Cq→p ne nq−

−


 p−1∑

q=1

Fp→q + S p +

∞∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 np+

+

∞∑
q=p+1

(
Fq→p ne + Aq→p

)
nq+

+
(
αp ne + βp

)
ne ni

(8)

where the dot over np represents differentiation with respect
to time. There is such an equation for each and every level
p = 1, 2, ...,∞ of the ion. We thus obtain an infinite number
of coupled first order differential equations in the population
densities of the discrete levels of the ion.

The population density of level p, np, is normalized with
the Saha equilibrium population density of level p, nE

p , [28,
p. 154] [29, p. 135]

ρp =
np

nE
p
, (9)

with nE
p given by

nE
p = Zp(T ) ni ne , (10)

where

Zp(T ) =
ωp

ui

h3

2(2πmkT )3/2 eIp/kT , (11)

ωp is the statistical weight of level p, ui is the ionic partition
function, and Ip is the ionization potential of state p. For hy-
drogenic ions, ui is the partition function of the bare nucleus
and is given by ui ' 1. The same holds for lithium-like ions
since ui is then the partition function of a closed shell ion.

The relative population densities of various stages of ion-
ization ni of a monatomic non-LTE plasma under statistical
equilibrium are calculated approximately with the model of
House [30]. Even though the calculations are highly simpli-
fied, the model provides a first approximation to the ioniza-
tion equilibrium of monatomic plasmas of hydrogen to iron
and a general method of obtaining a consistent set of rela-
tive population densities for the ionization stages of these el-
ements.

Given that there exists a high-lying quantum state r above
which the discrete levels are in LTE, the normalization (9)

allows us to set the population density of these levels to be
given by ρp>r = 1. The infinite set of equations (8) thus be-
comes a finite set of r coupled equations which can be solved
for ρp, p = 1, 2, ..., r. The infinite sums appearing in (8) can
be cut off at a sufficiently high-lying level s > r above which
the rate coefficients involving these states contribute little to
the infinite sums of (8). For levels in LTE, detailed balancing
between the collisional excitation and de-excitation processes
holds and then we can use

nE
q Fq→p = nE

p Cp→q . (12)

The set of equations (8) then becomes

ρ̇p =

p−1∑
q=1

Fp→q ne ρq −

−


 p−1∑

q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 ρp+

+

r∑
q=p+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
ρq +

1
Zp

(
αp ne + βp

)
+

+

s∑
q=r+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
; p = 1, 2, ..., r .

(13)

4.1 Solution of the system of coupled differential equa-
tions

The exact solution of the system of couple differential equa-
tions (13) gives the time evolution of the population densities
of the ionic levels ρp(t), p = 1, 2, ..., r. This solution if of
limited use. A simpler solution, known as the quasi-steady
state (QSS) approximation, holds for a large class of plasmas
and is used extensively in the literature (see [21, 22] and sub-
sequent papers mentioned previously in §4). The steady state
(SS) solution is obtained by putting

ρ̇S S
p (t) = 0 ; p = 1, 2, ..., r . (14)

This time-independent solution holds when the rate at which
the electrons enter level p equals the rate at which they leave
level p. Once the steady state solution is established, a per-
turbation of the population density of level p will be followed
by a return to its steady state value in a time of order

τp ∼


 p−1∑

q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q


−1

(15)

where τp is the relaxation time of level p.
McWhirter and Hearn [24] have calculated τp for a wide

range of plasma parameters. They conclude that the relax-
ation time of the ground state is always much greater than
that of any of the excited states, even if the plasma is not
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near its steady state. This is due to two main reasons: a)
the electron collision rate coefficients between excited states
are much greater than those involving the ground state; b)
the ground state cannot decay by spontaneous radiative tran-
sition. Consequently, the population densities of the excited
ionic levels come into equilibrium with particular values of
the population densities of the ground state, of the free elec-
trons, and of the ions in a time which is very short as com-
pared to the ground state relaxation time. This is the basis of
the QSS solution.

4.2 The population coefficients

We thus express the population densities of the excited states
as a function of the ground state population density:

ρp = r(0)
p + r(1)

p ρ1 ; p = 2, 3, ..., r . (16)

r(0)
p and r(1)

p are called the population coefficients of level p.
Furthermore, since the population densities of the excited sta-
tes are in equilibrium with that of the ground state, we solve
the system of coupled equations (13) by putting ρ̇p≥2 = 0 and
ρ̇1 , 0 since, in general, the ground state is not in equilibrium.
In our calculations, we also assume that the free electron and
ionic densities, ne and ni respectively, do not change substan-
tially during the time of establishment of the QSS.

Substituting the trial solution (16) in the system of equa-
tions (13), we obtain a set of equations of the form

ap + bp ρ1 = 0 ; p = 2, 3, ..., r . (17)

The general solution of (17), for an arbitrary value of ρ1, is
ap = 0 and bp = 0. Before proceeding with the solution,
certain limiting conditions must be imposed on the popula-
tion coefficients r(0)

p and r(1)
p corresponding to the cases when

p = 1 and p > r. Substituting p = 1 in (16), we obtain the
condition r(0)

1 = 0 and r(1)
1 = 1. The other condition, which is

obtained by putting p > r in (16), has already been imposed
on the set of equations, namely r(0)

p>r = 1 and r(1)
p>r = 0.

Using these conditions, we obtain the following two sets
of r − 1 equations in the population coefficients r(0)

p and r(1)
p

respectively:

p−1∑
q=2

Fp→q ne r(0)
q −

−


 p−1∑

q=2

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 r(0)
p +

+

r∑
q=p+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
r(0)

q = −
1

Zp

(
αp ne + βp

)
−

−

s∑
q=r+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
;

(18)

p−1∑
q=2

Fp→q ne r(1)
q −

−


 p−1∑

q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q

 r(1)
p +

+

r∑
q=p+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
r(1)

q =

= −Fp→1 ne ; p = 2, 3, ..., r .

(19)

4.3 The population densities

Once the population coefficients r(0)
p and r(1)

p have been ob-
tained from the sets of equations (18) and (19) respectively,
they are substituted in (16). For any value of ρ1, the popula-
tion densities ρp can then be calculated. From (9) and (10),

ρp =
np

Zp ni ne
; (20)

substituting (20) in (16), we obtain

np = Zp ni ne r(0)
p +

Zp

Z1
n1 r(1)

p ; p = 2, 3, ..., r . (21)

As required by the QSS approximation, the population den-
sity of the excited state p depends on the value of the ground
state population density n1, the free electron density ne, and
the ionic density ni. The population density per unit statisti-
cal weight is given by yp = np/ωp, where ωp is the statistical
weight of level p. The population density per unit statistical
weight must be used when the population densities of differ-
ent states are compared.

4.4 The collisional-radiative rate coefficients

The time evolution of the population density of the ground
state can be studied with (13) when p = 1. Substituting for
ρp from (16), and using the previously calculated population
coefficients and (9), we obtain the differential equation

ṅ1 = −S CR ne n1 + αCR ne ni . (22)

S CR and αCR are called the collisional-radiative ionization and
recombination rate coefficients respectively. They are the ef-
fective ionization and recombination rate coefficients of the
plasma. They are related to the individual atomic rate coeffi-
cients by the following expressions:

S CR = S 1 +

s∑
q=2

C1→q−

−
1

Z1 ne

s∑
q=2

Zq

(
Fq→1 ne + Aq→1

)
r(1)

q ;

(23)

αCR = α1 ne + β1 +

s∑
q=2

Zq

(
Fq→1 ne + Aq→1

)
r(0)

q . (24)
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The solution of (22) can easily be shown to be given by

n1(t) =
αCR

S CR
ni +

(
n1(t = 0) −

αCR

S CR
ni

)
e−S CR ne t . (25)

The steady state population density of the ground state is ob-
tained in the limit t → ∞:

nS S
1 =

αCR

S CR
ni . (26)

4.5 Modifications for lithium-like ions

The CR model must be modified to account for the difference
in structure of lithium-like and hydrogenic ions considered
previously. The same system of state labelling is used: the
ground state (2s) is labelled 1, the first excited state (2p) is
labelled 2, the second excited state (3s) is labelled 3, and so
on in order of increasing level energy. The derivation of the
equations of the CR plasma model for lithium-like ions then
parallels that given previously for hydrogenic ions.

The time evolution of the population density of level p in
an optically thin plasma is given by (13) as before. The steady
state (SS) solution to the set of coupled first order differen-
tial equations (13) is obtained as before from (14). However,
the quasi-steady state (QSS) solution must be modified to ac-
count for the small energy separation of the ground and the
first excited states as compared to that of the first and the sec-
ond excited states, as this is particularly significant for ions
with large values of Z such as C IV, N V, and O VI. As a re-
sult of this, the population density of the first excited state
(level 2) is very much larger than that of the other excited
states, and it may even be comparable to that of the ground
state.

Consequently, the QSS solution is modified by using a
method similar to the one developed by Bates et al. [22] to
describe hydrogenic plasmas optically thick toward the lines
of the Lyman series. The normalized population density of
level p is expressed as a function of the ground and the first
excited state population densities:

ρp = r(0)
p + r(1)

p ρ1 + r(2)
p ρ2 (27)

where 3 ≤ p ≤ r and r(0)
p , r(1)

p and r(2)
p are the population co-

efficients of level p. The QSS solution is obtained when the
population densities of the second and higher excited states
are in equilibrium with the population densities of the ground
and the first excited states which, in general, are not in equi-
librium. We then have ρ̇1(t) , 0, ρ̇2(t) , 0, and ρ̇p≥3(t) = 0.

Substituting the solution (27) in the system of equations
(13), and using the last condition above, we obtain a set of
equations of the form

ap + bp ρ1 + cp ρ2 = 0 ; p = 3, 4, ..., r . (28)

For arbitrary values of ρ1 and ρ2, the general solution of (28)
is given by ap = 0, bp = 0, and cp = 0. We must also

impose the limiting conditions corresponding to the values of
p = 1, 2 and p > r on the population coefficients r(0)

p , r(1)
p and

r(2)
p : r(0)

1 = 0, r(1)
1 = 1, r(2)

1 = 0; r(0)
2 = 0, r(1)

2 = 0, r(2)
2 = 1;

r(0)
p>r = 1, r(1)

p>r = 0, r(2)
p>r = 0. This last condition has already

been applied to derive the system of equations (13).
Using these conditions, we obtain three sets of r−2 equa-

tions which are solved for the population coefficients r(0)
p , r(1)

p

and r(2)
p respectively:

p−1∑
q=3

Apq r(0)
q − Bp r(0)

p +

r∑
q=p+1

Cpq r(0)
q

= −
1

Zp

(
αp ne + βp

)
−

s∑
q=r+1

(
Cp→q ne +

Zq

Zp
Aq→p

)
;

(29)

p−1∑
q=3

Apq r(1)
q − Bp r(1)

p +

r∑
q=p+1

Cpq r(1)
q = −Fp→1 ne ; (30)

p−1∑
q=3

Apq r(2)
q − Bp r(2)

p +

r∑
q=p+1

Cpq r(2)
q = −Fp→2 ne (31)

where
Apq = Fp→q ne ; (32)

Bp =

 p−1∑
q=1

Fp→q + S p +

s∑
q=p+1

Cp→q

 ne +

p−1∑
q=1

Ap→q ; (33)

Cpq = Cp→q ne +
Zq

Zp
Aq→p ; p = 3, 4, ..., r . (34)

From the population coefficients r(0)
p , r(1)

p and r(2)
p , the pop-

ulation densities np can be calculated for any value of n1 and
n2 from

np = Zp ni ne r(0)
p +

Zp

Z1
n1 r(1)

p +
Zp

Z2
n2 r(2)

p ;

p = 3, 4, ..., r
(35)

where ni is the ionic density. The time evolution of the popu-
lation densities of the ground state and the first excited state,
n1 and n2 respectively, can be obtained by substituting (27)
and the population coefficients r(0)

p , r(1)
p and r(2)

p into (13) with
p = 1 and p = 2. We then get the two coupled first order
differential equations

ṅ1 = −S CR
1 ne n1 + MCR

21 ne n2 + αCR
1 ne ni

ṅ2 = −S CR
2 ne n2 + MCR

12 ne n1 + αCR
2 ne ni

(36)

where

S CR
1 = S 1 +

s∑
q=2

C1→q−

−
1

ne Z1

s∑
q=3

(
Fq→1 ne + Aq→1

)
Zq r(1)

q ;

(37)
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S CR
2 = S 2 + F2→1 +

1
ne

A2→1 +

s∑
q=3

C2→q−

−
1

ne Z2

s∑
q=3

(
Fq→2 ne + Aq→2

)
Zq r(2)

q ;

(38)

αCR
1 = α1 ne + β1 +

s∑
q=3

(
Fq→1 ne + Aq→1

)
Zq r(0)

q ; (39)

αCR
2 = α2 ne + β2 +

s∑
q=3

(
Fq→2 ne + Aq→2

)
Zq r(0)

q ; (40)

MCR
21 = F2→1 +

1
ne

A2→1

+
1

ne Z2

s∑
q=3

(
Fq→1 ne + Aq→1

)
Zq r(2)

q ;
(41)

MCR
12 = C1→2 +

1
ne Z1

s∑
q=3

(
Fq→2 ne + Aq→2

)
Zq r(1)

q . (42)

The coefficients S CR
1 , S CR

2 and αCR
1 , αCR

2 are similar to the hy-
drogenic collisional-radiative ionization rate coefficient S CR

(23) and recombination rate coefficient αCR (24) respectively.
The coefficients MCR

21 and MCR
12 have no hydrogenic coun-

terparts. The collisional-radiative rate coefficient MCR
21 ex-

presses the recombination which occurs in the ground state
due to the neighbouring first excited state and vice versa for
the collisional-radiative rate coefficient MCR

12 .
The general solution of the coupled system of equations

(36) can be written as

n j(t) = nS S
j + n(+)

j e−λ
(+) t − n(−)

j e−λ
(−) t (43)

where j = 1 or 2,

λ(±) =
ne

2

(
S CR

1 + S CR
2 ±

±

√(
S CR

1 − S CR
2

)2
+ 4 MCR

12 MCR
21

)
,

(44)

nS S
j =

KS S
j

λ(+) λ(−) , (45)

n(±)
j =

n j(t = 0) λ(±)2
− K jλ

(±) + KS S
j

λ(±) (
λ(+) − λ(−)) , (46)

KS S
1 = n2

e ni

(
αCR

1 S CR
2 + αCR

2 MCR
21

)
, (47)

KS S
2 = n2

e ni

(
αCR

2 S CR
1 + αCR

1 MCR
12

)
, (48)

K1 = ne

(
αCR

1 ni + S CR
2 n1(t = 0) + MCR

21 n2(t = 0)
)
, (49)

K2 = ne

(
αCR

2 ni + S CR
1 n2(t = 0) + MCR

12 n1(t = 0)
)
. (50)

The steady state population densities, which are obtained in
the limit as t → ∞, are explicitly given by

nS S
1 =

αCR
1 S CR

2 + αCR
2 MCR

21

S CR
1 S CR

2 − MCR
12 MCR

21

ni ; (51)

nS S
2 =

S CR
1 αCR

2 + αCR
1 MCR

12

S CR
1 S CR

2 − MCR
12 MCR

21

ni . (52)

4.6 Calculation of collisional and radiative rate coeffi-
cients

The results of the modelling calculations depend to a large
extent on the accuracy of the collisional and radiative rate
coefficients used in the CR model. The collisional rate coeffi-
cients Rn are obtained by integrating the cross-sections σn of
the collisional processes over the free electron velocity distri-
bution, f (v):

Rn(T ) =

∫
v

σn(v) v f (v) dv . (53)

For a Maxwellian velocity distribution of the free electrons,
we have

f (v) dv =
4
√
π

( m
2kT

)3/2
v2 exp(−mv2/2kT ) dv . (54)

The cross-section values are obtained from experimental
data, where available, and from various model and theoretical
calculations that are usually fitted to semi-empirical expres-
sions. We briefly review the expressions that have been found
to be useful in CR model calculations [40].

The spontaneous transition probabilities from an upper
state n to a lower state n′ are given, within the electric dipole
approximation, by the Einstein probability coefficient [31]

An→n′ =
8π2e2

mc3 ν2
nn′

ωn′

ωn
fn′→n (55)

where ωn and ωn′ are the statistical weights of levels n and n′

respectively, νnn′ is the frequency of the photon emitted as a
result of the transition and fn′→n is the absorption oscillator
strength for the n′ → n transition. The oscillator strengths
can be evaluated exactly for hydrogenic ions using hyperge-
ometric functions. Average lifetime of hydrogenic levels can
be calculated from the asymptotic expression given by Mil-
lette [32]. For other elements, oscillator strengths for allowed
and forbidden transitions can be evaluated using various ap-
proximate theoretical methods.

The cross-section for collisional excitation of the opti-
cally allowed transition n′ → n by electron impact is given
by [40]

σn′→n(u) = 4π a2
0

fn′→n

E2
n′n

αn′n
u − φn′n

u2 ln(1.25 βn′n u) (56)
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where En′n is the threshold energy for the excitation of the
n′ → n transition in Rydbergs, u = E/En′n is the energy
of the impacting electron E in threshold units, fn′→n is the
absorption oscillator strength for the n′ → n transition, a0 is
the Bohr radius and αn′n, βn′n and φn′n ≤ 1 (equal to 1 for
atoms) are fit parameters depending on the transition.

The cross-section for collisional excitation of the opti-
cally forbidden transition n′ → n by electron impact is given
by [40]

σn′→n(u) = 4π a2
0

(
n′

n

)3
αn′n

E2
n′n

u − φn′n

u2 (57)

where En′n is the threshold energy for the excitation of the
n′ → n transition in Rydbergs, u = E/En′n is the energy of
the impacting electron E in threshold units, a0 is the Bohr
radius and αn′n and φn′n are fit parameters depending on the
transition.

The collisional de-excitation rate coefficients are obtained
from the collisional excitation rate coefficients by the princi-
ple of detailed balancing as given by (12).

The collisional ionization cross-section from state n by
electron impact is given by [33, 40]

σn(u) = 2.66 πa2
0

 IH
1

In

2

ξn
u − 1

u2 ln(1.25 βn u) (58)

where IH
1 = EH

1 is the ionization energy of the hydrogen atom
in its ground state, In = En is the ionization energy of the atom
or ion in state n, u = E/In is the kinetic energy of the incident
electron in units of the threshold energy for ionization from
state n, ξn is the number of equivalent electrons in state n and
βn is a correction (fit) factor of order unity. To obtain the
correct threshold law, βn must be larger than 0.8.

The three-body recombination rate coefficients are ob-
tained from the collisional ionization rate coefficients by the
principle of detailed balancing.

The radiative recombination rate coefficients can be ob-
tained from the photo-ionization rate coefficients by the prin-
ciple of detailed balancing. The available experimental and
calculated photo-ionization data are fitted to a semi-empirical
function of the form [40]

a(u) =
C
up

[
1 +

b1

u
+

b2

u2 + · · · +
bm

um

]
(59)

where u is the energy of the incident photon in threshold en-
ergy units, and C and bk, k = 1, ...,m are fit parameters.
The parameters p and m are restricted to the range of val-
ues 0 ≤ p ≤ 5 and 1 ≤ m ≤ 9, and p is assigned half-integral
values to simplify and facilitate the evaluation of the rate co-
efficient integrals.

5 Laser action in Wolf-Rayet stars

The strength of an inversely populated transition q → p (p <
q) can be characterized by the fractional gain per unit dis-

Fig. 2: Typical α′ versus Te plot for the 6 f → 5d transition of C IV
[40, p. 249].

tance, α. At the centre of a Doppler-broadened line, it is given
by the following expression [34, p, 23]:

α =

√
ln 2
π

(
ωq Aq→p

4π

)
P λ2

0

∆ν
(60)

where λ0 is the centre wavelength of the transition, ∆ν is
the linewidth, ωq is the statistical weight of level q, Aq→p is
the Einstein probability coefficient for spontaneous transition
from level q to p, and [35]

P =
nq

ωq
−

np

ωp
. (61)

P is a measure of the population inversion and, for laser action
to be operative, P > 0. α is related to the intensity of a plane
wave at λ0 by the equation

I = I0 eα L (62)

where L is the length over which gain occurs. To be able
to compare various transitions without needing to specify the
linewidth ∆ν, we define a quantity α′ given by

α′ = α∆ν (63)
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Fig. 3: Typical ne − Te diagram showing laser gain equi-α′ contours
in cm−1 s−1 for the 6 f → 5d transition of C IV [40, p. 257].

where α is given by (60).
Model calculations starting from an initial element num-

ber density of 1014 cm−3 are performed for a grid of ne and Te

values. The inversion is displayed on ne, Te plots (ne−Te dia-
grams) showing contours of equal P or α′ (equi-α′ contours).
Fig. 2 shows a typical variation of α′ versus Te for inversely
populated transition 6 f → 5d of C IV. Fig. 3 shows a typical
ne−Te diagram with equi-α′ contours for inversely populated
transition 6 f → 5d of C IV.

On a three-dimensional plot with α′ as the third axis per-
pendicular to both the ne and Te axes, the diagram would ap-
pear as a triangular pyramidal-shaped mountain with a very
steep slope on the high-ne side, a steep slope on the low-Te

side, and a gradual slope on the low-ne, high-Te side. Strong
population inversion thus occurs only within a narrow range
of values of ne and Te, and each transition has its own re-
gion of strong population inversion. This provides a means to
classify Wolf-Rayet star parameters from their spectra.

Calculations of population inversions in astronomical
plasmas cooled by adiabatic expansion have been performed
on ions observed in WR stars by the following investigators.
Varshni and Lam [37–39] investigated population inversions
in the hydrogen-like He II ion for line λ4686 resulting from
the transition 4→ 3 in He II.

Fig. 4: Spectrum of the WC8 star HD 164270 from [36].

Fig. 5: Spectrum of the WC7 star HD 119078 from [36].

Fig. 6: Spectrum of the WC6 star HD 115473 from [36].

Millette [40] analyzed population inversions in the lithi-
um-like ions C IV, N V and O VI. Population inversions were
found to occur in many of the transitions. C IV transitions
giving rise to emission lines in the visible region of the spec-
trum, specifically line λ4650 resulting from transitions be-
tween levels 6 → 5 in C IV, were investigated. The C IV
λλ4646, 4658 lines arising from the 6 f → 5d and 6g → 5 f
transitions respectively, were found to be strongly inverted al-
lowing laser action in plasmas cooled by adiabatic expansion.

The model calculations provide an understanding of the
unusual strength of the C IV λ4650 emission line in the WC
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category of Wolf-Rayet stars, as seen in Fig. 4, Fig. 5 and
Fig. 6, which shows the λ4650 line becoming more and more
prominent in going from a category WC8 to a WC6 Wolf-
Rayet star. The lines in WC8 WR stars are relatively sharp,
becoming wider and brighter in WC7 WR stars, and even
wider and brighter in WC6 WR stars, indicating increasing
speed of ejection and increasing laser action.

Varshni and Nasser [41,42] investigated population inver-
sions in He I and in helium-like C III. Four transitions were
investigated in the visible region of He I, λ7281 31S → 21P,
λ6678 31D → 21P, λ5047 41S → 21P and λ4922 41D →
21P, of which observationl evidence is available for λ7281
and λ6678 in WR stars. Two transitions showed apprecia-
ble population inversion in the visible region of C III: λ4650
2s3p 3S → 2p3p 3S and λ5263 2p3p 3S → 2p3s 3P0.

Millette [40] provides a detailed roadmap to calculate po-
pulation inversions in hydrogenic and in the lithium-like ions
N V and O VI, in addition to C IV.

6 Laser action in Quasi-Stellar Objects

The physical process of population inversions in expanding
stellar atmospheres led Varshni to formulate his Plasma Las-
er Star (PLS) model as an explanation of the spectra of Wolf-
Rayet stars and Quasi-Stellar Objects [43–48]. Radio astron-
omy first detected QSOs in the 1950s as anomalous objects
with unexplained properties. QSO 3C 273 was the first radio
source quasar for which an optical counterpart was identified
in 1963. Its spectrum consisted of one strong emission line
and one medium to weak strength line (λ5637, λ7588).

QSOs were named quasi-stellar because they look like
stars, if not typical stars. In particular QSO spectra are dom-
inated by a small number of very intense and wide lines that
could not be readily identified with common elements. In
particular, there was a lack of the expected hydrogen Lyman
lines, a typical marker in most spectra. This likely provided
the impetus for Schmidt [49] to assume that the observed lines
in 3C 273 were the Hα and Hβ lines, red-shifted to their ob-
served wavelength in the spectrum. This quickly became the
standard approach, and ever since, astronomy and cosmol-
ogy have been transformed, with everything looking like red-
shifted objects, even if those red-shifts are superluminal.

Luckily, this possibility did not exist when Wolf-Rayet
stars were first discovered in 1867 by astronomers Charles
Wolf and George Rayet at the Paris Observatory, otherwise
we would be facing an even more confusing puzzle, as hydro-
gen emission lines are not present in WR spectra either. As
chance would have it, WR stars were investigated as stellar
objects, which allowed us to eventually determine the pres-
ence of laser action in WR stellar atmospheres, which is the
same process that is operating in QSO stellar atmospheres.

