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Galileo’s Principle and the Origin of Gravitation
According to General Relativity

Larissa Borissova and Dmitri Rabounski
Puschino, Moscow Region, Russia

E-mail: rabounski@yahoo.com, lborissova@yahoo.com

Using the chronometrically invariant notation of General Relativity (chronometric in-
variants are the physically observable projections of four-dimensional quantities onto
the time line and the three-dimensional space of an observer), we deduce Galileo’s
principle and Newton’s law of gravitation as a particular case of the chr.inv.-formula for
the gravitational inertial force acting in the four-dimensional pseudo-Riemannian space
(space-time of General Relativity). This is a “mathematical bridge”, connecting the em-
pirical laws of Newton’s theory of gravitation with the purely geometric laws of Gen-
eral Relativity. We also show that the origin of the gravitational field in the space of the
Schwarzschild mass-point metric is a spherical surface that surrounds any mass-point
at a very small radius, equal to the gravitational radius calculated for the mass. There, on
the spherical surface, a breaking of the three-dimensional observable space takes place,
and the observer’s physical observable time stops. It is not possible to get these results
using the general covariant notation of General Relativity, because physically observ-
able quantities in the general covariant notation are not mathematically defined.

We dedicate this article to Prof. Kyril Stanyukovich
(1916 –1989), our long friendly conversations with
whom in the 1980s formed the basis of this study 40
years later and prompted us to write this article.

1 Problem statement

Our closest colleague, patron and friend over decades was
Prof. Kyril Stanyukovich (1916 –1989). In addition to his
groundbreaking works on gas dynamics and super-powerful
non-nuclear ammunition, he was also a prominent researcher
in the field of General Relativity; see [1–4] and References
therein. Over many years in the 1980s, he repeatedly focused
our attention onto a still unsolved problem: in the framework
of Riemannian geometry (which is the basis of General Rela-
tivity), the fundamental laws of Newtonian classical mechan-
ics have not yet been mathematically deduced as an unam-
biguous special case of the purely geometric laws of General
Relativity.

This problem was also pointed out earlier by Alexei Pet-
rov (1910–1972), the outstanding scientist in the field of Gen-
eral Relativity, who in 1950 introduced an algebraic classifi-
cation of the spaces (and the gravitational fields) known in the
framework of General Relativity [5–8]. This classification is
called the Petrov classification of Einstein spaces thanks to
his monograph Einstein Spaces [7], first published in 1961.

In our personal opinion, the fundamental laws of New-
tonian classical mechanics have not yet been deduced as a
special case of the geometric laws of General Relativity only
because the researchers, who worked on this problem earlier,
used the general covariant notation of General Relativity. In
the framework of the general covariant notation, physically
observable quantities are not mathematically determined. As

a result, there is no clear mathematical transition from the
four-dimensional quantities of General Relativity to the three-
dimensional quantities of Newton’s theory, which are measur-
able in experiment.

In this paper, we will solve the mentioned problem using
the chronometrically invariant notation of General Relativity,
i.e., the mathematical apparatus of chronometric invariants,
which are mathematically determined as physically observ-
able quantities in the four-dimensional pseudo-Riemannian
space (space-time). To do this, we compare the mathematical
basis of Newton’s theory of gravitation with the mathemat-
ical basis of General Relativity. This comparison will allow
us to consider the fundamental laws of Newton’s theory as the
three-dimensional spatial projections of the four-dimensional
(space-time) laws of General Relativity.

2 The mathematical basis of Newton’s theory of gravita-
tion and that of Einstein’s theory of relativity

It is well known that Newton’s theory of gravitation and Ein-
stein’s theory of relativity are based on different mathemati-
cal foundations. The bases of both theories are sets, each of
which has its own method of measuring infinitely small dis-
tances ds between its elements (points). Such sets are called
metric spaces, and the quantity ds2 is called the space met-
ric. Metric spaces play a huge rôle in topology, geometry,
and in the sections of theoretical physics where we study the
structure of space and time.

Newton’s fundamental laws, including the Law of Univer-
sal Gravitation, are formulated in the framework of the three-
dimensional flat, homogeneous and isotropic (Euclidean)
space E3. Such a space allows the existence of inertial ref-
erence frames: in an inertial reference frame, free bodies
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either travel uniformly and rectilinearly or are at rest rela-
tive to the observer. In any inertial reference frame, time is
homogeneous, and space is homogeneous and isotropic. The
homogeneity of time means uniformity of its pace. The ho-
mogeneity of a space means the equality of all its points, and
the isotropy of a space means the equality of all directions
in it. The homogeneity and isotropy of space follow from
Newton’s first law (the law of inertia), which says: “if in the
region, where inertial reference frames exist, no forces act on
a body, or all forces acting on the body balance each other,
then the body is either at rest or travels rectilinearly and uni-
formly”.

In a three-dimensional flat space E3 (Euclidean space),
the square of the length of an elementary three-dimensional
interval ds, characterizing the distance between two infinitely
close points of the space, in the Cartesian coordinates x, y, z
has the form

ds2 = dx2 + dy2 + dz2, (1)

where the numerical value of ds2 can only be positive and,
hence, the three-dimensional interval ds is always a substan-
tional quantity. The metric (1) is called positive definite, and
the space E3 described by it is properly Euclidean. Here the
word “properly” means that all basis vectors of E3 have sub-
stantional lengths. The three-dimensional curvature of the
space E3 is zero. For this reason, the space E3 is flat. The
condition ds2 = 0 is satisfied only in the coordinate origin
x = y = z = 0.

The laws of Newtonian classical mechanics, including
Newton’s law of gravitation, are formulated in the framework
of a flat three-dimensional (Euclidean) space E3.

Einstein’s theory of relativity was created to describe
space and time as a single entity, which is “space-time”. The
necessary prerequisites for Einstein’s theory were obtained
in the works of several other scientists, mainly in the works
authored by Hermann Minkowski and Henri Poincaré. The
basis of the theory is the four-dimensional curved pseudo-
Riemannian space V4. The prefix “pseudo” in this case indi-
cates the fundamental difference between the mathematical
basis of Newton’s theory and the mathematical basis of Ein-
stein’s theory: this prefix means that one coordinate basis
vector (time basis vector) has an imaginary length, and three
other three-dimensional (spatial) basis vectors have substan-
tional lengths (or vice versa, which is the same).

Initially, Einstein created the Special Theory of Relativity,
the mathematical basis of which is the flat four-dimensional
pseudo-Euclidean space E4, later called the Minkowski space.
The Minkowski space is a simplest particular case of four-
dimensional pseudo-Riemannian spaces, which is homoge-
neous and isotropic, while its four-dimensional curvature is
zero: the three-dimensional subspace of the Minkowski
space may be non-uniform and anisotropic in one reference
frame, but these factors in the Minkowski space depend on
the observer’s reference frame and, therefore, they can be re-

duced to zero simply by choosing another different reference
frame. Bodies that are not affected by external forces travel
uniformly and rectilinearly in the Minkowski space.

The Minkowski space is described by the metric

ds2 = – (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2, (2)

where x0 = ct is the time coordinate, in which c is the velocity
of light, t is the ideal (uniform) coordinate time, and x1 = x,
x2 = y, x3 = z are the Cartesian three-dimensional (spatial)
coordinates. In this notation, each of the three-dimensional
spatial basis vectors ei (where i = 1, 2, 3) has a substan-
tional unit length, and the time basis vector e0 has an imag-
inary unit length (e0)2 = –1 or vice versa, depending on
the choice for the space signature (−+++) as in (2) above or
(+−−−) as is most commonly used in General Relativity.

The basic space (space-time) of the General Theory of
Relativity is the curved four-dimensional pseudo-Riemannian
space V4 — the generalization of the flat four-dimensional
pseudo-Euclidean (Minkowski) space E4, which can be inho-
mogeneous, anisotropic, etc. per se, i.e., independently of the
choice of the observer’s reference frame. The laws of Gen-
eral Relativity are formulated in the framework of the curved
four-dimensional pseudo-Riemannian space V4.

The square of the elementary distance ds between two in-
finitely close points (i.e., the space metric) in V4 is expressed
as follows

ds2 = gαβ dxαdxβ =

= g00 dx0dx0 + 2g0i dx0dxi + gik dxidxk, (3)

where α, β = 0, 1, 2, 3 are the space-time (four-dimensional)
indices, i, k = 1, 2, 3 are the spatial (three-dimensional) in-
dices, and gαβ is the fundamental metric tensor of the space
(it is a symmetric tensor, i.e., gαβ = gβα). In the pseudo-
Riemannian space, the time basis vector e0 has the length de-
pendent on the gravitational field potential, and the lengths of
the three-dimensional spatial basis vectors ei depend on the
inhomogeneity and anisotropy of space, i.e., they are not unit
length vectors, in contrast to the four-dimensional pseudo-
Euclidean (Minkowski) space. The factors that deviate the
lengths of the space basis vectors from unit are determined by
the components of the fundamental metric tensor gαβ (while
in the Minkowski space we can always find an inertial ref-
erence frame, in which the diagonal components of gαβ are
units, and its non-diagonal components are zero). The time
component g00 characterizes the gravitational field potential,
the spatial components gik characterize the inhomogeneity
and anisotropy of the observer’s three-dimensional space, and
the mixed (space-time) components g0i characterize the an-
gle of inclination of his three-dimensional space to the lines
of time (the spaces in which this inclination takes place are
called non-holonomic spaces; see Section 3, where we ex-
plain the basics of the theory of physically observable quan-
tities in the space-time of General Relativity). In particular,
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the physically observable time of the observer depends on the
magnitude of the gravitational potential at the place of obser-
vation, and also on the magnitude and direction of the rotation
speed of his three-dimensional physical space (its inclination
to the time line).

As a result of the aforementioned absolute factors of gαβ,
which cannot vanish by choosing an inertial reference frame
in the pseudo-Riemannian space (in contrast to the pseudo-
Euclidean space of Special Relativity), we formulate New-
ton’s first law (the law of inertia) in General Relativity as
follows: “a body can be at rest or travelling rectilinearly and
uniformly only in the absence of the gravitational field, in-
homegeneity and isotropy of space and its rotation (the latter
means the absence of the inclination of the three-dimensional
space to the time lines)”.

3 Physically observable quantities in the space-time of
General Relativity

Before comparing the mathematical foundations of Newton’s
theory of gravitation and Einstein’s theory of relativity, we
must explain the basics of the theory of physically observable
quantities in the four-dimensional pseudo-Riemannian space
(which are also known as the Zelmanov chronometric invar-
iants).

This mathematical apparatus that uniquely determines
physically observable quantities in the space-time of General
Relativity was created in 1944 by Abraham Zelmanov [9–11],
who was our teacher. In addition to Zelmanov’s original pub-
lications, which were very concise, this mathematical appara-
tus was explained in detail by us in a special Chapter given in
each of our three research monographs, originally published
in 2001 [12,13] and 2013 [14]. The most comprehensive sur-
vey of Zelmanov’s mathematical apparatus was published by
us in 2023, in the special paper [15], where we collected ev-
erything (or almost everything) that we know about this math-
ematical apparatus personally from Zelmanov and on the ba-
sis of our own research studies.

Over the past decades, the following problems of General
Relativity have been solved using the mathematical apparatus
of chronometric invariants:

— The theory of non-quantum teleportation in the space-
time of General Relativity [12, 16, 17], the basics of
which were first outlined in 2001 in our book [12] and
then developed in all necessary details in 2022 [17];

— The theory of the direct and opposite flow of time, and
also the three kinds of particles in the space-time of
General Relativity, published in 2001, in the book [12];

— The theory of frozen/stopped light according to Gen-
eral Relativity, which explained the frozen light exper-
iment (2000). This theory was first drafted in 2001, in
the 1st edition of our book [12], then in 2011 published
in all necessary details in our paper [18] and since 2012
added to all subsequent editions of the book [12];

— The cosmological mass-defect — a new effect of Gen-
eral Relativity, predicted in 2011 [19], according to
which the observed masses of cosmic bodies depend
on their distance from the observer if they are at cos-
mological large-scale distances from him (depending
on the specific metric of space);

— The non-linear cosmological redshift, deduced in 2012
[20] for various space metrics, including the Friedmann
expanding universe and the de Sitter static universe.
Three short papers [21–23] were then focused on spe-
cific aspects of the obtained solutions, and a final anal-
ysis of those of them that are most suitable for explain-
ing the non-linear cosmological redshift observed by
astronomers was given in 2013, in the paper [24];

— The deflection of light rays and mass-bearing particles,
and also the length stretching and time dilation in the
field of a rotating body — these are three new effects
of General Relativity, deduced in 2023 [25, 26];

— The condensed matter model of the Sun, created in the
framework of General Relativity, according to which
the space breaking in the gravitational field of the Sun
meets the maximum concentration of the asteroids in
the Asteroid belt. This study was first published in
2009–2010 [27, 28];

— The theory of the internal constitution of stars and the
sources of stellar energy according to General Relativ-
ity, which was first published in 2013, in the book [14];

— The exact solutions, obtained in 2005 to the equations
of deviating geodesics for solid-body and free-mass
gravitational wave detectors [29,30] (different from the
approximate solutions presumed in 1961 by Joseph
Weber). Since 2008, this study was added to all sub-
sequent editions of our book [12]. The obtained solu-
tions are based on the comprehensive theoretical study
of gravitational waves performed during a decade in
1968–1978 [31–33];

— “Zitterbewegung” of travelling electrons, explained in
2023 by Pierre Millette [34] on the basis of the the-
ory of spin-particles in General Relativity, published in
2001 [13, Chapter 4].

For a complete list of the published research studies per-
formed using the mathematical apparatus of chronometric in-
variants as of January 2023, see Bibliography in our compre-
hensive paper on this subject [15].

In short, the essence of Zelmanov’s mathematical appara-
tus of chronometric invariants (known also as the chronomet-
rically invariant formalism) is as follows. Zelmanov unam-
biguously determined physically observable quantities in the
space-time of General Relativity as the projections of four-
dimensional tensor quantities onto the time line and the three-
dimensional spatial section of the space-time, which are as-
sociated with an observer. Such projections remain invariant
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throughout the three-dimensional spatial section associated
with the observer (his observable three-dimensional physical
space), i.e., they are “chrono-metric invariants” in the physi-
cal reference frame of the observer and depend on the phys-
ical and geometric properties of his space, such as the grav-
itational potential, rotation, curvature, etc., which are deter-
mined by the respective components of the fundamental met-
ric tensor gαβ and their derivatives.

The “chronometrically invariant” projections of any four-
dimensional tensor quantity onto the time line and the three-
dimensional spatial section associated with an observer are
calculated using the Zelmanov operators of projection, which
take the physical and geometric properties of the observer’s
space into account (see our comprehensive survey [15] of the
chronomerically invariant formalism for detail).

As a result, the square of the four-dimensional (space-
time) interval ds2 = gαβ dxαdxβ, expressed with chronomet-
rically invariant (physically observable) quantities, has the
form

ds2 = c2dτ2 − dσ2, (4)

where dτ is the chr.inv.-time interval (physically observable
time interval), obtained as the chr.inv.-projection of the four-
dimensional displacement vector dxα onto the observer’s time
line

dτ =
√
g00 dt −

1
c2 vi dxi,

√
g00 = 1 −

w
c2 , (5)

and dσ2 is the square of the chr.inv.-spatial interval (physi-
cally observable three-dimensional spatial interval)

dσ2 = hik dxidxk, (6)

created using the chr.inv.-metric three-dimensional tensor hik

hik = −gik +
1
c2 vivk , hik = −gik, hi

k = δi
k , (7)

which is the chr.inv.-projection of the fundamental metric ten-
sor gαβ onto the observer’s three-dimensional space (the spa-
tial section of the space-time, which is associated with him).
So forth, w is the physically observable chr.inv.-potential of
the gravitational field that fills the observer’s space, and vi is
the three-dimensional vector of the linear velocity of rotation
of the observer’s space

w = c2 (
1 −
√
g00

)
, vi = −

cg0i
√
g00

, (8)

dxi is the elementary interval of the three-dimensional spa-
tial coordinates (i = 1, 2, 3), and vi = dxi/dτ is the chr.inv.-
velocity vector (physically observable three-dimensional ve-
locity), which is different from the three-dimensional coordi-
nate velocity vector ui = dxi/dt.

If all g0i of a four-dimensional (space-time) metric ds2

are zero, then such space-time is holonomic. In this case the
three-dimensional spatial section associated with the observer

(his observed three-dimensional space) is everywhere orthog-
onal to the time lines x0 = ct = const that pierce it. If at least
one of the components g0i of the four-dimensional metric is
different from zero, then such space-time is non-holonomic.
In such a (non-holonomic) space-time, the observer’s three-
dimensional spatial section x0 = const is inclined to the time
lines. In this case, at different points the observed three-
dimensional space can be inclined to the time lines at dif-
ferent angles depending on the local geometric structure of
the particular four-dimensional space-time.

The formula for the physically observable time interval
dτ (5) can therefore be re-written as

dτ =

(
1 −

w + vi ui

c2

)
dt , (9)

where vi ui is the scalar product of the linear rotational veloc-
ity of the observer’s space vi and the three-dimensional coor-
dinate velocity vector ui

vi ui = |vi ||ui | cos (vi ui) , (10)

which means that if the vectors vi and ui are orthogonal to
each other, then their scalar product vi ui = 0. In this case,
the rotation of the three-dimensional reference space does not
contribute to the change in the observer’s physically observ-
able time τ. If the vectors vi and ui are inclined to each other,
then their mutual orientation in space affects the physically
observable time τ, as well as its direction to the future or to
the past: in the case, where the vector of the linear rotational
velocity of the observer’s reference space vi is inclined in the
same direction as the velocity motion vector of his reference
body ui (i.e., vi ui > 0), the observer’s physical time τ flows
faster; in the case, where the vectors vi and ui are inclined
in opposite directions (vi ui < 0), the observed time τ flows
slower. This purely theoretical conclusion was confirmed by
the Hafele and Keating experiment (1971, repeated in 2005),
in which they compared the readings of atomic clocks in-
stalled on board a jet airplane flying along a parallel around
the globe with the readings of atomic clocks left on the sur-
face of the Earth [35–39]. Thus, it was proven that the ob-
served time on our planet depends on the following physical
factors: 1) the magnitude of the gravitational field potential at
the place of observation; 2) the speed of the Earth’s rotation
around its own axis (diurnal rotation); 3) the speed of the ob-
server’s motion relative to the Earth’s rotation. For detail, see
our recent publication on this subject [26].

In the theory of chronometric invariants, there are phys-
ically observable (chronometrically invariant) analogues of
the quantities known in Newtonian classical mechanics. This
fact will help us to find a connexion between Newton’s theory
of gravitation and General Relativity.

So, the physical reference space of a real observer (which
is his physical reference frame) is characterized by the fol-
lowing physically observable chr.inv.-quantities. These are
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the chr.inv.-vector of the physically observable gravitational
inertial force Fi acting in the observer’s space, the first (grav-
itational) term of which is created by the gradient of the grav-
itational potential w and the second (inertial) term is created
by the centrifugal force of inertia

Fi =
1
√
g00

(
∂w
∂xi −

∂vi

∂t

)
,
√
g00 = 1 −

w
c2 , (11)

the antisymmetric chr.inv.-tensor Aik of the physically observ-
able three-dimensional angular velocity of rotation of the ob-
server’s space

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2

(
Fi vk − Fk vi

)
, (12)

the symmetric chr.inv.-tensor Dik of the physically observable
deformation rate of the space

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik =
∗∂ ln
√

h
∂t

, h = det ‖ hik ‖

 , (13)

the chr.inv.-Christoffel symbols of the 1st rank ∆ jk,m and the
2nd rank ∆i

nk (they are the coefficients of the physically ob-
servable inhomogeneity of the observer’s space)

∆i
nk = him∆nk,m =

1
2

him
(
∗∂hnm

∂xk +
∗∂hkm

∂xn −
∗∂hnk

∂xm

)
, (14)

and the physically observable chr.inv.-curvature of the ob-
server’s space, which is expressed with the chr.inv.-curvature
tensor Clkij that has all properties of the Riemann-Christoffel
curvature tensor throughout the entire three-dimensional spa-
tial section associated with the observer, whereas its subse-
quent contractions produce the chr.inv.-curvature scalar C

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
=

= Hlkij −
1
2

(
2 Aki Djl + Aij Dkl + Ajk Dil +

+ Akl Dij + Ali Djk

)
, (15)

Clk = C ··· i
lki · = Hlk −

1
2

(
Akj D j

l + Alj D j
k + Akl D

)
, (16)

C = hlkClk = hlkHlk , (17)

where it is denoted, for brevity and a better association with
the Riemann-Christoffel curvature tensor,

H ··· j
lki · =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆m
il ∆

j
km − ∆m

kl∆
j
im , (18)

and the operators
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi +
vi

c2

∗∂

∂t
(19)

are the chr.inv.-operators of derivation with respect to time t
and the spatial coordinates xi.

It should be noted that the physically observable chr.inv.-
curvature of the observer’s space is depended on not only the
space inhomogeneity (Christoffel symbols), but also on the
rotation Aik and deformation Dik of the space, and, therefore,
does not vanish in the absence of the gravitational field.

Since the task here is to find a connexion between Ein-
stein’s theory of relativity and Newton’s theory of gravita-
tion, in which space-time is static (non-deforming) and flat,
we will not consider the deformation and curvature of space
(i.e., we will assume that Dik = 0 and Clkij = 0). In addition, if
in this particular case the three-dimensional observable space
does not rotate or if its rotation velocity does not depend on
time, then the gravitational inertial force Fi depends only on
the numerical value of the gravitational potential w and its
spatial derivatives. We will therefore consider this particu-
lar case in the next Section to deduce Galileo’s principle and
Newton’s law of gravitation as consequences of the purely
geometric laws of General Relativity.

4 Galileo’s principle and Newton’s law of gravitation in
the framework of General Relativity

According to the biography of Galileo, in 1589 he conducted
his famous experiments with bodies falling from the Lean-
ing Tower of Pisa to the surface of the Earth. Galileo wanted
to prove his case in a correspondence dispute with Aristo-
tle, who, in turn, about 2000 years before Galileo, in 360–
330 B.C., argued that the motion speed of falling bodies de-
pends on the magnitude of their masses: he argued the greater
the mass of a falling body, the faster it falls down.

In contrast to Aristotle, Galileo made a supposition that
the fall time of bodies does not depend on their masses. In
support of his hypothesis, Galileo dropped down balls of dif-
ferent masses from the Leaning Tower of Pisa. With this ex-
periment, Galileo established that bodies of different masses,
dropped down to the surface of the Earth simultaneously from
the same altitude above the Earth’s surface, access the ground
simultaneously. Since the Tower’s height h is much less than
the radius of the Earth (h�R⊕), it can be assumed that any
body located at a small altitude above the Earth’s surface is
attracted to the centre of the Earth with a force proportional to
the numerical value of the body’s mass. In fact, Galileo had
discovered that the fall time of the body does not depend on
the numerical value of its mass. Therefore, he had arrived at
the conclusion that is now called Galileo’s principle:

All bodies, regardless of the numerical values of their
masses, fall to the surface of the Earth with the same
acceleration, called the free-fall acceleration.

Later, in 1666, Isaac Newton formulated the Law of Uni-
versal Gravitation. According to this law, the force of attrac-
tion F between two material points with masses m1 and m2,
located at a distance r from each other, acts along the line
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connecting their centres. This force is formulated as

F = −
Gm1m2

r2 , (20)

where G = 6.67× 10−8 cm3/gram sec2 is the Newton grav-
itational constant. From the above formula (20) it follows
that in a flat (Euclidean) space E3 the gravitational force of
attraction F is determined only by the numerical values of
the interacting masses and the distance between them, and
does not depend on the size of the bodies. Such an interac-
tion is called point interaction. Thus, in Newton’s theory of
gravitation, the gravitational interaction between two bodies
is “point-like”, i.e., it is carried out between the gravitating
centres of these bodies (material points).

Applying (20) to the gravitational interaction between the
Earth and a body of mass m falling to the Earth’s surface, we
obtain

F = −
GmM⊕

R2
⊕

= −mg , (21)

where g = GM⊕/R2
⊕ is the free-fall acceleration due to the

Earth’s gravitation, M⊕ = 5.97× 1027 gram is the mass of the
Earth, R⊕ = 6.37× 108 cm is the radius of the Earth, and m
is the mass of the body falling down to the Earth’s surface.
Formula (4.2) explains the results of Galileo’s experiments
under the condition that the bodies fall on the surface of the
Earth from a small altitude h�R⊕. In this case, it is easy
to calculate the magnitude of the free-fall acceleration on the
Earth’s surface: g = 981 cm/sec2.

Formula (21) is the mathematical expression of Galileo’s
principle in the framework of Newton’s theory of gravitation.

Let us now deduce Galileo’s principle and Newton’s law
of gravitation in the framework of the four-dimensional space
(space-time) of General Relativity. To do this, we consider
Schwarzschild’s mass-point metric. This metric is an exact
solution of Einstein’s field equations, which describes a
spherically symmetric gravitational field created in an empty
space (space-time) by a spherical island of substance, the
mass of which is M, and which is approximated by a mass-
point. The Schwarzschild mass-point metric in the spherical
coordinates r, θ, ϕ has the form

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2θdϕ2

)
, (22)

where rg = 2GM/c2 is the so-called gravitational radius cal-
culated here for a spherical body of the mass M (which we
approximate by a mass-point). The polar coordinate angle θ
is measured from the North pole to the equator.

Since, according to the chronometrcally invariant formal-
ism, the component g00 in a general case is expressed with
the gravitational field potential w as

g00 =

(
1 −

w
c2

)2
, (23)

and according to the Schwarzschild mass-point metric (22)
we have

g00 = 1 −
rg
r
, (24)

then in the space of the Schwarzschild mass-point metric the
gravitational field potential w = c2 (1 −

√
g00 ) has the form

w = c2
1 − √

1 −
rg
r

 = c2

1 − √
1 −

2GM
c2r

 , (25)

which in the quasi-Newtonian approximation (rg� r), where
the ratio rg/r takes small numerical values and, therefore,√

1 −
2GM
c2r

' 1 −
GM
c2r

, (26)

takes the form

w = c2

1 − √
1 −

2GM
c2r

 ' GM
r

, (27)

which coincides with the gravitational field potential accord-
ing to Newton’s theory of gravitation.

So forth, looking at the Schwarzschild mass-point metric
(22), we realize that it is static, since all components of its
fundamental metric tensor gαβ do not depend on the time co-
ordinate x0 = ct. This means that the space of the Schwarz-
schild mass-point metric does not deform (Dik = 0). In ad-
dition, since all space-time components of the fundamental
metric tensor of the metric are zero (g0i = 0), such a space
does not rotate (vi = 0, Aik = 0). As a result of the above, the
physically observable time interval dτ in the Schwarzschild
mass-point field has the form

dτ =
√
g00 dt −

1
c2 vi dxi =

√
g00 dt =

(
1 −

w
c2

)
dt =

=

√
1 −

rg
r

dt =

√
1 −

2GM
c2r

dt , (28)

which means that the flow of the physically observable time
τ in the Schwarzschild mass-point field is determined only by
the numerical value of the gravitational field potential w.

Since the space of the Schwarzschild mass-point metric
is static (Dik = 0) and does not rotate (vi = 0, Aik = 0), the
components of the chr.inv.-vector of the physically observable
gravitational inertial force Fi (11) that acts on a unit mass in
such a space take the form

F1 =
1
√
g00

∂w
∂r

, F2 = 0 , F3 = 0 , (29)

where w = c2 (1 −
√
g00 ) is the gravitational field potential.

Therefore, in terms of the gravitational radius rg = 2GM/c2

calculated for the mass M, the solely non-zero component of
the physically observable gravitational inertial force acting in
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the space of the Schwarzschild mass-point metric is

F1 = −
c2

2g00

∂g00

∂r
= −

c2

2
(
1 −

rg
r

) rg
r2 . (30)

Apply the obtained formula (30) to a body having a mass
m (different from unit mass) and located on the Earth’s sur-
face (r = R⊕) or at a small altitude h above it (h�R⊕). Since
the radius of the Earth is R⊕ = 6.37× 108 cm, and its gravi-
tational radius is rg = 0.89 cm, the ratio rg/R⊕ on the Earth’s
surface takes a very small numerical value rg/R⊕ = 1.4× 10−9

that can be neglected. In this case, the formula for the gravi-
tational force F1 (30), which we have obtained in the frame-
work of General Relativity, takes the following form

Φ1 = mF1 = −
c2

2
(
1 −

rg
r

) mrg
r2 = −

GmM⊕
R2
⊕

= −mg , (31)

which coincides with the formula (21), which, in turn, is the
mathematical expression of Galileo’s principle in the frame-
work of Newton’s theory of gravitation.

This means that, according to General Relativity, all bod-
ies located on the surface of the Earth or at a small altitude
above it are attracted to the centre of the Earth with the same
acceleration, equal to the free-fall acceleration g = GM⊕/R2

⊕

= 981 cm/sec2 (which is a conclusion, analogous to Galileo’s
principle in Newton’s theory of gravitation).

In fact, using the chronometrically invariant notation of
General Relativity, we have just deduced the following:

Both Galileo’s principle and Newton’s law of gravita-
tion (empirical laws of classical mechanics) are direct
consequences of the geometric structure of the four-
dimensional pseudo-Riemannian space (space-time of
General Relativity), since the force of gravity, which at-
tracts material bodies to the Earth, is the chr.inv.-vector
of the physically observable gravitational inertial force
acting in the space (gravitational field) of the Schwarz-
schild mass-point metric.

This cannot be shown using the general covariant notation
of General Relativity, because it does not include physical
observable quantities. This is why there is no unambiguous
mathematical transition from General Relativity to Newton’s
theory of gravitation in the framework of the general covari-
ant notation of General Relativity.

5 The origin of the gravitational field according to Gen-
eral Relativity

Let us now consider the origin of gravitation using the chron-
ometrically invariant notation of General Relativity.

In the space of the Schwarzschild mass-point metric, on a
spherical surface of the radius r = rg from the coordinate ori-
gin (which is the centre of the gravitating body approximated
by a mass-point), the time component g00 of the fundamental

metric tensor is zero (g00 = 0), and the radial component g11
becomes infinitely large (g11→∞)

r = rg , g00 = 1 −
rg
r

= 0 , g11 =
1

1 −
rg
r

→ ∞ , (32)

and, since the Schwarzschild space does not rotate (vi = 0),
hence the radial component h11 of the chr.inv.-metric tensor
hik = − gik + 1

c2 vivk becomes also infinite (h11→−∞).
This means that on the spherical surface r = rg that sur-

rounds any mass-point (located at the coordinate origin in the
space of the Schwarzschild mass-point metric) the following
conditions take place:

1) The three-dimensional observable space (and the grav-
itational field of the mass-point, which fills the space)
has a space breaking (g11→∞, h11→−∞);

2) The physically observable time τ of the observer stops
(dτ = 0) on this surface

dτ =
√
g00 dt −

1
c2 vi dxi =

√
g00 dt = 0 . (33)

That is, there on the surface of the gravitational radius
r = rg, which surrounds the centre of gravity inside any ma-
terial body, the physically observable time stops (dτ = 0), and
the observable three-dimensional space is expanded infinitely
in the radial direction x1 = r since the three-dimensional
physically observable chr.inv.-interval dσ that is determined
as dσ2 = hik dxidxk (6) on such a surface is

dσ =
√

h11 x1x1 =
dr√
1 −

rg
r

→ ∞ . (34)

Equating dτ in the Schwarzschild mass-point field, which
is dτ =

(
1 − w

c2

)
dt (28), to zero (since dτ = 0 on the surface

of the gravitational radius), we obtain

E = Mw = Mc2, (35)

i.e., the energy E = Mw of the gravitational field, created by
a body having a non-unit mass M, on the surface of the grav-
itational radius r = rg (which surrounds the centre of gravity
inside any material body) is the same as the total energy of
the body E = Mc2.

We therefore arrive at the following conclusion:

The gravitational field of any body is originated in the
surface of the gravitational radius r = rg, which is sur-
rounding the centre of gravity inside the body.

This is the origin of the gravitational field according to
General Relativity. Since the gravitational radius of an ordi-
nary body is incomparably smaller than its physical radius,
the conclusion we have obtained in the framework of General
Relativity is completely consistent with Newton’s theory of
gravitation, according to which the gravitational field of any
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body is originated in its center of gravity (which coincides
with its geometric center in the case, where the body has a
spherically symmetrical shape).

For example, the surface of the gravitational radius, which
is surrounding the centre of gravity of the planet Earth, is the
origin of the Earth’s gravitational field attracting to this sur-
face near the centre of the planet everything that is under-
ground, grows on the Earth’s surface, moves along it and
above it (in the Earth’s atmosphere and in the cosmos). Trees
indicate this fact: their trunks are always directed from the
centre of the Earth, and not at an angle to this direction. This
is especially clearly seen in cases, where the ground on which
the tree grows lies at an angle to a flat surface, for example,
on a mountain slope: in this case, the tree does not grow per-
pendicular to the slope, but its trunk is oriented strictly in the
direction from the centre of the Earth.

From the above conclusion about the origin of the gravi-
tational field it also follows that a collapse surface (in terms
of General Relativity, this is a surface on which g00 = 0 and,
as a result, the physically observable time stops dτ= 0) is not
exclusively the surface of a black hole (gravitational collap-
sar) — a body, the substance of which is compressed to such a
super-dense state that it is concentrated under its gravitational
radius. Indeed, ordinary bodies are not in the state of grav-
itational collapse, since almost all mass of an ordinary body
is located above its gravitational radius (which is very small
compared to its physical radius). However, the tiny sphere of
the gravitational radius that takes place at the centre of every
ordinary body is also a collapse surface, because the physi-
cally observable time stops and the spatial metric has a break-
ing on this tiny sphere, just like on the surface of a black hole
(gravitational collapsar).

The same conclusion about the origin of the gravitational
field follows from the geodesic equations (equations of mo-
tion of free particles) in the space of the Schwarzschild mass-
point metric. “Free” here means that the moving particle is
affected only by the forces, the source of which is the geo-
metric structure of the space itself (i.e., in the absence of ex-
traneous fields).

The geodesic equations in the chronometrically invari-
ant notation are a system of the chr.inv.-projections onto the
time line (the chr.inv.-scalar projection) and onto the three-
dimensional space (the chr.inv.-vector projection) associated
with a particular observer. They have the following form (see
References to the Zelmanov chronometric invariants)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 , (36)

d(mvi)
dτ

− mF i + 2m
(
Di

k + Ai·
·k
)

vk + m∆i
nk vnvk = 0 , (37)

where m is the relativistic mass of the particle, τ is the phys-
ically observable time of its motion, vi = dxi/dτ is its phys-
ically observable chr.inv.-velocity, Fi is the chr.inv.-vector of

the gravitational inertial force, Aik is the chr.inv.-tensor of the
angular velocity of rotation of the observer’s space, Dik is the
chr.inv.-tensor of the rate of its deformation, and ∆i

nk are the
chr.inv.-Christoffel symbols of the 2nd rank (which are the co-
efficients of the physically observable inhomogeneity of the
observer’s space).

The chr.inv.-geodesic equations (36, 37) are simplified in
the space of the Schwarzschild mass-point metric

dm
dτ
−

m
c2 Fi vi = 0 , (38)

d(mvi)
dτ

− mF i + m∆i
nk vnvk = 0 , (39)

since such a space does not rotate or deform (see above). Here
v1 = dr/dτ, v2 = dθ/dτ, v3 = dϕ/dτ. In addition, only the
radial component F1 of the gravitational inertial force Fi is
non-zero. According to (29), it is

F1 =
1
√
g00

∂w
∂r

=
c2

c2 − w
∂w
∂r

, (40)

where w = c2 (1 −
√
g00 ) is the potential of the gravitational

field (created by a massive body, approximated by a mass-
point), in which the particle travels. Therefore, the scalar geo-
desic equation (38) takes the form

dm
m

=
1
c2 F1 dr , (41)

which can be re-written as

dm
m

= −
d
(
c2 − w

)
c2 − w

, (42)

which is the same as

d (ln m) = − d
[
ln

(
c2 − w

)]
. (43)

Integrating (43), we obtain the solution

mc2 − mw = C , (44)

where C in the integration constant. Since w = c2 (1−
√
g00 ),

g00 = 1 − rg/r, and rg = 2GM/c2, then C = 0 under the con-
dition g00 = 0, which satisfies at the spherical surface of the
gravitational radius r = rg (where w = c2).

From the obtained solution (44) we see that a particle of
mass m, which travels in the gravitational field of a mass
M, has a maximum energy mw = mc2 under the condition
g00 = 0, which satisfies on the surface of the gravitational ra-
dius r = rg = 2GM/c2 from this mass-point (on which the
physically observable time stops dτ = 0, and the space and
the gravitational field have a breaking g11 =−h11 → ∞).

In particular, the above solution is applicable to the Earth,
planets, the Sun, stars, galaxies and generally any bodies in
the Universe.
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In conclusion, we note that Riemannian spaces are non-
degenerate by definition: the determinant g = det ‖gαβ ‖ of
the fundamental metric tensor satisfies the condition g < 0.
In addition, Zelmanov had obtained a relation connecting the
determinants of the four-dimensional metric tensor gαβ and
the three-dimensional chr.inv.-metric tensor hik

h = −
g

g00
, (45)

where h = det ‖hik ‖, g = det ‖ gαβ ‖, and g00 is the time com-
ponent of the four-dimensional Riemannian metric.

These quantities in the space of the Schwarzschild mass-
point metric (22) are

h =
r4 sin2θ

1 − rg
r

, g00 = 1 −
rg
r
, g = − r4 sin2θ . (46)

From this we see that the numerical values of h and g de-
pend on the location of the observer with respect to the polar
coordinate θ (which is opposite to the geographic latitude, be-
cause it is measured from the North pole to the equator). At
the North and South poles, where θ = 0◦ and 180◦, respec-
tively, the space-time of the Schwarzschild mass-point metric
is completely degenerate, since in this case g = 0. The ob-
servable three-dimensional space is also degenerate (h = 0)
at the North and South poles. In addition, the radial compo-
nent h11 becomes infinite over the entire surface of the gravi-
tational radius r = rg that means a breaking in the space (and
the gravitational field) on this surface.

It should be noted that the complete degeneration of the
four-dimensional space-time and the three-dimensional ob-
servable space takes place in the Schwarzschild mass-point
field not only on the spherical surface of the gravitational ra-
dius r = rg (around the centre of gravity of the mass-point),
but also everywhere along the radial coordinate r directed to
North and South. But even with a tiny deviation from the po-
lar direction θ = 0◦ or θ = 180◦ (i.e., from the polar axis of
the coordinate frame) the space is already non-degenerate.

The above conclusion means that the surface of the gravi-
tational radius r = rg is not only the origin of the gravitational
field of any body, which spreads outside and inside the sur-
face, but is also the special space-time “membrane” separat-
ing the external space (gravitational field) of the body, where
r > rg, from its internal space (gravitational field), where
r < rg. Since both the space-time metric and the spatial met-
ric are degenerate inside the “membrane”, the space (space-
time) inside the “membrane” is different from the ordinary
pseudo-Riemannian space (space-time) and is a completely
degenerate space-time.

6 Conclusion

So, using the chronometrically invariant notation of General
Relativity (chronometric invariants are the physically observ-
able projections of four-dimensional quantities onto the time

line and the three-dimensional space of an observer), we have
deduced Galileo’s principle and Newton’s law of gravitation
as a particular case of the chr.inv.-formula for the gravita-
tional inertial force acting in the four-dimensional pseudo-
Riemannian space (space-time of General Relativity).

