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Type Ia Supernovae Progenitor Problem and the Variation
of Fundamental Constants

Maciej Rybicki

Sas-Zubrzyckiego 8/27, 30-611 Krakow, Poland
E-mail: maciej.rybicki@icloud.com

Cosmological observations strongly suggest our universe is the interior of an expanding
black hole. If the constant mass of the universe is assumed then from the equation
for Schwarzschild radius: rS = 2Gmc−2 it follows that proportionality constant Gc−2

depends linearly on the universe’s radius Ru, identified with rS , i.e. Gc−2 ∼ Ru, Mu =

const. Because the Chandrasekhar limit MCh relates to the speed of light and to the
Newton’s constant as MCh ∼ (c/G)3/2 so expansion involves gradual decrease of MCh.
In result, a single white dwarf can alone become the Type Ia supernova progenitor,
which provides a complementary solution to single-degenerate and double-degenerate
models for SNe Ia. Both alternative scenarios: G ∼ Ru and c ∼ R−1/2

u are analyzed in
regard of their consistence with observations, and their consequences to cosmology.

1 Introduction

On account of the supposed uniformity of their absolute mag-
nitude, the Type Ia supernovae (SNe Ia) play an important
role of “standard candles” in cosmology. A tight correla-
tion between the peak light output and the light-curve width
(width-luminosity relation) results from the way SNe Ia orig-
inate from white dwarfs (WDs) — the final remnants for low
and medium mass stars. According to the current understand-
ing, the carbon-oxygen (CO) thermonuclear fusion triggering
the supernova explosion takes place in compact binary sys-
tems in either of two principal progenitor channels. A single-
degenerate (SD) model (Whelan & Iben [80]) predicts that
CO WD accretes matter from the companion, usually the red
giant or the main sequence star. Just before approaching the
Chandrasekhar mass-limit MCh ≈ 1.44M� for which electron
degeneracy pressure becomes insufficient to prevent the grav-
itational collapse, the WD’s core reaches the ignition temper-
ature for the runaway carbon and oxygen fusion into heav-
ier elements. In a preceding time lasting usually ∼ 106 yr
WD processes the transferred matter falling onto its surface
through the accretion disc. In this phase, called “nuclear-
burning white dwarf” (NBWD) the hydrogen-helium fusion
releases energy in a form of copious X-radiation, observed as
“super-soft X-ray source” (Di Stefano [17]).

Instead, the double-degenerate (DD) model (Webbink
[79], Iben & Tutukov [37]) predicts that two WDs of the
combined mass > MCh form a compact binary system and
subsequently spiral towards each other in a common enve-
lope. Eventually, they collide and merge and, after exceeding
the Chandrasekhar limit, explode as SN Ia. Unlike in accrete
scenario the merging WDs are not expected to be the source
of X-radiation until a short time preceding the supernova ex-
plosion. The X-ray signatures of SD and DD channels differ
significantly, which makes them easy to distinguish. The DD

model admits a broader range of progenitor mass and SNe
Ia luminosity; thus is thought to be responsible for the non-
standard SNe Ia explosions.

These two basic models (hereinafter collectively referred
to as “SNe Ia binary paradigm”) do not however provide a
fair explanation to the diversity in the observed characteris-
tics of SNe Ia and the paucity of their potential progenitors.
The relevant SNe Ia progenitor problem amounts to the fol-
lowing two items. First is the problem of SNe Ia rate: the to-
tal number of potential progenitors seems to be inadequate to
the number of observed SNe Ia events. Second is the problem
of SNe Ia properties: the observed light-curves and remnants
spectra do not match satisfactorily the detailed predictions of
SD and DD models.

Our goal here is to provide a solution to the progenitor
problem based on assumption of the varying Chandrasekhar
mass, a consequence of varying constant Gc−2. It’s not been
a century yet since one realized our universe has a turbulent
history behind and some kind of final fate ahead. Compared
with the prior model of eternal and basically invariable uni-
verse, this forms quite different ground for thinking about
physical fundamental constants. One cannot ascribe logical
necessity to any of fundamental constants (class C “univer-
sal” constants, according to Uzan’s nomenclature(Uzan [74])
as e.g. in the case of mathematical constant π or the Euler’s
number e. Likewise, one cannot obtain them by pure deduc-
tion in a way similar to that Eddington tried (ineffectively) to
do with the fine structure constant alpha. For the time being,
they work as “free parameters”. Hence, still valid is Dirac’s
opinion: “It is usually assumed that the laws of nature have
always been the same as they are now. There is no justifi-
cation for this. The laws may be changing, and in particu-
lar quantities which are considered to be constants of nature
may be changing with cosmological time” (Dirac [16]). Let
us complement this opinion with another one: “Ignoring the
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possibility of varying constants could lead to a distorted view
of our universe and if such a variation is established correc-
tions would have to be applied” (Uzan [74]).

2 The SNe Ia progenitor problem: a brief overview

The question of identity of Type Ia supernovae progenitors is
widely considered as the “major unsolved problem in astro-
physics” (Maoz & Mannucci [47]). The main problem is the
discrepancy between the observed SNe Ia rate and the number
of potential progenitors. Taking into account the estimated
rate of SNe Ia (∼ (10−3 − 10−2)yr−1 events in a typical spi-
ral or elliptical galaxy) and the mean/median delay time for
the SNe Ia progenitors (∼ (0.5 − 1) Gyr for DD channel and
∼ (2−3) Gyr for SD channel), X-ray sources should manifest
in thousands in any such galaxy including the Milky Way.
Meanwhile, the X-ray flux from the sample of six neighbor-
ing spiral galaxies obtained from Chandra X-ray Observatory
is a factor of 30-50 times fainter than expected (Gilfanov &
Bogdan [29]). In some of SNe Ia previously thought to orig-
inate in SD channel no remnants of red giant has been ob-
served (Schaeffer & Pagnotta [70], Li et al. [42], Nugent et
al. [56]). Generally, in most cases red giants have been ex-
cluded as possible ex-companions in binaries. The discrep-
ancy between the observed amount of X-ray sources and the
assessed numbers of SNe Ia led to conclusion that accrete
scenario is not a primary route to supernovae, giving prior-
ity to the merger scenario. Gonzalez Hernandez et al. [30]
estimate that fewer than 20% of SNe Ia is produced in SD
channel. Gilfanov & Bogdan [29] opt for even more strin-
gent limit 6 5% of total population. Di Stefano [17] indi-
cates the lack of 90%− 99% of the required number of X-ray
sources. She argues (Di Stefano [18]) that companion stars
forming the double degenerates do not age at the same rate
and thus do not become WDs at the same time; for that reason
the common envelope phase should be preceded by a symbi-
otic pre-double-degenerate phase with the hydrogen-helium
fusion similar to NBWD. Thus, merger channel should also
produce X-ray flux comparable to the accrete channel prior
to the common envelope phase, which puts into doubt DD
model as an effective explanation.

A vital problem is the paucity of the observed white
dwarfs mergers. According to Gilfanov [28] “. . . too few
double-white-dwarf systems appeared to exist”. One expects
the ESO Supernovae Type Ia Progenitor Survey (SPY) (Napi-
wotzki et al. [54, 55]) and the ongoing Sloan White dwArf
Radial velocity data Mining Survey (SWARMS) (Badenes
et al. [3], Mullally et al. [53]) to provide evidences for the
merger channel (DD) as the main route to SNe Ia. Badenes
& Maoz [4] using Doppler techniques isolated 15 WD bina-
ries from a sample of ≈ 4, 000 WDs brought by Sloan Digital
Sky Survey (SDSS). They compared the rate of WD binaries
with the rate of SNe Ia in the Milky Way-like Sbc galaxies
and found a “remarkable agreement” between them. How-

ever, a majority of these WD binaries appeared to be sub-
Chandrasekhar, although usually with total mass relatively
close to MCh (1.1 − 1.2M�).

Some of researches (Hachisu et al. [34], Van Kerkwijk et
al. [40], Zhu et al. [82], Maoz & Mannucci [47]) claim that
the requirement as to the total mass of merging CO WDs (i.e
1.4M�) is too restrictive. This would match observations of
super-Chandra WD progenitor stars with the combined mass
reaching 2.4 − 2.8M�. According to the respective models,
the observed number of SNe Ia can be explained provided
the wider range of combined mass: smaller than MCh (sub-
MCh merger channel) or bigger than MCh (super-MCh merger
channel), dependently on detailed conditions such as rota-
tion, magnetic fields, metallicity and the host galaxy popu-
lation. This would account for better agreement with obser-
vations, both as to the rate of SNe Ia and to the differences
in their properties. The controversial point of these models is
that they require special fine-tuning to be effective. Maoz &
Mannucci [48] attribute some of discrepancies as caused by
“deadly sins”, i.e. incorrect or inadequate methods in mea-
suring and analyzing the SNe Ia rates. They admit however
the “detailed models still falls short of the observed number
(of SNe Ia) by at least factor of a few”.

Di Stefano [18] suggests that, possibly, only a small frac-
tion of accreting WDs can be detected and identified as X-ray
sources. This may occur by two reasons: either the winds
from a companion giant reprocess the supersoft X-ray radia-
tion into the radiation of longer wavelengths, or the duty cycle
of nuclear burning is to low to be detected. However, nei-
ther of these solutions has been properly recognized and con-
firmed as yet. Another proposal (Di Stefano et al. [19]) links
the mass of progenitor with the angular momentum gained
from the donor star together with matter. The angular mo-
mentum prevents the super-MCh WD from collapse, which
widens the potential range of SNe Ia progenitors. The rele-
vant “spin-up/spin-down” models predict the existence of nu-
merous WD “ticking bombs” waiting to explode until their
rotation slows down to a proper level.

There is a broad agreement (e.g. Totani et al. [73], Maoz
et al. [48], Mennekens et al. [50], Hachisu et al. [33]) as to the
key role of “delay time distribution” (DTD) — the number
of SNe Ia events in unit time as a function of time elapsed
since starburst, in predicting the SNe Ia rates. It seems that
DTD (indicated as t−1 power law) favors the DD scenario.
Hachisu et al. [33] found a good agreement of DTD with SD
model either, provided the donor stars are both red giants and
the main-sequence stars. Undoubtedly, DTD introduces an
indispensible methodological order to the SNe Ia progenitor
problem. In general however, regarding DTD did not bring
a decisive breakthrough so far in the question of identity of
SNe Ia progenitors.

It has gradually become evident that SNe Ia are not “stan-
dard candles” in the originally attributed sense. Their intrin-
sic luminosity is neither considered nor demanded to be ex-
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actly uniform, which gives priority to the more “capacious”
merger channel. Instead of standard candles, SNe Ia are cur-
rently interpreted as “standarizable candles”, which means
that utilizing them as the correct distance indicators requires
due calibration. This in turn demands better recognizing of
their origin and nature. The study by Linden, Virey & Tilquin
[43] revealed a likely positive correlation between the SNe
Ia absolute brightness and distance, which may put in ques-
tion the actually determined cosmological parameters. The
observed relationship between the intrinsic color and ejecta
velocity may help in reducing systematic biases in the es-
timates of distance (Foley et al. [25]). Instead, Sullivan et
al. [72] point to the relationship between the luminosity of
SNe Ia and metallicity of their hosts, while metallicity is sup-
posed to depend on redshift. Gallagher et al. [26] comparing
the spectra of a sample of 29 early elliptical galaxies of the
age exceeding 5 Gyr with the general sample from SDSS in-
cluding younger galaxies, find a strong correlation between
the absolute magnitude of SNe Ia and the age of host galax-
ies while, most likely, “. . . the observed trend with metallicity
is merely an artifact brought about the evolutionary entan-
glement of age and metallicity”. These findings may help in
recognizing the properties of SNe Ia, which is particularly
important for the question of dark energy and the relevant
accelerating expansion of the universe (Riess et al. [66], Perl-
mutter et al. [60]). The supposed correlation between the ab-
solute magnitude and distance suggests the presence of a time
dependent factor in the effective SNe Ia progenitor model.

3 Varying Chandrasekhar limit as the postulated main
route to SNe Ia

The mass-limit formula for white dwarfs based on the equa-
tion of state for ideal Fermi gas (Chandrasekhar [11]) reads

MCh = 4π
( K2

πG

)3/2

ω0
3 , (1)

where ω0
3 is the numerical constant equal to 2.018, derived

from the explicit solution of the Lane-Emden equation for the
polytropic index n = 3. The constant K in the general case
connects pressure and density: P = Kρ(n+1)/n while in the case
including white dwarfs (i.e. for n = 3) becomes specified as
P = K2ρ

4/3. Since K2 is defined as

K2 =
1
8

(
3
π

) 1
3 hc

(µemH)4/3 (2)

(µe-mean molecular mass per electron, mH-mass of hydrogen
atom), so substituting gives

MCh = 4π

1
8

(
3
π

) 1
3 hc

(µemH)4/3πG


3/2

ω0
3 . (3)

Collecting the pure numbers, and considering that ~ = h/2π,
one gets

MCh ≈ 1.11065 × 1054µ−2
e m3

P , (4)

where mP = (~c/G)1/2 is the Planck mass. Since CO WDs are
mainly composed of carbon-12 and oxygen-16, and because
in both cases atomic number equal to half the atomic weight
so one has µe = 2, leading to MCh ≈ 1.44M�. It is impor-
tant that Chandrasekhar mass it is proportional to the cube of
Planck mass:

MCh ∼ m3
P . (5)

Assuming ~ = const it relates to the speed of light and to the
Newton’s gravitational constant as

MCh ∼ (c/G)3/2. (6)

(We use tilde for linear dependence in the cases when the vari-
ability of a reference quantity [here: c and G] is hypothetical.
Instead, the symbol of proportionality [exact or approximate]
∝ is used when variation of a reference quantity is obvious or
certain, e.g. cosmic time t or radius of universe Ru).

From this relationship it follows that any cosmological
model postulating varying G or/and c (except the case they
change accordingly) implies the postulate of varying MCh.
This fact has not been properly explored so far. What we pro-
pose here is the “varying Chandrasekhar mass-limit” model
(VCM) in which MCh decreases in cosmic time. VCM pos-
tulates that the currently known value of Chandrasekhar limit
refers solely to the present epoch while in general:

MCh(past) > 1.44M� > MCh(future). (7)

This determines a scenario for the single WD progenitors of
SNe Ia, which can be outlined as follows. Once an individual
WD is formed, it keeps its mass approximately constant dur-
ing the cooling process while the Chandrasekhar limit grad-
ually decreases in time. Eventually, it equates or approaches
a given WD’s mass triggering the SN Ia explosion. From a
logical point of view, an effect of SN Ia caused by decreas-
ing MCh reminds bringing water to a boil by reducing the at-
mospheric pressure without supplying heat. Hence, single
WDs are, along with binary WDs, the potential progenitors
of SNe Ia.

4 Varying constants and the black-hole cosmology

Varying Chandrasekhar limit, as a hypothesis based on as-
sumption of varying constants c or/and G is closely related
to the black-hole cosmology. A constitutive observation of
the respective models is the coincidence between the radius
of observable universe and the Schwarzschild radius, sup-
posed to be valid over the whole course of the universe’s his-
tory. According to a hypothesis advanced by Pathria [58] and
Good [31], the universe is the interior of a black hole ex-
isting, among many others, within a larger structure called
multiverse.

The recent multiverse model by Popławski [64, 65] uses
the Einstein-Cartan-Sciama-Kibble theory removing from
General Relativity the constraint of symmetry in the affine

Maciej Rybicki. Type Ia Supernovae Progenitor Problem and the Variation of Fundamental Constants 5
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connection, and regarding the antisymmetric variable torsion
tensor in the Friedmann equations. The relevant cosmological
scenario takes an advantage of the fact that most stars have
a non-zero angular momentum. When a massive rotating
star collapses to a (Kerr) black hole, the torsion of extremely
dense matter inside the horizon prevents from the point sin-
gularity (replaced by the ring singularity). As a result, the
black hole becomes a wormhole to another universe thought
to originate in “big bounce”. As far as our own universe is the
interior of a black hole existing in another universe, any black
hole in our universe is thought to contain (produce) a separate
universe. The new universe is interpreted as a “white hole” —
a time reversal black hole whose expansion, e.g. such as ob-
served in our universe is driven by the torsion, identified with
dark energy. This model predicts the presence of traces of
primordial torsion in a form of slight anisotropies in both cos-
mic and nanoscopic scales. Some reported evidences of the
preferred handedness of spiral galaxies (dipole asymmetry of
the value 0.0408 ± 0.011 based on SDSS data sample con-
taining 15,158 spiral galaxies with the redshift < 0.085) seem
to support the idea of cosmic parity violation (Longo [44]).
However, the area covered by this sample is still too small to
derive unambiguous conclusions. According to Neta Bahcall
“The directional spin of spiral galaxies may be impacted by
other local gravitational effects”.

Besides, even if the filaments forming the cosmic web are
uniformly distributed, anisotropy connected with rotation will
break the homogeneity in a deeper sense. In the isotropic cos-
mic space, the “center” is a purely relative concept connected
with the notion of observable universe. But it is no longer
relative in the anisotropic space with the fixed axis of rota-
tion. The spinning universe implies, besides anisotropy, the
presence of preferred points. We may think about analogies
between directional spin of spiral galaxies and the Coriolis
effects on the Earth, e.g. manifesting itself in different spin
of hurricanes in north and south hemispheres. Anyway, the
question of spinning universe is, in the end, a matter of (fur-
ther) observations.

The model here proposed (VCM) bases on formal resem-
blance of our universe with a black hole (and thus we shall
use the Schwarzschild equation for radius) yet does not settle
whether the universe is a black hole in the literal sense. It
seems instead that crucial property of the universe conceived
as the interior of a black hole is that its total energy amounts
to zero. In this regard, the black-hole cosmologies are close
to the “zero-energy universe” theories.

The legitimacy for interpreting the universe in terms of
a black hole depends on its parameters, in particular size,
density and mass. Recent estimations concerning the radius
of observable universe point to the value > 14 Gpc (4.3 ×
1026 m) or 28 Gpc in diameter. Cornish et al. [12] analyz-
ing the WMAP data in search of the matched back-to-back
circles predicted by various nontrivial topologies, settled the
low bound of diameter of the last scattering surface of fun-

damental domain for 24 Gpc. Bielewicz & Banday [6], using
similar methods extended this value to 27.9 Gpc. This ad-
mittedly does not prejudge the question of size, yet, provided
the multi-connected space of universe, constraints the topol-
ogy scale from below. An additional (though partly linked)
difficulty comes out from the potential difference between
the notions of entire and observable universe. In principle,
entire universe may significantly surpass the observable uni-
verse (as inflationary theory predicts), but it can be as well
slightly smaller due to nontrivial topology. The respective
ratio may also change in time. Presumably, the black hole
parameters describe the entire universe, and not just the uni-
verse currently observed. However, this distinction becomes
important only insofar as “entire”, by virtue of convention,
denotes the biggest physically connected object defined ac-
cording to the horizon problem of the early universe. Assum-
ing the approximately linear rate of expansion after the end of
inflationary epoch (or from the beginning), the parameters of
the so defined “entirety” should not significantly differ from
the “observable” parameters. Bearing in mind the obvious
uncertainties, we shall use in calculations the value 1027m for
the universe’s radius.

The critical density for a flat universe derived from Fried-
mann equation for the Hubble constant obtained from Planck
telescope: H0 = 67.15 kms−1Mpc−1 is ρc = 3H2/8πG ≈

0.85 × 10−26 kgm−3. The resultant total mass for Ru = 1027 m
amounts to Mu ≈ 1.44 × 1054kg (we shall use 1054kg in cal-
culations). Considering the approximated values of gravita-
tional constant: G ≈ 6.7 × 10−11 m3kg−1s−2 and the speed of
light: c ≈ 3 × 108 ms−1 (c2 ≈ 1017 m2s−2) one obtains the
numerical relationship connecting radius and mass:

1027 = 10−10105410−17 (m), (8)

which means that equation for the Schwarzschild radius:

rS = 2Gmc−2 (9)

apparently applies to the universe as

Ru ≈ GMuc−2. (10)

We postulate that universe constantly fulfills the “black-hole
condition” (BHC), which means that it is always fulfilled:

Ru ≡ rS . (11)

Together with assumption Mu = const, and the general as-
sumption of isotropy of cosmic space, BHC implies

Gc−2 ∝ Ru . (12)

5 Models with varying constants

In the intensive discussion on the variability of fundamental
constants, variation of c is probably the leading topic. A ma-
jority of the “variable speed of light” (VSL) models con-
ceived as a challenge to inflation restricts the variation of c
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to the early superluminary universe (Moffat [51], Albrecht &
Magueijo [2], Magueijo & Smolin [45]). These models do
not match BHC since, after restoring the local Lorentz invari-
ance, the light is thought to travel at the presently measured
speed. Likewise, assuming the change of c refers totally to
the time preceding the structure formation, they would not
imply the variability of MCh.

In some VSL models, the change in c value has been con-
sidered as a continuous process spread over the whole lifes-
pan of the universe. Dicke’s theory of gravity (Dicke [13]),
developing the earlier considerations by Einstein [22, 23] ex-
plains the cosmological redshift as a result of c decreasing
with time, which somehow corresponds with the steady state
theory. However, this model does not predict the change of c
to be a measurable effect since it assumes the units of length
and time to change accordingly.

In turn, variability of G has been proposed in some scalar-
tensor models modifying the Einstein’s General Relativity,
in particular the Brans-Dicke theory [9] inspired by Mach’s
principle, with the time and space dependent scalar field φ
modifying the Newton’s constant. A similar as to the general
structure and conclusions model by Hoyle & Narlikar [36]
originates from considerations concerning the action on dis-
tance. Petit [61, 62] advanced a model with joint variation
of G, c and h decoding the Hubble’s law in a static universe.
One of the first models postulating varying G, and likely the
most influential one, is the Dirac’s “large number hypothe-
sis” (Dirac [15]). From the supposed coincidence between
two ratios: radius of universe (expressed as ct ) vs. radius
of electron, and electrostatic force vs. gravitational force be-
tween proton and electron (both of them yielding ≈ 1040 ),
Dirac derived a conclusion that G changes as the inverse of
cosmic time: G ∝ t−1 , while the mass of universe increases
as Mu ∝ t2. Provided the approximately linear relationship
between time and radius (Ru ∝ t), LNH satisfies BHC. How-
ever, LNH also implies MCh ∝ t3/2, which compared with
the standard assumption of constant G makes the SNe Ia pro-
genitor problem even more puzzling. A model proposed by
the present author (Rybicki [69]) has postulated G ∝ Ru,
Mu = const , yet then with no reference to BHC and the SNe
Ia progenitor problem.

A question underlying the varying constants models is
whether the postulated changes in dimensional constants are
physically meaningful. A long-lasting controversy over this
subject has not been concluded so far. Some physicists (e.g.
Barrow [5], Duff [20]) claim that only the (potential) change
in dimensionless constants matters, e.g. the coupling con-
stants of fundamental forces such as fine structure constant α,
gravitational coupling constant αG , or the masses of elemen-
tary particles related to Planck mass contributing to standard
model. Instead, dimensional constants such as ~, c, G, e, or
k may change in value dependently on the (arbitral) choice of
units, thus being merely the “human constructs” or “conver-
sion factors”. Others (Okun [57], Veneziano [76]) consider

as indispensable in shaping the fundamental theories respec-
tively three (G, c and ~) and two (c and string length λs) di-
mensional constants.

From the “dimensionless” point of view as applied to
BHC, no matter whichever of dimensional constants is
thought to vary; only what counts is the change of αG =

Gm2
e/~c. Since we discriminate here between the change of

G and c treated as different solutions of BHC, so this question
demands a clarifying comment. Let’s start with two remarks:
1) There is no doubt that Gc−2 ∝ Ru implies the variability of
αG; 2) The fact that dimensional constant changes its numer-
ical value together with the change of unit is trivial, and as
such contributes nothing to discussion.

Let the increase of αG be observed, correlated with the
increase of Ru. Assuming me = const, ~ = const, we con-
clude that it is either G ∝ Ru or c ∝ R−1

u which, according
to the “dimensionless” paradigm, we treat as fully equivalent
(i.e. physically indistinguishable) interpretations of αG ∝ Ru.
However, from Gc−2 ∝ Ru it follows: G ∝ Ru ⇒ αG ∝ Ru,
and c ∝ R−1/2

u ⇒ αG ∝ R1/2
u , which obviously differs from

αG ∝ Ru. Thus, G and c cannot be considered as “conversion
factors” within BHC.

As we show in next sections, the Planck units of length
and time react differently depending on whether G or c is pos-
tulated to vary. Besides, each of respective solutions affects
entropy in a different way. We thus agree with the anonymous
referee cited in Duff’s paper: “It is true that if the fundamental
“constants” ~, c, G, k . . . are truly constant, then they do in-
deed only act as conversion factors and can e.g. be set equal
to unity. However, when they are postulated (or discovered
experimentally to vary) in time, then we have to take into ac-
count that varying one or the other of these constants can have
significant consequences for physics” (Duff [20]).

6 Basics of the VCM hypothesis

Expressed in the here proposed nomenclature, our main idea
consists in postulating VCM as being the consequence of
BHC. Any model satisfying BHC makes the Planck units
variable, and thus determines new parameters of the Planck
era.

Identifying the mass in the equation for Schwarzschild
radius with Planck mass: m ≡ mP gives

rS = GmPc−2 = G(~cG−1)1/2c−2 = (~Gc−3)1/2 = `P . (13)

Accordingly, the black hole becomes the Planck particle. Im-
plementing the Planck mass to the reduced Compton wave-
length λ/2π = ~m−1c−1 makes the Planck particle the only
one black hole whose Schwarzschild radius equals the Comp-
ton wavelength

λ/2π = ~(G~−1c−1)1/2c−1 ≡ (~Gc−3)1/2 = `P . (14)

Rewriting the Schwarzschild equation for the Planck particle:
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`p ≈ Gmpc−2 gives the identity

(~Gc−3)1/2 ≡ G(~cG−1)1/2c−2, (15)

which means that Planck particle’s property of being a black
hole is insensible to the change of G or/and c.

From Gc−2 ∝ Ru it follows mP ∝ R−1/2
u ; hence for Ru → 0

the Planck mass tends to infinity. However, to avoid singu-
larities (and also taking into account that Planck mass should
have “realistic” reference), we assume that in the newly de-
fined Planck era (denoted P0) the Planck mass coincidences
with the mass of universe:

mP0 ≡ Mu . (16)

Thus, the initial value of Schwarzschild radius becomes

rS 0 ≈ GMuc−2. (17)

This can be also obtained by expressing the Newton’s con-
stant in the equation Ru = GMuc−2 in terms of Planck units,
namely: G = `Pm−1

P c2. Then

Ru = `PMum−1
P (18)

and so
Ru`

−1
P = Mum−1

P (19)

meaning that identity Ru0 ≡ `P0 becomes a consequence of
the conjecture Mum−1

P0
= 1.We have thus arrived at conclusion

that the universe at its initial stage (here called “primordial
Planck era” — PPE) had the form of a quantum mechani-
cal black hole identified with a single one “primordial Planck
particle” (PPP), described by equation:

`P0 = G0mP0 c−2
0 . (20)

Accordingly, the notion of PPP becomes coherent with the
concept of the universe emerging from “nothing” due to the
Heisenberg uncertainty.

From Mu ≈ 1054kg, provided mP0 ≡ Mu , it follows

mP0 m−1
P ≈ 1062 (21)

a factor hereinafter denoted by δ.
Because MCh ∼ m3

P so

MCh0 M−1
Ch = δ3. (22)

Obviously, MCh0 as related to the early universe, is a formal
entity only. To be a physically meaningful concept, Chan-
drasekhar limit demands a proper physical “enviroment”
(atoms, elements, stars). It belongs then to the epoch of struc-
ture formation starting from Population III stars. Provided
the universe expanded in a roughly uniform rate, BHC can
be expressed as the approximate function of cosmic time:
Gc−2 ∝ t. From the whole range of possible BHC scenar-
ios, the two deserve special attention, namely: 1) G ∝ Ru i.e.
G ∝ t, c = const, and 2) c ∝ R−1/2

u , G = const, both analyzed
in the next sections.

7 Assumption c ∝ R−1/2
u , G = const: collision with the

second law of thermodynamics

The initial value of speed of light derived from mP0 =

(~c0/G)−1/2 and mP0 ≡ Mu ≈ 1054 kg becomes c0 = 10132

ms−1, yielding c0/c ≈ 10124 = δ2. The respective Planck
length is (hereinafter, SI units always when omitted)

`P0 = (~G/c3
0)−1/2 ≈ 10−220 (23)

a value equal to the Schwarzschild radius

rS = GmP0/c
2
0 ≈ 10−220 (24)

and to the Compton wavelength

λ0 = ~M−1
u c−1

0 ≈ 10−220. (25)

The initial Planck time would amount to

tP0 = (~G/c5)−1/2 ≈ 10−352. (26)

From E = mP0 c2
0 it follows

~ = EtP0 (10−34 = 1031810−352). (27)

As derived from c ∝ t−1/2, with the age of universe ≈ 13.8 ×
109 yr the current rate of decrease in the speed of light be-
comes

ċ/c ≈ −2.7 × 10−11yr−1. (28)

Let us compare this prediction with the results obtained from
observations of gas clouds spectra intersecting the distant
quasars, the Oklo natural uranium fission reactor, and atomic
clocks. In agreement with the VSL paradigm, the supposed
change of α is usually interpreted as the change of c. For
the approximate emission time connected with the observa-
tional data samples concerning quasars: tEM ≈ 0.25 t0/0.85 t0
covering ≈ 8.3 Gyr (here t0 stands for the present moment),
the reported values suggesting the change are: ∆c(t)/c =

(−0.57 ± 0.10) × 10−5 (Webb et al. [77]), and ∆c(t)/c =

(−1.09 ± 0.17) × 10−5 (Webb et al. [78]). At the same time,
other groups (e.g. Chand et al. [10]) reported no detectable
change in α value over the last 10-12 billion years. In the
case of Oklo, for the respective operating time tprev/t0 ≈ 0.87,
Petrov et al. [63] obtained α̇/α = (−4 + 3)×10−17yr−1, in fact
signifying no detectable change. In turn, Lamoreaux & Torg-
erson [41] reported a decrease in alpha at the level −4.5×10−8

over the last 2 billion years, which consequently should be
interpreted as the increase of the speed of light. Observa-
tions based on atomic clocks give a direct insight to the pos-
sible current rate of change. Peik et al. [59], using cesium
atomic clock set the limit of annual change of the present
variation of alpha for α̇/α = (−1.2 ± 4.4) × 10−15yr−1. In
turn, Rosenband et al. [67], based on the frequency ratio of
Al+ and Hg+ in a single ion atomic clocks obtained a bound:
α̇/α = (−1.6 ± 2.3) × 10−17yr−1.
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Except the data provided by Webb et al. suggesting de-
crease of c at the level 10−15yr−1, and the opposite one (as
to general conclusion) provided by Lamoreaux & Torgerson,
all other results seem to point the zero change. This suggests
the failure of assumption c ∝ R−1/2

u . Besides, the question of
entropy provides us with an additional argument against de-
clining c. As is known, entropy is proportional to the horizon
surface area, which normally (i.e. by assumption G = const,
c = const) implies linear dependence on the squared mass.
Let us apply the Bekenstein-Hawking formula for the entropy
of black hole:

S BH = Akc3(4G~)−1 (29)

or, written in terms of Planck length,

S BH = Ak(4`2
P)−1, (30)

where A is the surface area for event horizon, and k the
Boltzmann constant. For the spherically symmetrical black
hole, the surface area is A = m28πG2c−2 so entropy becomes
S BH = m22πGkc~−1 . Thus, despite increasing surface area
A = m28πG2c−2 , at the assumption m ≡ M = const, G =

const and c ∝ R−1/2
u , the entropy decreases according to

S BH = m22πGkc~−1 being dependent on the decreasing speed
of light: S BH ∼ c. One obtains therefore

S BH(present)/S BH(primordial) = δ−2, (31)

which violates the second law of thermodynamics applied to
the universe as a whole. This does not exclude VSL mod-
els in general; in particular, does not exclude VSL applied
to the very early universe. However, BHC is not agreeable
with VSL conceived as a continuous process. Therefore, in
the further considerations, we shall specify BHC as a model
defined by the assumption G ∝ Ru, c = const. We shall also
treat this model as a right basis for the VCM hypothesis and
the respective quantitative predictions.

8 Assumption G ∝ Ru, c = const: parameters of the
universe at Planck era

Provided mP0 ≡ Mu ≈ 1054 kg , the initial value of Newton’s
constant derived from mP0 = (~c/G0)−1/2 is G0 ≈ 10−134,
yielding G/G0 = δ2. The initial Planck length becomes

`P0 = (~G0/c3)−1/2 ≈ 10−97 (32)

equal to the Schwarzschild radius:

rS = G0Muc−2 ≈ 10−97 (33)

and to the (constant) value of Compton wavelength for the
universe:

λ0 = ~M−1
u c−1 ≈ 10−97. (34)

All three quantities apply to the initial size of universe Ru0 :

Ru0 ≡ `P0 ≡ rS ≡ λ0 . (35)

The initial Planck time is

tP0 = (~G0c−5)1/2 ≈ 10−105. (36)

Hence,
~ = EP0 tP0 ≈ 10−34, (37)

where EP0 = Muc2 ≈ 1071. The invariability of Planck con-
stant is a consequence of the fact that, although individually
Planck energy and Planck time change in time, their product
remains constant:

EP(variable) × tP(variable) = ~(constant) . (38)

In general, initial values of the base Planck units relate to their
present equivalents as

mP0/mP = `P/`P0 = tP/tP0 = δ . (39)

The horizon problem in PPE is solved so to speak by defini-
tion, since

ctP0 = `P0 , (40)

which means that the whole primordial universe fits in a light
cone.

The density in the primordial Planck era is

ρ(PPE) = Mu`
−3
P0
≈ 10344 (41)

equal to initial Planck density:

ρP0 = c5~−1G−2 ≈ 10344. (42)

Let us compare this with the critical density derived from
the Friedmann equation: ρc = 3H2(8πG)−1, as calculated for
PPE. The current value of Hubble constant (≈ 70 kms−1/Mpc)
expressed in SI units amounts to

H(now) ≈ 2.27 × 10−18 s−1 (43)

yielding the respective value of the Hubble constant in PPE:

H(PPE) = H(now) × δ
2 ≈ 10106 s−1. (44)

Approximating 8πG0 ≈ 10−133, one obtains the PPE critical
density:

ρc(PPE) ≈ 1021210133 ≈ 10345. (45)

Hence, it is likely that also in PPE

ρ(PPE) ≡ ρc (46)

which solves the flatness problem.
In contrast to the previously considered assumption

c ∝ R−1/2
u , G = const, the thermodynamic arrow of time be-

comes well defined. Considering G/G0 = δ2, from S BH =

m22πGkc~−1 it follows

S BH(present)/S BH(primodial) = δ2. (47)
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In the cosmological scenario based on assumption G ∝ Ru,
c = const, the expansion is linear, or roughly linear, includ-
ing the early epoch. This means that G ∝ Ru is tantamount
to G ∝ t; in particular, G0(10−134) coincides with tP0 (10−105).
At some additional assumptions, this scenario could be mod-
ified so as to regard nonlinear expansion during early epochs.
However, considering that basic motives for invoking infla-
tion (horizon problem and flatness problem) are absent in
BHC scenario, inflation appears to be basically redundant.

9 Assumption G ∝ Ru, c = const: question of consis-
tence with observational tests of G variability

Provided the approximately uniform rate of Hubble flow, the
derived from G ∝ Ru current rate of increase of G becomes
a simple inverse of the age of universe. In fact, the Hubble
time does not significantly differ from estimations of the age
of universe derived from Friedman equation equipped with
definite values of k and Λ. Whereas these estimations range
from ≈ 13.798 Gyr (Lambda-CDM concordance model based
on data from Planck satellite and WMAP) to ≈ 13.82 Gyr
(Planck mission), the Hubble time ranges between ≈ 13.7 Gyr
and ≈ 14.26 Gyr according to the current extreme estimates of
the Hubble constant: ≈ 72 and and ≈ 67 kms−1Mpc−1 respec-
tively. Thus, on the average, the Hubble time only slightly
exceeds the supposed age of universe. Interpreting G ∝ Ru as
G ∝ t and estimating the age of the universe for ≈ 13.8×109yr
gives the current rate of change:

Ġ/G ≈ 7.25 × 10−11yr−1. (48)

Let us compare this prediction with the constraints put
upon G variation, derived from different sources (paleontol-
ogy and geophysics, celestial mechanics, stellar physics, cos-
mology). A handful of representative results covering the
whole range are:

— paleontological data connected with Earth temperature:
|Ġ/G| < 2.0×10−11yr−1 (Eichendorf & Reinhardt [21]);

— increase of Earth radius: Ġ/G = (−0.5± 2)× 10−11yr−1

(Blake [8]);
— stability of the radii of Earth, Moon and Mars: −Ġ/G 6

8 × 10−12yr−1 (McElhiny et al. [49]);
— stability of the orbit of Mars (Mariner 9 and Mars or-

biter data): Ġ/G = (−2±10)×10−12yr−1 (Shapiro [71]);
— systematic deviations from the Keplerian orbital peri-

ods of Moon: Ġ/G 6 (3.2±1.1)×10−11yr−1 (Van Flan-
dern [75]);

— lunar laser ranging (LLR): |Ġ/G| < 6× 10−12yr−1 (Dic-
key et al. [14]); LLR: Ġ/G 6 (4± 9)× 10−13yr−1 (Will-
iams et al. [81]);

— spin-down of pulsar JP1953: −Ġ/G < 5.8 ± 1 × 10−11

yr−1 (Mansfield [46]);
— pulsar timing PSR B1913+16: Ġ/G 6 (4 ± 5) × 10−12

yr−1 (Kaspi et al. [38]);

— luminosity function of white dwarfs (cooling age):
−Ġ/G 6 3+1

−3 × 10−11yr−1 (Garcia-Berro et al. [27]);

— pulsating white dwarf data G117-B15A: |Ġ/G| 6 4.10×
10−10yr−1 (Biesiada & Malec [7]);

— SNe Ia luminosity vs. redshift: Ġ/G = (−3,+7.3) ×
10−11yr−1 (Mould & Uddin [52]);

— helioseismology: |Ġ/G| 6 1.6×10−12yr−1 (Guenther et
al. [32]);

— big bang nucleosynthesis (BBN): |Ġ/G| 6 9. × 10−13

yr−1 (Accetta et al. [1]); BBN: |Ġ/G| 6 1.7×10−13 yr−1

(Rothman & Matzner [68]).

One can easily notice that BHC prediction hardly matches
the minority of the above bounds. However, a closer insight
into methodology reveals various circumstances hidden be-
hind the digits. We shall discuss them now, one by one.

9.1 Accuracy of the constraints on G variation and ac-
curacy in measurements of the value of G

Unlike in the case of other fundamental constants, the in-
creasing precision of measurements of G value is accompa-
nied by increasing discrepancy of the obtained results. This
led the CODATA to widen the uncertainty range from 0.013%
to 0.15%. We ask whether this uncertainty may impinge on
the G variability tests. This question does not seem ground-
less taking into account the ratio between typical bound put
on the annual rate of change of G (∼ 10−11) and the uncer-
tainty range of G value (1.5×10−3), roughly ten-billionth! To
better realize the scale, imagine we test the Wegener’s conti-
nental drift theory (btw unaccepted for a long time) by settling
a constraint on the annual rate of relative motion between two
continents, say, America and Europe. Assume we determine
two points (measuring devices) placed on each of these con-
tinents, and estimate the distance between them for 5 thou-
sand kilometers. However, due to hypothetic imperfection
of measuring techniques, this distance is only known with
the relative uncertainty 0.15%, which translates into 7.5km.
Assume next that, undeterred by this immense inaccuracy,
we derive the constraint for the drift rate for 10−11yr−1, i.e.
0.05 mm/year, while the drift rate estimated by the theory
amounts to 7.25 × 10−11yr−1, i.e. 0.36 mm/year (in fact, We-
gener estimated the speed of drift for 2.5 m/year, while the
currently observed rate amounts to about 2.5 cm/year).

Obviously, measuring a given value and measuring a
change in this value are, basically, two different things; yet
the mentioned discrepancy is too significant to be ignored.
This in particular happens when a constraint depends on as-
sumptions that are themselves encumbered by sizeable un-
certainty (see subsection 9.3). In the above fictional example,
before drawing ultimate conclusions as to the correctness of
Wegener’s idea, one should certainly aim at eliminating the
distance uncertainty or try to find its hidden sources. Other-
wise, any ultimate conclusions as to the change of distance
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could not be considered reliable. There is no reason to as-
sume the question of variability of Newton’s constant should
subject to different rules.

9.2 Differences in notation and the question of autonomy
of particular constraints

There is no unique notation for the constraints on G vari-
ation; for different reasons, particular constraints (or their
groups) are expressed in different mathematical forms. Re-
vealing their meaning provides us with a better insight into
the question of autonomy. The (here called) canonical form,
Ġ/G 6 (a ± b) × 10−cyr−1 (a positive/negative, b, c positive)
reads: “An annual rate of increase/decrease of G, not greater
than a × 10−c has been observed, with the uncertainty range
equal to ±b × 10−c”. If a = 0, it means that no change has
been observed, although b still describes the range of uncer-
tainty of that finding. Expression −Ġ/G, instead of Ġ/G,
means that given constraint concerns solely (is design to de-
tect) the decrease rate of G. This takes place when a theory
predicting the decrease of G (e.g. Dirac’s LNH) is tested,
and thus respective assumptions are the base of derivation.
In turn, the form |Ġ/G| reads: “The possibility of G varia-
tion (including increase and decrease in equal degree) fits in
the range. . . ” However, |Ġ/G| is sometimes used as equiv-
alent to −Ġ/G , in particular when aimed at testing Dirac’s
hypothesis (e.g. Eichendorf & Reinhardt [21]). This form im-
plies a to be indistinguishable from b, i.e. treats expressions
“(rate) not greater than” and “with the uncertainty range” as
tantamount to each other. Another way to identify the range
of possible change with the range of uncertainty is the form
Ġ/G = (−b1, +b2) × 10−c yr−1, b1 , b2. Although appar-
ently similar to |Ġ/G|, this form indicates the observed ten-
dency (i.e. increase or decrease) and thus seems to be basi-
cally equivalent to the canonical form; e.g. the term (−2,+4)
could be expressed as (1 ± 3). An alternative use of the rela-
tion symbols <, 6 and = in each of the above forms can be
interpreted (dependently on the context) as a gradable expres-
sion of conviction as to the observed tendency. In particular,
symbols < and 6, when used in the canonical form, play the
role of additional proviso (apart of b term) due to general un-
certainty; for example, if |a| is greater than b then using =

unambiguously points to the observed change of G. Instead,
using < or 6 weakens this statement, suggesting the change
to be only probable.

Let us assume that, generally, all observations meet the
criteria of scientific rigor. Apart of proper methodology and
precision, this would also mean the unbiased standpoint as to
the principal question, i.e. whether the Newton’s constant is
a true constant. Provided that, the postulate of autonomy says
that each constraint should be interpreted in accordance with
the sense of its notation and with regard to the underlying
assumptions (usually not reflected in notation). In particular,
weaker constraints should not be treated as “worse” than the

stronger ones but, for the most part, as speaking in favor of
variability.

9.3 Dependence on the employed theory and assump-
tions

Many factors involved in determination of the bounds put
on G variation are theory or assumption dependent. For ex-
ample, stringent constraints derived from BBN (Accetta et
al. [1], Rothman & Matzner [68]) are valid only for Brans-
Dicke theory; likewise, the constraint derived by Guenthner
et al. [32] bases on the Brans-Dicke type theory with vary-
ing G. Most of constraints, even when not visibly shown in
their notation, base on observations testing Dirac’s LNH, i.e.
are focused on the possible decrease of G. This in particu-
lar concerns the results derived from geophysical and pale-
ontological data: impact of the Earth surface temperature on
ancient organisms, expansion of Earth and the relevant differ-
ence in paleolatitudes between two sites of known separation
(allowing to deduce the paleoradius), spin-down of the Earth
due to its expansion, recession of the Moon and its impact on
tides reflected in fossils. The respective data depend on too
many conditions to repose excessive trust in their precision,
and thus to consider them as fully reliable assumptions. In
his extensive review study, Uzan [74] pays attention on these
other sources of uncertainty connected with particular con-
straints.

9.4 Variation of Newton’s constant and the age of uni-
verse

Assuming that increase of G extends the age of universe, the
rate of G variation would be smaller than the here quoted
value 7.25 × 10−11yr−1 thus better fitting observations. How-
ever, according to the Friedmann equation

H2 =

( ȧ
a

)2
=

8πG
3

ρ −
kc2

a2 +
Λc2

3
, (49)

variation of G has a negligible impact on the age of uni-
verse. For k = 0 (flat universe) and Λ = 0, density becomes
critical (ρc = 3H2(8πG)−1, and thus Friedmann equation re-
duces itself to identity H2 ≡ H2 becoming insensible to the
change of G. In such a case, the age of universe simply
equals the inverse of Hubble’s constant (t = H−1). How-
ever, for Λ , 0, currently estimated for Λ(const) ≈ 10−52 m,
dark energy (in a form of cosmological constant) predom-
inates from a certain moment, so that t and H−1 more and
more diverge. In an accelerating universe driven by dark en-
ergy, the rate of increase of G determined by G ∝ Ru also
accelerates, which means that its declining in the unit time
gradually slows down. Hence, in the far future, G ∝ Ru will
translate to G ∝ H−1 rather than to G ∝ t.

9.5 Equivalence of gravity and inertia

As is known, there are (currently) four notions of mass: 1) ac-
tive gravitational mass — measure of ability to create gravi-
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tational field or curvature, 2) passive gravitational mass —
measure of “sensing” the gravitational field by a body (in the
Newtonian depiction, respectively: measure of the force ex-
erted by a body and measure of the force experienced by a
body), 3) inertial mass — measure of resistance against the
force accelerating a body (including the force of gravity), and
4) mass as a measure of energy according to E = mc2. Nu-
merous experiments performed over a long time up to present
days have shown with increasing precision that inertial mass
and passive gravitational mass are proportional to each other:
m(inert) ∼ m(pass) (week equivalence principle). In turn, since
active and passive gravitational masses are interchangeable
according to the Newton’s third law, so also active gravita-
tional mass and inertial mass are proportional to each other:

m(act) ∼ m(inert) . (50)

The active gravitational mass is proportional to the Newton’s
constant: m(act) ∼ G. In fact m(act) is inseparable from G,
which means that any change in the active mass should be
interpreted as the change in the Newton’s constant. Conse-
quently, inertial mass is thought to follow the putative varia-
tion of G:

∆G → ∆m(inert) . (51)

This would make the so-called “inertial reaction force” al-
ways (i.e. also in the time-slice experiments) equivalent to
the gravitational force. At the same time, variation of the
Newton’s constant would not affect the mass interpreted as
the source of positive energy. Accordingly, the tests on G
variation derived from celestial mechanics (e.g. LLR) would
be basically ineffective, while the other ones (e.g. based on
stellar physics) would still remain valid.

10 Quantitative predictions of the varying Chandrase-
khar limit hypothesis, based on G ∝ Ru, c = const

We shall now consider the VCM hypothesis in the form re-
lated to the BHC specified as G ∝ Ru i.e. G ∝ t. On
the assumption that the rate of Hubble expansion is approxi-
mately uniform, the Chandrasekhar limit depends on cosmic
time as MCh ∝ t−3/2. This determines characteristic “delay
time” for a single white dwarf, defined as the time needed
to reach the WD’s mass by the decreasing MCh. It makes
thereby a basis for the quantitative predictions of VCM as
to the rate of supernovae events, interpreted as a function
of cosmic time. While, in general, the anticipated by VCM
ability of a single WD to become the supernova meets the
problem of the paucity of SNe Ia progenitors, the detailed
predictions obviously demand more circumstantial investiga-
tion. One has to regard: 1) the number of single WDs within
a given area (in particular, the number of their representative
sample); 2) the mean/median mass of this sample; 3) the re-
spective “delay time” for the median mass, determined by
MCh ∝ t−3/2. Besides, in predicting the rate of distant SNe
Ia one should also regard the related to distance intrinsic time

of the observed events, and a corresponding value of Chan-
drasekhar limit. Once a distance is well defined, the respec-
tive limit should be treated as constant, considering the neg-
ligible (compared with the assumed rate of change in MCh)
time devoted to observation. Instead, for the nearby SNe Ia
one may fairly assume MCh ≈ 1.4M�.

Let us apply the above to our Galaxy. For the sake of
simplicity (an also taking into account the uncertainty in all
data), we shall not regard the contribution of SNe Ia orig-
inated in binaries. We aim to estimate the present rate of
SNe Ia, deriving it from accessible data, according to the
above quoted three points. As is known, the Galaxy contains
roughly 100-400 billion stars, above 97% of them supposed
to end as white dwarfs, which however includes both actual
WDs and the potential ones. According to the estimations
based on SPY project, the space density of WDs within the
radius of 20 pc is (4.8±0.5)×10−3 pc−3 while the correspond-
ing mass density amounts to (3.2±0.3)×10−3M� pc−3, which
gives the overall mean mass (M)WD ≈ 0.665M� (Holberg et
al. [35]). Instead Kepler et al. [39], basing on catalog elabo-
rated by Eisenstein et al. [24] from the SDSS Data Release 4,
found significant difference in the WD’s mean mass between
DA and DB stars (hydrogen and helium layers, respectively);
namely (M)DA ≈ 0.593M� and (M)DB ≈ 0.711M�. Consider-
ing the number of DA and DB in the sample (7167 and 507,
respectively), one gets the (M)WD ≈ 0.6M�. We shall us this
value in the further calculations.

In order to estimate the total number of white dwarfs in
the Milky Way, we have to multiply the WD’s space density
by the Galaxy volume. Certainly, such an extrapolation is en-
cumbered by significant uncertainty, as it is doubtful whether
the sample obtained from the relatively close neighborhood
(thin disc, in general) is typical for the whole Galaxy includ-
ing thick disc, halo and the galactic bulge. Different parts of
Galaxy vary in age, so WD’s population is likely inhomoge-
neous in age and density. Evaluating the radius for 15, 000 pc
and the mean thickness for 5, 000 pc and multiplying this by
WDs’ local density, one obtains: (3.5×1012 pc3)×(5×10−3) ≈
1.7 × 1010 . This gives an insight into the actual number of
WDs, consistent with a list brought by the Research Consor-
tium on Nearby Stars (RECONS). According to the latter, 8
of the nearest 100 stars are the white dwarfs, which, provided
this to be the representative ratio, gives the total number be-
tween 0.8 × 1010 to 3.2 × 1010 , dependently on the assumed
total number of stars (100-400 billion).

The next step is to derive the “mean delay time” (T )del for
the WD’s mean mass (M)WD. The respective algorithm reads

(T )del =

(
t

Tu
+ 1

)2/3

× Tu − Tu (52)

Tu-age of universe, t – an auxiliary delay time not regarding
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the power index, yielding

t =
Tu

(MCh/∆MWD) − 1
, (53)

where ∆MWD = MCh − (M)WD. After conversion, one has

(T )del =

(
MCh

(M)WD

)2/3

× Tu − Tu . (54)

Inserting MCh = 1.4M�, (M)WD = 0.6M� and Tu = 13.8 Gyr,
one obtains (T )del ≈ 10 Gyr. Dividing the number of white
dwarfs in Galaxy by that time gives the rate of roughly 1-3
events per year, a frequency exceeding the observed rate by
a factor > 102 . However, this prediction does not concern
the present rate but a hypothetic rate averaged over the above
calculated (T )del. One should not identify (or confuse) “aver-
aged” with “uniform” mainly because WD’s masses subject,
in general, to the Gaussian distribution:

f (x, µ, σ) =
1

σ
√

2π
e−(x−σ)2/2σ2

(55)

(σ-standard deviation, µ-mean of the distribution) and the re-
spective probability function:

Prob[a 6 x 6 b] =

∫ b

a
f (x) dx . (56)

The observed standard deviation is significantly smaller than
one (σ2 � 1) yielding substantial peak around the median
mass 0.6M�. Obviously, only WDs of the mass close to
1.4M�, corresponding with the relatively short mean delay
time, contribute to the present rate of SNe Ia. We assume
that any single white dwarf of the mass close to MCh is, de-
pendently on specific conditions (rotation, chemical composi-
tion), a potential SN Ia at any moment during the slated delay
time. Admittedly, the most massive known WD only slightly
exceeds 1.3M�; this however should be associated with the
fact that less than one-millionth of the whole population of
WDs in Galaxy are identified so far. A similar difficulty con-
cerns specifying the expression “close to 1.4M�”. Bearing in
mind an inevitable uncertainty, let us determine the respective
range for [b− a] ≈ 0.1M�, assuming that, dependently on de-
tailed conditions, any WD of the mass between 1.3 − 1.4M�
may become the SNe-Ia. For that mass range, the unit nor-
mal distribution yields less than 0.1% of the entire population,
say, ≈ 107. The mean mass of this “representative sample” is
1.35M�. It follows:

Tdel ≈ (1.4/1.35)2/3 × 13.8 − 13.8 ≈ 0.34 (Gyr) . (57)

The respective rate is then

107

3 × 108 = 3 × 10−2 (yr−1). (58)

This still slightly exceeds the observed rate, provided the lat-
ter is 6 1 events per 100 years. However, considering the
mentioned above reservations, it would not be reasonable to
attach excessive importance to this or that particular num-
ber. The real number of single WDs from the representative
sample may prove to be much smaller than 107 . The mass-
range of potential progenitors may appear slightly narrower
or wider. In general, more accurate data may support or fal-
sify our hypothesis.

11 Conclusion

We have considered the SNe Ia progenitor problem in the
context of general problem of the constancy of fundamental
constants. Basing on arguments derived from the black-hole
cosmology, we have singled out the Newton’s constant as the
most probable candidate for “inconstant constant”. Since the
increase of G involves the decrease in the value of Chan-
drasekhar limit MCh, both questions meet together yielding a
hypothesis according to which a single white dwarf can alone
become the progenitor of SN Ia.

Admittedly, the ongoing progress in observational tech-
niques together with an improvement in stellar physics may
bring solution to the progenitor problem dispensed with vio-
lating the constancy of Chandrasekhar limit. A tacit heuristic
strategy connected with searching for the SNe Ia progenitors
consists in attempts of making the SD and DD models flexible
enough to eliminate the observed discrepancies. For the time
being however the problem still exists, which makes solutions
going beyond the binary paradigm justifiable and noteworthy.

The unbiased estimations seem to support the main thesis
of this article, i.e. that MCh decreasing according to G ∝ Ru

may explain the paucity of SNe Ia progenitors. It is to be
noted that, predicted by G ∝ Ru immense growth of the New-
ton’s constant from the initial to present value (G/G0 = δ2 ≈

10124) almost completely applies to the very early and early
universe, preceding structure formation. Since the oldest SNe
Ia detected so far: SN UDS1 0Wil (Wilson) and SN 1997ff

reach about 11 Gyr the part of increase of the Newton’s con-
stant shaping the Chandrasekhar limit does not exceed the
one order of magnitude, being much smaller in the case of
overwhelming majority of the observed events.
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The behaviour of an electron with mass me and half spin when passing through a mag-

netic field with fixed strength B0 is studied. The motion of the particle is restricted to

a ring with radius R, thus assuming periodic boundary conditions. We also focused on

magnetic field evolving adiabatically in time, the magnetic field is expressed as a func-

tion of angle φ and θ i.e only the direction of the magnetic field vectors change while the

strength B0 is kept fixed. Expression for eigenenergies were drawn for a fixed energy

and sample values of α, ω, θ and x = mR2/~2.

1 Introduction

An intriguing example emerging from asymmetric spin-inter-

actions are skyrmion lattices. In 1989 Alexey Bogdanov pre-

dicted that for anisotropic chiral magnets there is a new mag-

netic order consisting of topologically stable spin whirls, na-

med skyrmions after the English particle physicist Tony Skyr-

me, who showed that localized solutions to non-linear quan-

tum field theories may be interpreted as elementary particles.

Briefly speaking, skyrmions are topologically stable whirls in

fields.

In 2009, a new magnetic order was observed in Man-

ganese Silicide (MnSi) for specific temperatures and mag-

netic fields by Mühlbauer et al [1]. The physics of an electron

moving through the magnetic field can be analyzed from two

different points of view:

From the point of view of the electron, i.e. considering

the problem in terms of emergent electric and magnetic fields,

the change in spin orientation is equal to an effective Lorentz

force acting on the electron, which is perpendicular to its mo-

tion [2]. As a result, the magnetic field induces a deflection

of the electron, which can be measured by making use of the

topological Hall-effect [3]. Because of the electron carrying

an electric charge, a potential may be measured perpendicular

to the direction of the current. Since the magnetic structure

of the skyrmion lattice is very smooth, the adjustment of the

spin of the electron to the magnetization of the skyrmion lat-

tice can be considered an adiabatic process.

On the other hand, there must be a corresponding counter-

force acting on the skyrmion. This force, arising from the

transfer of angular momentum from the conduction electrons

to the local magnetic structure (cf. [4]), can for example re-

sult in a drift of the domains of the lattice. A 1-D model

of an electron passing over a static magnetic field has previ-

ously been investigated in the Bachelor’s thesis of M. Bae-

dorf [5]. Berry phase physics and spin-scattering in time-

dependent magnetic fields has been studied by Sarah Maria

Schroeter [6].

In this work, the behaviour of an electron with mass me,

when passing through a magnetic field with a fixed strength

B0 is studied.

2 Formulation of the problem

The behaviour of a half spin particle, more specifically an

electron, when passing through a magnetic field with a fixed

strength B0 is considered. The parameter φ sets the position

where the particular magnetic field is measured. At every

position φ on border of the circle, we attach an imaginary

3D-sphere which determines the direction of the field vector.

In effect, the magnetic field is constituted by mere spherical

coordinates. In addition, we allow variation of both angle φ

and θ in time with frequency of ω1 and ω2 respectively:

B(r, t) = B0 n̂(φ, θ, t) (1)

B(r, t) = B0





















sin(θ − ω2t) cos(φ − ω1t)

sin(θ − ω2t) sin(φ − ω1t)

cos(θ − ω2t)





















(2)

B(r, t) = B0





















sin(θ̃) cos(φ̃)

sin(θ̃) sin(φ̃)

cos(θ̃)





















(3)

where φ̃ = φ−ω1t and θ̃ = θ−ω2t. The Hamiltonian is made

up of a kinetic part and a part arising from the interaction of

particle with the magnetic field:

H0(r, t) =
p̂2

2me

+ B(r, t)
gs|µB|

h
S (4)

where S is the electron spin, gs is the spin g-factor and µB is

the Bohr magneton

|µB|=
|e|~

2me

.

We confine ourselves to the xy-plane, with the real space pa-

rameter θ = π/2 and radius R kept fixed. The nabla-operator
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is simplified as:

∇ = êr

∂

∂r
+ êθ̃

1

R

∂

∂θ̃
+ êφ̃

1

R sin θ̃

∂

∂φ̃
(5)

which becomes

∇2 =

(

1

R

∂

∂φ̃

)2

. (6)

Thus, we can now rewrite the Hamiltonian H0 as

H0 = −
~

2

2mR2

(

∂

∂φ̃

)2

+ |µB| B0(r, t)σ (7)

where σ is a vector of Pauli matrices and for any unit vector

n̂, we find a rotation matrix ℜ such that ℜ ˆ̃φ = n̂ so that (7)

can be rewritten as

H0 =
~

2

mR2















−
1

2

(

∂

∂φ̃

)2

+
|µB|B0

~2/mR2
n̂σ















(8)

H0 =
~

2

mR2















−
1

2

(

∂

∂φ̃

)2

+ αn̂σ















=
~

2

mR2
H̃0 (9)

where

α =
|µB|B0

~2/mR2
; S =

~

2
σ ; gs = 2.

Combining the operators generating the translation and rota-

tion gives

g = −i~
∂

∂S
1 +
~

2R
σz = −

i~

R

∂

∂φ̃
1 +

~

2R
σz (10)

g̃ = −i
∂

∂φ̃
1 +

σz

2
(11)

where g̃ is a rescaled version of g. By careful construction

of g, H̃0 and g̃ commute, consequently H0 and g indeed com-

mute.

[H̃0, g̃] =















−
1

2

(

∂

∂φ̃

)2

+ αn̂σ,−i
∂

∂φ̃
1 +

σz

2















(12)

[H̃0, g̃] =















−
1

2

(

∂

∂φ̃

)2

,−i
∂

∂φ̃















+

[

αn̂σ,−i
∂

∂φ̃

]

+

+















−
1

2

(

∂

∂φ̃

)2

,
σz

2















+

[

αn̂σ,
σz

2

]

(13)

[H̃0, g̃] = iα

(

∂

∂φ̃
, n̂σ

)

+

+
n̂σ

2

(

[σx, σz], [σy, σz], [σz, σz]
)

(14)

with

[σi, σ j] = 2i ∈i jk σk.

[H̃0, g̃] = iα

[

∂

∂φ̃

(

sin θ̃ cos φ̃σx + sin θ̃ sin φ̃σy+

+ cos θ̃σz

)

]

+ iαn̂(−σy, σx, 0)

(15)

[H̃0, g̃] = iα
(

− sin θ̃ sin φ̃σx + sin θ̃ cos φ̃σy
)

+

+ iαn̂(−σy, σx, 0)

(16)

[H̃0, g̃] = 0. (17)

We have shown that H̃0 and g̃ possess the same system of

eigenfunctions, with that, we regard g̃ as a generalized mo-

mentum operator.

2.1 Solution to momentum operator

We now establish the eigenfunctions of g̃ solving the eigen-

system
(

−i
∂

∂φ̃
1 +

σz

2

)

|ψ〉 = K|ψ〉 (18)

−i
∂

∂φ̃
1 |ψ〉 =

(

K −
σz

2

)

|ψ〉 =















(

K − 1
2

)

0

0
(

K + 1
2

)















|ψ〉 (19)

with eigenvalues

λ 1
2
=

(

K ∓
1

2

)

(20)

and the respective eigenfunctions

|ψ1〉 =

(

1

0

)

ei (K− 1
2 )φ =

(

ψ1

0

)

(21)

|ψ2〉 =

(

0

1

)

ei (K+ 1
2 )φ =

(

0

ψ2

)

. (22)

As we study the motion of a particle on a ring, we require

|ψ(φ)〉 to fill periodic boundary condition

|ψ(φ)〉 = |ψ(φ + 2π)〉ei(K∓ 1
2 )2π = 1K = n +

1

2
; n ∈ Z (23)

This means that the momentum is quantized. The general

solution to (18) is linear combination of both eigenfunctions

|ψ(φ)〉 = C1(t)|ψ1(φ)〉+C2(t)|ψ2(φ)〉 =

(

C1(t)|ψ1(φ)〉

C2(t)|ψ2(φ)〉

)

(24)

where C1(t) and C2(t) do not depend on φ.

2.2 Solution to the time-dependent Hamiltonian

Ultimately, we are interested in computing the time-depen-

dent coefficients C1(t) and C2(t) in order to receive full so-

lution of the Schrödinger equation when solving the time-

dependent Schrödinger equation, we employ the solution to
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the momentum operator in order to simplify the eigensystem

associated with g̃ as follows:

i~∂t|ψ〉 = H0|ψ〉 =
~

2

mR2















−
1

2

(

∂

∂φ̃

)2

+ αn̂σ















|ψ〉. (25)

See the last page for intermediate equations (26) and (27)

i~∂t|ψ〉 = H0,K,φ̃(t)|ψ〉 (28)

where H0,K,φ̃(t) is defined by equation (27).

2.2.1 Setting up the Schrödinger equation for the time-

dependent coefficients

To set up the Schrödinger equation for the time-dependent co-

efficients C1(t) and C2(t) is by transforming the Schrödinger

equation for |ψ〉:

i~∂t|ψ〉

(

C1(t)ψ1

C2(t)ψ2

)

= H0(t)

(

C1(t)ψ1

C2(t)ψ2

)

i~∂t|ψ〉

(

C1(t)

C2(t)
ψ2

ψ1

)

= H0(t)

(

C1(t)

C2(t)
ψ2

ψ1

)

.

(29)

Employing the equation (27) computed solution to the

momentum operator, we know that
ψ2

ψ1
= eiφ and may write

(see the last page for intermediate equations (30) and (31)):

i~∂t

(

C1(t)

C2(t)

)

= H0,K,ω

(

C1(t)

C2(t)

)

(32)

where H0,K,ω is defined by equation (31).

2.3 Moving into a rotating coordinate system

To solve the eigensystem, we transform H0,K,ω(t) by changing

into a coordinate system rotating clockwise with a frequency

ω = ω1

(

˜C1(t)
˜C2(t)

)

= e−
i
~

S zωt

(

C1(t)

C2(t)

)

= e−
i
2
σzωt

(

C1(t)

C2(t)

)

. (33)

In another way, (33) becomes
(

C1(t)

C2(t)

)

= e
i
2
σzωt

(

˜C1(t)
˜C2(t)

)

(34)

where

e
i
2
σzωt = Σn

(

i
2
σzωt

)n

n!
= Σn

(

i
2
ωt

)n

n!

(

1n 0

0 (−1)n

)

=

(

e
i
2
ωt 0

0 e−
i
2
ωt

)

.

Substituting of (32) in (34) gives:

i~∂t

(

e
i
2
ωt 0

0 e−
i
2
ωt

) (

˜C1(t)
˜C2(t)

)

= H0,K,ω

(

e
i
2
ωt 0

0 e−
i
2
ωt

) (

˜C1(t)
˜C2(t)

)

.

(35)

Multiplying L.H.S of (35) by e
i
2
σzωt, we obtain

(

e−
i
2
ωt 0

0 e
i
2
ωt

)















e
i
2
ωt

(

−~ω
2
+ i~∂t

)

0

0 e−
i
2
ωt

(

~ω
2
+ i~∂t

)















(

˜C1(t)
˜C2(t)

)

=

(

− ~ω
2

0

0 − ~ω
2

) (

˜C1(t)
˜C2(t)

)

+ i~∂t

(

˜C1(t)
˜C2(t)

)

.

Also multiplying R.H.S of (35) by e
i
2
σzωt we have:

(

e−
i
2
ωt 0

0 e
i
2
ωt

)

HK

(

e
i
2
ωt 0

0 e−
i
2
ωt

) (

˜C1(t)
˜C2(t)

)

=

















1
2

(

K − 1
2

)2
+ α cos θ̃ α sin θ̃

α sin θ̃ 1
2

(

K + 1
2

)2
− α cos θ̃

















(

C̃1(t)

C̃2(t)

)

.

As a consequence, (35) yields (see the last page for interme-

diate equation (36))

i~∂t

(

C̃1(t)

C̃2(t)

)

= C

(

C̃1(t)

C̃2(t)

)

. (37)

Comparing (37) with the corresponding static Schrödinger

equation for time-independent coefficients, one observes that

C is the Hamiltonian one receives when considering static

magnetic field (cf. [5]) combined with an additional matrix

(

ωmR2

2~
0

0 −ωmR2

2~

)

.

We now deal with time-independent θ̃ and time-dependent φ̃,

so that θ̃ = θ = constant. As eigenvalues of the operator C

we get (see the last page for equation (38)), which correspond

to the energies of the lower and upper band. E− corresponds

to a magnetic moment which is parallel to the magnetic field.

2.4 Determining the rotated time-dependent coefficients

To determine the solution to (36) i.e find a representation of

the rotated time-dependent coefficients ˜C(t)1 and ˜C(t)2, an

equation of the form

i~∂t

(

C̃1(t)

C̃2(t)

)

= C

(

C̃1(t)

C̃2(t)

)

can immediately be found to have the solution

(

C̃1+(t)

C̃2+(t)

)

= e−iE+ tX+ (39)

(

C̃1−(t)

C̃2−(t)

)

= e−iE− tX+ (40)

where E+, E− and X+, X− are the eigenvalues and correspond-

ing normalized eigenvectors of the matrix C respectively.

More precisely, the later are found to be given by equation

(41) and normalization factor (42) given on the last page.
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2.5 Establishing the solution to the initial Schrödinger

equation

Combining (39) and (40) with already computed static parts

of the wave function (21) and (22) as well as multiplying

the respective components with the e factor which sets the

wave function back into a non-rotating coordinate system (see

(34)), we receive the exact solutions to the initial Schrödinger

equation (27)

|ψ〉K,+ = e−iE+ t

(

x1,+e
i(K− 1

2 )φei ω
2

t

x2,+ei(K+ 1
2 )φe−i ω

2
t

)

;

+,K〈ψ|ψ〉K,+ = 1

(43)

|ψ〉K,− = e−iE+ t

(

x1,−e
i(K− 1

2 )φei ω
2

t

x2,−ei(K+ 1
2 )φe−i ω

2
t

)

;

−,K〈ψ|ψ〉K,− = 1

(44)

The solutions (43) and (44) specific to energies E− and E+
(and respective bands + and -) corresponding to the solution

to one K, hence the indices.

3 Numerical solution to the eigenenergies

First, let us turn back to the exact eigenenergies we computed

in section 2.2, equation (38). We consider an incoming wave

function with a fixed energy ∈ (given on the last page). For a

fixed energy ∈n = ∈o + nω there are maximal four real solu-

tions for K(n, σ, δ), which correspond to the propagation di-

rections δ = l, r and the two possible eigenenergies of the re-

spective wave functions, i.e. the alignment of the spin σ = +,

− with respect to the magnetic field, (see Fig. 1).

4 Discussion

The Schrödinger equation for a half spin particle in a time

dependent magnetic field is presented. Depending on the en-

ergy, there are up to four real solutions for K. The energy

function E+(K) lies below the function E−(K) for all specific

K, (see Fig. 1). For a fixed energy below the minimum of E−
there are no real solutions. For a fixed energy between both

minima there are two real solutions which correspond to a

spin aligned in the direction of the magnetic field and waves

propagating towards the left or the right. For an energy above

two minima there are four real solutions. In this case, both

directions of propagation and both spin orientations occur.

5 Conclusion

In this paper, the exact wave function of a particle moving

through a non-colinear time-dependent magnetic field is com-

puted. Also, it is confirmed that the motion of a half spin

of an electron through the chosen magnetic field is an adia-

batic problem evolving with time. We found that for a time-

dependence of the position of the electron, there are no emer-

gent electric fields since the undisturbed Hamiltonian can be

mapped onto a time- independent one by unitary transforma-

tions.

Fig. 1: Eigenenergies E±(K) plotted versus the momentum eigen-

value K for sample values of α, ω, θ and x = mR2/~2. The points of

intersection Ki with a fixed energy ∈ determine the propagation di-

rection and the spin alignment of the wave function. We set α = 10,

ω = 0.1, θ = π and x = mR2/~2 = 10.
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i~∂t|ψ〉 =
~

2

mR2



















− 1
2

(

∂
∂φ̃

)2
+ α cos θ̃ α sin θ̃e−iφ̃

α sin θ̃eiφ̃ − 1
2

(

∂

∂φ̃

)2
− α cos θ̃



















|ψ〉 (26)

i~∂t|ψ〉 =
~

2

mR2

















1
2

(

K − 1
2

)2
+ α cos θ̃ α sin θ̃e−iφ̃

α sin θ̃eiφ̃ 1
2

(

K + 1
2

)2
− α cos θ̃

















|ψ〉 (27)

i~∂t

(

C1(t)

C2(t)
ψ2

ψ1

)

=
~

2

mR2























(

1
2

(

K − 1
2

)2
+ α cos θ̃

)

C1(t) + α sin θ̃e−iφ̃C2(t)eiφ

α sin θ̃eiφ̃C1(t) +

(

1
2

(

K − 1
2

)2
− α cos θ̃

)

C2(t)eiφ























(30)

i~∂t

(

C1(t)

C2(t)

)

=

















1
2

(

K − 1
2

)2
+ α cos θ̃ α sin θ̃eiω1t

α sin θ̃e−iω1 t 1
2

(

K + 1
2

)2
− α cos θ̃

















(

C1(t)

C2(t)

)

(31)

i~∂t

(

C̃1(t)

C̃2(t)

)

=
h2

mR2

















1
2

(

K − 1
2

)2
+ α cos θ̃ + ωmR2

2~
α sin θ̃

α sin θ̃ 1
2

(

K + 1
2

)2
− α cos θ̃ − ωmR2

2~

















(

C̃1(t)

C̃2(t)

)

(36)

E± =
~

2

mR2



























K2 + 1
4

2
±

√

√

√
(

K − ωmR2

2~

)2

4
− α

(

K −
ωmR2

2~

)2

cos θ + α2



























(38)

X± =

(

x1,±

x2,±

)

=
1

N±

















~
2

mR2

(

− 1
2

(

K + 1
2

)2
+ α cos θ

)

+ ~ω
2
+ E±

~
2

mR2α sin θ

















(41)

N2
± =















~
2

mR2















−
1

2

(

K +
1

2

)2

+ α cos θ















+
~ω

2
+ E±















2

+ (α sin θ)2 (42)

E± =
~

2

mR2



























K2 + 1
4

2
±

√

√

√
(

K − ωmR2

2~

)2

4
− α

(

K −
ωmR2

2~

)2

cos θ + α2



























= const =∈o (45)
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Assuming the big-bang is a periodic 4-dimensional event, we show that the main pa-

rameters of the ΛCDM model, namely matter, dark energy and total density, can be

computed straightforwardly from Mach’s principle and that the existence of dark mat-

ter is not necessary. As a result, we find that the cosmos expansion is the origin of mass

and energy — but not the big-bang as a singular event.

1 Introduction

The object of this note is to show that once assumed that the

big bang is a periodic event, and using absorber theory, the

dark matter field is un-necessary in cosmology, and the dark

energy is the natural free field of the absorber.

2 The Absorber and cosmology

Mach’s principle states in a very general manner: local phys-

ical laws are determined by the large scale structure of the

universe. This principle is the basis of the Wheeler-Feynman

absorber theory [1, 2]. They suppose that the energy of par-

ticles is given by a time-symmetrical field; this interpretation

was made by Tetrode and assumes that particles are not self-

interacting. The main equations go as follows:

Etotal(x j, t) =
Σn, j

(

Eret
n (x j, t) + Eadv

n (x j, t)
)

2
, (2.1)

Edamping(x j, t) =
Eret

j
(x j, t) − Eadv

j
(x j, t)

2
, (2.2)

Etotal(x j, t) = Edamping(x j, t) + Σn, jE
ret
n (x j, t) . (2.3)

They define the energies of the damping (2.2) and the total

field (2.1–2.3), from advanced and retarded components for

each particle (index j). The central idea is that the advanced

field not being causal, it can only have damping effects while

energetic interactions are causal. The theory was designed in

electrodynamics but here we assume the field at the origin of

gravitation and energy (including mass-energy and inertia),

and propagating on the light cone.

The standard model of cosmology is based on general

relativity theory (GRT). The idea is that the cosmos is self-

contained (no outer realm), and internal metric expansion.

However, it requires a unique event at its beginning, the so

called big bang, resulting in the conceptual problem of its

cause. Here we use Mach’s principle on a larger scale: we as-

sume the observed cosmos part of a wider 4-dimensional area.

A 4-space denoted universe which we assume Euclidean with

its own time and evolves as follows:

• A central location exists at the origin of the cosmos; we

shall call it the emitter;

• A new cosmos or membrane is emitted periodically;

the membranes separation is constant;

• The membrane progression is radial; the emitter pro-

duces more membranes and so on.

This structure is reminiscent of a wave; it is a manner

to solve the problems of origin (the system is permanent); the

membranes separation, if large enough, avoids the problem of

instantaneous inflation. It also has the elegance of simplicity

and the expansion is immediately linear. The idea at the basis

of this concept was triggered-off by the recent observation of

cosmological oscillations by Ringermacher and Mead [3].

3 Gravitation and energy

Now evidently, we have to build a theory from scratch; that

is to say from experimental evidences. We shall use the fol-

lowing: we know from experimental gravitation physics that

fixed clocks at different heights in the field have different

rates; and the pulsation of photons and material system are

constant in free fall. Equivalently, it is said that gravitation

defines the context in which the rest of physics lives. Ac-

cording to Mach’s principle it implies only a local variation

of density which depends on the structure of the universe.

Denoting the density g, it varies according to 1/r as it

addresses energy. This is classically written with:

g(r) = g∞
(

1 −
f (M)

r

)

, (3.1)

where f () is an undefined function of mass. The Newton po-

tential reads:

Γ = Γ0
−

G M

r
. (3.2)

Then G depends on f (), and Γ0 is usually an arbitrary constant

and the rest energy of a mass m is E0 = mc2. But now energy

is given by the absorber mechanism and then the constant is

Γ0 = c2. Then we write:

E = m

(

c2
−

G M

r

)

. (3.3)

Therefore the density g defined in (3.1) is linked to mass-

energy and to the velocity of light.
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In a relativistic manner we can for instance define a vari-

able c∗, use invariant masses and write:

c∗2 = c2
−

2 G M

r
. (3.4)

Since frequencies and wavelengths evolve conversely in the

gravitational field, we write:

c2 dτ2 = c∗2 dt2
−

c2

c∗2
dr2. (3.5)

Substituting from (3.4) this is the Schwarzschild metric. The

pulsations of photons and of material systems in free fall are

constant and then this equation applies identically to any form

of energy. The concept is different from general relativity

(GRT) but the equation is experimentally verified exactly in

the same manner — that is to say uniquely in the solar system

since all other verifications lead to suppose the existence of

dark matter.

4 Dark energy and matter density

The absorber is time-symmetrical with causal effects; it con-

cerns the total currents within the event horizon, say MA c2

the absorber “free” mass/energy. Equilibrium exists in the ab-

sorber process, and then the currents interfering with a mass

m depend on m/MA. We assume linear expansion; the visi-

ble cosmos radius is then RU = c/H = c T where H is the

Hubble parameter and T the age of the membrane. Then by

symmetry, we write:

Em

MA c2
=

m

MA

×

(

1 −
M RU

MA r

)

. (4.1)

This is the Newton potential but the standard cosmological

model is based on GRT which gives a factor 2GM like from

(3.4–3.5), then in the standard theory the absorber free energy

will be estimated from:

RU

2 MA

=
G

c2
. (4.2)

Using c, G and H we can now compute the absorber free en-

ergy; we find:

MA =
RU c2

2 G
= 8.790 × 1052 Kg. (4.3)

Considering visible energies MV c2, the ratio MV/MA is geo-

metrical as it corresponds to the surface of a 4-sphere ; it is

then 1/2π2. Then the factor 2 in (4.2) becomes 4π2 in 3+1D

where masses interact. It gives:

2MA = 4π2 MV → MV = 4.453 × 1051 Kg. (4.4)

Summing (4.3–4.4), we get the total energy of the cosmos:

Mtotal = MA + MV = 9.236 × 1052 Kg. (4.5)

It corresponds to a density ρ = 9.91 × 10–27Kg/m3 and the

visible part (4.2) is 4.82% of the total. The benchmark at

this time is the Plank mission results [4] which is ρ = 9.90 ×

10–27Kg/m3 and 4.9% of visible energy.

Hence according to the most favored model in cosmology

we get three valid quantities in (4.3, 4.4, 4.5) which are de-

duced from the absorber symmetry and depend on geometry,

c, G and H = 1/T . We do not get any dark matter, and as-

suming those results are significant we cannot afford any —

though one could think that it may hide in MA. But here the

concept is different; the field is time-symmetrical and it can-

not be an independent field as its relative amplitude is given

by geometry.

With the results in this section we face two possibilities:

• TheΛCDM model parameters are tuned to match a lin-

ear expansion and it results in (4.3, 4.4, 4.5); which is

a little surprising.

• A simple coincidence for MA, but maybe a relevant re-

sult for MV .

One way to make our mind is to develop the theory and check

if the field needs dark matter.

5 The short range gravitational field

In (4.1) it appears that either G or MV is variable; if we con-

sider MV constant, then G is a scale factor in proportions of

RU , but it is scale-independent on cosmological scales where

RU/r is constant.

In standard physics, one uses G, c and masses constant;

we can then use the same constant quantities and it should

give the differences between the Newton theory and the grav-

itational field given by our equations, at least a short range.

In this section we consider that only t evolves and T ≫ t > 0;

it is linked to the Hubble factor H or RU since the scenario of

emission gives:

H(T ) RU(T ) = c→ H(T ) =
c

(R0 + c T )
≈

1

T
, (5.1)

where R0 = RU(T = 0) and T is the elapsed time since the

separation of our membrane. Then from (4.2–5.1), denoting

RU(T )→ RU we can also write:

G MA

(RU − c t)
= c2. (5.2)

Now all is constant except t and we can take a second order

limited development; then denoting H(T ) → H, and using

(5.1–5.2) we get:

G MA H

c
×

(

1 +
H r

c
−

H2 r2

c2

)

= c2. (5.3)

Multiplying G in the Newton potential by the terms of the

limited development in (5.3) we introduce retarded interac-

tion and then causality in the field (which is not in Newton’s
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theory). The potential is extended as:

Γ = Γ0
−

G M

r
−

G M H

c
+

G M H2 r

c2
. (5.4)

Let us analyze how this potential works:

It first adds a constant negative energy term (–G M H/c)

with no gravitational impact. It is then the contribution of the

mass M to the constant c2; it is the free absorber field and

M must be summed to 2 MA. Using (4.2) it leaves a negative

constant –c2 on the right-hand side. We get:

Γ = Γ0
− c2
−

G M

r
+

G M H2 r

c2
.

Then Γ0 = c2 is immediate and the physical origin of energy

is the expansion, not the big-bang.

The next term is then of identical nature and we sum again

M to 2 MA . Using (4.2) again yields G MA H2 r/c2 = H c r

(giving an acceleration H c). We now get:

Γ = Γ0
− c2
−

G M

r
+ H c r . (5.5)

But Γ0 = c2 and Γ < 0; then rescaling notations with

Γ + c2
→ Γ and using (4.2) we choose to write:

Γ

c2
= 1 −

M RU

2 MA r
+

r

RU

. (5.6)

It is well-known that stars at galaxies borders experience

an anomalous centripetal acceleration in the range H c. This

acceleration is the origin of the dark matter hypothesis by

Oort in 1932.

Here the potential c2 and the acceleration Hc are the ef-

fects of expansion and retarded interaction; it must be seen as

the origin of energy and the known problem of conservation

related to this acceleration is inexistent.

A second classical objection is that this anomaly is not ob-

served in the solar system; however, we assume the absorber

at the origin of mass/energy and the immediate consequence

is that it transform in acceleration. We can directly transform

the density g; that is, with acceleration H c in any direction, a

transformation L exists verifying:

L

(

Hc, g

(

T −
r

c

))

= g(T ) . (5.7)

The following transformation holds:

g

(

T −
r

c

)

×

(

1 +
H r

c

)

= g(T ) . (5.8)

Because once extended to any acceleration A in place of H c,

and replacing r → ct, the non relativistic case gives:

g (T − t)
A

c
=
g (T ) − g (T − t)

t
.

The right-hand of this equation is a time derivative, hence:

g A

c
=

dg

dt
→

g

c
=

dg

dv
. (5.9)

It shows that a density obeying (5.8) creates resistance to ac-

celeration and that mass increases with velocity. Hence the

field is not Galilean, it is then a-priori relativistic. The equa-

tion (5.8) is equivalent to (and also justified by) the equation

(5.2), but symmetrical where the field transforms in accelera-

tion. This calculus shows, by symmetry, that a cosmological

acceleration of the sun and its satellites in the direction of

the galaxy core rescales the density and eliminates the term

H c r; hence no second cosmological acceleration of its satel-

lites can exist directed to the sun (and so on with planet’s

satellites).

6 Energy and the quantum world

6.1 Correspondence with the classical field

In this section, we shall continue using G constant and masses

variable with time. The non-reduced Plank units and the Sch-

warzschild radius will be useful to the discussion. Recall:

MP =

√

h c

G
, lP =

√

h G

c3
, tP =

√

h G

c5
, RS =

2 G m

c2
.

The equation (4.2) is equivalent to saying that the visible

cosmos is defined by the Schwarzschild radius of MA. The

unique property of the Plank mass is that its Schwarzschild

radius and wavelength are equal; it is then pivotal and using

(4.2), we first write:

2 MA

M2
P

= 4π2 MV

M2
P

=
RU c

h
. (6.1)

A similar equation can be written for any material system of

mass m using its Schwarzschild radius:

2 m

M2
P

=
RS c

h
.

Hence, one could think that (6.1) is nothing new, but this is

interesting firstly because this equation uses MA and RU , and

not Mtotal as we may classically expect. It shows that any

mass m and MA come from the same mechanism, but in a re-

ciprocal manner since the two quantities define opposite limit

radius and obey the same equation. A complimentary equa-

tion gives unit-less ratios:

2 MA

MP

=
RU c2

G
×

√

G

h c
=

RU

lP

=
T

tP

. (6.2)

It expresses the same link with quantum physics; the system

of units [2MA,RU , T ] is the time integral of the Plank system

[MP, lP, tP]. Again, it can be written with any mass m, but
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not with MV or Mtotal. Now using h = c = G = 1 we have

MP = tP = lP = 1, and the only evolving quantities are:

T = RU = 2 MA = 4π2 MV . (6.3)

In the most natural system of units the cosmos energy is triv-

ial and it appears to evolve. This is due to the choice of G

constant. In facts, the cosmos expands exactly of one Comp-

ton wavelength of any massive system during one period of its

pulsation (this is just λ = h c/E). The system [2 MA,RU , T ]

is just a time integral, and a system of units its differential.

Consequently, the physical link with the quantum world is

also trivial: The cosmos expansion gives an action h at each

period of any system pulsation. It gives a very natural ori-

gin to the basics of quantum physic where energy is a time

differential, E = h ν.

We find identity of expansion, wave and energy, in perfect

agreement with the results of the previous section.

6.2 The field

The Plank mass is pivotal in (6.1–6.2) then we model the ab-

sorber with an evolving field φ given by:

2 MA Mφ = M2
P → Eφ =

h c

RU

≈ 1.52 × 10−51 J . (6.4)

This is the energy of a field of wavelength RU (≈ 10−32 eV).

Its energy is proportional to 1/RU and decreases with time.

But the laws of nature do not change; hence (6.4) is scale

dependent but valid at any epoch and it is legitimate to write:

Eφ(r) =
h c

r
, Pφ(r) =

h

r
, (6.5)

which addresses identically a hypothetical cosmos of radius

r, and the field at a distant r of any mass.

A spherically inflating membrane defines a frame which

is moving at velocity v = c r/RU at distance r from the attrac-

tive body M; then notice:

h

Mφ v
= r,

h

Mφ(r) v
= RU , (6.6.1)

Pφ(r) =
h

r
= Mφ

c2

v
. (6.6.2)

The two expressions in (6.6.1) are equivalent to a de Broglie

wavelength and in (6.6.2) momentum transfers on the light

cone but in proportions of the phase velocity of the de Broglie

wave. Now on top of the potential c2, gravitation can be seen

as a negative energy field. The equation (6.6.2) then corre-

sponds to negative momentum on the light cone where the

exchanged quantum is given by the de Broglie wave phase

velocity V = c2/v, and its emission rate is the Compton fre-

quency of its source. In this way, we can write the field equa-

tions in an interesting semi-classical manner where all quan-

tities depend on pulsation and momentum:

G

c2
=

1

Pφ(RU)
×

1

νA(T )
= const, (6.7)

F = −
Pφ(r)2

Pφ(RU)
×

νM(T ) νm(T )

νA(T )
= −

GMm

r2
, (6.8)

Γ

c2
= 1 −

Pφ(r)

Pφ(RU)
×

νM(T )

νA(T )
= 1 −

GM

rc2
, (6.9)

where notations are trivial for the Compton frequencies of the

masses m, M, and 2 MA at the epoch T . From (6.4), the de-

nominator is time independent, and then the choice of G con-

stant is legitimate. (Though the alternate choice MV constant

where G is a scale factor also holds.)

6.3 Advanced and retarded components

Now let us show that the equations (6.8–6.9) are approximate

and come from causality. Using constant masses, G is a scale

factor and we can use the same limited development as be-

fore but with little interest; instead we shall use the absorber

equations in section 2. In (6.8–6.9) the denominator is con-

stant but the masses at the numerator evolve in proportion of

time. Then using first (6.9) without the potential c2, consider

the distance r = ct constant; at the time T the retarded and ad-

vanced momentum from M will be felt by m respectively like

Pφ(r) νM(T− t) and Pφ(r) νM(T+ t) in proportion of m. Recall

also νM(T ) = kT , then we first write the damping potential; it

gives the participation of M to the potential c2 which we sum

to the absorber mass:

Γdamping

c2
= −

Pφ(r) νM(T− t) − Pφ(r) νM(T+ t)

2 Pφ(RU) νA(T )

= +
Pφ(r) νM(t)

Pφ(RU) νA(T )
= +
νM(T )

νA(T )
→ +1. (6.10.1)

Now the retarded potential:

Γretarded

c2
= −

Pφ(r) νM(T− t) + Pφ(r) νM(T+ t)

2 Pφ(RU) νA(T )

= −
Pφ(r)

Pφ(RU)
×

νM(T )

νA(T )
. (6.10.2)

Of course their sum is causal and it gives:

Γretarded

c2
+
Γdamping

c2
= 1 −

Pφ(r)

Pφ(RU)
×

νM(T )

νA(T )
, (6.10.3)

which is causal, agrees with (6.9), and now includes the po-

tential c2 from integration; but it misses the acceleration H c.

A similar exercise is then needed on energy but we shall use

forces as it will give the orientation of the acceleration; here

we have to evaluate these on the full system (m plus M) ex-

erted by all masses of the cosmos at the instant T . We shall

do as if M and m were in a circular orbit at equal distance r of

a third object (or their center of mass) as it is a representative

test case. The retarded force on the system corresponds to the

force from M(T− t) to m(T+ t), summed with the force from

m(T− t) to M(T+ t); using again r = ct we get:

Fret

c2
= −Pφ(2r)2 νM(T− t) νm(T+ t) + νM(T+ t) νm(T− t)

Pφ(RU) νA(T )
.
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The advanced forces are identical and exerted at T− t; we get:

Fadv

c2
= −Pφ(2r)2 νM(T+ t) νm(T− t) + νM(T− t) νm(T+ t)

Pφ(RU) νA(T )
.

The damping force is null as it is the difference between those

two expression; the retarded force is their sum and we extract

the part related to νM(t) νm(t) as the rest of the expression is

identical to the potential; we get:

∆F = +Pφ(r)2 νM(t) νm(t)

Pφ(RU) νA(T )
> 0 .

To simplify this expression we replace each momentum by its

value (6.5) and use the linearity of m(t) = m(T ) × t/T :

∆F = +
νM(T ) × h νm(T )

νA(T ) RU

→ −H c m(T ) < 0 . (6.10.4)

This expression depends only on T and we sum (for instance)

M to get the effect on m of all masses of the cosmos; the

sum is valid since the expression is independent of r. The

sign of the force is negative since the masses in the sum are

geometrically external to the system (except for the system

itself which is negligible).

6.4 The Plank scale potential

At the Plank scale, (6.5) yields:

Eφ(lP) =
h c

lP

= MP c2 . (6.11)

This is the expected result in particles physics. But here the

field is dependent on its source and this energy level does not

pervade all space, the potential is c2 and just multiplied by

mass. Then, and more subtly, from (6.9), the main terms of

the field potential cancel exactly at the Plank scale.

This section show the coherence of the classical field dis-

cussed in section 5 with the quantum world because the only

equation introduced here is Et = h or equivalently P = h/r.

7 Oscillations, expansion, black holes

A membrane of this kind has large thickness and the emission

of the next membranes can be imprinted in the observable

cosmos geometry; this imprint must be damped in propor-

tions of the number of membranes existing between the emit-

ter and ours. The oscillation recently observed by Ringer-

macher and Mead [3] corresponds to 7 minima and 6.5 ±

0.5 phases. The amplitude of the oscillations increases with

distance. We interpret the minima as successive membrane

emissions, and ≈6.5 visible oscillation phases for 7 mem-

branes correspond to ≈ 50% of our membrane emission logi-

cally invisible, as a descending phase preceding its emission.

Now we want to understand the observation of 1A super-

nova since it leads to accelerated expansion and dark energy.

The Chandrasekhar limit gives the mass of the type 1A super-

nova on which luminosity depends:

Mlimit =
k M3

P

(µe mh)2
,

where k is a constant factor, MP the Plank mass, µe the av-

erage molecular weight per electron, and mh the mass of a

hydrogen atom. Hence, with variable masses, Mlimit evolves

like 1/T 2, which is in contradiction with observation (con-

stant chemistry and atomic physics). Therefore, as it should

in a gravitation theory, the field defines the context in which

the rest of physics lives. It means that the same field is also at

the origin of all charges interaction; not only of mass but of

all forms of energy.

Consider then Mlimit constant; the expression is epoch-

independent and then also the emission luminosity. Now as-

sume all measured red-shift are given by linear expansion (ne-

glecting oscillations). Then photons will disperse more than

with a decelerating expansion. A linear expansion is almost

in perfect agreement with observation as shown by Perlmutter

& al [5] and more recent works.

The ΛCDM model also uses baryonic acoustic oscilla-

tions to evaluate the size of the large structures of the cos-

mos; it requires dark matter and our equivalent is the acceler-

ation H c which becomes infinite when T → 0. Then, large

anisotropies of matter density should already be present at a

very early epoch and primordial black-holes are also possible.

At the Schwarzschild radius the field potential reads:

Γ

c2
= 1 − 1 +

RS

RU

. (7.1)

The field is then compatible with the existence of black holes,

which is obvious, but also with their stability since RS /RU is

epoch-independent. Since the exchanges are time-symmetric-

al it creates neither black holes inflation (a known problem of

pushing gravity) nor deflation.

8 Conclusion

We showed that the theory holds with no dark matter. It

comes as a pressure field given by the very first quantum

equation P = h/r; the gravitational field agrees with GRT re-

sults on a short scale and cosmology is straightforward. The

field is coherent with Mach’s principle; the emitter creates

dissymmetry and the differential between the advanced and

retarded field components create energy, gravitation, and the

acceleration H c.

Interestingly, this field necessarily defines the context in

which the rest of physics lives; hence it is also the origin of

particles interaction and therefore it interacts with charges.

Firstly the potential c2 comes as a pressure field and can be

interpreted as the Poincaré stress [6] and secondly it implies

bottom-up unification.
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9 Addendum

Still considering G constant, and since H = 1/T and m(T ) =

kT , the force in (6.10.4) is time-invariant. In this equation,

summing m(T ) to the absorber mass MA gives:

∆FMA = H c MA(T ) =
c4

2 G
=

Mp c2

2 lp

, (9.1)

which is half the Plank force; it also reads:

2∆FMA lp = Mp c2 . (9.2)

This is the work of a force 2∆FMA over the Plank length. We

also have Mp c2 = h c/lp, and then:

2∆FMA l2p = h c , (9.3)

which is the natural constant of the Yukawa interaction of the

SM Higgs field. It also gives:

2∆FMA lp tp = h . (9.4)

This is the action of a force 2∆FMA over the Plank length in

the Plank time. Those equations read as if in a cosmos which

radius is expanding at light speed (of length lp in time tp), a

scalar field of constant hc is creating an additional dark en-

ergy Mpc2/2 with an action h; then the total energy created

by ∆ FMA since the big bang is:

M =
Mp Ru

2 lp

→ M = MA , (9.5)

which, of course, is identical to (4.2). Finally, we have just

separated the forces of energy creation from the usual gravi-

tation and then energy conservation.

This reasoning is circular as we introduce MA at the be-

ginning of the calculus; but there is no naturalness problem in

the cosmology outlined here with respect to the constants of

quantum physics (the cosmological constant and the so called

“why now” problems are nonexistent). The novelty is the im-

mediate significance of the Plank units and the permanence

of energy creation; its power is constant and can easily be

computed, it is half the Plank power which is then a constant

of nature, and corresponds roughly to 2.4 W/Kg of dark or

visible energy at the present epoch.
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E-mail: felix.scholkmann@gmail.com

The recent (14th July 2015) flyby of NASA’s New Horizons spacecraft of the dwarf

planet Pluto resulted in the first high-resolution images of the geological surface-

features of Pluto. Since previous studies showed that the impact crater size-frequency

distribution (SFD) of different celestial objects of our solar system follows power-laws,

the aim of the present analysis was to determine, for the first time, the power-law scaling

behavior for Pluto’s crater SFD based on the first images available in mid-September

2015. The analysis was based on a high-resolution image covering parts of Pluto’s re-

gions Sputnik Planum, Al-Idrisi Montes and Voyager Terra. 83 impact craters could

be identified in these regions and their diameter (D) was determined. The analysis re-

vealed that the crater diameter SFD shows a statistically significant power-law scaling

(α = 2.4926 ± 0.3309) in the interval of D values ranging from 3.75 ± 1.14 km to

the largest determined D value in this data set of 37.77 km. The value obtained for the

scaling coefficient α is similar to the coefficient determined for the power-law scaling of

the crater SFDs from the other celestial objects in our solar system. Further analysis of

Pluto’s crater SFD is warranted as soon as new images are received from the spacecraft.

1 Introduction

The first close-up images of Pluto from NASA’s New Hori-

zons spacecraft, received in mid-September 2015, show a

complex surface structure of Pluto never seen before in this

detail. During the spacecraft’s flyby of Pluto on 14th July

2015, images were taken by New Horizons’ Long Range Re-

connaissance Imager (LORRI) with a cooled 1024 × 1024

pixel CCD camera from a distance of approx. 12,500 km

making it possible to obtain high-resolution images of Pluto’s

surface. Due to the slow transmission (about 1–2 Kbps), it

will take around 16 months for all flyby images of Pluto to be

received in full [1].

Many phenomena in astrophysics follow a power-law, i.e.

the relationship between features exhibits a scale-invariance.

Examples are the characteristics of the channel network on

Mars [2], the relationship between solar flare occurrence and

total flare energy [3], the correlation between a supermassive

black hole mass and the host-galaxy bulge velocity dispersion

(“M-sigma relation”) [4], the distribution of initial masses for

a population of stars (“initial mass function”) [5], Kepler’s

third law, or the distribution of galaxies in the universe [6–8].

Size-frequency distributions (SFD) of natural objects also

follow in general a power-law. Examples are the SFD of frag-

ment sizes due to a fragmentation process [9], the SFD of

landslides [10], the particle SFD of volcanic ash [11], the

mass distribution objects of the Kuiper belt [12] — or the

SFD of impact crater diameters on celestial objects.

Already in 1940 Young showed that the impact crater SFD

on the Earth’s Moon can be described by two power-laws

with different scaling exponents. Further studies extended

the analysis to other celestial objects, e.g. Earth [13], Mars

[14–16] and Mercury [17].

Due to the lack of high-resolution images available, it has

not been possible until now to analyze the impact crater SFD

of Pluto. With the first images now available from NASA’s

New Horizons mission, the aim of the present paper was to

conduct such a first, preliminary, analysis.

2 Materials and methods

2.1 Data

For the present analysis the raw images∗ obtained by the New

Horizons’ LORRI as of 14th September 2015 were visually

inspected in order to find an image showing impact craters of

Pluto with the highest resolution possible. An additional se-

lection criterion was that the image had to be taken by LORRI

at an angle capturing the region of interest maximally paral-

lel to the camera, minimizing geometrical distortions of the

features in the image.

The image lor 0299174809 0x630 sci 4 (in the following

denoted as LOR-0299174809) was selected as fulfilling these

criteria (see Figure 1(b)). LOR-0299174809 displays a par-

ticular area covering parts of Pluto’s regions Sputnik Planum,

Al-Idrisi Montes and Voyager Terra. The image was taken by

LORRI on 14th July 2015, 10:14:50 UTC, with an exposure

time of 150 ms.

2.2 Determination of crater diameter values

The image LOR-0299174809 was analyzed in Adobe Illustra-

tor (version CS5; Adobe Systems, CA, USA) by first visually

∗LORRI Images from the Pluto Encounter, http://pluto.jhuapl.

edu/soc/Pluto-Encounter
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identifying the craters on the image and measuring their di-

ameters (D). The obtained values were than rescaled to give

the final values in the unit km. To do so, the information given

on NASA’s website∗ was used. Information on the website in-

dicated that image number three (from top), which covers the

region displayed in LOR-0299174809, is 470 km in width.

2.3 Statistical analysis

For the statistical analysis we used the mathematical frame-

work provided by the Santa Fe Institute [18, 19]. The data

were analyzed in Matlab (version 2010a; Mathworks Inc.,

Natick, MA, USA).

2.3.1 Estimation of the lower-bound and exponent of the

power-law model

A quantity x shows power-law scaling if it stems from a prob-

ability distribution p(x) ∼ x−α, with the exponent α defining

the characteristics of the scaling. To test if an empirically

obtained probability distribution follows a power-law, classi-

cally a histogram is calculated and the distribution is analyzed

on a doubly logarithmic plot. Since p(x) ∼ α ln(x) + const.,

a power-law distributed quantity x follows a straight line in

the plot. Besides the fact that this method was (and is still)

used to investigate power-law scaling of different quantities

this approach can generate significant systematic errors [18].

Therefore, for the present analysis we used a framework pre-

sented by Clauset et al. [18] that circumvents these errors and

also offers the possibility of estimating the lower bound of

the power-law (xmin). The determination of xmin is crucial

when analyzing empirical data for power-law scaling since

often the power-law behavior applies only for the tail region

of the distribution, i.e. for values greater than the threshold

value xmin.

For the obtained crater diameter (D) data (= x) the power-

law threshold value Dmin (= xmin) was determined based on

the method described by Clauset et al. [18] which uses the

Kolmogorow-Smirnov (KS) statistics. The scaling exponent

α was then calculated with a maximum likelihood fitting

method also described by Clauset et al. [18].

2.3.2 Determination of the statistical significance of the

power-law fit

In order to determine if the fitted power-law can be consid-

ered statistically significant, a goodness-of-fit test described

by Clauset et al. [18] was employed. To this end, power-law

distributed synthetic data was generated with values of α and

xmin that are equal to the values obtained by fitting the em-

pirical data to the power-law model. Each synthetic data set

is than fitted to the model and the KS statistics determined.

Based on the occurrences of times the KS statistic is larger

∗http://tinyurl.com/n9k5mmc

than for the empirical values, a p-value is calculated. For

p < 0.1 the fit of the power-law model to the empirical data

is considered to be statistically not significant, i.e. it can be

ruled out that the empirical distribution obeys a power-law

scaling. Thus, the p-value in this case represents a measure

of the hypothesis that is tested for validity. A high value of p

corresponds to a good fit.

3 Results, discussion and conclusion

83 impact craters could be identified and their diameter val-

ues were determined, ranging from 0.84 km to 37.77 km.

Using the obtained 83 D values and the methods described

in Section 2.3.1, the scaling coefficient α was determined to

be α = −2.4926 ± 0.3309 and the scaling threshold value

to be Dmin = 3.75 ± 1.14 km. Thus, for D in the range

[3.75 ± 1.14 km, 37.77 km] the values follow a power-law.

The log-likelihood (L) of the data D > Dmin under the fitted

power law was determined to be L = 104.5688.

The statistical test, as described in Section 2.3.2, employ-

ing 10,000 synthetic data sets revealed a p value of 0.2241.

Thus, according the test the hypothesis cannot be refuted that

the data follows a power-law, i.e. Pluto’s crater SFD shows a

power-law scaling. Figure 1(c) visualizes the power-law be-

havior of the crater SFD.

How do the results of the presented analysis relate to the

findings about characteristics of the crater SFD of other celes-

tial objects? As mentioned in the introduction, it well estab-

lished that the crater SFD of all investigated celestial bodies

in our solar system exhibit a power-law scaling.

For example, according to an analysis performed by

Robertson and Grieve from 1975 the crater SFD of the Earth

is characterized by α ≈ −2 (for D > 8 km) [13]. An own

analysis using the updated data of impact craters on Earth

(n = 188) based on the Earth Impact Database† revealed

α = 2.0286 (for D > 7 km). The Earth Moon’s crater SFD has

been intensively investigated since the 1940’s when Young

[20] initially showed that for large D the crater SFD follows

a power-law with α = −3, and for small D the scaling is de-

scribed by α = −1.5. Subsequent studies described the scal-

ing with laws governed by α = 2 (for D = [∼ 2 km, 70 km])

[21], as well as α = −2 (for D < 100 m) and α = −2.93

(for D > a few 100 m) [22], for example. Further stud-

ies showed that the scaling-relations of the lunar crater SFD

need to include the observation that multiple power-laws are

necessary to describe the whole SFD spectrum, i.e. α de-

pends on D [23, 24]. A solution for optimally fitting the

crater SFD was described based on the idea of using a poly-

nomial function to fit the SFD data in the log-log space, i.e.

it could be shown that a polynomial function of 7th degree

fit the data well for D = [300 m, 20 km]. The polynomial

function included an extra term accounting for the fact that

the scaling function also depends on the geological charac-

†http://www.passc.net/EarthImpactDatabase

F. Scholkmann. Power-Law Scaling of the Impact Crater Size-Frequency Distribution on Pluto 27



Volume 12 (2016) PROGRESS IN PHYSICS Issue 1 (January)

Fig. 1: (a) View of Pluto taken in July 2015 by LORRI on board

NASA’s New Horizons spacecraft. In the field of view the west-

ern lobe of the Tombaugh region is depicted. (b) LORI im-

age lor0299174809 0x630 sci 4 showing a particular area covering

parts of Pluto’s regions Sputnik Planum, Al-Idrisi Montes and Voy-

ager Terra. (c) Visualization of the power-law scaling of the impact

crater size distribution. P(D): complementary cumulative distribu-

tion function; D: crater diameter. Images (a) and (b) were obtained

from NASA, Johns Hopkins University Applied Phsics Laboratory,

Southwest Research Institute.

teristics of the region investigated — a finding also made by

other studies (e.g., [24–26]). For an extended range of D, in

later work a 11th degree polynomial function was published

by Neukum [27] valid for D = [10 m, 300 km] and cover-

ing scaling exponents in the range of α = [−1, 4]. For the

Martian satellites Phobos and Deimos, the crater SFD was

determined as being described by a power-law with α ≈ 1.9

for D = [44 m, 10 km] [16].

Thus, the finding of the present analysis concerning the

power-law characteristics (i.e., α = 2.4926 ± 0.3309 for D =

[3.75 ± 1.14 km, 37.77 km]) of the crater SFD of Pluto is

comparable to the power-laws observed for the other celestial

bodies. That Pluto’s diameter scaling for D < 3.75± 1.14km

does not follow the α = −2.4926 scaling relies most prob-

ably on the fact that small craters are much faster deterio-

rated due to erosion and that counting of craters with small

D was not perfectly possible due to the limited resolution of

the available image. The lowest D value (3.75± 1.14 km) for

which the power law holds might interpreted as related to a

transition from simple to complex craters. Interestingly, such

a “transition diameter” was predicted for Pluto to be in the

range of 4–5 km [28–30].

This analysis, of course, should be regarded only as a pre-

liminary study for further follow-up as soon as the full set of

images from Pluto is available and the images have been pro-

cessed to deliver a high-resolution picture of Pluto’s surface

morphology. A limitation of the present analysis is that only

one high-resolution image with sufficient craters was avail-

able. It was therefore only possible to obtain a relatively low

number of crater diameter values (n = 83).

Knowledge of Pluto’s crater SPF will not only give in-

sights in the universality of the crater SFD scaling relations

but necessarily will also help in the understanding of the his-

tory of Pluto and the characteristics of the Kuiper belt which

Pluto is part of.
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We model physical signals using elements of the algebra of split octonions over the field

of real numbers. Elementary particles are corresponded to the special elements of the

algebra that nullify octonionic norms (zero divisors). It is shown that the standard model

particle spectrum naturally follows from the classification of the independent primitive

zero divisors of split octonions.

The algebra of octonions [1–3] is interesting mathemati-

cal structure for physical applications (see reviews [4–7]). In

this paper we suggest that split octonions over the reals form

proper mathematical framework to describe elementary par-

ticles and show that some physical properties, like the variety

of their spices, naturally follows from the structure of the al-

gebra.

In [8–10] different aspects of geometrical applications of

split octonions over the reals were considered. It is suggested

to use split octonions as universal mathematical structure in

physics, instead of vectors, tensors, spinors, etc. In this ap-

proach world-lines (paths) of particles are parameterized by

the elements of split octonions,

s = ω + λnJn + xn jn + ctI . (n = 1, 2, 3) (1)

Here a pair of repeated upper and lower indices implies a

summation, i.e. xn jn = δnmxn jm, where δnm is Kronecker’s

delta.