Banerji and Bhar [50–52] have compared the (unshifted)
spectral lines of 633 QSOs discovered till August 1976, as-
suming they are generated by a population inversion process

similar to that operating in WR stars instead of red shifts,
with the laser transitions observed in laboratories till April
1976 [53]. They found that 88% of the QSO lines agreed
to within 10 Å with the laser lines and 94% agreed to within
20 Å. Their assumption that QSOs are early-type stars with
temperatures in the range 104–105 K implied spectral lines
with asymmetric shapes and large broadening leading to er-
rors in measurement of up to 20 Å. They pointed out the simi-
larities between the spectra of QSOs and those of Wolf-Rayet
stars, with both deficient in hydrogen. They proposed that the
absorption lines of QSOs are produced in the expanding stel-
lar atmosphere, so that they are violet-shifted as in WR stars.
Under this model, they showed that 54 of 55 narrow absorp-
tion lines in QSO Q 1246-057 can be explained by assuming
an average velocity of absorbing ions of 500 km/s.

Taking Quasi-Stellar Objects to be local stellar objects in-
stead of distant galactic objects eliminates the problems as-
sociated with their currently accepted cosmological interpre-
tation: energy source, superluminal velocities, optical vari-
ability, quasar proper motions [54, 55], quasar binary sys-
tems [56,57], naked (no nebulosity) quasars, etc. The proper-
ties of QSOs are similar to those of WR stars and, as stars,
those are easily explainable in terms of commonly known
physical processes.

7 A new star type Q and the Hertzsprung-Russell dia-
gram

We consider the implications of Quasi-Stellar Objects as stel-
lar objects. We need to first be more specific about the ter-
minology used: we use the term quasar to refer specifically
to the cosmological interpretation of Quasi-Stellar Objects,
while we use the term QSO to refer to the stellar interpreta-
tion of Quasi-Stellar Objects. We introduce a new star type to
denote QSOs: stars of type Q, similar to the Wolf-Rayet stars
which are denoted as stars of type W.

The Hertzsprung-Russell diagram is extended beyond the
stars of type O B towards more massive and hotter stars of
type Q and W. The main sequence starts with Q W O B, fol-
lowed by the standard A F G K M types of the rest of the
sequence. As one moves towards star type Q, the stars be-
come increasingly more massive, of higher temperature, with
higher speeds of stellar atmosphere ejection and population
inversions, with their emission spectra increasingly domina-
ted by the lasing emission lines.

Significant work has been performed on the analysis of
WR stars to understand their classification and evolution. WR
stars are known to be hot, luminous objects, representative of
the late stage of evolution of massive O stars. The details have
been worked out over the last forty years [2, 10, 58–65] with
the analysis of Wolf-Rayet stars in the Magellanic Clouds
dwarf satellite galaxies of the Milky Way providing valuable
information. A similar effort is required to understand the
classification and evolution of stars of type Q, with the iden-
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tification of unrecognized representatives in our galaxy and
in the Magellanic Clouds an important step [55, 66].

8 Discussion and conclusion

In this paper, we have reconsidered the little-known but crit-
ically important physical process of laser action occurring in
the stellar atmospheres of Wolf-Rayet stars and, by extension,
of QSOs. We have reviewed the model used for hydrogenic
and lithium-like ions in the Collisional-Radiative (non-LTE)
model used to calculate the ionic energy level populations,
and the existing results for He I, He II, C III and C IV. We
have noted the availability of a detailed roadmap in [40] to
carry out similar calculations for the lithium-like ions of in-
terest N V and O VI.

We have reviewed the details of laser action in Wolf-Rayet
stars. We have considered the historical bifurcation that re-
sulted in the red-shift model of quasar spectra and its cosmo-
logical roots. We have also considered the evidence for the
presence of laser action in QSOs as in Wolf-Rayet stars, and
how taking QSOs to be local stellar objects instead of distant
galactic objects eliminates the problems associated with the
currently accepted cosmological interpretation.

We have introduced theterminology quasar to refer speci-
fically to the cosmological interpretation of Quasi-Stellar Ob-
jects and QSO to refer to the stellar interpretation of Quasi-
Stellar Objects. We have introduced a new star type Q for
QSOs, similar to the star type W for Wolf-Rayet stars. We
have expanded the Hertzsprung-Russell diagram to include
more massive and hotter stars of type Q and W beyond the
stars of type O B. The main sequence thus starts with stars of
type Q W O B, followed by the standard types A F G K M of
the rest of the sequence. Finally, we have noted the effort that
will be required to understand the classification and evolution
of stars of type Q, as has been achieved for Wolf-Rayet stars.

Received on December 27, 2020
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Transcendental ratios of physical quantities can provide stability in complex dynamic
systems because they inhibit the occurrence of destabilizing resonance. This approach
leads to a fractal scalar field that affects any type of physical interaction and allows re-
formulating and resolving some unsolved tasks in celestial mechanics and astrophysics.
We verify the model claims on the gravitational constants and the periods of orbital and
rotational motion of the planets, planetoids and large moons of the solar system as well
as the orbital periods of exoplanets and the gravitational constants of their stars.

Introduction

Despite the abundance of theoretical approaches engaged to
explain the origin of gravitational interaction dealing with
superstrings, chameleons or entropic forces [1], the commu-
nity of physicists still expects compatibility for centuries: any
modern theory must allow deriving Newton’s law of univer-
sal gravitation as classic approximation. In the normal case
of weak gravity and low velocities, also Einstein’s field equa-
tions obey the correspondence principle.

Besides of nostalgia, what could be the reason of this con-
dition? Newton’s law of gravitation cannot be verified in the
scale of the solar system, because the mass of a planet can-
not be measured, and Kepler’s laws of planetary motion do
not compellingly require Newton’s law of gravitation for their
derivation. Moreover, Newton’s theory of gravitation leads to
inconsistencies already in the case of three interacting bodies.

It is a common belief that John Couch Adams and Urbain
Le Verrier applying Newton’s law of gravitation could predict
the orbit and correct position of Neptune based on motions of
Uranus. However, this is not exactly what they did.

Adopting the Titius-Bode law [2], Adams assumed the
semi-major axis of Neptune being 37.25 AU; Le Verrier esti-
mated 36.15 AU. The deviation from the correct value 30.07
AU is more than 20%. Adopting Pontécoulant’s Théorie An-
alytique to his perturbation approach, Adams calculated an
eccentricity of 0.1206; Le Verrier got 0.1076. The right value
is 0.0086, a deviation of more than 1100%. Adams calcu-
lated the longitude of the perihelion being at 299◦; Le Ver-
rier arrived at 284◦ while the correct is 44◦. Finally, apply-
ing Newton’s law of gravitation, Adams estimated Neptune’s
mass with 1/6666 solar mass; Le Verrier calculated 1/9300.
Actually, the ratio is 1/19300. Again, a deviation of > 200%.
It is a miracle how with all these errors Le Verrier could guess
the right longitude 326◦ of the current position of Neptune.
Obviously, he was very lucky [3].

Kepler’s laws of planetary motion cannot explain why the
solar system has established the orbital periods 90560 days
(Pluto), 60182 (Neptune), 30689 (Uranus), 10759 (Saturn),
4333 (Jupiter), 1682 (Ceres), 687 (Mars), 365 (Earth), 225
(Venus) and 88 days (Mercury), because there are infinitely

many pairs of orbital periods and distances that fulfill Ke-
pler’s laws. Einstein’s field equations do not reduce the theo-
retical variety of possible orbits, but increases it even more.

But now, after the discovery of thousands of exoplanetary
systems, we can recognize that the current distribution of the
planetary and lunar orbits in our solar system is not acciden-
tal. Many planets in the extrasolar systems like Trappist 1 or
Kepler 20 have nearly the same orbital periods as the large
moons of Jupiter, Saturn, Uranus and Neptune [4]. That’s
amazing, because Trappist 1 is 40 light years away from our
solar system and Kepler 20 nearly 1000 light years [5, 6].

The question is, why they prefer similar orbital periods
if there are infinite possibilities? Obviously, there are orbital
periods preferred anywhere in the galaxy. Why these orbital
periods are preferred? What makes them attractive?

Despite perturbation models and parametric optimization,
the reality of planetary systems is still a theoretical problem.
The notoriously high failure rate of interplanetary missions,
flyby anomalies [7] and unexpected accelerations of space-
craft indicate a profound lack of understanding gravity.

In spiral galaxies, the orbiting of stars around their cen-
ters seems to strongly disobey both Newton’s law of universal
gravitation and general relativity. Recently, an 85% dark mat-
ter universe is required for saving the conventional paradigm.

Perhaps the concept of gravitation itself requires a revi-
sion. Obviously, it is not about details, but an important part
of the hole is missing. For finding the missing part, let us go
back to the roots of the idea of gravitation . . .

The empirical universality of free fall led ancient philoso-
phers to the idea that weight could be a universal property of
matter. For a long time, this observation underpinned the geo-
centric worldview powered by Aristoteles; he beliefed that
heavier objects experience a higher gravitational acceleration.

Centuries later, in his famous book ‘De revolutionibus
orbium coelestium’, Nicolaus Copernicus (1543) interpreted
weight as divine phenomenon by which all things, includ-
ing stars, planets and moons, are brought toward one another.
In the ‘Astronomia nova’, Johannes Kepler (1609) compared
weight with magnetism and hypothesized that any two stones
attract each other in a way that is proportional to their masses.
In the meantime, Galileo Galilei (1590) discovered that the
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acceleration of free falling test bodies at a given location does
not depend on their masses, physical state or chemical com-
position. Modern measurements [8] confirm Galilei’s discov-
ery with a precision of a trillionth. In a vacuum, indeed, a
one gram light feather and a one kilogram heavy lead ball ex-
perience the same acceleration of free fall. Long time before
Friedrich Bessel (1832) and Lorand Eötvös (1908), Galileo
Galilei’s discovery was experimentally confirmed by Isaak
Newton (1680) comparing the periods of pendulums of differ-
ent masses but identical length. Nevertheless, in his universal
law of gravitation, Newton (1687) postulated that gravity de-
pends on the masses of the involved bodies. Though, he was
deeply uncomfortable with this idea. 26 years after the first
publication of his “Principia’, in the age of 71, Newton wrote:
”I have not yet been able to discover the cause of these prop-
erties of gravity from phenomena and I feign no hypotheses.”
Newton recognized the importance of not confusing gravity
acceleration with the force that gravity can cause [9]. Ac-
tually, the question is not, does the force caused by gravity
depend on the masses of the moving bodies. The question is
rather, does mass cause the acceleration of free fall.

Analyzing the astronomical observations of Tycho Brahe,
Johannes Kepler (1619) discovered that for every planet, the
ratio of the cube of the semi-major axis R of the orbit and the
square of the orbital period T is constant for a given orbital
system. In the case of the Earth, this ratio defines the geocen-
tric gravitational constant µ. Kepler’s discovery is confirmed
by high accuracy radar and laser ranging of the motion of arti-
ficial satellites. Thanks to Kepler’s discovery, Earth’s surface
gravity acceleration can be derived from the orbital elements
of any satellite, also from Moon’s orbit:

g =
µ

r2 =
µ

(6378000 m)2 = 9.81 m/s2,

µ = 4π2 R3

T 2 = 3.9860044 · 1014 m3/s2,

where R is the semi-major axis of Moon’s orbit, T is the or-
bital period of the Moon and r is the equatorial radius of the
Earth. No data about the masses or the chemical composition
of the Earth or the Moon is needed.

Here it is important to underline that R and T are mea-
sured, but the identity µ = GM being the core of Newton’s
law of universal gravitation, is a theoretical presumption that
provides mass as a source of gravity and the universality of
the coefficient G as “gravitational constant’.

One of the basic principles of scientific research is the fal-
sifiability of a theory. Obviously, any theory that postulates
gravitation of mass as forming factor of the solar system is not
falsifiable, because there is no method to measure the mass of
a planet. Actually, no mass of any planet, planetoid or moon
is measured, but only calculated based on the theoretical pre-
sumption µ = GM.

Naturally, G is estimated in laboratory scale where masses
can be measured. However, not only the correctness of the

original experimental setup performed by Henry Cavendish
(1798) is still under discussion, but also the correctness of
more recent variants. There are large uncertainties not only
in the obtained values of G, but even regarding the suitability
of the applied methods of measuring gravity.

It is believed that gravitation cannot be screened. Because
of this, it is virtually impossible to isolate the gravitational
interaction between two masses from the presumed pertur-
bative effects created by surrounding mass distributions. In-
vented by John Michell (1783), the instrument of choice for
measuring G, the torsion pendulum, is subject to a variety
of parasitic couplings and systematic effects which ultimately
limit its suitability as a gravity transducer. George Gillies [10]
listed about 350 papers almost all of which referred to work
carried out with a torsion balance. Other sensitive mechani-
cal devices are also pressed to the limits of their performance
capabilities when employed for this purpose.

Besides of all the difficulties to measure G in laboratory,
isn’t there any other way to evidence the dependency of grav-
ity on mass? For example, the Earth’s surface masses are not
uniformly distributed. There are huge mountains with a rock
density of about three tons per cubic meter. There are oceans
in which the density of water is only one ton per cubic me-
ter - even at a depth of 10 kilometers. According to the logic
of Newton’s law of universal gravitation, these mass distri-
bution inhomogeneities should act on sensitive gravimetric
instruments. However, they do not [11].

In order to explain the absence of gravimetric evidence,
the idea of isostasy [12] was invented. According to this hy-
pothesis, the deeper the ocean, the more powerful the dense
compensating deposits under its bottom; the higher the moun-
tains, the looser is their foundation. Isostasy allegedly forms
over huge periods of time, comparable to geological eras.

However, there are cases when very strong redistribution
of surface masses occurs in a time period that is negligible by
geological standards. For example, this happens during the
eruption of an underwater volcano, when a seamount or even
a new island builds up in a few days [13]. In these cases, there
is no time to establish isostasy, and gravimetric instruments
should react to these changes. Obviously, they do not react as
expected, and for making gravity calculations more realistic,
ground deformation data and numerical modelling is applied.

Gravimetric practice evidences that it is nearly impos-
sible separating variations in gravity acceleration from low
frequency seismic activity. Actually, gravimeters are long-
period seismometers [14]. This is why the distribution of
gravitational anomalies on gravity maps is indistinguishable
from the zones of earthquakes and seismic activity.

Customarily, gravimetric data are recalculated with spe-
cial corrections that providently consider the alleged effect of
surface mass inhomogeneities. The corrections depend on the
adopted model of the distribution of surface masses mainly
based on seismic exploration. The idea to apply those correc-
tions was proposed by Pierre Bouguer (1749). Now the dif-
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ference between the really measured values of gravity and the
theoretically calculated for an assumed mass density, is tradi-
tionally called a Bouguer-anomaly. Fluctuations in altitude of
orbiting satellites indicating gravity variations are interpreted
as caused by mass inhomogeneities [15]. In this way, gravi-
metric maps of planets and asteroids are being compiled.

In the case of mass as source of gravity, in accordance
with Newton’s shell theorem, a solid body with a spherically
symmetric mass distribution should attract particles outside it
as if its total mass were concentrated at its center. In contrast,
the attraction exerted on a particle should decrease as the par-
ticle goes deeper into the body and it should become zero at
the body’s center.

The Preliminary Reference Earth Model [16] affirms the
decrease of the gravity acceleration with the depth. How-
ever, this hypothesis is still under discussion. In 1981, Stacey,
Tuck, Holding, Maher and Morris [17, 18] reported anoma-
lous measures (larger values than expected) of the gravity ac-
celeration in deep mines and boreholes. In [19] Frank Stacey
writes that “geophysical measurements indicate a 1% differ-
ence between values at 10 cm and 1 km (depth); if confirmed,
this observation will open up a new range of physics.”

Furthermore, measurements of G are notoriously unreli-
able, so the constant is in permanent flux and the official value
is an average. If G is changing, then G could depend on a
new field. But this could also evidence that gravity itself may
be changing. As mentioned Terry Quinn [20] of the Bureau
International des Poids et Mesures (BIPM), the discrepant re-
sults may demonstrate that we do not understand the metrol-
ogy of measuring weak force or signify some new physics.

Introduced with the postulated equation µ = GM as coef-
ficient compensating the dimension of mass, G has no known
confirmed dependence on any other fundamental constant.
Suppose G would be estimated to be two times larger than
the currently recommended value, this would simply mean
that the masses of celestial bodies would be estimated to be
two times smaller. However, this change would not have any
impact on calculations depending on µ. In this case, the hy-
pothesis that mass causes gravity, could turn out to be a dis-
pensable assumption.

In view of this situation, it is understandable to intensify
the search of possible derivations of G from theory. As men-
tioned Gillies [10], some recent approaches seek the ad hoc
introduction of a new field or effect to create a situation in
which a value for G can be built from ratios of other funda-
mental constants and numerical factors. However, most of the
attempts come from a general relativistic starting point to ex-
amine the outcome of some scenario in which G arises from
the calculations. For instance, Yanpeng Li [21] derives

G =
1

16 π · c · η
= 6.636 · 10−11 m3kg−1s−2

from general relativity by introducing the “eigen-modulus of
a tensor” as measure of its converging ability. According to

Li, the eigen-modulus of the Einstein tensor equals 1/16 m/s3,
the mass density η = 1 kg/m3 comes from the eigen-modulus
of the energy-momentum tensor, c is the speed of light. De-
spite the numerical fit of the derived G value with the wide
spectrum of data achieved in laboratory, the generality of this
derivation and the physical sense of a mass density that equals
1 kg/m3 may be questioned.

Introducing his geometric theory of gravitation, a century
ago Einstein supposed that gravity is indistinguishable from,
and in fact the same thing as, acceleration. Identifying gravity
with acceleration g = c· f , the gradient of a conservative grav-
itational field can be expressed in terms of frequency shifts:

∆ f
f

= g
∆h
c2 .

Already in 1959, Robert Pound and Glen Rebka [22] verified
this equation in their famous gravitational experiment. Send-
ing gamma rays over a vertical distance of ∆h = 22.56 m, they
measured a blueshift of ∆ f / f = 2.46 · 10−15 that corresponds
precisely with Earth’s surface gravity 9.81 m/s2.

Actually, also Kepler’s 3rd law is of geometric origin and
can be derived from Gauss’s flux theorem in 3D-space within
basic scale considerations. It applies to all conservative fields
which decrease with the square of the distance, similar to the
geometric dilution of the intensity of light into 3D-space.

The theoretical reduction of gravity to an acceleration en-
ables the orbital motion to be identified with free fall. Orbital
and rotational motions are periodic. So is free fall. Only the
aggregate state of the planet prevents the free fall from be-
coming a damped oscillation. Considering gravity acting with
the speed of light c, we can express gravity in units of time.
For instance, Earth’s surface gravity gEarth = 9.81 m/s2 cor-
responds with an oscillation period of 355 days that is quite
close to Earth’s orbital period:

TEarth =
c

gEarth

=
299792458 m/s

9.81 m/s2 = 355 d.

At an altitude of 100 km above sea level, Earth’s gravity re-
duces down to 9.51 m/s2 that corresponds with the orbital pe-
riod of 365.25 days. In a series of experiments we demon-
strated [23] that inside of finite spatial configurations which
boundaries coincide with equipotential surfaces of the Funda-
mental Field (fig. 2), gravity acceleration reduces locally by
0.3 g down to 9.51 m/s2.

The surface gravity gSun = 274 m/s2 of the Sun corre-
sponds with an oscillation period of 12.7 days that is the first
harmonic of its equatorial period 25.4 days of rotation. Sim-
ilar coincidences are valid for the surface gravities of Mer-
cury, Venus, Mars and even for Saturn and Jupiter. Although
the definition of a planet’s surface is conventional (especially
in the case of gas giants), all these coincidences suggest the
existence of an underlying connection of the gravity of a ce-
lestial body with its own orbital and rotational motions. De-
spite the rich history of crucial discoveries in astronomy and
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astrophysics and the development of sophisticated theories of
gravitation, the distribution of stable orbits in the solar system
remains to be little understood. In this context, the discovery
of Johann Daniel Titius (1766) is even more remarkable. He
found that the sequence of the planetary semi-major axes can
be approximated by the exponential term:

an = 0.4 + 0.3 · 2n ,

where the index n is −∞ for Mercury, 0 for Venus, 1 for the
Earth, 2 for Mars etc. Based on this idea, Johann Elert Bode,
in 1772, first suggested that an undiscovered planet could ex-
ist between the orbits of Mars and Jupiter. William Herschel’s
discovery of Uranus in 1781 near the predicted distance 19.6
AU for the next body beyond Saturn increased faith in the
law of Titius and Bode. In 1801, near the predicted for n = 3
distance 2.8 AU from Sun, Giuseppe Piazzi discovered the
planetoid Ceres and the Franz Xaver von Zach group found
further large asteroids.

In 1968, Stanley Dermott [24] found a similar progres-
sion for the major satellites of Jupiter, Saturn and Uranus.
Nevertheless, at last, the hypothesis of Titius and Bode was
discarded after it failed as a predictor of Neptune’s orbit.

Surprisingly, recent astronomical research [25] suggests
that exoplanetary systems follow Titius-Bode-like laws. Raw
statistics from exoplanetary orbits indicate the exponential in-
crease of semi-major axes as function of planetary index. It
has been shown [2] that many exoplanetary systems follow
an exponential progression of the form

an = a0 + ebn

with n = 0, 1, 2, . . . ; a0 and b are constants to be determined
for each system. Since its formulation, the Titius-Bode law
has proved to be highly predictive, although its physical ori-
gin remains largely unclear.

Not only the distribution of stable orbits, but also the ori-
gin of the configuration of gravity fields in the solar system
remains disputed. Furthermore, there is no known law con-
cerning the rotation of celestial bodies besides conservation
of the angular momentum [26] that they retain from the pro-
toplanetary disks, so that the final distribution of the rotational
periods appears as to be accidental.

In this article we demonstrate that the rotational and or-
bital periods of the planets, planetoids and large moons of the
solar system as well as their gravitational constants approxi-
mate numeric attractors corresponding with the transcenden-
tal frequency ratios of scale-invariant eigenstates in chain sys-
tems of oscillating protons and electrons. The claims of our
model we verify also on orbital periods of exoplanets and the
gravitational constants of their stars.

Methods

In [27] we have shown that the difference between rational,
irrational algebraic and transcendental numbers is not only a

mathematical task, but it is also an essential aspect of stability
in complex dynamic systems. For instance, integer frequency
ratios provide resonance interaction that can destabilize a sys-
tem [28]. Actually, it is transcendental numbers that define
the preferred ratios of quantities which avoid destabilizing
resonance interaction [29]. In this way, transcendental ratios
of quantities sustain the lasting stability of periodic processes
in complex dynamic systems. With reference to the evolu-
tion of a planetary system and its stability, we may therefore
expect that the ratio of any two orbital periods should finally
approximate a transcendental number.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting resonance interaction regarding any
interacting periodic processes and their derivatives. Because
of this unique property of Euler’s number, complex dynamic
systems tend to establish relations of quantities that coincide
with values of the natural exponential function ex for integer
and rational exponents x.

Therefore, we expect that periodic processes in real sys-
tems prefer frequency ratios close to Euler’s number and its
rational powers. Consequently, the logarithms of their fre-
quency ratios should be close to integer 0,±1,±2, . . . or ratio-
nal values ±1/2,±1/3,±1/4, . . . In [30] we exemplified our
hypothesis in particle physics, astrophysics, cosmology, geo-
physics, biophysics and engineering.

Based on this hypothesis, we introduced a fractal model
of matter [31] as a chain system of harmonic quantum oscilla-
tors and could show the evidence of this model for all known
hadrons, mesons, leptons and bosons as well. In [32] we have
shown that the set of stable eigenstates in such systems is
fractal and can be described by finite continued fractions:

Fjk = ln (ω jk/ω00) = 〈n j0; n j1, n j2, . . . , n jk〉, (1)

where ω jk is the set of angular eigenfrequencies and ω00 is
the fundamental frequency of the set. The denominators are
integer: n j0, n j1, n j2, . . . , n jk ∈Z. The cardinality j ∈N of the
set and the number k ∈N of layers are finite. In the canoni-
cal form, all numerators equal 1. We use angle brackets for
continued fractions.

Any finite continued fraction represents a rational num-
ber [33]. Therefore, the ratios ω jk/ω00 of eigenfrequencies
are always irrational, because for rational exponents the natu-
ral exponential function is transcendental [34]. This circum-
stance provides for lasting stability of those eigenstates of a
chain system of harmonic oscillators because it prevents res-
onance interaction [35] between the elements of the system.

The distribution density of stable eigenstates reaches local
maxima near reciprocal integers ±1/2,±1/3,±1/4, . . . that
are attractor points (fig. 1) in the fractal set Fjk of natural log-
arithms. Integer logarithms 0,±1,±2, . . . represent the most
stable eigenstates (main attractors).
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In the case of harmonic quantum oscillators, the continued
fractions Fjk define not only fractal sets of natural angular
frequencies ω jk, angular accelerations a jk = c ·ω jk, oscilla-
tion periods τ jk = 1/ω jk and wavelengths λ jk = c/ω jk of the
chain system, but also fractal sets of energies E jk = ~ ·ω jk and
masses m jk = E jk/c2 which correspond with the eigenstates of
the system. For this reason, we call the continued fraction Fjk

the Fundamental Fractal of stable eigenstates in chain sys-
tems of harmonic quantum oscillators.