In fact, by doing this, we have created a “mathematical
bridge”, connecting Newton’s theory of gravitation with Gen-
eral Relativity. This “mathematical bridge” is important for
theoretical physics, since no one earlier than us had derived
the empirical laws of Newton’s theory of gravitation as a par-
ticular case of the purely geometric laws of General Relativ-
ity.

We have also showed that on the spherical surface that
surrounds any mass-point at a very small radius, equal to the
gravitational radius calculated for the mass, a space breaking
takes place in the gravitational field of the mass-point (and
in its three-dimensional observable space), and the observer’s
physical observable time stops. That is, the gravitational field
of any mass-point extends both inward from the mentioned
spherical surface to the coordinate origin (which coincides
with the mass-point), and outward from the mentioned sur-
face into the surrounding space to infinity, but is absent on
the surface itself. This theoretical result leads us to the con-
clusion that the origin of the gravitational field in the space
of the Schwarzschild mass-point metric is a spherical surface
that surrounds any mass-point at the gravitational radius cal-
culated for the mass.

The above results were obtained only thanks to the chron-
ometrically invariant notation of General Relativity, which
provides an unambiguous mathematical definition of phys-
ically observable quantities in the four-dimensional pseudo-
Riemannian space (space-time). It would be impossible to get
these results using the conventional general covariant notation
of General Relativity, because physically observable quanti-
ties in the general covariant notation are not mathematically
defined.

Submitted on July 21, 2024
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Introducing the Space Metric of a Rotating Massive Body
and Four New Effects of General Relativity

Dmitri Rabounski
Puschino, Moscow Region, Russia. E-mail: rabounski@yahoo.com

This paper introduces and proves the space metric of a rotating spherical body (approx-
imated by a mass-point). This is a new metric to General Relativity, which is an ex-
tension and replacement of Schwarzschild’s mass-point metric (since all cosmic bodies
rotate). Physically observable characteristics of such a space are calculated, including
the curvature of space and others. It is shown that the curvature of such a space has two
components: a component created by the gravitational field (it decreases with distance
from the body) and a constant curvature component created by the rotation of space (it
does not depend on distance). Using Einstein’s equations, the Riemannian conditions
are calculated under which the introduced metric is valid (with the conditions, the Ein-
stein equations vanish). Four new effects of General Relativity are calculated: the de-
flection of light rays and mass-bearing particles near a rotating body, a length-stretching
effect along the geographical longitudes, a time-loss effect in the clocks co-moving with
the Earth’s rotation (to the East) and a time increment when moving to the West.

1 Introduction

This is the fourth paper in the series of papers on the effects
of the space curvature, caused by the rotation of space.

The first [1] of these studies, besides many other scientific
results obtained in it, showed that the rotation of space makes
it curved. Then, two subsequent studies [2, 3] predicted four
new effects of General Relativity, the origin of which is the
space curvature caused by the rotation of space.

The first two effects are the deflection of light rays and
mass-bearing particles in the field of a rotating body [2].

When a body rotates, the space around it curves towards
the direction of its rotation and the centre of the body (around
which it rotates), thereby creating a “slope of the hill” de-
scending “down” along the equator in the direction, in which
the body rotates, and also to the centre of the body. There-
fore, when a particle travels freely to a rotating body, it “rolls
down” the slope of the space curvature along the equator in
the direction, in which the body rotates, as well as to the cen-
tre of the body. As a result, the following two effects should
occur in the field of a rotating body:

1. A particle travelling freely to a rotating body should be
deflected slightly from its radial trajectory in the equa-
torial direction, in which the body rotates, i.e., along
the geographical longitudes;

2. The particle should gain a small increase of its velocity,
and its path should become physically “stretched” for
a little, causing the particle to reach the body with a
delay in time compared to if the body did not rotate.

That is, light rays and mass-bearing particles should be
deflected near a rotating body due to the curvature of space
caused by its rotation. These two effects should take place
both for mass-bearing particles and for light rays (massless
light-like particles such as photons).

The other two effects are the length stretching and time
loss/gain, expected in the field of a rotating body due to the
curvature of its space, caused by its rotation [3]:

3. Since the diurnal rotation of the Earth around its axis
curves the Earth’s space making it “stretched” along the
geographical longitudes, then the measured length of a
standard rod should be greater when the rod is installed
in the longitudinal direction;

4. Due to the same reason, there should be a time loss
on board an airplane flying to the East (the direction in
which the Earth’s space rotates), and also a time incre-
ment when flying in the opposite direction, to the West.

Both of the effects are maximum at the equator (where the
curvature of the Earth’s space caused by its rotation is maxi-
mum and, therefore, space is maximally “stretched”) and de-
crease towards the North and South Poles.

The above four effects, namely — the deflection of light
rays and mass-bearing particles in the field of a rotating body,
and also the length stretching and time loss/gain in the field
of a rotating body — are new fundamental effects of the Gen-
eral Theory of Relativity, which were predicted “au bout d’un
stylo”. These four effects can be considered as an addition to
the well-known Einstein effect of the deflection of light rays
in the field of a gravitating body (which does not take the
rotation of space into account).

2 Problem statement

When calculating the mentioned four new effects in the field
of a rotating body, our task was to deduce the effects in their
“pure form”, i.e., without any other factors taken into account.
To do this, the simplest metric was used, which described the
four-dimensional space (space-time) of a rotating body, the
mass of which is so small that the gravitational field it creates
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can be neglected.
This space metric is easy to deduce. Consider the metric

of an empty space, which does not rotate or deform

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2

θ dφ2
)
, (1)

where and below, in terms of the spherical coordinates, r is
the radial coordinate, dr is the elementary segment length
along the radial r-axis, θ is the polar coordinate angle mea-
sured from the North Pole to the equator, rdθ is the elemen-
tary arc length along the θ-axis (along the geographical lati-
tudes), φ is the geographical longitude (equatorial coordinate
axis), and r sin θdφ is the elementary arc length along the
equatorial φ-axis.

Assume that the space rotates along the equatorial axis φ,
i.e., along the geographical longitudes, with the linear veloc-
ity v3=ωr2sin2

θ, where ω= const is the angular velocity of
this rotation. Since by definition of vi (13)

v3 = ωr2sin2
θ = −

cg03
√
g00

(2)

then we have

g03 = −
1
c
v3
√
g00 = −

ωr2sin2
θ

c
, (3)

and the metric of such a rotating empty space has the form

ds2 = c2dt2 − 2ωr2sin2
θdtdφ −

− dr2 − r2
(
dθ2 + sin2

θ dφ2
)
. (4)

As you can see, the non-zero components of the funda-
mental metric tensor gαβ of this metric are

g00 = 1 , g03 = −
ωr2sin2

θ

c

g11 = −1 , g22 = −r2, g33 = −r2sin2
θ

 , (5)

where g00 = 1 means that the space is free of gravitational
fields or such fields can be neglected: with g00 = 1 the grav-
itational field potential w, the general formula of which for
any space metric is w = c2 (1 −

√
g00) (12), is either equal to

zero w= 0 or approaches zero w→ 0.
The deflection of light rays and mass-bearing particles in

the field of a rotating body [2], and also the length stretching
and time loss/gain in the field of a rotating body [3] were
obtained in the space of the above metric (4). Thanks to the
above approximation, expressed with the simplest metric (4)
describing a rotating empty space, it was possible to obtain
the mentioned effects of the space curvature created by the
rotation of space in their “pure form”, without adding any
other geometric or physical factors.

But real experiments conducted in an Earth-bound labora-
tory must take the gravitational field of the Earth into account.
From this follows the problem statement for this paper:

Problem statement
Our task now is to re-calculate the space curvature ef-
fects caused by the rotation of space — the deflection
of light rays and mass-bearing particles, and also the
length stretching and time loss/gain in the field of a ro-
tating body — for the case, where the gravitational field
of the rotating body is taken into account.

To do this, we need the metric of such a space. We deduce
it from Schwarzschild’s mass-point metric, which describes a
spherically symmetric space filled with the gravitational field
created in emptiness by a spherical massive island of sub-
stance (approximated by a mass-point)

ds2 =

(
1 −

rg
r

)
c2dt2 −

dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
, (6)

where r is the radial distance from the centre of the massive
island, rg = 2GM/c2 is its gravitational radius, calculated for
its mass M, and the non-zero components of the fundamental
metric tensor gαβ are

g00 = 1 −
rg
r
, g11 = −

1

1 −
rg
r

g22 = −r2, g33 = −r2sin2
θ

 . (7)

As before, we assume that the space rotates along the
equatorial axis φ (along the geographical longitudes) with the
linear velocity v3=ωr2sin2

θ, where ω= const is the angular
velocity of this rotation. Since by definition of vi (13)

v3 = ωr2sin2
θ = −

cg03
√
g00
, (8)

and, hence,

g03 = −
1
c
v3
√
g00 = −

ωr2sin2
θ

c

√
1 −

rg
r
, 0 , (9)

then we obtain the desired metric

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ −

−
dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
, (10)

which describes a spherically symmetric space, which is filled
with the gravitational field created in emptiness by a rotating
spherical island of matter (approximated by a mass-point) and
rotates together with this body.

It is the metric (10), in the space of which we are going
to re-calculate the space curvature effects, created due to the
rotation of space.

We will do this in the following steps. First, we need to
give a short description of the mathematical formalism we are
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using — the mathematical apparatus of chronometric invari-
ants, which are physically observable quantities in the space-
time of General Relativity.

Second, we calculate the physically observable chr.inv.-
characteristics of the space of a rotating mass-point, which is
the space of the metric (10).

Third, it is not a fact that the space described by the in-
troduced metric of a rotating mass-point (10) is Riemannian.
By definition, a Riemannian space is such one, the metric
of which has the Riemannian square form ds2 = gαβ dxαdxβ,
determined by the Riemann fundamental metric tensor gαβ,
is invariant ds2 = inv everywhere in the space, and also sat-
isfies Einstein’s field equations, which are the specific rela-
tion between the Ricci curvature tensor, the fundamental met-
ric tensor multiplied by the curvature scalar, and the energy-
momentum tensor of the “space filler” (the latter targets non-
empty Riemannian spaces filled with distributed matter). The
above three requirements are specific to the family of Rie-
mannian spaces.

Finding a metric that satisfies the first two conditions is
easy, but satisfying the third condition (Einstein’s field equa-
tions) is problematic. This is why, until now, only a small
number of space metrics have been proven to be Riemannian
and used in the General Theory of Relativity.

A space metric satisfies the field equations, if the compo-
nents of the fundamental metric tensor gαβ (specific to this
metric) and the components of the energy-momentum ten-
sor of the medium (that fills the space), substituted into the
field equations, make the left-hand and right-hand sides of the
equations identical (the field equations vanish). In an empty
Riemannian space, the left-hand side of the field equations it-
self after the above substitution must become zero (since in
this case the energy-momentum tensor of distributed matter
on the right-hand side is zero).

Most likely, the introduced metric of the space of a rotat-
ing mass-point (10) does not satisfy the field equations. For
this reason, at our third step, we will substitute the gαβ compo-
nents from the introduced metric (10) into the left-hand terms
of the field equations (the right-hand side of the equations is
zero, since the space of a rotating mass-point we are consid-
ering is not filled with distributed matter). The relations (par-
ticular conditions) that vanish the resulting field equations are
Riemannian conditions, under which the introduced metric
(10) is Riemannian and, therefore, can be used in the frame-
work of General Relativity.

At our fourth step, we will deduce formulae for the space
curvature effects in the field of a rotating massive body, i.e.,
in the space of the metric (10), which is the final task of this
research.

3 Chronometrically invariant quantities

We use the mathematical apparatus of chronometric invari-
ants, which uniquely determines physically observable quan-

tities in the four-dimensional pseudo-Riemannian space
(space-time of General Relativity). This mathematical forma-
lism was created in 1944 by Abraham Zelmanov.

In addition to the publications by Zelmanov [4–6], which
were very concise, an extended review of the chronometri-
cally invariant formalism was given in each of our three re-
search monographs (together with L. Borissova), originally
published in 2001 [7, 8] and 2013 [9]. In 2023 we published
the most comprehensive survey of the Zelmanov formalism
[10], where we collected almost everything that we know in
this field personally from Zelmanov and based on our own
research studies. The most complete list of the research stud-
ies performed using the chronometrically invariant formalism
as of January 2023 can be found in the Bibliography to our
survey [10].

In short, Zelmanov unambiguously determined physically
observable quantities in the space-time of General Relativity
as the projections of four-dimensional tensor quantities onto
the time line and the three-dimensional spatial section, asso-
ciated with an observer. Such projections remain invariant
throughout the observer’s three-dimensional spatial section
(his observable three-dimensional physical reference space),
i.e., they are “chrono-metric invariants” in his reference frame
and depend on the properties of his physical reference space,
such as the gravitational potential, rotation, deformation, cur-
vature, etc.

The chronometrically invariant projections of any four-
dimensional tensor quantity are calculated using operators of
projection, which take the physical properties and geometric
structure of the observer’s space into account. For detail, see
the References to chronometric invariants, e.g., the most de-
tailed survey [10].

Below you can find only the necessary minimum of this
mathematical formalism, which is necessary for understand-
ing and reproducing the results obtained in this study.

Projecting the four-dimensional displacement vector dxα

(α = 0, 1, 2, 3) onto the time line of an observer gives the
physically observable chr.inv.-time interval dτ

dτ =
√
g00 dt −

1
c2 vi dxi, i = 1, 2, 3, (11)

where g00 is expressed with the chr.inv.-potential w (physi-
cally observable potential) of the gravitational field that fills
the space of the observer as

w = c2 (
1 −
√
g00

)
,

√
g00 = 1 −

w
c2 , (12)

and vi is the three-dimensional vector of the linear velocity of
rotation of the observer’s space

vi = −
cg0i
√
g00
, vi = −cg0i√g00 , vi = hik v

k. (13)

Projecting dxα onto the observer’s three-dimensional spa-
tial section gives the three-dimensional chr.inv.-displacement
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vector dxi (which coincides with the three-dimensional co-
ordinate displacement vector). As a result, dτ distinguishes
the chr.inv.-velocity vector vi = dxi/dτ (physically observable
three-dimensional velocity) from the three-dimensional coor-
dinate velocity vector ui = dxi/dt.

The three-dimensional chr.inv.-spatial interval dσ (physi-
cally observable three-dimensional interval) is determined

dσ2 = hik dxidxk, (14)

using the three-dimensional chr.inv.-metric tensor hik

hik = −gik +
1
c2 vivk , hik = −gik, hi

k = δ
i
k , (15)

which is the chr.inv.-projection of the fundamental metric ten-
sor gαβ onto the observer’s spatial section and possesses all
properties of gαβ throughout the spatial section (the observer’s
three-dimensional space).

The square of the four-dimensional (space-time) interval
ds2 = gαβ dxαdxβ is therefore expressed with chronometri-
cally invariant (physically observable) quantities as

ds2 = c2dτ2 − dσ2. (16)

Thanks to the splitting of space-time into three-dimen-
sional spatial sections pierced by time lines, which is specific
to the chronometrically invariant formalism, we can reveal the
true nature of three-dimensional rotations. When vi , 0, i.e.,
the reference body of an observer rotates (together with his
reference space), then this rotation cannot be vanished by a
coordinate transformation (by moving the observer to another
reference frame within his three-dimensional spatial section).
This happens because the rotation speed vi (13) is determined
by the mixed (space-time) components g0i of the fundamen-
tal metric tensor gαβ, and not by its three-dimensional spatial
components gik dependent on time (as it is considered in clas-
sical mechanics, where time is just a parameter, and not the
fourth coordinate). Since the components of gαβ are cosines
of the angles between the respective coordinate lines, then
three-dimensional rotations are due to the non-holonomity of
space-time, which means that time lines are not orthogonal to
three-dimensional spatial sections.

If all g0i are zero, then such space-time is holonomic. In
this case the three-dimensional spatial section is everywhere
orthogonal to the time lines that pierce it. If at least one of the
components g0i is different from zero, then such space-time is
non-holonomic, and the spatial section x0 = const is inclined
to the time lines (at different points it can be inclined to the
time lines at different angles depending on the local geometric
structure of the particular four-dimensional space-time).

In general, the physical reference space of a real observer
can be filled with a gravitational field, rotate, deform, be in-
homogeneous and curved.

The chr.inv.-vector of the gravitational inertial force Fi,
where the first (gravitational) term is created by the gradient

of the gravitational potential w and the second (inertial) term
is created by the centrifugal force of inertia, is

Fi =
1
√
g00

(
∂w
∂xi −

∂vi
∂t

)
,
√
g00 = 1 −

w
c2 . (17)

The antisymmetric chr.inv.-tensor Aik of the angular ve-
locity of rotation of space is

Aik =
1
2

(
∂vk
∂xi −

∂vi

∂xk

)
+

1
2c2

(
Fi vk − Fk vi

)
, (18)

which is related to Fi by two identities

∗∂Aik

∂t
+

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
= 0 , (19)

∗∂Akm

∂xi +
∗∂Ami

∂xk +
∗∂Aik

∂xm +

+
1
2

(Fi Akm + Fk Ami + Fm Aik) = 0 , (20)

where asterisk denotes the chr.inv.-derivation operators
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi +
1
c2 vi

∗∂

∂t
. (21)

Antisymmetric chr.inv.-tensors can be used to create the
corresponding chr.inv.-pseudovectors (marked with an aster-
isk) using the antisymmetric chr.inv.-discriminant tensor

εikm =
eikm

√
h
, εikm = eikm

√
h , (22)

where h= det ∥ hik ∥. This tensor is the chr.inv.-analogy of the
Levi-Civita antisymmetric unit tensor eikm (the components
of eikm are either +1 or −1 depending on the transposition of
its indices).* For example, the antisymmetric chr.inv.-tensor
Aik of the angular velocity of rotation of space has the corre-
sponding chr.inv.-pseudovector Ω∗i of this rotation

Ω∗i =
1
2
εikmAkm , Ω∗i =

1
2
εimn Amn

εipqΩ∗i =
1
2
εipqεimn Amn =

=
1
2

(
δ

p
mδ

q
n − δ

q
mδ

p
n

)
Amn = Apq


. (23)

The symmetric chr.inv.-tensor Dik of the deformation rate
of space is formulated as

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik =
∗∂ ln
√

h
∂t

, h = det ∥ hik ∥

 . (24)

*For detail, see pages 14–16 in our comprehensive survey of the Zel-
manov chronometric invariants [10], or §2.3 in our monograph [8].
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The chr.inv.-Christoffel symbols of the 1st rank ∆ jk,m and
the 2nd rank ∆i

nk (their physical sense is the coefficients of
inhomogeneity of space) are

∆i
nk = him∆nk,m =

1
2

him
(
∗∂hnm

∂xk +
∗∂hkm

∂xn −
∗∂hnk

∂xm

)
. (25)

The physically observable curvature of space is expressed
with the chr.inv.-curvature tensor Clkij that possesses all prop-
erties of the Riemann-Christoffel curvature tensor throughout
the three-dimensional spatial section associated with the ob-
server. Its subsequent contractions give the chr.inv.-Ricci cur-
vature tensor Cik and the chr.inv.-scalar curvature C

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
=

= Hlkij −
1
2

(
2 Aki Djl + Aij Dkl + Ajk Dil +

+ Akl Dij + Ali Djk

)
, (26)

Clk = C ··· ilki · = Hlk −
1
2

(
Akj D j

l + Alj D j
k + Akl D

)
, (27)

C = hlkClk = hlkHlk , (28)

where, for a better association with the Riemann-Christoffel
curvature tensor, we denote

H ··· j
lki · =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il∆

j
km − ∆

m
kl∆

j
im . (29)

From the above definitions we see that the physically ob-
servable curvature of space depends on not only the gravita-
tional inertial force (hidden in the second chr.inv.-derivatives
of the chr.inv.-metric tensor), but also the rotation, deforma-
tion and inhomogeneity of space and, therefore, does not van-
ish in the absence of the gravitational field.

By analogy with absolute (general covariant) derivatives,
the corresponding chr.inv.-derivatives are introduced

∗∇i Q k =
∗∂Qk

dxi − ∆
l
ik Ql , (30)

∗∇i Q k =
∗∂Q k

dxi + ∆
k
il Q l, (31)

∗∇i Q jk =
∗∂Q jk

dxi − ∆
l
ij Qlk − ∆

l
ik Q jl , (32)

∗∇i Q k
j =

∗∂Q k
j

dxi − ∆
l
ij Q k

l + ∆
k
il Q l

j , (33)

∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Q lk + ∆k

il Q jl, (34)

∗∇i Q i =
∗∂Q i

∂xi + ∆
j
ji Q i, ∆

j
ji =

∗∂ ln
√

h
∂xi , (35)

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Q il + ∆l

li Q ji, ∆l
li =

∗∂ ln
√

h
∂xi , (36)

which, in particular, exhibit some properties of the chr.inv.-
metric tensor hik and the chr.inv.-discriminant tensor εijk (used
further in calculations)

∗∇i hjk = 0 , ∗∇i hk
j = 0 , ∗∇i h jk = 0 , (37)

∗∇l εijk = 0 , ∗∇l ε
ijk = 0 , (38)

Einstein’s field equations, having the well-known general
covariant (four-dimensional) form

Rαβ −
1
2
gαβR = −κTαβ + λgαβ (39)

can also be presented in chr.inv.-form, i.e., in the form of their
physically observable chr.inv.-projections.

Note, that the Zelmanov formalism uses κ= 8πG
c2 , but not

κ= 8πG
c4 as Landau and Lifshitz did in their The Classical The-

ory of Fields [11]. This is because, since Ricci’s tensor Rαβ
has the dimension [cm−2] and the energy-momentum tensor
Tαβ has the dimension of mass density [gram/cm3], if we used
κ= 8πG

c4 on the right-hand side of the field equations, then we
would not use the energy-momentum tensor Tαβ itself, but
c2Tαβ as Landau and Lifshitz did (which is not correct at all
from the point of view of physical sense and physically ob-
servable quantities).

To understand the chr.inv.-Einstein equations that below,
we should note that any tensor or tensor equation of the 2nd
rank has three chr.inv.-projections: the time projection, the
space-time (mixed) projection and the spatial projection; for
detail, see [10]. So, the energy-momentum tensor Tαβ of a dis-
tributed matter has the following chr.inv.-projections

ϱ =
T00

g00
, J i =

c T i
0

√
g00
, U ik = c2T ik, (40)

where ϱ is the observable mass density of the distributed mat-
ter, J i is its observable momentum density, and U ik is the
observable stress-tensor of the matter field.

The general covariant Einstein field equations (39) also
have three chr.inv.-projections, which are called the chr.inv.-
Einstein equations

∗∂D
∂t
+ Djl D jl + Ajl Alj + ∗∇j F j −

1
c2 Fj F j =

= −
κ

2
(
ϱc2 + U

)
+ λc2, (41)

∗∇j
(
hijD − Dij − Aij) + 2

c2 Fj Aij = κ J i, (42)

∗∂Dik

∂t
−

(
Dij + Aij

) (
D j

k + A· jk ·
)
+ DDik + 3 Aij A· jk · −

−
1
c2 Fi Fk +

1
2

(∗∇i Fk +
∗∇k Fi

)
− c2Cik =

=
κ

2
(
ϱc2hik + 2Uik − Uhik

)
+ λc2hik . (43)
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With the above mathematical tools, we now have every-
thing we need to consider the space of a rotating massive body
using the chronometrically invariant formalism.

4 Physically observable characteristics of the space of
a rotating massive body

Consider a space of the rotating Schwarzschild metric, which
we have introduced (10). It has the form

ds2 =

(
1 −

rg
r

)
c2dt2 − 2ωr2sin2

θ

√
1 −

rg
r

dtdφ −

−
dr2

1 −
rg
r

− r2
(
dθ2 + sin2

θ dφ2
)
. (44)

Such a space rotates in the equatorial plane along the geo-
graphical longitudes φ with an angular velocity ω= const.
The linear velocity of this rotation is v3=ωr2sin2

θ

v3 = ωr2sin2
θ = −

cg03
√
g00
, v1 = v2 = 0 , (45)

hence, non-zero components of the fundamental metric tensor
of the above space metric are

g00 = 1 −
rg
r
, g03 = −

ωr2sin2
θ

c

√
1 −

rg
r

g11 = −
1

1 −
rg
r

, g22 = −r2, g33 = −r2sin2
θ


. (46)

Respectively, the chr.inv.-metric tensor hik =−gik +
1
c2 vi vk

(15) of a rotating Schwarzschild space has only the following
non-zero components

h11 =
1

1 − rg
r

, h22 = r2

h33 = r2sin2
θ

(
1 +
ω2r2sin2

θ

c2

)

, (47)

and, respectively, calculating the determinant of the chr.inv.-
metric tensor hik, we obtain

h = det ∥ hik ∥ = h11 h22 h33 =

=
r4 sin2

θ

1 − rg
r

(
1 +
ω2r2sin2

θ

c2

)
, (48)

√
h =

r2sin θ√
1 − rg

r

√
1 +
ω2r2sin2

θ

c2 . (49)

As is seen from the above formulae, the matrix hik is strict
diagonal: all of its non-diagonal components hik (i, k) are
zero. Therefore, the upper-index components of hik are ob-
tained just like the invertible matrix components to any diag-

onal matrix as hik = (hik)−1. They are

h11 = 1 −
rg
r
, h22 =

1
r2

h33 =
1

r2sin2
θ

(
1 + ω

2r2sin2θ

c2

)

. (50)

In particular, as a result, the square of the linear velocity,
with which the space rotates v2 = vi v i = vi hikvk (13) is

v2 = v3 h33v3 =
ω2r2sin2

θ

1 + ω
2r2sin2θ

c2

. (51)

As is seen from (47), the obtained chr.inv.-metric tensor
hik does not depend on time. This means that the chr.inv.-
tensor of the deformation rate of space Dik (24) is zero

Dik =
1
2

∗∂hik

∂t
= 0 , (52)

i.e., a rotating Schwarzschild space does not deform.
Taking into account that the linear velocity v3=ωr2sin2

θ

with which the space rotates does not depend on time

∂v3
∂t
= 0 (53)

and also that the gravitational field potential w= c2 (1−
√
g00 )

in the present case is

w = c2
1 − √

1 −
rg
r

 , (54)

we obtain the components of the chr.inv.-vector of the gravi-
tational inertial force Fi (17). They are

F1 =
1
√
g00

∂w
∂r
= −

c2rg
2r2

1

1 − rg
r

, F2 = F3 = 0 , (55)

F1 = h11F1 = −
c2rg
2r2 , F2 = F3 = 0 . (56)

Since the gravitational inertial force in the present case is
a radially acting force F1 that depends only on x1 = r, i.e.

∗∂Fk

∂xi = 0 , i , k , (57)

then according to the 1st Zelmanov identity (19) we have

∗∂Aik

∂t
= 0 , (58)

i.e., the rotation of the space of the rotating Schwarzschild
metric is stationary.

According to the definition of the chr.inv.-tensor of the an-
gular velocity of rotation of space Aik (18), only the follow-
ing components of it are non-zero in the space of the rotat-
ing Schwarzschild metric: A13 , 0, A31 , 0, A13 , 0, A31 , 0,
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A23 , 0, A32 , 0, A23 , 0, A32 , 0. Using the definition of Aik

(18), after some algebra we obtain

A13 =
1
2
∂v3
∂r
+

1
2c2 F1v3 = ωr sin2

θ −
ωrg sin2

θ

4
(
1 − rg

r

) , (59)

A31 = −A13 = −ωr sin2
θ +
ωrg sin2

θ

4
(
1 − rg

r

) , (60)

A13 = h11h33A13 =

=

(
1 − rg

r

)
ω

r
(
1 + ω

2r2sin2θ

c2

) − ωrg

4r2
(
1 + ω

2r2sin2θ

c2

) , (61)

A31 = −A13 =

= −

(
1 − rg

r

)
ω

r
(
1 + ω

2r2sin2θ

c2

) + ωrg

4r2
(
1 + ω

2r2sin2θ

c2

) , (62)

A23 =
1
2
∂v3
∂θ
= ωr2sin θ cos θ , (63)

A32 = −A23 = −ωr2sin θ cos θ , (64)

A23 = h22h33A23 =
ω cot θ

r2
(
1 + ω

2r2sin2θ

c2

) , (65)

A32 = −A23 = −
ω cot θ

r2
(
1 + ω

2r2sin2θ

c2

) . (66)

Find the physically observable scalar angular velocity Ω,
with which the space rotates. Its square is calculated as

Ω2 = Ω∗iΩ
∗i = Ω∗1Ω

∗1 + Ω∗2Ω
∗2 =

= h11Ω
∗1Ω∗1 + h22Ω

∗2Ω∗2. (67)

In the space of the rotating Schwarzschild metric, which
we are considering, we have

Ω∗1 =
1
2
ε1kmAkm =

e1km

2
√

h
Akm =

e123

2
√

h
A23 +

e132

2
√

h
A32 (68)

and, taking into account that e123 =+1 and e132 =−1, and also
A32 =− A23, we obtain

Ω∗1 =
e123

2
√

h
A23 +

e123

2
√

h
A23 =

e123

√
h

A23 =
A23
√

h
. (69)

In the same way, we obtain

Ω∗2 =
1
2
ε2kmAkm =

e2km

2
√

h
Akm =

=
e213

2
√

h
A13 +

e231

2
√

h
A31 =

e213

√
h

A13 = −
A13
√

h
. (70)

Finally, substituting A13 (59), A23 (63), h= det ∥ hik ∥ (48),
h11 and h22 (47) intoΩ2 (67), we obtain the physically observ-
able scalar angular velocity Ω of the rotation of space

Ω =
√
Ω∗iΩ∗i =

ω√
1 + ω

2r2sin2θ

c2

×

×

√√√√
1 −

3rg sin2
θ

2r
+

r2
g sin2

θ

16r2
(
1 − rg

r

) . (71)

If there is no mass (M = 0), then the gravitational radius is
rg = 2GM/c2 = 0. In this case, g00 = 1− rg

r = 1 and the formu-
lae for hik (47–50), Aik (59–66) and Ω (71) we have obtained
in the space of the rotating Schwarzschild metric transform
into the corresponding formulae in the spherically symmetric
rotating space without the gravitational field, which we have
obtained earlier; see page 43 in the previous paper [1].

To calculate the chr.inv.-Einstein equations in the space of
the rotating Schwarzschild metric, we need the chr.inv.-Ricci
curvature tensor Cik containing in the third, tensor chr.inv.-
Einstein equation (43). The chr.inv.-Ricci tensor Cik (27) con-
sists of the chr.inv.-derivatives of the chr.inv.-Christoffel sym-
bols ∆i

nk and the products of ∆i
nk with each other. In turn, ∆i

nk
(25) are the re-combination of the chr.inv.-derivatives of the
chr.inv.-metric tensor hik (47). Therefore, at first we calculate
the non-zero chr.inv.-derivatives of hik

∗∂h11

∂r
= −

rg(
1 − rg

r

)2
r2
, (72)

∗∂h22

∂r
= 2r , (73)

∗∂h33

∂r
= 2r sin2

θ

(
1 +

2ω2r2sin2
θ

c2

)
, (74)

∗∂h33

∂θ
= 2r2sin θ cos θ

(
1 +

2ω2r2sin2
θ

c2

)
. (75)

The chr.inv.-Christoffel symbols ∆i
nk (25) in the rotating

Schwarzschild metric space have the non-zero components

∆1
11 =

1
2

h11
∗∂h11

∂r
, ∆1

22 =
1
2

h11
∗∂h22

∂r

∆1
33 = −

1
2

h11
∗∂h33

∂r
, ∆2

12 =
1
2

h22
∗∂h22

∂r

∆2
21 =

1
2

h22
∗∂h22

∂r
, ∆2

33 = −
1
2

h22
∗∂h33

∂θ

∆3
13 =

1
2

h33
∗∂h33

∂r
, ∆3

23 =
1
2

h33
∗∂h33

∂θ

∆3
31 =

1
2

h33
∗∂h33

∂r
, ∆3

32 =
1
2

h33
∗∂h33

∂θ



. (76)
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After some algebra using the obtained formulae for the
non-zero components of hik (50) and the chr.inv.-derivatives
of the non-zero components of hik (72–75), we obtain

∆1
11 = −

rg

2r2
(
1 − rg

r

) , (77)

∆1
22 = −r , (78)

∆1
33 = −r sin2

θ

(
1 +

2ω2r2sin2
θ

c2

)
, (79)

∆2
12 = ∆

2
21 =

1
r
, (80)

∆2
33 = − sin θ cos θ

(
1 +

2ω2r2sin2
θ

c2

)
, (81)

∆3
13 = ∆

3
31 =

1

r
(
1 + ω

2r2sin2θ

c2

) (
1 +

2ω2r2sin2
θ

c2

)
, (82)

∆3
23 = ∆

3
32 =

cot θ

1 + ω
2r2sin2θ

c2

(
1 +

2ω2r2sin2
θ

c2

)
. (83)

The non-zero contracted chr.inv.-Christoffel symbols ∆i
i1

and ∆i
i2 are calculated from their definition based on the de-

terminant h = det ∥ hik ∥; see (35) or (36). Using the formulae
for h (48) and its square root (49) obtained in the space of the
rotating Schwarzschild metric, we obtain

∆i
i1 =

∗∂ ln
√

h
∂r

=
2

r
(
1 + ω

2r2sin2θ

c2

) (
1 +

3ω2r2sin2
θ

2c2

)
−

−
rg

2r2
(
1 − rg

r

) , (84)

∆i
i2 =

∗∂ ln
√

h
∂θ

=
cot θ

1 + ω
2r2sin2θ

c2

(
1 +

2ω2r2sin2
θ

c2

)
. (85)

Based on the above formulae, we calculate the non-zero
chr.inv.-derivatives of the contracted chr.inv.-Christoffel sym-
bols ∆i

i1 and ∆i
i2. After some algebra, we obtain

∗∂∆i
i1

∂r
= −

2

r2
(
1 + ω

2r2sin2θ

c2

)2
−

3ω2sin2
θ

c2
(
1 + ω

2r2sin2θ

c2

)2
−

−
3ω4r2sin4

θ

c4
(
1 + ω

2r2sin2θ

c2

)2
+

rg

r3
(
1 − rg

r

)2

(
1 −

rg
2r

)
, (86)

∗∂∆i
i1

∂θ
=

2ω2r sin θ cos θ

c2
(
1 + ω

2r2sin2θ

c2

)2
, (87)

∗∂∆i
i2

∂r
=

2ω2r sin θ cos θ

c2
(
1 + ω

2r2sin2θ

c2

)2
=

∗∂∆i
i1

∂θ
, (88)

∗∂∆i
i2

∂θ
= −

1

sin2
θ
(
1 + ω

2r2sin2θ

c2

) −
−

2ω2r2sin2
θ

c2
(
1 + ω

2r2sin2θ

c2

)2
−

2ω4r4sin2
θ

c4
(
1 + ω

2r2sin4θ

c2

)2
. (89)

Now, using the quantities calculated above, we calculate
the chr.inv.-Ricci curvature tensor Cik in the space of the ro-
tating Schwarzschild metric. Since the space we are consid-
ering does not deform (Dik = 0), then in this case the general
formula for Clk =C ···ilki · (27) is simplified to

Clk = Hlk = H ···i
lki · =

=

∗∂∆i
il

∂xk −

∗∂∆i
kl

∂xi + ∆
m
il ∆

i
km − ∆

m
kl∆

i
im , (90)

which, according to the non-zero chr.inv.-Christoffel symbols
calculated in the space of the rotating Schwarzschild metric
(see above), has the following non-zero components

C11 =

∗∂∆i
i1

∂r
+ ∆2

21∆
2
12 + ∆

3
31∆

3
13 −

−

∗∂∆1
11

∂r
+ ∆1

11∆
1
11 − ∆

1
11∆

i
i1 , (91)

C12 =

∗∂∆i
i1

∂θ
+ ∆3

31∆
3
23 − ∆

2
21∆

i
i 2 , (92)

C21 =

∗∂∆i
i 2

∂r
+ ∆3

32∆
3
13 − ∆

2
12∆

i
i 2 , (93)

C22 =

∗∂∆i
i 2

∂θ
−

∗∂∆1
22

∂r
+

+ 2∆2
12∆

1
22 + ∆

3
32∆

3
23 − ∆

1
22∆

i
i1 , (94)

C33 = −

∗∂∆1
33

∂r
−

∗∂∆2
33

∂θ
+

+ 2∆3
13∆

1
33 + 2∆3

23∆
2
33 − ∆

1
33∆

i
i1 − ∆

2
33∆

i
i 2 . (95)

To calculate these components, we calculate the unknown
derivatives contained in them. We obtain

∗∂∆1
11

∂r
=

rg

r3
(
1 − rg

r

)2

(
1 −

rg
2r

)
, (96)

∗∂∆1
33

∂r
= − sin2

θ

(
1 +

6ω2r2sin2
θ

c2

)
, (97)

∗∂∆2
33

∂θ
= sin2

θ +
2ω2r2sin4

θ

c2 −

− cos2
θ −

6ω2r2sin2
θ cos2θ

c2 . (98)

Substituting the non-zero necessary chr.inv.-Christoffel
symbols and their chr.inv.-derivatives into these general for-
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mulae (91–95), after some algebra and non-trivial transfor-
mations we obtain formulae for the non-zero components of
the chr.inv.-Ricci tensor in the space of the rotating Schwarz-
schild metric. They have the form

C11 =
3ω2sin2

θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r2sin4
θ

c4
(
1 + ω2r2sin2θ

c2

)2
+

+
rg

r3
(
1 − rg

r

) (
1 + ω

2r2sin4θ

c2

) (
1 +

3ω2r2sin2
θ

2c2

)
, (99)

C12 =
3ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r3sin3
θ cos θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (100)

C21 =
3ω2r sin θ cos θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r3sin3
θ cos θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (101)

C22 =
3ω2r2cos2θ

c2
(
1 + ω2r2sin2θ

c2

) − ω4r4sin2
θ cos2θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (102)

C33 =
3ω2r2sin2

θ

c2 −
ω4r4sin4

θ

c4
(
1 + ω2r2sin2θ

c2

) , (103)

where C12 =C21 means that the space of the rotating Schwarz-
schild metric has a certain curvature symmetry.

Using the obtained components of the chr.inv.-Ricci ten-
sor Cik (99–103) and the upper-index components hik (50) of
the chr.inv.-metric tensor, we calculate the physically observ-
able chr.inv.-scalar curvature C = hikCik (28) of the space of
the rotating Schwarzschild metric. Since only h11, h22, h33 are
non-zero in such a space, then C = h11C11 + h22C22 + h33C33.
After some algebra, we obtain

C =
6ω2

c2
(
1 + ω2r2sin2θ

c2

) − 2ω4r2sin2
θ

c4
(
1 + ω2r2sin2θ

c2

)2
+

+
rg

r3
(
1 + ω2r2sin2θ

c2

) ×
×

(
1 −

3ω2r2sin2
θ

2c2 +
ω4r4sin4

θ

c4

)
, (104)

where the first two terms are due only to the rotation of space,
and the third term (in the second and third lines of the for-
mula) is due to the combined action of the gravitational field
and the rotation of space.

This is the physically observable chr.inv.-scalar curvature
of the three-dimensional space of a rotating massive body. It
is this curvature of space that is registered in astronomical
observations and laboratory measurements in the space near
such rotating massive bodies as stars and planets.