Four of the eight real parameters in (1), t and xn, denote

the ordinary space-time coordinates, and ω and λn are inter-

preted as the phase (classical action) and the wavelengths as-

sociated with the octonionic signals.

The eight octonionic basis units in (1) are represented by

one scalar (denoted by 1), the three vector-like objects Jn, the

three pseudo vector-like elements jn and one pseudo scalar-

like unit I. The squares (inner products) of seven of the hy-

percomplex basis elements of split octonions give the unit el-

ement with the different signs,

J2
n = 1 , j2n = −1 , I2 = 1 . (2)

It is known that to generate a complete basis of split oc-

tonions the multiplication and distribution laws of only three

vector-like elements Jn are enough [1–3]. The three pseudo

vector-like basis units, jn, in (1) can be defined as the binary

products,

jn =
1

2
εnmk JmJk , (n,m, k = 1, 2, 3) (3)

where εnmk is the totally antisymmetric unit tensor, and thus

describe orthogonal planes spanned by vector-like elements

Jn. The seventh basis unit I (the oriented volume) is defined

as the triple product of all three vector-like elements and has

three equivalent representation in terms of Jn and jn,

I = J1 j1 = J2 j2 = J3 j3 . (4)

So the complete algebra of all non-commuting hypercomplex

basis units has the form:

JnJm = −JmJn = εnmk jk

jn jm = − jm jn = εnmk jk

jmJn = −Jn jm = εnmk Jk

JnI = −IJn = jn

jnI = −I jn = Jn



























































. (5)

The conjugation of vector-like octonionic basis units,

J†n = −Jn , (6)

can be understand as reflections. Conjugation reverses the

order of Jn in products, i.e.

j†n =
1

2

(

εnmk JmJk
)†
=

1

2
εnmk Jk†Jm† = − jn

I† = (J1J2 J3)† = J
†
3
J
†
2
J
†
1
= −I























. (7)

So the conjugation of the pass function (1) gives

s† = ω − λnJn − xn jn − ctI . (8)

Using (2), (5) and (8) one can find the norm (interval) of

the pass function (1),

N2 = ss† = s†s = ω2 − λ2 + x2 − c2t2 , (9)

which is assumed to be non-negative. A second condition is

that for physical events the vector part of (1) should be time-

like [10],

c2t2 + λnλ
n > xnxn . (10)

One can represent rotations in the space of the split octo-

nions (1) by the maps,

s′ = eǫθ/2se−ǫθ/2 , (11)
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where θ is some real angle and ǫ denotes the (3+4)-vector de-

fined by the seven basis units Jn, jn and I [1–3, 10]. The set

of transformations (11), which satisfy the conditions (9) and

(10), form the group S O(3, 4) of passive transformations of

the coordinates xn, λn and t [11]. However, to represent the

active rotations in the space of s, which preserves the multi-

plicative structure (5) as well, we would need the transforma-

tions to be automorphisms. It means not all tensorial trans-

formations of the coordinates λn, xn and t, represent real rota-

tions, only the transformations that have a realization as asso-

ciative multiplications should be considered. Automorphisms

of split-octonions form subgroup of S O(3, 4), the noncom-

pact form of Cartan’s smallest exceptional Lie group GNC
2

[12, 13].

Infinitesimal transformations of coordinates, which cor-

respond to the action of the main geometrical group of the

model, GNC
2

, can be written as [10]:

x′n = xn − εnmkα
m xk − θnct +

+
1

2
(|εnmk|φm + εnmkθ

m) λk +















ϕn −
1

3

∑

m

ϕm















λn

ct′ = ct − βnλ
n − θnxn

λ′n = λn − εnmk (αm − βm) λk + βnct+

+
1

2
(|εnmk|φm − εnmkθ

m) xk +















ϕn −
1

3

∑

m

ϕm















xn























































































, (12)

with no summing over n in the last terms of x′n and λ′n. From

the 15 parameters (five 3-angles: αm, βm, φm, θm and ϕm) in

(12), due to the condition

∑

n















ϕn −
1

3

∑

m

ϕm















= 0 , (13)

only 14 are independent.

The transformations (12) can be divided into several dis-

tinct classes [10]. For instance, the GNC
2

-rotations by the an-

gles αn, βn and θn of the space-time coordinates only, imitate

the ordinary infinitesimal Poincaré transformations of (3+1)-

Minkowski space,

ct′ = ct − θn xn + a0

x′n = xn − εnmkα
m xk − θnct + an















, (14)

where the space-time translations are defined as:

a0 = − βnλ
n

an =
1

2
εnmkθ

mλk























. (15)

Time translations a0 are smooth, since βn are compact angles,

but θm are hyperbolic and for the spatial translations an we

have the Rindler-like horizons.

Note that Poincaré-like transformations (14) do not form

subgroup of GNC
2

(the subgroup structure of GNC
2

one can

be find, for example, in [13]), since we had neglected rota-

tions of the extra time-like parameters λn. Complete GNC
2

-

transformations reveal some new features in compare to the

Minkowski case, like parity violations [10].

Another class of automorphisms,

x′n = xn +















ϕn −
1

3

∑

m

ϕm















λn

t′ = t

λ′n = λn +















ϕn −
1

3

∑

m

ϕm















xn



























































, (16)

represent rotations through hyperbolic angles, ϕ1, ϕ2 and ϕ3

(of the three, due to (13), only two are independent) of the

pairs of space-like and time-like coordinates xn and λn, into

the orthogonal planes (x1 − λ1), (x2 − λ2) and (x3 − λ3). It

is convenient to define 2-parameter Abelian subalgebra of

GNC
2

by the generators of two independent rotations in these

planes. It is known that the rank of GNC
2

is two, as of the

group S U(3) [13,14]. In terms of the two parameters, K1 and

K2, which are related to the angles ϕn as

K1 =
1

3
(2ϕ1 − ϕ2 − ϕ3)

K2 = −
1

2
√

3
(2ϕ3 − ϕ1 − ϕ2)































, (17)

the transformations (16) can be written more concisely,

















λ′
1
+ Ix′

1

λ′
2
+ Ix′

2

λ′
3
+ Ix′

3

















= e(K1Λ3+K2Λ8)I

















λ1 + Ix1

λ2 + Ix2

λ3 + Ix3

















, (18)

where I is the vector-like octonionic basis unit (I2 = 1) and

Λ3 and Λ8 are the standard 3 × 3 Gell-Mann matrices [10].

Then one can classify irreducible representations of GNC
2

by

two fundamental simple roots of the algebra (K1 and K2) and

using analogies with S U(3) interpret them as corresponding

to the spin and hypercharge of particles. It is known that all

quarks, antiquarks, and mesons can be imbedded in the ad-

joint representation of GNC
2

[14].

In the approach [8–10] the norm (9) can be viewed as

some kind of space-time interval with four time-like dimen-

sions. The ordinary time parameter, t, corresponds to the dis-

tinguished octonionic basis unit, I, while the other three time-

like parameters, λn, have a natural interpretation as wave-

lengths, i.e. do not relate to time as conventionally under-

stood. Within this picture, in front of time-like coordinates in

the expression of pseudo-Euclidean octonionic intervals there

naturally appear two fundamental physical parameters, the

light speed and Planck’s constant. Then from the requirement

of positive definiteness of norms under GNC
2

-transformations,
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together with the introduction of the maximal velocity, there

follow conditions which are equivalent to uncertainty rela-

tions [9, 10]. Also it is known that a unique physical system

in multi-time formalism generates a large variety of “shad-

ows” (different dynamical systems) in (3+1)-subspace [15–

19]. One can speculate that information of multi-dimensional

structures, which is retained by these images of the initial sys-

tem, might takes the form of hidden symmetries in the octo-

nionic particle Lagrangians [10].

Split algebras contain special elements with zero norms

(zero divisors) [1], which are important structures in physi-

cal applications [20]. For the coordinate function (1) we can

define the deferential zero divisor,

d

ds
=

1

2

[

d

dω
− Jn

d

dλn

− jn
d

dxn

− I
d

cdt

]

, (19)

such that its action upon s is:

ds

ds
= 1 . (20)

The operator (19) annihilates s†, while the conjugated deriva-

tive operator,

d

ds†
=

1

2

[

d

dω
+ Jn

d

dλn

+ jn
d

dxn

+ I
d

cdt

]

, (21)

is zero divisor for s, i.e.

ds†

ds
=

ds

ds†
= 0 . (22)

From these relations it is clear that the interval (9) is a con-

stant function for the restricted left octonionic gradient oper-

ators,
d

dsL

(

s†s
)

=

(

ds†

ds

)

s = 0

d

ds
†
L

(

ss†
)

=

(

ds

ds†

)

s† = 0







































, (23)

and the invariance of the intervals,

ds2 = dsds† = ds†ds , (24)

in the space of split octonions can be viewed as an algebraic

property.

The octonionic wavefunctions Ψ, in general, should de-

pend on s and on s† as well. Thus we need the condition of

analyticity of functions of split octonionic variables,

dΨ(s, s†)

ds†
= 0 , (25)

which is similar to the Cauchy-Riemann equations from com-

plex analysis. It can be shown that the system of eight alge-

braic conditions (25), in certain cases [21], lead to the octo-

nionic Maxwell and Dirac equations [8].

Now consider non-differential zero divisors. These type

of quantities are distinct elements of the algebra and thus

in physical applications could be corresponded to the unit

signals (elementary particles). In the algebra of split octo-

nions two types of primitive zero divisors, idempotent ele-

ments (projection operators) and nilpotent elements (Grass-

mann numbers), can be constructed [1, 10]. There exist four

classes (totally eight) of primitive idempotents,

D±n =
1

2
(1 ± Jn) , (n = 1, 2, 3)

d± =
1

2
(1 ± I)































, (26)

which obey the relations:

D±n D±n = D±n

d±d± = d±















. (27)

The pairs (D+n ,D
−
n ) and (d+, d−) are zero divisors for each

other,
D±n D∓n = 0

d±d∓ = 0















, (28)

and thus commute,

[D+n ,D
−
n ] = [d+, d−] = 0 . (29)

We have also twelve classes (twenty four in total) of prim-

itive nilpotents,

G±nm =
1

2
(Jn ± jm) , (n,m = 1, 2, 3)

g±n =
1

2
(I ± jn)































, (30)

which are zero divisors for themselves,

G±nmG±nm = 0

g±ng
±
n = 0















. (31)

We see that separately the quantities (30) can be considered

as the Grassmann numbers, but do not commute with their

conjugates,

G±nnG∓nn = d∓

G±nmG∓nm = ǫnmkD±
k
, n , m (n,m, k = 1, 2, 3)

g±ng
∓
n = D±n































, (32)

in contrast to the case of projection operators (29). The quan-

tities G±nm and g±n are the elements of so-called algebra of

Fermi operators with the anti-commutators,

G±nmG∓nm +G∓nmG±nm = 1

g±ng
∓
n + g

∓
ng
±
n = 1















, (33)
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which is some syntheses of the Grassmann and Clifford

algebras.

We want to emphasize that the number of distinct prim-

itive idempotents (four) and nilpotents (twelve), and there

conjugates, coincides with the number of particle/antiparticle

spices (bosons and fermions, respectively) of the standard

model. This justifies our assumption that primitive zero di-

visors, which describe unit signals in the space of split octo-

nions, can be corresponded to the elementary particles. The

properties that the product of two projection operators re-

duces to the same idempotent (27), while the product of two

Grassmann numbers is zero (31), naturally explains the va-

lidity of the Bose and Fermi statistics for the corresponding

particles. In this picture distinct statistics follows from the

existence of the two types of “light-cones” in the octonionic

(4+4)-space (9), what shows itself in the definitions of the

primitive zero divisors (26) and (30). Also note that the num-

ber of the standard model particle generations and the amount

of spatial dimensions, both follow from the structure of the al-

gebra of split octonions and are connected with the exitance

of the three fundamental vector-like elements Jn.

To conclude, in this paper geometrical applications of real

split octonions are considered and elementary particles are

connected with zero divisors, the special elements of the al-

gebra which nullify octonionic intervals. It is shown that the

standard model particle spectrum naturally follows from the

classification of the independent primitive zero divisors of the

algebra.
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Recently it could be shown (Scholkmann, Prog. in Phys., 2016, v. 12(1), 26-29) that the

impact crater size-frequency distribution of Pluto (based on an analysis of first images

obtained by the recent New Horizons’ flyby) follows a power law (α = 2.4926±0.3309)

in the interval of diameter (D) values ranging from 3.75 ± 1.14 km to the largest deter-

mined value of 37.77 km. A reanalysis of this data set revealed that the whole crater

SFD (i.e., with values in the interval of 1.2–37.7 km) can be described by a truncated

Pareto distribution.

1 Introduction

The recent flyby of NASA’s New Horizons spacecraft allowed

high-resolution images of Pluto’s surface morphology to be

obtained, thus enabling a first determination of the impact

crater size-frequency distribution (SFD) of a specific region,

i.e., covering parts of Pluto’s regions Sputnik Planum, Al-

Idrisi Montes and Voyager Terra [1].

The first analysis of the crater SFD used a power law of

the type p(x) ∼ x−α to model the data. In the present pa-

per we show the results of an extended analysis. The in-

verse power law scaling is known as the Pareto distribution

p(x) ∼ x−(c+1). In the present paper we tested the hypothesis

that an upper truncated Pareto distribution (i.e., a Pareto dis-

tribution in which the probability range is limited rather than

infinite) can improve the modelling of the empirical crater

SFD presented in [1].

We review the properties of the Pareto and the truncated

Pareto distributions in Section 2, and report in Section 3 the

results of applying the truncated Pareto distribution to the

novel Pluto crater SFD data set.

2 From the Pareto to the truncated Pareto distribution

In the follwing we report the definitions of the probability

density function (PDF), the distribution function (DF), the

survival function (S) and the maximum likelihood estimator

(MLE) for the two distributions analyzed here. The sample is

made by crater diameter (D) values (n = 83) denoted by xi.

2.1 The Pareto distribution

The Pareto PDF is given by

f (x; a, c) = cacx−(c+1)
, (1)

with c > 0; the Pareto DF is defined as

F(x; a, c) = 1 − acx−c
, (2)

and the survival function is given by

S (x; a, c) = 1 − F(x; a, c). (3)

The parameter values can be estimated by applying the MLE:

a = min(xi), (4a)

1

c
=

(

1

n

) n
∑

i=1

ln

(

xi

ã

)

. (4b)

More details can be found in [2].

2.2 The truncated Pareto distribution

An upper truncated Pareto random variable is defined in the

interval [a, b], and the PDF is given by

fT (x; a, b, c) =
cacx−(c+1)

1 −
(

a
b

)c ; (5)

and the truncated DF is defined as

FT (x; a, b, c) =
1 −

(

a
x

)c

1 −
(

a
b

)c . (6)

The MLE determines the parameters according to

a = min(xi), (7a)

b = max(xi), (7b)

0 =
n

c̃
+

n
(

a
b

)c̃
ln

(

a
b

)

1 −
(

a
b

)c̃
−

n
∑

i=1

[ln xi − ln a] , (7c)

where the value of c̃ can be found using Brent’s method to

find a root of a nonlinear function, i.e., by applying the FOR-

TRAN subroutine ZBRENT [3]. More details can be found

in [4].
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Fig. 1: Survival function (S) in a log-log plot for crater size in D =

[1.38 km, 37.77 km]. Empty circles: empirical data, full line: S of

the truncated Pareto PDF, dotted line: S of the Pareto PDF. The K-S

test for the truncated Pareto gave PKS = 0.128 and dmax = 0.134.

The K-S test for the Pareto gave PKS = 0.0075 and dmax = 0.192.

3 Data analysis and results

For statistical testing the Kolmogorov–Smirnov (K-S) test

[5–7] was employed which does not require data binning.

The K-S test, as implemented by the FORTRAN subroutine

KSONE [3], finds the maximum distance (dmax) between the

theoretical and the empirical DF as well the significance level

PKS (see equations 14.3.5 and 14.3.9 in [3]). A value of

PKS > 0.1 assures that the fit is acceptable.

When using the impact crater SFD data of Pluto with

D = [3.75 km, 37.77 km] the Pareto PDF gave c = 1.5299

and thus α = 2.5299 (similar to the value α = 2.4926 reported

by [1]), and the K-S test gave PKS = 0.866 and dmax = 0.091.

Figure 1 shows the empirical and and the two fitted distri-

butions when the interval of crater size values is enlarged so

that all D values are included in the fitting, i.e., D = [1.2 km,

37.77 km]. The truncated Pareto distribution describes the

empirical crater SFD quite accurately over the whole interval

of D values available.

4 Conclusions

The distribution of crater diameters of planets is commonly

modeled by a power law. A small modification of the “sim-

ple” PDF by a truncated Pareto PDF (as given by equation

(5)) allows the dichotomy of the infinite rather than finite

range of existence to be avoided and provides better K-S test

statistics with respect to the Pareto PDF (i.e., a “simple”

power law), see captions of Figure 1.

In conclusion, we were able to show that the empirical

impact crater SFD of Pluto (using a first data set based on

recent New Horizons flyby) closely agrees with a truncated

Pareto distribution. Applying the same modelling approach

to an extended data set of Pluto’s crater values is warranted to

confirm our results – a task to be done as soon as new images

of the New Horizon spacecraft are available.
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The neutrino mass in four different independent formulations have been successfully

calculated on the basis of the mechanistic interpretation of J. Wheeler’s geometrody-

namics concept. Mechanical analogue of the weak interaction is presented. Its adequacy

is confirmed by the various variants for calculating the neutrino mass. The calculated

mass agrees well with the indirect estimation of the neutrino mass obtained on the basis

of cosmological data. It has been established that neutrinos can change its structure and

properties, in particular, a magnetic moment, that leads to changes in the power of de-

tected neutrinos flow (neutrino oscillations). The time constant of neutrino oscillations

is calculated.

1 Introduction

The geometrodynamics of the famous scientist John Archi-

bald Wheeler, who passed away in 2008, does not seem to

find favor among modern physicists.

According to J. Wheeler’s geometrodynamic concept

charged microparticles are considered therein as singular

points located in a non-unitary coherent two-dimensional sur-

face and connected to each other through “wormholes”, cur-

rent tubes, or current force lines of the input-output (source-

drain) kind in an additional dimension, thus forming a closed

contour. However, “wormholes” in space, if they are not con-

sidered as purely mathematical constructions, in its physical

embodiment can only be vortex formations of some kind sub-

stance that has the properties of an ideal fluid.

Assuming their existence, consistently developing and

complicating the concept, one has managed to develop the

mechanistic model, in which the properties of objects in both

the microcosm and space scales are grounded and defined by

using only the most general physical laws [1–4]. The deter-

mination of the neutrino mass and the calculation of other

characteristic parameters provided out later in this article are

the final confirmation of the correctness of the chosen model.

Experiments on the direct measurement of the neutrino

mass, based on the kinematics of weak decays, to date do

not give the exact value of neutrino masses, but only set the

upper limit for it (the limit is permanently decreasing). The

lowest limit is obtained indirectly by studying cosmological

data on the relict radiation, the galaxies recession and other.

According Adam Moss and Richard Battye’s analysis of the

data of Planck Space Telescope and their comparison with

gravitational lensing observations on distant galaxies gives an

upper limit for the total amount of neutrino masses of about

0.320 ± 0.081 eV [5].

2 Initial conditions

Recall that, in the proposed model, from a purely mecha-

nistic viewpoint the charge only manifests the degree of the

nonequilibrium state of physical vacuum; it is proportional to

the momentum of physical vacuum in its motion along the

contour of the vortical current tube. Respectively, the spin

is proportional to the angular momentum of the physical vac-

uum with respect to the longitudinal axis of the contour, while

the magnetic interaction of the conductors is analogous to the

forces acting among the current tubes [1].

In such a formulation the electric constant ε0 makes sense

the linear density of the vortex current tube

ε0 =
me

re

= 3.233 × 10−16 kg/m, (1)

and the value of inverse magnetic constant makes sense of the

centrifugal force

1

µ0

= c2ε0 = 29.06 n (2)

appearing due to rotation of an element of the vortex tube

having the mass me and the classical radius re with the light

velocity c; this force is equivalent to the force acting between

two elementary charges at the given radius.

Elementary particles are like vortex structures in an ideal

fluid which can stay in two extreme forms: the vortex at the

surface along the X-axis (let it be the analogue of a fermion of

the mass mx), and the vortex thread or a sub-surface vortical

current tube having of the peripheral velocity v, the radius r

and the length ly along the Y-axis (let it be the analogue of a

boson of the mass my). These structures oscillate inside a real

medium, passing through one another (forming an oscillation

of oscillations) showing that a mass (an energy) can have two

states and pass from one form to another.

In paper [2], proceeding from the conditions of conserva-

tion of charge and constancy parameters µ0 and ε0, the pa-

rameters of the vortex thread my, v, r for an arbitrary p+–e−-

contour were defined as

my = (an)2 me , (3)

v =
c

1/3

0
c

(an)2
, (4)

r =
c

2/3

0
re

(an)4
, (5)
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where n is the quantum number, a is the inverse fine structure

constant, c0 is the dimensionless light velocity c/[m/sec].

Wherein, referring to the constancy ε0 (linear density), it

is clear that the relative length of the tube current in the units

of re is equal the boson mass my in the units of me, i.e.

ly = my = (an)2 . (6)

In the framework of the model, the particles themselves

are a kind of a contour of a subsequent order, formed by the

intersection of the X-surface with the current tube, and they

have their own quantum numbers defining the influence zone

of these microparticles.

In [2] we determined that

np =

(

2c0

a5

)1/4

= 0.3338 (7)

for a proton, while for the electron we have ne = (np)1/2 =

0.5777.

To calculate the mass of an arbitrary fermion mi a formula

was obtained

mi = me

(

ne

ni

)14

. (8)

Hereinafter all the numerical values of the mass, size and

speed are given in dimensionless units: as the respective pro-

portions of the electron mass me, its radius re and the speed

of light c.

It is important to note that the vortex tube contour (which

the vortex thread fills helically) can be regarded as completely

“stretched”, i.e. elongated proportionally to 1/r or, contrary,

extremely “compressed” i.e. shortened proportionally to 1/r

and filling all the vortex tube of the radius re. In the latter

case its compressed length Lp = ly r is numerically equal to

the energy of the contour boson mass in the mass-energy units

me c2.

Indeed, because r = v2, the numerical values of the afore-

mentioned quantities (expressed in dimensionless units) are

in all cases identical, and for an arbitrary axis are

Lpi
= li ri = mi ri = mi v

2 =
c

2/3

0

(ani)2
. (9)

It is obvious that the mass of an arbitrary boson in the

mass-energy units matches its own numerical value my only

in the case of ultimate excitation of the vortex tube wherein

we have r → re and v→ c.

When considering a closed contour having contra-

directional currents from the balance of the magnetic and

gravitational forces recorded in a “Coulombless” form, the

characteristic size of the contour comes as a geometric mean

of two linear values [2], which in the re units has the form:

lk = (li ri)
1/2 =

(

zg1
zg2

ze1
ze2

)1/2

(2πγρe)
1/2
× [sec], (10)

where zg1
, zg2

, ze1
, ze2

, ri, li are gravitational masses and

charges expressed through the mass and charge of the elec-

tron, the distance between the current tubes and theirs length,

γ is the gravitational constant, while ρe is the electron density

me/r
3
e = 4.071 × 1013 kg/m3.

In the p+– e−-contour, proton quarks become an active

part of the proton mass, and are involved in the circulation.

Their mass as zg enters into the equation (10). When a proton

and an electron are approaching, for example, in the case of

e-capture, the contour becomes deformed and reduced.

3 Determination of the neutrino mass from the condi-

tions of weak interaction

Let the neutrino is a particle having fermion and boson parts;

the latter is separated in the weak interaction process (for

example, when electron-proton absorption occurs) from the

proton-electron X-contour into the region Y; see Figure 1. Let

us find the neutrino mass on the basis on the parameters of the

neutrino vortex tube.

Fig. 1: Scheme of formation of the neutrino.

For the X-contour, referring to (9), its energy-mass in

units of mec2 is

Lpx
=

c
2/3

0

(anx)2
. (11)

It is necessary to define the same parameters ny and Lpy

for the neutrino. Because of the special stability of the neu-

trino, one can assume that its structure is characterized by all

possible balances and symmetries.

Proceeding from energy balance, we assume that the ac-

tive part of the proton, i.e. the quark energy-mass, is equal to

the neutrino boson vortex tube energy-mass

mk = Lpy =
c

2/3

0

(any)2
. (12)
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For the p+– e−-X-contour it is accepted: zg1
/ze1
= 1, ze2

= 1

and zg2
= mk = Lpy . Then, using (9), from (10) we get:

Lpx

Lpy

= 2πγρe × [sec2]. (13)

Assume, due to symmetry, that the contour large axis

along X-axis and the neutrino vortex tube along Y-axis are

equal, i.e., rx = ly. Then, referring to (5) and (6), the relation

between the quantum parameters X and Y-contours is

ny n2
x =

c
1/3

0

a3
. (14)

Proceeding from the formulas (11–14), as a result, we

have

Lpx
= c

4/9

0

(

2πγρe × [sec2]
)1/3
= 1.51 × 105 (77 GeV), (15)

Lpy = mk =
c

4/3

0

L2
px

= 8.83 (4.51MeV), (16)

as well as the quantum parameter of the neutrino vortex tube

ny =
c

1/3

0

aL
1/2
py

= 1.643. (17)

Now, according to the equation (8) the neutrino fermion

mass is found:

mv =

(

ne

ny

)14

=

(

0.5777

1.643

)14

= 4.39 × 10−7 (0.225 eV). (18)

Additional sequels appear: the X-contour energy-mass is

very close to a W-boson mass (80 GeV), and the estimated

mass of a quark agrees well with that of the d-quark (4.8

MeV).

In more detailed consideration of the weak interaction,

process the possibility of finding the neutrino mass from the

conservation of energy and symmetry is detected. In the pro-

cess of e-capture, the proton-electron X-contour is reduced

and deformed in the Y-region. Being already the neutrino Y-

contour, it contains the neutrino mass instead of the electron

mass. Let us assume that at some intermediate state, before

the allocation in the vortex tube form, Y-contour still main-

tains its momentum (the unit charge). In this case the formula

(15) includes a neutrino mass mv (in the me units), and, at

ze2
= 1, applies to the neutrino contour. It has the form:

(Lpx
)v = c

4/9

0
m1/3
v

(

2πγρe × [sec2]
)1/3
. (19)

At the same time the X-contour initial energy-mass Lpx

has been transformed into the proton active part energy-mass

(i.e., the quark mass (Lpy)v). Then, referring to (16), we can

write

Lpx
= (Lpy )v =

c
4/3

0

(Lpx
)2
v

. (20)

As a result, considering (15) and (19) from (20) we ob-

tain:

mv =
(

2πγρe × [sec2]
)

−3/2
(21)

that gives 4.5×10−7 (0.23 eV), the amount actually coincided

with the result of the formula (18). With making the similar

actions under the condition of the short axes equality ry = lx,

then the same result has been got. In this case, contrary, Lpy =

(Lpx
)v that apparently corresponds to the inverse process of

the neutron in proton transformation.

Finally, the neutrino mass can be derived from the con-

ditions of complete symmetry, i.e. from the state that is in-

termediate between the neutron and the proton when the X

and Y-contours merge into one symmetrical contour at the

zero point coordinates. This state apparently occurs only un-

der some distinctive amount of the neutrino contour charge,

namely — it is the charge value per one structure unit of the

standard contour (per one photon) or e0/a [1].

Indeed, since for a symmetrical contour nx = ny, l = r =

c
2/9

0
and Lpx

= Lpy = c
4/9

0
, then by introducing into the initial

formula (10) ze2
= 1/a from (19) we obtain

mv = a−1
(

2πγρe × [sec2]
)

−1
, (22)

that gives 4.28 × 10−7 (0.219 eV), the same amount as the

resulting from the formulas (18) and (21).

Note that if a single photon has a linear size of 1/a of the

standard contour length, i.e. the value of c
2/3

0
/a, then the neu-

trino has a similar size of c
2/3

0
mv or 0.192 re. This value is

about 1/3 of the proton diameter; it is the linear quark dimen-

sion along the axis X. Indeed, since for the quark we have

n = 0.48, then rx = c
2/3

0
/(an)3.5 = 0.194 re [2]. This co-

incidence additionally points to the correctness of the proton

quark model, as set out earlier.

Full symmetry and the combining of the p+– e−-contour

and the neutrino contour are possible only in a special excited

state of the nucleon. In reality, the electromagnetic interaction

(nominal axis X) and weak interaction (nominal axis Y) are

realized separately, and then only in a certain scale range,

forming three generations of elementary particles [2]. That

is, here is a mechanical analogue of spontaneous electroweak

symmetry breaking in the SM.

Thus, the proposed model clearly describes the process

of the weak interaction (how a proton absorbs an electron).

The proton-electronic contour is reduced until the energy-

mass becomes equal to the energy of W-particles. Then it

transmits this energy and momentum (charge) to the proton,

transforming it into an excited state (the neutron); further the

contour is allocated into Y-region as the neutrino vortex tube

with the parameter ny = 1.643, keeping its spin and hav-

ing the value of energy-mass equal to that of the light d-

quark.
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4 Determination of the neutrino mass from the limit

conditions

At last, the neutrino mass is possible to be found directly from

the magnetic-gravitational equilibrium conditions; from the

equation (10), by substituting the limit conditions.

A vortex thread or tube in a non-viscous medium can be

either closed or having an output to the surface of X, that is

having a charge. The neutrino has no detectable charge and,

therefore, it represents a closed structure or a contour.

Assume that Planck’s size rh = (~γ/c3)1/2 has a phys-

ical meaning and it is the minimum size of the elementary

neutrino vortex contour, i.e., ri = rh = 1.616 × 10−35 m or

5.735 × 10−21 re. Then, taking into account (5) and (6), a ge-

ometric mean is obtained from (10) as

lk = c
1/6

0
r

1/4

h
. (23)

In [2] it is shown that any electron vortex tube includes

three vortex zones. But as one of the zones needs to be dou-

ble, there should in general be four vortex threads each con-

taining one-quarter of the electron total momentum (charge).

Therefore, the elementary neutrino should be viewed as a pair

of the closed vortex threads. Accordingly, two types of neu-

trinos are possible there: a pair of left-right rotation and, con-

versely, a pair of right-left rotation, obviously, as a neutrino

and an antineutrino.

For a pair of the vortex threads at ze1
= ze2

= 1
4

e0 and at

zg1
= zg2

, having in mind (23), from (10) it should be:

zg = mv =
c

1/6

0
r

1/4

h
(

32πγρe × [sec2]
)1/2
, (24)

that gives 4.31 × 10−7 (0.220 eV), the amount actually coin-

ciding with the results of the formulas (18), (21), and (22). It

should be noted that these results are only the ones of its kind

since these formulas include only the fundamental constants.

Thus, the two states of the neutrino are obtained — at the

moment of birth in the form of a vortex tube and in its ulti-

mate state in the form of a closed structure, and the fermion

neutrino mass in the initial state turned out equal to the grav-

itational mass of the neutrino vortex threads in the ultimate

state. Is it possible to reconcile these very different states?

Perhaps, it must be admitted that since the neutrino’s vortex

tubes initially contain all four single vortex threads then fur-

ther the neutrino transforms into two potentially possible final

forms (neutrino and antineutrino) maybe passing some inter-

mediate states.

As for the muon and the tau-neutrinos, the electron mass

in the formula (10) can be formally replaced by the masses

of the muon and the tau-particles, provided that the linear

density of the contour tube remains unchanged (that is not

obvious). Then, as follows from the above formulas, the

contours’ parameters are changed, and the contours are de-

formed “stretching” along their axes; the X-contour energy-

mass increases as the cube root of the relative weight of the

microparticle. For the muon contour Lpx
= 456 GeV, which

is equal to twice the value of the total energy-mass of the

standard p+– e−-contour (229 GeV) [1]. For the τ-contour

Lpx
= 1170 GeV. This value is the sum of the neutrino en-

ergy and that of the expected boson energy-mass of the third

generation, the heaviest one, which is not yet registered in ex-

periment; that is, having the value of about 1000 GeV, which

matches to the value defined earlier in [2]. As follows from

the above formulas masses of the muon and the tau-neutrinos

must be much less than that of the electron neutrino, and the

resulting formulas give different results that may indicate in-

stability of these neutrinos, like other particles of the second

and third generations.

The fact of the neutrino transformation is derived from the

model and confirmed by the experimentally detected neutrino

oscillations.

5 Neutrino magnetic properties and its oscillations

The neutrino boson vortex tube retains the electron spin, and

has a magnetic moment µ. The magnetic moment is deter-

mined relative to the axis Y. By definition, the µ is the product

of the charge × the velocity × the path. Suppose that for the

vortex thread the peripheral speed is v, while the path is πr.

Revealing v and r through (4) and (5), as a result we obtain

µ =
πc0 c e0 re

(an)6
Am2. (25)

(Ampere at a “Coulombless” system is equivalent to the act-

ing force.)

The neutrino magnetic moment in the moment of its allo-

cation µv0 according to formula (25) at ny = 1.643 is 9.81 ×

10−31 Am2. Moreover, it appears that this value with high ac-

curacy is equal to the geometric mean of the proton magnetic

moment µp and the vortex tube magnetic moment with aver-

age parameter lk (Compton wavelength), which complies to

ny = 8.07 [2]. Its magnetic moment µk = 6.99 × 10−35 Am2,

which corresponds to 0.75× 10−11 Bohr’s magneton. That is,

µv0 =
(

µpµk

)1/2
. (26)

Such a large magnetic moment of neutrinos are not de-

tected, but what is significant, it is the magnetic moment µk

close to 10−11 Bohr’s magneton that requires the neutrino to

explain the anticorrelation of the registered neutrino flow with

the magnetic flow near the sun surface. It is assumed that the

neutrino magnetic moment interacts with the magnetic field

in the outer convective layers of the sun, which leads to the

spin precession of neutrinos changing its helicity from left

to right; and the right neutrinos are not registered by detec-

tors [6, 7]. The same neutrino magnetic moment is required

because of some astrophysical limitations regarding the dy-

namics of stars [7].

So it is logical to assume that the neutrino magnetic mo-

ment, an originally very large magnitude, rapidly decreases
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to the value of about 10−11 Bohr’s magneton at the intersec-

tion of the Sun’s surface, and in the neutrino ultimate state

it becomes absolutely negligible. The reason for this is the

transformation of the neutrino contour, which is analogous to

the process of the transformation of a neutron into a proton.

Indeed, if the counter comprises several vortex threads

with co-directed currents, they must be rotated relative to the

longitudinal axis. At the same time, since by definition an

elementary unit of the model medium (vortex thread) is abso-

lutely inelastic and at the same time is absolutely deformed,

the closed counter must be deformed (“turned out”) in differ-

ent structures by changing its parameters.

From the equality of the magnetic and inertial (centrifu-

gal) forces for the vortex threads the peripheral rotation speed

relative to the longitudinal axis of the contour is obtained

v0 =

(

ze1
ze2

)1/2
re

(2π)1/2
× [sec]

. (27)

This speed does not depend on the length of the vortex threads

and distances between them and for the unit charges is 1.124×

10−15 m /sec.

Earlier [2], it was found that the time constant of the trans-

formation process (the ratio of the counter size to the periph-

eral speed) has appeared equal to the neutron lifetime.

Similarly, the time constant for the neutrino can be ex-

pressed in the forms τv = ry/v0. Then, referring to (5), with

n = 1.643, we obtain τv = 4.37 × 10−4 sec (the time constant

should be increased with the decrease of the residual charge

of the neutrino). During this time the neutrinos having the

speed of light move away from the source at a distance of

1.31 × 105 m. If they would transform to another form, a de-

crease in their number would be registered when the detector

would be displaced from the source at a distance not less than

the calculated value.

It is the distance the largest neutrino detector KamLAND

(Kamioka Liquid Scintillator Anti-Neutrino Detector, Hon-

shu island, Japan) has registered a decrease of the neutrino

flow in the nuclear reactor antineutrino experiments [8]); see

Figure 2 (the data are taken from [8]).

6 Conclusion

Thus, one value of the neutrino mass has been derived by

theoretical methods. Moreover, the same result was then ob-

tained in four different formulas and three of them on the ba-

sis of the classical mechanistic model (actually through the

analogue of spontaneous electroweak symmetry breaking in

the SM). The results coincided with the indirect estimate of

the neutrino mass derived from cosmological data. It was es-

tablished that neutrinos may exist in various forms. It arises

in the form of the electron neutrino with the mass of about

0.22 eV and further during the transition to its final state with

the same mass may possibly change its parameters like the

mass and magnetic moment, which results in the changes of

Fig. 2: The ratio of the measured neutrinos flows in the expected

ones if there is no oscillations for experiments with reactor neutri-

nos.

a detectable power neutrino flow (oscillations). It is possible

that the muon-neutrinos and tau-neutrinos are not stable. Ap-

parently, they are the intermediate states of the totally stable

electron neutrino.

The fact that the same neutrino mass is obtained in several

ways may indicate that the values of other fundamental con-

stants can also be obtained through the neutrino mass, which

apparently is a key element of matter.
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This study presents a hypothesis of the origin and maintain of the magnetic field of the

Earth and the planets. The mechanism of the tides on the opposite side of the Earth from

the Moon is considered. The possible causes that enforce the continents to displace are

discussed in couple with the causes that distort the shape of the Earth, and the causes of

the jumps of the astronomical time. A mechanism of earthquakes is proposed, as well

as a version of the appearance of the “magnetic tubes” in the Sun. The source of the

forces causing the equatorial current and wind is shown.
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Books of physics are full of complicated mathe-

matical formulae. But thought and ideas, not for-

mulae, are the beginning of every physical theory.

Albert Einstein

That hypothesis which explains the current world

with the fewest assumptions and means should

have an advantage, because it is less arbitrary.

Empedocles, On Nature, the Law of Economy

The form of development of natural science, in so

far as it thinks, is the hypothesis. . . If one should

wait until the material for a law was in a pure form,

it would mean suspending the process of thought in

investigation until then and, if only for this, reason,

the law would never come into being.

Friedrich Engels, Dialectics of Nature

1 Introduction

The Earth’s magnetic field makes our planet habitable —

there would be no life on the planet without it. It protects the

Earth’s biological envelope from the hostile lifeless space and

devastating effects of cosmic-ray particles. The habitability-

determining need for a magnetic field reduces the number of

potentially habitable planets. It is hard to enumerate all the ef-

fects of the field on inhabitants of the planet. Its properties are

used by both humans and animals, while the scientific com-

munity has no unambiguous approach to understanding the

mechanism of the field’s creation and maintenance, as well as

on the factors affecting its behavior.

One of the most popular hypotheses trying to explain the

nature of the field is the dynamo theory. It proposes that con-

vective and/or turbulent motions of conductive fluid in the

core trigger self-excitation of a magnetic field and maintain

the field stable.

However, it is hard to imagine the core steadily moving up

to the surface in the same direction due to temperature — if it

is convective motion; or the turbulence created by rotation be-

ing so stable that it could maintain self-excitation, and even

in the same direction. Though, the nature of turbulence is

not clear either. Over time, in the absence of external forces,

the inner substance of the Earth will also rotate together with

the shell due to its viscosity. The origin of the potentials in

the core is also unclear. Why are they not compensated, if

the substance is conductive? The authors of this hypothesis

themselves thought it was a far cry from being proven. Al-

though the hydrodynamic dynamo hypothesis explains many

well-known facts, it is clear that the power triggering the “dy-

namo” has been defined incorrectly.

Another hypothesis proposes that the magnetic field is

created in the ionosphere by the solar wind.

The third one says about salt-water flows in the oceans.

None of these theories can be applied to all the planets of

the Solar System free of contradictions. For example, Jupiter

spins in the same direction as the Earth does, but Jupiter’s

magnetic field is directed opposite to the Earth’s one. Venus

and Mars have no strong fields.

Anyway, it is not fair to believe that the Earth owns some

unique features that no other planet has. After all, it is not

the only planet that has a magnetic field, and it is not quite

the thing to do to come up with its own mechanism for creat-

ing a magnetic field for each planet either. So what could be

right? There should be a single physics of this phenomenon.
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It just manifests itself somewhat differently because of differ-

ent conditions of existence of different planets.

I would like to note here that the modern model of the

Earth (with a hard core inside, surrounded by liquid alloy) is

based on the study of behavior of acoustic (seismic) waves

and their ability to pass in solid and liquid media differently.

High-temperature plasma with close-packed nuclei will con-

duct seismic waves as a solid (crystalline) material, which is

consistent with the measured data, and the adopted bound-

ary of the solid core may be a boundary of transition to the

plasma state. Generally it is hard to imagine — without in-

venting new forms and states — that some substance would

“float” in a hard form in the same melted substance without

melting itself.

This article presents a hypothesis of emergence and main-

tenance of the planet’s magnetic field taking into account its

own travel (axial inclination) in the solar ecliptic and the

properties of the planet itself and its moons, if any. It shows

that the outer shell of the planet is “independent” from the

processes occurring in the planet’s interaction with other bod-

ies, thus allowing the magnetic poles to move, up to their in-

version.

Attempts to find the answers to the following questions

1. What is the origin of the Earth’s and other planets’

magnetic fields?

2. Why does the far side of the Earth furthest from the

Moon has tides too?

3. Why do the Moon and most moons keep the same side

turned to their planets?

4. What force causes the continents to move?

5. What causes earthquakes?

6. Why is the Earth not round?

7. What are the reasons for sharp changes in astronomical

time?

8. How do “killer-waves” occur?

9. Why is there a dip in the gravitation graph during the

Sun’s passage across the sky?

10. What are the reasons for periodic variations of geo-

physical fields and seismic activity?

11. What gives rise to and maintains major ocean currents

and equatorial winds?

have given rise to the following hypothesis:

The main reason for all of the above phenomena is the

gravitational interaction of the Sun and moon(s) with a

moving core of the planet.

The main proof of the hypothesis is the clear connec-

tion in the chain “planet — satellite(s) — planet’s magnetic

field” for various planets of the Solar System, bearing in mind

that each planet is a moon of the Sun in its turn.

Thus, it can be noted that:

1. The magnetic field is effective if a planet has a moon or

more. The field is small if the planet has no moons

(e.g., Venus and Mercury have no moons, and their

magnetic fields are very small);

2. If the planet cooled down and does not have a liquid

core, it does not have a magnetic field either (e.g., the

Moon);

3. Direction and shape of a planet’s magnetic field de-

pends on both the direction of rotation of the planet

itself in the ecliptic plane and the orbit of the moon re-

volving around the planet (e.g., Mars and Uranus have

reverse rotation of moons and reverse magnetic fields);

4. In the presence of multiple moons, the field becomes

complex, and priority in the field’s direction is deter-

mined by the more closely spaced or the more massive

moon (for example, Uranus or Neptune);

5. Direction of the main winds and location of dust clouds

on most of the planets in the Solar System coincides

with the direction of their moons’ motion.

In addition, the fact that the most moons revolve around

their planets turning one side on them, and the rotation of

planets such as Venus and Mercury is synchronized with the

motion of the Earth (the two planets turn the same hemisphere

to the Earth when approaching it), shows that cosmic bodies

interact with each other not as uniform bodies, but as bodies

with misplaced centers of mass. At the same time, in the case

of a liquid core, the center can move within the hard shell of

the planet.

Let’s consider the mechanism of occurrence of a magnetic

field (MF) in the example of the Earth. It will be the same for

any Earth-like planet.

Imagine the Earth as a fixed sphere filled with substances

of various densities and various specific gravity, and the Sun

as a source of gravity affecting these substances. It is obvious

that the heavier structures will gravitate to the shell of the

sphere that is closest to the source of gravity, and distribution

of density and mass within the Earth will be uneven not only

in depth, but also towards the Sun (see Fig. 1).

According to modern theories of the Earth structure, sub-

stances below the lower mantle are in a liquid state (metallic

phase) — plasma — where electrons are separated from the

Fig. 1: Mass distribution.
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nuclei. But, as the nuclei are much heavier than the elec-

trons, it is clear that these are “precipitating” nuclei. Then a

division inside the Earth’s core occurs not only by mass but

also by electric potential. The core of the Earth has become

a dipole with the center of mass shifted significantly, where

“+” and the bulk mass of the core are closer to the Sun.

While the Earth rotates, this part of the Earth’s core fol-

lows the Sun and thereby create directed motion of electri-

cally charged particles and circular, cyclic displacement of

the center of mass of the Earth relative to its shell.

In 1878, Henry A. Rowland proved that charges moving

on a moving conductor are identical in their magnetic effect

to conduction current in a conductor at rest. Thus, in our case,

the right-hand rule is generally appropriate, as evidenced by

the direction of motion of the core part carrying a positive

charge and the force lines of the Earth’s magnetic field.

It certainly does not mean that one side of the sphere is

pure “+” and the other is “−”. Otherwise there would be no

magnetic field formed in rotation of such a dipole because

of the mutual compensation. There are just different motion

radii, and different linear speeds respectively, and hence cur-

rent potentials are different too. There may occur some com-

pensation in motion of various charges, but “+” prevails.

More information on polarization of plasma in massive

astronomical objects due to gravitational forces and their in-

teraction with Coulomb forces is available in works by Igor

Iosilevskiy (for example, in his publications [1, 2]).

By the way, if we accept the proposed hypothesis, the for-

mation of the dipole inside the planet is a practical proof of

the theoretical assumptions made by Iosilevskiy.

Of course, besides the Sun, the behavior of the charged

core is also influenced by all the planets and the Moon in

particular (see the section on tides).

Another proof of the hypothesis are daily and annual

changes in the magnetic field direction, i.e., dependence of

the field on the Earth’s position relative to other objects af-

fecting division by mass, charge, and trajectory of the core.

(In the case of the now accepted hypothesis of a hydrody-

namic dynamo, there should be no such influence.)

In fact, the heavy part of the core moves from East to West

and in spirals from North to South and back with changes in

axial inclination (change of season).

A very interesting measured data were provided by Yury

P. Malyshkov and Sergey Yu. Malyshkov [3] on the basis of

their research done in the Institute of Monitoring Climatic and

Ecological Systems, Russsian Academy of Sciences.

Based on years of research on natural pulse electromag-

netic fields of the Earth (NPEMFE) in seismically active ar-

eas of the Baikal Lakeside, they came to a conclusion on the

motion of the planet’s core and related natural phenomena —

seismic activity, impact on the human body and so forth. The

figures showing intensity of NPEMFE changes at different

points in time exactly repeat the expected movement pattern

of the dipole’s heavy part.

Fig. 2: Average rounded daily variations in NPEMFE in polar coor-

dinates for the period from 1997 to 2004.
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These figures show the way the intensity of the electro-

magnetic field disturbances is changing during the time of

day depending on the season. We can see that the intensity is

significantly reduced in winter months with its maximum at

night, that is when it is day time and summer in the Southern

Hemisphere, where the heavy part of the core is, and there are

more storms.

It is very sad that such an enormous result obtained by

Y.Ṗ. Malyshkov and S. Yu. Malyshkov [3] on these measure-

ments, systematization, analysis and so on cannot be contin-

ued because of lack of funding.

It becomes clear how the Earth’s magnetic field is formed

and why other planets and the Sun have magnetic fields too,

if they have moons, or no magnetic fields, if they don’t (eg.,

Venus has a very slow spin — 243 Earth days — that is there

are no gravitational forces to create a moving charge), or if

the planet cooled down and has no liquid core (Moon), as well

as reversal of polarity with reversed rotation of the moon(s)

(Mars), and presence of a complex field due to the planet’s

complex relationship with moons (Uranus and Neptune). It is

interesting that Mercury, while having no moons, has a field

similar to the Earth’s one, though much smaller. However, it

itself is a moon of the Sun, and the closest one. It quickly

orbits the Sun — in 89 Earth days. Mercury’s field is sym-

metric and directed along the axis of rotation. Its equator is

only 0.1 degree tilted to the orbit plane.

A good illustration of the influence of the planet-moon

system on a magnetic field’s form is a comparison of the fields

of Jupiter and Earth. Jupiter’s field is more like a flat disk —

even most of its moons rotate in correct circular orbits in the

equatorial plane — and the axis of rotation of the planet it-

self is negligibly tilted. There is no change of seasons. On

the other hand, the form of the Earth’s field resembles an ap-

ple, and the planet itself swings relative to the plane of the

ecliptic. This can be compared as fields from two different

electromagnetic coils — one loop-to-loop wound around the

coil-tube and the other being similar to a cassette tape.

Thus, the charges forming the magnetic field of a planet

having a liquid core are created and propelled by the total

gravitational force from its moons, the Sun, and other plan-

ets moving nearby relative to the planet. The charges also

influence on the field shape. Of course, MF depends on the

distance between the planet and the Sun. Influence of the

latter is paramount. For example, as shown by Alexander

L. Chizhevsky, “Taking into account the diameter of the Sun

equal to 1,390,891 km∗ and the tremendous power of physi-

cal and chemical processes occurring on the Sun, it must be

recognized that the Globe is under its enormously intensive

influence” [4].

A short comparison of the planets’ magnetic fields de-

pending on the number of their moons and other properties is

∗According to recent data, the Sun’s diameter is 1,392,000 kilometers,

while the Earth is located at 107 Sun diameters from the Sun.

given in Appendix.

The generated pulsating (for a point on the surface) —

with a day-and-night period — magnetic field of the Earth is

supported by the magnetic properties of the planet’s body that

smooths and stabilizes its behavior, and sometimes distorts,

creating local anomalous areas.

According to the research conducted by Hrvoje Tkalčić,

College of Physical and Mathematical Sciences, Australian

National University [5], he found that spins of different layers

of the Earth are not synchronic. The red-hot core of the Earth

inexplicably begins to gain momentum and then slow down,

and spins faster or slower than the Earth does. To detect the

desynchronization phenomenon, the researchers used a very

effort-consuming method of studying double earthquakes, i.e.

the earthquakes that occur in the same place at intervals of

two weeks to decades. Comparison of seismic waves made it

possible to reveal changes in the deep layers of the Earth and

learn about changing spin speed of the planet’s core.

It is quite hard to measure the spin speed in discrete mea-

surements as, in this case, we need some kind of a marker on

the core’s surface; all the more so as said that the speed is

unstable and variable. We can only determine that there is a

position change. If changing the model of the Earth’s internal

structure, the measured result change too. However, the fact

that these changes take place also verifies the hypothesis, and

it can broadly explain the physics of motion.

2 Tides

Let’s consider the effect of gravitational force in the example

of the Earth. The primary influence is caused by the Sun and

the Moon. The Sun’s influence is (according to various data)

30 to 200 times stronger than the Moon’s. However, despite

the fact that the Sun’s gravitational force is almost 200 times

greater for the Globe than the gravitational force of the Moon,

the tidal forces generated by the Moon are almost twice as

much as generated by the Sun. This is due to the fact that the

tidal forces do not depend on the magnitude of the gravita-

tional field and its degree of heterogeneity. With increasing

distance from the source of the field, heterogeneity decreases

more rapidly than the size of the field itself. Since the Sun is

almost 400 times farther from Earth than the Moon, the tidal

forces caused by the solar gravitation are weaker.

In other words we can say that the tidal force of the Moon

is more “superficial”, local, and more affecting the ocean and

the upper mantle, whereas the solar gravity is more uniform,

affecting the whole body of the planet. The solar gravity

can be considered roughly equal anywhere on the Earth. It

is the solar gravity that makes the core move and separate

into charges. Naturally, this mechanism will slightly vary for

other planets, but the physics of the phenomenon is the same.

With spin of the Earth, these two forces are added and

the tidal wave, which has the shape of an ellipsoid, is a su-

perposition of two double-humped waves, formed as a result
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of gravitational interaction of the Earth-Moon planetary pair

and the gravitational interaction of the pair with the central

luminary — the Sun.

Thus, the words lunar tide hereinafter mean a tide caused

by the cumulative influence of the Sun and Moon on the body

of the planet.

In addition to the tides on the Earth’s side facing the

Moon, there are tides on the other side. They are about the

same in magnitude. In literary sources, the existence of this

phenomenon is explained by reduced gravity of the Moon and

the centrifugal forces created by rotation of the Earth-Moon

pair. But then there would be a tide on the other side of the

Moon too, and this would happen there all the time, especially

as the Moon moves at the larger distance from the center of

mass than the other side of the Earth does. We know about the

shifting center of mass and elongation of the Moon towards

the Earth, but there are no tides on the far side. In addition, as

it was said above, the tides are caused not only by the Moon,

but by the Sun and the Moon together, so we have to find now

the center of mass for three planets.

If we compare the forces affecting the Earth’s surface in

low-tide areas (Point 2) and high-tide areas of the dark side

of the Earth (Point 1), the gravity forces in the dark should be

stronger, as the gravity of the Earth’s center is added (though

weakened) the gravity of the Moon and the Sun. This means

that the sea level in Point 1 should be lower than the sea level

at low tide in Point 2, but it is actually almost the same as it

is in Point 3. How else can it be explained?

Following the hypothesis, we can assume that the heaviest

part of the Earth’s core following the Moon and the Sun is

displaced so far from the opposite edge of the Earth, that the

square of the distance has its effect, and the gravity force of

the core on the surface is weakened thus causing a tidal effect.

In other words, the force of gravity at the point on the Earth

depends not only on the position of the Moon and the Sun, but

also the center of mass of the Earth (see Fig. 3 and Fig. 4).

Apparently, these processes occurred on the Moon too.

When cooling, the heavy mass of the inner substance clus-

tered mostly in the side of the planet facing the Earth, thus

making the Moon a kind of Roly-Poly and forcing it to turn

the same heavy side to us.

This is also confirmed by the fact that earlier, as it is

known, it had a strong magnetic field which now exists only

in residual form.

Thus, the force of the Earth’s gravity (together with the

Moon’s gravity force) not only holds the Moon in the moon

orbit, but also makes it spin thus requiring energy. Perhaps

this interaction further heats the inner substance of the planet,

preventing it from cooling down. This can refute the the-

ory of a thermonuclear source maintaining the planet’s core

in a “warm” state. Otherwise, at least we would have long

been bald.

The same core makes the Earth to “bulge” at the equator,

giving it a form other than a sphere. The same bulging is a

Fig. 3: The forces affecting the points on the Earth’s surface with

uniform mass distribution.

Fig. 4: The forces affecting the points on the Earth’s surface with the

shifted center.

characteristic of Jupiter with its high speed of spin, where this

is further contributed by centrifugal forces.

A similar phenomenon seems to be happening with the

Sun and its moon-planets.

If we imagine that the “heavy” center of the Sun follow-

ing the moon-planets “floats” on the surface with a strong

gravitational pull of planets, is charged with the electric po-

tential, and is in motion, this may cause magnetic flux tubes

on the surface, i.e. output points of the both poles of the mag-

netic field.

Over many years of research on the impact of solar activ-

ity on the biosphere, Chizhevsky has clearly shown a direct

relationship of these processes, assuming that the perturba-

tions observed as sunspots are causing radiation that reaches

the Earth’s surface and penetrates into it affecting all the liv-

ing and non-living things [5]. The proposed hypothesis can

explain the appearance of wide-frequency-range electromag-

netic radiation as a result of abruptly changing fluxes of

charged solar material.

3 Currents

Literature sources used to explain the nature of the equatorial

currents by the winds constantly blowing in the same direc-

tion, while the nature of the winds was explained by surface

heating and spinning of the Earth. Of course, this does affect
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the ocean and the air masses too, but, in my opinion, they are

primarily influenced by the gravity force from moving Earth

core — the Moon and Earth core — the Sun pairs affecting

everything that gets between them and that is carried from

East to West by their gravity force. It should not be regarded

as a process with tight fixing. It is more similar to stirring a

teaspoon in a large pot in the same direction — not hard, but

for a long time.

4 Earthquakes

There is still no clear definition of the nature of earthquakes.

It is quite possible that it may look as follows: Employ your

imagination — Where will a body located at the center of the

planet gravitate at the slightest deviation from the center?

If a substance is distributed unevenly (assume that it is

denser to the center), it is just like as written in textbooks.

But what forces draw it in the center? It should be a substance

having infinite density. It sounds more like fiction.

If the Earth had the form of an empty sphere, there would

be no gravity force inside it. The point inside the Earth would

be influenced by the gravity forces of external bodies — the

Moon, the Sun, etc. This point would tend to follow the di-

rection of the sum vector of the forces of these bodies.

If the Earth had uniform distribution of substance by den-

sity, then (if the substance is liquid) it would be the same.

In both cases, the substance inside the hard shell will

gravitate to the shell from the inside toward the outside forces

from other planets.

All the above was said without taking pressure into ac-

count, but let’s consider the pressure’s behavior upon submer-

sion — naturally it increases in the beginning (as the mass

“over the head” increases), but further on the gravity force

decreases and the pressure gradually “stabilizes”. In the end

we have a closed space with approximately even pressure

throughout volume, and its influence may be small compared

to the gravity forces. It is just the same as in ordinary life —

the atmospheric column presses down on all of us, but it still

lets the gravity forces to drop an apple on the ground.

It turns out that the interior of the Earth can be similar in

structure to a chicken egg and have the same distribution of

substance by density as it is on the surface — solid-liquid —

and all these at enormous pressure and temperature.

Now, if we imagine, the glowing mass exposed to various

— addable or deductible — gravitational forces from various

planets is moving in the “inner” surface of the earth, con-

stantly blending and running into irregularities. At the same

time, the interior of the Earth’s shell is constantly exposed to

momentum which is transmitted to the tectonic plates, forc-

ing them to move gradually, thereby moving the continents.

This is confirmed by the fact that the continents are moving

in the latitudinal direction (East-West) and do not move in the

longitudinal one (South-North).

Sometimes the forces are added in such a way that parts

of the core get into the central zero-gravity zone and, after

breaking away from the bulk mass, “fall” on the opposite

side of the sphere, which might cause an earthquake. A very

good illustration of such a case is behavior of water in a zero-

gravity environment shot by US astronauts. Behavior of water

balls in a “bubble” could well be similar to that of the inner

core of the planet.

By the way, the zero-gravity zone is not fixed in a per-

manent place, but is following the main mass of the core in

rough circles.

Fig. 5: A part of the core falls on the opposite side of the Earth’s

shell after it has separated and moved to a gravity-equilibrium zone.

There may also occur a sort of a wave with a crest when

climbing an inner roughness, with a further collapse, which

may also cause an earthquake.

Fig. 6: Collapse of a core part.

This mechanism of earthquakes may be even more likely,

since the majority of seismic focuses are located at the bound-

aries of tectonic plates or in areas of geological irregularities.

These two phenomena can cause shifts in the surface lay-

ers of the mantle triggering creation of additional seismic fo-

cuses and aftershocks.

It should be also noted that, as is known, magnetic storms

on the Earth are accompanied with low-frequency vibrations

of the Earth’s body, and vice versa, earthquakes are accompa-

nied by electromagnetic radiation, i.e. these two phenomena

are interrelated. This can also serve as a verification of the

suggested hypothesis, as there are surges of electric charge

(current), and the transition process (as we know) has a wider

range than direct current.
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5 Time jumps and killer waves

With the advent of new, more precise time measuring means,

it was observed that sometimes the celestial (stellar) time

flows changing relative to the reference atomic one in jumps∗.

How can this be explained but through the Earth being ex-

posed to forces, turning it at a certain angle? We see no ex-

ternal forces of such a power, so we have internal ones left.

It is quite possible that, when running into an internal

“roughness”, the core “pushes” the main body of the planet,

altering astronomical time relative to the stable reference one.

Mariners now a natural phenomenon known as the “killer

wave” (also known as periodic wave, monster wave, rogue

wave, freak wave, onde scelerate, or galejade). Some ten

to fifteen years ago, scientists believed that seafarers’ stories

about giant killer waves that emerged from nowhere and took

down ships were nothing but maritime folklore.

The existence of sea waves twenty to thirty meters high

contradicts the laws of physics and does not fit into any math-

ematical model of formation of waves. It should be noted that

these waves appear on relatively calm water surface. They

can be a crest or a trough, single one or coming in a set.

The proposed hypothesis can logically explain the mech-

anism of their occurrence through the same interactions be-

tween the moving core and the internal irregularities of the

planet’s body, which are carried over to the sea surface.

6 Causes of a dip appearing in the gravity graph during

the Sun’s passage across the sky

Following the work with a new directional gravimeter, Evge-

ny Orlov presented some interesting data. As shown in his ar-

ticle [6], round-the-clock registration of gravimeter readings

made it possible to determine the original geometrical shape

of the solar gravitational signal (see Fig. 7).

Fig. 7: The original geometrical shape of the solar gravitational sig-

nal as registered by Orlov [6].

It is registered in the daytime, in the form of double-

humped curve with a dip in the range from 11 a.m. to 01

p.m., so the dip comes where the Sun would draw the load

the hardest. The author of the article explains this by the fact

that the volume of the gravitating mass of the planet facing

the Sun on both sides of the planet exceeds the gravitating

∗Please do not confuse it with a correction of calendar time.

mass at its center. However, in my opinion, it is determined

by the fact that the hardest part of the core comes closer to the

Earth’s surface and the distance to the measuring part of the

gravimeter is reduced, thereby increasing the gravity to the

Earth and compensating the gravity to the Sun.

7 On motion of the magnetic poles

It also turns out that the outer shell of the Earth is weakly re-

lated to the processes taking place between the planets caus-

ing appearance of a magnetic field, and therefore is “free” to

move relative to the center of mass (it is similar to rotation

of the outer rim of a bearing with internal one being fixed),

while changing the position of the magnetic poles on the sur-

face of the Earth, but without changing the position in space.

At the same time, the position of the outer sphere of the Earth

depends on the interaction strength of the core magnetic field

and the magnetic properties of the sphere itself, which, among

other things, may be affected by anthropogenic factors. A

shift occurs before the mantle comes into one of the local

stability points. It does not have to be a complete polarity

reversal.

8 Conclusion

The suggested hypothesis is not loaded with mathematical

calculations for yet for a number of reasons, including the

following:

1. There are too many factors affecting the field;

2. One can always bring math under any theory by intro-

ducing correction factors and hiding the lack of physics

of the phenomenon.

Of course, this hypothesis is presented in yet “unfledged”

form and requires much to be done to verify and expand un-

derstanding of the physics of the processes.
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Appendix. A short comparison of the planets’ magnetic fields depending on the number

of their moons and other properties

Planet Moons Magnetic field

Mercury No One percent of the Earth’s field; of dipole-type, directed along the axis of rotation

which is perpendicular to the orbit plane.

Comment: The intensity of Mercury’s magnetic field is 100 times smaller than that of the Earth. Mercury’s

magnetic field has a dipole structure and is highly symmetrical. Its axis is only two degrees tilted from the spin

axis of the planet.

Venus No Almost absent: the planet’s spin is very slow.

Comment: Since the planet’s own magnetic field is absent, it should be assumed that there is no motion of

charged particles — electric current — in its iron core that could cause a magnetic field. Therefore, the core

substance does not move.

Mars 2 The planet’s magnetic field is 500 times weaker than the Earth’s one. The field’s

polarity is reverse to that of the Earth. Phobos rises in the West and goes down in

the East. Its size is very small. The influence of Deimos is weaker because of its

remoteness.

Comment: Mars has a magnetic field, but it is weak and extremely unstable. In various parts of the planet, its

intensity may vary from 1.5 to 2 times. Its magnetic poles do not coincide with physical ones.

Jupiter 17 + ring Twenty times as strong as the Earth’s. The polarity is reverse to that of the Earth.

Comment: Jupiter’s moon system consists of at least 67 moons, including four large moons. Jupiter has a

strong magnetic field. The dipole axis is tilted to the axis of rotation at 10◦. Its polarity is reverse to the polarity

of Earth’s magnetic field. All the major moons of Jupiter rotate synchronously and always keep the same face

turned to Jupiter due to the influence of powerful tidal forces of the giant planet. Jupiter’s rotation speed is so

high that the planet bulges along the equator.

Saturn 18 + ring Almost equal to the Earth’s and reverse in direction.

Comment: By its strength, Saturn’s magnetic field is in the middle between the magnetic field of the Earth and

the more powerful field of Jupiter. The magnetic field is nearly a dipole, similar to that of the Earth, with north

and south magnetic poles. The north magnetic pole is located in the northern hemisphere, and the south one is

in the South, unlike Earth, where the location of the geographic poles is reverse to that of magnetic ones. Saturn

has 62 known moons. Most of the moons, except Hyperion and Phoebe, spin synchronously — they always

keep the same side turned to Saturn.

Uranus 21 + ring Less than that of the Earth and has axial tilt at 60 degrees. The polarity is reverse to

the Earth’s. Uranus rotates reversely. The moons rotate reversely too. The moons’

orbits are steeply tilted to the ecliptic.

Comment: The equatorial plane of Uranus is tilted to the plane of its orbit at an angle of 97.86◦ — that is, the

planet rotates “lying on its side.” This gives the season changing process completely different from the other

planets of the Solar System. If other planets may be compared to a spinning top, Uranus is more like a rolling

ball. Uranus has a very specific magnetic field that is not directed from the geometric center of the planet,

but is tilted towards the axis of rotation by 59 degrees. In fact, the magnetic dipole is shifted from the center

to the south pole of the planet about one third of the planet’s radius. This unusual geometry results in a very

asymmetric magnetic field.

Neptune 8 A complex magnetic field

Comment: Neptune resembles Uranus in its magnetosphere, with a magnetic field strongly tilted relative to its

rotational axis at 47◦. Neptune has 13 known moons. Triton is the largest Neptunian moon, comprising more

than 99.5% of the mass in orbit around Neptune, and it is the only one massive enough to be spheroidal. Unlike

all other large planetary moons in the Solar System, Triton has a retrograde orbit. It is close enough to Neptune

to be locked into a synchronous rotation, and it is slowly spiraling inward because of tidal acceleration.
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A desired solution of the four-potential is presented for free-space photons, obtained

with wave equations derived from the Maxwell equations and the Lorenz condition.

The solution shows that an electromagnetic field in wave form propagating at the speed

of light with a fixed internal phase may exist as a particle taking a limited space at

a specific point of time. It reveals the existence of electric charge distributed as an

electric capacitor on the parallel cylindrical surface of constant radius to the central axis

of the solution. And the charge distribution has a phase change both in the azimuthal

angle and along the direction of the wave propagation. The solution is applied to the

case of a model photon to determine several parameter values of the solution, which in

turn provides a view on the model photon.

1 Introduction

The year of 2015 has been the International Year of Light and

Light-Based Technologies, designated by the United Nations

Educational, Scientific, Cultural Organization (UNESCO).

This designation further emphasizes the importance of light

to people’s life. As a part of the support for the designation,

we present in this paper a theoretical model for the elements

of light, photons, based on our knowledge of classical elec-

trodynamics, classical mechanics and mathematical method

for quantization rules.

In this paper we consider a single free photon in which

photon-photon interactions [1] are neglected. A photon [2]

is a quantum of light which is a wave form of the electro-

magnetic radiation and is characterized by its speed c and

wavelength λ. It is known that a photon has both physical

properties of wave and particle.

As a particle, the photon has a certain energy and mo-

mentum. In the study of the black body radiation [3], Max

Planck proposed that the energy ǫ of a radiation oscillator was

quantized and each energy was proportional to its vibrational

frequency ν as

ǫ = hν , (1)

where h is the Planck constant. Then Einstein applied the idea

to the light and proposed that light was made of quanta, in-

separable entities, with the energy ǫ in terms of the frequency

being given in Eq. (1), which successfully explained the pho-

toelectric effect [4].

The Compton Scattering Experiment [5] further demon-

strated that a photon had a certain energy as specified in

Eq. (1) as well as a momentum in the direction of its motion.

And the magnitude of the momentum p is given by

p =
ǫ

c
=

hν

c
=

h

λ
, (2)

where the relation ν = c/λ is used.

Furthermore it is known from quantum mechanics [6],

that there is an angular momentum difference involved in the

magnitude of integral ~ between the two transitional atomic

states, where ~ is the reduced Planck constant which equals to

the Planck constant h divided by 2π. In the case of light emis-

sion this angular momentum difference may be transfered to

the photon.

On the other hand the Young’s two slit experiment [7]

shows the wave property of light. In a typical Young’s ex-

periment one observes the interference pattern of light from a

monochromatic light source of wavelength λ passing through

two small-spaced parallel slits, which demonstrates the wave

property of light.

It is also known that light is a form of the electromagnetic

wave. In the electromagnetism [8], the set of Maxwell equa-

tions for vacuum gives relationships among the electric field

E, magnetic field B, electric charge density ρ, and electric

current density J as following:

∇ · E = ρ

ǫ0

, (3)

∇ · B = 0 , (4)

∇ × E +
∂B

∂t
= 0 , (5)

∇ × B −
1

c2

∂E

∂t
= µ0J , (6)

where ǫ0 is the permittivity of vacuum and µ0 is the perme-

ability of vacuum; ∇ represents the differential operator and

∇ = î ∂
∂x
+ ĵ ∂

∂y
+ k̂ ∂

∂z
in Cartesian coordinates with î, ĵ, k̂ be-

ing unit vectors for the Cartesian coordinates; t represents the

time and x, y, z are, respectively, the Cartesian components;

the “×” symbol represents the cross operation and the “·” rep-

resents the dot operation. In this paper we use SI units. And

for simplicity we shall consider in the following the medium

to be vacuum. For vacuum where ρ = 0 and J = 0, the fol-

lowing equations may be obtained for the electric field E and

the magnetic field B from Eqs. (3) to (6),

1

c2

∂2E

∂t2
− ∇2E = 0 , (7)
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c2

∂2B

∂t2
− ∇2B = 0 , (8)

where c is the speed of light, which is equal to 1/
√
ǫ0µ0 for

vacuum, and ∇2 is the Laplacian operator. Eqs. (7) and (8)

are wave equations with the propagation speed equal to the

speed of light, which shows the light to be a form of the elec-

tromagnetic wave. But we believe that the achieved solution

from Eqs. (7) and (8) so far for free-space photon is limited to

one-dimension and our current view on the photon is limited.

As we know that an electric field or a magnetic field has

energy. And the total energy density η is equal to the sum

of the electric field energy density ηE and the magnetic field

energy density ηB and is given by

η = ηE + ηB =
1

2
ǫ0|E|2 +

1

2µ0

|B|2 , (9)

where |E| is the magnitude of the electric field and |B| the

magnitude of the magnetic field.

The Poynting vector S, which is the energy current den-

sity of the electromagnetic wave, is given by

S =
1

µ0

E × B . (10)

The Poynting vector is perpendicular to both E and B vectors

and is in the direction of the thumb while using the right-

hand-rule turning fingers from E to B.

Both the electric field E and the magnetic field B can be

expressed in terms of the four-potential, a scalar electric po-

tential ψ plus a magnetic vector potential A as following,

B = ∇ × A , (11)

E = −∇ψ − ∂A

∂t
. (12)

The Lorenz condition [9], named after the Danish math-

ematician and physicist, L. V. Lorenz, provides a covariant

form of the four-potential and is given by

∇ · A + 1

c2

∂ψ

∂t
= 0 . (13)

Eq. (13) appears similar to the continuity equation and may

represent a “local form” of the conservation of electric po-

tential energy for a point charge in the electromagnetic field.

With the Lorenz condition, both the scalar potential ψ and

the vector potential A satisfy the following equations, respec-

tively,

1

c2

∂2ψ

∂t2
− ∇2ψ =

ρ

ǫ0

, (14)

1

c2

∂2A

∂t2
− ∇2A = µ0J . (15)

The purpose of the paper is to present a model view of

the photon by obtaining a three-dimensional solution from

Eqs. (14) and (15) for vacuum without external electric charge

nor external electric current. The three-dimensional solution

hence is theoretical analyzed to reveal its physics meaning. It

is finally applied to the case of a model photon to gain a deep

insight into the photon, which is new since we are not aware

of such a report in the literatures.

This paper is organized as these: Introduction, Solution,

Discussions, and Conclusion. The Introduction section pro-

vides a brief overview on our fundamental understandings of

light and photon. In the Solution section, two expressions of

the four-potential as a solution for three-dimensional space

are presented, which are obtained from Eqs. (14) and (15) for

vacuum without external electric charge nor external electric

current. The characteristic of the solution shows that its quan-

tities are in limited space at a specific point of time, which is

desirable for photons. In the Discussions section, expressions

for the electric field and the magnetic field are derived from

the four-potential solution. An analysis of the electric field

reveals the existence of electric charge distributed on the par-

allel cylindrical surface of constant radius to the central axis

of the solution. The solution then is applied to the case of a

model photon to determine the constant parameter values of

the solution from physical quantities of the photon, which in

turn provides a view on the model photon. The Conclusion

section provides a brief summary of the paper together with

some comments.

2 Solution

In vacuum where electric charge density ρ = 0 and electric

current density J = 0, Eqs. (14) and (15) are reduced respec-

tively to

1

c2

∂2ψ

∂t2
− ∇2ψ = 0 , (16)

1

c2

∂2A

∂t2
− ∇2A = 0 . (17)

Eqs. (16) and (17) are wave equations and their solutions

for one-dimensional space are easily obtained and are known

as a traveling wave,

ψ = ψ0 sin(kx − ωt) , (18)

A = A0 sin(kx − ωt) , (19)

where ψ0 represents the amplitude of the scalar potential, A0

the amplitude of the vector potential, ω is the angular fre-

quency which equals to 2πν and ν is the wave frequency, and

k is the wavenumber and k = ω/c = 2π/λ. The reason to

choose the sine function instead of the cosine function here

is arbitrary, but with no difference, since the sine and cosine

functions are different by a phase difference of π/2, they may

represent the same physical wave. Also as we know that the

electric potential is a measurable quantity which is real, we

shall restrict the solution to the real number domain in this

paper.
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In the following, Eqs. (16) and (17) are solved for three-

dimensional space to reveal more features of the solution.

First we choose the circular cylindrical coordinates (or cylin-

drical polar coordinates) as in Fig. 1 for our coordinate sys-

tem [10]. Here we use the r symbol to represent the polar axis

since the ρ symbol is used for the electric charge density. And

φ represents the azimuthal angle and z represents the central

axis and is the same as the Cartesian z axis. Their respective

unit vectors are r̂, φ̂, and ẑ as in Fig. 1.

Fig. 1: A drawing of the circular cylindrical coordinate system with

respect to the Cartesian coordinates, where r̂, φ̂, and ẑ are unit vec-

tors for the coordinate system. The wave symbol represents a photon

moving in the direction of the positive z axis at the speed of light c.

The Laplacian operator ∇2 in the cylindrical coordinates

is expressed as

∇2 =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂φ2
+
∂2

∂z2
, (20)

and hence we get a solution of the four-potential from Eqs.

(16) and (17) as following

ψ = ψ0 sin(kz + mφ − ωt)
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A = ẑA0 sin(kz + mφ − ωt)
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(22)

where we choose the wave to propagate along the positive z

axis, ψ0 is a strength constant for the scalar potential and A0

is a strength constant for the vector potential whose direction

is in that of the wave propagation, r0 is a constant polar ra-

dius to be determined in the next section by the wavelength

of the photon, m is a positive integer to satisfy the 2π peri-

odic boundary condition of the azimuthal angle. Here m is a

quantum number which may be associated with the angular

momentum of the wave. Again the choice of the sine func-

tion instead of the cosine function here is arbitrary but has no

physics difference. The solution at r0 is not defined but has

finite quantities. r0 is a boundary of the solution and in the

following treatment we shall let the boundary thickness to ap-

proach to zero so the solution is approximately defined at r0.

Eqs. (21) and (22) represent a traveling wave propagating

along the positive z axis. The solution by the two expressions

is desirable since its quantities are limited in the polar axis.

It is worthwhile to mention that this solution may be for in-

dividual photons free from interactions with each other. The

study of photon interactions is out of the scope of this paper.

In the following section we will analyze the solution to reveal

its physics meaning.

3 Discussions

Applying the Lorenz condition, Eq. (13), to Eqs. (21) and

(22), we have

A0 =
ψ0

c
. (23)

Hence the vector potential and the scalar potential are related

to each other, only one of them is independent.

Now applying Eqs. (11) and (12) to the solution Eqs. (21)

and (22) and using Eq. (23), we may have for the electric field

E and the magnetic field B as following:

E = −mψ0



































































rm−1

r0
m

(

r̂ sin(kz + mφ − ωt)+

+ φ̂ cos(kz + mφ − ωt)

)

r < r0 ,

r0
m

rm+1

(

−r̂ sin(kz + mφ − ωt)+

+ φ̂ cos(kz + mφ − ωt)

)

r > r0 ,

(24)

B = mA0
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r̂ cos(kz + mφ − ωt)−

− φ̂ sin(kz + mφ − ωt)
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r < r0 ,

r0
m

rm+1

(

r̂ cos(kz + mφ − ωt)+

+ φ̂ sin(kz + mφ − ωt)

)

r > r0 ,

(25)

where r̂ is the unit vector for the polar axis, φ̂ is the unit vec-

tor for the azimuthal angle. From Eqs. (24) and (25) we know

that both the electric field E and the magnetic field B are trav-

eling in the direction of the positive z axis and are perpendic-

ular to the direction of the wave propagation. Furthermore we

have E · B = 0, meaning that the electric field and the mag-

netic field are perpendicular to each other, which is consistent

with the basic electromagnetic theory for free-space.
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For better understanding of the fields, in the following dis-

cussions we shall restrict ourself to the case of the angular

momentum number m = 1, which may correspond to the case

of the photon we know. For general case of m > 1, following

treatments are similarly applicable. Hence Eqs. (24) and (25)

become

E = −ψ0
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r0

r2

(

−r̂ sin(kz + φ − ωt)+

+ φ̂ cos(kz + φ − ωt)

)

r > r0 ,

(26)

B = A0
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(

r̂ cos(kz + mφ − ωt)−

− φ̂ sin(kz + mφ − ωt)

)

r < r0 ,

r0

r2

(

r̂ cos(kz + mφ − ωt)+

+ φ̂ sin(kz + mφ − ωt)

)

r > r0 .

(27)

From Eqs. (26) and (27), for r > r0 both field strengths are

inversely proportional to r2 and approach to zero as r goes to

infinity, which is a desirable result because a photon takes a

limited space at a specific point of time. The electric field E at

r0, or on the parallel cylindrical surface in a three-dimensional

view, is not continue in the radial direction, meaning charge

may exist on the surface. To derive an expression for the sur-

face charge density σ, apply Eq. (3) to Eq. (26), we have

σ = 2ǫ0ψ0

1

r0

sin(kz + φ − ωt) . (28)

Hence the charge density is also in the form of a traveling

wave, moving uniformly in the direction of the positive z axis

with a fixed internal phase both in the azimuthal angle and

along the z axis.

To get a precise sense of the fields and charge distribution,

we simplify Eqs. (26), (27), and (28) by letting z = 0, and

t = 0, which allows us to better understand the solution at the

specific point of time and space. And hence we have

E = ψ0
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(29)

B = A0
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r0

î r < r0 ,
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r2

(

î cos(2φ) + ĵ sin(2φ)

)

r > r0 ,

(30)

and

σ = 2ǫ0ψ0

1

r0

sin φ , (31)

where î is the unit vector for the x axis and ĵ is the unit vector

for the y axis. In deriving Eqs. (29) and (30), we use the

following relations for unit vector transformations between

the polar and Cartesian coordinates

r̂ = î cosφ + ĵ sin φ , (32)

φ̂ = −î sinφ + ĵ cos φ . (33)

The electric field E, magnetic field B, and the surface

charge density σ at z = 0 and t = 0 are shown in Fig. 2.

Fig. 2: A schematic diagram of the electric field E (solid lines), mag-

netic field B (dash lines), and charge distribution (“+” for positive

charge and “−” for negative charge) on an imaging cylindrical sur-

face (r = r0) of the solution in the x-y plane, where z = 0, t = 0. The

wave is propagating along the positive z axis (pointing out of the x-y

plane). r0 is the constant radius, and φ is the azimuthal angle.

As we know from Eqs. (29) and (30), both the electric

field E and the magnetic field B are constant inside of the

circle r0; For outside of the r0 both fields decreases as the

radius squared, r2, increases, and the field direction changes

two times as fast as the azimuthal angle φ (Fig. 2). The distri-

bution of the surface charge densityσ is described by the sine

function of the azimuthal angle, and the total charge by the r0

circle is zero. Referring to Fig. 2, the charge distribution is

polarized, i.e., the positive charge on its corresponding half-

circle at r0 is distributed symmetrically to the negative charge

on the other half-circle, or vice versa. The total charge dis-

tribution appears as an electric capacitor made of circularly

distributed electric dipoles.

In the following discussions we apply the solution to a

model photon and shall use the physical quantities of the pho-

ton to determine the values of the constants used in the solu-

tion.

For z , 0 and t = 0 the electric field E, the magnetic field

B and the surface electric charge density σ are distributed

around the central axis z with a certain phase. And the phase
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change depends on both the azimuthal angle φ and the z axis.

We show the charge distribution for z < 0 and t = 0 in Fig. 3.

Fig. 3: A schematic diagram showing the surface charge distribu-

tion(“+” for positive charge and “−” for negative charge) on the sur-

face of r = r0 in the z axis direction for one wavelength λ, where

t = 0, the model photon is moving along the positive z axis at the

speed of light c and r0 is the constant radius. For clarity we only

show two lines of charges here.

The charge distribution appears as a circularly distributed

electric dipole “twisted” in the azimuthal angle and along the

z axis. The twisting phase change is exactly the same as that

of the photon (one cycle of the charge phase change by one

wavelength λ). The model photon picture in Fig. 3 represents

a “frozen” view at t = 0. For t , 0, by the phase analy-

sis of the sine wave (Eq. (28)), the model photon is doing a

displacement along the positive z without changing its inter-

nal phase. Now imaging that if we place an observer facing

the incoming photon at a fixed z position, it may see the cir-

cularly distributed charge rotating counter-clockwise (in the

direction of the azimuthal angle) around the photon’s central

axis. Since this rotation represents a certain angular momen-

tum, the photon may carry an angular momentum in the phase

of the charge distribution.

In the following we shall assume that the length of the

model photon, l, equals to nλ, where n is a positive integer

to satisfy the periodic condition in the propagation direction.

Here n may be considered as a quantum number and its min-

imum value is one, which makes a minimum complete cycle.

Now applying Eq. (23) to Eqs. (26) and (27), we find that

the electric field energy density ηE and the magnetic field

energy density ηB (Eq. (9)) are equal to each other for the

photon. And we have the total energy density η as following

η = ǫ0|E|2 = ǫ0ψ0
2































1

r0
2

r < r0 ,

r0
2

r4
r > r0 ,

(34)

where |E| is the magnitude of the electric field. The energy

density is constant for r < r0 and is inversely proportional to

r4 for r > r0. The photon energy (Eq. (1)) may be equal to

the integration value of Eq. (34) in the photon space at time

t = 0. The integration path for r is 0 to r0 and r0 to ∞, for z

is -nλ to 0, and for φ is 0 to 2π. And hence we find the ψ0 to

have the following relationship

ψ0 =

√

~c

ǫ0n

1

λ
. (35)

In deriving Eq. (35) we used Eq. (1). It is interesting to note

that the potential strength constant, ψ0, is inversely propor-

tional to the wavelength λ.

By using Eqs. (10), (26), and (27), the Poynting vector is

S = ẑ
ψ0A0

µ0































1

r0
2

r < r0 ,

r0
2

r4
r > r0 .

(36)

According to Eq. (36), the photon energy flows in the direc-

tion of the positive z axis, which is consistent with the photon

direction of motion. The total energy by the Poynting vector

for the photon is hν, which may be calculated by integrating

out the Poynting vector, Eq. (36), for the photon and using

Eqs. (23) and (35). This is an expected result.

Since the charge is distributed in the r0 cylindrical sur-

face, which generates a surface electric current by the dis-

placement of the photon at the speed of light, the density of

the photon self energy may also be expressed in the following

relationship,

η′ =
1

2
σψ +

1

2
A · J′ , (37)

where η′ represents the surface energy density, σ the surface

charge density, ψ the electric potential, A the vector potential,

and J′ represents the surface electric current density. For the

photon, A · J′ = AJ′ and J′ = σc, the second term is equal to

the first term on the right hand side of Eq. (37) and we have.

η′ = σψ . (38)

Using Eqs. (28), (21) for m = 1, and (35), we may calcu-

late the photon energy ǫ by integrating out Eq. (38) on the r0

cylindrical surface of length nλ,

ǫ =
∫ 0

−nλ

∫ 2π

0
η′dS =

∫ 0

−nλ
dz

∫ 2π

0
σψr0 dφ

=

∫ 0

−nλ

dz

∫ 2π

0

2ǫ0ψ
2
0 sin2(kz + φ) dφ

=

∫ 0

−nλ

dz

∫ kz+2π

kz

2ǫ0ψ
2
0 sin2(φ′) dφ′

= nλ2ǫ0ψ
2
0π = hν ,

(39)

where dS represents an infinite small area on the r0 cylindri-

cal surface, the time t = 0, and a variable change, kz+φ = φ′.

Hence we get that the energy is hν. This result indicates that
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it is equivalent to consider the photon energy being stored in

the r0 cylindrical surface.

Now we evaluate the value of the constant length of the

polar radius, r0, of the model photon. We first assume that r0

is proportional to the wavelength λ as

r0 =
λ

2π
. (40)

Then we support it by two reasons. The first reason is that

with this assumption the phase velocity of the charge distri-

bution on the r0 cylindrical surface is equal to the speed of

light c, i.e., ωr0 = 2πνλ/2π = νλ = c. This is consistent with

the nature of the photon. This velocity may be physically ex-

perienced by an electron in an atom as in light absorption.

The second reason is that the angular momentum carried

by the photon is ~, which is consistent with the angular mo-

mentum number m = 1. To evaluate the angular momentum,

we use following expression

dJ = r0 × dP , (41)

where we consider the angular momentum to be generated in

the r0 cylindrical surface, dJ represents an infinite

small quantity of angular momentum, dP represents an in-

finite small quantity of momentum in the cylindrical surface,

and r0 is the polar radius vector pointing to the cylindrical

surface where the small momentum is considered. Referring

to Fig. 3, an observer like an electron in an atom may experi-

ence a rotational force from the photon, which corresponds to

a momentum in the direction of the azimuthal angle φ. This

momentum may generate an angular momentum in the direc-

tion of the positive z axis.

Similar to Eq. (2), the magnitude of the infinite small

quantity of momentum dP may be written as

dP =
dǫ

c
, (42)

where dǫ represents an infinite small amount of energy in the

cylindrical surface and c is the speed of light. Using Eq. (38),

we have for the dǫ,

dǫ = η′dS = σψdS , (43)

where dS represents an infinite small area on the r0 cylin-

drical surface. And finally we have for the magnitude of the

infinite small quantity of the angular momentum dJ as

dJ =
r0

c
σψdS , (44)

where r0 is given in Eq. (40). The direction of the angular

momentum is in the positive z axis.

By integrating out Eq. (44) for the photon on the r0 cylin-

drical surface at the time t = 0, as has been done in Eq. (39),

we get that the total angular momentum of the photon is in-

deed ~. Hence from the second reasoning we prove that the

constant radius r0 of the photon cylindrical surface is λ/2π.

This angular momentum, derived from the classical me-

chanics, may be considered as the spin angular momentum of

the photon since it is generated by the self-rotation around its

central axis.

Now based on the solution of Eqs. (21) and (22), we have

built a consistent three-dimensional model of the photon: a

quantized electromagnetic wave of length nλ with a charged

cylindrical surface core of radius λ/2π. Such a model may be

tested for it is expected that the photon is very hard to pass a

pinhole of radius less than λ/2π.

4 Conclusion

Conclusion by summarizing what have been presented in the

paper. First a desirable solution was shown in terms of the

two expressions, Eqs. (21) and (22), for the four-potential,

obtained from wave Eqs. (16) and (17) derived by using the

Maxwell equations together with the Lorenz condition. Al-

though we assumed the medium to be vacuum in the solution

for simplicity, our solution may be extended to the case of

a homogeneous medium by using the medium parameters of

the permittivity, permeability, and the speed of light. Also for

clarity we limited our consideration in the Discussions sec-

tion to the case of φ ≥ 0 and t ≥ 0, but the solution itself is

equally applicable if we substitute φ by -φ or t by -t. In the

case of φ, the ± signs respectively may represent the right or

left spin state of the photon.

Then the solution was analyzed for understanding its

characteristics, which showed that an electromagnetic field

in isolated wave form at the speed of light might exist in a

limited space at a specific point of time. The solution re-

quires the existence on the r0 cylindrical surface of electric

charge distributed in certain phase with the azimuthal angle φ

and along the direction of the light propagation. The solution

was specifically studied for the case of the angular momen-

tum number m = 1.

We then applied the solution to the case of a model photon

and determined the constant values of the solution in terms

of the photon quantities. By doing that, a detailed theoreti-

cal three-dimensional model of the photon was achieved. We

showed that the angular momentum of the photon might be

considered as coded in the r0 cylindrical surface by the phase

of the charge distribution.

Notice that we have solved a special case of Eqs. (16) and

(17) by restricting the angular momentum of the photon in the

direction of the light propagation. Furthermore, the length of

the photon was assumed to be nλ, but the upper bound of n

was not determined specifically.

Finally it is theoretically interesting to mention that by

letting the angular momentum number m > 1 in the solution,

which could correspond to a photon with spin larger than one,

we may get similar results as the spin one photon in terms of

the wave taking a limited space at a specific point of time.
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of Angular Momentum per Unit Mass Constraint
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In July, 2015, the New Horizons spacecraft passing by Pluto did not discover any more

moons. Therefore, we know the Pluto system total angular momentum to within 2.4%,

more accurately than any other system with more than two orbiting bodies. We there-

fore update our previous analysis to determine whether a definitive test of the quantum

celestial mechanics (QCM) angular momentum constraint can now be achieved.

1 Introduction

In 2012 we analyzed the angular momentum properties of the

Pluto system with its 5 moons [1] not knowing the total angu-

lar momentum in the system. The New Horizons spacecraft

passing by Pluto and its large moon Charon in July, 2015,

did not discover any more moons than its earlier discovery

of 4 additional tiny moons. Therefore, the Pluto system that

we know is the final configuration of orbiting bodies, so we

now know its total angular momentum to within 3%. Conse-

quently, we can consider this gravitationally bound system as

a possible definitive test of the theory called quantum celes-

tial mechanics (QCM) first proposed in 2003 by H. G. Preston

and F. Potter [2].

They derived a new gravitational wave equation from the

general relativistic Hamilton-Jacobi equation for a test parti-

cle of mass µ as given by Landau and Lifshitz:

gαβ
∂S

∂xα
∂S

∂xβ
− µ2 c2 = 0 , (1)

where gαβ is the metric of the general theory of relativity

(GTR) and S is the action. This general relativistic Hamilton-

Jacobi equation becomes a scalar wave equation via the trans-

formation to eliminate the squared first derivative, i.e., by

defining the wave function Ψ(q, p, t) of position q, momen-

tum p, and time t as

Ψ = eiS ′/H (2)

with S ′ = S/µc. The H is defined as the Preston distance

characterizing the specific gravitational system and is a func-

tion of only two physical parameters of the system

H =
LT

MT c
, (3)

where MT is the total mass of the system and LT its total

angular momentum. Only these two parameters of the system

are required to define all the stable quantization states of the

gravitationally bound system. We call the resulting theory

quantum celestial mechanics or QCM.

The end result of the transformation is the new scalar

“gravitational wave equation” (GWE)

gαβ
∂2Ψ

∂xα ∂xβ
+
Ψ

H2
= 0. (4)

One can now consider the behavior of the test particle in dif-

ferent gravitational metrics. In the Schwarzschild metric, we

find good agreement with predictions for all systems to which

the QCM constraints have been applied.

There have been numerous applications of QCM to grav-

itationally bound systems, including multi-planetary exosys-

tems [3], the Solar System [2], the five moons of Pluto [1],

the S-stars at the galactic center [4], and circumbinary sys-

tems [5, 6] with planets. All these systems have been shown

to obey the quantization of angular momentum per unit mass

constraint dictated by QCM in the Schwarzschild metric ap-

proximation for each orbiting body µi, i.e.,

Li

µi

= mi cH. (5)

Of course, one assumes that the body in consideration

has been in an equilibrium orbit for at least tens of millions

of years. Then if one knows the semi-major axis r, the ec-

centricity e, and the period of orbit, the QCM value for Li

in the specific equilibrium orbit equals the Newtonian value

L = µ
√

GMT r (1 − e2). The value of MT is nearly the central

body mass for most cases.

Knowing the period of orbit is an additional constraint

that allows one to determine a set of integers m for the QCM

angular momentum per unit mass linear regression fit, with

R2 > 0.999, which we seek in all cases. Moreover, if one

knows the total angular momentum for the gravitationally

bound system, then a unique set of m values is possible. How-

ever, if the system total angular momentum is unknown, then

several sets of integers could meet the liner regression fit,

in which case we will accept the set beginning with the small-

est integer.

From the slope of the resulting plot of L/µc vs. m for all
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the known orbiting bodies in the system, one can calculate

the predicted QCM total system angular momentum LT and

therefore can predict whether additional mass orbiting the star

is needed to account for this total angular momentum value.

Many m values for the gravitationally bound system will be

unoccupied, for the occupancy of the specific QCM orbits de-

pends upon the history of formation and the subsequent evo-

lution of the planetary system.

For simplicity, applications have concentrated on circular

or near-circular orbits only. Whereas in GTR and its New-

tonian approximation all allowed circular or nearly-circular

orbits about a massive central object are equilibrium orbits,

QCM dictates that only a subset of these equilibrium orbits

are permitted by the quantization of angular momentum per

unit mass constraint.

With any new theory, one needs a definitive test. Until

now there has been no laboratory test of QCM. Finding a

convincing, definitive test for QCM has not been successful.

As of this date, the satellites of Pluto actually offer the best

test of QCM and its quantization of angular momentum per

unit mass prediction. Why? Because the total angular mo-

mentum of the Pluto-Charon system with its 4 tiny moons is

well-known now to within 2.4%.

One would expect that the Solar System as a whole or the

many satellites of the Jovian planets would be a better test.

However, one does not know the total angular momentum to

within 10% of either the Solar System or each of the Jovian

planets. The Jovian planets themselves dominate the angular

momentum contributions in their systems but their internal

differential rotations lead to large uncertainties in their total

angular momentum.

And, unfortunately, we do we not know the total angular

momentum of the Solar System to within 10%. Why not?

Because the Oort Cloud dominates the Solar System angu-

lar momentum [7], providing about 50 times the total angular

momentum contribution from the Sun and the planets! The

total mass of the Oort Cloud is unknown but can be estimated

by assuming perhaps 100 Earth masses of ice chunks at more

than 40,000 AU. The dominance of the Oort Cloud can be

verified by estimating the Newtonian value of its angular mo-

mentum.

Although we have determined excellent linear regression

fits to all planetary-like systems by the QCM angular mo-

mentum constraint, there remain two limitations of the fits:

(1) they are not unique and (2) all integers are candidates for

m, i.e., there being no upper limit. For example, even with

a linear regression fit R2 = 1.000 for the set of m values 3,

5, 8, 14, 17, for a 5 planet system, the set of double values

6, 10, 16, 28, 34, fits equally well. The slope of the graph

of L/µ c versus m is used to predict the total angular momen-

tum of the system, the former set predicting twice the angular

momentum. However, if one knows the total system angular

momentum value, such as we do now for the Pluto system,

then the set of m values is unique.

Fig. 1: The Pluto System fit to QCM.

r × 106 m Period (d) m P2/P1 (n2/n1)3

Pluto 2.035 6.38723 4

Charon 17.536 6.38723 10 1 1

Styx 42.656 20.16155 15 3.156 3.077

Nix 48.694 24.85463 16 3.891 3.691

Kerberos 57.783 32.16756 18 5.036 5.153

Hydra 64.738 38.20177 19 5.981 6.011

Table 1: Pluto system orbital parameters and QCM m values.

2 Pluto and its 5 moons

Will a random set of orbital distances fit the QCM angular

momentum quantization constraint? Yes, because there is no

upper limit to the integers available for the m values. One

can always fit the constraint using very large integers! This

possibility is eliminated when the total angular momentum is

known. If one uses this random set of orbital distances with

a specific mass for the central star but the other masses are

unknown, the system obeys Newton’s law of universal gravi-

tation and the angular momentum per unit mass is known but

the unique set of integer values for m cannot be achieved.

The New Horizons spacecraft passing Pluto in July, 2015,

did not discover any more moons. The Pluto satellite sys-

tem [8] has five moons, Charon, Styx, Nix, Kerberos, and

Hydra, which are nearly in a 1:3:4:5:6 resonance condition!

The orbital behavior of the five moons is considered by using

distances from the Pluto-Charon barycenter. The important

physical parameters of the Pluto system satellites are given in

Table 1. The orbits are very close to circular.

The system total mass is essentially the combined mass

of Pluto (13.05 × 1021 kg) and Charon (1.52 × 1021 kg). The

QCM values of m in the fourth column were determined by

the linear regression fit (R2 = 0.998) to the angular momen-

tum quantization per mass equation as shown in Figure 1 with

L′ = L/µc plotted against m with resulting slope H = 1.43

meters. The uncertainty bars are within the circles. Our pre-

vious fit [1] of these Pluto moons proposed the m values 2, 6,

9, 10, 11, 12, with R2 = 0.998 also.

This new value of H produces a total angular momentum

value LT = 6.28×1030 kg m2/s that is commensurate with the

total angular momentum of 6.26(±0.14)×1030 kg m2/s for the
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known Pluto system when both orbital and rotational angular

momentum are included.

In QCM the predicted period ratios for the orbital reso-

nance conditions in the last column of Table 1 are calculated

from the m values using

P2

P1

=
(m2 + 1)3

(m1 + 1)3
. (6)

With Charon as the reference, this system of moons has nearly

a 1:3:4:5:6 commensuration, with Kerberos having the largest

discrepancy of about 5.2%.

These moons have distances from the barycenter that are

within 2.4% of their QCM equilibrium orbital radii. If in the

next few million years they adjust their orbital semi-major

axes, their positions on the plot may improve to increase the

R2 value but their m values will remain the same. Dynamic

analysis via the appropriate QCM equations could be done to

predict their possible movements.

Note that some additional extremely tiny moons of Pluto

may be found at some of the non-occupied m values, but their

angular momentum contributions will be very small. The for-

mation history of Pluto determines which m values are actu-

ally occupied by orbiting bodies.

3 Discussion

QCM predicts the quantization of angular momentum per unit

mass for all orbiting bodies in gravitationally bound systems.

Unfortunately, the total angular momentum of planetary-like

systems is usually not known to within 10%. Fortunately,

the New Horizons spacecraft passing by Pluto in 2015 did

not discover any additional moons of Pluto, so we now know

the extent of this system and its total angular momentum to

within 2.4%.

We have determined the best set of m integers for a fit

to the QCM angular momentum constraint, and the predicted

resonances in its moon system are in agreement with the mea-

sured period ratios to within 5.2%.

Therefore, we claim to have a definitive test of QCM in

the Schwarzschild metric in a planetary-like system because

the best understood system, Pluto and its 5 moons, obeys the

quantization of angular momentum per unit mass constraint.

Consequently, we expect that all such systems obey QCM,

and in the future we will search for systems that seem to vio-

late the angular momentum constraint.

One would prefer the ability to vary the parameters in a

gravitationally bound system, but we do not have that lux-

ury in astronomical systems. A laboratory test would allow

the variation of the system parameters in a controlled man-

ner and should be undertaken with perhaps a pendulum in a

vacuum chamber near to a rotating mass. In the ideal case

one would expect the maximum repulsion of the pendulum

to occur when the angular momentum constraint is met and

its magnitude to be comparable to the Newtonian attraction.

This type of additional definitive test of QCM might be able

to achieve an reduced uncertainty down to about 0.1%.
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The newest Large Hadron Collider experiments targeting the search for New Physics

manifested the possibility of new heavy particles. Such particles are not predicted in

the framework of Standard Model, however their existence is lawful in the framework

of another model based on J. A. Wheeler’s geometrodynamcs.

The main task of the Large Hadron Collider is to look for true

deviations from the Standard Model (SM) if any. The collider

has done hundreds of such experiments already. Some ex-

perimental results of these really deviate from the theoretical

results predicted in the framework of SM. The newest Large

Hadron Collider experiments done in look for New Physics

manifested the possibility of new heavy particles.

The ATLAS collaboration team and the CMS collabo-

ration team reported on the experimental search for heavy

particle-resonances [1–3]. So, the ATLAS team, while ex-

perimental search for heavy resonances of a mass in the scale

from 1 to 3.5 TeV decaying into a pair of bosons (i.e., into

WW-, WZ-, or ZZ-pairs), discovered an anomalous number

of events having an invariant mass of∼ 2 TeV. While the CMS

team looked for the events in which many hadrons and an

electron-positron pair were born then scattered with high en-

ergies. In the scale of invariant masses of ∼ 2 TeV, they regis-

tered an anomalous many events. The obtained picture is like

the production and decay of new heavy particles.

Such particles are not predicted in the framework of SM.

However their existence is lawful in the framework of a model

based on J. A. Wheeler’s geometrodynamic concept.

In this geometrodynamic model, any elementary particle

is considered as a trace appeared due to that a vortical tube

(Wheeler’s wormhole) transits the surface of our world (i.e.

as a fermion), and also as a contour or a vortical tube (i.e. as

a boson). So there can be connected contours of the first and

higher order, which give birth to a few generations of the ele-

mentary particles [4]. As a result, any particle corresponds to

two quantum numbers depending on that the particle is con-

sidered either as a fermion (an analogy of a proton joined into

the large contour of the next family of particles), or as the bo-

son mass of the contour of the previous family of particles.

In this way, only three families of the elementary particles

can exist.

The first generation of the particles is a proton contour (a

proton itself) having the same fermionic and bosonic masses,

the sum of which is approximately equal to the sum of all

π-mesons and K-mesons (1899 MeV).

The second generation is the standard proton-electron

contour (the µ-analogy of the proton) having a bosonic mass

close to the summary mass of the W and Z-bozons (229 GeV;

the fermionic masses of the contour and those of the follow-

ing contour are neglected).

The third generation is the largest contour wherein the pa-

rameters of the vortical tube reach its critical numerical values

(the τ-analogy of the proton). The mass of the vortical tube is

3.1 TeV. It is logically lawful to guess that, in analogy to the

second generation, this mass consists as well of three bosons

(the average mass of each is 1 TeV).

According to the formulae obrained in [4] on the basis of

Wheeeler’s geometrodynamics, the aforementioned mass can

be expressed in the mec2 units as

My =
1

3















2a3

c
1/3

0















7/4

= 2.1 × 106 (1.07 TeV), (1)

where a is the reverse fine structure constant, while c0 is the

dimensionless light speed.

The characteristic mass close to 1 TeV can also be found

proceeding from other consideration. As was found in [5, 6],

the mass of the active part of the proton (the mass of its quark)

enrolled into a circulation contour having a quantum contour

parameter ny answers the relation mk = c
2/3

0
/(any)

2. It is

shown in [4, 6] that not only 1/3 but also 1/4 of this value

can be the minimally possible charge (mass). Thus, in the

ultimate small value can be mk =
1
4

me. As a result, the ulti-

mate heavy bosonic mass of the contour (in its excited state)

is equal to

My = (any)
2
= 4c

2/3

0
= 1.79 × 106 (0.916 TeV). (2)

At last, it was found in [6] while considering the process

of appearance of the neutrino that, if the mass-energy of a

p+– e−-contour is close to the mass of a W-boson, replacing

the electron mass with the τ-particle mass we obtain

My = c
4/9

0
m1/3
τ

(

2πγρe × [sec2]
)1/3
=

= 2.29 × 106 (1.17 TeV) (3)
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that corresponds to the mass of the guessed boson of the third

generation. Herein, mτ is the τ-particle mass in the me units, γ

is the gravitational constant, ρe is the density inside the elec-

tron (me/r
3
e = 4.071 × 1013 kg/m3).

Thus, proceeding from the viewpoint of the suggested

model, such heavy particles decaying into the boson pair hav-

ing a summary mass of ∼ 2 TeV are very possible.
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Sagittarius (Sgr) A* is a massive black hole at the Milky Way center with mass of about

4.5 million solar masses. It is usually quite faint, emiting steadily at all wavelengths

including X-rays. Since the beginning of this century, rapid and intensive X-ray flares

are regularly detected from Sgr A* at a rate of about once a day. Conventionally, these

mysterious events daily occurred at the Milky Way center are believed to be caused

by the falling of objects such as asteroids, comets, and planets onto the massive black

hole. However, the physical process of how the falling objects to produce the observed

X-ray flares is still poorly understood. It is unclear why the gases, formed by tearing

the falling objects apart, can be heated up to 100 million degrees Celsius so suddenly

on a regular basis. This study develops a new alternative mechanism and provides a

possible explanation for the observations of X-ray flares from Sgr A*, in accordance

with the black hole universe model that was recently proposed by Zhang. The results

obtained from this study indicate that X-ray flares from the Milky Way center can be

understood as emissions of the dynamic massive black hole (i.e. Sgr A*). A massive or

supermassive black hole, when accreting matter or objects from the outside, becomes

dynamic and breaks its event horizon, which leads to the inside hot (or high-frequency)

blackbody radiation leaking and produces X-ray flares or bursts. The energies and spec-

tra of X-ray flares that Sgr A* can produce when it accretes objects with various sizes

including asteroids, comets, planets, and stars are theoretically analyzed and numeri-

cally calculated. In terms of results obtained from these analyses and calculations, we

explain the current measurements of X-ray flares from Sgr A*, predict events that will

possibly occur at our galactic center in future, and compare the extremely intensive

events predicted with the strong X-ray flares measured from other normal and active

galactic centers. This study develops a new physical mechanism for the origin of X-ray

flares from galactic centers and deepens our understanding to the black hole dynamics,

galactic activities, and cosmological evolutions.

1 Introduction

Sagittarius (Sgr) A* is a compact astronomical radio source

that was first discovered by [1] at the center of the Milky Way,

near the border of the constellations, Sagittarius and Scor-

pius. The orbital motions of stars around the Milky Way cen-

ter indicate the presence of a massive black hole with about

4.5 million solar masses, which is spatially coincident with

Sgr A* [2–3].

In general, Sgr A* is very faint and emits steadily at all

wavelengths, especially in the range of soft X-rays (2-10 keV)

with luminosity about 2 × 1033 erg/s [4]. Recently, NASA

Chandra X-ray Observatory and other missions such as Swift,

NuStar, XMM-Newton, and Roast have discovered intensive

and rapid X-ray flares at a rate of about once a day from

Sgr A*, with luminosity at the peak up to a few times 1035

erg/s [5–7]. The brightest X-ray flare ever observed so far

emits in total ∼ 1039
−1040 ergs of X-rays (2-10 keV) and last

a few thousand seconds or hours [8–9]. The X-ray echoes

recently discovered reveal that Sgr A* would have been a

very violent past with luminosity of ∼ 1039 erg/s (i.e., a mil-

lion times brighter than its present normal emission) during

the X-ray outbursts of the past few hundred years [10]. X-

ray outbursts from some other inactive galaxies can be even

much more intensive with luminosity ∼ 1044 erg/s [11–12].

Luminosities of an active galactic nuclei or a quasar can be

extremely high up to 1046 erg/s [13–15].

To explain the mysterious X-ray flares, astronomers have

suggested that there exists a gas cloud around Sgr A* con-

taining hundred-trillions of asteroids, comets, and planets that

are stripped from their parent stars by the tidal forces of the

massive black hole. When these objects rain down or are ac-

creted onto the massive black hole, X-ray flares take place via

physical processes such as the non-thermal synchrotron emis-

sion [16], the inverse-Compton scattering [17], and stochas-

tic electron acceleration [18]. To emit the high-energy X-rays

detected, an object that was striped from its parent star had

to be torn apart into gases during its falling and the gases

when arriving nearly at the massive black hole had to spike

to hundreds of million degrees Celsius, which is ten or more

times hotter than the center of the Sun. However, why the

gases heats up so suddenly and efficiently on a regular ba-
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sis is still poorly understood. One possible heating scenario

recently guessed is based on the physics of solar flares by

considering that the lines of magnetic energy contained in the

gas flowing into Sgr A* got tangled and the reconnection of

magnetic lines leads [19-20], but there still lacks of a quanti-

tative study on this magnetic mechanism. Especially, Sgr A*

may not be able to gravitationally tear an asteroid into parts

as small as a human body, because the gravitational field dif-

ference between the head and feet of a 2-meter height person,

who stands on Sgr A* surface is only 10−3 m/s2. Up to the

date, astronomical communities are still out on what really

caused these giant X-ray flares from Sgr A*. The mechanism

for the origin of X-ray flares from the galactic center is still a

mystery and in pending for a physical explanation.