Fig. 1: The distribution of stable eigenvalues of Fjk for k = 1 (above)
and for k = 2 (below) in the range -16Fjk 6 1.

The spatio-temporal projection of the Fundamental Fractal
Fjk of stable eigenstates is a fractal scalar field of transcen-
dental attractors, the Fundamental Field [36].

The connection between the spatial and temporal projec-
tions of the Fundamental Fractal is given by the speed of light
c = 299792458 m/s. The constancy of c makes both projec-
tions isomorphic, so that there is no arithmetic or geometric
difference. Only the units of measurement are different.

Figure 2 shows the linear 2D-projection exp (Fjk) of the
first layer of the Fundamental Field

Fj1 = 〈n j0; n j1〉 = n j0 +
1

n j1

in the interval −1 < Fj1 < 1. The upper part of figure 1 shows
the same interval in the logarithmic representation. The Fun-
damental Field is topologically 3-dimensional, a fractal set
of embedded spheric equipotential surfaces. The logarithmic
potential difference defines a gradient directed to the center
of the field that causes a central force of attraction. Because
of the fractal logarithmic hyperbolic metric of the field, every
equipotential surface is an attractor. The scalar potential dif-
ference ∆F of sequent equipotential surfaces at a given layer
k is defined by the difference of continued fractions (1):

∆F=F (j,k)−F (j+1,k) =

= 〈n j0; n j1, n j2, . . . , n jk〉 − 〈n j0; n j1, n j2, . . . , n j+1,k〉.

For instance, at the first layer k=1, the potential differences
have the form:

∆F=
1

n j1
−

1
n j1 + 1

=
1

n2
j1 + n j1

.

Therefore, the potential difference between sequent equipo-
tential surfaces at any given layer k + 1 decreases paraboli-
cally, approximating zero near an equipotential surface of the
layer k. This is why any equipotential surface is an attractor
where potential differences decrease and processes can gain
stability. Main attractors at the layer k = 0 correspond with

integer logarithms, subattractors at deeper layers k > 0 corre-
spond with rational logarithms.

The Fundamental Field is of pure arithmetical origin, and
there is no particular physical mechanism required as field
source. It is all about transcendental ratios of frequencies [29]
that inhibit destabilizing resonance. In this way, the Funda-
mental Field concerns all repetitive processes which share at
least one characteristic — the frequency. Therefore, we pos-
tulate the universality of the Fundamental Field that affects
any type of physical interaction, regardless of its complexity.

Fig. 2: The equipotential surfaces of the Fundamental Field in the
linear 2D-projection for k = 1.

In fact, scale relations in particle physics [31, 37, 38], nuclear
physics [39, 40] and astrophysics [4] obey the same Funda-
mental Fractal (1), without any additional or particular set-
tings. The proton-to-electron rest energy ratio approximates
the first layer of the Fundamental Fractal that could explain
their exceptional stability [30]. The life-spans of the pro-
ton and electron top everything that is measurable, exceeding
1029 years [41].

Property Electron Proton

E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

ω= E/~ 7.76344 · 1020 Hz 1.42549 · 1024 Hz

τ= 1/ω 1.28809 · 10−21 s 7.01515 · 10−25 s

λ= c/ω 3.86159 · 10−13 m 2.10309 · 10−16 m

Table 1: The basic set of the physical properties of the electron and
proton. Data from Particle Data Group [41]. Frequencies, oscillation
periods and wavelengths are calculated.

These unique properties of the electron and proton predesti-
nate their physical characteristics as fundamental units. Ta-
ble 1 shows the basic set of electron and proton units that
can be considered as a fundamental metrology (c is the speed
of light in a vacuum, ~ is the Planck constant). In [32] was
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shown that the fundamental metrology (tab. 1) is completely
compatible with Planck units [42]. Originally proposed in
1899 by Max Planck, these units are also known as natural
units, because the origin of their definition comes only from
properties of nature and not from any human construct. Max
Planck wrote [43] that these units, “regardless of any particu-
lar bodies or substances, retain their importance for all times
and for all cultures, including alien and non-human, and can
therefore be called natural units of measurement”. Planck
units reflect the characteristics of space-time.

We hypothesize that scale invariance according the Fun-
damental Fractal (1) calibrated on the physical properties of
the proton and electron is a universal characteristic of orga-
nized matter and criterion of stability. This hypothesis we
have called Global Scaling [30].

On this background, atoms and molecules emerge as sta-
ble eigenstates in fractal chain systems of harmonically oscil-
lating protons and electrons. Andreas Ries [38] demonstrated
that this model allows for the prediction of the most abundant
isotope of a given chemical element.

In [44] we applied the Fundamental Fractal (1) to macro-
scopic scales interpreting gravity as attractor effect of its sta-
ble eigenstates. Indeed, the orbital and rotational periods of
planets, planetoids and large moons of the solar system cor-
respond with attractors of electron and proton stability [32].
This is valid also for the planets [30] of the systems Trappist
1 and Kepler 20. Planetary and lunar orbits [4] correspond
with equipotential surfaces of the Fundamental Field, as well
as the metric characteristics of stratification layers in plane-
tary atmospheres [45]. In [36] we demonstrated that the Fun-
damental Field (fig. 2) in the interval of the main attractors
〈49〉 6 F 6 〈52〉 of proton stability reproduces the 2D profile
of the Earth’s interior confirmed by seismic exploration.

Results

We will show now that the orbital and rotational periods of
planets, planetoids and moons as well as their gravity acceler-
ations approximate stable eigenstates of our model of matter
as fractal chain system of oscillating protons and electrons,
described by the Fundamental Fractal.

In accordance with the equation (1), we calculate the nat-
ural logarithm of the ratio of the measured value to the cor-
responding electron or proton unit taken from table 1. For
instance, the orbital period of Jupiter TO (Jupiter) = 4332.59
days = 3.7434 · 108 seconds [46] matches the main attractor
F 〈66〉 of electron stability:

ln
(

TO(Jupiter)
2π · τe

)
= ln

(
3.7434 · 108 s

2π · 1.28809 · 10−21 s

)
= 66.00 .

In contrast to orbital motion, rotation is an angular motion,
so that the proton or electron angular oscillation periods are
applied as units. The rotation period TR(Ceres) = 9 hours =

32400 seconds of Ceres, the largest body of the main asteroid

belt, matches the main attractor F 〈66〉 of proton stability:

ln
(

TR(Ceres)
τp

)
= ln

(
32400 s

7.01515 · 10−25 s

)
= 66.00 .

Table 3 gives an overview of the orbital and rotational periods
as well as the gravitational constants of the planets including
the planetoid Ceres and large moons.

Within our model, the approximation level of an attrac-
tor of stability indicates evolutionary trends. For instance,
Venus’ OE2 = 63.04 indicates that the orbital period of the
Morning star must slightly decrease for reaching the center
of the main attractor F 〈63〉. On the contrary, Moon’s OE2
= 60.94 indicates that its orbital period must still increase for
reaching the center of the main attractor F 〈61〉. Actually, ex-
actly this is observed [47]. As well, Uranus’ OE2 = 67.96 let
us expect an increase of its orbital period in order to reach the
main attractor F 〈68〉. Mercury’s OE1 = 63.94 indicates that
in future it could overcome the current tidal 3/2 locking by
reaching the main attractor F 〈64〉 of electron stability. Mer-
cury’s RP1 = 71.05 indicates that its rotation must speed up
slightly [26] in order to reach the attractor F 〈71〉 of proton
stability. Earth’s RP1 = 66.98 indicates that our planet must
slow its rotation by 24 minutes per turn in order to reach the
main attractor F 〈67〉.

Despite conservation of angular momentum [26], there is
no known law concerning the rotation of celestial bodies. The
more remarkable is the correspondence of the rotation periods
of planets, planetoids and large moons with attractors of the
Fundamental Fractal (1) as shown in table 3.

For instance, Mars, Ceres and Jupiter have reached the
main attractor F 〈66〉 in quite different way. In the case of
Mars and Jupiter, the attractor F 〈66〉 stabilizes the orbital pe-
riod TO. In the case of the planetoid Ceres, the same attractor
F 〈66〉 stabilizes the period of rotation TR. Actually, the dif-
ference lays in the reference units. In the case of Jupiter’s or-
bital period, the reference unit is the oscillation period of the
electron 2πτe; in the case of Mars, it is the angular oscillation
period of the electron τe, and in the case of the rotational pe-
riod of Ceres, it is the angular oscillation period of the proton
τp. Now we can write down the following relations:

TO(Jupiter) = 2π · TO(Mars),

TO(Mars) =
τe

τp
· TR(Ceres).

The complete (polar) rotational period of the Sun approxi-
mates the main attractor F 〈63〉 of electron stability:

ln
(

TR(Sun)
τe

)
= 63.01 .

The orbital period of Venus approximates the same attractor
F 〈63〉, as table 3 shows. Consequently, the scaling factor 2π
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connects the orbital period of Venus with the rotational period
of the Sun:

TO(Venus) = 2π · TR(Sun).

Archimedes’ number π = 3.14159 . . . is transcendental and
therefore, it does not violate the principle of avoiding desta-
bilizing resonance. Needless to say that these relations cannot
be derived from Kepler’s laws or Newton’s law of gravitation.
The proton-to-electron ratio (tab. 1) approximates the seventh
power of Euler’s number and its square root:

ln
(
ωp

ωe

)
= ln

(
1.42549 · 1024 Hz
7.76344 · 1020 Hz

)
' 7 +

1
2

= 〈7; 2〉.

In the consequence of this potential difference of the proton
relative to the electron, the scaling factor

√
e = 1.64872. . .

connects attractors of proton stability with similar attractors
of electron stability in alternating sequence. The following
Diophantine equation describes the correspondence of proton
calibrated attractors np with electron calibrated attractors ne.
Non considering the signature, only three pairs (np, ne) of in-
tegers are solutions to this equation: (3, 6), (4, 4), (6, 3).

1
np

+
1
ne

=
1
2
.

Figure 3 demonstrates this situation on the first layer of the
Fundamental Fractal (1). Both, the attractors of proton and
electron stability are represented at the first layer, so we can
see clearly that among the integer or half, only the attractors
±1/3, ±1/4 and ±1/6 are common. In these attractors, proton
stability is supported by electron stability and vice versa, so
we expect that they are preferred in real systems.

Fig. 3: The distribution of the attractors of proton (bottom) stability
in the range −1 < F < 1 of the attractors of electron (top) stability.
Natural logarithmic representation.

Figure 4 shows the distribution of the number of exoplanets
with orbital periods in the range 5 d < TO < 24 d that corre-
sponds with the range of logarithms 59.2 < ln (TO/2πτe) <
60.8 on the horizontal axis. According with table 1, τe is the
electron angular oscillation period. The histogram contains
data of 1430 exoplanets and shows clearly the maximum cor-
responding with the main attractor F 〈60〉. Other maxima cor-
respond with the attractors F 〈59; 2〉 and F 〈60; 2〉; even the
subattractors F 〈60;−4〉 and F 〈60; 4〉 can be distinguished.

The histogram evidences that the majority of the analyzed
1430 exoplanets [48] prefer orbital periods close to 10–11
days corresponding with the main attractor F 〈60〉, as well as
periods close to 6–7 days or close to 17–18 days correspond-
ing with the attractors F 〈59; 2〉 and F 〈60; 2〉. Because of the
logarithm 7+1/2 of the proton-to-electron ratio, the attractors

Fig. 4: The histogram shows the distribution of the number of ex-
oplanets with orbital periods in the range 5 d < TO < 24 d. The
logarithms OE2 = ln (TO/2πτe) are on the horizontal axis. Corre-
sponding with table 1, τe is the electron angular oscillation period.
Data of 1430 exoplanets taken from [48].

F 〈59; 2〉 and F 〈60; 2〉 of electron stability are actually the
main attractors F 〈67〉 and F 〈68〉 of proton stability.

Now we can also explain the origin of the Titius-Bode
law. The OE2 column in tab. 3 shows that the orbital pe-
riods of Ceres, Jupiter, Saturn and Uranus approximate the
sequence of the main attractors F = 〈65〉, 〈66〉, 〈67〉 and 〈68〉
of electron stability. The ratio of main attractors equals Eu-
ler’s number e = 2.71828 . . . Considering Kepler’s third law,
from this directly follows that the ratio of the semi-major axes
of Ceres, Jupiter, Saturn and Uranus approximates the cube
root of the square of Euler’s number e2/3 = 1.9477 . . . This is
why the Titius-Bode law approximates the exponential func-
tion 2n. However, not all orbital periods approximate main
attractors. The Earth-Venus orbital period ratio approximates
the square root of Euler’s number. Consequently, the ratio of
their semi-major axes approximates the cube root of Euler’s
number e1/3 = 1.3956 . . . The same is valid for Umbriel and
Ariel, the moons of Uranus. The Neptune-Uranus orbital pe-
riod ratio approximates e2/3. Consequently, the ratio of their
semi-major axes approximates e4/9 = 1.5596 . . .

The eigenvalues of F are transcendental, and their distri-
bution (1) is logarithmically fractal. This is why Titius-Bode-
like equations cannot deliver a general and complete model
of an orbital system.

Among the orbital and rotational periods, tab. 3 shows
that also the gravitational constants µ obey the Fundamental
Fractal (1) approximating main attractors and the preferred
subattractors as shown in fig. 3.

In accordance with [46], surface gravities g are given for
a distance from the center of the celestial body that coin-
cides with the radius of the solid or liquid surface, without
consideration of the centrifugal effects of rotation. For gas
giants such as Jupiter, Saturn, Uranus, and Neptune, where
the surfaces are deep in the atmosphere and the radius is not
known, the surface gravity is given at the 1 bar pressure level
in the atmosphere. In this way, any surface gravity is given
for an individual distance from the local center of gravitation.
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Earth’s surface gravity corresponds to the equatorial radius at
sea level 6378 km, and the surface gravity of Uranus corre-
sponds to its equatorial radius of 25559 km where the atmo-
spheric pressure equals 1 bar. Although the surface gravities
on Venus and Uranus are identical equal 8.87 m/s2, this does
not mean that they indicate comparable gravitational fields.
Therefore, we cannot use the surface gravity accelerations for
comparison, but only the gravitational constants µ.

Star µ, m3/s2 MP F MP - F

Trappist 1 1.1976 · 1019 40.99 〈41〉 -0.01

Proxima Cent 1.5725 · 1019 41.26 〈41; 4〉 0.01

Gliese 1061 1.6966 · 1019 41.34 〈41; 3〉 0.01

Barnard’s star 2.6154 · 1019 41.77 〈42;−4〉 0.02

Struve 2398 B 3.7765 · 1019 42.14 〈42; 6〉 -0.02

Gliese 876 4.2851 · 1019 42.27 〈42; 4〉 0.02

Lacaille 9352 6.4378 · 1019 42.67 〈43;−3〉 0.00

Tau Ceti 1.0414 · 1020 43.15 〈43; 6〉 -0.01

HD 69830 1.1402 · 1020 43.24 〈43; 4〉 -0.01

55 Cancri 1.2480 · 1020 43.33 〈43; 3〉 0.00

Upsilon Andro 1.7598 · 1020 43.68 〈44;−3〉 0.01

Table 2: The gravitational constants µ of some stars calculated from
data [48] of orbital periods and semi-major axes of their planets. MP
= ln (µ/λ3

pω
2
p). Corresponding with tab. 1, λp is the proton angular

wavelength and ωp is the proton angular frequency. Continued frac-
tions (1) of the Fundamental Fractal F are given in angle brackets.

Table 3 shows that the gravitational constants µ of Pluto, Nep-
tune, Jupiter, Mars and Venus approximate main attractors
F=〈n0〉 of electron stability. The gravitational constants of
the other planets and planetoids of the solar system approx-
imate the rational subattractors F=〈n0 ± 1/2〉, 〈n0 ± 1/3〉,
〈n0 ± 1/4〉 or 〈n0 ± 1/6〉. As well, the gravitational constants
of the large moons of Jupiter, Saturn, Uranus and Neptune
approximate main attractors of electron and proton stability
and the same rational subattractors. This is valid also for exo-
planetary systems. Table 2 shows the gravitational constants
µ of some near stars calculated from data [48] of the orbital
periods and semi-major axes of their planets.

Conclusion

Perhaps, the conventional paradigm of physical interaction
should be completed by the principle of avoiding those inter-
actions that potentially can destabilize a system.

Admittedly, the principle of minimum action is an essen-
tial part of theoretical physics at least since Pierre de Fer-
mat (1662) and Pierre Louis Moreau de Maupertuis (1741),

Joseph-Louis Lagrange (1788) and William Rowan Hamilton
(1834) applied in the Euler – Lagrange equations of motion.

The novelty of our solution we see in the purely numerical
approach that rediscovers Euler’s number, its integer powers
and roots as attractors of transcendental numbers. Approxi-
mating transcendental ratios of quantities defined by integer
and rational natural logarithms, complex dynamic systems
can avoid destabilizing resonance interactions between their
elements and gain lasting stability. As we have shown in this
paper, planetary systems make extensive use of this solution.

Finally, we can explain why Jupiter’s orbital period equals
4332.59 days: With this orbital period, Jupiter occupies the
main equipotential surface F=〈66〉 of the Fundamental Field
of transcendental attractors and in this way, Jupiter avoids
destabilizing resonance interactions with the orbital motions
of other planets and gains lasting stability of its own orbital
motion. In other words, there is a fractal scalar field of tran-
scendental temporal attractors corresponding with integer and
rational powers of Euler’s number. One of these attractors is
F=〈66〉, and it has materialized as a stable orbital period in
the solar system among the attractors F = 〈62〉, 〈63〉, 〈64〉,
〈65〉, 〈67〉, 〈68〉, 〈69〉 and their subattractors. Smaller attrac-
tors F = 〈58〉, 〈59〉, 〈60〉 and 〈61〉 and their subattractors
define stable orbital periods in moon systems and in the ma-
jority of the discovered so far exoplanetary systems.

Naturally, the Fundamental Field F of transcendental at-
tractors does not materialize in the scale of planetary systems
only. At subatomic scale, it defines the proton-to-electron
ratio and in this way, allows the formation of stable atoms
and complex matter. At planetary scale, now we can distin-
guish attractors of electron stability and attractors of proton
stability. While the attractors of electron stability define sta-
ble orbital periods, the attractors of proton stability define sta-
ble rotational periods. For instance, the attractor F=〈66〉 of
electron stability defines the orbital period of Jupiter, and the
same attractor F=〈66〉 of proton stability defines the rota-
tional period of Mars. In this way, the law behind the dis-
tribution of stable orbital and rotational periods is the same
Fundamental Field of transcendental attractors.

Interpreting gravity in terms of frequency, we did demon-
strate that the distribution of gravity in the solar system is
not accidental, but obeys the same Fundamental Field F . As
well, the gravitational constants µ of extrasolar systems obey
the logarithmically fractal metric (1) of F . This circumstance
let us suppose that even entire planetary systems prefer avoid-
ing destabilizing resonance interactions between them.
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Body TO, d OE1 F OE2 F TR, h RP1 F RP2 F µ, m3/s2 ME F

Eris 204199.00 71.69 〈72;−3〉 69.86 〈70;−6〉 349.44 69.66 〈70;−3〉 67.82 〈68;−6〉 1.10800 · 1012 17.28 〈17; 4〉

Pluto 90560.09 70.88 〈71;−6〉 69.04 〈69〉 153.29 68.84 〈69;−6〉 67.00 〈67〉 8.62000 · 1011 17.03 〈17〉

Neptune 60193.20 70.47 〈70; 2〉 68.64 〈69;−3〉 16.11 66.58 〈66; 2〉 64.75 〈65;−4〉 6.83653 · 1015 26.01 〈26〉

Uranus 30688.49 69.80 〈70;−6〉 67.96 〈68〉 17.24 66.65 〈67;−3〉 64.81 〈65;−6〉 5.79394 · 1015 25.84 〈26;−6〉

Saturn 10759.21 68.75 〈69;−4〉 66.91 〈67〉 10.56 66.16 〈66; 6〉 64.32 〈64; 3〉 3.79312 · 1016 27.72 〈28;−4〉

Jupiter 4332.60 67.84 〈68;−6〉 66.00 〈66〉 9.93 66.10 〈66; 6〉 64.26 〈64; 3〉 1.26687 · 1017 28.93 〈29〉

Ceres 1683.80 66.90 〈67;−6〉 65.06 〈65〉 9.00 66.00 〈66〉 64.16 〈64; 6〉 6.26274 · 1010 14.41 〈14; 2〉

Mars 686.97 66.00 〈66〉 64.16 〈64; 6〉 24.62 67.01 〈67〉 65.17 〈65; 6〉 4.28284 · 1013 20.93 〈21〉

Earth 365.25 65.37 〈65; 3〉 63.53 〈63; 2〉 24.00 66.98 〈67〉 65.15 〈65; 6〉 3.98600 · 1014 23.16 〈23; 6〉

Venus 224.70 64.88 〈65;−6〉 63.04 〈63〉 243.03 72.48 〈72; 2〉 70.64 〈71;−3〉 3.24859 · 1014 22.96 〈23〉

Mercury 87.97 63.94 〈64〉 62.11 〈62; 6〉 58.65 71.05 〈71〉 69.22 〈69; 6〉 2.20320 · 1013 20.27 〈20; 4〉

Moon 27.32 62.78 〈63;−6〉 60.94 〈61〉 sync 70.29 〈70; 3〉 68.45 〈68; 2〉 4.90487 · 1012 18.77 〈19;−4〉

Callisto 16.69 62.28 〈62; 3〉 60.44 〈60; 2〉 sync 69.80 〈70;−6〉 67.96 〈68〉 7.17929 · 1012 19.15 〈19; 6〉

Ganymede 7.15 61.44 〈61; 2〉 59.60 〈60;−3〉 sync 68.95 〈69〉 67.11 〈67; 6〉 9.88783 · 1012 19.47 〈19; 2〉

Europa 3.55 60.74 〈61;−4〉 58.90 〈59〉 sync 68.25 〈68; 4〉 66.41 〈66; 2〉 3.20274 · 1012 18.34 〈18; 3〉

Io 1.77 60.04 〈60〉 58.20 〈58; 6〉 sync 67.55 〈67; 2〉 65.72 〈66;−3〉 5.95992 · 1012 18.96 〈19〉

Iapetus 79.32 63.84 〈64;−6〉 62.00 〈62〉 sync 71.36 〈71; 3〉 69.52 〈69; 2〉 1.20500 · 1011 15.06 〈15〉

Titan 15.95 62.24 〈62; 4〉 60.40 〈60; 2〉 sync 69.75 〈70;−4〉 67.91 〈68〉 8.96273 · 1012 19.37 〈19; 3〉

Rhea 4.52 60.98 〈61〉 59.14 〈59; 6〉 sync 68.49 〈69; 2〉 66.65 〈67;−3〉 1.54000 · 1011 15.31 〈15; 3〉

Dione 2.74 60.47 〈60; 2〉 58.64 〈59;−3〉 sync 67.99 〈68〉 66.15 〈66; 6〉 7.10000 · 1010 14.53 〈14; 2〉

Tethys 1.89 60.10 〈60; 6〉 58.27 〈58; 3〉 sync 67.62 〈68;−3〉 65.78 〈66;−6〉 4.12000 · 1010 13.99 〈14〉

Enceladus 1.37 59.78 〈60;−6〉 57.94 〈58〉 sync 67.30 〈67; 3〉 65.46 〈65; 2〉 7.20000 · 109 12.24 〈12; 4〉

Mimas 0.94 59.41 〈59; 3〉 57.57 〈57; 2〉 sync 66.92 〈67〉 65.09 〈65〉 2.50000 · 109 11.18 〈11; 6〉

Oberon 13.46 62.07 〈62〉 60.23 〈60; 6〉 sync 69.58 〈69; 2〉 67.75 〈68;−4〉 1.93000 · 1011 15.53 〈15; 2〉

Titania 8.71 61.63 〈62;−3〉 59.79 〈60;−6〉 sync 69.15 〈69; 6〉 67.31 〈67; 3〉 2.20000 · 1011 15.66 〈16;−3〉

Umbriel 4.14 60.89 〈61;−6〉 59.05 〈59〉 sync 68.40 〈68; 3〉 66.57 〈66; 2〉 8.95000 · 1010 14.76 〈15;−4〉

Ariel 2.52 60.39 〈60; 3〉 58.55 〈58; 2〉 sync 67.91 〈68;−6〉 66.07 〈66〉 7.88000 · 1010 14.64 〈15;−3〉

Miranda 1.41 59.81 〈60;−6〉 57.98 〈58〉 sync 67.33 〈67; 3〉 65.49 〈65; 2〉 4.00000 · 109 11.65 〈12;−3〉

Triton 5.88 61.24 〈61; 4〉 59.40 〈59; 2〉 sync 68.75 〈69;−4〉 66.92 〈67〉 1.42689 · 1012 17.53 〈17; 2〉

Table 3: The sidereal orbital periods TO, rotational periods TR and gravitational constants µ of the planets, planetoids and large moons of
the solar system. OE1 = ln (TO/τe), OE2 = ln (TO/2πτe), RP1 = ln (TR/τp), RP2 = ln (TR/2πτp), ME = ln (µ/λ3

pω
2
p). Corresponding with

tab. 1, τe is the electron angular oscillation period, τp is the proton angular oscillation period, λe is the electron angular wavelength and ωe

is the electron angular frequency. The continued fractions (1) of the Fundamental Fractal F are given in angle brackets. Although some
data is shown with two decimals only, for calculating the logarithms, high precision data [46, 49–51] were used.
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The Role Played by Plasma Waves in Stabilizing Solar Nuclear Fusion
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Since the wave function of two-scattering protons has been used for that of diproton or
helium-2 in the conventional analysis with Fermi theory, the probability for a diproton
to form a deuteron via a β+-decay has been extremely under calculated. This implies
that the rareness of β+-decay in diprotons is not rare enough to inhibit the solar nuclear
fusion. To meet the observed rate of solar nuclear fusion, the core of the Sun must
involve another significant physical effect to inhibit solar nuclear fusion. This study
finds that plasma waves can play this role, because they significantly reduce the electric
permittivity of the core plasma and thus extremely raise the Coulomb barrier or shift
the Gamow peak to a higher energy of particles. It is shown that, if the frequency of
plasma waves that are globally generated in the core plasma of turbulences is about
1.28 times the plasma frequency, the Sun can have the actual fusion rate or shine on
at the currently observed luminosity. Therefore, in addition to the quantum tunneling
effect and rareness of β+-decay, plasma waves can also play an essential role in the solar
nuclear fusion and power emission. The result of this study may also give implications
to supernova explosion, missing solar neutrino, and plasma nuclear fusion in laboratory.