In the absence of a massive island of substance producing
the gravitational field (M = 0, rg = 2GM/c2 = 0), the obtained
formula (104) transforms into the formula

C =
6ω2

c2
(
1 + ω2r2sin2θ

c2

) − 2ω4r2sin2
θ

c4
(
1 + ω2r2sin2θ

c2

)2
, (105)

obtained recently in a rotating spherically symmetric space
without a gravitational field; see page 45 in the first paper [1]
of this series of papers.

At small speeds of rotation, the obtained formula for the
chr.inv.-scalar curvature (104) takes the simplified form

C =
6ω2

c2 +
rg
r3 . (106)

From the obtained simplified formula for C (106), we see
that the rotation of a massive body at slow rotations creates
a constant curvature field that does not depend on distance
from its source (the rotating body), whereas the gravitational
field of the body creates a curvature that decreases inversely
proportional to r3 from it.

If the massive body approximated by a mass-point does
not rotate (ω= 0), then the space metric of a rotating massive
body (10), which we have introduced and considered here,
transforms into the Schwarzschild mass-point metric (6). In
this case the obtained formula for the physically observable
chr.inv.-scalar curvature (104) transforms into

C =
rg
r3 , (107)

which is the same as the three-dimensional scalar curvature
of a spherically symmetric gravitational field, which Landau
and Lifshitz give in their The Classical Theory of Fields [11];
see page 325 of §100 in the 4th final English edition, or pages
378–379 of §97 in the 3rd French edition. The only difference
is that their curvature has a negative sign. This is because in
the years, when they wrote their book (the 1st edition was
issued in 1939), Zelmanov’s chronometrically invariant for-
malism had not yet been created. Therefore, Landau and Lif-
shitz believed that the three-dimensional components gik of
the fundamental metric tensor gαβ create an observable metric
tensor. On the contrary, the chronometrically invariant for-
malism clearly proves that the physically observable metric
tensor that possesses all properties of the fundamental met-
ric tensor throughout the three-dimensional spatial section as-
sociated with an observer (his observable three-dimensional
space) is hik =−gik +

1
c2 vi vk (15). This is why their curvature

of a non-rotating centrally symmetric gravitational field is ne-
gative, and the truly physically observable chr.inv.-curvature
(107), which we have just deduced using the chronometri-
cally invariant formalism, has a positive sign, as it should be
according to the physical sense of this quantity.

Consider a few typical numerical examples of the curva-
ture of space caused by rotating cosmic bodies.
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The first typical example is the Sun: r⊙ ≃ 7.0× 1010 cm,
M⊙ ≃ 2.0× 1033 gram, rg⊙ = 2GM⊙/c2 ≃ 3.0× 105 cm, ω⊙ ≃
≃ 2.87× 10−6 sec−1 (we are considering the Carrington rota-
tion of the Sun at the equator with a sidereal period of 25.38
days). According to the obtained formula (106), the expected
constant curvature of space due to the proper rotation of the
Sun is C = 6ω2

⊙/c
2 ≃ 5.6× 10−32 cm−2, while the variable cur-

vature of space due to the gravitational field of the Sun at a
distance of one solar radius r⊙ from its centre (i.e., on the
Sun’s surface) is 4 orders of magnitude greater: C = rg⊙/r3

⊙ ≃

≃ 8.8× 10−28 cm−2.
Since the curvature of space due to the Sun’s rotation is

constant, and the curvature due to its gravitational field de-
creases inversely proportional to r3 from it, then there is a
spherical surface in the cosmos on which these curvatures are
equal to each other: C = rg/r3 = 6ω2/c2. For the Sun, this is a
spherical surface surrounding the Sun at a distance of

r = 3

√
c2rg⊙
6ω2
⊙

≃ 1.8 × 1012 cm ≃ 25 r⊙ . (108)

Starting from the distance r≃ 1.8×1012 cm≃ 25 r⊙ from
the centre of the Sun, the contribution of the Sun’s rotation
to the observable curvature of space (it remains constant with
distance) exceeds the contribution of the Sun’s gravitational
field (since it decreases inversely proportional to r3). For
comparison: Mercury, the closest planet to the Sun, orbits
the Sun at a distance of r= 57.9 mln km= 82.7 r⊙.

For the Earth (r⊕ = 6.37× 108 cm, M⊕ = 5.97× 1027 gram,
rg⊕ = 0.884 cm, ω⊕ = 7.27× 10−5 sec−1), the constant curva-
ture of space caused by the Earth’s rotation is C = 6ω2

⊕/c
2 ≃

≃ 3.5×10−29 cm−2 that is 3 orders of magnitude greater than
the constant curvature C = 6ω2

⊙/c
2 ≃ 5.6× 10−32 cm−2 caused

by the rotation of the Sun. The curvature of space caused by
the Earth’s gravitational field on the Earth’s surface (r= r⊕) is
C = rg⊕/r3

⊕ ≃ 3.4×10−27 cm−2.
At a distance of

r = 3

√
c2rg⊕
6ω2
⊕

≃ 2.93 × 109 cm ≃ 29 300 km ≃ 4.6 r⊕ (109)

from the centre of the Earth (or at an altitude of h= r− r⊕ ≃
≃ 23 000 km≃ 3.6 r⊕ above the Earth’s surface) the contribu-
tions of the Earth’s rotation and its gravitational field to the
curvature of space become equal to each other. At higher alti-
tudes, the contribution of the Earth’s rotation to the curvature
of space, since it remains constant with altitude, is greater
than the contribution of the Earth’s gravitational field (the lat-
ter becomes comparatively negligible, since it decreases in-
versely proportional to r3).

For our Galaxy (r≃ 30 000 pc≃ 1023 cm, M≃ 2× 1011M⊙,
rg ≃ 6× 1016 cm, T ≃ 200 mln years,ω= 2π/T ≃ 10−15 sec−1),
the constant curvature of space caused by its rotation is C =
= 6ω2/c2 ≃ 7× 10−51 cm−2, while the curvature caused by its
gravitational field at its edge (r≃ 30 000 pc≃ 1023 cm) is 2

∗C = rg
r3 , cm−2 †C = 6ω2

c2 , cm−2 ‡r = 3
√

c2rg
6ω2

Galaxy 6 × 10−53 7 × 10−51 7 000 pc

Sun 8.8 × 10−28 5.6 × 10−32 25 r⊙

Earth 3.4 × 10−27 3.5 × 10−29 4.6 r⊕

Pulsars (min) 1.9 × 10−21

Pulsars (max) 1.4 × 10−13

∗The variable (decreasing) curvature of space caused by the
gravitational field of the cosmic body at a distance equal to its
radius from its centre.
†The constant curvature of space caused by the rotation of the
cosmic body.
‡The distance from the centre of the cosmic body at which the
contribution of its rotation to the curvature of space becomes
equal to the contribution of its gravitational field.

orders of magnitude weaker: C = rg/r3 ≃ 6× 10−53 cm−2. The
distance from the Galactic centre, at which the contribution of
the rotation of the Galaxy to the curvature of space becomes
equal to the contribution of its gravitational field is

r =
3

√
c2rg
6ω2 ≃ 2.1 × 1022 cm ≃ 7 000 parsec. (110)

The observed frequencies of radio-pulsars are in the range
from ωmin= 0.53 to ωmax= 4501 sec−1. Therefore, the con-
stant curvature of space caused by pulsars is in the range of
magnitudes from C ≃ 1.9× 10−21 to C ≃ 1.4× 10−13 cm−2.

As a result of the above calculation, we arrive at the fol-
lowing conclusion:
Conclusion on the background curvature of space

The curvature of space caused by the gravitational field
of rotating massive bodies decreases inversely propor-
tional to r3 and, therefore, becomes negligibly small
already in the immediate vicinity of these bodies, at a
distance of a few of their radii from them. However,
the rotation of these bodies creates a constant curvature
field, which is much weaker than the curvature caused
by their gravitational fields near these bodies, but does
not depend on the distance to them. Moreover, such
rapidly rotating cosmic objects as pulsars create strong
fields of a constant curvature, the magnitude of which
is many orders greater than the constant curvature fields
caused by other rotating stars and Galaxies.

It seems that the space of the entire Universe is
filled with a constant curvature field that is the superpo-
sition of the constant curvature fields caused by rapidly
rotating cosmic bodies such as pulsars. This is the basis
for considering the background space of our Universe
as a constant curvature space.

This is a very interesting theoretical discovery that re-
quires further study and analysis by astronomers.
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5 Einstein’s field equations in the space of a rotating
massive body

As mentioned on page 81, Einstein’s equations are one of the
necessary conditions for a space to be Riemannian. There-
fore, the considered space metric of a rotating massive body
(10) is Riemannian under some particular conditions (Rie-
mannian conditions) by which the Einstein equations for this
space metric vanish. Now our task is to find out the Rieman-
nian conditions for the space metric (10).

As we showed above (52), the space of a rotating massive
body, which we are considering, does not deform (Dik = 0),
and is not filled with any distributed matter such as gas, dust,
electromagnetic fields, etc. The latter means that the energy-
momentum tensor of distributed matter is zero (Tαβ = 0) and,
hence, the entire right-hand side of the Einstein field equa-
tions is zero. With taking the above into account, the chr.inv.-
Einstein equations (41–43) take the simplified form

Ajl Alj + ∗∇j F j −
1
c2 Fj F j = 0 , (111)

∗∇j Aij −
2
c2 Fj Aij = 0 , (112)

2 Aij A· jk · −
1
c2 Fi Fk +

1
2

(∗∇i Fk +
∗∇k Fi

)
− c2Cik = 0 . (113)

The 1st Riemannian condition for the space metric of a ro-
tating massive body (10), which we are considering, follows
from the obtained scalar chr.inv.-Einstein equation (111).
Since Ajl Alj =−Ajl A jl is the square of the chr.inv.-tensor Ajl

of the angular velocity of the rotation of space, taken with
the opposite sign, and the Zelmanov operator of the chr.inv.-
physical divergence (marked with a tilde)

∗∇̃j =
∗∇j −

1
c2 Fj , (114)

gives a divergence that is physically registered by the ob-
server, for instance, ∗∇̃j F j according to (31) is

∗∇̃j F j =
∗∂F j

dx j + ∆
j
jl F l −

1
c2 Fj F j =

= ∗∇j F j −
1
c2 Fj F j, (115)

then the scalar chr.inv.-Einstein equation (111) gives:

The 1st Riemannian condition
In the space of a rotating massive body, the physically
observable rotation of space is always balanced by the
physically observable divergence of the acting gravita-
tional inertial force:

Ajl A jl = ∗∇̃j F j, (116)

or, which is the same,

2Ω2 = ∗∇̃j F j. (117)

P.S. The alternative form (117) of the 1st Riemannian con-
dition (116) is obtained using the components of Ajl (59–66)
that we have calculated earlier in the space of a rotating mas-
sive body, after which we have

Ajl A jl =
2ω2

1 + ω
2r2sin2θ

c2

−
3ω2rg sin2

θ

r
(
1 + ω

2r2sin2θ

c2

) +
+

ω2r2
g sin2

θ

8r2
(
1 + ω

2r2sin2θ

c2

) (
1 − rg

r

) = 2Ω2, (118)

where Ω2 is the square of the physically observable scalar
angular velocity Ω (71) with which the space rotates.

The 2nd Riemannian condition for the space metric of a
rotating massive body follows from the obtained vector chr.
inv.-Einstein equation (112):

The 2nd Riemannian condition
In the space of a rotating massive body, the physically
observable divergence of the rotation of space is always
and everywhere equal to zero:

∗∇̃j Aij = 0 , (119)

which means that the physically observable rotation of
such a space is homogeneous (i.e., such a space rotates
always and everywhere homogeneously).

P.S. And here is why. Using the definition of the operator
of the chr.inv.-physical divergence ∗∇̃j (114) that is physically
registered by the observer, we calculate the chr.inv.-physical
divergence of the contravariant tensor of the angular velocity
of rotation of space Aij. According to the general formula for
the chr.inv.-derivative ∗∇j of an arbitrary contravariant tensor
of the 2nd rank (36), we obtain

∗∇̃j Aij =
∗∂Aij

∂x j + ∆
i
jl A jl −

1
c2 Fj Aij +

+ ∆l
lj Aij −

1
c2 Fj Aij = ∗∇j Aij −

2
c2 Fj Aij, (120)

which completely coincides with the left-hand side of the ob-
tained vector chr.inv.-Einstein equation (112), while the right-
hand side of the equation is zero.

The 3rd and 4th Riemannian conditions for the space met-
ric of a rotating massive body follow from the obtained tensor
chr.inv.-Einstein equation (113), re-written in the expanded
component notation

2 A1j A· j1· −
1
c2 F1 F1 +

∗∇1 F1 − c2C11 = 0 , (121)

2 A1j A· j2· − c2C12 = 0 , (122)

2 A2j A· j2· − c2C22 = 0 , (123)

2 A3j A· j3· − c2C33 = 0 , (124)
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in accordance with the non-zero components of Aij, Fi and
Cik, which we have calculated earlier (see above).

So, the 3rd Riemannian condition follows from the first
component (124). It says:

The 3rd Riemannian condition
In the space of a rotating massive body, the physically
observable curvature of space in the radial direction
x1 = r from the body is caused by both the physically
observable rotation of space (the first term of the equa-
tion) and the physically observable divergence of the
gravitational inertial force acting in the same radial di-
rection (the second term):

2 A13 A·31· +
∗∇̃1 F1 = c2C11 . (125)

The 4th Riemannian condition follows from the rest three
non-zero components (122–124) of the tensor chr.inv.-Ein-
stein equation:

The 4th Riemannian condition
In the space of a rotating massive body, the physically
observable curvature of space in all other directions
from the body, except for the radial direction x1 = r (in
which the gravitational-inertial force acts), is caused
only by the physically observable rotation of space:

2 A13 A·32· = c2C12

2 A23 A·32· = c2C22

2
(
A31 A·13· + A32 A·23·

)
= c2C33

 . (126)

P.S. It should be noted that the components A13 and A31

(59–62) of the chr.inv.-tensor of the angular velocity of rotat-
ion of space Aij contain both terms determined only by the ro-
tation of space and terms dependent on rg = 2GM/c2 (which
includes the mass M of the attracting body). This is because
the chr.inv.-tensor Aij (18) by definition takes into account
the effect of the acting gravitational inertial force Fi onto the
tensor Aij, thereby making Aij a truly physically observable
quantity dependent on the physical properties of space.

Therefore, when we say a “physically observable rotation
of space” or a “physically observable quantity” in general,
we mean a chronometrically invariant physical quantity, actu-
ally registered by the observer in his real measurements and,
therefore, dependent on the physical properties of space.

Finally, summing up the results obtained in this Section
of the present work, we can state the following:

Conclusion
Under the four Riemannian conditions deduced above,
the space metric of a rotating massive body (10) that we
have introduced and studied in this paper satisfies Ein-
stein’s field equations (thereby turning them into zero
identities) and is therefore proven to be Riemannian
and can be used in General Relativity.

The above conclusion has great significance for General
Relativity, cosmology and astrophysics. This is because the
introduced (and now proven) space metric of a rotating spher-
ical body, approximated by a mass-point, is not only a new
metric to General Relativity, which is an extension and re-
placement of the classical Schwarzschild mass-point metric
(which does not take into account the rotation of space). The
introduced space metric is the main space metric in the Uni-
verse, characterizing the physically observable field of any
real cosmic body, be it a planet, star, galaxy or something
else (since all real cosmic bodies rotate).

6 Deflection of light rays and mass-bearing particles in
the space of a rotating massive body

In the previous study [2], we considered massless (light-like)
and mass-bearing particles moving in the space of a rotat-
ing body, where the gravitational field created by the body
was so weak that its influence on the moving particles could
be neglected. The solutions obtained for the chronometri-
cally invariant equations of motion of free massless and free
mass-bearing particles in the space of a rotating body showed
that their physically observable motion should deviate from a
straight line due to the curvature of space caused by the ro-
tation of space. In other words, the trajectories of light rays
and mass-bearing particles should be deflected near a rotating
body due to the curvature of space caused by its rotation.

These are two new fundamental effects of General Rela-
tivity, in addition to the deflection of light rays in the field of
a gravitating body (known in Einstein’s theory from the very
beginning).

In the paper [2], the mentioned two new effects were cal-
culated in the space metric of a rotating body, where g00 = 1,
i.e., the gravitational potential is zero w= c2 (1−√g00

)
= 0,

in order to show these effects of the rotation of space in their
“pure form” (i.e., in the absence of the gravitational field).

Now we are going to calculate these two new effects of
General Relativity anew, now in the space of a rotating mas-
sive body, the metric of which (10) takes the gravitational
field of the rotating body into account: the gravitational po-
tential is w, 0 and, hence, g00 < 1; for details, see the space
metric (10) that we are considering. This, in contrast to the
abstract case considered in the previous work [2], is a real
physical case, since all real cosmic bodies in the Universe
such as planets, stars, galaxies and something else not only
rotate, but also have their own gravitational field.

So, let us begin. The chr.inv.-equations of motion are the
physically observable chr.inv.-projections of the general co-
variant four-dimensional equations of motion onto the time
line and the three-dimensional spatial section associated with
a particular observer. Such projections are invariant through-
out the spatial section of the observer (his physically observ-
able three-dimensional space) and are expressed through the
physical properties of his local reference space. A detailed
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derivation of the chr.inv.-equations of motion can be found in
the monographs [7, 8], the first of which is devoted to free
(geodesic) motion of particles, while the second is a study of
non-geodesic motion.

The chr.inv.-equations of motion of a free mass-bearing
particle have the form

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 , (127)

d (mvi)
dτ

+ 2m
(
Di

k + A·ik ·
)

vk − mF i +

+ m∆i
nkvnvk = 0 , (128)

and the chr.inv.-equations of motion of a free massless (light-
like) particle have the form

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0 , (129)

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik ·
)

ck − ωF i +

+ ω∆i
nk cnck = 0 , (130)

where the first (scalar) chr.inv.-equation of motion is the pro-
jection of the general covariant equations of motion onto the
observer’s time line, and the second (vector) chr.inv.-equation
of motion is the projection onto his spatial section (his three-
dimensional space).

Here m is the relativistic mass of the mass-bearing parti-
cle, ω is the relativistic frequency of the massless (light-like)
particle, the physically observable time interval dτ (11) is
expressed through the gravitational potential w (12) and the
linear velocity of the rotation of space vi (13) as

dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi, (131)

and the chr.inv.-vector of the physically observable velocity
of the particle has the form

vi =
dxi

dτ
, vivi = hikvivk = v2,

which, in the case of massless (light-like) particles, trans-
forms into the chr.inv.-vector of the physically observable ve-
locity of light, for which ci ci = hik cick = c2 = const (despite
the fact that its individual components ci are variables de-
pending on the properties of space).

Since the space of a rotating massive body, which we
are considering, does not deform (Dik = 0), then the chr.inv.-
equations of motion simplify by vanishing Dik. For a free
mass-bearing particle they take the form

dm
dτ
−

m
c2 Fi vi = 0 , (132)

d (mvi)
dτ

+ 2mA·ik ·v
k − mF i + m∆i

nkvnvk = 0 , (133)

while for a massless (light-like) particle they become

dω
dτ
−
ω

c2 Fi ci = 0 , (134)

d (ωci)
dτ

+ 2ωA·ik ·c
k − ωF i + ω∆i

nk cnck = 0 . (135)

6.1 Solving the chr.inv.-scalar equation of motion

Since the rotating massive body we are considering is not
a gravitational collapsar, i.e., its physical radius r is much
greater than its gravitational radius (r≫ rg), then according
to the formulae for Fi (55) and F i (56) obtained for the field
of a rotating massive body we have

F1 = F1 = −
c2rg
2r2 = −

GM
r2 . (136)

With this fact taken into account, the scalar equation of
motion of a free mass-bearing particle (132), in the case when
it travels along the radial direction x1 = r from the rotating
massive body, takes the form

dm
m
= −

GM
c2

dr
r2 , (137)

which is a simple differential equation dy
y
=− a dx

x2 or, which
is the same, d ln m=− a dx

x2 . It solves as y=Cea/x, where the
integration constant C in this case is C =m(r= r0 = 0) =m0. As
a result, we obtain that the scalar equation of motion of a free
mass-bearing particle (132) solves as

m = m0 e
GM
c2r
≃ m0

(
1 +

GM
c2 r

)
. (138)

For example, according to the obtained solution, the mass
of a body located on the Earth’s surface (M⊕ = 5.97× 1027

gram, r⊕ = 6.37× 108 cm) is greater than its mass, measured
when the body was located at a distance of the Moon’s orbit
from the Earth (r= 3.0× 1010 cm) by a value of 1.5× 10−11 m0
due to the greater magnitude of the Earth’s gravitational field
potential on the Earth’s surface.

The scalar equation of motion of a free massless (light-
like) particle (134), when it radially travels in space, solves in
the same way. Its solution has the form

ω = ω0 e
GM
c2r
≃ ω0

(
1 +

GM
c2 r

)
. (139)

This solution means that photons gain an additional en-
ergy (and frequency) from the gravitational field. For exam-
ple, a photon with a frequency ω0 at the moment of emission
from the surface of a star has a lower frequency ω<ω0 (and
energy) when it moves away from this star at some distance.
The greater the gravitational field potential (i.e., the closer the
photon is to the source of the gravitational field), the more the
photon’s frequency is redshifted. According to the above so-
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lution, the photon’s redshift z in the field of a rotating massive
body is determined as (where r0 < r1)

z =
ω0 − ω

ω
= e

GM
c2r0
− GM

c2r1 − 1 ≃
GM
c2 r0

−
GM
c2 r1

. (140)

So, by solving the chr.inv.-scalar equation of free mass-
bearing and massless (light-like) particles we have deduced
two effects. First, we have deduced the well-known relativis-
tic effect of the decrease in the mass of a body with height
above the Earth’s surface (138). Second, we have deduced the
gravitational redshift (140), which is also the effect of General
Relativity, known from the very beginning and first registered
in the spectra of white dwarfs.

Landau and Lifshitz derived these effects from the con-
servation of energy of a free particle travelling in a stationary
gravitational field; for example, see [11, §88]. Zelmanov fol-
lowed the same way of derivation. However, the new deriva-
tion method presented here, based on the integration of the
chr.inv.-scalar geodesic equation, allows us to represent the
mentioned effects as something not specifically related to the
stationary gravitational field, but as general effects of General
Relativity that can be calculated in any metric space.

Note that the chr.inv.-scalar equation of motion does not
take the rotation of space into account. Therefore, the obtain-
ed solutions of the equation (and the effects following from
them) coincide with the solutions in a space of the Schwarz-
schild’s mass-point field (which does not rotate).

6.2 Solving the chr.inv.-vector equation of motion

Let us now solve the chr.inv.-vector equation of motion. For a
free mass-bearing particle, radially travelling in the space of
a rotating massive body, this is the equation (133), while for
a massless particle this is the equation (135).

Since the chr.inv.-vector equation of motion depends on
the tensor of the angular velocity of rotation of space Aik,
we expect that its solution will reveal new effects of Gen-
eral Relativity, previously unknown in the framework of the
non-rotating Schwarzschild mass-point metric.

The chr.inv.-vector equations of motion are unsolvable in
their general form (133) and (135), because they require sub-
stitution of the solutions for the particle’s mass m (138) and
frequency ω (139) obtained from the chr.inv.-scalar equations
of motion, which in turn contain an exponential function of
distance r (as a result, each term of the vector equations of
motion would contain this complicated function).

Therefore, we will solve the chr.inv.-vector equations of
motion in an approximation that the mass-bearing particle’s
mass m and the massless (light-like) particle’s frequency ω
remain constant during the travel. This approximation can be
used in problems of motion near planets and stars, because,
as shown above, the mass m0 of a body located on the sur-
face of the Earth is only 1.5× 10−11 m0 greater than its mass
measured when the body was at the distance of the Moon.

In addition to the assumed approximations m= const and
ω= const, we assume, as well as when we solved the scalar
equations of motion above, that the rotating massive body that
is the source of the gravitational field is not a gravitational
collapsar (r≫ rg), so the acting gravitational inertial force is
expressed in the simplified form (136).

Moreover, to further simplify the vector equations of mo-
tion, we assume that the particle travels at a very high radial
velocity v1 in the equatorial plane along the radial axis x1 = r
towards the origin of the coordinates (the body’s centre). For
example, it could be a particle falling from the near-Earth
space in the equatorial plane onto the Earth’s surface. In this
case: a) the polar angle is θ= π2 and, therefore, cos θ= 0 and
sin θ= 1, b) the velocities v2 and v3, with which the particle
is deflected along the geographical latitudes and longitudes,
are negligible compared to its radial velocity v1.

Finally, we assume that the body that is the source of the
field rotates (synchronously with its entire space) with slow
linear velocities compared to the velocity of light.

Now we substitute into the chr.inv.-vector equations of
motion (133) and (135) the components of the gravitational
inertial force Fi (136), the tensor of the angular velocity of
rotation of space Aik (59–66), and also the inhomogeneity co-
efficients of space, a.k.a. the Christoffel symbols ∆i

nk (77–83),
which we have calculated above in this paper in accordance
with the space metric of a rotating massive body. As a result,
after using the above approximations, we obtain the vector
equations of motion in component notation.

The resulting chr.inv.-vector equation of motion of a free
mass-bearing particle, in component notation derived after
some algebra, has the form

d v1

dτ
− 2ωr v3 − r v2v2 − r v3v3 +

GM
r2 = 0

d v2

dτ
+

2
r

v1v2 = 0

d v3

dτ
+

2ω
r

v1 +
2
r

v1v3 = 0


. (141)

and for a massless (light-like) particle the resulting chr.inv.-
vector equation of motion has the components

d c1

dτ
− 2ωrc3 − r c2c2 − r c3c3 +

GM
r2 = 0

d c2

dτ
+

2
r

c1c2 = 0

d c3

dτ
+

2ω
r

c1 +
2
r

c1c3 = 0


. (142)

As can be seen from the equations, the gravitational field
of a rotating body makes a contribution in the form of only
the last term in the first equation, i.e., it affects the motion
of the particle only along the radial direction x1 = r. On the
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contrary, the rotation field of this body makes a contribution
to the motion of the particle both along the radial axis r and
along the equatorial (longitudinal) coordinate axis φ and the
latitudinal coordinate axis θ.

As is seen, the vector equations of motion for a mass-
bearing particle and a massless (light-like) particle are iden-
tical. The only difference is that the equations for a massless
(light-like) particle contain the physically observable veloc-
ity of light ci instead of the mass-bearing particle’s physically
observable velocity vi. For this reason, we will solve only the
equation of motion of a mass-bearing particle (the solution
for a massless particle will coincide).

The problem is that this system of differential equations
is unsolvable even when considered in the above simplified
form. Therefore, we will solve them using the small parame-
ter method.

Namely, — we assume that the radially travelling particle
gains only a very small increment or decrement α′ to its ini-
tial numerical value v1. This allows us to set v1 = const in the
third equation of the system, which is the equation of motion
along the equatorial (longitudinal) axis φ, and in the second
equation that is the equation of motion along the latitudinal
axis θ. Then, using the obtained solutions of the third and
second equations, we will solve the first equation (the equa-
tion of motion along the radial axis r) with respect to v1 +α′,
i.e., with respect to the small parameter α.

But even now, without solving the vector equations of mo-
tion, but only based on their general form given above, we see
that three effects are possible, namely:

1. The deflection of a radially travelling particle along the
geographic longitudes due to the influence of the rota-
tion of space (the third equation);

2. The deflection of a radially travelling particle along the
geographic latitudes due to the influence of the rotation
of space (the second equation);

3. The acceleration or braking of a radially travelling par-
ticle in the radial direction due to both the gravitational
field and the rotation of space (the first equation).

6.2.1 Solving the third vector equation of motion

The third equation is an equation of motion along the equato-
rial axis φ. This is a differential equation of the form

y′ + ay + b = 0 , (143)

or, which is the same,

φ′′ + aφ′ + b = 0 , (144)

where the variable y and the constants used are

y = v3 =
dφ
dτ
, (145)

a =
2
r

v1 = const, b =
2ω
r

v1 = const. (146)

The above equations (143) and (144) solve as

y =
C

eax −
b
a
, φ =

C1

eax −
bx
a
+C2 . (147)

Substituting the integration constants, calculated from the
initial conditions x= x0 = 0 and y= y0 = 0,

C =
b
a
= ω , (148)

C1 = −
b
a2 = −

ωr
2v1 , C2 = −C1 =

ωr
2v1 , (149)

below we represent the above solutions of the equations (143)
and (144) in their final form.

As a result, the obtained solution of the equation (143),
which is the physically observable velocity y= v3 of the radi-
ally travelling particle along the equatorial axis φ at the point
of arrival on the surface of the rotating body (onto which the
particle was falling down from the cosmos along the radial
direction r), takes the final form

v3 = −ω + ωe
− 2

r v1τ
. (150)

The first term here is the basic equatorial velocity of the
particle, the cause of which is the shift of its equatorial co-
ordinate φ towards negative numerical values due to the turn
of the rotating massive body during the time of the particle’s
travel to the body’s surface.

The second term is absent in the classical theory. This ad-
ditional term reveals an additional velocity gained by the free
falling mass-bearing particle along the equatorial coordinate
φ (geographical longitudes) of the rotating massive body in
the direction, opposite to its rotation.

In turn, the obtained solution for the equatorial coordinate
φ of the particle’s point of arrival, which is the solution of the
equation (144), takes the final form as follows

φ = φ0 − ωτ +
ωr
2v1

(
1 − e

− 2
r v1τ

)
. (151)

The first and second terms of the solution are known in
the classical theory.

The third, additional term of this solution, unknown in the
classical theory, reveals a deflection of the free falling mass-
bearing particle along the equatorial coordinate φ (geograph-
ical longitudes) of the rotating massive body in the direction,
opposite to its rotation.

Respectively, the solutions of the third vector equation of
motion for a massless (light-like) particle, such as a photon,
have the same form

c3 = −ω + ωe
− 2

r c1τ
, (152)

φ = φ0 − ωτ +
ωr
2c1

(
1 − e

− 2
r c1τ

)
, (153)
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where the mass-bearing particle’s velocity is replaced with
the physically observable velocity of light.*

These solutions show another new effect of the rotation of
space, which is absent in the classical theory and is revealed
by the second term of the solution (152) and the third term of
the solution (153). This is an additional deflection of a light
ray travelling towards the surface of a rotating massive body,
which occurs along the equatorial coordinate φ (geographical
longitudes) of the body in the direction, in which the body
rotates.

Note that the solutions of the third vector equation of mo-
tion, which we have derived above in the field of a rotating
massive body with a significant gravitational field, coincide
with those derived earlier [2] in the field of a rotating body,
the gravitational field can be neglected (i.e., in the absence
of the gravitational field). This is because the acting gravi-
tational force takes effect on only the first vector equation of
motion (along the radial axis r), but is not included into the
second and third vector equations of motion (along the lat-
itudinal polar coordinates θ and the equatorial longitudinal
coordinates φ).

For this reason, the numerical examples of the solutions
will be identical to those calculated in the previous paper [2]
in the absence of the gravitational field. Therefore, we now
reproduce the examples here in short from [2].

Thus, the curvature of space caused by the rotation of the
Earth around its axis (ω⊕ =1 rev/day=1.16×10−5 rev/sec,
r⊕ = 6.37×108 cm) deflects a light ray arriving at the Earth’s
surface from the Moon (τ =1 sec) along the geographical lon-
gitudes φ in the direction of the Earth’s rotation. The angle of
deflection of the light ray is†

∆φ =
ω⊕ r⊕
2c1

(
1 − e

− 2
r c1τ

)
≃ 1.2 × 10−7 rev ≃ 0.16 ′′, (154)

where the deflection of the light ray is mainly due to the first
term, and the second term, depending on the travel time τ, is
equal to 1.5× 10−41 and, therefore, can be neglected.

The magnitude of this effect increases with the radius and
rotation velocity of the cosmic body. Thus, a light ray arriving
at the Sun (ω⊙ =4.5×10−7 rev/sec, r⊙ = 7.0×1010 cm) is de-
flected by the curvature of space caused by the Sun’s rotation
by an angle, the numerical value of which is

∆φ ≃ 5.3 × 10−7 rev ≃ 0.68 ′′, (155)

the value of which is much larger in the case of a rapidly rot-
ating star, such as Wolf-Rayet stars or neutron stars.

*Note that, despite the components of the physically observable velocity
of light are variables depending on the properties of space, its square remains
constant ci ci = hik cick = c2 = const).

†In this case, the physically observable velocity of light has a negative
numerical value of c1 =− 3× 1010 cm/sec, since the velocity of light vector
is directed towards the Earth, i.e., opposite to the radial coordinates r mea-
sured from the centre of the Earth.

6.2.2 Solving the second vector equation of motion

The second vector equation of motion is an equation of mo-
tion along the geographical latitudes, where the latitudinal
coordinate θ (polar angle) is measured from the North Pole.
This is a differential equation of the form

y′ + ay = 0 , (156)

or, with respect to the latitudinal coordinates θ,

θ
′′ + aθ′ = 0 , (157)

where the variable y and the constant a are

y = v2 =
dθ
dτ
, a =

2
r

v1 = const. (158)

These equations solve as

y =
C

eax , θ =
C1

eax +C2 , (159)

where the integration constants are calculated from the initial
conditions x= x0 = 0 and y= y0 = 0. They are C = 0, C1 = 0
and C2 = θ0.

Thus, the final solutions of the second vector equation of
motion have the following form

v2 = 0 , θ = θ0 , (160)

which means that a particle travelling radially towards the sur-
face of a massive rotating body is not deflected along the ge-
ographical latitudes.

6.2.3 Solving the first vector equation of motion

The first vector equation of motion is an equation of motion
along the first (radial) coordinate axis r.

This equation contains contributions from both the rota-
tion of space (the second term) and the gravitational field (the
last term of the equation). Therefore, its solution will differ
from the solution of the first equation of motion in the field
of a rotating body, the gravitational field of which can be ne-
glected (i.e., in the absence of the gravitational field).

Assume that the particle’s velocity in the radial direction
gains only a very small increment or decrement α′ to its ini-
tial numerical value v1. In other words, we assume v1 = const
and, therefore, solve the first vector equation of motion with
respect to the sum v1 +α′, i.e., with respect to the small pa-
rameter α.

Taking the obtained solutions v3 =−ω and v2 = 0 into
account, the first vector equation of motion is reduced to

d v1

dτ
+ ω2r +

GM
r2 = 0 , (161)

where r is the radius of the rotating body, and M is its mass.
This is a differential equation having the form

y′ + b = 0 , (162)
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or, with respect to the small parameter α,

α′′ + b = 0 , (163)

where the variable y and the constant b are

y = α′, b = ω2r +
GM
r2 = const. (164)

The above equations (162) and (163) solve as

y = C − bx , α = −
bx2

2
+C2 x +C1 , (165)

where the integration constants, calculated from the initial
conditions x= x0 = 0, α=α0 = 0 and y= y0 = 0, are zero. As
a result, the solutions of the equations (162) and (163) take
their final form

α′ = −ω2rτ −
GM
r2 τ, α = −

ω2r
2
τ2 −

GM
2r2 τ

2. (166)

The second terms in the solutions are the contribution of
the gravitational field, created by the rotating massive body,
which is the well-known effect of the classical theory. The
terms reveal, respectively, the additional radial velocity gain
by the falling particle (in the solution for α′) and also the
reduction of the distance travelled by the particle (in the so-
lution for α), all due to the influence of the gravitational field
attracting the particle to the rotating body.

However, the first terms in the solutions are absent in the
classical theory. They show, respectively, the additional neg-
ative radial velocity (in the solution for α′) and the stretching
in the distance travelled by the particle (in the solution for α)
due to the influence of the rotation of space of the gravitating
body onto which the particle falls.

We see that here only the rotation of space produces a
new effect of General Relativity in addition to the classical
theory (i.e., the gravitational field of the rotating body does
not produce a new additional effect).

In the absence of the gravitational field, the obtained so-
lutions (166) coincide with those obtained in the previous pa-
per [2] for a particle travelling towards a rotating body, the
gravitational field of which can be neglected.

In fact, the new effect revealed by the first terms of the so-
lutions (166) means that a mass-bearing particle or a light ray
reaches a rotating massive body later due to the “stretching”
of its path of travel due to the curvature of space caused by
the rotation of space of the body, i.e., the mass-bearing par-
ticle or the light ray arrives at the rotating body with a time
delay compared if the body did not rotate.

These new effects are the same for both mass-bearing and
massless (light-like) particles. For example, the increment of
the path length travelled by a light ray from the Moon to the
Earth, and also the delay in its travel time are

α = −
ω2
⊕ r⊕
2
τ2 ≃ −1.7 cm, (167)

∆τ =
α

c1 ≃ 5.7 × 10−11 sec, (168)

and for a light ray that travelled from the Earth to the Sun
the increment of the travelled path length and the delay in its
travel time are

α = −
ω2
⊙ r⊙
2
τ2 ≃ −6.6 × 104 cm, (169)

∆τ =
α

c1 ≃ 2.2 × 10−6 sec, (170)

which are the same as those calculated in the previous paper
[2] in the field of a rotating body, the gravitational field of
which can be neglected.

6.2.4 Conclusion

In concluding this Section of the present paper, let us formu-
late the two new effects of General Relativity calculated here
in the field of a rotating massive body:

The 1st new effect of General Relativity
A mass-bearing particle radially falling onto the sur-
face of a rotating body gains an additional velocity, di-
rected along the equatorial coordinate φ (geographical
longitudes) of the body in the opposite direction of its
rotation, thereby causing a deflection of the particle in
the longitudinal direction φ.

In addition, the radially falling mass-bearing parti-
cle arrives at the rotating body with a time delay com-
pared if the body did not rotate.

This happens due to the “stretching” of the rotating
body’s space along the equatorial coordinate φ (along
the geographical longitudes) and the radial direction r
(towards the body) as a result of the curvature of space,
caused by its rotation (together with the body).

The 2nd new effect of General Relativity
A light ray radially spreading towards the surface of a
rotating body acquires an additional deflection upon ar-
rival along the equatorial latitudinal coordinate φ of the
body in the direction, in which the body rotates.

In addition, the radially spreading light ray arrives
at the rotating body with a time delay compared if the
body did not rotate.

This deflection of the light ray and the delay in its
arrival at the rotating body occurs due to the “stretch-
ing” of the rotating body’s space along the equatorial
coordinate φ (along the geographical longitudes) and
the radial direction r (towards the body), which are the
result of the curvature of space, caused by its rotation
(together with the body).

The physical origin of the new effects is obvious from our
above calculation of the curvature of space, which we found
to be caused by not only the gravitational field but also the
rotation of space:
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On the origin of the new effects
As has been found, the rotation of any body curves
space in the direction of its rotation and to the centre
of this body (the centre of rotation), thereby creating a
“slope of the hill” slowing “down” along the equator in
the direction, in which this body rotates, and also to the
centre of this body.

In addition, the gravitational field created by the ro-
tating body also curves space, making its own contribu-
tion in the form of the curvature of space towards the
body’s centre.

As a result, due to the created curvature of space,
a mass-bearing particle or a light ray freely travelling
towards a rotating massive body “rolls down the curva-
ture hill” of space along the equator of the body in the
direction of the body’s rotation (the contribution of the
rotation of space), and also “rolls” towards the centre
of the body (the combined contribution of the rotation
of space and the gravitational field).

7 Length stretching and time loss/gain in the space of
a rotating massive body

According to the chronometrically invariant formalism, the
three-dimensional physically observable chr.inv.-interval dσ
(14) and the physically observable time interval dτ (11)

dσ2 = hik dxidxk, dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi (171)

depend on the chr.inv.-metric tensor hik =−gik +
1
c2 vi vk (15),

the gravitational field potential w (12) and the linear velocity
of the rotation of space vi (13). Thus, we can calculate dσ
and dτ in the space of any particular metric, for which we
have previously calculated the quantities hik, w and vi.