Recently, postulating the equivalence between a spactime

and a black hole, Zhang [21–22] developed a new cosmo-

logical model called black hole universe, which is consistent

with Mach’s principle, governed by Einstein’s general rela-

tivity with the cosmological principle of spactime isotropy

and homogeneity, and able to explain the existing observa-

tions of the universe without encountering difficulties such as

the flatness, horizon, inflation, dark matter, and dark energy

problems. The studies that have been conducted so far have

explained the origin, structure, evolution, expansion, cosmic

microwave background radiation, quasar formation and emis-

sion, gamma ray bursts (GRBs), and acceleration of black

hole universe [15, 22–27]. According to this new cosmologi-

cal model, the universe originated from a star-like black hole

with several solar masses, grew up through a supermassive

black hole with billions of solar masses to the present state

with hundred sextillions of solar masses by accreting ambi-

ent matter and merging with other black holes. More aspects

about the black hole universe model have been presented in

a sequence of American Astronomical Society (AAS) meet-

ings [28–37]. The black hole universe model establishes a

complete new understanding to the dynamics of black holes,

so that offers a unique explanation to the observations of var-

ious events that relate to the activities of black holes such as

quasars [15], gamma ray bursts [25], and X-ray flares from

galactic centers (this paper).

This study will focus our investigations on the physical

mechanism of X-ray flares from Sgr A*, a massive black hole

at the Milky Way center, and provides an alternative expla-

nation for the energy and spectrum measurements of X-ray

flares according to the black hole universe model. The re-

sults indicate that X-ray flares from the galactic center can be

understood as emissions of the dynamic massive black hole.

As pointed out in Zhang’s early studies, a black hole, when

it accretes its ambient matter or objects, becomes dynamic.

A dynamic black hole has a broken event horizon and thus

cannot hold the inside hot (or high-frequency) blackbody ra-

diation, which leaks out and produces a gamma ray burst if it

is a star-like black hole or an X-ray flare if it is a massive or

supermassive black hole. The energies and spectra of X-rays

obtained by this study for the X-ray emissions from Sgr A*

when it accretes appropriate size objects such as asteroids,

comets, and planets can be consistent with the measurements.

2 X-ray emissions of dynamic massive black holes

In accordance with the black hole model of the universe de-

veloped recently by [21–22], a black hole constructs an indi-

vidual spacetime (spatially singular and temporally noncausal

to the outside) and a spacetime encloses a black hole. Black

hole and spactime are equivalent. According to this equiva-

lence, our four-dimensional (4D) spacetime universe is a fully

grown extremely supermassive black hole. The observed star-

like, massive, and supermassive black holes are subspace-

times of our black hole universe. Upon the view from the

outside, a star-like or supermassive black hole is a singular

sphere, from which no matter and radiation can escape. In

general, a star-like (or larger) black hole can be considered as

an ideal blackbody, with the following Mach-Schwarzschild

mass-radius (M-R) relation

2GM

c2R
= 1, (1)

where c is the light speed in the free space and G is the grav-

itational constant.

The temperature inside a star-like black hole, though it

cannot be measured from outside, should be as high as that of

a neutron star because both types of objects are comparably

compact. At the moment of its birth via a supernova explo-

sion, a neutron star can reach 1012 K and then quickly cools

down to about 108 K because of its strong radiation and neu-

trino emission [38]. A black hole can hold the high tempera-

ture reached at the moment of its birth because it does not ra-

diate significantly. When a star-like black hole accretes mat-

ter and radiation from outside, it expands and cools down. As

a star-like black hole grows up as big as the present universe,

the inside temperature decreases from 1012 K to about 3 K. In

the black hole universe model, the observed 3 K cosmic mi-

crowave background radiation is the internal blackbody radi-

ation of the black hole universe, an ideal blackbody [23, 29].

The spectral energy density of blackbody radiation within

a black hole including the black hole universe can be deter-

mined according to Planck’s law as

u(ν, T ) =
8πhν3

c3

1

exp
(

hν
kT

)

− 1
, (2)

where ν is the radiation frequency, T is the temperature, h

is the Planck constant, and k is the Boltzmann constant. In

the SI unit system, the unit of u(ν, T ) is J/m3/Hz, which is

equivalent to 2.41 × 1017 J/m3/keV. Figure 1 plots the spec-

tral energy density as a function of photon energy ǫ = hν at

temperature equal to 106, 107, 108, and 109 K, respectively.

It is seen that the spectral energy density significantly varies

with the temperature and photon energy. Inside a black hole
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Fig. 1: The spectral energy density of blackbody radiation as a func-

tion of radiation energy at temperature equal to 106, 107, 108 K and

109 K, respectively.

with temperature of 107
− 108 K (e.g. a massive black hole

with millions of solar masses), the blackbody radiation dom-

inates at the frequency of X-rays with photon energy in the

range of 1 − 200 keV. The spectral photon number density

f (ν, T ) ≡ u(ν, T )/ǫ is plotted in Figure 2

Integrating the spectral energy density (Eq. 2) with re-

spect to the frequency of radiation in the entire range, we

have the energy density of the blackbody radiation inside a

black hole including the black hole universe,

ργ ≡

∫

∞

0

u(ν, T )dν = βT 4, (3)

where the constant β is given by β ≡ 8π5k4/(15h3c3) ≃ 7.54×

10−16 J/m3/K4. Inside a black hole with temperature ∼

107
− 108 K, the energy densities of radiation are ∼ 1013

−

1017 J/m3.

As a black hole including the black hole universe accretes

its outside matter and radiation, it expands and cools down.

Considering that the increase of the Planck radiation energy

within the black hole equals to the radiation energy inhaled

from the outside space, we have [23]

dT

dR
= −

3T

4R















1 −

(

Tp

T

)4














. (4)

where T is the temperature inside the black hole and Tp is

the temperature outside the black hole. This equation deter-

mines the temperature inside a black hole in accordance with

its size. The solution of Eq. (4) for the dependence of T on

R depends on Tp or on the relation between T and Tp. In

the early studies [23, 29], Eq. (4) was solved for the present

black hole universe that grew up from a hot star-like black

hole through a supermassive black hole.

For star-like or supermassive black holes, the tempera-

tures inside should be much greater than the temperatures

Fig. 2: The spectral number density of blackbody radiation as a func-

tion of radiation energy at temperature equal to 106, 107, 109 K and

1012 K, respectively.

outside, i.e., T ≫ Tp. In this case, Eq. (4) can be simply

solved as

R3T 4 = C, (5)

where C is a constant. Zhang [26] has assumed this con-

stant to be the same for all size star-like or supermassive

black holes and quantitatively explained the measurements

of GRBs as emissions of dynamic star-like black holes. The

value of the constant was determined according to the radius

Rs and temperature T s of a particular (or reference) black

hole as C = R3
sT 4

s . For a three-solar-mass black hole (Ms =

3MSun) to be the reference black hole, its radius is about Rs =

2GMs/c
2
∼ 8.89 km. Choosing its temperature to be T s =

1012 K, we have C ∼ 7 × 1059 m3 K4. The temperature of a

star-like or supermassive black hole decreases as it expands

in size according to T ∝ R−3/4.

Figure 3 plots the temperature of a black hole as a func-

tion of the radius or mass of the black hole. The the temper-

ature of a three-solar mass black hole is chosen to be T s =

5 × 1011 K and 1012 K. For Sgr A* with mass of 4.5 million

solar masses or radius of 1.33 × 1010 m, the temperature is

∼ 107
− 108 K. The frequency of blackbody radiation at the

peak to this temperature range is ∼ 1018
− 1019 Hz (or the

energy of X-rays at the peak is ∼ 4 − 40 keV).

From Eqs. (3) and (5), we obtain the total radiation en-

ergy U inside a black hole with volume V or radius R to be a

constant and independent of its size or mass,

U ≡ ργV =
4

3
πβR3T 4 = Constant. (6)

It is seen that the total radiation energy inside a black hole

(either a star-like or supermassive black hole) remains the

same or is conserved. A black hole can grow its size by ac-

creting mater from the outside space or merging with other

black holes, but cannot increase its total radiation energy.
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Fig. 3: The temperature of a massive black hole as a function of

the radius or mass of the black hole with Ts = 1012 K or 5 × 1011.

The vertical dashed line represents the radius, mass, and range of

temperature.

A star-like black hole with several solar masses holds the

same amount of radiation energy as a supermassive black

hole with billions of solar masses does. The difference is

only the temperature or frequency of the radiation. Dynamic

star-like black holes with thousand billions of Kelvins radi-

ate gamma rays [26], while dynamic massive or supermassive

black holes with millions to billions of Kelvins radiate X-rays

such as X-ray emissions from quasars [15] and X-ray flares

from Sgr A*, a massive black hole at the Milky Way center

as shown in this study.

3 Energy and energy spectrum of X-ray flares from

Sgr A*

According to the black hole universe model, X-ray flares from

the Milky Way center are the emissions of the dynamic mas-

sive black hole, Sgr A*, which is accreting objects that fail to

orbit around Sgr A*.

The energy emitted by Sgr A* with mass M and radius

R, after it has accreted an object with mass m and radius r,

can be determined by the difference of gravitational potential

energies subtracting all other losses or dissipations during the

falling of the object towards Sgr A*

E = UM + Um + UMm − UM+m − Eloss , (7)

where UM is the gravitational potential energy of Sgr A* be-

fore the object is accreted,

UM = −
3GM2

5R
= −

3

10
Mc2; (8)

Um is the gravitational potential energy of the object (e.g. an

asteroid),

Um = −
3Gm2

5r
= −

3

10

rg

r
mc2, (9)

Fig. 4: The energy of X-ray flares from Sgr A* versus the mass of

the object accreted.

with rg = 2Gm/c2 is the Schwarzschild radius of an object

with mass m; UM+m is the gravitational potential energy of

Sgr A* after the object is accreted,

UM+m = −
3G(M + m)2

5(R + δR)
= −

3

10
(M + m) c2; (10)

and UMm is the gravitational potential energy between Sgr A*

and the object when the object is initially on the orbit,

UMm = −
GMm

Rorbit

= −
1

2

R

Rorbit

mc2, (11)

with Rorbit is the radius of asteroid’s initial orbit around

Sgr A*; and Eloss is the energy lost or dissipated during the

object is falling into Sgr A*. Substituting Eq. (8) through

Eq. (11) into Eq. (7), we have

E =
3

10

(

1 −
rg

r
−

5R

3Rorbit

)

mc2
− Eloss. (12)

Since rg ≪ r and R ≪ Rorbit, Eq. (12) simply reduces to

E ∼
3

10
mc2, (13)

if the loss or dissipation is negligible in comparison with the

rest energy of the object. Therefore, the energy of X-ray flares

from Sgr A* approximately depends on the mass of the object

that Sgr A* has accreted from outside. Figure 4 plots the

energy of X-rays emitted by the massive black hole Sgr A*

when it accretes an object as a function of the object mass.

It is seen that Sgr A* emit more X-rays if it accretes more

massive object. For instance, Sgr A* can emit up to 1039 ergs

of X-rays if it accretes an asteroid with mass of 1017 kg.

Table 1 lists the energies of X-ray flares from Sgr A*

by accreting some particular objects. Hourly accreting some

small-sized asteroids can explain the faint and steady emis-

sions of Sgr A* (∼ 1033 ergs/s). Daily accreting one medium-

sized asteroid can explain the present observations of X-ray
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Type of Object Mass (kg) Energy (erg)

Asteroid (small size) 1013 3 × 1036

Asteroid (medium size) 1016 3 × 1039

Asteroid (large size) 1020 3 × 1043

Planet (Pluto size) 1.3 × 1022 4 × 1045

Planet (Earth size) 6 × 1024 2 × 1048

Planet (Jupiter size) 2 × 1027 6 × 1050

Star (1 solar mass) 2 × 1030 6 × 1053

Star (100 solar mass) 2 × 1032 6 × 1055

Table 1: Mass of various objects and energy of X-ray flares from

Sgr A* when it accretes these objects.

flares (about hundred times more luminous than the steady

emission) from Sgr A* at a rate of once a day. Occasionally

accreting of large-sized asteroids or pluto-sized planets can

explain the X-rays outbursts of a million times brighter than

the normal emission of Sgr A*, which occurred during the

past few hundred years. For big size planets, this may also

explain the X-ray outbursts from some other inactive galac-

tic centers. In future, when Sgr A* accretes a star including

neutron star daily (or yearly for a large star), an active galactic

nucleus (AGN) or quasar will form or is born in our galaxy. It

should be noted that the G2 cloud with 3 Earth masses, if it is

accreted by Sgr A*, will produce a super X-ray flare, billions

times brighter than the normal emissions.

The spectral energy flux S (ν, T ) of the blackbody radia-

tion from a dynamic black hole can be determined by,

S (ν, T ) = cu (ν, T ) . (14)

Dividing the spectral energy flux S (ν, T ) by the energy of

photon, we have the spectral photon flux as,

J(ν, T ) ≡
S (ν, T )

hν
= c f (ν, T ) . (15)

For the radiation observed at the Earth, the spectral flux of

an X-ray flare produced by the dynamic massive black hole

Sgr A*, when it accretes an object, is given by,

J(ν, T ) = c f (ν, T )

(

r0

dL

)2

, (16)

where dL is the luminosity distance and r0 is the radius of

radiation area, which is the area of the horizon broken. The

temperature T of Sgr A* can be estimated, according to

Eq. (5), by

T = T s

(

Rs

R

)3/4

= T s

(

c2Rs

2GM

)3/4

, (17)

where M is the mass of Sgr A* and equals to about 4.5 mil-

lion solar masses. As mentioned above or in [25–26], Rs is

the radius of the three-solar-mass black hole and is equal to

∼ 8.89 km; T s is the temperature of the three-solar-mass black

Fig. 5: The spectral flux of dynamic massive black hole Sgr A* as a

function of radiation photon energy.

hole and is usually chosen to be around one trillion Kelvins,

i.e. T s ∼ 1012 K. Then we have the temperature of inside

Sgr A* is T ∼ 2.3 × 107 K.

For the massive black hole Sgr A*, dL ∼ 2.46 × 1020 m

or 26,000 light-years. The radius of radiation area r0 can be

considered to be about the radius of the object accreted by

Sgr A* times a factor, r0 = br. The factor b is equal to the

unity if the full area of radiation faces towards to the observer

or the Earth. Otherwise, we have b < 1 or r0 < r. In ad-

dition, since the object is usually broken by the tidal force

during the falling, the factor b should be smaller. An X-ray

flare occurred at the opposite side of Sgr A* cannot be di-

rectly observed by an observer on the Earth. In this case, the

factor b is zero. The 400 brighter than normal emission X-

ray flare caught by Chandra on September 14, 2013 flares its

X-rays in the upright direction according to the image [9,19].

Considering that an asteroid, whose density is usually given

by about 2000 kg/m3, has mass of 1017 kg, we can find its

radius r ∼ 23 km and choose r0 equal or less than 23 km.

Figure 5 plots the average spectral flux of an X-ray flare from

Sgr A* as a function of the X-ray photon energy. In this plot,

we have chosen r0 = 200, 2000, 20000 m, respectively, and

T s = 1012 K. It is seen that the spectral flux of X-ray flares

from Sgr A*, according to this new mechanism, increases

with r0. Increasing T s also increases the spectral flux espe-

cially in high energy end. Quantitatively, the spectral flux of

X-ray flares from Sgr A* obtained from this study as emis-

sions of dynamic massive black hole can be consistent with

the measurements [39].

4 Discussion and conclusion

According to this new mechanism, the duration or time scale

of an X-ray flare is the time needed for the broken horizon to

be recovered. It depends on the size of the object accreted and

also the rate or speed of matter diffusion. In general, the big-

ger the events are, the longer the flares can last, which agrees
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with the measurements. The rate of matter diffusion depends

on the state of matter. The rate of diffusion is faster if the

matter is hotter and/or less dense. The falling of the object is

usually dissipated due to radiation of lower frequencies such

as near infrared as measured usually prior to the X-ray flares.

In addition, the observed spectral flux of X-ray flares from

Sgr A* may be significantly affected by the gravitational red-

shift. In future, we will address these issues in more details.

We have developed a new mechanism for X-ray flares

from Sgr A*, in accordance with the black hole model of the

universe that Zhang [21–22] recently proposed. According

to this new mechanism, we can understand X-ray flares from

Sgr A* as emissions of dynamic massive black hole at the

Milky Ways center. A black hole (from star-like with sev-

eral solar masses through supermasive with billions of so-

lar masses), when accreting matter, becomes dynamic and

breaks its event horizon, which leads to the inside hot (or

high-frequency)blackbody radiation leaking out of it and pro-

duces an X-ray flare or burst. We calculate the energies and

spectra of X-rays emitted by the galactic center massive black

hole when various sized objects from asteroids through

comets and planets to stars fall into Sgr A*. Then, through

these calculations, we explain the current measurements of

X-ray flares from Sgr A* including its steady emissions, pre-

dict big events that possibly occurred in the past or will pos-

sibly occur in future at our galactic center, and compare the

predicted intensive events with the measurements of strong

X-ray flares from other normal and active galactic centers.

This study develops a possible mechanism for the origin of

the X-ray flares from galactic centers and deepens our under-

standing to the black hole dynamics, galactic activities, and

cosmological evolutions.
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On an Apparent Resolution of the Catt Question

Stephen J. Crothers

Tasmania, Australia. E-mail: steve@plasmaresources.com

Over a number of years there have been some attempts to answer the Catt Question

within the context of classical electromagnetic theory. None of the authors of these

attempts agree on the answer to the Catt Question, even though they all invoke the very

same theory. An attempt at answering the Catt Question appeared in the journal Physics

Education in 2013, penned by M. Pieraccini and S. Selleri, as a mathematical rendition

of their earlier non-mathematical version published in IEEE Antennas and Propagation

Magazine, 2012. The explanation by these two Authors contains violations of classical

electromagnetic theory, although they claim to have satisfactorily answered the Catt

Question by means of classical electromagnetic theory. The arguments adduced by

Pieraccini and Selleri are therefore invalid.

1 Introduction

In their article [1] “An apparent paradox: Catt’s anomaly”, the

Italian authors Pieraccini and Selleri∗ refer to the Catt Ques-

tion as “Catt’s Anomaly”. Their earlier paper is titled ‘Catt’s

Anomaly’ [2]. Although until 2001 “The Catt Question” was

called “The Catt Anomaly”, it was in fact always a question,

to be answered.

The Catt Question [3] pertains to the propagation of a

Transverse Electromagnitic (TEM) wave along a transmis-

sion line. Upon closure of a switch, the TEM wave (step)

travels at the speed of light between the conducting wires

of the transmission line, from battery to load, as depicted in

Fig. 1.

An electric field E appears between the conductors, di-

rected from the top wire to the bottom wire. This electric field

is orthogonal to the two parallel wires and moves towards the

load; thus there are positive charges on the top conductor and

negative charges on the bottom conductor in the region of the

transverse electric field. The Catt Question is: Where does

this new charge come from? [3].

2 Electron current

According to classical electromagnetic theory and circuit the-

ory, electric current in metallic wires is the flow of electrons

in the wires (conductors), and a magnetic field is generated

around the conducting wires according to the Right-Hand

Rule. Since the TEM step travels at the speed of light to-

wards the load, how does the current in the conducting wires

keep pace with the TEM wave, if electrons cannot travel at the

speed of light? The Authors [1] give the following answer,

“The key idea of the explanation of this apparent

paradox is related to the great number of elec-

trons in metal. Although each single electron is

∗Massimiliano Pieraccini, Associate Professor, Department of Electron-

ics and Telecommunications, University of Florence; Stefano Selleri, Assis-

tant Professor, University of Florence.

Fig. 1: An electric field points directly from the top conductor to

the bottom conductor (from positive charge to negative charge). It is

therefore orthogonal to the top and bottom parallel conductors. The

transverse electric field travels from battery to load at the speed of

light, subject to the dielectric medium between the wires.

not able to travel at the speed of light, a great

number of slow electrons are able to produce a

current as fast as an electromagnetic wave trav-

elling at the speed of light in the conductor.”

What do they mean by “current”? They say here that elec-

trons “produce a current”. However, the Authors actually as-

sume the classical electron flow along wires as the meaning

of electric current in wires, and claim that this current travels

along the conductors at the speed of light even though the drift

speed of electrons in the wires is a snail’s pace (e.g. 2mm/s in

1.0mm copper wire [1]). Strangely, the flow of electrons, al-

though very slow, produces an electron current that is “as fast

as an electromagnetic wave travelling at the speed of light

in the conductor” [1]: after all, a current of electrons is an

electron current. This impossible duality occurs, they say, be-

cause the free electron density in the conductors is very high,

and they derive an equation for electron drift “velocity”.

Electron drift velocity in a wire is proportional to the vec-

tor electric field Ew in the wire, which supposedly causes the

electron drift,

v = −µEw (0)

and so the electron drift velocity and the electric field in the

wire are collinear but point in opposite directions. The con-

stant of proportionality µ is called the mobility.
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The Authors begin with the following equation for elec-

tron current,

I = πa2νqN , (1)

where a is the radius of the conductors, ν “the drift velocity

of the charges (in practice electrons, and the speed is much

lower than the speed of light)” [1]∗, q the elementary charge,

and N the free electron density in the conductors.

Since the current, they say, travels at the speed of light, in

time ∆t = ∆x/c they obtain a passage of charge ∆Q along the

top conductor, given by,

∆Q = I∆t = I
∆x

c
, (2)

where ∆x is the distance travelled by the TEM step in time ∆t.

This charge∆Q the Authors call “an imbalance of charge” [1]

because they say it is confined to a leading volume element of

length ∆x in the top conducting wire, and induces equal but

opposite polarity charge on the bottom conducting wire.

Using a cylindrical Gaussian surface they next apply

Gauss’ Law to calculate the magnitude E of the electric field

E due to ∆Q in the top conductor,

∆Q

ǫ0
= (2πa∆x) E , (3)

where ǫ0 is the permitivity of free space. Substituting ∆Q

from equation (2) and I from equation (1) the Authors obtain,

ν =
2cǫ0E

qNa
. (4)

From equation (4) they conclude,

“The notable point of this result is that the nec-

essary speed decreases with the number of elec-

trons per volume unit N. Therefore, a great num-

ber of slow electrons are able to generate enough

unbalanced charge to follow an electromagnetic

wave travelling at much higher speed.”

Thus electrons flow slowly in the conducting wires but the

electron current in the wires is nevertheless flowing along the

conductors at the speed of light.

Although equation (4) follows from equations (1), (2) and

(3) by purely mathematical operations, the transverse electric

field E cannot drive electrons along the inside or outside of

the wires. Equations (1), (2) and (4) imply flow of electrons

along the wires, but the transverse electric field at equation

(3) is orthogonal to the parallel axes of the top and bottom

wires. According to classical electrodynamics, free electrons

in a metallic conductor flow in the direction opposite to the

direction of the electric field, according to equation (0), not

orthogonal to the electric field (E , Ew). The Authors con-

found battery EMF† with the transverse electric field, and so

∗The Authors confound velocity with speed; the latter denoted by |v| = ν
†What EMF is, is another question.

make the transverse electric field the battery EMF to drive

electrons along the wires; at equation (4).

Then they introduce the “skin effect” [1]:

“Up to this point, the current has been consid-

ered constant in the wire section, but in reality

the current flow tends to be bound to the portion

of the conductor closer to the surface.”

The equation for current in the wires they then give as,

I = 2πaδνqN , (1b)

where δ is the skin depth, which is frequency dependent. With

the “skin effect” they still argue that electrons flowing along

the wire is electric current, orthogonal to the electric field they

calculated at equation (3), and continue to make that trans-

verse electric field the driver of the electrons in the conduct-

ing wires. Using equations (1b), (2) and (3) they then obtain

the electron drift speed,

ν =
2cǫ0E

qNδ
(5)

although the 2 in the numerator should not in fact appear.

3 Conclusion

Pieraccini and Selleri have not answered the Catt Question.

On the one hand they treat current in the conducting wires as

electron current but on the other hand they invoke the trans-

verse electric field between the conducting wires to drive this

electron current at the electron drift speed. Their analysis vio-

lates the classical electromagnetic theory they use in their at-

tempt to prove that what they call “Catt’s Anomaly” is merely

an “apparent paradox” [1]. The real paradox here is their

claim that very slowly flowing electrons in the wires of a

transmission line produce an electron current in those wires

that travels at the speed of light, driven by an elecric field

orthogonal to those wires.

“If I have promised to deliver one dozen eggs to

Oxford, one hour from now, Oxford being 100

miles away, there is no point in despatching ten

dozen eggs in a vehicle which travels at only ten

miles/h” [4].
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The Roland De Witte Experiment, R. T. Cahill, and the One-Way Speed of Light

Joseph Catania
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In “The Roland De Witte 1991 Experiment (to the Memory of Roland De Witte)”

(Progr. Phys, 2006, v. 2(3), 60–65), R.T. Cahill gives us a briefing on his view that

interferometer measurements and one-way RF coaxial cable propagation-time measure-

ments amount to a detection of the anisotropy in the speed of light. However, while I

obtain first order propagation delays in calculations for one-way transit which would

show geometric modulation by Earth’s rotation, I do not agree with Cahill’s simplistic

equation that relates the modulation solely to the projection of the absolute velocity

vector v on the coaxial cable, called vP by Cahill (ibid., p. 61–62). The reader should be

warned that Cahill’s equation for ∆t (ibid., p. 63) is crude compared with a full Special

Relativistic derivation.

1 Introduction

In The Roland De Witte 1991 Experiment (to the Memory

of Roland De Witte) [1], R. T. Cahill gives us a briefing on

his view that interferometer measurements and one-way RF

coaxial cable propagation-time measurements amount to a

detection of the anisotropy in the speed of light. This startling

conclusion is difficult to swallow in the face of rigorous light

speed in vacuo measurements which are reproducible and

flaunt good experimental controls. For instance, in [2] Eisele

et. al. were able to limit anisotropy in c to a fractional uncer-

tainty of 10−17. It would seem apparent that, to this precision,

there is no first or second order anisotropy in the two-way

speed of light.

2 The one-way speed of light

As regards the one-way speed of light, a point of confusion in

regard to spurious claims of anisotropy might be exemplified

by measurements with the Global Positioning Satellite (GPS)

system, which can measure the rotational speed of the Earth,

v, by the way it affects the propagation time of an electromag-

netic signal used in the GPS system [3]. Thus, the apparent

velocities c+ v and c− v would be measured instead of c. But,

certainly, GPS is not to be interpreted as capable of measur-

ing c itself. As further clarification, let us say that, through

some means I could set a train moving at 20 miles per hour

along a railroad track in a due Easterly direction. At some

point on the track to the East of the train I have stationed

a measurement instrument which reads exactly 20 mph. If

I now move this measuring instrument in an Easterly direc-

tion at 5 mph I should only measure the train speed as 15

mph. If I give the measuring instrument a Westerly motion

of 5 mph, I should measure for the train 25 mph. Most of

us have an intuitive familiarity with this situation. In no way

should there be a temptation to assign the 15 or 25 mph speed

to the train velocity which is obviously 20 mph. We should

not confuse actual velocity with apparent velocity. Likewise,

one-way propagation times of electromagnetic signals cannot

be used to calculate c, which has already been assumed con-

stant, but they would be useful in calculating the v in c + v or

c − v, if the distance of propagation were known.

Similarly, the Michelson-Morley interferometer measure-

ments Cahill refers to in [1] were not developed to measure

the speed of light, c, but to measure relative motion, v to a

postulated luminiferous ether. That Cahill admits this mea-

surement of v was successful [4] on the one hand would seem

to defy his light speed anisotropy conclusion on the other.

So, I find it difficult to reconcile propagation time calcula-

tions used in interferometer measurements which assume c, a

well-known constant of nature, as the speed of light in vacuo,

and the explicit solution for the variable v, the motion with

respect to the ether, with light-speed anisotropy in any form.

3 First order effects

Nevertheless, as pointed out, there are fringe-shifts measured

in many interferometers and there is De Witte’s propagation

time delay (which is correlated to sidereal time). It has been

established in Michelson-Morley type interferometer mea-

surements that there is a correlation of measurements of v

with cosmic velocity (similar to the CMB dipole velocity) ac-

companied with amplitude modulations with respect to ro-

tation and revolution of the Earth. This is expected on the

basis of current theory which explains fringe-shifts in inter-

ferometers as due to dielectric in the light path (no fringe-

shifts are expected in vacuum interferometers) [4]. However,

while I obtain first order propagation delays in calculations

for one-way transit which would show geometric modulation

by Earth’s rotation, I do not agree with Cahill’s simplistic

equation that relates the modulation solely to the projection

of the absolute velocity vector v on the coaxial cable, called

vP by Cahill [1, p. 61–62]. The reader should be warned that
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Cahill’s equation for ∆t [1, p. 63] is crude compared with

a full Special Relativistic derivation. Also the period of the

modulation based on a fixed absolute motion vector in the

Miller direction would not be 12 sidereal hours but 24 as can

be plainly seen from the geometry. Also apparent from the

geometry is that Cahill’s vP would never go negative and in-

deed does not attain zero. In fairness Cahill states in (ibid.,

p. 63) that DeWitte’s data is plotted with a false zero mak-

ing the periodicity appear to be 12 hours sidereal. As well,

there does not seem to be sufficient support of Cahill’s use

of n = 1.5 for De Witte’s coaxial cable. It’s more likely that

ǫ = 1.5.

4 Conclusion

In conclusion I can only say that although Cahill understands

De Witte’s result is first order and shows correlation to the

Miller direction we must be cautious in ascribing this result

to unconfirmed phenomena such as light speed anisotropy es-

pecially since SR would seem to be an apt predictor of the

effect.
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Accelerating cosmological expansion is driven by a minuscule vacuum energy density

possibly seeking opportunities to decay to a true ground state. Quasar characteristics

imply their central engines possess an intrinsic magnetic field compatible with the pres-

ence of an electrically charged toroidal dark hole, an eternally collapsing structure lack-

ing an event horizon. The possibility is consistent with the inability of black holes to

capture particles in a universe of finite age, Einstein’s dismissal of the Schwarzschild

metric as unphysical and the implausibility of the various paradoxes invoked by black

hole existence. The uncloaked innards of these dark holes would expose immense vac-

uum accelerations at their cores, inevitably tempered by Planck scale physics. The

Unruh effect predicts that intense yet highly localised heating should occur there. As

thermal energy gradually amasses and dissipates, radiation would eventually start to

escape into the surrounding environment. Virtual from the dark hole perspective, the

emissions could not decrease the dark hole’s mass: the energy source must instead

be the universal vacuum, the likely repository of dark energy. In analogy with core-

collapse supernovae, neutrinos should dominate the cooling flows. Red-shifting to low

energies upon escape, quantum degenerate haloes should form predominantly around

the largest galaxies. This mechanism is promising from the perspective of enabling the

future universe to efficiently sustain aquatic life before stars become scarce, offering a

biological yet decidedly non-anthropic solution to the cosmological constant problem.

1 Introduction

Despite tremendous interest in the composition, distribution

and interactions of dark matter particles, the existence of only

one of the candidates presently transcends speculation. This

accolade belongs to the neutrino — a fermion which, by

virtue of its non-zero mass [1], is capable of gravitational

condensation to form quantum degenerate galactic haloes [2].

With cosmological constraints already implying hierarchical

neutrino mass eigenstates, the similarity of kTH2O(aq) and

|∆m13|c2 is most striking. Neutrino oscillations require phys-

ics beyond the Standard Model but renormalisable extensions

likely demand the existence of sterile varieties. Intriguingly,

these facts could be hinting at the perpetuation of advanced

aquatic lifeforms well beyond the stelliferous era [3].

Dark matter was recently overshadowed by the discov-

ery of dark energy, a yet more pervasive and enigmatic phe-

nomenon causing universal expansion to accelerate. Its spa-

tial energy density is some 120 orders of magnitude smaller

than quantum physics can comfortably explain [4]. Although

dark energy’s influence is locally imperceptible it dominates

the cosmos already [5,6] and consequently represents a form-

idable new frontier in cosmology. Parallels can be drawn with

theories of cosmic inflation, whose accelerating expansion

purportedly terminated as an underlying energy field decayed

into high energy particles. Whereas Mercury’s orbital pecu-

liarities provided both an impetus for Einstein’s development

of general relativity and a means of experimentally validat-

ing corrections to Newtonian mechanics, dark energy is far

more inscrutable. Thus, insights of any kind are potentially

valuable and merit careful investigation.

The goal of this work is to revisit the cosmological con-

stant problem following the advancement of a novel model

of the universe predicting the future decay of dark energy.

This framework happens to incorporate the first scientific hy-

pothesis concerning the long-standing mystery of extraterres-

trial silence, yielding testable predictions for particle physics

[3]. There is a very real prospect that the future universe

might sustain aquatic life for∼1025 years in certain locales via

the annihilation of gravitationally condensed neutrinos within

hexagonally close-packed iron (hcp-Fe), a material that dom-

inates the cores of oceanic planets up to ∼ 15 M⊕ [7]. Ac-

tive neutrinos may well have sufficient mass to maintain liq-

uid oceans since oscillations [8] and cosmological considera-

tions [9] imply that Σmν lies in the range 58–230 meV. More-

over, the hcp/fcc boundary in iron’s phase diagram conve-

niently lends itself to planetary thermoregulation almost inde-

pendently of planet size [3]. Key to the scenario is the finding

that the cosmic abundance of neutrinos must first be hugely

augmented, implicating the future decay of dark energy pri-

marily to galaxy-engulfing active neutrino halos of a mass

approaching 1021 M⊙ within ∼60 Gyr [10].

This particular line of cosmological investigation has not

previously succeeded in venturing any suggestion as to a

physical process by which dark energy might decay to neu-

trinos, an eventuality implied by the propensity of neutrinos

to sustain aquatic life with remarkable efficiency [3]. Other

avenues of enquiry have similarly failed to pinpoint specific
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mechanisms for vacuum discharge capable of ending the cur-

rent phase of cosmic acceleration, although a model of dark

energy interacting with a neutrino-like fermion field has been

considered [11]. The present approach draws heavily on de-

velopments in black hole research and observational cues

from the contrasts between active and inactive galactic nu-

clei. A promising mechanism for dark energy discharge shall

be identified here but its quantitative analysis is likely to re-

main challenging for some time, in large part due to the con-

tinuing lack of a theory of quantum gravity and knowledge

of physics at the highest energies. The concluding discus-

sion reflects upon the capability of this mechanism to fulfil

its cosmological motivations and thereby offer a radical new

approach to comprehending the minute energy density of the

vacuum.

2 Theoretical motivations

2.1 The physics of biology

Life is reliant on complex biochemical interactions involving

only three subatomic particles whose arrangements are sta-

bilised by only two forces: electromagnetism and the strong

interaction. The neutron is marginally more massive than the

combined rest mass of a proton and an electron, allowing pro-

tons and neutrons to coexist without prohibiting the formation

of neutron degenerate matter within dense stars. The strong

interaction conveniently allows the assembly of heavy atomic

nuclei despite intense electromagnetic repulsion between pro-

tons. Of the elements up to lead, only three lack uncondition-

ally stable isotopes, yet most possess only one or two stable

isotopes. Remarkably minor adjustments to several physical

constants could radically shorten the periodic table or rule

out chemistry altogether. Space might be populated mainly

by neutron stars and black holes. Stars might be incapable of

nuclear fusion, too short-lived to support complex evolution-

ary processes or so dim that planets orbiting within their hab-

itable zones soon become tidally-locked. Supernovae might

never scatter the ashes of stars into space, so that their ejecta

might form elements necessary for planets and life.

Ascertaining why nature’s constants might possess the

values they do has been traditionally regarded as the pre-

serve of mathematical physics — yet the approach has met

with little success. One should therefore remain open to al-

ternative possibilities. Due to the improbable compatibility

of the physical laws with long-term biological evolution the

‘anthropic principle’ has been advanced. Although the uni-

verse existed well before life on Earth commenced, our exis-

tence imposes retrospective constraints on the physical laws

and the natural constants. However, the anthropic principle

does not allow one to conclude that physics would have been

any different had chance chemical interactions never led to

life on this planet. Furthermore, the Copernican revolution

provides a historical precedent that the innate sense of human

self-importance does not always provide a reliable founda-

tion for cosmological extrapolation. Moreover, appeals to the

precondition of human existence are at odds with a multitude

of life-promoting characteristics in nature falling comfortably

outside the gamut of the anthropic principle.

Nevertheless, the traditional perception has been that the

universe is rather ill-suited to life. The Earth’s living or-

ganisms only harness some 0.1% of the insolation, in turn

amounting to just one billionth of the Sun’s total radiation.

No star liberates more than 0.008% of its rest mass energy

through fusion processes. The Sun burns hydrogen to he-

lium, yet 90% of its hydrogen will remain by the time it be-

comes a red giant. Planets orbiting low mass red dwarves

are never habitable for very long. These considerations seem

to paint a picture of a universe largely inhospitable to life.

However, there is now reason to believe that impression was

premature. Active neutrinos may be capable of internally

heating iron-cored oceanic planets on galactic scales, sustain-

ing aquatic life long after the stars have died with impressive

efficiency [3, 10]. The fact that a technological species has

evolved on this planet provides no plausible explanation for

this, and neither does happenstance.

For oceans to be maintained in a liquid state by neutrino

annihilation, haloes are required of a mass approaching the

threshold for gravitational implosion, some 4∼7 orders of

magnitude larger than the mass of a galaxy cluster. Synthesis

of the available information points to dark energy decaying

at a suitable juncture predominantly to active neutrinos that

form dense haloes. This is expected somewhat prior to the

disappearance of the last stars capable of cultivating life on

orbiting planets — when the universe is approximately five

times its present age. Accordingly, the continuity of life need

not be endangered and there would be ample time for the

evolution of technologically and ethically advanced colonis-

ing civilisations before widespread colonisation could be at-

tempted.

The former solar neutrino anomaly was resolved when

it was found that neutrinos undergo spontaneous flavour os-

cillations [1], demonstrating their possession of mass. The

diminutive neutrino mass scale closely coincides with the en-

ergy scale associated with the temperature of liquid water.

Furthermore, it is small enough to ensure that neutrinos can

condense under gravity to form galaxy-enveloping structures

supported by fermionic quantum degeneracy [3, 10].

The likelihood of a neutrino mutually annihilating with

other neutrinos depends on the ambient neutrino concentra-

tion, but the probability of a neutrino scattering with nucleons

does not. In a dense neutrino halo, annihilation events can be

frequent in the presence of hcp-Fe at temperatures compati-

ble with the presence of a 4s electron receptive to some of the

annihilation energy [3, 7]. Whilst even high energy neutri-

nos can travel through light years of lead without scattering,

low energy neutrinos are unlikely to emerge from an iron-

cored planet without annihilating if the planet is immersed in

a sufficiently dense neutrino halo. If, as cues from cosmology
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and oscillation experiments suggest, the neutrino mass scale

lies in the vicinity of ∼0.05 eV, a halo density of just one

picogram per cubic kilometre can sustain liquid oceans. A

neutrino mass just one order of magnitude smaller would be

incapable of maintaining liquid oceans, even with assistance

from a thick insulative crust of ice.

2.2 Biotic reasoning

Appreciation of the inadequacy of the weak anthropic princi-

ple as an explanation for the fine-tuning of physics inspired

an investigation into whether dark matter particles might be

capable of sustaining aquatic life. This led to the discovery

that neutrino annihilation is capable of targeting 4s electrons

in hcp-Fe, a phase transition in iron providing a natural ther-

moregulation mechanism as the 4s electrons transfer to the 3d

subshell, assuring that the thermal flux through a subglacial

ocean is essentially independent of planetary mass for rela-

tively dense, rocky planets [3, 10].

Being polytropic, a neutrino halo expands upon depletion

and, due to the resulting decline in neutrino concentration, the

heating capacity eventually falls below that needed to main-

tain liquid oceans. A sizeable fraction of the halo energy

might thereby go to waste. The energy of a neutrino halo

approaching the gravitational implosion limit is inversely re-

lated to the mass of an individual neutrino. Hence, a smaller

neutrino mass might support aquatic life for longer. This

likely explains why the neutrino mass scale is at least one

order of magnitude lower than required merely for haloes to

fully surround a galaxy — reducing their ambient concentra-

tion, yet not to the degree that aquatic life cannot be main-

tained. Although this permits a lengthy aquatic era, the wast-

age this incurs as the aquatic era ends is not insignificant.

This may be mitigated by another consideration, one that is

potentially relevant to the current composition of dark matter.

Half the Earth’s atmosphere is concentrated at altitudes

below 6 km, less than 0.1% of the planet’s radius. If the mass

of the Earth were somehow abruptly reduced, say to the mass

of the Moon, the atmospheric scale height would increase a

hundred-fold. Many species, including our own, would soon

die of asphyxiation. The gravitational load on the Earth’s at-

mosphere is clearly vital to our minute-by-minute survival.

By analogy, if oceanic planets are pictured as inhaling neutri-

nos and exhaling infrared photons, gravitationally loading an

excessively large halo could locally boost the neutrino con-

centration over galactic scales. This could be very useful at

late times when the neutrino halo would otherwise be quite

rarefied within the galaxy. An inner halo of relatively low

mass, roughly twice the diameter of the contained galaxy but

of far greater mass than the galaxy itself, would apply an ef-

fective additional load. Ideally, this auxiliary halo would also

support its own weight through fermionic repulsion but its

constituent particles would be highly inert, virtually immune

to all forces except gravity.

The weak interaction maximally violates parity so that

right-handed particles and left-handed antiparticles are insen-

sitive to it. Hence, particles resembling conventional neutri-

nos but having opposite chirality and a somewhat larger mass

would be advantageous. Prior to the realisation that such par-

ticles could be biologically useful, anomalies in neutrino os-

cillation experiments were already alluding to the existence

of sterile neutrinos at the eV-scale [12, 13]. Furthermore,

gravitational lensing data for the Abell 1689 galaxy cluster

strongly hinted at the presence of a cloud of degenerate 1.5 eV

fermions [14, 15], inconsistent with cosmological constraints

on active neutrinos but in keeping with the expectation that

eV-scale sterile neutrinos would be well-suited to concentrat-

ing active neutrinos on galactic scales [3, 10].

Whilst the discovery of sterile neutrinos has not yet been

formally announced and their mass remains loosely const-

rained, the statistical evidence for their existence already

stands at 3.8σ. Active neutrinos may well have sufficient

mass to maintain liquid oceans since 58 < Σmν < 230 meV

[16]. Moreover, the hcp/fcc boundary in iron’s phase dia-

gram beautifully lends itself to planetary thermoregulation in

a manner almost independent of planet size [7, 10]. This pic-

ture testifies to the utility of biotic reasoning: a cohesive new

approach to cosmology has emerged that dispenses with un-

satisfactory anthropic explanations for fine-tuning and yields

the first scientific resolutions of the Fermi paradox [3]. Be-

fore proceeding to apply similar logic to dark energy decay,

attention shall be drawn to some other pertinent considera-

tions.

2.3 Inferences and expectations

The potential sustainment of aquatic life by neutrinos annihi-

lating within iron-cored oceanic planets would be sufficiently

efficient as to bear the hallmarks of cosmic design, in turn

implying that some coordinated strategy for life could oper-

ate at all levels throughout the universe. A swift overview of

the envisaged scenario is provided here so as to facilitate ex-

pectations concerning the manner and timing of dark energy

decay. The model anticipates that, following the decay of

dark energy to neutrinos, oceanic planets will be populated by

advanced civilisations adept at installing aquatic biospheres

free of welfare-endangering perils such as carnivorous preda-

tion and avoidable disease. Photosynthesis has oxygenated

the Earth’s atmosphere but photochemistry would not be pos-

sible in subglacial oceans deprived of sunlight. This may

not be problematic since many have speculated that complex

chemosynthetic lifeforms could have evolved in Europa’s

dark and relatively anoxic oceans [17, 18].

Habitable planets capable of evading tidal-locking invari-

ably orbit stars within the mass spectrum that terminate their

lives as red giants, incinerating or absorbing any potentially

habitable planets that may have orbited their progenitors.

Given the cosmological context, this may be telling: it could
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imply that lifeforms incapable of interstellar relocation are

deemed too primitive to be granted survival beyond the early

universe. More advanced, space-faring civilisations are likely

to be skilled geneticists, especially if they have wrested con-

trol of their own biology from the clutches of haphazard evo-

lutionary processes whether for purely ethical reasons or in

an attempt to safeguard their ongoing survival [3, 19].

Galaxies frequently undergo mergers within galaxy clus-

ters. Potentially introducing alien cultures to one another,

collaboration and competition might ensue. If each galaxy

spawns roughly one colonising civilisation then the ultimate

outcome of a process of galactic mergers is expected to be

a supercivilisation which could be confidently entrusted with

colonisation [3]. The welfare of post-evolutionary lifeforms

inhabiting skilfully designed aquatic biospheres could com-

fortably exceed that of the Earth’s present lifeforms. Hence,

the cosmic arrangement may seek to maximise opportunities

for more advanced lifeforms subject to the need to first culti-

vate responsible colonists through natural selection. This im-

pression is reinforced by the fact that formerly habitable or-

biting planets would be incinerated during the red giant stage

of their host stars, prohibiting the later revival even of dor-

mant microbial organisms interred deep underground.

Statistical modelling of this scenario constrains to within

a factor of two or so the rarity of advanced civilisations, not

only now but also at other times [3]. This leads to three

novel yet related resolutions of Fermi’s paradox, all involv-

ing the future decay of dark energy to active neutrinos pre-

dominantly in galaxy clusters when the universe is ∼5 times

its present age. A small fraction of life-cultivating stars will

remain active until then, assuring survival for civilisations ca-

pable of interstellar relocation. It is striking that the mea-

sured energy density of empty space is compatible with this

timescale, offering a hitherto elusive explanation for its tiny

yet non-zero value where the Λ ≈ m4
p guesstimate for the

value of the cosmological constant has failed so spectacularly,

mp being the Planck mass. This attempt to calculate the value

of the cosmological constant from quantum theory alone has

yielded what is notoriously regarded as the ‘worst prediction

in all physics’. Note, however, the claim that “although the

magnitude of the vacuum energy remains a profound mys-

tery, it seems clear that an understanding of how quantum-

mechanical matter behaves in curved spacetime will play an

important role in any eventual resolution to the puzzle” [20].

In summary, the universe may keep a tight rein on its

available resources, restricting their expenditure except when

it supports life — in particular post-evolutionary aquatic life.

The temporary, relatively inefficient sustainment of evolution-

ary life during the early universe can be amortised by the

vastly more efficient (∼99%) and lengthy (∼ 1025 year)

aquatic era. Life is reliant on energy but energy conservation

is a cornerstone of physics. Thus, energy cannot be the under-

lying currency of the universe. However, the universe could

be strategically arranged so that entropy-increasing processes

are restricted unless they either engender (via abiogenesis and

evolution by natural selection) or support (via the direct inter-

nal heating of oceanic planets) advanced aquatic lifeforms.

2.4 The necessity of dark energy & its timely decay

If neutrinos are capable of efficiently sustaining aquatic life,

why did the universe not provide dense neutrino haloes from

the outset? Had the question instead been why did the uni-

verse not provide habitable planets from the outset, the an-

swer would have been obvious: the primordial elements hy-

drogen and helium cannot form rocky planets or biomole-

cules. Answering the original question concerning the bio-

logical necessity for dark energy may not be so straightfor-

ward.

From a design perspective, a substantial postponement in

the widespread provision of habitable environments for life

could be a prudent precaution against incompetent colonisa-

tion. There may therefore be no urgency associated with the

delivery of neutrinos until life-cultivating stars are becoming

scarce. If dark energy must decay so that neutrino haloes ca-

pable of planetary heating can form then it can represent a

temporary repository for the fuel needed by a forthcoming

aquatic era. The accelerating expansion of the universe by

an incongruously small cosmological constant may well be

heralding the future delivery of active neutrinos.

Although some currently regard the cosmological con-

stant as being literally responsible for cosmic acceleration,

it requires an inexhaustible energy supply and its minuscule

value defies theoretical explanation. Thus, independently of

biotic reasoning, dynamical models of dark energy have been

favoured. However, that leaves completely open the fate of

the cosmic expansion. Biotic reasoning can assist here, of-

fering clear hints concerning the future decay of dark energy,

its timing, the particles it will yield and their distribution in

space. A mechanism with considerable potential for satisfy-

ing all these various expectations shall now be sketched.

3 Gravitational collapse

Annual modulation in the timing of eclipses of Jupiter’s moon

Io allowed Ole Rømer to infer in 1676 that light travels at a

finite speed. In 1783 John Michell argued for the existence of

“dark stars”, objects of sufficient mass that their escape veloc-

ity would exceed the speed of light. The Michelson-Morley

experiment of 1887 found that light always travelled at the

same speed regardless of the orientation of the apparatus rel-

ative to the Earth’s passage through space. This spurred Ein-

stein to conceive his 1905 theory of special relativity which

ushered in the concept that clocks in relative motion are sub-

jected to time dilation. When relativity was generalised a cen-

tury ago to include gravitation Einstein showed that matter

and energy could also affect the passage of time and indeed

the entire network of temporal relationships amongst world-

lines populating a spacetime manifold. Prior to this there was
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no reason to suspect that nature might be capable of evad-

ing Michell’s dark star expectation. We now understand that

gravitational time dilation can grow without limit in general

relativity: the proper time along one timelike worldline can

cease to advance relative to the proper time along another.

Combinations of the constants c, ~ and G cannot impose any

Planck-scale restriction upon time dilation, a dimensionless

quantity. It is therefore interesting to consider whether time

dilation effects might be sufficient to ensure that gravitation-

ally imploding matter is incapable of vanishing from view and

becoming forever lost to the universe.

Supermassive black holes are by now widely thought to

inhabit galactic nuclei, their masses occupying the range

106 ∼ 1010 M⊙ [21]. A Schwarzschild black hole has a sur-

face area A• = 4πR2
• = 16πG2M2/c4 which ostensibly gov-

erns its growth rate when immersed within a degenerate cloud

of matter. In a galaxy hosting a million black holes of stellar

mass, their combined area might be ten orders of magnitude

less than that of a single supermassive black hole. Thus, if

supermassive black holes did exist they would unacceptably

sap neutrino haloes of biologically vital energy [3]. A mech-

anism for the eradication of eternal black holes is known in-

volving the separation of virtual particle pairs via quantum

tunnelling effects near the event horizon, the escape of one

particle coming at the black hole’s expense [22, 23]. How-

ever, the timescale for black hole evaporation via Hawking

radiation is 5120πG2M3
•/~c

4 so astrophysical black holes re-

quire upwards of 1067 years to fully evaporate.

Rotating black holes are invariably plagued by the pres-

ence of closed timelike curves within their event horizons.

The information loss paradox remains another stubborn com-

plication [24] and locations of supposedly infinite mass den-

sity, singularities, hardly seem physically realistic — for ex-

ample on energy conservation grounds. In addition, it has

long been known that infalling particles, whether following

timelike or lightlike trajectories, require infinite time to reach

the event horizon of a black hole according to any arbitrarily-

moving clock situated anywhere external to the event horizon.

As the worldlines within a spacetime manifold must satisfy

a global network of temporal interrelationships, black holes

cannot grow through particle capture — rendering their dy-

namical formation implausible too [25–32]. No particle is

better suited to the challenge of penetrating a Schwarzschild

black hole event horizon than a radially ingoing photon but

the metric then informs us that |dr/dt| = c(1 − 2m/r) so that

dr/dt → 0 as r → 2m with attention confined to the regular

coordinate region r > 2m. Evidently, the photon’s motion is

halted before it can reach the event horizon at r = 2m. It is

possible to insert a mirror between the photon and the event

horizon at arbitrarily late times and have it reflect back out

along a radial geodesic, confirming that it never entered the

black hole. Since nothing can be captured through an event

horizon, the defining characteristic of a black hole, one can

safely infer that gravitational collapse will always be safely

arrested by the phenomenon of gravitational time dilation.

Given the enthusiasm for black hole research within mod-

ern science it may be difficult to accept that these objects are

merely mathematical curiosities. Some further elaboration

may thus be warranted. Any useful theory of gravity should

be capable of predicting the trajectories of test particles in the

vicinity of a gravitating point mass. If there is some maxi-

mum speed which no particle can exceed then matter stray-

ing too near the point mass will inevitably be incapable of

escaping. It should therefore come as no surprise whatever

that general relativity yields a stationary solution matching

this expectation. But whereas Newtonian gravity would pre-

dict the existence of dark stars, general relativity departs rad-

ically since it predicts that time dilation can grow arbitrarily

large even at a finite distance from the point mass responsi-

ble. Caution must hence be exercised since the fact that the

Schwarzschild metric exists by no means guarantees that the

solution is actually attainable through any physical process

from realistic initial conditions in a universe of finite age.

Analytical solutions to Einstein’s field equations can only

be derived in certain idealised situations. The metrics de-

scribing the familiar eternal black holes have all been ob-

tained by imposing the condition of stationarity: an assump-

tion prohibiting any temporal evolution of the spacetime ge-

ometry, including of course any evolution that might be ini-

tially required to obtain the stationary configuration in ques-

tion. Tracing the full dynamics of gravitational collapse in

general relativity is hindered by the nonlinearities of the field

equations. However, a pioneering work tackled this for the

spherically symmetric case of a homogeneous sphere of pres-

sureless matter [33]. If the advancement of proper time along

all worldlines satisfies a very obvious constraint [31] this so-

lution is well-behaved and time dilation asymptotically halts

the collapse process just prior to event horizon formation.

This constraint is compatible only with the exterior perspec-

tive on Oppenheimer-Snyder collapse — the interior perspec-

tive requiring the physically impossible advancement of

proper times along all external worldlines. Though aware

that neutron degeneracy pressure cannot always resist grav-

itational collapse, Oppenheimer & Snyder did at least ap-

preciate that “it is impossible for a singularity to develop

in a finite time” [33]. Hence, their collapse did not form

a Schwarzschild black hole. Accordingly, gravitational col-

lapse is expected to generate “dark holes”, objects that may

superficially resemble black holes in many circumstances but

due to their lack of event horizons are free of their various

pathologies. Whereas the situation considered by Oppen-

heimer and Snyder pertained to a particular mass distribu-

tion, a straightforward yet general proof now exists that black

holes can neither form nor grow based on the inability of the

Schwarzschild black hole to capture test particles of any de-

scription in a universe of finite age [31]. Furthermore, re-

cent independent studies of dynamical collapse have also con-

firmed the non-formation of event horizons [27, 32].
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Assertions that objects with event horizons exist cannot

be verified even in principle [34] although the detection of

Hawking radiation could arguably provide a counter-

example. Whether or not black holes lie strictly outside the

scope of science, nothing can prohibit the collection of evi-

dence that specific black hole candidates lack rather than pos-

sess event horizons. The finite lifetimes (107 ∼ 108 years) and

the collimated jets of relativistic charged particles produced

by quasars strongly suggests that their central engines have

an intrinsic magnetic field — probably a dipole created by a

spinning electrically charged torus [31, 35]. This interpreta-

tion calls into question the physical relevance of the Princi-

ple of Topological Censorship, a mathematical theorem con-

structed upon the assumption that trapped surfaces are present

within some given spacetime [36] — a condition that no dark

hole will satisfy [31] but which also belies the singularity

theorems [37–39]. That is likely why, through the accrual

of angular moment, dark holes are free to adopt toroidal ge-

ometry. The torus can then amass a significant net electri-

cal charge, its rotation inducing a poloidal magnetosphere

defending against charge neutralisation from the plasma of

an orbiting accretion disk. Toroidal dark holes can explain

the formation of relativistic jets of charged particles, the ex-

treme energetics and the finite lifetimes of quasars [35]. As-

tronomers have found evidence of intrinsic magnetic fields in

several black hole candidates, consistent with the absence of

event horizons both in galactic black hole candidates [40–42]

and in quasars [43]. When evaluating solutions of the field

equations, the need to ensure that those configurations can

be realistically attained without falling foul of constraints on

global relationships has been generally overlooked: their for-

mation must not involve the physically impossible advance-

ment of time along any worldline within the spacetime mani-

fold [31].

4 Dark energy from dark holes

The intersection of quantum mechanics and black hole phys-

ics led to the field of black hole thermodynamics. If, however,

gravitational collapse is incapable of realistically producing

objects endowed with event horizons, it may be more fruit-

ful to consider the implications of quantum physics for dark

holes. The complete absence of an event horizon precludes

the emission of any Hawking radiation but a closely related

process, the Fulling-Davies-Unruh effect [44–48], could be

highly relevant to this discussion. Regarded as a fundamental

and inescapable consequence of quantum field theory [49],

the Unruh effect teaches us that the concept of a particle is

observer dependent and that what may seem to exist in one

reference frame may not exist at all in another [44]. It pre-

dicts that an accelerating detector coupled to a quantum field

should perceive empty space to be seething with particles

whose temperature is proportional to the acceleration of the

detector [50].

According to Einstein’s equivalence principle, a uniform

acceleration is locally indistinguishable from a constant grav-

itational field. Hence, Unruh radiation is also expected if

the detector/observer is stationary and, due to the presence

elsewhere of a gravitating body, space is accelerating. Un-

ruh and Hawking temperatures both share the common form

T = ~a/2πckB where T is the temperature of the perceived

thermal bath of a vacuum field undergoing relative accelera-

tion a. Although the value of the scaling factor ~/2πckB is

minute, ∼ 4×10−20 ◦K/g, it is generally accepted that the Un-

ruh effect has already been experimentally confirmed in the

observed depolarisation of electrons in storage rings [51, 52].

More sensitive measurements should be possible by exploit-

ing Berry’s phase [53].

Black body radiation from nearby galaxy clusters peaks in

the X-ray spectrum, betraying the fact that gas there has been

intensely heated by gravitational contraction. In the rarefied

and hence transparent conditions of the intracluster medium,

X-rays provide cooling. In contrast, matter exists in a dense

state within stars, making their interior regions opaque to

electromagnetic radiation. During core collapse supernovae,

stars release large amounts of gravitational binding energy

that drive runaway thermonuclear reactions. In such circum-

stances, cooling occurs almost exclusively through neutrino

emission [54]. Even at energies above 2mec2 ≈ 1 MeV at

which electron/positron pairs are readily produced, neutri-

nos continue to dominate supernova cooling processes [55].

Some 10% of the rest mass of a collapsing star can be con-

verted into neutrinos within a ten second interval [56]. The

total luminosity during that period is ∼ 1046 W or 1019L⊙,

which greatly exceeds the power output of an entire galaxy.

Radiated neutrinos are ultrarelativistic, a fact exploited by the

Supernova Early Warning Systems to alert optical telescopes

of impending supernova activity [57].

Likewise, neutrino escape will represent the main cool-

ing mechanism for dark holes. They will copiously radiate

neutrinos during their initial implosion stages but these for-

mative outflows will soon cease as gravitational time dilation

mounts, and are of no interest to this discussion. From the

perspective of a stationary external observer, the internal vac-

uum of a dark hole whose collapse is arrested by time dilation

will appear to undergo extreme acceleration — and hence, via

the Unruh effect, should appear to be extremely hot. Over as-

tronomical timescales, this intense but highly localised heat-

ing can deposit considerable thermal energy as heat perco-

lates from the core of a dark hole to its periphery. The ordinar-

ily prohibited proton decay process p+ → n0+e++νe might be

perceptible to dark hole onlookers whereas in the local frame

it appears to be p+ + e− → n0 + νe. The neutrino-related su-

pernova processes e− + p+ ↔ νe + n0 and e+ + n0 ↔ ν̄e + p0

should also be important. Ultimately, via the Unruh effect,

temperatures should become so elevated throughout the dark

hole that some of the neutrinos generated by the thermal bath

would satisfy the dark hole’s escape requirements. A state of
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pseudo-equilibrium might exist in which the neutrino cooling

rate approximately balances the power in the Unruh effect.

For an observer accelerating through Minkowski space it

has been speculated that the energy in Unruh radiation comes

courtesy of the work that maintains the observer’s accelera-

tion [20]. Hawking radiation is thought to come at the ex-

pense of the black hole which captures negative energy vir-

tual particles, reducing its mass. However, neither explana-

tion satisfactorily explains the origin of the Unruh-related ra-

diation emanating from a dark hole. According to general

relativity, distortions of spacetime influence the motions of

all objects because gravitation is, like the vacuum, a global

phenomenon. Energy conservation may therefore be possi-

ble if the vacuum represents a quantum gravitational energy

reservoir coupling both to gravity (consistent with acceler-

ating cosmic expansion) and quantum mechanics (consistent

with the Unruh effect). If indeed the vacuum acts as a dynam-

ical repository for dark energy, the Unruh effect precipitated

by extreme accelerations within dark holes may be uniquely

capable of tapping into the cause of the accelerating cosmic

expansion and eventually halting it.

Although neutrinos could dominate the cooling processes

both within core collapse supernovae and dark holes, the dy-

namics of the latter case would be profoundly influenced by

time dilation. Neutrinos escaping from dark holes would nec-

essarily be red-shifted to low energies. This could be most

advantageous to aquatic life: if the emerging neutrinos are

at most mildly relativistic they could be easily retained by

the gravity of the dark hole’s host galaxy — thereby forming

dense, inhabitable haloes.

4.1 Acceleration scales

In order to quantify the Unruh effect within dark holes there

is a need to determine the acceleration of the vacuum due to

gravity from the perspective of the surrounding universe. Al-

though the Schwarzschild metric describes a black hole, by

Birkhoff’s theorem its exterior region can accurately repre-

sent the spacetime outside any spherically symmetric mass

distribution, including a dark hole. Consider a timelike par-

ticle momentarily at rest in Schwarzschild coordinates xλ =

[xt, xr, xθ, xφ]. The metric reads dτ2 = (1−2GM/c2r)dt2 such

that dt/dτ = 1/
√

1 − 2GM/c2r and the particle’s 4-velocity u

is simply

u =
dxλ

dτ
= ẋλ =















1
√

1 − 2GM/c2r
, 0, 0, 0















. (1)

To find the particle’s acceleration, aλ = ẍλ, the compo-

nents of the covariant derivative of u are needed. Using the

fact that dxλ is non-zero only for dxt and making use of the

Christoffel symbols of the second kind, Γi
kl

where

Γi
kl =
gim

2

(

∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl

∂xm

)

(2)

this simplifies to

duλ =

[

∂uλ

∂xt
+ uσΓλσt

]

dxt. (3)

Since ut is the only non-zero component of uλ and Γt
tt = 0,

it follows that dut = 0. The only non-zero component of Γr
σt

is Γr
tt = GM(1 − 2GM/c2r)/r2 and so

dur = ut Γr
tt dxt =

(

GM(1 − 2GM/c2r)

r2
√

1 − 2GM/c2r

)

dt. (4)

As Γθtt and Γ
φ
tt are both zero, the covariant derivative

sought is du = [0,GMr−2
√

1 − 2GM/c2r dt, 0, 0]. The proper

acceleration of the test particle can now be obtained using the

fact that dt/dτ = 1/
√

1 − 2GM/c2r.

ar = u̇r =
dur

dτ
=

√

1 − 2GM/c2r

(

GM

r2

)

dt

dτ
=

GM

r2
. (5)

Hence, the 4-acceleration is a = [0,GM/r2, 0, 0] and for

this momentarily stationary particle the magnitude of the out-

wardly directed acceleration is as =
√

a.a =
√

gµνaµaν =√
grrGM/r2. Since grr = (1 − 2GM/c2r)−1,

as ≡
d2r

dτ2
=

GM

r2
√

1 − 2GM/c2r
. (6)

This acceleration corresponds to that of the vacuum at

xr = r, as perceived by remote observers. The Unruh tem-

perature which this acceleration would predict, neglecting for

now the influence of time dilation, would be

Tu =
~as

2πckB

=
~GM

2πckBr2
√

1 − 2GM/rc2
. (7)

Both as and Tu diverge as r → 2GM/c2, the radius of the

event horizon. At xr = r, the time dilation relative to dis-

tant objects can be readily derived from the Schwarzschild

metric by setting dr = dφ = dθ = 0 to obtain dτ/dt =
√

1 − 2GM/c2R. Applying this correction factor to Tu, a finite

temperature is obtained at the event horizon, Thor. Inversely

related to mass, this is the usual Hawking-Unruh temperature

of a black hole:

Thor = Tu

(

dτ

dt

)

=
~c3

8πkBGM
. (8)

Some appreciation of the variation of the matter distribu-

tion within a dynamically forming dark hole would be use-

ful. Oppenheimer & Snyder considered the scenario of uni-

form density [33]. More realistically, one would expect den-

sity to decline towards the periphery of a dark hole. The

mean density within the event horizon of a black hole de-

creases quadratically with mass, ρ̄• = 3c6/32πG3M2
• , and
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with radius, ρ̄• = 3c2/8πGR2
•. The addition of a mass δM

to a Schwarzschild black hole increases its radius by δR =

2GδM/c2 and hence the density of a thin shell at radius R is

δM/4πR2δR = c2/8πGR2. This is again inversely quadratic

in R, justifying the expectation that the mass density within

a dark hole should generally decline with radius and be most

concentrated at the core.

When the square root term in (6) is small the acceleration

grows large, permitting a simplifying approximation:

r ≈
2GM

c2
+

c6

8GMa2
s

. (9)

The coordinate time of a photon falling from a modest

distance outside the event horizon to this radius satisfies

∆t >
2GM

c3
ln

(

8GMa2
s

c6

)

. (10)

In the case of a Planck mass black hole this gives

∆t ' 2 × 10−44 ln(3 × 10−69 × a2
s) . (11)

If some 1018 seconds (30 Gyr) are allowed to elapse after

an infalling particle starts its descent, the apparent accelera-

tion of the vacuum at the particle’s final location would be

approximately 10(1062) × the surface acceleration of a neutron

star. It is extremely doubtful that such a huge acceleration

is physically attainable. Using dimensional analysis, a quan-

tity constructed using the constants c, G and ~ must be pro-

portional to c7/2
~
−1/2G−1/2 in order to have the same units as

acceleration. An estimate for the Planck acceleration, ap, is

therefore given by

ap ∼
√

c7

~G
≈ 1051g . (12)

The Planck temperature, Tp, is usually considered to be

Tp = mpc2/kB =

√

~c5/Gk2
B
. This tallies with the Unruh

temperature for an acceleration of 2π
√

c7/~G. However, the

Hawking temperature, ~c3/8πkBGM, of a Planck mass black

hole is normally assumed to be Tp/8π, yielding a Planck ac-

celeration of ap ≈ 1
4

√

c7/~G. This conforms to the Newto-

nian acceleration of a Planck mass from a distance matching

its Schwarzschild radius. One may quibble over the best def-

inition of ap but it is apparent that ap ≪ 101062

g. Notice

also that increments in proper time less than the Planck time,

tp =
√

~G/c5, are likely to be meaningless and, therefore,

time dilations exceeding 1060 are essentially infinite within a

universe less than 14 Gyr old.

If trans-Planckian accelerations are unattainable in nature

then, independently of gravitational time dilation, this consid-

eration alone would prohibit both the formation and growth of

black holes. For a black hole of mass M ≫ mp, the ratio of

the radius at which a stationary particle would experience the

Planck acceleration to the radius of the event horizon would

be 1 + m2
p/M

2. The time dilation at the Planck acceleration

radius is given by

dτ

dt
=

√

1 − 2GM/rc2 =

√

1 − 1

1 + m2
p/M

2
≈ mp/M. (13)

The perceived temperature of the Unruh heat bath, Tb, at

radius r > 2GM/c2, as reported by observers remote from the

Schwarzschild black hole, requires correction for time dila-

tion:

Tb = Tu ×
(

dτ

dt

)

=

(

~as

2πckB

)(

dτ

dt

)

=
~GM × dτ

dt

2πckBr2
√

1 − 2GM/rc2
=
~GM

2πckBr2
. (14)

For a given black hole, Tb is a function of radius and de-

clines as 1/r2. According to the Stefan-Boltzmann law for an

ideal radiator, the radiative power, Pr, is given by the prod-

uct of the area, A = 4πr2, the Stefan-Boltzmann constant,

σ = π2k4
B
/60~3c2, and the fourth power of the temperature:

Pr = AσT 4
b = 4πr2

(

π2k4
B

60~3c2

)(

~GM

2πckBr2

)4

=
~G4M4

240πc6r6
. (15)

Evidently, this power is highly localised since Pr ∝ 1/r6.

Bearing in mind the Shell Theorem, it makes little differ-

ence how the mass distribution within a spherically symmet-

ric dark hole declines with radius (whether as ∼ 1/r2, 1/r,

1/
√

r etc) since the radiated power will be almost entirely

sustained by quantum activity in the immediate vicinity of its

core where the density is maximal and the gravitational ac-

celeration of the vacuum is strongest.

By setting r = rs = 2GM/c2, the Schwarzschild radius,

in (15) one recovers the power obtainable through Hawking

evaporation, P•(M•) = ~c
6/15360πG2M2

• ≈ (M•/M⊙)−2 ×
10−28 W. For a 1010 M⊙ black hole, this comes to some

10−48 W, roughly 98 orders of magnitude short of what aqua-

tic life would need. Even if a dark hole of this mass were

composed of a set of concentric spherical shells, each of a

thickness comparable to the Planck length (∼ 10−35 m) and

each radiating the same power, there would still be a shortfall

of around 50 orders of magnitude.

The maximum power available from Hawking evapora-

tion occurs when the black hole’s mass approaches the Planck

scale. The Compton wavelength of a particle of Planck mass

is comparable to its Schwarzschild radius, ~/cmp ≈ 2Gmp/c
2.

Classical physics breaks down at this scale because ~ , 0. It

is customary in gravitation to work with the reduced Planck

mass, mp ≈
√
~c/8πG. A black hole of this mass will be a

nebulous, fuzzy object referred to here as a ‘reduced Planck

particle’ (rpp). Its radiated power would be roughly Prpp ≈
2× 1049 W, though it might be somewhat larger as the Planck

power is usually taken to be, c5/G ≈ 4 × 1052 W.
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It is generally thought that Planck particles are incapable

of evaporating since their high Hawking temperatures pre-

clude the black body radiation of significantly lighter parti-

cles. Hence, many imagine them to be quasi-stable remnants

of black hole evaporation which is why they are now included

amongst the panoply of dark matter candidates [58]. They

also represent the most likely outcome of collapse processes

that might otherwise result in naked singularities and the vi-

olation of cosmic censorship [59]. An rpp interred within

a dark hole may be invulnerable to evaporation as long as

the dark hole continues to exist. Thus, it is conceivable that

power might be sustainably radiated at a level approaching

Prpp for spherically symmetric dark holes. Although this is

very much an upper limit, it is encouraging that it yields a

crude prediction that dark energy decay might terminate just

as the last life-cultivating cease to be active.

4.2 Angular momentum injection

The Kerr metric represents a stationary, rotationally symmet-

ric and asymptotically flat rotating black hole. It accommo-

dates angular momentum through an extended singularity lo-

cated within the plane z = 0, lying along the circle x2+y2 = a2

in Kerr coordinates. Its radius, a ≡ J/m, depends on the an-

gular momentum, J, of the black hole. At extremality, a→ m

and J → m2, the radius of the singularity coincides with that

of the two event horizons, r± = m ±
√

m2 − a2. For a2 < m2

the singularity lies internal to both event horizons.

At high angular momentum, self-gravitating fluids bifur-

cate from the Maclaurin spheroids, yielding toroidal config-

urations [60, 61] reminiscent of the prototypical Dyson rings

[62]. With analytical solutions confined to relatively simple

cases, numerical techniques have now been deployed to bet-

ter explore the space of axisymmetric configurations [63–67].

The assumption of homogeneity has been relaxed, differen-

tial rotation has been allowed and realistic equations of state

have been modelled. Qualitatively similar results have been

obtained in both Newtonian analyses and general relativity

[68–70]. Ergoregions can arise even in the absence of event

horizons [71], which may be of some relevance to jet forma-

tion in quasars [35].

Since topological censorship does not apply to spacetimes

lacking trapped surfaces, the gravitational collapse of a ro-

tating body can result in a toroidal mass distribution, anal-

ogous to the circular source of the Kerr geometry although

visible to the surrounding universe. Whilst the angular mo-

mentum of a Kerr black hole is bounded, a2 ≤ m2, there

is no such restriction for a dark hole: the major radius of

a self-gravitating torus can be arbitrarily larger than its mi-

nor radius. The axisymmetric Kerr geometry cannot dissipate

rotational kinetic energy via gravitational waves. Moreover,

since gravitational waves are incapable of superluminal prop-

agation, any gravitational radiation due to perturbations of

the singularity would necessarily remain imprisoned within

the event horizon. However, deviations from axisymmetry

deep within a dark hole could generate rather strong gravi-

tational waves, and their radiation into space would sap the

dark hole’s energy and angular momentum.

Suppose a dense ring of radius r = m is quantised by

subdivision into a circular arrangement of N particles, each

of roughly the reduced Planck mass, such that N = m/mp.

Since the ring’s circumference is Cr = 2πGm/c2, each re-

duced Planck particle would then be separated from its two

neighbouring particles by a distance

Cr

N
=

Crmp

m
=

2πG

c2

√

~c

8πG
=

√

π~G

2c3
≈

√

π

2
ℓp . (16)

The mean particle separation should decline as J decrea-

ses but if separations below the Planck length ℓp are unattain-

able, the idealised circular arrangement may be disrupted, re-

sulting in localised thickening of the ring. It may help to pic-

ture the interior of the toroidal dark hole as a dense circular

arrangement of knotty density existing at extreme densities

approaching the Planck scale. Due to this granularity and its

chaotically fluctuating nature, gravitational waves should be

produced which dissipate both angular momentum and rota-

tional energy. Ultimately, these losses should result in a topo-

logical collapse of the core.

For the purposes of this discussion, we might simply re-

gard the core of a rapidly spinning dark hole as a circular col-

lection of reduced Planck particles. in the case of a toroidal

dark hole they would number m/mp, a huge number. Toroidal

dark holes should therefore receive enormously more inter-

nal heating via the Unruh effect than purely spheroidal dark

holes of the same mass. Thus, the discharge of vacuum en-

ergy would be strongly biased towards the most massive and

rapidly spinning dark holes of the cosmos — even if such ob-

jects are comparatively short-lived in astronomical terms.

Following galactic mergers, the supermassive dark holes

introduced by each galaxy are generally expected to coalesce

relatively swiftly since they occupy locations of least gravi-

tational potential within their respective host galaxies. Inspi-

ralling supermassive black hole binaries provide prime tar-

gets for gravitational wave astronomy [72]. A supergalaxy

harbouring an ultramassive remnant dark hole would be the

inevitable outcome of hierarchical galaxy mergers. Just as

the coalescence of a pair of co-orbiting black holes is able

to create a rapidly rotating black hole due to the conversion

of orbital angular momentum to rotational angular momen-

tum [73], a pair of coalescing spheroidal dark holes will of-

ten combine to produce a more massive dark hole of inter-

nally toroidal structure with a dense filamentary core. Vio-

lent galactic mergers within galaxy clusters should hence be

capable of sporadically inducing episodes of intensively ac-

celerated heating and dark energy discharge until the resulting

dark holes lose their toroidal inner structure via the shedding

or redistribution of internal angular momentum.
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4.3 Discharge timeframes

The details of the physical cooling processes operating within

core collapse supernovae are still the subject of ongoing re-

search but it is known that even neutrinos cannot free stream

away from an innermost region termed the neutrinosphere.

Although the circumstances deep within dark holes will be

yet more complex and involve energies well above those

probed by any practical particle collider, neutrinos generated

there will also be unable to free stream away into space, hin-

dered by the exclusion principle and large interaction cross

sections. In order to accurately model these situations, a

working theory of quantum gravity will be needed along with

an understanding of how matter behaves at near-Planckian

temperatures and densities. Also, the influence of strong time

dilation must be taken into account, a problem which modern

numerical approaches to general relativity still grapple with.

Even order of magnitude estimates to the processes involved

may currently lie beyond our reach. Nevertheless, it is incum-

bent upon us to consider the viability of this scenario.

At energies below 1 GeV, electron neutrinos scatter onto

neutrons, νe + n→ e− + p+, with cross section

σn =
(~c GF Eν)

2(g2
V
+ 3g2

A
)

π
≈ 10−47

(

Eν

1 MeV

)2

m2. (17)

The mean free path of a neutrino can be estimated using

λν ≈
(

ρ

1018kg ·m−3

)−1(
Eν

10 MeV

)−2

metres. (18)

Within a supernova the neutron number density may be

as high as ρn ∼ 1045 m−3. For a typical supernova neutrino

energy of 30 MeV, the cross section would be ∼ 10−44 m2

and the free path, λ = 1/ρnσn, may be as short as ten me-

tres. Cooling occurs as neutrinos emerge from a thin shell

surrounding a rather constipated, diffusion-limited neutrino-

sphere. The volumetric luminosity within that spherical es-

cape shell could approach 1036 W ·m−3. Deep within a dark

hole, degeneracy is also likely to have a profound impact on

the dynamics, for instance blocking neutrino production via

the Unruh effect deep within the neutrinosphere.

The limiting mass of a halo of 0.05 eV neutrinos is esti-

mated to be 8× 1020M⊙ [10], equating to an energy in excess

of 1068 J. The power due to Unruh radiation from a reduced

Planck particle was determined earlier to be Prpp ≈ 2×1049 W

so it would take some 7× 1018 seconds to inflate a habitable

neutrino halo, roughly 230 Gyr. Encouragingly, this crude

and simplistic estimate has the right order of magnitude: dark

energy is anticipated to decay before the universe reaches

∼ 75 Gyr in age. Pauli blocking and impedance of thermal

transport within the time-dilated neutrinosphere will slow the

discharge, but episodic input of angular momentum generat-

ing ultra-dense rings might easily compensate by hugely ac-

celerating the process, if only briefly.

If, by analogy with Hawking radiation from black holes,

the Unruh radiation from deep within supermassive dark

holes came entirely at the expense of their dark hole hosts

then the lifespan of a supermassive dark hole evaporating at

the rate Prpp would be ∼ Mc2/Prpp. This is just a few hours

for a 106 M⊙ black hole and no more than a few years for a

1010 M⊙ black hole. The observational evidence for the on-

going existence of supermassive black hole candidates in this

mass rnage within galactic nuclei confidently rules out this

possibility. It instead points to the dark energy vacuum being

the origin of the Unruh radiation which, according to quan-

tum field theory, is mandatory — so much so that it needs no

experimental confirmation [49].

Consider now the case of an ultramassive remnant dark

hole of a galaxy cluster of a mass ∼ 1011 M⊙ that ultimately

generates a neutrino halo of mass 1021 M⊙. The Unruh ef-

fect provides the dark hole with intense but localised heating.

Over time, thermal energy accumulates and steadily diffuses

throughout the dark hole. Once peripheral temperatures are

sufficient to permit neutrino escape, a galactic halo can start

to form. One can envisage neutrino cooling approximately

balancing heating from the Unruh effect until vacuum energy

is exhausted. If, instead, one assumes that neutrinos barely

escape until dark energy is almost fully depleted, then the

mass of the dark hole from the galactic perspective must in-

crease by ten orders of magnitude. From the dark hole’s van-

tage, however, its mass will not have changed since there was

no Unruh effect attempting to increase the temperature of its

constituent matter.

Ignoring the initial thermal energy of the dark hole, in or-

der that it can eventually form a dense neutrino halo from the

thermal energy deposited through the Unruh effect, its parti-

cles must attain Lorentz factors, γ, of ∼ 1010 where γ rep-

resents the relativistic mass ratio m/m0. Temperature is syn-

onymous with kinetic energy and relativistic kinetic energy

is proportional to γm0c2. The Lorentz factor is closely tied

to relativistic temperature according to the relationship, T =

2(γ − 1)moc2/3kB. If γ ≫ 1, it follows that γ ≈ 3kBT/2moc2.

Thus, for any given temperature, it is much easier for lighter

particles such as neutrinos to attain large Lorentz factors.

Consequently, irrespective of temperature, neutrinos should

dominate the cooling outflows of dark holes. For a neutrino

mass of 0.05 eV, a Lorentz factor of 1010 corresponds to a

temperature of some 4×1012 K, comfortably below the Planck

temperature

√

~c5/Gk2
B
≈ 1032 K. Hence, there is much lat-

itude for dark holes to discharge dark energy by only tem-

porarily adopting internally toroidal matter distributions.

Dark holes will of course undergo heating via gravitational

contraction during their initial formation, and this energy will

contribute to their effective mass, pushing the required Lo-

rentz factors and temperatures for neutrinos to escape some-

what higher. Nevertheless, there seems to be ample scope to

accommodate this particular consideration.
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5 Discussion

Via the Unruh effect, dark holes may well be capable of tap-

ping into the energy of the vacuum and, in due course, fos-

tering the total discharge of dark energy. A minority of class

K stars will continuously host habitable planets until the uni-

verse is five times its present age. As the neutrino haloes pro-

duced would be capable of efficiently sustaining aquatic life,

the model offers a new and biological resolution of the cos-

mological constant problem. This provides a long-sought al-

ternative to the relatively loose bounds imposed by anthropic

arguments [4] which, if neutrinos are well-suited to the task

of planetary heating, would be as untenable as the Ptolemaic

system. However, this new approach can only explain the

value of the present vacuum energy density, not how it might

have been tuned to 120 decimal places. That question is akin

to asking how the constants of physics in general might have

been manipulated to be propitious towards life — something

perhaps for string theorists to mull over.

The supermassive dark holes of galaxy clusters are likely

to play a prominent role in the decay of dark energy due to

their frequent adoption of an internally toroidal structure fol-

lowing violent coalescence events pursuant to galaxy merg-

ers. With circular ‘heating elements’ operating at tempera-

tures potentially approaching the Planck scale, Tp ≈ 1032K,

these rapidly spinning dark holes would accumulate thermal

energy far more rapidly than their counterparts in field galax-

ies. Such extreme conditions will help combat the intense

gravitational time dilation and Pauli-blocking deep within

dark holes, in time facilitating a radiative flux from their

cores. Eventually, peripheral temperatures should rise suffi-

ciently to provide opportunities for neutrinos to escape com-

pletely, albeit after redshifting to low energies as they do so.

Dense haloes should thereby form around the remnant galax-

ies of galaxy clusters — in accordance with the expectation

that neutrinos might sustain aquatic life into the distant fu-

ture [3].

During the initial phase of dark hole heating the neutrino

luminosity is likely to remain negligible for billions of years.

This is no cause for concern: a lengthy delay would be bio-

logically advantageous, usefully prohibiting the widespread

colonisation of the universe until ethically mature civilisa-

tions are on hand to undertake such daunting responsibilities.

Very loosely, the situation might be likened to the conversion

of liquid water within a lake into steam by the vigorous agita-

tion of a single water molecule over a prolonged period. It is

not inconceivable that galactic nuclei within galaxy clusters

may be currently generating gentle outflows of neutrinos. It

may even be that changes in the dynamics of galaxies orbiting

within clusters may be perceptible over time.

A promising line of enquiry has been outlined concern-

ing dark energy without any radical departure from the sci-

entific method. Whilst alternative proposals capable of pre-

dicting the timing, outcome and mechanism of dark energy

decay have not been forthcoming, this scenario dovetails re-

markably well with a recently advanced cosmological frame-

work, reinforcing its potential to unravel the composition of

dark matter, anticipate the fate of the accelerating cosmic ex-

pansion and decipher the mystery of extraterrestrial silence.

This same framework offers much scope for understanding

why the constants of nature assume the values they do with-

out recourse either to mathematical arguments or anthropic

reasoning [74]. Physical fine-tuning influences all aspects

of the universe — from the simplest microscopic scales to

the most complex macroscopic scales, including multicellular

lifeforms, symbiotic ecosystems and the imponderable work-

ings of the human mind. If the fine-tuning of physics can-

not be apprehended through mathematical physics alone then

alternatives can and should be explored, even if that entails

a holistic synthesis of all scientific knowledge. Support has

emerged here for the contention within superstring theory that

there may exist a vast underlying landscape of physical con-

figurations. A biological resolution of the cosmological co-

incidence problem, the naı̈vely surprising similarity between

ΩΛ and ΩM is also apparent.

Although this dark energy decay scenario must be regard-

ed as tentative for now, it exhibits many compelling features

and the remaining uncertainties mainly pertain to timescales.

Vacuum discharge by dark holes fulfils the original cosmolog-

ical expectation that dark energy might decay predominantly

to neutrinos of sufficiently low energy as to permit their re-

tention by host galaxies. Whereas black holes have an un-

healthy appetite for neutrinos, dark holes are incapable of re-

capturing the neutrinos they discharge on account of the Un-

ruh effect: those particles belong to a different reality. Dark

energy decay should strongly track supermassive, rapidly-

rotating dark holes and hence galaxy clusters where collisions

between galaxies and supermassive dark holes are common-

place events. There is no reason at present to suppose that

significant errors exist in the basic timing constraints based

on the measured vacuum energy density, calculated neutrino

halo implosion threshold and the necessity of habitable neu-

trino haloes before the last life-cultivating stars expire. How-

ever, much work remains before decay timescales can be con-

fidently calculated. In the meantime, as long as neutrinos con-

tinue to bear the hallmarks of cosmic design the efficient sus-

tainment of aquatic life remains a very real possibility and the

timely decay of dark energy just before life-cultivating stars

die out is a likely outcome of cosmic evolution.

In the field of black hole thermodynamics, the entropy of

a black hole is given by S = kA/4ℓ2
P
. With the entropy of

a Sun-like star being ∼ 1035 J ·K−1 [75] a single black hole

of some 104 solar masses would possess as much entropy as

all the stars of all the galaxies within the visible universe.

Therefore, the existence of even one supermassive black hole

in nature would be catastrophic for a universe attempting to

judiciously manage entropy-increasing processes for the ben-

efit of advanced lifeforms [3]. Dark holes may not chime
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with the scientific orthodoxy of recent decades but they ac-

cord with the original ‘frozen star’ interpretation of stellar

collapse and dispense with the theoretical shortcomings of

black holes. It is not that the stationary black hole metrics

are mathematically invalid, merely that they are unobtainable

via physically admissible processes: global constraints on the

evolution of spacetime manifolds have been generally over-

looked [31]. Although one expects any useful theory of grav-

ity to possess within it a solution resembling that obtained by

Karl Schwarzschild in 1916, i.e. a bizarre object describing

a point mass surrounded by a region from which light cannot

escape, the architect of general relativity did not rush to dis-

miss it. His considered opinion was offered after decades of

careful reflection. That his views on black holes now carry so

little weight within academic science is disturbing.

On a far more positive note, it comes as some surprise

that particles which are able to propagate unperturbed through

light years of lead may be of any potential benefit to life. That

sterile neutrinos, their yet more inert counterparts, might pro-

vide further assistance also defies intuition. However, if this

universe is exquisitely configured to host life, all natural phe-

nomena would ideally have something positive to contribute.

It would nevertheless be astonishing if the objects lurking at

the heart of each galaxy, which many currently believe to

be destructive black holes, can serve as portals to a crucial

biological energy resource capable of efficiently sustaining

aquatic life far into the distant future. We learnt from spe-

cial relativity that mass and energy are interrelated, a break-

through necessary to explain how stars could remain active

for billions of years, sufficient time for the Sun to support the

evolution of complex organisms. Ultimately, the take-home

message from general relativity, if only apparent at present to

extraterrestrial civilisations, may be that gravity is benign and

free of pathologies precisely because time dilation provides

a robust mechanism preventing the formation and growth of

trapped surfaces — essential for the discharge of dark energy

so that aquatic lifeforms might thrive long after the expiry

of the stars, harnessing the full promise of E = mc2. If Ein-

stein were still with us he might regard the current fascination

with black holes as a pathological science, further affirmation

of his 1920 remark to Marcel Grossmann that the world is a

“strange madhouse” [76]. It very much seems there is now

a contagious misunderstanding of his theoretical legacy. It

may be preventing humanity from collectively converging to-

wards a comprehension of the universe capable of providing

much-needed guidance for future policy-making.
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Recently, gedanken experiments have been proposed in order to examine the validity

of Kirchhoff’s Law of Thermal Emission (P.-M. Robitaille, Further Insight Relative to

Cavity Radiation: A Thought Experiment Refuting Kirchhoff’s Law, Prog. Phys., 2014,

v. 10, no. 1, 38–40; P.-M. Robitaille, Further Insight Relative to Cavity Radiation II:

Gedanken Experiments and Kirchhoff’s Law, Prog. Phys., 2014, v. 10, no. 2, 116–120).

In the second of these works, real materials (i.e. graphite and silver) were utilized in or-

der to construct two separate cavities at the same temperature which are then placed in

thermal contact with one another. It was hypothesized that the graphite cavity initially

contained blackbody radiation and that the silver cavity was devoid of radiation. In the

case of the silver cavity, all of the energy of the system was assigned to the phonons in

its walls. When the cavities were brought together and a small hole introduced between

the cavities, it was hypothesized that thermal contact between the cavity walls would

enable the transformation of phonon energy into photon energy, eventually resulting in

filling the silver cavity with black radiation. Energy contained within the wall of the

silver cavity was believed to be reversibly trapped. However, in allowing energy to

flow reversibly out of the walls of the silver cavity in this context, it has been assumed

that the silver conduction bands could be neglected and that only phonon energy need

be considered. However, the reflectivity attributed to the silver cavity should be con-

sidered uniquely as a result of energy associated with the formation of its conduction

bands. Such formation must be considered irreversible. It will be demonstrated that

under these conditions Kirchhoff’s law, once again, does not hold. The lack of ther-

mal radiation within the silver cavity does not lead to a violation of the second law of

thermodynamics.

If a space be entirely surrounded by bodies of the

same temperature, so that no rays can penetrate

through them, every pencil in the interior of the

space must be so constituted, in regard to its qual-

ity and intensity, as if it had proceeded from a per-

fectly black body of the same temperature, and must

therefore be independent of the form and nature of

the bodies, being determined by temperature alone.

. . In the interior therefore of an opake red-hot body

of any temperature, the illumination is always the

same, whatever be the constitution of the body in

other respects.

Gustav Robert Kirchhoff, 1860 [1]

1 Introduction

Gedanken experiments have played a major role in building

support for Kirchhoff’s Law of Thermal Emission [1, 2]. If

this is the case, it is because Kirchhoff proposed his law with-

out any experimental verification [1,2]. This remains a signif-

icant departure from the other laws of thermal emission [3–6]

which have been confirmed through the construction of lab-

oratory blackbodies. In addition, The Law of Equivalence,

first formulated by Balfour Stewart [7], has also been con-

firmed experimentally. However, Kirchhoff’s law, namely the

belief that the radiation contained within an arbitrary cavity

will always be black, or normal, independent of the nature

of the cavity wall, has never been demonstrated experimen-

tally [8–12]. Furthermore, Kirchhoff’s law knows no proper

theoretical proof [13]. Even Max Planck’s theoretical proof

of Kirchhoff’s law can be shown to be invalid [14]. As such,

the real justification for Kirchhoff’s law falls on thought ex-

periments, all of which can be shown to contain logical omis-

sions and errors.

A powerful sentiment remains in the physics community

that should Kirchhoff’s law be invalid, then a violation of the

second law of thermodynamics would exist and perpetual mo-

tion machines of the second kind could be constructed. The

arguments typically involve the consideration of two cavities

isolated from the outside world by exterior adiabatic walls.

The inner walls of the first cavity are then constructed from

a perfect absorber (emissivity ǫ = 1 and reflectivity ρ = 0)

and should therefore contain black radiation. The inner walls

of the second cavity are constructed from a perfect reflector

(emissivity, ǫ = 0 and reflectivity, ρ = 1). Both cavities are

theorized to be at the same temperature. It is then argued

that if the second cavity is empty of radiation, that the second

law of thermodynamics would be violated as photons could
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travel from the first cavity into the second cavity and do net

work, even if the temperatures of the two cavities were equal.

As such, the conclusion is immediately made that the second

cavity cannot be devoid of radiation and indeed must contain

black radiation, even if a perfect reflector has no means of

generating such radiation. Obviously, a logical error exists in

such arguments. The question remains to identify the error.

2 Cavity radiation revisited — reversibility

Recently, the author has proposed two gedanken experiments

in order to revisit Kirchhoff’s law [15, 16].

In the first of these works, two cavities are considered,

wherein a perfectly reflecting cavity is placed within a per-

fectly absorbing cavity (see Figure 1 in [15]). The experi-

ment demonstrates that arbitrary cavities can indeed be per-

manently filled with arbitrary radiation [15]. This reinforces

Max Planck’s statement: “. . . in a vacuum bounded by totally

reflecting walls any state of radiation may persist” [6, § 51].

This gedanken experiment and Planck’s statement point to a

direct contradiction of Kirchhoff’s law, as the radiation within

all cavities is supposed to be black, independent of the nature

of the walls.

In the second of these works, two cavities are once again

considered (see Figure 1 in [16]). This time however, the con-

cern is centered on the nature of the cavities themselves. Of

particular significance is the realization that the perfectly re-

flecting cavity cannot be made solely from a theoretical adi-

abatic wall. That is because such a wall cannot be charac-

terized by any temperature [16]. As such, the author moved

to create the second cavity from silver, although importantly,

within a footnote, he emphasized that he had neglected the

conduction bands of the metal. The idea was that all of the

energy of the second cavity could be placed reversibly within

its walls and phonons. Thus, the interior of the second cav-

ity would be devoid of any photons. Thermal contact could

then be made with the perfectly absorbing first cavity, and the

energy contained within the phonons from the second cavity

could be released, such that the second cavity becomes even-

tually filled with black radiation through the action of the first

cavity [16].

The idea of this thought experiment was to consider what

would happen within the perfectly reflecting cavity, if all of

the energy within this system was initially reversibly con-

tained within the phonons of its walls. No energy was per-

mitted to be trapped in the conduction bands.

It could be argued that this was not a proper representa-

tion of the silver cavity. As such, it is also possible to build

the second perfectly reflecting cavity from a material devoid

of conduction bands, but now, to enclose both its inner and

outer surfaces with adiabatic walls. In this case, all of the

energy of the perfectly reflecting cavity can indeed be con-

tained within its phonons. When the second cavity is placed

in thermal contact with the first cavity, by removing part of

the outer adiabatic walls, the energy will flow reversibly out

of its phonons. This energy would move into the walls of

the first cavity, enabling a photon to be produced and then to

cross through a small opening into the second cavity. Both

cavities end up being filled with black radiation. No net work

is done as the displacement of phonons out of the second cav-

ity, is exactly balanced by the entry of photons into its interior

space. No net temperature change is experienced by the sec-

ond cavity or by the first. All that has happened is that energy

initially trapped in the walls of the second cavity has been re-

leased into the radiation field. Both cavities still possess the

same energy as they did initially.

In hindsight, the reversible experiment was probably not

well suited to represent a perfectly reflecting cavity. In fact, it

could be imagined that if one removed the inner adiabatic lin-

ing from the second cavity, that the phonons could have been

used to fill the cavity directly with photons. The first cavity

was not even required in this case. This serves to empha-

size Max Planck’s approach, in that the energy of the system

could be accounted for simply through the generation of the

radiation field [6]. This has now been shown to be correct

when the process involved in creating the field was reversible

and no other processes are involved. However, not all pro-

cesses in materials are reversible and this is why Kirchhoff

and Planck have stumbled. Given the state of knowledge at

the time, they were unable to properly consider the effect of

conduction bands.

3 Cavity radiation revisited — irreversibility

This bring us to the question of what happens when the en-

ergy of the second cavity is irreversibly trapped within the

conduction bands of the silver.∗ Let us once again state that

the exterior of the first and second cavities are surrounded by

adiabatic walls. The first cavity, constructed from graphite

acting as a perfect absorber [16], is assumed to be filled with

black radiation. The second cavity, constructed from silver

acting as a perfect reflector [16], will be assumed to be devoid

of any radiation. Then, let us place the cavities in contact, but

this time permitting only a small hole to link the interior of

the two cavities.

It is often argued that, under these circumstances, photons

can flow from the first cavity into the second cavity. However,

such a proposal in itself violates the second law. The prob-

lem is evident when one considers what happens to a photon

which would enter the second cavity. It is clear that at some

point, such a photon would interact with the wall of the sec-

ond cavity. Since a photon contains both energy and momen-

tum, it would impart momentum and energy momentarily to

∗This is a structural question, as the presence of conduction bands be-

comes critical to the structure of silver. It is not possible to manipulate the

energy associated with the formation of these bands without destroying the

very nature of the metal. Hence, the existence of the conduction bands will

be considered irreversible. As for the phonons, they are now assumed, within

silver acting as a perfect reflector, to contain no energy.
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the wall of the silver cavity. This is strictly forbidden by the

second law, because heat would be moving into the wall of

the second cavity, not only within the cavity void. Alterna-

tively, consider the entry of the second photon from cavity 1

into cavity 2. This presents a substantial problem now, since

cavity 2, having already gained the first photon, has a higher

energy content than cavity 1. This is because both the cav-

ity wall and the radiation field are used to define the system.

Movement of the second photon into cavity 2 must be strictly

forbidden by the second law, because heat would be moving

from a cavity with a lower temperature to a cavity with a new

higher temperature.

Still, our instinct desires that photons can enter the sec-

ond cavity without violating the second law. The secret to

resolving this problem involves the natures of the walls them-

selves. Let us divide the walls of each cavity into many el-

ements. Within the perfectly absorbing cavity, each of the

elements selected possessed at one time the energy contained

in the photon at the frequency of interest. However, this en-

ergy has now flowed to the interior of cavity 1, as required by

Max Planck [6]. The wall elements of the first cavity can be

thought of as devoid of energy, but able to absorb the energy

of the photon of interest. Conversely, the elements in the sil-

ver cavity can be thought of as containing the same amount

of energy as the photon of interest. That is because for the

silver cavity, all of the energy is initially confined to the wall

elements.

Now, the only way to permit a photon to enter the second

cavity without violating the laws of thermodynamics is to si-

multaneously permit an element from cavity 1 to interchange

with an element from cavity 2. In this way, when the photon

hits the wall of the second cavity, it will actually momentar-

ily impart its momentum and energy to a wall which has now

a reduced energy by the value contained in one element of

the silver cavity. The photon can enter, but the net result is

that the emissivity of the second cavity has begun to rise. Si-

multaneously, the emissivity of the first cavity, now short one

photon and with one perfectly emitting element replaced with

a perfectly reflecting element, has begun to fall. Should the

cavities be of equal dimensions and contain equal numbers

of elements, the net result would be that the total emissiv-

ity of both cavities becomes a weighted average of the joint

emissivities. Both cavities now contain gray radiation and the

second law was never violated.

It is evident that when the small hole was made between

the two cavities, that their walls, from a thermodynamic point

of view, became one. It is in neglecting this important fact

that some physicists attempt to state that the second law of

thermodynamics has been violated. In fact, the law is violated

only when the experiment is not fully presented. The truth is

that the net emissivity of the total cavity simply becomes gray.

Photons can exist anywhere within this new cavity, but their

net density will not be black.

At the same time, if it is possible to drive additional heat

into this system, one can built up black radiation in these two

cavities, as highlighted long ago by Stewart [7] and as re-

emphasized recently by the author [17, 18].

4 Summary

In the end, arbitrary cavities are not necessarily filled with

black radiation. Laboratory blackbodies are specialized ob-

jects always made from relatively good emitters of radiation

over the frequency range of interest, as well illustrated by

the facts (see references within [8–12]). No valid theoret-

ical proof of Kirchhoff’s law has been formulated and no

gedanken experiments can properly account for the existence

of this law.
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und dem Absorptionsvermogen. der Körper fur Wärme und Licht.
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The goal of this paper is drawing attention to a mistake confusing discussion upon the

alternatives to special theory of relativity (STR). In the Mansouri-Sexl test theory uti-

lized as a mathematical framework for testing the preferred frame theories, the Lorentz

transformation of time has an erroneous form. This generates a false conclusion, namely

that a theory based on Tangherlini transformation is empirically equivalent to STR.

Before the advent of STR, FitzGerald [1] and Lorentz [2] pro-

posed a solution to the Michelson-Morley experiment, differ-

ent from that resulting from the Einstein’s theory. Their idea,

extensively developed in the Lorentz’s theory of electrons

[3,4] (later known as Lorentz ether theory — LET) consisted

in assumption that objects moving with respect to a postu-

lated preferred frame of reference, determined by motionless

“aether”, are contracted in the direction of their motion. This

idea, together with the introduced by Larmor assumption that

clocks moving through ether slow down by a velocity depen-

dent factor, sufficed also to explain the modified M-M ex-

periment, i.e. the Kennedy-Thorndike experiment. Defined

in these terms, length contraction and time dilation consti-

tute real processes of dynamic origin, connected with the im-

pact of absolute motion on molecular forces. However, af-

ter appearing of Einstein’s 1905 paper on STR [5], this idea

has been ignored and abandoned by the overwhelming ma-

jority of physicists. The reason was that, in spite of its differ-

ent ontology LET did not formally differ from STR, neither

led to specific empirical predictions. The underlying cause

binds to the space-time transformations, in fact determining

the shape of theory. Namely, the Lorentz transformation (to

which Voigt, Larmor, Poincare and Lorentz contributed in

various degree) evolved to a symmetrical form reflecting the

STR founding postulates instead of the Lorentz’s assump-

tions. Thus, paradoxically, Lorentz transformation became

the main obstacle in evolving the original Lorentz’s idea to a

form of consistent autonomic theory. Eventually, LET gained

the status of a superfluous ontology put upon the STR for-

malism (so-called “Lorentzian approach to relativity”), which

made the choice between LET and STR the question of sim-

plicity ruled by the Occam’s razor. Neither the (much later)

space-time transformation consistent with original assump-

tions (Tangherlini [6]), nor the Bell’s exact calculations (Bell

[7]) deriving “relativistic” effects from Maxwell’s equations

by means of classical physics and quantum mechanics, did

alter this general opinion.

The today’s version of LET takes the form of test theories

verifying STR by introducing free parameters instead of these

resulting from definite assumptions. They are in particular the

Robertson’s test theory [8] and Mansouri-Sexl theory [9–11]

for their basic equivalence known by the common name of

Robertson-Mansouri-Sexl test theory (RMS). We shall focus

on the Mansouri-Sexl (M-S) transformation presented in [9],

considered to be a proper mathematical framework for exper-

iments verifying special relativity. While the Lorentz trans-

formation (boost) is

t′ = γ

(

t −
vx

c2

)

, t = γ

(

t′ +
vx′

c2

)

x′ = γ (x − vt) , x = γ (x′ + v t′)



























, (1)

where

γ =
1

√

1 − v2/c2

(while y′ = y, z′ = z, in all transformations here considered),

Mansouri & Sexl introduced a generalization:

t = a T + ǫX, x = b (X − vT ) (2)

The coordinates, X, T are the ones measured in the pos-

tulated preferred frame Σ in which the speed of light is ax-

iomatically isotropic. Instead, x, t are the coordinates mea-

sured in frame S being in standard configuration with Σ. The

idea consists in measuring independently the factors a and

b (functions of v) in experiments, and to choose one of two

alternative values of ǫ: −v/c2 or 0, corresponding to the al-

ternative synchronization conventions. The first, Poincare-

Einstein (P-E) “internal” synchronization, based on the ax-

iom of isotropic one-way speed of light in any inertial frame

(i.e. based on the postulate of invariant speed of light), re-

lates to ǫ = −v/c2, a factor responsible for the relativity of

simultaneity. The second, “external” synchronization, related

to ǫ = 0, consists in adjusting all inertial clocks to the clocks
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synchronized in the preferred frame Σ according to the P-E

synchronization, which entails absolute simultaneity. Beside

these two, there exists a third possible convention, the (slow)

clock transport, which can be classified as internal procedure.

The clock-transport convention confirms P-E synchronization

provided STR is correct; instead its relation with the theories

involving absolute simultaneity is not unambiguous inasmuch

as they basically may, or may not predict time dilation and

length contraction.

Any observed deviations from the exact relativistic val-

ues of a and b in the first or second order experiments (ac-

cording to Mansouri and Sexl, resulting in deviations from

the isotropic two-way speed of light) would speak for the pre-

ferred frame alternatives to STR. Mansouri and Sexl state that

for a = b = 1, ǫ = 0, the Galilean transformation is obtained,

which is correct. If, after employing the external synchro-

nization, a and b equal to unity, it would mean that mechani-

cal phenomena are ruled by Newtonian physics and subject to

the Galilean principle of relativity, while the Maxwell equa-

tions (and the relevant constant speed of light) refer to the

preferred frame (ether) only. This is exactly what Michelson

and Morley (ineffectively) expected to detect in their experi-

ments.

However, Mansouri and Sexl also claim that for 1/a =

b = γ and ǫ = −v/c2, their transformation turns into the

Lorentz transformation, which is obviously wrong. This mis-

take is coupled with the incorrect notation of the Lorentz

transformation of time, written in their paper as:

t′ =
t

γ
−

vx

c2
, (3)

whereas the correct form is

t′ = γ

(

t −
vx

c2

)

. (4)

In fact, this mistake is not simply accidental; being triv-

ial, it has however a dipper cause. Namely, Mansouri and

Sexl intended to treat separately the questions of time dila-

tion and simultaneity. This, however, is infeasible with re-

spect to the Lorentz transformation in which relativity of si-

multaneity and relativistic effects are inseparably connected.

This mistake entails false conclusion as to the question of

equivalence between STR and the postulated ether theory.

It also maintains a persistent myth, according to which the

Michelson-Morley experiment, together with the Kennedy-

Thorndike experiment provides an evidence for the invariant

speed of light. What these (and other) experiments proved in

fact with a high degree of probability is the isotropy of the

two-way speed of light, which however is not tantamount to

isotropy of the one-way speed of light. Mansouri and Sexl

came to a false conclusion that the difference in one-way

speed of light is a sole matter of choice of the synchronization

convention. Consequently, they concluded that only violation

of the two-way isotropy resulting in deviations from the rela-

tivistic values of a and b constitutes a challenge to STR.

From among various alternatives to special relativity, the

preferred frame theory (PFT) here considered seems to be the

only one consistent with the Lorentz’s original idea (we treat

PFT as a specific formulation of “ether theory”). It is based

on the general assumption according to which there exists a

physically substantial preferred frame of reference, of which

the properties are:

1. In the preferred frame, the one-way speed of light is

isotropic;

2. The bodies moving in the preferred frame shrink by

the Lorentz factor in the direction of their motion; the

clocks moving in the preferred frame slow down by the

Lorentz factor.

The effects mentioned in the second postulate are inter-

preted as “real”, which means that their relation to the pre-

ferred frame does not depend on the choice of reference frame

in which they are described. Provided that, from these postu-

lates one derives the following asymmetrical transformation

between the preferred frame Σ (coordinates T , X) and frame

S moving with respect to the preferred frame (coordina-

tes t, x):

t =
T

γ
, T = tγ

x = γ (X − vt) , X =
x

γ
+ v tγ



























. (5)

While using the notation used in M-S transformation, this

would mean: 1/a = b = γ, ǫ = 0. Transformation (5)

determines all dynamic and kinematical properties of PFT.

Formally, the above transformation and Lorentz transforma-

tion do not convert to each other. Mansouri and Sexl quote

this transformation in their paper [9], rightly attributing it

to Tangherlini. However, they erroneously claim Tangherlini

transformation differs from Lorentz transformation only with

respect to the synchronization convention employed, which

is a direct consequence of a basic mistake above-mentioned.

They conclude that theories determined by these transforma-

tions (i.e. STR and PFT) are empirically equivalent to each

other. According to this viewpoint, the ether system can be

singled out in an arbitrary manner and thus respective predic-

tions concerning experimental results in any inertial system

are identical. This false conclusion confuses discussion on

the Lorentzian approach for nearly forty years.

As a matter of fact, PFT shares some empirical predic-

tions with STR. The main similarity is that PFT predicts

length contraction and time dilation by the usual Lorentz fac-

tor, provided measurements are executed in the preferred

frame (in more detail Rybicki [12]). It predicts e.g. the elon-

gation of lifetime of muons crossing the atmosphere since the

Earth frame is nearly identical (compared with the muon’s

speed) with the postulated preferred frame. It also gives iden-

tical to STR prediction (although different interpretation) to
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the twin paradox, irrespectively of the choice of the observ-

er’s “rest” reference frame. This also refers to the “realis-

tic” version of twin paradox, namely the Hafele-Keating ex-

periment.