1 Introduction

The Sun is a giant natural fusion reactor [1]. It smashes about
3.6 × 1038 hydrogen nuclei or protons per second to produce
helium nuclei or α-particles, while releasing nuclear power
of 3.85×1026 W. This nuclear fusion process occurring in the
core of the Sun has been comprehensively investigated for
many decades based on the well-developed stellar nucleosyn-
thesis and quantum physics. It is well known that, in the dense
and hot core of the Sun with ∼1.5 keV (or ∼1.67×107 K) tem-
perature and Boltzmann-Maxwell’s distribution of the core’s
total 1.2 × 1056 protons, there should not be any proton able
to overcome the 820 keV (or 9.5 × 109 K) Coulomb barrier to
make the fusion reactions occur.

According to Gamow’s quantum tunneling probability [2]
however, the energy region where nuclear reactions are most
like ly to occur (i.e. the Gamow peak) is around 108 K. This
allows one part per million of the core’s total 1.2 × 1056 pro-
tons to penetrate the Coulomb barrier. With this probability
of barrier tunneling or penetration, the high ion-collision fre-
quency of 20 terahertz means that the core of the Sun fuses
all its protons within the order of only microseconds (i.e. a
rate of 1063 s−1, 25 orders of magnitude higher than the actual
reaction rate) and thus would instantaneously explode. It is
generally believed that the major reasons why the Sun does
not instantaneously blow up are (1) the difficulty of double
proton (also called diproton) formation (estimated to be low-
ered only by ∼10−6 according to the Gamow tunneling prob-
ability), (2) the rareness of β+-decay from diprotons (needed
to be lowered by ∼10−25 according to the Sun’s actual lumi-
nosity) and (3) the squeezing of the Sun’s strong gravity.

However, in the conventional analysis and calculation of
the Fermi theory of the β+-decay, the significant wave func-

tion of two-scattering protons was usually used for the in-
efficient wave function of the diproton outside the potential
energy well [3]. This is not physical and greatly weakens
the wave function of the diproton inside the potential energy
well, so that leads to the probability for a diproton to form a
deuteron via a β+-decay to be extremely under calculated [4].
In other words, the rareness of β+-decay in diprotons may not
be rare enough to inhibit the solar nuclear fusion or lower
the fusion rate by 25 orders of magnitude, in order to stop
the Sun’s instantaneous explosion and have the currently ob-
served luminosity. The quantum tunneling effect allows many
diprotons formed in the Sun’s core, but the probability for a
diproton to form a deuteron via a β+-decay may not be lower
than that for a diproton to separate back to two protons by 25
orders of magnitude. Observations have only given an upper
bound that a diproton (or helium-2 nucleus) gets β+-decay by
less than one per ten thousands, i.e. < 0.01% [5].

In this paper, we propose a new mechanism of inhibi-
tion that can significantly reduce the fusion reaction rate and
thus effectively prevent the Sun from an instantaneous explo-
sion. We suggest that the core of the Sun involves a signif-
icant physical effect or inhibitor called plasma oscillation or
wave, which significantly reduces the electric permittivity of
the core plasma. A significantly reduced electric permittivity
will greatly raise the Coulomb barrier as well as efficiently
lower the Gamow tunneling probability. These changes lead
to greatly shift the Gamow peak to the region of higher en-
ergies of particles. Quantitative study in this paper indicates
that if the frequency ω of plasma oscillations or waves that
are globally generated in the core plasma of turbulences is
about 1.28 times the plasma frequency ωp, the Sun can have
the actual fusion rate or shine on at the currently observed
luminosity.
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Therefore, in addition to the quantum tunneling effect,
the plasma oscillations may play also an essential role in the
Sun’s nuclear fusion and power emission. The quantum tun-
neling effect makes the fusion to occur, while the plasma os-
cillations in association with the weak β+-decay of diprotons
guarantees that the Sun will not explode. We also suggest that
a supernova explosion occurs when plasma oscillations in the
core of a star at the end of its life are significantly weakened
in intensity or changed in frequency, that causes the heavy ion
fusion to be significantly speeded up and the huge amount of
energies and neutrinos to be instantaneously emitted. The re-
sult of this study also gives important implications to plasma
nuclear fusion in laboratory and the solar neutrino missing
problem.

2 Coulomb barrier and solar nuclear power emission

The measurement of power emission indicates that the lumi-
nosity of the Sun at present is about 3.85× 1026 W, which can
be calculated from

L� = 4πR2σT 4, (1)

where R = 7 × 108 m is the radius of the Sun, σ = 5.67 ×
10−8 W/(m2K4) is the Stefan-Boltzmann constant, and T =

5778 K is the surface temperature of the Sun. At this lumi-
nosity, the Sun’s gravitational energy, determined by

U =
3GM2

5R
' 2.3 × 1041 J, (2)

can only let it shine about U/L� ∼ 19 million years, which
is the thermal or Kelvin-Helmholtz timescale determined by
K/L� and is much shorter than the actual Sun’s lifetime. Here
G = 6.67× 10−11 N m2/kg2 is the gravitational constant, M =

1.99× 1030 kg is the mass of the Sun, K is the internal energy
or the total kinetic energy of particles in the Sun, determined
by

K =
3
2

kBNTcore ' 4.1 × 1041 J, (3)

with kB = 1.38 × 10−23 the Boltzmann constant, N = M/mp

the total number of protons within the Sun, mp = 1.67 ×
10−27 kg the mass of the proton, and Tcore = 1.67 × 107 K
the temperature of the core of the Sun. It should be noted
here that the hot core of the Sun is about 1/3 of its diameter
or 1/10 of its mass, which means that the internal energy of
the Sun should be several times less than that given by (3).

The total number of protons in the core of the Sun is given
by

N0 =
1

10
M
mp
∼ 1.2 × 1056, (4)

or number density to be n0 ∼ 2.2× 1030 m−3. It is the number
or number density of protons available for fusion and the Sun
should be mainly powered by nuclear fusion. According to
nuclear physics, every time four protons are fused to form one

helium, the reactions produce two neutrinos, two positrons,
and two photons, and release in total a net energy of E4p ∼

27 MeV from the deficit of ∼3% masses of four protons. The
energy from the fusion of all protons in the core of the Sun,
calculated by

E =
1

10
M

4mp
E4p ' 1.3 × 1044 J, (5)

can run the Sun at the present rate of emission for about 10
billion years. On the other hand, to have the present energy
emitting rate, the Sun needs to fuse its protons at a rate of
about

dN0

dt
=

4LS un

E4p
' 3.6 × 1038 s−1 (6)

protons in one second.
In order to fuse protons, the extremely high Coulomb bar-

rier between them, determined by

UC =
q2

p

4πε0dp
' 8.2 × 102 keV or 9.5 × 109 K, (7)

must be overcome [6]. Here qp = 1.6 × 10−19 C is the pro-
ton’s electric charge (equal to the fundamental unit of charge
e), ε0 = 8.85×10−12 C2/(m2N) is the electric permittivity con-
stant in free space, and dp = 1.76×10−15 m is the diameter of
a proton. Since the average kinetic energy of protons in the
Sun’s core with temperature 1.67×107 K, K = (3/2)kBTcore =

2.16 keV, is about 383 times lower than the Coulomb barrier
between protons, and it must be very hard to have protons to
be able to climb over the Coulomb barrier. According to the
Boltzmann-Maxwellian distribution function [7, 8], we have
the number of protons with velocity in the range v - v+dv to
be given by

dN = N0

(
m

2πkBT

)3/2

4πv2 exp
(
−

mv2

2kBT

)
dv, (8)

or with energy in the range of E - E+dE to be given by,

dN = N0
2π

(πkBT )3/2

√
E exp

(
−

E
kBT

)
dE. (9)

Here N0 is the total number of all particles. Then, the number
of protons with energy above the Coulomb barrier UC can
be found by integrating the function (9) with respect to the
energy (E) in the range from UC to infinity as

NC = N0

∫ ∞

UC

2π
(πkBT )3/2

√
E exp

(
−

E
kBT

)
dE

=
2N0
√
π

√
Uc

kBT
exp

(
−

Uc

kBT

)
+ N0 erfc

√ Uc

kBT

 . (10)

Considering the ion collision frequency in the hot core of the
Sun to be calculated by

νi = 4.8 × 10−8 Z4
i µ
−1/2ni ln Λ T−3/2

i s−1, (11)

94 Tianxi Zhang. The Role Played by Plasma Waves in Stabilizing Solar Nuclear Fusion



Issue 1 (April) PROGRESS IN PHYSICS Volume 17 (2021)

Fig. 1: The reaction rate of protons is plotted as a function of the
Sun’s core temperature in the case of without considering the quan-
tum tunneling effect. The result indicates that no nuclear fusion can
actually occur.

where Zi is the ion charge state, µ is the ion-proton mass ra-
tio, ni is the number of ions per cubic centimeter, ln Λ is the
Coulomb logarithm with a convenient choice to be 10, and Ti

is the ion temperature in units of eV. For protons in the Sun’s
core, the collision frequency can be νp ∼ 2×1013 Hz. The re-
action rate of protons that can climb over the Coulomb barrier
can then be estimated by

dNC

dt
= Nc νp s−1. (12)

Fig. 1 plots this reaction rate of protons as a function of the
core temperature. It is seen that the reaction rate of the pro-
tons is about zero (many orders of magnitude less than 10−10

s−1), so that no nuclear fusion occurs in the core of the Sun if
the core temperature is equal to the conventional value Tcore =

1.67×107 K. For the reaction rate of protons to be the actually
observed rate of 3.6×1038 protons per second, the Sun’s core
temperature must be about 1.3 × 108 K or above. Therefore
from classical physics, solar nuclear fusion will hardly occur.

3 Quantum tunneling effect on solar nuclear reaction

Quantum tunneling effect plays an essential role in solar nu-
clear fusion. According to the Gamow tunneling probabil-
ity [2], given by

Pg = exp

−
√

Eg

E

 , (13)

one can determine the number of protons with energy be-
tween E and E+dE that can tunnel through or penetrate the

Fig. 2: Energy spectrum of protons that can penetrate the Coulomb
barrier for fusion. The number of tunneling protons per unit energy
in the core of the Sun is plotted as a function of the energy. The
maximum is usually called the Gamow peak, which is located near
the energy of about 7 keV.

Coulomb barrier as

dNg = PgdN

= N0
2π

(πkBT )3/2

√
E exp

− E
kBT

−

√
Eg

E

 dE,
(14)

where Eg is the Gamow energy determined by

Eg = 2mrc2(παZaZb)2. (15)

Here mr is the reduced mass of the nuclei, c is the speed of
light, Za and Zb are the ionization states of the nuclei, and
α = e2/(2ε0hc) is the fine-structure constant.

The distribution (14) for the number of tunneling pro-
tons with respect to the energy exhibits a maximum called
the Gamow peak that has energy to be significant (about 120
times) less than the Coulomb barrier, so that the quantum tun-
neling effect greatly enhances the reaction rate in the core of
the Sun. To see in more details the increase of the tunneling
probability, we plot in Fig. 2 the Gamow peak for the Sun’s
core with temperature 1.67×107 K. The energy of the peak is
around 7 keV and the height of the peak is around 3.7 × 1050

protons per keV.
Both the height and energy of the Gamow peak depend

on the temperature of the Sun’s core. Evaluating the extreme
value of (14), we can obtain the energy of Gamow peak as
a function of the core’s temperature and other parameters or
constants as the following implicit equation

1 −
2Ep

kBT
+

√
Eg

Ep
= 0. (16)
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Fig. 3: The energy of the Gamow peak is plotted as a function of the
temperature of the core.

Fig. 4: The number of protons per unit energy is plotted as a function
of the energy of the Gamow peak, which increases with the temper-
ature core.

Substituting the energy of the Gamow peak (Ep) back into
(14), we can determine the height of the Gamow peak as a
function of the core’s temperature and other parameters or
constants. Fig. 3 plots the energy of the Gamow peak as a
function of the temperature of the core. It is seen that the en-
ergy of the Gamow peak increases as the temperature of the
core increases. The Gamow peak is at about 7 keV if the core
temperature is 1.67× 107 K and increases to 10 keV when the
core temperature increases to 3× 107 K. Fig. 4 plots the num-
ber of tunneling protons per unit energy (i.e. per keV) as a

function of the energy of the Gamow peak, which increases
as the temperature of the core increases as shown in Fig. 3.
This further shows that the number of tunneling protons per
unit energy reaches a maximum (∼6 × 1052 keV−1) when the
energy of the Gamow peak is about 120 keV (or the tempera-
ture of the core is about 0.9 billion Kelvins). In the Sun’s core
temperature of 1.67 × 107 K, the energy of the Gamow peak
is only 7 keV and the maximum number of tunneling protons
is about 3.6 × 1050 keV−1. Based on this peak of the maxi-
mum number of tunneling nuclei, we can find the maximum
reaction rate as a function of the energy of the Gamow peak
or the temperature of the core. This result may be important
to optimize plasma fusion in the laboratory.

Then, the number of protons that can penetrate or tunnel
through the Coulomb barrier can be found by integrating the
function (14) with respect to the energy (E) in the range from
zero to infinity as

Ng =

∫ ∞

0
PgdN

= lim
E2→∞

∫ E2

0

2π
√

E
(πkBT )3/2 exp

− E
kBT

−

√
Eg

E

 dE.
(17)

Multiplying Ng with the collision frequency, we obtain the
reaction rate of nuclear fusion with the quantum tunneling
effect as

dNg

dt
= Ngνp. (18)

To see the reaction rate quantitatively, we plot in Fig. 5 the
reaction rate (18) as a function of the upper energy of the in-
tegration (E2), which should approach infinity (or a value that
is big enough, e.g. 30 keV). For the core of the Sun, the re-
action rate saturates at ∼2 × 1063 protons per second when
the upper energy of the integration is E2 & 30 keV. This re-
action rate is an order of magnitude 25 times higher than the
actual reaction rate. Without a significant inhibitor to greatly
slow down the reactions, the Sun should have instantaneously
exploded.

4 Plasma oscillation effect on solar nuclear fusion

Plasma oscillations or waves can be considered as a great in-
hibitor for the solar nuclear reaction, because the dielectric
constant of plasma with plasma oscillations or waves is given
by [9]

εr = 1 −
ω2

p

ω2 , (19)

where ωp is the plasma frequency defined by

ωp =

√
nee2

ε0me
, (20)

and ω is the frequency of plasma waves generated in the core
by the oscillations of free electrons. Eq. (19) indicates that
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Fig. 5: The reaction rate of protons in the core of the Sun. The
number of adequate collisions per second between protons is plotted
as a function of the upper energy of the integration.

plasma oscillations or waves can make the dielectric constant
to be less than unity and hence raises the Coulomb barrier
and increases Gamow energy or reduces quantum tunneling
probability. Increases of both the Coulomb barrier and the
Gamow energy can greatly reduce the fusion reaction rate.

There are several types of plasma waves that can be initi-
ated by electron oscillations [10] such as electrostatic Lang-
muir waves [11] with the dispersion relation given by

ω2 = ω2
p + 3k2v2

Te, (21)

where vTe is the thermal velocity of electrons and k is the
wavenumber. Fig. 6 shows the dispersion relation of theLang-
muir waves by plotting the wave frequency as a function of
the wavenumber. It is seen that the frequency is about 1.28
times the plasma frequency when the wavenumber is about
k ∼ 109.4 ∼ 2.5× 109 m−1. It is about half of the wavenumber
of blackbody radiation at the peak, kbb = Tcore/(2.9× 10−3) ∼
5.8×109 m−1 ∼ 2.3k and also half of the Debye wavenumber,
kd = [nee2/(ε0kBTcore)]1/2 ∼ 5.0 × 109 m−3 ∼ 2k. In the core
of the Sun, we have ωp ∼ 3.6 × 1018 Hz, i.e. in the X-ray fre-
quency range.

To see the plasma oscillation effect on the solar nuclear
fusion, we plot in Fig. 7 the reaction rate (18) as a function
of the upper energy of the integration in three cases with the
frequencies of plasma oscillations or waves given by ω/ωp =

1.25, 1.28, 1.32, respectively. For the core of the Sun with
ω/ωp ∼ 1.28, the reaction rate saturates at ∼ 3.6 × 1038 pro-
tons per second when the upper energy of the integration is
E2 & 80 keV. This reaction rate is in magnitude about the or-
der of the actual reaction rate. Slightly varying the frequency,
we have a reaction rate quite different. In general, the higher

Fig. 6: The dispersion relation of the plasma Langmuir waves. The
frequency of the waves is plotted as a function of the wavenumber. It
is seen when the wavenumber is about half of the Debye wavenum-
ber or wavelength is about the diameter or twice the radius of the
Debye sphere.

the frequency of the plasma waves, the weaker the effect of
plasma oscillations on the nuclear fusion is. It is an extremely
efficient inhibitor of the solar nuclear fusion.

5 Discussions and conclusions

At the end of its life, a star runs out proton-proton fusion and
thus varies the plasma oscillations, which causes this efficient
inhibitor to be ineffective. With this reason, we suggest that
supernova explosions may occur when plasma oscillations in
the core of a star at the end of its life are significantly weak-
ened in intensity or changed in frequency that cause the heavy
ion fusion to be significantly speeded up and out of control
and the huge amount of energies and neutrinos to be instan-
taneously emitted. This study of the role of plasma oscilla-
tion played in solar nuclear fusion provides us an alternative
mechanism for supernova explosions, in addition to the pre-
viously proposed and developed models of supernova explo-
sions driven by magnetohydrodynamtic (MHD) rotation [12],
acoustic waves [13], neutrinos [14], and gravitational field
shielding [15].

The plasma oscillations or waves with frequency about
1.28 times the plasma frequency can reduce the electric per-
mittivity or the dielectric constant by a factor of one third in
comparison with free space. The effective refractive index of
plasma is given by n =

√
εr ∼ 0.6. Postulating the mass en-

ergy conversion in plasma by E = mc2/n2 leads to the deficit
of 3% proton masses in fusion that can produce three times
the nuclear energy. Then, having the same luminosity, the
Sun only needs to fuse one third of the early suggested num-
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Fig. 7: The reaction rate of protons in the core of the Sun. The
number of adequate collisions per second between protons is plotted
as a function of the upper energy of the integration. Here the plasma
oscillation effect on the reaction rate is included.

ber of protons, i.e. ∼ 1.2 × 1038 protons per second. This
result provides us an alternative of quantitatively explaining
the missing two thirds of the solar neutrinos [16]. The Sun’s
lifetime is thus tripled, to be over thirty billion years.

Plasma oscillations with appropriate frequency of distur-
bances may also affect the nuclear reactions of plasma fusion
in the laboratory. Above the plasma frequency (ω > ωp),
plasma oscillations would reduce the reaction rates and hence
make the fusion hard to occur. Below the plasma frequency
(ω < ωp), however, plasma oscillations can lead to a negative
dielectric constant, which switches the Coulomb interaction
between nuclei to be an attractive force from a repulsive one.
In this case, the Coulomb barrier disappears and nuclei fuse
freely. Therefore, the result of this study also gives an impor-
tant implication to plasma nuclear fusion in the laboratory.
Regarding plasma fusion in the laboratory, the author has re-
cently developed two new mechanisms: (1) plasma fusion at
some keV with extremely heated 3He ions or tritons [17–19];
(2) plasma fusion with Coulomb barrier lowered by scalar
field [20].

As a consequence of this study, except for the conven-
tional inhibitor of unlikely β+-decay from diprotons, we find
that plasma oscillations or waves can be an efficient inhibitor
for the solar nuclear fusion, as it significantly reduces the
electric permittivity of the core plasma and thus extremely
raises the Coulomb barrier or shifts the Gamow peak to a
higher energy of particles. When the frequency of plasma
oscillations or Langmuir waves that are globally generated in
the core plasma of turbulences is about 1.28 times the plasma
frequency, the Sun can have the actual fusion rate or shine on
at the currently observed luminosity. Therefore, in addition to
the quantum tunneling effect, the weak β+-decay, the plasma

oscillations play also an essential role in the Sun’s nuclear
fusion and power emission.
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The Antarctic Circumpolar Current (ACC) is the largest ocean current, one that travels
west to east at a velocity of about 2 m/s greater than the Earth’s rotation velocity at lati-
tudes from 40ºS to about 60ºS. Simple models of the winds driving this current consider
a linear relationship between the wind strength and the water transport. However, the
behavior is much more complex. The ultimate energy source driving the winds and this
current remains to be identified. I investigate whether a gravitational force dictated by
Quantum Celestial Dynamics (QCM) is the true energy source that maintains the ACC.

1 Introduction

The Antarctic Circumpolar Current (ACC), the largest ocean
current on Earth, flows west to east at about 2 m/s faster than
the Earth’s rotation at its latitude of about 40ºS to about 60ºS
near the Antarctic continent [1, 2], as shown in Figure 1. Its
mean transport is estimated to be about 134 sverdrup, i.e.,
134 ×106 m3/s. There are two different atmospheric winds to
consider: the winds along the ACC and the winds along the
contours of Antarctica, with variations in both able to cause
robust changes in ACC transport. They are considered to be
the major driving force of this enormous water current.

But the ACC current extends to the ocean floor, with a
strong current velocity of about 2 cm/s at a depth of 3000
meters [3,4]. So this approach becomes quite complicated by
involving thermodynamic mixing vertically and horizontally,
various wind strength and direction changes, Coriolis force
effects, eddies, etc.

Fig. 1: Antarctic Circumpolar Current moving west to east faster
than the Earth’s rotation, showing its deviations from a circular path
with many latitude variations.

Ultimately, one might expect to identify a powerful and
consistent energy source that would be capable of forcing
such a large water transport at all depths as well as help drive
the winds in the atmosphere.

Herein I apply Quantum Celestial Mechanics (QCM) to
the binary system of the rotating Earth and the orbiting Moon,
both objects providing the total system vector angular mo-
mentum required by QCM [5] to determine its gravitational
stationary energy states exhibiting the quantization of angular
momentum per unit mass. I can use the familiar general rel-
ativistic Schwarzschild metric because the QCM equilibrium
radii req are much larger than the 9 millimeter Schwarzschild
radius rg of the Earth. These QCM states at specific equilib-
rium radii in the plane of the Equator are assumed to define
rotational cylinders co-axial to the Earth’s rotation axis that
intersect the Earth’s surface. In particular, I am interested in
determing whether the QCM angular momentum quantiza-
tion per unit mass approach can be the source of the driving
force responsible for the Antarctic Circumpolar Current.

2 QCM brief history review

In 2003 Howard G. Preston and I introduced [5] Quantum
Celestial Mechanics (QCM) to explain the spacings of plane-
tary orbits in the Solar System and in all known exoplanetary
systems. In the Schwarzschild metric, the quantization of the
total angular momentum per unit mass in a gravitationally
bound system constrains the possible orbital radii to specific
allowed values determined by quantization integers.

At that time, we were not successful in finding a sys-
tem that could be a definitive test of QCM. Unfortunately,
there existed no gravitationally bound system with three or
more celestial objects for which the angular momentum was
known to within 10%, not for the Solar System nor for the
Jovian planets and their satellites. Therefore, we proposed
several laboratory experiments to test for a repulsive gravita-
tional QCM force, including the response of two pendulums
in a microwave vacuum chamber and of the response of one
LIGO interferometer to the slow one rotation per hour spin
of a 10 kg mass several meters distant. Neither tests were
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approved.
However, the 2015 New Horizons flyby of Pluto and its 5

moons did provide the data [6] for the definitive test of QCM,
with the predicted QCM orbital constraint relation verified to
within 2.4%.

The QCM gravitational wave equation derived from the
general relativistic Hamilton-Jacobi equation is

gαβ
∂2 Ψ

∂xα∂xβ
+

Ψ

H
= 0 (1)

in which the scalar Ψ = exp[iS ′/H], for S’= S/µic, with S the
classical action, µi the mass of the particle acted upon, and
c the speed of light in vacuum. The system scaling length
is defined as H = LT /MT c, with LT the total vector angular
momentum for the system of total mass MT .