Let us now calculate the length of a rigid rod and the time
interval in the field of a rotating massive body.

7.1 Length stretching

Let us substitute into the formula for dσ the non-zero compo-
nents hik (47) that we have calculated according to the space
metric of a rotating massive body (10).

Thus, we obtain the physically observable length dl of a
rigid rod, installed in stages along each of the coordinates

dlr =
√

h11 dr2 =
dr√
1 − rg

r

=
dl0√
1 − rg

r

, (172)

dlθ =
√

h22 dθ2 = rdθ = dl0 , (173)

dlφ =
√

h33 dφ2 =

√
1 +
ω2r2sin2

θ

c2 r sin θ dφ =

=

√
1 +
ω2r2sin2

θ

c2 dl0 , (174)

where dr= dl0 is the length of an elementary segment along
the radial axis r, rdθ= dl0 is the length of an elementary arc
along the latitudinal axis θ (the polar angle θ is measured
from the North Pole), and r sin θdφ= dl0 is the length of an
elementary arc along the equatorial latitudinal axis φ.

As is seen from the above calculation, a rigid rod located
in the field of a rotating massive body (say, in the field of
the Earth or the Sun) retains its original physically observ-
able length dl0, when installed along the geographical lati-
tudes (dlθ = dl0).

In contrast, when the rod installed in the position along
the radial coordinate r, i.e., in the direction towards the centre
of the rotating massive body (along its radius), its physically
observable length dlr is greater than its original length dl0 by
a small value δlr

dlr =
√

h11 dr2 =
dl0√
1 − rg

r

≃

(
1 +

rg
2r

)
dl0 , (175)

δlr ≃
rg
2r

dl0 ≃
1
2

C r2dl0 , (176)

which is determined by the curvature of space C = rg
r3 caused

by the gravitational field of the rotating body. See the second
term in the formula for the physically observable curvature C
(106) of the space of a rotating massive body, which we have
derived above in this paper.

And also, when the rod is installed in the position along
the equatorial coordinate φ, i.e., in the direction along the ge-
ographical longitudes along which the massive body (say, the
Earth or the Sun) rotates around its own axis, its physically
observable length dlφ is greater than its original length dl0 by
a small value δlφ

dlφ =

√
1 +
ω2r2sin2

θ

c2 dl0 ≃
(
1 +
ω2r2sin2

θ

2c2

)
dl0 , (177)

δlφ ≃
ω2r2sin2

θ

2c2 dl0 ≃
1

12
C r2sin2φ dl0 , (178)

determined by the curvature of space C = 6ω2

c2 created by its
rotation (together with the massive body) and is expressed
with the first term in the formula for the physically observable
curvature C (106), which we have derived in this paper.

As a result of the above derivation, we obtain the 3rd new
effect of General Relativity:

The 3rd new effect of General Relativity
A rigid rod installed along the radial coordinate in the
field of a rotating massive body (i.e., in the direction to
the body’s centre) acquires an additional length. This
additional length is determined by the curvature of the
body’s space caused by its gravitational field.

In addition, if the rod is installed along the equa-
torial coordinate φ (i.e., along the geographical longi-
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tudes of the body), then its length acquires an addi-
tional length determined by the curvature of the body’s
space caused by its rotation.

This effect of length stretching of a rod in the field
of a rotating massive body is due to the “stretching” of
the body’s space along the radial direction r (towards
the body) caused by its gravitational field, and along the
equatorial coordinate φ (along the geographical longi-
tudes), caused by the rotation of the body’s space (to-
gether with the body).

In other words, a rod in the field of a rotating mas-
sive body is “stretched” together with the “stretching”
of the coordinate grid of space in the radial and equa-
torial directions. The “stretching” of the grid of space
in the radial direction occurs due to the curvature of
the body’s space (the funnel of space) in this direction,
caused by its gravitational field. Whereas the “stretch-
ing” of the coordinate grid of space along the equato-
rial coordinates is caused by the curvature of the body’s
space due to its rotation in this direction.

For example, the length stretching of a rod installed at
the equator of the Earth (ω⊕ =1 rev/day=7.27×10−5 sec−1,
r⊕ = 6.37×108 cm) in the direction along the longitudinal axis
φ, i.e., along the equator, has a numerical value of

δlφ ≃
ω2
⊕ r2
⊕ sin2

θ

2c2 dl0 ≃ 1.2 × 10−12 dl0 (179)

of the original length dl0 of the rod.
The length stretching of a rod installed vertically on the

Earth’s surface, has a numerical value of

dlr ≃
rg⊕
2r⊕

dl0 ≃ 7.0 × 10−10 dl0 . (180)

This length stretching effect is maximum at the equator,
where the curvature and “stretching” of the Earth’s space
caused by the Earth’s gravitational field are maximum (since
the Earth is oblate towards the equator), and the curvature and
“stretching” of the Earth’s space caused by the Earth’s rotat-
ion are also maximum. This length stretching effect decreases
towards the geographical poles, where the length stretching
caused by the rotation of the Earth’s space vanishes (since
sin θ= 0 at the poles), and the length stretching caused by the
gravitational field is a little lesser than at the equator.

7.2 Time loss/gain

Let us now substitute into the general formula for the physi-
cally observable interval dτ the gravitational potential w (54)
and the linear velocity of the rotation of space v3 =ωr2sin2

θ

(45) that we have calculated above in this paper among the
other characteristic of the space metric of a rotating massive
body (10).

Thus, we obtain the physically observable time interval
dτ, which will be registered by an observer travelling along

the equatorial direction φ (i.e., along the geographical longi-
tudes) in the space of a rotating massive body

dτ =

√
1 −

rg
r

dt −
1
c2 v3 u3 dt =

=

√
1 −

rg
r

dt −
ωr2sin2

θ

c2 u3 dt , (181)

where u3 =
dφ
dt is the coordinate velocity of the observer in the

equatorial direction x3 =φ, along which he travels.
The first term in this formula determines the known effect

of time loss due to the curvature of the body’s space C = rg
r3

caused by its the gravitational field: the stronger the gravita-
tional field (the closer the observer is to a massive body), the
shorter the time intervals registered by him

dτ =

√
1 −

rg
r

dt ≃
(
1 −

rg
2r

)
dt , (182)

δτ ≃ −
rg
2r

dt ≃ −
1
2

C r2dt . (183)

In other words, this is the known effect of the classical
theory: the higher the observer is above the surface of a mas-
sive body, the weaker the curvature of the body’s space and,
consequently, the shorter the time intervals that the observer
records.

However, the second term of (181) is absent in the classi-
cal theory. This term reveals the increment of the physically
observable time, which is due to the curvature of the body’s
space C = 6ω2

c2 caused by its rotation (together with the mas-
sive body itself)

δτ = −
ωr2sin2

θ

c2 u3dt = −
C r2sin2

θ

6ω
u3dt . (184)

The sign of this effect depends on the direction, in which
the observer travels with respect to the rotation of space, i.e.,
on the sign of the observer’s coordinate velocity u3 (he travels
along the equatorial axis x3 =φ).

As a result, based on the second term in the obtained so-
lution, we obtain the 4th new effect of General Relativity in
addition to those three explained above. This effect says:

The 4th new effect of General Relativity
A clock on board an airplane (or a spacecraft) flying in
the field of a rotating massive body in the same direc-
tion in which the body’s space rotates (together with
the body itself) should register a time loss depending
on the airplane’s (or a spacecraft’s) velocity and the ro-
tation velocity of the body’s space.

In contrast, a clock on board an airplane (or a space-
craft) flying in the direction, opposite to the body’s
space rotation should register a time increment, as well
depending on the airplane’s (or a spacecraft) velocity
and the velocity, with which the body’s space rotates.
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This effect of time loss/gain in the field of a rotating
massive body is due to the “stretching” of the body’s
space along the equatorial direction φ (along the ge-
ographical longitudes), caused by the rotation of the
body’s space along this axis. When, say, an airplane
flies towards the Earth’s rotation, the magnitude of the
total rotation of space registered on its board is less than
the proper rotation of the Earth’s space at the point of
departure/arrival and, therefore, the “stretching” (and
curvature) of space registered on board the airplane is
also less. In contrast, when an airplane flies backwards
the Earth’s space rotation, the clock on its board reg-
isters a time increment due to the greater magnitude
of the total rotation and, therefore, greater “stretching”
(and curvature) of space.

For example, consider a typical commercial flight travel-
ling at 10 000 m along the Earth’s equator (ω⊕ =1 rev/day=
= 7.27× 10−5 sec−1, r⊕ = 6.37× 108 cm) at a typical cruising
speed of 800 km/hour, which means a flight time around the
globe of t ≃ 1.8×105 sec. Since the planet Earth rotates from
West to East, the above 800 km/hour mean that the airplane’s
velocity is u3 =+ 3.5×10−5 sec−1 when flying Eastward and
u3 =− 3.5×10−5 sec−1 when flying Westward.

Then, according to the second term (184) in the obtained
solution for dτ (181) we have obtained in the field of a ro-
tating massive body, a clock installed on board the airplane
should register a time loss of

δτEast = −
ω⊕ r2

⊕ sin2
θ

c2 u3 t ≃ −210 nanosec, (185)

when flying to the East (i.e., in the same direction, in which
the Earth’s space rotates), and also a time increment

δτWest = +
ω⊕ r2

⊕ sin2
θ

c2 u3 t ≃ +210 nanosec, (186)

when flying to the West (i.e., oppositely to the rotation of the
Earth’s space).*

This effect is maximum at the equator (where the curva-
ture of the Earth’s space caused by its rotation is maximum
and, therefore, space is maximally “stretched”) and decreases
towards the poles, where sin θ= 0 and, therefore, this effect
vanishes.

This effect was first registered in the “around-the-world-
clock experiment”, conducted in 1971 by Joseph C. Hafele
and Richard E. Keating [12–14] and then repeated in 2005
by the UK’s National Measurement Laboratory [15], despite
the fact that they did not know about the chronometrically
invariant formalism and the effects caused by the rotation of
space; I discussed this issue in extensive friendly correspon-

*The calculated numerical values are the same as those calculated in the
previous paper [3] in the absence of the gravitational field, since the gravi-
tational field produces an individual effect, expressed by the first term of the
obtained solution for dτ (181).

dence with Joseph C. Hafele in the last years of his life, be-
fore he passed away in 2014 [16]. Their flights took place in
the Northern Hemisphere (not at the equator) and at different
altitudes. In addition, the results of their measurements were
affected by the relativistic addition of the airplane’s veloc-
ity to the Earth’s rotation velocity when flying Eastward (and
subtraction when flying Westward), as well as the decrease
in the Earth’s gravitational potential with flight altitude. That
is their measurement results were not purely the effect of the
rotation of space. The total effect registered in the Hafele-
Keating experiment was a time loss of − 59±10 nanosec-
onds when flying Eastward and a time increment of + 273± 7
nanoseconds when flying Westward, which fits well with our
above calculation of the new effect due to the rotation of
space, if we take into account the relativistic addition of the
airplane’s velocity to the Earth’s rotation velocity when flying
Eastward and subtraction when flying Westward.

8 Conclusion

The main contribution of this paper is introducing and prov-
ing the space metric of a rotating massive body, approximated
by a mass-point. This is a new space metric to General Rela-
tivity, the main purpose of which is to be a modern extension
and replacement of the classical Schwarzschild mass-point
metric (since in the space of the Schwarzschild metric a mas-
sive body creating gravitational field does not rotate).

We have proven that the introduced space metric of a ro-
tating massive body satisfies Einstein’s field equations, and
also derived the Riemann conditions under which this occurs.
Therefore, the introduced metric can be legitimately used in
General Relativity.

We have calculated all known physically observable prop-
erties of space determined by the introduced metric of a ro-
tating massive body, including the physically observable cur-
vature of space. And here is what is especially interesting:
we have found that the curvature of space is caused not only
by the gravitational field filling it, but also by the rotation of
space (together with the massive body). Based on this theo-
retical discovery, we have predicted and calculated four new
effects of General Relativity:

1. Deflection along the equatorial coordinate and time
delay of mass-bearing particles falling onto a rotating
massive body, which is due to the “stretching” (curva-
ture) of space, caused by its rotation (together with the
body itself);

2. Deflection along the equatorial coordinate and time de-
lay of light rays spreading to a rotating massive body,
which is due to the “stretching” (curvature) of space,
caused by its rotation;

3. Length stretching of a rod installed along the radial and
equatorial coordinates in the field of a rotating mas-
sive body due to the “stretching” (curvature) of space
in these directions, caused by its rotation;
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4. The loss of time in a clock travelling in the direction
of the body’s space rotation, which is due to the in-
crease in the “stretching” (curvature) of space in the
direction of its rotation, and accordingly the increment
of time when the clock travels oppositely to the rotation
of space.

All real cosmic bodies in the Universe rotate. Therefore,
the introduced and proved space metric is the main space met-
ric in the Universe, characterizing the field of any real cosmic
body, be it a planet, star, galaxy or something else.

Feel free to use this new metric instead of the classical
Schwarzschild metric to solve problems in General Relativ-
ity and astrophysics, if you have the necessary mathematical
skills and wishes to do so, of course.

Submitted on September 28, 2024
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Galaxy Clusters: Quantum Celestial Mechanics (QCM) Rescues MOND?

Franklin Potter
Sciencegems, 8642 Marvale Drive, Huntington Beach, CA, USA. E-mail: frank11hb@yahoo.com

Although the MOND radial acceleration g =
√
gNa0 for the acceleration of objects in

a low acceleration environment less than a0 = −1.2 × 10−10 m/s2 has been extremely
successful for single galaxies, the much higher mass clusters of galaxies do not have
enough baryonic mass to comply. We consider the possibility that the MOND a0 value,
instead of being a universal constant, actually depends upon both the total baryonic
mass of the gravitationally bound system and its total angular momentum, as derived
by Quantum Celestial Mechanics (QCM) from the general relativistic Hamilton-Jacobi
equation. If the total angular momentum of the galaxy cluster is less than expected, then
the MOND radial acceleration expression can remain valid.

1 Introduction

Galaxy rotation velocities do not match Newton’s Law of
Universal Gravitation, g = −GM/r2, for stars experiencing
low gravitational radial accelerations [1]. The stars at all large
orbital radii where the radial acceleration is less than about
10−10 m/s2 are moving at nearly identical velocities instead
of decreasing to the lower velocity values predicted by New-
ton’s Law.

Initial attempts to alter Newton’s Law failed, so the dark
matter hypothesis became the alternative explanation with the
consequence that Newton’s Law could apply once again [2].
However, two important challenges to dark matter continue
to exist: (1) no predicted dark matter particle has ever been
detected in at least 50 years of experimental searches [3, 4],
and (2) a modification of gravitation called MOND (MOdi-
fied Newtonian Dynamics) exists and agrees extremely well
with single galaxy rotation curves [5] and has predicted many
other physical properties that have been found to hold true for
single galaxies and other gravitationally bound systems [6,7].

Even though fitting the rotation curves of single galaxies
is remarkably successful, MOND does not fit the radial accel-
eration values for clusters of galaxies [8,9]. There is a signifi-
cant disagreement with the MOND gravitational acceleration
expression

g =
√
gNa0 , (1)

where the MOND acceleration constant a0 = −1.2 × 10−10

m/s2 and gN = -GM(< r)/r2 is the Newtonian acceleration
for enclosed baryonic mass M. This gravitational expression
using the a0 value has been shown to hold true for all single
galaxies and is assumed to be true for clusters of galaxies.

However, the measurements for galaxy clusters reveal that
the observed acceleration gobs is greater than the acceleration
value g predicted by this MOND expression at the low ra-
dial acceleration environments where the expression should
be true. Fig. 1 shows the discrepancy between the dynamic
mass and all the observed mass of the baryons in the gas and
the stars within the cluster, with the data from [8]. Some clus-
ters need as much as a factor of 5 more baryonic mass for the

Fig. 1: Log scales around 1014 solar masses for galaxy clusters.
If MOND is to prevail with its constant a0 value, all the clusters
should be at the straight line. Data is a representative selection from
Sanders (2003).

MOND expression to hold true, i.e., be at the straight line
where the dynamic mass and the observed mass values agree.

This discrepancy between gobs and the MOND predicted
g has been attributed to missing baryonic mass M in the clus-
ter, but several searches have not found any more mass than
already determined. Consequently, to fit the actual observed
radial accelerations for all galaxy clusters, a distribution of
dark matter has been proposed so that Newton’s Law applies
to galaxy clusters.

We propose a different explanation for the acceleration
discrepancy, one that allows the MOND acceleration expres-
sion g =

√
gNa0 to be correct for galaxy clusters as well as for

single galaxies. In 2003, H. G. Preston and I investigated [10]
an approach to gravitation that we called quantum celestial
mechanics (QCM) in which the general relativistic Hamilton-
Jacobi equation is converted into a new scalar gravitational
wave equation (GWE). In different metrics the GWE allows
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us to propose some new explanations for specific types of
gravitational behavior.

In the Schwarzschild metric the GWE leads to the quan-
tization of angular momentum per unit mass because both
Newtonian gravitational attraction and a QCM gravitational
repulsion exists for orbiting bodies. All confirmed plane-
tary systems, including the Solar System, have been shown
to agree with this QCM prediction [11], i.e. the orbital plane-
tary equilibrium radii of the multi-planetary systems are only
at the QCM predicted subset of all possible equilibrium radii
that are allowed by Newton’s Law.

We also derived the above MOND gravitational expres-
sion, which revealed that the MOND acceleration a0 will have
slightly different values in different single galaxies depending
on the total baryonic mass MT of the gravitationally bound
system and its total angular momentum LT ,

a0 =
G3M7

T

n4L4
T

, (2)

with n an integer.
This dependency of a0 upon both MT and LT will allow

us to re-interpret the MOND expression for g so that clusters
of galaxies, as well as single galaxies, satisfy gobs = gwithout
the need for dark matter.

2 Derivation of QCM and MOND, a brief review

From the general relativistic Hamilton-Jacobi equation,

gαβ
∂S
∂xα

∂S
∂xβ
− µ2c2 = 0 (3)

the transformation
Ψ = eiS ′/µcH (4)

introduces a wave function Ψ, with S the action, µ the mass
of the orbiting object, and S ′ = S/µc so that the equivalence
principle is obeyed. For a detailed derivation, see [10]. Here
we have defined a system scale length H by

H =
LT

MT c
(5)

for the total gravitationally bound system mass MT having
total angular momentum LT and c being the speed of light in
vacuum.

Following through with the mathematical steps produces
a scalar gravitational wave equation (GWE)

gαβ
∂2Ψ

∂xα∂xβ
+

Ψ

H2 = 0 . (GWE) (6)

Expressing the GWE in the Schwarzschild metric, a sep-
aration of variables leads to differential equations in coordi-
nates (t, r, θ, φ) that produce quantization conditions. The an-
gular parts dictate the quantization of angular momentum per
unit mass for orbital angular momentum L as

L
µ

= mcH (7)

for integer m. The radial equation leads to the quantization of
energy per unit mass

En = −µc2
r2
g

8n2H2 (8)

for integer n.
Using the virial theorem and En, we obtain the velocity v

in terms of the Schwarzschild radius rg and H,

v =
rgc

2nH
. (9)

Whence, with the radial acceleration g = v2/r, we derive the
MOND acceleration expression from

g =
r2
gc2

4n2H2r
=

√
GM
r2

G3M7
T

n4L4
T

 . (10)

Therefore, the MOND acceleration a0 is not a universal con-
stant but is determined to be

a0 =
G3M7

T

n4L4
T

, (11)

explicitly expressing its dependency upon both the total mass
MT of the system and its total angular momentum LT .

3 Discussion

We have begun with the successful MOND espression g =
√
gNa0 using a0 = −1.2×10−10 m/s2, with a0 having this value

for all single galaxies. But if we assume that a0 has this same
value for galaxy clusters, then the baryonic mass discrepancy
shown in Fig. 1 arises.

According to QCM, there can be two possible causes for
the discrepancy between the observed radial acceleration gobs

and the predicted MOND value g in the galaxy clusters, the
values of total baryonic mass value MT and the total angular
momentum LT . All the baryonic mass MT in the gas and stars,
etc., has been identified. However, we do not know the total
angular momentum LT of any galaxy cluster.

QCM predicts that the a0 value depends upon the ratio
M7

T /L
4
T . We already know the baryonic MT for the clusters,

but there are no published values of LT for any cluster. There-
fore, we must estimate the LT values for different galaxy clus-
ters if the MOND g = gobs is to hold true.

In some clusters of galaxies the dynamical mass Mdyn has
been determined to be as much as a factor of 5 larger than
the actual observed mass Mobs of the hot gas and the stellar
content. Therefore, the ratio M7

T /L
4
T for a0 in these galaxy

clusters must be up to 5 times larger than for single galaxies
in order to have gobs =

√
gNa0.

We assume that the expected LT value is the one that
makes the MOND a0 = −1.2 × 10−10 m/s2. Then in the gen-
eral case, if there is a factor f reduction in the baryonic mass
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MT , QCM requires

f a0 =
G3M7

T

n4L4
T

(12)

which, for n = 1 and Mobs = MT / f , means

L4
T =

G3M7
obs

f 8a0
. (13)

For example, if f = 2, the LT value would be 4 times smaller
than expected for the Mobs. This LT value then makes the
product gNa0 guarantee g = gobs. Thus. each galaxy cluster
could have a unique a0 value.

There exists several possible sources of a lower angular
momentum total than expected:

1. the intracluster (IC) gas that comprises about 90% of
the baryonic mass of the cluster could, in part or as a
whole, have a slower rotation speed than gas in single
galaxies,

2. the IC stars are known to rotate slower than many stars,
3. the angular momentum vectors of the galaxies in the

cluster may have a greater variety of directions than
expected, thereby decreasing their vector sum.

Whether any or all of these possible sources of lower angular
momentum are the cause of the different a0 values for the
galaxy clusters has yet to be determined.

4 Conclusion

Recent measurements have verified that there is not enough
baryonic mass for the successful MOND gravitational accel-
eration expression for single galaxies

g =
√
gNa0 (14)

to be true for clusters of galaxies, where gN is the Newtonian
gravitational radial acceleration and the MOND a0 = −1.2 ×
10−10 m/s2 is assumed to be a universal constant.

However, a0 may not be a universal constant as origi-
nally proposed. We briefly reviewed the quantum celestial
mechanics (QCM) derivation of a0 from the general relativis-
tic Hamilton-Jacobi equation to obtain the acceleration

g =
r2
gc2

4n2H2r
=

√
GM
r2

G3M7
T

n4L4
T

 . (15)

Therefore, QCM dictates

a0 =
G3M7

T

n4L4
T

, (16)

showing that a0 depends upon both the total baryonic mass
MT and its total angular momentum LT of any gravitationally
bound system obeying the Schwarzschild metric. For single

galaxies, this QCM expression for a0 varies less than a few
percent and therefore a0 can be assumed universal.

However, in more massive gravitationally bound systems
such as clusters of galaxies, a0 could have different values in
order to satisfy the MOND expression g =

√
gNa0. If galaxy

clusters possess significantly less angular momentum than is
expected for the measured total baryonic mass, this MOND
expression can be satisfied still. Several possible reasons for
the lesser total angular momentum values were suggested.

We await total angular momentum estimates for galaxy
clusters in the near future to establish whether the MOND
acceleration a0 has a different value for galaxy clusters and
whether the MOND expression g =

√
gNa0 continues to hold

true.
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On the Possibility of a Scientific Prognosis of the Weather with the Introduction
of Galactic Impacts into Analysis

Nikolai A. Morozov*

In this paper the author gives a preliminary information of his research study concern-
ing cosmic influences on the weather. For this purpose, solar time was converted into
sidereal (stellar) time for many thousands of meteorological data taken from the me-
teorological yearbooks published by meteorological observatories of the world. The
resulting more than 200 diagrams identify interesting dependencies indicating a signif-
icant influence of the Galactic Centre and some other Galactic sources on the weather.

*Translated from Bulletin de L’Académie des Sciences de L’URSS, Série
Géographique et Géophysique, 1944, t. VIII, no. 2–3, 63–71.

Nikolai A. Morozov, 1910

Nikolai A. Morozov (1854–1946) was the first child of a Russian mil-
lionaire and his freed female slave (slavery in Russia was abolished only 7
years later in 1861). He was a polymath and also a political figure who, while
living in Genève, became the main theorist and one of the leaders of the 1881
Russian Bourgeois Revolution: they dreamed of a parliament, constitution,
free capitalism, human rights and “liberté, égalité, fraternité” in the sense of
Robespierre and Marat, but ended by the assassination of Alexander II, Em-
peror of Russia, which was not supported by mass people. After returning to
Russia in 1881, Morozov was sentenced to life in solitary confinement in the
Schlüsselburg Fortress near St. Petersburg, where he spent the next 24 years
of his life (1881–1905) in a solitary confinement cell.

After the royal amnesty in 1905, Morozov devoted himself entirely
to continuing the theoretical scientific research he had begun before the jail
and then continued while in prison. He was immediately elected Professor of
chemistry at the Lesgaft Research Institute in St. Petersburg, and then headed
the entire Institute, where he remained Director until his death in 1946. His
main research works were in the fields of chemistry, physics, astrophysics,
meteorology, linguistics and world history. After the fall of the royal regime
in Russia, he was elected to the Russian Academy of Sciences.

Being already an old man, in order to conduct experiments necessary
for his scientific work, Morozov flew into the stratosphere in a stratospheric
balloon. His original periodic table of chemical elements (an alternative to
the generally accepted Mendeleev table) extends to elementary particles. In
1919, he conducted a series of original experiments testing the effects of
Special Relativity. “Linguistic spectra” he introduced to identify true authors
are now widely used in cryptography.

In the first half of the last [19th] century, attempts were made
to scientifically process the old folk belief about the connex-
ion between weather changes and the combination of the Sun
and Moon, especially with new moons. Indeed, there was
much in this belief that deserved attention: due to solar heat-
ing, ascending air currents occur, and thanks to them, de-
scending air currents with the formation of cumulus and thun-
derclouds of local origin, as well as trade winds and non-trade
wind air currents, and also cold polar layers that mix air with
the warmer layers of the Earth’s temperate zones.

Due to the tidal action of the Moon and the Sun, there
must inevitably be ebbs and flows not only in the seas, but
also in the atmosphere, and the ebbs and flows of the atmo-
sphere due to the attraction of the Sun, running into the lu-
nar ebbs and flows lagging behind them, must, depending on
the time of year, cause various cyclones (the main factors of
weather instability on the Earth), depending on the geograph-
ical place of their origin.

All this seemed so clear that many astronomers and me-
teorologists, beginning with the famous François Arago, put
a lot of effort into testing the aforementioned idea on a huge
number of daily records in meteorological observatories
throughout the world. But no matter how they combined these
records, bringing them into connexion with the combinations
of the positions of the Sun and the Moon, they always came to
the same thing: 60 percent of the predictions came true, and
40 percent did not, showing that in addition to the Sun and the
Moon, some other cosmic factors influence weather changes,
since from a natural-scientific point of view no natural phe-
nomenon can be causeless. Many years ago I also studied this
subject. At that time, I had the idea that the missing third fac-

In December 1942, at the age of 88, Morozov volunteered for military
service as a sniper and scored a number of confirmed hits, but was demobi-
lized one month later due to health reasons. He died from pneumonia at the
age of 92 in 1946 in his mansion, which he inherited from his father.

The presented paper is a preliminary communication outlining the re-
sults of his extensive monograph on this subject (unpublished since he passed
away in 1946). The staff of the Astronomy Department of the Lesgaft Re-
search Institute, where he was Director, assisted him over many years in the
1930s in calculations and the construction of hundreds of graphs (necessary
for this study) based on data from meteorological yearbooks for the entire
history of regular meteorological observations over the past 150 years (until
the 1940s). — Editor’s remark.
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tor in weather changes could and even should be our entire
Galactic cosmos, i.e., the entire set of our disk-shaped cluster
of stars and, in particular, the centre of their rotation.

But to clarify such an influence and determine its magni-
tude, it was necessary to re-calculate the records of all me-
teorological yearbooks from our usual solar time, according
to which they are kept, to sidereal (stellar) time, the day of
which is 4 minutes shorter than the solar day. And this re-
calculation of hundreds of thousands of meteorological obser-
vations, necessary to obtain some specific conclusion, would
be such a huge job that the work of hundreds of calculators
would be required for more than many years.

Only seven years ago, after much research on this sub-
ject, I succeeded in finding a new method of conversion, using
which in one evening it is possible to convert from solar time
to sidereal time such a number of meteorological records,
which by the method that has existed up to now would have
required at least a month. And I immediately set to work.
Taking from the library of the [Russian] Academy of Sciences
and the library of the Pulkovo Observatory the meteorological
yearbooks of the Paris, London, Bombay, Batavian on Java,
Leningrad, Moscow, Tbilisi, Cape Town and other observato-
ries over the past few years, I personally made several thou-
sand such conversions. Then, having instructed my assistants
[from the Astronomy Department], I continued this work, as
a result of which the calculation results were presented in the
form of more than 200 diagrams.

Looking at these diagrams, I immediately found that for
the sidereal-daily influences of our entire star cluster, clearly
expressed diagrammatic configurations of the same type as
the configurations of solar influences, only of a different mag-
nitude, were obtained. Among the hundreds of thousands of
data calculated, there was not even a single contradictory case
in Europe, Asia, Africa, America, or Australia. All my tables
and diagrams testified to the same thing: the influences of our
entire star cluster cannot be ignored in any way when fore-
casting the weather.

It turned out to be possible to determine even the places
[on the sky] from which the hitherto missing cosmic influ-
ences on the weather originate. All the discovered maxima
and minima of the sidereal-daily influences on the air temper-
ature unanimously showed that behind the constellation Argo
Navis [now divided into Carina, Puppis and Vela], around the
VIII-XI hour of right ascension, there is a gigantic accumula-
tion of high-temperature matter, the radiation of which, like a
gigantic furnace invisible at night, increases the air tempera-
ture above the horizon of any place during its highest ascent
by more than one-seventh of the solar heating (Table I).

As this source rises above the horizon, the relative humid-
ity of the air, i.e., its saturation with water gas, also increases.
By designating 100% as the saturation at which water gas be-
gins to be released in the form of fog or rain, we obtain very
regular diametric arcs for both solar and Galactic influences
(Table II), with the magnitude of the arc of Galactic influ-

Table I: Two examples of [air] temperature increase due to solar di-
urnal period action and galactic action (sidereal-daily period).

Northern Hemisphere:
Tbilisi (42◦ N),

average for 1913.

Southern Hemisphere:
Batavia on Java (−7◦ S),
average for 1866–1868.

The increase in [air] temperature due to solar action reaches its max-
imum 2 hours after the Sun passes through the celestial meridian (at
14 solar hours). Similarly, the increase in temperature due to Galac-
tic impact should reach its maximum 2 hours after the X celestial
hour passes through the celestial meridian (the Galactic heat emitter
is located near the X celestial hour). This Galactic heat emitter is
located in the Southern Hemisphere of the sky, since its radiant heat,
for example, in Batavia is equal to 1/3 of the solar radiant heat, and
in Tbilisi — only 1/6 of the solar.

ence reaching up to half the magnitude of the solar arc in the
Earth’s temperate climate zones.

The rate of evaporation of the water surface (Table III,
left) due to the influence of the rays of this Galactic centre
reaches one third of the solar influence. This influence in-
creases by the XII sidereal hour similarly to how the solar
influence increases by 14 hours of the solar day, i.e., it oc-
curs from the place of intersection of the XII-hour wing of
the starry sky with the Milky Way, where there is a cluster
of small stars and several “coal sacks” near the constellation
Argo Navis.

Directly related to the evaporation rate, absolute humidity
(the same Table III, on the right) has in the tropical zone of
the Earth (probably due to the residual accumulation of evap-
oration) a less sharp peak in the curve of solar influence, so
that the maximum of water gas remains undiminished from
14 to 20 hours of solar time. As for Galactic influences, their
maximum effect on absolute humidity also falls at approxi-
mately the XX hour of sidereal time, but its growth and fall
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Table II: Two examples of relative humidity changes due to solar
influences by hours of the solar day, and two examples of galactic
influences by hours of the sidereal day.

Northern Hemisphere:
near Moscow (about 55◦ N),

average for 1927.

Southern Hemisphere:
Batavia on Java (−7◦ S),
average for 1866–1868.

Solar influence reaches its maximum 2 hours after the Sun passes
through the local celestial meridian (at about 14 solar hours). Simi-
larly, Galactic influences should also reach their maximum 2 hours
after [its source] passes through the meridian of the X sidereal hour,
near which the centre of Galactic radiation is located. In Batavia,
the magnitude of its influence is 0.12 of the solar influence, and near
Moscow — 0.54 of the solar.

occur more smoothly (Table III, on the right).
Assuming that the main maximum of Galactic influence

(under the XVIII–XX hours at the end of Table III) is delayed
like the solar maximum by 8 hours after its passage through
the celestial meridian, we find that the source of Galactic in-
fluence is also located [on the celestial sphere] at the X hour
of right ascension (XVIII − 8 = X), that is, in the same con-
stellation Argo Navis. The maximum of a smaller magni-
tude under the II sidereal hour corresponds to the influence
from the XVIII sidereal hour, at the intersection of which
with the Milky Way there is another huge cluster of small
stars and “coal sacks” in the tail of the constellation Scor-
pio. The third maximum on the same diagram under the
XII sidereal hour corresponds, according to the same calcula-
tion (XVIII − 8 = X), to the VI sidereal hour on the celestial
sphere, where there is nothing special against the background
of the Milky Way, but next to it is the giant Orion Nebula with
a “coal sack” inside and two main star clusters visible to the
naked eye: the Pleiades and the Hyades. However, it is still
premature to claim that the secondary maximums (under the
II and XVIII sidereal hours on the celestial sphere) are their
influence, since on other diagrams that I have studied, simple

Table III: Example of solar and galactic influences on the rate of
evaporation of water surfaces and on the amount of water gas in the
atmosphere (absolute humidity). Solar-diurnal periods and sidereal-
diurnal periods.

Evaporation rate:
Tbilisi (42◦ N),

average for 1913.

Absolute humidity:
Batavia on Java (−7◦ S),
average for 1866–1868.

The rate of evaporation due to solar influence reaches its maximum
2 hours after the Sun passes through the celestial meridian (at 12
o’clock solar time), and the rate of evaporation due to galactic influ-
ence reaches its maximum 2 hours after the constellation Argo Navis
passes through the celestial meridian (at X o’clock stellar time). Ab-
solute humidity reaches its maximum due to solar influence 6–8
hours after the Sun passes through the celestial meridian, and due
to galactic influence — VI–VIII hours after the constellation Argo
Navis passes through the meridian.

arc-shaped configurations are also obtained.
Generally speaking, absolute humidity (i.e., the amount

of water gas in the atmosphere at the observation site), ex-
pressed through partial pressure, varies in an average annual
distribution very capriciously over the course of solar and si-
dereal days, although when non-periodic deviations are taken
into account and eliminated, this dependence retains its arc-
shaped form.

And this shows that in addition to the air pressure and its
own temperature and speed of motion, as well as the direct
impact of the Sun’s rays in clear weather, there is another
powerful cause. And it can already be expected a priori that
the action of electromagnetic forces is involved here, because
the artificial induction of rain by scattering electrified dust
from airplanes at a sufficient height in the Earth’s troposphere
clearly shows the influence of this factor on the entire water
regime of our atmosphere. For example, Table IV shows the
distribution of rainfall due to solar influence and due to Galac-
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Table IV: Example of average annual distribution of rainfall (by
hours of the day) due to solar influence and Galactic influence.

Batavia on Java (−7◦ S),
average for 1866–1868.

Tbilisi (42◦ N),
average for 1913.

The irregular bends and jumps of these diagrammatic curves, espe-
cially — Tbilisi (asterisk) — show that rains depend not only on
temperature and barometric pressure drops, but also on the electro-
magnetic effects of the Sun and the Galactic Centre, and that even
more powerful electromagnetic storms than on the Sun permanently
occur at this Centre.

tic influences by the hours of the sidereal day. On the left it
is given for Batavia on Java (−7◦ S) and on the right — for
Tbilisi in the Caucasus (42◦ N).

The two main maxima generated after the solar action (at
2 and 24 o’clock in the morning), as well as the evening
actions (at 18 and 16 o’clock in the afternoon) show here
that the solar actions in Tbilisi are generally the same as in
Batavia, although they are delayed by 2 hours compared to
Batavia. But why in Tbilisi in 1913 in the 20th, 4th and 6th
solar hours the amount of rainfall (they are marked with as-
terisks) jumped out of the norm so much (see Table IV, upper
right), that if I had not excluded them, they would have made
the configuration of this diagrammatic curve completely dis-
ordered and having nothing in common with Batavia? Why
do we see the same thing below in the Galactic influences?
Here again we have only one way out: to admit that the dis-
tribution of rainfall depends not only on changes in temper-
ature and barometric pressure, but also to a large extent on
electromagnetic storms, constantly occurring not only on the
Sun, but also on the Galactic Centre now being studied in
the constellation Argo Navis. It is even possible that such
storms on the Sun are only a resonance of Galactic storms,
which must be repeated simultaneously on the Earth, and on

Table V: Examples of solar influences on solar-diurnal variations of
the magnetic and electric field strengthes and examples of similar
galactic influences on the sidereal-diurnal period.

Magnetic field:
Val Joyeux, Paris (about 49◦ N),

average for 1933.

Electric field:
Tashkent (about 42◦ N),

average for 1930.

Magnetic Galactic influences from the constellation Argo Navis lag
behind solar influences by 8 hours. If they were lagging by 12 hours,
this would mean that the magnetic axes of the Sun and the Galactic
Centre under study in the constellation Navis Argo are oriented op-
posite to each other. The lag of 8 hours shows that both of these
axes are inclined to each other (as seen from the Earth) at an angle
of about 120◦.

the Moon, and on all the planets. Otherwise, it would be dif-
ficult to imagine why the jumps shown by the stars on our
diagrams are repeated not only at midday, when the given
horizon is turned toward the Sun, but also at different hours
of the day, and why they are distributed in the same way
among various sidereal hours. It even turns out that it is as
if each stroke of cosmic lightning and protuberances on some
Galactic centre is accompanied by multiple echoes on the oth-
ers. In any case, thunderstorms, constantly accompanied by
showers, sufficiently indicate a connexion between these two
meteorological manifestations. Therefore, it is appropriate to
dedicate a few lines to them in this preliminary message.

In Table V on the right I give an example of solar and
Galactic influences on the oscillations of the electric field in
Tashkent, and in the same place I give an example of the mag-
netic influences of the Sun in Val Joyeux near Paris (Table V
on the left).

The necessity of brevity of this message of mine enforces
me to give here, as an example of the substantiation of my
theory, only one example of the most important sidereal-daily
influences of the Galaxy, excluding its sidereal-annual influ-
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ences. But in my working manuscripts, beginning in 1932,
when I first began to study this subject systematically, there
are hundreds of such re-calculations based on the systematic
records of many geophysical and meteorological observato-
ries of the world, and above all, the two Spitsbergen stations
(in Horn Sound and Treyrenberg), the Sondakull station in
Iceland, the Pavlovsk (now Slutsk) station, the Main Phys-
ical Observatory (in Leningrad), Sverdlovsk, Wilhelmshaven,
Greenwich, Val Joyeux (near Paris), Budapest, Petrovsko-
Razumovskaya (in Moscow), Cheltenham near Washington,
Barcelona, Tbilisi, Tashkent, Caesarea in Lebanon, Tucson
in Arizona, Beijing, Hong Kong, Alibag near Bombay, and
Singapore.