PFT predicts the isotropic two-way speed of light, which

makes the M-S theory ineffective in testing this alternative to

STR. To show this question in details, let us return to the usu-

ally used notation with primed and non-primed coefficients,

here the latter attributed to the preferred frame (thus, below,

S denotes the preferred frame and S ′ the frame in motion).

From the fact that clocks and measuring rods moving with

respect to S are distorted in the definite way by the Lorentz

factor it follows that, in S ′, the speed of light traveling along

x-axis is, dependently on the (positive or negative) direction:

c′1 = (c − v) γ2, c′2 = (c + v) γ2, (6)

where v denotes the velocity of the observer with respect to

the preferred frame along x-axis. (In the 2D and 3D depic-

tions, the light wave front form ellipse and ellipsoid, respec-

tively). The averaged two-way speed of light on path l′ paral-

lel to x-axis is constant (isotropic) since the respective time is

t′ =
l′

(c − v) γ2
+

l′

(c + v) γ2
. (7)

After simple algebra, one gets t′ = 2l′/c, a result identical

to that predicted by STR. While the speed of light defined ac-

cording to STR determines the relativity of simultaneity, the

speed of light defined according to Eq. (6) forms an alterna-

tive solution, in the sense that it determines absolute simul-

taneity.

In general, the concept of “relative velocity” between two

frames, defined in STR as identical speed (the same for the

observers in S ′ and S ), is replaced in PFT by the concept

of “mutual velocities”. While S ′ moves against S with the

velocity v, the speed of S measured in S ′ becomes

v′ = vγ2. (8)

This involves significant consequences, e.g. such as the

following one. Assume S ′ and S ′′ are the frames in motion

to each other, and that their velocities with respect to the pre-

ferred frame S are identical. Since also the Lorentz factors

described in S for the frames S ′ and S ′′ are identical, the

mutual velocities measured in both frames must be identi-

cal either, thus constituting the “relative velocity” in the STR

sense. However, contrary to the STR predictions, neither of

these frames will manifest “relativistic effects” (length con-

traction and time dilation) when observed (measured) from

the other one, since

γ′

γ
=
γ′′

γ
=⇒

γ′

γ′′
= 1. (9)

This specific prediction of PFT, together with the char-

acteristic “position” of the Earth with respect to the assumed

preferred frame enables experiment settling between STR and

PFT. Namely, one assumes that, if the preferred frame exists,

it is likely identical with the (local) frame in which the cos-

mic microwave background radiation (CMBR) is isotropic.

Meanwhile, from the observed Doppler effect obtained from

WMAP known as “dipole anisotropy” one deduces that So-

lar System moves with respect to isotropic CMBR with the

velocity 368±2 km/sec in the direction of galactic longi-

tude l = 263.85◦ and latitude b = 48.25◦. This translates

to the Lorentz factor:

γ = (1 − 1.52 × 10−6)−1
≈ 1 + 7.6 × 10−7. (10)

PFT predicts that an object moving with equal velocity

with respect to the isotropic CMBR, in the direction (e.g.)

opposite to that of Solar System (i.e. l = 83.85◦ and b =

228.25◦) will not exhibit any relativistic effects since γ′/γ′′ =

γ′′/γ′ = 1. This prediction is absolute, i.e. does not depend

on the choice of synchronization conventions or any other as-

sumptions. It is quite obvious that in the lab experiments with

γ reaching the value of 1,000 (thousand) and higher, the dif-

ference between 7.6 × 10−7 and zero is not identifiable. To

be detected, it thus demands employing subtle methods in the

specially aimed experiments. Nevertheless, it does not seem

to lie beyond the scope of the today’s experimental capabi-

lities.

Conclusion

We have shown that an incorrect notation of the Lorentz trans-

formation of time in the Mansouri-Sexl test theory entails

false claims, namely:

1. Only the theories predicting anisotropic two-way speed

of light differ from STR;

2. A theory maintaining absolute simultaneity is equiva-

lent to special relativity (Mansouri and Sexl call this a

“remarkable result”);

3. As far as prediction of experimental results is concern-

ed, Tangherlini transformation is completely equivalent

to Lorentz transformation.

These claims confuse the discussion upon the preferred

frame alternatives to special relativity. Contrary to a common

belief, a theory based on the preferred frame postulate and

formalized by Tangherlini transformation (i.e. PFT) is not in

whole experimentally equivalent to STR. Thus settling be-

tween them two in experiments is a feasible task. The present

author aims to develop this subject in the subsequent papers.

Submitted on January 6, 2016 / Accepted on January 8, 2016
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Irony of the Method

Foundations of Theoretical and Experimental Physics with Special Emphasis
on the Contact Problem in Mechanics, Fields, and Particle Interactions

Felix Tselnik
Beer-Sheva, Israel. E-mail: tselnik@bgu.ac.il

The Method of Physics is not built on the basis of hypotheses about the world. It is based

on the axioms of the requirements of universal reproducibility of predictions. Thus, the

Method does not require confirmation in experiments: experiments are carried out in the

framework of the concepts of the Method and, therefore, they are doomed to agreement

with the theory (derived solely from the axioms). Critical analysis of such structures

(of the Method) as time intervals, the reference systems, and distances leads to a series

of rather unusual conclusions. . .
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Preface. What is the question?

Mathematical science affords us a brilliant exam-

ple, how far, independently of all experience, we

may carry our a priori knowledge. . . Deceived by

such a proof of the power of reason, we can per-

ceive no limits to the extension of our knowledge.

The light dove cleaving in free flight the thin air,

whose resistance it feels, might imagine that her

movements would be far more free and rapid in air-

less space.

I. Kant, Critique of Pure Reason

The Method of reasoning is regarded an important part of our

civilization. However, its very existence is paradoxical. In-

deed, it is unlimited repeatability that is in its heart. But re-

peatability on its own doesn’t as yet belong to the Method.

The knowledge of a town is verily not in the competence of

the Method, despite providing suitable recommendations for

us to search for a house. But the town might change in time,

and then such knowledge becomes useless. On the contrary,

constructions and rules of the Method are claimed to be uni-

versal, that is, valid always and everywhere. But then, an

available set of universal rules is unavoidably meager, since

it is formed at the expense of disregarding everything that is

uncertain, unreliable, or vulnerable by means of restricting

full-fledged thinking to mere logic. The utmost form of un-

ambiguous repeatability is number. A hundred of people —

this is when there is no importance as to how people actually

differ from each other. Even if random processes are under

question, then the result is being presented in terms of their

probabilities, and their — repeatable! — distributions are

what is actually obtained. Repeatability is required as long

as — explicitly or implicitly — one bears in mind some prac-

tical use of past experience. However, there are no completely

repeatable situations in real life. Moreover, they are just un-

repeatable events that are of utmost interest in it. Now, what

for — and just when — are we in true need of this Method?

Since prehistoric times there have been highly valued,

along with wise (sometimes) and sly (always) leaders, strong

and bold warriors, skilled and nimble hunters, also those able

to predict weather, to recognize a beast, while being led by

hardly noticeable or completely unnoticeable for others signs,

to ignite fire, to invent a tool. Frequently, these people were

directed by intuition, incomprehensible even for themselves

(“it seems to me” or “my bones are aching feeling bad wea-

ther”), and then their skill disappeared with them, but some-

times they managed to explain their knowledge at least to a

disciple, and then it had a chance to be preserved. Thus in

this way the Method has been coming into existence, and for

later purposes some other people, the “philosophers”, have

endeavored to put all this into a system (in great many dif-

ferent ways), in order to make it systematically easier to un-

derstand and remember. For the large part in later-developed

“natural sciences”, experiment has replaced experience, and

the combinations of experiments and theories have become a

commonly accepted way of acquiring knowledge.
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“Pure” conditions of experiments along with the prescrip-

tion to use solely their combinations in applications are called

upon to ensure just this universal repeatability, while getting

rid of uncertainty, “turbidity” of real life, which still man-

ages somehow to use the predictions of the Method. A con-

fidence deserving experiment must present an unambiguous

result, as well as a theory — an unambiguous deduction. The

main concern and skill of the experimenter consist in this

that some definite statements might be drawn from his result,

whereas he mostly observes on his display (set-up) something

non-repeatable, from which no definite conclusions could be

drawn, and he has to update his devices and the performance

of the experiment in such a way as to reach reliable repeata-

bility. Many say that a theory is to be checked with the ex-

periment, but then the performance of experiments is being

controlled by theoretical concepts. All this is to be used fur-

ther on in practice, but there is a question as to what extent

the result of an experiment is ultimately conditioned by ini-

tial theoretical concepts. But what if these concepts are so

restrictive that there is no need in the experiment itself: its re-

sult cannot be different being governed by the very statement

of the problem, or can it?

It is commonly believed that upon perfection of experi-

mental devices and corresponding refinement of the theory,

every “reasonable” question will receive a trustworthy an-

swer. Upon penetrating deeper still into the “structure” of

matter, we shall eventually learn and understand everything

about Nature. In this approach, physics and the whole sci-

ence is thought of as something existing of its own being an

object of unprejudiced and uninterested study.

The entire society gets accustomed to such an opinion,

which has acquired the status of Kipling’s “Bandar-Log cri-

terion”: “We all say so, and so it must be true”. Now, the

very success of technologies becomes dependent on them-

selves, just like advertising produces artificial needs. Such

a development might turn out to be too one-sided and vulner-

able with respect to future failures (apart from those inherent

in the society itself), following just from the Method, while

the label “reasonable” as applied to a question is often called

upon to forbid curiosity that is not sanctioned by the Method.

It is desirable therefore to scrutinize the very structure of

the Method, viz., its language, because the questions are al-

ways asked using a language, hence the answer is partially

contained in the question itself. Since, if you are being an-

swered in an unknown language, you will regard the answer

as mere “noise”. However, the language of the Method is

quite different from the languages of primitive tribes, so it is

to be asked on a much deeper ground as to why it is just such

and to what degree its answers are determined by the require-

ment of repeatability alone. It turns out that this requirement

is so restrictive that, at least in physics which is the example

we will confine ourselves to, that we even should not expect

from Nature her own answer. The answer is always com-

pletely determined by the very question, so, in principle, one

could dispense with experiments at all.

The only general answer of Nature to the questions of the-

ory is “everything might occur”, whereas the Method likens

to a stencil, revealing from the unlimited variety of Nature

that is compatible with the structure of its own pattern as it

gets finer and more sophisticated in the course of develop-

ment. This has long been stated by Kant, Bergson and others.

Pushkin’s “monotonous beautiness” is well applicable to the

theories of the Method and should be explained by the own

pattern of the stencil. However, the stencil is by no means

arbitrary, but, on the contrary, it meets the most important

requirements of the user, while the meagerness of its con-

structions (“How can everything be described with so simple

formulae?”) results from the severe restriction due to the con-

dition of repeatability and the difficulty of its observing, as

it will become clear in the second part of this book after the

explanation, in the first part, of the possibility to realize the

constructions of the Method basing it solely on this condition.

One should say that physicists by no means discover the

laws of Nature, which has no laws of its own, but only partic-

ular cases, while to say that this and this is not important, and

then it is possible to predict what is left — this is of concern to

science. Suffices it to inquire why abstract mathematical con-

structions, initially by no means answering the questions from

physicists, later on became required, to find that both merely

consider equal situations, namely, what could be unambigu-

ously predicted. In other words, the user is being advised to

“search under lamp”, since nothing can be found in the dark

anyway, at least if we observe repeatability. But then, when-

ever you succeed in rendering a practical problem acceptable

for the Method, the efficacy of solutions is guaranteed, and all

our high valued technology is based on it.

The image of the World, as provided by the Method, is

not really a picture but rather a drawing — in projections and

with dimensions. A picture creates different impressions in

different people and in different times, therefore being devoid

of complete universality. If not only the picture, but also its

impression would always be identical, only then would it be-

long to the Method — though no longer to art. The products

of the Method play an important though auxiliary role. So,

the image in the mirror might provide slightest details, but

the problem for the Method is to make a good mirror, and this

is independent of the real (whole) countenance to be image-

processed.

In the first part of this book, the basic geometrical struc-

ture of the Method is discussed to realize some particular

ways in order to reach repeatability, which form the essence

thereof is called physics. In order to facilitate understanding

by a reader not accustomed to calculations, we present no for-

mulae. These will be replaced by multiple figures along with

qualitative explanations of the presented constructions. Infre-

quent cases, in which the absence of the corresponding cal-

culation comes into conflict with the confidence in the state-

ment, are being supplied with a short description of the gen-
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eral scheme of the calculation and with auxiliary construc-

tions.

In the second part, we discuss the requirement of repeata-

bility itself with respect to its relation to reality. This is nec-

essary in order to define boundaries of the applications of

the Method. The main tendency here will be to define these

boundaries from inside the Method as it is performed by

means of further analyzing its basic concepts.

Part One. How and Why?

And for mean life number was existing:

Like domestic harnessed cattle served,

Since the slightest shadows of meaning

Clever number readily exposed.

N. S. Gumilev, The Word

Chapter 1. Taking one step back

I do not define time, space, place, and motion, as

being well-known to all.

I. Newton, Mathematical Principles of

Natural Philosophy

“One of the basic concepts of mechanics is the concept of

material point. Under this name we conceive the body, the

size of which might be neglected while describing its mo-

tion. “The position of the material point in space is defined

by its radius-vector r, the components of which coincide with

its Cartesian coordinates x, y, z.” (L. D. Landau and E. M. Lif-

shitz, Mechanics.)

This or about this is the way to present the primary posi-

tions in any textbook in physics. It is implied that the reader,

upon receiving a standard education and upbringing, asks no

more questions in this respect. More cautious mathematician

begins differently: “A number of experimental facts are a ba-

sis of classical mechanics. . . Our space is three-dimensional

and Euclidean, and time is one-dimensional. . . ”. (V. I. Ar-

nold, Mathematical Methods of Classical Mechanics.)

Newton proposed a scheme to solve some practical prob-

lems called mechanics, based on a generic system (devised

some decades before the method of Descartes) worked out to

unify algebra and geometry and on using coordinates in order

to relate points to numbers. This Newtonian approach sur-

vived until now, though with an important improvement due

to Einstein. Let us describe the main ideas of the scheme in

general. In so doing, we intentionally scrutinize the elemen-

tary logic of the scheme, keeping in mind the development of

its logical alternative in the sequel.

One has to choose a three-dimensional reference system,

comprised of solid rulers or some other devices to be used for

a coordinate network. The concept of material point is intro-

duced as a body that moves along a one-dimensional smooth

structure — the path, each point of which is specified with

three numbers — coordinates — and marked with one more

number — a time moment. Time flows uniformly, ensuring

the absence of self-intersections in the full picture, even if the

coordinates of the points of the structure are repeated.

Such a picture arose due to the observations of small or

distant objects, so that their details are not important for the

possible user of the scheme. This elementary description of

natural events is selected for its simplicity and for the possi-

bility of making predictions for a future position of the body.

The body might change its shape, something might occur in-

side it, for example, a chemical or life transformation; all

these are of no importance. We are interested only in this

that we are, in a limited sense, able to give prediction. As

S. Lem noticed in his “The Sum of Technology”: “If every-

thing that you want to know about the hanged is the period of

his swinging on the rope, then you are a physicist”.

For an actual use of the scheme, the body must be “seen”,

i.e. its initial coordinates must be known as well as some rules

for finding its later position in the same coordinates. In New-

ton’s time, no evidence of a top velocity would come from

practice, otherwise his mechanics might have looked differ-

ently. Quite oppositely, it seemed then that for each motion

a faster motion could exist. So, the body must be “seen” im-

mediately wherever it was. Then it would be possible to fol-

low it. Otherwise, provided the signal was retarded, the body

might overtake the signal upon its acceleration to be lost from

sight, and then another (similar if not marked) body might be

confused with it. However, the very importance of the so-

lution here is just in the possibility to influence the situation

intentionally, which would never happen under confusion.

Further in Newton’s mechanics, among all possible tra-

jectories a particular subset is selected comprising all uni-

form and rectilinear ones, that is, straight lines in the four-

dimensional space-time. Of these, each one is being deter-

mined by any pair of its points. One such point would be

irrelevant for mechanics. If the reference frame had been cho-

sen so poorly that any motion from an initial point uniquely

determined the final point, it would then be impossible to in-

fluence this transition, and one would just unite these points.

In this scheme, no explanation for this particular choice was

presented. Indeed, there are many classes of lines, each one

being specified by any pair of its points. However in Carte-

sian coordinates, a straight line corresponds to the simplest

— linear — equation, having good properties with respect to

linear, in particular vector-like operations.

It is assumed in Newton’s scheme that these trajectories

correspond to “free” motion, i.e. without external influence.

Existence of such trajectories (though they never existed in

practice, but rather belonged to some limiting case) is known

as “the first law of Newton”. “The second law of Newton”

consists in representing all sufficiently smooth trajectories by
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means of broken lines comprised of straight line segments,

infinitely small in the limit, so that transitions between adja-

cent segments — acceleration — depend on an external influ-

ence — force, and on an individual parameter of the body —

its mass.

The necessity of dividing the influence into external force

and mass is not evident from the scheme itself. However, it is

necessary for it, within its self-definition, not only to extend

the variety of relevant situations, but also to predict future

positions of the body according to the very statement of the

problem. Indeed, in the general scheme the force must be

specified at all points up to the end, and what is left to predict

then? Therefore the scheme should be completed with a no-

tion of inertia: whatever force, there exists the last segment,

for which this force could be ignored so as to regard the mo-

tion as free; and this must be true for any intermediate step

as well.

In practice, various particular cases are considered in me-

chanics, in which forces are known in advance over the whole

possible trajectory, however in the full theory there must be

a guaranty of the meaningful problem statement with any

forces whatsoever. Forces arise from their sources, typically

coming from some other bodies to weaken over a distance

from them. Different forces bring about different accelera-

tions, hence besides its mass the body to be accelerated must

be provided with an additional parameter — “charge”, requir-

ing that acceleration due to this force be proportional to this

charge disappearing in the limit of zero charge.

But then, what is the way to find a force in general, while

knowing nothing of its source? The answer of the scheme is:

this is achieved using the same second Newtonian law though

inverted to determine a force by the acceleration that it pro-

vides. This looks like a vicious circle, but the point is that to

determine the force along the trajectory of the body in ques-

tion, the force is being measured according to acceleration of

different — test — bodies, to be afterwards used in the prob-

lem. But then one must be sure that all the test bodies ob-

serve a common measurement standard. This is by no means

a simple task, and a further restriction of the permitted class

of forces is required. This topic will be extensively discussed

in Ch. 6.

The scheme allows for extension on extended bodies,

however only at expense of additional restriction on the class

of permitted forces. If the body changes its shape or size,

then sometimes it can be considered as consisting of smaller

parts, each one moving along its own trajectory unchanged,

while all these together describe the behavior of the total ob-

ject. Then one more law — “the third Newtonian law” — is

required to introduce, in the notions of the scheme, motions

of finite length bodies (e.g., solid ones) as a whole by virtue

of internal forces analogous to the external ones, thereby pre-

venting decay of the body. Since these forces must not influ-

ence the motion of the body as a whole, they must compen-

sate reciprocally. In terms of the Newtonian second law, this

sounds as follows: “Action is equal and directed oppositely

to its anti-action”. Newton himself noticed that these inter-

nal forces (for solid bodies) must be very strong as compared

to the external force, so that the latter only moves the body

rather than deforms it.

If the source of an external influence is explicitly given in

the problem, people tend to speak about interaction, and then

the Newton’s third law calls for the intensity of the source to

be represented by the same charge. In this context the charge

is coined the constant of motion. So, if, for example, the force

comes only due to interaction of the bodies, all these together

might be considered as a whole (“closed system”), that is,

the law allows for only some definite class of forces for this

condition to be fulfilled.

The primary concept of material point as a body of “zero”

size, that is, such that its state is completely specified by its

three coordinates, does not depend on a general concept of

size, but it might serve as a preliminary for the latter. If a solid

extended body is considered as consisting of so small pieces

that each one is practically a material point, then its position

is specified by means of its coordinates in the same reference

system. Further, when approximating each acceptable path

with rectilinear segments, as well as ascribing to each seg-

ment its length as specified by positions of its ends again in

the same coordinates (since there are no other numbers in the

scheme), then in a path defining limiting process this length

must tend to zero independently of the orientation of the body

by its own definition. This might be achieved with the defini-

tion of squared length via, e.g., the sum of their three differ-

ences squared. Now we can introduce a concept of size also

for extended bodies as a maximum length of segments spec-

ified by any pair of its points, again and again in the same

coordinate system that was first introduced solely for paths.

We are in a position now to redefine a zero-size body as one

not containing finite length segments.

Over a few centuries of its use, the Newtonian scheme

became so customary that it was conceived as something be-

longing to Nature as her very own — her own internal “har-

mony” — amounting to the statement that Newton “discov-

ered” his laws, being up to then ready though unknown,

firmly hidden in Nature. A significant alternative approach

(Kant, Bergson and others) denies the existence of any laws

of Nature, regarding the scheme as merely a choice of ob-

jects, to which attention should be paid according to some

convenient rules in order to be useful in applications. Thus,

one should regard the Newtonian laws an “invention” rather

than a “discovery”. The user (applying the scheme) just looks

around obliviously grasping only situations in which a use-

ful action is possible. The Newtonian scheme provides the

user with instructions for paying attention to particular oc-

currences, namely, to pick rare cases, which allow for war-

ranted predictions. We’ll examine below this question sys-

tematically, but for the time being let us look at the mentioned

features of the scheme from the viewpoint of their necessity.
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The final product of the scheme — three number func-

tions: the dependence of coordinates on time. But why are

these needed? How and when to use this information? A pos-

sible answer: if these functions for one body at some moment

of time coincide with those for another body at the same time,

the bodies might collide, that is, come into contact. So, these

functions get a practical meaning only if some other bodies

are present, otherwise the trajectory is found hanging, as to

say, in nothing. Why then not to consider the full problem,

including explicitly all the participating bodies? How reason-

able is the division of the problem into separated parts, while

the question is universal: whether or not the bodies collide?

Furthermore, the canonical (Newtonian) scheme is redun-

dant in this respect that many reference systems for the solu-

tion of the same problem might be introduced on an equal

footing, and some additional rules are necessary for transi-

tions between them upon describing the same motion. The

trajectories are specified with number functions, which are

different as for different trajectories in one reference system,

so also for one trajectory as described in different systems.

Disentanglement of this ambiguity requires some special

rules — “relativity principles” — to find “covariant” combi-

nations of coordinates, such that the “form” of resulting equa-

tions will not depend on a particular reference system (in the

theory of relativity these combinations inherently include also

time). In this respect two types of coordinate frame transfor-

mations are introduced: “passive” transformations to change

the coordinate values of a given point and “active” when the

point shifts itself in a given coordinate frame (still one has

to ascribe any sense whatever to the notion of motion from

one point to another in empty space: what is the difference

between these two?).

Moreover, reference systems themselves require a gauge

to be relevant for representing actual motions of bodies. The

gauge is carried out using some standard trajectories. For ex-

ample, the rectilinearity of rods is gauged using light rays

or free fall of bodies, while clocks are gauged with some

stable processes. Finally, all motions are thus compared to

some others, while rods and clocks are a mere intermediary

for comparing motions. However, any intermediate device

might either introduce something of its own to the procedure,

or lose or hide something. Usually, this is harmless — still

sometimes it might be important. In particular, as we will

find later on, some experimental facts turn out to be unex-

plainable in the framework of the scheme just because a part

of information is actually lost in the intermediary. For exam-

ple, the “eternal” question about the dimension of the space:

why only three, not seven or two (fewer still)? In the sequel

we will find also some other examples.

However successful the canonical version proves to be,

still a question is there concerning its possible logical alter-

natives. Now, what if some different schemes might exist,

and those should better meet some of our needs, whereas we

have just got used to this very approach upon being taught to

think solely in its framework? In the second part of the 20th

century, many authors strived (though generally with limited

success) to get rid of clocks and rods, replacing them with the

propagation of light and free fall of bodies. However, the very

idea of independently existing space-time has always been

considered “intrinsic to our intuition” (in the sense of Kant’s

judgments a priori).

It is desirable therefore to begin with something more

“primary”, for example, with that which makes itself evident

even for the “naked eye” like the possibility of describing in

a similar way such seemingly quite different events as mo-

tions of stars and flights of birds. However, a many-century-

long tradition is so mighty that even the discourse on the

prime position without a preliminary ripe feeling of its neces-

sity brings about, as experience shows, a depressing effect.

Therefore, we begin with the discussion of ways to reach re-

peatability, though a bit prior to the cited textbook (as well

as others), while postponing the most primary ideas until the

last chapter.

It is customarily said that bodies move along their trajec-

tories — one-dimensional continua. It is this that we want

to consider in more detail from the viewpoint of the user, all

this science being ultimately destined for. In distinction to

the curious researcher with his traditional “why?”, the ques-

tion of the user is more prosaic — “what for?”. He expects

recommendations for action, and it is these recommendations

that only give a value to knowledge, hence the concepts of a

scheme must be coordinated with its expected predictions.

The concept of motion itself depends on the statement

of the problem. For instance, the orbit of a satellite might

be considered as a change of its position, but sometimes (in

atomic processes, say) it is more to the point to regard as mo-

tion only changes in the orbit itself. In the canonical version,

it is the initial state that is highlighted as a state that later on

specifies the whole trajectory along with the law of motion.

Just this approach makes it indispensible to accept in advance

a particular construction of space-time. Otherwise there is no

reason to choose something definite for a proposed change of

the state. Indeed, what is a state then the initial state has to

transform at?

Quite oppositely, the final state is something known to the

user already prior to addressing the Method. This is some-

thing the user wants to reach. Therefore the final state pos-

sesses its external description as known to the user indepen-

dently of the Method, which is then committed in order to find

a way (if possible) so as to reach the desirable. If the user is

not able to formulate as to what is wanted, the Method can-

not teach him. And only afterwards — already in terms of the

Method — the problem arises concerning a relevant construc-

tion, so that both the final and initial states are now encoded

accordingly to the problem statement. Thus, with respect to

the relationship of initial and final states, it is just final states

that are to be specified as leading ones, leaving only auxiliary

roles for initial states.
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So seemingly unimportant deviation from symmetrical, as

it looks, relationship in a ready scheme is important for an

initial formulation of the problem. Likewise, the cause-effect

relationship is asymmetrical for the user. The effect is impor-

tant for him in its own right, whereas the cause is important

only insofar as it leads to the known-in-advance effect. Only

starting with this statement does it become possible to sub-

stantiate geometrical constructions as an instrument for solv-

ing practical problems.

As for the final state, a criterion of whether or not it is

reached must be formulated by the user in advance. Oth-

erwise the problem does not exist, since upon reaching the

final state it is still unknown whether or not just this was im-

plied. Once this state is defined, we stay in need of find-

ing a way to reach it. The required construction must some-

how encode this final state now with its own internal for the

Method description, i.e. in its internal terms serving as a tool

for the solution. In this procedure, the initial state must be

encoded as well, since it isn’t the desired one. If these two

codes are sufficient, that is, given the initial state, the final

is surely achieved, then no problem at all is there, as well as

if the required transition is not known as yet. It might hap-

pen, however, that in the accepted encoding scheme there is

an intermediate state such that a way to reach this state from

the initial is known and also from this state to the final. For

example, it might happen that in the ripening of a plant its

color in an intermediate phase defines its properties at the end.

Then the farmer (biotechnician) is interested in reaching just

this color.

Further development of the scheme comprises a sequence

of intermediate states with transitions in between. When as-

cribing the index 0 to the initial state and 1 — to the final,

then let us ascribe 1/2 to the intermediate state. Analogously,

the intermediate state between states 0 and 1/2 receives index

1/4, while that between 1/2 and 1 — 3/4 and so on. Proceed-

ing along this way, we obtain a structure ordered by the very

statement of the problem, still not, however, acceptable as a

trajectory. Indeed, the structure cannot include the last state

other than the final (marked as 1). Were it that such state

does exist, the transition from it to the final would be neces-

sary, and then this state would actually render itself superflu-

ous, and it must be identified with the final. The same is true

for each intermediate state. Therefore the whole set of states

must be infinite. However, in this structure sequences might

exist, that have no final states further progressions to begin

with. In the order-defined topology, these sequences are ev-

erywhere dense (they correspond to irrational indices). But

this numbering expresses only the order in the set of states,

being arbitrary in other respects. It is possible to change the

indices, so that a formerly irrational index becomes rational

and vice versa (this cannot be done, however, for all the in-

dices at once). It is natural to consider every such sequence

a definite state, since the sequence of its indices has an up-

per boundary by definition, dividing the whole construction

in “before” and “after” (Dedekind). It is this very construc-

tion that will be called a trajectory.

Up to now our indices look like time moments only due

to their linear order. In what follows this likeness will acquire

a definite physical sense, however, this will not be in accord

with the readings of some clocks. No clocks whatsoever will

appear in this book; rather surprisingly, it turns out that these

are not at all needed in physics (as well as rods).

In various fields of knowledge states are fixed differently.

In particular, physicists suggest their own approach, which is

effective, however, only within a very limited scope of real

situations, while subsequently letting predictions be univer-

sally repeatable. They notice that a final state is always en-

coded according to the “yes-no” principle by the very prob-

lem statement. Now, it is proposed in physics to encode all

other states in the same way. States encoded with this rule

will be called contacts. The contact is either existent or not,

that is, it is a point, and this definition has nothing to do with

such notions as size or distance. (If a duelist missed having

just one cartridge, he doesn’t care how far he missed.) Con-

tact as a state corresponds to the pictorial image of touching,

and in this respect the involved entities are called bodies, but

we stress that the concept of body has here but a pure infor-

mational meaning independent of an illustrating picture re-

ferring to something used in connection with contacts. This

image helps the user pay attention to similar situations, in

that he tries to select bodies out of the world and to reduce

his problem to their touching. In general, this is a mere men-

tal construction introduced in an ivory tower independently

of any reality. But then, it allows for effective construction

of transitions between relevantly encoded states. It is only

afterwards, while leaving the tower armed with the scheme

and using his senses, one has the opportunity to search in

the surrounding world something looking like the elaborate

mathematical scheme in order to make predictions in actual

situations. Thus, the astronomer Galileo, who used to observe

the motions of celestial objects (demanded by the practice of

navigation), began to throw for some reason stones from the

leaning Pisa tower, thereby founding experimental physics,

in distinction from the purely observational. How funny he

must have looked to the others! People used to plough, fight,

bargain, whereas this eccentric man was throwing stones.

After this digression let us return to the correspondence

between the scheme and the usual concepts. What is of in-

terest in a trajectory? It is only this that, if it intersects with

another trajectory, then the related bodies might come into

contact. What happens in the contact is a separate aspect un-

related to the given problem. The essence of the concept of

the trajectory is in this, namely that this cannot happen, pro-

vided these trajectories do not intersect, and then knowing the

trajectories we are in a position to predict the occurrence of

the contact. If a hare comes into contact with a wolf, it is not

necessary that it will be eaten: perhaps the wolf is not hungry

at the moment. But the hare-physicist, being familiar with the
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basics of geometry, knows for sure that he will be safe upon

avoiding any contact with a wolf. This little one would get

guaranty. So, for him the contact possesses a meaning that is

external to his problem, which is “to be or not to be eaten”,

but in order to exclusively solve a Contact Problem (to be ab-

breviated throughout the text as simply “CP”, by the use of

which we generally also imply the sense and instance of “CP

set-up”), the user is advised to develop for this purpose some

artificial internal mental map with respect to the Method’s

construction.

Therefore, the fact of the presence or absence of a con-

tact might be taken as the starting point for a special science,

namely, physics. Indeed, something common for an apple and

stars that Newton noticed, according to the legend, belongs

just to their mechanical motions — trajectories with their con-

tacts with light entering the observer’s eye, say, rather than

with some changes in general, for instance, with the evolu-

tion of the star and ripening of the apple. The problem is

being stated about the prediction of contacts on account of

some relevant initial data.

Upon developing the Method from scratch, we should

not accept all the traditional geometry as fallen from heaven.

Rather, we shall first put the question about the relevance of

just this structure, though perhaps just this one will spring up

in some form in the course of our development. We have de-

fined the scheme as CP. But in any CP, at least two bodies

are present. Hence, it is not necessary to construct an exter-

nal reference system with its coordinates fixing “positions” of

a body, dropping the presence of other bodies from the out-

set. Now, what if we were to formulate CP directly in their

relations? Perhaps then we should be able to dispense with

coordinates? It turns out that this is the case, and we shall for-

ever forget coordinates, their transformations, quantities that

transform in some accord to these, relativity principles, etc.

Solutions to CP must be unambiguous and universally

repeatable. These demands are so categorical and restric-

tive that the situations they are being fulfilled at are suffi-

ciently rare in real life. But then, they are permanently be-

ing searched for, especially in technologies, due to efficacy of

their predictions, hence looking quite widespread. The over-

simplified CP statement has its consequence in the fact that

for infinitely rich Nature, it is always easy to give an answer

to it too, so that for all possible hardly restricted constructions

of the Method, Nature will surely find applications. If the

Method predicts, e.g., a particle corresponding to its scheme,

it will necessarily be found in experiments, otherwise upon

perceiving the particle solely in terms of the Method, we

would never notice it, i.e. extract from the world as a whole.

Somewhat loosely, it can be said that using the rules of the

Method we “create” this particle, as well as being constructed

according to the same rules by which a TV-set does exist

in the world. In the development of the Method within the

framework of a mental scheme, we will frequently illustrate

introduced constructions by means of familiar examples. It

is necessary, however, to follow the internal logic of the con-

structions.

Since various trajectories with their mutual relations like

intersections are present in CP, we are in need of a structure

for their common description. Such structure suited exclu-

sively for CP solving we will call the contact space (anal-

ogous to the space-time of the canonical version). Its points

are contacts as occurring in the intersections of various trajec-

tories. The condition of universality, that is, of the possibility

to formulate any CP within this structure, defines the require-

ments for the geometry of the contact space.

Trajectories of their own are already provided with their

internal geometry. According to their definition as the sets of

states, they are the segments of the number axis, i.e. of a sim-

ple arc. Considering their intermediate states as points, and

the arcs as the trajectories of moving bodies, we should con-

sider solely situations when the contact of two bodies A and

B, with the CP being stated, takes place only if their trajecto-

ries intersect. In the same terms, we can introduce contacts of

these bodies with some other bodies. In particular, the latter

might be useful if they comprise a prepared-in-advance aux-

iliary set of measuring bodies specially introduced in order to

predict the contact in CP. Thus, in each particular CP there

might appear many (sometimes infinitely many) trajectories

of bodies with or without mutual contacts.

Since the contact space as a structure has been introduced

solely to solve (a combination of) CP’s, the bodies that in-

tersect the trajectory of A (for instance, at its state 1 in its

own order) are considered having the contact with A at this

point, i.e. the combinations of only such trajectories are be-

ing accepted in the scheme. We want to predict the contact

between A and B to be denoted as (A, B), while knowing,

at some pieces of their trajectories, their prior contacts with

measuring bodies. In other words, we will follow A and B

using their contacts with measuring bodies. To this end, we

have to be sure first of all that on every piece they are the

same A and B. Indeed, what for did we select the motion of

a body from its one position to another among more general

situations when at one place the body disappears, while in an-

other appears an “exactly identical” one? The answer lies in

that we imply a possible influence on the contacts of just this

body. One could imagine bodies as marked somehow, e.g.,

carrying something written on them. This method might be

useful sometimes, but a specific feature of the Method is the

inclusion also of the impossibility of such a marking, say, if

the bodies are small enough. Therefore in the Method, which

is actually nothing else than a set of various combinations of

CP’s, we use in the following just contacts of A and B them-

selves and with measuring bodies (because there is nothing

else in the scheme).

Let the trajectories A and B be such that (A, B) occurs.

Somewhere before (A, B) we emit a bundle of measuring bod-

ies from A, so having their common contact with A and

among themselves (here and further on up to Ch. 4, it is im-
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plied that contacts have no effect on the trajectories of bodies,

i.e. on the existence of their other contacts, in our terms — on

both A and B, as well as between the measuring bodies).

We try to choose, if possible, such measuring bodies out

of the bundle that they further come into contact with B, of

course, before (A, B). Each such body has a contact with B

at a point, having its own index in the trajectory of B. The

construction of the contact space is just an arrangement of

relevant kits of measuring bodies.∗

Among these, we find the body, the contact of which with

B occurs before all others with respect to the order in B. Re-

call that no separate “clock” is required to reveal this “be-

fore”: Let a contact put a “mark” on B, now any other contact

will occur later if it “sees” B already marked. Not always

might this be the case. For instance, how exactly to mark

electrons? However, sometimes an indirect marking is still

possible using auxiliary bodies. It would be reasonable to re-

gard this first body the fastest, were it not possible that bodies

might go over different paths. However, our condition “first

in the order of B” means total extremum: The limit is being

reached upon testing both paths and velocities.

If CP has a solution, hence a possibility to follow B while

“sitting” on A, then such bodies must be present in a rele-

vant measurement kit. If we were to claim the possibility of

solving any CP in the framework of a single scheme, these

peculiar bodies might serve as universal signals (they will be

conditionally called photons, while their definition doesn’t

imply just electromagnetic implementation). Photons must

exist at every point of both trajectories. Otherwise, the con-

tact (A, B) could not be predicted, since B, say, might happen

to be “faster” than bodies of the kit, thus evading the fol-

lowing; this kit would be irrelevant for CP. The Method is

impotent in the absence of top speed. If it is not possible

to distinguish two identical bodies from one that “instantly”

moves from one position to another, then the user cannot con-

trol the situation by means of acting on the motion of a par-

ticular body. It is then said that this is not physics, meaning

that the situation cannot be reasonably simplified in order to

employ the Method with the use of the concept of body, as

being defined by something allowing for CP statement. So,

CP itself chooses situations, in which it is efficacious. How-

ever seldom these occur, it is recommended each time to look

for the reduction of a problem to CP, because then predictions

are very reliable. In practice, photons are not always neces-

sary. For instance, in dealing with slow enough motions it is

sometimes possible to use even a usual post as the top signal,

using, in principle, the same theoretical scheme. The scheme

of mutual contacts of bodies can further be used in a broader

context. So, for instance, the steady flux of a river cannot be

∗One might keep an image of them as comprised (though not always) of

bodies emitted from each point of the Euclidean space-time with all possible

velocity vectors. We use the notions of velocity, acceleration, mass, charge

etc. though we still have to define all these solely in terms of existence and

order of contacts.

recognized, since its parts are being replaced by completely

identical ones. In order to discern the flux and to measure its

speed one has to break its uniformity placing a buoyant body

there.

In the basic scheme of Newton with an infinite speed of

signals, it was necessary to place clocks, synchronized in ad-

vance, in the knots of the space lattice. Just for this reason

he had to ponder so laboriously on the nature of time, distin-

guishing the notion of “mathematical” or genuine time from

the not strictly definite time, copying some, mainly astronom-

ical, periodic process.

After this digression, let us return to CP. Let after the con-

tact with B of a photon emitted from A another photon be in-

stantly emitted from B back to A, then again from A to B and

so on. It is convenient to say that it is one photon that oscil-

lates between A and B up to (A, B), if this exists (Fig. 1.1).

This photon realizes the following of B from A. This follow-

ing is discrete, and it seems to be more reliable to emit from

A more photons one after another, so that the reflected pho-

tons provide a more detailed information. However, there is

a risk of confusion the returning photons. It is not obligatory

that one photon emitted earlier than another will also return

earlier: both their paths and velocities might differ, since our

definition of the photon as a body that overtakes all others

having their common contact with A is local.

Fig. 1.1: Thin lines are the trajectories of the oscillating photon.

Wherever the counting of the oscillation numbers begins,

this number as counted up to contact (A, B) is necessarily in-

finite. Otherwise, a last oscillation must be there, so that the

next occurs after (A, B), in contradiction with the definition

of the photon as the top-speed body that overtakes all others,

including A and B. Such a sequence of contacts is called a

Zeno sequence recalling his paradox about Achilles and the

tortoise.

Let us now reverse the criterion for it to be relevant for

CP-solving, considering the occurrence of (A, B) unknown

(since we want to predict just this) and counting the photon

oscillations. Starting from any point, it would be desirable to

conclude that (A, B) will occur, provided the number of os-

cillations increases infinitely. However, this number will tend

to infinity also if the contact does not occur. This will take

infinite time, of course, but we don’t have any definition of

time in terms of contacts. The situation might be cured by

means of introducing some multiple contacts. Suppose we
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Fig. 1.2: a) (A, B,X) exists. b) (A, B,X) does not exist.

have, besides A and B, yet another body — X, that does have

a contact with A, say (later on, we will include such bodies

in our measurement kit). Since X is just an auxiliary body,

that is, it is not one, the CP is stated about, we may specify

its contacts whenever needed. And then we will change the

very statement of CP, i.e. we will ask not about a contact “in

general” but rather about a triple contact (A, B, X).

Now we are in a position to formulate our CP as follows.

Let two photons be emitted from A at once (Fig. 1.2): one —

toward B, another — toward X, and we will count the num-

bers of these photons’ contacts only with A.

If (A, B, X) is absent, then the ratio of the oscillation num-

bers between A and B to the oscillation numbers between A

and X tends to zero upon approaching the fixed (A, X), and

it is this that will be the criterion of the absence of (A, B). If

this ratio tends to some non-zero limit, then (A, B) does exist.

Since both numbers tend to infinity, this limit depends neither

on the point the counting begins from, nor on the reciprocal

positions of the contacts with A of the photons reflected from

B and X within neighboring oscillations. In the canonical ver-

sion, this ratio can be expressed with a simple formula via lo-

cal values of the velocities of A, B, and X at (A, B, X). It is im-

portant, however, that the measuring of oscillation numbers is

an actual physical procedure in its own right, and it should not

be regarded as something tacitly involving the “genuine” con-

cept of velocity as a ratio of centimeters to seconds. We shall

see further on that basic procedures of the Method can very

naturally be expressed solely via oscillation numbers when-

ever they are finite and via their ratios whenever infinite.

It is just here — in the necessity of an auxiliary contact

of A with a body from a measurement kit — that the con-

cept of time, so far having appeared only in the form of order

relations (basic already in the two books of A. A. Robb, writ-

ten at the dawn of XX century), begins to acquire a partic-

ular meaning in measurements. We stress that the definition

of a photon as top-speed body-signal implies neither its nu-

merical value, nor even its identity in different points of the

contact space, because for each pair of trajectories the photon

oscillating between them are to be specified independently of

all other trajectories. In this approach a numerical value of

the top velocity itself is completely unessential, whereas its

changes from point to point makes it possible, as will be ex-

plained in Ch. 5, to include, in the general contact scheme,

also gravitation with its curved (in terms of the canonical ver-

sion) trajectories of photons.

Upon corresponding photon oscillations to motions we

receive an ideal realization of the Method, viz, “measuring

motion with motion” devoid of any intermediary like clocks

and/or rulers. By this means, we introduce a particular mean-

ing of the very concept of motion in physics (of course, at the

expense of further restriction of the field of experience). It is

now not an uncertain “changing in general” but only some-

thing expressible in terms of contacts. So, considering mo-

tions of macroscopic bodies in an electromagnetic field, we

ignore their internal structure, in which similar fields partic-

ipate as well. But then, the so restricted approach gives us

a hope that everything describable in the framework of the

Method will sometime find its application in practice.

Ratios of the oscillation numbers in multiple contacts will

be one of the main tools in the following. However, it might

happen that in the situation in Fig. 1.2 this ratio is zero even

in the triple contact due to an “unsuccessful” choice of X as

a tangent (in terms of the canonical version) to the trajec-

tory of B in the contact point. We have therefore to complete

the above-given definition by an additional requirement to the

measurement kit: It must include such X’s (“in general posi-

tion”), that the said ratio becomes non-zero. Moreover, it is

possible, with an appropriate choice of X, to obtain non-zero

ratios for “different orders of tangency”. As will be shown in

the next chapter, with an appropriate choice of the own inter-

section scheme in the measurement kit, it becomes possible

to obtain the needed tangents in a regular way rather than just

trying out various bodies from the kit.

Two arbitrary chosen trajectories might intersect many

times, even infinitely many. In particular, they might be tan-

gent at a point or even to have a common interval. The pre-

diction of a contact using oscillation numbers counting on the

trajectories implies these to contain some intervals (each one

according to its own ordering indices) before the expected

contact that are free of other contacts. Exactly in these very

intervals the measuring photon oscillations occur. Were there

so “densely” positioned contacts, the oscillations counting

would begin before some (A, B), that is before (A, B, X), thus

erroneously showing the absence of the expected contact.

The next task is the formulation of the properties of the

measurement kit that are relevant to CP solutions, with re-
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spect to its own mutual contacts. The finiteness of the top

speed implies that not every pair of contacts might belong

to a single trajectory. In order for CP to possess a solution,

the trajectory of any single body must involve “sufficiently

long” intervals around the possible contact, containing points

reachable by photons emitted from other bodies in the prob-

lem (Fig. 1.3). Otherwise, some bodies would be “invisible”

to others, and hence CP could not be stated.

Fig. 1.3: The bodies in CP must “see” one another.

The knowledge of the full trajectory seems to provide

the required prediction of the state in question to be reached.

However, this trajectory, if being known up to the end state,

leaves no room for an action to influence the occurrence of

this state. It is then desirable to select in the set of all possible

trajectories a subset of such that can be completely specified

with only some of their states. Evidently, such a trajectory

cannot be uniquely determined by just one of its states, since

then the scheme should merely be reformulated to mark this

state as the initial, so again representing a trivial no-action

situation. The next possibility includes two states. If this so-

lution is unique, i.e. all the infinity of its states can be deter-

mined in the scheme with some of its two states, and no other

trajectory can include these three states (initial, final and aux-

iliary third) together, then the third could be chosen arbitrarily

on the trajectory. Indeed, suppose that, starting from the ini-

tial state and following the trajectory up to a specified third

state, we might — in this particular problem — to connect

this state to the final along a set of states not belonging to the

same trajectory, then this trajectory would not be unique, and

the solution becomes ambiguous, bounding the user to choose

among various solutions. Since this third state is sufficient to

enable some choice for action, any fourth state would be su-

perfluous. The final state being given in advance, we thus

look for a broadest class of trajectories ending at this state,

each one being specified with any pair of its other states. A

whole possible scheme is anticipated to be defined in terms

of these particular trajectories.∗

The relationship of the bodies in the measurement kit de-

fines the “geometry” in the contact space. Let us start with the

simplest structure — the topology. We will define the neigh-

borhood of a point of this space as a set of contacts such that

∗In the canonical version, these — initial — conditions give rise to par-

ticular “principles”. Starting with the requirement of the unique trajectory to

be obtained in a solution, one could invent a means to specify this trajectory

with the extreme value of something like the minimal length in a metric for

geodesics or, equivalently, the least action principle in dynamics.

any trajectory outside this set ending at this point necessar-

ily has contacts with some other points in the neighborhood.

Moreover, we require that the set of points that is common

with the points in this neighborhood in each such trajectory

includes some open (i.e. without its end points) interval ac-

cording to its own order. Thus, nearness springs up in the

neighborhood as induced by the arrangement of all possible

trajectories tending to this point from outside of its neighbor-

hoods (Fig. 1.4).

Fig. 1.4: Definition of neighborhood by means of trajectories (the

boundary of the neighborhood is shown with a thin line).

This definition is in agreement with the intuitive notion

of places close to the given as those not to be missed upon

nearing this place from far away. The importance of this no-

tion for practice is in this, that in order to predict the final

contact it is not always necessary to know a trajectory. Some-

times, it is sufficient to know only the tendency to near the

state. In the trajectory itself closeness is naturally defined by

its own order as arising in the primary CP statement. Though

it by no means follows from the definition that any two points

of a neighborhood can be connected with a trajectory, but if,

for a point in it, we take only those trajectories that pass this

point, then a neighborhood of this point exists there, gener-

ated by these trajectories and completely contained in the ini-

tial neighborhood. Though a neighborhood of a point in the

contact space is not necessarily a neighborhood of any of its

points, as is the case, e.g., in the Euclidean space, however, it

still contains a neighborhood of this point.

A particular interest for CP present so-called spacelike

hypersurfaces to be defined as comprising points, any two

of which cannot be connected with a trajectory, whereas any

other point of any trajectory crossing this hypersurface at one

of its points can be connected to some other of its points with

a trajectory.† This condition helps to introduce some own

nearness in this hypersurface as induced by the trajectories

that cross it, while not belonging to it. Indeed, let us take a

trajectory crossing the hypersurface at some point and an in-

terval on the trajectory containing this point. We define the

†In this context, the trajectories themselves are also called “timelike”

lines; however, we will use only the term “trajectories”, thereby accentuating

their primary role with respect to the space.
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related neighborhood in the hypersurface as all its points that

can be connected with trajectories to the points of this inter-

val (Fig. 1.5).

The boundary of this neighborhood, formed by photons,

is to be excluded from it, so that the neighborhood will be an

open set, each point of which having its own neighborhood

completely contained there. The boundary forming a photon

set is called a light cone. In contradistinction to usual surfaces

in geometry, the specification of a light cone automatically

defines also its decomposition into lines — the trajectories of

photons, since no other “line” here is the trajectory of a body.

Let us consider so small an interval on a trajectory con-

taining one (then only this) point of a spacelike hypersurface,

such that the neighborhood induced by this interval is com-

pletely inside this hypersurface. In accord with the order of

the trajectory in this interval, there is a sequence of neighbor-

hoods, each one including the next, thus letting us introduce

continuous mappings of this interval into the hypersurface us-

ing trajectories that actually do pass the points of this interval

(Fig. 1.6). Such constructed sets of points in the hypersurface

we will call a path. Hence, strictly speaking, paths are not

trajectories! They are not a subject for operations with pho-

ton oscillation numbers. In particular, they are not bound to

be simple arcs, and they can have various self-intersections.

However, they are lines that are continuous with respect to the

structure of neighborhoods on this spacelike hypersurface.

The role of a spacelike hypersurface as an envelope of all

possible configurations of paths to be relevant in CP, consists

in giving them the freedom to intersect. If the paths intersect,

the related bodies might either or not have a contact, but if

the paths do not intersect, the contact is impossible. What

is then the minimal geometry, still observing the freedom of

intersections? The answer is: a three-dimensional topolog-

ically Euclidean (i.e. including, for instance, also Rieman-

nian) space. This space allows for various combinations of

one-dimensional continua — lines, since it is always possible

to round one line by another, while in only two dimensions

some restrictions for CP exist not due to the features of act-

ing forces but rather on their own: A line cannot leave the

region inside another closed line without intersecting it. On

the other hand, four dimensions would be redundant, since

for an adequate description of paths with their intersections,

its three-dimensional subspace would be sufficient.∗

However, this answer implies ready notions like dimen-

sion and therefore might become ambiguous in finer prob-

lems, still leaving existent effective methods of CP. It might

turn out that not all paths are relevant or we will need some

complex arrangements of infinite sets of paths. There are, yet,

extended bodies to be considered in the Newton’s scheme as

if “made up” of material points, and this concept involves

geometrical ideas a priori not to be relevant, e.g., on micro-

∗“Traffic interchanges” ensure the absence of collisions, while crossings

require “traffic lights”.

Fig. 1.5: Definition of neighborhoods on a spacelike hypersurface.

Fig. 1.6: The trajectory A is mapped (projected) into a path using

a family of trajectories (thin lines) on the spacelike hypersurface,

using a fixed trajectory Y . Paths are not oriented of their own. For

this reason, they are shown without arrows.

scopic levels. We thus need the analysis of the commonly

used concepts from the point of view readily accepted in CP.

Time and again, we start with the analysis of the canonical

version, in which points of the space are considered as ready

and specified with their coordinates. What is the way to mea-

sure coordinates? Using a ruler. The ruler is something made

up of atoms, it is solid and straight, and measurements with

it imply touching, i.e. contact. What is “solid and straight”

will be discussed a bit later. Let us first consider the principal

design of coordinate frames, i.e. what its essence and impor-

tance actually are. Indeed, what is the relevant space and how

are numbers coordinated with its points?

In the related scope of mathematics, namely topology,

these questions are united under the title “dimension theory”.

Let us briefly recall some results of this theory as applied to

CP. Each point of an n-dimensional Euclidean space is be-

ing encoded with n numbers in order to distinguish one point

from another, in other words, points and numbers are to be

in one-to-one correspondence. However, already in the XIX

century, Kantor realized that only one number is sufficient

to this end. For visual simplicity, we confine the case to

two dimensions (n = 2). Let us perform correspondence

to the points of a unit square by means of the coordinates
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(0.a1a2 . . . , 0.b1b2 . . .), the point of a unit segment by means

of the coordinate 0.a1b1a2b2 . . . This is a one-to-one corre-

spondence, hence, the “quantity” of different points on one

side of the square is the same (the same infinity!) as in the

whole square. Why then are two coordinate sets needed? The

reason is that this one-to-one correspondence is not contin-

uous: It is not necessary that close points of the segment

correspond to close points of the square. For example, two

points of the segment 0.500. . . and 0.499. . . are infinitely

close, while the “image” formed out of them — according

to the said rule two points of the square (0.500. . . , 0.000. . . )

and (0.499. . . , 0.999. . . ) — will be on the opposite sides of

the square. Now, it is impossible to find a correspondence

between these that is both one-to-one and continuous in both

directions (Brower).

But why do we require continuity? It might then hap-

pen that something else would be needed as well. Isn’t it

enough to find some needed numbers, upon calculating some-

thing somewhere, and so to subsequently make the prediction

of the contact? And what is the meaning of “close” in CP?

The answer is in this that an unlimited increase of the oscil-

lation numbers in a contact implies the continuity (and even

some smoothness, see below) of the trajectory. Discontinu-

ity might result in the lost of the following, i.e. identity, and

so a possible confusion renders CP meaningless. Frequently

given examples make it possible to appreciate the danger.∗

Let us take a point in the square, its center, say, and define

the distance between any two points as the sum of the usual

distances for each of them from the center (the so-called un-

countable “hedgehog”). If we encode the points of a square,

as usual, by couples of coordinates, then points with adjacent

coordinates though positioned on different rays aren’t said to

be “close” in the metrics of the “hedgehog” (Fig. 1.7).† Is this

“hedgehog” two-dimensional as well?

In 1912, Poincare suggested an inductive definition of di-

mension allowing for the specification of a definite integer

even to unusual geometrical constructions, while being equal

to its dimension for a usual Euclidean space. According to

his idea, “. . . for to partition space, one needs sets called sur-

faces; for to partition surfaces, one needs sets called lines;

for to partition lines, one needs sets called points; we cannot

step further, and a point cannot be partitioned. . . ” (Partition-

ing means that the remainder is disconnected.)‡

Some other definitions of dimension have been suggested

later on for various applications, and it has become popu-

∗Close phone numbers don’t necessary belong to neighbors.
†By analogy, in an environment with mountains and abysses, it might be

easier to go around them.
‡This approach has been familiar to people, however, somewhat earlier.

“The body, according to Apollodor in Physics, is something having three

dimensions: length, width, and depth, this body is called volumetric. Surface

is a visible limit of a body, it has a length and width, but has no depth. Line

is a visible limit of surface, it has no width but only a length. Point is a limit

of line, that is, the simplest sign.” (Diogenes Laertius, Lives and Opinions of

Eminent Philosophers.)

Fig. 1.7: The only way to get from one ray to another in the “hedge-

hog”, is to pass its center.

lar to look for the types of spaces these definitions coincide.

So, Lebesgue’s notion of dimension relevant to integration

problems is based on how many intersections of the topology

defining (“open” or “closed”) sets are there, which provide

a covering of the space in their totality. So, if we cover an

open (sides removed) square with small open squares, then

some points of the large square fall in three small squares,

and Lebesgue’s dimension is defined as the integer smaller

by 1 than this number, i.e. it equals 2.

All these concepts are based on closeness relationships,

as being stated in advance in a point set, in order to give it the

status of a “topological space”. For a definite class of spaces,

the Noebeling-Pontryagin theorem states that these might be

topologically embedded in the Euclidean space of the dimen-

sion 2n + 1, that is, so that the original closeness relation-

ship will be intact. Intersections of neighborhoods of this Eu-

clidean space with the embedded space form in the latter the

same system of neighborhoods that it had of its own, and all

neighborhoods of the original n-dimensional space will be so

recovered. In particular, for the common representation of all

finite and some infinite but not too complexly arranged sets

of one-dimensional paths, the appropriate Euclidean space is

three-dimensional. On the other hand, the “hedgehog” from

Fig. 1.7, while also one-dimensional everywhere but its cen-

ter, cannot be embedded into an Euclidean space, because its

rays are too densely “glued” together. Although its neighbor-

hoods can be obtained as intersections with it of open three-

dimensional balls, the “hedgehog” has more neighborhoods.

We have herein focused on the “hedgehog” geometry, be-

cause similar configurations will be met with in the sequel,

and so we have had to outline their affordable limits.

As it turns out, this example demonstrates that topological

restrictions are not very heavy for CP. Combinations compris-

ing an infinite set of paths as well as a complexity of paths to

be met with there will turn out to be even less sophisticated,

so that the three-dimensional Euclidean space will always be

sufficient. Most complicated situations are mainly met with in

theories of propagation of various fields, in which expansions
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in the sets of regular functions are used. However, actual

schemes based on photon oscillations require in essence still

less restrictions with respect to closeness (adjacency). Vari-

ous singularities, appearing mostly in the vicinity of contacts,

where the numbers of oscillations increase infinitely, are po-

tentially smoothed out automatically in the course of the mea-

surement procedure itself, therefore softening the needed con-

tinuity down to differentiability. Ultimately, just the existence

of a top speed is the cause of the smoothness of the Method’s

construction.

An important arrangement of trajectories is shown in

Fig. 1.8. In the first step, for each trajectory their neighbors

are found as those for which the oscillation numbers are the

largest, and then the whole distribution of trajectories is so re-

arranged as to make the smallest of these largest numbers as

small as possible. If in addition for each trajectory the ratio of

the oscillation numbers between it and a pair of its neighbors

equals unity, we receive a uniform distribution of trajectories

over a sphere of constant absolute value of velocity (in terms

of the canonical version). In terms of the same version, the

sphere in Fig. 1.8 is pictured in the rest frame of its center.

The ratios of oscillation numbers don’t depend, of course, on

a reference system, but the rest system is symmetric visually,

hence allowing the use of a picturesque image, i.e., to intro-

duce a fictitious central body and to count oscillations num-

bers between it and the bodies belonging to the sphere. Then

a sphere might be defined by the unit ratio of the so-counted

numbers for all pairs of its bodies. In the sequel we will use

this image without additional explanations. In the same no-

tations, it is possible to define a ball as a set of spheres with

a common center, while having different oscillation numbers

between the central body and the bodies belonging to differ-

ent spheres.

Fig. 1.8: Definition of the sphere via photon oscillations.

In two dimensions, the number of the bodies taking part

in the sphere might be any. In three dimensions, however,

only five strictly uniform distributions exist, since the third

dimension introduces additional interrelations. These five re-

late the so-called “Platonic solids” or Plato bodies. Namely,

four trajectories comprise the tetrahedron; six — the octahe-

dron; eight — the cube; twelve — the icosahedron; twenty-

the dodecahedron. These stars of trajectories have important

applications in the Method to be discussed in connection with

the elementary particles theory in Ch. 6. For other numbers of

the bodies, a strict uniformity is impossible, but if this num-

ber is large, the deviation from uniformity is relatively small,

and the distribution tends to uniformity upon increasing the

number of the bodies to be accounted for in the limiting con-

struction. In this “hedgehog” type arrangement of trajecto-

ries, their number remains only countable, and this is enough

for it to be topologically embedded in the three-dimensional

Euclidean space. However, in the limit of infinitely increas-

ing the number of trajectories in the sphere, a subtle problem

springs up due to the accompanying increase of the oscillation

numbers.

Fig. 1.9: Space-time diagram of the neighborhood; x represents

the three space axes.

In terms of the canonical version, the ball consists of con-

centric spheres with various absolute values of their veloci-

ties. The totality of balls at all points of the spacelike hy-

persurface is the basic concept for further constructions of

CP. An induced-by-trajectories neighborhood in the full con-

tact space is topologically equivalent to the space-time of the

canonical version. It is convenient to imagine this neighbor-

hood with the diagram in Fig. 1.9 as the intersection of the

interior of the light cone with Euclidean balls. The vertices

of the cones fill the three-dimensional Euclidean space. This

topology is uniform over the space and it is natural in CP,

while it doesn’t look like the familiar Euclidean topology. It

is impossible to define the usual metric as a distance between

any two points, the closeness of which would be specified

by the smallness of its value. In particular, both mentioned

definitions of dimension are equal to unity, and the spacelike

hypersurfaces are zero-dimensional (discrete) for any number

of coordinates, if we regard them as subspaces of the full con-

tact space in this usual meaning that the neighborhoods on a
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subspace are the intersections with it of neighborhoods of the

encompassing space (Fig. 1.10). It is worthwhile to mention

in this context that the notion of closeness on a spacelike hy-

persurface as defined above by means of trajectories is needed

solely for the adequate representation of the paths, while this

definition does not turn by itself the very hypersurface in the

subspace of the full contact space. We recall that the only mo-

tive to introduce closeness, i.e. a topology in the hypersurface

is to remove non-existing contacts as the intersections of tra-

jectories independently of their full combinations. The three-

dimensional Euclidean structure is sufficient to ensure this.

Fig. 1.10: Intersections of the light cones with the spacelike hyper-

surface induce only a discrete topology on it.

Further constructions of the Method will appear in this

book whenever required in relevant applications. Each time

it will mean an additional reduction of the scope of situa-

tions accessible within the framework of the Method. But

then, each new construction provides a new possibility of

effective prediction. Every time we will accurately formu-

late the conditions of the applicability in terms of the rele-

vant contact schemes. The compromise between the meager-

ness of the initial information and the broad scope (range)

of applications shall always be our main concern. We con-

clude finally that the actual content of the Method is just a

“library” of particular cases collected according to a general

approach rather than a “theory-of-everything” sometimes be-

ing dreamed about. The only requirement to a proposed con-

struction is its realization within a relevant contact scheme.

Outside this scope, one has to turn to some other science —

not to physics. So certain hard restrictions on the language

of the Method allow us to expect that everything compatible

with its rules would necessarily be implemented in Nature’s

infinite self-diversification. One needs only to give a close ob-

servation to pick out in the real world, looking with a certain

expectation at the surroundings, being armed with the Method

in advance. Thus we have found the necessity and sufficiency

of the three-dimensional Euclidean space to perform imaging

of paths universally. This approach might seem as resulting

from the very confined imaging of the World. Indeed, there

exist, e.g., extended bodies, as it seems, besides any reference

to paths. But the extension of a body reveals itself just as a

restriction on possible paths. The three-dimensionality of a

building is nothing but an obstacle to pass through its walls:

A door is needed. A transparent glass wall for photons will

not provide the impression of its extension unless you actu-

ally strike it on your very path.

Chapter 2. Forces in terms of contacts: prediction of

the link

The weakness of the principle of inertia lies in this,

that it involves an argument in a circle: a mass

moves without acceleration if it is sufficiently far

from other bodies; we know that it is sufficiently

far from other bodies only by the fact that it moves

without acceleration.

A. Einstein, The Meaning of Relativity

Such constructions as described in the previous chapter de-

fine only the general framework of CP, specifying the kit of

tools that is sufficient for its statement, while being free of

unnecessary items. However, as it was said, the prediction

of the final contact (A, B) only when the whole trajectory is

known makes no sense, since the result would then become

known only at the (A, B) occurrence, when nothing could be

changed. Dynamic laws, letting sometimes find a trajectory

upon knowing only some its parts are of particular concern,

providing actual predictions. So, even if it is found that in a

given situation CP is applicable, an efficient solution to CP

requires further restriction of its field.

In the idealized scheme with a material point only the ex-

act intersection of trajectories is implied: It is not important

how far they miss if they do. Then topology is enough, be-

cause any general scheme of a theory claiming universality

cannot use some fixed scale of precision, hence, it is bound

to confine to strict limiting sequences. It is implied that in

a practical CP such a scale is conditioned by the application

itself, and predictions are to be made already according to a

(small) part of the trajectory. A possible approach consists

in approximation of all the diversity of trajectories by means

of some combinations of a special kit of standard trajectories,

the mutual contacts in which are specified in advance, already

before dealing with a particular CP, just as it is convenient to

build a house using bricks or various functions using sinu-

soids.

In the canonical version, the role of standard trajectories

is entrusted to those free of external influences. In flat space-

time free trajectories are considered uniform and rectilinear.

We shall frequently refer to this image for its visual famil-

iarity, still keeping in mind that the only issue is the scheme

of the mutual contacts of bodies. The kit of standard trajecto-

ries must be capable to represent any trajectory belonging to a

class of interest as a sequence of standard ones, so that in the

relevant construction of the limit these sequences tend to the

contact of interest in CP, if actually existing. In the canonical

version this sequence is a broken line, i.e. a chain of straight
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segments tangent to the given trajectory (Fig. 2.1). We an-

ticipate to use the bodies from the measurement kit as the

standard tangent bodies, and therefore we will use for these

the same letters X, Y . . .. Actually, of course, the problem

of chains construction just shifts the prediction of the final

contact to no less difficult problem of finding appropriate tan-

gents and joining them to obtain the whole chain.

Fig. 2.1: Approximation of the trajectory with a chain of its tangents.

If a contact (A, B, X) exists, then the tangents Y to A and Z

to B represent the last (inertial) links of a chain. This means

that now it is (X, Y, Z) that is in question in CP, while (X, Y) is

specified. The solution exists under the condition that in some

neighborhood of (X, Y, Z) only this contact exists, otherwise

some additional information would be needed to distinguish

them. Since this information must be presented in terms of

contacts as well, we would merely return to initial problem.

Therefore even in general (within any particular CP) the first

(1) requirement to the choice of measuring trajectories, which

is at our disposal, consists in that any two of them either do

not intersect or have a single contact. It follows that if any

two points can be connected with a measuring trajectory, then

only this one can be in the kit, since if one more existed, these

two would have two mutual contacts. Besides this require-

ment, also the evident (2) requirement of completeness must

be hold, i.e. the existence of contact at least with one mea-

surement trajectory at arbitrary point of any trajectory. And

the last (3) requirement to the measurement kit consists in this

that any two contacts, which can belong to a trajectory were

also belong to a measuring one (and then to only one, in view

of (1)). The requirement (3) expresses the absence of a uni-

versal scale of distance a priory, in other words, a principal

possibility for any interval to be the final in some PC.

The totality of uniform and rectilinear trajectories of the

canonical version fulfills these requirements, of course. How-

ever, an idea might spring up as to the existence of some

other properties of these in comparison to arbitrary trajecto-

ries, which idea is just one that Einstein discussed as cited

in the epigraph to this chapter. In terms of contacts only

these requirements are important, and they arise from the

very statement of CP, unrelated to being “sufficiently far from

other bodies”. Simply, the solutions to CP provide predictions

given initial conditions, including not only direct sources of

influence on the contacts in question, but also a possible “sur-

rounding”. If this surrounding is such that it is impossible to

find measuring trajectories with the required properties, CP

cannot be solved. For example, one could state CP for bodies

moving in an electric field in the presence of a gravitational

field. Trajectories of measuring bodies as well as of photons

are then no longer uniform and rectilinear, though CP still can

be solvable unchanged by means of counting the oscillations

numbers, provided the above requirements are still satisfied.

However, outside the range of the particular CP the measur-

ing trajectories are free to intersect many times, of course.

Only the trajectories belonging to the measurement kit are

bound to intersect no more than once. Their intersections

with other trajectories might be multiple, and just these are

the base for dynamics. These contacts cannot be too dense as

yet in order to leave the opportunity for (also infinite) photon

oscillations. Consequently, the ratio of the number of these

contacts to the number of photon oscillations must tend to

zero in the converging sequence of the approximating chains.

This corresponds to the concept of differentiability in analyt-

ical geometry.

Let us return to the prediction of (X, Y, Z). Of course,

this contact might be predicted upon observing, as before, the

tending to infinity of the number of oscillations with their fi-

nite ratios. However, now it is the contact of bodies from the

measurement kit that is in question. Isn’t possible basing on

the particular properties of this kit to receive the prediction

earlier? We describe first a possible procedure in canonical

terms, that is, regarding the trajectories to be uniform and

rectilinear and, moreover, provided with some definition of

parallelism (to be discussed shortly), defining parallelism as

the identity of velocity vectors rather than only of directions.

Fig. 2.2: Effective prediction of a contact.

Fixing (Y, Z), we look for a construction to predict

(X, Y, Z) at a finite range, according to the order on any of

the trajectories, to obtain a criterion for (X, Y, Z) to exist

(Fig. 2.2). To this end, we draw an auxiliary trajectory U be-

tween X and Y and a parallel to this U ′, having also a contact

with Y. The triangle of U, X and Y defines a plane, containing

all the trajectories to be considered (If U ′ doesn’t intersect X,

the CP immediately is being solved in the negative, because
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then U ′, X and Y don’t lie in the same plane). Next, we take a

point on U and draw between X, Y and U ′ two sets of trajec-

tories that are parallel: one set to X, another — to Y, so that

in both sets (each one starting at its side from the mentioned

point) the numbers of oscillations between neighboring tra-

jectories (the “elements”) are everywhere equal. Let it be n

elements between (U, Y) and (U, Z) and m elements between

(U, Y) and (U, X). Upon varying m given n, we are able to

achieve (X, Y, Z), letting m and n tend to infinity while keep-

ing given m/n. So, a relevant definition of parallelism would

be enough to solve CP in this case. We propose the following

scheme.

Fig. 2.3: Construction in a plane of a trajectory parallel to given,

using solely the ratios of the (infinite) oscillation numbers.

In Fig. 2.3, a photon is received from infinity and emit-

ted at a point of a first straight trajectory a parallel trajectory

to be drawn to. The emitted photon is reflected somewhere

to come back and to be emitted again toward infinity. In the

plane, crossing all the arising light cones, a second straight

trajectory is drawn, crossing all these four basic photon tra-

jectories. We have to find the condition for the first and sec-

ond trajectory to be parallel. To this end, at a point posi-

tioned before all these contacts we draw four straight auxil-

iary trajectories to connect this point with the contacts of the

second trajectory with the basic photons. At the same point

we specify the ratios of any three (infinite) oscillation num-

bers between the first trajectory and auxiliaries to that with

the fourth auxiliary. Using these ratios, we determine from

the system of three linear equations the moments of emission

and returning of the two middle basic photons and also the

points of contacts of the second trajectory with all four basic

photons. If the second trajectory is parallel to the first, i.e. all

four distances between them are the same, then these equa-

tions are homogeneous, and the equality of the determinant

of the system to zero yields the dependence of its coefficients

uniquely defined with the oscillation numbers ratios. Impor-

tantly, these ratios provide the construction as a whole rather

than just to provide a condition of the trajectories to be par-

allel; otherwise it would be necessary to specify in advance

also the contacts of emitting and receiving the photons on the

first trajectory.

These schemes, solely in terms of contacts, unite for a

plane space-time the concept of parallelism with the unifor-

mity and rectilinearity of trajectories in one condition. Essen-

tially, there is no separate definition for each of these proper-

ties. Any contact scheme regards their complex as an indivis-

ible whole. Upon being included in the scheme of Fig. 2.2,

the scheme in Fig. 2.3 directly specifies as the trajectories U

and U ′, so also a pair of sets required for the prediction of the

final contact.

Various ratios of the oscillations numbers define the set of

trajectories parallel to the given, provided their combination

satisfies equality to zero of the parallelism defining determi-

nant. A simple way to select a particular trajectory out of

this set is shown in Fig. 2.4. This can be done upon count-

ing oscillation numbers between the parallel trajectories over

the interval limited by the middle basic photons in Fig. 2.3,

and it might be useful in constructing sequences of mutually

parallel trajectories.

Fig. 2.4: A way to select a particular trajectory in the set of all par-

allel to the given.

Let us proceed in the approximation of a general trajec-

tory by means of a chain comprised of the standard trajecto-

ries. The same measurement kit, as specified by its particular

intersection scheme, might be used instead of standard trajec-

tories in the approximations of general trajectories. Accord-

ing to the formulated above condition of CP applicability, for

each point of a trajectory A there is a point on this trajectory,

prior in the own order in A, to the first point and such that

these two points are the intersections of A with one (then,

only one) measuring trajectory (X1 in Fig. 2.5), and there are

no other their intersections in between. If it coincides with a

measuring trajectory in this interval on A, then approximation

is trivial. Otherwise, a point must be in this interval such that

the trajectory between it and the final differs from a measur-

ing one. Let us connect this point with a measuring trajectory

to the final and so on. As pointed out in Ch. 1, the ratio of

oscillation numbers between Xi and a measuring trajectory in

general position Y to the similar ratio between Xi and A tends

to zero upon nearing the final point. This will be the defini-

tion of the measuring trajectory tangent to A in this point in

terms of contacts.

However, tangents in different points of a trajectory are

not bound in general to have mutual contacts. So, their se-
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Fig. 2.5: The tangent to A is the standard trajectory that is the limit

(if exists) for the sequence X1, X2 . . ..

quence fails to be a required chain. However, the opposite

operation — the construction of a trajectory as the limit of ap-

proximating chains is possible, since in the relevant arrange-

ment each link of each approximating chain defines the ap-

proximating tangent on its own. In other words, the sequence

of approximating chains forms the sequence of the approxi-

mating tangents.

Having in hand the measurement kit, everything still

needed to construct a chain is a relevant rule to define tran-

sitions between links at their contacts. The related transition

is to be determined by some external influence on the motion

of a body, considering the measuring bodies as not experi-

encing this influence. Otherwise, we cannot be sure that our

conditions for the kit still holds (see, however, Ch. 5). The

possibility of this separation is the next restriction on the ap-

plicability of the Method. In the canonical version, a force

causes acceleration of the body, inversely proportional to its

mass. But what is the way to measure force itself? As it

was explained above, force is being measured according to

acceleration of the bodies from a special test kit as specially

constructed for this particular force. These are different from

bodies in CP as stated above. The trajectories of this kit don’t

require a special means for encoding, because their accelera-

tion might be measured with the same measurement kit. In-

deed, we needn’t construct chains for them, their use being

only local to determine link transition at points of trajecto-

ries in CP, which are being determined link by link by these

trajectories themselves.

A trivial solution would prescribe at each break of the bro-

ken line-chain to have a test body identical to that in CP. It is

clear, however, that no prediction would then be possible, and

one is left with pure observation of the motion of the body in

question. Therefore, we let test bodies differ from this body,

however, inasmuch as still to be expressible with a contact

scheme. We denote a test trajectory as P. Then Ai and Pi will

relate to the initial link and A f and P f to the final (Fig. 2.6).

We choose Pi to coincide with Ai to be detected by the

equal zero ratio of the oscillations numbers between any of

Fig. 2.6: The oscillation numbers are being counted between:

1) Pi and P f ; 2) Pi and A f ′ ; 3) P f and A f ′ .

them and a trajectory in general position X to the oscillation

number between them. In the common rest reference system

of Ai and Pi the trajectories A f and P f are, generally speak-

ing, diverging, still remaining collinear (to the first order). To

determine A f , known P f , we should specify the ratio r oscil-

lation numbers between P f and A f . However, the value of r

alone doesn’t determine A f , since any A f ’ belonging to the

sphere with its center at the common contact (Ai, Pi, P f , A f ′ )

has the same value of r. In order to find A f , we have then

to measure also the ratio of oscillations numbers between Pi

and P f to that between P f and A f ′ . The lowest value of this

ratio, fixed r, specifies A f collinear to P f . The number r, ex-

pressing the difference between A and P, depends as on the

external force, so also on the properties of A itself.∗

Not sacrificing generality, it is now possible to reduce the

full test kit, with any values of r whatever, to a kit, which in

the canonical version corresponds to the kit comprising tra-

jectories with various velocity vectors, because its intersec-

tion scheme is the same as that of the measurement kit. For

this to be possible, we have to give to r in this kit the status

of the universal standard for all CP’s. The definition of this

standard in terms of oscillation numbers ratios will be our

main concern in Ch. 6. Moreover, practical applications of

the scheme in Fig. 2.6 imply some restrictions on the smooth-

ness of the distribution of a force in the contact space. If the

force includes discontinuities on the scale of link, one should

use here smaller links. In singular points, for instance, on the

obstacles for the motion, CP cannot be used on its own, and

then it will be a motion with ties, and these might even reduce

the dimension of the motion area. A correct limiting process

requires a coordination of the involved procedures solely in

terms of contacts, and the necessary range of links with re-

spect to a force should be estimated in accord with the devia-

tion from zero of the ratio of oscillation numbers between Pi

and a trajectory in general position to that between Pi and P f .

For the integration over the chain, the largest of these ratios

should tend to zero. The obligatory condition to have free

∗In terms of the canonical version, it would be its charge to mass ratio.
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segments for the photon oscillations makes it possible to find

the correct coordination of limiting sequences on many oc-

casions, while in the canonical version this needs additional,

often artificial, hypotheses.

Is it possible to set the test kit in an ordered arrangement,

e.g., to provide it with coordinates? In Ch. 1 we defined a

sphere comprised of trajectories with the common contact

and all possible directions, though having the same absolute

values of velocities. Alternatively, spheres can be defined

with contact schemes (Fig. 1.8). This definition can be used to

construct the whole test kit based on a finite (desirably small)

number of trajectories, all others being defined using their os-

cillations numbers with the basics. It will then be possible

to define the transitions between links requiring (again at the

expense of further restriction on the class of permitted forces)

these transitions to be specified only for the basis, while all

other transitions are to be defined by means of counting the

oscillation numbers between arbitrary trajectory and the basic

trajectories.

Let us choose a non-degraded three of trajectories in the

sphere, viz, such that the two ratios of the oscillations num-

bers between these bodies to that between them and the cen-

ter don’t define the third. Any such three with the common

contact define a sphere, and there is the single reference sys-

tem, in which they can be visualized as in Fig. 1.8. Then any

other trajectory of the sphere possesses some definite ratios

of the oscillation numbers between this body and each one

of the basis to that between any of them and the basis center.

These ratios will be the coordinates of the given trajectory.

As it must be on a two-dimensional sphere, suffices it to fix

just two coordinates. This definition can be extended on the

whole ball, provided the basic sphere is specified. However,

for each trajectory there exists its twin with the same ratios.

It is easy to see this in the rest reference system of any of the

basic bodies (Fig. 2.7).

Fig. 2.7: In the reference frame, in which P1 rests, the mirror-like

positions of P′ and P′′ respective to the plane formed by P2, P3 are

obvious.

For arbitrary trajectory, its “mirror” trajectory respective

the plane (in general, surface) formed by two other basic tra-

jectories will have the same ratios. Since these ratios, as any

contact scheme, don’t depend on a reference system, this rep-

resentation is double-degenerated. The same degeneration

exists, of course, in the measurement kit too.∗

Let us now define the class of external forces with a natu-

rally arising in CP uniform “conservation law” as the con-

servation of the oscillation numbers ratios under transition

in initial-to-final links for arbitrary spheres in the test kit

(Fig. 2.8). In view of the mentioned degeneration, this law

should be completed with an auxiliary contact scheme to for-

bid spontaneous leaps to the mirror trajectory in the transi-

tions, if it is important in a particular CP.

Fig. 2.8: As in Fig. 2.6, the final link is the continuation of the shown

trajectories beyond their common contact.

In particular, it follows from this law that the oscillations

numbers ratios between all pairs of initial and final links are

equal 1. Since any trajectory can be represented via this ba-

sis, the transition for any test trajectory can be determined

knowing only one of them. If the test bodies could be made

identical, it remains to specify their charge and mass by some

standard values (see below in Ch. 6).

Endeavoring to express via contact schemes everything in

sight, we have introduced a condition on a possible force. It

is interesting to look at what are the forces in the canonical

version that satisfy this condition. It turns out that, for ex-

ample, the Lorentz force does. In the canonical version, the

three-dimensional forces are represented with the two real-

valued three-component algebraic objects — the electric and

magnetic field vectors. Upon considering fundamental issues,

it is convenient to combine them in a complex-valued 16-

component object (tensor). Algebraically, this object is rep-

resented with a four-to-four matrix, which accordingly must

have only six independent components: three for electric and

three for magnetic fields. This is reached with the require-

ment for it to be antisymmetrical: the four diagonal compo-

nents equal zero, while off-diagonal components are the com-

ponents of the field, and each one enters twice — with oppo-

site signs. So happens, it is just antisymmetry that causes the

conservation of the ratios of oscillation numbers under elec-

tromagnetic field influence according to the canonical ver-

sion. In CP this argument should be reversed: just the only

possible uniform over the whole contact space condition of

∗This degeneration will further be important in the context of spin.
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the oscillations numbers ratios conservation restricts the rel-

evant forces by the requirement of their antisymmetry. As

will be found in Ch. 6, antisymmetry is characteristic not only

for electromagnetic, but also for the carriers of the weak and

strong interactions (for bosons — integer spin particles) —

gluons and heavy intermediate vector bosons, since they all

are naturally being expressed with their contact schemes.

Chapter 3. Fields and their propagation: prediction of

the chain

But the properties of bodies are capable of quanti-

tative measurement. We therefore obtain the nu-

merical value of some property of the medium,

such as the velocity with which a disturbance is

propagated through it. . .

J. C. Maxwell, A Treatise on Electricity

and Magnetism

In order to restore the trajectory, according to only local data,

suffices it to specify the force solely at the points of the tra-

jectory itself, namely, at the next points in its progression. An

alternative approach consists in the extension of the test kit,

carrying information about forces, from the outset, so as to

measure a force not only at the points of the trajectory but ev-

erywhere it might go. In so doing, we need not care already

on the first step whatever the trajectory actually is. Being

known from independent measurements also at all possible

points, it would be known for the trajectory wherever it goes.

If the force of its own doesn’t depend on the trajectory (Such

dependence might exist, e.g., due to the influence of the body

in CP on the source of the force), then CP will naturally be

divided in two independent steps: the determination of the

distribution of the force and the construction of the trajec-

tory under this force. Actually, no extension of the test kit

is needed, provided an algorithm to determine the force is

known in advance. The determination of the distribution of

a “pre-force”, i.e. the field is to be carried out by means of

a universal rule independently of the charge of the body in

CP itself. In this context, charge is only a factor to determine

the effect of the field on the trajectory, and it does not define

as yet the back influence of the body on the field, being its

source. The very possibility to represent a force as a product

of field and charge is being achieved in CP at expense of the

introduction of the test kit in addition to the measurement kit.

Our task in this chapter will be to look for situations al-

lowing for the prediction of field distributions in a region

of the contact space according to its distribution somewhere

else. In accord with the general approach, any method to

make prediction might be regarded relevant as soon as it

yields an unambiguous result basing solely on an initially

specified distribution of contacts. Time and again: Nature

scarcely refuses to answer so primitive questions.

Since everything is considered to be encoded with trajec-

tories from the test kit as specified in some regions of the

contact space, we shall have to deal with infinite sets of tra-

jectories, and their compatibility with the constructed space

geometry must be examined. The role of photons is partic-

ularly important in this respect, since the constructions they

take a part in might be uniquely defined. In order to make

clear the constructions themselves, we shall consider only

one-component, that is, scalar fields. Later on, this variable

should be defined with a contact scheme as well. However

in preliminary geometrical constructions aiming to obtain the

values of a field at a place via its values somewhere else, only

some algebraic operations are needed, such as addition of the

partial field values times real numbers. Later on these oper-

ations will be defined as contact schemes, but by now let us

accept that they do exist.

First of all, we have to find the regions in the contact

space, the values of the field at which uniquely determine its

value at a given observation point. These regions can com-

prise only points that might be connected to the observation

point with any trajectory whatever, in particular, with pho-

tons (Fig. 3.1). Photons form the boundary of the zone of

influence for the given point, its “light cone”. As mentioned,

a light cone is not a usual surface but one that is defined along

with its decomposition into lines — photon trajectories, con-

taining no other trajectories.

Fig. 3.1: Boundary photon trajectories form a light cone.

We begin with a partial problem, in which the value of

the field at the observation point is being determined only

with its arbitrary values as specified at some part of the zone

of influence rather than with their differences caused by its

deformations. The observation point itself cannot belong to

this zone, of course, otherwise the field would be specified at

this point, and nothing would be to look for there. Among all

possible trajectories, coming to the observation point from its

zone of influence, consider first their limiting subset, i.e. pho-

tons. Their contributions to the field value are independent of

each other, since there are no trajectories that cross two pho-

ton trajectories having a contact while not joining this contact

(Fig. 3.2).∗

∗Recall that all standard (i.e. measuring) trajectories, including photons,

may have at most one contact within the kit.
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Fig. 3.2: Such trajectories never exist, otherwise the photons

wouldn’t be the fastest bodies, contrary to their definition.

Further, we can specify a field value only at a single point

on each photon trajectory. Were there two such points, then

the value at the point, which is closer over the photon ray

to the observation point, would depend on the value at the

second point. Indeed, if it were possible to change the field

value at the observation point changing arbitrarily the value

at the farther point and leaving all the others unchanged, then

the field in the closer point would alter too, since taking it

as an observation point of its own, while changing nothing at

other points, we would get a different value at this point, al-

though according to our condition this value is to be specified

arbitrarily. For the same reason, it is forbidden to arbitrar-

ily specify the field values on non-photon trajectories, since

these have points that might be connected to other trajecto-

ries, hence again one value will depend on others. So, initial

values could be specified independently of each other only on

the past light cone and necessarily on every its trajectory (i.e.

ray), for not to leave uncertainties, otherwise coming as the

contribution from any ray that was not accounted for initially.

But then, the required law of the field propagation must yield

its value at the observation point given the whole (uncount-

able) set of independent of each other values at every ray on

the light cone of the past.

An important particular case is a photon sphere formed

as the limit of a sequence of massive spheres of a ball. Us-

ing the above mentioned artificial device to count oscillations

with respect to the body at the ball center, we can visualize

this limit as resulting from the tending to zero the ratio of os-

cillation numbers as counted between the center and a sphere

of this ball to that for an arbitrarily chosen sphere from the

ball (Fig. 3.3).

All the specified values on the rays contribute to the result

with equal weights. Were the set of the rays finite, the natural

solution would be to define the field value at the observation

point (the center) as the mean arithmetical of its values over

the limiting photon sphere. The extension of this definition

on the infinite set of values implies a limiting process upon

unlimited increasing the quantity of rays. In so doing, some

universal measure is needed on the photon sphere. It must

introduce some kind of uniformity (“democracy”) in the dis-

tribution of the density of rays over the photon sphere, oth-

Fig. 3.3: Thicker lines show slower bodies; thin dashed lines show

top-speed ones — photons.

erwise contributions to the value at the center would depend

not only on the specified values over the cone but also on the

number of rays contributing a particular value.

If it were not a photon sphere, it would be possible to in-

troduce a uniform distribution of the initially specified values

in terms of contacts like in Fig.1.8. For the photon sphere this

definition cannot be applied directly. A complex limit must

then be in order, including the simultaneous tending to infin-

ity the quantity of rays, keeping their symmetry on each step,

and tending the sequence of the spheres to the photon sphere

(Fig. 3.4).

Fig. 3.4: Quantity of bodies in the spheres increases together with

their symmetrization and the increase of their velocities.

An image of the construction is shown in Fig. 3.5. For the

transition to the limit the moment of the contact of the pho-

tons is fictively shown as being before that of massive bodies.

In the construction of the limit this outstripping, tending to

zero in the limit, makes it possible to induce the uniform dis-

tribution of photons over their sphere with their imaginary

contacts with the massive bodies of the ball interior.

The successive increase of the massive bodies in their

spheres might be performed in accord with their “angular”
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Fig. 3.5: The distribution of photons successively copies distribu-

tions on a sequence of the spheres along with the increase in their

quantity and velocity.

distribution: once occupied, the angles in the closest to the

center spheres are being kept in the farther ones, where the

half-angle trajectories are being added in each next sphere.

All this is being, of course, controlled by the photon oscilla-

tion ratios: they are being preserved in the successive (faster)

spheres, while new trajectories enter to fill the angles. Since

on each sphere the angles are equal, it is always possible to

arrange the construction in such a way, that the oscillations,

beginning in a sphere cover those in the slower ones.

This is the final construction, provided initial data are

only the values of the field. However, it doesn’t exhaust the

abilities of contact schemes. It turns out that it is also possible

to specify independently some differences of the field values,

though the related procedure involves a definite coordination

of algebraic operations in close points. It is impossible, as

we know, to arbitrarily specify field value differences along

a ray, since it would be equivalent to independently specify-

ing these in two its points. There remain two options: either

the differences between the values at the according points of

the adjacent rays on the same light cone, or outside the cone

(if a relevant contact scheme could be found to specify the

closeness of points). We’ll examine these variants separately.

In order to find the contribution to the value in the obser-

vation point from the differences of field values on different

rays, we have to average these differences around the cone,

i.e., first of all, to add them up. But this sum equals zero,

because over rounding the cone we return to the initial point.

Indeed, only one point can be taken on a ray, and then all

the values will come in the sum in pairs with opposite senses

(Fig. 3.6).

We are thus left with the differences between points out-

side the cone, i.e. the external differences (Fig. 3.7). These are

to be averaged over the rays as well, but first we have to find

the difference on a single ray to be then averaged. In the limit

the difference will become the differential of the field, thus

prior to the limit it must be non-zero and finite, otherwise

nothing but zero or infinity will be obtained. In contradis-

Fig. 3.6: Contributions from differences along a closed contour re-

ciprocally compensate to zero.

Fig. 3.7: External differences at the points on a ray as taken along

the conjugated (opposite) rays.

tinction to values of the field itself, their external differences

might be specified in different points of the ray independently

of each other. Even at the observation point this difference

might be specified a priory, since it is the value of the field

but not its differences that is the question in CP. It is therefore

possible to define on each ray a depending on the differences

finite value by means of adding up the external differences

along the ray, so that in the limiting integral sequence with

these differences tending to zero the number of the points on

the ray, in which these differences are being taken, was in-

creasing in accord.

Consider first the simplest problem, in which the differ-

ence is specified only at one point on each ray, namely, where

earlier the field value has been specified itself, so it is the dif-

ference between this value and its value at the “close” point

outside the cone. In order to obtain a finite quantity upon un-

limited nearing these points, it is necessary to multiply this

difference with a number that tends to infinity in accord with

the tending of the difference to zero. On the other hand, this

number must tend to zero upon nearing the observation point

by the point, in which the value is specified. Indeed, then

the field value here must become equal to the specified one

upon any construction whatsoever, and no additional contri-

bution able to change this value is tolerable. Therefore, the

required number must reflect also the closeness of the points
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along the ray and, moreover, it must be defined similarly on

all rays to receive a definite result in the course of further

averaging.

If we find a united contact scheme to realize also the sub-

division of the ray in segments which are identical (in the

same sense) as with the segments of the conjugated ray the

differences are being taken over, so also with the similar seg-

ments on other rays of the cone, then just the number of the

subdivision points might be this very number.

Remember in this context, that the light cone itself is

nothing more than an auxiliary construction, making sense

exclusively for CP solving. Dividing CP in steps, we are at

risk to fall into a non-necessary abstraction, so that auxiliary

at the outset concepts start “living their own life, pretending

to be valuable of their own”. Such are, in particular, the con-

cepts of space, time, reference and coordinate systems, var-

ious invariance “principles”, seeking their substantiation in

experiment, the self-evidence of which as a basing language

of the Method is declared in the canonical version. In or-

der to be protected against non-necessary abstractions, it is

useful to return time and again to the primary concepts. We

recall therefore that light cone is nothing else as a tool to

find field values; field is a tool to find transitions between

links in chains. Hence, the initial link of this transition is

always present, however non-explicitly, in all our construc-

tions. It is its turn now to take a highly important part in

the general scheme. The dependence of the field determin-

ing scheme on a particular choice of a measuring trajectory

brings no questions as soon as the algorithm of the solution

doesn’t depend on this choice, suggesting universally definite

operations, though explicitly based on a particular choice of

the initial link of a transition.

So, let us take arbitrary measurement trajectory going to

the observation point — the vertex of its light cone of the

past. Next, take on this trajectory a point before the observa-

tion point with its own light cone (Fig. 3.8). Draw a series

of trajectories parallel to this one — 00′ — so that the last

goes to the point the field initial value is specified at. Make

a subdivision of the ray into k segments under the condition

that all (finite) oscillation numbers as counted from one cone

to another were equal each other.

One more trajectory kek
′ parallel to kk′ goes between past

and future light cones. The number of oscillations between

kek′ and kk′ is taken the same as for all k trajectories of the

subdivision. The position of the initial point k being kept

fixed, the number of oscillations depends on both k and the

relative shift of the light cones. Tend k to infinity and the

relative positions of the light cones so that the number of os-

cillations between the segments is infinitely increasing. Upon

multiplying by k at each step of the limiting process the dif-

ference of the field values between the segments, we obtain

in the limit the contribution of this ray to the value of the field

in the observation point. The full contribution of the exter-

nal differentials will then be obtained by averaging over the

Fig. 3.8: Parallel trajectories for the construction of external differ-

ences.

Fig. 3.9: Instead of being multiplied by k, the external differences

should be added up from 0 through k.

rays, just as it was done before for the specified values of the

field itself.

This particular case is interesting by itself exhausting, as

will be elucidated further on, all geometrically permitted con-

tributions for “free” field propagation. However, the devel-

oped in this case device of uniform subdivision of rays is also

applicable in a broader context, when the external differences

are specified not only at one point on each ray, but rather on

the whole light cone. In this general situation, it is also possi-

ble to get finite quantities to be averaged over the rays, adding

up external differences at all the subdivision points of the ray

to use its own conjugated cone at each such point (Fig. 3.9).

In the limit, these differences become infinitely small,

while their number accordingly increases. The result will be

finite, provided the field falls out rapidly enough from the
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observation point along the rays (This condition is the next

restriction on the fields acceptable in the Method.). The inte-

gral sum along a ray might also be presented in a somewhat

different and more usable way. Replace the first order ex-

ternal differences with second order differences, that is, with

differences of the first order differences taken between the ad-

jacent points on the ray. However, if we directly add these

differences up on the ray, we would get zero due to their re-

ciprocal cancelling, as it was for the values at the points taken

on different rays. In order to receive a non-zero quantity, let

us first multiply the second order difference at each point by

the number of the subdivision points up to this point from

the observation point, and only then add up the results over

the whole ray. The so obtained sum is the same as the di-

rect sum of the first order differences, although it might be

useful, e.g., provided the external differentials are being ini-

tially specified only in some isolated point on each ray: the

differences should simply be set zero at all other points. It

is not, however, possible to use the same device for the dif-

ferences between points on the neighboring rays, since there

is no initial point here similar to the observation point for a

separate ray.

So exhausted is the variety of initial data as allowed for by

the geometry of the contact space on light cones. All others

either add up to zero, or are expressed via these. We turn now

to the possibility to specify additional data inside the light

cone. As we saw, it is forbidden to arbitrarily specify field

values there, but differences could be specified in the same

way as on the cone. However, in flat contact space the sum of

these differences as taken over the whole interior of the cone

is zero — again due their reciprocal cancellation: Whatever

pair of adjacent points the difference is taken at, it is repeated

with the opposite sense at another pair (Fig. 3.10).∗ Only over

the boundary, the light cone, there is no compensation from

outside (the Stocks’ theorem). It seems that this compensa-

tion could be cured with the same device as was used on the

cone itself, that is, to multiply each difference by the related

subdivision points. As it is seen in Fig. 3.10, there is a point to

start counting from: the primary light cone along the rays of

its conjugated cone. Indeed, the sum will not be zero now, but

then, in the limit it becomes infinite. Such a leap from zero to

infinity comes from the change of dimension: inside the cone

it is more by one than on it, so a finite sum of the differences

on the ray is to be multiplied by the number of the subdivi-

sion points that is infinite in the limit. This is the reason for

the Huygens’ principle to be valid in flat (and only in flat)

space, allowing to specify initial data only on the light cone.

So, the geometry of the contact space, coming into ex-

istence due to the requirement of maximum variety of the

allowed trajectories, heavily restricts, in turn, the variety of

allowed fields. It turns out that the constructed above solu-

tion is nothing else as the solution to the wave equation of

∗What the term “flat” means, see in Ch. 5.

Fig. 3.10: A network inside the cone might be arranged solely with

photon trajectories matching an already completed distribution of

the cone in Fig. 3.9. However, the differences between the values in

the network knots are being reciprocally compensated.

the canonical version. In the usual form of this version, the

initial values of the function and its differentials are specific

for the second order wave equation. The construction with

only the values of the function specified at one point on each

ray is known as the Kirchhoff solution to the Cauchy prob-

lem for the homogeneous wave equation describing a free

field, whereas the construction with the specified also differ-

entials on each ray corresponds to the solution of the non-

homogeneous wave equation, describing the field with speci-

fied sources.

In view of the asymmetry of the order relation on trajec-

tories, contact schemes automatically select only retarded so-

lution to the wave equation, while another one is considered

in CP as “parasitic”. It is possible, of course, to formally con-

struct this second solution according to the same procedure,

reverting order relations on the defining trajectories. How-

ever, the very meaning of CP would be ruined, since by the

same reason one could change the order for only some tra-

jectories or even on some segments of one of them. Such

constructions (the so-called “Feynman paths”) are used in the

quantum field theory. However, this not CP but rather a prob-

abilistic scheme as built on its base. In this scheme, the par-

ticle is present, as it were, at different points at once, and

the particles are created and annihilated, although being reg-

istered individually by means of non-annihilating (as the ex-

perimenter always hopes) classical measuring devices. It is

just these that are constructed according to CP schemes.

So, in the own statement of CP half of the solution are

fictive. This is not a flaw of CP, as it would be were its predic-

tions ambiguous. Similarly, a circle is described with a square

equation, the second solution of which yields a negative ra-

dius “circle”, and the parasitic solution is being excluded with

a separate rule. But then, our construction comprises nat-

urally solutions when insufficient smoothness of the initial

field values makes the wave equation non-existing, since no

needed derivatives are there. The well known construction of

solutions in terms of generalized functions realizes integra-

tion using auxiliary sets of sufficiently smooth “basic” func-

tions to imitate differentiation. However, this construction
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implies the wave equation itself as “fallen from heaven”,

whereas the above presented schemes immediately arise in

the very CP statement.

Remember now that the field value itself must have its

own contact scheme. Force is revealed in the breaks of chains

(Fig. 2.6), and for the body in CP it comes via fields. Hence,

the specified initial data for a field are to be expressed with

inter-link transitions, though now applied to the test bodies.

In order to find the field value at the observation point, where

the force for CP will afterwards be determined, we have to

transport all the transitions for test bodies to this point to be

averaged there. In so doing, we have to realize everything we

regarded insofar as known, namely, addition of the values and

their products with real numbers.

We can use for this purpose the scheme of parallel trajec-

tories (Fig. 2.3) to construct an oriented parallelogram using

two such pairs (Fig. 3.11). The number of oscillations be-

tween the trajectories of one pair counted from one to another

trajectory of another pair we compare to the analogous num-

ber if we exchange their roles. If, in particular, these pairs are

such that the oscillation numbers are equal each other, then

we‘ll refer the diagonals as sums of the trajectories.∗ The

pairs are orthogonal, if the ratio of the oscillations numbers

between the sum and the trajectories in the points of triple

contacts equal 1.

Fig. 3.11: The oriented parallelogram defines the operation of

adding trajectories up.

Now we are in a position to define the sum of contribu-

tions from different rays in the observation point, so obtaining

here the field value acting in CP in the limit of infinitesimal

subdivisions. Initial data are no longer abstract quantities,

serving earlier as a model to define the very procedure of the

solution, but rather objects as defined with a contact scheme,

viz., the transition between the links of a test trajectory. In

order to find this in the observation point, we have to take the

initial data to this point with a parallel transport. Averaging

is being performed according to the scheme, once used to de-

termine the transition in the CP trajectory on account of this

transition for the test one (Fig. 2.6). In order to find the os-

cillations numbers defining the averaged trajectory, we have

∗Otherwise, these will be weighted sums.

to divide the number of oscillations between the found sum

and the initial link of the CP transition trajectory on the num-

ber of subdivision points. The transport of both links of the

transition along the ray is being performed according to the

prescription in Fig. 2.3. The external differentials are defined

as the limits of differences after the parallel transport of the

test bodies’ links along the corresponding cones (Fig. 3.12).

As shown in this figure, we have to add the third light cone

to the construction in Fig. 3.8 to form the required difference.

This difference is to be constructed in four steps. On the first

step, the final link of the transition is transported along the

conjugated ray. On the second step, the external difference is

formed according to the “parallelogram rule”. Then this dif-

ference is transported to the point the initial difference is to

be specified at in two steps — along the conjugated and then

along the basic light cones.

Fig. 3.12: Construction of the external difference on the ray with

the parallel transport of the final link is shown in the right diagram.

This difference is to be inserted as the initially specified datum in the

corresponding place in the left diagram.

With all necessary procedures and quantities at hand, it

is possible now to actually construct solutions for a free field.

However, in a more general situation of a field with its

sources, i.e. when the differentials are specified over the

whole ray, the solution remains a phantom, still requiring

measurements up to the final contact. A satisfactory solution

is possible only if the needed differentials are known in ad-

vance, being represented with some separate contact scheme.

It might happen, in particular, that the differences defining

sources are the trajectories of external for CP bodies. In these

cases, a self-consistent CP might include interactions, some-

times retarded, of two or more bodies. The electromagnetic

Lorentz force gives the most important example of interac-

tion admitting such problem statement. On the one hand,

this force is being expressed with a uniform over the con-

tact space scheme as preserving oscillations numbers ratios
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to provide its own description in these terms. As pointed out

above, this force might therefore be represented as the anti-

symmetrical combination of the derivatives of potentials. On

the other hand, its propagation with top velocity is express-

ible with the shown above schemes, hence, it is equivalent to

the wave equation of the canonic version. In this version just

the antisymmetry of the Lorentz force causes its spacetime

derivatives (corresponding to the differentials of the field in

the contact schemes) to be not arbitrary, but satisfying an ad-

ditional continuity equation. However, the same equation ex-

presses the condition of the field generating charged bodies to

be non-disappearing upon comprising, e.g., some flux. Such

fluxes might therefore play the role of sources in the wave

equation, since in the scheme with second differences these

are presented with antisymmetric combinations of the deriva-

tives of the flow of bodies-sources. In the canonical version,

it is just antisymmetry that causes the system of the second

order wave equations for the field components to split into

the first order system — the Maxwell equations. These are

elegantly presented as in the antisymmetric tensor equations,

so also by means of the alternating differential forms.

We have now to find a contact scheme suitable to present

the differences in Fig. 3.12 in the own terms of the field

sources rather than via the test bodies representing known in

advance external fields. In this scheme, the source must be

given directly with the trajectories of the bodies the source is

comprised of. Then in the limiting process upon increasing

the number of rays (Fig. 3.4), these trajectories are to con-

tact the rays that are involved on each step. Otherwise, some

sources might be lost. Whereas the test bodies we could put

by will in the places needed in the solution scheme itself, the

sources belong to the CP statement in their own right. In-

deed, on each step of the limiting process to find the integra-

tion sum, the points, in which the initial data are specified, are

being fixed with the very procedures of uniform subdivisions

as along the rays, so also between them. These points are

distributed discretely. Hence, the trajectories of the bodies-

sources that miss the subdivision points will not be accounted

for. We thus need a special contact scheme to smoothen the

distributions of sources, realizing the idea of an averaged tra-

jectory in the vicinity of a subdivision point. To this end, we

have to parallel transport to a subdivision point the trajecto-

ries of the “closest” to it trajectories out of the source flux,

and we stay in need for a definition of closeness for this case.

In the basic scheme in Fig. 1.2, the related oscillations

numbers ratio turns zero if the contact is absent (Fig. 1.2b).

Let us add a third body to this scheme (Fig. 3.13) and define

the ratio of the oscillations numbers for these two “missing”

bodies upon measuring the oscillation numbers — one be-

tween A and B, another between A and C — up to the sup-

porting (A, X), which fixes a point of the implied subdivision.

It is now possible to specify the sources unambiguously

in the full scheme of integration, parallel transporting the tra-

jectory of the body-source to the closest point of the subdi-

Fig. 3.13: Definition of the related closeness of the trajectories to a

given point.

vision. This procedure completes the contact scheme equiva-

lent to the concept of flux density in the canonical version. It

isn’t necessary, however, to know the trajectories of bodies-

sources at full. Frequently, it is only the total flux of these

bodies (especially, if these are numerous) that is important,

so that, for example, the exchange of identical bodies doesn’t

alter their total field, even if it doesn’t result from their ac-

tual motions. In essence, it is only the flux of their active

factor, i.e. of their charge that is of importance. This issue is

tightly connected with the procedure of gauging the charge,

that is, of establishing its universal standard at all points of

the contact space in the course of a special contact scheme to

be presented in Ch. 6.

Thus, electrodynamics as well as mechanics might be de-

duced from a single condition: “Everything moving” must be

an implementation of a scheme in CP. What remains doesn’t

belong to the Method, merely because then we would not dis-

tinguish and look for such things as space, bodies, forces,

fields etc. Concepts a priori that we use to approach Nature

with, must correspond to the purpose of our approach in or-

der that its response will not be regarded as a meaningless

“noise”. This language is by no means arbitrary, basing in-

stead on the main condition of the universality of predictions,

on their unrestricted repeatability.

Chapter 4. Quantum theory: repeatability of the non-

repeatable

. . . we have to assume that there is a limit to the

fineness of our powers of observation and the

smallness of the accompanying disturbance — a

limit which is inherent in the nature of things and

can never be surpassed by improved technique or

increased skill on the part of the observer.

P. A. M. Dirac, The Principles of

Quantum Mechanics

An important condition of applicability of the above describ-

ed contact schemes to clearly isolated bodies is the ignoring

of the effect of measuring contacts on their trajectories as

those in CP or auxiliary. For the development of the Method

from scratch, this strategy looks natural, since it merely sug-

gests a reliable way to make predictions in a limited scope of

problem considered meaningful for the implied user. In other

words, the inventors of the Method begin with the analysis of
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practice endeavoring to elucidate what is actually desirable.

However already in the course of discussing the basic con-

structions, the question about the limits of applicability of the

Method is important. It is purposeful to analyze these limits

from inside the Method, since it appears so successful, that

even upon embarking on new problems the user is reluctant

to reject it totally. Then the more, if these spring up within

the Method itself and look as its natural continuation and re-

finement.

The schemes for CP solutions, as describing motions un-

der external influence, lead on their own to the question, as to

what will happen with their predictions, if the influences be-

come weaker. Indeed, the measuring contact is an interaction

as well, and it may happen that it is impossible to weaken it

at will, while preserving the reliability of the registration of

the very fact of contact. If CP is being stated about very light

bodies or about very fine details of motions of even heavy

bodies, it might happen that the effect of measuring contacts

on the predictions of future contacts is no longer ignorable.

But then, measuring contacts are unavoidably present in the

very statement of CP, and even the concept of space and its

properties were established solely as a tool for CP solutions

using these contacts.

It seems that the Method fails as soon as the perturba-

tion of motions by even most delicate measuring contacts be-

comes comparable with the external influence. It is just the

measure of such delicacy that we have to determine, again

with the contact schemes, that is, to select the cases, in which

the Method could still be applied, perhaps not in its com-

plete form.

Practice provides examples of possible extensions of the

framework the Method could be applied in, while partially

sacrificing the uniqueness of predictions to comply with only

statistical description of actually pure mechanical situations,

although in these cases it is not a measurement perturbation

that is being met with but rather the complexity of the trajec-

tories themselves, which in principle could be described as

CP. These might be processes, in which along with a regular

external force the body experiences multiple collisions, each

one influencing the trajectories but weakly although adding

up to yield an important effect. The most familiar example is

the Brownian motion — the averaged effect of molecule col-

lisions on the motion of a macroscopic body. The possibility

of the description in terms of a diffusion random process is

conditioned in this case by the sufficiently smooth averaged

parameters of the medium allowing for taking into account

the momenta only up to the variance of the random (Markov)

process. Averaging methods are also useful in the description

of the motion of a body in a bounded area under a force that is

quite regular and simply specified with a contact scheme for

the test bodies, but the collecting of deviations due to high or-

der resonances, however small individually, leaves only prob-

abilistic predictions to be reliable. In this case, a statistical

description is relevant for sufficiently smooth initial distribu-

tions, and the particular features of the force provide the er-

godicity and exponential local divergence of the trajectories.

All such cases are peculiar in this that CP in its original

statement becomes no more than an auxiliary means, since

the details of the force are but of minute importance, while

the statistical, average features come to the first place. This

means quite a new problem statement, disregarding individ-

ual predictions and implying multiple repetition of the situ-

ation with different outcomes given the precision of repeata-

bility of the initial state.