This QCM gravitational wave equation is not quantum
gravity. However, there is a relationship to the Schrödinger
equation in quantum mechanics that was derived from the
normal Hamilton-Jacobi equation using the transformation
Ψ = exp[iS/h], with the classical action S and the universal
Planck’s constant h. Our H is not a universal constant.

The inherent generality and power of this gravitational
wave equation arises from its dependence upon only two im-
portant physical parameters that characterize the gravitation-
ally bound system: the total mass MT and the total vector
angular momentum LT , both quantities defining H. In plane-
tary systems, for example, the larger the value of H, the larger
the spacings will be between the allowed QCM orbital equi-
librium radii.

Successful applications of QCM have included the pre-
diction of a Solar System total angular momentum of 1.86 ×
1045 kg-m2/s, most of which is contributed by the Oort Cloud
at about 40,000 AU, a value about 50 times the listed angular
momentum of the Sun plus the 8 planets [7]. Compared to all
the known exoplanetary systems, our Solar System is unique
because no other system exhibits such large planetary spac-
ings that require this large total system angular momentum
value.

Successful applications to galaxies and clusters of galax-
ies describe how QCM can fit their almost constant rotational
velocities without invoking dark matter. Also, QCM was
shown to be able to derive the MOND relation, which fits
the galaxy rotational data extremely well and is considered a
viable competitor to dark matter approaches [8].

A new interpretation [9] of the redshifts of light from dis-
tance sources in the Universe was introduced by applying
the interior metric in a static Universe, thereby revealing a
possible negative QCM gravitational potential that becomes
more negative non-linearly from the observer, meaning that
the light source is in a deeper negative gravitational poten-
tial for all observers. As such, the clocks at the light source
tick slower than at the observer and the observed redshifts are
purely gravitational redshifts. No dark energy is required to

agree with the measured SNe 1a redshifts that have been in-
terpreted as a recently accelerating Universe, and the Hubble
value becomes distance dependent.

3 QCM Schwarzschild metric radial equation

Applying the general relativistic Schwarzschild metric to the
QCM wave equation for radius values beyond rg, dropping
very small terms, and then evaluating the angular equations
in spherical polar coordinates, leaves the radial r equation [5]

d2Ψ

dr2 +
2
r

dΨ

dr
+

[
E
µ

+
rg c2

2r
−
`(` + 1) H2c2

2r2

]
Ψ ' 0, (2)

with ` the angular momentum integer from the θ and φ coor-
dinates.

From the energy expression in the square bracket, the ef-
fective potential

Ve f f = −
rg c2

2r
+
`(` + 1) H2c2

2r2 , (3)

and the equilibrium radius for the QCM state ` is

req = `(` + 1)
2H2

rg
. (4)

If one decides to use the Schwarzschild metric in cylindrical
coordinates instead, then the product `(`+1) usually becomes
replaced by m2, with m the integer for the φ direction quanti-
zation.

I will take this req to be at the plane of the Equator for
defining a cylinder co-axial with the Earth’s rotation axis that
extends in both directions to intersect the Earth’s surface in
North and South latitudes. Thus, by knowing the H and rg
values to calculate req, one can predict the equilibrium radii
of all the QCM states.

4 Results

4.1 Earth spin only

The total vector angular momentum of the Earth-Moon sys-
tem is required by QCM. However, a preliminary simple cal-
culation that considers just the rotation of the Earth about its
axis is instructive.

The pertinent physical parameters of the Earth-Moon sys-
tem are listed in Table 1, including the Earth’s moment of
inertia factor α = 0.827 and the average angle factor β =

Cos(23.4º) between the Earth’s equatorial plane and the plane
of the Moon’s orbit. If only the Earth’s spin angular momen-
tum is considered, H = 3.26 meters, so

req = `(` + 1) 2.36 × 103 m. (5)

Beginning with the ` = 1 state, all the req values will be
too small for any important relationship to the ACC around
Antarctica.
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Table 1: Earth–Moon QCM parameters.
Parameter Spin only Earth–Moon

Mass (1024 kg) 5.972 6.045
Radius (106 m) 6.37 385.0
Period (106 s) 0.08614 2.3605
α 0.827 —
β — 0.918
LT (1033 kg-m2/s) 5.847 32.5
H (m) 3.26 17.94

4.2 Earth–Moon total angular momentun

The QCM wave equation requires the total vector angular
momentum of the gravitationally bound system in its appli-
cations. The orbital vector angular momentum value for the
Moon is the much larger contributor in the Earth–Moon sys-
tem but varies considerably, repeating every 18.6 years, be-
cause the angle between the Moon’s orbital plane and the
Earth’s equatorial plane reaches a maximum difference angle
of 28º36’ and a minimum of 18º20’.

Without accounting for this variation in the difference an-
gle, the Moon’s orbital motion would contribute about 2.91 ×
1034 kg-m2/s. Assuming an average difference angle of about
23.4º with repect to the Earth’s equatorial plane, with cosine
23.4º = 0.918, the Moon’s average vector orbital angular mo-
mentum contribution is about 2.67 × 1034 kg-m2/s.

Therefore, the Earth-Moon H = 17.94 meters and

req = `(` + 1) 71.52 × 103 m. (6)

The req calculated values and their surface intersection lati-
tudes for ` = 1 to 9 are listed in Table 2.

The two QCM equilibrium radii req for ` = 6 and ` = 7
intersect the surface at North and South latitudes of 61.9º and
51.0º, but only their South latitudes have a path that allows
water to transport completely around the surface of the Earth

Table 2: Earth–Moon QCM equilibrium states.
` req (×106 m) Latitude

1 0.143 88.7º
2 0.429 86.1º
3 0.858 82.3º
4 1.430 77.0º
5 2.146 70.3º
6 3.004 61.9º
7 4.005 51.0º
8 5.149 36.1º
9 6.437 —

just north of Antarctica .
Note that the ` = 1 to 4 states have equilibrium radii that

may be applicable in the Arctic Ocean at the North Pole. The
remainder intersect land masses on the surface. All these
QCM rotating cylinders could be creating mass currents un-
derneath the crust in the mantle and within interior parts of the
Earth, even supporting the generation of the magnetic field
and the recent magnetic north pole’s rapid movement past the
rotational North Pole toward Russia.

Qualitative radial probability distributions for the QCM
cylinders that could be affecting the ACC are shown in Figure
2. The verical line at 6.37 × 106 m, is the approximate Earth
radius. Their wide radial distributions within the Earth adds
to the complexity of interpreting their actions.

As determined below, all displacements from the equilib-
rium radius will experience a QCM driving force back toward
req, here interpreted as the distance from the Earth’s rotation
axis for simplified discussion purposes only. This radial force
keeps the ACC roughly localized in the r coordinate, although
the qualitative probability distributions shown in Figure 2 re-
veal a large spread in the radial direction underneath the sur-
face. Moreover, displacements in latitude along the surface
are also displacements in the r coordinate, resulting in a com-
plex dynamics to consider in any detailed anaysis.

Fig. 2: Representation of the probability distributions for the ` = 6,
7, 8, 9, QCM states with the Earth radius line at 6.37 × 106 m.

A fluid dynamics computer simulation would be needed
to better understand the actual behavior of the ACC when
QCM forces, winds, Coriolis effects, water density, and water
viscosity are accounted for. The atmosphere above the ocean
water would also be subject to the QCM forces in both the r
direction and the φ direction. A rough estimate of the dynam-
ics is considered below.

4.3 Estimates of QCM forces

In the following simplified analysis of the Earth–Moon sys-
tem, winds and Coriolis forces are ignored. In the φ-direction,
the QCM angular momentum per unit mass L/µ for a free par-
ticle at the equilibrium radius req is given by the QCM con-
straint,
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L
µ

= m c H, (7)

with |m| = ` at the Equator, assuming a co-axial cylinder.
Thus, substituting L = µ vφ r for the angular momentum pro-
duces the φ velocity

vφ =
mcH

r
. (8)

QCM predicts for the m = 6 state a velocity vφ ∼ 1.1 × 104

m/s, and at the m = 7 state a vφ ∼ 1.26 × 104 m/s, values which
can be compared to the actual average ACC velocity of about
212 m/s with respect to the stars. A large reduction in these
predicted φ-velocities would be required of viscosity effects
in the water and impedance effects of the land interruption at
the ocean bottom and at the edges of the continents.

The torque τ required to keep the volume flow V ∼ 4 ×
1026 m3/s of ACC moving at approximately 2 m/s faster than
the Earth’s rotational veleocity can be estimated, using the
viscosity η = 1.6 cP for water at about 2ºC, to be

τ = 2πηV ≈ 1014 Nm, (9)

which translates to a force of about 10−12 N to keep a kilo-
gram of water moving at 2 m/s faster than the Earth’s veloc-
ity.

Depending upon just where vertically and horizontally
one calculates the driving torque pushing the water, QCM
force values up to only about 10−9 N are estimated to be re-
quired. Any vertical water movement at the ACC latitude
introduces displacement components in both the radial direc-
tion from the rotation axis and in the latitudinal direction. For
simplicity, any latitudinal direction movement is assumed to
be included within the r direction movement for the spherical
geometry of the Earth’s surface.

A small displacement from req in the radial direction re-
sults in an acceleration, calculated by taking the negative gra-
dient of Ve f f , to get

ar = −
rgc2

2r2 +
m2H2c2

r3 . (10)

So, if the water is at r > req or at r < req, this QCM accelera-
tion tries to move the water back to req.

Water temperature differences are important. The surface
water may be at a different temperature than the water below,
so their density differences produce vertical mixing. There-
fore, any water at the QCM equilibrium radius may move to
a different radius value, with the radial velocity vr resulting in
a force in the φ direction. From Eq. 8, the φ acceleration

aφ = −
mcH

r2 vr. (11)

Using the m = 6 and m = 7 parameters at the ACC, the ex-
pression becomes approximately

aφ = −0.003 vr. (12)

So both the sinking water and the rising water will experience
a φ direction acceleration due to the QCM angular momentum
per unit mass constraint, the accelerations depending upon the
radial velocity directions and magnitudes.

These QCM forces and accelerations, when considered
along with Coriolis forces and other influences, could be sim-
ulated on computer to determine their relative importance to
the transport of the ACC.

Therefore, the estimated results of these QCM derivations
suggest force and acceleration values strong enough to keep
the ACC transport moving around the Antarctic continent,
meaning that the ACC may be in a gravitational energy state
dictated by the QCM quantization of angular momentum per
unit mass constraint.

5 Conclusion

I have applied the QCM gravitational wave equation to the
rotation of the Earth by utilizing both the total vector angular
momentum of the Earth’s spin plus the larger value of the av-
erage angular momentum of the Moon in orbit. The QCM `
= 6 state at req = 3.0 × 106 m intersects the Earth’s surface at
61.9ºS latitude, and the ` = 7 state at req = 4.0 × 106 m inter-
sects the Earth’s surface at 51.0ºS latitude. Both QCM cylin-
ders intersect the surface in the wide latitude region where the
ACC flows faster than the Earth’s rotation velocity by about
2 m/s.

The enormous QCM predicted velocity of about 1.1× 104

m/s with respect to the stars is much larger than the actual
ACC velocity of about 212 m/s. Viscosity effects on the water
transport at all depths would need to be a significant opposing
force to be able to reduce this QCM velocity to its actual ve-
locity. Rough estimates of the pertinent forces suggest values
on the order of 10−12 N to 10−9 N per kilogram are required.

Temperature differences produce mixing, which moves
water away from the equilibrium radius measured from the
rotation axis, resulting in an acceleration in both the r direc-
tion and the φ direction. The QCM forces combined with the
Coriolis force and other effects make for a complex transport
of the ACC. However, a computer simulation that includes the
QCM force driving the ACC would be necessary in order to
evaluate the atmosphere and ocean behaviors in more detail.

Therefore, the QCM wave equation applied in the familiar
Schwarzschild metric suggests that the true energy source for
the ACC could be gravitational.
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Stellar Evolution of High Mass-Loss Stars
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In this paper, we investigate the 37 strongest QSO emission lines of stars of type Q in
the catalog of Hewitt & Burbidge [22], as determined by Varshni et al [21]. We identify
the candidate lines from atomic spectra lines data and determine the estimated Te range
down to the 50% ionic element density for the identified candidate emission lines. This
information assists in the classification of Q stars from the 37 QSO dominant emission
lines. We use the Hertzsprung-Russell diagram to analyze and determine the role of
mass loss in the evolution of stars. We review the nucleosynthesis process that leads
from massive O stars to WN and then WC Wolf-Rayet stars as a result of mass loss, and
then consider the nucleosynthesis of oxygen in massive stars, showing that 16O oxygen
has a significant presence in massive stars beyond the WC stage, until the generation of
28Si, where it disappears. This leads us to postulate more than one population of stars of
type Q. One group identified by Varshni [27] with O VI and He II emission lines in their
spectra implying much higher temperatures and positioning those QSO stars above the
WR region in the HRD. The other group with emission lines dominated by temperatures
in the O II and O III range, indicating a lower temperature range of QSO stars with a
significant number of ionized oxygen lines and some Si emission lines, in addition to
the nitrogen WN and carbon WC lines. We postulate that these QSO spectra correspond
to unrecognized Wolf-Rayet stars, in particular WO stars and WSi pre-supernova stars,
extending into lower temperatures. In that scenario, Q stars would be the end-state of
the Wolf-Rayet evolution process, prior to moving to the supernova state.

1 Introduction

In a recent paper [1], we reviewed the physical process of
laser action that is occurring in the stellar atmospheres of
stars of type W (Wolf-Rayet) and stars of type Q (QSOs),
due to the rapid adiabatic expansion of the stellar atmosphere
of these stars, resulting in population inversions in the ionic
energy levels due to free electron-ion recombination in the
cooling plasma. Laser action in non-LTE stellar atmospheres
was first proposed by Menzel in [2] and plasma lasers by
Gudzenko in [3]. This results in the extremely strong broad
emission lines observed in the spectra of these stars.

Significant work has been performed over the last forty
years on the analysis of the emission line spectra of WR stars
to understand their classification and evolution [4–15] and is
still an ongoing area of research. Previously [1], we noted
that a similar effort will be required to understand the classi-
fication and evolution of stars of type Q, as has been achieved
for Wolf-Rayet stars. In this paper, we take an initial stab at
this problem.

In addition, we examine the stellar evolution of highmass-
loss stars, characterized by WR and QSO stars, and refine
our proposal to enhance the Hertzsprung-Russell Diagram
(HRD) by including stars of type W and stars of type Q in
the HRD [1]. This allows us to postulate that QSO stars can
be identified as unrecognized Wolf-Rayet stars, in particular
WO stars and WSi pre-supernova stars, to position them on
the HRD, and provide a better understanding of the evolu-
tion of high mass-loss stars as displayed in the Hertzsprung-
Russell Diagram.

2 Spectra of stars of type W

The emission line spectra of Wolf-Rayet stars are dominated
by lines of helium He, carbon C, nitrogen N and oxygen O.
The spectra fall into two broad classes: WN stars, which have
prominent lines of nitrogen N and helium He ions, with a very
strong He II Pickering series (n = 4→ n′), and essentially no
lines of carbon C; and WC stars, where the lines of carbon C
and oxygen O are prominent along with the helium He ions,
while those of nitrogen N seem to be practically absent [19,
p. 485]. An additional subtype WO with strong O VI lines has
also recently been added as a separate subtype. The spectra
are characterized by the dominance of emission lines, notable
for the almost total absence of hydrogen H lines [4].

The number of WR stars in our galaxy is small: the 2001
VIIth catalog of galactic WR stars gave the number at 227
stars, comprised of 127 WN stars, 87 WC stars, 10 WN/WC
stars and 3 WO stars [16]. A 2006 update added another 72
WR stars, including 45 WN stars, 26 WC stars and one WO
star [17]. The latest number from the August 2020 Galactic
Wolf-Rayet Catalogue v1.25 is 667 WR stars [18].

Wolf-Rayet stars have extended atmospheres whose
thickness is an appreciable fraction of their stellar radius [19,
p. 243]. The material generating the lines is flowing outward
from the stellar photosphere. These flows are driven by ra-
diation pressure acting on the stellar atmosphere. Mass loss
in stellar winds, particularly in WR stars, is well established
[19, pp. 266, 523]. Mass loss ratesM for WR stars are esti-
mated to be of order 10−5 up to perhaps 10−4 M� /year [20,
p. 628] — for comparison, the mass loss rate for the solar
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wind is about 10−14 M� /year. The massive trans-sonic stel-
lar winds flow velocities in WR stars rise from close to zero
in the stellar photosphere to highly supersonic values of order
3 000 km/s within one stellar radius from the surface. Rapid
cooling of the strongly ionized plasma results in rapid recom-
bination of the free electrons and the ions into highly excited
ionic states, resulting in population inversions and laser ac-
tion.

3 Spectra of stars of type Q

Similar physical processes are expected to predominate in
QSO stars due to the physical similarity of WR and QSO
spectra, including the almost total absence of hydrogen H
lines. However, while the number of identified WR stars is
relatively small, the number of identified QSO stars is larger
as we will see later.

Varshni et al [21] studied the distribution of QSO spectral
emission lines (in the observed frame, i.e. unshifted) of 7 315
QSOs from the catalog of Hewitt & Burbidge [22], of which
5 176 have emission lines. This resulted in a total of 14 277
emission lines in the range λ1271 to λ17993, with the vast
majority in the visual range λ3200 to λ5600*.

A number of very strong peaks were found in a histogram
of the statistical frequency of the emission lines against wave-
length using 4 Å bins. The emission line distribution was ex-
pressed in units of standard deviation above a random aver-
age, to ensure the lines are statistically significant. The 37
strongest QSO emission lines in the catalog were more than
four standard deviations above the random average, of which
13 peaks were above 5σ, of which 3 peaks were above 6σ,
of which one peak was above 8σ. These lines are given in
Table 1 including the number of standard deviations above a
random average.

The 37 QSO emission lines were compared with Wolf-
Rayet emission lines in [21], and 27 were found to also occur
in WR star spectra, 7 in novae-like star spectra, and two in
novae spectra. These are also included in Table 1, along with
corresponding candidate element emission lines identifica-
tion. The lines have been compared against existing sources
of data such as Willett’s [23] and Bennett’s [24] lists of laser
transitions observed inlaboratories and theNIST Atomic Spec-
tra Database Lines Data [25].

In Table 2, we have added the estimated Te range down
to the 50% ionic element density obtained from House [26]
for the identified candidate element emission lines. In Tables
3 and 4, we determine the best known line identification and
estimated Te range down to the 50% ionic element density
from House [26] respectively, for the 37 QSO emission lines
identified in [21]. This provides information to assist in the
classification of Q stars from the 37 QSO dominant emission
lines.

*The notation λ indicates wavelengths measured in Å.

Varshni [27] also investigated O VI and He II emission
lines in the spectra of QSOs, planetary nebulae and Sanduleak
stars (WO stars characterized by a strong O VI emission line
at λ3811.34 — one example, blue supergiant star Sk -69 202,
was identified as the progenitor of supernova 1987A). O VI
emission lines imply much higher temperatures (180 000 K <
O VI < 230 000 K) than those of Table 4, which are dominated
by temperatures in the O II and O III range (16 000 K < O II
< 46 000 K and 46 000 K < O III < 73 000 K respectively).

4 Comparative numbers of O, W amd Q stars

The comparative numbers of O, W and Q stars provide hints
on their relative classification with respect to their evolution
and the Hertzsprung-Russell diagram. O stars are known to
be massive hot blue-white stars with surface temperatures in
excess of 30 000 K. Wolf-Rayet stars have typical masses in
the range of 10–25 M�, extending up to 80 M� for hydrogen-
rich WN stars [5], and surface temperatures ranging from
30 000 K to around 210 000 K.

Conti et al [6] measured the actual numbers and distri-
butions of O stars and Wolf-Rayet stars in a volume-limited
sample of stars within 2.5 kpc of the Sun. They found the
observed WR/O star number ratio to be given by

WR
O (M ≥ 40 ± 5M�)

= 0.36 ± 0.15 . (1)

The distribution of WR stars matches that of massive O stars,
primarily close to the galactic plane, predominantly in spiral
arms Population I stars, which is seen to indicate that WR
stars are descendant from the most luminous and massive O
stars, likely due to mass loss.

From the latest number of 667 WR stars seen previously
in §2, we obtain an estimated number of O stars of

1 850 +1 350
−550 ,

that is between 1 300 and 3 200, from (1). These results are
in the same ballpark as available catalogues of O stars, which
are still very much a work in progress [28–33]. This num-
ber is similar to that of planetary nebulae with about 2 700
known in 2008 (MASH catalogue) [34, 35]. These distribu-
tions and numbers of O stars and Wolf-Rayet stars agree with
the changes to the Hertzsprung-Russell diagram suggested
in [1] to include more massive and hotter stars of type W
beyond the stars of type O B.

For the number of stars of type Q, we saw previously in
§3 that the Hewitt & Burbidge catalog of 1993 [22] included
7 315 QSOs, of which 5 176 have emission lines, which repre-
sents 11 times the current number of known WR stars. How-
ever, the latest edition of the Sloan Digital Sky Survey Qua-
sar Catalog DR16Q [36] to August 2018, includes a total of
750 414 quasars (100 times the 1993 Hewitt & Burbidge cat-
alog number). This represents 1 125 times the number of WR

Pierre A. Millette. Stellar Evolution of High Mass-Loss Stars 105



Volume 17 (2021) PROGRESS IN PHYSICS Issue 1 (April)

QSO λ σ WR λ NL λ Nova λ Emitter λ Emitter λ Emitter λ
(Å) (Å) (Å) (Å) candidates candidates candidates

3356 4.0 3358.6 N III λ3355 O III λ3355.9 C III λ3358
3489 4.1 3493 O IV λ3489.83 O II λ3488.258 O II λ3494.04
3526 6.7 C V λ3526.665 O II λ3525.567
3549 4.3 O II λ3549.091 Si III λ3549.42
3610 4.6 〈3609.5〉 C III λ3609.6 He I λ3613.6 N II λ3609.097
3648 5.4 3645.4 O II λ3646.56 O IV λ3647.53 O IV λ3642
3683 4.4 3687 3685.10 O II λ3683.326 O III λ3682.383/6.393 N IV λ3689.94
3719 4.7 〈3721.0〉 O III λ3721 O V λ3717.31
3770 4.7 〈3769.5〉 N III λ3770.36/1.05 Si III λ3770.585 O III λ3774.026
3781 5.3 3784.8 He II λ3781.68 O II λ3784.98 N III λ3779
3831 5.1 3829.9 He II λ3833.80 C II λ3831.726 O II λ3830.29
3842 4.7 O IV λ3841.07 N II λ3842.187/.449 O II λ3842.815
3855 5.0 3856.6 N II λ3855.096/.374 O II λ3856.134 He II λ3858.07
3890 8.4 〈3889.0〉 He I λ3888.64 C III λ3889.18/.670 O III λ3891.759
3903 5.6 3903.0 O III λ3903.044
3952 4.4 〈3954.2〉 O II λ3954.3619 Si III λ3952.23/3.071
4012 6.0 〈4008.4〉 N III λ4007.88 N III λ4013.00 Si III λ4010.236
4135 4.8 ? N III λ4134.91/6.07 O V λ4134.11 N II λ4133.673
4276 5.9 ? 4276.6 4275.5 O II λ4275.5 O II λ4275.994 O II λ4276.620
4524 4.7 〈4520.4〉 N III λ4523.56/7.9 O III λ4524.2/7.3 O V λ4522.66
4647 4.0 4650.8 C III λ4647.40/51.35 O II λ4647.803/9.1348 O III λ4649.973
4693 4.7 ? 4697.0 O II λ4693.195 N II λ4694.274/7.638 O III λ4696.225
4771 4.1 ? 4772.1 N IV λ4769.86 O IV λ4772.6 O II λ4773.782
4801 4.3 〈4799.6〉 O IV λ4800.74 Si III λ4800.43
4817 4.4 4814.6 4814.4 O IV λ4813.15 Si III λ4813.33/9.72 N II λ4815.617
4910 4.9 4909.2 N III λ4904.78 Si III λ4912.310
4925 4.5 〈4924.6〉 O II λ4924.531 He I λ4921.9
4956 7.0 4958 4959.0 O II λ4955.705 O III λ4958.911
5018 5.6 〈5018.3〉 He I λ5015.67 C IV λ5015.9/7.7 N II λ5016.39
5035 4.2 N III λ5038.31
5049 5.5 5049.9 He I λ5047.7 C III λ5048.95 O III λ5049.870
5096 5.5 5092.9 N III λ5097.24 O III λ5091.880 O II λ5090.920
5111 4.8 5111.5 O II λ5110.300/1.913 Si III λ5111.1 O III λ5112.18
5173 4.6 5171.1 N II λ5171.266/2.344 N II λ5173.385 O III λ5171.29
5266 5.3 5266.3 O III λ5268.301
5345 4.1 5343.3 O II λ5344.104 C III λ5345.881
5466 4.0 〈5469.9〉 Si II λ5466.43/9.21 O V λ5471.12 Si III λ5473.05