For the Southern Hemisphere, I had at my disposal the
records of the observatories at Batavia on Java, on the Is-
land of St. Helena, at Antananarivo in Madagascar, at Buenos
Aires, at Christchurch (New Zealand), and on the South Polar
Continent [Antarctic] at the observatories at Cape Royds and
Cape Evans.

All these observatories are known to every specialist, and
their yearbooks that I have indicated are available in the li-
braries of the [Russian] Academy of Sciences, the Pulkovo
Astronomical Observatory, and the Main Physical Observa-
tory (in Leningrad). And all the hundreds of summary re-
calculations for sidereal time compiled by me and my co-
workers from these publications, and all the diagrams con-
structed from the calculations unanimously show that the in-
fluence of the Galaxy on the meteorological and geophysi-
cal processes of the Earth is of a regular nature and so great
that without introducing them into the calculations one can-
not even dream of a scientific forecasting of the weather even
for a month ahead.

Here, first of all, a cycle of 521 Julian years is manifested,
since only after this period do the previous combinations of
the Sun, Moon and Galaxy repeat for each specific place on
the globe. Such a long period does not, of course, provide any
practical help for [weather] forecasting, since during most of
it there were no meteorological records. However, another
period of 19 years manifests itself, but only according to this
period it turns out that a cyclone that, for example, swept
over Leningrad today, will sweep in 19 years later somewhere
over Irkutsk, then over Tokyo, then over San Francisco, and
so forth and so on. And another cyclone that will come to
Leningrad will be the one that was 19 years ago somewhere
over London, and 38 years ago near New York, etc.

It is impossible not to mention here also the dendrochro-
chronological period of 11.35 years, determined by the alter-
nation of the thickness of tree rings and coinciding with the
same period of sunspots, with the proviso that this [dendro-
chronological] period itself can only be explained by the ef-
fect on the Sun (and with it of course on the Earth) of the radi-
ation of some luminary rotating around its axis in 11.35 years.
There can be no other rational explanation here, just as there
can be no 280-year cycle consisting of almost 25 of the same

(exactly 11.35-year) cycles repeating quite regularly on the
rings of giant Californian pines Sequoia Gigantea, for exam-
ple, on the pine “Mark Twain”, a section of which is kept in
the New York Museum of Natural History (this pine was 1341
years old when it was cut down*).

And this period cannot be explained by anything except
the fact that in the Galactic space there is an even more pow-
erful centre rotating around its axis in 280 years (± a few
years).

All this shows that for an absolutely accurate weather
forecast it is necessary to determine not only the motion of
the Moon, the Sun and Galactic centres above the horizon of
the observation point, but also which side of their surface the
latter are facing the Earth at that moment.

Of great help in using reference points to determine up-
coming weather changes in a specific geographic area should
be the already existing predictions of solar and lunar eclipses.
Adding to them, Galactic influences will undoubtedly elimi-
nate all cases of failure of predictions based on solar and lunar
influences alone, but this requires the work of not one person
or group of people, but the work of many meteorological in-
stitutions using the entire network of meteorological records
throughout the globe.

November 4, 1940

*See A. E. Douglass and Waldo S. Glock, Carnegie Institution of Wash-
ington Supplementary Publications, July 1934, no. 9, and also, in the same
place, News Service Bulletin, 1937, v. IV, no. 20.

Morozov N. A. On the Possibility of a Scientific Prognosis of the Weather with the Introduction of Galactic Impacts into Analysis 107



Volume 20 (2024) PROGRESS IN PHYSICS Issue 2 (December)

Yang-Mills Theory in the Framework of General Relativity

Patrick Marquet
Calais, France. E-mail: patrick.marquet6@wanadoo.fr

In our recent publication, we derived a solution that allows the coupling between the
Yang-Mills theory and the space-time curvature; Progr. Phys., 2021, v.18, 97–102 [1].
This result was achieved by considering a specific manifold which we named the Weyl-
Einstein manifold spanned by the connection coefficients displaying a 4-vector. We then
deduced a Weyl-Einstein tensor, which was found to be conserved. The Weyl-Einstein
4-vector was directly identified with the Yang-Mills gauge field vectors as described
in the Minkowski space tangent to the Weyl-Einstein manifold. In the present work,
we investigate further this topic, and we examine how this coupling fits into the field
equations.

Notations
Throughout this text, we assume the Einstein summation, whereby
a repeated index implies summation over all values of this index.
4-tensor or 4-vector: small Latin indices a, b, . . . = 0, 2, 3, 4.
3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3.
Signature of the space-time metric: (+−−−).
Ordinary derivative: ∂aU.
Riemannian covariant derivative on (M, g): ∇a or (;).

1 The Weyl-Einstein field equations

1.1 The Weyl-Einstein tensor

Following Lichnerowicz [2] we defined the semi-metric man-
ifold (Mw, g) spanned by the Weyl-Einstein connexion coeffi-
cients expressed here with the metric connexion

Wc
ab =

1
2
gcd (∂b gda + ∂a gdb − ∂d gab)−

−
1
2
gcd (Jb gda + Ja gdb − Jd gab) ,

(1.1)

Wc
ac =

1
2
gcd (∂a gcd − Ja gcd) , (1.2)

where Ja is referred to as the Weyl-Einstein 4-vector.
The Einstein-Weyl-curvature tensor is assumed to keep its

original form

(Rc
adb)w = ∂b Wc

ad − ∂d Wc
ab +Wc

ebWe
ad −Wc

edWe
ab . (1.3)

Setting

(Γc
ab)J =

1
2
gcd (Jb gda + Ja gdb − Jd gab) (1.4)

and using the Riemannian covariant derivatives, we found

(Rab)w = Rab + ∇c(Γc
ab)J − ∇b(Γc

ac)J +

+ (Γd
ab)J(Γc

dc)J − (Γd
ae)J(Γe

db)J ,
(1.5)

Rw = R −
(
∇a Ja +

1
2

J2
)
. (1.6)

With these, we derived the Weyl-Einstein tensor as

(Gab)w = (Rab)w −
1
2

(gabRw − 2 Jab) , (1.7)

where
Jab = (Γd

ab)J(Γc
dc)J − (Γd

ae)J(Γe
db)J .

The Weyl-Einstein tensor was shown to be conserved.

1.2 Massive source

The Weyl-Einstein field equations are now expressed by

(Gab)w = κTab . (1.8)

Using the Riemannian covariant derivatives, the Weyl-
Einstein tensor conservation law reads

∇a(Ga
b)w = 0 . (1.9)

The right hand side of (1.8) should also verify

∇a T a
b = 0

or
∂a Ta

b = 0 (1.10)

with the tensor density Ta
b =
√
−gT a

b .
However, inspection shows that

∂a Ta
b =

1
2

Tca ∂b gca (1.11)

or equivalently

∂a Ta
b =

1
2

Tca (∂b gca − Jb gca) .

Thus the condition (1.10) is never satisfied in a general
coordinates system. This circumstance results from the fact
that the global conservation should hold for the 4-momentum
of both the matter and its gravitational field.
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To keep the equation (1.10) consistent with (1.9), we must
look for a solution of the form

∂a

(
Ta

b + ta
b

)
= 0 , (1.12)

where tab is the given tensor’s density.
Let us compute

dgab = d
(√
−g gab

)
=
√
−g

(
dgab +

1
2
gabged

)
dged =

=
√
−g

(
−gaegbd +

1
2
gabged

)
dged ,

therefore

(Rab)w dgab =
√
−g

(
−Rce

w +
1
2
gceRw

)
dgce = −κTcedgce .

Taking into account the Lagrangian form of the Weyl-
Einstein Ricci tensor

(Rab)w = ∂
e
[

Lw

∂ (∂e gab)

]
−
∂Lw

∂gab ,

where the effective Weyl-Einstein Lagrangian is now

Lw = g
ab √−g

(
We

abWd
de −Wd

aeWe
bd

)
(1.13)

one obtains

−κTab dgab =

(
∂c
∂Lw

∂c gab −
∂Lw

∂gab

)
dgab =

= ∂c

(
dgab ∂Lw

∂c gab

)
− dLw ,

−κTab∂d gab = ∂c

(
∂d g

ab ∂Lw

∂ (∂c gab)
− δcd Lw

)
= 2κ ∂c t c

d .

From the last equation we find

∂c Tc
a =

1
2

Tdc ∂a gdc = −∂c t c
a .

In order to satisfy the conservation law (1.12), one clearly
sees that the gravitational field energy-momentum tensor den-
sity should be described by the Weyl-Einstein extension of the
Einstein-Dirac pseudo-tensor [3, p.61]

t c
d =

1
2
κ

[
∂d g

ab ∂Lw

∂(∂c gab)
− δc

d Lw

]
(1.14)

the quantities tab are called “pseudo-tensor density” since
they can be transformed away by a suitable choice of the ref-
erence frame and they are not irreducible [4]. This is why the
classical theory stipulates that a (free) gravitational energy
cannot be localizable.

In the classical General Relativity, the non symmetric ten-
sor tab/

√
−g is symmetrized through the Belinfante proce-

dure [5] to suit the standard symmetric Einstein tensor. The
relevant symmetric tensor is denoted tab.

Unfortunately, the Einstein field equations whatever their
transcriptions, are yet unbalanced since they do not exhibit
a full real tensor as a source. To remedy this problem, we
showed that a slightly variable cosmological term Λ-term in-
duces a stress-energy tensor of vacuum, which restores a true
gravitational tensor on the right-hand side of equation (1.6)
as it should be [6, 7].

This real tensor is given by

(tab)vac = −
1

2κ
Λgab . (1.15)

The Λ-term was found to be [8]

Λ = ∇a Ka = θ2, (1.16)

where Ka is a 4-vector and

θ = Xa
; a (1.17)

is the space-time volume scalar expansion characterizing the
vacuum stress-energy tensor (tab)vac, and Xa is a congruence
of non intersecting unit time lines XaXa = 1

Xa
; a = habθab , (1.18)

while θab stands for the expansion tensor and hab = gab−Xa Xb

is the projection tensor.
Due to the form of (1.16), the Lagrangian (1.13) differs

only from a divergence and varying its action generates the
same field equations. The real tensor (tab)vac which corre-
sponds to the vacuum stress-energy tensor can be added to tab

without affecting the Weyl-Einstein Lagrangian.
With this definition the Weyl-Einstein field equations can

be finally written as

(Gab)w = (Rab)w −
1
2

(gab Rw − 2 Jab) =

= κ

[
ρc2uaub +

tab
√
−g
+ (tab)vac

]
.

(1.19)

Here the symmetrization procedure is evaded, because the
quantity tab/

√
−g is genuinely antisymmetric.

When gravity is weak and velocities are low compared to
c, we have the Newtonian approximation where the massive
tensor in (1.19) reduces to

T 0
0 = ρc2.

Inspection then shows that

(
R0

0
)
w = R0

0 =
1
c2

∂2φ

∂2
β
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with g00 = 1+φ/c2, from which we find the well-known Pois-
son equation

∆φ = 4πGρ ,

where G is Newton’s constant.

1.3 Electromagnetic contribution

The field equations are expressed by

(Rab)w −
1
2

(
gab Rw − 2 Jab

)
=

= κ
1

4π

(
−∂a AcFbc +

1
4
gab Fcd F cd

)
,

(1.20)

Fab = ∂a Ab − ∂b Aa .

The source tensor is antisymmetric. Its form is derived
from the canonical equation

(
tb
a
)
elec =

∂a Ac∂L
∂ (∂b Ac)

− δba L ,

where L=− 1
16π Fbc F bc.

If the Weyl part is neglected, the term 1
4π ∂c AcFbc is clas-

sically added so that when charge is absent, holds the relation

1
4π
∂c Aa Fc

b =
1

4π
∂c

(
Aa Fc

b

)
.

This eventually yields the well-known symmetric energy-
momentum tensor of the electromagnetic field

τab =
1

4π

(
−F c

a Fbc +
1
4
gab F cdFcd

)
.

1.4 Charged matter

The Weyl-Einstein field equations are

(Rab)w −
1
2

(
gab Rw − 2 Jab

)
=

= κ

[
ρc2uaub +

tab
√
−g
+ (tab)vac +

+
1

4π

(
−∂a Ac Fbc +

1
4
gab Fcd F cd

)]
.

(1.21)

We easily check that the right hand side of the equations
is conserved.

2 Relation to the Yang-Mills gauge fields

We first write the Minkowskian line element ds and the Weyl-
Einstein line element dsw, then we set

dJ = dA
(
1 + Log

dsw

ds

)
(1.22)

with the following one-forms

dJ = Ja dxa,

dA = Aa dxa.

The above 4-vector Aa is a generic gauge vector of the
Yang-Mills field defined in the flat space tangent to the Weyl-
Einstein manifold.

2.1 Weak interaction SU(2) symmetry

Let us now examine the rôle of the Weyl-Einstein tensor in
the field equations. We write the group element of SU(2) as

U = exp
[
−i Tβkβ

]
,

where k is the group parameter with the generators

Tβ =
1
2
σβ,

(here σβ are the 2× 2 Pauli spin matrices) with the coupling
constant h, the gauge field transforms as

Ba → Ba − Tβ∂a ka(x) + i hka(x)
[
Tβ, Ba(x)

]
.

Here, the Weyl-Einstein field equations (1.19) apply with
the correspondence

Ja → Ba .

2.2 The electromagnetic symmetry U(1)

This symmetry group is the abelian group U(1) with a single
commuting generator T1 = Q satisfying

[T1,T1] = 0 ,

where Q is the quantity of the charges of the field Φ (x) pro-
portional to the fundamental charge unit e. Under the phase
rotation

Φ (x)→ Φ (x) exp
[
− i kQ(x)

]
the vector field Aa(x) transforms as

Aa(x)→ Aa(x) + ∂a k .

Within the Weyl-Einstein field equations (1.20), we have
the correspondence

Ja → Aa .

2.3 Combined symmetry U(1) × SU(2)

Here the Weyl-Einstein field equations for charged matter
(1.21) are used, where we simply have

Ja → Aa + Ba ,

where Aa is the electromagnetic vector field gauge field and
Ba is the gauge vector field of the weak interaction.

Other combinations implying for example strong interac-
tion SU(3) could be derived in the same way.
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3 Conclusion

What have we achieved? Our theory relies on the specific
form of the connexion coefficients which displays a 4-vector.
This connexion form was first considered by H. Weyl by relat-
ing this vector to the “segment curvature” next to the Riemann
curvature and zero torsion, with the aim to unify electricity
and gravitation in a non trivial way [9]. Although we kept the
name Weyl-Einstein connexion, the extra segment curvature
is not introduced here. On the contrary, we have exploited
the Weyl-Einstein 4-vector to connect the Yang-Mills gauge
fields through an extended field equations set where both the
left and right sides are still conserved. In doing so, such
field equations can now display the type of interactions that
is considered thus informing us between either electromag-
netic field or weak and strong interactions of matter which
was basically impossible with the standard field equations.

Submitted on October 8, 2024
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gique, Mémoires de Classes de Sciences, t.18, 1940.

6. Marquet P. The gravitational field: a new approach. Progress in
Physics, 2013, v.9, no.3, 62–66.

7. Marquet P. Vacuum background field in General Relativity. Progress in
Physics, 2016, v.12, no.4, 314–316.

8. Marquet P. Some insights on the nature of the vacuum background field
in General Relativity. Progress in Physics, 2016, v.12, no.4, 366–367.

9. Weyl H. Gravitation und Elektrizität. Sitzungsberichte der Königlich
Preussischen Akademie der Wissenschaften zu Berlin, 1918, 465–480.

Patrick Marquet. Yang-Mills Theory in the Framework of General Relativity 111



Volume 20 (2024) PROGRESS IN PHYSICS Issue 2 (December)

On a Plausible Solution to the Hubble Tension via the Hypothesis of
Cosmologically Varying Fundamental Natural Constants

G. G. Nyambuya

National University of Science and Technology, Faculty of Applied Sciences — Department of Applied Physics,
Fundamental Theoretical and Astrophysics Group, P. O. Box 939, Ascot, Bulawayo, Republic of Zimbabwe.

E-mail: physicist.ggn@gmail.com

We herein present what we propose could be a plausible solution to the current, in-
teresting and topical problem in cosmology — the Hubble Tension. This problem of
the Hubble tension seems to have thrown all of cosmology into a crisis. By employ-
ing the seemingly temarious hypothesis of varying Fundamental Natural Constants
(FNCs), namely Planck’s constant, ℏ, we demonstrate that for the case where the cos-
mological Interstellar Medium (ISM) is a perfect vacuo with a refractive index of unity,
the supernovae derived H0-value can be brought down from its current lofty height
of: HSNe

0 = 73.30 ± 1.03 km s−1 Mpc−1, down to a more humble and modest value
of: 68.70 ± 0.30 km s−1 Mpc−1, and within the margins of error, this new value is in
agreement with the Tip of the Red Giant Branch (TRGB) derived H0-value, namely:
HTRGB

0 = 69.80 ± 2.20 km s−1 Mpc−1, and this is much closer to the CMB-derived H0-
value: HCMB

0 = 67.40 ± 0.50 km s−1 Mpc−1. At a 2.2σ-level of statistical significance
in discrepancy, this new H0-value reduces the tension by 88%, and this surely is a
most welcome development. On the other hand, if the ISM is assumed to be homoge-
neous and isotropic with a slightly varying, if not near constant refractive index, nISM

r ,
for most photon wavelengths, then, a refractive index value of: nISM

r = 1.010 ± 0.006,
does bring the new SNe-derivedH0-value into complete and total concordance with the
CMB-derived H0-value, thus resolving the tension altogether. The final concordance
H0-value that matches or resolves both measurements after a final correction of the
ISM’s refractive index is found to be: H0 = 68.00 ± 0.90 km s−1 Mpc−1.

Cosmology is peculiar among the sciences for it is both the
oldest and the youngest. From the dawn of civilization man
has speculated about the nature of the starry heavens and the
origin of the world, but only in the present century has physi-
cal cosmology split away from general philosophy to become
an independent discipline.

Gerald James Whitrow (1912–2000)*

1 Introduction

Without an iota of doubt, the Hubble constant, denoted by
the symbol H0, is an all important constant in all of modern
cosmology and astrophysics [1–4]. It, amongst others, mea-
sures the expansion rate of the Universe and is pivotal in the
measurement of the age of the Universe [1–4]. Since the the-
oretical discovery [5] of the expansion of the Universe by the
Belgian Catholic priest, theoretical physicist, mathematician,
astronomer, and then professor of physics at the Catholic Uni-
versity of Louvain, Georges Henri Joseph Édouard Lemaı̂tre
(1894–1966), and the subsequent observational confirmation
[6] of this hypothetical expansion by the great American as-
tronomer, Edwin Powell Hubble (1889–1953), a great many
efforts have been made to measure this constant with the high-
est and optimum possible precision available at the time. The
importance of this parameter in cosmology cannot be over-
stated. Hence, accurate knowledge of this constant is not only

*In “Theories of the Universe” (1958)

a sine qua non, but very important as all of cosmology and the
cosmological models thereof, depend on it.

Rather worrisomely, initial measurements of this constant
in the past century were marred by serious scattering with the
resultant values thereof ranging from: ∼ 40 km s−1 Mpc−1 to
∼ 100 km s−1 Mpc−1 [4]. However, recent 21st century ad-
vances in science and technology have made it all possible
to obtain very accurate measurements of this constant using
at least three different methods — which methods measure
the Hubble constant on two different evolutionary epochs of
the Universe, namely the early-and-late Universe. Values of
H0 from the early Universe are typically referred to as global
measurements of H0, while those from the late Universe are
commonly referred to as local values of H0. Global H0 val-
ues measure the Hubble constant in the early Universe (dis-
tant past) while the local H0 values measure this constant in
our local neighbourhood which is the present epoch in the
Universe.

According to the widely accepted Standard ΛCDM cos-
mology model that is used to describe the Universe,H0 must
be the same for any evolutionary epochs of the Universe —
be it in early or late Universe, it does not matter, the value
of H0 aught to be the same. To the chagrin and against the
desideratum of the cosmologically searching mind, the local
and global values ofH0 seem to not be in agreement — each
yielding at a 4.9σ-level of statistical significance [10], two
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Table 1: Critical Measurements of the Hubble Constant

Group Cosmic Measurement H0 Reference
Epoch Type (km s−1 Mpc−1)

Supernova Cosmology (SCG) Late Universe Far Local 73.30 ± 1.04 [7]
Carnegie-Chicago Hubble Project (CCHP) Late Universe Near Local 69.80 ± 2.20 [8]
Planck Collaboration (PC) Early Universe Global 67.40 ± 0.50 [9]

different values that are not only ∼ 10% apart, but also out-
side of the provinces of their error margins. This interesting
and topical problem or discrepancy in the local and global
measurements of the Hubble constant has come to be known
as the Hubble tension and has thrown cosmology into a seri-
ous crisis.

From a fundamental theoretical stand point, before sus-
pecting that there possibly may be errors in the measurements
and/or systematics thereof, one needs to first trust that —
those that have made these measurements have done so metic-
ulously with due and requisite diligence, and with the best
precision at hand. Of course, one cannot rule out errors in the
measurements and/or systematics — we are human after all,
we err. Be that as it may, as our point of departure, we shall
assume that these measurements are flawless. With that hav-
ing been said, we must say that there are three main popular
and common techniques used to measureH0:

1. Supernovae Type Ia (SNe Ia) method;

2. Tip-of-the-Red-Giant-Branch (TRGB) method;

3. Cosmic Microwave Background (CMB) radiation method.

We shall discuss in detail these techniques in §4. Our inter-
est in taking a deeper look into these methods is to unravel
their dependence on FNCs because it is in these FNCs that
we believe the source of our error in the determination of the
Hubble constant may lay.

For further clarity, as already aforementioned, we shall
elaborate that the methods to measure the Hubble constant
fall into two classes: a) Local measurements, and, b) Global
measurements, i.e.:

1. Local H0 measurements: measure H0 in the present (local)
evolutionary epoch of the Universe. The present epoch is
the late Universe, hence, these type of measurements are also
referred to as late Universe measurements.

2. Global H0 measurements: are all-sky measurements of H0,
measuring the Hubble constant across the entire sky, hence,
they being referred to as global H0 measurements. These
measurements typically measure, H0, in the very early Uni-
verse hence they also being referred to as early Universe mea-
surements.

The TRGB and SNe Ia measurements are classified as local
H0 measurements as they measure H0 in the present (and
not past) evolutionary epoch of the Universe. The TRGB
method measures H0-values in galaxy systems much closer

to us (yielding: HTRGB
0 = 69.80 ± 2.20 km s−1 Mpc−1 [8]),

while the SNe Ia measurement H0-values in galaxy systems
relatively far in the local Universe (yielding: HSNe

0 = 73.30±
1.04 km s−1 Mpc−1 [7]). We shall say that the TRGB method
measures H0-values in the near-local Universe, while, the
SNe Ia methods measures H0-values in the far-local Uni-
verse. The near and far-localH0-values do not agree (69.80±
2.20 km s−1 Mpc−1 [8] and 73.30± 1.04 km s−1 Mpc−1 [7], re-
spectively), thus, giving raise to yet another tension within an
already existing tension.

On the other hand, the CMBH0 measurements are classi-
fied as a globalH0 measurements as these measurements are
all-sky measurements of H0 measuring the Hubble constant
across the entire sky, hence, they being referred to as a global
H0 measurements. The CMB method is a state-of-the-art pre-
cision method of globalH0 measurements by Aghanim et al.
[9] and this has yielded: HCMB

0 = 67.40±0.50 km s−1 Mpc−1.
A summary of these key measurements is presented in self-
explanatory Table 1.

Since Lemaı̂tre [5] and Hubble [6]’s initial estimates,
there has been numerous measurements of the Hubble con-
stant. For our purposes here, the above three measurements
(presented in [7–9], which are summarised in a clear and suc-
cinct manner in Table 1) shall constitute our focal point in
all the H0 measurements as these three important measure-
ments sufficiently capture the morass substance contained in
our current musings and at the same time — they drive our
point home regarding this important tropical issue of the Hub-
ble tension.

Astronomers, astrophysicists and cosmologists are
hard at work to figure out why the discrepancy in the val-
ues of H0 from the two different methods as a number have
wondered if this discrepancy is heralding some hitherto yet
unknown physics [3, 11, 12] or there might be some serious,
albeit subtle, error in our methods and analysis? We herein
present a suggestion to this problem and this suggestion is to
the effect that varying Fundamental Natural Constants
(FNCs) may be the cause of this tension. As will be demon-
strated, a simple hypothesis regarding the nature of the said
variation on the FNCs seem to deliver a bold solution to this
problem.

In closing this introductory section, we shall give a syn-
opsis of the reminder of this article, i.e.: the reminder of this
article is arranged as follows: for no other than smoothness,
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completeness and self-containment purpose, we present in the
next §2, a pedestrian derivation of the distance modulus for-
mula used in astronomy, astrophysics and cosmology. There-
after in §3, we discuss distances in cosmology with emphasis
on how the luminosity and Light travel distances are used in
the distance modulus formula in order to derive the Hubble
constant and having done this, in §4, we discuss the three
common and popular methods to measure the Hubble con-
stant. In §5, we present what we believe is the source of the
problem in our endeavour to compute the Hubble constant
leading to the current tension in the measurement of this con-
stant using the two major methods. In §6, we justify the idea
of variable fundamental natural constants. It is this idea that
our proposed solution to the Hubble tension is to be found,
hence there is need to justify the idea. In §7, we present our
proposed solution and application of this solution to real data
in §8. Lastly, in §10 and §11, we present a general discussion
and the conclusion drawn thereof.

2 Distance modulus

In this section, we are going to go through some necessary
trivialities and this is for no other purpose other than for self-
containment and smooth flow of the paper thereof. As is well
known, in astronomy, astrophysics and cosmology, the dis-
tance modulus, denoted by the symbol µ, is a way of express-
ing distances to stellar objects. It is a measure of the differ-
ence between the apparent (m) and absolute magnitude (M),
of an astronomical object, i.e.: µ = m − M. For a star (or
any stellar body of radius, R, mean temperature, T , and, with
surface emissivity, ϵ) whose luminosity: L = 4πR2ϵσ0T 4

(where: σ0 is the Stefan-Boltzmann constant), with a total
flux of: F(dL), and with this flux reaching at the arbitrary dis-
tance, dL, away from the star — the flux received at the said
arbitrary distance dL, obeys the following inverse square law:

F(dL) =
L

4πd2
L

. (1)

The absolute magnitude is by definition defined as follows:

M = −2.5 log10 F(dL) , (2)

while the apparent magnitude is by definition defined:

m = −2.5 log10 F(10 pc) , (3)

where: F(10pc) = L/4π(10 pc)2 is the flux of the given stellar
object at a distance: dL = 10 pc, away. Hence:

µL = m − M ,

= −2.5 log10

(
F(dL)

F(10 pc)

)
,

= −2.5 log10

(
10 pc

dL

)2

.

(4)

This further simplifies to:

µL = 5 log10

(
dL

10 pc

)
, (5)

In cosmology, one often works with distances in mega-parsec
(Mpc), so, it is convenient to write (5) with, dL, in Mpc and
not in in units of 10pc. Written in the units of Mpc, (5) be-
comes:

µL = 5 log10

(
dL

Mpc

)
+ 25 . (6)

Now, (6) applies in the case where the flux does not experi-
ence attenuation as a result of interstellar material along its
path — i.e., in the case where there is no extinction of the
flux.

In the case were there is extinction, the flux undergoes
attenuation. Let, τ, be the optical depth of the Interstellar
Medium (ISM) along the intervening spaces along the path
of the photons reaching our telescopes and let, F0, be the flux
at the surface of the star (or stellar body). Then, the flux at
distance dL away is such that:

F(dL) = F0

(
4πR2

4πd2

)
e−τ . (7)

For the absolute magnitude, we need the flux, F(10pc), at
a distance of 10 parsecs as this is to be evaluated without
extinction, i.e.:

F(10pc) = F0

(
4πR2

4π(10pc)2

)
. (8)

Therefore, from (7) and (8), it follows that:

F(dL)
F(10pc)

=
(10pc)2

d2
L

e−τ , (9)

hence:

µLτ = 5 log10

(
dLτ

10 pc

)
+ Aτ , (10)

where:
Aτ = −2.5 log10(e−τ) = 5 log10(e0.5τ) , (11)

is the extinction correction term to the distance modulus, and:
µLτ , is the extinction-corrected distance modulus. With, dL,
expressed in Mpc, the above can be written as follows:

µLτ = 5 log10

(
dLτ

Mpc

)
+ 25 , (12)

where:
dLτ = e0.5τdL , (13)

is the extinction-corrected luminosity distance. Eq. (12) is
what is used in cosmology in the study of supernovae to esti-
mate the distance to the Cepheid variables that are resident in
the Host galaxy of supernovae.
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In closing this section, allow us to say that we are very
much aware that we have presented an elementary and text-
book derivation of the distance modulus formula. We want
to rest assure our reader that this has been done for a very
good reason and the reason is that there is an esoteric subtlety
associated with this derivation that we want to exegetically
unmask (point out) and “correct”, all this in the hope that this
may be one of the problems from which the discrepancy in
the measurement of the Hubble constant might lie. There-
fore, we kindly ask our reader for their due indulgence as we
unpack this esoteric subtlety.

3 Distances in cosmology

If we get our distances wrong in astronomy, astrophysics and
cosmology, so is our interpretation of the results — they will
be wrong as well. So, the importance of the measures that we
use to obtain these distances cannot be overstated. Different
distance measures are used in astronomy, astrophysics and
physical cosmology. These distance measures give a natural
notion of the distance between two objects or events in the
Universe. They are often used to tie some observable quan-
tity to another quantity that is not directly observable, but is
more convenient for calculations such as the comoving co-
ordinates of quasars, galaxy, etc. The observable quantities
in question are quantities such as the luminosity of a distant
star (or quasar), the redshift of a distant galaxy, or the angular
size of the acoustic peaks in the CMB power spectrum. For
low redshift objects, these distance measures reduce to the
common notion of Euclidean distance. Of particular interest
in our present expedition are the luminosity and Light travel
distances.

3.1 Light travel distance

Herein denoted by the symbol dLT , the Light Travel Distance,
is a cosmological concept that refers to the distance Light
travels from one point (A) to the other (B), in particular, the
distance Light could travel say from one galaxy to our own
telescope at the time of observation. The Light travel distance
can be important for understanding phenomenon such as the
age of the Universe, its expansion rate and the spatial size
of the observable Universe for example. Wholly within the
framework of Einstein [13–15]’s General Theory of Relativ-
ity (GTR), the Light travel distance is calculated with respect
to proper time dτ, i.e.:

dLT =

∫ τr

τe

c dτ =
∫ τr

τe

(
c0

nr

)
dτ , (14)

where in this case: nr, is the refractive index of the Interstel-
lar Medium (ISM). In most considerations in the definition
and calculation of the Light travel distance, the refractive in-
dex does not appear in the formulae, the meaning of which
is that, the ISM is, in the said cases, being assumed to be a
perfect vacuo with a refractive index of unity. In the present

expedition, we shall be meticulous and exercise equanimity
by not assuming a perfect vacuo for the ISM. This is going to
help us in our effort to explain the remaining discrepancy in
the resulting Hubble constant after the correction of the FNCs
has been made.

From the homogeneous and isotropic metric tensor of
Friedmann (1924) [16], Lemaı̂tre (1933) [17], Robertson
(1935, 1933a,b,c) [18–20] and Walker (1937) [21] (hereafter,
FLRW-metric), which is what is used in the ΛCDM cosmol-
ogy model — by setting the proper time in this metric to equal
zero for the propagation of Light in an FLRW-Universe —
one can show from it that, the Light travel distance, dLT , de-
fined in (14), is such that:

dLT =
dH

nr

∫ z

0

dz

(1 + zλ) nr
√
Ω
= dH f (zλ) , (15)

where off cause:

f (zλ) =
∫ zλ

0

dzλ
(1 + zλ)

√
Ω
, (16)

and: dH = c0/H0, is what is called the Hubble distance with:

Ω =
1
H2

0

ȧ2

a2
= Ωm + ΩΛ + Ωk . (17)

The Ω’s appearing in (17) are the usual Ω-parameters used in
cosmology, with Ω, being the total Ω-parameter; while, Ωm,
is the Ω-matter parameter; ΩΛ, is the Ω-vacuum parameter
for the Λ-cosmological field; and, Ωk is the Ω-curvature pa-
rameter.

Now as is the usual case, using the Light travel distance,
dLT , one can calculate from it the corresponding distance
modulus, µLT , of the given supernovae, it is given by:

µLT = 5 log10

(
dLT

Mpc

)
+ 25 . (18)

Inserting (15) into (18), we obtain:

µLT = 5 log10
[
f (zλ)

]
+ K , (19)

where:

K = 25 + 5 log10

(
c0

Mpc

)
− 5 log10 (nrH0) . (20)

It is from the value of, K, as given in (20), that one is able to
calculate the Hubble constant.

3.2 Luminosity distance

We have already met the concept of luminosity distance in
our derivation of the distance modulus in §2, which distance
we have denoted by the symbol, dL. There are two concepts
relating to luminosity distance that we shall call the observa-
tionally derived luminosity distance and the redshift derived
luminosity distance. The former is what we have met. We
shall discuss these two concepts below:
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1. Observationally Derived Luminosity Distance: The observa-
tionally derived luminosity, is the luminosity distance that is
defined as the distance at which an object would need to be lo-
cated in order for its observed (apparent) luminosity to match
its intrinsic (absolute) luminosity. This is the distance, dL,
as defined in (1). That is to say, the luminosity distance, dL,
is related to the observed (apparent) flux (F) from the given
object and its intrinsic (absolute) luminosity (L) through (1).
At the instance of (8) leading to (13), the luminosity distance
has been corrected for extinction and the extinction-corrected
luminosity distance has been denoted by the symbol, dLτ . We
will argue in §5 that our understanding of the luminosity may
need to be updated if FNCs are variable over cosmic epochs.
It is this dearth and paucity of knowledge in our understand-
ing of the luminosity distance that may very well be the cause
of the Hubble tension.

2. Redshift Derived Luminosity Distance: The redshift derived
luminosity distance, dL(zλ), depends on cosmology under
probe and is given by:

dL(zλ)
dH

=
1 + zλ

a0

∫ zλ

0

dzλ
√
Ω
, (21)

where: dH = c0/H0, is the Hubble distance and Ω is the
total Ω-parameter already defined in (17). The cosmology
is defined by the total Ω-parameter.

What happens in the supernovae determinations of the Hub-
ble constant is that two distance moduli are constructed and
equated and the resulting equation, the Hubble constant is de-
termined. That is to say, from the observationally derived
luminosity distance, dLτ , the distance modulus, µLτ , is con-
structed as given in (12). From (21), one constructs the cor-
responding the redshift derived distance modulus:

µL(zλ) = 5 log10

(
dL(zλ)
Mpc

)
+ 25 . (22)

Now, from the equation: µLτ = µL(zλ), the Hubble constant is
determined.

4 Measuring the Hubble constant

The Hubble constant, can be determined through several dif-
ferent methods, each with its own advantages, disadvantages,
and limitations. Here are some of the primary methods:

1. The Distance Ladder Method makes use of standard candles
such as Cepheid variable stars and type Ia supernovae and
from these standard candle distance measures and the the cor-
responding redshift, one can infer the Hubble constant.

2. The Cosmic Microwave Background observations from mis-
sions like the Planck satellite provide a measurement of the
Hubble constant based on the early Universe’s conditions.

3. The Tip-of-the-Red-Giant Method makes use of stars at the
tip of the red giant branch on a IV-color-color diagram. These
stars have known fixed intrinsic brightness, hence, they are
standard candles. Using this fact other with their redshift,
one can infer the Hubble constant.

4. The Baryon Acoustic Oscillations (BAO) Method uses the
distribution of galaxies to infer distances and hence the ex-
pansion rate of the Universe.

5. The Gravitational Lensing Method uses the bending of light
from distant objects by massive foreground objects as this can
be analyzed to estimate the Hubble constant.

6. The Time Delay Measurements Method in systems with mul-
tiple images of the same astronomical event (like a super-
nova), the time delays in these systems can be used to calcu-
late the Hubble constant.

7. The Tying to Local Measurements Method links the Hubble
constant to local measurements in the Solar System, such as
the motion of nearby galaxies.

8. The Galaxy Cluster Dynamics Method utilizes the motion of
galaxies within clusters providing insights into the expansion
rate.

In the next two subsections [i.e., §4.1 and §4.2], we shall give
an exegetic exposition of the first two methods, namely the
Distance Ladder Method and the CMB-Method. The exegesis
that we institute is meant to pinpoint the plausible sources
of error that may need to be corrected so as to bring about
concordance in the H0-values derived from these two state-
of-the-art methods.

4.1 SNe Ia distance ladder method

In the SNe Ia method, three things are necessary:

1. A type Ia supernovae and its redshift, zλ.

2. A host galaxy for the given supernova.

3. A Cepheid variable star or Cepheid variable stars in the
supernovae host galaxy.

Cepheids are stars that vary periodically in brightness in a
predictable way, and their brightness can be used to deter-
mine their distance from Earth. The Cepheid distances are
then used to calibrate type Ia supernova luminosities, whose
luminosities are then applied to SN Ia out into the far-field to
measureH0 [22]. With the distance to the supernova known,
the distance modulus, µLτ , corrected for extinction is known.
From the calibrated supernova luminosity, the redshift of the
supernova is known. With the redshift of the supernova now
known, the theoretically derived redshift dependent luminos-
ity distance, dL(zλ), is then calculated and the value of,H0, is
deduced from the equation: µLτ = µLzλ .

4.2 CMB method

BAO experiments essentially measure two quantities,
one parallel to the line-of-sight:

β|| = H(z)rs(z⋆) , (23)

and the other perpendicular to the line-of-sight:

β⊥ =
rs(z⋆)
DA(z)

= θs(z⋆) , (24)
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where H(z) is the Hubble parameter, rs(z⋆) is the comov-
ing sound horizon at recombination (i.e., the standard ruler)
and DA(z) is the comoving angular distance to the observation
redshift, z. The latter is computed as:

DA(z) = dH

∫ z

0

dz
√
Ω
. (25)

The standard ruler rs(z⋆) is well constrained by CMB exper-
iments. For the shape of H(z), one needs to assume some
model (such as ΛCDM). Thus, by fitting the theoretical pre-
dictions for β∥ and β⊥ to the BAO data, we get indirect con-
straints on the expansion history of the Universe, H(z), and
thus on the Hubble constant H0 = H(z = 0). In a similar
way to other probes of the early Universe (as the CMB), this
method gives a value of H0 that is in tension with the direct
measurement in the local Universe (using the cosmic distance
ladder). Note that even if BAO observations are made in the
late Universe (by looking at the large-scale distribution of
galaxies), it is considered as an early probe because it pro-
vides a constraint on rs(z⋆), that gives information about the
primordial plasma.

To determine, H0, from the CMB data one calculates a
Monte Carlo Markov Chain (MCMC) which involves eval-
uation of the likelihood of parameter values and their asso-
ciated spectra at tens to hundreds of thousands of points in
the parameter space, and then one uses this chain to infer the
posterior density of, H0, or any other cosmological parame-
ter of interest [12, 23]. Apart from laying down the method
leading to the calculation of, H0, what we want at the end
of this section is a generic formula of how one proceeds to
calculateH0.