Quantum mechanics implies the statistical approach too.

However, this time the uncertainty comes from the measur-

ing contacts themselves. In so doing, the probabilistic ap-

proach becomes intimately in touch with the basic concepts

of the Method. Indeed, the very concept of trajectory has

been realized in the Method with contact schemes of bod-

ies (called particles in quantum mechanics, usually being ap-

plied to problems in micro) with some arrangements of spe-

cial measuring bodies — as photons and massive bodies. It is

expected that quantum mechanics might be applicable, pro-

vided the registration of measuring contacts is organized in

such a way, that perturbation of the particle trajectory will be

minimal, though already comparable with the external influ-

ence as found in measurements with macroscopic test bodies.

As distinct from the two above cited examples, in which

a particular feature of the medium or a space distribution of

the acting force immediately entered the problem conditions,

now the very measuring device is to be so designed as to sup-

port the repeatability of at least probabilistic predictions with

a relevant measuring procedure. This implies quite different

output of experiments: we no longer predict the final contact

at every case, limiting ourselves down to predicting only the

probability of its occurrence in multiple measurements with

“identical” initial data.

Apart from creation and annihilation of particles, we sup-

pose the final contact of the particle to be registered unam-

biguously — “yes or no”, since the next events are implied to

occur beyond the problem limits. So, here the perturbation by

measurements is no longer important according to CP state-

ment, in which the same particle is being considered over the

whole evolution. The evolution itself as well as its former re-

alization as a trajectory is needed solely as an instrument to

predict the final contact. Whenever the intermediate contacts

don’t influence this prediction, we can speak about a trajec-

tory, but if the prediction of only the probability of the final

contact is supposed, it is no longer obligatory to reduce the

evolution down to a trajectory.

Carrying out all the discussion exclusively in terms of

contacts, we have to modify the measurements in accord. So,

instead of a somewhat uncertain notion of “macroscopic de-

vice”, which is ultimately being reduced to the contact with

a measuring body either directly or via a relevant gauge pro-

cedure, we try to extend this notion in still acceptable in me-

chanics way. To this end, let us analyze the structure of CP
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in more details. Actually, upon constructing solutions it was

suggested that measuring bodies, implicitly forming vacuum,

fill the contact space so densely that the body, CP is being

stated about, meets a body from the measurement kit at ev-

ery point of its trajectory. This introduces no problems if the

measuring contact doesn’t perturb the trajectory.∗ We have al-

ready seen, however, that in order to construct the trajectory

we don’t need for it to have measuring contacts everywhere.

On the contrary, these contacts should not be distributed too

densely, leaving room for photon oscillations. This kind of

measurements defines the differentiability of the trajectory,

letting it to be approximated with a chain of separate links.

For the prediction of the final contact by means of trajecto-

ries, it is then necessary for the measurement kit to keep some

regular structure as defined with photon oscillations between

its bodies. However, this kit must be sufficiently dense, so

that still affording differentiability, it does not let the trajecto-

ries be lost, that is, we demand that the absence of the contact

with one measuring body implies its occurrence with some

other. But in a process similar to Brownian motion the im-

pacts of molecules are distributed at random. Actually, just

two separate random processes are here: the random position

of the molecule at the impact moment and the random mo-

mentum impart in its scattering. We could reduce the random-

ness of our prediction removing at least one of these factors.

To this end, instead of the measuring device consisting of a

single measuring body, we propose a new measuring device.

Namely, we will employ particle contacts with the same mea-

suring kit, while registering now measuring contacts not with

a single measuring body, but with a group of them somewhat

ordered — the order. In this registration, we don’t determine

the particular measuring body of the order this contact took

place with. A sequence of such measurements doesn’t give a

trajectory in the former sense, but with a relevant arrangement

of the orders it is still possible to make sometimes predictions

about the final contact occurrence, although now it will be

only its probability. The proposed extension of the concept of

trajectory consists in this that afterwards upon constructing

the evolution under external force effect, it will be possible

to correspond the orders to links and chains, borrowed from

macroscopic contact schemes for trajectories, so as to make

it possible to define the orders themselves with some contact

schemes.

Considering former trajectories from this new viewpoint,

we might say that there the contact with a measuring body oc-

curs with the probability equal one. Since the measuring kit

fills the whole contact space, a non-one probability of the par-

ticle contact with definite measuring bodies means its contact

with some others at the same moment.

A minimal departure from the former schemes consists in

this that now only the contact of the particle with an order,

∗Otherwise, the body could not move at all pushing through measuring

bodies.

not with some of its bodies, has a finite probability. If accord-

ing to CP statement the particle doesn’t disappear, while the

scheme of mutual contacts in the measurement kit is left un-

changed, any intermediate state might be considered as the fi-

nal, accordingly reformulating CP. Therefore beyond the limit

of sensitivity it is also possible to register the fact of a con-

tact between the particle and a particular measuring body, but

now this registration will become the final for CP.

In so doing, we try to keep the construction of space in-

tact at the expense of making the particle trajectory, as it

were, “spread”, allowing for the simultaneous (in terms of

the canonical version) contact with more than one measur-

ing body without their common contact. Strictly speaking we

have to accordingly change the very geometry of the contact

space as a minimal structure encompassing all possible tra-

jectories. This geometry will still be valid for the averaged

trajectories multiply repeated, allowing for only probabilistic

CP solutions, that is, fluctuating around these average.

Avoiding for the time being complications already on the

initial step of presentation, we shall suggest the external in-

fluences on the particle trajectory to be specified with the tra-

jectories of test bodies in fields as determined with the same

contact schemes as before. Then we are in a position to divide

the full influence on the particle in the parts, one of which is

defined by the field independent of the particle evolution, and

another depending only on its measuring contacts.†

In this description of motions, we have to replace stan-

dard trajectories-links in chains, which approximated actual

trajectories upon neglecting measurement interactions, with

links comprised of measuring orders. The latter are specially

organized contrary to chaotically distributed molecules in the

Brownian motion, acting on the motion of the macroscopic

particle. This process might be called “semi-random”. Ac-

cordingly the statement of CP is to be altered. In a macro-

scopic measurement one asks: “What is the value of the vari-

able to be measured?” In quantum theory, for each individ-

ual measurement the question is being formulated differently:

“Has the variable a specified in advance value?” Interaction

with orders results in a random diffusion-type process in the

scattering of the particle on macroscopic measuring bodies.

Unlike the Brownian motion, this will be the scattering of a

light particle on heavy bodies. In this approach, no hypothe-

ses concerning Nature are there. We just try to ask familiar

questions on the verge of their applicability, and the theory is

simply restricting the scope of deserving our attention cases

to those, where it is still able to make predictions.‡

In a sufficiently dense flux of the measuring bodies, the

scattering of the particle on them might dominate the external

interaction in its influence on the final position of the particle

†Further on, the external field values will be corrected in accord with the

probabilistic schemes.
‡If some other interesting situations would be found, in which the de-

scription is not reduced to the registration of contacts, the theory might be

different.
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in the contact space. It is this boundary situation that is the is-

sue of quantum mechanics in the canonical version, in which

the measurement orders copy those determining the trajec-

tory in cases when the measurement perturbation is inessen-

tial. Let us first consider the measurement process in terms of

the canonical version, insofar as they express a CP statement

and correspond to their own contact schemes, i.e. we shall

use such quantities as velocity, acceleration, angular momen-

tum etc. It is desirable to keep these concepts as long as

possible in the extension of the scope of applicability of the

Method, while matching them to the statistical description.

In the canonical version these quantities are defined as op-

erators acting on state amplitudes. These operators copy the

forms, borrowed from the macroscopic CP, and such that their

mean values fulfill classical relations. It is just the keeping of

the CP statement, perhaps in a probabilistic form, as directly

expressing the user’s concern that explains the well-known

paradox: “Why quantum theory with a different, statistical,

type of predictions failed to elaborate its own forms for dy-

namical variables?”

The measurement order of measuring bodies with paral-

lel trajectories and the particle inside is shown in Fig. 4.1. It

is a measuring device completely constructed as a CP con-

tact scheme. It is convenient to conceive vertical rows in

Fig. 4.1 and similar in the transverse direction, which move

together and without distortions of the order in the direction

perpendicular to these rows. This scheme is in agree with the

structure in Fig. 3.11 for the case of mutually orthogonal tra-

jectories. The positions of the bodies in the order with respect

to their neighbors are defined with the oscillations numbers,

which are counted in such a way that the initial and final con-

tacts in the neighboring intervals coincide within their longest

periods. The total number of such periods must be sufficiently

big to avoid the collection of the error coming from the dif-

ference in the position of end contacts within one period. The

motion of the particle inside the order is in itself a purely mea-

suring procedure, depending only on its collisions with the

order bodies and not depending on the external force. Since

it is only a contact with the order as a whole that is being

registered, this procedure should not be regarded as existing

in the same “time” as the motion of the particle in external

fields. To simplify the presentation we’ll consider the process

of registration in the rest reference system of the order as a

whole.

All the measuring bodies being taken identical, the fact

of registration doesn’t depend on the position of the body it

happened with. In particular, the probabilities of this contact

are the same for all the rows. If the order is uniform, that is,

all the oscillation numbers are the same, and consists of in-

finitely many rows, then the probability of registration doesn’t

depend on the position of the row the contact occurred with

within the order, hence the fact of registration provides no in-

formation about the place of the particle inside it. If also the

velocity of the order is exactly the same as that of the parti-

Fig. 4.1: A particle within the order of measuring bodies. Thin lines

with arrows draw oscillating photons.

cle, then the particle once positioned at a free place inside the

order, would never be registered. Reversing the argument, it

would be tempting to conclude from the absence of measur-

ing contact of the particle with the order that their velocities

are exactly equal. But the same would be observed if no par-

ticles were there. Therefore some residual interaction must

still be kept to register the measuring contact. In the canon-

ical version this interaction is naturally characterized by the

lowest (“boundary”) momentum value of the particle to be

transferred to an order body in the act of registration, i.e. its

boundary velocity relative the order.

A single scattering contact doesn’t necessarily result in

the registration of the measurement contact and only multi-

ple independent of one another collisions of the particle with

the bodies of the order might at last produce the registration.

In the elastic scattering of a light particle on infinitely heavy

measuring body the absolute value of the momentum doesn’t

change. Then the existence of some fixed lowest value of the

particle momentum means that the event of registration for

the particle having only this absolute value might occur only

in its scattering in the direction opposite to its motion. But

on average the particle scatters over a small angle, and the

probability of back scattering is low. Therefore, the particle

having this value typically transfers but insufficient for reg-

istration momentum in a collision and only once after many

collisions in the diffusion process the back scattering occurs.

If only one non-disappearing particle is meant in CP, the mea-

surement contact must occur only in inelastic scattering. Oth-

erwise, second and more such contacts might occur, and the

measurement would not be able to determine the number of

involved particles. The inelastic scattering could always be

interpreted as the transfer of the energy from the particle to

an intermediate carrier-photon and from this photon to the

body-detector. If we consider the photon as a harmonic en-

tity, then some frequency might be ascribed to this minimum

momentum, so being related to a wavelength of the photon, in

turn defined by the minimum inter-row distance, in order to

let photon oscillation process remain meaningful. So, we can

regard the largest number of these oscillations as an equiva-

lent in CP of the boundary particle velocity in the canonical

version.

In the utmost precise measurement with the infinite num-

ber of tests the particle has only this boundary velocity. Of
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course, the particle with a different velocity will come into

contact with this order as well, but it is possible then to choose

a different velocity for the measuring order, for which the rel-

ative velocity of the particle turns boundary. Actually, this is

the same as what is met with in macroscopic measurements

(Fig. 2.5), where the tangent trajectory from the measurement

kit is being matched to that of the body in CP.

Measurement contacts consist in the transfer of momen-

tum from the particle to the order. If the particle has only the

boundary velocity in the reference system of the order, then

— loosing this value in the measurement interaction, it be-

comes at rest, i.e. not discernible. This causes no difficulty

for an infinite order, since the particle has already been dis-

cerned. Infinite order detects the particle with the probability

1, however this order is not relevant for dynamics requiring

localization of the particle in the contact space. To this end,

we could use orders with a finite quantity of rows, again with

the equal inter-row oscillations numbers. But in this order

the measurement contact for a particle, having the relative

velocity more than the boundary, though scattering over but

a small angle to transfer the boundary momentum, might be

more probable than the back scattering of the particle hav-

ing only its boundary value. However, we are no longer able

to use the criterion for the precise matching the velocities,

hence, an uncertainty in the measurement of velocity springs

up in the use of orders as the only measurement devices. Ac-

tually, localization is still uncertain too, because even for a

fixed quantity of rows it is still possible to vary the number

of inter-row oscillations numbers left free so far. So, once

the measurement contact has been registered, it is still indef-

inite, in which row of the order this contact occurred as well

as what the relative velocities was.

The uncertainty of measurements might be reduced, so

not eliminated, if we construct the measurement device-order

as a non-uniform sequence of rows. This order could also

be completely defined with numbers of inter-row oscillations,

which start and finish at once. Only now these numbers will

not be equal each other. For instance, in some part of the or-

der these numbers might be the biggest, while so decreasing

according to some law in both directions that on its ends there

is only one oscillation.∗ Thus, we tie the measurement up to

the top velocity. Now we can introduce an averaged over the

order oscillation number Q as the ratio of all the oscillation

numbers in the order S to the number of its rows K. Next,

we can define some law of the oscillation numbers decreas-

ing q as a function of the row number k, as counted, e.g.,

from the row having maximal value of q = qmax relative to its

neighbors. In both directions this numbers could be defined

independently of each other. These utmost dense rows are the

most important ones for the localization of the particle, while

the relative oscillation numbers in different its parts are to be

∗Since the velocity of the particle cannot exceed the top velocity, the

total quantity of rows will be finite.

normalized with Q.†

It is convenient to compare this way of localization to the

measurement of the position of a particle in the canonical ver-

sion, upon considering the quantity of rows, for which q > Q

and specifying qmax in terms of the boundary velocity as it

was done above for the uniform order. As a model, let us

consider an order with a single dense part and a simple law of

the density of rows decreasing in the form of the geometric

progression.‡ This order could be conveniently represented

with the function of the kind q(k) = qmax exp (−a|k|) with

q(0) = qmax possibly with different values of a for its left and

right branches as along the order velocity, so also in trans-

verse directions. Suffices it to address only one right, say,

branch (k > 0). Here K = a−1 ln qmax (since q(K) = 1). This

immediately defines S and Q. The value of a defines the lo-

calization of rows in the order: if a tends to zero, the order

becomes uniform and accordingly K goes to infinity. Let us

subdivide the order into a dense part q > Q and a rarefied part

— q < Q with the corresponding numbers of rows to give

K in the sum. It is natural to normalize the probability of the

measuring contact registration to the average oscillation num-

ber Q. For a Markov random process, becoming equivalent

to diffusion when the quantity of rows is so big that a dis-

crete process might be approximated with a continuous one,

the numbers of rows are replaced with their density with re-

spect to the now continuous variable k. The probability den-

sity will be relatively high in the dense part, so that the higher

probability will be here, provided the velocity of the particle

(in terms of the canonical version) is close to the boundary

value. However, in a regular order only the angular scattering

remains, hence the probability of the contact depends only on

the quantity of rows the particle is able to cross. So, if the

quantity of rows in the rarefied part is much more than that

in the dense, the particle with the velocity value far from the

boundary might have a high probability of the contact as well.

In this case, the velocity (so also the momentum) of the

particle will be inversely proportional to the relative oscilla-

tion number, so that for Q oscillations it could cross the nec-

essary for the contact registration quantity of even rarefied

rows.

In our model, the ratio of the quantities of the dense rows

to that of the rarefied ones w = ln ( f ln qmax) / ln qmax, where

f =
[

1 − exp(−a)
]

/a. Upon varying a from zero to infinity f

decreases monotonously from unity to zero. Large values of

a correspond to the small total quantity of rows, and anyway

it must be f ln qmax > 1, for the quantity of the rows to be a

real number. Taking qmax so big that even ln qmax ≫ 1, while

a not too big, we may regard f ∼ 1 for the argument of the

†In terms of the canonical version, on the parts with comparatively small

oscillations numbers the distances between the rows are longer, and a slow

particle cannot pass a required quantity of rows for Q oscillations to be reg-

istered with high probability.
‡We don’t address here the quantum field theory with its more complex

orders.
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logarithm to get w ∼ ln (ln qmax) / ln qmax, so that even the re-

peated logarithm representing the quantity of the dense rows,

must be much more than 1. Then the value of w practically

depends only on that of qmax, completely defined by the least

detectible measurement contact. So, in CP w is the analogue

of the universal constant ~ of the canonical version, since the

ratio of the quantity of the dense rows to that of the rarefied

rows in the order is analogous to the product of the distances

and momenta in the canonical uncertainty (or indeterminacy)

principle.

An important modification of the non-uniform order,

completely defined with oscillations numbers ratios, is pre-

sented in Fig. 4.2. It represents the own angular momentum

of the particle, i.e. its spin, and might be understood as a com-

bination of the non-uniform order and the two-dimensional

sphere. In the direction perpendicular to the plane of the

Fig. 4.2, we leave inter-row oscillation numbers to be uni-

form, while in the radial (and the related angular intervals)

prescribing the same law: q(k) = qmax exp(−ak) with q(0) =

qmax, k being the radial number of the measuring body. The

largest “radius” corresponds to one oscillation independently

of the angular quantity of rows: Upon increasing this quantity

this radius increases as well as the initial with q(0) = qmax.

Fig. 4.2: The particle inside the order of the centered rows. Thin

lines with arrows are the photon oscillations between the bodies

from adjacent rows.

The analogue of the angular momentum in this contact

scheme is again the ratio of the dense and rarefied rows, while

now it will be interpreted as the realization with a contact

scheme of the particle’s spin, the existence of which has been

mentioned in Ch. 2, but only as a necessary condition in the

basis representations of trajectories, not supported as yet with

a contact scheme. For the comparison with the canonical ver-

sion we consider, as usually, the construction of spin in terms

of distances and momenta. Given the initial radius ri, the to-

tal quantity of rows K is specified by the value qmax, in turn,

specified with the proportional to ri distance d(qmax) between

the rows for their quantity π/K. On its passing the order, the

particle crosses one-by-one rows with the oscillation numbers

q(k). With the increase of ri, given d(qmax) the K accord-

ingly increases to decrease all dq(k). The angular diffusion

of the particle is a function of only the number of crossed

rows necessary for its scattering with the average probability

in a collision, corresponding to the transfer of the boundary

momentum, given the absolute value of its velocity. In the

vicinity of any k, the required quantity of crossed rows for

the measurement contact to occur, increases with K, in turn,

corresponding to a smaller velocity. Then the product of ri

and the averaged over the order velocity doesn’t depend on

ri, so representing the own angular momentum of the particle,

i.e. its spin. Being so defined, spin is completely specified by

qmax, in contradistinction to the orbital momentum with its

independent values of radius and velocity.

The discussed in Ch. 2 presence of twin trajectories in the

sphere as represented with their decomposition in a basis, is

innocuous if the diffusion accompanying measurements is ne-

glected, since in any CP this uncertainty might be eliminated

by means of a definite choice of the basic trajectories. Con-

tinuity of trajectories allows for the preservation of orienta-

tion along the chain, ascribing to the next link the orientation

of the previous. However, in quantum theory indispensible

measurement scattering introduces uncertainty in orientation,

Spin makes it possible to remove this uncertainty, providing

a “mark” on the particle.

One more example, illustrating registration schemes, is a

screen with a slit (Fig. 4.3). The notion “screen” corresponds

as its definition to a particular order of measuring bodies, be-

longing to “vacuum” in CP. Indeed, how to recognize the ex-

istence of a slit in the screen? It is “seen”. This can be found

upon passing bodies through it (in particular, light). In so

doing, it would be incorrect to check everything on and then

to turn the flux of measuring bodies off: what if the slit then

gets obstructed? So, the screen itself as occupying a place in

space should be considered in CP as a contact scheme, which

defines limitations on the mutual contacts of moving bodies.

So, the screen in Fig. 4.3 lets some trajectories pass, while

blocking all others.

Fig. 4.3: The screen with a slit is specified by its effect on measuring

trajectories.

Let us consider in this context the effect of interference in

passing by the particle the screen with two slits (Fig. 4.4).

We have to consider the passing of particles through the

slits on the background of the measurement order for just this
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Fig. 4.4: The interference experiment with a double-slit screen.

screen and just this experiment statement: The order must

have nearly the same velocity as the particles. If also this or-

der is about uniform on the experiment scale, the scattering of

the particles on its bodies will form an interference pattern in

the distribution of the particles over the detector plane. Con-

sidering scattering on the measuring bodies, it is purposeful

to correspond to the periodic structure of the uniform order a

harmonic function with its period as defined by the numbers

of the inter-row oscillations. Since the slits cut out a part of

the full flux of particles, the total order to represent the screen

includes also skew fluxes as shown in Fig. 4.4. Ignoring the

sickness of the screen∗ the oscillations numbers are about the

same for all the components of the total flux and equal to the

velocity of the particles divided by the distance between the

slits. A joint order for the two slits is characterized by the

same values of these numbers for its two parts.

The trajectory of a particle as registered with its contacts

with the measuring kit remains a continuous line as soon as

the particle doesn’t disappear, so might be detected in every

neighborhood of a point it has been detected earlier. However,

this trajectory is no longer a differentiable curve in the con-

tact space. Indeed, a sequence of measuring contacts as corre-

sponded to a trajectory cannot be locally approximated with a

segment of the trajectory of a measuring body, because in dif-

fusive collisions with measuring bodies the displacements are

proportional not to time intervals but to square root of them,

hence the velocity as defined with the ratio of distance to time

becomes infinite as time interval tends to zero. We highlight

that it would be entirely wrong to regard the “genuine” tra-

jectory as smooth though seeming “rugged” due to an imper-

fect measurement procedure. The only available information

about trajectories is the sequences of measuring contacts and

only this. In this respect it might be possible to consider quan-

tum mechanics as a structure on the basic geometry as speci-

fied with the classical scheme of mutual contacts. Then even

in a free motion, i.e. in the absence of external influences,

the particle moves over non-smooth diffusion trajectory due

to its collisions with measuring trajectories, since were these

∗Screen is not a collimator!

absent, no information concerning this trajectory could exist.

However, the measurement procedure is peculiar. Just this

semi-random measuring process with the scattering on regu-

lar orders enables such phenomenon as interference, not to be

met with in the Brownian motion or alike.

Multiply repeated measurements using orders identical in

their distribution of the oscillations numbers create the sta-

tistical representation of the motion of a particle. It is then

possible to describe the measuring interaction of the parti-

cle with an order in terms of a function defining the prob-

ability distribution of its trajectory as being measured with

an order. Namely, each order as a measuring device, corre-

sponding to some classical observable, appears as selecting

from this function one of its own eigenvalues depending on

whether or not this order had registered its contact with the

particle. In terms of the canonical version, e.g., the fact of

registration of the particle’s contact with a non-uniform or-

der, having a definite velocity vector and a value of a, defines

the related variables within the precision limited by the un-

certainty relation. Mean values as determined in the course

of numerous measurements will coincide with the motion of

the order in view of the symmetry of the scattering in the col-

lisions. The particle being suggested non-disappearing and

the kit of the orders full, the probability for it to be registered

with at least one of them that is to be equal to the sum of the

probabilities for all orders under independent measurements

must be one.

Starting the description, in terms of contacts, of quantum

processes under external influences, we will limit ourselves

to the classically specified external fields as being measured

with macroscopic test bodies ignoring their scattering. In so

doing, the inter-link transitions in chains are defined as hav-

ing the same ratios of their oscillations numbers as the re-

lated orders: Orders as the measurement devices move in the

same way as measuring bodies were in the absence of mea-

suring perturbations. On average, the particle in CP follows

the chain transitions of the orders in accord with the trajecto-

ries of the test bodies.

However, because of uncertainty of the momentum of the

particle inside the order its particular momentum in a prob-

ability distribution in the initial link in a transition depends

on the place in the order the measurement contact took place

at. So, in the part of an order with relatively small oscilla-

tions numbers the particle with an insufficient velocity will

not be registered over the average oscillations number for this

order, being unable to cross the required for the measurement

contact quantity of rows. Therefore, a peculiar quantum de-

pendence arises in the momentum transition upon averaging

over the quantum ensemble, which doesn’t depend on the ex-

ternal influence but rather being determined in the each tran-

sition by the probability distribution of the particle velocities

respective the order.

In terms of the canonical version, the average velocity

vector might be determined by means of decomposition of
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the distribution into pieces, the distribution being then aver-

aged over these pieces. If a piece is sufficiently small, the

registered velocity is nearly constant over it, and in the total

averaging each piece is to be accounted for with the weight

equal to its part of the whole probability (Fig. 4.5). Just this

is the velocity, the related order must move with.

Fig. 4.5: The operation of velocity averaging.

In order to find the transition in a chain comprised of

links-orders, adequate to the local change of the probabil-

ity distribution for the particle (Fig. 4.6), it is necessary first

to add up velocity vectors with their probability weights dis-

tributed over x1 at the moment t1 in the intermediate moment

t2 at the point x2, so obtaining the average velocity on the

initial link.

Fig. 4.6: Particle positions probability distribution functions in three

close time moments. The x axis represents all three coordinates.

On the initial link, the particle is scattered by the mea-

surement order having the velocity Vi. On the final link, the

average velocity differs from Vi under the external accelera-

tion on the interval between t1 and t2, and the contribution

from each point on the axis x2 on the part between t2 and t3
in the distribution along x3 depends on the scattering by the

order with the velocity V f .

So the diffusive scattering by the orders on the initial and

final links of the transition is important even on the infinitesi-

mal intervals. Because of this the average velocities and vari-

ances are no longer some prescribed functions as is the case of

Brownian-type motions, but now depending on the distribu-

tion itself. Moreover, even apart from external forces, upon

virtually dividing the trajectory into small parts, we would

obtain its effective perturbation as if due to an external force

that alters its momentum over a given time interval.∗

A developing quantum process could be conveniently de-

scribed with the formalism of the “Madelung fluid”, in which

the substitution of the wave function in its exponential form in

the Schrödinger equation provides the representation of this

process with a classical Hamilton-Jacobi equation, though

including in addition to the external potential the so-called

“quantum potential” that depends on the wave function itself.

In our construction of the order, this potential is directly con-

nected with the uncertainty principle, because the averaged

over the order addition to its velocity for a specified time in-

terval, depending on the probability distribution, is an equiv-

alent to altering the external force to be defined as a cause of

changing the momentum for this time interval. A complex-

valued and possibly multi-component (“wave”) function of a

point in the contact space is sufficient for probabilistic pre-

dictions in CP, provided the sum of their amplitude absolute

values squared is interpreted as the probability for the particle

to be found at a point.

The constructions of orders solely by means of the photon

oscillations counting would correspond in canonical version

to the relativistic quantum mechanics, in which the Schrödin-

ger equation is to be replaced with the Dirac equation. The

dependence of the full potential on the amplitude of the wave

function in the Madelung formalism is still relevant, but now

the diffusive addition to the probability of the inter-link tran-

sition is proportional not just to the second derivative of this

amplitude absolute value as it is in the Schrödinger equation,

but to a more complicated combination of this amplitude with

the external field including also their derivatives. In our rep-

resentation with orders this contribution results not only from

the distribution of velocities over the order but also from the

distribution of the external force there. Therefore, the scheme

becomes nonlocal. Depending on a particular CP statement,

this nonlocal behavior might appear also in a macroscopic

measurement as soon as it might be represented with a rele-

vant order.

The solutions to quantum equations define possible dis-

tributions of the particle states. In particular, if two or more

identical particles are confined by an external field (as the

field of the nucleus in an atom) in a phase space region of

the order of quantum uncertainty, then they can contact with

the same order at once, and therefore this order cannot be

regarded as belonging to a definite distribution of a single

particle. The measurement scattering thus masks their state

inside the region. Once registering a contact with the or-

der, it would be impossible even to say how many particles

are there, and a separate “Pauli principle” is needed to for-

∗Such is, e.g., the spreading of a wave packet in its free motion.
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bid such a situation.∗ Even placing the particles in separate

though partially interlacing states, it is not possible to exclude

their exchange. This transposition could be considered as an

additional “exchange” interaction, since it might select sta-

tionary states similarly to an external potential out of those

defined by the external potential alone.

Chapter 5. Gravity: a forceless force

Proposition 7, part III.

That there is a power of gravity pertaining to all

bodies, proportional to the several quantities of

matter which they contain.

I. Newton, Mathematical Principles of

Natural Philosophy

The necessary component for CP solution — an external

force must be presented with trajectories of the test kit bodies

to be expressed, in turn, in terms of contacts with trajectories

from the measurement kit. In this context, a question arises as

to the existence of the utmost general scheme of free contacts

for a single link, not using a separate kit of test bodies, though

dispensing with chains with their inter-link transitions.

If no test kit is there, then no coupling constant like charge

is needed any longer to define trajectories using forces. Con-

sequently, this force must be directly expressed with photon

oscillation numbers. Keeping the idea of inertia to predict

contacts with CP solutions, we have to keep also the related

concept of mass, and then the only possibility to eliminate

coupling constants consists in this that to make the charge of

a body to be equal to its mass. Then their ratio becomes a

universal constant, and the motion will not depend on the in-

dividual properties of bodies, so generalizing the concept of

motion that is free of external influences.

In the constructions of the last two chapters we system-

atically used the concept of the trajectories’ parallelism. In

flat space-time of the canonical version this concept is real-

ized with rectilinear trajectories having equal velocity vec-

tors. Sets of straight lines possess also a remarkable feature

that any pair of them either don’t intersect or have only one

point in common. However, not all features of straight lines

are so exhausted. Suffices it to draw straight lines on a sheet,

which will then be arbitrarily deformed, but neither cut nor

(its parts) glued together. Straight lines become curved but

the scheme of their intersections remains the same: If initially

the lines either intersected only once or not intersected, their

images feature the same. However, a particular way to con-

struct parallel trajectories presented in Ch. 2 doesn’t guaran-

tee all the properties of their sequences. Let a sequence con-

sisting of parallel standard trajectories is such that for each

of its trajectories the next is closer to it than the previous.

In terms of contact schemes like that shown in Fig. 5.1, this

∗It is still possible to distinguish two particles with their spins orient-

ations.

means that the oscillations number in a scheme between this

trajectory and the next is bigger than that between it and the

previous.

Fig. 5.1: The converging sequence of parallel trajectories.

The limiting for this sequence trajectory is determined

upon tending these numbers to infinity. In flat space-time

simple transitivity exists: If we specify the numbers of oscil-

lations between the first and the second and the same between

the second and the third trajectories as shown in Fig. 5.1, then

a linear combination of these determines the number of oscil-

lations between the first and the third trajectories. In a curved

space-time this relation will be non-linear. So, it is possible

to characterize this deviation from linearity as violating the

transitivity of parallelism, which might be different in differ-

ent parts of the contact space.

Fig. 5.2: In this scheme the parallelism of X1 and X2 depends on the

existence of (Y1, Y2).

A different from shown in Fig. 2.3 construction of a tra-

jectory that is parallel to a given was proposed by Marzke and

Wheeler (1964). Their contact scheme is shown in Fig. 5.2.

The parallelism of X1 and X2 follows from the similarity of

the triangles formed by the contact of Y1 and Y2. In a curved

space-time these two could, generally speaking, fail to come

into contact, so the proof fails. This scheme cannot be gener-

alized on a curved space-time, because it no longer provides

a definite trajectory, continuously tending to a parallel to the

given trajectory upon the decrease of curvature. Therefore,

the authors were bound to construct a chain as being com-

prised of piece-wise straight links. But in an acceptable con-

tact scheme, a trajectory that is not influenced by an external

force must be a single link devoid of inter-link transitions.
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The scheme in Fig. 2.3 is satisfactory in this respect.

But what is bad, if the trajectories in the sequence shown

in Fig. 5.1 were not parallel? Since the convergence of the

trajectories is specified with the infinite increase of the num-

bers of the oscillations between them, the limiting trajectory

would not be uniquely determined, provided these numbers

could tend to infinity due to a different cause. In particular,

a false sequence might occur if some its adjacent members

come into contact somewhere, so that the oscillations number

becomes infinite already here. Just to eliminate this possibil-

ity the parallelism is needed.

So far the concept of test bodies as a source of informa-

tion was basic to determine the force that accelerates a body

in CP, that is, the transitions between the tangents to its trajec-

tory. Of course, the violation of transitivity of parallelism is

able to simulate an external force on its own. It seems that it

is always possible to distinguish these situations in the same

way as it was done in Ch. 2, that is, to choose for the test bod-

ies neutral or heavy ones, the motion of which is not affected

by an external force. In so doing, it is implied that oscillat-

ing photons don’t feel this force. But if the main ingredient

of contact schemes, i.e. the trajectories of top velocity bodies

(photons) depend on curvature as well, then a curved contact

space itself as a contact scheme for free trajectories might be

applied unchanged. It is possible logically, hence must exist

in Nature, because CP is that primitive.

This peculiar interaction requiring no test bodies is known

as gravitation. Its source is the presence of bodies, which

influence in the canonical version as the motions of bodies

themselves, so also the propagation of fields. In particular,

the propagation of light possesses an interesting property (the

so-called Huygens’ tail): The contact space curvature lets the

inside of the light cone contribute to the solution.∗ In Ch. 3,

the inside of the light cone was deprived of the initial data

specification, because this contributes to the solution with the

relevant contact scheme nothing but either zero or infinity.

It might easily be found, however, that a finite contribution,

impossible in the degenerate plane case, can exist, provided

that instead of multiplying initial values by discrete natural

numbers (although tending in the limit to the dense subset of

the compact) to use a continuous function of points V(x, y).

Indeed, the differences of this function values are also ap-

proaching zero, when the points near each other upon in-

creasing their quantity in the compact area inside the cone.

In general, this possibility cannot be ignored, if it is possible

to find a contact scheme to realize the required function. The

initial value to construct this function might be (see Fig. 5.1)

the ratio of the oscillation numbers between Xi and Xi+2 to

that between Xi+1 and Xi for the symmetric positions of Xi

and Xi+2 respective Xi+1 if (Xi, Xi+1, Xi+2) exists. In particular,

∗We proceed addressing the cone as “light”, since already in the next

chapter just usual electromagnetic photons will play the decisive role in the

contact schemes for the weak and strong interactions, though in principle one

could also use the fronts of gravity field itself for the oscillations.

these trajectories might be parallel, i.e. with their triple con-

tact at infinity. In the limit, all these numbers go to infinity,

while their ratio might remain finite presenting the local con-

tact space curvature. It is 1/2 for plane contact space, and the

deviation from 1/2 will be taken as the measure of the space

curvature K(x).† The construction goes in steps. On the first

step, an auxiliary function U(x, y) for a pair of points of a ray

depending on the space curvature is defined (Fig. 5.3). To this

end, on the trajectory Xx a point x′ with its light cone is taken

close to x. As above (in Ch. 3), k trajectories are so taken be-

tween x and y that each of them is parallel to its preceding.

The distribution of these trajectories along the ray is specified

with some fixed number of oscillations n between the neigh-

boring trajectories “from cone to cone”. Then the own cone

of the point y′ positioned on the intersection of Xy with the

cone of x′ is taken. On both cones at x and y′ we construct

uniformly distributed sets, consisting of sufficiently big (not

necessary equal) quantities of photon trajectories. We chose

out of these a bunch of trajectories close to that from x to y

on the cone of x and the reciprocal bunch from the light cone

of the future of y just covering the first one. The ratio of the

quantities of the trajectories in each bunch to their total quan-

tity in the uniform distribution over the cone is analogous to

the ratio of the area occupied by the bunch to the total area of

the two-dimensional sphere of photons. In flat contact space,

their solid angles, hence the relative quantities would differ by

k2 factor. Therefore the basic function U should be the ratio

of the portions of the bunches in both spheres times k2. Then

the deviation of U from 1/2 will determine K(x) via the tran-

sitivity violation in the parallelism of measuring trajectories

as expressed with the ratios of photon oscillations numbers.

Fig. 5.3: The auxiliary function on a photon trajectory.

So far, all the construction involved only light cones, since

just the limiting status of photons provided the uniqueness to

the constructions. In the structure of the solution to the equa-

tions of fields’ propagation, this part corresponds to the sin-

†We drop here rather tedious details of constructing V(x, y) basing on

K(x), limiting ourselves to a general description of the derivation.
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gular component, corresponding to initial values specified on

the light cone itself. For the given definition of U(x, y), suffice

it to multiply by U the specified initial data at all the points

y to find the solution at x. But U could also be used to con-

struct the function V(x, y), which is needed to account for the

contribution from the inside of the light cone. It turns out that

V(x, y) might be constructed with a contact scheme by means

of iterations the schemes already developed for the singular

component of the full solution. Using in turn the cones of the

past and future, it is possible to reach all the points inside the

cone just as was done above (Fig. 3.10). Using the introduced

there operations of differentiation with coherent subdivisions

as of the photon trajectories themselves (null geodesics), so

also the constructions of their uniform distributions on light

cones, V(x, y) is being determined as the limit of the con-

vergent sequence of the functions determined by the itera-

tion on going to consequently denser sets of points inside the

cone. Two first points and the related light cones are shown

in Fig. 5.4. The function V(x, y) is being constructed as an

“inverted tree” model. In order to determine its value at x,

which depends on the values of the same function inside the

light cone of x, we need to find first its values at all points

of this cone (conveniently, in the intersections of an initial

uniform lattice). Let this lattice already formed on the light

cone of the past of x and that of the future for y. To list the

operations on the first of these cones, we choose a point of

the lattice y1 and take a similar pair of cones between y1 and

y, and form their own lattice on these. For the next iteration

step, we take y2 and so on. In order to find their own V(y1, y)

on each pair of cones, we need its values in their insides. So,

the functions V on the smaller cones are the initial values for

the larger ones, in which also the singular components of the

each step’s light cone take a part. All these infinitely getting

smaller and smaller, cone-pairs and lattices provide V(x, y) at

all points, where the initial data are specified.

Fig. 5.4: First two initial points with their light cones pairs.

In the canonical version, the presented procedure corre-

sponds to the solution of the wave equation in a curved space-

time for the values of V(x, y) at x with the initial data at the

light cone of the future of y (the so-called problem with char-

acteristic initial values). These are the values of V(x, y) itself,

where x’s as being taken now at this cone, are to be deter-

mined with the integration of U(x, y) and its derivatives. We

stress that in all contact schemes the trajectories of photons

are their actual trajectories, and it is only in the canonical ver-

sion they look curved and non-uniform. However, in contact

schemes such pictures are redundant, and they might even be

deceitful, corrupting the real problem with extra decorations.

The presence of the “tail” in the propagation of the top

velocity signal, violating the Huygens’ principle, is charac-

teristic for a curved space-time. This tail owes its existence

to the contribution from inside the light cone. The cause of

this well-known fact is evident in Fig. 5.3: The propagating

wave is being “scattered on the curvature” of the space par-

tially and multiply, so that the scattered fraction is retarded

with respect to its front upon going the longer ways. In the

canonical version this tail constitutes the non-singular part of

the Green’s function.

All this discussion belongs to the classical, that is, not

quantum contact space. This space has been constructed as

a tool for CP predictions, as a minimal structure enveloping

all possible trajectories of bodies. However, if the space cur-

vature is so strong that scattering on the curvature becomes

comparable with the scattering on the measurement orders,

then K(x) becomes probabilistic itself. So, also the presen-

tation of contacts via trajectories becomes uncertain, and the

question arises as up to what degree of curvature it is still

possible to regard the contact space as the same geometrical

structure that only fluctuates about some average. In partic-

ular, whether or not quantum effects might violate even the

topology of the space, enabling stochastic transitions across

the singular light cone?

Chapter 6. What interactions are permitted by the

Method?

To earth, then, let us assign the cubical form; . . .

the pyramid [tetrahedron] is the solid which is the

original element and seed of fire; and let us assign

the element which was next in the order of genera-

tion [octahedron] to air, and the third [icosahedron]

to water.
Plato, Timaeus

Everything expressible in terms of contacts is within the

Method and must exist in Nature. This is the principle the

classification of interactions compatible with the required for

CP geometry must follow from. It is thus natural to inquire

their accepted variety. In the framework of the Method, our

purpose is not in reducing this variety to a single interaction,

but rather to reveal the universal construction of all interac-

tions in terms of contacts. Actually, for the representation

of forces with contact schemes it is only the possibility to
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uniquely correspond at any point the trajectory of the body in

CP to that of a test body is important. Being already capable

to determine a field structure, we still stay in need to define

everywhere the universal standard of the charge for any in-

teraction. In other words, this standard, once specified at a

point, must then be unambiguously transported to each point

that is reachable with a trajectory starting at the initial point.

We have to devise a relevant contact scheme.

It is tempting to use for the transport the above defined

uniform distribution of trajectories in a sphere. In the con-

structions of integration, we used almost uniform distribu-

tions of a big (infinite in the limit) quantity of trajectories.

It was not required therefore to keep the uniformity precisely,

since small deviations from this might be ignored in the lim-

iting distributions of oscillations numbers ratios.

Quite a different situation is met with if only a few trajec-

tories are involved, while the required uniformity is precise.

In the three-dimensional flat space, as mentioned in Ch. 1,

there are only five such exactly uniform distributions of tra-

jectories over a sphere. Recall that these correspond to the

vertices of the regular polyhedrons known as the Plato bod-

ies, namely, tetrahedron (4 vertices), octahedron (6), cube (8),

icosahedron (12), dodecahedron (20). The cube might be pre-

sented as the two interlaced tetrahedrons, and the dodecahe-

dron as consisting of a cube and a group of six “dipoles”.

Although the latter is not a regular polyhedron, it might be

of interest as a complementation of the cube up to dodecahe-

dron, the richest with respect to regular substructures sphere.

Neither octahedron, nor icosahedron possesses regular sub-

structures.

Let us correspond to each polyhedron its sphere-star com-

prised of the trajectories of test bodies passing the star ver-

tices. It follows from the symmetry of a polyhedron that

these bodies have equal unity ratios of the maximum (that

is, between the neighboring pairs) oscillation numbers. If the

charges and masses of all these bodies are the same, still due

to the symmetry these ratios will remain unity in the presence

of electromagnetic, say, interaction of the bodies.

Let the star comprising bodies go exactly through its cen-

ter to depart from the star afterwards. Though in the classical

theory with the singularity at the center this is impossible, it is

possible for quantum wave packets. For the oscillations num-

bers counting, only the motion of the wave packet center is

important, while its spreading (in addition, being smoothened

for relativistic velocities) is usually of no importance, since

the packet center moves classically. However, quantum ef-

fects are important for radiation upon accelerating or deceler-

ating the bodies.

It is possible to transport the standard of charge in se-

quences to other points of the contact space (Fig. 6.1), so con-

structing a lattice to specify the charge value in CP. The exact

copying of the prime symmetry in the descendent star would

ensure the correct charge transport — its equality to the prime

value in all the descendent star generations.

Fig. 6.1: The sequences of the stars in a regular lattice.

Inside each star, the identity of the charges (and masses)

of its bodies is guarantied by the observation of the symmetry

in their motions toward the center as measured with the ra-

tios of their oscillations numbers. The copying of the charge

in generations is realized with the use as a seed for the next

star some bodies that leave the decaying previous stars. The

correctness of the copying might be checked on, provided

that in every star several bodies coming here along different

paths take a part. Then the observation of its own symmetry

means that the charge has been correctly transported along

the sequence. The lattices possessing this property will be

called regular, and their constructions will be our main con-

cern throughout this chapter. In so doing, suffice it to take just

three bodies out of the preceding stars as a seed, since these

can form a basis.∗

For visual convenience, we again shall carry the anal-

ysis out in terms of the canonical version, though actually

all the constructions might be presented solely with contact

schemes. The potential of the interaction of the star com-

prising bodies must satisfy the general for all relevant forces

condition to preserve the ratios of the oscillations numbers,

while to have a sufficiently long range to ensure the detection

of symmetry breaking with photon oscillations counting for

any size of the star — the cell of the lattice.

Among the Plato solids the cube alone possesses this

property that in the motion of comprising it bodies under their

interaction the trajectories keep straight and have the contact

at the center not only if their charges and masses are equal

but also if these are equal only in each of its two tetrahedrons

separately (Fig. 6.3). If in addition these tetrahedrons differ

only in the sense of their charges, then the bodies are being

equally accelerated by their interaction, and the symmetry as

detected with the oscillations counting is observed.

The neutrality of the star as a whole results in the com-

mon contact at its center also in the classical picture. All eight

bodies are being accelerated toward the center along straight

lines, and the symmetry remains intact under any radial de-

pendence of the interaction potential. However, this depen-

dence is not arbitrary: The potential must decrease with ra-

dius. Otherwise, even observed symmetry in stars would not

allow for the regular lattice with these stars, since the star

∗Remember the existence of the degeneration, however!
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will not decay into separate trajectories after their contact at

the center to take a part in descendent stars. The most impor-

tant example of the relevant potential, enabling the detection

of symmetry break in the cube by means of counting the os-

cillations numbers for any star size, is the electromagnetic

interaction as the only available for being directly measured

with detectors in experiments. In this implementation, the

charges of bodies are the usual electric charges, as presented

in Fig. 6.2, and the oscillating “photons” are the usual pho-

tons. (Recall that in their definition in Ch. 1, it was only im-

portant for them to move with top speed.) Note that due to

the cube symmetry magnetic field is zero on the trajectories,

and it is only electric field that effects on the motion. We call

attention to the fact that contrary to the gauging charge in an

external field, where only the charge-to-mass ratio is being

measured, the star symmetry detection requires the identity

both the masses and the absolute values of charges.

Fig. 6.2: The cube symmetry of trajectories consisting of the two

oppositely charged tetrahedrons.

This contact scheme allows for the ideal gauge of charge

upon gauging “motion-to-motion” without intermediate rods

and/or clocks, which are prone either to add something of its

own or to hide something. In order to detect asymmetry, suf-

fice it to detect the difference in the oscillations numbers by

just one oscillation. However, the infinite number of oscil-

lations brings a problem about as to how to be sure that the

symmetry is observed. Indeed, whatever number had been

counted, it might happen that upon going the process on we

would still detect asymmetry. In macroscopic measurements

no serious problems will be met, since the desired precision is

being determined in a practical CP by its application. How-

ever, if we address the issue of the minimum possible size

of the star as a cell in the regular lattice, there is no a priory

precision now, since everything is to be determined by the

limiting process itself.

In this limiting case the particles must be the lightest, to

maximize their acceleration in the interaction, so increasing

the gauge sensitivity for the smallest charge. In this gauge

procedure the mass and charge (its absolute value) must be

discrete. Indeed, if the charge, say, were to vary continuous-

ly, then however big number of oscillations had been counted

showing the symmetry as observed, a small deviation of the

charge value is still possible, such that asymmetry could be

detected, provided the counting was continued. Therefore,

some particles with the smallest charge value must exist.

These are electrons and positrons presented in Fig. 6.2.

We proceed in terms of the canonical version to keep cor-

respondence with the familiar values. In order to find the

smallest radius of the star, we consider asymmetry detection

in the star, comprised of particles with the same mass, while

the charges are the same within each of the tetrahedrons but

the charges of one of them twice as large then those of the

other. In this case, the interaction leaves the trajectories rec-

tilinear. The double charged particles will be accelerated less

than the single charged ones because of their larger repulsion.

The smallest star size corresponds to the case when, given ini-

tial radius and velocity, the single-valued tetrahedron nears

the center down to the distance corresponding to two oscilla-

tions, while the double-charged tetrahedron reaches only one

oscillation distance. In so doing, we start counting oscilla-

tions from the initial radius which is to be minimized.

The process proceeds as follows. On the large radii the

acceleration is small. In spite of the increase of the force

at smallest radii, the difference in the velocities of the tetra-

hedrons is small here because of the already large relativistic

factor. The main contribution to the inter-tetrahedron distance

is being thus collected in the vicinity of the initial radius. Ig-

noring radiation reaction under acceleration, the estimation

yields the initial radius of the order some tenths of the classi-

cal electron radius (3×10−13 cm), and initial relativistic factor

γ ∼ 3. The smallest radius the oscillation counting stops at is

of the order of 10−16 cm.

The account of the radiation reaction, relatively low for

the longitudinal acceleration, yields an additional equalizing

of the tetrahedrons’ velocities, so increasing the initial radius

of the star. It is well-known that this radiation consists of

photons with the energies up to the full energy of the particle

and the directions of emission are within the angle ∼ γ−1, so it

is only on average over many tests the particle can reach the

center. In the limit of radius much larger than the classical

electron radius, radiation consists mainly of multiplicity of

“soft” (low energy) photons, emitted independently of each

other. These might be described with a single Feynman di-

agram with many lines, infinite in the limit of low energy,

where it amounts to the classical formula of radiation power.

The relatively low probability of the emission of high energy

photons makes their average radiation reaction much lower

than that of soft photons. Therefore, to estimate the upper

limit of radiation reaction we can account for only classical

radiation reaction even on the small distances, where, strictly

speaking, the classical field theory fails.

Were radiation absent, we could construct the whole reg-

ular lattice out of symmetric stars-cells, using for the descen-

dent cells the particles slowed down to the initial velocity by
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the output potential barrier of the star. Three such particles

are enough for the basis to determine the other five in the

cube, if the twin degeneration were absent (Fig. 2.7). The

orientation of spin — along or opposite the particle veloc-

ity — makes it possible to select the needed orientation in the

cube. However, even low in each individual cell radiation, not

precluding symmetry detection inside it but steadily decreas-

ing the kinetic energy of the particles, might ruin the regular

lattice upon collecting the error in the initial velocity for the

descendent cells, since even on the atomic range the quantity

of minimal cells exceeds 105.

In order to overcome this difficulty, we have to improve

the gauge procedure. As it was found, it ends up at the radius

of the order of 10−16 cm. Over smaller radii we are free to in-

troduce any new interaction, not precluding the gauge. In par-

ticular, this interaction might alter the charge of the particle.

If this charge becomes zero, then the electromagnetic radia-

tion would disappear just in the vicinity of the center, where

it is the strongest, and its small remnant in the cell would not

prevent the gauge even over the whole lattice range. Return-

ing the charge to its initial state for the next cell, we anticipate

the construction of the lattice to become possible though not

practically but at least in principle.

The question of practical realization isn’t that important

as soon as it is only a limiting situation like the minimum size

of the cell that is under consideration. We deal here just with

the language reflecting CP statement. On a macroscopic and

even on atomic scales the motion-to-motion gauge is quite

practical, since radiation is ignorable there. In macroscopic

measurements there is no need in the charge altering since the

required quantity of cells is not that big, and it is thus possible

to use the bodies passing the star center as a seed for next

stars. In atomic scale gauge the charge might be altered in the

processes of charge exchange and stripping (ionization).

However, in the limiting situation a separate particle with

zero charge (neutrino) is needed to connect the stars. Since in

the descendent star we detect the charged particles’ symmetry

anew, we need a process of recovering the charge. To this end,

“blind” stars are introduced, consisting of neutrino and anti-

neutrino, in which their annihilation creates electron/positron

pairs to participate in the next charged star (Fig. 6.3). In the

blind star, the neutral particles cannot be gauged with usual

photons, but this is not necessary because the detection of the

observed symmetry in the next charged star is sufficient to

claim that in the intermediate blind star it was observed as

well.

Minimum three trajectories are to be received from the

ancestor stars to construct a basis of a descendent star. In so

doing, we have yet to choose an appropriate trajectory out

of the twins, otherwise no cubic star would arise at all. For

this choice the spin contact scheme developed in Ch. 4 is in

order. Indeed, any trajectory in the cube together with the

three its neighbors define the full cube star. Even two of these

three would be enough, provided the order of rounding them

Fig. 6.3: The fragment of the lattice of cubic stars.

in turn is specified in addition to distinguish the third trajec-

tory from its mirror in the basis decomposition. This order is

just equivalent to selecting one of two spin projections on the

direction of the particle motion toward the star center. How-

ever, for the definite arrangement of the descendant star out

of its predecessor we have to translate the correct spin orien-

tation through all the steps of this transition. For this to be

possible the particles of the predecessor must already have

a definite (“left” as it used to be said) orientation of its spin

projection, i.e. to be left-polarized, and also their neutrinos

must have the same spin to be kept unchanged in all transi-

tions. Besides, the dynamical correspondence of the stars is

required as well: The final velocity of the particle in the gauge

process in the predecessor must turn in the initial velocity at

the entrance of the descendant charged star.

To realize all these constructions, a new weak interaction

turns the electron/positron in the neutrino/antineutrino and

vice versa, so introducing a doublet of the weak interaction,

since its role in the gauge needs just two charge states. This

interaction must be short-ranged — of the order 10−16 cm for

not to spoil the gauge in the star by altering its charge value.

On the other hand, it acts within the same cubic symmetry,

sharing this zone with the electromagnetic interaction, so giv-

ing rise to the united “electroweak” interaction. It is therefore

natural to use for its formulation the same for all interac-

tions structure of the wave equation, as substantiated above

with the condition of preserving oscillations numbers ratios,

although now with an additional “mass” member (Yukawa

potential), providing a short range to the weak interaction.

However, this potential, though being exponentionally small

at a large distance as compared to electromagnetic interac-

tion, still penetrates into the gauge region. For not to deteri-

orate the charge gauge, we must bound the upper limit of the

coupling constant (its effective “charge”) of the weak inter-

action as compared to the electric charge. On the one hand,

the switching of charge and the dynamical effect of the weak

interaction cannot be allowed to deform the gauge so heav-
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ily as to produce an effect at the gauge minimal radius of the

order of one oscillation. On the other hand, intensity of the

weak interaction must be sufficiently high for the charge to

be switched on a short distance. To meet all these conditions,

the weak charge must be of the same order as the electron

charge.∗

Down to the radius in the weak interaction zone, at which

the switch of the charge occurs, the charged particle (the elec-

tron, say) moves under both weak and electric forces. After

the switch event only the weak force is active on the new-

born neutrino, while the electric force becomes active again

on the newborn electron after the opposite switch, now in the

blind star. For the electrical Coulomb potential, the total dy-

namic effect of acceleration/deceleration is determined with

the difference of the reciprocal values of the radii of direct

and opposite switches. It seems that the required dynamics

for matching the final velocity in the charged star to the ini-

tial velocity in the next charged star could be entrusted to the

electrical potential alone. However, apart from the unnatu-

rally specified difference of the average values of switching

in both charged and blind stars, we would also have to ne-

glect the much more probable process of the annihilation of

the electron/positron pair into two photons. The ratio of the

probabilities for annihilation and charge switch scales as γ−4,

since the cross-section for annihilation scales as γ−2, whereas

that for charge switching scales as γ2 according to the gen-

eral features of the wave-like equations. The involvement

of the weak interaction not only in the charge switching but

also in dynamics helps to solve both problems — to appro-

priately match the velocities of the electron and to suppress

annihilation. For this to be possible, the weak interaction it-

self must be able to accelerate the electron in the charged

star and accordingly decelerate the newborn electron in the

blind star to obtain the necessary for the descendent star ini-

tial velocity.

However, given the initial and final points for the series

of these switches and matches, the net dynamical effect of the

weak Coulomb potential would be zero, and to actually in-

volve the weak interaction, it is needed to turn it on and off

somewhere, just like it was for the electrical potential. Turn-

ing a force on and off is equivalent to the appearance of an

intermediate particle connecting these events. This particle

appears when the weak potential turns off and disappears (de-

cays) when it turns then on. For the small radius of the weak

interaction, this particle will be heavy its mass being propor-

tional to the argument of the exponent in the Yukawa poten-

tial. For the typical energies in the stars — γ less than 102 —

this particle might be only a virtual one, and the correct trans-

lation of neutrino polarization requires it to have an integer

spin. The minimal spin of this boson must be 1, since spin

0 cannot transport polarization. We are still free to choose

∗Of course, all these conditions are to be understood in the probabilistic

meaning of quantum mechanics.

the radius of the charge switch. This might be chosen under

the condition for the electron to reach a maximum velocity at

the switch still compatible with the required velocities match-

ing to suppress the effect of its annihilation adverse for the

gauge.

Different behavior of the left- and right-handed particles

in the weak interaction is called its parity violation. Their dy-

namics remains similar in the weak interaction, provided the

reverse of polarization is combined with that of the charge

sense. Indeed, the opposite positions of electrons and posi-

trons on the diagonals of the cube star correspond to their op-

posite polarizations, since it is the same interaction that turns

the electron into its neutrino and the positron into its antineu-

trino.

For the short range of the weak interaction, the charge

switch cross section is small and great many left-handed elec-

trons fail to turn into neutrinos. They pass the center of the

charged star, and loosing a part of their energy in radiation,

however low, are not able to pass the exit potential barrier.

They return to the star center changing polarization, so not be-

ing able to become neutrinos. Being reflected once again they

now become able to turn into neutrinos. However, for this to

be possible the opposite positrons must move quite similarly,

and the probability of this event, equal to the product of their

probabilities, is low: Typically their radiation losses differ,

and they will not reach the weak zone at once. Even if this

happens, their neutrinos will be belated with respect to those

experienced normal transitions.

We have also to consider the destiny of right-polarized

electrons (if these are present in the star). These produce

no neutrinos, but being reflected by the exit barrier, come

back to the center as left-polarized and together with anal-

ogous positrons might admixture false neutrinos to normal

anti-neutrinos that have been created by positrons. We can

essentially suppress this adverse process providing the weak

interaction with an additional dynamical property to slow the

right-polarized electrons down, so favoring their annihilation

even with normal right-polarized primary positrons.

We are now in the position to complete the analysis es-

timating the weak interaction coupling constant in terms of

the electron charge. Currently this value is specified with the

“weak interaction angle” θw. The above considered transition

conditions yield sin θw ∼ 0.5, in agreement with the measured

value.

The symmetrical cube star provides the ideal gauge of the

electric charge standard by means of transporting its value

along the regular lattice. However, in an individual star-cell

it might be possible to “simulate” the symmetry, substituting

some of the particles with “false” ones in such a way that pho-

ton oscillations counting would not “notice” the substitution.

We could try to change, for instance, the mass of two particles

positioned on the same diagonal of the cube. If these parti-

cles are sufficiently heavy, while their charges are the same

as those of other particles, then the remaining electrons and
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positrons will influence their motion but weakly, and the false

particles might reach the weak interaction zone at once with

the electrons. The back influence of the false particles on the

electrons might be small far from the center where the main

part of the difference in the photon oscillations numbers be-

tween the tetrahedrons is being collected, were the symmetry

broken.

For so heavy particles their acceleration, so also radia-

tion, might be small, and contrary to the electron they might

move from one star to the next not needing to cancel their

charges. Perhaps, some such arrangements are able to sup-

port the symmetry test in the individual cell with the photon

oscillations counting at some particular initial data. And pro-

vided this is possible, is it also possible to develop the whole

regular lattice comprised of such cells or, at least, a consider-

able fragment of it?

To address this issue, we have to solve a rather compli-

cated full system of the nonlinear equations of motion ac-

counting also for radiation. We will limit ourselves to esti-

mations with the following assumptions. First, we’ll search

for the false particles’ trajectories disregarding their radiation

and only afterwards calculating their radiated energy with the

classical field theory formula that is correct for the small clas-

sical radius of a heavy particle. Second, the motion of the

false particles being our main concern, we’ll describe the ef-

fect of electrons on them with some averaged “background”,

checking afterwards the validity of this assumption varying

this background within some reasonable limits. Third, we

carry out the numerical solution under the same initial data

for electrons as it was mentioned above for their original star.

Using the final value of the particle’s velocity at the center

as an initial for the next cell, we’ll follow its destiny in the

lattice.

The full cube symmetry allows for two sub-symmetries.

In the first sub-symmetry a diagonal is replaced with the false

particle/antiparticle, while in the second sub-symmetry two

diagonals are such. There are no other sub-symmetries in the

cube, since the next replacement just brings us to the first,

though with the star radius that exceeds the limiting value.

In the first sub-symmetry, the trajectories of the false parti-

cles are still straight lines, whereas the remaining three elec-

tron/positron pairs move along curved trajectories, however,

being identical — each one with respect to its own plane,

these planes intersecting over the trajectory of the false par-

ticle. It turned out in the numerical calculation that at some

value of the ratio of the false particles’ mass to that of the

electron, the final values of its radius and velocity in the cell,

though differing from that of electrons, return to their initial

values at the next cell, and this behavior repeats itself in-

finitely within the precision of the calculation (10−6). For

other mass values the disparity increases monotonously, and

the construction of the regular lattice is impossible. In this

equilibrium cycle, the mass of the false particle is close to

that of the τ-meson. The radiation is therefore low, and it

doesn’t shift this value within the calculation precision.

In the second sub-symmetry, two pairs of false particles

and two pairs of electrons move in their own planes: one

for false particles, another for electrons. The planes intersect

at right angles, and in each of them the particles move over

differently curved trajectories, though in each plane they are

symmetrical with respect to the center. The numerical calcu-

lation also demonstrates the existence of infinitely repeated

cycles, though now consisting not of two but of four succes-

sive cells. The value of the related mass ratio in the equi-

librium cycle was found roughly equal to the µ-meson mass.

However, this time the calculation is by far not that reliable as

for the first sub-symmetry, since for the curved trajectory and

lighter µ-meson its radiation is no longer negligible. There-

fore, now our result yields only the rough upper boundary of

the meson mass’ ratio to that of the electron. However, in

view of strong differences in the ratios of the mesons’ masses

to that of the electron, these results look sufficiently reliable

to explain the existence of the lepton families. Both mesons

must possess their own neutrinos to avoid false intersections

in long series of cells.

The six-dipole system of “roofs” completes the cube up

to the richest Plato solid, i.e. having the maximum quantity

of trajectories — the dodecahedron with its twenty vertices.

These six dipoles are positioned under right angles to each

other. Though not being a regular polyhedron, this system, if

considered as a separate star, still possesses its own, indepen-

dent of the cube equilibrium state — the common contact at

the center. As distinct from a regular star, keeping its equi-

librium upon the motion of the particles toward the center for

any dependence of the interaction potential on distance, the

six-dipole system keeps the equilibrium only if this potential

increases as the distance squared. This property is not some-

thing specific to this system only. It holds for any sphere with

equally charged particles if the sum of all their position vec-

tors is zero. However in this case, it is important that after

the removal of a regular structure — the cube — from an also

regular structure — the dodecahedron — something capable

of supporting equilibrium still remains. Of course, this poten-

tial must be attractive; otherwise the particles could not reach

the center.

Such radial increasing potential has properties peculiar to

the strong interaction, namely, confinement and asymptotic

freedom. The first prevents the star comprising particles to

leave the cell. These particles are called quarks. The sec-

ond property suggests the trajectory of a body scattered in

the vicinity of the star center to move freely experiencing no

influence from the quarks, that is, to behave much like mea-

suring trajectories.

Just as for the weak interaction, we have first of all to

take care for this new force not to destroy the cube symmetry.

The influence of the strong interaction on the cube particles

is removed simply with the condition for leptons not to feel

this force. However, the own arrangement of the six-dipole
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system doesn’t define as yet the full dodecahedron symme-

try. First, we have to specify in a way the angular position

of this system relative to the cube by means of photon oscil-

lation counting. Second, the reciprocal angular positions of

the quarks themselves isn’t specified completely, because the

equilibrium of their arrangement under the strong interaction

would not be destroyed in deformations leaving the opposite

quarks on their common diagonal upon its rotations.

The correct positions of the quarks as respective to the ba-

sic cube, so also among themselves, by means of oscillations

numbers counting with the usual electromagnetic photons im-

plies the quarks to be electrically charged. No distribution of

this charge is able to completely remove their adverse influ-

ence on cube symmetry, and it is also impossible to remove

the back influence of the leptons on the quarks. However, un-

der some conditions these perturbations might be small, while

the oscillations numbers counting might be carried outside

the individual star, using the regularity of the full lattice (see

below — Fig. 6.4 and the related discussion).

Let us try to arrange a regular lattice comprised of stars-

dodecahedrons. We had already the lattice of cubes (Fig. 6.3).

Now we are to complete it with the inter-cell transitions con-

necting the six-dipole systems. But this is forbidden with the

quarks confinement by the radial increasing strong attractive

potential. Therefore, this potential must weaken at a larger ra-

dius. Only then the united twelve quark system would be able

to decay in six dipoles, since the distance between quarks in

a dipole is less than that between each of them and any other

quark in the system. With an appropriate choice of inten-

sity and radial function of the attraction law, it is possible to

reach the minimum energy quantum bound state of the dipole,

while the bound states of its quarks with other quarks were

impossible. The necessary suppressing of the strong force on

large distances is interpreted as reciprocal compensation of

the strong charge outside the dipole. Hence, the dipole must

consist of quark and anti-quark just as it takes place on the

diagonals of the twelve quarks system inside the dodecahe-

dron. The bound state of quark and its anti-quark are called

π-mesons. They are just these sub-systems of the full dipole

system that are suggested to tie together the sequences of the

stars in the total regular lattice (Fig. 6.4).

To reduce the influence of charged quarks on the own

cube symmetry measurements, their merging in mesons is to

be completed in the vicinity of the center where the dispar-

ity between the tetrahedrons cannot be collected as yet for

one photon oscillation. The meson must be electrically neu-

tral (π0) in their disparity collection dominating zone. On the

other hand, the strong interaction must not destroy the weak

interaction. For this to be the case, the characteristic range of

the strong interaction should be of the order of 10−15 cm.

Then the π0-mesons are to be transformed in the auxiliary

octahedrons to create the charged π±-mesons for the symme-

try to be checked on with the oscillating photons ratios count-

ing at their intersection point. These ratios must be equal 1.

Fig. 6.4: a) Creation of the π-meson out of quark and anti-quark. b)

Inter-cell transitions with π-mesons in the full regular lattice.

Besides this condition violation, the symmetry could also be

destroyed if the triple contact decays into two simple, so that

some of these ratios turn infinite. The total lengths of the

three-leg meson trajectories could always be so chosen that

in the next dodecahedron its center be reached by all the par-

ticles at once.

Again, it turns out that this task cannot be achieved ex-

actly. Even in the neutral as a whole octahedron, there is no

equilibrium distribution of its six charges. An approximate

equilibrium, as specified by the condition of their missing the

center at a distance less than that for the utmost short-range

weak interaction, is possible only with the increase of the me-

son mass. In particular, it is just the weak interaction that is

responsible for the charge exchange in quarks upon the trans-

formation of the neutral mesons in the charged ones and vice

versa. The estimation of the deviation of the π-meson from

the center within the weak interaction zone yields for it mass

the value of the order of 200 electron’s mass.

In Fig. 6.4, the meson trajectories needed for the gauge of

the strong interaction have not two legs as it was for the weak

interaction but three legs, so allowing for three strong charge

switches to constitute its triplet. In analogy with the human

color vision these charge states are named as red, green and

blue. The color exchange is realized in the triple contact of

the charged π-mesons. In these terms, the slowing down of

the increase of the strong potential at large distances might

be interpreted as the reciprocal compensation of the colors,

for example, that of the red quark and its anti-red partner

bounded in the π-meson.

With the values of the strong interaction range and the

π-meson’s mass, it is possible to estimate the masses of the
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quarks belonging to the lightest family, considering the

ground state of the full six-dipole system near the star cen-

ter and their bound states, mesons, at larger distances. In the

intermediate range, the interaction potential must change in

such a way that the correct contact scheme be observed.

Importantly, it is just the irregularity of the six-dipole sys-

tem that makes the decay possible. It cannot happen in a reg-

ular star with its equal inter-ray distances. The possibility

for the six-dipole system to decay into separate mesons deter-

mines the coupling constant value and the form of the strong

potential that correspond to the first quantum level. With

these data we can determine the force accelerating the quarks

toward the center. This force has no transverse components,

since the equilibrium is inert with respect to rotations of the

oppositely positioned quark/anti-quark line around the center.

On the opposite, for the electric field only the lateral compo-

nent is important, while the longitudinal might be neglected

as compared to the strong field. This gives the estimation of

the range for “missing” the center by a quark, and its mass is

determined by the condition, that this range does not exceed

the weak interaction range. In the simplest model with the

potential, increasing squarely to be replaced with rectangular

“bag”, this mass turns out to be about 10 times more than that

of the electron — close to the known value.

However, the accelerated by the strong force electrically

charged quarks must lose their energy by radiation under so

high strong field acceleration. And then, quite similarly to

what we met with for the cube, they would not be able to

overcome the exit potential barrier with a noticeable probabil-

ity, and the system of the dipoles would not be able to decay

into separate mesons. However, the strong interaction must

emit its own “photons” as well, and this radiation must be

much more intensive than the electromagnetic radiation due

to the higher value of the strong charge. Then, the radiation

reaction would be accordingly strong, making the resulting

acceleration small, so suppressing electromagnetic radiation,

while the quanta of the strong interaction, gluons, must be de-

prived of leaving the strong interaction zone. Otherwise, this

interaction could not have that short range, so violating the

basic electric charge gauge. The gluons will thus return the

energy to the quarks leaving the star in its decay.

The regular lattice with the dodecahedron symmetry ex-

hausts the totality of possible interactions. In the last account,

these interactions exist and are tied together solely by the pro-

cedure of the electric charge gauging, requiring compatibility

with this gauge. The intrinsic for CP constructions of trajec-

tories in terms of contacts define the interactions that we are

able to recognize in Nature, to distinguish and comprehend

what we should pay attention to, aiming in reliable predic-

tions. Being designed in accord with CP, our experimental

devices are capable to discern only these interactions. As for

gravitation, actually it is not a force at all, but rather a general

geometrical structure of force-free trajectories.

Part Two. What For?

The answer to a question which philosophy fails to

answer is this that the question should be asked in

a different way.
G. W. Hegel

Chapter 7. Repeatability

Like ordinary knowledge, in dealing with things

science is concerned only with the aspect of rep-

etition. Though the whole be original, science will

always manage to analyze it into elements or as-

pects which are approximately a reproduction of

the past.
H. Bergson, Creative Evolution

The demand for the universal repeatability of all construc-

tions is fundamental in the Method. For this to be possible,

the mental constructions contained in the theory must satisfy

the condition of non-ambiguity. In the same way, the result

of an experiment is regarded as being satisfactory only if it

provides a non-ambiguous result, surviving the related check-

on always and everywhere. To this end, in the very setup of

the experiment, one has to ensure pure conditions, and it is

the main concern of the experimenter to reach a result that is

free from circumstances, if these are unaccounted for and/or

brought about by particulars. The experiment is by no means

to be confused with experience!

Structures considered in previous chapters are suitable

only as a framework of the Method, as basics of the system-

atic approach. They do not provide predictions themselves,

still requiring knowledge of external influences up to the final

contact. They are formal, hence useless for immediate appli-

cations. This is a property of all mental — mathematical —

schemes. For example, expansions in infinite functional se-

ries yield nothing, since to specify all the coefficients is the

same as to specify the initial function. Only limited preci-

sion (for appropriate convergence of the series) makes sense,

letting one to take into account only a finite number of the ex-

pansion members. For the same reason, true physics consists

of particular cases, such as the field of a point charge, oscil-

lations, collisions etc. In all such cases external interaction is

given everywhere in advance. The Method is useful only as a

general line of thought.

Unlike simple repeatability that is in the heart of any ex-

perience, some sufficiently artificial conditions on experi-

ments related to basic constituents of the Method are to be

fulfilled to ensure universal and non-ambiguous repeatabil-

ity. Therefore, the very question, which is intended to be

answered by the experiment, should be sufficiently primitive

for the result of the study to be somehow used in real life.

Even then, the restrictions on the setup coming from the non-

ambiguity requirement are so heavy, that usually only thor-

oughly arranged set-ups, made up of diverse and not exactly

repeatable elements of Nature, are capable to withstand them.
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However meager, the set of satisfactory constructions is in the

base of all our technology, just because of the possibility of

unlimited repeating and combining simple and standard oper-

ations, each one being diligently verified in the related exper-

iment.

It is of no wonder therefore (though having frequently

been under discussion) that almost any mathematical device,

though arising initially as pure mental exercises, happens to

find further on some applications to the theories of the

Method. This is because they are being developed under the

same conditions of non-ambiguity. Just as the experiment de-

pends on a priory conceptions (Einstein: “One cannot mea-

sure the velocity of light otherwise than having in advance

a ready concept of velocity.”), so also the theory rejects any

ambiguity. Just as physics studies what “is”, i.e. what do we

wish and are capable to discern, so also mathematics studies

what “could be”, i.e. what we are capable of recognizing. It is

the most important deduction from the first part of this book,

that the demand for absolute repeatability results in this that

the language of the Method is so meager, squeezing words

down to terms, so that everything capable of being expressed

with it, would necessarily be found in the stock of reality. It

follows, that also the results of experiments should, in gen-

eral, be conditioned by the very language of the Method, so

being predicted in advance.

As Kant noticed (“Prolegomena to Any Future Metha-

physics”): “Even the main proposition expounded throughout

this section — that universal laws of nature can be distinctly

known a priori — leads naturally to the proposition: that the

highest legislation of nature must lie in ourselves, i.e., in our

understanding, and we must not seek the universal laws of

nature in nature by means of experience, but conversely must

seek nature, as to its universal conformity to law, in the con-

ditions of the possibility of experience, which lie in our sen-

sibility and in our understanding. For how were it otherwise

possible to know a priory these laws, as they are not rules of

analytical cognition, but truly synthetic extensions of it?

Such a necessary agreement of the principles of possible

experience with the laws of the possibility of nature, can only

proceed from one of two reasons: either these laws are drawn

from nature by means of experience, or conversely nature is

derived from the laws of the possibility of experience in gen-

eral, and is quite the same as the mere universal conformity

to law of the latter. The former is self-contradictory, for the

universal laws of nature can and must be known a priori (that

is, independent of all experience), and be the foundation of

all empirical use of the understanding; the latter alternative

therefore alone remains.”

However paradoxical this might seem, all the fundamen-

tal structures of the Method could be dreamt up, and it is not

necessary to perform experiments for their checking on. In-

deed, whenever we fail to reach non-ambiguous repeatability,

we merely say with disapproval that this is not science, be-

cause it is not suitable for the expected applications. But one

might clearly find in this an upbringing in the spirit of re-

jecting as inessential everything not governed by the Method,

and then of believing that everything deserving attention will

sometime be “explained” by science. The widespread opinion

on the objectivity of the Method expresses its independence

of a particular point of view. The latter, however, plays a

decisive role in applications.

Let us imagine an uneven, rough surface. Suppose it is the

relief of a place. A giant with his soles much larger than the

highest mountains is interested in this relief only in respect

to its friction, for not to slip; a dwarf is concerned with the

nearest mountain as to how to climb up; a pilot should look at

the highest peaks; while somebody suffering travel sickness

pays attention to the periodicity of the road profile. Which

of them sees the surface “genuinely”? It might be said that

there is a point-wise description of the surface as a function

of some variables, and everybody could draw from this func-

tion whatever he is interested in. But how should this function

be found in practice? Every measurement has some finite pre-

cision. Now, will the giant measure every mountain, or will

the dwarf look for the harmonics of the structure? Everyone

deals with the same surface. Everyone reveals some its fea-

tures from his point of view. These features would just not

be found in either a different profile, so also with a different

method of analysis. It is senseless therefore to claim that the

surface “objectively” possesses some particular properties. It

only admits them. In any observation, referring to peaks and

depressions, a priory intention is present to look for them, to

select them out of infinite variety of features and shadows. On

the other hand, the surface is not something amorphous, such

that any analysis, like a stencil, would find in it everything it

is tuned for. Our surface is a unique thing, and as such, it is

not bound to obey some general rules.

In the same sense, the World as a whole is unique and it

is such as it is. It might be convenient, in theoretical con-

structions, to imagine different worlds, e.g., a class of them,

containing our World as its element. However, there are in-

finitely many such schemes, and they might be of value only

in as much as one can draw some conclusion about our unique

World with his a priory accepted point of view. By the same

argument, it is impossible to “objectively” regard the World

as either or not changing. Taking once again the mentioned

above surface for a model of the World, assume, for instance,

that its profile is changing with time. How could we not only

measure, but even to detect this changing? We cannot ap-

ply an external ruler, because there is nothing external to the

World. A comparison of different parts of it requires time.

Over this time both the World and the ruler might change.

How to distinguish between change and measurement?

This depends on the measurement precision as assumed in

accord with a priory position. The acceptable precision is de-

fined by the implied application of the solution, but the very

fact that in every problem some finite precision must be ac-

cepted is a principal property of the Method. The main axiom
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of CP requires the meaning of the final contact to be recog-

nized by the user prior to addressing the Method to receive

its recommendations. The user has first to define as to what

actually means for him the occurrence or non-occurrence of

this contact. Recall that the Method is based just on axioms,

and not on hypotheses. It contains mental schemes to pro-

vide non-ambiguous recommendations, if the user succeeds

in according the basic concepts of the Method with his ac-

tual circumstances, just like a tool is being usually chosen

for the purpose. The Method itself makes no assumptions on

the “construction of Nature”, and every time the user should

be asked whether or not some axiom meets his purpose, and

only then he might be provided with a solution to recommend

him a way of action. It is in this respect only, that the putative

cause-and-effect problem makes sense in the Method. The ef-

fect is something of interest of its own, while its cause might

be of importance only insofar as it is capable of realizing just

this effect. The effect is being defined by the user as some-

thing external to the problem, while its causes are being ex-

amined inside the problem and only in this respect. An effect

might have different causes, as well as the cause might bring

about different effects, but the cause-effect relationship of its

own belongs to the Method.

In CP, as we have defined it in the very beginning, it is

just a contact that is in question, which is a point in the con-

tact space, rather than an “event in general” in the canonical

version with its space-time given in advance. On the con-

trary, the contact space with its points and features, as we

have found, is to be defined by the requirements of CP. One

has to recognize what are bodies, participating in contacts.

The main axiom consists just in that the user does know this,

i.e. that he understands the results of the contact and devel-

ops a definition of body as something to take part in it. This

is by no means possible in every situation: A cloud moves

along its trajectory and it is expected to obscure the sun, but

the cloud diffuses or thaws out. In many cases, even an ex-

periment is needed just to learn whether or not some axiom is

of interest in the given situation. The wide realm of CP appli-

cations stems, as already mentioned, from the warranty of its

predictions, as soon as the problem might be reduced to CP.

However in an absolute sense, neither bodies nor their

contacts — nothing like these do actually exist. Each time

one has to isolate something from the participation of every-

thing everywhere and from the interaction of everything with

everything. All bodies emit various fields penetrating all oth-

ers; the body might change in a way, still being considered the

same in the problem; also the motion itself might have differ-

ent meanings. The World is a whole, and it is the only real

“thing”, that possesses its absolute and perfect reality. The

picking up of a particular body out of the World is only being

possible by means of ignoring its infinite “inessential” con-

nections and influences. Upon denoting various mountains

with the same word “mountain” one implies (potentially) a

definite action in respect to something so denoted in spite

of various dissimilarities between particular mountains. This

doesn’t mean that the mountain doesn’t exist objectively, in-

dependently of its perception by the subject. This does mean

that without his intention to use in a way this term, he might

simply not notice this mountain, it might be “of no impor-

tance” for him. Three hairs on my head — it is too few,

whereas three hairs in my soup — it is too many. What is

important and what is not, even if there is a many-order dif-

ference of a value, each time depends on a particular prob-

lem. How small should be the mountain for not to appear as

a mountain? The wholeness of the World consists exactly in

the absence of a universal measure for this importance.

The concept of contact is the only one “entering” device

that is offered in CP to the user as a possible tool to reach

his purpose; it is an operational concept, an equivalent of

the bit of information on whether or not the contact exists.

In this sense, the contact is always point-wise, even though

the bodies taking part in it are extended. The contact is not

something discovered in Nature, but only a recommendation

to approach the problem: What are the means the attention

should first be paid to? Like all other constructions in CP,

contacts are recommended for trying to single them out in

order to obtain reliable predictions with the general methods

of CP.

If the scheme is devoid of the top speed, then time is to

be defined with the use of an external independent device —

the clock. In the Einstein’s relativity theory this necessity

is mitigated just due to the existence of an upper limit for

velocity (not necessarily being the same in different points).

However, clocks are not eliminated completely, but they are

only being correlated with the top speed signal. The con-

tact schemes used above are “relativistic” from the outset,

according to the very logic of the operations, so there was

no need in either rods or clocks (even as an affine parame-

ter). In the canonical version, the related to these schemes

measuring procedures give rise to the existence of a univer-

sal constant, i.e. a top speed (light). In the same way, the

minimum disturbance of motion with measurements implies

another universal constant, that of Planck. This similarity in

the structures of the theory of relativity and the quantum the-

ory has been constantly appreciated by Bohr. In general, any

universal constant springs up from the related measurement

procedure either on its extremes or on its discontinuities. So

in CP, the discreteness of the electron charge and mass results

from the difference in just one photon oscillation required for

the difference in these oscillations numbers to detect the cube

star symmetry.

The putative successes of the technology based on the

Method brought about the perception of its almighty, its ca-

pability to “explain” everything, to answer all “reasonable”

questions. Complex systems, as constructed by means of sim-

ple operations of the Method, demonstrate its efficacy. Along

with this, however, a question springs up about utmost capa-

bilities of the Method, since the pressure of successes along a
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definite line of thought has a tendency, as a rule, to suppress

the development of alternative solutions, and all the more, the

asking of new unusual questions.

As an example, we consider artificial construction of a

living creature. This process seems to be available at some

level of technology. At least, no certain prohibitions seem

to exist there, since the coherence of the quantum state of a

whole system decreases with its complexity. Therefore, the

individual process might be multiply repeated with arbitrary

precision using the operations of the Method, so obtaining

identical copies. We emphasize, that they are not just or-

ganisms with some generally described “desirable” properties

that are in question, but completely identical copies uniquely

reacting on everything. Is it possible to regard them as living

indeed? How, for instance, will they communicate among

themselves? Whatever difference will be found, this would

mean the interference of something beyond the Method. And

what if a further difference in the external circumstances de-

stroys their identity, should the Method account for these as

well? Then the whole World should be under control.

The process of creating a complex system inside the

Method, i.e. by means of simple combining its operations,

is quite arbitrary, and it is only by chance that it can produce

a result to be of interest for the user. As a rule, some prelim-

inary description of the desirable in external to the Method

terms is needed, so that only afterward one can correspond

(if possible) the definitions and structures of the Method to

this particular problem. To this end, the thought scheme itself

as a scheme of the transition from one state to another is im-

portant in its own right quite independently of what actually

is being considered to be a state, provided it is meaningful

for the given application to pick up a situation suitable for the

concept of the final contact to be introduced, which might cor-

respond to the externally defined aim. As well as a collision,

it is also a transition from one state of motion to another or

something else that might be in question. The thought scheme

of its own might be the same, while its content, that is, the

identification of required elements in the World, each time

presents a practical problem. CP schemes are recommended

for applications in virtue of their definite predictions.

In the description of the Method in this book, we restrict

ourselves to only one of existing ways to realize repeatabil-

ity, considering some basic contact schemes. These belong to

that part o the Method that is called physics. It consists, as

we have seen, in applications of CP in various situations of

interest for practice. In order to get an idea about the place of

physics in the general framework of the Method, it is useful to

delineate, however superficially, some other means to reach a

complete or partial repeatability, just for not to make impres-

sion that physics exhausts all the content of the Method. It

is not always necessary to avoid contacts with a cobra; one

might develop insensitivity to its poison or tame the snake.

The tendency to represent a practical situation as a com-

bination of simpler elements, of which it “is comprised”, is

not a feature of only physics with its decomposition into sep-

arate contacts. Repeatability is reached, for instance, in writ-

ten word, in which the decomposition elements are signs, and

not at all the atoms these are being comprised of. A poem

as written with different typing or spoken aloud is the same

poem, though its physical realization is quite different.

In contrast to CP, in which they seek to distinguish the

objects of the study according to minimum possible informa-

tion, in other applications of the Method just the opposite is

useful, viz., the detection of a great many fine details. For the

examples, one might think of the methods in zoology, arche-

ology or art.

Repeatability is required to make predictions basing on

past experience. The sharply specified method using univer-

sally applicable elementary structures of CP implies a strictly

identical comprehension of all its operations by all users.

However, in practice, information referring to a particular

person is of no less importance. Such are messages in tribe

languages with their hints and reticence, not to be understood

by foreigners. Such are also the items of art, as differently

perceived by different people and intentionally referring to

individual responses. These evident for all examples we have

presented here exclusively for “to show CP its place” in the

Method.

Chapter 8. Light of expired stars

Wagner. Excuse me! But it is a great delight

To enter in the spirit of the ages and to see

How once a sage before us thought and then how we

Have brought things on at last to such a splendid height.

I. W. Goethe, Faust

Specifically orientated extractions (as selected according to

the author’s preference) from some works this chapter is de-

voted to, have the only purpose to present the examples of

the line of thought from the past that has initiated the anal-

ysis developed in this book. The author hopes that internal

logic of the above discussion is convincing of its own. How-

ever, any approach that is different from the canon creates

an impression of unexpectedness, the absence of predeces-

sors. It often occurs, however, that their particular ideas, even

though of little appreciation in the following generations, cre-

ate nevertheless a general intellectual air, which influences

the very way of studies. To reveal this support from the past,

though perhaps only indirectly, it is useful not just to appre-

ciate the contribution of the predecessors, but also to con-

nect the Method, narrowly specialized, as we have seen, with

the ideas and trends beyond its limits and in other realms of

knowledge.

The most popular question that was a demarcation be-

tween philosophers’ trends ever since the ancients, concern-

ing the materialistic or idealistic perception of the World as to

“what is the first, and what is the second”, refers actually not

to the World of its own, but rather to things, comprising it in a
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“self-evident way”. This self-evidence has been considerably

shattered with the introduction of field theories in XIX cen-

tury and especially of the quantum theory in XX. Unlimitedly

spreading, even in bound states, wave functions form a united

system upon interlacing. However many orders of magni-

tude these functions fall off, the condition of independence of

the objects of each other completely depends on a particular

problem, and no general criterion does exist. Therefore, the

very subdivision of the whole World into separate, sharply

isolated from each other entities, i.e. “things”, that has been

perceived over centuries as an unquestionable fact, became

questioned. Though the roots of these problems might be fol-

lowed already since ancient authors, we deem that particu-

larly clearly they have been stated by Kant in his Critique

of Pure Reason. We shall begin with this work, widely us-

ing (by necessity, lengthy) citations and each time comparing

these with CP.

In contrast to the tradition, dating back to Plato and com-

mon to Plotinus, Spinoza, Leibniz, Hegel and many others,

of “external” (though some own for each philosopher) glance

at the “self”, all the Kant’s analysis is being carried out “on

behalf of the self”. In this respect, he follows the philosophic

credo of Socrates, and, in turn, finds his successors, explicitly

or implicitly, in the works of existentialists.

People sharing the external approach are mostly inter-

ested with general “systems of universe”, as being given from

scratch. They consider it (most) important to define, in the

framework of a suggested general scheme, what is self and his

destiny, what is life, what is its “meaning” and so on. On the

contrary, those supporting the existentialism hold a paradigm

“existence precedes essence”. Contrary to Descartes, they

feel no need to prove the very fact of the existence of self,

even with his “doubtlessness of doubt”. The existence of self

is being taken as an initially given fact, requiring no further

examination, and it is just from this point of view that all the

other world should be perceived (including all other persons

as well as “external” perceptions of the self: “my hand”), if

only for this reason, that for the already existing self there is

nobody to perceive this world instead of him, and, most of

all, there is no need to. And the essence, i.e. “properties” of

the self, as revealed by the self or somebody else and possibly

changing, though not destroying its self-identification, is sec-

ondary. This approach belongs to the founded by Kant tradi-

tion, as confirmed, in particular, by a true, no doubt, existen-

tialist Heidegger in his Kant and the problem of metaphysics.

Kant begins with the observation: “But, though all our

knowledge begins with experience, it by no means follows

that all arises out of experience. For, on the contrary, it is

quite possible that our empirical knowledge is a compound

of that which we receive through impressions, and that which

the faculty of cognition supplies from itself. . . ”

But it is just this duality of knowledge that is in the origin

of the Method, as it has been presented above. CP is nothing

else as a basing on pure logical procedures a priory scheme,

the advantage of which is in the guarantee of its prediction,

so long as the correspondence between the elements of the

scheme and the real situation has been carried out reason-

ably. This is quite opposite to the approach in “phenomenol-

ogy” (Husserl and his successors), in which it is proposed to

choose first some actual situation, for example, some object,

and further to remove, in thought, its “inessential” features,

striving to extract its “ideal meaning”. Such a procedure is

impossible in the Method, because there is no way even to

single out a particular object from the whole Nature without

some a priory accepted operations that express intentions of

the self.

Kant first of all subdivides knowledge on “empirical”, that

is, supplied by senses, and “a priory”, not depending on expe-

rience. The latter might, however, turn out to result from ex-

perience (perhaps, unintentionally or partially), or from much

earlier or a more general meaning. He calls some knowledge

“pure”, if it depends on no experience at all. As an exam-

ple of a priory though not a pure proposition, Kant presents:

“any change has its cause”, though noticing that the concept

“change” might be drawn from experience only.

According to the Kant’s classification, a “synthetic” judg-

ment connects things or phenomena of different kinds, as dis-

tinct from “analytical” judgments, which follow immediately

from the given definitions. Thus (according to Kant’s opin-

ion) the judgment “all bodies possess extension” is analytical,

whereas “all bodies possess weight” is synthetic, because in

the first case the negation of the predicate (“possess exten-

sion”) leads to a logically impossible judgment, while it is

not so in the second. Kant considers extension as implied in

the very idea of body, whereas weight is its property not con-

tained in its definition and known only from experience. In

CP, the first judgment is synthetic as well. For bodies, the

sizes of which are small as compared to the distance between

them, their own extension is of no importance; hence, it is

not contained in the idea of “body”, considered point-wise.

Though in CP approach extension is not primal, but rather

coming as a scheme brought into existence via point-wise —

by definition — contacts, the Kant’s classification of judg-

ments as either analytical or synthetic is fundamental for the

Method in general and for CP in particular.

The main question of Kant is how possible “synthetic

a priory judgments”, arising in mind still before sense data

are presented to it. His problem roots in the impossibility

of matching arbitrary “fantasies” of conscience to practical

circumstances. In his XVIII century, Kant still held the tra-

ditional conception of the clear separation of “things”. This

conception was not shattered as yet by the ideas, due to New-

ton, on the gravity as connecting bodies. Newton, as well as

his successors before Maxwell, never considered field an in-

dependent substance, but rather a mere property of things like

color or smell.

Independently of being perceived by the subject, exist-

ing things by only some of their features acting on senses to

140 Felix Tselnik. Irony of the Method



Issue 2 (Special Issue) PROGRESS IN PHYSICS Volume 12 (2016)

form impressions, are being framed in the mind as intuitions,

while something is always left unperceived, hidden. And it is

not known how this “something” will come into play under

comparing representations a priory with reality. Convinced

in this that things are “objectively” separated, Kant pays nev-

ertheless attention to the fact that the notions of reason can-

not base on abstractions from something belonging to things

themselves, since the senses do not perceive everything (so,

the eye doesn’t see ultraviolet component of light), and there

is a censorship by the conscience of their data for its own

need. Kant therefore distinguishes a “thing-in-itself” from a

“thing-for-us”, actually operating solely with the latter.

In this respect, there arises the problem of a priory pos-

sibility of the cause-effect connection, as had been stated by

Hume and incited Kant to think on all these problems (accord-

ing to his own confession). For the Method, as presented here,

things-in-itself simply do not exist, because the very process

of singling a thing out of the World (the only really existing

thing-in-itself) depends on him who perceives, and he always

do this purposefully (“intuits”). Then, the cause-effect rela-

tionship means nothing else than the declaration of the initial

position of the self. Being interested in the event-effect, he

searches for its events-causes, filtering away as deserving no

attention everything that doesn’t bring about the event of his

interest. This is his perception of the World in this actual situ-

ation. The incompleteness of perception is, in effect, the same

thing as the uncertainty of singling out, whereas an attempt of

absolutely perfect perception implies the account of all con-

nections, however small, that is, the involvement of the whole

World in any phenomenon to be considered. “The bodies we

perceive are, so to speak, cut out of the stuff of nature by our

perception, and the scissors follow, in some way, the mark-

ing of lines along which action might be taken.” (Bergson,

Creative Evolution). The ten space-time conservation laws,

as expressing the condition of repeatability “always and ev-

erywhere”, are valid for closed systems (or, in virtue of the

Noether’s theorem, for those with some symmetry of the ex-

ternal field). But there are no closed systems in the World

besides the same World. Each time, the cutting out an approx-

imately closed system is performed according to a particular

problem statement.

In order to prove the possibility of synthetic judgments a

priory, as for any proof of existence, at least one actual exam-

ple is needed. In Critique of Pure Reason, Kant considers the

concepts of space and time as such an example:

“(a) Space does not represent any property of objects as

things in themselves, nor does it represent them in their rela-

tions to each other; in other words, space does not represent

to us any determination of objects such as attaches to the ob-

jects themselves, and would remain, even though all subjec-

tive conditions of the intuition were abstracted. For neither

absolute nor relative determinations of objects can be intuited

prior to the existence of the things to which they belong, and

therefore not a priori.

(b) Space is nothing else than the form of all phenom-

ena of the external sense, that is, the subjective condition of

the sensibility, under which alone external intuition is possi-

ble. Now, because the receptivity or capacity of the subject

to be affected by objects necessarily antecedes all intuitions

of these objects, it is easily understood how the form of all

phenomena can be given in the mind previous to all actual

perceptions, therefore a priori, and how it, as a pure intuition,

in which all objects must be determined, can contain princi-

ples of the relations of these objects prior to all experience. It

is therefore from the human point of view only that we can

speak of space, extended objects, etc.”

(“Form” means here a factor to organize intuitions. “That

which in the phenomenon corresponds to the sensation, I term

its matter; but that which effects that the content of the phe-

nomenon can be arranged under certain relations, I call

its form.”)

And further: “But propositions of this kind cannot be em-

pirical judgments, nor conclusions from them. Now, how

can an external intuition anterior to objects themselves, and

in which our conception of objects can be determined a pri-

ori, exist in the human mind? Obviously not otherwise than

insofar as it has its seat in the subject only, as the formal ca-

pacity of the subject’s being affected by objects, and thereby

of obtaining immediate representation, that is, intuition; con-

sequently, only as the form of the external sense in general.”∗

However, in these theses Kant means not a general and

uncertain “philosophical” idea of space, but the quite partic-

ular to be used in physics: “For geometrical principles are

always apodeictic, that is, united with the consciousness of

their necessity, as: “Space has only three dimensions.” Con-

sidering straight lines in this space, Kant stresses the possi-

bility of their unlimited continuation, and, as an example of

synthetic judgment, points out that the connecting two points

straight segment is also the shortest, — the property, which is

not directly contained in some probably implied by him defi-

nition of the straight line. Of all this Kant never asked why it

is just so.†

It is only in the framework of CP the structure of physical

space is developed out of its future-owned sub-structures and

is substantiated by the very statement of the problem, but for

∗Denying the reproaches in idealism, Kant expounds his position in Pro-

legomena to any Future Methaphysics: “My doctrine of the ideality of space

and of time, therefore, far from reducing the whole sensible world to mere

illusion, is the only means of securing the application of one of the most

important cognitions (that which mathematics propounds a priori) to actual

objects, and of preventing its being regarded as mere illusion. For without

this observation it would be quite impossible to make out whether the intu-

itions of space and time, which we borrow from no experience, and which

yet lie in our representation a priori, are not mere phantasms of our brain, to

which objects do not correspond, at least not adequately, and consequently,

whether we have been able to show its unquestionable validity with regard to

all the objects of the sensible world just because they are mere appearances.”
†One should recall, but then, that at Kant’s time nobody operated with

various extensions and generalizations of the concept of space, such as Rie-

mann, symplectical, multi-dimensional and other spaces.
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this to be possible, the question “Why?” is to be replaced by

“What for?” in the sense of the already cited Hegel’s

aphorism.

Going over to the concept of time, we point out that unlike

his reasoning on space, Kant implies not the physical time

but rather a mere sequence of events. As a matter of fact,

although time is the main concept of the Method by directly

expressing repeatability, i.e. the use of past experience, but it

doesn’t refer to CP alone, like that of space, hence, its defini-

tion with only contact schemes might be doubtful. Everybody

knows that sometimes a year is too short, while sometimes a

minute is too long.

Since CP is only one particular way to reach repeatabil-

ity, not exhausting a general problem of the transition to a

concrete state, whatever it means in the case and however

it is extracted as such from the World, no a priory measure

can be there, which fits any transition, any change whatso-

ever. However, if we mean the problem for the Method, i.e.

using the past to draw recommendations concerning the fu-

ture, one needs to define the conditions of the very possibility

to predict. In this respect, the past is something that in no

way could be influenced upon, and therefore nothing in the

past might be a consequence of the present or the future. Of

course, in a particular situation some aim in the future might

be non-reachable as well, but this is a separate problem. Also

in CP, from the statement that there is no final contact, it is

only the warranty for the effect of interest for the user, as it

is meant in his problem, not to occur that follows. Therefore,

only “affine”, devoid of measure time sequence has a gen-

eral meaning of warranty, while a particular way to realize

this measure by means of photon oscillations is only suitable

when the problem might be reduced to CP.

Only then the constructions of mechanics begin to func-

tion. According to Newton: “And if the meaning of words

is to be determined by their use, then by names time, space,

place, and motion, their sensible measures are properly to be

understood; and the expression will be unusual, and purely

mathematical, if the measured quantities themselves are

meant.” (I. Newton, Mathematical principles of Natural Phi-

losophy.)

Also in the general structure of the Method, beyond CP,

no universal measure corresponding to “change in general”

exists there; for any perception whatsoever, time “stays still”,

if nothing changes. In the Critique, the concept of time is

given as a condition of the internal perception by the self as of

him, so also of the world: “Time, no doubt, is something real,

that is, it is the real form of our internal intuition. It therefore

has subjective reality, in reference to our internal experience,

that is, I have really the representation of time and of my de-

terminations therein. Time, therefore, is not to be regarded

as an object, but as the mode of representation of myself as

an object. But if I could intuit myself, or be intuited by an-

other being, without this condition of sensibility, then those

very determinations which we now represent to ourselves as

changes, would present to us a knowledge, in which the rep-

resentation of time, and consequently of change, would not

appear. The empirical reality of time, therefore, remains, as

the condition of all our experience. But absolute reality, ac-

cording to what has been said above, cannot be trusted to it.

Time is nothing but the form of our internal intuition. If we

take away from it the special condition of our sensibility, the

conception of time also vanishes; and it inheres not in the

objects themselves, but solely in the subject (or mind) which

intuits them.”

In the Method, this general idea of time sequence meets

the recommendation expected by the user for his actions, pro-

vided his aim has been recognized as a distinctly fixed final

state. We repeat that all the work for the recognition of this

aim he must carry out before addressing the Method, and this

is by far not always easy. Even the experience, if reduced

to words or some other conserved or reproducible cognition,

mostly possesses no universal content similarly understood

by all. As a rule, a message brings about different response in

others or even in the self, if it comes later. Therefore, only a

minor part of our experience belongs to the Method. An im-

portant role of the Method in technologies, their results being

so highly valued, provides it with common appreciation and,

by the way, also with trust and the feeling of “Truth”. Yet, it

is only the accumulated culture as a whole, not oversimplify-

ing life that dramatically, conveys a more precise description

of life than the Method in general, and all the more than CP

do, upon encompassing also “uncertain details”.

Chapter 9. From scratch. Uniqueness and repeatability

. . . yet two times two makes four — it is not a life

at all, gentlemen, but is the beginning of death.

F. M. Dostoevsky, Notes from the Underground

If we assume that human life might be governed

by reason, then the very possibility of life would

be annihilated.

L. N. Tolstoy, War and Peace

Yet, why do we so much insist on repeatability, while no ab-

solutely repeatable situations are there in real life? Moreover,

life, which is the most valuable for the self, is absolutely un-

repeatable, unique. Then, what is this Method important for?

Each time, the use of the Method in a particular situation im-

plies the disregard as inessential of infinitely variegated con-

nections of everything with everything. Is it ever and within

what limits possible to approximate the unrepeatable with re-

peatable?

According to the accepted in this book rules, we have no

right to involve some new prejudices from outside in order to

find the answer to any question, but only to proceed within the

framework of the Method in the search of a solution, if exists,

on its own limits of applications. To this end, let us analyze

a particular example. Generally accepted opinions deem all

142 Felix Tselnik. Irony of the Method



Issue 2 (Special Issue) PROGRESS IN PHYSICS Volume 12 (2016)

substances to be comprised of atoms. Leaving aside technical

complications, assume it be possible to take proper sorts of

atoms in proper quantities, put them in needed positions, pro-

vide them with needed velocities, and so to obtain a man, and

not a “man in general”, but the copy of a particular, actually

existing “I”. The Method, in principle, allows for this.∗

We have to ensure somehow that the construction is sat-

isfactory. Who will judge? Other people? But often they are

confusing even twins. Their judgment depends on their own

state, which should be “objectively” examined as well. So,

steadily proceeding from one examination to another, all the

World will be involved in the judgment. It is only possible to

close this infinite chain of examinations by means of asking

the same ”I” to judge. Of course, “I” is the subject to vari-

ous external and internal influences as well, but we introduce

“responsibility” for his judgment. If “I” considers the copy

perfect, he has to agree that nothing would change for him, if

he were eliminated, while the copy remains alive instead. If

the perception by “I” of his uniqueness doesn’t allow for exact

copy, the answer is already here: Absolute repeatability with

the means of the Method is impossible. In the opposite case,

we continue our study. Let us weaken the precision of copy-

ing. “I” with his hairs cut is not exactly the same “I”. Upon

continuing (at least in the course of thought experiment) to

alter “I” in various respects, using plastic surgery, transplan-

tation of organs (including those of his brain), we repeat our

question at each step. If even after such a horrible procedure,

“I” still insists on his identity, we would try in addition (or

instead) to persuade him to recognize his transformation into

something different. On the other hand, “I” as he is now and

that in his childhood is being considered by “I” as the same,

though, according to some foreign judgment, the copy might

seem closer to the now-existing “I”.

The only purpose of this offence of the common sense

consists in an attempt to reach the verge of the Method, i.e. to

shake the uniqueness of “I”. And then the question is still here

as to what is the value of the Method for so stubborn “I”. If

we fail, then we have to recognize the existence of something

that cannot be constructed within the Method. If however, un-

der some conditions, “I” agrees that some copy is satisfactory

to replace him, then he is immortal, and various possibilities

for fiction writers spring up. For instance, it becomes easy

and comfortable to trip at the velocity of light: Suffice it to

transmit by radio the message to make the copy. Medicine be-

comes superfluous, since the “I”-personality might be simply

“rewritten” on some new body. Now, just like in the physics

of elementary particles, there are no requirements of uninter-

rupted following, and “the similar” is identical to “the same”.

If, however, the uniqueness, non-repeatability of “I” has

∗In the sequel, “I” should be considered as a generic name for the sub-

ject, the problem of the Method is being stated on behalf of. As it was already

mentioned, some results of the method are available for any living creature;

also the “user” might be conceived as a community, provided its individuals

take care solely of its destiny.

been found, then the question of the value of the Method for

him is still here in its entirety. So, time and again, what is it

that is universally repeatable and still so important, that all ev-

erlasting over centuries efforts to develop the Method would

be justified? It is only death, as being understood similarly

by all as something absolutely final that might be the only

candidate for this role. Of course, somebody might deny this

position and insist on the non-finality of death in a way. It

is impossible to claim an absolute judgment with respect to

something not to be tested, but we may argue that for some-

body really convinced in this, the Method is of no need and

of no interest, that is, this book is not for him. Moreover, the

real content of the Method refers exclusively to the problem

of death, notwithstanding the seeming variety of applications.

Substituting the direct mentioning of death with the idea

of aim in less important circumstances brings no important

changes in this statement. Otherwise, the “scientific” com-

munication by Mr. Pickwik, “Speculations on the Source of

the Hampstead Ponds, with some Observations on the The-

ory of Tittlebats”, would be of no less importance for science

than the theory of relativity. Ultimately, the significance of

the problem always relates solely to death, and the Method

is able to say nothing else about the particular life, infinitely

variegated and non-repeatable. According to Plato (Phaedo),

Socrates emphasized: “For I deem that the true disciple of

philosophy is likely to be misunderstood by other men; they

do not perceive that he is ever pursuing death and dying. . . ”

The same idea, though in a broader context, has been ex-

pressed by Pasternak (Doctor Zhivago): “. . . art always, with-

out interruptions, is occupied with just two things. It persis-

tently thinks of death and persistently creates life by way of

this.” This is particularly true in the limited framework of the

Method.

Death became a matter of main concern for everything

alive because of this simple cause, that everything that had

not been striving to survive, and even those, that had not been

striving sufficiently hard, died out long ago in the process of

evolution. Only those survived, that had been striving very

hard. Extremities and all other organs have been formed just

to protect the creature from death, but while developing its

paw in the course of evolution, the creature had to protect the

paw itself. The senses serve to protect vulnerable life. How-

ever, what a Method would elaborate an “I”, which is some-

how separated from the world, e.g., being blind, deaf or else?

In essence, it must be the same Method, because, even lack-

ing some means for his action, he still pursues the same pur-

pose to protect his life, however difficult would it be for him

to apply the constructions of the Method to his own practice.

However, even the most primitive organisms possess some

means for their orientation. Imperfect, as compared to dogs,

hearing and smell of the human, though restricting his reac-

tions, never obscure for him this main purpose of every living

thing. While not suitable to describe the life completely, the

Method might well be used also in situations not relating to
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the life-and-death problem immediately, also those far from it

and often even quite trifling. So, for a professional artillerist,

it might be more convenient to fire sparrows with a gun than

with a catapult. However, the line of thought, as developed

for the life-and-death problem solving, forms a standard ap-

proach to any problem in sight, however unintentional. Just

these problems constitute the content of the Method. A part of

the Method belonging to the realm of physics is of interest for

the user inasmuch as it is implied that the occurrence or non-

occurrence of the final contact is, in a way, being connected

with death, perhaps, only supposedly or probabilistically.

According to our position, we should first of all examine

the firmness of the main ideas of the Method on the limits of

its application. For the living creature, the principal vulnera-

bility of the Method as applied to the life-and-death problem

is in this that eventually death is unavoidable. As a matter of

fact, to decide on whether or not to apply the Method, one has

first to recognize the actual problem. Only after this step all

the sophisticated machinery could come into action, includ-

ing the arrangement of the system of standard bodies, suffi-

cient to detect all the relevant measuring contacts; defining

with them the space-time relations; constructing one more set

of test bodies, reacting to the external forces that might ef-

fect the final contact occurrence and so on. Particularly and

importantly, relevant order relations are to be established in

accord with the demanded by the supposed user concrete rec-

ommendations for his actions already before the formulation

of the problem. But as soon as death, in general, is not avoid-

able, and there is no a priory conception of time as yet, the

task cannot be solved. What should “I” act for, if he dies

anyway? Intuitively, the absurd artificiality of the so stated

problem is doubtless. However, for the Method to be con-

vincing a “proof of reason” (Pushkin) is necessary. It is clear

but then, that it is one thing — death now, and quite, quite

another — sometime afterwards, however small the time gap

be according to any measure for it, whatsoever. Even in his

last second, the hare still hopes. However, what if no time

relations are necessary at all, but they are rather a mere habit,

and one might get used to think somehow else? In order to

overcome this difficulty, an external or “mathematical” time

had been introduced, as opposed both to the measured and

to the personally perceived time. This is clearly expressed

in the Newton’s Mathematical Principles of Natural Philos-

ophy: “And if the meaning of words is to be determined by

their use, then by names time, space, place, and motion, their

sensible measures are properly to be understood; and the ex-

pression will be unusual, and purely mathematical, if the mea-

sured quantities themselves are meant.” In the same sense, the

personal I-time is replaced, in the Einstein’s The Meaning of

Relativity, with the Einstein’s simultaneity — a means to syn-

chronize clock readings at different points with an appropriate

exchange of light signals.

However, the measurable quantitatively time in canonical

version by no means depreciates the much more general and

important individual I-time, which might progress quicker or

slower according to personal perceptions. This time belongs

to such concepts as past, now, and future without obligatory

connection to seconds or years. It is used in life and commu-

nications much broader, and it is by no means less essential

than time measured with clocks. Moreover, this perception is

peculiar and necessary not only for humans but to any living

creature.

For both Newton and Einstein clocks remain the basis of

the whole system, though checked, in a way, by motion. But

as we found, the existence of top speed makes it possible to

dispense with clocks for any particular problem in physics.