Table 1: QSO emission lines in the range λ3200 to λ5600 from Varshni et al [21] (NL: novae-like star).
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QSO λ σ WR λ NL λ Nova λ Emitter Te (K) Emitter Te (K) Emitter Te (K)
(Å) (Å) (Å) (Å) candidates candidates candidates

3356 4.0 3358.6 33k < N III < 65k 46k < O III < 73k 29k < C III < 58k
3489 4.1 3493 73k < O IV < 130k 16k < O II < 46k 16k < O II < 46k
3526 6.7 92k < C V < 730k 16k < O II < 46k
3549 4.3 16k < O II < 46k 18k < Si III < 46k
3610 4.6 〈3609.5〉 29k < C III < 58k He I < 26k 18k < N II < 33k
3648 5.4 3645.4 16k < O II < 46k 73k < O IV < 130k 73k < O IV < 130k
3683 4.4 3687 3685.10 16k < O II < 46k 46k < O III < 73k 65k < N IV < 103k
3719 4.7 〈3721.0〉 46k < O III < 73k 146k < O V < 184k
3770 4.7 〈3769.5〉 33k < N III < 65k 18k < Si III < 46k 46k < O III < 73k
3781 5.3 3784.8 26k < He II < 73k 16k < O II < 46k 33k < N III < 65k
3831 5.1 3829.9 26k < He II < 73k 15k < C II < 29k 16k < O II < 46k
3842 4.7 73k < O IV < 130k 18k < N II < 33k 16k < O II < 46k
3855 5.0 3856.6 18k < N II < 33k 16k < O II < 46k 26k < He II < 73k
3890 8.4 〈3889.0〉 He I < 26k 29k < C III < 58k 46k < O III < 73k
3903 5.6 3903.0 46k < O III < 73k
3952 4.4 〈3954.2〉 16k < O II < 46k 18k < Si III < 46k
4012 6.0 〈4008.4〉 33k < N III < 65k 18k < Si III < 46k
4135 4.8 ? 33k < N III < 65k 146k < O V < 184k 18k < N II < 33k
4276 5.9 ? 4276.6 4275.5 16k < O II < 46k
4524 4.7 〈4520.4〉 33k < N III < 65k 46k < O III < 73k 146k < O V < 184k
4647 4.0 4650.8 29k < C III < 58k 16k < O II < 46k 46k < O III < 73k
4693 4.7 ? 4697.0 16k < O II < 46k 18k < N II < 33k 46k < O III < 73k
4771 4.1 ? 4772.1 65k < N IV < 103k 73k < O IV < 130k 16k < O II < 46k
4801 4.3 〈4799.6〉 73k < O IV < 130k 18k < Si III < 46k
4817 4.4 4814.6 4814.4 73k < O IV < 130k 18k < Si III < 46k 18k < N II < 33k
4910 4.9 4909.2 33k < N III < 65k 18k < Si III < 46k
4925 4.5 〈4924.6〉 16k < O II < 46k He I < 26k
4956 7.0 4958 4959.0 16k < O II < 46k 46k < O III < 73k
5018 5.6 〈5018.3〉 He I < 26k 65k < C IV < 92k 18k < N II < 33k
5035 4.2 33k < N III < 65k
5049 5.5 5049.9 He I < 26k 29k < C III < 58k 46k < O III < 73k
5096 5.5 5092.9 33k < N III < 65k 46k < O III < 73k 16k < O II < 46k
5111 4.8 5111.5 16k < O II < 46k 18k < Si III < 46k 46k < O III < 73k
5173 4.6 5171.1 18k < N II < 33k 46k < O III < 73k
5266 5.3 5266.3 46k < O III < 73k
5345 4.1 5343.3 16k < O II < 46k 29k < C III < 58k
5466 4.0 〈5469.9〉 8.2k < Si II < 18k 146k < O V < 184k 18k < Si III < 46k

Table 2: QSO emission lines in the range λ3200 to λ5600 with estimated Te range down to the 50% ionic element density from House [26].
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QSO λ WR λ NL λ Nova λ Emitter Emitter Emitter Emitter
(Å) (Å) (Å) (Å) QSO λ WR λ NL λ Nova λ

3356 3358.6 O III λ3355.9 C III λ3358
3489 3493 O II λ3488.258 O II λ3494.04
3526 O II λ3525.567
3549 O II λ3549.091
3610 〈3609.5〉 C III λ3609.6
3648 3645.4 O IV λ3647.53 O II λ3646.56
3683 3687 3685.10 O II λ3683.326 O III λ3686.393 O III λ3686.393
3719 〈3721.0〉 O III λ3721 O III λ3721
3770 〈3769.5〉 N III λ3770.36 N III λ3770.36
3781 3784.8 He II λ3781.68 O II λ3784.98
3831 3829.9 C II λ3831.726 O II λ3830.29
3842 N II λ3842.187
3855 3856.6 N II λ3855.096 O II λ3856.134
3890 〈3889.0〉 C III λ3889.670 C III λ3889.18
3903 3903.0 O III λ3903.044 O III λ3903.044
3952 〈3954.2〉 Si III λ3952.23 O II λ3954.3619
4012 〈4008.4〉 N III λ4013.00 N III λ4007.88
4135 ? N III λ4134.91
4276 ? 4276.6 4275.5 O II λ4275.994 O II λ4276.620 O II λ4275.5
4524 〈4520.4〉 O III λ4524.2 O V λ4522.66
4647 4650.8 C III λ4647.40 C III λ4651.35
4693 ? 4697.0 O II λ4693.195 O III λ4696.225
4771 ? 4772.1 N IV λ4769.86 O IV λ4772.6
4801 〈4799.6〉 O IV λ4800.74 O IV λ4800.74
4817 4814.6 4814.4 N II λ4815.617 Si III λ4813.33 O IV λ4813.15
4910 4909.2 Si III λ4912.310 Si III λ4912.310
4925 〈4924.6〉 O II λ4924.531 O II λ4924.531
4956 4958 4959.0 O II λ4955.705 O III λ4958.911 O III λ4958.911
5018 〈5018.3〉 C IV λ5017.7 C IV λ5017.7
5035 N III λ5038.31?
5049 5049.9 C III λ5048.95 O III λ5049.870
5096 5092.9 N III λ5097.24 O III λ5091.880
5111 5111.5 Si III λ5111.1 O II λ5111.913
5173 5171.1 N II λ5173.385 N II λ5171.266
5266 5266.3 O III λ5268.301? O III λ5268.301?
5345 5343.3 O II λ5344.104 O II λ5344.104
5466 〈5469.9〉 Si II λ5466.43 Si II λ5469.21

Table 3: QSO emission lines in the range λ3200 to λ5600 with best known line identification.
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QSO λ WR λ NL λ Nova λ Emitter Emitter Emitter Emitter
(Å) (Å) (Å) (Å) QSO Te WR Te NL Te Nova Te

3356 3358.6 46k<O III<73k 29k<C III<58k
3489 3493 16k<O II<46k 16k<O II<46k
3526 16k<O II<46k
3549 16k<O II<46k
3610 〈3609.5〉 29k<C III<58k
3648 3645.4 73k<O IV<130k 16k<O II<46k
3683 3687 3685.10 16k<O II<46k 46k<O III<73k 46k<O III<73k
3719 〈3721.0〉 46k<O III<73k 46k<O III<73k
3770 〈3769.5〉 33k<N III<65k 33k<N III<65k
3781 3784.8 26k<He II<73k 16k<O II<46k
3831 3829.9 15k<C II<29k 16k<O II<46k
3842 18k<N II<33k
3855 3856.6 18k<N II<33k 16k<O II<46k
3890 〈3889.0〉 29k<C III<58k 29k<C III<58k
3903 3903.0 46k<O III<73k 46k<O III<73k
3952 〈3954.2〉 18k<Si III<46k 16k<O II<46k
4012 〈4008.4〉 33k<N III<65k 33k<N III<65k
4135 ? 33k<N III<65k
4276 ? 4276.6 4275.5 16k<O II<46k 16k<O II<46k 16k<O II<46k
4524 〈4520.4〉 46k<O III<73k 146k<O V<184k
4647 4650.8 29k<C III<58k 29k<C III<58k
4693 ? 4697.0 16k<O II<46k 46k<O III<73k
4771 ? 4772.1 65k<N IV<103k 73k<O IV<130k
4801 〈4799.6〉 73k<O IV<130k 73k<O IV<130k
4817 4814.6 4814.4 18k<N II<33k 18k<Si III<46k 73k<O IV<130k
4910 4909.2 18k<Si III<46k 18k<Si III<46k
4925 〈4924.6〉 16k<O II<46k 16k<O II<46k
4956 4958 4959.0 16k<O II<46k 46k<O III<73k 46k<O III<73k
5018 〈5018.3〉 65k<C IV<92k 65k<C IV<92k
5035 33k<N III<65k
5049 5049.9 29k<C III<58k 46k<O III<73k
5096 5092.9 33k<N III<65k 46k<O III<73k
5111 5111.5 18k<Si III<46k 16k<O II<46k
5173 5171.1 18k<N II<33k 18k<N II<33k
5266 5266.3 46k<O III<73k 46k<O III<73k
5345 5343.3 16k<O II<46k 16k<O II<46k
5466 〈5469.9〉 8.2k<Si II<18k 8.2k<Si II<18k

Table 4: QSO emission lines in the range λ3200 to λ5600 with best known line identification and with estimated Te range down to the 50%
ionic element density from House [26].
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stars — quite obviously, we are dealing with a phenomenon
that is not as rare as O stars, WR stars or planetary nebulae.

There is a total of between 100 billion and 400 billion
stars estimated in the Milky Way galaxy. The number of
QSOs just represents about 2×10−6 times the estimated num-
ber of stars in the Milky Way galaxy, thus a fairly rare phe-
nomenon, even if it is about 103 times more numerous than
Wolf-Rayet stars. This requires further analysis in terms of
understanding and positioning stars of type Q on the Hertz-
sprung-Russell diagram, with some of the QSOs with strong
O VI lines [27] likely lying beyond the stars of type W O B
as suggested in [1] and some having temperatures in the WR
star range. The estimated number of quasars may be inflated
due to the tendency in modern astronomy to identify redshifts
as a predominant causative factor, but even if it is off by a fac-
tor of ten, the QSO phenomenon is much more common than
Wolf-Rayet stars, in spite of their similarity.

We take a brief look at novae and novae-like stars [37],
given their presence in Tables 1 to 4. These are part of what
are known as cataclysmic variables (CVs), which are binary
star systems consisting of a white dwarf and a normal star
companion. Matter transfer to the white dwarf from the com-
panion star results in the formation of an accretion diskaround
the white dwarf, which produces occasional cataclysmic out-
bursts of matter.

A main sequence star in a binary system evolves into a
white dwarf for a mass below the Chandrasekhar limit (whi-
te dwarf maximum mass limit of about 1.4 M�). Novae are
CV white dwarfs that undergo an eruption that can change
by 10–12 magnitudes in a few hours. They are subdivided
into classical novae (single observed eruption with a spectro-
scopically detected shell of ejected matter), recurrent novae
(multiple observed outbursts with detected shell of matter),
and dwarf nova (multiple observed eruptions with no shell of
detected matter).

Nova-like (NL) variables include all “non-eruptive” cata-
clysmic variables. These systems have spectra, mostly emis-
sion spectra, indicating that they are possibly novae that have
not been observed. A catalogue of cataclysmic variables to
2006 contains 1 600 CVs [38].

5 The Hertzsprung-Russell diagram and the role of mass
loss in the evolution of stars

The Hertzsprung-Russell diagram is a powerful tool to ana-
lyze and represent stellar evolution and understand the char-
acteristics and properties of stars. Most HR diagrams cover
the temperature range 40 000 K and below, thus ignoring hot-
ter and more massive stars of interest in this work.

From an idealized perspective, the main sequence is a
vaguely diagonal curve running from the upper left to the
lower central part of the diagram; from it, vaguely horizontal
branches tend to the right of the diagram. The main sequence
is known as the Zero-Age Main Sequence (ZAMS) which a

star enters when it starts core hydrogen burning; massive stars
(O,B) rapidly burn the hydrogen in ∼3 × 106 years, while low
mass stars (M) burn the hydrogen more slowly in ∼2 × 1011

years.
As the core hydrogen becomes depleted, the star moves

towards the horizontal portion of the diagram, and once core
hydrogen burning terminates, it moves towards the right on
the horizontal branch, becoming a red giant for cooler less
massive stars (G) or a red supergiant for hot massive stars
(O). Interestingly enough, in a recent study of stars of types
O and early-B in the Wing of the Small Magellanic Cloud
(SMC) satellite galaxy, Ramachandra et al [39] have found
that the above scenario applies to O stars with initial mass
below ∼30 M�, while O stars with initial mass above ∼30 M�
appear to always stay hot.

Once a star has exhausted its core hydrogen (and hydro-
gen shell), it enters its core helium burning phase. In Fig. 1,
we reproduce the very important Hertzsprung-Russell dia-
gram of [39] for the stars of types O and early-B of the SMC
Wing: it covers the temperature range up to 200 000 K, shows
the Helium Zero-Age Main Sequence (He-ZAMS) and also
exceptionally includes the Wolf-Rayet (WR) stars. As we
saw previously, the red giant and supergiant scenario, where
the hydrogen-depleted stars veer off the ZAMS to the right,
applies to O stars with initial mass below ∼30 M� (shaded
portion in Fig. 1). However, as we see in Fig. 1, for O stars
with initial mass above ∼30 M�, the hydrogen-depleted stars
veer off the ZAMS to the left to become WR stars, which
are known to be hydrogen-deficient. Of the main factors af-
fecting massive star evolution, focusing on rotation, binarity
and mass-loss rate, we believe this dichotomy in behaviour
is because of the massive mass loss in WR stars as seen in
§2 driving laser action in their stellar atmospheres, while [39]
believes it is due to the rapid rotation of the stars, leading to
efficient mixing of the stellar interior and quasi-chemically
homogeneous evolution (QCHE) .

The work of Ramachandra et al [39] is an excellent exam-
ple of using one of the better tools at our disposal to under-
stand stellar astrophysical problems by performing analysis
on the observed data in neighbouring galaxies, as mentioned
in [1]. Along those lines, Hainich et al [40] has performed
an analysis of single WN Wolf-Rayet stars in the Small Mag-
ellanic Cloud. Fig. 2 is a reproduction of the Hertzsprung-
Russell diagram for the WN stars of the Small Magellanic
Cloud (SMC) from Hainich et al [40], which also includes
the WN stars of the Large Magellanic Cloud (LMC) and the
Milky Way (MW). It corresponds to the upper left portion of
Ramachandra’s HRD for log luminosity > 5.2 and temper-
atures > 25 000 K (in the WR region), and provides details
for the WNE and WNL populations of the SMC, LMC and
Milky Way galaxy. WNE is a subtype for early-type WN stars
(WN2–WN5), while WNL is for late-type WN stars (WN6–
WN11).

This HRD provides more details on WN star properties:
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Fig. 1: Hertzsprung Russell diagram for massive stars in the Wing of the SMC reproduced from Ramachandra et al [39]. Typical error bar
shown at bottom left corner. The brown pentagons represent WR stars (encircled if in a binary system), yellow symbols represent yellow
supergiant (YSG) stars, blue triangles for BSGs (blue supergiant), and red triangles for RSGs (red supergiant). Black tracks show standard
stellar evolutionary paths, while the blue tracks show the paths of quasi-chemically homogeneously evolving (QCHE) WR stars.

most WNE stars are on the left of the ZAMS line, but to the
right of the He-ZAMS line; while most WNL stars are on the
right of the ZAMS line, but close to it in the hydrogen de-
pletion region of the stellar evolution curve, above log lumi-
nosity > 5.5 corresponding to stellar masses where the stars
do not evolve into colder supergiants, as mentioned by Ra-
machandra et al [39]. See also Figures 7 and 8 of [11] for
WN stars in the Large Magellanic Cloud. Thus, the calculated
WR star evolution curves that extend to the right into lower
temperature supergiant stars, usually seen in published HR
diagrams, are likely incorrect, especially considering their
high mass-loss rates driving laser action in their stellar atmo-

spheres. The Luminous Blue Variable (LBV) stars included
in such stellar evolution curves are more than likely variable
Wolf-Rayet stars.

Metallicity is a measure of the abundance of elements
heavier than hydrogen or helium in an astronomical object.
Hence stars and nebulae with relatively high carbon, nitro-
gen, oxygen, neon, etc abundance have high metallicity val-
ues z (the metallicity of the Sun is z = 0.0134). The degree of
wind mass-loss of WR stars depends on their initial metallic-
ity. Metallicity thus has an effect on the evolution of massive
stars and of WR stars in particular. The Small Magellanic
Cloud is a low-metallicity environment, lower than the metal-
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Fig. 2: Hertzsprung-Russell diagram for WN stars in the Small Mag-
ellanic Cloud (SMC) reproduced from Hainich et al [40]. Includes
the Large Magellanic Cloud (LMC gray-filled symbols) and Milky
Way (MW open symbols) WN stars.

deficient Large Magellanic Cloud itself lower in comparison
to the Milky Way. SMC WN stars thus have on average lower
mass-loss rates and weaker winds than their counterparts in
the LMC and the Milky Way [40]. A reduction in the mass-
loss rate at lower metallicity results in weaker emission line
spectra in WR stars, a clear indication that the strong emis-
sion lines are due to the mass-loss rate which results in lasing
transitions as seen in [1].

The process that leads from massive O stars to WR stars
as a result of mass loss is believed to be well understood
[41]. As a massive star evolves and loses mass, it even-
tually exposes He and N (the products of CNO burning) at
the surface and is then spectroscopically identified as a WN
star. As the star continues losing mass, it eventually exposes
C and O (the products of He burning) at the surface and is
then identified as a WC star. The mass loss rates depend on
the metallicity of the environment which results in different
WC/WN ratios as observed in Local Group galaxies. This
is reflected in lower WC/WN ratios in lower metallicity en-
vironments: (WC/WN)SMC = 0, (WC/WN)LMC = 0.25 and
(WC/WN)MW = 1 [40].

Meyer et al [42] have analyzed the nucleosynthesis of
oxygen in massive stars (see also [43]). In their model cal-
culations, they find that in the WC stars, the oxygen in the
C/O zone is dominated by the 16O isotope. This matter which
is part of the helium burning core, does not partake in the

carbon shell burning. This is followed by the O/Ne zone
where the star experiences convective shell carbon burning
and where there is a slight 16O depletion, but where 16O still
strongly dominates the oxygen abundances. This is followed
by the O/Si zone where the star experiences shell neon burn-
ing which increases the 16O slightly. Finally, the star burns its
16O into 28Si and heavier isotopes both in pre-supernova and
supernova nucleosynthesis, devoid of any oxygen.

Thus they find that oxygen has a significant presence in
massive stars beyond the WC stage, until the generation of
28Si, where it disappears. Considering Table 3, this behav-
ior is interesting due to the presence of, in addition to the
ionized nitrogen and carbon lines, a significant number of
ionized oxygen lines, and the presence of some standalone
silicon lines.

6 The evolution of stars of type Q

Given all of these considerations, how does the evolution of
stars of type Q fit in the Hertzsprung-Russell diagram? We
know that they are undergoing high mass-loss due to thebroad
high intensity spectral lines indicative of laser action in their
stellar atmosphere. As seen in Table 3, their emission spectra
are dominated by lines of ionized He, C, N, O and Si, with
many lines in common with WR stars and novae-like stars.

There may be more than one population of stars of type
Q. One group identified by Varshni [27] with O VI and He II
emission lines in their spectra, in common with planetary
nebulae and Sanduleak stars, implies much higher tempera-
tures in the range 180 000 K < O VI < 230 000 K, position-
ing those QSO stars above the WR region in the HRD of
Ramachandra et al [39] given in Fig. 1. However, there are
emission lines as given in Table 3, which are dominated by
temperatures in the O II and O III range (16 000 K < O II <
46 000 K and 46 000 K < O III < 73 000 K respectively), indi-
cating a lower temperature range of QSO stars.

Indeed, as seen previously, these QSO emission line spec-
tra have a significant number of ionized oxygen lines. WN
and WC Wolf-Rayet stars predominate, with WN stars having
the upper hand in low metallicity environments. However, the
recently recognized WO lines are rare — could the QSO spec-
tra with a significant number of ionized O emission lines and
some Si emission lines, correspond to unrecognized much
more numerous WO Wolf-Rayet stars extending into lower
temperatures? They would in effect fill up the Hertzsprung-
Russell diagram of Ramachandra et al [39] given in Fig. 1 in
the range 16 000 K < Te < 73 000 K for stellar masses above
∼30 M�.

For example, if we look at QSO 3C 273, the first radio
source quasar for which an optical counterpart was identi-
fied in 1963, its spectrum consisted of one strong emission
line and one medium to weak strength line (λ5637, λ7588).
Comparing these lines against existing sources of data [23–
25], the following identifications are obtained from the NIST
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Atomic Spectra Database Lines Data and the corresponding
estimated Te range down to the 50% ionic element density
obtained from House [26] for the identified candidate element
emission lines (see Table 5). Based on this information, we
would be inclined to conclude that the broad observed emis-
sion lines correspond to C II λ5640.55 and O II λ7593, with
an estimated stellar temperature in the range 16 000 K < Te <
29 000 K.

QSO λ strength Emitter Emitter
(Å) λ Te

5637 S C II λ5640.55 15k<C II<29k
Si II λ5633/41 8.2k<Si II<18k

7588 M-W O II λ7593 16k<O II<46k
C III λ7586.41 29k<C III<58k
O IV λ7585.74 73k<O IV<130k

Table 5: QSO 3C 273 observed emission lines, identification and
estimated Te range down to the 50% ionic element density obtained
from House [26].

7 Laser action in WR and QSO stars

The details of the process of laser action in the stellar atmo-
spheres of Wolf-Rayet stars and Quasi-Stellar Object stars are
given in [1]. The physical process of population inversions
in expanding stellar atmospheres led Varshni to formulate his
Plasma Laser Star (PLS) model as an explanation of the spec-
tra of Wolf-Rayet stars and Quasi-Stellar Objects [47–52].
Model calculations starting from an initial element number
density of 1014 cm−3 are performed for a grid of free electron
number density ne and temperature Te values. The population
inversion is displayed on ne − Te diagrams showing contours
of equal P or α′, where [44]

P =
nq

ωq
−

np

ωp
, (2)

where nq is the population density and ωq is the statistical
weight of level q, and [45, p, 23]

α =

√
ln 2
π

(
ωq Aq→p

4π

)
P λ2

0

∆ν
, (3)

where λ0 is the centre wavelength of the transition, ∆ν is
the linewidth, Aq→p is the Einstein probability coefficient for
spontaneous transition from level q to p, and α′ = α∆ν. Fig. 3
shows a typical ne − Te diagram with equi-α′ contours for in-
versely populated transition 6 f → 5d of C IV.

Taking Quasi-Stellar Objects to be local stellar objects in-
stead of distant galactic objects eliminates the problems as-
sociated with their currently accepted cosmological interpre-

Fig. 3: Typical ne − Te diagram showing laser gain equi-α′ contours
in cm−1 s−1 for the 6 f → 5d transition of C IV [46, p. 257].

tation: energy source, superluminal velocities, optical vari-
ability, quasar proper motions [53,54], quasar binary systems
[55, 56], naked (no nebulosity) quasars, etc. The properties
of QSOs are similar to those of WR stars and, as stars, those
are easily explainable in terms of commonly known physical
processes. QSO stars could very well be unrecognized Wolf-
Rayet stars, in particular WO stars and WSi pre-supernova
stars. In that case, Q stars would be the end-state of the Wolf-
Rayet evolution process and would account for their number
larger than WN and WC W stars (about 103 times), prior to
moving to the supernova state.

8 Discussion and conclusion

In this paper, we have investigated the 37strongest QSO emis-
sion lines of stars of type Q in the catalog of Hewitt & Bur-
bidge [22], investigated by Varshni et al [21]. We have used
Willett’s [23] and Bennett’s [24] lists of laser transitions ob-
served in laboratories and the NIST Atomic Spectra Database
Lines Data [25] to identify candidate lines. In addition, we
have determined the estimated Te range down to the 50%
ionic element density obtained from House [26] for the iden-
tified candidate element emission lines. This information as-
sists in the classification of Q stars from the 37 QSO dominant
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emission lines.
We have summarized the comparative numbers of O, W,

and Q stars, novae and planetary nebulae to provide hints on
their relative classification with respect to their evolution and
the Hertzsprung-Russell diagram. The Hertzsprung-Russell
diagram is a powerful tool to analyze and represent stellar
evolution and has been used to determine the role of mass
loss in the evolution of stars. In particular, we have con-
sidered the very important HR diagram of Ramachandra et
al [39] for the stars of types O and early-B of the SMC Wing
as it covers the temperature range up to 200 000 K, shows the
Helium Zero-Age Main Sequence (He-ZAMS) and also ex-
ceptionally includes the Wolf-Rayet (WR) stars. In addition,
their determination that hydrogen-depleted O stars with ini-
tial mass below ∼30 M� evolve off the ZAMS to the right into
colder red giants and supergiants, while hydrogen-depleted O
stars with initial mass above ∼30 M� appear to always stay
hot and veer off the ZAMS to the left to become Wolf-Rayet
stars, beyond the O stars, is indicative of laser action in their
stellar atmosphere.