The Hubble constant is inferred from CMB temperature
anisotropies measurements. That is, measurements of tem-
perature anisotropies in the CMB have revealed a series of
(damped) acoustic peaks [12, 23]. These acoustic peaks con-
stitute the esoteric fingerprint of the early Universe’s BAO
during the era of the pre-recombination plasma — i.e.: sound
waves propagating in the baryon-photon plasma prior to pho-
ton decoupling, set up by the interplay between gravity and
radiation pressure [24–28]. The first acoustic peak is set up
by an oscillation mode which had exactly the time to com-
press once before freezing as photons decoupled shortly af-
ter recombination and this peak is precisely determined at:
θs = 1◦.

The first acoustic peak of the CMB carries the indeli-
ble imprint of the comoving sound horizon at last scattering
rs(z⋆), given by the following:

rs(z⋆) =
∫ z⋆

0

cs(zλ)dzλ
H(zλ)

=
c0

H0

∫ z⋆

0

cs(zλ)dzλ
c0
√
Ω
, (26)

where: z⋆ ∼ 1100, denotes the redshift of last scattering,
H(zλ) denotes the expansion rate, and cs(zλ) is the sound

speed of the photon-baryon fluid. For most of the expan-
sion history prior to last scattering, cs(zλ)/c0 ≃ 1/

√
3, before

dropping rapidly when matter starts to dominate.
On the other hand, the spatial temperature fluctuations at

last scattering are projected to us as anisotropies on the CMB
sky. As a consequence, the first acoustic peak actually carries
information on the angular scale θs (usually referred to as the
angular scale of the first peak), given by:

θs(z⋆) =
rs(z⋆)
DA(z⋆)

, (27)

where: DA(z⋆), is the angular diameter distance to the surface
of last scattering, given by:

DA(z⋆) =
c0

1 + z⋆

∫ z⋆

0

dzλ
H(zλ)

=
c0

H0 (1 + z⋆)

∫ z⋆

0

dzλ
√
Ω
,

(28)

From this, one can determine the CMB-derived Hubble con-
stant,HCMB

0 , from the following:

HCMB
0 =

θs(z⋆)
rs(z⋆)

(
c0

1 + z⋆

∫ z⋆

0

dzλ
√
Ω

)
. (29)

According (e.g.) to Vagnozzi (2020) [12], measurements of
anisotropies in the temperature of the CMB, and in particu-
lar the position of the first acoustic peak (which appears at a
multipole ℓ ≃ π/θs), accurately fix θs, therefore, any modifi-
cation to the standard cosmological model aimed at solving
the Hubble tension should not modify θs in the process.

In (29), we see that the CMB-derived redshift is not af-
fected by the variation of FNCs. Apart from, H0, the only
other FNC in the CMB H0 determination is the speed of
Light and in-accordance with the very strong reservations laid
down by [29] and [30], we are not going to vary this. The
sound speed, c0, in the pre-recombination plasma medium
is the only quantity that can depend on FNC via the radia-
tion density term, that is to say, the sound speed is such that:
cs = c0/

√
3(1 + ϱb/ϱγ), where: ϱb and ϱγ, are the densities

of baryonic matter and radiation in this plasma, respectively.
Because during the plasma era, radiation dominated the Uni-
verse, hence, it is generally assumed that: ϱb/ϱγ ≪ 1, so
that the sound speed in this cosmic plasma medium is ap-
proximately equal to c0/

√
3. Hence, the CMB measurements

of,H0, are not affected by the variation of FNCs.

5 Problem

So what is the problem? We are of the strong view that the
problem with the discrepancy leading to the Hubble tension
may arise from an underestimate of the distance modulus (µL)
from its determination using the luminosity distance and this
underestimate may be a result of the variation of the FNCs:
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most probably Planck’s constant, ℏ*. We will show in §7, that
if indeed FNCs are to vary with cosmological time, then, this
variation will introduce a form of “dark extinction” that is not
accounted for in the typical calibrations leading to the Hubble
constant and this is so for the case of the cosmic distance
ladder method. The reason for this omission is that at present,
the idea of a variable FNCs is not taken with the seriousness it
so deserves despite observations [31–39] of the FSC strongly
pointing to this possibility.

The two distance moduli, µLτ and µLT , are determined and
then compared (i.e.: µLτ = µLT ), with µLτ being determined
from the brightness of the Cepheids resident in the super-
novae galaxy, while, µLT , is determined from the supernova’s
redshift and in addition to the redshift, it relays on the chosen
parameters of the Friedmann model. It is in this comparison:
µLτ = µLT , that the Hubble constant, H0, is determined. One
thing that one can immediately deduce without fail from this
comparison is that dLτ , dLT . That is to say, from (12) and
(18), we have that:

µLτ = 5 log10

(
dLτ

Mpc

)
+ 25 , (30a)

µLT = 5 log10

(
dLT

Mpc

)
+ 25 , (30b)

and from (30), it is not difficult to deduce that the said com-
parison of µLτ and µLT (µLτ = µLT ) implies that:

dLτ = dLT . (31)

So, the luminosity and Light travel distances are generally not
equal and are only equal in the case of the ISM having a van-
ishing optical depth. Now, before we deliver our suggested
solution, we shall first motivate for our working model on the
variation of FNCs.

6 Variable fundamental natural constants

If we blindly were to go by their verbatim name, then Funda-
mental Natural Constants (FNCs) aught to be
what is purported or suggested by their very name “Funda-
mental”, “Natural” and “Constant”.

1. Fundamental— meaning intrinsic, inherent and foundational
in all reality where they are involved;

2. Natural— meaning that these FNCs must arise naturally in
our theories and are not imposed by our finite and limited
intellect, whim, will or desideratum;

3. Constant — meaning they are sacrosanct and unchanging
throughout the entire evolution of the Universe.

Pristinely and succinctly stated, the term Fundamental Nat-
ural Constant expresses a somewhat “divine” notion of the

*Typically, ℏ is referred to as the reduced or normalized Planck constant.
Fully cognisant of this fact, we shall however refer to this constant ℏ, simply
as Planck’s constant.

sacrosanctity of these seemingly immutable and divinely im-
posed physical quantities.

How far true is this assumption of sacrosanctity, immuta-
bility and constancy of these FNCs? For all we know, physics
is an experimental human endeavour where answers to the
questions that we pause regarding the inner and outer work-
ings of Nature are to be sought by way of physical enquiry via
ponderable measurements. That is to say, only measurements
can decisively and conclusively answer this deep and very
interesting question about the possible variation the FNCs.
Fortunately, this question of the possible variation of FNCs is
now a question capable of being answered from both experi-
mental and observational science — thanks to the capabilities
of modern state-of-the-art precision technology that has made
this a reality.

The path to the road of inquiry into the possible varia-
tion of the FNCs began sometime in 1935 and 1937 with
the great British theoretical physicists Edward Arthur Milne
(1896-1950) and Paul Adrian Maurice Dirac (1902-1984).
That is to say, Milne [40, 41] and Dirac [42] were perhaps
the first (in the recorded scientific literature) to question this
status quo by suggesting that this long held assumption that
Newton’s supposed universal constant of gravitation, G, was
a sacrosanct and sacred constant of Nature that has remained
constant since the Universe came into being.

To that end, if current observations [31–39] indicating the
cosmological variation of the Fine Structure Constant (FSC)
stand up to the most ruthless scientific scrutiny, then Milne
[40, 41] and Dirac [42] may have been right after all, albeit
not on the possible variation of Newton’s constant G, but the
cosmological variation of the FSC which involves four FNCs,
namely: the electronic charge, e = 1.602176634 × 10−19 C;
the permittivity of free space, ε0 = 8.8541878128(13) × 1012

F m−1; Planck’s constant, h = 6.62607015×10−34 J s; and, the
speed of Light in vacuo, c0 = 299792458 × 108 m s−1 (2022,
CODATA Values).

The dimensionless FSC, denoted by the symbol α0, is
such that:

α0 =
e2

4πε0ℏc0
=

1
137.035999074(44)

, (32)

hence:
∆α

α0
= 2

(
∆e
e

)
−
∆ε0

ε0
−
∆ℏ

ℏ
−
∆c
c0
, (33)

that is to say, a cosmological variation in α0, directly points
to a variation in any one, or any possible combination, of the
four FNCs: e, ε0, ℏ, and, c0.

At present, there exists no properly constituted and fairly
accepted theory that explains why any of the supposed FNCs
must vary. Most theories that do make the endeavour to ex-
plain the possibility of the variation of the FSC are specu-
lative theories based on exotic and exogenous ideas [43–48]
and some of these theories are yet to make contact with expe-
rience such as string and string-related theories.
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Following Dirac [42] on the variation of the Newtonian
gravitational constant that it must vary in proportional to the
age of the Universe, which also translates to a variation with
respect to the cosmological scale factor a = a(t), we shall as-
sume that the expansion of the Universe is what is responsible
for the variation of FNCs. That is to say, if for example, K, is
some arbitrary FNC, then, its variation will scale in propor-
tion to the scale factor, a, that is to say: K ∝ aβK , and as a
mathematical equation, this can be written as follows:

K = KHa
βK = KH (1 + zλ)−βK , (34)

where: KH, is the value of this constant at the beginning of
time where: t = τP, and βK, is the proportionality index for
this constant and a0, is the scale factor of the Universe while,
a, is the scale factor of the Universe at the time of emission
of the photon whose redshift we measure with our telescopes
today. We hypothesize that the Universe began when the cos-

mic clock was reading one Planck second τP =

√
Gℏ/c5

0. From
this, it follows that:

1. If: βK > 0, then, the FNC in question increases with time,
i.e., its value gets larger as the Universe gets older.

2. If: βK < 0, then, the FNC in question decreases with time,
i.e., its value gets smaller as the Universe gets older.

3. If: βK = 0, then, the FNC in question is indeed a true constant
of Nature.

In the present exploration of ideas, we shall assume that
one of, or all of, or any possible combination of the four FNCs
(e, ε0, ℏ, c0) making up the FSC will vary with cosmological
time, i.e.:

e = eHa
βe = eH (1 + zλ)−βe , (35a)

ε0 = ε0Ha
βε0 = ε0H (1 + zλ)−βε0 , (35b)

ℏ = ℏHa
βℏ = ℏH (1 + zλ)−βℏ , (35c)

c0 = c0Ha
βc0 = c0H (1 + zλ)−βc0 , (35d)

where: eH, ε0H, ℏH and c0H, are the values of the fundamen-
tal electronic charge, the permittivity of free space, Planck’s
constant and the speed of Light in vacuo at the beginning of
time and: βe, βε0 , βℏ, and, βc0 , are the corresponding indices
of the variation of these FNCs, respectively.

We want to be clear to our reader in that we are not pro-
posing that all the four FNCs e, ε0, ℏ, and, c0, do vary with
cosmic time. What we are saying is that the variation of the
FSC allows us to entertain the possibility of the variation of
at least one of these four constants. If we were asked our
inclination regarding which of the four do we really think are
varying, we would say, it is probably Planck’s constant. We
have our reasons, for we have pondered on this matter in our
on-going ideas that we are still working on and are yet to be
published; from the said ideas, we strongly holdfast that the
speed of Light and as well the electronic charge must be true
FNCs, thus leaving ℏ and ε0 as variables.

For our purpose here, it really does not matter as to which
FNC is varying, as long just one of them is variable, this
would lead to the Stefan-Boltzmann-Planck constant, σ0, be-
ing a variable as it does depend on the Planck constant and
the speed of Light in vacuo. That is to say, we know that:

σ0 =
2π5k4

B

15ℏ3c2
0

= 5.670374419 × 10−8 W m−2 K−4 , (36)

where: kB = 1.380649 × 10−23 J K−1 (2022, CODATA Value)
is Boltzmann’s constant. From (36), it follows that if say, ℏ,
or, c0, did vary with cosmological time, then, σ0, will vary
cosmologically as well, i.e.:

σ0 = σ0Ha
βσ , (37)

where as before: σ0H, is the Stefan-Boltzmann-Planck con-
stant at the beginning of time and, βσ = 4βkB − 3βℏ − 2βc0 , is
the corresponding index of the cosmological variation of σ0.
For our purposes here, following the strong advice of Ellis &
Uzan [29,30], we shall assume that: βc0 = 0, and also follow-
ing our own intuition, we shall assume: βkB = 0; hence, we
shall have: βσ = −3βℏ and this implies that the luminosity of
a star, L, will vary with the scale factor as follows:

L ∝ a−3βℏ . (38)

Equipped with this seemingly strange and exotic hypothetical
idea of the cosmological variation of FNCs, we are going to
suggest in the next section a plausible solution to the Hubble
tension problem.

7 Proposed solution

From the thesis just laid down in the previous section, it is
pristine clear that if FNCs are variable, then there aught to be
a discrepancy in the values of early and late measurements
of H0, and the reason is simple because these epochs have
different values of these FNCs that drive the physics thereof.
For example, late-type values are those from the local neigh-
bourhood where the FNCs (kB, ℏ, c0) in those galaxies are just
about the same as in our own galaxy, whereas in the early-
type H0-measurements, the FNCs are significantly different
from our own, hence we are comparing two significantly dif-
ferent cosmological epochs. Thus, from the foregoing, it is
clear that late-type H0-measurements aught to be the true
and correct values of H0, whereas those from the early-type
measurements are going to contain a hitherto intrinsic and in-
herent additional signal (term) which is not accounted for in
contemporary measurements, hence the tension.

Now, in order to see how this variation of FNCs comes in,
from (38), we now have the FNC variation term, a−3βℏ , in the
flux emitted by the source at distance, d, i.e.:

F(dL) = F0

4πR2

4πd2
L

 a−3βℏe−τ , (39)
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where in (39), we see that in comparison to (7), we have in
addition to the traditional extinction term, e−τ, there now is
supplemented a new extinction term a−3βℏ . Our claim is that
it is this term a−3βℏ that is not accounted for in contemporary
cosmology models that do not embrace the variation of the
FNCs.

Now, just as before for the absolute magnitude, we need
the flux, F(10pc), at a distance of 10 parsecs as this is to be
evaluated without any form extinction — either the optical (τ)
term or the FNC-variation term (βℏ), i.e.:

F(10pc) = F0

(
4πR2

4π(10pc)2

)
. (40)

From (39) and (40), it follows that:

F(dL)
F(10pc)

=
(10pc)2

d2
L

a
−3βℏe−τ , (41)

hence, the variation of FNCs corrected-distance modulus, µ′L,
is given by:

µ′L =

µLτ︷                          ︸︸                          ︷
5 log10

(
dL

Mpc

)
+ 25 + Aτ +

µD︷           ︸︸           ︷
5 log10

(
a

1.5βℏ
)

Dark−Term
. (42)

That is to say, (42) reads: µ′L = µLτ + µD, where: µD, is a
new emergent dark-term that arises from the variation of the
Planck constant (if the Planck constant is not variable, then it
must either be, kB, and, c0). Since: µ′L = µLT , it follows that:

µLτ︷                          ︸︸                          ︷
5 log10

(
dL

Mpc

)
+ 25 + Aτ +

µD︷           ︸︸           ︷
5 log10

(
a

1.5βℏ
)

Dark−Term
=

= 5 log10

(
dLT

Mpc

)
+ 25 .

(43)

Taking the dark-term to the right hand-side of (43), we will
have:

5 log10

(
dL

Mpc

)
+ 25 + Aτ =

= 5 log10

(
dLT

Mpc

)
+ 25 − 5 log10

(
a

1.5βℏ
)
.

(44)

We can re-write (44), as follows:

Flux−Dependent︷                           ︸︸                           ︷
µLτ = 5 log10

(
dLτ

Mpc

)
+ 25

Observationally Derived

=

=

Redshift−Dependent︷                            ︸︸                            ︷
5 log10

d∆σ0
LT

Mpc

 + 25 = µδℏLT

Theoretically Derived

,

(45)

where:
d∆σ0

LT = a
−1.5βℏdLT , (46)

is what we shall call the FNC variation-corrected Light travel
distance, where in the present case, the FNC for which the
Light travel distance has been corrected for, is the Planck con-
stant because it is the particular FNC that we have chosen is
variable, while the other two (kB, c0) have been held constant.

Now, given that in the ΛCDM cosmology model, the red-
shift, zλ, and the scale factor, a, are related as follows: 1+zλ =
a0/a, i.e.:

a =
a0

1 + zλ
, (47)

where: a0, is the present day scale factor of the Universe
while, a, is the Universe’s scale factor at the time of emis-
sion of the photon that we receive here on Earth. The present
scale factor of the Universe is set: a0 = 1. From this, it
follows that if we are to insert this into (42), we will obtain:

d∆σ0
LT = (1 + zλ)1.5βℏ dLT . (48)

Now, since: dLτ = d∆σ0
LT , it follows that:

dLτ = (1 + zλ)1.5βℏ dLT = dH (1 + zλ)1.5βℏ f (zλ) , (49)

hence:

µLτ = 5 log10

[
(1 + zλ)1.5βℏ f (zλ)

]
+ K , (50)

where, K, is no longer as has been defined in (20), but is now
defined as follows:

K = 25 + 5 log10

(
c0

Mpc

)
− 5 log10 (nrH0) . (51)

This completes our theoretical exegesis on the plausible ori-
gins of the Hubble tension. What is now left is for us to cal-
ibrate this result (50) against real data. In order to to do this,
there is need to first figure out what, f (zλ), is. This function,
f (zλ), is dependent on the cosmology model that one adopts.
In our present case, we shall adopt a cosmology for which the
total Ω-parameter is identically equal to unity, i.e.: Ω ≡ 1.
That is to say, Ω, does not happen to be equal to unity in the
present epoch of the Universe’s evolution, but is eternally so
for all times — i.e., from antiquity to eternity. If as declared:
Ω ≡ 1, it follows from (16), that:

f (zλ) = ln (1 + zλ) , (52)

hence:

µLτ = 5 log10

[
(1 + zλ)1.5βℏ ln (1 + zλ)

]
+ K . (53)

Thus, (53) is what we are going to test against observational
evidence and we must hasten to say that (53) has not been
priori designed to fit the observational data that it will excel-
lently fit. It actually came as nothing short of a non-posteriori
surprise that this model [(53)] agrees very well with empirical
evidence.
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8 Application of theory

We are now ready to apply our ideas onto some real and tangi-
ble data and for this, we are going to use the Supernova Cos-
mology Project (SCP) Union2.1 dataset spanning the redshift
range: 0.015 ≤ zλ ≤ 1.414, [49]. This dataset is a compila-
tion of 580 SNe type Ia drawn from 19 datasets [50–67]. We
must say that this dataset may very well be the most compre-
hensive and most accurate SNe data available to date. Fur-
ther, according to Suzuki et al. [49], all SNe were fitted using
a single light-curve fitter (SALT2-1) and uniformly analyzed
in blind-mode, i.e., without due consideration of a particular
cosmology model. With 580 data points in the sufficiently
large redshift range: 0.015 ≤ zλ ≤ 1.414, we certainly do
have a statistically significant dataset to make a meaningful
conclusion on the present model (53) of the plausible time
variability of FNCs.

What we really want in this section is to test the proposed
model presented in (53). We want to find the value of βℏ,
and, K; and from the value of K, we can deduce H0. To that
end, in Fig. 1, we have plotted the distance modulus, µLτ , vs
the redshift, zλ, of the 580 SNe from the Union2.1 dataset
and with this dataset, we perform a non-linear curve fitting
on the data and from this non-linear curve fitting exercise, we
obtain:

βℏ = +0.77 ± 0.02 , (54a)

K = 43.20 ± 0.01 mag . (54b)

From the value of K, obtained (43.20 ± 0.01 mag.), we find
for the Hubble constant, the value:

H0 =
68.70 ± 0.30 km s−1 Mpc−1

nr
=
HSNe

0

nr
. (55)

If the ISM is a perfect vacuo (which it obviously is not), then:

H0 = H
SNe
0 = 68.70 ± 0.30 km s−1 Mpc−1 . (56)

This value given (56) is the corrected vacuo SNe H0-value
where the correction made is that hypothesised variation in
the Planck constant and the tension in this value when com-
pared with the CMB-value is significant at a 2.2σ-level (97%)
of statistical significance.

Of this value, within the provinces of its own error mar-
gins, one can safely say that this rather unexpected result is
in very good agreement (0.5σ-level of statistical significance
in discrepancy) with that of Freedman et al. [8]’s TRGB-mid-
point value: H0 = 69.80 ± 2.20 km s−1 Mpc−1. Further, this
value is in agreement with the Wilkinson Microwave Aniso-
tropy Probe (WMAP) data for the CMB data — where: H0 =

69.30 ± 1.60 km s−1 Mpc−1 [68, 69], and, the Planck 2013
data — where: H0 = 69.80 ± 2.20 km s−1 Mpc−1 [70]. In
theH0 values of Anderson et al. [68], Mehta et al. [69]&Ade
et al. [70], the BAO data has been admitted together with the
CMB data, thus allowing Ωk to be a free parameter [68, 70,

71], and this is unlike in Aghanim et al. [9]’s case were the
curvature parameter has been tightly constrained to: Ωk ∼ 0.
Furthermore, applying the WMAP& CMB constraints to both
BAO and SNe data together with the CMB, Blake et al. [72]
obtained: H0 = 68.70 ± 1.90 km s−1 Mpc−1, and Anderson et
al. [68] obtained: H0 = 69.60 ± 1.70 km s−1 Mpc−1. Within
the margins of error — all these results are in very good
agreement with our result: H0 = 68.70 ± 0.30 km s−1 Mpc−1.
While this is the case — that our derived value is an im-
provement in matching the two discontent H0-values, if at
all possible, there is need to get a most perfect agreement be-
tween these two values and this can be done by considering
the fact that the ISM is not a perfect vacuo, the meaning of
which is that we need not assume a refractive index of unity
for the ISM.

9 ConcordanceH0–value

As stated above, the two discontent H0-values (HSNe
0 and

HCMB
0 ) can be brought into concordance by considering the

fact that the ISM is not a perfect vacuo. That is to say, in the
derivation of HSNe

0 , leading to (55), the refractive index was
taken into account but later in (56), it (refractive index) was
then set to equal unity. We shall drop this assumption that the
refractive index is unity. On the same pedestal, we must real-
ize that this same assumption that the refractive index of ISM
is unity is employed in the CMB-derivation ofHCMB

0 in (29).
In order for us to take the refractive index into account in

(29), what we need to do is to replace c0 with c0/nr. So doing,
we obtain:

HCMB
0 =

θs(z⋆)
rs(z⋆)

(
c0/nr

1 + z⋆

∫ z⋆

0

dzλ
√
Ω

)
=
H0

nr
. (57)

From (57), we obtain: H0 = nrH
CMB
0 , and proceeding to

substitute this into (55), we obtain:

nr =

√
HSNe

0

HCMB
0

,

=

√
68.70 ± 0.30 km s−1 Mpc−1

67.40 ± 0.50 km s−1 Mpc−1 ,

∴ nISM
r = 1.010 ± 0.006 .

(58)

In all probity, this value (nISM
r = 1.010 ± 0.006) is not at all

in bad agreement with the measured refractive index (nISM
r =

1.0001 to 1.0003 [73–75]) of the ISM. With this ISM refrac-
tive index value (1.010 ± 0.006), the concordance H0-value
is:

H0 = 68.00 ± 0.90 km s−1 Mpc−1 . (59)

Within the margins of error, this concordance H0-value is
in good agreement with Freedman et al. [8]’s TRGB H0-
value. This good agreement can very well be understood
from the fact that the TRGB stars, from which these mea-
surement are inferred, are nearby stars and as a direct result

G. G. Nyambuya. Plausible Solution to the Hubble Tension via Cosmologically Varying Fundamental Constants 121



Volume 20 (2024) PROGRESS IN PHYSICS Issue 2 (December)

Fig. 1: Graph of Distance Modulus (µL) vs Redshift (zλ) from the Union2.1 data of [49]. The Best Fit Graph (RED) is described by the
non-linear curve: µLτ = 5 log10

[
(1 + zλ)1.5βℏ ln (1 + zλ)

]
+ K, and, from it we obtain the following best parameter fittings: βℏ = 0.77 ± 0.02,

and, K = 43.20± 0.01 mag. The R2-value or Coefficient of Determination (COD) of the fit to data is: 99.49%. Assuming an ISM refractive
index of unity — i.e.: nISM

r ≡ 1, the obtaining K-value leads to: H0 = 68.70 ± 0.30 km s−1 Mpc−1. In order to bring the CMB and SNe
Ia measurements into unity and harmony, an ISM refractive index of: nISM

r = 1.010 ± 0.006, is needed and this leads to a concordance
H0-value of: H0 = 68.00 ± 0.90 km s−1 Mpc−1.

of this fact, the value of Planck’s constant for these systems is
pretty much the same as the value of Planck’s constant here on
Earth, hence, the correction of the variation of Planck’s con-
stant needed on these measurements may very well be negli-
gible. Be that as it may, there is need to subject TRGB H0-
measurements to the present idea of a variable Planck con-
stant.

10 General discussion

We have herein suggested that cosmologically varying FNCs
may very well present a viable and perdurable solution to
the current crisis in cosmology, namely, the Hubble tension.
That is to say, from the same SNe Ia data that usually pro-
duces values of the Hubble constant in the range ∼ 70–to–
76 km s−1 Mpc−1, we have downgraded this old value to the
new concordance H0-value: 68.00 ± 0.10 km s−1 Mpc−1, and
in the same exercise, the Planck collaboration value of: 67.40
±0.50 km s−1 Mpc−1 has been upgraded to this concordance
H0-value. This has required two major ideas to be evoked,
namely, the:

1. Assumption of a cosmologically varying Planck constant, ℏ.
2. Adoption of a non-unity value for the refractive index of the

ISM.

The assumption of a cosmologically varying Planck constant
reduces the SNe Ia derived value of the Hubble constant from
the: 70–to–76 km s−1 Mpc−1, territory, to exactly: 68.70 ±

0.30 km s−1 Mpc−1. As pointed out in the penultimate of §4.2,
this assumption of a cosmologically variable Planck constant
does not apply to the derivation of the CMB-derived Hubble
constant because none of the physical parameters that enter
in the formulae leading to the HCMB

0 depend on ℏ. Effec-
tively, what this means is that the tension inHSNe

0 andHCMB
0

is reduced and not resolved. The initial tension* (gap in the
two values) is: 7.44 km s−1 Mpc−1, and this is reduced to:
2.10 km s−1 Mpc−1, and this is an 88% reduction. In order
to “resolve” the tension completely, the fact that the ISM is
not a perfect vacuo is taken into account and this fact affects
both measurements — i.e., the CMB and SNe Ia measure-
ment and is seen that a refractive index: nr = 1.010 ± 0.006,
resolves the tension completely, leading to the concordance
value: H0 = 68.00 ± 0.90 km s−1 Mpc−1.

We candidly must say that our choice in the Planck con-
stant, ℏ, as the likely culprit is informed by what we believe to

*By tension here we mean the difference within the margins of error be-
tween the two values: HSNe

0 = 68.00 ± 0.10 km s−1 Mpc−1, and, HCMB
0 =

67.40 ± 0.50 km s−1 Mpc−1. That is to say, the difference in: MIN(HSNe
0 ) =

71.97 km s−1 Mpc−1, and, MAX(HCMB
0 ) = 67.90 km s−1 Mpc−1. Clearly,

this difference is equal to: 4.07 km s−1 Mpc−1. Following the same line of
thought and reasoning, the tension in the new variable-ℏ corrected: HSNe

0 =

68.00 ± 0.10 km s−1 Mpc−1, and the old CMB-derived H0-value: HCMB
0 =

67.40 ± 0.50 km s−1 Mpc−1, is: 0.50 km s−1 Mpc−1. Clearly, the percent-
age reduction in tension is: (1 − 0.50 km s−1 Mpc−1/4.07 km s−1 Mpc−1) ×
100% = 88%.
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be our strong intuition rather than scientific objectivity. Be-
cause of a general lack or consensus on the variation of the
FSC; without fail, we must say that ideas of variable FNCs are
by their nature largely considered to be speculative and may
very well be outside of the realm of the general support of
contemporary scientific understanding because despite claims
of a variable FSC [31–39], at present, there is no direct “in-
criminating” and invigorating evidence to suggest that the
Planck constant could change over cosmic times [76–78].

The most widely considered FNCs to vary over cosmic
times is the speed of Light [79–87] but we have our deep-
seated reasons for holding back on taking this position*. We
are not going to take a position simply because everyone is
taking that position because we are aware that no amount of
research on the candle would have led mankind to discover
the Light bulb. To discover the Light bulb, it was needed
to consider ideas alien to our common experience. We have
here chosen to take the “road less travelled if not the road not
travelled” and vary Planck’s constant.

Because the Planck constant sets the scale for the quan-
tum nature of particles and their interactions with its value
determining the granularity of atomic energy levels and the
scale at which quantum effects become significant — in a
Universe with an increasing Planck constant such as the one
that we are suggesting, over cosmic times, the behaviour of
the Universe would tend to be more classical rather than quan-
tum mechanical. From a quantum probability calculus view
point, this means the initial state of the Universe must have
been less probabilistic (i.e., highly unpredictable) and has
been evolving into a more probabilistic state (i.e., more pre-
dictable). This evolutionary sequence of the Universe res-
onates well with the Second Law of Thermodynamics (SLT)
as this implies that the Universe must have started in a state
of lowest entropy and has been, and is, evolving into a state
of highest entropy.

Further, if the Planck constant ℏ, were to vary as sug-
gested here, it could help solve one of the outstanding prob-
lems in the Universe’s expansion to do with the conservation
of the photon’s energy and the expansion of the spacetime.
The problem is a simple one and is as follows. We know that
the energy, Eγ, of a photon is related to the photon’s wave-
length, λ, as follows: Eγ = 2πℏc0/λ. As a result of cosmic
expansion, the wavelength of the photon increases. If ℏ, and,
c0, are to remain constant as the spacetime expands, it follows
that the energy of the photon will diminish without any fore-
seeable compensation — i.e.: ∆Eγ , 0, and this obviously
violates the Law of Conservation of Energy.

*Completely in agreement with Ellis [29] and Ellis & Uzan [30], we are
of the view that the speed of Light cannot be varied in a “part or portion of
physics” but must be done wholesomely in a consistent manner at a most
fundamental level. At the very least, this requires a complete and total re-
write of physics. Varying the speed of Light is unimaginable at the very
least. We have held fast in the present exploration the idea of a sacrosanct
and invariant speed of Light.

Where does the diminished energy go to? This is some-
thing that has bothered the desideratum of the foremost the-
oretical physicist since this issue was first noticed and to this
day, it has not been resolved. In the advent of a time-variable
Planck constant and an invariant Light speed c0, one can pos-
tulate that the photon energy is conserved (∆Eγ = 0) and the
compensation in the increase in its wavelength comes in the
wake of an equal compensation in the increase of the Planck
constant — i.e.:

zλ =
∆λ

λ
=
∆ℏ

ℏ
. (60)

What (60) means is that the redshift, zλ, that we measure must
be a measure in the change of the Planck constant.

Regarding the evidence of a varying Planck constant,
there have been few direct references in the literature on the
subject of a variable Planck constant [88–90]. [88, 89] ap-
proaches the subject from a laboratory view point while [90]
does this on a purely speculative theoretical standpoint.
Searches for a variable Planck constant have been under the
guise of a variable FSC [31, 39] which amongst others also
implies a variable electronic charge, the speed of Light and/or
the permittivity of free space.

Hutchin [89] reports that a gradual and systematic drop
has been observed in the decay rates of 8 radionuclides[
226Ra, 154Eu, 238Pu, 3H, 54Mn, 60Co, 90Sr, 36Cl

]
over a 20

year span by six organizations on three continents (German,
American and Russian labs), including beta decay (weak in-
teraction) and alpha decay (strong interaction) and in the
search for a common cause, Hutchin [89] hypothesizes that
small variations in Planck’s constant might account for the
observed synchronized variations in these strong and weak
decays.

Hutchin [88] further suggests that this proposed variation
of ℏ, may very well be a good candidate for the cause of the
Casimir radiation and further proposes that if this Casimir ra-
diation were emitted by stars via a changing ℏ, then:

. . . this could provide an alternative explanation for the
Hubble constant, where the distant galaxies are redder
simply because ℏ is smaller back in time, making local
time move more slowly. In contrast to the expand-
ing model of the Universe, we could now consider
whether our Universe might simply be static, where
gravity is everywhere balanced on a large scale. Such
a conclusion would end the search for dark energy
since such a Universe is essentially static while the
usual red shift would still be observed.

Unlike Hutchin [88], we do not believe that a variable ℏ nec-
essarily rules out “the expansion of the Universe and points
to a Static Universe.”

As apparent fissures in the standard model have been
emerging, there are also indications that there may be cracks
that need attention in the local distance scale as well. For ex-
ample, the tip of the red giant branch (TRGB) method and
the Cepheid distance scale result in differing values ofH0 =
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69.60 ± 1.90 km s−1 Mpc−1 [8,91] for the TRGB and 73.30±
1.04, km s−1 Mpc−1 [7], for the Cepheids. This divergence
raises the question of whether the purported tension is be-
ing driven by yet-to-be-revealed systematic errors in the local
Cepheid data, rather than in the cosmological models.

11 Conclusion

Assuming what has been presented herein is acceptable, we
hereby present the following as the logical conclusion that
can be drawn thereof:

1. We have shown that the Hubble tension can in principle be
alleviated if we assume a cosmologically varying Planck con-
stant and as well as a dispersive non-zero refractive index
ISM.

2. Further — we have shown that the current supernovae de-
rived H0-value can be brought down from its current lofty
value: HSNe

0 = 73.30 ± 1.03 km s−1 Mpc−1, down to: 68.70 ±
0.30 km s−1 Mpc−1, and this new value is not in dire disagree-
ment with the CMB-derived H0-value: HCMB

0 = 67.40 ±
0.50 km s−1 Mpc−1. That is to say, at a 2.2σ-level of statis-
tical significance in discrepancy, this new H0-value reduces
the tension by 88%.

3. Furthermore — in order to “resolve” the tension completely,
the fact that the ISM is not a perfect vacuo is taken into
account and this fact affects both measurements — i.e., the
CMB and SNe Ia measurement and it is seen that a refrac-
tive index: nr = 1.010 ± 0.006, resolves the tension com-
pletely, leading to the concordance value: H0 = 68.00 ±
0.90 km s−1 Mpc−1.

4. Additionally — apart from providing a viable solution to the
Hubble tension problem, a time variable Planck constant has
the potential to solve the problem of the conservation of the
photon’s energy in an expanding Universe if it is to be as-
sumed that the photon’s redshift, ∆λ/λ, is compensated by a
change in Planck’s constant, ∆ℏ/ℏ. Ultimately, the photon’s
redshift under this model emerges as a measure in the change
in Planck’s constant.

5. Lastly — as demonstrated herein, the idea of varying FNCs
aught to be taken much more seriously than currently done as
this has the potential to solve the darkenergy and darkmatter
problem because if FNCs are really variable, this variation
may bring in “dark” effects that might explain away darken-
ergy and darkmatter.

Dedication

This reading is dedicated to my friend Anna Neff.

Received on September 21, 2024
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This phenomenology paper presents a framework to understand two little-known prop-
erties of light. Firstly Brittin and Gamow have shown that sunlight shining on the
Earth’s surface lowers the entropy level there because Ts > Te > Tspace. We have found
evidence for this, presented separately, which shows it persists contrary to the second
law. Secondly when ferromagnetic particles are strongly illuminated, they move as
magnetic monopoles. Mikhailov made repeated measurements and determined that the
monopole charge is quantized (g = ngD, n = 1–5; ḡ = (0.99 ± 0.05)gD) as predicted by
Dirac. But they cease to move as monopoles when the illumination is turned off, and
so have been ignored. However, the results are reproducible and we deduce these Dirac
monopoles are in another space-time. The chronometric invariant formalism of General
Relativity (CIGR) predicts a more complex structure to space-time of 5D, with a second
time dimension, mirror time, directed from the future to the past (3,2). We make the
hypothesis that light, by lowering the entropy level via the Brittin and Gamow effect,
can switch the arrow of time into that of the mirror world of CIGR to reveal phenomena
there. We call this the “photo-mirror hypothesis”. This reveals magnetic monopoles
outside 4D but in mirror space-time, where they are less objective, but reproducible and
so real. This explains why monopoles can be observed at low energies (because mirror
mass is negative), and the infinite length of the Dirac string.

1 Introduction

Brittin and Gamow have used the quantum theory of radia-
tion to derive an equation which predicts that sunlight shining
on the Earth’s surface, lowers the entropy level there, appar-
ently contrary to the second law of thermodynamics — see
equation (1) below [1]. As we investigated this further, we
confirmed the violation of the second law. To explain this, we
have found new physics which may help penetrate a number
of other unsolved problems in quantum and particle physics,
such as magnetic monopoles. However, there are several bar-
riers blocking progress. We start with the theoretical barriers.

1. Murray Gell-Mann said at the Conference in Honour of
his 80th birthday “I should like to emphasize particularly. . .
the need to go against certain received ideas. Sometimes they
are taken for granted all over the world. . . Often they have a
negative character and they amount to prohibitions of think-
ing along certain lines. . . Now and then, however, the only
way to make progress is to defy one of these prohibitions that
are uncritically accepted without good reason” [2]. Such pro-
hibitions often concern problems from the past. So it fol-
lows, contrary to the current view that references should be
up-to-date, that some of the references below, are old ones.
For example, another peculiar effect of light is the detection
of magnetic monopoles only when strongly illuminated, in
1930 [3].

2. Secondly, theory is sometimes biased against experi-
ment. True, it is accepted that experiment is the final arbiter
of reality. However, important discoveries often get ignored,

if the correct theoretical interpretation is not given. For ex-
ample, parity violation was first observed in 1928, but was
rejected as an “instrumental effect” [4]. In 1956 Lee and
Yang suggested it could be violated theoretically, and Mme
Wu “discovered” it shortly after that. Another example is that
Irène Curie and Frédéric Joliot failed to discover the neutron
because they did not believe Rutherford’s neutron hypothesis.
Chadwick realised that their January 18th 1932 results were
not due to photons but evidence for neutrons, and so made the
discovery a few months later. (The Joliot-Curies also failed to
discover the positron, even though they had data for it before
Anderson.) A fourth example is that the cosmic microwave
background radiation from the Big Bang was first observed
by A. McKellar in 1941, but misinterpreted [5]. The CMB
was rediscovered at the Pulkovo Observatory by Soviet sci-
entist T. A. Shmaonov in 1957 and published in his thesis,
where he determined the temperature to be 4±3◦K, but it was
ignored [6]. Finally in 1964, Penzias and Wilson detected it a
third time, and showed the results to Dicke at Princeton, who
realised that this was the afterglow of the Big Bang. Finally
the discovery was made.

Another example is the case of Felix Ehrenhaft who had
the misfortune to make two such discoveries, firstly of frac-
tional electric charges in 1910 onwards, and then magnetic
monopoles in 1930, and get rejected for theoretical reasons
twice! We go into magnetic monopoles in more detail below.

There is clearly a pattern here of unexpected experimen-
tal results being rejected, sometimes for decades, even indefi-
nitely (e.g. Ehrenhaft). One possible explanation was given
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by Einstein when he said to Heisenberg: “It is the theory
which decides what we can observe” [7]. In effect it is the-
ory which tells us what we can think. This is fine, when the
theory is correct. However, experiment is the final arbiter of
the truth, and so experimentalists are closer to Nature, and it
is Nature which should tell us what to think. Therefore, when
unusual experimental results are obtained, experimentalists
should be encouraged to develop the theoretical explanation,
especially when they can support their reasoning with mathe-
matics already in the literature, as in this paper.