Counting photon oscillations serves well for all these prob-

lems. And beyond physics, in different fields, there is no

measure of time at all. Phases of various processes are some-

times tied to astronomical or some other conditions, but never

to straight mathematical time. Nature looks then in science

merely as a set of particular cases united rather by a common

approach than by a single structure equipped with its own

universal laws, the “World”. Then the very concept of uni-

versal inexorably flowing time diffuses, being devoid of its

traditional definiteness. It turns out that time does not flow

on its own, but, conversely, it depends on everything. And

then some very unusual questions might spring up, which

touch our deepest ideas, even those of life and death. So, the

principal tool in our previous analysis — infinite sequences

of photon oscillations, analogous to the Zeno sequences, —

brings about a doubt in the habitual understanding of the life

duration.∗

In respect to the Method, the fundamental difference be-

tween the “not its own” problem of the unavoidable death in

general and the death possibly to occur with the final contact

in CP, is quite analogous to the mathematical notion of com-

pactness as the necessary presence of an exact limit. Hamlet-

like meditations on the unavoidable death are always in the

focus of philosophy and art. In its finality, it is just as un-

perceivable as the usual falling asleep, according as to philo-

sophical considerations (“Thus, death exists neither for the

living nor for the dead, since for the former it doesn’t ex-

ist in itself, while the latter doesn’t exist for it himself.” —

Epicurus, The Letter to Menoeceus), so also to the literature

insights (“He was looking for his past habitual fear of death

and found none. Where is it? What death? There was no fear

at all, because no death was there. There was light instead of

death. . . For him all this occurred in an instant, and the mean-

ing of this instant didn’t change any further. However for the

witnesses, his agony elapsed two hours more.” (Tolstoy, The

Death of Ivan Ilyich). It is just the threat of death perceived as

an incentive to action, that gives the Method its meaning for

“I” at any moment of his realized life. On his way to the scaf-

fold, the condemned was thinking: “It is not now as yet, one

∗According to an aphorism, life is measured not by the number of your

breathes but rather by the number of your breathes been taken away.
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more turn ahead, and a long street after it. . . ” Not being felt

by “I” himself, his death is perceived by other people as the

disappearing of the particular person. The accumulated com-

mon experience yields the doubtless statement: “Everybody

will die”. But the uniqueness of “I” is incompatible with this

“everybody”. The fact that all people have died until now,

doesn’t prove that “I” will die too, because he is not the same

as all others, and he feels his uniqueness personally. Should

“I” deem himself identical to all others in this most impor-

tant respect, he would be immortal just for this reason, being

replaceable by somebody identical.

“Not eternal for times,

I’m deathless for myself:

Perhaps, just to imagination

Their threat has anything to say,

I own the moment, and it may

Enjoy me in the same relation.”

(Baratynsky, Finland)

We conclude that, apart from philosophizing, it is only com-

pact life-and-death problem that is actually of interest for “I”.

It might be said, that the Method deals only with death, but

only within the limits of life. However in the Method itself,

there are at least hints of its limiting situations. In terms of

CP, a Zeno sequence formed by photon oscillations should be

completed with the single point determined by the sequence

of its own, though not belonging to it. In this respect, a seg-

ment of the straight line is not equivalent to this line, whereas

without its end points it is. And this statement remains true

upon any its one-to-one order preserving mappings into some

other straight line. Therefore, the actual meaning of the wise

Zeno’s paradox is in this, that initially, prior to introducing

auxiliary, adapted for a particular CP external measure, it is

just the sequence of discretely perceived events that is a pri-

mary, because the final contact is such. I-time “stays still” if

nothing interesting occurs. In CP schemes, the sequence of

contacts may well be infinite, and according to this measure

Achilles will not overtake the tortoise indeed, and this fact in

no way prevents practical applications of the Method.

As we have seen in the first part, in applications of the

Method something that might occur if the final contact does

occur, is always supposed to be known to the user in advance.

Only when this became clear, might he ask the Method for

recommendations. Otherwise, he would necessarily be asked

time and again: “What do you want indeed?” However, what

is good in the near future might not be that good later on.

It is commonly known that the technologies, based on the

Method and providing the impressive technical progress, hide

many nuisances of their own. Aside from various dangers,

stemming from quarrels of people and their communities, we

point out only these that root in good intentions, stimulating

the development of the Method.

The mentioned above uncertainty in the self-identification

of “I”, renders some allowed in the Method efforts to pro-

long the life of “I” a quite practical problem. The methods

of replacing worn tissues and producing fresh organs make it

possible to shift the unavoidable death still further and fur-

ther in the future, while “I” goes on considering himself the

same “I”, endlessly keeping up his health and capabilities.

In this case, if the rate of birth of new people drops to zero,

then according to the perception of the living ones nothing

would change from what it already was the case before. Ev-

erything reduces to a mere change in the time scale, as if the

Earth was to orbit the Sun quicker, and then birthdays were

celebrated more frequently. This is because the unavoidable

death brings about no natural time scale. Indeed, what is in-

finite life? Would a thousand years be enough? How about

a million? In general, to ask “naive and silly” questions is

the best way to elucidate the actual meaning of conceptions.

An ephemeron that is doing everything in just one day, does

he lives long? Or if lived a thousand years, while sleeping

on average nine hundreds of them, is this longer than hun-

dred years straight? (Remember “Rip van Winkle” by Irv-

ing); or if returned from a journey in the fast space vehicle?

Other people would consider him long-living indeed. How-

ever, they would notice nothing, if tripped together. And how

is it “indeed”? The very variety of these questions means that

they are not to be answered within the Method with its nar-

row universal unambiguousness.∗ The Method begins with

the explicit presenting of the final state as the goal for all fur-

ther auxiliary operations. But final state “is not seen” from

the given state of a particular life. Once the birth of indi-

viduals is permitted, a life time scale is naturally defined by

aging, bringing about either the expiring of any progress (and

this is easier to be discerned from stagnation than from degra-

dation) or mutual misunderstanding and non-acceptance be-

tween generations. The wretched existence of the “eternal”,

bothered with themselves elders of Luggnegg, as described

by Swift in his “Gulliver’s travels”, is not in their impotence,

but rather in their old-fashion mind. Then death itself be-

comes desirable for “I”, hence, the Method is no longer of his

interest. And then what are new people needed for? So all the

community is steadily loosing incentive to exist, as it was al-

ready guessed (two centuries ago) by Baratynsky in his poem

“The last death”. Being perfected further still, the Method

is steadily expanding its boundaries and claiming a more de-

tailed approximation of life in all its variety by means of uni-

versally repeatable constructions, persuading, by the way, the

users that only things that deserve heed are those that the

Method is capable of providing. However, “. . . the man, al-

ways and everywhere, whoever he was, strove to act just as

he wanted, and not at all as the reason and profit ordered him.”

(Dostoevsky, Notes from the Underground). And if the man

acts “just as he likes”, accounting for no circumstances, he

never addresses the Method for its advices. Indeed, if it were

∗Some people regard their life as somehow continued in their descen-

dants, works, communities, and so on.
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that protection from death be of only concern, then the organ-

isms would be simply mechanisms to solve a particular prob-

lem; no other difference among them would be important, and

nothing would prevent the substitution of one by another, so

reaching “genuine” immortality. We conclude that even in its

own realm, i.e. the life-and-death problem, the Method loses

its importance just on the climax of its successes, where the

very transition from life to death becomes indistinct.

This is its irony.

Submitted on February 26, 2015 / Accepted on October 22, 2015

146 Felix Tselnik. Irony of the Method



The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics

PROGRESS IN PHYSICS
A quarterly issue scientific journal, registered with the Library of Congress (DC, USA). This journal is peer reviewed and included in the abstracting

and indexing coverage of: Mathematical Reviews and MathSciNet (AMS, USA), DOAJ of Lund University (Sweden), Scientific Commons of the

University of St. Gallen (Switzerland), Open-J-Gate (India), Referativnyi Zhurnal VINITI (Russia), etc.

Electronic version of this journal:

http://www.ptep-online.com

Advisory Board

Dmitri Rabounski,

Editor-in-Chief, Founder

Florentin Smarandache,

Associate Editor, Founder

Larissa Borissova,

Associate Editor, Founder

Editorial Board

Pierre Millette

millette@ptep-online.com

Andreas Ries

ries@ptep-online.com

Gunn Quznetsov

quznetsov@ptep-online.com

Felix Scholkmann

scholkmann@ptep-online.com

Ebenezer Chifu

chifu@ptep-online.com

Postal Address

Department of Mathematics and Science,

University of New Mexico,

705 Gurley Ave., Gallup, NM 87301, USA

Copyright c© Progress in Physics, 2016

All rights reserved. The authors of the ar-

ticles do hereby grant Progress in Physics

non-exclusive, worldwide, royalty-free li-

cense to publish and distribute the articles in

accordance with the Budapest Open Initia-

tive: this means that electronic copying, dis-

tribution and printing of both full-size ver-

sion of the journal and the individual papers

published therein for non-commercial, aca-

demic or individual use can be made by any

user without permission or charge. The au-

thors of the articles published in Progress in

Physics retain their rights to use this journal

as a whole or any part of it in any other pub-

lications and in any way they see fit. Any

part of Progress in Physics howsoever used

in other publications must include an appro-

priate citation of this journal.

This journal is powered by LATEX

A variety of books can be downloaded free

from the Digital Library of Science:

http://www.gallup.unm.edu/∼smarandache

ISSN: 1555-5534 (print)

ISSN: 1555-5615 (online)

Standard Address Number: 297-5092

Printed in the United States of America

April–July 2016 Vol. 12, Issue 3

CONTENTS

Yurkin A.V. On the Descriptive Geometric Interpretation of Pauli Principle, Ele-

ments of the Mendeleev Table of Chemical Elements, and the Newtonian Laminar

Current of a Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Eid S.A., Diab S.M. X(5) Symmetry to 152Sm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Johnson R.J. A Re-examination of Kirchhoff’s Law of Thermal Radiation in Rela-

tion to Recent Criticisms (Letters to Progress in Physics) . . . . . . . . . . . . . . . . . . . . . . . 175

Robitaille P.-M. A Re-examination of Kirchhoff’s Law of Thermal Radiation in Rela-

tion to Recent Criticisms: Reply (Letters to Progress in Physics) . . . . . . . . . . . . . . . . 184

Rybicki M. Errata to “Mansouri-Sexl Test Theory: The Question of Equivalence be-

tween Special Relativity and Ether Theories” (Letters to Progress in Physics) . . . . . 204

Esmail S.H. and Taha M.M. Application of the Differential Transform Method to

the Advection-Diffusion Equation in Three-Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 205

Millette P.A. On the Applicability of Bell’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Spivey R.J. Coincident Down-chirps in GW150914 Betray the Absence of Event Hori-

zons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Marshall T.W. Repulsive Gravity in the Oppenheimer-Snyder Collapsar . . . . . . . . . . . . . . 219

Daywitt W.C. The Dirac-Electron Vacuum Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Muralidhar K. Mass of a Charged Particle with Complex Structure in Zeropoint Field. .224

Brodet E. The Relationship Between the Possibility of a Hidden Variable in Time and

the Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Daywitt W.C. A Modern Interpretation of the Dirac-Electron Continuity Equation . . . . . 234

Marshall T.W. Optics of the Event Horizon Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Matwi M. The Dual Behavior of Quantum Fields and the Big Bang . . . . . . . . . . . . . . . . . . 241

Consiglio J. On Quantization and the Resonance Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Belyakov A.V. On the Nature of Ball Lightning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276

Feinstein C.A. Dialogue Concerning the Two Chief World Views (Letters to Progress

in Physics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Spivey R.J. Criteria for Aerial Locomotion in Exoplanetary Atmospheres: Revisiting

the Habitable Zone for Flying Lifeforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Muralidhar K. The Structure of the Photon in Complex Vector Space . . . . . . . . . . . . . . . . 291

Obagboye L.F., Howusu S.X.K., Chifu E.N. and Omaghali E.J.N. Gravitational Wa-

ves from a Sinusoidially Varying Spherical Distribution of Mass. . . . . . . . . . . . . . . . .297

Daywitt W.C. Gravitational Shielding as Viewed in the Planck Vacuum Theory. . . . . . . .301



Information for Authors

Progress in Physics has been created for rapid publications on advanced studies in

theoretical and experimental physics, including related themes from mathematics and

astronomy. All submitted papers should be professional, in good English, containing

a brief review of a problem and obtained results.

All submissions should be designed in LATEX format using Progress in Physics

template. This template can be downloaded from Progress in Physics home page

http://www.ptep-online.com

Preliminary, authors may submit papers in PDF format. If the paper is accepted,

authors can manage LATEXtyping. Do not send MS Word documents, please: we do

not use this software, so unable to read this file format. Incorrectly formatted papers

(i.e. not LATEXwith the template) will not be accepted for publication. Those authors

who are unable to prepare their submissions in LATEXformat can apply to a third-party

payable service for LaTeX typing. Our personnel work voluntarily. Authors must

assist by conforming to this policy, to make the publication process as easy and fast

as possible.

Abstract and the necessary information about author(s) should be included into

the papers. To submit a paper, mail the file(s) to the Editor-in-Chief.

All submitted papers should be as brief as possible. Short articles are preferable.

Large papers can also be considered. Letters related to the publications in the journal

or to the events among the science community can be applied to the section Letters to

Progress in Physics.

All that has been accepted for the online issue of Progress in Physics is printed in

the paper version of the journal. To order printed issues, contact the Editors.

Authors retain their rights to use their papers published in Progress in Physics as

a whole or any part of it in any other publications and in any way they see fit. This

copyright agreement shall remain valid even if the authors transfer copyright of their

published papers to another party.

Electronic copies of all papers published in Progress in Physics are available for

free download, copying, and re-distribution, according to the copyright agreement

printed on the titlepage of each issue of the journal. This copyright agreement follows

the Budapest Open Initiative and the Creative Commons Attribution-Noncommercial-

No Derivative Works 2.5 License declaring that electronic copies of such books and

journals should always be accessed for reading, download, and copying for any per-

son, and free of charge.

Consideration and review process does not require any payment from the side of

the submitters. Nevertheless the authors of accepted papers are requested to pay the

page charges. Progress in Physics is a non-profit/academic journal: money collected

from the authors cover the cost of printing and distribution of the annual volumes of

the journal along the major academic/university libraries of the world. (Look for the

current author fee in the online version of Progress in Physics.)



Issue 3 (April–July) PROGRESS IN PHYSICS Volume 12 (2016)

On the Descriptive Geometric Interpretation of Pauli Principle,

Elements of the Mendeleev Table of Chemical Elements,

and the Newtonian Laminar Current of a Liquid

Alexander V. Yurkin
Puschino, Russia. E-mail: alvl1yurkin@rambler.ru

This work presents a two-dimensional and three-dimensional geometrical research of

a ray system. We consider trajectories of motion of the particles having a half-integer

spin. Interpretation of Pauli Principle showing distribution of electrons on power levels

of the atom is given herein. The number of the electron shells in our model of the

atom doesn’t exceed 8. We give a geometric interpretation of the main, azimuthally,

magnetic and spin numbers in the form of angles and distances. We show forth that the

hyperbolic dependence of energy on the main quantum number n of the hydrogen atom

(En ∼ –1/n2) known from experimental spectral studies, Bohr’s theory and Quantum

Mechanics can also be obtained from our geometrical formulation of Pauli Principle.

Also, in the framework of research of the suggested ray model, the step structure of the

layers at a laminar current of a liquid is deduced.
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Introduction

Descriptive geometric models are used for the evident de-

scription of various phenomena, including quantum phenom-

ena [1].

In works [2, 3], we already introduced a geometric model

on the plane consisting of systems of paraxial rays describing

distribution of light in lasers, turbulent and laminar flows of

a liquid on pipes, and also finding an electron in the infinite

deep potential. In work [3] we noted that the aforementioned

model can be used for a descriptive interpretation of moving

particles with the integer or half-integer spin.

In the works [3, 4] it was devoted to study the integer ray

system (see [3]) by such means that possible to describe mov-

ing particles having the integer spin. However, even in the

works [2, 5] we actually investigated a systems of ray trajec-

tories which can be characterized as a half-integer ray sys-

tem [3] by means of which it is possible to describe moving

particles having a half-integer spin.

We aim, in the present work, to study a half-integer ray

system, two-dimensional and three-dimensional geometric

models of motion of the particles having a half-integer spin.

A geometric interpretation of Pauli Principle showing dis-

tribution of electrons on energy levels of the atom (such as

those described in the physics textbooks [6, 7]) is suggested

herein.

The geometric interpretation of the main, azimuthally,

magnetic and spin numbers is given in the present work in

the form of small angles and distances.

Also, we show a possibility of the existence of the final

number of electron shells in the elements of the Mendeleev

Periodic System of Chemical Elements. The shells and sub-

shells of the atoms are interpreted as a system of the wave

trajectories consisting of direct inclined pieces.

Geometric interpretations of the hydrogen atom and its

power levels respectively are separately given in the work

as well.

So forth, on the basis of the research of the half-integer

ray model, we introduce the step structure of layers in a lam-

inar current of a liquid (such a liquid is described in most

textbooks, see [8]).∗

∗The laminary liquid current was first described long time ago by New-

ton. The Netwon theory was rechecked many times (see [8]).
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Numerical calculations, presented in the present work, as

well as those published in [3], were represented by means of

three-dimensional tables created in Excel.

For the convenience of readers, reference drawings taken

physics textbooks are given in Appendix, while the research

part of our publication contains only originally calculated

drawings and tables.

1 Half-integer system of eight groups of rays

1.1 Two-dimensional projection of Gaussian (paraxial)

rays

In the work [3], we briefly described a paraxial binary (shar-

ing in two) flat system of trajectories. This system consists of

groups of rays, in which the rays are inclined under p angles,

small to an axis, multiple to the angle γ:

p =

(

i +
1

2

)

γ, i = 0,±1,±2, . . . (1)

We called this system of rays: “(i + 1/2)γ-system” or half-

integer ray system [3]. We will describe this system in more

detail in Fig. 1.

This binary system of rays consists of eight groups of the

rays and their links. The rays and links of each of these

groups aren’t imposed on the rays of other groups, but can

cross them.

Branching points of the rays will be spaced from a sym-

metry axis on small distances of q, multiple to 1
2

k length:

q =
jk

2
, j = 0,±1,±2, . . . (2)

Further, we more precisely will refer to “(i + 1/2)γ-system”

as “
[

p = (i + 1/2)γ, q = jk/2
]

-system”.

In this work, as well as in the previous works [2–5] we

assume that the rays extend along the branching links; there-

fore the number of the rays N can be summarized. We also

assume that K is a number of the links generally N > K.

In Fig. 1 (a-d, f-i) eight groups of rays of the aforemen-

tioned
[

p = (i + 1/2)γ, q = jk/2
]

-system are shown: K′′,

L′′, M′′, N′′, O′′, P′′, Q′′, R′′.

This system is placed on a rectangular coordinate grid.

The size of a cell of a grid has height of 1
2

k and length of L,

L ≫ 1
2

k, L≫ 1
2

jk.

Groups in Fig. 1 (a-d) and in Fig. 1 (f-i) are shifted from

each other down on the 1
2

k distance. Groups in Fig. 1 (f-i) are

shifted concerning groups in Fig. 1 (a-d) on distance of L.

In Fig. 1 (e) and Fig. 1 (j) the image of groups of the rays

K′′, L′′, M′′, N′′ and O′′, P′′, Q′′, R′′ respectively, are com-

bined altogether. In Fig. 1 (k) all eight groups of rays are

combined together.

1.2 Three-dimensional projection of Gaussian (para-

xial) rays

In the work [3] we considered the three-dimensional image

of a binary paraxial system of rays in the form of a nonlinear

arithmetic parallelepiped: In a nonlinear arithmetic paral-

lelepiped all numbers are located in the rectangular planes

of identical sizes, and these planes are located layer-by-layer

one under another since parallelepiped top.

In this case, the nonlinear arithmetic parallelepiped [3]

has a NL height, a length of D = 1
2

km′ + 1 and a width Γ =

γm + 1, where L, k are distances, while γ is a small angle

in the two-dimensional binary ray system (Fig. 1) and at the

same time a small distance in a three-dimensional nonlinear

parallelepiped [3], and N, m, m′ are natural numbers or zero.

After a large number of passes (iterations) of N→ ∞ and

NL ≫ L, we write down the rule of consecutive filling with

numbers of a nonlinear arithmetic parallelepiped as well as

in [3]:

A = B +C, (3)

where

A =
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q
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p − 1
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p + 1
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.

For creation of various types [3] of nonlinear arithmetic paral-

lelepipeds it is necessary to set various additional boundaries

and initial conditions.

1.3 Periodic and acyclic trajectories

The system
[

p = (i + 1/2)γ, q = jk/2
]

of rays generally

consists of periodic and acyclic trajectories. In Fig. 2, one

of eight groups of the rays of this system are shown for the

case of D = 4k, Γ = 7γ.

We will set the first boundary conditions [3] for number

A in formula (3) for nonzero N-layers:

A = 0 (4)

for q = | qmax|, where qmax =
1
2

D.

Further we will set the first boundary conditions for num-

bers B and C in formula (3) for nonzero N-layers:

B = 0, C = 0 (5)

for | q + p − 1 | > qmax and | q + p + 1 | > qmax rectively.

We now set the initial conditions [3] for the numbers B

and C in formula (3) for the sequence of numbers q of a zero

layer (N = 0):




















0

p

q





















= 1 (6)

for |q| 6 qmax and




















0

p

q





















= 0 (7)

for other q.
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Fig. 1: Periodic trajectories. Eight groups of rays: K′′, L′′, M′′, N′′, O′′, P′′, Q′′, R′′of the
[

p = (i + 1/2) γ, q = jk/2
]

system. k/2, and L are

the minimum distances on a vertical and a horizontal respectively. N is the number of pass of rays (the number of iteration). Dash-dotted

lines with arrows showed axes of a coordinate grid in which trajectories are placed.
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Fig. 2: Periodic and acyclic trajectories. One of eight groups of rays

(K′ group) of the
[

p = (i + 1/2) γ, q = jk/2
]

system is shown here.

Figures about the shown links illustrate the number of the rays of N

and the summation process of number of the rays extending along

the number of the links K for the first five passes (N = 0 − 4).

In Fig. 3, calculation formulas (given in MS Excel) of a

nonlinear arithmetic parallelepiped (Figs. 1, 2) for D = 4k,

Γ = 7γ case for zero, the first and second passes of the ray

system, i.e. N = 0, 1, 2. The calculation was made according

to the rule (3) of the consecutive filling with the numbers of

an arithmetic rectangle taking into account the boundary (4,

5) and the initial (6, 7) conditions. Three rectangles in Fig. 3

are the layers of a nonlinear arithmetic parallelepiped.

Results of numerical calculation for the first five passes of

rays, i.e. N = 0 − 5 are given in Fig. 4. Five rectangles are

layers of a nonlinear arithmetic parallelepiped.

Results of numerical calculations for 32 pass of rays, i.e.

for N = 32 (a) are given in Fig. 5. The envelopes of distribu-

tion of number of rays of K(q) on the section (b) and K ′(p)

at the angle (c) are provided.

1.4 Periodic trajectories and step layers in the laminar

current of a liquid

In a specific case, the [p= (i+ 1/2)γ, q= jk/2] system of rays

consists only of periodic trajectories. Fig. 6 shows one of the

eight groups of rays of this system for the case, where D= 4k,

Γ= 3γ.

In this case, we need to further set special initial and

threshold conditions to create the appropriate nonlinear arith-

metic parallelepiped [3].

Let’s consider here a simple and illustrative (as compared

to the description given in [3]) way (an Excel algorithm) of

setting special initial and threshold conditions for the paral-

lelepiped that describes the system consisting only of periodic

trajectories.

Let’s set the second threshold conditions for A, B, and C

in formula (3) for nonzero N-layers:

A = 0, (8)

if B= 0 and C = 0, and

B= 0 and C = 0, (9)

if A= 0.

Let’s set additional initial conditions for B and C for a

zero layer (N= 0):

B= 0 and C = 0, (10)

if A = 0.

The offered way (the algorithm) can be easily implement-

ed in numerical calculations in Excel.

At first, we completely fill with units a numerical rect-

angle of the zero layer (N= 0) according to formula (6) and

formula (7).

Then we fill with numbers a numerical rectangle of the

first layer (N= 1) according to formulas (3 to 5). Some zeroes

appear in the first layer.

Then we delete numbers (units) from the cells of the zero-

layer rectangle which don’t influence cells of the first-layer

rectangle.

Then we delete numbers from the cells of the first-layer

rectangle which don’t depend on the cells of the zero-layer

rectangle. We have some new zeroes in the first layer again.

Then again we delete numbers (units) from the cells of

the zero-layer rectangle which don’t influence the cells of the

first-layer rectangle.

And so we repeat this process several times. As a result,

we still have cells filled with meaningful numbers which in-

fluence other cells, and the cells which depend on other cells.

The remained cells describe the [p= (i+ 1/2)γ, q= jk/2] sys-

tem consisting only of periodic trajectories.

[p= (i+ 1/2)γ, q= jk/2] is the system of rays consisting

only of periodic trajectories as shown in Fig. 7. The results of

calculation of a nonlinear arithmetic parallelepiped (Figs. 1

and 6) are for D= 4k, Γ= 3γ for the zero, first, and second

passes of the ray system, i.e. (N= 0, 1, 2). The calculation

was made according to the rule (3) of consecutive filling with

numbers of an arithmetic rectangle taking into account the

first and the second threshold (4 and 5; 8 and 9) and initial

(6, 7, and 10) conditions, including the algorithm (8 to 10).

The three rectangles shown in Fig. 7 are the layers of a non-

linear arithmetic parallelepiped.

Fig. 8 shows the images of layers of a nonlinear arith-

metic parallelepiped and a numerical example of calculation

of the [p= (i+ 1/2)γ, q= jk/2] system of periodic trajecto-

ries (Fig. 7) for D= 4k, Γ= 3γ for zero and the subsequent

four passes of rays, i.e. for N= 0− 4.

Fig. 9 shows numerical calculations and graphics made in

Excel. Numerical calculation for the 32nd pass of rays, i.e.

for N= 32, is given in (a). It also shows the envelopes of

distribution of the number of rays of N(q) on the section (b)

andN ′(p) at the angle (c) for D= 4k, Γ= 3γ.
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Fig. 3: Calculation of the filling with the numbers of a nonlinear arithmetic parallelepiped for D = 4k case in Excel. The
[

p = (i + 1/2) γ, q = jk/2
]

system of 8 groups of rays of periodic and acyclic trajectories; the first three pass through the rays. Each

of the eight groups is marked by an own color.
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Fig. 4: Results of numerical calculation in Excel for the first five passes of rays (iterations). Arrows showed dependent cells. Each of eight

groups K′, L′, M′, N′, O′, P′, Q′, R′ of the
[

p = (i + 1/2) γ, q = jk/2
]

system of periodic and acyclic trajectories. Each of the eight

groups is marked by an own color.
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Fig. 5: Results of the numerical calculations for 32 pass of rays, i.e. for N = 32 for periodic and acyclic trajectories of the considered
[

p = (i + 1/2) γ, q = jk/2
]

system (a); each of the eight groups of the system is marked by an own color; a thick framework in the central

part is noted the system of periodic trajectories. The envelopes of distribution of the number of the rays of K(q) on the section (b) and

K ′(p) at the angle (c) are given. We note that for this case, as show our calculations, the form of envelope (b, c) practically doesn’t change

approximately after the 15th pass.

Fig. 6: Periodic trajectories. It shows one of eight groups of rays (K′′ group) of the [p= (i+ 1/2)γ, q= jk/2] system.

Fig. 7: Calculation of filling with numbers of a nonlinear arithmetic parallelepiped for D= 4k in Excel, and the [p= (i+ 1/2)γ, q= jk/2]

system of eight groups of rays of periodic trajectories — the first three passes of rays. Each of the eight groups is marked in a separate

color.
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Fig. 8: Results of numerical calculation in Excel for the first five passes of rays (iterations). The arrows point to dependent cells. Each of

the eight groups — K′′, L′′, M′′, N′′, O′′, P′′, Q′′, and R′′ — of the [p= (i+ 1/2)γ, q= jk/2] system of periodic trajectories is marked in

a separate color.

Fig. 9: Results of numerical calculations for the 32nd pass of rays, i.e. for N= 32, for periodic trajectories of the [p= (i+ 1/2)γ, q= jk/2]

system (a). Each of the eight groups of the system is marked in separate color. It also shows the envelopes of distribution of number N of

rays of N(q) on the section (b) and N ′(p) at the angle (c). Note, according to our calculations, in this case, there is virtually no change in

the form of the envelope, (b) and (c), approximately after the 15th pass.
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Fig. 10: Periodic (wavy) trajectories. It shows one of the eight groups of rays (K′′ group) of the [p= (i+ 1/2)γ, q= jk/2] system. The

group contains 35 links within one pass of N. Crests and troughs of the “waves” are located (attached) between the horizontals marked in

dark color. These horizontals have thickness of 0, 5k and are located at identical distance of 2k from each other.

Fig. 10, similar to Figs. 1 and 6, shows one of the eight

groups of rays of the [p= (i+ 1/2)γ, q= jk/2] system of rays

of periodic trajectories for D= 22k, Γ= 9γ.

In Fig. 10, some of wavy geometric trajectories for the

considered [p= (i+ 1/2)γ, q= jk/2] system of rays are shown

as heavy lines. Wavy trajectories consist of the links inclined

at small angles of p= (i+ 1/2)γ. The D size of the binary ray

system can accommodate one “wave” or packages of “waves”

of different length.

Let’s denote the length of wavy trajectories by λn. With

increasing D this λn is growing discretely:

λn = 2 (2n − 1) L, (11)

where n = 1, 2, . . .

Let’s denote the height of this “wave” by νn. The νn height

is proportional to the squared λn length:

νn =

(

n2 − n + 1
2

)

k
∼ λ2

n . (12)

Wavy trajectories in Fig. 10 can settle down in any part of the

coordinate grid between horizontals within D.

Fig. 11, similar to Fig. 9, shows numerical calculations

and graphs made in Excel. Numerical calculation for the

128th pass of rays, i.e. for N= 128, is given in (a). There are

also envelopes of distribution of number N of rays of N(q)

on the section (b) and N ′(p) at the angle (c) given for the
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Fig. 11: Results of numerical calculations for the 128th pass of rays, i.e., N= 128, for eight periodic trajectories of the [p= (i+ 1/2)γ,

q= jk/2] system. Thirty five cells (corresponding to 35 rays within one pass in Fig. 10) of one of the eight groups of the system (K′′ group)

are highlighted with the darker color and heavy external borders of the cells (a). The figure also shows the envelopes of distribution of

number N of rays of N(q) on the section (b) andN ′(p) at the angle (c). Note, according to our calculations, in this case, there is virtually

no change in the form of the envelopes, (b) and (c), approximately after the 70th pass.
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[p= (i+ 1/2)γ, q= jk/2] system for all the eight groups for

D= 22k, Γ= 9γ.

The darker cells with heavy external borders shown in

Fig. 11 correspond to one of the eight groups of the system

(K′′ group) shown in Fig. 10.

Forms of the envelopes of distribution of the number of

rays for the half-integer system are similar to the forms of

the envelopes for the integer system described in [3]. The

form of the envelope N(q) in Fig. 11(b) on the section after

a large number of passes (Fig. 11b) is close to a parabola of

the fourth degree, and the form of the envelope N ′(p) at the

angle (Fig. 11c) is close to Gaussian distribution.

In [3] we noted that the form of the envelope N(q) on

the section for periodic trajectories corresponds to the form

of the envelopes of speed distribution at zero pass (N= 0) and

volume distribution after a large number of passes (N→∞)

of liquid in pipe section at laminar flow.

In Fig. 11(b) we can see that the envelope N(q) has a

stepped structure compared to the more smooth form of the

envelopeN ′(p) (Fig. 11c). Similar results were received from

numerical calculations for the integer system in [3], but the

half-integer model gives the more accurate image of the

“steps” compared to the integer model.

It can be assumed that such a stepped structure of the en-

velopeN(q) explains the existence of layers of final thickness

in liquid at laminar flow [8]. The speed and volume of liquid

do not change within each of these layers of a certain final

thickness.

2 Gaussian (paraxial) rays and Pauli Principle

2.1 Angles, distances and quantum system

Pauli Principle [6, 7] is correct for electrons and other parti-

cles with half-integer spin in a quantum system.

The condition of each electron in an atom is characterized
by four quantum numbers [6, 7]:

Principal n (n= 1, 2, 3, . . . )

Azimuthal l (l= 0, 1, 2, . . . , n− 1)

Magnetic ml (ml =− l, . . . ,−1, 0,+1, . . . ,+l)

Spin ms

(

ms = +
1
2
, − 1

2

)







































. (13)

Fig. 23 of the Appendix illustrates an example from [6] of

spatial quantization.

In monographs [6] and [7] the spin is also denoted by one

letter “s”:

ms = s = ±
1

2
. (13a)

According to Pauli Principle in a quantum system, for exam-

ple in an atom, there can’t be two electrons possessing iden-

tical quantum numbers: n, l, ml, ms. That is, two electrons

cannot be in the same state simultaneously. No more than

2n2 electrons can be in a state with n value in an atom [6, 7].

If

n = 1 there can be 2 electrons

n = 2 there can be 8 electrons

n = 3 there can be 18 electrons

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



































. (14)

Electrons having identical value of the quantum number n

form a shell. Shells consist of subshells, differing in value

of the quantum number l.

Shells are denoted by characters according to value of
n [6] and [7]:

Value of n 1 2 3 4 5 6 7 . . .

Designation of the shell K L M N O P Q . . .















. (15)

The electron which is in condition of l= 0 is called an s elec-

tron, l= 1 — p electron, l= 2 — d electron, l= 3 — f elec-

tron, followed by g, h, etc. alphabetically. The value of the

principal quantum number n is specified before the symbol of

the azimuthal quantum number l [7].

The division of possible conditions of an electron in an

atom into shells and subshells [7] is presented in the form of

a periodic table of conditions of an electron (see Fig. 24 of

the Appendix).

The process of building electron shells [7] (according to

Pauli Principle) of the first 36 elements of the Mendeleev Pe-

riodic System is presented in the form of a periodic table of

elements (see Fig. 25 of the Appendix).

Now let’s give an algorithm of creation of another specific

case of the binary [p= (i+ 1/2)γ, q= jk/2] system of rays of

periodic trajectories (considered in Section 1.4). We will be-

gin with the minimum quantity of rays consistently passing to

the more complicated configurations of the system. Thus, we

will compare the properties of our system to the data provided

in periodic tables in Figs. 24 and 25 of the Appendix.

We accept that, for our paraxial beams, all the angles of

γn, are small and multiple to the small angle of γ, and the

small distance of k is as follows:

k ≈ γL. (16)

For perfect correspondence between our geometric construc-
tions and expressions (13 and 13a), including the data pro-
vided in periodic tables in Figs. 24 and 25 of the Appendix,
we will enter the following assumptions:

Principal number n∼ γi∼ k j , (17)

(n= 1, 2, . . . ; i= 1, 2, . . . ; j= 1, 2, . . . ),

Azimuthal number l= n− 1∼ γ (n− 1) , (18)

Magnetic number ml =± l∼± k (n− 1) , (19)

Spin number s=±
1

2
∼±
γ

2
and ms =±

1

2
∼±

k

2
. (20)
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Fig. 12: K shell and the first parts of the periodic tables of (a) con-

ditions of an electron, and (b) elements.

Fig. 13: One of the eight groups of rays of the {p= (i+ 1/2)γ ,

q= jk/2} subsystem of periodic trajectories, and K shell. (a) and (b)

correspond to an atom of hydrogen, (c) — to an atom of helium.

n= 1∼ γ∼ k, l= 0, ml = 0, s=± 1/2∼± γ/2, ms =± 1/2∼±k/2.

Dash-dotted lines show axes from which sizes of angles and dis-

tances are counted.

Fig. 14: L shell and the second parts of the periodic tables of (a)

conditions of an electron, and (b) elements.

2.2 Periodic tables and geometrical constructions

2.2.1 Creation of the first shell of a quantum system

Fig. 12(a) shows the first (top) part of the periodic table of

conditions of an electron (Fig. 24 of the Appendix) describ-

ing the first shell of K. Fig. 12(b) shows the top part of the

periodic table of elements (Fig. 25 of the Appendix) describ-

ing the first two elements:

Fig. 13 shows one of the eight similar to (Figs. 1 and 6)

groups of rays of the [p= (i+ 1/2)γ, q= jk/2] system of pe-

riodic trajectories.

These trajectories correspond to the first electron shell of

K shown in Fig. 12(a).

To be specific, let’s call this system of periodic trajecto-

ries an {p= (i + 1/2)γ, q= jk/2} subsystem of periodic tra-

jectories of the [p= (i+ 1/2)γ, q= jk/2] system of periodic

trajectories.

Fig. 13 (a and b) shows two trajectories with opposite

(↑ symbol and ↓ symbol) orientation of a spin (one 1s elec-

tron). These trajectories correspond to an atom of hydrogen

with random orientation of the spin (Fig. 12b).

Fig. 13c shows a trajectory with anti-parallel (↑↓ symbol)

spin orientation (two 1s electrons). This trajectory corre-

sponds to an atom of helium (Fig. 12b).

The atom of helium is closing filling of the K shell.

2.2.2 Creation of the second shell of a quantum system

Fig. 14 (a) shows the second part of the periodic table of con-

ditions of an electron (Fig. 24 of the Appendix) describing the

second cover of L. Fig. 14 (b) shows the second part of the pe-

riodic table of elements (Fig. 25 of the Appendix) describing

the elements number three to ten.

Fig. 15 shows one of the eight similar to (Figs. 1 and 6)

groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of

periodic trajectories. These trajectories correspond to the sec-

ond electron shell of L in Fig. 14 (a and b).

Fig. 15 (a) shows the L shell in the form of a periodic tra-

jectory consisting of the subshell L1 (one 1s electron) for

Li. The form of this shell is the same as in Fig. 13(a) or

in Fig. 13(b). The form of K shell for Li is the same as in

Fig. 13(c).

Fig. 15 (b, c, d, e, f, g, and h) shows the L shells (L1(2s)

and L2(2p) subshells) for Be, B, C, N, O, F, and Ne respec-

tively (Fig. 14a and b):

The K shell for these elements is the same as that for Li

(see Fig. 13c).

The K shell and L shell of the elements (Figs. 12 to 15)

can settle down in our geometric model similar to arrange-

ment of K′′ group of rays and L′′ group of rays respectively

(Figs. 1, 7 and 8).

The atom of Ne is closing filling the L shell.

2.2.3 Creation of the third and fourth shells of a quan-

tum system

Geometric schemes of Pauli Principle and elements of pe-

riodic table are further constructed in compliance with the

above algorithm. Therefore, we will confine ourselves to giv-

ing specific examples.

The second part of the periodic table of conditions of

an electron (Fig. 24 of the Appendix) describing the third M
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Fig. 15: One of the eight groups of rays of the {p= (i+ 1/2)γ,

q= jk/2} subsystem of periodic trajectories and consecutive pro-

cess of filling L shell according to Fig. 14 (a and b). Designations of

quantum numbers are similar to these in Fig. 13. Dash-dotted lines

show axes from which sizes of angles and distances are counted.

shell and the fourth N shell is given in Fig. 16(a). Eight ele-

ments of the third part of the periodic table of elements (see

Fig. 25 of the Appendix) are given in Fig. 14(b) on a selective

basis (see Fig. 16).

Shells of K and L (Fig. 16a) for all the elements shown in

Fig. 16(b) are the same as in Fig. 13(c) and Fig. 15(h).

The shell of M (3s subshell) for Na is the same as in

Fig. 13(a) or Fig. 13(b).

The subshells 3s and 3p of the shell of M for Ar and K

(Fig. 16b) has the same forms as shown in Fig. 15(h).

The shell of N (4s subshell) for K and Cr (Fig. 16b) is the

same as in Fig. 13(a), Fig. 13(b), and Fig. 15(a).

The shell of N (4s subshell) for Sc and Ni is the same as

Fig. 16: Shells of M and N, and the third parts of the periodic tables

of (a) conditions of an electron, and (b) eight elements.

in Fig. 13(c) and Fig. 15(b).

The shell of N (subshells 4s and 4p) for Ga is the same as

in Fig. 15(c).

The shell of N (subshells 4s and 4p) for Kr is the same as

in Fig. 15(h).

Fig. 17 (a, b, c, and d) shows the shell of M (subshells

3s, 3p, and 3d) for (Sc), (Cr), (Ni), (Ga and Kr) respectively

(Fig. 16a and b):

Three or four shells of K, L, M, and N (Figs. 13 to 17) for

the elements can settle down in our geometric model similar

to the arrangement of groups of rays of K′′, L′′, M′′, and N′′

in Figs. 1, 7 and 8.

The geometric schemes of Pauli Principle and elements of

the periodic table are also further created in compliance with

the above algorithm.

However, our geometric model similar to (Figs. 1 and 6)

of groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem

of periodic trajectories consists only of eight groups of rays.

Therefore, while remaining within the offered model, it is

possible to assume that the number of shells of an atom is

no more than eight either. If we continue increasing the num-

ber of ray groups to more than eight, the rays will overlap,

and the shells will merge.

Thus, if the number of shells does not exceed eight, the

total number of elements of the periodic system (14) cannot

exceed 128.

Deviations from the sequence of filling the periodic sys-

tem (e.g., for the elements such as K, etc.) (Fig. 16b) hypo-

thetically reduce (or increase) the total number of elements of

the periodic system.
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Fig. 17: One of the eight groups of rays of {p= (i+ 1/2)γ, q= jk/2}

subsystem of periodic trajectories and consecutive process of filling

M and N shells for eight elements according to Fig. 16 (a and b).

Designations of quantum numbers are similar to these in Figs. 13

and 15. Dash-dotted lines show axes from which sizes of angles and

distances are counted.

2.2.4 Pauli Principle and the geometric system of the hy-

drogen atom

Monographs on quantum mechanics [6] and [7] consider the

simplest quantum mechanical system of an atom of hydrogen

(Figs. 26 to 28 of the Appendix). Let’s make a review of this

example too.

Fig. 18 shows the fifth shell of O:

Fig. 18: Shell of O of the periodic table of conditions of an electron.

Fig. 19 shows one of the eight groups similar to (Figs. 1

and 6) of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of

periodic trajectories. These trajectories correspond to the fifth

electron shell of O shown in Fig. 18. In this example, the O

shell is filled completely and contains five subshells.

The {p= (i+ 1/2)γ, q= jk/2} subsystem for an atom of

hydrogen can be constructed geometrically in accordance

with Pauli Principle and similar to the construction method

described in previous Sections.

The {p= (i+ 1/2)γ, q= jk/2} subsystem shown in Fig. 19

is in many respects similar to the [p= (i+ 1/2)γ, q= jk/2]

system in Fig. 10, but contains the smaller quantity of rays

and the smaller quantity of the wavy trajectories consisting of

these rays.

The wavy trajectories shown in Fig. 19 settle down in the

lower part of the coordinate grid and are “attached” to the

lower horizontal unlike the wavy trajectories in Fig. 10, which

can settle down in any part of the coordinate grid within D

size.

In principle, the creation of the O shell in Fig. 19 does not

differ from creation of other shells shown in Figs. 13, 15, 17.

Upon comparison of angles multiple p in Fig. 10 and mul-

tiple n in Fig. 19, it can be seen that the relationship between

these angles is as follows:

n ∼ |p| +
1

2
. (21)

In Fig. 19 we illustrated the allowed quantum transitions [6]

and [7]:

∆n = ±1 and ∆l = ±1 (22)

in the form of angles, but not distances as in Figs. 26 to 28

of the Appendix. However, considering ratios (16 to 20) for

small angles, sizes (22) can be illustrated (in principle) in the

form of distances as well, since:

∆n = ±1 ∼ ±γ ∼ ±k and ∆l = ±1 ∼ ±γ ∼ ±k . (23)
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Fig. 19: One of the eight groups of rays of the considered {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The shell

of O is completely filled according to Fig. 18. This group contains 15 links (K= 15) within one pass of N. Troughs of the “waves” are

located (“attached to”) only on the lower horizontal, while crests of the “waves” are located (“attached to”) on several higher horizontals.

The horizontals are marked in separate color. These horizontals have thickness of 0, 5k and are located at the increasing distance of 2kn

from each other from the bottom upwards. The designations of the quantum numbers are similar to these in Figs. 13 to 17. Dash-dotted

lines show axes from which sizes of angles and distances are counted. Quantum transitions ∆n=± 1 and ∆l=± 1 are shown in the form

of angles between dash-dotted lines. On the right, location of five subshells is indicated by curly braces. Figures put next to links (for

N= 0− 3) show the number of rays of N and the process of summation of rays spreading along the links.

Fig. 20 gives images of layers of a nonlinear arithmetic paral-

lelepiped and a numerical example of calculation of O shell

of the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic trajec-

tories (Fig. 19) for zero and the subsequent three passes of

rays, i.e. for N= 0− 4. Four rectangles shown in Fig. 20 are

the layers of the nonlinear arithmetic parallelepiped.

n and l values are given on the right in Fig. 20 with taking

into account the ratios (18 and 21).

The calculation was made according to the rule (3) of con-

secutive filling of an arithmetic rectangle with numbers tak-

ing into account the first and the second threshold (4 and 5;

8 and 9) and initial (6, 7, and 10) conditions, including the

algorithm (8 to 10).

Each of the four layers of the arithmetic parallelepiped

shown in Fig. 20 is similar to the layer represented in Fig. 11,

but there are differences as well. Therefore, it is necessary to

set the third threshold conditions. We took these conditions

for our example directly from Fig. 19. As this approach is

illustrative for us, the total number of rays is not that big. All

the wavy trajectories are “attached” to the lower horizontal.

The third threshold conditions can be set in other illustrative

ways, e.g., by means of special nomograms.

Thus, we made calculations in Excel according to expres-

sion (3). The appropriate formulas for the respective p and q

can be taken from Fig. 3 or Fig. 7, for example.

Fig. 21 shows results of numerical calculations of layers

of the nonlinear arithmetic parallelepiped for O shell (Fig. 20)

in Excel are given in the form of envelopes of distribution of

the ray number. In a, c, e, g, and i (the left column), you can

see the envelopes of distribution of the ray number at the an-
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Fig. 20: One of the eight groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The O shell is completely

filled according to Figs. 18 and 19. Numerical calculation in Excel was made for the first four passes of rays (iterations). Arrows show

dependent cells. Fifteen highlighted cells within one pass of N (one layer of a parallelepiped) correspond to fifteen links (K= 15) within

one pass of N shown in Fig. 19. Figures in the highlighted cells correspond to the number of rays of N extending along the links of K.
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Fig. 21: This Figure shows the results of numerical calculations (Fig. 20) for N= 0, 32, 128, 129 (a to h) of the completely filled O shell for

the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The envelopes of distribution of the ray number at the angle K(p)

are given in the left column. The envelopes of distribution of the ray number at the angle K(n) are given in the right column. The shared

envelopes for N= 128, 129 are given in (i and j). Graphs (e to j) are shown in a normalized form. Note, according to our calculations, in

this case, there is virtually no change in the form of the envelope approximately after the 70th pass.

A. V. Yurkin. On the Geometric Interpretation of Pauli Principle, and Its Sequels 165



Volume 12 (2016) PROGRESS IN PHYSICS Issue 3 (April–July)

Fig. 22: This Figure shows results of numerical calculations of the completely filled 8th shell of R for the {p= (i+ 1/2)γ, q= jk/2}

subsystem of periodic (wavy) trajectories. In (a) and (b), you can see the envelopes of distribution of the ray number at the angle K(n)

for passes N= 131, 132. Results of joint calculations for passes N= 131 and N= 132 in the form of the envelope are given in (c) and

these in a form of histograms are given in (d) and (e). Envelopes (a to c) and histograms (d and e) are presented in the normalized form.

Note, according to our calculations, in this case, there is virtually no change in the form of envelopes approximately after the 100th pass

(N= 100). The histogram in (e) is similar to Fig. 28 of the Appendix.

gle K(p). In b, d, f, h, and j (the right column), you can see

the envelopes of distribution of the ray number at the angle

K(n) (taking into account expression (21). The results of nu-

merical calculation for zero pass of rays, i.e. for N= 0, are

given in a and b; for N= 3 — in c and d; for N= 128 — in e

and f; and for N= 129 — in g and h.

Shared graphs of K(p) and K(n) for N = 128 and N =

129 are given in i and j, namely:

K(p)N= 128, N= 129 =
1

2

[

K(p)N= 128 +K(p)
N= 129

]

(24)

and

K(n)N= 128, N= 129 =
1

2

[

K(n)N= 128 +K(n)N= 129

]

, (25)

whereK(p) and K(n) are in the normalized form.

In this work, like in previous works [2] to [5], we assume

that the number of rays of N extending along the number of

multiplicative links of K is proportionate to energy. For neg-

ative energy of an electron — E extending along these rays,
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we have the following:

|En| ∼ K (n) , (26)

|En| ∼ K(n)N, N+1. (27)

If we consider Fig. 21 (f and h) and especially Fig. 21(j),

we will see that the form of the envelope after a large num-

ber of passes resembles more of a hyperbole of the following

type:

En ∼ −1/n2. (28)

This ratio obtained from our geometric constructions corre-

sponds to experimental results in spectroscopy and theoretical

results of Bohr’s theory and quantum mechanics [6] and [7].

Fig. 22 shows the results (similar to those that were shown

in Fig. 21 f, h, and j) of numerical calculations of layers of

the nonlinear arithmetic parallelepiped for the eighth R shell

in the form of envelopes of distribution of the ray number.

In (a) and (b), you can see the envelopes of distribution of

the ray number at the angle K(n) for passes of rays N= 131,

132. Results of joint calculations for passes of N= 131 and

N= 132 in the form of the envelope are given in (c), and these

in a form of histograms are given in (d) and (e).

If we consider Fig. 22 (a and b) and especially Fig. 22 (c

to e), we will see that the form of the envelope after a large

number of passes resembles more of a hyperbole (28).

Fig. 22 (e) similar to Fig. 22 (c and d) should be compared

to Fig. 28 of the Appendix.

Our numerical calculations show that with an increase in

the number of passes of N, and an increase in the number of

subshells of a shell and the main number n, the form of an

envelope, Fig. 21 (j) and Fig. 22 (c), increasingly resembles a

hyperbole of (28) type. If the number of subshells exceeds

eight (e.g., you can construct eleven), eight of eleven sub-

shells can be subsumed to subshells, while the rest three can

be subsumed to a continuous spectrum [6] and [7]. Such cre-

ation of a continuous spectrum does not contradict Pauli Prin-

ciple.

Conclusions

In our illustrative geometric researches, using just one basic

summation formula of A= B+C (3), Excel, and various ini-

tial and threshold conditions set, we have revealed a number

of new regularities like we did in previous works [3] and [4].

It appeared that quantum systems can be geometrically in-

terpreted by means of our model of a half-integer rays system

in an illustrative way.

We have described Pauli Principle, shells and subshells of

atoms of the periodic table. At the same time, the number of

shells and subshells in our model does not exceed eight, and

all the subshells starting with the ninth can be considered a

continuous spectrum.

By means of our model, it is possible to interpret the prin-

ciple, azimuthal, magnetic, and spin quantum numbers in the

form of angles and distances.

By means of our model, we have given a separate geo-

metric interpretation of an atom of hydrogen and its power

levels. We have interpreted transitions of an electron from

one level to another in the form of angles, but not distances

as it is commonly interpreted [6] and [7]. In this work, we

have also shown that the hyperbolic dependence of energy of

a hydrogen atom of En ∼−1/n2 (28) known from experimen-

tal spectral studies, Bohr’s theory and quantum mechanics,

can be also obtained from our geometric constructions on the

basis of Pauli Principle.

Based on the research of a half-integer ray model, we have

illustrated the stepped structure of layers at laminar flow of

liquid [8]. The similar stepped structure was observed in re-

search of integer ray model made by us in [3], but the half-

integer model gives the more accurate image of “steps” in

comparison with our integer model.
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Appendix: reference tables

Fig. 23: Illustration of the principle of spatial quantization. Possible

values of projections of the orbital momentum to the direction of a

magnetic field for l= 3 and l= 2. (Fig. 231 from [6]).

Fig. 24: Division of possible conditions of an electron in an atom

into shells and subshells. (Table 36.1 from [7]).

Fig. 25: The process of building electron shells of the first 36 ele-

ments of the periodic system. (Table 37.1 from [7]).
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Appendix: reference tables (continue)

Fig. 26: Orbits of a hydrogen atom in Bohr’s theory. The radial ar-

rows located between circles show transitions of an electron from

one level to another. (Fig. 228 from [6]).

Fig. 27: Scheme of levels of energy of a hydrogen atom. The ver-

tical arrows located between horizontal lines show transitions of an

electron from one level to another. (Fig. 229 from [6]).

Fig. 28: Scheme of levels of energy of a hydrogen atom. The in-

clined lines located between horizontal lines show transitions of an

electron from one level to another according to the rule of selection

∆l=± 1. It means that only transitions upon which l changes by unit

are possible. (Fig. 28.1 from [7]).
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X(5) Symmetry to 152Sm
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The excited positive and negative parity states, potential energy surfaces, V(β, γ),
electromagnetic transition probabilities, B(E1), B(E2), electric monopole strength
X(E0/E2) and staggering effect, ∆I = 1, were calculated successfully using the inter-
acting boson approximation model IBA-1. The calculated values are compared to the
available experimental data and show reasonable agreement. The energy ratios and
contour plot of the potential energy surfaces show that 152Sm is an X(5) candidate.

1 Introduction

Phase transition is one of the very interesting topic in nuclear
structure physics. The even-even samarium series of isotopes
have encouraged many authors to study that area extensively
experimentally and theoretically.

Experimentally, authors studied levels energy with their
half-lives, transition probabilities, decay schemes, multipole
mixing ratios, internal conversion coefficients, angular corre-
lations and nuclear orientation of γ-rays[1-4].

Theoretically, different theoretical models have been ap-
plied to that chain of isotopes. One of the very interesting
models is the interacting boson approximation model IBA [5-
10]. Iachello [11,12] has made an important contribution by
introducing the new dynamical symmetries E(5) and X(5).

E(5) is the critical point symmetry of phase transition be-
tween U(5) and O(6) while X(5) is between U(5) and S U(3)
nuclei. The aim of the present work is to calculate:

1. The potential energy surfaces, V(β, γ);
2. The levels energy, electromagnetic transition rates

B(E1) and B(E2);
3. The staggering effect, and
4. The electric monopole strength X(E0/E2).

2 IBA-1 model

2.1 Levels energy

The IBA-1 Hamiltonian [13-16] employed on 152Sm in the
present calculation is:

H = EPS · nd + PAIR · (P · P)

+
1
2

ELL · (L · L) +
1
2

QQ · (Q · Q)

+5OCT · (T3 · T3) + 5HEX · (T4 · T4) ,

(1)

where

P · p =
1
2



{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x

{
(ss)(0)

0 −
√

5(d̃d̃)(0)
0

}


(0)

0

, (2)

L · L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q · Q =
√

5



{
(S †d̃ + d†s)(2) −

√
7

2
(d†d̃)(2)

}
x

{
(s†d̃ + +d̃s)(2) −

√
7

2
(d†d̃)(2)

}



(0)

0

, (4)

T3 · T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 · T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

In the previous formulas, nd is the number of bosons; P·P,
L·L, Q·Q, T3·T3 and T4·T4 represent pairing, angular momen-
tum, quadrupole, octupole and hexadecupole interactions re-
spectively between the bosons; EPS is the boson energy; and
PAIR, ELL, QQ, OCT , HEX are the strengths of the pairing,
angular momentum, quadrupole, octupole and hexadecupole
interactions respectively (see Table 1).

2.2 Transition rates

The electric quadrupole transition operator employed is:

T (E2) = E2S D · (s†d̃ + d†s)(2) +

+
1√
5

E2DD · (d†d̃)(2) . (7)

E2S D and E2DD are adjustable parameters.
The reduced electric quadrupole transition rates between

Ii → I f states are given by:

B(E2, Ii − I f ) =
[< I f ‖ T (E2) ‖ Ii >]2

2Ii + 1
. (8)

3 Results and discussion

In this section we review and discuss the results.
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nucleus EPS PAIR ELL QQ OCT HEX E2S D(eb) E2DD(eb)
152Sm 0.3840 0.000 0.0084 −0.0244 0.0000 0.0000 0.1450 −0.4289

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

3.1 The potential energy surfaces

The potential energy surfaces [17], V(β, γ), as a function of
the deformation parameters β and γ are calculated using:

ENΠNν
(β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β2(1 + β2) + β2(1 + β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{
[X̄πX̄νβ

2] + Nν(Nν − 1)
(

1
10

c0 +
1
7

c2

)
β2

}
,

(9)

where

X̄ρ =

(
2
7

)0.5
Xρ ρ = π or υ . (10)

The calculated potential energy surfaces, V(β, γ), are pre-
sented in Figures 1, 2, 3. 152Sm lies between 150Sm which is
a vibrational like nucleus, U(5), Fig. 1, while 154Sm is a rota-
tional like, S U(3), nucleus, Fig. 3. So, 150Sm can be an X(5)
candidate where levels energy, transition probability ratios as
well as the potential energy surfaces are supporting that as-
sumption (see Table 2).

3.2 Energy spectra and electric transition rates

The energy of the positive and negative parity states of 152Sm
isotope are calculated using computer code PHINT [19]. A
comparison between the experimental spectra [18] and our
calculations, using values of the model parameters given in
Table 1 for the ground state, β1, β2 and γ bands are illustrated
in Fig. 4. The agreement between the calculated levels energy
and their corresponding experimental values are fair, but they
are slightly higher especially for the higher excited states in
β1, β2 and γ bands. We believe this is due to the change of
the projection of the angular momentum which is due mainly
to band crossing. Fig. 5 shows the position of X(5) and E(5)
between the other types of nuclei.

Unfortunately there are no available measurements of el-
ectromagnetic transition rates B(E1) for 152Sm nucleus, Ta-
ble 3, while some of B(E2) are measured. The measured
B(E2, 2+

1 → 0+
1 ) is presented, in Table 4, for comparison with

the calculated values [20]. The parameters E2S D and E2DD
displayed in Table 1 are used in the computer code NPBEM
[19] for calculating the electromagnetic transition rates and
the calculated values are normalized to B(E2, 2+

1 → 0+
1 ). No

new parameters are introduced for calculating electromag-
netic transition rates B(E1) and B(E2) of intraband and in-
terband.

Fig. 1: Potential energy surfaces for 150Sm .

Fig. 2: Potential energy surfaces for 152Sm .

Fig. 3: Potential energy surfaces for 154Sm .
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nucleus E4+
1
/E2+

1
E6+

1
/E2+

1
E8+

1
/E2+

1
E0+

2
/E2+

1
E6+

1
/E0+

2
E0+

3
/E2+

1
BE2(4+

1 − 2+
1 )/BE2(2+

1 − 0+
1 )

152Sm 3.02 5.83 9.29 5.66 1.03 8.92 1.53

X(5) 3.02 5.83 9.29 5.65 1.53 6.03 1.58

Table 2: Energy and transition probability ratios.

Fig. 4: Experimental[18] and calculated levels energy

Fig. 5: Triangle showing the position of X(5) and E(5).

Fig. 6: Staggering effect on 152Sm.

I−i I+
f B(E1)Exp. B(E1)IBA-1

11 01 —- 0.0979
11 02 —- 0.0814
31 21 —- 0.2338
31 22 —- 0.0766
31 23 —- 0.0106
32 21 —- 0.0269
32 22 —- 0.0291
32 23 —- 0.0434
51 41 —- 0.3579
51 42 —- 0.0672
51 43 —- 0.0050
71 61 —- 0.4815
71 62 —- 0.0574
91 81 —- 0.6075
91 82 —- 0.0490
111 101 —- 0.7367
111 102 —- 0.0413

Table 3: Calculated B(E1) in 152Sm.

3.3 Staggering effect

The presence of (+ve) and (−ve) parity states has encouraged
us to study the staggering effect [21-23] for 152Sm isotope
using staggering function equations (11, 12) with the help of
the available experimental data [18].

S t (I) = 6∆E (I)− 4∆E (I − 1)− 4∆E (I + 1) +

+ ∆E (I + 2) + ∆E (I − 2) , (11)
with

∆E (I) = E (I + 1) − E (I) . (12)

The calculated staggering patterns are illustrated in Fig. 6
and show an interaction between the (+ve) and (−ve) parity
states for the ground state band of 152Sm.

3.4 Electric monopole transitions

The electric monopole transitions, E0, are normally occurring
between two states of the same spin and parity by transferring
energy and zero unit of angular momentum. The strength of
the electric monopole transition, Xi f ′ f (E0/E2), [24] can be
calculated using equations (13, 14) and presented in Table 5.

Xi f ′ f (E0/E2) =
B(E0, Ii − I f )
B(E2, Ii − I′ f )

, (13)
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I+
i I+

f B(E2)Exp*. B(E2)IBA-1

21 01 0.670(15) 0.6529
31 21 —- 0.0168
41 21 0.1.017(4) 1.0014
61 41 1.179(33) 1.1304
02 21 0.176(1) 0.3363
22 21 0.0258(26) 0.0610
22 41 0.091(11) 0.1057
42 21 0.0035(35) 0.0003
42 41 0.037(23) 0.0458
23 01 0.0163(11) 0.0141
23 21 0.0417(42) 0.0125
23 41 0.0416(32) 0.0296
43 21 0.0035(13) 0.0038
43 41 0.037(13) 0.0084
43 42 —- 0.1235
43 22 —- 0.0070
43 23 —- 0.3110
42 22 —- 0.6418
81 61 —- 1.1681
81 62 —- 0.0376
101 81 —- 1.1421

Table 4: Calculated B(E2) in 152Sm (* from Ref.[20])

I+
i I+

f X(E0/E2)Exp*. X(E0/E2)IBA-1

02 01 0.7(0.1) 0.85
03 02 —- 3.68
03 01 —- 0.72
04 03 —- 4.39
04 02 —- 0.64
04 01 —- 1.27
22 21 4.5(0.5) 3.52
23 21 —- 12.23
23 22 —- 11.19
43 41 —- 1.76
43 42 —- 1.40
44 41 —- 0.44
44 42 —- 3.15
42 41 6.6(2.10) 2.02
62 61 —- 1.46
82 81 —- 1.20
102 101 —- 1.07

Table 5: Xi f ′ f (E0/E2) ratios in 152Sm (* from Ref [20]).

where Ii =I f =0 , I′ f =2 and Ii= I f , 0 , I f = I′ f .

Xi f ′ f (E0/E2) = (2.54×109) A3/4 ×

×E5
γ(MeV)

ΩKL
α(E2)

Te(E0, Ii − I f )
Te(E2, Ii − I′ f )

. (14)

where:
A : mass number;
Ii : spin of the initial state where E0 and E2 transitions are
depopulating it;
I f : spin of the final state of E0 transition;
I′ f : spin of the final state of E2 transition;
Eγ : gamma ray energy;
ΩKL : electronic factor for K,L shells [25];
α(E2) : conversion coefficient of the E2 transition;
Te(E0, Ii − I f ) : absolute transition probability of the E0 tran-
sition between Ii and I f states, and
Te(E2, Ii − I′ f ) : absolute transition probability of the E2 tran-
sition between Ii and I′ f states.

3.5 Conclusions

The IBA-1 model has been applied successfully to the 152Sm
isotope and:

1. Levels energy are successfully reproduced;
2. Potential energy surfaces are calculated and show X(5)

characters to 152Sm;
3. Electromagnetic transition rates B(E1) and B(E2) are

calculated;
4. Staggering effect has been calculated and beat pattern

observed which show an interaction between the (−ve)
and (+ve) parity states, and

5. Strength of the electric monopole transitions Xi f ′ f (E0/
E2) are calculated.
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This paper investigates claims made by Pierre-Marie Robitaille in a series of papers

from 2003 to 2015 that Kirchhoff’s Law of thermal radiation does not apply to cavities

made of arbitrary materials, and that Planck’s theoretical derivation and apparent proof

of this law in these cases is faulty. Robitaille’s claims are compared to statements in the

original papers by Kirchhoff and Planck. The present paper concludes that Robitaille’s

claims are not sustainable and that Kirchhoff’s Law and Planck’s proof remain valid in

the situations for which they were intended to apply, including in cavities with walls of

any arbitrary materials in thermal equilibrium.

1 Introduction

In a series of papers from 2003 to 2015 [1–10], Pierre-Maire

Robitaille has challenged the validity of Kirchhoff’s Law of

thermal emission and Planck’s derivation of the mathemat-

ical form of the universal function of spectral radiance ab-

sorbed and emitted by a black body. As the consequences of a

failure of Kirchhoff’s Law would, if proven, include the loss

of universality of application of various fundamental physi-

cal constants including ’Planck’s constant, Boltzmann’s con-

stant, . . . “Planck length”, “Planck time”, “Planck mass”,

and “Planck temperature”’ [10, p. 121], Robitaille’s claims

deserve serious consideration.

In this paper, Robitaille’s claims will be compared to the

original works by Kirchhoff [11] and Planck [12] in order to

determine whether his criticisms of these earlier works are

valid. The present paper focuses initially on the arguments

contained in the series of papers by Robitaille from 2003 to

2014 [1–9]; the second part will address the recent paper au-

thored jointly by Robitaille and Crothers [10].

2 Robitaille’s earlier papers [1–9]

2.1 Kirchhoff’s law and Planck’s proof

Kirchhoff’s Law of thermal radiation dating from 1859-1860

may be stated as follows: “For an arbitrary body radiating

and emitting thermal radiation, the ratio E / A between the

emissive spectral radiance, E, and the dimensionless absorp-

tive ratio, A, is one and the same for all bodies at a given

temperature. That ratio E / A is equal to the emissive spectral

radiance I of a perfect black body, a universal function only

of wavelength and temperature”. This radiance, I, is often

referred to simply as black radiation.

The form of the universal function was not known until

Planck derived it theoretically in 1914 in what is now known

as Planck’s Law. Planck’s derivation is seen as proof of

Kirchhoff’s Law. However, Robitaille points out that the

above definition of Kirchhoff’s Law is not complete and fur-

thermore Robitaille maintains that the statement above should

be called Stewart’s Law as it was originally propounded by

Stewart in 1858 [13]: “All too frequently, the simple equiva-

lence between apparent spectral absorbance and emission is

viewed as a full statement of Kirchhoff’s law, . . . Kirchhoff’s

law must always be regarded as extending much beyond this

equivalence. It states that the radiation within all true cavi-

ties made from arbitrary walls is black. The law of equiva-

lence is Stewart’s” [5, p. 11].

According to Robitaille, in deriving his law of equiva-

lence Stewart had considered the case of a cavity made from

perfectly absorbing (i.e. black) material; he had shown that

the radiation in such a cavity at thermal equilibrium must also

be black, of an intensity appropriate to the equilibrium tem-

perature.

Whilst Robitaille agrees with Stewart, he profoundly dis-

agrees with Kirchhoff’s extension of this finding to cavities

made of arbitrary materials, and therefore with Planck’s proof

of Kirchhoff’s result. Planck had based his proof on a con-

sideration of perfectly reflecting cavities containing “an ar-

bitrarily small quantity of matter” [12, § 51], arriving at the

same result that Kirchhoff had obtained for perfectly absorb-

ing cavities. Planck had thereby demonstrated that all cavities

either containing some arbitrary matter, or equivalently hav-

ing walls made of some arbitrary matter, must also contain

black radiation when at thermal equilibrium.

2.2 Black radiation in a perfectly reflecting cavity

In following the reasoning of both sides of this disagreement,

it is important to distinguish between a perfectly reflecting

cavity containing a vacuum and one containing an opaque ob-

ject or a partially-absorbing medium.

In the first case, Planck writes that “Hence in a vacuum
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bounded by totally reflecting walls any state of radiation may

persist” [12, § 51]; Robitaille claims that this statement is a

violation of Kirchhoff’s Law [10, p. 130]. However, Planck’s

statement should perhaps be more properly be viewed as a sit-

uation to which Kirchhoff’s Law does not apply because there

is no matter present which either absorbs or emits radiation.

When considering the case of a perfectly reflecting cavity

containing an arbitrary object, again it is important to distin-

guish between two situations. The first is that the object ab-

sorbs and emits some fraction of all frequencies of radiation;

this situation may be further subdivided into the special case

where the object is itself a black body such as Planck’s par-

ticle of carbon which is a perfect absorber and emitter at all

frequencies; and the general case where the object only ab-

sorbs and emits some fraction above zero but less than unity

of every frequency. The second situation is that the object

only absorbs and emits over part of the spectrum i.e. there

are some frequencies for which the object itself is a perfect

reflector, neither absorbing nor emitting at those frequencies.

The question in both situations is, what is the nature of

the radiation in the perfectly reflecting cavity at thermal equi-

librium?

Starting with the special case of a black body, Robitaille,

Kirchhoff and Planck all agree that the radiation is necessarily

black. The disagreements start over the general case of an

object imperfectly absorbing at all frequencies.

Planck maintains that “. . . the radiation of a medium com-

pletely enclosed by absolutely reflecting walls is, when ther-

modynamic equilibrium has been established for all colors

for which the medium has a finite coefficient of absorption, al-

ways the stable radiation corresponding to the temperature of

the medium such as is represented by the emission of a black

body” [12, § 51], quoted in [1, p. 1263]. Note that the quoted

statement covers both the situation where the object absorbs

and emits over all frequencies, and the situation where some

frequencies are not absorbed or emitted at all.

In contrast, Robitaille claims that “In fact, if an object is

placed within [perfectly reflecting] walls, an equilibrium will

be established, but it will not correspond to that of a black-

body. Indeed, the radiation contained within such a device

will reflect purely the emission profile of the object it con-

tains” [1, p. 1264].

This is Robitaille’s central argument against the univer-

sality claimed by Kirchhoff and Planck i.e. that all cavities

containing an object must, at equilibrium, come to contain

black radiation at all frequencies absorbed and emitted by the

object.

2.3 The approach to equilibrium

In effect, the argument comes down to the quantity of the radi-

ation in the cavity at equilibrium. Both sides agree that there

is some radiation at all frequencies absorbed and emitted by

the object; the disagreement is over the intensity of that ra-

diation. Does it, as Kirchhoff and Planck maintain, equal the

intensity of black radiation which we can now quantify ac-

cording to Planck’s Law of 1914; or does the radiation density

in the cavity fall short of the black body level at some or all

frequencies because of the imperfect absorption and emission

of the object in the cavity, as Robitaille claims?

The role played by the reflected radiation, i.e. that frac-

tion of incident radiation which is not fully absorbed by the

object, is the key. Robitaille maintains that the radiation den-

sity in the cavity cannot be increased to black body levels by

what he terms “driving the reflection” because this would im-

ply a departure from thermal equilibrium which, Robitaille

argues, contravenes the initial assumption that thermal equi-

librium exists.

A simplified numerical example may be helpful here in

order to crystallise the arguments. Suppose an opaque ob-

ject in a perfectly reflecting cavity is in thermal equilibrium

at a certain temperature and has a coefficient of absorption

of 0.8 (i.e. 80%) of all incident radiation at all frequencies.

The remaining 20% of any incident radiation will be reflected.

Suppose further that the radiation density in the cavity is al-

ready at the level at which a black body at the same temper-

ature would be in thermal equilibrium with it, say100 units.

This will represent the incident radiation on the opaque ob-

ject which will then absorb 80 units and reflect 20 units. The

object will also re-emit the same 80 units into the cavity. The

total radiation coming off the surface of the object, consist-

ing of the emitted and reflected components, is 100, therefore

thermal equilibrium will be maintained with the radiation in

the cavity. What’s more, the radiation density is and remains

black according to the initial assumption. This represents the

situation described by Kirchhoff’s Law.

Consider now the situation where the same object at the

same initial temperature is introduced into the perfectly re-

flecting but otherwise empty cavity, i.e. there is no radiation

density in the cavity initially. In this case, the object will emit

80 units appropriate to its temperature; these will be reflected

off the walls and become “incident” radiation on the object.

The object will now absorb 80%, or 64 units, and reflect 16

units. But it is bound by its initial temperature to continue

emitting 80 units. There is therefore a shortfall between the

amount absorbed and the amount emitted and the object will

cool down. The energy lost by the object will be converted to

additional radiation density in the cavity which will increase

until equilibrium is achieved between the object and the radi-

ation density at some new, lower, temperature. At this point,

the radiation will again be black, but at the level appropriate

to the lower temperature, not the initial temperature of the

object.

Robitaille would object to this second example on the

grounds that thermal equilibrium has not been maintained.

This is correct. But Robitaille goes further and maintains

that this proves that the cavity cannot contain black radia-

tion because it is not allowable to “drive the reflection” until
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a new equilibrium is reached – the object must be maintained

at the original temperature throughout and therefore there is

no spare energy available to “drive the reflection” up to black

body densities.

In essence, Robitaille disallows the approach to thermal

equilibrium between the object and the radiation density in

the cavity by the mechanism outlined in the second numeri-

cal example above. As a result, Robitaille maintains that the

cavity cannot contain the black radiation required by Kirch-

hoff’s Law and therefore the law fails.

In support of his argument, Robitaille quotes Stewart [13]

as follows: “Let us suppose we have an enclosure whose

walls are of any shape, or any variety of substances (all at

a uniform temperature), the normal or statical condition will

be, that the heat radiated and reflected together, which leaves

any portion of the surface, shall be equal to the radiated heat

which would have left that same portion of the surface, if it

had been composed of lampblack . . . Let us suppose, for in-

stance, that the walls of this enclosure were of polished metal

then only a very small quantity of heat would be radiated;

but this heat would be bandied backwards and forwards be-

tween the surfaces, until the total amount of radiated and re-

flected heat together became equal to the radiation of lamp-

black” [13, § 32] quoted in [4, p. 45].

Robitaille comments: “These passages are quite similar

to Kirchhoff’s with the distinction that universality is never

invoked. Stewart realizes that the lampblack surface within

the enclosure is essential” [4, p. 45]. But Stewart is quite

specific – the walls may be of any variety of substance includ-

ing polished metal. This implies that Robitaille’s objection to

what he refers to as Kirchhoff’s extension of Stewart’s result

to cavities made of arbitrary material is unfounded; Stewart

had already made the theoretical leap.

How then did Stewart conclude as he did that “the sum of

the radiated and reflected heat together became equal to the

radiation of lampblack?”

2.4 Stewart’s treatment of reflection

In Stewart’s original paper there is a footnote to the section

quoted above which explains the calculation by which he ar-

rived at this conclusion. Stewart considers “two parallel

plates of polished metal of the same description radiating to

one another” [13, § 32-footnote] and investigates what hap-

pens to an initial amount r of radiation emitted by each op-

posing plate and falling perpendicularly on the other plate,

where a proportion is reflected back to the first plate. As an

ever-decreasing part of the original radiation r is “bandied

about” by repeated reflection between the plates, with a pro-

portion α(< 1)∗ of the incident radiation being reflected each

∗Stewart uses α to represent the proportion of reflected radiation; in

Planck’s usage, α represents the coefficient of absorption. To comply with

Planck’s usage, α should be replaced with ρ in the above equation. The

derivation of the equation is unaffected.

time, Stewart shows that the total amount falling on one of

the plates is

r
(

1 + α + α2 + α3 + α4 . . .
)

=
r

1 − α
,

which, Stewart explains, is the same formula as results from

the case where one of the plates is a black body in thermal

equilibrium with the other plate.

The question then arises, can this calculation also be ap-

plied to a situation where thermal equilibrium has not yet

been achieved? It turns out that it can. Note that, in mod-

ern parlance, Stewart’s calculation sums the repeated reflec-

tions of the two initial pulses (one from each plate) emitted

in the first interval of time δt over subsequent intervals of

time. It may be supposed without loss of generality that the

interval of time δt corresponds to the transmission time of ra-

diation between the plates. Then the same sum would result

from considering what proportion of a series of identical ini-

tial pulses each of emission duration δt fell on one plate in a

single (later) interval of time δt. This second case represents

continuous emission of radiation in thermal equilibrium. One

of the plates may then be replaced with a black body at the

same equilibrium temperature which emits exactly the same

amount of radiation that it absorbs, or alternatively with a

perfect reflector. Again, the same sum emerges from the cal-

culation, as Stewart explained.

What’s more, exactly the same result is obtained when

one plate is perfectly reflecting and there is no radiation in the

gap between the plates initially, i.e. there is no initial thermal

equilibrium to supply the series of constant pulses prior to the

arrival interval δt under consideration. In this case, all the ra-

diation is emitted by just one of the plates; therefore double

the time is required to achieve the same result that Stewart ob-

tained but, in effect, this result shows that once a steady state

has been achieved then the radiation arriving on the single

partially-absorbing plate is equivalent to that coming from a

black body. The only difference in this case is that during the

initial period the partially-absorbing plate is absorbing less

radiation than it is emitting; it is therefore cooling down and

part of its initial thermal energy is being used to increase the

radiation density between the plates, or, in Robitaille’s terms,

in “driving the reflection”. However, when thermal equilib-

rium is established then the calculation shows that the radia-

tion reflected back on to the emitting plate will be equivalent

to black radiation at the equilibrium temperature.

What this demonstrates is that Stewart’s method of cal-

culation of the reflection being “bandied about” can also be

applied to the approach to equilibrium provided that time is

allowed for a sufficient number of reflections to build up the

radiation density in the cavity to equilibrium levels. The total

time necessary to fill the space with black radiation is likely

to be short because of the extremely short transmission time

δt and the limited number of reflections necessary to achieve

near-perfect black body radiation in most normal situations.
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Only in cases where the plate is nearly a perfect reflector

might an appreciable time be required.

Thus “Stewart’s mechanism”, if we may so call it, should

be interpreted as indicated in the second numerical example

given above, with the walls themselves taking the part of the

opaque object. Stewart’s words “bandied about” can be ap-

plied to the reflected proportions of the continuing emission

which build up the radiation density in the cavity until thermal

equilibrium is achieved. Robitaille calls this “driving the re-

flection”; it may be clearer to think of the effect as “increasing

the radiation energy density in the cavity” at the expense of

the thermal energy of the walls. The important point, though,

is that it occurs on the approach to thermal equilibrium be-

tween the walls and the radiation density in the cavity, not at

the stage where equilibrium has already been achieved. How-

ever, once thermal equilibrium has been established then the

radiation in the cavity will be black.

If an object in a perfectly reflecting cavity absorbs and

emits some radiation at all frequencies it is clear that Stew-

art, Planck and Kirchhoff all held that the full black body

spectrum will by achieved by the mechanism outlined numer-

ically above and described by Stewart in the passage quoted.

In contrast, Robitaille maintains throughout his series of pa-

pers [1–9] that it is necessary to include a black body in the

cavity, whether by making part of the walls black or by inclu-

sion of a black object, in order to achieve black radiation in

accordance with Kirchhoff’s Law.

2.5 Planck’s particle of carbon

Robitaille claims that this is precisely why Planck insisted

on including a carbon particle in his analysis and why Kirch-

hoff included one in his experiments. Robitaille dismisses

Planck’s assertion that the particle merely acts as a catalyst

and insists that the carbon particle is responsible for produc-

ing the black radiation that Kirchhoff s Law requires. For ex-

ample, as recently as 2014 Robitaille stated “[Planck’s] cav-

ities all contained black radiation as a direct result [of plac-

ing a carbon particle in the cavity] . . . Since he was driving

reflection, all cavities contained the same radiation . . . ” [9,

p. 158].

However, it is important to distinguish between the nature

of the black radiation emitted and the quantity of it. Planck

is perfectly clear that the reason for assuming that the car-

bon particle is merely a catalyst is that it may be made as

small as one likes and, most importantly, its thermal energy

can be made so small as to not significantly change the total

energy in the cavity [12, § 52]. By definition, therefore, the

carbon particle cannot increase the radiation density in the

cavity to the level commensurate with the black body temper-

ature; in Robitaille’s terms, the particle cannot “drive the re-

flection”, and therefore this cannot be the reason why Planck

included it.

Furthermore, if the radiation density is being increased

at all frequencies by Stewart’s mechanism then there is no

need for the particle at all; all one needs to do is wait until

thermal equilibrium has been achieved. If the object is a very

poor absorber and emitter then this could take some time. In

adding a carbon particle to his experiments, Kirchhoff may

simply have wanted to accelerate the process.

The situation is somewhat different in the case when the

object is a perfect reflector at one or more frequencies. In

that case, as Planck stated, the spectrum is black for all fre-

quencies at which the object absorbs and emits but it is inde-

terminate at the frequencies for which the object is a perfect

reflector: “Hence in a vacuum bounded by totally reflecting

walls any state of radiation may persist. But as soon as an

arbitrarily small quantity of matter is introduced into the vac-

uum, a stationary state of radiation is gradually established.

In this the radiation of every color which is appreciably ab-

sorbed by the substance has the intensity Kν corresponding

to the temperature of the substance and determined by the

universal function . . . , the intensity of radiation of the other

colors remaining indeterminate” [12, § 51].

However, if the spectrum is indeterminate at any frequen-

cies then it is not possible to properly determine a temperature

which is defined in terms of the black body spectrum. See for

example “. . . the radiation in the new volume V ′ will not any

longer have the character of black radiation, and hence no

definite temperature . . . ” [12, § 70]. It is apparently in order

to avoid this situation that Planck included a particle of car-

bon which guaranteed that the intensity of radiation was de-

terminate at all frequencies. Why Planck considered that this

precaution was necessary is apparent from earlier sections of

his work.

Planck had previously discussed the relationship between

surface roughness and reflection, pointing out that whether a

surface reflected or not was a function of roughness in rela-

tion to the wavelength: “All the distinctions and definitions

mentioned in the two preceding paragraphs refer to rays of

one definite color only. It might very well happen that, e.g.,

a surface which is rough for a certain kind of rays must be

regarded as smooth for a different kind of rays. It is readily

seen that, in general, a surface shows decreasing degrees of

roughness for increasing wave lengths. Now, since smooth

non-reflecting surfaces do not exist (Sec. 10), it follows that

all approximately black surfaces which may be realized in

practice (lamp black, platinum black) show appreciable

reflection for rays of sufficiently long wave lengths”

[12, § 11].

Thus all objects except perfect black bodies will become

reflective at long enough wavelengths. It is apparently in or-

der to avoid this situation that Planck insisted on including

a particle of carbon which ensured that all frequencies were

present in the equilibrium spectrum. The total radiation en-

ergy would not be affected because the particle would not

have sufficient energy to do so, by definition. Thus the parti-

cle merely acted as a catalyst, as Planck insisted, to convert
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the spectrum emitted by the object into a black spectrum as

necessary for a proper temperature measurement to be made

in accordance with the definition.

Interestingly, despite numerous repetitions in Robitaille’s

papers [1–8] of his claim that Planck’s carbon particle was

essential in order to increase the radiation density to the re-

quired black body level, Robitaille [9] hints at a change of

stance, admitting that eventually, the cavity might become

filled with black radiation, provided that emission and re-

flection are Lambertian” [9, p. 160] but then he negates the

possibility by stating “However, for most materials, the in-

troduction of photons into the reflected pool will be ineffi-

cient, and the temperature of the system will simply increase.

That is the primary reason that arbitrary cavities can never

contain black radiation” [9, p. 160]. In 2015, Robitaille &

Crothers [10] return to this theme, stating “Stewart recog-

nized that, if one could “drive the radiation” in a cavity made

from arbitrary materials, by permitting the slow buildup of re-

flected radiation, the interior could eventually contain black

radiation. The argument was true in theory, but not demon-

strated in practice” [10, p. 122].

It appears that Robitaille and Crothers now accept Stew-

art’s mechanism for building up the radiation density by

“bandying about” the reflection, at least in principle. The

authors do not give any explanation for this remarkable volte-

face from Robitaille’s earlier works [1–8], but it now appears

that his previous objections to Planck’s particle of carbon are

unfounded: the particle cannot, by definition, increase the to-

tal radiation density in the cavity, and Robitaille & Crothers

apparently now accept that it is not necessary for the validity

of Kirchhoff’s Law that it does so.

2.6 Experimental evidence against Kirchhoff’s law

Robitaille bases many of his arguments against the validity

of Kirchhoff’s Law on the fact that black body cavities are

never constructed of arbitrary materials; on the contrary, Ro-

bitaille insists that manufacturers go to great lengths to con-

struct cavities from special materials to ensure that the radia-

tion is black. Equally, Robitaille points out that resonant mi-

crowave cavities cannot contain black radiation. Both these

counter-examples are held to demonstrate that Kirchhoff’s

Law must be incorrect.

However, there appear to be alternative explanations

available. In the former case, it may well be that users are

concerned about the efficiency of the approach to equilibrium

and therefore require black materials in order to speed up the

process. It is also likely that manufacturers are concerned,

as Planck himself apparently was, to ensure that there are no

frequencies at which the cavity is a perfect reflector, which

would preclude a proper measurement of temperature.

In the case of microwaves, the cavity is being electro-

magnetically forced to resonate at a particular frequency and

so the radiation cannot be black. Such cases of non-thermal

emission were specifically excluded by Plank in deriving his

proof: “A necessary consequence of this is that the coeffi-

cient of emission ǫ depends, apart from the frequency ν and

the nature of the medium, only on the temperature T . The last

statement excludes from our consideration a number of ra-

diation phenomena, such as fluorescence, phosphorescence,

electrical and chemical luminosity, . . . ” [12, § 7].

Thus it is not logical to conclude that Kirchhoff’s Law

must necessarily fail because of these supposed counter-

examples.

2.7 Challenges to Monte Carlo simulations

Robitaille states that Monte Carlo simulations apparently sup-

port Kirchhoff’s Law but then he objects on the grounds that:

“Monte Carlo simulations introduce black photons into cav-

ities. Hence, they become black. The process is identical

to placing a highly emitting carbon particle, or radiometer,

at the opening of a cavity. No proof is provided by compu-

tational methods that arbitrary cavities contain black radia-

tion. It can be stated that Monte Carlo simulations obtain

similar answers by modeling the repeated emission of pho-

tons directly from the cavity walls. In this case, computational

analysis relies on internal reflection to arrive at a cavity filled

with black radiation” [5, p. 6].

Apparently, Robitaille’s objection to the Monte Carlo

simulations is that they rely on Stewart’s mechanism for

building up the radiation by internal reflection. As Robitaille

and Crothers [10] now accept that this mechanism is valid

in principle, Robitaille’s previous objections to Monte Carlo

simulations supporting Kirchhoff’s Law should also drop

away.

2.8 Super-Planckian emission

Robitaille suggests that recent research into metamaterials

supports his arguments. For example, he states: “Recent re-

sults demonstrating super-Planckian thermal emission from

hyperbolic metamaterials (HMM) in the near field and emis-

sion enhancements in the far field are briefly examined. Such

findings highlight that cavity radiation is absolutely depen-

dent on the nature of the cavity and its walls. As previously

stated, the constants of Planck and Boltzmann can no longer

be viewed as universal” [9, p. 157].

In relation to the near field emissions, Robitaille refers to

three examples from the recent literature [14–16]. All three

papers refer to experiments involving bodies with separation

distances smaller than the thermal wavelength. However, ex-

perimental distances below the thermal wavelength were ex-

pressly excluded by Planck: “Throughout the following dis-

cussion it will be assumed that the linear dimensions of all

parts of space considered, as well as the radii of curvature

of all surfaces under consideration, are large compared with

the wave lengths of the rays considered” [12, § 2].

Planck was concerned about the effects of diffraction at
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small scales, in effect limiting his analysis to what are now

known as far field effects. Near-field effects are not covered

by Kirchhoff’s Law and so these three papers cited by Ro-

bitaille cannot be used as examples of contraventions of the

law. In fact, Guo et al point out that Kirchhoff’s Law still suf-

fices to calculate the thermal emission in the far-field and that

“the high-k waves which are thermally excited in the HMM

are trapped inside and will be evanescent in vacuum (not

reach the far field)” [14, p. 2]. After comparing the behav-

ior of HMM to other near-field phenomena of surface elec-

tromagnetic excitations and photonic crystal structures, Guo

et al “emphasize that in all the above cases including hyper-

bolic metamaterials, the presence of an interface is enough to

guarantee that the far-field emissivity is limited to unity” [14,

p. 5], i.e. that it is Planckian.

The evidence for super-Planckian far-field emissions is

not convincing either. Robitaille cites two papers by Yu et

al [17,18] and Nefedov & Melnikov [19] but he notes that Yu

et al’s claim of emissions in excess of the Stefan-Boltzmann

Law made in their arXiv preprint were withdrawn in the

published version, and that Nefedov & Melnikov’s experi-

ment was not in thermal equilibrium as required by Kirch-

hoff’s Law.

Robitaille’s conclusion that “the universality of black-

body radiation has simply been overstated” [9, p. 161] does

not appear to be warranted on the basis of these recent exper-

iments into metamaterials.

2.9 Robtaille’s thought experiment

In [7], Robitaille postulates a thought experiment which he

claims disproves Kirchhoff’s Law: “Through the use of two

cavities in temperature equilibrium with one another, a

thought experiment is presented . . . which soundly refutes

Kirchhoff’s law of thermal emission” [7, p. 38]. In this

thought experiment, the outer cavity is perfectly absorbing

and emitting; the second cavity, which is contained entirely

within the outer cavity, has perfectly reflecting walls and one

side which can be closed remotely. Starting with this in-

ner side open, the two cavities are brought to 4 K; the inner

side is then closed; the outer cavity is then heated to 300 K.

Robitaille continues: “The inner cavity walls are thus also

brought to 300 K. However, unlike the outer cavity which is

filled with blackbody radiation at 300 K, the inner cavity re-

mains filled with blackbody radiation at 4 K. Thereby, Kirch-

hoff’s law is proven to be false” [7, p. 39].

But by making the inner cavity walls perfectly reflecting

and closing the last side, Robitaille has created two entirely

separate cavities; by definition, the inner cavity walls cannot

emit radiation in either direction, whatever their temperature.

They therefore act as boundary walls to what has become a

“hollow” outer cavity. The outer cavity no longer contains

the inner cavity within itself in the thermal sense; Kirchhoff’s

Law therefore survives this thought experiment.

3 Robitaille and Crothers 2015 paper

Robitaille & Crothers’ paper [10] represents a significant de-

parture from the previous works by Robitaille alone [1–9].

Robitaille and Crothers’ volte-face on the viability of Stew-

art’s mechanism for filling any cavity with black radiation has

been discussed above. However, apart from a re-statement

of many of Robitaille’s previous objections which have also

been discussed above, the thrust of the 2015 jointly-authored

paper is to concentrate on criticising Planck’s proof of Kirch-

hoff’s Law, a matter only touched on briefly in previous

works. Section 4 is titled “Max Planck and Departure from

Objective Reality” and contains the authors’ principal ob-

jections to Planck’s proof. These will now be examined in

detail.

3.1 The meaning of Planck’s term “surface”

A number of Robitaille and Crothers’ objections hinge on

their interpretation of Planck’s term “surface” which Planck

himself had been careful to distinguish from Kirchhoff’s ear-

lier definition. Robitaille and Crothers quote from Planck:

“In defining a blackbody Kirchhoff also assumes that the ab-

sorption of incident rays takes place in a layer “infinitely

thin”. We do not include this in our definition” [10, p. 124]

quoting a footnote from [12, § 10]. In the original text, Planck

later explains why he is diverging from Kirchhoff on this

point: “Heat rays are destroyed by absorption. According

to the principle of the conservation of energy the energy of

heat radiation is thereby changed into other forms of energy

(heat, chemical energy). Thus only material particles can ab-

sorb heat rays, not elements of surfaces, although sometimes

for the sake of brevity the expression absorbing surfaces is

used” [12, § 12]. It appears that Planck could not accept

Kirchhoff’s “infinitely thin” absorbing layer because it could

not include any material particles.

In § 12, Planck is simply being consistent with his earlier

discussion of emission: “The creation of a heat ray is gener-

ally denoted by the word emission. According to the principle

of the conservation of energy, emission always takes place at

the expense of other forms of energy (heat, chemical or elec-

tric energy, etc.) and hence it follows that only material parti-

cles, not geometrical volumes or surfaces, can emit heat rays.

It is true that for the sake of brevity we frequently speak of the

surface of a body as radiating heat to the surroundings, but

this form of expression does not imply that the surface actu-

ally emits heat rays. Strictly speaking, the surface of a body

never emits rays, but rather it allows part of the rays coming

from the interior to pass through. The other part is reflected

inward and according as the fraction transmitted is larger or

smaller the surface seems to emit more or less intense radia-

tions” [12, § 2].

In both § 10 and § 12, it is clear that Planck’s use of the

term “surface” refers to a geometrical surface dividing two

media; the material effects of emission and absorption take
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place within the adjoining media. Planck’s reference to the

surface radiating or absorbing heat is clearly stated as being

no more than a convenient shorthand. In contrast, Robitaille

and Crothers interpret Planck’s term “surface” as being one

composed of material particles; it appears that this misinter-

pretation has led them to a number of erroneous conclusions.

For example, Robitaille and Crothers ask in relation to

an element dσ of the bounding surface: “First, what exactly

was the location of δσ? In reality it must rest in one of the

two media” [10, p. 127]. This is contrary to Planck’s own

description of the bounding surface σ as a “surface separat-

ing the two media” [12, § 35]. Thus Robitaille and Crothers’

first objection, that Planck is being inconsistent as to the lo-

cation of the bounding surface, is unfounded. Similarly, Ro-

bitaille and Crothers’ second objection to Planck’s treatment

of the bounding surface, namely “Planck neglected the fact

that real materials can possess finite and differing absorptiv-

ities” [10, p. 127] cannot be maintained.

Robitaille and Crothers raise a third objection to the anal-

ysis of an element dσ of the bounding surface, namely:

“Third, the simplest means of nullifying the proof leading to

Planck’s Eq. 42, is to use a perfect reflector as the second

medium. In that case, a refractive wave could never enter the

second medium and Planck’s proof fails” [10, p. 127]. How-

ever, if the surface separating the two media is itself a perfect

reflector then the reflectivity on the side of the first medium

is obviously equal to 1 but so is the reflectivity for any rays

coming from the other side. Thus, ρ = ρ′ in accordance with

Planck’s Eq. 40 leading to his Eq. 42 (see also below) and the

proof remains valid. In fact, Planck had already considered

this theoretical possibility as occurring for an instant: “Since

the equilibrium is nowise disturbed, if we think of the surface

separating the two media as being replaced for an instant by

an area entirely impermeable to heat radiation, the laws of

the last paragraphs must hold for each of the two substances

separately” [12, § 35]. Obviously the instantaneous nature

of this theoretical replacement is necessary to preserve the

single system being analysed; a more permanent separation

would create two separate systems to which the analysis did

not apply. Once again it seems that Robitaille and Crothers’

objection is unsustainable.

3.2 Absorption and transmission

Following their quote from Planck’s footnote departing from

Kirchhoff’s definition of an infinitely thin surface in which all

the absorption occurred (see above), Robitaille and Crothers

commented as follows: “With his words, Planck redefined

the meaning of a blackbody. The step, once again, was vital

to his derivation of Kirchhoff’s Law, as he relied on transmis-

sive arguments to arrive at its proof. Yet, blackbody radiation

relates to opaque objects and this is the first indication that

the proofs of Kirchhoff’s Law must not be centered on ar-

guments which rely upon transmission. Planck ignored that

real surface elements must possess absorption, in apparent

contrast with Kirchhoff and without any experimental justifi-

cation” [10, p. 124].

However, as is obvious from the passages quoted above,

Planck did recognize that absorption must be related to mate-

rial particles. Once again, the apparent problem arises from

the fact that Planck’s surface is a geometrical one, whilst Ro-

bitaille and Crothers are obviously referring to a surface layer

in which, they maintain, all absorption must take place be-

cause transmission is not permitted through a black body.

However, Planck also allows for the possibility that ab-

sorption in an opaque medium may take place at some un-

specified depth below the geometrical surface, i.e. not neces-

sarily in the particles immediately adjacent to the surface. Ro-

bitaille and Crothers quote from Planck’s description in § 10

of the dependence of the absorbing power on the thickness

of the black body material which ends “The more absorb-

ing a body is, the smaller the value of this minimum thick-

ness, while in the case of bodies with vanishingly small ab-

sorbing power only a layer of infinite thickness may be re-

garded as black”. Robitaille & Crothers object to this sen-

tence stating that “Now, [Planck] explicitly stated that bod-

ies which are poor absorbers can still be blackbodies. Yet,

we do not make blackbodies from materials which have low

absorptivities, because these objects have elevated reflectiv-

ities, not because they are not infinite” [10, p. 125] quoting

[12, § 10].

But these two objections, about absorptivity and reflectiv-

ity respectively, seem to be missing the points that Planck is

making: firstly, some absorption may take place by particles

situated below the surface. Secondly, Planck had previously

stated: “When a smooth surface completely reflects all inci-

dent rays, as is approximately the case with many metallic

surfaces, it is termed “reflecting”. When a rough surface re-

flects all incident rays completely and uniformly in all direc-

tions, it is called “white”. A rough surface having the prop-

erty of completely transmitting the incident radiation is de-

scribed as “black” [12, § 10]. Note that Planck defines black

materials as those with a rough surface which does not re-

flect; all rays falling on a black material pass through Planck’s

geometrical surface and are subsequently absorbed at some

depth in the interior of the black body. No rays are reflected

from the body even if the material is, in Planck’s terms, a

poor absorber. This immediately undermines Robitaille and

Crothers’ second objection.

Robitaille and Crothers also argue that Planck incorrectly

includes transmission within the material of the black body

when in fact, Robitaille and Crothers claim, absorption must

all occur at the surface: “Blackbodies are opaque objects

without transmission, by definition” [10, p. 125]. Once again,

they are apparently overlooking Planck’s definition of a ge-

ometrical surface and his careful consideration of where any

absorption of radiation passing through that geometrical sur-

face subsequently takes place.
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3.3 Reflection

Robitaille and Crothers’ § 4.2 deals further with Planck’s

treatment of reflection. The authors state: “In the first sec-

tion of his text, leading to his Eq. 27, . . . Planck chose to for-

mally neglect reflection, even though the total energy of the

system included those rays which are both emitted/absorbed

and those which would have been maintained by driving re-

flection. Such an approach was suboptimal” [10, p. 125].

However in the first section of his text, Planck is expressly

dealing with the situation within a medium, not with surface

effects. His § 25 begins: “We shall now, as in the previ-

ous chapter, assume that we are dealing with homogeneous

isotropic media whose condition depends only on the temper-

ature, and we shall inquire what laws the radiation phenom-

ena in them must obey in order to be consistent with the de-

duction from the second principle mentioned in the preceding

section . . . Let us consider, first, points of the medium that are

far away from the surface” [12, § 25]. A mathematical treat-

ment then follows, leading to Planck’s Eq. 27 towards the end

of § 26 which Planck follows with the words “i.e.: in the inte-

rior of a medium in a state of thermodynamic equilibrium the

specific intensity of radiation of a certain frequency is equal

to the coefficient of emission divided by the coefficient of ab-

sorption of the medium for this frequency” [12, § 26].

Note that Planck is still talking about the interior of the

medium where reflection is not applicable because there is no

surface; therefore Robitaille and Crothers’ objection cannot

be maintained.

3.4 Polarization and equality of reflection

Robitaille and Crothers then object to Planck’s analysis based

initially on a plane-polarised ray, stating: “In § 5 Planck ad-

mitted that homogeneous isotropic media emit only natural or

normal, i.e. unpolarized, radiation: “Since the medium was

assumed to be isotropic the emitted rays are unpolarized”.

This statement alone, was sufficient to counter all of the argu-

ments which Planck later utilized to arrive at Kirchhoff’s Law

[Eq. 42]. That is because the important sections of Planck’s

derivation, namely § 35–37 make use of plane-polarized light.

These steps were detached from experimental reality, rela-

tive to heat radiation [Planck, § 35] . . . ” [10, p. 127] quoting

[12, § 35].

Yet Robitaille and Crothers themselves admit that there

was method in Planck’s approach, quoting Planck again: “to

prepare for his use of polarized light in later sections, Planck

resolved, in § 17, the radiation into its two polarized compo-

nents” [10, p. 127], which in itself is unobjectionable. How-

ever, Robitaille and Crothers later state that “such rays could

never exist in the context of heat radiation” [10, p. 129] and

this appears to be their principal objection to this means of

analysis from which Planck derives the equality of the reflec-

tivity on either side of a geometrical surface separating two

different media in his Eq. 40.

But Planck made it clear that an analysis of the special

case of polarised light under consideration leads to a valid

general conclusion because, as he explained at the end of § 36,

the intensity of radiation Kν, the velocity of propagation q,

and the coefficient of reflection ρ at a surface dividing two

different media are related by the equation

Kν

K′ν

q2

q′2
=

1 − ρ′

1 − ρ
,

where the accented quantities refer to the second medium.

Planck continued in §37: “In the last equation the quantity on

the left side is independent of the angle of incidence and of the

particular kind of polarization; hence the same must be true

for the right side. Hence, whenever the value of this quantity

is known for a single angle of incidence and any definite kind

of polarization, this value will remain valid for all angles of

incidence and all kinds of polarization. Now in the special

case when the rays are polarized at right angles to the plane

of incidence and strike the bounding surface at the angle of

polarization, ρ = 0, and ρ′ = 0. The expression on the right

side of the last equation then becomes 1; hence it must always

be 1 and we have the general relations:

ρ = ρ′ (40)

and

q2Kν = q′2K′ν (41)”.

Regarding Planck’s Eq. 40, Robitaille and Crothers state

bluntly that “The result was stunning. Max Planck had de-

termined that the reflectivities of all arbitrary media were

equal” [10, p. 129]. On the contrary, what Planck had in

fact demonstrated is that the reflectivities on each side of a

geometrical surface bounding two different media are equal.

Clearly if a different pair of media are chosen, the value of the

reflectivity of the bounding surface may be different as well.

Planck had previously addressed this point in § 10: “Since, in

general, the properties of a surface depend on both of the

bodies which are in contact, this condition shows that the

property of blackness as applied to a body depends not only

on the nature of the body but also on that of the contiguous

medium. A body which is black relatively to air need not be

so relatively to glass, and vice versa” [12, § 10]. Robitaille &

Crothers’ interpretation that Planck had determined that the

reflectivities of all media were equal is unwarranted.

4 Summary and conclusions

Stewart [13] had shown that the radiation in a cavity made

from perfectly absorbing material at thermal equilibrium

must be black, of an intensity appropriate to the equilibrium

temperature. According to Robitaille, Kirchhoff [11]

extended this finding to cavities made of arbitrary materials.

In a series of papers [1–10], Robitaille has raised various ob-

jections to Kirchhoff’s extension of Stewart’s finding to arbi-

trary cavities, and to Planck’s proof of Kirchhoff’s Law [12].
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Robitaille concludes that the Law can only be applied validly

to cavities containing a black body.

The present paper has investigated Robitaille’s claims in

depth and compared them to the original papers by Stew-

art [13], Kirchhoff [11] and Planck [12]. In no instances have

Robitaille’s objections been found to be sustainable. Further-

more, is has been noted that one of Robitaille’s key and often-

repeated objections to the build-up of black radiation in an

arbitrary cavity according to a mechanism first proposed by

Stewart [13] has now been effectively withdrawn in the recent

paper by Robitaille and Crothers [10].

Robitaille is obviously correct to point out that black body

cavities are never made from reflective materials. However,

this fact appears to be more a question of practicality and the

need to ensure that the walls are not perfectly reflective at any

wavelength so that proper measurements of temperature can

be made. It does not seem to amount to a demonstration that

Kirchhoff’s Law necessarily fails, as Robitaille claims.

This investigation suggests that Kirchhoff’s Law and

Planck’s proof of it remain valid in the situations for which

they were intended to apply, including in cavities with walls

of any arbitrary materials in thermal equilibrium, unless some

other more sustainable objections can be raised in the future.
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Recently, Robert J. Johnson submitted an analysis of my work, relative to Kirchhoff’s

Law of Thermal Emission (R.J. Johnson, A Re-examination of Kirchhoff’s Law of

Thermal Radiation in Relation to Recent Criticisms. Prog. Phys., 2016, v. 12, no. 3,

175–183) in which he reached the conclusion that “Robitaille’s claims are not sus-

tainable and that Kirchhoff’s Law and Planck’s proof remain valid in the situations

for which they were intended to apply, including in cavities with walls of any arbi-

trary materials in thermal equilibrium”. However, even a cursory review of Johnson’s

letter reveals that his conclusions are unjustified. No section constitutes a proper chal-

lenge to my writings. Nonetheless, his letter is important, as it serves to underscore

the impossibility of defending Kirchhoff’s work. At the onset, Kirchhoff formulated

his law, based solely on thought experiments and, without any experimental evidence

(G. Kirchhoff, Über das Verhältnis zwischen dem Emissionsvermögen und dem Ab-

sorptionsvermogen. der Körper fur Wärme und Licht. Pogg. Ann. Phys. Chem., 1860,

v. 109, 275–301). Thought experiments, not laboratory confirmation, remain the ba-

sis on which Kirchhoff’s law is defended, despite the passage of 150 years. For his

part, Max Planck tried to derive Kirchhoff’s Law by redefining the nature of a black

body and relying on the use of polarized radiation, even though he realized that heat

radiation is never polarized (Planck M. The Theory of Heat radiation. P. Blakiston’s

Son & Co., Philadelphia, PA, 1914). In advancing his proof of Kirchhoff’s Law, Max

Planck concluded that the reflectivities of any two arbitrary materials must be equal,

though he argued otherwise (see P.-M. Robitaille and S. J. Crothers, “The Theory of

Heat Radiation” Revisited: A Commentary on the Validity of Kirchhoff’s Law of Ther-

mal Emission and Max Planck’s Claim of Universality. Prog. Phys., 2015, v. 11, no. 2,

120–132). Planck’s Eq. 40 (ρ=ρ’), as presented in his textbook, constituted a violation

of known optics. Planck reached this conclusion, because he did not properly treat ab-

sorption and invoked polarized light in his derivation. Planck also made use of a carbon

particle, which he characterized as a simple catalyst. This conjecture can be shown to

result in a violation of the First Law of Thermodynamics, if indeed, all cavities must

contain black radiation. In the end, while Johnson attempts to defend Planck’s proof,

his arguments fall short. Though the author has argued that Kirchhoff’s law lacks both

proper theoretical and experimental proof, Johnson avoids advancing any experimental

evidence from the literature for his position. It remains the case that experimental data

does not support Kirchhoff’s claims and no valid theoretical proof exists.

If a space be entirely surrounded by bodies of the

same temperature, so that no rays can penetrate

through them, every pencil in the interior of the

space must be so constituted, in regard to its quality

and intensity, as if it had proceeded from a perfectly

black body of the same temperature, and must there-

fore be independent of the form and nature of the

bodies, being determined by temperature alone. . .

In the interior therefore of an opake red-hot body

of any temperature, the illumination is always the

same, whatever be the constitution of the body in

other respects.

Gustav Robert Kirchhoff, 1860 [1]

1 Introduction

Nearly two centuries have elapsed since Gustav Kirchhoff

formulated his Law of Thermal Emission [1, 2]. In that time,

this law has achieved unquestioned acceptance by the physics

community, standing at the very foundation of thermodynam-

ics, condensed matter physics, and astronomy. It constitutes

the central pillar upon which Max Planck built his blackbody

expression and his claims for universal constants [3, 4]. Ed-

dington’s theory of the stars, based on ideal gases, depends

on Kirchhoff’s law, in order to account for stellar spectra [5].

This remains true for stellar physics to this day [6, 7]. Kirch-

hoff’s law constitutes a citadel for modern astronomy, defend-
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ing not only the ideas that stars are gaseous plasmas devoid of

lattice structure [5–7], that white dwarfs and neutron stars are

highly compressed objects, and that black holes exist [8], but

also the concept that a primordial atom once emitted a ther-

mal spectrum and gave rise to the universe [9, 10]. It is pre-

cisely because Planck, Eddington, Chandrashekhar, Penzias,

Wilson, Dicke, Peebles, Roll, and Wilkinson [1–10] relied

on Kirchhoff’s law, that they could ignore the central role of

the structural lattice in helping to define the emissivity of an

object.∗ While this could be understood in the days of Gus-

tav Kirchhoff, it can no longer be permitted, in light of the

tremendous advances made in condensed matter physics and

medicine.