We have reviewed the nucleosynthesis process that leads
from massive O stars to WN and then WC Wolf-Rayet stars
as a result of mass loss. We then considered the nucleosyn-
thesis of oxygen in massive stars and found that 16O oxygen
has a significant presence in massive stars beyond the WC
stage, until the generation of 28Si, where it disappears. This
has lead us to postulate more than one population of stars of
type Q. One group identified by Varshni [27] with O VI and
He II emission lines in their spectra implying much higher
temperatures and positioning those QSO stars above the WR
region in the HRD of Ramachandra et al [39].

The other group with emission lines dominated by tem-
peratures in the O II and O III range, indicating a lower tem-
perature range of QSO stars with a significant number of ion-
ized oxygen lines, in addition to the nitrogen WN and car-
bon WC lines. We postulate that these QSO spectra, with a
significant number of ionized O emission lines and some Si
emission lines, correspond to unrecognized Wolf-Rayet stars,
in particular WO stars and WSi pre-supernova stars, extend-
ing into lower temperatures. They in effect fill up the HRD
of Ramachandra et al [39] in the range 16 000 K < Te <
73 000 K for stellar masses above ∼30 M�. In that scenario,
Q stars would be the end-state of the Wolf-Rayet evolution
process and would account for their number larger than WN
and WC W stars, prior to moving to the supernova state.
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The physics of transcendental numbers leads to a fractal scalar field that causes nu-
meric entanglements affecting any type of interaction. In this paper, we apply this our
approach to the analysis of telepathic communication in both aspects, the theoretical
and experimental.

Introduction

The history of science is replete with confident proclamations
about all sorts of impossible things like flying machines heav-
ier than air, and most of those proclamations have proven to
be hilariously or poignantly wrong. So the current paradigm
declares also telepathy to be impossible [1].

The term ‘telepathy’ comes from the Greek ‘tele’ mean-
ing ‘distant’ and ‘pathos’ meaning ‘feeling, perception, ex-
perience’ and can be defined [2] as the transmission of infor-
mation from one person to another without using any known
human sensory channel or physical interaction.

Introduced by the British scholar Frederic W. H. Myers in
1882, ‘telepathy’ substituted the earlier term ‘thought trans-
ference’ in psychology. The concept of telepathy was origi-
nally more an attempt to objectify and detach the concept of
thought transference from its connection with spiritism, me-
dia and belief in ghosts.

Telepathy challenges the scientific understanding of ex-
perience, that David Chalmers [3] has termed the ‘hard prob-
lem’ of consciousness. Indeed, centuries of philosophical dis-
putes did not explain the nature of consciousness. Aside from
recognizing that consciousness differs from matter in many
ways, there is no scientific consensus.

However, the dominant view in recent time is more mate-
rialistic than ever before: consciousness is thought to emerge
from highly complex biological processes, which in turn are
based ultimately on interactions between subatomic particles.

Roger Penrose and Stuart Hameroff [4] hypothesize that
consciousness originates from quantum processing in neuron
dendritic spine microtubules.

Shan Gao [5] analyzes the role of consciousness during
quantum measurement process and supposes quantum nonlo-
cality as model of telepathic communication. Huping Hu and
Maoxin Wu [6, 7] hypothesize that consciousness is intrin-
sically connected to quantum spin in the sense that nuclear
and electron spin is the ‘mind-pixel’ and the unity of mind is
presumably achieved by entanglement of these mind-pixels.
They assume [8] that spin is the primordial process in non-
spatial and non-temporal pre-spacetime being the manifesta-
tion of quantum entanglement, implying instantaneous inter-
connectedness of all matters in the universe through gravity

and consciousness. As well, George Williams [9] supposes
the existence of a non-local proto-conscious field that under-
lies both matter and consciousness. Within the Global Con-
sciousness Project of the Princeton Engineering Anomalies
Research Laboratory at the Princeton University, the Rodger
Nelson group [10] demonstrated that human consciousness
interacts with physical random event generators [11], causing
them to produce nonrandom patterns associated with special
states of group consciousness.

In our research we focus on the physics of numbers as ap-
proach to study the physical consequences of arithmetic prop-
erties of numbers being ratios of measured quantities. In [12]
we have shown that this approach leads to a fractal scalar field
that causes numeric entanglements affecting any type of inter-
action including gravitation [13]. In this paper, we apply our
approach to the analysis of telepathic communication in both
aspects, the theoretical and experimental.

Theoretical Approach

Measurement is the source of scientific data that allow for de-
veloping and proofing theoretical models of the reality. The
result of a measurement is the ratio of two quantities where
one of them is the reference quantity called unit of measure-
ment. All that can be measured – space, time, energy, mass
– is quantity. Numbers are symbols of quantity. Despite their
non-materiality, numbers represent a reality that has unlim-
ited power and produces physical effects. These effects are a
subject of study in the physics of numbers.

On the one hand, numbers appear as created by intellect,
on the other, our intellect cannot manipulate them, for exam-
ple, avoid the appearance of primes when counting, or design
a cube and a sphere both of the same volume. Indeed, mea-
suring, counting and calculating are inherent abilities of all
things. Even atoms have to configure the number of electrons
on each energy level. Thus, the universality of the numbers
suggests that they are not anthropogenic, but cosmogenic.

Distances, durations, angles, velocities – when measured,
first they are real numbers, and only when applied to mod-
els they can become vectors. Real numbers are scalars, and
scaling is the process that creates them. Indeed, when we
observe something from a far scale, we cannot distinguish
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details. Different objects appear as identical and we cannot
anymore individuate them. The abundance of properties of
the objects reduces to their number that follows the laws of
arithmetic or the laws of statistics.

Extreme scaling is the process that creates numbers and
can possibly even release objects from their materiality. The
scale of electrons is in the range of picometer. Protons and
electrons appear to be elementary just because the difference
between the observer’s macroscale and the subatomic scale is
huge. This is why they behave like numbers and their proper-
ties appear quantized following the laws of quantum statistics.

Numbers are omnipresent and therefore, non-local. This
non-locality of the numbers might be the true cause of the
quantum physical entanglement that Albert Einstein called
‘spooky action at a distance’. In this context, all electrons
and protons are identical because there is probably only one
electron and only one proton that can materialize everywhere.
In the same meaning there is only one number e=2.71828 . . .
and only one number π=3.14159 . . . that can materialize any-
time and anywhere.

Max Planck’s discovery that the energy E=~ω of a pho-
ton depends only on a number that is its frequency ω, is a key
event in the history of physics. From this discovery, quan-
tum physics was born. As the energy of a quantum oscillator
increases with its frequency, every additional increase of the
frequency requires more and more energy. Probably, this pro-
cess leads to the emergence of a resistance that appears as
inertia. Indeed, the frequency 7.8 ·1020 Hz defines the thresh-
old where electrons can form. Surpassing the threshold of
1.4 ·1024 Hz, protons can form. In [14] we introduced scaling
as mechanism of particle mass generation, alternative to the
Higgs model. In [15] we have demonstrated that it is the tran-
scendence of Euler’s number that stabilizes the thresholds of
materialization including the proton-to-electron ratio.

In the framework of the physics of numbers, all structures
and processes in the universe are materializations of numeric
relationships. Within this our approach, we significantly ex-
tend the meaning of quantum entanglement in the sense of
an instantaneous connectivity that originates from the divis-
ibility of numbers. The meaning of this connectivity is that,
for example, the nth cycle of a given process has something
in common with the nth cycle of any other process, indepen-
dently of its nature, duration or location.

This kind of ‘numeric entanglement’ is a consequence of
the divisibility of the number n being the index of the nth cycle
of a periodical process. It has nothing to do with resonance
or simultaneity, but with scaling; it is a connectivity that does
not depend on temporal coincidences or spatial distances.

Let us imagine two periodic processes, one occurs on
Earth and another occurs on Kepler 452b that is 1400 light
years away in the Cygnus constellation of the Milky Way.
Because of the huge spatial and temporal distance, they can-
not be synchronized by the speed of light. By the way, that’s
exactly why probably nobody in the Galaxy uses radio signals

or other forms of light for interstellar communication. Nev-
ertheless, both periodic processes are numerically connected,
and this circumstance allows for communication.

In [12] we have demonstrated that the physics of tran-
scendental numbers leads to a fractal scalar field that affects
any type of physical interaction including gravitation. In this
paper, we hypothesize that this field causes numeric entangle-
ments making possible connectivity associated with telepathy
or other forms of extrasensory perception. But first, now we
are going to derive this fractal scalar field from the physics of
transcendental numbers.

In physics of numbers [16], the difference between ra-
tional, irrational algebraic and transcendental numbers is not
only a mathematical task, but it is also an essential aspect
of stability in complex dynamic systems. While integer fre-
quency ratios provide parametric resonance interaction that
can destabilize a system [17, 18], it is transcendental num-
bers that define the preferred ratios of quantities which avoid
destabilizing resonance interaction [15]. In this way, tran-
scendental ratios of quantities can sustain the stability of pe-
riodic processes in complex dynamic systems.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting resonance interaction regarding any
interacting periodic processes and their derivatives.

Alexandr Khinchin [19] demonstrated that any real num-
ber has a biunique representation as a continued fraction. Ap-
plying this to the real argument x of the natural exponential
function ex, we get:

x = 〈n0; n1, n2, . . . , nk〉. (1)

We use angle brackets for continued fractions. All denomina-
tors n1, n2, . . . , nk including the free link n0 are integer. The
numerators equal 1. The length of the continued fraction is
given by the number k of layers.

The canonical form (all numerators equal 1) does not limit
our conclusions, because every continued fraction with partial
numerators different from 1 can be transformed into a canon-
ical continued fraction using the Euler equivalent transforma-
tion [20]. With the help of the Lagrange [21] transforma-
tion, every continued fraction with integer denominators can
be represented as a continued fraction with natural denomi-
nators that is always convergent [22].

Naturally, the rational eigenvalues of the finite continued
fractions (1) have a fractal distribution. The first layer is given
by the truncated after n1 continued fraction:

x = 〈n0; n1〉 = n0 +
1
n1
.

The denominator n1 follows the sequence of integer numbers
±1, ±2, ±3 etc. The second layer is given by the truncated
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after n2 continued fraction:

x = 〈n0; n1, n2〉 = n0 +
1

n1 +
1
n2

.

Figure 1 shows the first and the second layer in comparison.
As we can see, reciprocal integers ±1/2,±1/3,±1/4, . . . are
the attractor points of the distribution. In these attractors, the
distribution density always reaches a local maximum. Inte-
gers 0,±1, . . . are the main attractors of the distribution.

Now let’s remember that we are observing the fractal dis-
tribution of rational values x = 〈n0; n1, n2, . . . , nk〉 of the real
argument x of the natural exponential function ex. What we
see is the fractal distribution of transcendental numbers of the
type exp(〈n0; n1, n2, . . . , nk〉) on the natural logarithmic scale.
Near integer exponents, the distribution density of these tran-
scendental numbers is maximum. Consequently, for integer
and rational exponents x, the natural exponential function ex

defines attractor points of transcendental numbers and create
islands of stability.

Figure 1 shows that these islands are not points, but ranges
of stability. Integer exponents 0,±1,±2,±3, . . . are attractors
which form the widest ranges of stability. Half exponents
±1/2 form smaller islands, one third exponents ±1/3 form
the next smaller islands and one fourth exponents ±1/4 form
even smaller islands of stability etc.

For rational exponents, the natural exponential function
is always transcendental [23]. Increasing the length k of the
continued fraction (1), the density of the distribution of tran-
scendental numbers of the type exp(〈n0; n1, n2, . . . , nk〉) is in-
creasing as well. Nevertheless, their distribution is not ho-
mogeneous, but fractal. Applying continued fractions and
truncating them, we can represent the real exponents x of the
natural exponential function ex as rational numbers and make
visible their fractal distribution.

The application of continued fractions doesn’t limit the
universality of our conclusions, because continued fractions
deliver biunique representations of all real numbers including
transcendental. Therefore, the fractal distribution of transcen-
dental eigenvalues of the natural exponential function ex of
the real argument x, represented as continued fraction, is an
inherent characteristic of the number continuum. This char-
acteristic we call the Fundamental Fractal [24].

In physical applications, the natural exponential function
ex of the real argument x is the ratio of two physical quanti-

Fig. 1: The Fundamental Fractal – the fractal distribution of tran-
scendental numbers of the type ex with x = 〈n0; n1, n2, . . . , nk〉 on
the natural logarithmic scale for k = 1 (first layer above) and for k = 2
(second layer below) in the range -16 x6 1.

ties where one of them is the reference quantity called unit of
measurement. Therefore, we can rewrite the equation (1):

ln(X/Y) = 〈n0; n1, n2, . . . , nk〉 (2)

where X is the measured physical quantity and Y the unit of
measurement. In this way, the natural exponential function ex

of the rational argument x = 〈n0; n1, n2, . . . , nk〉 generates the
set of preferred ratios X/Y of quantities which avoid destabi-
lizing resonance and provide the lasting stability of real sys-
tems regardless of their complexity.

Therefore, we expect that periodic processes in real sys-
tems prefer frequency ratios close to Euler’s number and its
rational powers. Consequently, the logarithms of their fre-
quency ratios should be close to integer 0,±1,±2, . . . or ra-
tional values ±1/2,±1/3,±1/4, . . .

In [12] we verified the model claims on the gravitational
constants and the periods of orbital and rotational motion of
the planets, planetoids and large moons of the solar system as
well as the orbital periods of exoplanets and the gravitational
constants of their stars.

Naturally, the Fundamental Fractal (2) of transcendental
stability attractors does not materialize in the scale of plane-
tary systems only. At subatomic scale, it stabilizes the proton-
to-electron ratio and in this way, allows the formation of sta-
ble atoms and complex matter.

Scale relations in particle physics [14] obey the same Fun-
damental Fractal (2), without any additional or particular set-
tings. The proton-to-electron frequency ratio approximates
the Fundamental Fractal at the first layer that could explain
their exceptional stability [25]:

ln
(
ωp

ωe

)
= ln

(
1.42549 · 1024 Hz
7.76344 · 1020 Hz

)
' 7 +

1
2

= 〈7; 2〉.

ωp and ωe are the proton and electron angular frequencies. In
the consequence of the ratio exp(7 + 1/2), the scaling factor
√

e = 1.64872. . . connects attractors of proton stability with
similar attractors of electron stability in alternating sequence.
Figure 2 demonstrates this situation on the first layer of the
Fundamental Fractal (1), and one can see clearly that among
the integer or half, only the attractors ±1/3, ±1/4 and ±1/6
are common. In these attractors, proton stability is supported
by electron stability and vice versa, so we expect that they
are preferred in real systems. As we have shown in our pa-
per [12], planetary systems make extensive use of these com-
mon attractors.

Fig. 2: The distribution of the attractors of proton (bottom) stability
in the range −1 < x < 1 of the attractors of electron (top) stability.
Natural logarithmic representation.
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Property Electron Proton

E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

ω= E/~ 7.76344 · 1020 Hz 1.42549 · 1024 Hz

τ= 1/ω 1.28809 · 10−21 s 7.01515 · 10−25 s

λ= c/ω 3.86159 · 10−13 m 2.10309 · 10−16 m

Table 1: The basic set of the physical properties of the electron and
proton. Data from Particle Data Group [29]. Frequencies, oscillation
periods and wavelengths are calculated.

The spatio-temporal projection of the Fundamental Frac-
tal (2) is a fractal scalar field of transcendental attractors, the
Fundamental Field [26]. The connection between the spatial
and temporal projections of the Fundamental Fractal is given
by the speed of light c = 299792458 m/s. The constancy of c
makes both projections isomorphic, so that there is no arith-
metic or geometric difference. Only the units of measurement
are different. In [27] we have shown that the constancy of the
speed of light is a consequence of the stabilizing function of
Euler’s number.

The exceptional stability of the electron and proton pre-
destinate their physical characteristics as fundamental units.
Table 1 shows the basic set of electron and proton units that
we consider as a fundamental metrology (c is the speed of
light in a vacuum, ~ is the Planck constant). In [24] was
shown that the fundamental metrology (tab. 1) is completely
compatible with Planck units [28].

The Fundamental Field is topologically 3-dimensional, it
is a fractal set of embedded spherical equipotential surfaces.
Figure 3 shows the linear 2D-projection exp(1/n1) of the first
layer of the Fundamental Field with both proton and electron
attractors of stability. Figure 2 shows the same interval in the
logarithmic representation.

In [30] we have shown that the frequency boundaries of
the brain activity ranges Delta, Theta, Alpha, Beta and
Gamma do not appear as to be accidental, but correspond with
attractors of proton and electron stability of the Fundamental
Fractal (2). In this way, Euler’s number determines tempo-
ral scales of stability of the central nervous system. Indeed,
mammals including human have electrical brain activity [31]
of the Theta type in the frequency range between 3 and 7 Hz,
of Alpha type between 8 and 13 Hz and Beta type between 14
and 37 Hz. Below 3 Hz the brain activity is of the Delta type,
and above 37 Hz the brain activity changes to Gamma. The
frequencies 3.0 Hz, 8.2 Hz, 13.5 Hz and 36.7 Hz define the
boundaries. The logarithms of their ratios are close to integer
and half values:

ln
(

8.2
3.0

)
= 1.00; ln

(
13.5
8.2

)
= 0.50; ln

(
36.7
13.5

)
= 1.00.

The correspondence of the boundary frequency ratios with

Fig. 3: The Fundamental Field with equipotential surfaces of both
proton and electron attractors of stability in the linear 2D-projection
for k = 1 in the range −1 < x < 1.

integer and half powers of Euler’s number evidences that the
stability of the frequency boundaries is essential for brain ac-
tivity. In fact, Theta-Alpha or Alpha-Beta violence can cause
speech and comprehension difficulties, depression and anx-
iety disorders. Figure 6 shows how precisly the frequency
boundaries of all subranges of brain activity correspond with
main attractors of proton and electron stability.

Furthermore, similar boundary frequencies we find in the
Earth’s electromagnetic field spectrum, for example the fun-
damental Schumann mode 7.8 Hz. Solar X-ray bursts can
cause variations of the Schumann resonances [32]. In this
case, the fundamental increases up to 8.2 Hz reaching ex-
actly the stable Theta-Alpha boundary. The second Schu-
mann mode 13.5 Hz coincides precisely with the Alpha-Beta
boundary. It is remarkable that solar activity affects this mode
much less or does not affect it at all because of its Euler sta-
bility. The third Schumann mode 20.3 Hz must increase up
to 22.2 Hz for reaching the next island of electron stability.
By the way, such an increase is observed recently. Schumann
resonances occur up to 60 Hz in order to reach the subsequent
island of electron stability.

The coincidence of the boundary frequencies of brain ac-
tivity with Schumann resonances demonstrates how precisely
the electrical activity of biological systems is embedded in
the electromagnetic activity of the Earth. Important to know
that Euler’s number and its roots make possible this embed-
ding, because they are attractors of transcendental numbers
and form islands of stability. They allow for exchanging in-
formation between systems of very different scales – the bio-
physical and the geophysical.

Here and in the following we use the letter E for attrac-
tors of electron stability, and the letter P for attractors of pro-
ton stability. For instance, the attractor E〈−48〉 dominates the
Delta activity range while E〈−45〉 dominates the Beta activity
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Fig. 4: Radii of equipotential surfaces of the Fundamental Field (Fig. 3) and the corresponding attractors of electron and proton stability in
the natural logarithmic representation.

range. The Theta and Gamma activity ranges are dominated
by the attractors P〈−54〉 and P〈−51〉 of proton stability. These
logarithms are multiples of 3. Low Delta, High Delta, Alpha
and Low Gamma are transition ranges, which boundaries are
defined by both, attractors of electron and proton stability.
For instance, dividing the Theta – Alpha boundary frequency
8.2 Hz by the electron angular frequency, we can see how
precisly it matches with the attractor E〈−46〉 of electron sta-
bility:

ln
(

8.2 Hz
7.76344 · 1020 Hz

)
= −46.00.

The correspondence of the boundary frequencies with attrac-
tors of proton and electron stability evidences that quantum
physical stability of the frequency boundaries is essential for
brain activity. Perhaps, this could also indicate that brain-to-
brain entanglements are possible. Probably, the attractor fre-
quencies are the key. To verify this hypothesis, we designed
an experimental setup that we describe in the following.

Experimental Setup

The experiments of telepathic communication described in
this paper were performed continuously over a period of four
years. The participants have decades of experience in medi-
tation, and are married couples respective good friends. They
took turns in their roles as sender and receiver. During the
first year, a sender usually tried to transmit the information
about an arbitrarily chosen object – an apple, stone, ring or
painting – that the receiver had to identify and describe in
written form and draw.

For reduction of the interference of electrical brain activ-
ity by low frequency external electromagnetic fields, a part
of the receivers and/or senders applied hypo-electromagnetic
constructions made of 1/16 aluminum sheet, similar to the
described in [13] polyhedrons, as helmets. Larger construc-
tions of the same material were used to stay inside a hypo-
electro-magnetic space where modulated red light was ap-
plied as well. For LED modulation, the frequencies 3, 5, 13,
23, 37, 61 or 101 Hz (fig. 6) of electron and proton stabil-
ity were chosen. The dimensions of the structures coincide

Fig. 5: The electric skin potential of the sender (black curve) and
the receiver (grey curve) measured with transient recorders of two
DSOs. The resolution is 100 measurements per second. The time-
window of each graphic is one second.

with the radii P〈35〉=0.33 m, E〈28〉=0.56 m, P〈36〉=0.91 m,
E〈29〉=1.52 m and P〈37〉=2.46 m of equipotential surfaces of
the Fundamental Field.

The distance between sender and receiver partly was cho-
sen in accordance with radii of main equipotential surfaces of
the Fundamental Field. Fig. 4 shows the complete spectrum
of sizes and distances that was applied in the experiments.

The durations of the transmission setup stages were cho-
sen in accordance with main temporal attractors of the Fun-
damental Fractal (fig. 7). In the first generation of the exper-
iments, the long version of the transmission setup stages was
chosen taking 15 minutes. Then, in the next generations of
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experiments, the short version that takes 5 minutes only was
established.

The protocols of these experiments contain information
not only about the very object, its origin, meaning and back-
ground, but also about the physical and mental state of the
sender, colors of dress and other details of the environment,
and of course, time and geographic location. Particular at-
tention was paid to the perception of time. During the ex-
periments, the participants usually were at home in Milan,
Malnate, Ferrara, Ravenna, Arezzo, Spigno Saturnia, Castel
di Fiori or Citta della Pieve, so that the telepathic communi-
cation did occur over large distances up to 420 km beeline.

In experiments over short distances up to 7 meters, the
electric skin potential of the participants was measured. Two
digital storage oscilloscopes were used. During the experi-
ment, the participants were contacting the measurement elec-
trodes of the DSO with a finger.

Figure 5 shows the signals of the sender (black curve) and
the receiver (grey curve) measured with the transient recorder
of the DSO. The resolution of the transient recorder is 100
measurements per second. The graphic at the top shows one
second of the alignment during the second minute after the
start of the experiment. The middle graphic shows one sec-
ond of the initial phase of the entanglement during the third
minute, and the graphic at the buttom shows one second of
the entanglement during the fourth minute.

The unexpected success and the frequent cases of very
detailed description of the objects and even the sender’s en-
vironment inspired to continue the experiments under more
controlled conditions.

Therefore, in the 2nd generation of experiments, the arbi-
trarily chosen object was substituted by a simple geometric
form. The sender chooses one of four easily distinguishable
forms – cross, triangle, square or circle – for transmission,
and the receiver must identify it.

Furthermore, for controlling the dependence of transmis-
sion success on the number of participants, the experiments
were carried out with two and more receivers. In the 3d gen-
eration, the geometric forms were substituted by six domino
number configurations (fig. 8).

In the 4th generation of experiments, the geometric forms
were substituted by Chladni patterns. Fine sand particles ac-
cumulate in nodal patterns on the surface of vibrating metal
plates, as described by Galileo Galilei (1630), Robert Hook
(1680) and Ernst Chladni (1787). The emerging patterns de-
pend only on the geometry of the plate and the vibration fre-
quency of the particles, and do not depend on their mass or
chemical composition. This characteristic remembers gravity
– as the acceleration of free fall does not depend on the mass
of the test body or its chemical composition.

For the experiments, Chladni patterns (fig. 9) emerging on
square plates vibrating with the frequencies of 150, 175, 179,
400 and 525 Hz were used. On the Fundamental Fractal, these
frequencies are distributed around the main nodes E〈−43〉 and

E〈−42〉 of electron stability, as fig. 10 shows.
The 5th generation of experiments dealt with 5 kingdoms

of nature – human, animal, vegetal, mineral and celestial bod-
ies. The transmission time extended throughout the day with-
out specific mental focus. The sender shall transmit the idea
of a concrete representative of one of these 5 kingdoms that
the receiver has to identify as detailed as possible. If the king-
dom of the transmitted representative was identified correctly
(for example, animal), the coefficient of success was counted
as 1/5, and if the representative was identified (for example,
lion), the transmission was double rated. In the 6th generation
of experiments, the sender tried to transmit one of five ‘states
of soul’. The first set of such states included courage, pa-
tience, joy, beauty and kindness, and the second set included
enthusiasm, calm, trust, gratitude and benevolence. The qual-
ities have been modified to avoid falling into monotony due
to the fact that after about a month the participants felt that
the exact perceptions decrease.