3. One of the prohibitions to thinking is the second law of
thermodynamics. It is thought to be absolute, and to lead to
the “heat death” of the Universe. This is in effect a classical
physics “Theory of Everything”. It is true that (superficially)
there is almost overwhelming evidence that entropy tends to
increase with time. However, the Universe is a big place and
we now know that baryonic matter makes up only about 4%
of the Universe. The other 96% consists of dark matter and
dark energy; and we do not know what these are, nor what
laws they obey. So it is illogical to assume that the second
law applies to them — it may or it may not. So it is perfectly
rational to look for processes which create order out of chaos.

The author has done some experiments on phenomena
which apparently violate the second law of thermodynamics,
and so are inexplicable [8]. It is the objective of this paper to
present a phenomenological framework to understand these
results. In the process, we find that this new framework also
explains experiments on magnetic monopoles, and observa-
tions of fractional electric charges [9].

4. There are also experimental barriers to solving prob-
lems in quantum and particle physics. Firstly, particle physics
has been re-branded “high energy physics”, which is a tech-
nique, not a subject. Low energy particle physics is still an
important and active area of research [10]. However, it does
not get the support nor attention it deserves, because of high
energy physics. High energy experiments are massive techno-
logical achievements, so low energy experiments can appear
insignificant. It is the purpose of these papers to demonstrate
the reverse. We present new approaches, both theoretical and
experimental, into magnetic monopoles, quarks, preons, and
possibly dark matter.

5. Furthermore, experimental physics is currently based
upon determining objective facts in 4D space-time, for exam-
ple, by controlled experiment. However, if one relies upon
objective facts only, this assumes that the Universe can be
reduced to objective facts, or at least if there are any non-
objective aspects, they can be ignored. There is no proof of
this, and it could lead to an infinite regression. (For example,
if matter in the Universe is made from some fundamental ob-
jective substance SA, then what is this made of? Either it is
something non-objective, or it is another objective substance
SB, and so on.) So less-than-objective phenomena could be
more fundamental than objective ones.

In order to bring experimental physics up to date and more

in line with theoretical physics (which frequently incorpo-
rates other dimensions or space-times), we propose that the
requirement of objectivity should be relaxed. For example, if
one makes measurements in other spaces or dimensions then,
assuming it is possible, there is inevitably some reduction in
control and/or objectivity. It is currently not recognised that
such less-objective results do occur occasionally, and so they
tend to be rejected because they are not objective (i.e. not in
4-D space time). We argue that such results should be consid-
ered physically real if they can be reproduced. We have ex-
amined the literature and find that magnetic monopoles are an
example of this. They are only detected under intense illumi-
nation and so may be linked to the Brittin and Gamow effect.

Our method to challenge these barriers, is to reason from
experiment upwards, as opposed to that from theoretical prin-
ciples downwards, because it is experiment which can guide
us to the true nature of reality. Never-the-less, we include
some mathematics when it is available and can help us under-
stand the experiments.

2 Magnetic Monopoles

We present experimental evidence from the literature, for real
(∇ · B , 0) magnetic monopoles, as opposed to the pseudo-
monopoles (∇ ·H , 0) sometimes observed in spin ices or
other solid-state phenomena.

Over the last 70 years there have been numerous searches
for real magnetic monopoles with mostly negative results.
Compilations of these searches conclude that there is no re-
producible evidence for magnetic monopoles [11, 12]. But
there is an assumption behind this conclusion, namely that
magnetic monopoles must be particles which can be detected
objectively in 4-D space-time, because that is what controlled
experiment is limited too. Firstly, in Dirac’s theory there is
a line connecting two monopoles which has to be infinitely
long, and yet the universe is finite [13]. This infinite length
of the Dirac string is normally explained away as an artefact
of the calculation. However, it is there in the theory and im-
plies that both monopoles are outside 4-D space-time, just as
the Dirac equation implies the existence of antimatter. (In
principle one monopole could be inside 4-D space-time and
the other outside, but that would require preferential treat-
ment for one monopole over another, which the theory does
not provide. So we reject this.) If they are outside 4D space-
time, then it would not be possible to detect them objectively
by the normal methods of experimental physics (e.g. by con-
trolled experiment). Therefore the conclusion of the above
compilations is not strictly correct. It should read “there is no
reproducible evidence for magnetic monopoles in 4-D space-
time”. However, this is not evidence for or against mag-
netic monopoles because they are not predicted to be in 4-D
space-time.

Furthermore, if a phenomenon is not objective, then it
is currently rejected by most physicists as not being physi-
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cally real. Therefore, the above monopole surveys usually
omit most, if not all, of the references to the following ex-
periments which provide reproducible evidence for magnetic
monopoles, but of a non-objective nature. They are non-
objective because these monopoles are only visible under in-
tense illumination. When the intense illumination is turned
off, they disappear, in the sense that the particle being ob-
served ceases to move as a monopole, and moves as a neutral
particle or dipole. Thus these monopoles do not seem to exist
in their own right. However, these results are reproducible,
and so we argue they are physically real. Here is a summary
of the published evidence.

2.1 Ehrenhaft

Ehrenhaft first reported observation of single magnetic
charges, which were only detectable under intense illumina-
tion, in 1930 [3], before Dirac’s paper in 1931 [13]. How-
ever, Dirac did not recognise Ehrenhaft’s results [14,15]. Not
only were Ehrenhaft’s results non-objective, but they were
obtained at very low energies. So Dirac rejected them, not
just because high energies imply objectiveness, but because
he thought the very strong force between monopoles would
require high energies to separate them. We explain how they
can be separated at low energies below.

Dirac’s rejection of Ehrenhaft’s monopoles creates an-
other problem, namely that there would be two different types
of monopole: that predicted by Dirac’s theory, and that ob-
served by Ehrenhaft. This is unlikely.

The essence of Ehrenhaft’s observations is that when mi-
croparticles of ferromagnetic substances (such as iron, nickel
or cobalt) are suspended in a gas atmosphere and subjected si-
multaneously to a uniform magnetic field and to intense illu-
mination by light, they move as objects carrying single mag-
netic charges. If the magnetic field H is reversed, then the
direction of motion of the single magnetic charges is reversed
(magnetic dipoles would not do this). This effect was con-
firmed by Benedict and Leng [16].

Ehrenhaft did a number of other experiments [17], and
when he did not get the recognition he felt he deserved, he
made more extreme claims, such as that “light magnetises
matter” [18]. He was convinced that he had discovered free
magnetic charges and should get the kind of recognition of
someone such as Ampère or Faraday. He claimed he had cre-
ated a magnetic current by causing the monopoles to move
[19]. He also claimed to have discovered “magnetolysis”, be-
ing the magnetic equivalent of electrolysis [20]. Many physi-
cists were unconvinced that “light makes magnetism”, sus-
pected it could be due to surface effects, found the effect not
objectively real, and so tended to ridicule the results [21].
Einstein took the observations seriously, but wanted a better
explanation [22].

Kemple made a review of experimental searches for
monopoles up to 1961, including not only the work of Ehren-

haft, but also by his contemporaries. He noted that other ex-
perimenters could not reproduce some of these results, and
therefore concluded that this work is not evidence for mag-
netic monopoles [23]. However, this is not strictly correct,
because even though some of the experiments may not have
been confirmed, the basic observation of magnetic monopoles
under intense illumination, was confirmed by Benedict and
Leng [16].

2.2 Mikhailov

There the matter might have rested, had it not been that Mi-
khailov repeated Ehrenhaft’s magnetic charge experiment
with better technique, and confirmed the result [24–26]. In
his first experiment, he used iron microparticles suspended in
an atmosphere of argon, illuminated by a laser with power up
to 1 kW/cm2, and in the presence of crossed uniform electric
and magnetic fields, which were switched by a square wave-
form with a frequency of a few Hertz. The particles were
observed with a microscope, and moved under the influence
of the crossed electric and magnetic fields (E and H). By ob-
serving their motion, one could select the signs of the electric
and magnetic charges of the particles being observed, thereby
confirming Ehrenhaft.

The observed microparticles had a mass M ⩽ 10−14 gram
and size r ⩽ 10−5 cm, and their motion was governed by
Stokes’ law. By making measurements on particles carry-
ing both an electric and a magnetic charge, it was possible
to measure the ratio g/q independently of the Stokes’ co-
efficient, and hence of the size of the particle. From ob-
servations of 1200 such particles, Mikhailov found that the
magnetic charge is quantized. But his initial value of g dis-
agreed with Dirac’s prediction. However, Akers pointed out
that Mikhailov had ignored components of the particle’s ve-
locity orthogonal to E and H, and so this interpretation of the
result could be incorrect [27].

Mikhailov reanalysed his results and found that the mag-
netic charge in this experiment, is in fact the solution of a
quadratic equation and so gives two possible values. One
value is the one he had previously reported, the other being
that predicted by Dirac. In order to distinguish between these
two roots, Mikhailov redesigned the experiment to remove
this ambiguity and also possible surface effects.

He condensed super-saturated vapour onto solid ferro-
magnetic particles in a diffusion chamber, which created a
smooth surface round each particle and so eliminated sur-
face effects. These ferromagnetic particles, surrounded by
fluid, were allowed to drop through a beam of light, under
the force of gravity in a magnetic field H, which was peri-
odically inverted. Under these conditions, particles exhibit-
ing the magnetic charge effect, fall in a zig-zag path. He
observed 428 such tracks with a mean magnetic charge of
ḡ =

(
2.5+1.6
−1.3

)
×10−8 gauss× cm2, which agrees with the value

predicted by Dirac of gD = 3.29× 10−8 gauss× cm2 within

Ellis R. Evidence for Phenomena, including Magnetic Monopoles, Beyond 4-D Space-Time, and Theory Thereof 129



Volume 20 (2024) PROGRESS IN PHYSICS Issue 2 (December)

the errors. In this way, Mikhailov showed unambiguously
that he was observing Dirac “monopoles”, and furthermore,
these were not due to surface effects on the particles [28].

He also repeated his previous experiment, choosing the
correct root, and found that the ferromagnetic particles car-
ried from 1 to 5 magnetic charges. The histogram of mag-
netic charges clearly shows 5 separate peaks corresponding to
g= ngD, where n = 1 to 5, with the peaks being gaussian-like
with some gaps in between [29]. This confirms that the mag-
netic charge is quantised as predicted by Dirac, and rules out
Schwinger monopoles which have twice the magnetic charge
(gS = 2gD) [30].

The microparticles measured by Mikhailov were compos-
ite (M ⩽ 10−14 gram), so the monopoles could be composite
pseudo-particles (instantons). However, the charge of these
pseudo-particles would then not be quantised with the mono-
pole charge predicted by Dirac [31].

He also reanalysed his previous experiments, selecting the
correct root and dividing the data by n, and obtained a narrow
bell-shaped distribution centred on ḡ = (3.27 ± 0.16) × 10−8

gauss× cm2 = 0.99 gD with an accuracy of ±5% [31]. There-
fore, by these ingenious experiments, Mikhailov has observed
Dirac monopoles, but only when illuminated by light. The
problem is they are non-existent in their own right, because
they cease to move as monopoles when the light is turned off.
There has been no satisfactory explanation for this.

2.3 Discussion

These results are reproducible, because several experimental-
ists have observed more than 1600 single magnetic charges.
Furthermore, they apparently obey gaussian statistics (e.g.
the bell-shaped distribution) and are statistically significant.
Therefore we argue, these single magnetic charges should be
considered a real physical phenomena. However we have
shown above that surveys of the objective methods of physics
have failed to detect them, and concluded there is no evidence
for them in 4-D space-time. One possible explanation is that
the monopoles observed only under intense illumination, are
not in 4-D space-time but in another space-time, as predicted
by Dirac’s theory.

Nevertheless, this is not a complete explanation. We also
need a theory which predicts the existence of this second
space-time, together with a mechanism which enables light
to switch space-time into this second space-time. We now
present such a combined theory.

3 Sunlight Shining on the Earth’s Surface

We start with an existing theory of an unexpected property
of light which does the switching, and then introduce a ver-
sion of General Relativity which predicts a more complex
structure to space-time. The basic idea is that light switches
the direction of the flow of time into that of another space-
time.

3.1 Brittin and Gamow’s Theory

In a little-known theory, Brittin and Gamow have suggested
that sunlight shining on the Earth, pumps entropy out into
space, thereby allowing negentropy to accumulate on the
Earth’s surface. The Sun’s radiation consists of high tem-
perature photons coming from the surface at Ts ≃ 5,900◦ K,
which spreads out in space and becomes diluted. By the time
it reaches the Earth’s surface, it’s energy density corresponds
to a temperature of the Earth (Te ≃ 300◦ K), so these photons
are not in thermodynamic equilibrium.

Brittin and Gamow use the quantum theory of radiation
to show that the net entropy change when sunlight interacts
with the Earth’s surface is [1]:

∆S = ∆S s − ∆S e =
4
3
∆Q

(
1
T s
−

1
T e

)
, (1)

which is negative because Ts > Te. So the entropy at the
Earth’s surface is reduced. They reason that this is not con-
trary to the second law of thermodynamics because it is sim-
ply due to the temperature gradient Ts > Te > Tspace, but see
below. (Note this effect can also occur with light from an ar-
tificial source, such as an halogen lamp.) However, there is
a hidden complication, independent of whether the source is
natural or artificial.

The problem is that this mechanism enables negative en-
tropy to build up on the Earth’s surface, only if it can be
stored. In the case of sunlight, they calculate that photosyn-
thesis has an efficiency of about 10% for capturing this nega-
tive entropy. Brittin and Gamow suggest that this is the source
of order for the food chain, which Schrödinger proposed to
be a current of negative entropy [32, 33]. If this is the only
mechanism for storage, then this is not a purely physical the-
ory because it relies upon plants (and hence biochemistry) to
capture the negentropy. However, we now show that there is
a mechanism in physics to store the negentropy produced.

3.2 Discussion of Brittin and Gamow Effect

In classical thermodynamics, the entropy increases with the
arrow of time [34]. What happens to time when a solar photon
interacts with the Earth’s surface, thereby lowering its entropy
level? Is the direction of time reversed (e.g. locally), either
momentarily or more persistently, when the photon lowers the
entropy level? We conclude that it logically must be reversed,
because otherwise Eddington’s arrow of time would be vio-
lated, and the second law of thermodynamics also. Therefore
what is missing from Brittin and Gamow’s theory, is a theory
of space-time with a second time dimension which is directed
from the future to the past. (Experimental evidence for this
reasoning is given in the following reference [8].)

There are a number of theories with two time dimensions,
but these are compactified or otherwise unsuitable [35, 36].
However, Köhn has found a solution to the cosmological
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problem using two time dimensions. The second time dimen-
sion is not compactified, but it is limited to a spacial scale of
the Planck length [37]. Elsborg and Köhn have extended this
theory to the problem of magnetic monopoles, and developed
the theory of magnetic monopoles in this second time dimen-
sion [38]. They adopt the orthodox view noted above, that
magnetic monopoles have not been observed [11,12]. There-
fore they continue the assumption from Köhn’s first paper that
the second time dimension only acts on the scale of the Planck
length, so that monopoles cannot be observed experimentally
at the macroscopic scales now present in the Universe. How-
ever, the above evidence for monopoles overrules this aspect
of their approach, and requires the second time dimension to
be macroscopic. Furthermore, it needs to be directed from
the future to the past. Nevertheless, this an interesting paper
which provides the mathematical analysis which shows that
magnetic monopoles can exist in 5D (3,2) space-time.

There is, however, another theoretical approach. A little-
known extension of the theory of General Relativity, has a
second macroscopic time dimension directed from the future
to the past.

4 General Relativity: Chronometric Invariants

In the 1930s, Landau and others realised that General Rela-
tivity is incomplete, because it does not correct for the refer-
ence frame of the Observer. As a result, what is observed in
a specific reference frame, is not well defined by the existing
theory. So without the Observer, General Relativity is incom-
plete. The case for including the Observer is thus compelling.
Some progress was made by Landau and Lifshitz for specific
cases [39]. Zelmanov developed the strict mathematical for-
malism to calculate the observable values for any tensor quan-
tity in 1944. However this methodology for the general case,
was not published until 1956 [40, 41]. The mathematical de-
tails of the theory are given in the references. We just present
a short summary of the main points here.

Physically observable quantities are obtained by project-
ing four-dimensional quantities onto the time lines and three-
dimensional space of the Observer’s reference frame. Physi-
cally observable quantities must be invariant with respect to
transformations of time, and so they are chronometrically in-
variant quantities. Thus the general case of the Observer was
incorporated into General Relativity in Russia in the era of the
Soviet Union. Cattaneo later obtained similar results [42–44].

This important extension of General Relativity is not well
known in the West [45, 46]. Borissova and Rabounski, have
developed this theory further. They find that the chronomet-
ric invariant equations of motion for mass-bearing particles
into the past and into the future, are asymmetric in time. They
conclude there is a fundamental asymmetry of the directions
of time in the in-homogeneous space-time of General Rela-
tivity. They hold up a “mirror” to time and find that it does
not reflect completely, and that there is a different world “be-

yond the mirror”. The four-dimensional momentum vector
for a particle with non-zero rest mass, m0 is:

Pα = m0
dxα

ds
, PαPα = 1, α = 0, 1, 2, 3. (2)

When a vector (or tensor) is projected onto the time line and
spacial section of an observer, these projections give the phys-
ically observable quantities for that observer [40]. Using the
properly observable time interval dτ=

√
g00 dt+ g0i

c
√
g00

dxi [39,
40], the above four-dimensional momentum vector has two
projections onto the time line, namely [47, 48]:

P0
√
g00
= ±m, where m =

m0√
1 − v2/c2

(3)

whereas it has only one spacial projection:

Pi =
m
c

v i =
1
c

pi, where v i =
dxi

dτ
, i = 1, 2, 3, (4)

where pi is the three-dimensional observable momentum.
They conclude that any massive particle, having two time
projections, exists in two observable states, entangled to each
other: the positive mass state is in our world, while the nega-
tively charged mass state is in the mirror world. Using the
techniques of chronometric invariants, they find that there
are three separate areas: our world (i.e. normal 4-D space-
time), the mirror world, and a membrane which separates the
two [47].

The flow of time is well defined mathematically in Gen-
eral Relativity. It is determined by the sign of the deriva-
tive of the coordinate time t with respect to the proper time
(dt/dτ). Using w = c2 (1−

√
g00) and vi = −c g0i√

g00
, Borissova

and Rabounski derive the following quadratic equation:(
dt
dτ

)2

−
2viv i

c2
(
1− w

c2

) dt
dτ
+

1(
1− w

c2

)2

(
1
c4 vi vkv iv k − 1

)
= 0 , (5)

the two roots of which are [48]:(
dt
dτ

)
1,2
=

1

1 − w
c2

(
1
c2 viv

i ± 1
)
. (6)

This equation has three possible solutions dt/dτ > 0,
dt/dτ < 0, and dt/dτ= 0. In our world, dt/dτ > 0 and time
flows from the past to the future. In the mirror world dt/dτ< 0
and so time flows in the opposite direction. Between the two
is a membrane where time has stopped dt/dτ = 0. Thus the
two worlds are separate, because of the membrane, but equal.
So that to an Observer (in our world), time in the mirror world
flows from the future to the past. A summary of their results
is shown in Table 1 [49].

The membrane which separates the two worlds, has its
own unique three-fold structure. On our world side and the
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Table 1: Summary of Spacial Properties of Chronometric Invariant General Relativity.

Mass Particles Energies Class of motion Area Time Entropy

m > 0 massive particles E > 0 move at sub-light speeds our world dt > 0 ∆S > 0

m = 0 massless particles (photons) E > 0 move at the speed of light our world

m = 0 light-like vortices E = 0 moving and rotating at
the speed of light

the membrane dt = 0

m = 0 massless particles (photons) E < 0 move at the speed of light the mirror world

m < 0 massive particles E < 0 move at sub-light speeds the mirror world dt < 0 ∆S < 0

mirror world side, are streams of light-like particles (pho-
tons), moving at the speed of light, but with opposite ener-
gies and frequencies. Between the two in the membrane, time
has stopped because dt/dτ = 0, and so this region is a void
which is purely spacial. However, in this void there are light-
like vortices, previously unknown, which have zero relativis-
tic masses (unlike photons which, although massless, have
non-zero relativistic masses). These light-like vortices move
and rotate at the speed of light, but have no energy because
for them time has stopped — they are purely spacial.

In this theory, a mass-bearing particle has two time pro-
jections, one in each world, and exists in two observable
states. Each particle is in effect a four dimensional dipole
object, which exists in two states: in our world with positive
mass and energy; in the mirror world with negative mass and
energy (NB this negative mass state is not anti-matter, be-
cause the inertial mass of anti-matter is positive). However,
they cannot “annihilate” or rather “nullify” (since the net en-
ergy is zero) because they are separated by the membrane.
Furthermore our world and the mirror world have the same
background space, and the three-dimensional momentum re-
mains positive in both sectors. More details are given in the
references above.

This theory of physically observable quantities, is nor-
mally referred as the “Chronometric Invariant Formalism of
General Relativity”. However, correcting for the Observer’s
reference frame in this way, changes the structure of space-
time from 4D (3,1) to 5D (3,2) and so it is a major extension
of General Relativity. We will refer to this extended theory as
“Chronometric Invariant General Relativity” (CIGR), in this
and related papers. However, words are important [21], so
another name may be adopted. In CIGR, our world (normal
4-D space-time) and the mirror world have the same back-
ground space. So time in the mirror world is a macroscopic
time dimension. Furthermore. mirror time is directed from
the future to the past, so we would expect entropy in the mir-
ror world to be constant or decrease with our time.

5 Photo Mirror Hypothesis

We make the hypothesis that light can switch matter into the
mirror world state, by means of the Brittin and Gamow effect,

because this reduces the entropy level which reverses the di-
rection of time.

normal (x, t) ,
dt
dτ
> 0

∆S< 0
−−−−⇀↽−−−−
∆S> 0

dt
dτ
< 0 , mirror (x,−t). (7)

We predict this will occur locally where each photon interacts
(in which case ∆Q= hν in equation 1). This reversal could be
momentary or persistent depending on the phenomenon being
observed. We call this the “photo-mirror hypothesis”.

Note that when it occurs, this is a low energy effect for
two reasons. Firstly according to CIGR, any massive particle
exists in a 4-dimensional dipole state with positive mass and
energy in our world and negative mass and energy in the mir-
ror world. Since the mirror world state already exists, it does
not require any energy to produce it. All that is required is
the reversal of the direction of time to reveal it, which can be
done by visible photons with energies of a few electron volts
(equation 1). The author provides experimental evidence for
this in a separate paper [8].

The reader may question why, if photons can switch
space-time into the mirror world state, it has not been ob-
served before. Firstly, the effect is subtle and occurs at very
low energies. Secondly, physicists are so convinced that the
second law of thermodynamics is absolute, that few have
looked for the creation of order. Thirdly, it switches space-
time into the mirror world where phenomena are less ob-
jective and so tend to get ignored or rejected (e.g. the mag-
netic monopoles above). Furthermore, any random processes
which increase entropy will switch the direction of time back
to normal (4-D space-time). Limitations of this are discussed
below.

5.1 Explanation of Magnetic Monopoles

The explanation for these magnetic monopoles is that photons
in the intense illumination, switch the direction of time ex-
perienced by the ferromagnetic particles (via the Brittin and
Gamow effect), from normal 4D space-time into the mirror
world space-time, where the magnetic monopoles exist and
can be observed. Therefore the intense illumination does not
“make magnetism” as Ehrenhaft claimed, but “reveals mag-
netic monopoles” in this other space-time.
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This overcomes Dirac’s objection to Ehrenhaft’s mono-
poles, namely that magnetic monopoles would only be ob-
served at high energies, because of the very strong force be-
tween pairs of them [14], in the following way. The mono-
poles are in mirror space-time where the masses are nega-
tive. Therefore the attractive force between two monopoles
would cause them to fly apart, so dipoles would not form.
Thus by switching the direction of time, light can reveal the
monopoles at low energies.

Furthermore, Dirac also concludes that a monopole may
be connected to a string extending to infinity. If the mono-
poles are in one space, and the dipole is in another, then the
Dirac string between a monopole and the corresponding pole
of the dipole, is naturally infinitely long. Therefore obser-
vation of monopoles in mirror space-time and of magnetic
dipoles in normal 4-D space-time, provides a natural physi-
cal explanation for the infinite length of the Dirac string, and
confirms this aspect of his theory. In view of these results,
Ehrenhaft, Benedict and Leng, and Mikhailov really did ob-
serve Dirac monopoles at these very low energies.

6 Limitations

The photo-mirror hypothesis involves both quantum mechan-
ics (the Brittin and Gamow effect) and the chronometric in-
variant formalism of General Relativity (CIGR), so it implies
unification. But quantum mechanics and CIGR have not yet
been unified, nor the standard model embedded therein, so
there may be limitations. However the author has obtained
independent experimental evidence for the photo-mirror ef-
fect, which justifies its usage above to explain the magnetic
monopole data [8].

7 Conclusions

We have made the hypothesis that there may be phenomena
which experiment can detect, but which are not completely
objective, for example because they are not in normal 4-D
space-time. Magnetic monopoles are an example of this, be-
cause they can only be detected under intense illumination, so
that when the illumination is turned off, they cease to move
as monopoles, and so do not seem to exist in their own right.
However, if a phenomenon can be detected repeatedly (for
example these magnetic monopoles), we suggest it should be
considered physically real.

We have presented reproducible evidence for magnetic
monopoles which appear to exist outside 4-D space-time. We
conclude that the current method of experimental physics is
flawed, because it limits observations to objective phenom-
ena in 4-D space time. Phenomena beyond 4-D space-time, if
they can be observed, are currently rejected. The solution is to
relax the criterion of objectivity, and recognise reproducible
phenomena as being physically real. This is especially the
case if there is a theory for that phenomenon.

Several experimenters have observed more than 1600 ma-
gnetic monopoles under intense illumination, so they are re-
producible. Mikhailov has determined that these monopoles
have the charge predicted by Dirac: ḡ = (3.27 ± 0.16) × 10−8

gauss× cm2 = 0.99 gD with an accuracy of ±5%. Further-
more, he determined that this charge is quantised (g= ngD
with n = 1 to 5). This rules out Schwinger monopoles be-
cause gS = 2gD [30]. This also rules out pseudo-particles
(instantons) because they would not be quantised, and cer-
tainly not with the Dirac charge [31]. We conclude that Dirac
monopoles have been observed, but not in 4-D space-time
because they are only observed when they are intensely illu-
minated.

To explain these monopoles, we combine the Brittin and
Gamow effect and Chronometric Invariant General Relativ-
ity (CIGR) to make the photo-mirror hypothesis, namely that
visible light lowers the entropy level and reverses the direc-
tion of time, thereby switching space-time into mirror space-
time of CIGR, where time is directed from the future to the
past. Therefore the photons of the intense illumination switch
the ferromagnetic particles, via the photo-mirror hypothesis,
into the mirror world space-time state, where the magnetic
monopoles exist and are observed. In this way, the intense il-
lumination reveals magnetic monopoles in mirror space-time.

Mirror space-time explains two aspects of Dirac’s theory
of monopoles: their observation at low energies, and the infi-
nite length of the Dirac string. Firstly, we find the monopoles
are in mirror space-time where the masses are negative.
Therefore the attractive force between two monopoles would
cause them to fly apart, so dipoles would not form. Thus by
switching the direction of time, light can reveal the mono-
poles at low energies. Secondly, observation of magnetic
monopoles only in mirror space-time and dipoles only in nor-
mal 4-D space-time, provides a natural physical explanation
for the infinite length of the Dirac string.

This is evidence for phenomena beyond 4-D space-time.
In effect, under certain circumstances, light gives us a win-
dow into another world. The photo-mirror hypothesis links
a quantum mechanical effect (Brittin and Gamow) with Gen-
eral Relativity (CIGR), which implies unification.
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Experiments are presented on the effects of visible light shining on water. To understand
these, we note that Landau and others realised General Relativity was incomplete be-
cause it does not correct for the Observer’s reference frame. When this is done for the
general case,the chronometric invariant formalism of General Relativity (CIGR) pre-
dicts a second time dimension directed from the future to the past, and new phenomena
at low (eV) energies. The initial objective was to test Brittin and Gamow’s theory that
sunlight lowers the entropy level at the Earth’s surface. We detected this effect and found
it persists for at least 10 months after exposure to sunlight (17 days after halogen light),
contrary to the second law of thermodynamics. In a previous paper, the (photo-mirror)
hypothesis was made that light can switch the arrow of time into the mirror world of
CIGR, via the Brittin and Gamow effect. Experimental evidence is presented that vis-
ible photons switch small (0.2 to 1.5 microns) “quantized” regions of water into the
mirror world state; and their brightness distributions match the energy spectrum of the
halogen light source (χ2/DF = 1.49 and 0.94 respectively) indicating causality. This is
detailed evidence for the Brittin and Gamow effect. Furthermore, these domains persist
(for 20 and 27 days respectively), which is evidence for the second time dimension, and
there is evidence they are surrounded by the membrane also predicted by CIGR. This
is also evidence for the photo-mirror hypothesis, which links Quantum Mechanics and
Chronometric Invariant General Relativity, and so is preliminary experimental evidence
for unification.

1 Introduction

Following on from Landau’s work in the 1930s, Zelmanov
developed the mathematical apparatus (chronometric invari-
ants) to correct for the reference frame of the Observer in
the general case. This was not published until 1956 [1], and
confirmed by Cataneo. Since then Borissova and Raboun-
ski have developed the chronometric invariant formalism of
General Relativity (which we refer to as CIGR) further, and
shown it predicts a more complex structure for space-time:
5D (3,2) [2]. In a previous paper we have made the (photo
mirror) hypothesis that visible light can reverse the direc-
tion of the arrow of time into that of mirror space-time (pre-
dicted by CIGR), by lowering the entropy level via the Brittin
and Gamow effect [3]. This provides the theoretical frame-
work for understanding experiments which show evidence,
presented below, for phenomena which violate the second law
of thermodynamics.

The following experimental work investigates the photo
mirror hypothesis, and finds evidence for this joint quantum
mechanical-relativistic effect. which enables the second law
of thermodynamics to be reversed, and for the reduced en-
tropy levels to persist. This is made possible by mirror space-
time, where time is directed from the future to the past. Mur-
ray Gell-Mann has said “I should like to emphasize . . . the
need to go against certain received ideas. . . . Often they have
a negative character and they amount to prohibitions of think-

ing along certain lines. . . Now and then, however, the only
way to make progress is to defy one of these prohibitions that
are uncritically accepted without good reason” [4].

One of these prohibitions is the second law of thermo-
dynamics [5, 6]. There are several definitions of the second
law. Two early ones by Carnot and Clausius, refer to heat en-
gines [7, 8], which are not the subject of this paper. Further-
more, perpetual motion and similar devices are excluded [9].
Instead we focus on the statistical mechanical approach due
to Boltzmann in 1877.

Briefly, in Maxwell’s kinetic theory of an ideal gas, heat
is due to the motion of the molecules. Each molecule can be
in a number of different energy states ϵi, but can only be in
one state at a time, so many states are empty. In a system
of many molecules N, of which gi could be in the state ϵi,
but only some of them, Ni, are occupied, where gi ≫ Ni

and N = Σi Ni. In this degenerate system, there are sev-
eral different configurations which all possess the same total
energy and correspond to approximately the same tempera-
ture (Ni ∝ e−ϵ i/kBT ). The number of ways Ni indistinguish-
able molecules can be distributed amongst gi energy states is
gNi

i /Ni!. The number of ways a particular macrostate can be
achieved is Ω = (gN1

1 /N1!) × (gN2
2 /N2!) . . . , which increases

rapidly with the degeneracy. Boltzmann showed that the en-
tropy S = kB lnΩ where kB is the Boltzmann constant, and
the thermodynamic probability Ω is at its maximum at equi-
librium [10]. Therefore the entropy is maximum at equilib-
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rium, and is interpreted as a measure of statistical disorder of
the system.

Thus the second law was formulated in the 19th century,
is considered absolute, and is widely thought to lead to the
“heat death” of the Universe. This is in effect a classical
physics “Theory of Everything”. It is true that (superficially)
there is considerable evidence that entropy (of baryonic mat-
ter) tends to increase with time. However, baryonic matter
makes up only about 4% of the Universe. The other 96%
consists of dark matter and dark energy; and we do not know
what these are, nor what laws they obey. So it is illogical
to assume that the second law applies to them — it may or
it may not. Therefore it is perfectly rational to look for pro-
cesses which create order out of chaos. If an effect is found,
then the problem is to understand the results theoretically, so
as to facilitate more probing experiments.

This is not a general paper on the violation of the second
law of thermodynamics. Our starting point is a little-known
theory due to Brittin and Gamow (see equation (1) below).
This predicts that sunlight shining on the Earth, pumps en-
tropy out into space, thereby allowing negentropy (i.e. order)
to accumulate on the Earth’s surface. This appears to be the
beginning of the food chain proposed by Schrödinger [11,12].

This paper is divided into three sections. In this first sec-
tion, we present an exploratory experiment which provides
evidence that visible light reverses the second law of thermo-
dynamics by producing ordered states in an inanimate closed
system (i.e. pure water), which persist. This persistence
should not occur. Before we could investigate this in more
detail experimentally, we needed a theoretical explanation for
this persistence to guide the experimental work. This expla-
nation comes from the little-known (chronometric invariant)
extension of General Relativity (CIGR) mentioned above,
which predicts a more complex structure for space-time. In
particular it predicts a second time dimension directed from
the future to the past and fundamental new phenomena at low
energies. Details of this new theoretical approach, are pre-
sented in a previous paper and the references cited there [3].

Section II presents results of experiments to test this the-
oretical explanation. Section III presents conclusions, dis-
cussion, and predictions. We start by presenting the small
exploratory experiment to test the Brittin and Gamow effect,
which we did before this theoretical framework was devel-
oped.

1.1 Brittin and Gamow’s Theory

Photons from the Sun’s surface (Ts ≃ 5, 900◦ K) come to the
Earth (Te ≃ 300◦ K), where they interact. Brittin and Gamow
use the quantum theory of radiation to show that the net en-
tropy change on the Earth’s surface is [13]:

∆S = ∆Ss − ∆Se =
4
3
∆Q

(
1
Ts
−

1
Te

)
, (1)

which is negative because Ts > Te. They reason that this is

not contrary to the second law of thermodynamics because it
is simply due to the temperature gradient Ts > Te > Tspace.
(NB A similar temperature gradient applies to light from a
halogen lamp: Th > Te > Tspace since Th ≃ 3, 000◦ K.)

This quantum effect enables negative entropy to build up
on the Earth’s surface, provided it can be stored [14]. How-
ever, in the absence of a storage mechanism, any reduction
in the entropy levels should dissipate as the (closed) system
returns to equilibrium. Nevertheless, Brittin an Gamow cal-
culate that photosynthesis has an efficiency of about 10% for
capturing this negative entropy. So this is apparently not
a purely physical theory because it relies upon plants (and
hence biochemistry) to capture the negentropy. Does this
mean that biochemistry alone enables plants to violate the
second law? Or is there some underlying physical mechanism
for storing the negative entropy, produced by visible light?

The focus of this paper is to test the above theory in inani-
mate systems, specifically in water, by looking for reductions
of entropy levels which persist.

1.2 Theory of Exploratory Experiment

In order to investigate this, we have done the following sim-
ple experiment to test whether there is an underlying physical
storage mechanism. 60% of the Earth’s surface is covered
by water, life is water-based, and plants are 70% water. So
if there is a physical mechanism (i.e. not based on biochem-
istry) for storing this negative entropy, the most likely place
to find it would be in water exposed to sunlight.

1.3 Entropy and Brownian Motion

We decided to expose a bowl of pure water to sunlight and
later measure the Brownian motion of particles therein, to de-
termine if there is any persistent entropy change. Brownian
motion is a random walk which covers the whole of phase
space. As is well known, the probability ρ (x, t) of a sus-
pended particle moving a distance x along the x-axis in time
t is [15, 16]

ρ (x, t) =
e− x2 /4 D t

2
√
πDt

, (2)

where D is the diffusion constant. Diffusion takes place when
a molecule moves to an unoccupied state, so that the more
unoccupied states, the greater the diffusion. Entropy also in-
creases when there are more unoccupied states, so that an
increase in the diffusion constant implies an increase in en-
tropy and vice versa. From the Fokker-Planck equation, the
Boltzmann-Gibbs entropy S = −k B

∫ +∞
−∞
ρ (x, t) ln ρ (x, t) dx

where ρ (x, t) is given by equation (2) above. Hence S =
−k B

(
ln

(
1/
√

4πDt
)
− 0.5

)
so that as the diffusion constant

increases, so does the entropy. Conversely, if the entropy
has been reduced then the probability ρ (x, t) will become nar-
rower.
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Brownian Motion Experiment
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Fig. 1: Distribution of particle displacements every 10 seconds for a) non-irradiated distilled water = control; b) water measured 10 months
after exposure to sunlight = signal 1; c) water measured 17 days after exposure to light from an halogen lamp = electric (i.e. signal 2). The
dashed curves show the fits — see Table 1 for details. Both the sunlight and electric light samples are narrower than the non-irradiated
control by 21% FWHM.

1.4 Details of Exploratory Experiment

Distilled water was exposed to sunlight for 8 days in August
in the UK. Another sample was exposed to an halogen lamp
(Th ≃ 3, 000◦ K) so as to receive a similar level of illumina-
tion. Both samples were bottled and stored in a box away
from direct light, at room temperature which varied by a few
◦C at most. A third sample was taken directly from the amber
Winchester supply bottle without any deliberate exposure to
light and used as the control.

After storing the exposed samples, the Brownian motion
measurements were made 10 months and 17 days later re-
spectively, as follows. A few drops of the sample were placed
on a microscope slide, 1 micron diamond particles were
added, it was covered and viewed under a microscope (mag-
nification ×1000), with a video attachment. The Brownian
motion of the diamond particles was readily visible and re-
corded at room temperature.

1.5 Results of Exploratory Experiment

Diamond particles with a diameter of about 0.7 microns were
selected for measurement. The distance r =

√
x2 + y2 moved

in 10 seconds was measured. A number of particles were
tracked for each sample, with a total of order 700 data points
per sample. The distributions for the three samples are shown
in Figure 1. There is little or no background and no long
tails. Fits to the two-dimensional form of Einstein’s theory
are very good, as shown by the curves in the Figures, and the
chi-squares per degree of freedom, shown in Table 1, are all

close to 1. So we have observed Brownian motion.
The distributions of the solar and halogen (electric) sam-

ples, are both narrower than the non-irradiated control. The
fits show that sunlight and halogen light have reduced the dif-
fusion constant by about 23% and 22% respectively. (The
difference δ=−0.01 ± .029 between these two signals is not
statistically significant.) This translates into a reduction in
the entropy by 4.7± 0.7% for water exposed to sunlight and
4.4± 0.7% for halogen light. These correspond to 6.5 and 6.2
standard deviations respectively, so this reduction in entropy
is statistically significant. Therefore this is evidence for the
Brittin and Gamow effect.

However, this reduction in entropy has persisted, despite
the samples being closed systems in thermal equilibrium with
their surroundings, for 10 months and 17 days respectively,
which is far longer than the few hours to reach thermal equi-
librium. So there appears to be a physical mechanism for
storing the negentropy. What is this?