Hence, over the course of the past 15 years, I have turned

my attention to Kirchhoff’s law [13–18, 20–24, 24–26]. My

interest in this law did not arise from any desire to study as-

tronomy, but rather, as a consequence of assembling the first

ultra high field magnetic resonance imaging (UHFMRI) scan-

ner, at The Ohio State University [27–29]. It was as a di-

rect result of questioning what it meant to say that nuclear

magnetic resonance (NMR) and magnetic resonance imaging

(MRI) were thermal processes. This had been highlighted

long ago by Felix Bloch (Nobel Prize, physics, 1952) who

was concerned with thermal processes linking the lattice and

the spins [30].†

The laws of emission [1–4, 31–33], are just beginning to

impact upon human medicine, as MRI scanners continue to

be pushed to ever higher frequencies [27–29]. Thus, there

is much more at stake here than the quest to a better un-

derstanding of the universe. Correcting Kirchhoff involves

moving to a proper description of all thermal processes, not

only in physics and astronomy, but in a field as seemingly re-

mote and unrelated as radiology. I have stated that Planck’s

blackbody law, although valid, remains unlinked to physical

reality [12, 17, 19, 23]. That is precisely because of Kirch-

hoff’s faulty law. The physics community has not provided

for thermal radiation what is evident for every other spectro-

scopic process, namely: 1) the setting under which emission

occurs, 2) the nature of the energy levels involved, and 3)

∗Nowhere is this more evident than when Eddington insisted that white

dwarfs had to possess a small radius, in order to account for their lack of

luminosity [5], given the well-established mass-luminosity relationship. Had

Eddington considered the critical role of structure in defining emissivity, he

would have seen that white dwarfs simply had a different hydrogen based

lattice than the hexagonal planar arrangement shared by the Sun and the stars

of the main-sequence (see [11, 12] and references therein). But deprived of

the use of a lattice, when he stated that all stars could be viewed as ideal

gases, Eddington had no other means of explaining the lower than expected

luminosity of the white dwarf. Therefore, he was forced to reduce their radius

to unreasonable values [5]. This was the first step towards hypothesizing

highly dense objects, including the densities now attributed to neutron stars

and black holes [8].
†Suffice it to say that the cavity experiments discussed later in this letter

have relevance to both blackbody radiation and MRI. Furthermore, any valid

analysis of noise power in MRI will be critically based on properly defining

and modeling the processes responsible for thermal emission.

the nature of the transition species. Only 4) an equation, and

5) the emission of light, have been described [12]. Yet, in ev-

ery other spectroscopic process, equations are related to phys-

ical reality. It takes a hydrogen atom, for instance, to obtain

a Lyman or Balmer line. In that case, the transition species is

the electron and the electronic orbitals constitute the energy

levels. But, for blackbody radiation, spectra are related only

to theory, unrestrained by a particular setting, such as the need

to have a structural lattice.

That is how astronomers can justify the creation of black-

body spectra from any object. For instance, they have summ-

ed a large number of spectroscopic processes to account for

the thermal emission from the Sun (see [34] for a complete

discussion of this problem). Yet, not one of these processes

can be related to the thermal emission from graphite. They

have hypothesized that the Big Bang has generated the mi-

crowave monopole which surrounds the Earth [10], but have

ignored the hydrogen bond from the water which makes up

the oceans bathing our planet [35]. Once again, unrestricted

by the need to describe thermal emission using a physical

mechanism, astronomy has been left to postulate without any

consideration of the central physical question in thermal

emission: what causes a thermal photon to be emitted by

graphite [19]?

Given all that is involved relative to the validity of Kirch-

hoff’s Law [1,2], Robert Johnson is to be commended, as the

first duty of a scientist is to defend established science against

possibly false charges. He has also been forthright in submit-

ting a letter to this journal [36], rather than rely on anonymous

attacks through social media.

At the same time, it would be an injustice to fail in one’s

own defense, when a proper understanding of science rests

on the outcome. Therefore, I have decided to provide a point

by point discussion of Johnson’s letter [36]. I do so with the

hope that some members of the physics community will begin

to take an interest in Kirchhoff’s claims and call into question

many of the ideas which have been hypothesized [5–10], as a

result of concepts which predate the discovery of the atom.

Before I begin analyzing the contents of Johnson’s let-

ter, it is vital to outline the setting under which Max Planck

viewed a blackbody, as described in The Theory of Heat Ra-

diation [4].

Throughout much of his text, Planck make use of per-

fectly reflecting walls to construct blackbody cavities. As

I mentioned previously, this was “an interesting approach”

[17, p. 4], precisely because such walls, in Planck’s context

[4], were “adiabatic, by definition” [17, p. 4]. They could

not participate in generating, or absorbing, a single photon.

Moreover, being adiabatic, they were also immune to all con-

ductive and convective processes.

Conversely, unlike Planck, in thinking about perfectly re-

flecting cavities, I have invoked silver as a nearly ideal reflec-

tor of radiation in the infrared [21, 26]. Furthermore, I have

insisted that cavities, constructed from such a perfect reflec-
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tor, possess a characteristic temperature. They are also sub-

ject to conductive and convective heat transfer in the estab-

lishment of thermal equilibrium. These are important modifi-

cations in properly addressing all thermal processes, includ-

ing radiation, convection, and conduction. For while Planck

properly insists that, at thermal equilibrium, there can be “no

conduction” [4, § 25], no-one maintains that cavities cannot

be subject to conductive processes in reaching thermal equi-

librium. Laboratory blackbodies are usually brought to tem-

perature using conduction. This will be important later in this

letter.

As for adiabatic walls, they could never be characterized

by any temperature, as I recently emphasized [23]. Conse-

quently, they could never be in thermal equilibrium with any-

thing. Planck stated “Hence in a vacuum bounded by per-

fectly reflecting walls any state of radiation may persist” [4,

§ 51]. That was very true. But it is also true that such cavi-

ties are devoid of any radiation, unless it had previously been

injected by some outside means [15–17, 20–23, 26].

In the initial sections of his text, Planck had insisted that

all of the energy could be characterized by the radiation field.

In truth, the energy must have, at some time, been associated

with his oscillators. Otherwise, no photons could have been

produced. Thus, Planck’s oscillators could be used to pro-

duce the field and set thermal equilibrium, but the energy of

the system had to be considered as being irreversibly trans-

fered to the radiation field: “Accordingly we have frequently

. . . pointed out that the simple propagation of free radiation

represents a reversible process. An irreversible element is

introduced by the addition of emitting and absorbing sub-

stances” [4, § 170].

This irreversibility and the need for the oscillators to have

access to energy, in order to produce the photons, was vital to

properly understanding this work. In addition, Planck admit-

ted, in the very last section of his text that “For the oscilla-

tors on which the consideration was based influence only the

intensities of rays which correspond to their natural vibra-

tion, but they are not capable of changing their frequencies,

so long as they exert or suffer no other action than emitting

or absorbing radiant energy” [4, § 190].

Planck insisted that he could place a minute particle of

carbon within his cavities. He viewed this object as a cata-

lyst [4, § 51–52], converting radiation within the cavity from

one form to another: “. . . This change could be brought about

by the introduction of a carbon particle, containing a negligi-

ble amount of heat as compared with the energy of radiation.

This change, of course, refers only to the spectral density of

the radiation uν, whereas the total density of the energy u re-

mains constant” [4, § 71]. Planck’s particle could only act

on the radiation which was already in the cavity. It could not

interact with the walls, introduce new energy into the cavity,

or set the temperature of the system.

But to interact with the radiation, the carbon particle must

have oscillators of its own, functioning over the proper fre-

quency range. Namely, it must be a perfect absorber, charac-

terized by a temperature and part of the thermal equilibrium

problem, not a catalyst uncharacterized by any temperature.

If devoid of a characteristic temperature, Planck’s carbon par-

ticle would not contain the proper vibrations to even interact

with the radiation in the cavity.

Neither the walls of Planck’s perfectly reflecting adiabatic

cavities, nor the catalytic carbon particle, could establish tem-

perature. Planck resorted to placing all of the heat within the

radiation field. None of the energy could be contained in the

walls. He then altered the nature of his walls and removed

the requirement that they could not interact with radiation:

“Since, according to this law, we are free to choose any sys-

tem whatever, we now select from all possible emitting and

absorbing systems the simplest conceivable one, namely, one

consisting of a large number N of similar stationary oscil-

lators. . . ” [4, § 135]. Note from this quotation, that Planck

could advance no mechanism by which oscillators can actu-

ally alter the radiation distribution within the cavity. Planck’s

oscillators cannot convert the radiation from one form to an-

other, as would be required in the action of Planck’s carbon

particle were simply catalytic. It remains the case that the ra-

diation contained within a cavity can only be characterized by

the nature of the oscillators which produced it. For all these

reasons, Planck’s carbon particle could never by considered

as a catalyst. Indeed, if this particle is attributed with only

a catalytic function, it can easily introduce a violation of the

First Law of Thermodynamics, as will be seen in § 9 below.

At this point, it is time to address Johnson’s submission

[36]. In order to maintain the same section numbers, I begin

immediately with a review of his introduction [36, § 1].

Johnson’s first errors occur in his opening statement,

wherein he asserts that I have “. . . challenged the validity of

Kirchhoff’s Law of thermal emission and Planck’s derivation

of the mathematical form of the universal function of spectral

radiance absorbed and emitted by a blackbody”. There are

actually two problems with this statement.

First, I never questioned the mathematical validity of

Planck’s expression, in the context of an actual blackbody.

Rather, I have stated repeatedly that Planck’s solution for

a blackbody was correct (see e.g. [12, 16, 17, 25]). For in-

stance, in [16, § 1] it is explicitly written that “The accuracy

of Planck’s equation has been established beyond question”.

Along with Crothers, I state that “Fortunately, in Planck’s

case, the validity of his equation is preserved, but only within

the strict confines of the laboratory blackbody” [25, § 4].∗

Secondly, the absorbance of a blackbody does not have a

functional form, contrary to Johnson assertion. When Kirch-

∗It is troubling that Johnson has misrepresented my position on this mat-

ter. My concern has been exclusively centered on Kirchhoff’s formulation of

a law extending to objects which are not solids and which are constructed

from materials lacking a good absorber [13–18, 20–24, 24–26]. I have never

questioned the validity of Planck’s equation in the case of proper black-

bodies.
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hoff formulated his law, he defined E/A = e and immediately

set A to 1 [1]. This enables the function “e” to have units.

Johnson failed to understand, at the onset, Kirchhoff’s for-

mulation. Such errors continue throughout his letter [36].

2 Robitaille’s earlier papers

2.1 Kirchhoff’s law and Planck’s proof

Johnson affirms in § 2, relative to Planck’s law, that . . .

“Planck’s derivation is seen as proof of Kirchhoff’s law”.

This is not correct.

There are actually several questions addressed in Planck’s

treatment. This was made clear in the manner in which Planck

wrote his book, The Theory of Heat Radiation [4].

Planck was primarily concerned with two issues. First,

did all arbitrary cavities contain black radiation? This is ad-

dressed in the first two chapters [4, § 1–52]. Secondly, Planck

was focused on providing the functional form for the black-

body spectrum, through much of the remainder of his presen-

tation. He did so by reviewing the laws of emission advanced

by Wein [31] and Stefan [32].∗ He then discussed Boltzmann

and entropy, and presented his oscillators and the blackbody

function. In fact, the derivation of the blackbody function

itself was completely independent of the derivation of Kirch-

hoff’s law, since when setting A = 1, one obtains E = e

from Kirchhoff. The functional form of the blackbody spec-

trum can be obtained, without insisting that all cavities con-

tain black radiation. Planck derived Kirchhoff’s Law in the

first section of his text solely because of his desire to confer,

upon the blackbody expression, universal implications.

If Kirchhoff’s Law would be found invalid, as it will even-

tually become, then Planck does not lose the functional form

he supplied describing the radiation of a blackbody, as I have

stated repeatedly [12,16,17,25]. However, it would imply that

arbitrary cavities are not necessarily blackbodies and that the

universality of the constants h and k does not hold [13–18,

20–24, 24–26].

In the next sentence, Johnson writes [36, § 2]: “However,

Robitaille points out that the above definition of Kirchhoff’s

Law is not complete and furthermore Robtaille maintains that

the statement above should be called Stewart’s Law as it was

originally propounded by Stewart in 1858”. How could John-

son make such claims?

He begins by omitting an important concept when cit-

ing my work. The complete citation is as follows: “All too

frequently, the simple equivalence between apparent spec-

tral absorbance and emission is viewed as a full statement

of Kirchhoff’s law, adding further confusion to the problem.

Kirchhoff’s law must always be regarded as extending much

beyond this equivalence. It states that the radiation within all

true cavities made from arbitrary walls is black. The law of

equivalence is Stewart’s” [17]. Importantly, in this citation,

I had also included references wherein Kirchhoff’s Law was

∗Planck never addressed the contributions of Balfour Stewart [33].

described, solely in the context of the Law of Equivalence,

and not within its full scope relative to claiming that a univer-

sal function existed. In any event, I never claimed that Kirch-

hoff’s Law was not complete. What I did state was that peo-

ple often give credit to Kirchhoff for the Law of Equivalence

which properly belongs to Stewart [33]. As for Kirchhoff’s

Law, it is incorrect. Johnson does not seem to understand

the fundamental differences between Stewart’s Law [33] and

Kirchhoff’s [1].

The Law of Equivalence [33] simply affirms that, at ther-

mal equilibrium, the radiation emitted by a surface will be

equal to the radiation it absorbs, emissivity, ǫ, is equal to

absorptivity, α. Stewart did not insist that the radiation in-

side all cavities was black. That is the reason Kirchhoff’s

Law [1] does not belong to Stewart [33]. This is an im-

portant point, as Johnson falsely asserts, throughout his let-

ter, that Stewart recognized that cavity radiation must always

be black. Rather, Stewart recognized that all cavities could

become black if they could be driven (see [16] for further

discussion). The problem, of course, is that cavities con-

structed from low emissivity materials cannot be properly

driven [15–17, 22–25].

Stewart, while aware of mathematical arguments which

might lead to such a conclusion, left the discussion to a foot-

note [33]. The reason was clear. Stewart recognized, as an

experimentalist, that he was not able to prove, in the labo-

ratory, that all arbitrary cavities were black. The experiments

described in his work dealt with emission from plates and sur-

faces [33], not cavities [36]. That was precisely why he did

not make a law for cavities, as The Laws of Physics must be

experimentally verified. In his rebuke of Kirchhoff, Stewart

had made the point plainly “nor did I omit to obtain the best

possible experimental verification of my views, or to present

this to men of science as the chief feature, grounding the-

ory upon experiment, rather than deducing the experiments

from the theory” (cited in [16]). Stewart never presented any

experiments on cavities and therefore, he never made a law

related to cavities, as Johnson claims I stated [36, § 2.1].

This was a central difference between the work of Stew-

art [32] and Kirchhoff [1,2]. Johnson could have easily come

to learn the distinction had he studied the historical review

by Seigel [37], which I had cited in [16]. Siegel highlighted

that . . . “Kirchhoff himself never performed any experiments

which could be construed as attempts at quantitative exper-

imental verification of his law” [37, p. 588]. Seigel went on

to state what Kirchhoff believed: “. . . Kirchhoff was rightly

pointing out that in this instance neither Stewart’s experi-

ments nor his own experiments sufficed to establish a quanti-

tative law, and the burden of the priority claims would there-

fore have to rest on theoretical proof” [37, p. 588]. Unfortu-

nately, Kirchhoff was not right. Stewart’s experiments were

more than adequate to establish the Law of Equivalence. It

was with the treatment of cavities that experimental confir-

mation was lacking.
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In any event, experiments take precedence over theory

when it comes to formulating a new law, as our theories are

not able to define nature. Furthermore, it is all too easy to

accidentally omit a critical element from a theoretical discus-

sion, as has happened when Kirchhoff and Planck unknow-

ingly ignored the energy trapped within the walls of cavities.

Such energy can remain forever unavailable to thermal emis-

sion. That is why Kirchhoff’s Law is invalid. It also provides

an illustration of the danger of inferring the laws of physics

from theory.

In the end, Seigel also highlighted the difference between

Stewart’s law and Kirchhoff’s claims: “Stewart’s conclusion

was correspondingly restricted and did not embrace the sort

of connection between the emissive and absorptive powers

of different materials, through a universal function of wave-

length and temperature, which Kirchhoff established” [37,

p. 84]. It is clear that Stewart’s Law did not encompass the

universal nature of cavity radiation which Kirchhoff sought,

as Johnson attempts to inappropriately claim throughout his

letter.

This section closes with Johnson quoting from § 51 of

Planck’s text [4] and insisting that by placing an “arbitrary

small quantity of matter” in a perfectly reflecting cavity that

“Planck had thereby demonstrated that all cavities either

containing some arbitrary matter, or equivalently having

walls made of some arbitrary matter, must also contain black

radiation when at thermal equilibrium”. Yet, in § 51, Planck

was placing a small particle of carbon in the cavity. The car-

bon particle was not an arbitrary material. It was acting as a

perfect absorber. I have discussed the inappropriate introduc-

tion of a perfect absorber into cavities in detail [16] and will

return to the question, once again, in § 2.2, § 2.5 and § 2.9 of

this letter.

2.2 Black radiation in a perfectly reflecting cavity

As Johnson opens the third section of his letter, he objects

to my conclusion that Planck’s statement, “Hence in a vac-

uum bounded by perfectly reflecting walls any state of radia-

tion may persist” [4, § 51], constituted an implicit admission

against the validity of Kirchhoff’s law.

In trying to defend Planck, Johnson writes: “However,

Planck’s statement should perhaps be more properly viewed

as a situation to which Kirchhoff’s law does not apply be-

cause there is no matter present which could absorb or emit

radiation.” However, Kirchhoff’s law was meant to be in-

dependent of the nature of the walls, by definition. Planck

associated the temperature of a cavity solely with the radia-

tion it contained, not with any material particles.∗. If Kirch-

hoffwas correct, what difference should it make if matter was

∗“Still, even Planck recognized that material objects were required to

establish a temperature, “But the temperature of a radiation cannot be de-

termined unless it be brought into thermodynamic equilibrium with a system

of molecules or oscillators, the temperature of which is known from other

sources” [4, § 144]

present to absorb or emit radiation? Nothing in Kirchhoff’s

law required this restriction and that was precisely the prob-

lem. Kirchhoff’s law was devoid of all link to actual materials

and nature. It was only concerned with hypothetical cavities.

In considering Kirchhoff’s law, we can simply examine

mathematical limits, as defined by the opaque perfectly ab-

sorbing wall (absortivity, αν = 1; reflectivity, ρν = 0) and the

opaque perfectly reflecting wall (αν = 0; ρν = 1). Yet, the sec-

ond condition led to an undefined expression for Kirchhoff’s

law, as Planck himself recognized [4, § 48]. It was not pos-

sible to claim that a law applies to all materials, when one of

its limits was undefined.

Johnson goes on to cite Planck’s §51 stating that the ra-

diation within all cavities will always be black, even though

Planck, in the very same section, has just introduced a particle

of carbon in this cavity, which Johnson recognizes as being a

“perfect absorber and emitter at all frequencies” [36]. But,

Planck viewed the carbon particle as a catalyst [4, § 51–51].

Johnson then writes, in speaking of Planck: “Note that the

quoted statement covers both the situation where the object

absorbs or emits over all frequencies, and the situation where

some frequencies are not absorbed or emitted at all” [36].

Planck reached his conclusion by inserting a particle of

carbon. This ensured absorption and emission over all fre-

quencies. Planck never demonstrated that this applied to situ-

ations where some frequencies are not absorbed or emitted at

all”, as Johnson claims [36]. Planck placed the carbon parti-

cle within the cavity and then claimed that it acted only as a

catalyst. He sidestepped the fact that this particle was acting

as a perfect absorber, and thereby controlled the entire prob-

lem. I have already demonstrated this fact mathematically

and the reality that arbitrary cavities, at thermal equilibrium,

do not contain black radiation [15]. Importantly, Johnson’s

letter fails to address these simple algebreic proofs that Kirch-

hoff’s Law cannot be valid [15].† Again, I will return to the

question of the carbon particle in § 2.5 and § 2.9.

2.3 The approach to equilibrium

Johnson opens this section by pondering what was correct:

Do all cavities contain black radiation, as Kirchhoff and

Planck held, or do arbitrary cavities contain arbitrary radia-

tion, as Robitaille asserted? The question was simple enough

to answer, as blackbodies are always constructed from good

absorbers.

In fact, had Johnson considered the history of blackbody

radiation, he would have recognized that arbitrary cavities are

never black. That is why those who provided Max Planck

with the data used to verify his equation worked so hard to

†Reference [15] contains a detailed analysis of some of the problems

with Kirchhoff’s logical arguments in advancing his proofs [1,2]. It also con-

tains simple proofs of Stewart’s Law of Equivalence [33] and clear demon-

strations that arbitrary cavities, under conditions of thermal equilibrium, are

not black. Johnson cannot ignore these proofs in his letter, if he wishes to

honestly evaluate my work.
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construct laboratory blackbodies which provided the proper

functional form [38–40]. These papers, especially the review

by Hoffmann [38], are important to study, because they high-

light the complexity of building proper blackbodies.

As a simple example, the problem can be viewed to in-

volve, to some extent, the behavior of graphite itself. In the

visible range, some forms of graphite, which are mined, can

be relatively good absorbers, but others, surprisingly, can be

rather poor, as can be ascertained by examining emissivity ta-

bles [41]. However, as one becomes increasingly interested in

the region towards the infrared, graphite begins to fail. This

has been known since the days of Langley at the end of the

19th century [16, § 2.1]. That is why materials like the metal

blacks are utilized, in this region of the electromagnetic spec-

trum, to assemble blackbodies [42–45].

We already have the experimental proof, but most people

simply ignore these laboratory realities. For, if Kirchhoff’s

Law was valid, there would be no need for metal blacks in

building laboratory blackbodies and German scientists would

not have used rolled platinum and specialized mixtures of

chromium, nickel, and cobalt oxide to blacken the interior

of their cavities [38, p. 57]. Such mixtures indicate that their

was nothing arbitrary in the construction of blackbodies.

This remains a specialized field and such objects are al-

ways sophisticated devices unavailable when Kirchhoff ex-

tended his law to all cavities.∗

In this same section of his letter, Johnson goes on to con-

sider what would happen to the radiation, within an arbitrary

cavity, if the initial radiation was less than the maximal hy-

pothesized by Kirchoff’s law. The arguments he advanced are

flawed at a fundamental level.

Johnson first places an opaque object within a perfectly

reflecting cavity and defines that the intensity of the radia-

tion is 100 within the cavity, the proper value for black ra-

diation. He assumes that the object has an emissivity of 0.8

and then states that when radiation within the cavity interacts

with the object, 80 units will be absorbed/re-emitted and 20

units being reflected. Johnson notes that the radiation within

such a cavity will remain black at 100 units. Of course, the

experiment is false, as an object with an emissivity of only

0.8 could never fill the cavity with black radiation in the first

place. The radiation would have to be increased by some

other means.† Deviations from this case are only permitted

if thermal equilibrium has been violated, after the cavity and

the object reached the temperature of interest, or if the per-

fectly reflecting cavity has otherwise been filled with black

radiation [16, 17]. It is important to recall, that even the sam-

pling of a cavity with a detector can act to fill it with black

radiation [17, § 2]. Therefore, this situation, as described by

Johnson, does not lend any support to Kirchhoff’s claims. It

∗The author has reviewed laboratory blackbodies in [16, 17].
†I have already demonstrated mathematically, that the radiation in the

cavity, in this case, will not be black but will have an intensity appropriate

for the emissivity of the object it contained [15].

was simply ill-conceived.

At this point, Johnson considers another scenario wherein

an object with an emissivity of 0.8 can only emit 80 units

initially into the cavity. These 80 units then strike the wall

and reflect back towards the object, where now he claims that

only 64 units are absorbed (since the emissivity is 0.8), and

16 units are reflected. Johnson notes that the object “. . . was

bound by its initial temperature to continue emitting 80 units”

[36, § 2.3]. He notes the shortfall in the total amount of ra-

diation absorbed by the object, and claims that this can only

be rectified by lowering the temperature of the object. The

errors in logic are striking.

First, Johnson fails to recognize that it is the total radia-

tion coming off the object at thermal equilibrium which mat-

ters. That total radiation is equal to 64 units emitted and 16

units reflected at the onset, because the cavity and the object

are already at thermal equilibrium, by definition. Johnson

does not get to say that the object must emit 80 units to begin

his experiment and then state that only 64 units are absorbed

and re-emitted. He can only sample the total radiation com-

ing off the object. He has no means of distinguishing what

was, in fact, reflected and what was emitted. He only knows

that 80 units came off the object. These are then reflected

off the wall and travel towards the object, where 64 units will

be absorbed, then re-emitted, while 16 units will be reflected.

Johnson also fails to understand that he cannot allow the tem-

perature of the object to drop, as this is a violation of the

zeroth law of thermodynamics. For my part, I would not dis-

allow thermal equilibrium between the cavity and the object,

as Johnson asserts.‡

Relative to the last experiment, it is interesting to note

what Johnson has actually done. At first, he ignored reflec-

tion, stating that all 80 units leaving the object were emitted.

Then, on absorption, he now considered reflection, permit-

ting only 64 units to be absorbed and the remaining 16 to be

reflected. So what has happened?

Note, for instance, that when Max Planck derived the first

section of his proof of Kirchhoff’s Law, he also ignored re-

flection (see [25, § 4.2] for a complete description of what

Planck did in this instance). Robitaille and Crothers note that

Planck was allowed to ignore reflection, as these terms, if

retained, could be canceled out [25, § 4.2]. They also demon-

strate that the full treatment retaining reflection can lead to

additional insight, relative to this problem [25, § 4.2].

If Planck was allowed to ignore reflection, perhaps this

can be most easily explained by examining the Law of Equiv-

alence itself [33]. I have already highlighted that Stewart’s

Law can be written either as, ǫν=αν, or as, ǫν+ρν=αν+ρν [15].

The use of either form will lead to the correct answer. How-

ever, what Johnson has done was to mix the two forms of

Stewart’s law, inventing a scenario wherein he sets ǫν=αν+ρν,

‡I also reject all of Johnson’s other deductions relative to how I would

view an experiment which I never even described in my papers.
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which is clearly false.

At this point, Johnson once again tries to state that I have

attributed Kirchhoff’s Law to Balfour Stewart. In this, he

misses the central point. Stewart’s footnote does not make

a law of physics. It presents a mathematical argument. Stew-

art recognized that, if he wanted a blackbody spectrum from

a cavity, he must have recourse to lampblack. Johnson be-

lieves that Stewart was specific on this point, arguing for a

“theoretical leap” [36]. But in so thinking, he failed to rec-

ognize what Stewart understood: cavities can only be demon-

strated to be black experimentally if they contain a good emit-

ter. Stewart did hypothesize extensively about bandied radi-

ation, well after 1858 (see [16] for a complete discussion),

and conjectured that cavities of low emissivity can be made

to appear black. The thesis was never proven and with good

reason [15–17, 22–25]. Stewart stated a theoretical idea, not

a law. The point has been made clearly by Seigel, as noted

in § 2.1 above [37]. That is why I wrote in my initial paper:

“Stewart realizes that the lampblack surface within the enclo-

sure is essential” [16]. Stewart might have had a theoretical

argument, but he did not have data. It is in this aspect that

he was much more prudent than Kirchhoffwhen he presented

his work [33]. That is why I have always acknowledged this

Scottish scientist. Stewart exercised wisdom in 1858 [33] and

Johnson shall not deprive him of this quality.

2.4 Stewart’s treatment of reflection

Johnson then goes on to describe, in detail, Stewart’s foot-

note, as if this was central to the idea which Stewart was

conveying. Stewart’s paper deals with the Law of Equiva-

lence, not with cavity radiation and universality [33]. The ar-

gument which Johnson resurrects is contained in a footnote,

precisely because this constitutes its proper position in the pa-

per. Stewart makes us aware that he understands a mathemat-

ical argument previously advanced by others (see references

contained in [17]), but he does not raise them to a central part

of this thesis, because these ideas were not supported by lab-

oratory data.

In considering the bandied radiation, Johnson makes the

claim that the energy required to fill the cavity can be ex-

tracted from the walls in order to drive “Stewart’s mecha-

nism”. In this aspect of his letter, Johnson is actually repeat-

ing ideas from my own papers on cavity radiation, wherein

such processes have already been discussed in detail [21, 23,

26].∗ Johnson adds nothing new to this discussion. He also

fails to understand, at a fundamental level, that it is by invok-

ing the energy retained in the wall that Kirchhoff’s Law can

be proven to be false [21, 23, 26]. Planck specifically used an

adiabatic wall which could not be characterized by any tem-

perature to build his perfect reflector, because he wanted all

of the energy to be contained in the field, not in the wall [4].

∗The author published [26] just a few days before Johnson submitted his

letter and he was made aware of this work.

Since adiabatic walls are detached from all thermal processes

(i.e. radiation, conduction, convection), they cannot be char-

acterized by any temperature [21].

Johnson analyzes Stewart’s experiments [33] with low

emissivity plates in obtaining the same functional form as

if the plate had been black. Yet, it is not solely a question

of time elapsed, as he attempts to argue. For instance, he

permits the temperature of one of his plates to drop in clear

violation of the Zeroth Law of thermodynamics “. . . the only

difference in this case is that during the initial period the par-

tially absorbing plates is absorbing less radiation than it is

emitting; it is therefore cooling down and part of its initial en-

ergy is being used to increase the radiation density between

the plates, or, in Robitaille’s terms, in “driving the reflec-

tion” [36, § 2.4]. I never permitted an object temperature to

drop, in order to drive the reflection.

My papers are concerned with a law defined under ther-

mal equilibrium, not the approach to equilibrium. I have high-

lighted that one cannot create photons from nothing. Scien-

tists are not permitted to violate the First Law. What has hap-

pened in this letter is that Johnson permits the temperature to

drop in order to avoid violating the First Law, as he knows

that he must get photons from somewhere. The arguments

are all invalid, as we are concerned with a system in thermal

equilibrium, not the approach to such equilibrium.

While Johnson understands that the idea of driving a cav-

ity is an important concept, he continues to ignore its conse-

quences. For instance, such processes rely on access to a per-

fect absorber, or some temporary violation of thermal equilib-

rium [15–17, 22–25]. They are also prone to introduce a vi-

olation of the First Law of Thermodynamics, as energy must

come from somewhere. Also, energy cannot be destroyed.

The question, relative to thought experiments, relates to

the origin of the energy entering a cavity once it is already

at thermal equilibrium. Provided that the cavity walls are

not adiabatic, but can be represented by graphite, or silver,

then there are three scenarios to consider: 1) energy enters

the system from outside, 2) energy travels reversibly out of

the walls of the cavity to irreversibly fill the cavity [21, 26],

and 3) energy is irreversbilty trapped within the cavity walls

[26]. None of these possibilities have ever been considered

by Planck. They arise from the assembly of work which is

currently being challenged by Johnson.

Let us assume that the energy came from outside the sys-

tem. Then, once it reaches the cavity walls, it must be al-

lowed to either 1) help fill the cavity with additional photons,

or 2) dissipate additional energy into the walls of the cavity.

However, the cavity walls are already at a given temperature.

To permit additional energy to enter would alter this value.

As such, no energy can be allowed to enter the walls, as this

would violate the zeroth law. Thus, if any energy enters the

cavity walls from outside the system, it must simultaneously

leave and produce additional photons in the interior. It is clear

that, with such a scenario, if the walls are fully reversible
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stores of energy, the cavity will become filled with radiation.

The problem becomes, when does one stop? Obviously, the

experimentalist can place any amount of photons in the cav-

ity, given enough available energy from the outside and no

concern for the First Law. If the radiation intensity within the

cavity becomes too great, then he can simply affirm that ther-

mal equilibrium has been violated and that the cavity must

now be represented by a higher temperature.

As for the idea that the energy contained within the walls

can be reversibly used to fill the cavity with even more ra-

diation, I have already considered the concept on two oc-

casions [21, 26]. In reality, such processes are likely to be

physically impossible. Thermodynamically, the concept is

allowed, but the problem is that, if the energy of the walls

if fully available to build up photons in the interior, the cavity

would already be black, unless specialized means are used to

isolate this energy [26]. In reality, every material which is not

a perfect emitter will actually possess at least some energy

which is irreversibly trapped in the walls [26] relative to the

ability to support emission. That is the central reason why

arbitrary cavities are never black. Planck had considered that

only the production of the radiation field was irreversible, as

I discussed in the introduction. This may have been every-

one’s major stumbling block relative to cavity radiation and

Kirchhoff’s Law. Prior to 1906, when Planck’s lectures where

written [4, p. xi], neither he, nor Kirchhoff, understood that

some of the energy which enters a metal will be trapped in its

conduction band electrons and forever remain unavailable to

emission [26].∗ We shall return to “Stewart’s mechanism” in

§ 2.5, § 2.6, § 2.7, and § 2.9.

2.5 Planck’s particle of carbon

Johnson then moves to try to defend Planck’s use of a carbon

particle as a simple catalyst. I have already spoken exten-

sively on this issue: Planck’s carbon particle is not a cata-

lyst [16]. It is a perfect absorber/emitter. Planck uses carbon,

not a particle of some other material, and with good reason.

He needs a perfect absorber. It is not simply a question of hav-

ing a particle which can absorb over all frequencies of inter-

est. In fact, a quick study of emissivity tables would demon-

strate that, if this were the case, Max Planck had many other

materials available to him [41]. He wanted a perfect absorber

and, when he placed it in his cavity, as I have said previously,

it was as if he had coated the entire inner surface with lamp-

black. Otherwise, what does it mean to be “perfect”? As I

stated in the introduction, the reality remains that Planck’s

carbon particle must have access to oscillators, otherwise it

cannot even interact with the radiation. It must also be char-

acterizable with a temperature, such its oscillators could op-

erate over the entire range of frequencies required to make the

cavity radiation black at the proper temperature. The need for

∗The energy can still be removed from the wall through conduction and

convection.

this temperature directly implies that the carbon particle is a

perfect absorber, not a catalyst.

Johnson claims that there is a difference between “the na-

ture of the black radiation and the quantity of it”. He then

argues that Planck has made the particle small such that its

energy content can be neglected relative to filling the cav-

ity with radiation. Planck’s position and Johnson’s defense

are not well-reasoned in that they neglect that the particle

and cavity must be allowed to come to thermal equilibrium.

This is one of the reasons why Planck’s use of an adiabatic

wall to build a perfectly reflecting cavity is not appropriate.

Planck also attempted to deprive the carbon particle of a spe-

cific temperature. In so doing, he was overlooking the very

detail which was critical to obtaining the proper answer (see

also § 2.9). Johnson states, “. . . By definition, therefore, the

carbon particle cannot increase the radiation density in the

cavity to the level commensurate with the black body temper-

ature; in Robitaille’s terms, the particle cannot “drive the re-

flection”, and therefore this cannot be the reason why Planck

included it. Furthermore, if the radiation density is being in-

creased at all frequencies by Stewart’s mechanism then there

is no need to include the carbon particle” [36, § 2.5]. Unfor-

tunately, for Johnson, he cannot resort to “Stewart’s mecha-

nism”, as he cannot practically demonstrate its validity in the

context of a perfect reflector. Even Stewart, cannot generate

photons from a perfectly reflecting cavity. The issue at hand

is the carbon particle, not “Stewart’s mechanism”.

As such, let us first consider the proper way of viewing

the carbon particle, then return to Planck and Johnson, both

in this section and in § 2.9.

The simplest means of addressing this problem is to con-

sider that whatever light is reflected off the walls of a perfectly

reflecting cavity can strike the particle. The particle must then

transform the radiation and return this light back towards the

cavity walls [15]. The temperature of both the cavity and the

particle must be the same and the temperature of the latter

must not be allowed to drop in order to respect the zeroth law.

Under this condition, full equilibrium between the walls and

the particle would exist and the cavity could easily be demon-

strated to contain black radiation [15]. Herein was the power

of equilibrium arguments.

In order to further clarify the point, let us consider what

was physically occurring within the cavity when Planck in-

troduced his small particle of carbon. Since the cavity was

perfectly reflecting, we can assume that it can be best approx-

imated by polished silver [23,26], not by an adiabatic wall [4].

The emissivity of the cavity must be 0 and it initially contains

no photons. Let us surround the cavity with an adiabatic wall,

in order to isolate the system.

As a result, the temperature of the cavity in this case is

defined by the energy content of its walls. When the carbon

particle is introduced into such a system, even if it contains no

appreciable heat on its own, it also comes into thermal contact

with the wall of the perfectly reflecting cavity. At this point,
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thermal energy will become available to the carbon particle

from the cavity wall. This particle can then transform the

energy which would be otherwise irreversibly trapped in the

walls [26] and fill the cavity with radiation. In this sense,

the carbon particle acted as a transformer, converting phonon

energy and/or energy associated with thermal conduction in

the silver wall into photons. It was not a catalyst, as it was

critical to conversion occurring. I have always modeled per-

fect reflectors using silver [23, 26], not using adiabatic walls.

Without the carbon particle, the cavity would remain devoid

of any radiation and all of its energy would remain forever

trapped in its walls.

As for the case considered by Max Planck, an adiabatic

wall contained no energy. Therefore, the carbon particle, de-

void of significant heat, could never fill such a cavity with

radiation at any temperature.

Contrary to Johnson’s claim, neither Crothers, nor I, have

said that the carbon particle cannot increase the radiation in-

side the cavity. Rather, my papers provided the only means

for the carbon particle to fill the perfectly reflecting cavity. As

for Johnson, he must adopt Planck’s position, and remain for-

ever unable to consider the content of the walls and the abil-

ity of the carbon particle to transform this energy into pho-

tons. He cannot be permitted to jump between my model and

Planck’s, as this is the entire basis of this discussion.

If Planck stated that “Hence in a vacuum bounded by to-

tally reflecting walls any state of radiation may persist” [4,

§51], it was because he recognized that Kirchhoff’s law be-

came undefined when A=0. But that does not mean that

the cavity in this case contains forms of radiation which are

blackbody, unless such radiation has been introduced by some

outside mechanism.∗ In fact, the perfectly reflecting cavity

must be considered empty, because it had no means of pro-

ducing a photon and all of its energy content was trapped in

its walls before the introduction of the carbon particle [26].

Johnson argues that, if the spectrum is indeterminate at any

frequency, it is impossible to set a temperature. Again this is

false, as the walls also contain energy [26]. Max Planck also

ignored this fact, a critical error in selecting adiabatic walls.

Johnson then cites Planck’s discussion [4, § 11] that all

objects show significant reflection at sufficiently long wave-

lengths, except perfect blackbodies. He concludes that this

is why Planck introduced the carbon particle [36]. But, if

that was true, then Planck’s introduction of the carbon parti-

cle would be acting to make all cavities perfect blackbodies,

a point which supports my position.

In closing this section, Johnson makes the charge that I

now accept, at least in principle, “Stewart’s mechanism” for

building up the reflection within a cavity. He alleges a re-

markable “volte-face” on my part when I published a paper

with Crothers [25].

Such a conclusion is not reasonable, as my papers have

∗I will return to this issue in § 2.9.

always considered Stewart’s hypothesis (see e.g. [15–17, 22–

24] all of which precede [25]). Furthermore, Crothers and I

have restated, in no uncertain terms, that “Stewart’s mecha-

nism” does not work [25, § 2, 3].

Over the years, I have dealt consistently with the problem

of thermal emission and have always held the position that

arbitrary cavities are not black. I have examined numerous

questions including 1) perfectly absorbing cavities, 2) per-

fectly reflecting cavities, 3) perfectly reflecting cavities con-

taining a carbon particle, 4) perfectly reflecting cavities con-

taining an arbitrary object, 5) perfectly reflecting cavities con-

taining two arbitrary objects, 6) perfectly absorbing cavities

containing a perfectly reflecting cavity, 7) two cavity prob-

lems (both for the reversible and the irreversible cases), 8)

actual laboratory blackbodies, 9) Kirchhoff’s two faulty ini-

tial proofs, 10) Planck’s faulty proof of Kirchhoff’s Law, 11)

proper equations governing cavity radiation and 12) effects of

driving the reflection term. Nowhere have I ever stated that

“Stewart’s mechanism”, as Johnson refers to bandied reflec-

tion, can ever lead to black radiation in all cavities, despite

repeatedly addressing the question [15–17, 22–25]. What I

have stated is that, if one tries to drive a cavity made from

materials with a low emissivity, in order to build up black ra-

diation in its interior, it is likely that the cavity will simply

prefer to move to a higher temperature [23]. That is because

any energy introduced into the cavity must also be available

to the walls. If those walls cannot easily emit a photon, they

will simply increase their temperature. Moreover, I have em-

phasized that the use of bandied radiation, even if possible,

could only lead to filling a cavity with black radiation, in

the ideal that the walls were capable of Lambertian reflec-

tion [23]. No specular reflection must have taken place and all

reflection must have been diffuse. Otherwise, one risks gen-

erating standing waves, as I have previously highlighted [16]

(see also § 2.6). Johnson ignores all these points when he ad-

dresses bandied radiation.

2.6 Experimental evidence against Kirchhoff’s law

This is perhaps the most unusual section of Johnson’s let-

ter [36], as he tries to explain why manufacturers do not build

blackbodies from arbitrary materials. Rather than concede

that this constitutes direct experimental evidence against

Kirchhoff’s law, as I have stated, Johnson reaches for the in-

defensible. He argues: “It is also likely that manufacturers

are concerned, as Planck himself apparently was, to ensure

that there are no frequencies at which the cavity is a perfect

reflector, which would preclude a proper measurement of tem-

perature”.

Kirchhoff’s Law demands that all cavities be black, in-

dependent of the nature of the walls. Manufacturers are not

concerned with materials acting as perfect reflectors, since

most solids emit continuous spectra over a wide range of fre-

quencies. The problem is that many solids are poor emitters,
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not that they are perfect reflectors.

Furthermore, the temperature of a cavity in the laboratory

is determined by temperature sensors in its walls. Cavities

are heated, conductively or otherwise, the temperature on the

sensors in its walls are noted, and thermal equilibrium is de-

fined by those sensors maintaining a stable temperature read-

ing. Establishing the temperature of a laboratory cavity has

nothing to do with measuring its radiation field and it would

be irrelevant, if some frequencies were absent from the spec-

trum. This cannot affect the reading of a sensor in the wall of

the cavity.∗ Even Planck recognized that a proper measure of

temperature depends on the use of sensors or thermometers:

“But the temperature of a radiation cannot be determined un-

less it be brought into thermodynamic equilibrium with a sys-

tem of molecules or oscillators, the temperature of which is

known from other sources” [4, § 144].

Johnson then moves to question any work in microwave

cavities. He launches this new challenge precisely because

these cavities are known not to contain black radiation, as

I have demonstrated experimentally using UHF frequencies

near the microwave region [17]. In attempting to dismiss

microwave cavities, Johnson cites Planck: “The last state-

ment excludes from our consideration a number of radiation

phenomena such as fluorescence, phosphorescence, electri-

cal and chemical luminosity” [4, § 7]. Johnson’s use of such

a quotation relative to microwave cavities demonstrates that

he does not fully understand the experimental problem.

Kirchhoff’s law allows for the presence of any object

within the cavity. Therefore, the resonant elements used in

my own work [17] are allowed, as they do not emit a single

photon. They build up standing waves. Still, it remains clear

that fluorescence, phosphorescence, electrical and chemical

luminosity cannot be considered.†

The microwave cavity is not producing radiation by some

non-thermal means, like fluorescence, phosphorescence,

∗However, for real blackbodies, when the temperature sensors indicate

a certain temperature, one can be assured that the radiation sampled will be

black.
†Surprisingly however, in Kirchhoff’s initial paper [2] he actually insists

that even fluorescent material could be included within the cavity and it will

still be black: “It may be observed, by the way, that the proposition demon-

strated in this section does not cease to hold good even if some of the bodies

are fluorescent. A fluorescent body may be defined as one whose radiating

power depends on the rays incident on it for the time being. The equation

E/A = e cannot generally be true for such a body; but it is true if the body

enclosed in a black covering of the same temperature as itself, since the same

considerations that led to the equation in question on the hypothesis that the

body C was not fluorescent, avail in this case even if the body C be supposed

to be fluorescent.” [2]. These arguments are removed however, without ex-

planation, when Kirchhoff’s work is revised several years later [46]. Still,

this indicates a flaw in Kirchhoff’s initial derivation of his law [2], as he had

thought that his derivation applied to fluorescent bodies, which was not cor-

rect. There are indeed flaws in Kirchhoff’s initial derivation, as the author has

independently ascertained [15]. Moreover, Schirrmacher [47] has reviewed

the proofs of Kirchhoff’s Law before and after Planck [48]. Even in 1912,

Hilbert complained that a valid proof a Kirchhoff’s law still did not exist [47],

even though the Planck’s lectures on the subject were given in 1906 [4, p. xi].

Such a proof is lacking, to this day.

electrical or chemical luminosity. Rather, it is being sub-

jected to sampling by a network analyzer which is sending

microwave energy into the enclosure and noting what energy

returns. If the cavity is able to reflect some of this radiation

internally, then it can build up standing waves. Alternatively,

if the cavity is truly black, then it should be able to absorb

all the energy coming from the network analyzer with no re-

turned energy. In any case, such return-loss measurements

on cavities are routinely done throughout thermometry (see

references cited in [48]).

In the infrared, cavities can be subjected to radiation from

a standard blackbody, for instance, in order to verify their ab-

sorptivity by noting the returned energy.‡ In the microwave,

when testing blackbodies for satellites, the source is often a

network analyzer (see references cited in [48, 49]). This is a

common measurement in testing the quality of blackbodies at

these frequencies.

Johnson must recognize that microwave cavities are uti-

lized on satellites such as COBE [50] and PLANCK [49].

These cavities are tested using return-loss methods, exactly

as I have done in [17], when testing an MRI cavity. Many

of these cavities are not black, including some which have

been claimed as such and launched aboard satellites [49]. Mi-

crowave cavities often contain signs of standing waves, as

radiation from the network analyzer enters the cavity. The

presence of such standing waves provides solid evidence that

not all cavities in the microwave contain blackbody radiation.

This is an important point to recognize, as Johnson would

like to build up arbitrary radiation in cavities with reflec-

tion, using “Stewart’s mechanism”. Standing waves demon-

strate that the presence of specular reflection within a cav-

ity is always counter to the interior containing black radia-

tion [48,49]. This highlights yet another problem with “Stew-

art’s mechanism”. It is critically dependent on any reflection

within a cavity being diffuse and not specular. Otherwise, the

radiation will not be Lambertian, as required of a blackbody.

Contrary to Johnson’s position, experiments with cavities

in MRI provide strong evidence that Kirchhoff’s law does not

hold (see [17] and references therein). This is especially true

given that Kirchhoff’s Law has been generalized to treat ge-

ometries where diffraction becomes important (see [17] and

references therein). Furthermore, microwave studies demon-

strate that small cavities, containing only a few centimeters

of Ecosorb and conductively anchored to a radiation shield,

like the 4K reference loads on the Planck satellite, can never

be black [48, 49]. This presents a serious problem for those

interested in the LFI data produced by this satellite [49].

Once again, the fact remains that Kirchhoff’s Law does

not have any valid experimental support. Arbitrary cavities

are not black and this reality has consequences which must

not be ignored.

‡Note that if Kirchoff’s law was correct, there would be no need to have

standard blackbodies in order to calibrate other cavities, as all cavities would

be black.
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2.7 Challenges to Monte Carlo simulations

Johnson then moves to briefly discuss Monte Carlo simula-

tions in a single paragraph stating: “Apparently, Robitaille’s

objection to the Monte Carlo simulations is that they rely on

Stewart’s mechanism for building up the radiation by inter-

nal reflection. As Robitaille and Crothers now accept that

this mechanism is valid in principle, Robtaille’s previous ob-

jections to Monte Carlo simulations supporting Kirchhoff’s

Law should also drop away”.

Clearly, I have never accepted “Stewart’s mechanism” for

building up radiation within a cavity. First, such a mecha-

nism, under certain circumstances, constitutes a violation of

the First Law of Thermodynamics. Secondly, it is not possi-

ble to place energy into the interior of a cavity without also

potentially placing energy into the walls. This is never con-

sidered by Monte Carlo simulations, and that is why they re-

main invalid. Such simulations agree with Kirchhoff Law,

precisely because they ignore the dynamics going on in the

wall and a priori forbid the temperature of the wall to rise in

lieu of emitting a new photon.

2.8 Super-Planckian emission

Johnson’s letter then examines my treatment of metamate-

rials [23]. He argues that Planck specifically excluded the

near field by quoting: “Throughout the following discussion

it will be assumed that the linear dimensions of all parts of

space considered, as well as the radii of curvature of all sur-

faces under consideration, are large compared with the wave

lengths of the rays considered” [4, § 2]. On the surface, this is

a good point. Planck is clearly allowed to restrict his deriva-

tion. This does not mean, however, that the near field region

cannot be considered today, in order to shed additional light

on thermal emission.

In this regard, Kirchhoff’s law has been generalized to in-

clude the limit initially excluded by both Kirchhoff and

Planck [17, § 3]. The near field behavior can be considered

for additional insight and the point raised by Johnson is weak

at best. Science does get to move forward.

Johnson then goes on to claim that the evidence in the far

field, is not convincing. He notes from Guo et al. [51] that:

“the presence of an interface is enough to guarantee that the

far-field emissivity is limited to 1” [36]. Guo’s statement is

noteworthy. However, Johnson neglects to cite the follow-

ing from Guo’s paper: “The usual upper limit to the black-

body emission is not fundamental and arises since energy is

carried to the far-field only by propagating waves emanating

from the heated source. If one allows for energy transport in

the near-field using evanescent waves, this limit can be over-

come” [51].

It is clear that the study of metamaterials is an area of

science which is just beginning to be explored. It is also

not established that far-field behavior will always adhere to

the limits set forth by Planck’s law. This is why I previ-

ously highlighted [23] the work by Yu et al. [52] and [53].

Yu et al. removed the claim made in the arXiv version of

their paper [53] when they published their Nature Communi-

cations paper [52]. Here is the exact quotation from my paper

on this issue: “In that case, the spatial extent of the black-

body is enhanced by adding a transparent material above

the site of thermal emission. A four-fold enhancement of

the far-field emission could thus be produced.” In their Na-

ture Communications article, the authors argue that this does

not constitute a violation of the Stefan-Boltzmann law, be-

cause the effective “emitting surface” is now governed by the

transmitter, which is essentially transparent. However, this

was not the position advanced when the results were first

announced and the authors wrote: “The aim of our paper

here is to show that a macroscopic blackbody in fact can

emit more thermal radiation to far field vacuum than

P = σT 4” [53].

In Yu’s work, the emission is arising from a small black-

ened disk of material [52, 53]. The photons emitted from this

surface greatly exceed anything predicted by Planck. At issue

is the assignment of the emitting surface, from a theoretical

perspective. Is it the blackened disk, which is the only pos-

sible source of photons, or the transparent shield? The key

difficulty for blackbody radiation science is that blackbodies

were always defined as opaque objects. Hence, it is difficult

to conceive why the blackened disk should not be considered

as the proper emitting surface in this problem. But assigning

the emission to a transparent surface is now the only way of

salvaging Kirchhoff’s law. Once again, note how Kirchhoff

had worded his law in the quotation at the very beginning of

this reply. He was referring to opaque objects.

Then, there is the problem that, during Yu et al’s experi-

ment, the blackened disk is always heated [52, 53]. This im-

plies that thermal equilibrium does not exist, since conduc-

tion of energy, which is heating the disk, must be considered.

However, if this is to be used as an argument against these

findings, then what of the problem of continuously heating

ordinary cavities, in order to maintain their temperature equi-

librium? As I previously stated: “Obviously, modern experi-

ments fall short of the requirements for thermal equilibrium,

as the cavities involved are heated to the temperature of op-

eration. But given that all laboratory blackbodies suffer the

same shortcomings, the production of super-Planckian emis-

sion in the near and far fields cannot be easily dismissed.

After all, in order for Planck to obtain a blackbody spectrum

in every arbitrary cavity, he had to drive the reflection term,

either by injecting a carbon particle or by permitting addi-

tional heat to enter the system, beyond that required at the

onset of thermal equilibrium” [23]. Johnson cannot apply his

arguments to metamaterial experiments and not make them

with regard to regular laboratory cavities. In light of these

many considerations, he has not demonstrated that my posi-

tion, relative to the universality of blackbody radiation, has

been overstated.
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2.9 Robtaille’s thought experiment

In the next section of his paper, Johnson reviews a very sim-

ple thought experiment, which I advanced in 2014, illustrat-

ing that Kirchhoff’s Law cannot be valid [20]. Briefly, the

idea involved two cavities. The larger outer cavity was con-

structed from perfectly emitting and absorbing walls and ini-

tially placed in a helium bath. Within this cavity and in ther-

mal contact with its floor, rested an inner cavity made from

perfectly reflecting walls. Initially, one of the six sides of

this latter cavity remained open. As such, both cavities now

contained black radiation at 4K, which had been produced by

the outer cavity. The open wall of the inner cavity was then

closed. It thus contained blackbody radiation at 4K. Then,

the helium bath was removed and the system was allowed to

rise to room temperature. In that case, the inner cavity still

contained radiation associated with a 4K blackbody and the

outer cavity contained radiation corresponding to room tem-

perature.

Johnson argues that: But by making the inner cavity walls

perfectly reflecting and closing the last side, Robitaille has

created two entirely separate cavities; by definition, the inner

cavity walls cannot emit radiation in either direction, what-

ever the temperature. They therefore act as boundary walls to

what has become a “hollow” outer cavity. The outer cavity

no longer contains the inner cavity within itself in a thermal

sense; Kirchhoff’s Law therefore survives this thought exper-

iment” [36].

There is no validity in this argument. Simply examine

the quotation by Kirchhoff which opens this reply: “. . . In

the interior therefore of an opake red-hot body of any tem-

perature, the illumination is always the same, whatever be

the constitution of the body in other respects”. Obviously,

Kirchhoff’s statement has been violated and Kirchhoff’s law

permits the placement of any object within the cavity interior,

provided that it does not have the ability to emit photons by

non-thermal means. I have not sidestepped the conditions set

forth by Kirchhoff. The inner cavity, having perfectly reflect-

ing walls, is linked to the floor of the outer cavity through

thermal conduction [20]. The inner cavity is not composed

of an adiabatic wall which is unable to contain or transmit

heat, as Planck used. Rather, it is made of a perfect reflector,

best approached by a material such as silver: “Since the inner

cavity is perfectly reflecting, it will also be highly conducting,

as good reflectors tend to be good conductors” [20, p. 38].

Therefore, conductive heat transfer was allowed [23,26]. Sil-

ver is known to be essentially a perfect reflector in the infrared

(ρ > 0.994 [54]), as I previously mentioned in the work under

question [20]. It also possesses one of the highest electrical

conductivities and has a very reasonable thermal conductiv-

ity, on the order of 400 W m−1 K−1 [55]. Johnson cannot

argue that: “The outer cavity no longer contains the inner

cavity within itself in a thermal sense.” [36].

Mathematically, adiabatic walls can act as perfect reflec-

tors, but reflectors themselves are not mathematical walls.

Silver reflectors can be characterized by temperature, pre-

cisely because, though they are ideally immune to captur-

ing radiative energy, they are able to allow energy to enter or

leave either through conduction or, when applicable, convec-

tion. Johnson will not deny that thermal conduction exists.

Conversely, adiabatic walls cannot be characterized by any

temperature, as they are fully immune to energy transfer by

radiation, conduction, and convection.

In the case of a perfect reflector, all of the energy of the

system can be trapped in its walls. In the case of the perfect

absorber, Planck considered that all of the energy was con-

tained in the radiation field. Yet, Planck still needed to allow

his oscillators the opportunity to have some momentary inter-

action with radiative energy. Otherwise, no photons could be

produced or absorbed. Similarly, the perfect reflector must be

allowed to have some momentary interaction with conductive

energy. Johnson can no more deny the presence of thermal

conduction than he can deny the presence of thermal emis-

sion and absorption. Silver, an near perfect reflector in the

infrared, still has access to conductive paths of heat transfer.

Johnson tries to dismiss this thought experiment [20] and

with good reason. It constitutes strong evidence that Kirch-

hoff’s Law could never have been correct. In fact, let us revisit

this setting, as it also helps to dispel Planck’s ill-conceived

claims relative to the carbon particle acting as a catalyst.

First, note that the radiation contained within the inner

cavity depends on its history prior to the cavity being closed

[20]. It will contain whatever radiation was present within the

outer perfectly absorbing cavity at that time. That is, it will

be defined by the temperature of the outer cavity at closure

(i.e. 4 K). The radiation within the inner cavity persists as

Planck claims [4, § 51], but in a state which was well-defined

by history, not just any arbitrary state.

If we place a carbon particle in the perfectly reflecting

cavity and if this particle does not act to transform heat from

the wall into the radiative field, but can only act as a catalyst,

as Planck claimed [4, § 51] (relative to the existing radiation

which initially corresponded to 4 K radiation [20]), the inte-

rior of the cavity could never become black. That is because

the interior of the second cavity lacks sufficient energy in its 4

K photons to adopt the proper blackbody intensity for the new

higher temperature of its walls, when the both cavities have

been brought to room temperature [20]. The carbon particle,

can never act to shift the Wien’s peak to higher frequencies

because Planck denies that it can contain any significant heat

on its own [4, § 51]. The cavity, in this instance, could not

contain black radiation at room temperature, without viola-

tion of the First Law of Thermodynamics. That is the cen-

tral problem in Planck’s notion that the carbon particle was

merely a catalyst. In the example provided, Planck would

stand in violation of the First Law, if he persisted in insisting

that the carbon particle was not transforming the energy con-

tent of the walls and if he maintained his insistence that the
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cavity became filled with blackbody radiation.

Should the carbon particle be characterized with a tem-

perature, but interaction with the walls still prevented, then

it could convert the radiation within the cavity to the proper

Planckian distribution for the higher temperature. But this ra-

diation will always remain gray, as the temperature of the car-

bon particle cannot be allowed to fall and since it has no ac-

cess to other sources of heat. Once again, Planck is restricted

by the First Law. The relative distributions of frequencies

might become correct, but their intensity will always be too

low.

It is only when the carbon particle is allowed to transform

the thermal energy contained within the wall of the perfectly

reflecting cavity that we obtain the correct answer and that the

interior of the second cavity can become black [15]. That is

why the carbon particle was never a catalyst. Planck ignores

its ability to transform thermal energy contained within the

walls. He was only concerned with the radiation field and

this was a crucial error.

3 Robitaille and Crothers’ 2015 paper

This section begins, once again, by claiming that there was

a volte-face relative to my position on Stewart’s mechanism.

As noted previously, such claims are unwarranted. I have

never supported “Stewart’s mechanism” as providing a valid

means of extending Kirchhoff’s claims to all cavities made

from arbitrary materials. Neither has Steve Crothers.

While defending Max Planck, Johnson has failed to rec-

ognize that there can be a substantial difference between 1)

what Planck claims to have done, 2) what he actually did, and

3) what nature permits. For instance, when Planck denied the

absorptivity of the surface layer and inserted only reflectivity,

he made claims which were demonstrably false in the labora-

tory, relative to the nature of a blackbody surface. He inap-

propriately applied polarized light and Brewster’s Law to se-

cure his proof, when such an approach was disallowed based

on the very definition of heat radiation. Finally, he concluded

that his unnumbered equation at the end of section § 36 [4],

Kν

K′ν
·

q2

q′2
=

1 − ρ′

1 − ρ
,

could be satisfied by all values of ρ and ρ′. Yet, when

ρ = 1, this expression became undefined. As such, both

Crothers and I maintain that Planck’s “proof” [4] of Kirch-

hoff’s Law remains fundamentally flawed and invalid. Planck

has, therefore, been deprived of any justification in claiming

universality. In his initial paper [3] and in the latter portion

of his text [4], Planck correctly derived an expression for the

blackbody function. But Planck can never state, based on

§ 35-37, that interiors of all cavities contain black radiation.

This remains a serious crack in the armor of modern physics

and Johnson’s letter has not helped to rectify the problem.

3.1 The meaning of Planck’s term “surface”

Within his classic text, Planck described how he has devi-

ated from Kirchhoff’s definition of a blackbody. For John-

son, Planck’s new definition was permitted, whereas, in truth,

it constituted a rejection of nature itself. As we have high-

lighted [25, p. 124], Planck stated within a footnote “In defin-

ing a blackbody Kirchhoff also assumes that the absorption

of incident rays takes place in a layer “infinitely thin”. We

do not include this in our definition” [4, § 10]. This was not

footnote material, as it constitutes a critical redefinition of

the blackbody. In opposition to Kirchhoff, Planck decided to

write: “The creation of a heat ray is generally denoted by the

word emission. According to the principle of the conservation

of energy, emission always takes place at the expense of other

forms of energy (heat, chemical or electric energy, etc.) and

hence it follows that only material particles, not geometrical

volumes or surfaces, can emit heat rays. It is true that for the

sake of brevity we frequently speak of the surface of a body

as radiating heat to the surroundings, but this form of expres-

sion does not imply that the surface actually emits heat rays.

Strictly speaking, the surface of a body never emits rays, but

rather it allows part of the rays coming from the interior to

pass through. The other part is reflected inward and accord-

ing as the fraction transmitted is larger or smaller the surface

seems to emit more or less intense radiations” [4, § 2].

Was Kirchhoff actually correct? Does the absorption of

incident rays take place in a layer “infinitely thin” [4, § 10]?

Or, did Planck more closely approximate nature:“Strictly

speaking, the surface of a body never emits rays, but rather

it allows part of the rays coming from the interior to pass

through” [4, § 2]. Of course, if a surface, strictly speaking,

cannot emit rays, it also cannot absorb rays.

The answer to this problem has been provided in the lab-

oratory. If one considers the hexagonal planar structure of

graphite and the reality that soot (or lampblack) has always

played an important role relative to the creation of blackbod-

ies (see references within [16,17]), then the answer is readily

apparent. For soot shares, in large measure, the hexagonal

planar structure of graphite, although more breaks exist in the

lattice. The surface of graphite or soot, is well represented by

graphene [56, 57], as this alone constitutes the outer layer of

a sheet of graphite.

Mak et al [58] speak of the absorption of graphene, “In-

deed, it was the strong absorption of single-layer graphene

(with its absorbance of ∼2.3%, . . . that permitted the initial

discovery of exfoliated monolayers by visual inspection under

an optical microscope”. The authors are referring to the work

of Novoselov and Geim [56] (Nobel Prize, Physics, 2010).

Moreover, even a single layer of graphene has been shown

to be an absolutely phenomenal emitter, when driven by cur-

rent [59].

Consequently, Planck’s position that, “Strictly speaking,

the surface of a body never emits rays, but rather it allows
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part of the rays coming from the interior to pass through” [4,

§ 2], simply cannot be upheld. Laboratory evidence is firm

on this point: some of the rays will begin to be absorbed even

by the first mono-layer of atoms and less than 50 hexagonal

planes of atoms should result in near complete absorption.

It is a fact that, even a single layer of graphene, the only

structure which can be associated with the surface of a

graphite blackbody, has powerful absorbance. Max Planck

cannot be permitted to neglect this layer, when discussing

blackbodies. Planck knew Kirchhoff’s definition and chose

to ignore it, even though he recognized that he could make

the entire radiation within a cavity black, by introducing even

the smallest of carbon particles [4, § 51]. Planck’s error was

in not allowing any absorption or emission at all, not in al-

lowing that a single layer did not have 100% absorption. In

this respect, Planck’s statement was imprudent at the time and

laboratory experiments have now demonstrated that, indeed,

it was false. Johnson cannot correct this situation. Yet, as we

shall see below, this was a critical step towards Planck’s faulty

derivation of Kirchhoff’s Law. As for Kirchhoff, given his pe-

riod in history, it is clear that his definition remains valid. For

a single layer of atoms is as “infinitely thin” as nature can

allow and 50 layers of atoms about as “infinitely thin” as a

man could conceive in Kirchhoff’s days. He could have no

concept of the dimensions of atoms in 1860 [1, 2].

In continuing his letter, Johnson then attempts to justify

Planck’s insistence that the term “bounding surface” referred

to a geometrical surface dividing two media, and that “the

material effects of emission and absorption take place within

the adjoining media” [36]. In this respect, we return to the

question of what Planck has said and what he can be permit-

ted to say.

In § 35 of his textbook [4], Planck outlined the notation

relative to primed and unprimed superscripts: “Let the spe-

cific intensity of radiation of frequency ν polarised in an ar-

bitrary plane be Kν in the first substance . . . , and K
′
ν in the

second, and, in general let all quantities referring to the sec-

ond substance be indicated by the addition of an accent” [4].

Planck continued in § 43, “The most adequate method of ac-

quiring more detailed information as to the origin and the

paths of the different rays of which the radiations I1, I2, I3,

. . . In consist, is to pursue the opposite course and to inquire

into the future fate of that pencil, which travels exactly in the

opposite direction to the pencil I and which therefore comes

from the first medium in the cone dΩ and falls on the surface

element dσ of the second medium” [4, § 43]. Here, Planck

clearly assigned to the surface element dσ, properties of the

second medium.

Johnson argues that Planck’s bounding surface did not

have to absorb any light, citing Planck’s claim, “Thus only

material particles can absorb heat rays, not elements of sur-

faces, although sometimes for the sake of brevity the expres-

sion absorbing surfaces is used” [4, § 12]. But what John-

son fails to understand is that, should he argue along these

lines, he would be brought to accept yet another truth from

Robitaille and Crothers which I now state: Only material par-

ticles can reflect light! Thus, Planck cannot be allowed an

imaginary surface which reflects light, while at the same time

denying that this same surface can absorb or emit light.

The truth being that when Planck placed two materials to-

gether, the bounding element, dσ, must be characterized on

one side by the reflectivity and aborptivity of the first material

and on the other side, by the reflectivity and absorptivity of

the second material. That is because, the elements in either

of the materials are not properly characterized only by reflec-

tivity. This is precisely why Crothers and I object to Planck’s

use of a bounding surface which does not fully represent the

materials which it unites.

Planck is welcome to claim that he can place a hypotheti-

cal bounding surface between two materials which considers

only transmission and reflection. As for Crothers and I, we

continue to object. The bounding surface which Planck en-

visioned was completely detached from reality. The issue is

not that Planck cannot place the geometric surface between

two layers. That is self-evident. The issue is that Planck can-

not detach this geometric bounding layer from the material

properties of those substances which he claims it character-

izes. It is impossible to extract only the reflectivity of a par-

ticle, assign it to a geometric bounding surface, and at the

very same time, ignore the absorptivity of this same particle.

Contrary to Johnson, our statement that “Planck neglected

the fact that real materials can possess finite and differing

absorptivities” [25, p. 127] is entirely appropriate and valid.

Planck’s own textbook provides additional insight: “When-

ever absorption takes place, the heat ray passing through the

medium under consideration is weakened by a certain frac-

tion of its intensity for every element of path traversed” [4,

§ 12]. By necessity, the element contained within the bound-

ing section is one of the elements in the path traversed. Planck

cannot ignore its absorption, because its properties can only

be related to the medium to which it is linked.

Johnson then attempts to counter our statement: “Third,

the simplest means of nullifying the proof leading to Planck’s

Eq. 42, is to use a perfect reflector as the second medium.

In that case, a refractive wave could never enter the second

medium and Planck’s proof fails” [25, p. 127]. In order to

counter this argument, Johnson tries to make the bounding

surface perfectly reflecting, but unfortunately, he is not al-

lowed to adopt such an approach, as Planck’s proof intrinsi-

cally depends on the transmissivity of this bounding surface.

Johnson cannot make it a perfect reflector, as in doing so, he

optically isolates the two media. Furthermore, Johnson has

failed to notice what has been mentioned above; namely, if

ρ = 1, then (1 − ρ) = 0 and Planck’s equation, at the bottom

of Planck’s § 36 (see § 3 herein) becomes undefined. Planck

needs this equation to be valid in order to obtain his Eq. 41,

q2Kν= q′2K′ν. But after he obtains Eq. 40, ρ=ρ′, Planck must

return to the equation he lists at the end of § 36 and this ex-
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pression is not always true.

It also remains the case that Planck’s entire proof of

Kirchhoff’s Law collapses, as Crothers and I correctly high-

lighted in our joint paper [25, p. 127], when we replaced the

second medium with a perfect reflector.

At first, it was difficult for me to even understand why

Johnson would have wanted to replace the geometric bound-

ing surface with a perfectly reflective surface. The answer

rests in his use of this quote from Max Planck: “Since the

equilibrium is nowise disturbed, if we think of the surface

separating the two media as being replaced for an instant by

an area entirely impermeable to heat radiation, the laws of

the last paragraphs must hold for each of the two substances

separately” [4, § 35]. However, in that case, Planck was re-

ferring to the treatment he had just outlined when addressing

a single medium. Note that Planck writes in § 32, “that the

total state of radiation of the medium is the same on the sur-

face as in the interior. Then in § 33, Planck writes, “While the

radiation that starts from a surface element and is directed to-

wards the interior of the medium is in every respect equal to

that emanating from an equally large parallel element of area

in the interior, it nevertheless has a different history. That is

to say, since the surface of the medium was assumed to be im-

permeable to heat, it is produced only by reflection at the sur-

face of radiation coming from the interior” [4, § 35]. Planck

had assumed that the surface in this case was impermeable to

heat because this was the only way he could treat the isolated

medium near its surface.

However, when Planck moved to two media, he no longer

used a boundary impermeable to heat, but assumed that the

surface of each medium was “smooth” [4, § 36]. In § 9,

Planck had defined a smooth surface as one which can par-

tially reflect and transmit the incoming radiation [4, § 9].

Planck required transmission for his later proof of Kirchhoff’s

law in § 35 and § 36. This is an essential element, which

Johnson failed to consider in stating that a perfectly reflecting

boundary enabled ρ = ρ′. In that case, as mentioned above,

the equation at the bottom of Planck’s § 36 would become

undefined. It is for this reason that Johnson cannot support

Planck’s position, by making the bounding surface a perfect

reflector.

Robitaille and Crothers remain correct. Planck improp-

erly treated absorption and reflection in his derivation. Fur-

thermore, the use of a perfect reflector for the second medium

was all that was needed to shatter Planck’s proof of Kirch-

hoff’s Law, as we have previously noted [25].

3.2 Absorption and transmission

This section of Johnson’s letter begins by quoting from the

paper by Robitaille and Crothers: “With his words, Planck

redefined the meaning of a blackbody. The step, once again,

was vital to his derivation of Kirchhoff’s Law, as he relied on

transmissive arguments to arrive at its proof. Yet, blackbody

radiation relates to opaque objects and this is the first indica-

tion that the proofs of Kirchhoff’s Law must not be centered

on arguments which rely upon transmission. Planck ignored

that real surface elements must possess absorption, in appar-

ent contrast with Kirchhoff and without any experimental jus-

tification” [25, p. 124].

Strangely, Johnson then concludes from this quotation

that “the apparent problem arises from the fact that Planck’s

surface is a geometrical one, whilst Robitaille and Crothers

are obviously referring to a surface layer in which, they main-

tain, all absorption must take place because transmission is

not permitted through a black body” [36]. But we never

stated that all of the absorption must take place from the sur-

face layer. We stated that “real surface elements must possess

absorption” [25, p. 124]. The surface need not have 100% ab-

sorption, as only a slight absorption is sufficient to invalidate

Planck’s proof. It is obvious, from our treatment of the first

section of Planck’s proof, that we do in fact allow transmis-

sion to take place within the medium and for elements within

the blackbody to absorb, exactly like Max Planck [25, § 4.2].

We caution, however, that blackbodies are opaque objects and

that Planck’s proof cannot rely exclusively on transmission

and reflection. Our point remains valid, as well demonstrated

by the experimental realities outlined relative to graphene in

§ 3.1 above.

Again quoting from our paper, Johnson then attempts to

argue that Planck was correct in inferring that “. . . while in the

case of bodies with vanishingly small absorbing power only

a layer of infinite thickness may be regarded as black” [4,

§ 10]. Once again, it is difficult to understand how Johnson

can come to Planck’s defense in this case. An opaque object

which has a low absorptivity, also has a high reflectivity by

definition. If not, it would not be opaque. As such, most pho-

tons which approach an opaque surface with low absorptivity

are reflected away from the body. For Planck’s argument to

work, one would have to discount the surface reflection from

an opaque object with a low emissivity which is counter to

all laboratory experience. This highlights that Planck’s new

definition of a blackbody is completely outside the laws of

nature. Planck cannot argue that he can neglect surface re-

flection, simply to salvage his derivation of Kirchhoff’s Law.

Our point remains valid “Blackbodies are opaque objects

without transmission, by definition” [25, p. 125]. Still, we

have, in fact, allowed Planck to have some mathematical lati-

tude and some level of transmission within the object, as pre-

sented in our § 4.2 [25]. But we cannot allow Planck to com-

pletely negate the presence of the reflection which is known

to occur at the surface of an opaque object of low emissivity.

Johnson and Planck shall not redefine nature.

3.3 Reflection

Relative to neglecting the reflection which occurs within a

medium, we never stated that such an approach was invalid,
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merely that it was suboptimal. In fact, in § 4.2 of our paper,

we specifically outline the effects of neglecting the reflection

taking place within the medium [25].

Johnson, however, is under the impression that reflection

is strictly a surface phenomenon and cannot take place within

the medium. At the end of this section, Johnson emphasizes

the point when he states “Note that Planck is still talking

about the interior of the medium where reflection is not ap-

plicable because there is no surface; therefore Robitaille and

Crothers’ objection cannot be maintained” [36, § 3.3]. John-

son is confused on this point.

Planck himself explicitly commented on scattering within

media: “The propagation of the radiation in the medium as-

sumed to be homogeneous, isotropic, and at rest takes place

in straight lines and with the same velocity in all directions,

diffraction phenomena being entirely excluded. Yet, in gen-

eral, each ray suffers during its propagation a certain weak-

ening, because a certain fraction of its energy is continuously

deviated from its original direction and scattered in all direc-

tions. This phenomenon of “scattering”, . . . takes place, gen-

erally speaking, in all media differing from absolute vacuum

. . . ” [4, § 8]. Later in the same section, Planck noted that, be-

yond diffraction, scattering also depends on reflection [4, § 8].

Hence, contrary to Johnson’s claims, Planck understood that

reflection is not strictly a surface phenomenon.

Crothers and I have properly considered internal reflec-

tion [25, § 4.2]. We have demonstrated that, when internal re-

flection is considered, powerful new insight is gained. Rather

than simply obtaining Kirchhoff’s formulation, Kν = ǫν/αν,

which is potentially undefined, we can actually extract

ǫν = (1− ρν)Kν, which is never undefined [25, § 4.2]. The in-

sight provided by this treatment is important, contrary to what

Johnson implies when insisting, without justification and in

opposition to Planck’s own statements, that reflection is only

a surface phenomenon.

3.4 Polarization and equality of reflection

In the final section of his letter, Johnson attempts to justify

Planck’s use of polarized light and his assertion that the re-

flectivities of a pair of media at the bounding surface must be

equal. He begins by quoting from our paper: “In § 5 Planck

admitted that homogeneous isotropic media emit only natural

or normal, i.e. unpolarized, radiation: “Since the medium

was assumed to be isotropic the emitted rays are unpolar-

ized”. This statement alone, was sufficient to counter all of

the arguments which Planck later utilized to arrive at Kirch-

hoff’s Law [Eq. 42]. That is because the important sections

of Planck’s derivation, namely § 35–37 make use of plane-

polarized light. These steps were detached from experimental

reality, relative to heat radiation [Planck, § 35] . . . ”.

At this point, Johnson recalls that we have allowed Planck

to resolve heat radiation into two equal orthogonal compo-

nents, each plane-polarized. He objects to our statement that

“such rays could never exist in the context of heat radia-

tion” [25, p. 129]. Apparently, Johnson has failed to grasp

that even though Planck can resolve heat radiation into two

components, he is not allowed to apply only one component

in his derivation. He must always consider both components,

even if he can resolve them into two orthogonal planes.

Johnson apparently does not understand why Planck

wanted to treat only one component, in part, because he seems

unaware of Brewster’s Law. Planck, in his derivation of

Kirchhoff’s Law, invoked plane-polarized radiation, such that

he could set ρ = ρ′ = 0. He could only obtain this expres-

sion, when dealing with a single plane polarized beam of

light. That is because, if he sent such a beam at the proper

angle and with the proper polarization towards his bounding

surface, there would be no reflection, according to Brewster’s

Law.

However, Planck was not right in stating that there could

be no reflection in the context of heat radiation. He could not

obtain the plane-polarized beam of light, which he required,

because the other component of the radiation, which was in-

appropriately ignored in his derivation, was also present.

Moreover, Planck did not even test reflectivity by his argu-

ment from Brewster’s law, as the latter is dependent upon the

presence of a reflected ray as well as a transmitted ray. Thus,

Planck could not conclude that the reflectivities of both ma-

terials were 0. The absence of a reflected ray does not imply

that reflectivity is zero, as the polariscope attests. Just be-

cause Planck can resolve light into two components does not

mean that he can ignore one of these components. This is one

of the most significant flaws in Planck’s derivation of Kirch-

hoff’s Law.

Johnson then tries to defend Planck’s most dramatic

claim. Planck states [4, § 37]: “Now in the special case when

the rays are polarized at right angles to the plane of incidence

and strike the bounding surface at the angle of polarization,

ρ = 0, and ρ′ = 0. The expression on the right side of the last

equation then becomes 1; hence it must always be 1 and we

have the general relations:

ρ = ρ′ (40)

and

q2
Kν = q′2K

′
ν (41)”.

As I have just outlined, Planck cannot refer to this spe-

cial case, because he does not have access to light polarized

in a single plane. He must always simultaneously treat both

components. Secondly, Planck is incorrect in asserting that

the right side of the expression at the end of his § 36 [4] (also

shown in § 3 of this letter), “must always be 1”, because it

becomes undefined when ρ = 1. Planck was making an el-

ementary error in mathematics. We maintain that “The re-

sult was stunning.” [25, p. 129]. We also maintain that “Max

Planck had determined that the reflectivities of all arbitrary

media were equal” [25, p. 129].
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Johnson then tries to defend Planck one last time, by in-

sisting that what the latter “had in fact demonstrated is that

the reflectivities on each side of a geometrical surface bound-

ing two different media are equal. Clearly if a different pair

of media are chosen, the value of the reflectivity of the bound-

ing surface may be different as well” [36, § 3.4]. He then

quoted from The Theory of Heat Radiation, “Since, in gen-

eral, the properties of a surface depend on both of the bodies

which are in contact, this condition shows that the property

of blackness as applied to a body depends not only on the na-

ture of the body but also on that of the contiguous medium. A

body which is black relatively to air need not be so relatively

to glass, and vice versa” [4, § 10].

Both Crothers and I understand what Max Planck

claimed. However, we are properly concerned with what he

has actually done. Planck’s statement that “the properties

of a surface depend on both of the bodies which are in con-

tact” [4, § 10] can never be verified in the context of opaque

media, precisely because his bounding surface is an abstrac-

tion. Snell’s law, for instance, also relies on the interface of

two media, but a bounding surface, or the changes at the sur-

faces, need not be introduced to obtain the proper answer.

The indices of refraction of the two media alone are sufficient

to treat the problem.

Planck’s statements relative to the bounding surface were

subject to two fundamental objections. First, they are justified

by nothing; second, they constitute “une hypothèse gratuite”

(see table presenting arguments against 19th century proofs

of Kirchhoff’s Law in [47, p. 16]). Planck may wish to claim

that “A body which is black relatively to air need not be so

relatively to glass, and vice versa” [4, § 10], but he had abso-

lutely no justification for such a statement.

Rather, what Planck did possess are two isotropic media.

Each of these is characterized by the absorptivity and reflec-

tivity for each of its constitutive elements. Within his bound-

ing surface, Planck could only introduce the reflectivity of

elements contained in the media in question. When he in-

troduced this reflectivity into his bounding surface, he had to

additionally introduce some absorptivity, since this also char-

acterized the media. Planck was not free to ignore the absorp-

tivity. But he did so, as absorptivity in the bounding surface

would prevent him from making use of Brewster’s Law.

In any case, Planck could not invent a new reflectivity,

which now existed only when he places the two media in

contact with one another. After all, the reflectivities of the

bounding surface must somehow be related to the materials

under study. Furthermore, all that Planck could ever know

about these materials are the reflectivities which can be mea-

sured. Neither he, nor Johnson, are allowed to hypothesize

on what can never be measured in opaque media.

Planck recognized that he could not state that reflectivities

of all materials are identical. As such, he postulated, without

any experimental evidence, that his proof actually refers to

something else [4, § 10]. Crothers and I dispute such claims.

Planck’s derivation must be taken on what the setting and the

mathematics demonstrate. If we ignored Planck’s mathemat-

ical errors and experimental oversights, we could much more

convincingly argue that he had demonstrated that the reflec-

tivities of all arbitrary materials were equal, using the same

proof. Planck could measure nothing more than the reflectiv-

ities of each medium. Thus, he remains in violation of known

optics, despite his attempts to introduce a new meaning to

the reflectivity of a surface. Furthermore, Planck is forbidden

from writing Eq. 40, ρ = ρ′, precisely because he has violated

nature’s rule that heat radiation is never polarized. It also re-

mains the case that the unnumbered equation, which Planck

presents at the end of his § 36 [4] (see § 3 herein), is undefined

when ρ = 1.

4 Johnson’s summary and conclusions

In opening this section of his letter, Johnson claims that,

“Stewart [33] had shown that the radiation in a cavity made

from perfectly absorbing material at thermal equilibrium

must be black, of an intensity appropriate to the equilibrium

temperature. According to Robitaille, Kirchhoff [1] extended

this finding to cavities made of arbitrary materials”. Once

again, Johnson has missed the mark.

Stewart considered plates in his experiments and Johnson

is distorting what Stewart has done. It was with plates that

Stewart demonstrated the Law of Equivalence (in modern no-

tation: ǫ = α, or ǫ + ρ = α + ρ). Kirchhoff’s extension to

all arbitrary cavities [1, 2], went well beyond Stewart’s legit-

imate law and has never been demonstrated to be true in the

laboratory.

Johnson’s claim that I have now withdrawn my objections

to “Stewart’s mechanism”, in my paper with Crothers [25],

is without basis. “Stewart’s mechanism” has numerous prob-

lems, including potential violations of the First Law of Ther-

modynamics, depending on the circumstances considered. It

suffers from the reality that cavities made of low emissivity

materials can prefer to increase the temperature of the walls,

rather than emit a photon. Johnson’s letter does nothing to

counter this argument and that is why “Stewart’s mechanism”

cannot be realized in practice, as recognized by Crothers and

myself.

Finally, Johnson admits: “Robitaille is obviously correct

to point out that black body cavities are never made from re-

flective materials.”. However, he then attempts to excuse the

observation, in noting that, “. . . this fact appears to be more a

question of practicality and the need to ensure that the walls

are not perfectly reflective at any wavelength so that proper

measurements of temperature can be made. It does not seem

to amount to a demonstration that Kirchhoff’s Law necessar-

ily fails, as Robitaille claims.”. Again, the arguments are ill-

conceived. The fact that an experiment, required to establish a

law of physics, still remains impractical after 150 years, well

indicates that the law was never valid.
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Some have argued, for instance, that when cavities are

constructed from low emissivity materials, their dimensions

need to be increased. This helps to augment their absorbance

when sampling return losses. But Kirchhoff’s law is explicit.

The dimensions of the walls are irrelevant and, at a given tem-

perature, must remain unrelated to the emissivity of the mate-

rial, provided that the diffraction limit is avoided. The diffrac-

tion limit is not set by the emissivity. Furthermore, Johnson’s

arguments, relative to the ability to properly measure a tem-

perature remain unfounded. Temperature sensors in the walls

of cavities can easily report such information.

5 Conclusions

Throughout his letter, Johnson demonstrates that he has not

carefully considered what Stewart, Kirchhoff, and Planck

have written. He attributes to them positions which they never

adopted. Then, he misinterprets the positions they did take.

He repeatedly makes elementary errors relative to the under-

standing of cavity radiation. His statements on properly mea-

suring the temperature of a cavity are but one example. He ar-

gues for “Stewart’s mechanism”, in building up the radiation

within a cavity, while not recognizing that the introduction of

specular reflection within such objects can easily lead to the

formation of standing waves. He also fails to understand that

a cavity can simply increase the temperature of its walls and

not emit a single photon.

He rejects my experimental work on MRI cavities, as un-

related to the problem of thermal emission and notes that pro-

cesses, like fluorescence, have been excluded by Max Planck.

Yet, the sampling of a cavity with a network analyzer does

not involve such processes. In this respect, he also fails to

note that Kirchhoff had mistakenly included such processes,

in his initial work [1]. This was the only work of Kirchhoff

which Johnson cited.

Furthermore, he fails to recognize that microwave cavities

are utilized aboard modern satellites, wherein such objects are

claimed to be black. Johnson also improperly and unknow-

ingly expresses Stewart’s Law as ǫν = αν + ρν in a thought

experiment, thereby reaching conclusions which were clearly

false. Then, he ignores the very existence of thermal conduc-

tion, when he attempts to invalidate my thought experiment

with two cavities. He misrepresents my statements and those

of Stephen Crothers, when he tries to state that we denied

that the interior of a medium can have absorbance. He failed

to understand the difference between resolving a heat ray into

its two plane-polarized components and making use of a sin-

gle plane-polarized ray, in order to infer something about heat

radiation, which is never polarized. He hypothesized that

replacing Planck’s geometrical bounding surface with a per-

fect reflector could be used to validate Planck’s claims, when

clearly, it leads to an undefined mathematical expression and

an invalid setting.

For all these reasons, Johnson cannot state that he has, in

any way, nullified my objections to Kirchhoff’s Law. Still, he

must not be faulted for trying to defend Kirchhoff and Planck.

As I stated in the introduction, it is the first obligation of a

scientist to defend established science. Moreover, the study of

cavity radiation is not at all simple. In this regard, Johnson’s

efforts are noteworthy and he is to be given credit for the time

he has invested in reviewing these many papers.

Through the exchange prompted by his letter, Johnson has

been indirectly responsible for bringing to the forefront many

aspects of cavity radiation. Progress is often achieved, only

when old ideas are first rejected, even if the process of discov-

ery is not smooth. The process of correction, in itself, leads

to scientific advancement. Hence, through such an exchange,

readers can better come to understand why Kirhchoff’s Law

of thermal emission was never valid. Consequently, Planck’s

claims for universality must be rejected.
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Poggendorfs Annalen der Physik und Chemie, 1860, v. 109, 275–301.

(English translation by F. Guthrie: Kirchhoff G. On the relation be-

tween the radiating and the absorbing powers of different bodies for

light and heat. Phil. Mag., 1860, ser. 4, v. 20, 1–21).
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LETTERS TO PROGRESS IN PHYSICS

Errata to “Mansouri-Sexl Test Theory: The Question of Equivalence

between Special Relativity and Ether Theories”

Maciej Rybicki
E-mail: maciej.rybicki@icloud.com

The title paper [1] contains an essential mistake committed by the present author.

Namely, the Mansouri and Sexl generalized transformation of time, as well as the rele-

vant form of the Lorentz transformation of time have been erroneously read and typed.

In consequence, a certain part of the paper (indicated in the table, below) requires re-

placing to conform to the correct equations. The rest of the paper, except for the minor

corrections indicated in the Errata, still remains valid. Let me apologize to the Readers

and Editors for the inconvenience.

Page Written Read

89 (Abstract) “has an erroneous form.” “is incorrectly used.”

89, Eq. (2) t= aT + ǫX t = aT + ǫx

90, Eq. (5) x= γ(X − vt) x= γ(X − vT )

91 (Conclusion) “We have shown that an incorrect notation. . . ” “We have shown that an incorrect use. . . ”

Page 90, left column

Written (part to be replaced, starting from):

“Mansouri and Sexl state that for a=b= 1, ǫ = 0 the Galilean

transformation is obtained, which is correct. . . . ”

(ending with, 33 lines down):

“. . . Consequently, they concluded that only violation of the

two-way isotropy resulting in deviations from the relativistic

values of a and b constitutes a challenge to STR.”

Read (part to be introduced):

“Thus, the difference in the one-way speed of light would be

a sole matter of choice of the synchronization convention.

From M-S theory it follows that for a= b= 1, ǫ = 0, the

Galilean transformation is obtained. If, after employing the

external synchronization, a and b equal to unity, it would

mean that mechanical phenomena are ruled by Newtonian

physics and subject to the Galilean principle of relativity, whi-

le the Maxwell equations (and the relevant constant speed of

light) refer to the ether frame only.

Instead, for 1/a=γ and ǫ = − v/c2, the M-S transforma-

tion of time turns into the Lorentz transformation of time:

t′ =
t

γ
−

vx′

c2
. (E1)

In this form, the “rest-to-observer” coordinates appear on bo-

th sides of equation. Written in the same manner, the inverse

Lorentz transformation is therefore:

t =
t′

γ
+
vx

c2
. (E2)

Consequently, the M-S transformation of time, and the in-

verse transformation are:

t = aT + ǫx ,

T = at − ǫX .
(E3)

Now, assuming 1/a=γ and ǫ = 0, we obtain:

t =
T

γ
=⇒ T = tγ , (E4)

in contradiction with

T =
t

γ
. (E5)

Mansouri and Sexl intended to treat independently the

questions of time dilation and simultaneity. This, however, is

infeasible with respect to the Lorentz transformation in which

relativity of simultaneity and relativistic effects are insepa-

rably connected. In the Lorentz transformation, one cannot

obtain time dilation without taking into account the relativity

of simultaneity. Likewise, the self-consistence of reciprocal

equations in the Lorentz transformation involves the mutual

dependence between γ= 1/
√

1 − v2/c2 and v/c2. The incor-

rect use of Lorentz transformation (in particular, not includ-

ing the inverse transformation) led to a false conclusion as to

the question of equivalence between STR and the postulated

ether theory.”
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Application of the Differential Transform Method to the Advection-Diffusion

Equation in Three-Dimensions

Samia H. Esmail and Mahmoud M. Taha

Mathematics and Theoretical Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, P.No. 13759, Egypt.

E-mail: mahmoudmt@hotmail.com

Advection diffusion equation with constant and variable coefficient has a wide range

of practical, industrial and environmental applications. Due to the importance of at-

mospheric dispersion equation, we present this study which deals analytically with the

atmospheric dispersion equation. The present model is proposed to estimate the con-

centration of an air pollutant in an urban area. The model is based on using Differential

Transform Method (DTM) to solve the atmospheric dispersion equation. The model

assumes 1) the pollutant is released from an elevated continuous point source; 2) there

exist an elevated inversion layer; 3) the dispersion coefficients are parameterized as a

function of downwind distance in a power law dependence. To test the model accuracy,

the model predictions have been applied and compared with the experimental data for

the Inshas research reactor (Egypt). The model predictions are shown to be in good

agreement with the measurement of field data.

1 Introduction

The advection-diffusion equation of air pollution in the atmo-

sphere is essentially a statement of conservation of the sus-

pended material. The concentration of turbulent fluxes are

assumed to be proportional to the mean concentration gradi-

ent which is known as Fick-theory.

This assumption, combined with the continuity equation,

leads to the steady-state advection-diffusion equation, Black-

adar [1]

∂C

∂t
+ u
∂C

∂x
+ v
∂C

∂y
+ w
∂C

∂z
=
∂

∂x

(

kx

∂C

∂x

)

+

+
∂

∂y

(

ky
∂C

∂y

)

+
∂

∂z

(

kz

∂C

∂z

) (1)

where C(x, y, z) denotes the concentration, kx, ky, kz are the

cartesian components of eddy diffusivity and u, v, w are the

cartesian components of wind speed, where x, y are cartesian

horizontal distance and z is the height above ground surface.

In order to solve (1) we included the following assump-

tions: the pollutants are inert and have no additional sinks or

sources downwind from the point source, the vertical w and

lateral v components of the mean flow are assumed to be zero,

kx is neglected, ky and kz are functions of downwind distance.

The mean horizontal flow is incompressible and horizontally

homogeneous (steady state). Then, (1) is simplified to be:

u
∂C

∂x
= ky

(

∂2C

∂y2

)

+ kz

(

∂2C

∂z2

)

. (2)

Both z and y are confined in the range 0 < z < h and 0 <

y < Ly where h is the height of the planetary boundary layer

(PBL) and Ly is a cross-wind distance faraway from the sour-

ce, while the downwind distance x > 0. The mathematical

description of the dispersion problem (2) is completed by the

following boundary conditions:

u C(x, y, z) = Q δ(z) δ(y) , at x = 0 (3)

C(x, y, z) = 0 , at x, y, z→ ∞ (4)

∂C

∂y
= 0 , at y = 0, Ly (5)

C(x, y, z) = R , at y = 0 (6)

∂C

∂z
= 0 , at z = h (7)

kz

∂C

∂z
= −vd C , at z = 0 (8)

where vd is the deposition velocity, Q is the emission rate and

R(x, z) is a variable.

The modeling of air pollution dispersion, including dry

deposition, was first attempted by modifying the Gaussian

plume equation (Chamberlain [2] and Overcamp [3]) and in-

cluding operative algorithm, as in the surface depletion mod-

els (Horst [4,5]). Ermak [6] found also an analytical solution

but with diffusivity and wind as functions of down distance

only and Berkowicz and Prahm [7] gave a numerical solution

for the dependent time two dimensional equation including

dry deposition. The solutions proposed by Smith [8] and Rao

[9] also retained the framework of invariant wind speed and

eddies with height (as the Gaussian approach). Tsuang [10]

proposed a Gaussian model where the dispersion coefficients

(the so-said “sigma”) are functions of time and height.

Recent analytical solutions of the advection diffusion eq-

uation with dry deposition at the ground have utilized height-

dependent wind speed and eddy diffusivities (Horst and Slinn

[4], Koch [11], Chrysikopoulos et al. [12] and Tirbassi [13]).

However, these solutions are restricted to the specific case in

which the source is located at the ground level and/or with re-

strictions to the wind speed and eddy diffusivity vertical pro-
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files. It is to be noted that the previous works, Moreira et

al. [14, 15] assumed boundary conditions only of the second

type (zero flux to the ground) and also Tirabassi et al. [16],

but Tirabassi et al. [17] assumed boundary conditions of the

the third kind (with deposition to the ground), which encom-

pass the contaminant deposition speed and eddy, where eddy

diffusivity profiles are functions in the z direction only.

The differential transform method is used in many fields

and many mathematical physical problems such as a system

of differential equations [18], a class of time dependent partial

differential equations (PDEs) [19], wave, Laplace and heat

equations [20], the fractional diffusion equations [21], two-

dimensional transient heat flow [22], nonlinear partial dif-

ferential equations [23], diffusion-convection equation [24],

convection-dispersion problem [25], linear transport equation

[26], two-dimension transient atmospheric pollutant disper-

sion [27], Helmholtz equation [28].

The aim of this work is to find the analytical solution de-

veloped for concentration of the pollutant released from an

elevated source in an inversion layer by using the differential

transform method (DTM) [29, 30] with different formulas of

dispersion parameters (σ).

The paper is organized as follows. In section 2, we intro-

duce the analytical solution using the differential transform

method. In section 3, we apply both the standard method,

power law, Briggs formula and other sigma to specific prob-

lems in analytical solution.

The validity of the present model is examined by compar-

ing its results with the data for Cs137 which were performed

around the Atomic Energy Authority (AEA) First Research

Reactor in Egypt. The results are tabulated with the observed

data and clarified in the conclusion.

2 Analytical solution

Applying DTM for (2) with respect to x, we get:

∂Ui(x, y)

∂x
= ky
∂2Ui(x, y)

∂y2
+ (i + 1)(i + 2) kzUi+2(x, y) (9)

where the inverse of the differential transform is defined as:

C(x, y, y, z) =
∑

i=0

ziUi(x, y) ; (10)

from boundary condition (8), we obtain:

U1 =

(

−vg

kz

)

U0 ; (11)

from equations (9) and (11), we find that:

U2 =
1

2kz

(

u
∂U0(x, y)

∂x
− ky
∂2U0(x, y)

∂y2

)

, (12)

U3 =
−vg

6kz

[

u
∂

∂x

(

U0(x, y)

kz

)

−

(

ky

kz

)

∂2U0(x, y)

∂y2

]

; (13)

from boundary condition (7), we obtain:
(

−2kzvg

hky(2kz − hvg)

)

U0(x, y) +

(

u

ky

)

∂U0(x, y)

∂x
−

−

(

2hkzuvg

ky(2kz − hvg)

)

U0(x, y)
∂

∂x

(

1

kz

)

=
∂2U0(x, y)

∂y2
.

(14)

By using separation of variables method for (14), we get:

d2Y

dy2
+ λ2Y = 0 (15)

and
dX

dx
− (A − B)X = 0 (16)

where

A =



















hkzvg
∂
∂x

(

1
kz

)

2kz − hvg



















and

B =
hkzλ

2(2kz − hvg) − 2vgkz

hu(2kz − hvg)
.

The solution of (14) becomes:

U0(x, y) = c1 e
∫

(A−B)dx cos λy (17)

where λ = nπ/ly.

For practical application of solutions, we need to find the

dispersion parameters σy, σz and the wind speed u. The dis-

persion parameters are an important function of downwind

distance and stability. The empirical σy, σz curves suggested

by Pasquill [31], Gifford [32] and Turner [33] have often been

used and are based on the stability. There are different meth-

ods to find these parameters.

The meteorological conditions defining Pasquill turbulen-

ce types are

A- Extremely unstable conditions

B- Moderately unstable conditions

C- Slightly unstable conditions

D- Neutral conditions

E- Slightly stable conditions

F- Moderately stable conditions .

Here, we used four methods for estimating dispersion pa-

rameters:

1. Standard method: This method is based on a single at-

mospheric stability. Analytical expressions based on

Pasquill-Gifford (P-G) curves used for the dispersion

estimates have the forms [34]: .

σy =
rx

(1 + x/a)p , (18)

σz =
sx

(1 + x/a)q , (19)

where r, s, a, p and q are constants depending on the

atmospheric stability. Table 1 shows the values of these

constants for different stability classes [35].
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Table 1: Meteorological data of the eight convective test runs [35]

Pasquil classes A B C D E F

σθ 25◦ 20◦ 15◦ 10◦ 5◦ 2.5◦

a(km) 0.927 0.370 0.283 0.707 1.07 1.17

s(m/km) 102.0 96.2 72.2 47.5 33.5 22.0

q -1.918 -0.101 0.102 0.465 0.624 0.70

r(m/km) 250 202 134 78.7 56.6 37.0

p 0.189 0.162 0.134 0.135 0.137 0.134

2. Power law of sigma: In this methodσz andσy can be cal-

culated from:

σy = cxm (20)

σz = dxn . (21)

The parameters c, d,m, n in Smith’s (1968) [8] are esti-

mated in table 2.

Table 2: Meteorological data of the eight convective test runs [36]

Pasquil classes c m d n

A-B 1.46 0.71 0.01 1.54

C 1.52 0.69 0.04 1.17

D 1.36 0.67 0.09 0.95

E-F 0.79 0.70 0.40 0.67

3. Briggs formulas: Formulas had been recommended by

Briggs 1973 [37]; they should be used in place of the

formulas in Table 3 to estimate σz and σy.

Table 3: Meteorological data of the eight convective test runs [35,37]

stability σy σz

class

A-B 0.32x (1 + 0.0004x)−
1
2 0.24x (1 + 0.001x)

1
2

C 0.22x (1 + 0.0004x)−
1
2 20x

D 0.16x (1 + 0.0004x)−
1
2 0.14x (1 + 0.0003x)−

1
2

E-F 0.11x (1 + 0.0004x)−
1
2 0.08x (1 + 0.00015x)−

1
2

4. Hosker expression: Hosker 1973 [38] well-known ana-

lytical ”best-fit” expression as:

σz =

(

αxβ

1 + γxδ

)

F(z0, x) (22)

where z0 is the roughness length, α, β, γ and δ are con-

stants depending on the stability classes in Table 4 and

F(z0, x) is defined as:

F(z0, x) = ln

(

mxg
[

1 +
(

lx j
)

−1
])

, z0 > 0.1m (23)

where m, g, l, j are constants depend on the value of the

roughness length, where our application z0 (roughness

length) = 0.5, so l = 18.6, m = 5.16, j = 0.225 and

g = 0.098.

Table 4: The constant values of the roughness length, α, β, γ and

δ [38]

Pasquil classes α β γ δ

A 0.112 1.06 5.0 × 10−4 0.815

B 0.130 0.950 6.52 × 10−4 0.750

C 0.112 0.920 9.05 × 10−4 0.718

D 0.098 0.889 1.35 × 10−3 0.688

E 0.0609 0.895 1.96 × 10−3 0.684

F 0.0638 0.783 1.36 × 10−3 0.672

On the other hand, Briggs 1973 [37] proposed a series

of algebraic interpolation formulae based on a wide va-

riety of data sources containing surface and elevated

sources with a range of initial buoyancies:

σy = b1(1 + b2x)b3 . (24)

The coefficient values b1, b2 and b3 were derived for

both rural and urban terrain and are given in Table 5

[37].

Table 5: The coefficient values b1, b2 and b3 for equation (24) [37]

PG stability b1 b2 b3

A 0.20 0 –

B 0.12 0 –

C 0.08 0.0002 -0.5

D 0.06 0.0015 -0.5

E 0.03 0.0003 -1

F 0.016 0.0003 -1

3 Results and discussion

Meteorological data provided by Inshas meteorological tower

for four months at a smooth flat site (Inshas area, Egypt) for

the year (2006) are given in Table 6, [39]. Air samples were

collected from 98 m to 186 m around the first and second re-

search reactor in AEA, Egypt. The study area is flat, dom-

inated by sand soil with poor vegetation cover. The study

area was divided into 16 sectors (with 22.5o width for each

sector), beginning from the north direction. Aerosols were

collected at a height of 0.7 m above the ground of 10.3 cm di-

ameter filter paper with a desired collection efficiency (3.4%)
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Table 6: Meteorological Data of the nine Convective test runs at Inshas Site

No. Stability Down Mixing Emission rate Wind Initial wind

distance height Q (Bq) speed velocity

x (m) (m) (m/s) u0(m/s)

1 A 98 600.85 0.555429 4 3.95

2 A 100 801.13 0.567 4 3.7

3 B 106 973.0 0.023143 6 5.1

4 C 106 888.0 0.254577 4 3.95

5 A 135 921.0 0.266143 4 3.1

6 D 136 443.0 0.277714 4 3.95

7 E 154 1271.0 0.543857 4 3.95

8 C 165 1842.0 0.563529 4 3.1

9 A 186 1642 0.558321 4 3.95

Table 7: Observed and calculated concentrations (Bq/m3) for nine experiments

Run no. Observed Calculated concentrations

Con. [39] Standard Power law Briggs Hosker

Model of sigma formulas expression

1 0.002 0.0140799 0.0189143 0.013563 0.01379

2 0.004 0.0153392 0.011873 0.01475 0.014014

3 0.005 0.00448 0.00507518 0.004391 0.04422

4 0.007 0.0062904 0.013799 0.00624019 0.00625

5 0.009 0.00859466 0.00870 0.0081565 0.0081117

6 0.007 0.0070497 0.01596 0.0068969 0.00674

7 0.007 0.0137824 0.015015 0.019399 0.013155

8 0.019 0.0177893 0.019194 0.0171672 0.017135

9 0.006 0.0141444 0.01312 0.0132115 0.01311

using a high volume air sampler with 220 V / 50 Hz bias. The

air sampler had an air flow rate of approximately 0.7 m3/min

(25 ft3/min). Sample collective time was 30 min with an air

volume of 21.2 m3 (750 ft3). This air volume was corrected

to standard conditions (25 Co and 1013 mb) [39].

Table 7 indicates comparison between experimental data

of the nine convective test runs at Inshas site and our calcula-

tion of concentration by Briggs formula, power law variation,

standard method and Hosker’s expression, which shows that

the power law formula for the dispersion coefficients achieves

the best agreement with the experimental results.

3.1 Statistical evaluation

Statistical analysis of the predictions and observations is cen-

tral to the model performance evaluation. The predicted and

the corresponding observed concentrations are treated as pairs

in this evaluation.

The statistical index FB indicates weather the predicted

quantities underestimate or overestimate the observed ones.

The statistical index NMSE represents the quadratic error of

the predicted quantities in relation to the observed ones. Best

results are indicated by values nearest zero in NMSE, FB,

nearest 1 in MG,VG and FAC2 and are factor of two if are

greater than 1 and less than 2. The statistical measures chosen

to compare performances of the models described here [40]:

(i) Fractional bias FB is defined as:

FB =
C̄o − C̄p

0.5(C̄o + C̄p)

where the subscripts o and p refer to the observed and pre-

dicted values, respectively, and the overbars indicate mean

values. A good model should have FB value close to zero.

(ii) Normalized mean square error (NMSE) is defined as:

NMSE =
(Co −Cp)2

C̄oC̄p

.

This provides information on the overall deviations between

predicted and observed concentrations. It is a dimensionless

statistic and its value should be as small as possible for a good

model.

(iii) The geometric mean bias is defined as:

MG = exp
(

ln Co − ln Cp

)

.

(iv) The geometric variance is defined as:

VG = exp
(

(ln Co − ln Cp)2
)

.
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Table 8: Comparison between the Standard method, Power law of sigma, Briggs formulas and Hosker expression in terms of FB, FAC2,

NMSE, MG and VG

Standard method Power law of sigma Briggs formulas Hosker expression

FB -0.42543 -0.65368 -0.445 -0.69646

FAC2 1.540371 1.971068 1.572352 2.068563

NMSE 0.189565 0.478407 0.208342 0.551991

MG 0.605381 0.46362 0.601944 0.490099

VG 1.286468 1.805587 1.293883 1.662927

(v) Fraction within a factor of two (FAC2) is given by:

0.5 6 (Cp/Co) 6 2 .

Statistical evaluation of the models results are given in

Table 8, which compares the Standard method, Power law of

sigma, Briggs formulas and Hosker expression in terms of

FB, FAC2, NMSE, MG and VG.

4 Conclusion

In the present study, an analytical treatment for the dispersion

of air pollutant released from point source is formulated. A

mathematical solution has been obtained for the steady-state

form of the three-dimensional advection-diffusion equation

using the Differential Transform Method. Different realis-

tic formulae for the dispersion coefficients as a function of

downwind distance have been adopted (namely: Briggs for-

mula, power law variation, standard method and Hosker’s ex-

pression). In order to validate and verify our model, and for

the sake of comparison, we apply our obtained mathematical

formulae on the experimental data performed for the release

from the first Research Reactor in Egypt. The comparison

shows that the power law formula for the dispersion coeffi-

cients achieves the best agreement with the experimental re-

sults. Finally, the good agreement between the power law

variation of the dispersion parameter and the experiential data

gives us confidence to extend this work for the case of differ-

ent sources types, namely, line, area and volume sources. In

addition, it is also our intention to perform the mathematical

analysis of this method for the case of high penetrated in-

version layer (i.e. different stability conditions that permits

the pollutant penetration and diffusion through the mixing

height).
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We investigate the applicability of Bell’s inequality based on the assumptions used in its
derivation. We find that it applies to a specific class of hidden variable theories referred
to as Bell theories, but not necessarily to other hidden variable dynamic theories. We
consider examples of quantum dynamical processes that cannot be represented by the
initial representation defined in Bell’s derivation. We highlight two hidden assumptions
identified by Jaynes [11] that limit the applicability of Bell’s inequality, as derived,
to Bell hidden variable theories and that show that there are no superluminal physical
influences, only logical inferences.

1 Introduction

Bell’s inequality [1–3] sets constraints for the existence of lo-
cal hidden variable theories in quantum mechanics. Bohr, of
the Copenhagen probabilistic school, and Einstein, of the ob-
jective reality school, who both contributed to the foundation
of quantum mechanics, did not agree on its interpretation –
their views and correspondence on the topic are well docu-
mented in many books [4–7].

In 1935, Einstein, Podolsky and Rosen published a pa-
per [8] that aimed to show that quantum mechanics was not a
complete description of physical reality. Bohr provided a re-
sponse to the challenge [9], but the EPR paper remained an ar-
gument for hidden variables in quantum mechanics. In 1964,
Bell [1] published an inequality that imposed constraints for
local hidden variable theories to be valid in quantum mechan-
ics. The experiments performed by Aspect et al [10] with
entangled photons confirmed that Bell’s inequality was vi-
olated within experimental errors, taken to mean that local
hidden variable theories are not valid in quantum mechanics.
Only non-local hidden variable theories are possible, based
on these results.

In this paper, we investigate the applicability of Bell’s in-
equality, based on the assumptions used in its derivation.