Results

A total of 242 experiments were carried out from Septem-
ber 2016 to November 2020, and the unexpected high rate of
success let the participants believe in the reality of telepathy.
With growing up experience, the receiver felt to be capable
observing the world through the eyes of the sender. Obvi-
ously, every kind of information can be transmitted and is not
limited by emotions or feelings, but can include detailed de-
scriptions of real objects as well as numbers, regular forms
and even sophisticated patterns or paintings.

The chance probability that the receiver is able to cor-
rectly guess one of five possibilities is 1/5 = 20%. How-
ever, the combined hit rates in our 114 experiments of that
type was 72%. Statistically, this excess would never occur by
chance; it corresponds to odds against chance of billions to
one. This fact indicates that sender and receiver had shared
indeed the same information. Such a high rate of success is
not typical for the branch. As reported in [1, 33], good hit
rates typically exceed the statistical expectation by 3 – 12%.
Therefore, a possible significance of special conditions is ob-
vious. Friendship and love are powerful connectors, and our
research would not be necessary for a confirmation. Although
these factors of success were always present in our research,
they alone cannot explain the exceptionally high hit rates.

Initially, the hit rates did correlate with the distance be-
tween sender and receiver depending on the vicinity to a main
equipotential surface of the Fundamental Field, but with in-
creasing experience, this factor did lose its significance. As
well, hypo-electromagnetic conditions initially did support
the occurrence of telepathic entanglements significantly. Also
modulated light initially did it, if the modulation frequency
did correspond with an attractor of electron or proton stabil-
ity. Despite this development, the statistics of the experiments
evidence the permanent significance of the temporal and spa-

Hartmut Müller. Physics of Numbers as Model of Telepathic Entanglement 121



Volume 17 (2021) PROGRESS IN PHYSICS Issue 1 (April)

Fig. 6: The frequency boundaries of the brain activity ranges and the corresponding attractors of proton (below) and electron (above)
stability of the Fundamental Fractal (2) in the natural logarithmic representation.

Fig. 7: The duration of transmission setup stages in minutes (below)
and the corresponding attractors of proton and electron stability.

Fig. 8: Domino number configurations applied in the 3th generation.

Fig. 9: Chladni patterns emerging on a vibrating square metal plate
driven with the frequencies 150, 175, 179, 400 and 525 Hz.

Fig. 10: The applied frequencies 150, 175, 179, 400 and 525 Hz and
the corresponding attractors of proton (below) and electron (above)
stability of the Fundamental Fractal (2) in the natural logarithmic
representation.

tial attractors for the dynamics of the telepathic entanglement.
Closer to the end of the four years’ experience, indeed, the du-
rations of the transmission setup stages automatically obeyed
the Fundamental Fractal in a very natural way.

Starting with the 2nd generation, the experiments were
carried out with two and more receivers. This fact in particu-
lar enables a more precise model selection and clearly shows
that telepathy is not limited by individual entanglement.

Conclusion

Finally, our experiments helped to discard some conventional
hypotheses provided to explain telepathy. Considering the
empirical fact that electromagnetic isolation supports tele-
pathic entanglement, today we discard the idea that telepathy
is based on electromagnetic waves. It would also be a joke to
think that gravitational waves could be responsible for telepa-
thy. We suppose that telepathy has nothing to do with signal
transmission. In some cases indeed, the receiver got the in-
formation before the sender decided to share it.

We hypothesize that besides of electromagnetic and grav-
itational fields, there is another long-range phenomenon – the
Fundamental Field – that is of pure numeric origin and non-
material, like consciousness. This Fundamental Field could
turn out to be a primordial field from which consciousness
originates. Being not limited by any physical process, the
Fundamental Field causes numeric entanglements affecting
any type of interaction.

Within our approach, telepathy is an access to a common
quantum physical pool of information. Thanks to the non-
locality of this pool, every telepathist can get the required in-
formation. Any process, any event updates the quantum phys-
ical information pool automatically. No sender is needed. Ac-
cessing the pool, the participant A seeks for information that
is related to the participant B.

Obviously, special conditions can facilitate this access. In
our experiments, those conditions were always related to the
Fundamental Field. Therefore, we propose numeric entangle-
ment as model of telepathic sharing of information.
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As currently understood, the Dirac theory employs a 4 × 1 type wavefunction. This
4× 1 Dirac wavefunction is acted upon by a 4× 4 Dirac Hamiltonian operator, in which
process, four independent particle solutions result. Insofar as the real physical meaning
and distinction of these four solutions, it is not clear what these solutions really mean.
We demonstrate herein that these four independent particle solutions can be brought
together under a single roof wherein the Dirac wavefunction takes a new form as a
4×4 wavefunction. In this new formation of the Dirac wavefunction, these four particle
solutions precipitate into three distinct and mutuality dependent particles (ψL, ψN , ψR)
that are eternally bound in the same region of space. Given that quarks are readily
found in a mysterious threesome cohabitation-state eternally bound inside the proton
and neutron, we make the suggestion that these Dirac particles (ψL, ψN , ψR) might be
quarks. For the avoidance of speculation, we do not herein explore this idea further but
merely present it as a very interesting idea worthy of further investigation. We however
must say that, in the meantime, we are looking further into this very interesting idea,
with the hope of making inroads in the immediate future.

I am among those who think that Science has great
beauty.

Marie Skłodowska-Curie (1867-1934)

1 Introduction

As currently understood, the Dirac theory [1, 2] employs a
4 × 1 type wavefunction, ψ. This 4 × 1 Dirac wavefunction
is acted upon by a 4 × 4 Dirac Hamiltonian operator, HD,
in which process, four independent particle solutions result,
i.e. ψ[1], ψ[2], ψ[3], and ψ[4]. To this day, insofar as the real
physical meaning and distinction of these four solutions, it re-
mains unclear what these solutions really mean. We demon-
strate herein that these four independent particle solutions can
be brought together under a single roof wherein the Dirac
wavefunction takes a new form as a 4 × 4 wavefunction. To
that end, we shall start by introducing the well-known Dirac
equation.

That is to say: for a particle whose rest-mass and wave-
function are m0 and ψ respectively, the corresponding Dirac
equation is given by:

ı~γµ∂µψ = m0c0ψ, (1)

where: ~ = 1.054571817 × 10−34 J s (CODATA 2018) is the
normalized Planck constant, c0 = 299792458 × 108 m s−1

(CODATA 2018) is the speed of light in vacuo, ı =
√
−1,

and:

γ0 =

 I2 ∅

∅ −I2

 , γi =

 ∅ σi

−σi ∅

 , (2)

are the 4 × 4 Dirac γ-matrices where I2 and ∅ are the 2×2
identity and null matrices respectively, and the four compo-
nent Dirac wave-function, ψ, is defined as follows:

ψ =


ψ0
ψ1
ψ2
ψ3

 =

 ψL

ψR

 , (3)

is the 4 × 1 Dirac four component wavefunction and ψL and
ψR are the Dirac [1, 2] bispinors that are defined such that:

ψL =

 ψ0

ψ1

 , and, ψR =

 ψ2

ψ3

 . (4)

Throughout this paper, unless otherwise specified, the Greek
indices will be understood to mean (µ, ν, ... = 0, 1, 2, 3) and
the lower case English alphabet indices (i, j, k ... = 1, 2, 3).

The Dirac equation can be recast into the Schrödinger for-
malism as follows: HDψ = Eψ, where E = −ı~∂/∂t is the
usual quantum mechanical energy operator, and:

HD = ı~c0γ
j ∂

∂x j − γ
0m0c2

0, (5)

is the Dirac Hamiltonian operator. In §4, we shall for the
purposes of efficiently making our point regarding the 4 × 4
wavefunction approach, use the Dirac equation in the Schrö-
dinger formalism.

Now, in closing this introductory section, we shall give
the synopsis of the present paper. In §2, we shall for instruc-
tive, completeness and self-containment purposes, present the
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traditional free particle solutions of the Dirac equation. The-
reafter in §3, we shall discuss some of the major shortcomings
of the Dirac equation – this we do in order to demonstrate that
there still is a lot more about the Dirac equation that still needs
to be understood. Then, in §4, we present the main task of the
present paper – i.e. the Dirac wavefunction is cast into a 4× 4
type wavefunction. Thereafter in §5, we proceed to make our
suggestion regarding the new formulation of the Dirac wave-
function. Lastly, in §6 a general discussion is given and no
conclusion is made.

2 Free particle solutions of the Dirac equation

The free particle solutions of the Dirac equation are obtained
by assuming a free particle wavefunction of the form: ψ =

ueıpµxµ/~, where: u, is a four component object, i.e. uT =

(u0 u1 u2 u3), where the superscript-T on u is the transpose
operator. This u-function is assumed to have no space and
time dependence. With this in mind, one will proceed to sub-
stituting this free particle solution: ψ = ueıpµxµ/~, into (1),
where-after some elementary algebraic operations – they will
be led to the following linear quad-set of simultaneous equa-
tions:

(E − m0c2
0)u0 − c0(px − ipy)u3 − cpzu2 = 0, (6a)

(E − m0c2
0)u1 − c0(px + ipy)u2 + cpzu3 = 0, (6b)

(E + m0c2
0)u2 − c0(px − ipy)u1 − cpzu0 = 0, (6c)

(E + m0c2
0)u3 − c0(px + ipy)u0 + cpzu1 = 0. (6d)

An important fact to note about the above array or set of
simultaneous equations is that the four solutions u j (where:
j = 0, 1, 2, 3) are superluminally entangled, that is to say, a
change in one of the components affects every other com-
ponent instantaneously i.e. in zero time interval. What this
means is that for linearly dependent solutions of u j, the Dirac
equation – just as it predicts spin as a relativistic quantum
phenomenon, it also predicts entanglement as a quantum phe-
nomenon. If they exist as a separate reality in different re-
gions of space, then, the particles, ψL, and, ψR, are entangled.

Without further ado, we shall now present the four formal
solutions of the Dirac equation, these are given by: ψ[k] =

u[k] exp
(
ıpµxµ/~

)
, where the u[k]’s are such that:

u[1] =



1

0

c0 pz

E + m0c2
0

c0(px + ipy)

E + m0c2
0


u[2] =



0

1

c0(px − ipy)

E + m0c2
0

−
c0 pz

E + m0c2
0


(7)

u[3] =



c0 pz

E − m0c2
0

c0(px + ipy)

E − m0c2
0

1

0


u[4] =



c0(px − ipy)

E − m0c2
0

−
c0 pz

E − m0c2
0

0

1


These solutions (2) are obtained as follows:

1. From (6), u0, and u1 are fixed so that: u0 = 1, and,
u1 = 0, and the resultant set of equations is solved for
u2, and, u3.

2. Similarly, from (6), u0, and u1 are fixed so that: u0 = 0,
and, u1 = 1, and the resultant set of equations is solved
for u2, and, u3.

3. Again, from (6), u2, and u3 are fixed so that: u2 = 1,
and, u3 = 0, and the resultant set of equations is solved
for u0, and, u1.

4. Similarly, from (6), u2, and u3 are fixed so that: u2 = 0,
and, u3 = 1, and the resultant set of equations is solved
for u0, and, u1.

Now, having presented the solutions of the Dirac equation,
we shall proceed to present what we feel are some of the im-
portant major shortcomings of the Dirac equation.

3 Major shortcomings of the Dirac equation

While the Dirac equation is one of the most successful equa-
tions in physics, it is not without its own shortcomings. We
here briefly review some of its shortcomings.

3.1 Anomalous gyromagnetic ratios

It is a well-known fact that in its bare and natural form, the
Dirac equation predicts a gyromagnetic ratio (gD) equal to
two (i.e. gD = 2) and this prediction is very close to the gyro-
magnetic ratio of the electron [gE = 2 + 0.002319304362(2)],
hence, the Dirac equation is said to give a good description
of the electron. On the contrary, the spin-1/2 proton (gE) and
neutron (gN), which – like the electron – are thought to be
fundamental particles and thus are naturally expected to read-
ily submit to a successful description by the Dirac equation –
these particles have gyromagnetic ratios that are at variance
i.e. (gP = 2 + 3.5856947(5); gN = 2 − 5.8260855(9)) with the
Dirac prediction. The Dirac equation lacks in its nature in-
frastructure the devices to correctly predict the g-ratio of any
arbitrary spin-1/2 particle. This state of affairs and aspect of
the Dirac equation is very disappointing. In a future paper,
we will propose a solution to this problem. We must say that,
in the existing literature, there exists appropriate amendments
that have been made to the Dirac theory in order to solve this
problem. However, these solutions lack the much needed uni-
versal character.
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3.2 Negative energy solutions

Further – as is well-known, one of Dirac’s purpose in the for-
mulation of his equation was to eliminate the unwanted neg-
ative energy solutions present in the Klein-Gordon equation
[3, 4]. However, negative energy solutions are still present in
Dirac’s equation, and this led Dirac [5] to accept these solu-
tions as physically realistic and to propose the existence of
antimatter. Carl Anderson [6] confirmed Dirac’s hypothesis
and latter, Giuseppe Occhialini and Patrick Blackett [7] did
the same.

The existence of antimatter is now commonplace in the
scientific literature. What is not clear about this antimatter
particles (antiparticles) is whether or not they have negative
energy and mass. Do antimatter particles fall up or down in
a gravitational field? Experiments [8] are not clear and this
question still needs to be answered (see e.g. [9–12]). For
according to Einstein’s [13] mass energy equivalence (E =

mc2
0), if the energy of antiparticles is negative, their mass

should be negative too. If this is the case, it follows from
Newton’s Law of Gravitation that in a gravitational field, an-
tiparticles aught to fall up and not down!

3.3 Whereabouts of antimatter

Furthermore – apart from the the question of whether antipar-
ticles fall up or down, there is the yet to be an answer to the
question of the whereabouts of this antimatter [14–16]. The
Dirac equation not only is symmetric under electric Charge
Conjugation (C), but, symmetric under all the known dis-
crete symmetries of Time (P) and Parity (P) reversal includ-
ing the combination of any of these these discrete symme-
tries – i.e. CP, CT, PT, and, CPT. This symmetric nature of
the Dirac equation leads to the prediction that the Universe
must contain equal amounts of matter and antimatter. This is
at variance with physical experience. Otherwise, due to the
annihilation of matter and antimatter into radiation, the Uni-
verse would be a radiation bath, which is clearly not the case.

This prediction of the Dirac equation is ‘very unfortunate’
because it is at complete variance with physical and natural as
we know and experience it. That is to say, given that matter
and antimatter will annihilate to form radiation should they
ever come into contact, the exist of equal positions of matter
and antimatter in the Universe would mean that if the Dirac
prediction on the matter-antimatter census is correct, then, the
Universe aught to be no more than a radiation bath. Clearly,
this is not what we see around us.

3.4 Lack of a universal character

Additionally – every fermion particle (electron, proton, neu-
tron, neutrinos, quarks etc) in particle physics is described
by the Dirac equation. This gives the superficial impression
that the Dirac equation is a universal equation for all spin-1/2
particles. A closer look will reveal that, while this equation is

used to describe fermion, it needs to be supplemented in or-
der to match-up with experimental data. As already pointed
out in §3.1, the g-ratios of every other particle save for that
of the electron are not in conformity with the natural Dirac
equation. If the Dirac equation were indeed a universal equa-
tion for all fermions, it must contain within its natural infras-
tructure the necessary adjustable parameters that would make
it fit with the experimental data of a given particle. These
post-experimental adjustments that are made in order that the
Dirac equation fits to experimental data are of ad hoc nature.

Apart from the inability to explain in a smooth manner the
g-ratios of different fermions, we have the issue of the univer-
sality of spin. That is to say, the Dirac equation is an equa-
tion only capable of explaining spin-1/2 particles, an not any
general spin particle. For example, in order to explain spin-
3/2, we need to find another equation for this – the Rarita-
Schwinger equation [17] in this case. In general, fermions
have spin ±n/2 with: n = 1, 3, 5, 7, ..., 2r + 1, etc. This im-
plies that a new equation is required for every spin particle.

3.5 Fundamental origins of the Dirac equation

Lastly – another very important and yet largely ignored real-
ity is that of the fundamental origins of the Dirac equation.
That is to say, despite success, it remains that Dirac guessed
his equation – albeit in a very educated manner. All he sought
was an equation linear in both the space and time derivatives
such that when this equation is “squared” it would yield the
Klein-Gordon equation. It can be said that this issue of the
origins of the Dirac equation is not unique to the Dirac equa-
tion, but all quantum mechanical equations.

The Klein-Gordon equation is derived from the well-
known Einstein [18] energy-momentum dispersion relation:
E2 = p2c2

0 + m2
0c4

0, via the successful method of canoni-
cal quantization that was used by Schrödinger to arrive at his
successful equation that describes the atomic world. Dirac’s
method of arriving at his equation is not fundamental at all,
and to this day, no real progress on this has been made. Where
does the Dirac equation really come from? This is yet another
question that also needs an answer.

4 4 × 4 Dirac wavefunction

The very fact that the Dirac Hamiltonian, HD, is a 4 × 4
component object acting on, ψ, this readily implies that, ψ,
can be a 4 × k component object where: k = 1, 2, 3, 4, 5, etc.
If: 1 ≤ k < 4, the resulting system of equations is overde-
termined and will thus have more than one solution, and if:
k > 4, the resultant system of equations is under-determined
and is unable to yield a solution. If: k = 4, the system has
one and only solution, and this is the case of the 4 × 4 Dirac
wavefunction that we would like to have a look at.

In the event of a 4×4 Dirac wavefunction where as usual:
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ψ = ueıpµxµ/~, the u-function is such that:

u =


u00 u01 u02 u03

u10 u11 u12 u13

u20 u21 u22 u23

u30 u31 u32 u33

 =

 ua ub

uc ud

 , (8)

where likewise:

ua =

 u00 u01

u10 u11

 ub =

 u02 u03

u12 u13


uc =

 u20 u21

u30 u31

 ud =

 u22 u23

u32 u33

 . (9)

Of this 4 × 4 component wavefunction, ψ, we shall require of
it to observe the following constraint:

ψ†ψ = ψψ† = %I4, (10)

where: I4, is the 4 × 4 identity matrix, and, % ∈ R, is a real
zero-rank object – it is the quantum mechanical probability
density amplitude. This constraint i.e. (10) is required by the
unified theory of gravitation and electromagnetism [19] that
we are currently working on.

Now, substituting the new 4× 4 component wavefunction
into the Dirac equation (1), we will have: (E − m0c2

0)I2 −c0~σ · ~p

c0~σ · ~p −(E + m0c2
0)I2

  ua ub

uc ud

 = 0. (11)

As we proceed, the reader must take note of the fact that the
object, ~σ · ~p, is a 2 × 2 matrix, i.e.:

~σ · ~p =

 pz px − ıpy
px + ıpy −pz

 . (12)

This matrix, ~σ · ~p, is hermitian.
Now, from (11), four equations will result and these are:

ua =

 c0~σ · ~p
E − m0c2

0

 uc, (13a)

ub =

 c0~σ · ~p
E − m0c2

0

 ud, (13b)

uc =

 c0~σ · ~p
E + m0c2

0

 ua, (13c)

ud =

 c0~σ · ~p
E + m0c2

0

 ub. (13d)

For a solution to this set of simultaneous equation, we shall
set as a constraint the following:

ua = ud = I2
√
%/2. (14)

This naturally leads to the following for, ub, and, uc, i.e.:

ub =
√
%/2

 c0~σ · ~p
E − m0c2

0

 . (15a)

uc =
√
%/2

 c0~σ · ~p
E + m0c2

0

 . (15b)

Hence:

u =
√
%/2


I2

c0~σ · ~p
E − m0c2

0
c0~σ · ~p

E + m0c2
0

I2

 . (16)

Writing this 4×4 matrix (16) in full, it will be as it appears in
(17). Immediately, one will be quick to notice that columns
(1), (2), (3), and (4) of this matrix (17) are in-fact the tra-
ditional solutions (u[1], u[2], u[3], u[4]) to the Dirac equation
given in (2). What this means is that the 4×4 wavefunction is
a grand synthesis of these four traditional solutions into one
giant set of mutually dependent quadruplet system of parti-
cles.

5 Quarks

Apart from the simplification of bringing four independent
particle solutions into a single particle solution, we suggest
that this recasting of the Dirac wavefunction into a 4 × 4
wavefunction provides additional physical simplification in
the analysis of the solution. To that end, let us start-off by
writing down the full 4×4 Dirac wavefunction: ψ = ueıpµxµ/~.
For the 4 × 4 Dirac wavefunction, the u-function has been
defined in (17) and from that definition, it follows that:

ψ =

 ψN ψR

ψL ψN

 , (18)

where – accordingly:

ψN = I2
√
%/2 exp

(
ıpµxµ

~

)
, (19a)

ψR =
√
%/2

 c0~σ · ~p
E − m0c2

0

 exp
(
ıpµxµ

~

)
, (19b)

ψL =
√
%/2

 c0~σ · ~p
E + m0c2

0

 exp
(
ıpµxµ

~

)
. (19c)

In-comparison, i.e. between ψ as defined in (3) and the resul-
tant definition of it in (18), we see that the initially four parti-
cles: ψa, ψb, ψc, and, ψd, have been reduced to three because,
ψa, and, ψd, are identical – i.e. ψa = ψd = ψN . In (18), we
have according to the parlance of the Dirac formalism iden-
tified ψb, and, ψc, with the right and the left-handed Dirac
components. In terms of handedness, we have in the same
parlance defined a new form of handedness in the ψN-particle,
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u =
√
%/2



1 0
c0 pz

E − m0c2
0

c0(px − ıpy)

E − m0c2
0

0 1
c0(px + ıpy)

E − m0c2
0

−
c0 pz

E − m0c2
0

c0 pz

E + m0c2
0

c0(px − ıpy)

E + m0c2
0

1 0

c0(px + ıpy)

E + m0c2
0

−
c0 pz

E + m0c2
0

0 1


(17)

a handedness that we shall call – neutral-handedness, hence,
ψN , is a neutral-handed particle, this particle is neither left nor
right-handed, hence our calling it neutral-handed particle and
hence the subscript-N in its denotation.

Now, in the set: ψN , ψR, and, ψL, we have a trio of parti-
cles that are not only mutually dependent but entangled, and
in addition to this, they are confined in the same region of
space. Each of these particles do not exist independently of
the other, they can never be free of each other far-away from
the region defined by the ψ-particle system. The boundary in
spacetime of the ψ-particle system is defined by the normal-
ization of conditions of this particle system, i.e. 〈ψ ||ψ〉 = I4.

Now, given the following there facts:

1. The proton and neutron are each known to contain three
quarks living inside them.

2. Further, the quarks strongly appear to be unable to exist
independent of each other.

3. Furthermore, these quarks strongly appear to be eternal
prisoners inside the proton and neutron. They are un-
able to exist beyond the radius demarcating the proton
and neutron particle systems.

From these facts – i.e. the obvious similarity in the nature of
quarks and the trio ψN , ψR, ψL, it is natural to wonder whether
or not these three particles ψN , ψR, ψL are the quarks whose
origins we have thus far elusively sought to understand? From
this viewpoint, the present recasting of the Dirac wavefunc-
tion surely opens up a new avenue of thinking regarding the
Dirac equation and quarks, hence justifying the need to seri-
ously consider the 4×4 Dirac wavefunction. With that having
been said, we must at this very juncture say that – it is not our
intention to explore this idea that the set (ψN , ψR, ψL) might
explain quarks and the reason for this is simple that we feel it
is too early for us to do so, otherwise all that we would do is
to speculate.

6 Discussion

As currently accepted and understood, the Dirac theory [1, 2]
employs a 4 × 1 type wavefunction. This 4 × 1 Dirac wave-
function is acted upon by a 4×4 Dirac Hamiltonian, in which
process, four independent particle solutions result and inso-
far as the real physical meaning and distinction of these four

solutions, it is not clear what these solutions really mean. It
is this that this paper has made an endeavour to provoke a
thought process were a physical meaning can be attached to
these four independent particle solutions of the Dirac equa-
tion and this is via the recasting of the Dirac wavefunction
into a 4 × 4 type wavefunction.

We first presented this idea of a 4 × 4 Dirac wavefunc-
tion in [20,21]. Prior to the said presentation [20,21], we had
never seen or heard of it anywhere in the literature. Therein
[20], this idea was presented as no more than a mathemat-
ical curiosity, with no physical meaning attached to it. We
had to come back to this idea now because we realised that
it is necessary for the theory that we are currently working
on [19], that is, a unified field theory of the gravitational and
electromagnetic phenomenon.

What we have herein done with Dirac’s four independent
particle solutions, is to demonstrate that these can be rep-
resented as a quadruplet particle system wherein the Dirac
wavefunction takes a new form as a 4×4 wavefunction. In this
new formation, these four particle solutions precipitate into
three distinct and mutuality dependent particles (ψL, ψN , ψR)
that are permanently bound in the same region of space.

Realizing that the proton and neutron are composite parti-
cles each comprising three quarks that are in (color) confine-
ment, we proceeded logically to make the natural suggestion
to the effect that these Dirac particles (ψL, ψN , ψR) might be
quarks. Whether or not these particles are quarks, this surely
is something that further investigations will have to be estab-
lish.
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