1.6 Discussion and Second Law

In the above experiments, most visible photons pass through
the water because it is transparent. A few interact dynam-
ically with water molecules, which can lower the entropy
level locally by the Brittin and Gamow effect (see equation
(3) below). Then according to the second law, as the water re-
turns to thermal equilibrium, the entropy should return to the
maximum. Pippard said that the second law is not violated
under any circumstances [5]. Thus the fleeting kinematic ef-
fects of photons could not produce a persistant effect unless
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Table 1: Exploratory experiment: Determination of Diffusion Constants and Entropy for water exposed to sunlight and halogen light.

Sample type or difference χ2/DF
Diffusion constant
µm2/sec

Entropy S
k B = 1

∆S (signal —
control)

∆S/σ (No. of
std. devn.)

Signal 1 = solarized
water 1.13 0.691 +.019

−.021 2.732 +.014
−.015 −4.7 ± 0.7% 6.5

Control = non-irradiated
water 0.91 0.903 +.023

−.026 2.866 +.013
−.015 — —

Signal 2 = halogen light
water 1.15 0.701 +.020

−.022 2.739 +.014
−.016 −4.4 ± 0.7% 6.2

δ = (signal 1 — signal 2) δ = −0.01 ± .029

there is some agency which causes or facilitates this persis-
tence. Without such a mechanism, this persistence violates
the second law.

In both experiments above (sunlight and halogen), it is
just photons in and photons out. Photons are massless and
travel at the speed of light, and cannot combine chemically
with water. Therefore we rule out the so-called “memory of
water” — see Appendix A for details. The interaction of pho-
tons with water is purely dynamical. Assuming that the water
molecules move at random, one would expect the reductions
in entropy to dissipate as the water returns to equilibrium. But
this does not happen in the above experiment. There are two
possible types of explanation for this. Either this effect is a
property of water (e.g. due to its structure), or it is due to some
external agency. It is generally accepted that water has some
peculiar properties, some of which may be explained by its
structure. Theories of the structure of water are summarised
in Appendix B, where it is shown that they do not explain the
phenomena observed. Therefore these isothermal entropy re-
ductions must persist because there is some external agency
which causes them too.

For example, when a magnetic field is applied to a per-
fect spin gas, the spins become aligned and the entropy de-
creases. This can occur at constant temperature, in which case
both the energy levels and their populations change to corre-
spond to the same Boltzmann distribution for that tempera-
ture [17]. In general an isothermal entropy change requires
both the energy levels and their populations to change. How-
ever the above results, whilst they show an isothermal entropy
decrease, cannot be so explained because there is no exter-
nal field to entrain the water molecules. The Earth’s gravity
and magnetic fields would not do this, nor did they affect the
control. Furthermore we present evidence below and in Ap-
pendix B, that the structure of water did not cause this persis-
tence. So we need to find an alternative explanation.

There are two additional possibilities: either this simple
experiment and the others below, are wrong, or there is some-
thing we don’t know about the second law. In order to avoid
theoretical bias, we decided to accept the experimental results
at their face value and investigate an alternative (theoretical)

solution.
One way to understand the above experiment is in terms

of the arrow of time. Eddington noted that entropy tends to
increase with time [6]. What happens when photons lower
the entropy level, as observed above? Does the Brittin and
Gamow effect reverse the arrow of time? There are three pos-
sibilities:

1. It does not affect the flow of time, in opposition to
Eddington’s hypothesis. Therefore the reduction in entropy
would dissipate as the system returned to thermal equilib-
rium, contrary to the observations.

2. The direction of time is reversed momentarily, proba-
bly locally where the photon interacts, but returns to normal
after the entropy has been reduced. However, the entropy
would then increase as the system returned to equilibrium,
contrary to the observations.

3. The direction of time is reversed locally and this
persists. One possibility is that when a photon interacts, it
switches the direction of the flow of time into another space-
time, where time flows from the future to the past, if such a
space-time exists. In this way, this effect would not violate the
second law nor the arrow of time. Furthermore, this second
type of space-time could provide the external agency required
for this phenomenon to persist.

There is a version of General Relativity which predicts
another space where time flows from the future to the past. We
have discussed this in more detail in the theory paper referred
to above [3]. However we give a brief summary here.

1.7 Chronometric Invariant General Relativity

In the 1930s, Landau pointed out that General Relativity is
not complete because it does not allow for the Observer’s ref-
erence frame [18]. Zelmanov correctly introduced the Ob-
server using chronometric invariants [19, 20]. Borissova and
Rabounski have shown that Chronometric Invariant General
Relativity (CIGR) requires the existence of a second sector
(mirror world) with a second time dimension directed from
the future to the past [2,21,22]. The mirror world is separated
from normal space-time by a membrane with three layers, but
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shares the same space as normal space-time. We make the
following deductions from this theory:

1. This second time dimension is a macroscopic one.
2. This second time dimension enables entropy levels to

decrease with respect to our time, and therefore makes the
second law of thermodynamics dual.

3. The membrane between the two worlds consists of 3
layers, 2 layers of photons (1 positive energy on the outside,
the other negative on the inside) and a middle layer which
is purely spacial with no time dimension, so photons cannot
traverse is. It is thus opaque to photons and will reflect or
scatter them.

4. We make the hypothesis that light, under certain cir-
cumstances, can switch space-time into the mirror world
state, by means of the Brittin and Gamow effect, in which
light reduces the entropy level and so reverses the direction
of time. We call this the photo-mirror hypothesis [3].

The persistent decrease in the entropy of water exposed to
sunlight and of that exposed to halogen light observed above,
are preliminary evidence for the photo-mirror hypothesis.

1.8 Conclusions for Section I: Brownian Motion Exper-
iment

1. Brownian motion has been observed in the above ex-
periments.

2. Sunlight and halogen light both reduced the entropy
levels in water by approximately the same amount within the
errors. This reduction persisted (for at least 10 months and 17
days respectively), so there appears to be a physical mecha-
nism for storing negentropy in water.

3. Theories of the structure of water do not explain this
persistence. Therefore it must be due to some external
agency.

4. We deduce that the external agency is probably a sec-
ond space-time. For example, Chronometric Invariant Gen-
eral Relativity has a second macroscopic time dimension,
which is directed from the future to the past.

5. We make the hypothesis that visible light can switch,
via the Brittin and Gamow effect (when it lowers the entropy
level), the direction of time into mirror space-time. We call
this the photo-mirror hypothesis. The rest of this paper is
directed to finding more specific evidence for this.

2 Light and Water

Light shining on pure water is a physical system. We decided
to look for additional evidence for the Brittin and Gamow
effect, for this hypothetical second time dimension and for
the photo mirror hypothesis. To do this we exposed HPLC
grade water to a 400 watt halogen lamp (1100 lux at surface
of the water) and took regular samples for up to 6 days.

2.1 Viscometer Experiment

The statistical error in the exploratory experiment above goes
as 1/

√
M, where M is the number of observations, which

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1  10  100  1000

V
is

c
o
s
it
y
 (

P
a
.s

)

Frequency (turns/sec)

Viscosity of water exposed to halogen light

Halogen light sample
Control

Fig. 2: This rheometer data shows the halogen sample has two com-
ponents: at low turns per second the viscosity is above the control,
and at higher tps it is below the control.

makes it labour intensive to increase the precision. So for
M = 700 the error is about 4%. There is another equation due
to Einstein: D = RT/6πNηa where R is the gas constant, η
is the viscosity, a is the radius of the particle, and N is Avo-
gadro’s number; which shows that the diffusion constant D is
inversely proportional to the viscosity. The advantage is that
viscosity can normally be measured with a precision of about
0.1% using a capillary viscometer (in a constant temperature
bath), with a stop watch.

The viscometer used gave precise results for the untreated
(i.e. not deliberately exposed to light) HPLC grade samples,
which agreed with the known viscosity of water at 20◦ C with
a precision of about 0.1% or better, as expected. However,
results for all the halogen light treated samples tended to be
less consistent, even if they had been exposed to halogen light
for only a few hours. Repeated measurements of the same
halogen light treated sample had a much wider spread, up to
five times that for the control (i.e. untreated), despite attention
to detail, such as cleansing between samples. (More details
of the viscometer technique, are given in the following refer-
ence [23].) Despite these larger errors, all the viscosity mea-
surements of treated water were significantly greater than that
of untreated pure water, implying that light lowers the diffu-
sion constant and hence the entropy, as originally observed.
However, there was evidence that irradiated samples had two
components, with different viscosities.

2.2 Rheometer Experiment
To investigate this possibility of two components, a sample
was exposed to halogen light for 48 hours. Three days later, it
was measured using a cone-and-plate rotation rheometer [24].
Distilled water was used as the control. The results are given
in Figure 2. Note, the increase in the viscosity of distilled wa-
ter below 10 turns per second (tps) is an instrumental effect.
Nevertheless, the data shows that the water which has been
exposed to halogen light, has two components, one with vis-
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Fig. 3: The control sample of distilled water, examined using a novel microscope technique. It looks mainly
black because there are no “structures” or domains to reflect the light, apart from a bit of noise (e.g. from
ambient lighting).

cosity greater than that of the control at low tps, the other
with viscosity less than that of the control at higher tps. So
the water exposed to halogen light has two components. What
are these?

2.3 Theory of light and water

Whilst Brittin and Gamow’s theory (equation 1) is derived
from the quantum theory of radiation, it is presented there
in terms of the macroscopic energy flow from the Sun to the
Earth, and then from the Earth to space. In this experiment,
light from a halogen lamp shining onto a bowl of water, con-
sists of individual photons. Water is transparent and so most
photons pass straight through, and only occasionally does a
photon interact with the water, so that ∆Q is replaced by the
energy of that photon hν:

δS =
4hν

3

(
1
T s/h
−

1
T e

)
. (3)

This energy is radiated away by lower energy photons,
and there is a small reduction in entropy δS locally in the
water. Then by the photo-mirror hypothesis, a small region
around this interaction would be switched into the mirror
world state. According to CIGR, this will automatically be
surrounded by the triple-layer membrane, since the two
worlds are separated by this membrane. This enclosed mirror-
world region could then persist in the water, because the

momenta of molecules in the mirror state are still positive,
and so will balance across the membrane. We will refer to
these small mirror-world states as “domains”, or in the case
of images or software detection thereof, as “structures” or
“sources”.

2.4 Microscope Experiment

In order to make visible these otherwise hidden domains in
water, we have used a novel microscope technique developed
by Schweitzer [25]. This technique involves first examining
the sample with normal illumination to see if it contains any
bacteria, dust particles or other impurities. If the sample is
clear (as expected for distilled water), then a drop of the wa-
ter is allowed to evaporate whilst illuminated from the side,
approximately orthogonal to the direction of view. When
it is about 0.1 mm thick, hidden structures or domains, if
present, become visible, provided that the side illumination
and other conditions are correct (see Appendix C for details of
this technique).

Quite why domains in bulk water are invisible, yet be-
come visible when the thickness is less than about 0.1 mm, is
not clear. Perhaps when the water becomes thin enough, the
domain membranes become distorted and start to scatter the
side illumination. The theory needs to be worked out in more
detail. We just report the experimental facts.

Figure 3 shows the results using this technique, for the
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Fig. 4: Hidden domains in water exposed to halogen light for 37.5 hours, revealed by a novel microscope
technique using side illumination. These domains are 0.2 to 1.5 microns in size, with a few exceptions.

control sample of distilled water (i.e. not HPLC grade) which
has not been deliberately exposed to sunlight nor halogen
light (although it may have been exposed to some ambient
lighting during the experiment). The process of distillation
randomises the water and so breaks up any “structures” or do-
mains, so that this control sample looks mainly black because
there are few “structures” or domains to scatter or reflect the
light, apart from a bit of “noise”.

Figure 4 shows the first sample, which had been exposed
to a 500 Watt halogen lamp for 37.5 hours. Figure 5 shows
the second sample which had been exposed to halogen light
for 79.5 hours. These are the black and white versions of
the original colour CCD images, which are also mainly black
and white. There are no signs in the originals, of a range
of colours, which could come from diffraction. We conclude
that these domains are reflecting or scattering light (from the
side illumination) into the microscope. The first image (figure
4) was recorded 20 days after exposure to halogen light, and
the second (figure 5) 27 days after exposure. So the effect
persists.

2.5 Analysis of Results of Microscope Experiment

In both images there are hundreds of white “sources” which
are 0.2 to 1.5 microns across (apart from a few which have
started to merge together), independent of exposure time. The
existence of these 0.2 to 1.5 micron zones in the water suggest
that halogen photons have interacted with the water according

to equation (3). If these sources are so produced, then there
should be some correlation between their size distribution and
the energy spectrum of the photons which produced them. We
investigate this and their persistence in more detail below.

These domains look like stars in the night sky, even
though they are being observed with a microscope instead of
a telescope. The appearance is so similar that we decided
to use astronomy software to do pattern recognition on these
images [26]. The software was run with the default parame-
ters and found 1288 “sources” in the shorter exposure (figure
4) and 935 in the longer one (figure 5), which is a bit less
because of the black regions in that image. The program cal-
culates the isophotal flux which is defined as the sum of the
pixel counts above backround of all the pixels in a particular
“source” (

∑
i∈S pi).

The histograms of the isophotal flux, or brightness, for the
sources detected in the two images are shown in Figures 6 and
7 respectively, by solid lines. The selection criteria in the soft-
ware for distinct sources affected the first two bins, so they are
excluded. We have also plotted the spectrum of light from the
halogen lamp, which has been converted from wavelengths to
electron volts [27]. The halogen spectrum (broken line) falls
away from the main peak quite quickly down to the secondary
peak, and then decreases more slowly after that, matching the
two measured brightness distributions well. This suggests the
halogen photons have caused these sources. Furthermore, the
brightness is independent of the exposure time, being depen-
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Fig. 5: Hidden domains in water exposed to halogen light for 79.5 hours, revealed by a novel microscope
technique using side illumination. These are 0.2 to 1.5 microns in size.

dent on the photon energy, as predicted by equation 3.
We then fitted this spectrum to the data using just three

parameters for the least squares fit: an x-axis offset because
the photon energy corresponding to zero brightness is about
1.55 eV; an x-axis scaling parameter to convert from electron
volts to brightness (counts); and a vertical scaling factor to
convert from relative intensity to counts. The chi-squares per
degree of freedom are 1.49 and 0.94 in Figures 6 and 7 re-
spectively. So the two brightness distributions have the same
shape as the halogen light spectrum, independent of the ex-
posure time, as predicted by equation 3. This confirms that
halogen photons have caused these domains via the Brittin
and Gamow effect.

The problem with Figure 4 and 5 is that they are pictures.
So although we see sources, we do not know if these are pro-
duced by the incident halogen photons, or by dust particles,
or possibly even bacteria. The advantage of the astronomy
software is that enables us to quantify the data and plot the
brightness distributions and compare them with the halogen
energy spectrum. We see in Figures 6 and 7 that they have
almost the same shape, which is confirmed by the fits. There-
fore these domains have been produced by halogen photons
by the mechanism given in equation 3.

Furthermore, these mirror world domains are correlated
with photons whose energies are quantised. Therefore we
observe the “quantisation” of regions of water probably in
mirror-space-time.

We then combined the two spectra. This is shown in
Figure 8 and the chi-square per degree of freedom is 1.67.
This is good evidence that the domains are being produced
by the photons from the halogen lamp. Nothing material has
changed — it is just photons in and photons out. But the state
of the water has changed proportionately to the energy of the
incident photon, and the effect persists.

2.6 Scattering from Surface or Volume of Domains

Do these domains reflect or scatter the side illumination from
their surface or from their volume? According to equation 3
the decrease in entropy is proportional to the energy of the
interacting photon. If the randomness of water is homoge-
neous, as one expects from the normal second law of thermo-
dynamics, then the volume of the region generated with this
reduced entropy δS will be proportional to the energy of the
incident photon. Therefore if scattering is from the volume,
then the brightness of these domains will be similar to that of
the spectrum from the halogen lamp, as observed above.

However, it is probable that scattering comes from the sur-
face for two reasons. Firstly because bulk water is transparent
to the side illumination and appears black (e.g. Figure 3). If
it scatters side illumination, then the water has changed in
some way, for which there is no explanation, except perhaps
CIGR. Secondly CIGR predicts there is a triple layer mem-
brane around these domains which is impenetrable to pho-
tons, and therefore the scattering comes from the surface.
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Fig. 6: Brightness distribution after exposure to halogen light for
37.5 hours, plus the spectrum of halogen light in eV. χ2/DF of fit
is 1.49.
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We investigate the scattering as follows. In the absence of
a complete unified theory of CIGR and Quantum Mechanics
in water, we reason that these persistant domains probably
have a stable shape, such as a spherical one or spheroidal one
which is not too elongated. The source extraction software
fits an ellipse to each “source” and calculates the major and
minor axes, and their ratio, the “elongation”, which is ⩾ 1.
The distributions of the elongations for the two images, are
very similar, so we have plotted them together in Figure 9.
This is quite a narrow distribution: 74% have elongation less
than 1.4. So most domains are only slightly elongated, as we
expect for stable structures.

We now investigate the brightness distribution for differ-
ent ranges of elongation El. Figure 10(a) shows the bright-
ness distribution for elongation El < 1.2; 10(b) for the elon-
gation in the range 1.2–1.4; and 10(c) for elongation El ⩾ 1.4.
We see that the more elongated domains tend to have higher
brightness. We have shown above that brighter domains tend
to be correlated with more energetic photons. Higher energy
photons have higher momenta and will interact over longer
distances in the water, and so reduce the entropy level in more
elongated regions, as observed. This is evidence for this kine-
matic effect,

In Figure 10(a) (elongation < 1.2) only 5% of the total,
have brightness greater than 1300 counts, whereas in 10(b)
20% have brightness greater than 1300, and in 10(c) 41%
have brightness greater than 1300. So brighter domains are
there in the data, but hardly any are detected in 10(a) with
elongation < 1.2. Elongated domains must be in this sample,
but with their longer axes pointing towards or away from the
microscope, so that they do not appear elongated. If these
hidden elongated domains were scattering and reflecting side
illumination from their volume, then they would show up as
brighter domains in 10(a). But they are not there in signif-
icant numbers, and so we conclude that they are scattering
and/or reflecting the external light source from their surface,
as predicted by CIGR.
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3 Conclusions

In the Brownian motion experiment, we observed reduced en-
tropy levels which persisted, which could not be explained by
the structure of water. More details are given in section 1.8:
Conclusions for section 1.

We draw the following conclusions from the rheometer
and microscope experiments:

1. Light shining on water increases the viscosity and this
persists, which confirms the persistant reduction in entropy
level previously observed in the exploratory Brownian motion
experiment. However the spread in errors is much greater
than that for water which has not been significantly exposed
to visible light.

2. Measurements with a rheometer provide evidence that
light from a halogen lamp produces two components in the
water.

3. Water is transparent, so only a small fraction of the
photons interact with it. Therefore, it is the small reductions
in entropy produced (locally) by the interaction of individual
photons (equation 3), which have to be detected,

4. Using a special microscope technique developed by
Schweitzer, we have observed hidden domains in water pre-
viously exposed to halogen light (0.2 to 1.5 microns in size),
which reflect or scatter side illumination, and which persist
in time. These domains could be the second component ob-
served in the rheometer experiment above.

5. The brightness distributions of these domains match
the energy spectrum of the halogen lamp well, suggesting that
photons have caused these domains. The brightness distri-

butions are independent of the exposure times (c.f. Figures 6
and 7), as predicted by equation 3. We have previously shown
that visible light lowers the entropy level of water. Further-
more, equation 3 predicts that these domains are low entropy
regions created by individual photons interacting with the wa-
ter, and the data confirms this. There are two samples, so this
evidence for the Brittin and Gamow effect is reproducible.

6. These reduced entropy states persist for 20 and 27
days respectively, contrary to the normal second law of ther-
modynamics. The question is, what causes this persistence?
Is it the structure of water, or some external agency such as
mirror space-time? The most advanced theory of the struc-
ture of water at this time is coherent quantum electrodynam-
ics (CQED), which predicts domains of about 100 nm deter-
mined by the internal energy levels of water. The domains
observed in Figures 4 and 5 are ×2 to ×15 larger, and their
brightness distributions shown in Figures 6 and 7, are deter-
mined by the energies of the incident photons, not the energy
levels of water. Therefore they are a different phenomenon
from that predicted by CQED. (The significance of this for
CQED is discussed in Appendix B.) We therefore need a dif-
ferent theoretical explanation.

7. We conclude that this persistence is caused by some
external agency. This could be the second time dimension in
the mirror world of CIGR. If this is the case, then the domains
will be surrounded by the triple layer membrane which we
have predicted will scatter light.

8. We present evidence above that these domains scat-
ter light from their surface (not their volume), which is evi-
dence for the triple-layer membrane around them, predicted
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by CIGR. These results are preliminary evidence for the sec-
ond time dimension of mirror space-time, and the membrane
predicted by CIGR.

9. Mirror space-time provides a physical mechanism for
storing the negative entropy produced by the Brittin and
Gamow effect, hence their persistence. Furthermore, these
domains have an “inside” and an “outside” because they are
surrounded by the membrane.

10. There is one problem with the above result. We have
concluded that there is a second time dimension directed from
the future to the past, without any direct evidence. For exam-
ple, we have not sent a signal from the future to the past.
However we have also concluded that the above phenomenon
has an “inside” and an “outside”, because of the membrane.
Currently our instruments are located on the “outside” and
therefore cannot make direct measurements on the “inside”,
where the second time dimension is predicted to exist. In
the previous paper [3], we have shown that when phenomena
occur outside normal 4-D space-time, then they may not be
determined completely objectively by experiment. Neverthe-
less, if they are reproducible, as above, then they should be
considered physically real. In addition to this, we present ex-
perimental evidence for a signal from the future to the past in
a separate paper [28].

11. We have thus found evidence for a physical mecha-
nism which reverses the second law of thermodynamics and
creates persistent ordered states. Note that this occurs out-
side normal 4-D space-time, so that the second law continues
to apply in 4-D space-time.

12. Together these results are evidence for the photo-
mirror hypothesis. This effect depends upon Quantum Me-
chanics and CIGR and so is preliminary evidence for unifica-
tion (see Appendix D).

3.1 Discussion

In the previous paper [3], we have used the photo-mirror hy-
pothesis to explain the evidence for magnetic monopoles,
which are observed only under intense illumination. The in-
dependent evidence above for the photo-mirror effect justifies
this usage. There are however, two differences. The above re-
sults are due to single photons, whereas magnetic monopoles
require intense illumination to reveal them. Furthermore, the
above domains in water persist, whereas the monopoles dis-
appear rapidly when the illumination is switched off. Both
these could be due to the very strong interaction between
monopoles. The theory needs to be worked out in more
detail.

The chronometric invariant formalism of General Rela-
tivity, makes predictions about physically observable quanti-
ties which have been confirmed. However, General Relativity
does not predict physically observable quantities. For exam-
ple, it does not predict (as far as the author knows) Galileo’s
Principle (that objects with different masses have the same

fall times) nor Newton’s Law of Universal Gravitation. As a
result there appear to be two theories of gravitation. Recently,
however, the chronometric invariant formalism has been used
to predict both Galileo’s Principle and Newtom’s Law [29].
So it is the more complete theory.

Furthermore, the evidence presented above for the second
time dimension, is evidence for a 5th dimension, so space-
time is 5-D (3,2). It is well-known that General Relativity is
formulated in 4-D space-time. Therefore it seems to the au-
thor (an experimentalist) that the chronometric invariant for-
malism of General Relativity is actually a new theory, and so
deserves its own name. The key point is that putting the Ob-
server into General Relativity has changed the theory so much
that the structure of space-time has changed. However this
is not for the author to decide, and so for this current series
of papers we will continue to refer to chronometric invairant
General Relativity (CIGR). But a better name is desirable.

3.2 Predictions

In view of the above evidence for a unified phenomenon (the
photo-mirror effect), we make the prediction that Quantum
Mechanics can be unified with Chronometric Invariant Gen-
eral Relativity (CIGR), and the standard model embedded
within it. The hidden sector of this hypothetical new unified
theory would probably be based upon mirror space-time.

We have shown above that water detects individual pho-
tons interacting with it precisely, and that this can be ex-
plained by mirror space time. In effect the above techniques
open a window into another world. We make the prediction
that water is sensitive to other unusual phenomena occurring
in mirror space-time. For example, it is possible that water
can be used to detect some other new type of radiation which
lowers entropy levels, if it exists [23].

Without mechanism(s) for the creation and storage of or-
der, there can be no complexity [14]. So the above evidence
for a mechanism for the creation of order, and a mechanism
for its storage, is possibly the beginning of a theory of com-
plexity, based on fundamental physics. The theory needs to
be worked out in more detail.

The incorporation of the Observer into General Relativ-
ity (i.e. CIGR) requires a second time dimension, which au-
tomatically includes thermodynamics and complexity. Since
these have been left out of many unified theories in the past,
the unification of Quantum Mechanics with CIGR may well
be the way to successful unification. The evidence for mag-
netic monopoles in mirror space-time [3], and for a new type
of radiation in sunlight [23], support this conclusion.

4 Limitations

CIGR has not yet been properly unified with Quantum Me-
chanics yet, and so this may change some of its predictions,
and clarify some of the details above.
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Appendix A: The “Memory of Water”

For completeness we mention the following. Some readers
may think that the persistent effects observed above are due
to the phenomenon known as the “memory of water”. This
may occur when a chemical substance is dissolved in water
and then is serially diluted. However, there is no accepted
explanation for this latter phenomenon, and so it is disputed.
In the above experiments, photons are massless, and cannot
be “dissolved” in water. Their interaction is purely dynam-
ical. Nor was anything diluted — it is not even clear how
one can dilute pure water. Therefore the above experiment of
light shining on water, is investigating a completely different
phenomenon from the “memory of water”.

That being said, it is possible that mirror space-time may
play a role in explaining the “memory of water”. It is just that
the structure of matter (e.g. the solute) is more complex than
that of a photon, and its interaction with water also more com-
plex. Therefore the phenomena of photons interacting with
water reported in this paper, are different from the “memory
of water”.

Appendix B: Theories of Structure of Water

In the various experiments above, it is just photons in and
photons out. So how can the decrease in entropy persist, if
the water molecules move at random? This raises questions
about the structure of water, so we consider theories of this. In
1891 Roentgen suggested that as ice melts, many of the less
dense (ice floats) tetrahedral ”ice molecules” persist intact in
the liquid water as it warms. In this way, he tried to explain
one of its more peculiar properties, namely that the density
of water increases as its temperature is raised from 0◦ to a
maximum at 4◦ C [30]. This approach was rejected by Bernal
and Fowler for quantum mechanical reasons [31].

Another peculiarity of water is that in addition to the nor-
mal chemical bonds, water molecules also interact by the
hydrogen bond, which is weaker and directional. Preparata
states this is phenomenological in origin [32]. In 1950 Pople
presented a quantum mechanical theory of the structure of
water [33]. In 1951, Lennard-Jones and Pople showed that
there may be a network of hydrogen bonds linking all the
molecules together into one large molecule (H2O)n [34]. The
problem is that the water molecules move around and the hy-
drogen bonds, which are highly directional, make or break af-

ter a few picoseconds [35]. As the bonds make or break fluc-
tuating EM fields are produced, and there is also the Earth’s
magnetic field, both of which Quantum Mechanics ignores,
but quantum electrodynamics (QED) does not.

Preparata and del Giudice have solved the equations of
QED for bulk matter and applied it to liquids, solids and
water in particular [36]. This theory replaces the static pic-
ture of chemical bonds linking individual molecules together
(“electrostatic meccano” or “erector set”), with a dynamical
interaction between groups of molecules spread over larger
distances. This theory, often referred to a coherent QED or
CQED, is a new theory of condensed matter. Their approach
is to consider water not to be “molten ice” but “condensed
vapour” [37]. When this theory is applied to water, they find
that the water molecules form two groups: coherent domains
in which the molecules oscillate between the ground state and
an excited state, and interstitial water which is random and
surrounds these domains.

They predict that the excited state is at 12.07 eV (in the
UV region), which produces domains of about 100 nm in ex-
tent, and that the radiation is trapped in these domains [38].
Enz agrees that the coherent domains probably exist, but
questions whether their boundaries are precisely defined, so
the radiation may not be completely trapped [39]. Whilst
this theory explains a number of indirect experimental results,
there has not been any direct experimental confirmation of
these domains in water, nor has any UV radiation been de-
tected leaking out. Therefore this theory has not been proven
strictly to be correct.

Furthermore, the results of the experiments above, do not
provide any direct evidence to support this theory. For exam-
ple, Figure 3 does not show any sign of the predicted 100 nm
domains in the control sample of distilled water (condensed
from vapour). But the microscope experiment was not de-
signed to detect these and so the resolution may not have been
good enough. Instead, the domains observed in Figures 4 and
5 are ×2 to ×15 times larger. Furthermore their size distri-
bution is determined by the energies of the incident photons,
not by the internal energy levels of water. So the phenom-
ena observed are completely different from those predicted
by CQED. But this does not necessarily rule out CQED.

CQED predicts coherent domains surrounded by inter-
stitial water which is random. If an incident photon, with
an energy of 1 to 3 eV, interacts with a coherent domain of
≈107 water molecules oscillating between the ground state
and 12.07 eV, then it might be scattered away with little effect
on the entropy of that 100 nm domain. However, if it interacts
with the interstitial water, then it could lower the entropy level
by the Brittin and Gamow effect. But that reduction would
not persist because the interstitial water is random. So even
if this is the correct theory of water, then mirror space-time of
CIGR is required to explain the observed results.

Whilst these results do not prove CQED wrong, it does
not provide any support for it. Furthermore CQED is clearly
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incomplete because it does not include the mirror space-time
of CIGR. In fact it is likely that the correct theory of water
will be based upon Quantum Mechanics unified with CIGR.

Appendix C: Details of Microscope Technique

The microscope technique used to take the black and white
images shown above, was developed by David Schweitzer.
The technique requires a good quality high-powered micro-
scope (e.g. a Nikon optifot), with a phase contrast lens and
dark filter, a light source, fluorescence adaptor, video camera
with CCD image sensor, computer with video card, software
and printer. The technique involves first examining the sam-
ple with normal illumination to see if it contains any bacte-
ria, dust particles or other impurities. If the sample is clear,
as expected for distilled water, then a drop of the water is
placed onto a microscope slide and allowed to evaporate at
ambient temperature. (If the rate of evaporation is too slow,
a gentle source of heat may be applied.) Whilst it is evap-
orating, it is illuminated horizontally from the side (we call
this “side illumination”), the temperature of the light source
is adjusted (a reddish white light was used), and it is observed
vertically from above. (NB This is not the same as dark-field
microscopy.) Schweitzer has found that if there are hidden
“structures” present in the water, then these reflect light and
become visible when the thickness of the water film has de-
creased to about 0.1 mm (possibly because of distortion), and
the illumination, magnification and other settings are correct.
The images shown above, were taken with the solarizing fil-
ter phase contrast 4, the Table tilted by 1.95◦ and microscope
magnification of ×1000.

The random walk (Brownian motion) experiment at the
beginning of this paper and the black and white images were
all obtained using distilled water and exposure was to a 500
watt halogen lamp at 80 cms, which gave 1100 lux at the sur-
face of the water. The viscosity measurements were made
with HPLC grade water and a 400 watt halogen lamp (equiv-
alent to 500 watts) also at 80 cms. The software used for
the pattern recognition and source extraction was SExtractor
version 2.25.0 by E. Bertin.

Appendix D: Unification

“Unification” is a project in physics which dates back to Ein-
stein, who was convinced there is one set of equations which
describe the whole Universe. So he spent the last 30 years
of his life trying to unify the two main theories of physics,
Quantum Mechanics and General Relativity, in order to de-
velop the final theory. However the process of unification
dates from before Einstein. For example before Newton’s
theory of gravity, it was thought that the laws of motion of
a projectile through the air above the Earth’s surface, were
different from those of planets in the heavens. Newton’s the-
ory provided a unified explanation of terrestrial and celes-
tial gravitation. (Note that the derivation of Newton’s the-

ory from CIGR, mentioned above, links CIGR to this first
step towards unification.) Then before Maxwell, electricity
and magnetism were thought to be completely different phe-
nomena. Maxwell’s equations unified the two into electro-
magnetism. After Einstein in the 1960s, electromagnetism
was unified with the weak nuclear interaction (which causes
beta-decay) in the electro-weak interaction, which led to the
discovery of the W- and Z-bosons.

However, the unification of General Relativity and Quan-
tum Mechanics has stalled, despite herculean efforts (e.g.
quantum gravity; string theory; loop quantum gravity, and
so on) [40]. In a sense the problem is simple. Quantum me-
chanics is a “digital” theory of ultra-small phenomena, whilst
General Relativity is an analogue theory of large scale phe-
nomena. About the only place where the two might come
together is at the event horizon of a black hole, which cannot
be easily studied in the laboratory. However, putting the Ob-
server into General Relativity introduces low energy, small
scale phenomena, such as thermodynamics, where CIGR and
Quantum Mechanics can come together. The above evidence
for the photo-mirror effect is highly significant, because it de-
pends upon Quantum Mechanics and CIGR, and so is exper-
imental evidence for unification.
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propres à développer cette puissance (Reflections on the Motive Power
of Fire and on Machines Fitted to Develop that Power), Bachelier, Paris,
1824.

8. Clausius R. Annalen der Physik und Chemie, 1854, v.93 (12), 481–506.

9. Capek V. and Sheenan D. On Challenges to the Second Law of Thermo-
dynamics: Theory and Experiment. Springer, Berlin/Heidelberg, 2005;
Special Issue: Quantum Limits to the Second Law of Thermodynam-
ics, Entropy, March 2004, v. 6 (1), 1–232; First Int. Conf. on Quantum
Limits to the Second Law, AIP Conf. Proc., 2002, v. 643 (1), 3–500;
Second law of Thermodynamics: Status and Challenges, AIP Conf.
Proc., v. 1411 (1), 1–356.

10. Boltzmann L. Wissenschaftliche Abhandlungen, v. I, II and III, Barth,
Leipzig, 1909; reissued, Chelsea, New York, 1969; Flamm D. Ludwig
Boltzmann — A Pioneer of Modern Physics. arxiv: physics/9710007;
Transl. of L. Boltzmann’s paper “On the Relationship between the Sec-
ond Fundamental Theorem of the Mechanical Theory of Heat and

Ellis R. Preliminary Evidence for a Second Time Dimension Directed from the Future to the Past, and for Unification 147



Volume 20 (2024) PROGRESS IN PHYSICS Issue 2 (December)

Probability Calculations Regarding the Conditions for Thermal Equi-
librium”, Sitzungber. Kais. Akad. Wiss. Wien Math. Naturwiss. Classe,
1877, v. 76, 373–435, by K. Sharp and F. Matschinsky, Entropy, 2015,
v. 17 (4), 1971–3009.

11. Schrödinger E. What is Life? Cambridge University Press, 1944.

12. Prigogine I. Bull. Acad. Roy. Belg. Cl. Sci., 1945, v. 31, 600; see also
Nicolis G. and Prigogine I. Self-Organization in Nonequilibrium Sys-
tems. John Wiley and Sons, New York, 1977.

13. Brittin W. and Gamow G. Negative entropy and photosynthesis. Proc.
of the Nat. Acad. of Sciences, 1961, v. 47, 724. N.B. There is a sign
error in equation (14) in this reference, which has been corrected.

14. Gell-Mann M. What is complexity? Complexity, 1995, v. 1 (1), 16–19.

15. Einstein A. Annalen der Physik, 1906, v. 19, 289.

16. Ming Chen Wang and Uhlenbeck G.E. Rev. Mod. Phys., 1945, v. 17,
323–342.

17. Careri G. Order and Disorder in Matter. Benjamin/Cummings, CA,
1984, Chapter 1, Box 1.E.

18. Landau L.D. and Lifshitz E.M. The Classical Theory of Fields. The 4th
final edition, Butterworth-Heinemann, 1980.

19. Zelmanov A.L. Chronometric invariants and the accompanying frames
of reference in the General Theory of Relativity. Soviet Physics Dok-
lady, 1956, v. 1, 227–230; Zelmanov A.L. On the relativistic theory of
an anisotropic in-homogeneous Universe. Proc. of 6th Soviet Conf. on
the Problems of Cosmogony, Nauka, Moscow, 1959, 144–174 (in Rus-
sian), see English transl. in The Abraham Zelmanov Journal, 2008, v. 1,
33–63.

20. Zelmanov A.L. Chronometric Invariants. English transl. of the 1944
Dissertation, Am. Res. Press, Rehoboth, 2006.

21. Borissova L. and Smarandache F. Positive, neutral and negative mass-
charges in General Relativity. Progress in Physics, 2006, v. 2 (3),
51–54.

22. Rabounski D. and Borissova D. Physical observables in General Rela-
tivity and the Zelmanov chronometric invariants. Progress in Physics,
2023, v. 19 (1), 3–29.

23. Ellis R.J. Preliminary evidence for a new type of radiation in sunlight.
doi:10.5281/zenodo.7347703.

24. Maxwell T. National Physical Laboratory, Teddington, UK.

25. David Schweitzer, private researcher, London, UK.

26. Ishamir L. and Johnston K. recommended SExtractor by E. Bertin, and
AstroimageJ.

27. http://www.mtholyoke.edu/m̃peterso/classes/–phys301/projects2001/
awgachor/awgachor.htm

28. Ellis R.J. A new approach to unification: the living universe hypothesis.
doi:10.5281/zenodo.11478276.

29. Borissova L. and Rabounski D. Galileo’s Principle and the origin of
gravitation according to General Relativity. Progress in Physics, 2024,
v. 20 (2), 69–78.

30. Roentgen W.C. Ice and water molecules. Wied. Ann., 1891, v. 45, 91.

31. Bernal J.D. and Fowler R.H. J. Chem. Phys., 1933, v. 1, 515.

32. Preparata G. QED Coherence in Matter. World Scientific, Singapore,
1995, p. 196.

33. Pople J.A. A theory of the structure of water. Proc. Roy. Soc. (London),
1950, v. A202, 323; ibid. 1951, v. A205, 163; J. Chem. Phys., 1953,
v. 21, 2234.

34. Lennard-Jones J. and Pople J.A. Molecular association in liquids. Proc.
Roy. Soc. (London), 1951, v. A205, 155.

35. Bertolini D. et al. J. Chem. Phys., 1989, v. 91, 1179–1190; Fernandez-
Serra M.V. and Artacho E. arxiv.org: cond-mat/05073193.

36. Preparata G. QED Coherence in Matter. World Scientific, Singapore,
1995, see Chapter 10.

37. Bono I., Del Giudice E., Gamberale L., and Henry M. Emergence of
the coherent structure of liquid water. Water, 2012, v. 4, 510–532.

38. Arani R., Bono I., Del Giudice E., and Preparata G. QED coherence and
the thermodynamics of water. Int. J. Mod. Phys. B, 1995, v. 9, 1813–
1841.

39. Enz C.P. Helv. Phys. Acta, 1997, v. 70, 141.

40. Smolin L. The Trouble with Physics: The Rise of String Theory, the
Fall of a Science, and What Comes Next. Houghton Mifflin, Boston,
N.Y., 2006.

148 Ellis R. Preliminary Evidence for a Second Time Dimension Directed from the Future to the Past, and for Unification



Progress in Physics is an American scientifc journal on advanced studies in physics,
registered with the Library of Congress (DC, USA): ISSN 1555-5534 (print version)
and ISSN 1555-5615 (online version). The journal is peer reviewed.

Progress in Physics is an open-access journal, which is published and distributed in 
accordance with the Budapest Open Initiative. This means that the electronic copies
of both full-size version of the journal and the individual papers published therein 
will always be accessed for reading, download, and copying for any user free of charge. 

Electronic version of this journal: http://progress-in-physics.com