2 Bell’s inequality

Bell’s derivation [1] considers a pair of spin one-half particles
of spinσ1 andσ2 respectively, formed in the singlet state, and
moving freely in opposite directions. Then σ1 · a is the mea-
surement of the component of σ1 along some vector a, and
similarly for σ2 · b along some vector b. Bell then considers
the possibility of a more complete description using hidden
variable parameters λ.

He writes down the following equation for the expectation
value of the product of the two components σ1 · a and σ2 · b
with parameters λ:

P(a,b) =

∫
dλ ρ(λ) A(a, λ) B(b, λ) (1)

where
A(a, λ) = ±1 and B(b, λ) = ±1 (2)

and ρ(λ) is the probability distribution of parameter λ. This
should equal the quantum mechanical expectation value

<σ1 · a σ2 · b> = −a · b . (3)

Bell says that it does not matter whether λ is “a single
variable or a set, or even a set of functions, and whether the
variables are discrete or continuous” [1]. He uses a single
continuous parameter described by a probability distribution.
In a later paragraph, he states that (1) represents all kinds of
possibilities, such as any number of hidden variables, two sets
of hidden variables dependent on A and B, or even as initial
values of the variables λ at a given time if one wants to assign
“dynamical significance and laws of motion” [1] to it. How-
ever, it is doubtful that the probability distribution ρ(λ) can be
used to represent all possible theories of hidden variables.

Indeed, the basic limitation of (1) with its use of a proba-
bility distribution ρ(λ) is that it imposes a quantum mechani-
cal calculation representation on the analysis. Other quantum
level dynamic theories, which we will refer to as hidden vari-
able dynamic theories, could obey totally different dynamic
principles, in which case, (1) would not be applicable. Equa-
tion (1) is only applicable to a specific class of hidden vari-
able theories that can be represented by that equation, which
Jaynes [11] refers to as Bell theories. In the following sec-
tions, we consider examples of quantum dynamical processes
that cannot be represented by (1) or by the probability distri-
bution ρ(λ) used in (1).

3 Measurement limitations and inherent limitations

It is important to note that Bohr’s responses to Einstein’s ge-
danken experiments were based on measurements arguments,
which acted as a barrier to any further analysis beyond that
consideration. As pointed out by Jaynes [12], Einstein and
Bohr “were both right in the essentials, but just thinking on
different levels. Einstein’s thinking [was] always on the on-
tological level traditional in physics; trying to describe the
realities of Nature. Bohr’s thinking [was] always on the epis-
temological level, describing not reality but only our infor-
mation about reality”.
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As discussed in [13], the Heisenberg Uncertainty Princi-
ple arises because x and p form a Fourier transform pair of
variables at the quantum level due to the momentum p of a
quantum particle being proportional to the de Broglie wave
number k of the particle. It is a characteristic of quantum me-
chanics that conjugate variables are Fourier transform pairs
of variables.

It is thus important to differentiate between the measure-
ment limitations that arise from the properties of Fourier tran-
sform pairs, and any inherent limitations that may or may not
exist at the quantum level for those same variables, indepen-
dently of the measurement process. Conjugate variable mea-
surement limitations affect how we perceive quantum level
events as those can only be perceived by instrumented mea-
surements at that level. However, as shown in [13], conjugate
variable measurement limitations affect only our perception
of the quantum environment, and are not inherent limitations
of the quantum level.

The Nyquist-Shannon Sampling Theorem of Fourier tran-
sform theory allows access to the range of values of variables
below the Heisenberg Uncertainty Principle limit under sam-
pling measurement conditions, as demonstrated by the Bril-
louin zones formulation of solid state physics [13] [14, see
p. 21] [15, see p. 100]. Physically this result can be under-
stood from the sampling measurement operation building up
the momentum information during the sampling process, up
to the Nyquist limit. This shows that there are local hidden
variables at the quantum level, independently of the measure-
ment process. The dynamical process in this case is masked
by the properties of the Fourier transform.

4 Wave-particle duality in STCED

The Elastodynamics of the Spacetime Continuum (STCED)
[16] has similarities to Bohmian mechanics in that the so-
lutions of the STCED wave equations are similar to Louis
de Broglie’s “double solution” [17, 18]. Bohmian mechanics
also known as de Broglie-Bohm theory [19–21] is a theory
of quantum physics developed by David Bohm in 1952 [22],
based on Louis de Broglie’s original work on the pilot wave,
that provides a causal interpretation of quantum mechanics.
It is empirically equivalent to orthodox quantum mechanics,
but is free of the conceptual difficulties and the metaphysical
aspects that plague the interpretation of quantum theory.

Interestingly, Bell was aware of and a proponent of Boh-
mian mechanics when he derived his inequality [23]:

“Bohm showed explicitly how parameters could in-
deed be introduced, into nonrelativistic wave mechan-
ics, with the help of which the indeterministic descrip-
tion could be transformed into a deterministic one.Mo-
re importantly, in my opinion, the subjectivity of the
orthodox version, the necessary reference to the ‘ob-
server,’ could be eliminated... I will try to present the
essential idea... so compactly, so lucidly, that even
some of those who know they will dislike it may go

on reading, rather than set the matter aside for another
day.”

In Bohmian mechanics, a system of particles is described by
a combination of the wavefunction from Schrodinger’s equa-
tion and a guiding equation that specifies the location of the
particles. “Thus, in Bohmian mechanics the configuration
of a system of particles evolves via a deterministic motion
choreographed by the wave function” [21] such as in the two-
slit experiment. We will see a similar behavior in the STCED
wave equations below. Bohmian mechanics is equivalent to a
non-local hidden variables theory.

In the Elastodynamics of the Spacetime Continuum, as
discussed in [24], energy propagates in the spacetime contin-
uum by longitudinal (dilatation) and transverse (distortion)
wave displacements. This provides a natural explanation for
wave-particle duality, with the transverse mode correspond-
ing to the wave aspects of the deformations and the longitu-
dinal mode corresponding to the particle aspects of the defor-
mations.

The displacement uν of a deformation from its undeform-
ed state can be decomposed into a longitudinal component uν

‖

and a transverse component uν⊥. The volume dilatation ε is
given by the relation ε = u‖ µ;µ [16]. The wave equation for
uν
‖

describes the propagation of longitudinal displacements,
while the wave equation for uν⊥ describes the propagation of
transverse displacements in the spacetime continuum. The uν

displacement wave equations can be expressed as a longitu-
dinal wave equation for the dilatation ε and a transverse wave
equation for the rotation tensor ωµν [16].

Particles propagate in the spacetime continuum as lon-
gitudinal wave displacements. Mass is proportional to the
volume dilatation ε of the longitudinal mode of the defor-
mation [16, see (32)]. This longitudinal mode displacement
satisfies a wave equation for ε, different from the transverse
mode displacement wave equation for ωµν. This longitudinal
dilatation wave equation for ε is given by [16, see (204)]

∇2ε = −
k̄0

2µ̄0 + λ̄0
uν⊥ε;ν (4)

where µ̄0 and λ̄0 are the Lamé constants and k̄0 the elastic
volume force constant of the spacetime continuum. It is im-
portant to note that the inhomogeneous term on the R.H.S.
includes a dot product coupling between the transverse dis-
placement and the volume dilatation for the solution of the
longitudinal dilatation wave equation for ε.

The transverse distortion wave equation for ωµν [16, see
(210)]

∇2ωµν +
k̄0

µ̄0
ε (xµ) ωµν =

1
2

k̄0

µ̄0
(ε;µuν⊥ − ε

;νuµ⊥) (5)

also includes a R.H.S. coupling, in this case a cross product,
between the transverse displacement and the volume dilata-
tion for the solution of the transverse distortion wave equa-
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tion for ωµν. The transverse distortion wave ωµν corresponds
to a multi-component wavefunction Ψ.

A deformation propagating in the spacetime continuum
consists of a combination of longitudinal and transverse wa-
ves. The coupling between ε;µ and uν⊥ on the R.H.S. of both
wave equations explains the behavior of electrons in the dou-
ble slit interference experiment. It shows that even though
the transverse wave is the source of the interference pattern
in double slit experiments, the longitudinal dilatation wave,
which behaves as a particle, follows the interference pattern
dictated by the transverse distortion wave as observed ex-
perimentally. The longitudinal dilatation wave behaves as a
particle and goes through one of the slits, even as it follows
the interference pattern dictated by the transverse distortion
wave, as observed experimentally [25, see in particular Fig-
ure 4] and as seen in the coupling between ε;µ and uν⊥ in (4)
and (5) above. This behavior is the same as that in Bohmian
mechanics seen above. These results are in agreement with
the results of the Jánossy-Naray, Clauser, and Dagenais and
Mandel experiments on the self-interference of photons and
the neutron interferometry experiments performed by Bonse
and Rauch [26, see pp. 73-81].

As mentioned previously, the solutions of the STCED wa-
ve equations are similar to Louis de Broglie’s “double so-
lution”. The longitudinal wave is similar to the de Broglie
“singularity-wave function” [17]. In STCED however, the
particle is not a singularity of the wave, but is instead char-
acterized by its mass which arises from the volume dilatation
ε propagating as part of the longitudinal wave. There is no
need for the collapse of the wavefunction Ψ, as the particle
resides in the longitudinal wave, not the transverse one. A
measurement of a particle’s position is a measurement of the
longitudinal wave, not the transverse wave.

In addition, |Ψ|2 represents the physical energy density of
the transverse (distortion) wave. It corresponds to the trans-
verse field energy of the deformation. It is not the same as the
particle, which corresponds to the longitudinal (dilatation)
wave displacement and is localized within the deformation
via the massive volume dilatation. However, |Ψ|2 can be nor-
malized with the system energy and converted into a probabil-
ity density, thus allowing the use of the existing probabilistic
formulation of quantum theory.

The dynamical process, although it has some similarities
to Bohmian mechanics, is also different from it as it is cen-
tered on longitudinal (particle) and transverse (wavefunction)
wave equations derived from the properties of the spacetime
continuum of general relativity. It is thus deterministic and
causal as is general relativity.

5 Physical influence versus logical inference

We have considered two examples of quantum dynamical pro-
cesses where the starting equation (1) and the probability dis-
tribution ρ(λ) used in (1) do not apply to the situation. We

now examine in greater details the probabilistic formulation
of Bell’s inequality derivation of section 2 to better under-
stand its limitations.

Physicist E. T. Jaynes was one of the proponents of the us-
age of probability theory as an extension of deductive logic.
His textbook “Probability Theory: The Logic of Science”
[27] published posthumously is an invaluable resource for sci-
entists looking to understand the scientific use of probability
theory as opposed to the conventional mathematical measure
theory. As he states in [11],

“Many circumstances seem mysterious or paradoxi-
cal to one who thinks that probabilities are real phys-
ical properties existing in Nature. But when we adopt
the “Bayesian Inference” viewpoint of Harold Jeffreys
[28,29], paradoxes often become simple platitudes and
we have a more powerful tool for useful calculations.”

Jaynes clarifies this approach to probability theory and con-
trasts it to frequencies as follows [11]:

“In our system, a probability is a theoretical construct,
on the epistemological level, which we assign in order
to represent a state of knowledge, or that we calcu-
late from other probabilities according to the rules of
probability theory. A frequency is a property of the
real world, on the ontological level, that we measure
or estimate.”

The probability distributions used for inference do not de-
scribe a property of the world, only a certain state of infor-
mation about the world, which provides us with the means to
use prior information for analysis as powerfully demonstrated
in numerous applications in [11, 12, 27].

The Einstein–Podolsky–Rosen (EPR) paradox and Bell
inequality in quantum theory is one of the examples exam-
ined by Jaynes in [11]. In quantum mechanics, the belief
that probabilities are real physical properties leads to quan-
daries such as the EPR paradox which lead some to conclude
that there is no real world and that physical influences travel
faster than the speed of light, or worse (“a spooky kind of
action at a distance” as Einstein called it). As Jaynes points
out, it is important to note that the EPR article did not ques-
tion the existence of the correlations, which were expected,
but rather the need for a physical causation instead of what he
calls “instantaneous psychokinesis”, based on experimenter
decisions, to control distant events.

Jaynes’ analysis of the derivation of Bell’s inequality uses
the following notation for conditional probabilities which cor-
responds to Bell’s notation as follows:

P(AB | ab) = P(a,b) (6)
P(A | aλ) = A(a, λ) , (7)

such that Bell’s equation (1) above becomes

P(AB | ab) =

∫
dλ ρ(λ) P(A | aλ) P(B | bλ) . (8)
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However, as Jaynes notes, the fundamentally correct relation
for P(AB | ab) according to probability theory should be

P(AB | ab) =

∫
dλ P(AB | abλ) P(λ | ab) . (9)

Assuming that knowledge of the experimenters’ choices
gives no information about λ, then one can write

P(λ | ab) = ρ(λ) . (10)

The fundamentally correct factorization of the other probabil-
ity factor of (9), P(AB | abλ), is given by [11]

P(AB | abλ) = P(A | abλ) P(B | Aabλ) . (11)

However, as Jaynes notes, one could argue as Bell did that
EPR demands that A should not influence events at B for
space-like intervals. This requirement then leads to the fac-
torization used by Bell to represent the EPR problem

P(AB | abλ) = P(A | aλ) P(B | bλ) . (12)

Nonetheless, the factorization (12) disagrees with the formal-
ism of quantum mechanics in that the result of the measure-
ment at A must be known before the correlation affects the
measurement at B, i.e. P(B | Aab). Hence it is not surpris-
ing that Bell’s inequality is not satisfied in systems that obey
quantum mechanics.

Two additional hidden assumptions are identified by Jay-
nes in Bell’s derivation, in addition to those mentioned above:

1. Bell assumes that a conditional probability P(X |Y) re-
presents a physical causal influence of Y on X. How-
ever, consistency requires that conditional probabilities
express logical inferences not physical influences.

2. The class of Bell hidden variable theories mentioned
in section 2 does not include all local hidden variable
theories. As mentioned in that section, hidden variable
theories don’t need to satisfy the form of (1) (or alter-
natively (8)), to reproduce quantum mechanical results,
as evidenced in Bohmian mechanics.

Bell’s inequality thus applies to the class of hidden variable
theories that satisfy his relation (1), i.e. Bell hidden variable
theories, but not necessarily to other hidden variable dynamic
theories.

The superluminal communication implication stems from
the first hidden assumption above which shows that what is
thought to travel faster than the speed of light is actually a
logical inference, not a physical causal influence. As summa-
rized by Jaynes [11],

“The measurement at A at time t does not change the
real physical situation at B; but it changes our state of
knowledge about that situation, and therefore it chan-
ges the predictions we are able to make about B at
some time t′. Since this is a matter of logic rather than
physical causation, there is no action at a distance and
no difficulty with relativity.”

There is simply no superluminal communication, as required
by special relativity. Assuming otherwise would be similar
to Pauli assuming that the established law of conservation of
energy mysteriously fails in weak interactions instead of suc-
cessfully postulating a new particle (the neutrino).

6 Discussion and conclusion

In this paper, we have investigated the applicability of Bell’s
inequality, based on the assumptions used in its derivation.
We have considered two examples of hidden variable dyna-
mic theories that do not satisfy Bell’s initial equation (1) used
to derive his inequality, and consequently for which Bell’s in-
equality is not applicable: one based on the Nyquist-Shannon
Sampling Theorem of Fourier transform theory and the other
based on the wave-particle solutions of the STCED wave eq-
uations which are similar to Louis de Broglie’s “double so-
lution”. We highlight two hidden assumptions identified by
Jaynes [11] that limit the applicability of Bell’s inequality, as
derived, to Bell hidden variable theories and that show that
there are no superluminal physical influences, only logical
inferences.

We close with a quote from Jaynes [27, see p. 328] that
captures well the difficulty we are facing:

“What is done in quantum theory today... when no
cause is apparent one simply postulates that no cause
exists – ergo, the laws of physics are indeterministic
and can be expressed only in probability form.”

Thus we encounter paradoxes such as seemingly superlumi-
nal physical influences that contradict special relativity, and
“spooky action at a distance” is considered as an explanation
rather than working to understand the physical root cause of
the problem. This paper shows that, in this case, the root
cause is due to improper assumptions, specifically the first
hidden assumption identified by Jaynes highlighted in section
5 above, that is assuming that a conditional probability rep-
resents a physical influence instead of the physically correct
logical inference. In summary,

“He who confuses reality with his knowledge of real-
ity generates needless artificial mysteries.” [11]
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A century has elapsed since gravitational waves were predicted. Their recent detection

by the LIGO-Virgo collaboration represents another feather in Einstein’s cap and at-

tests to the technological ingenuity of experimentalists. However, the news has been

portrayed as affirmation of the existence of black holes, objects whose defining charac-

teristics are event horizons. Whilst a gravitational wave chirp is indicative of coalescing

bodies and the inferred masses, 29±4M⊙ and 36±5M⊙, rule out neutron stars, a promi-

nent yet overlooked feature in the Hanford and Livingston spectrograms points to a

curious mass ejection during the merger process. The spectral bifurcations, beyond

which down-chirps are clearly discernible, suggest that a considerable quantity of mat-

ter spiralled away from the binary system at the height of the merger. Since accretion

disks cannot survive until the latter stages of coalescence, a black hole model seems un-

tenable, and Einstein’s expectation that black holes can neither form nor ingest matter in

a universe of finite age would appear to be upheld. By virtue of general relativity’s logi-

cal consistency and the fact that gravity propagates at light speed, gravitational collapse

must terminate with the formation of pathology-free temporally suspended objects.

1 The black hole controversy

Einstein realised in 1916 that spacetime could mediate the

propagation of energy-transporting gravitational waves trav-

elling at light speed [1]. This entirely theoretical deduction

was recently confirmed by the LIGO-Virgo collaboration, de-

monstrating once again the impeccable physical insights of

this great scientist. However, the conclusion drawn on the

back of this detection, that coalescing black holes triggered

the waves [2], directly contradicts Einstein’s published stance

[3] regarding the outcome of gravitational collapse.

The first static solution to the field equations of general

relativity was found that same year describing the gravita-

tional influence of an idealised, infinite density point mass on

asymptotically flat space [4]. Due to the Birkhoff theorem,

regions of Schwarzschild’s metric accurately represent the

gravity external to spherically symmetric bodies such as irro-

tational stars and planets. However, Einstein appreciated that

in the immediate vicinity of Schwarzschild’s point mass the

solution was physically unrealistic, being unreachable from

regions outside the event horizon [3].

Einstein’s cogent objection to black holes is easily illus-

trated by a concrete example. If a ray of light moving directly

towards a Schwarzschild black hole can neither arrive at the

event horizon nor penetrate it, then no particle can. For a

lightlike radial trajectory leading towards the event horizon,

the Schwarzschild metric reduces to (dr/dt)2 = (2m/r − 1)2.

Assigning initial coordinates (r, t) = (r0, 0) to a photon, ra-

dius r1 < r0 is attained at time t1 > 0, which can be readily

obtained through integration:

t1 =

∫ r1

r0

dr

2m/r − 1
=

∫ r1

r0

(

− 1 −
2m

r − 2m

)

dr , (1)

t1 = r0 − r1 + 2m ln

(

r0 − 2m

r1 − 2m

)

. (2)

As the photon nears the horizon, r1 → 2m(1 + ǫ) where

0 < ǫ ≪ 1. Since ǫ is a factor in the denominator of the

logarithm, t1 grows without limit as ǫ → 0. Accordingly,

even though proper time does not advance for lightlike par-

ticles, global relationships within the spacetime impose an

insurmountable temporal impediment to their arrival at the

event horizon. For timelike particles the situation is much the

same. As general relativity is a deterministic theory, this cal-

culation has profound implications, despite its brevity. Even

in the most favourable of circumstances a black hole cannot

absorb matter and, hence, a universe initially devoid of black

holes remains forever devoid of black holes. Since general

covariance is integral to this theory, changes of coordinates,

as detailed for example in references 5–6 of [2], cannot alter

this fundamental conclusion.

Although the stationary black hole metrics satisfy the field

equations, they lack a dynamical formation mechanism. It is

known that event horizons never quite form during gravita-

tional collapse in a universe of finite age [6–12]. Some the-

orists claim that infalling matter can arrive at the event hori-

zon of a pre-existing black hole in finite proper time, but in

practice this is forbidden by the existence of inviolable tem-

poral relationships that permeate spacetime [13]. In addition,

a variety of imprecise arguments commonly advanced for the

existence of black holes have been robustly refuted [5].

Some stubborn problems now occupying the time of theo-

retical physicists are symptomatic of misunderstandings. Be-

lief in black holes has given rise to difficulties such as the

information paradox [14], loss of causality within rotating

black holes, singularities of infinite mass density and the fact
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that when matter is trapped within an event horizon, it has

no means of influencing external matter, even gravitationally.

Furthermore, tension has arisen between the observed char-

acteristics of certain astrophysical phenomena and popular

black hole models. In particular, the finite lifetimes and ex-

treme energetics of quasars and active galactic nuclei (AGN)

are difficult to reconcile with nearby galaxy clusters which

have only reprocessed around 10% of their primordial gas re-

serves, yet harbour quiescent galactic nuclei.

The ultrarelativistic emission of charged particles by qua-

sars along biaxial jets alludes to an electromagnetically ac-

tive central engine of some form. Whereas any charge accru-

ing on a spheroidal black hole would be rapidly neutralised,

a gravitationally collapsed object of toroidal topology would

be defended by a magnetosphere whose flux lines run locally

parallel to its surface [13, 15]. This inference clashes with

the “principle of topological censorship”, a theorem that is ir-

relevant if a spacetime has no trapped surfaces [16]. Hence,

the characteristics of quasars and AGN offer empirical evi-

dence that gravitational collapse produces “dark holes” lack-

ing event horizons [13]. Quasar extinction would coincide

with topological collapse and charge nullification.

Appreciation of the impossibility of event horizon forma-

tion inspired the first detailed proposal concerning a future

mechanism for dark energy decay. It involves the discharge

of vacuum energy via the Unruh effect by intense accelera-

tions exposed within the deepest innards of dark holes [17].

The same work also highlights a novel objection to the ex-

istence of black holes relating to their unacceptable influ-

ence on the total entropy of the universe. A single supermas-

sive black hole devouring matter could potentially double the

entropy of the visible universe in the space of a few sec-

onds, despite poor opportunities for interactions of the cap-

tured matter.

2 The dawn of gravitational wave astronomy

Since the announcement that gravitational waves have been

detected it has emerged that the GW150914 event closely co-

incided with a gamma ray burst originating in the same sector

of the sky [19]. Suggesting a common source, the binary sys-

tem must have, as the authors put it, become “unexpectedly

active” during coalescence. The possibility that one or more

neutron stars were involved can be rejected due to the large

masses involved [2,20]. The gamma rays are clearly inconsis-

tent with the no-hair conjecture: any accreting matter should

be ejected well before the merger [21]. It is therefore interest-

ing to revisit the gravitational wave data to look for any other

evidence of unanticipated peculiarities.

Two such examples draw the eye. In the spectrograms

of both laser interferometers a down-chirp can be clearly dis-

cerned, bifurcating from the somewhat stronger up-chirp dur-

ing the final crescendo of the merger (see Figure 1). These ap-

pear to be comfortably above the noise floor of each detector.

The down-chirps are not only present in both spectrograms,

they are identically located and share the same characteris-

tics: important hallmarks of a genuine signal.

For a binary dark hole or binary frozen star model, signif-

icant mass loss is conceivable during a cataclysmic merger

of this kind. The particles held in suspension by time di-

lation would be strongly perturbed by the gravitational rip-

ples, transporting here a total energy estimated at 3M⊙c2 [2].

The combination of this disruption and the violent rotation,

particularly during the non-axisymmetric dumbbell phase of

coalescence, could plausibly give rise to significant expul-

sion of matter at the peripheral fringes of the system. The

spectral traces are consistent with matter being centrifugally

launched with a radial velocity component of approximately

0.04c. There is also a marked acceleration of the chirp fol-

lowing the shedding of mass, as might be anticipated if the

rest mass energy of the ejecta was comparable to the energy

radiated in gravitational waves.

From (2), at late times an infalling photon asymptotically

approaches the radius r = 2m. Why must the photon halt

at the exact radius of the event horizon? Why does general

relativity only marginally forbid the growth and formation of

black holes? Could matters have been any different?

Einstein’s theory of gravitation was built upon special rel-

ativity which insists that nothing can travel faster than the

speed of light in vacuum, prohibiting objects from exerting

any form of superluminal influence. As in Newton’s theory,

gravity has infinite range. This demands that gravitons be

massless, with current experimental constraints providing an

upper limit of 1.2×10−22 eV. Signals from LIGO’s geograph-

ically separated interferometers support the expectation that

gravity travels at the speed of light [2]. Were the speed of

gravity any different, the terminal radius of the photon would

change, and philosophical problems would ensue.

If photons could only asymptotically approach some ra-

dius r > 2m, gravitational time dilation could then grow with-

out limit in relatively moderate circumstances, curbing the

maximum curvature of spacetime irrespective of Planck-scale

limitations. If photons could asymptotically approach some

radius r < 2m then event horizons could form, bringing with

them all the pathologies associated with black holes. Only

if gravity travels at the speed of light can spacetime be arbi-

trarily warped without fear of event horizon formation, points

of infinite mass density, time travel paradoxes or violation of

unitarity. Like gravity, electromagnetism has unlimited range.

Electric fields are mediated by virtual photons. If black holes

did exist then the electric fields of charged particles would

vanish upon capture, creating an ‘electrical paradox’ akin to

the very widely acknowledged information paradox. Fortu-

nately, Einstein appears to have formulated a consistent the-

ory of gravitation in which anomalies are avoided but all else

is permitted. A strongly curved spacetime may be vital for

the timely decay of dark energy [17], a possible requirement

for gravity to propagate no slower than light.
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Fig. 1: The gravitational wave spectrograms for the Hanford (top) and Livingston (bottom) Advanced LIGO detectors [2]. Right column:

spectral traces have been annotated to show the primary up-chirp and a matching pair of bifurcations beyond which the decline in frequency

and amplitude suggests the ejection of mass spiralling away from the merging binary system.

3 Discussion

Gravitational waves have the capability to rectify some long-

standing theoretical misconceptions. With improvements in

sensitivity already scheduled we shall soon know whether

mass-ejections are a generic feature of dark hole coalescence

events. If so, we might in time witness some spectacular

mergers of supermassive dark holes in the aftermath of galac-

tic mergers within galaxy clusters. For coalescing bodies of

large and favourably aligned angular momenta, the resulting

gravitational wave signatures could be morphologically very

distinct from GW150914 due to the formation of a toroid-

al dark hole with an unusually lengthy ringdown phase [15,

17]. The publicity and interest surrounding the announcement

that gravitational waves have been detected is understandable.

However, there has been little or no mention of the fact that

the presence of a black hole event horizon cannot be veri-

fied even in principle [22] or that Einstein had mathematical

grounds for dismissing the notion that black holes exist [3].

Black hole proponents might care to take note that our civil-

isation still awaits evidence that any of Einstein’s predictions

concerning gravity were incorrect.
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12. Piñol M. A model of dust-like spherically symmetric gravitational col-

lapse without event horizon formation. Prog. Phys., 2015, v. 11 (4), 331.

13. Spivey R. J. Dispelling black hole pathologies through theory and ob-

servation. Prog. Phys., 2015, v. 11, 321–329.

14. Mathur S. D. The information paradox: a pedagogical introduction.

Class. Quant. Grav., 2009, v. 26 (22), 224001.

15. Spivey R. J. Quasars: a supermassive rotating toroidal black hole inter-

pretation. MNRAS, 2000, v. 316 (4), 856–874.

16. Friedman J. L., Schleich K. & Witt D. M. Topological censorship. Phys.

Rev. Lett., 1993, v. 71 (10), 1486.

17. Spivey R. J. A non-anthropic solution to the cosmological constant

problem. Prog. Phys., 2016, v. 12 (1), 72–84.

18. Spivey R. J. A cosmological hypothesis potentially resolving the mys-

tery of extraterrestrial silence with falsifiable implications for neutrinos.

Physics Essays, 2015, v. 28 (2), 254–264.

19. Connaughton V. et al. Fermi GBM observations of LIGO gravitational

wave event GW150914. arXiv: astro-ph.HE/1602.03920v3.

20. Oppenheimer J. R. & Volkoff G. M. On massive neutron cores. Physical

Review, 1939, v. 55 (4), 374.

21. Loeb A. Electromagnetic counterparts to black hole mergers detected

by LIGO. arXiv: astro-ph.HE/1602.04735v1.

22. Abramowicz M. A., Kluzniak W. & Lasota J. P. No observational proof

of the black-hole event-horizon. Astronomy & Astrophysics, 2002,

v. 396 (3), L31–L34.

218 R. J. Spivey. Coincident Down-chirps in GW150914 Betray the Absence of Event Horizons



Issue 3 (April–July) PROGRESS IN PHYSICS Volume 12 (2016)

Repulsive Gravity in the Oppenheimer-Snyder Collapsar

Trevor W. Marshall
Buckingham Centre for Astrobiology, The University of Buckingham, Buckingham MK18 1EG, UK

E-mail: trevnat@talktalk.net

The Oppenheimer-Snyder metric for a collapsing dust ball has a well defined equilib-
rium state when the time coordinate goes to plus infinity. The entire ball is contained
within the gravitational radius r0, but half of its content lies within a thin shell between
r0 and 0.94r0. This state has the acausal property that no light ray escapes from it,
but if one boundary condition at the surface, which Oppenheimer and Snyder imposed
without justification, is removed, then all points in the interior remain in causal contact
by null geodesics with the exterior. This modification causes the half shell’s interior
radius to increase to 0.97r0. Together with the results of a previous article on the den-
sity inside a spherosymmetric neutron star, the present results indicate that, in contrast
with the universal attraction of Newtonian gravity, General Relativity gives gravitational
repulsion at high density.

1 Introduction

The modern concept of black hole originates with Chandra-
sekhar’s [1] discovery of an upper bound for the mass of a
Newtonian white dwarf; it has been claimed (see, for exam-
ple [2] section 11.3) that the replacement of Newtonian gravi-
tation by General Relativity (GR) makes no significant differ-
ence. Using GR, Oppenheimer and Volkoff [3] (OV) found a
similar result for neutron stars, the upper bound being some-
what lower than in the white-dwarf case. The OV article, in
its footnote 10, did indicate that the GR field equations allow
for a stable solution having zero density at the origin in place
of the maximum density there of the Newtonian solution, but
gave no further attention to this possibility; there seems to
have been no serious attempt to return to it since, though a
well known text ( [5] after equation 23.20) has described it
as “unphysical”. We showed [4] that solutions of the OV-
footnote variety may easily be obtained. The only new fea-
ture of such solutions which could conceivably qualify for the
“unphysical” label is that the metric has a simple-pole singu-
larity at the origin. This singularity is curiously similar to that
now very widely used to describe a black hole, but with the
crucial difference that its residue is positive, so that instead of
infinite density there we find zero density.

In our previous article we advocated a field, rather than
the geometric interpretation of GR, constructing a field en-
ergy tensor to explain why the stellar material is concentrated
in a spherical shell and not at the origin. Here we shall use
an exclusively geometric description, but will nevetheless be
able to demonstrate, by studying the particle geodesics inside
the shell, that the picture which emerges almost demands that
we accept there is gravitational repulsion in the interior of the
shell. We conclude that the black hole is a Newtonian con-
cept, superseded by GR.

Our geometric investigation is based on what seems to be
the only time-dependent study of a collapsar, namely that of

Oppenheimer and Snyder [6] (OS). In an early stage of black-
hole theory this article’s conclusion was seriously misquoted
by Penrose [7] who stated:

“The general situation with regard to a spherically sym-
metrical body is well known [6]. For a sufficiently great mass,
there is no final equilibrium state (our emphasis). When suf-
ficient thermal energy has been radiated away, the body con-
tracts and continues to contract until a physical singularity is
encountered at r = 0.”

OS did not say anything resembling this assertion of Pen-
rose. Indeed we shall show below that the OS density distri-
bution approaches a stationary distribution, whose diameter
is twice the gravitational radius, as the time goes to plus in-
finity. It is true that OS also found that in this limit there
is a region inside the collapsar from which light may not be
emitted, but we shall show below that this is not a real prop-
erty of the model, and that it may be easily repaired so that
all points of the physical space, exterior and interior, remain
causally connected at all times. Nobody has demonstrated
that any real collapse situation leads to the “trapped surfaces”
of the Penrose article, and I would argue that such surfaces
would violate the kind of causality described in Weinberg’s
text ( [2] section 7.5). This conclusion was also stated re-
cently by Chafin [8].

2 The OS metric

OS used the comoving coordinates (τ,R, θ, φ) with the metric

ds2 = dτ2 −
8m3R

r
dR2 − r2

(
dθ2 + sin2 θdφ2

)
, (1)

r = 2m
(
R3/2 −

3τ
4m

)2/3

,

in the exterior region R > 1 and

ds2 = dτ2 −
r2

R2 dR2 − r2
(
dθ2 + sin2 θdφ2

)
, (2)
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r = 2mR
(
1 −

3τ
4m

)2/3

,

in the interior region 0 < R < 1. By the transformation

t =
4m
3

R3/2 −
2
3

√
r3

2m
− 2
√

2mr + 2m ln
√

r +
√

2m
√

r −
√

2m
, (3)

the exterior metric converts to the Schwarzschild form

ds2 =
r − 2m

r
dt2 −

r
r − 2m

dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (4)

We note that, since R is a comoving coordinate, R =

const. is a freefall geodesic and in particular the surface r1(t),
that is R = 1, satisfies

t =
4m
3
−

2
3

√
r3

1

2m
− 2

√
2mr1 + 2m ln

√
r1 +

√
2m

√
r1 −

√
2m

, (5)

and also any such geodesic, for R > 1, has its speed v in-
creasing up to a maximum v = 2c/(3

√
3) and then decreasing

asymptotically to zero as r approaches 2m. This confirms
the OS statement [6] “. . . an external observer sees the star
asymptotically shrinking to its gravitational radius”.

For 0 < R < 1, OS identified an “internal time” t by
defining a cotime y as

t =
4m
3
−

4m
3

√
y3 − 4m

√
y + 2m ln

√
y + 1
√
y − 1

, (6)

and then putting

y =
r

2mR
+

R2 − 1
2

. (7)

This not only gives a continuous match for the internal and
external t at R = 1, but also the metric in 0 < R < 1 is

ds2 =
2mr2(y − 1)2

Ry3(r − 2mR3)
dt2 −

r
r − 2mR3 dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
, (8)

which is continuous with (4) at R = 1.
From (6) and (7) we now see that the equilibrium state of

the OS model is given by

r = mR(3 − R2) (0 < R < 1) , (9)

which contradicts the conclusion stated by Penrose and
quoted in the previous section of this article. The density ρ is
obtained from the curvature tensor of (1)

ρ =
mR3

4πr3 , (10)

and since
√
−g =

r3

R
sin θ , (11)

it integrates over the volume of the collapsar to give∫
R<1

ρ
√
−g dR dθ dφ = m . (12)

In the remote past, when r ∼ yR, y → ∞, the dust particles
are distributed uniformly over the sphere’s interior, but as col-
lapse proceeds their trajectories, R = const, crowd near the
surface. This may be shown by considering that in the remote
past half of the particles are contained within a shell between
R = 2−1/3 = 0.7937 and R = 1, and that their final positions
are r = mR(3 − R2), so that they end up between r = 1.881m
and r = 2m.

3 A problem with causality

At no time does the entire content of the collapsar go inside
the sphere r = 2m, so Figure 1 of Penrose [7] is an incorrect
picture of the OS collapsar, as is the discussion about trapped
surfaces on which the figure is based. There is, however a
causal anomaly in the OS model, in that, for any R < 1, there
is a value of t beyond which no light signal emerges.

For the region R < 1 we introduce the coordinates
(x,R, θ, φ), where x = r/(2mR). The metric is

1
4m2 ds2 = xdx2 − x2dR2 − x2R2

(
dθ2 + sin2 θdφ2

)
. (13)

A radial light wave or radial null geodesic (RNG) satisfies

dR
dx

= −
1
√

x
, (14)

that is
R = 2

√
x(0) − 2

√
x = 2

√
x0 − 2

√
x . (15)

In order to reach the surface at R = 1 we need x(1) > 1 and
therefore x0 > 9/4, but from (7) we find that the minimum
value of x0 is 3/2, reached at cotime y = 1, that is when t is
plus infinity. It follows that, for y > 7/4, an RNG from the
origin cannot escape.

It is a simple matter to repair this flaw in the OS model;
we replace (7) by

y = 1 + x −
(R − 3)2

4
, (16)

so that all RNGs for y > 1 escape and causality is preserved.
I have established [9] that the metric tensor with these coor-
dinates is again continuous at R = 1. It differs from (8) in
that the tensor component grt is not zero in R < 1, but only
at R = 1. It was the unjustified imposition of the condition
grt = 0 which led OS to claim that the connection (7) between
the (x,R) and the (t, r) coordinates is unique. Our amendment
of the OS metric leads to a more concentrated shell, because
the equilibrium state is now specified by

r =
mR(3 − R)2

2
, (17)

which, putting R = 2−1/3, leaves half of the original dust mat-
ter in a shell between r = 1.932m and r = 2m.
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4 Gravity becomes repulsive at high densities

We have all believed since 1687 that gravity is universally at-
tractive, so it requires some effort to adjust to the idea that
gravity may repel; even the new mode of thought which came
with GR did not change the paradigm of attractive gravity. We
have attempted to show elsewhere [4] how a full appreciation
of the gravitational field may cause us to change our intuition.
However, for the present article we shall stay within the geo-
metric presentation of GR, merely pointing the way towards
an understanding of repulsive gravity.

We consider the motion of a foreign dust particle of small
mass which crashes radially into the surface R = 1 at time t,
that is at the point r = r1(t) given by (5), with a speed greater
than that at which the surface itself is moving. We ignore the
gravitational force exerted by this foreign particle, so it moves
along a radial geodesic of the metric (13). The coordinate R
is cyclic, so we have a conservation equation

x2 dR
ds

= −C , (C > 0) , (18)

and it then follows that
dR
dx

=
C

√
C2x + x3

. (19)

This equation, when integrated with initial conditions (x,R) =

(r1/2m, 1), leads to a relation between the final values x∞ and
R∞ at t equal to plus infinity

R∞ = 1 −
∫ r1/2m

x∞

C
√

C2x + x3
dx . (20)

Now substituting y = 1 in (16) provides a second such rela-
tion, so eliminating x∞ we obtain R∞ in terms of r1 and C.
This is not a difficult process numerically, but in the limiting
ultrarelativistic case C → ∞ – effectively a null geodesic – it
becomes especially simple

R∞ = 2 −
√

r1/(2m) , (r1 < 8m) . (21)

If r1 > 8m such a particle passes through the centre and exits
at the opposite end of the diameter. A particle which crashes
into the collapsar when the latter is close to its final state –
r1 close to 1 – does not penetrate it beyond the surface shell
described in the previous section.

As long as we stay within the constraints of the geometric
interpretation of GR, we are not able to draw inferences about
what causes such a dramatic deceleration; we could, for ex-
ample [10], continue to insist that it results from time dilation
of the metric. I suggest, however, that a return to the lan-
guage of field theory offers us, at the very least, an attractive
alternative; we may claim that the force of repulsive grav-
ity which decelerates the incident particle is the very same as
the one which compresses the particles of the collapsar into
a thin shell. In the context of a collapsar having a more re-
alistic equation of state we pursued this point of view in our
previous article [4].
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The Dirac-Electron Vacuum Wave
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This paper argues that the Dirac equation can be interpreted as an interaction between
the electron core and the Planck vacuum state, where the positive and negative solutions
represent respectively the dynamics of the electron core and a vacuum wave propagating
within the vacuum state. Results show that the nonrelativistic positive solution reduces
to the Schrödinger wave equation.

1 Introduction

In its rest frame the massive electron core (−e∗,m) exerts the
two-term coupling force [1, Sec.7-8]

F(r) =
e2
∗

r2 −
mc2

r
=

(−e∗)(−e∗)
r2 −

mm∗G
r∗r

(1)

on the PV quasi-continuum, where e∗ is the massless bare
charge with its derived electron mass m, and G (= e2

∗/m
2
∗) is

Newton’s gravitational constant. The first (−e∗) in (1) be-
longs to the electron and the second to the separate Planck
particles making up the degenerate PV state. The two terms
in (1) represent respectively the Coulomb repulsion between
the electron charge and the separate PV charges, and their
mutual gravitational attraction.

The particle/PV coupling force (1) vanishes at the elec-
tron Compton radius rc (= e2

∗/mc2). In addition, the vanish-
ing of F(rc) is a Lorentz invariant constant [2] that leads to
the important Compton-(de Broglie) relations

rc · mc2 = rd · cp = rL · E = r∗ · m∗c2 = e2
∗ (= c~) (2)

where rd = rc/β0γ0 and rL = rc/γ0, and r∗ (= e2
∗/m∗c

2) and
m∗ are the Compton radius and mass of the Planck particles
within the PV. The ratio of the electron speed v to the speed of
light c is β0 and γ0 = 1/(1 − β2

0)1/2. The relativistic momen-
tum and energy following from the invariance of F(rc) = 0 are
p (= mγ0v) and E (= mγ0c2), from which E = (m2c4+c2 p2)1/2

is the relativistically important energy-momentum relation-
ship.

The results of the previous paragraph show that the im-
portant relativistic energy E and momentum p (or its vector
counterpart p) are determined at the basic core-PV interac-
tion level. Furthermore, since the core is many orders-of-
magnitude smaller than the electron Compton radius, it is
reasonable to assume that this point-core picks up its wave-
particle nature (including its Compton radius and its energy
and momentum operators) from its coupling to the PV con-
tinuum.

2 Dirac equation

The Dirac equation [3, p.79]

i~
∂

∂t

(
φ

χ

)
=

(
c−→σ · p̂χ
c−→σ · p̂φ

)
+ mc2

(
φ

−χ

)
(3)

where p̂ (=−i~∇) is the momentum operator and ~ is the re-
duced Planck constant, can be expressed using (2) as

irc
∂

c∂t

(
φ

χ

)
+

(−→σ · irc∇χ
−→σ · irc∇φ

)
=

(
φ

−χ

)
(4)

where the solutions φ and χ for this electron-vacuum system
are 2x1 Dirac spinors, and −→σ is the Pauli 2x2 vector matrix
derived from the three 2x2 Pauli spin matrices σk (k = 1, 2, 3)
[3, p.12]

σ1 =

( 0 1
1 0

)
, σ2 =

( 0 −i
i 0

)
, σ3 =

( 1 0
0 −1

)
. (5)

The gradient operators ∂/c∂t and ∇ in (4) are normalized
by the electron Compton radius rc

∂

c∂t/rc
and

∂

∂xk/rc
(6)

whose denominators can be looked upon as the normalized
line elements cdt/rc and dx/rc of a spacetime [4, p.27] per-
turbed by the electron core (−e∗,m) in (1). Following from
this viewpoint is the concept that the 2x1 spinors φ and χ
represent, respectively, the PV response to the electron core
(−e∗,m) and some type of vacuum wave. Furthermore, the
vacuum wave cannot be a Planck-particle wave, since the PV
is a degenerate state (where the vacuum eigenstates are fully
occupied). Thus the wave must be of the nature of a percus-
sion wave, analogous to a wave traveling on the head of a
kettle drum.

3 Dirac-Schrödinger reduction

The solution χ in the two simultaneous equations of (4) is
assumed in the PV theory to represent a relativistic vacuum
wave propagating within the PV state. What follows derives
the nonrelativistic version of that wave to add more credence
and understanding the vacuum wave idea.

The Dirac-to-Schrödinger reduction [3, p.79] of (4) be-
gins with the elimination of its mass related, high-
frequency, components by assuming(

φ

χ

)
=

(
φ0

χ0

)
e−i(mc2t/~) =

(
φ0

χ0

)
e−i(ct/rc) (7)
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where φ0 and χ0 are slowly varying functions of time com-
pared to the exponential. This result implies that the fre-
quency ωc = c/rc � ω0 for any ω0 associated with φ0 or
χ0. Inserting (7) into (4) gives

irc
∂

c∂t

(
φ0

χ0

)
+

(−→σ · irc∇χ0
−→σ · irc∇φ0

)
=

(
0
−2χ0

)
(8)

where the 0 on the right is a 2x1 null spinor. This zero spinor
indicates that the mass energy of the free electron core is be-
ing ignored, while the effective negative mass-energy of the
vacuum wave has doubled (−2χ0). In effect, mass energy
for the core-vacuum system has been conserved by shifting
the mass energy from the free relativistic core to the vacuum
wave.

The lower of the two simultaneous equations in (8) can be
reduced from three to two terms by the assumption∣∣∣∣∣ irc

∂χ0

c∂t

∣∣∣∣∣ � |−2χ0| (9)

if the kinetic energy of the vacuum wave is significantly less
than its effective mass energy. Inserting (9) into (8) then
yields

irc
∂

c∂t

(
φ0

0

)
+

(−→σ · irc∇χ0
−→σ · irc∇φ0

)
=

(
0
−2χ0

)
(10)

as the nonrelativistic version of (4). The mass energy of the
free core, and the kinetic energy of the vacuum wave (asso-
ciated with the lower-left null spinor), are discarded in this
nonrelativistic approximation to (4).

Separating the two equations in (10) produces

irc
∂φ0

c∂t
+ −→σ · irc∇χ0 = 0 (11)

and
−→σ · irc∇φ0 = −2χ0 (12)

where the second term in (11) and the first term in (12) rep-
resent the connection between the free-space core dynamics
(φ0) and the vacuum wave (χ0). Inserting (12) into (11) then
leads to [3, p.80]

irc
∂φ0

c∂t
−

(−→σ · irc∇)2

2
φ0 = 0 . (13)

Finally, using the Pauli-matrix identity [3, p.12]

(−→σ · ∇)2 = I (∇)2 (14)

in (13) yields the free-core Schrödinger equation

irc
∂φ0

c∂t
=

(irc∇)2

2
φ0 or i~

∂φ0

∂t
= −
~2

2m
∇2φ0 (15)

where the two spin components in φ0 are ignored in this non-
relativistic approximation; so φ0 becomes a simple scaler
wavefunction rather than a 2x1 spinor.

4 Conclusions and comments

Although the spin components are missing from the standard
version of the Schrödinger equation [5, p.20], the solutions to
(11) and (12) indicate that those components are still mean-
ingful.

Using rc (= e2
∗/mc2 = ~/mc) from (2) in (11) and (12)

yields

irc
∂φ0

c∂t
= −→σ · (̂p/mc) χ0 (16)

and
χ0 = −→σ · (̂p/2) φ0 (17)

where p̂ (= −i~∇) is the vector momentum operator.
Equations (16) and (17) from the perturbed spacetime can

be understood as follows: the free-space energy from φ0 in the
first term of (16) drives the vacuum energy associated with
the second term; this χ0 energy of the second term in (17)
then feeds back into the φ0 term in (16), leading to a circu-
lar simultaneity between the two equations that represent the
coupled nonrelativistic behavior of the core-PV system. Fur-
thermore, the fact that there is no kinetic-energy term in (17)
suggests that the localized energy in the PV travels as a per-
cussion wave through that vacuum state. This scenario repre-
sents the PV view of the Dirac electron equation (4): that is,
the dynamics of the free-space electron core (−e∗,m) lead to
a vacuum wave propagating within the PV state, in step with
the free electron core.

Dedication

This paper is dedicated to the memory Dr. Petr Beckmann [6],
Professor Emeritus Electrical Engineering, the University of
Colorado, Boulder, Colorado.

Submitted on March 18, 2016 / Accepted on March 20, 2016

References
1. Daywitt W. C. The trouble with the equations of modern fundamental

physics. American Journal of Modern Physics, Special Issue: Physics
Without Higgs and Without Supersymmetry, 2016, v. 5 (1–1), 22. See
also www:planckvacuum.com.

2. Daywitt W. C. The de Broglie relations derived from the electron and
proton coupling to the Planck vacuum state. Progress in Physics, 2015,
v. 11 (2), 189.

3. Gingrich D.M. Practical Quantum Electrodynamics. CRC, The Taylor
& Francis Group, Boca Raton, 2006.

4. Leighton R.B. Principles of Modern Physics. McGraw-Hill Book Co.,
New York, 1959.

5. Schiff L.I. Quantum Mechanics, 2nd. McGraw Book Co., Inc., New
York, 1955.

6. Petr Beckmann. Article from Wikipedia.

William C. Daywitt. The Dirac-Electron Vacuum Wave 223



Volume 12 (2016) PROGRESS IN PHYSICS Issue 3 (April–July)
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A charged particle immersed in the fluctuating zeropoint field may be visualized as an
oscillator and such an oscillating particle is considered to possess an extended structure
with center of mass and center of charge separated by radius of rotation in a complex
vector space. Considering stochastic electrodynamics with spin, the zeropoint energy
absorbed by the particle due to its internal motion has been derived. One may initially
assume a massless charged particle with complex structure and after interaction with
zeropoint field, the absorbed energy of the particle may correspond to the particle mass.
This gives an idea that an elementary particle may acquire mass from the interaction of
zeropoint field. When the particle moves as a whole, there appears to be a small energy
correction of the order of fine structure constant and it may be attributed to the mass
correction due to particle motion in the zeropoint field.

1 Introduction
The Dirac electron executes rapid oscillations superimposed
on its normal average translational motion and this oscillatory
motion is known as zitterbewegung and it was first shown by
Schrödinger. In the zitterbewegung motion, the electron ap-
pears vibrating rapidly with a very high frequency equal to
2mc2~−1 and with internal velocity equal to the velocity of
light. These oscillations are confined to a region of the order
of Compton wavelength of the particle. It has been shown
by several authors over decades that the center of charge and
center of mass of charged particle are not one and the same
but they are separated by a distance of the order of Compton
wavelength of the particle. The approach of extended particle
structure was developed by Wyssenhoff and Raabe [1], Barut
and Zhanghi [2], Salesi and Recami [3] and others. The list
of references connected with the validity of the extended or
internal structure of charged particle are too many and some
of them are mentioned in the reference [4]. Thus the struc-
ture of an elementary charged particle is not definitely a point
particle with charge and mass or a spherical rigid body with
charge distribution. The structure of electron may be visu-
alized as the point charge in a circular motion with spin an-
gular momentum. The frequency of rotation is equal to the
zitterbewegung frequency and the radius of rotation is equal
to half the average Compton wavelength. The circular mo-
tion is observed from the rest frame positioned at the centre
of rotation which is the centre of mass point. Thus the centre
of mass point and the centre of charge point are separated by
the radius of rotation. The electron spin generated from the
circular motion of zitterbewegung was advocated by several
researchers. Holten [5] discussed the classical and quantum
electrodynamics of spinning particles. In the Holten theory,
the spinning particle emerges as a modification of relativis-
tic time dilation by a spin dependent term and the zitterbewe-
gung appears as a circular motion and the angular momentum
of such circular motion represents the spin. In the Hestene
model of Dirac electron [6], the spin was considered as a dy-

namical property of the electron motion. In the approach of
geometric algebra, using multivector valued Lagrangian, the
angular momentum of this internal rotation represents parti-
cle spin and it has been explicitly shown as a bivector quantity
representing the orientation of the plane of rotation [7, 8]. In
quantum theories, the internal oscillations of the particle are
attributed due to vacuum fluctuations. However, in stochastic
electrodynamics, the internal oscillatory motion of the parti-
cle is attributed to the presence of zeropoint field throughout
space [9]. The mass of the particle is seen as the energy of os-
cillations confined to a region of space of dimensions of the
order of Compton wavelength [10].

The classical concept of space is an infinite void and fea-
tureless. However, it has been replaced by the vacuum field
or the zeropoint random electromagnetic field when the quan-
tum oscillator energy was found to contain certain zeropoint
energy and with the substitution of the quantum oscillator
energy into the Planck’s radiation formula yields the energy
density of zeropoint field at absolute zero temperature [11].
In a classical approach to the radiation problem, Einstein and
Stern obtained blackbody radiation spectrum and suggested
that a dipole oscillator possessed zeropoint energy. In 1916,
Nernst proposed that the universe might actually contain ubi-
quitous zeropoint field without any presence of external elec-
tromagnetic sources [12, 13]. Thus the origin of zeropoint
field is presumed to be purely a quantum mechanical effect
and considered to be uniformly present throughout space in
the form of stochastic fluctuating electromagnetic field. The
zeropoint radiation is found to be homogeneous and isotropic
in space. The spectral density of zeropoint radiation is pro-
portional to ω3 and it is therefore Lorentz invariant. The elec-
tromagnetic zeropoint field consists of fluctuating radiation
that can be expressed as a superposition of polarised plane
waves. Because of the random impulses from fluctuating ze-
ropoint field, a free particle cannot remain at rest but oscil-
lates about its equilibrium position.

The Planck’s idea of zeropoint radiation field was revis-
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ited by Marshall and explicitly showed that the equivalence
between classical and quantum oscillators in the ground state
[14]. This has inspired interesting modifications to classical
electrodynamics and the developed subject is called stochas-
tic electrodynamics. Stochastic electrodynamics deals with
the movement of charged particles in the classical electro-
magnetic fluctuating zeropint field. The presence of classical,
isotropic, homogeneous and Lorentz invariant zeropoint field
in the universe is an important constituent of stochastic elec-
trodynamics. The stochastic electrodynamics approach was
used to explain classically several important fundamental re-
sults and problems of quantum mechanics [15–20]. Boyer
[15] showed that for a harmonic oscillator, the fluctuations
produced by zeropint field are exactly in agreement with the
quantum theory and as a consequence the Heisenberg min-
imum uncertainty relation is satisfied for the oscillator im-
mersed in the zeropoint field. Stochastic electrodynamics was
used to explain the long standing problems of quantum me-
chanics, namely the stability of an atom, Van der Walls force
between molecules [16], Casimir force [17], etc. All these
studies reveal the fact that the conventional concept of space
has been changed by the emergence of zeropoint field. A de-
tailed account of stochastic electrodynamics as a real classical
electromagnetic field and a phenomenological stochastic ap-
proach to the fundamental aspects of quantum mechanics was
given by de La Pena et al., [13, 21]. In the stochastic electro-
dynamics, if the upper cut-off frequency to the spectrum of
zeropoint field is not imposed, the energy of the oscillator
would be divergent. Despite of its success in explaining sev-
eral quantum phenomena, the results obtained in the stochas-
tic electrodynamics have certain drawbacks [20]; it neglects
Lorentz force due to zeropoint magnetic field, it fails in the
case of nonlinear forces, explanation of sharp spectral lines is
not possible, diffraction of electrons cannot be explained and
further the Schrödinger equation can be derived in particular
cases only.

A charged point particle immersed in the fluctuating elec-
tromagnetic zeropoint field is considered as an oscillator. In
the stochastic electrodynamics approach, the equation of mo-
tion of the charged particle in the zeropoint field is known
as Brafford-Marshall equation [13] which is simply the Abra-
ham-Lorentz [22] equation of motion of a charged particle of
mass m and charge e and it is given by

mẍ − Γamv̈ + mω2
0x = eEz(x, t), (1)

where Γa = 2e2/3mc3, ω0 is the frequency of oscillations of
the particle, v is the velocity of the particle, c is the velocity
of light, Ez(x, t) is the external electric zeropoint field and an
over dot denotes differentiation with respect to time. In the
above equation, the force term contains three parts; the bind-
ing force mω2

0x, damping force Γamv̈ and external electric
zeropoint field force eEz(x, t). In the case of point particles,

the strength of these forces follows the relation

mω2
0x < Γamv̈ < eEz(x, t). (2)

The energy absorbed by the particle oscillator in the zero-
point field was given by several authors by introducing cer-
tain approximations. There are two main approaches found
in the literature; one is due to Boyer [6] and the other is
due to Rueda [19]. In addition to these main approaches, re-
cently Cavalleri et al., [20] introduced stochastic electrody-
namics with spin and explained several interesting phenom-
ena for example, stability of elliptical orbits in an atom, the
origin of special relativity and the explanation for diffraction
of electrons. It has been shown that the drawbacks of stochas-
tic electrodynamics can be removed with the introduction of
spin into the problem. The particle has a natural cut-off fre-
quency equal to the spin frequency which is the maximum
frequency radiated by the electron in the zitterbewegung in-
terpretation. This eliminates the problem of divergence in
stochastic electrodynamics. These recent advancements in
the field of stochastic electrodynamics fully support the as-
sumption that the stochastic electromagnetic field represents
the zeropoint field and renew the interest in studying the fun-
damental aspects of quantum systems and in particular the
charged particle oscillator in zeropoint fields.

In Boyer’s extensive studies, the harmonic oscillator was
developed under the dipole approximation and the charged
particle was considered as a point particle without any inter-
nal structure. The point particle limit is endowed with two
assumptions; i) when the particle size tends to zero, ωcτ � 1,
where ωc is the cut-off frequency and τ is the characteristic
time and ii) when the radiation damping term is very small
compared to the external force, Γaωc � 1. In Boyer’s process
of finding the zeropoint energy associated with the charged
particle, an integral under narrow line width approximation
was solved and finally the zeropoint energy per mode of the
oscillator was obtained [16]. This energy has been shown to
be equal to the zeropoint energy of the quantum oscillator.

In Rueda’s approach, the classical particle was consid-
ered as a homogeneously charged rigid sphere and to find the
energy absorbed by the particle, the radiation damping and
binding terms were neglected when compared to the force
term in the Lorentz Abraham equation of motion. The in-
tegration was performed over a range 0 to τ, where τ is the
characteristic time taken by the electromagnetic wave to tra-
verse a distance equal to the diameter of the particle. The
main difference from Boyer’s approach is that Rueda assumed
ωcτ � 1 and this condition means the cut-off wavelength is
much smaller than the particle size. Further, Rueda intro-
duced a convergence factor η(ω) in the zeropoint energy of
the particle oscillator. The average zeropint energy of the os-
cillator is given by [19]

〈E0〉 =
Γa~ω

2
c

π
η(ωc). (3)
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In the later studies, Haitch, Rueda and Puthoff [23] studied an
accelerated charged particle under the influence of zeropint
field and obtained a relation for inertial mass of a charged
particle which is similar to (3). Recently, Haitch et al. [9]
suggested that the radiation damping constant in the zeropoint
field as Γz which is not necessarily equal to the damping con-
stant Γa of Larmor formula for power radiated by an accel-
erated charged particle. If we set η(ω)Γzωc ∼ 1, the ground
state energy of the particle oscillator in the zeropoint field is
written as (~ωc)/π. In the case the cut-off frequency is simlar
to the resonant frequency of the particle oscillator in the elec-
tromagnetic zeropoint field, the ground state energy is equal
to the zitterbewegung energy of the Dirac electron. Here, the
frequency ωc is not generally equal to the frequency of oscil-
lation of the particle and it differs by a fraction of fine struc-
ture constant. However, the reason for assuming Γa as Γz is
obscure. It may be understood that the energy in (3) corre-
sponds only to a mass correction but not to the mass of the
charged particle.

In the stochastic electrodynamics with spin, the particle
is considered to possess an extended internal structure and
the particle spin is sensitive to the zeropoint frequency that
is equal to the frequency of gyration. The particle gyration
motion explains the spin properties and refers to a circular
motion at the speed of light [20]. The velocity of the parti-
cle is not the real velocity of gyrating particle, but centre of
mass point around which the particle revolves. The special
relativity is not present at the particle level and arises mainly
because of the helical motion of the particle when observed
from an arbitrary inertial frame of reference [24]. The cen-
tre of circular motion responds only to the force parallel to
the spin direction. The equation of motion of centre of mass
point can be expressed by (1) provided the external force is
parallel to the spin direction.

Clifford algebra or Geometric algebra has been consid-
ered to be a superior mathematical tool to express many of the
physical concepts and proved to provide simpler and straight-
forward description to the mathematical and physical prob-
lems. The geometric algebra was rediscovered by Hestenes
[25] in 1960’s and it is being used by a growing number of
physicists today. In Geometric algebra, a complex vector
is defined as a sum of a vector and a bivector. In the com-
plex vector algebra, the oscillations of a charged particle im-
mersed in zeropoint field have been studied recently by the
author [26]. The oscillations of the particle in the zeropoint
field may be considered as complex rotations in complex vec-
tor space. The local particle harmonic oscillator is analysed
in the complex vector formalism considering the algebra of
complex null vectors. It has been shown that the average ze-
ropoint energy of the particle is proportional to particle bivec-
tor spin and the mass of the particle may be interpreted as a
local spatial complex rotation in the rest frame.

In the electromagnetic world, the particle mass originates
from the electromagnetic field and it is purely electromag-

netic in nature [27]. In the classical Lorentz theory of
electron, the self-energy is closely connected to the electro-
magnetic mass of the electron. The self-energy problem in
classical theory or quantum theory is essentially connected
to the structure of electron and it may not be correct to as-
sign the structure to the electron as a form factor [28]. Fur-
ther the classical electromagnetic field may be only respon-
sible for the interaction and gives the particle mass as purely
electromagnetic in nature. In quantum field theories, the en-
ergy, momentum and charge of a particle appear as a con-
sequence of field quantisation and leads to natural classifi-
cation of particles depending on their spin values. In the
renormalization procedure of quantum field theory with finite
cut-off for the radiatively induced mass, it has been shown
that mass depends on particle spin in the limit when the bare
mass tends to zero [29]. However, in the quantum electro-
dynamics it is well known that the sum of bare mass and the
mass correction equals the electron mass and the mass cor-
rection is due to the interaction of the particle with vacuum
fluctuations [11]. Recently, Pollock interpreted particle mass
(fermion or boson) arising from the zeropoint vacuum oscil-
lations by introducing a matrix mass term in the Dirac equa-
tion [30]. The standard model deals with the fundamental
particles through interaction of bosons, and at a deeper level
one may consider the particles as field excitations. Though
the vacuum fluctuations have been treated in a different man-
ner in quantum theory and in quantum electrodynamics, the
particle oscillations considered either in the vacuum field or
in the classical stochastic electrodynamics with spin, are at-
tributed to the fluctuations of the zeropoint field. The idea
that the mass arises from the external electromagnetic inter-
action may lead to the conclusion that charge retains intrinsic
masslessness [31]. It has been argued that for there to be cor-
respondence with the particle mass, perhaps at pre-quantum
level, inertial mass must originate from external electromag-
netic interaction [32].

The aim of this article is to find the energy absorbed by
the particle due to its intrinsic motion in the presence of ze-
ropoint field and to discuss the possible origin of mass gen-
eration. In section 2, we have explained the modalities of the
extended structure of the charged particle in the complex vec-
tor algebra. In the present extended particle structure, since
we have considered the center of mass point and center of
charge separated by radius of rotation in the complex plane,
the equation of motion of the particle as a whole is considered
as a combination of equation of motion of center of charge
and the equation of motion of center of mass. These equa-
tions of motion of center of charge and center of mass are
derived in section 3. Considering the equation of motion of
center of charge in the zeropoint field, the energy absorbed by
an extended charged particle is obtained in section 4, and the
possible origin of mass generation is discussed in section 5.
Finally, conclusions are presented in section 6. Throughout
this article a charged particle implies a particle like electron.
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2 The complex structure of a charged particle

In the extended particle structure, the centre of mass and the
centre of charge positions are considered as separate. De-
noting the centre of local complex rotations by the position
vector x and the radius of rotation by the vector ξ , a complex
vector connected with both the motion of the centre of mass
point and internal complex rotation is expressed as [26]

X(t) = x(t) + i ξ(t). (4)

In the geometric algebra, a bivector represents an oriented
plane and i is a pseudoscalar which represents an oriented
volume [33]. Differentiating (4) with respect to time gives
the velocity complex vector.

U(t) = v(t) + i u(t). (5)

Here, the velocity of centre of mass point is v and the internal
particle velocity is u. A reversion operation on U gives Ū =

v − i u and the product

UŪ = v2 + u2. (6)

In the particle rest frame v = 0 and UŪ = u2. Since the par-
ticle internal velocity in the particle rest frame u = c the ve-
locity of light, |U | = u = c. However, when the particle is ob-
served from an arbitrary frame different from the rest frame of
the particle centre of mass, as the centre of mass moves with
velocity v, the particle motion contains both translational and
internal rotational motion of the particle. Then the particle
internal velocity can be seen as

u2 = c2 − v2 (7)

or
u = c(1 − β2)1/2 = cγ−1, (8)

where β= v/c and the factor γ is the usual Lorentz factor. The
angular frequency of rotation of the particle internal motion is
equal to the ratio between the velocity c and radius of rotation
ξ, ωs = c/ξ. When observed from an arbitrary frame, the
angular frequency ω would be equal to the ratio between u
and ξ

ω =
u
ξ

= ωsγ
−1. (9)

Thus the angular frequency of rotation decreases when ob-
served from an arbitrary frame and the decrease depends on
the velocity of the centre of mass. Considering the helical
motion of the particle, this method of calculation for time di-
lation was first shown in a simple manner by Cavelleri [24].
The above analysis shows that the basic reason for the rela-
tivistic effects that we observe is due to the internal rotation
which is a consequence of fluctuating zeropoint field and elu-
cidates a deeper understanding of relativity at particle level in
addition to the constancy of velocity of light postulate. The

difference between ω and ωs corresponds to the particle ve-
locity. In other words, when the particle moves with velocity
v, an important consequence is that the particle itself induces
certain modification in the field to take place at a lower fre-
quency ωB. Thus the motion of a free particle is conveniently
visualized as a superposition of frequencies ω0 and ωB such
that the particle motion as observed from an arbitrary frame
appears to be a modulated wave containing internal high fre-
quency ω0 and an envelope frequency ωB. The ratio between
the envelop frequency and the internal frequency is then ex-
pressed as

ωB

ω0
=
v

c
. (10)

This result is simply a consequence of superposition of inter-
nal complex rotations on translational motion of the particle.
The relativistic momentum of the center of mass point can be
expressed as p = γmv and in the complex vector formalism
momentum complex vector is given by [26]

P = p + i π, (11)

where π = mu. The total energy of the particle is now ex-
pressed as

E2 = PP̄c2 = (p + i π)(p − i π) = p2c2 + m2c4. (12)

However, in the presence of external electromagnetic field we
normally replace the momentum by p − eA/c in the minimal
coupling prescription. Now, using p → p − eA/c in (12)
and equating the scalar parts, the total energy of the particle
becomes

E2 = p2c2 − 2ecp.A + e2A2 + m2c4. (13)

Here, A represents the zeropoint electromagnetic field vec-
tor potential. In the rest frame of the particle, i.e., when the
velocity v = 0, the above expression reduces to

E0 ∼ mc2 +
e2A2

2mc2 , (14)

where the higher order terms are neglected. Thus, under the
influence of zeropoint field, the term e2A2/2mc2 in the above
equation gives a correction to mass. Expanding the vector
potential in terms of its creation and annihilation operators
and averaging in the standard form, it can be shown that the
correction term [23]

e2

2mc2 〈A
2〉 =

α

2π
(~ωc)2

mc2 , (15)

where ωc is the cut-off frequency and α is the fine struc-
ture constant. When the cut-off frequency is equal to the
frequency of oscillation of the particle, ωc = ω0 and using
Einstein-de Broglie formula ~ω0 = mc2, the mass correction
can be expressed in the following form

〈∆E0〉 = δmc2 =
α

2π
mc2. (16)
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Thus in the presence of zeropoint field, the vector potential
term in (15) gives the mass correction and it was obtained by
Schwinger in quantum electrodynamics. The particle mass
which arises due to local complex rotations in the zeropoint
field is regarded as the so called bare mass and when the par-
ticle is observed from an arbitrary frame, the particle mass
has some mass correction due to the presence of external ze-
ropoint field.

3 Equation of motion of the particle with complex struc-
ture

It should be noted that, (1) contains the so called runaway and
causal problems. In the Landau approximation, the damping
term is written as a derivative of external force. In this case,
the runaway and causal problems are eliminated and the exact
equation of motion of a charged particle was recently given
by Rohlrich [34] and Yaghjian [35]. In the equation of mo-
tion of the charged particle, centre of mass appears as if the
total charge is at that point. In other words, there is no dis-
tinction between centre of mass and centre of charge points.
In the case of extended particle structure, it has been clari-
fied in the previous sections that the external zeropoint field
must be responsible for the internal complex rotations and at
the same time for the deviations in the path of the particle
when it is moving with certain velocity. The external zero-
point field is then expressed as a function of complex vector
X, Ez = Ez(X, t) and expanding it gives

Ez(X, t) = Ez(x, t) + i ξ
∣∣∣∣∣∂Ez(x, t)

∂x

∣∣∣∣∣
x→0

+ O(ξ2). (17)

The second term on right hand side of the above equation is
independent of x and it is a function of ξ only. Neglecting
higher order terms in (17) and representing the second term
on right by i Ez(ξ, t), the external zeropoint field Ez(X, t) can
be decomposed into a vector and a bivector parts

Ez(X, t) = Ez(x, t) + i Ez(ξ, t). (18)

The random fluctuations produce kicks in all directions and
leads to random fluctuations of the centre of mass point and
at the same time random fluctuations also produce internal
complex oscillations or rotations. Thus the force acting on
the charged particle can be decomposed into two terms, the
force acting on the centre of mass and the force acting on the
centre of charge. For the field acting on the centre of mass,
the particle mass and charge appear as if they are at the centre
of mass point and we treat the equation of motion of the parti-
cle in the point particle limit. However, for the field acting on
the centre of charge, the effective mass seen by the zeropoint
field is the mass due to the potential Uz ∼ e2/2R ∼ mzc2 . The
magnitude of R is of the order of Compton wavelength. Then
the effective mass mz in the zeropoint field is approximately
equal to the electromagnetic mass which is proportional to
the electromagnetic potential due to charge e at the center of

mass position. Replacing the position vector x by the com-
plex vector X and Ez(x, t) by the complex field vector Ez(X, t)
in (1) and separating vector and bivector parts gives the equa-
tions of motion of the centre of mass and the centre of charge
respectively. The equation of motion of center of mass is the
Abraham-Lorentz equation of motion of a charged point par-
ticle in the external electromagnetic zeropoint field given by
(1) and the motion of the centre of mass of the particle is ob-
served from an arbitrary frame of reference. In the rest frame
of the particle, the equation of motion represents the equation
of motion of center of charge

mzξ̈ − Γzmzü + mzω
2
0ξ = eEz(ξ, t). (19)

The terms Γzmzü and mzω
2
0ξ are radiation damping and bind-

ing terms respectively. The damping constant in the above
equation is defined as Γz = (2e2)/(3mzc3).

4 Average zeropoint energy associated with the particle
in its rest frame

The zeropoint field and particle interaction takes place at res-
onance and the particle oscillates at resonant frequency ω0.
In other words, the particle oscillator absorbs energy from the
zeropoint field at a single frequency which is the characteris-
tic frequency of oscillation. Since, both radiation damping
and binding terms are much smaller than the force term in
(19) one can neglect these terms and integrating with respect
to time t gives the internal velocity of rotation of the particle

u(t) =
e

mz

∫ τ

0
Ez(ξ, t)dt. (20)

Here, the upper limit of integration is chosen as the charac-
teristic time τ required by the electromagnetic wave to tra-
verse a distance equal to the size of the particle. The electric
field vector Ez(ξ, t) is expressed in the same form as that of
Rueda [19],

Ez(ξ, t) =

2∑
λ=1

∫
d3kε(k, λ)

H(ω)
2
×[

aei(k.ξ−ωt) + a∗ei(k.ξ−ωt)
]
,

(21)

where a = exp (−iθ(k, λ)), a∗ = exp (iθ(k, λ)) and ε(k, λ) is
the polarization vector and the normalization constant is set
equal to unity. The phase angle θ(k, λ) is a set of random vari-
ables uniformly distributed between 0 and 2π and are mutu-
ally independent for each choice of wave vector k and λ. The
stochastic nature of the field lies in these phase angles and
a statistical average of these phase angles gives an effective
value of the field. For point particles, because the size is zero,
we find the spectral divergence of zeropoint field. However,
for particles with extended structure, one can discern a natural
cut-off wavelength associated with the particle size. The con-
vergence factor gives an upper bound to the energy available
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from the electromagnetic zeropoint field and it is associated
with the characteristic function H(ω) of the zeropoint field.
The function H(ω) is given by 2π2H2(ω) = η(ω)~ω. In (21),
integrating the electric field vector with respect to time gives

I =

2∑
λ=1

∫ ∞

0
d3k

H(ω)
2

[
ε(k, λ) aeik.ξ

(
e−iωτ − 1
−iω

)
+ε(k, λ) aeik.ξ

(
e−iωτ − 1
−iω

) ]
.

The charge current in the rest frame of the particle is the
charge times the internal velocity of the particle. The inter-
action energy of the charged particle with the zeropoint field
is expressed as the charge current times the vector potential
of the zeropoint field. However, one can express the vector
potential as the integral of the zeropoint electric field vector.
Then the average zeropoint energy acquired by the particle is
expressed as

〈E0〉 =
e2

m
〈II∗〉. (22)

The averages of random phase and the polarization vector are
expressed as follows

〈aa∗〉 = δ(λ − λ′) δ3(k − k′) ; 〈aa〉 = 0 ; 〈a∗a∗〉 = 0

〈ε(k, λ)ε∗(k, λ)〉 = δi j −
k1
k2∑2

λ=1

∫
d3k 〈ε(k, λ)ε∗(k, λ)〉 = 8π

3

∫
ω2 dω .

Using these stochastic averages, replacing the convergen-
ce factor by η(ω0) and setting the upperlimit of integration to
the frequency of oscillations in (22) gives

〈E0〉 =
4e2~

3πmzc3 η(ω0)
∫ ω0

0
ω(1 − cosωτ) dω. (23)

For an extended particle structure ω0τ = 2π and the above
equation after integration reduces to

〈E0〉 = η(ω0)
Γz~ω

2
0

π
. (24)

This result is similar to the result obtained by Reuda [19] and
Puthoff [36]. However, the difference is that the damping
constant is now replaced by Γz and cut-off frequency ωc is
replaced by the resonant internal frequency of oscillation of
the particle. In (24), both the values for mz and η(ω0) are not
known exactly and must be approximated. Instead, one can
approximate η(ω0)Γzω0 ∼ 1 for the particle with extended
structure. Then the average zeropoint energy acquired by the
particle in its rest frame is

〈E0〉 =
~ω0

π
. (25)

This energy is similar to the zitterbewegung energy of Dirac
electron in quantum mechanics.

5 Equation of motion of the particle with complex struc-
ture

In the above procedure, initially we have considered the char-
ged particle without any mass. Such particle interacting with
zeropoint field acquires mass due to particle resonant oscil-
lations and gains energy from the electromagnetic zeropoint
field. This average zeropoint energy of the particle appears
as the mass of the particle. In the complex vector formal-
ism of internal harmonic oscillator in zeropoint field, it has
been shown by the author that the average energy 〈E0〉 is re-
lated to the mass through particle spin and represents the mass
generated from the local complex rotations produced by the
interaction of zeropoint field with the particle. The relation
between average zeropoint energy and particle spin is given
by the expression [26]

〈E0〉 − ω0〈s〉 = 0. (26)

Let us denote ωs = 2ω0 and write the angular velocity bivec-
tor as Ωs = −iσsωs, where σs is a unit vector along the direc-
tion of spin. The average value of spin is obtained by taking
the average over a half cycle, 〈s〉 = 2

π
s. Substituting this aver-

age value of spin and 〈E0〉 from (25) in (26) gives the relation
between particle mass and spin

mc2 = σsΩs.S , (27)

where the relation ~ω0 = mc2 is used and the bivector spin
S = iσs~/2. The unit vector σs acting on an idempotent
J+ = (1 + σS )/2 gives an eigenvalue +1. This statement is
represented by an equation σsJ+ = +1J+ . When (27) is
multiplied from right by an idempotent J+ on both sides the
unit vector is absorbed by the idempotent and equating the
scalar parts gives

mc2 = Ωs.S . (28)

Thus the mass of the particle turns out to be the local internal
rotational energy given by the term Ωs.S . Since, the mag-
nitude of spin and velocity of light are constants, the value
of particle mass depends on the frequency of spin rotation
and the different particles may have different frequencies of
spin rotation. The above analysis shows that the internal com-
plex rotation is responsible for the existence of particle mass.
Then, one may initially consider a massless charged particle
and it may acquire mass from zeropoint field through a local
complex rotation.

When the particle is observed from an arbitrary frame of
reference, the center of mass point moves with velocity v.
The equation of motion of centre of mass point is given by (1)
and solving it by assuming the radiation damping and binding
terms as small when compared to the force term, one can ob-
tain the zeropoint energy absorbed by the point particle and
it is given by (3). The cut-off frequency ωc is the limiting
frequency in the integration. When we assume the cut-off
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frequency ωc = ω0 [37, 38] and after introducing the conver-
gence factor η(ω0) ∼ 3/4 in (3), the average energy represent-
ing the mass correction of the particle in the zeropoint field
can be expressed as

δm =
α

2π
mc2. (29)

This mass correction is too small and found to be similar to
the expression found in quantum electrodynamics to the first
order in the fine structure constant α.

6 Conclusions

In the stochastic electrodynamics with spin, it has been shown
that the average zeropoint energy absorbed by the particle due
to its internal motion gives the particle mass. When the parti-
cle center of mass point moves with certain velocity, we find
the average energy absorbed by the particle gives the mass
correction. In deriving both particle mass and mass correc-
tion, a convergence factor has been introduced for an ex-
tended particle. To understand the mechanism of mass gen-
eration of an elementary particle, one may initially assume a
massless charged particle with complex structure and such a
particle can be visualized as an oscillator in the fluctuating
zeropoint field. Then the average energy absorbed by the os-
cillator refers to the particle mass. Finally, we conceive the
idea that an elementary particle acquires mass from the inter-
action of ubiquitous zeropoint field.
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The Relationship Between the Possibility of a Hidden Variable in Time
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In this paper we will discuss the relationship between the possibility of a hidden variable
in time and the uncertainty principle. The discussion consists in a fundamental look at
the decay time processes of unstable elementary particles. As will be argued, the hid-
den variable in time possibility may result in a possible way to bypass the energy-time
uncertainty principle. Therefore energy and time information may be known simulta-
neously in the decay time process. A fundamental and general experimental way to test
the above is suggested.

1 Introduction

In this paper we investigate the connection between the pos-
sibility of a hidden variable in time and the uncertainty prin-
ciple. In [1] the process of e+e− → µ+µ− was discussed and it
was questioned how come under what appears to be identical
local initial conditions we get a distribution of decay time val-
ues for the µ+ and the µ−. In[1] there was no discussion about
the muon mass width that in fact means that the muons are
in principle not completely identical to each other and there-
fore the local initial conditions are not completely identical
between the different events. In [1] it was assumed that the
muon mass width could not explain (at least not by itself) the
exponential decay time distribution of the muons. Therefore
the suggestion was that there exists another internal property
within the muons that is responsible for generating the muon
decay time distribution.

However this could not be the complete explanation as
the muons do have a narrow distribution of mass values and
therefore there are slightly different local initial conditions
in this process between different events. This fact has to be
taken into account in a complete explanation for the decay
time distribution in this process. As the muon mass width is
part of the uncertainty principle, in this paper we will discuss
the connection of the uncertainty principle to the hidden vari-
able in time possibility and attempt to incorporate the two.
Moreover we will discuss how the existence of a hidden vari-
able in time could help to bypass the energy-time aspect of
the uncertainty principle. Finally an experimental way to test
the above is discussed.

This paper is organized as follows. Section 2 discusses the
theoretical background. Section 3 describes a possible exper-
imental way to bypass the energy-time uncertainty principle
in case a hidden variable in time do exist. The conclusions
are presented in section 4.

2 Theoretical discussion

2.1 Background

In this paper we investigate the connection between the possi-
bility of a hidden variable in time and the uncertainty princi-

ple. The hidden variable in time possibility first presented in
[1] gives a deterministic approach that attempts to explain the
distribution in decay time as a result of a compatible distri-
bution in an additional internal property within the particles.
The suggestion was that this additional internal property is
related to the frequency of the virtual boson emission and ab-
sorption and therefore as it is related to time and affects the
decay time of particles it was termed a hidden variable in time
( fr). However even if the above is correct this could not be a
complete explanation as we have to take into account a known
distribution in the initial decaying particles which is the dis-
tribution in their mass.

In [1] it was assumed that this mass distribution of for
example the muon particles can not solely explain the muon
exponential decay time distribution. More specifically it was
assumed that the Breit-Wigner distribution of the mass value
could not be translated in a deterministic, unique and logical
way, using the Standard Model, into the exponential decay
time distribution that we observe. One could convince oneself
intuitively that this is the case by considering the peaks of
the two distributions which are at m = Mmean for the Breit-
Wigner case and t = 0 for the exponential decay case and also
the tails which are for the mass Breit-Wigner case at m = 0,
and at m = ∞ (two tails) and for decay time case at t = ∞.

Therefore one can not get a logical connection between
the two distributions because one could not associate the pro-
cess initial and final condition logically considering what we
know from the Standard Model. That is if we start from the
two peaks as the most common and popular initial conditions
where most of the events are then we get two different initial
conditions for the mass value at the tails (m = 0, m = ∞) that
give a single final condition which is the tail of the exponen-
tial at t = ∞.

This does not give a logical and deterministic explanation
as logically under different initial conditions we should get
different final conditions considering the dependence of the
decay time on the mass as described in the Standard Model
and the experimental decay time results, i.e the higher the
mass is the shorter the decay time is. Therefore the mass
distribution could not generate deterministically and logically
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using the Standard Model, the observed muon decay time dis-
tribution, and we need an alternative explanation. Perhaps in
the form of the hidden variable fr.

The standard model does however, give a general link be-
tween the Breit-Wigner shape and the exponential decay time
shape for a given particle which narrows down the uncertainty
by telling us the favorite mass value of the particles is Mmean

and that an enhanced fraction of them will decay almost in-
stantly after they are born. For example if 40% of the masses
are at a bin around Mmean then 40 ∗ 40 = 16% of them will
decay in the first decay time bin in the decay time distribution.

That is if we measure a specific mass to be on the mean
value then we know that there is a 16% probability that the
particle would decay in the first decay time bin. This is com-
pared to what we know from the uncertainty principle, where
knowing exactly the mass value yields a complete uncertainty
on the decay time. Therefore the Standard Model reduces the
uncertainty with respect to the uncertainty principle by allow-
ing us to calculate the Breit-Wigner and the exponential decay
time distributions.

2.2 ∆m, ∆t and fr

The distribution of ∆m is known from the Breit-Wigner but
the distribution of ∆t is experimentally unknown (we do not
know how to deduce it from the exponential decay distribu-
tion), we only know the maximum value of it from the knowl-
edge of ∆m and the boundaries given by the uncertainty prin-
ciple.

According to [1], if one knows the true particle decay T1,
time then one may know fr1 from Fig. 1. In this case this
particular fr1 has two possible mass value M1,M2 as shown
in Fig. 2. These two mass values may have the same value of
fr1 but with very different mean lifetimes given for example
in the muon case, from the known Standard Model formula:

τµ(1,2) =
192 π3h7

G f M(1, 2)5
µ c4

. (1)

where G f is the Fermi coupling constant. In the case when fr
exists, one may have a deterministic link between ∆m,∆t, fr
and t which may cancel the uncertainty limitations as will be
discussed later on. Without fr there is no deterministic link
between a specific mass M1 and a specific decay time T1.

If fr exists the exponential shape is the slope of the fr
depending on the mean lifetime which gives a deterministic
description for a specific event using extra information in the
form of fr.

2.3 Mathematical relationship between fr and the expo-
nential and Breit-Wigner distributions

Putting the above into a mathematical form gives us two ex-
pressions for fr:

fr(i) = f (mi) Ai = f (mi) exp
(
−

ti
τi

)
(2)

Fig. 1: fr versus the distribution of the particles decay time.

fr(i) = f (mi) f (Ei) = f (mi)
k1

(E2
i − M2

mean)2 + M2
mean Γ2

i

(3)

where f (mi) is the mass amplitude and Ei = mi c2. One pos-
sibility for f (mi) may be: f (mi) = Mmean + (mi − Mmean) k2
where k1 and k2 are parameters with yet unknown values. The
above relationship suggests the following:

For mass measured close to the muon mean mass values
∆m is small and ∆t is large (but we cannot be sure at this stage
how large as we do not know how to deduce the uncertainty
∆t from the exponential muon decay time distribution). We
can only get the maximum value for ∆t for small ∆m using
the uncertainty principle. From Fig. 2 we can see that small
∆m values correspond to high fr values and therefore, as can
be seen from Fig. 1 to short decay time values.

For mass measured far from the mean muon mass value
(lower or bigger), we know that ∆m is large and ∆t is small.
Again we cannot be sure for a particular event how small
is ∆t, however we only know that it has to be small as ∆m
is large in order to satisfy the uncertainty principle. From
Fig. 2 we can see that large ∆m corresponds to low fr values
and therefore, as can be seen from Fig. 1, to long decay time
values.

Therefore the effect of the uncertainty principle assuming
the existence of fr, on the decay process is that it associates
a particular and different uncertainty on each decay time and
mass values. This is where masses around Mmean are assumed
to have short decay times and have small ∆m and large ∆t,
and masses that are away from Mmean (smaller or greater)
are assumed to have larger decay times and larger ∆m and
smaller ∆t.

This is where the limitation associated by the uncertainty
principle of knowing simultaneously the exact mass and de-
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Fig. 2: fr versus the distributions in the particles mass.

cay time of a particle still remains. In the next section we will
discuss how this limitation could be bypassed.

3 Possible bypass of the energy-time uncertainty prin-
ciple

The possibility of a hidden variable in time opens up a new
way to fundamentally bypass the above limitation on the si-
multaneous knowledge of the muon mass and decay time val-
ues. This could be expressed by the following measurement
that may be done by known detectors [2]:

As measuring the muon mass exactly is experimentally
difficult due to the missing energy of the neutrino involved,
we may turn to measuring exactly its decay time.

Therefore, if we measure a specific muon decay time t1,
we know its fr from Fig. 1. Therefore we could know its two
associated masses m1 and m2 from Fig. 2 and its mass uncer-
tainty ∆m. From the uncertainty principle we could then also
know its maximum ∆t uncertainty. Therefore this gives us
three possible decay time t1, t1 − ∆t, t1 + ∆t and six possible
masses that are associated to these three decay times. Now
we need to decide which pair of decay time and mass values
is the correct one for that particular event. We can attempt to
do that by measuring exactly the muon electric charge Q in
that event from:

M V2

r
= QVB (4)

where B is the external magnetic field, M is the muon mass
and we can measure the momentum from the curvature r and
the velocity V from the Cherenkov detector. Therefore after
knowing the charge we may deduce the factor A = exp(−t/τ)
according to [3]. This A value corresponds to a part of the
particles fr in that particular event where fr(i) = f (mi) Ai as
shown in (2). Now all we need to do is to see which pair of
mass and decay time values is closest in value to the mea-
surement of the factor A and find the correct initial mass and
final decay time in that particular event, thereby bypassing
the uncertainty principle.

4 Conclusion

The implication of a hidden variable in time on the energy-
time uncertainty principle was discussed. A fundamental way
was presented to bypass the uncertainty principle through me-
asuring the decay time and charge value in a specific e+e− →
µ+µ− event, thereby knowing the exact value of the initial
muon mass and decay time.
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This paper re-derives the Dirac continuity equation for the electron from the viewpoint
of the Planck vacuum (PV) theory. Results show the equation to be a spacetime equation
(whose line elements are cdt and dxk) that equates the normalized ct-gradient of the
probability density (ψ†ψ) to the normalized negative divergence of the quantity (ψ†ααψ).

1 Introduction

The Dirac equation that defines the free-electron spinor field
ψ = ψ(r, t) [1, p.74]

icℏ
∂ψ

c∂t
= (cαα · p̂ + mc2β)ψ (1)

where p̂ (=−iℏ∇) is the vector momentum operator, can be
expressed as

icℏ
(
∂

c∂t
+ αα · ∇

)
ψ = mc2βψ (2)

where c is the speed of light, ℏ is the reduced Planck constant,
and m is the electron mass. The spinor field ψ is the 4×1
column vector

ψ =


ψ1
ψ2
ψ3
ψ4

 . (3)

The two 4x4 matrices in (1) and (2) are defined by

αk =

(
0 σk

σk 0

)
and β =

(
I 0
0 −I

)
(4)

where k = (1, 2, 3) and I is the 2×2 unit matrix. The three
2×2 Pauli spin matrices σk are [1, p. 12]

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5)

and the operator on the left side of (2) reduces to(
∂

c∂t
+ αα · ∇

)
=

 ∂

c∂t
+

3∑
k=1

αk
∂

∂xk

 . (6)

In its rest frame the massive electron core (−e∗,m), with
its zero-point derived mass m [2], exerts the two-term cou-
pling force [3, Sec. 7-8]

F(r) =
e2
∗

r2 −
mc2

r
=

(−e∗)(−e∗)
r2 − mm∗G

r∗r
(7)

on the PV quasi-continuum, where e∗ is the massless bare
charge and G (= e2

∗/m
2
∗) is Newton’s gravitational constant.

The first (−e∗) in (7) belongs to the electron and the sec-
ond to the separate Planck particles making up the degener-
ate PV state. The two terms in (7) represent respectively the
Coulomb repulsion between the electron charge and the sep-
arate PV charges, and the second their mutual gravitational
attraction.

The particle/PV coupling force (7) vanishes at the elec-
tron Compton radius rc (= e2

∗/mc2). In addition, the vanish-
ing of F(rc) is a Lorentz invariant constant [4] that leads to
the important Compton-(de Broglie) relations

rc · mc2 = rd · cp = rL · E = r∗ · m∗c2 = e2
∗ (= cℏ) (8)

where rd = rc/β0γ0 and rL = rc/γ0, and r∗ (= e2
∗/m∗c

2) and
m∗ are the Compton radius and mass of the Planck particles
within the PV state. The ratio of the electron speed v to
the speed of light c is β0 and γ0 = 1/(1 − β2

0)1/2. The rela-
tivistic momentum and energy following from the invariance
of F(rc) = 0 are p (= mγ0v) and E (= mγ0c2), from which
E = (m2c4 + c2 p2)1/2 is the relativistically important energy-
momentum relationship.

Using (8), (2) can be expressed as

ie2
∗

(
∂

c∂t
+ αα · ∇

)
ψ = mc2βψ (9)

or

irc

(
∂

c∂t
+ αα · ∇

)
ψ = βψ (10)

where the partial derivatives within the parentheses are nor-
malized by the Compton radius rc. The spinor field that is
the hermitian conjugate of ψ is the 1×4 row vector ψ† =
(ψ†1, ψ

†
2, ψ

†
3, ψ

†
4). Then, pre-multiplying (10) by ψ† leads to

ircψ
†
(
∂

c∂t
+ αα · ∇

)
ψ = ψ†βψ . (11)

Taking the hermitian conjugate of (10), post-multiplying by
ψ, then yields [1, p. 76]

−irc

(
∂

c∂t
+ αα · ∇

)
ψ†ψ = ψ†βψ . (12)

Subtracting (12) from (11) finally leads to the continuity
equations [1, p. 76]

irc

[
∂(ψ†ψ)

c∂t
+ ∇ · (ψ†ααψ)

]
= 0 (13)
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or
∂(ψ†ψ)
c∂t/rc

+

3∑
k=1

∂(ψ†αkψ)
∂xk/rc

= 0 (14)

for the electron. From (8), the presence of rc in these two
equations connects the electron core dynamics to a wave trav-
eling within the vacuum state [5].

2 Comments and Conclusions

Dividing (13) by irc yields the equation

∂(ψ†ψ)
∂t

+ ∇ · (ψ†cααψ) = 0 (15)

where the 4×4 matrix cαα looks like a velocity operator be-
cause of the speed of light c. This observation then leads
intuitively to the standard continuity equation [1, p. 76]

∂ρ

∂t
+ ∇ · j = 0 (16)

where ρ = ψ†ψ is the probability density and jk = ψ†cαkψ
is the kth component of the probability current density. Inte-
grating (16) over the volume V (assumed to contain the elec-
tron core (−e∗,m)), and using the divergence theorem, leads
to [1, p. 77]

∂

∂t

∫
V

dρ d3x +
∫

S
j · dS⃗ = 0 . (17)

where the surface S surrounds the volume V .
So far, so good. But there is a problem: treating cαα as a

free-space matrix velocity leads to a tortured interpretation of
that operator that cries out for a better explanation. From the
PV perspective, that explanation is apparent from equation
(14)

∂(ψ†ψ)
c∂t/rc

+

3∑
k=1

∂(ψ†αkψ)
∂xk/rc

= 0

where the Minkowski-like line elements, cdt and dxk associ-
ated with the partial derivatives, are normalized by the elec-
tron Compton radius rc. The form of this equation suggests
that it is associated with a distorted spacetime [6, p. 27] (the
distortion coming from the rc and the αk), rather than a free-
space velocity dynamic. Furthermore, the absence of the dy-
namical electron parameters p and E from (8), and the fact
that cαα is not a recognizable free-space operator, suggest that
(14) refers to a PV substructure dynamic [7] (driven by the
electron core dynamic), where the normalized ct-gradient of
(ψ†ψ) equals the normalized negative divergence of (ψ†ααψ).

Finally, the assumption that the PV is a degenerate state
implies that the Planck-particle energy eigenstates are full. So
if there is a current wave propagating within the PV, it cannot
involve a Planck particle current (because the Planck particles
are not free to move macroscopically). Thus cαα must refer,
in part, to a localized percussion-like spinor wave within that

vacuum state, analogous to a wave traveling on the surface of
a kettle drum.

Equations (13) and (14) and the previous two paragraphs
represent the PV view of the Dirac-electron continuity equa-
tion.
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It is suggested in this article that part of the signal in the 1.3 mm range from Sagittarius
A* originates inside the central collapsar, rather than coming entirely from its accretion
disc. The suggestion has its origin in the discovery that the classic article of Oppen-
heimer and Snyder contains a basic error in its assertion that the light, from a collapsing
object lying entirely within its own photonsphere, is progressively cut off as the object
shrinks towards its gravitational radius, where a large part of the Oppenheimer-Snyder
collapsar’s material is concentrated. The signal from the collapsar has certain features
which may make it possible to distinguish its image from that of the accretion disc.

1 Introduction

At the centre of our galaxy, 8 kp distant from us, there is an
object named Sagittarius A* whose mass is 4.1 megasuns. It
is popularly classified as a black hole, with a spherical∗ region
of radius 1.2 × 107 km around it bounded by an “event hori-
zon”; according to black-hole theory no light from Sagittarius
A* can cross this horizon.

In two recent articles [1, 2] it was shown that there is a
solution of the field equations of General Relativity for such
a supermassive object, which has no singularity at r = 0,
and which allows light signals to cross the horizon. The latter
property of the solution was demonstrated for the case of rays
which are normal to the event horizon, and the present article
demonstrates that it may be extended to all orientations. In
addition we consider the range of angles for which light orig-
inating at the surface of such a collapsar crosses the photon-
sphere, at 1.5 times the gravitational radius, and consequently
may reach a terrestrial telescope. There is currently a project
called the Event-Horizon Telescope [3] (EHT) designed to
look at the signal from the neighbourhood of Sagittarius A*
in the 1.3 mm range.

Central to the widespread belief in the validity of black-
hole theory is the article of Oppenheimer and Snyder (OS)
[4]. This reported, without giving details, an investigation of
the light signal from a supermassive object, arriving at the
following conclusion

All energy from the surface of the star will be
reduced very much in escaping . . . by the gravi-
tational deflection of light which will prevent the
escape of radiation except through a cone about
the outward normal of progressively shrinking
aperture as the star contracts. The star thus tends
to close itself off from any communication with
a distant observer.

The property of the OS metric claimed by Penrose, which
he needed as a prerequisite for his singularity theorem [5],

∗For the purposes of this article we ignore its spin.

was the stronger one known as the trapped surface. The pub-
lications cited above show that neither of these properties in
fact holds for the OS metric.

In the following two sections we shall use precisely the
OS metric to show that the progressively shrinking aperture
of the emission cone has no effect on the size of the image of
the collapsing object, and only a marginal effect on its total
luminosity. This result leads us to suggest that the signal from
Sagittarius A* comes partly from the surface of the collapsar
itself, and not entirely from the accretion disc, as is assumed
in most current analyses. The accretion disc may well have
a substantially higher temperature than the collapsar, but that
is probably offset by the vastly greater area of the latter. Note
also that the millimetre range of wavelength investigated by
the EHT corresponds to the maximum of a Planck spectrum
of just a few degrees Kelvin; to support our analysis, the col-
lapsar must retain only the merest relic of its thermal energy.

The OS article reached another conclusion, stated in their
Abstract, namely

. . . an external observer sees the star asymptoti-
cally shrinking to its gravitational radius.

This result contradicts directly Penrose’s description of the
OS results and was verified by me in [1]. The point is that
OS showed that there is a common system of coordinates ap-
plicable to both the exterior and interior of the collapsar. My
article [1] demonstrated that the density distribution of the
OS “dust cloud” becomes concentrated near the surface as it
shrinks to the gravitational radius; no exotic process like the
modern black-hole one of “spaghettification” [6] occurs when
a notional spaceship crosses the event horizon. OS should be
considered responsible for the notion that further shrinkage
occurs within the gravitational radius only in so far as they
gave their article the misleading title “On continued gravita-
tional contraction”.

It should be noted that in the exterior, and hence in what
should now be recognized as the universal, time frame the
collapsar’s shrinkage to the gravitational radius takes an in-
finite lapse of time. We shall show in the following section
that in the limit there is an underlying infinite red shift, which
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causes not only the surface itself, but also all light signals ap-
proaching it, to be infinitely slowed down. This is the real
significance of the event horizon, but it is my contention that
a real collapsar, with an internal pressure resulting from the
intervention of forces other than gravitational, stops shrink-
ing before it reaches the gravitational radius. For example,
we have investigated [7] a collapsar whose equation of state
is an idealized form of neutron fluid∗, and for which, above
a certain mass, its maximum density lies between the event
horizon and the photonsphere.

2 The exterior light orbits

Darwin [9, 10] described the null geodesics of the Schwarz-
schild metric

ds2 =
r − 2m

r
dt2 − r

r − 2m
dr2 − r2dθ2 − r2 sin2 θ dϕ2, (1)

where 2m is the gravitational radius. He extended the stan-
dard theory of light deflection, his method being equivalent to
minimising the action integral for a light ray with small im-
pact parameter starting from infinity; for orbits in the plane
θ = π/2,

δ

∫
Ldϕ = 0, (2)

with the lagrangian

L =
[
r − 2m

r
t′2 − r

r − 2m
r′2 − r2

]1/2

, (3)

where a prime denotes differentiation with respect to ϕ. The
Lagrange equation for the cyclic coordinate t is[

d
dϕ
− L′

L

]
r − 2m

r
t′ = 0. (4)

The corresponding conservation integral for ϕ enables us to
put L′/L = 2r′/r, so we obtain

t′ =
r3

p(r − 2m)
, (5)

the constant p being the impact parameter

p = lim
r→∞

r2 dϕ
dt
. (6)

The ray orbit is then obtained by substituting for t′ and then
putting L = 0, that is

r′2 =
r4

p2 − r2 + 2mr . (7)

Darwin deduced that a ray with impact parameter p
greater than 3m

√
3 returns to r = ∞; the deflection angle may

∗This model is simply that of Oppenheimer and Volkoff [8] with a dif-
ferent boundary condition at the origin.

be many multiples of 2π as p approaches 3m
√

3, and in the
limiting case p = 3m

√
3 the ray circles indefinitely at r = 3m,

which is nowadays called the photonsphere. For p less than
this, the ray is captured, and it goes to what Darwin termed
the “barrier”, nowadays called the event horizon, at r = 2m.
He also repeated the point previously made by OS, that the
journey from r = 3m to r = 2m takes an infinite time. When
the collapse is incomplete, the surface being at r = r1 > 2m,
a ray arrives there making an angle with the normal of

ξ = tan−1

 r2
1

p2 − 1 +
2m
r1

−1/2 , (8)

and in the limiting case r1 = 2m this becomes

ξ = tan−1
( p
2m

)
. (9)

We may deduce directly the orbits of rays exiting from
the barrier; those falling within a cone of semiangle
tan−1(3

√
3/2) = 68.9 degrees go to our telescope at “infin-

ity”, forming an image of parallax 6m
√

3. Any collapsar with
2m < r1 < 3m has this same parallax, but at 3m the cone has
opened up fully to 90 degrees. A collapsar bigger than 3m
has a parallax bigger than 6m

√
3, while for much larger col-

lapsars, like white dwarfs of solar mass, light deflection is
negligible, and the parallax is then simply twice the surface
radius. In Figure 1 a number of rays have been plotted, leav-
ing various points in the surface, when r1 = 2.2m, and going
towards our telescope; we note that the rays going to the edge
of the image come from points on the “invisible face” of the
collapsar.

Fig. 1: The light rays issuing from the surface of a collapsar at 1.1
times the gravitational radius, collimated towards a distant telescope.
The outer rays are close to the edge of the image, which has a diame-
ter of 5.2 times the gravitational radius; these rays have their sources
on what, in the absence of gravitational lensing, would be the invis-
ible part of the surface. The unit of distance is the gravitational
radius.
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For Sagittarius A* the minimum parallax, according to
the above analysis, and with the distance of EHT from the
galactic centre equal to 2.4×1017 km, is 52 arc microseconds,
which exceeds the best available current value [3] by about 50
percent. The image profile, that is its intensity C(p) as p goes
from zero to 3m

√
3, is given by

C(p) =
∣∣∣∣∣ r1 sin ϕ0 cos ξ

p
dϕ0

dp

∣∣∣∣∣ , (10)

where ξ is given by (8), that is

cos ξ =

√
r3

1 − p2r1 + 2p2m

r3
1 + 2p2m

, (11)

and ϕ0 is the angle between the outward normal at the surface
and the ray’s final direction, that is

ϕ0 =

∫ ∞

r1

pdr√
r4 − p2r2 + 2mp2r

, (12)

leading to

dϕ0

dp
=

∫ ∞

r1

r4dr(
r4 − p2r2 + 2mp2r

)3/2 . (13)

Note that, for r1 ≫ 2m, ξ = ϕ0, p = r1 sin ϕ0, and C(p) =
1/r1 = const. with ϕ0 going from −π/2 to π/2, giving a uni-
form circular image of radius r1; for our case ϕ0 takes all real
values. In Figure 2 the image profile C(p) is plotted. The
edge of the image is at p = 3m

√
3 = 2.598 r0, where r0 is the

gravitational radius. Note that, though C(p) drops to zero at
p = 2.388r0, there is a bright fringe between that value and
p = 2.588 r0; though not shown in the Figure, there is a series
of narrower fringes between the latter value and the edge of
the image at p = 2.598 r0. The fringes result from light rays
circling close to the photonsphere before finally escaping to
reach the telescope, their minima occurring at p-values for
which ϕ0 are integer multiples of π.

A ray which leaves the surface in a direction falling out-
side the limiting cone, that is with an orbit described by p >
3m
√

3, turns round before reaching the photonsphere, and re-
turns to the barrier after an infinite time.

None of this accords with the OS description, in which
the cone closes down to zero at r = 2m.

3 The interior light orbits

According to the OS [4] model, the surface of the collapsar
completely contracts to the barrier only at t = ∞; in the words
of that article

. . . an external observer sees the star asymptoti-
cally shrinking to its gravitational radius.

Specifically r1(t) is given by

t = −2
3

√
r3

1

2m
− 2

√
2mr1 + 2m ln

√
r1 +

√
2m

√
r1 −

√
2m
. (14)

Fig. 2: The image profile C(p) formed by the rays in Figure 1. Again
the gravitational radius is the distance unit on the horizontal axis p,
and C(p) is normalized to C(0) = 1.

For r < r1 the OS metric is

ds2 =
r3

2mR3

(
dr
r
− dR

R

)2

− r2

R2 dR2 −

− r2dθ2 − r2 sin2 θ dϕ2 , (15)

where the coordinate R lies between 0 and 1, and is related
to t in a manner to be determined by matching conditions
imposed at the surface.

The interior null geodesics in the plane θ = π/2 are con-
structed from the Lagrangian

L =

 r3

2mR3

(
r′

r
− R′

R

)2

− r2

R2 R′2 − r2

1/2

. (16)

The Lagrange equations for r and R are, putting L′/L = 2r′/r
as in the exterior case,

2rr′′

R3 −
2r2R′′

R4 − 3r′2

R3 −
2rr′R′

R4 +
5r2R′2

R5 +

+
4mrR′2

R2 + 4mr = 0 (17)

and

2r2r′′

R4 − 2r3R′′

R5 − 3rr′2

R4 −
2r2r′R′

R5 +
5r3R′2

R6 +

+
4mr2R′′

R2 − 4mr2R′2

R3 = 0 . (18)

Combining these to eliminate r′′, we obtain

R′′ = R +
2R′2

R
, (19)

for which a sufficiently general solution, for 0 < R < 1, is

R = sin ϕ0 csc ϕ (ϕ0 < ϕ < π − ϕ0) . (20)
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Then, as in the exterior case, we obtain a first order equation
for r by substituting this in L and putting L = 0, namely

r′ =

√
2mr sin3 ϕ0

sin5 ϕ
− r cot ϕ , (21)

with the solution

r =
m sin ϕ0

2 sin ϕ
(A − sin ϕ0 cot ϕ)2. (22)

A ray which arrives at R = 1, that is ϕ = ϕ0, with r = r1 has
A = 2

√
r1/(2m) + cos ϕ0; the special case ϕ0 = 0 was given

in eq (14) of [1]. At this point the ray has gradient

r′ = csc ϕ0

√
2mr1 − r1 cot ϕ0 . (23)

4 Matching at the surface

OS [4] matched their metric with the exterior (1) by defining
the cotime y(r,R) related to t by

t
2m
= −2

3
y3/2 − 2

√
y + ln

√
y + 1
√
y − 1

; (24)

this they required to satisfy y(r1, 1) = r1/(2m). To match the
two metric tensors at R = 1 they then put

y =
r

2Rm
+

R2 − 1
2
. (25)

With the metrics matched at the surface, that means the
refractive indices are also matched, so the corresponding light
rays should join smoothly there. Eq (23) for the interior ray
gives, at r = r1,

r′2 + r2 − 2mr =
(
r1 csc ϕ0 −

√
2mr1 cot ϕ0

)2
, (26)

so the value

p =
r2

1 sin ϕ0

r1 −
√

2mr1 cos ϕ0
(27)

gives a smooth connection between the interior (23) and exte-
rior (7) rays at r = r1. Differentiating (24) and (25), we then
find that the values of t′ also match at r1, which confirms that
the light speed r′/t′ is continuous there.

It may now be seen that, as r1 approaches 2m, the speed
of light at the surface goes to zero, which generalizes the par-
ticular case treated in [1], where the light ray was normal to
the surface. Such behaviour may be understood as resulting
from the infinite “dust” density there (see below). This be-
haviour will be modified by the intervention of nongravita-
tional forces; in particular we have studied the effect of the
Fermi degeneracy pressure in a neutron star [7], for which
the density has a finite maximum well separated from both
the surface and r = 0. Thus, for a collapsar made of real stel-
lar matter, it makes sense to consider a state of equilibrium

whose radius exceeds the gravitational, and for which light
leaves the surface with a finite speed; this was the situation
depicted in Figure 1.

I add that the matching relation (25) is not unique, though
OS stated that it was. In my previous articles [1, 2] the alter-
native

y =
r

2Rm
− (1 − R)(5 − R)

4
(28)

was given. This is part of a wider family of matching rela-
tions, and, for this particular choice, has certain advantages
in respect of causality.

The infinite surface density of the OS final state may be
seen in their calculation of the scalar density ρ, namely

ρ =
3R3

8πr3 . (29)

Multiplying this by their three-volume element, we obtain

ρ
√−g dR dθ dϕ =

3R2 sin θ
8π

dR dθ dϕ , (30)

which, in terms of r, gives the density

ρ
√−g dr dθ dϕ =

3R2 sin θ
8π

(
∂R
∂r

)
t

dr dθ dϕ . (31)

The partial derivative is given, at cotime y = 1, by(
∂R
∂r

)
t
=

(
∂R
∂r

)
y

=
1

3m(1 − R2)
, (32)

giving infinite density at R = 1.
Actually we have found that the density in the shell just

inside r1 is very much reduced for a supermassive object like
Sagittarius A*, and I propose that the material there is an
electron gas with a nearly stationary nucleonic background∗

which should have broadly similar optical properties to both
the OS dust cloud and the neutron star. In these cases the light
speed will still be considerably reduced near the surface, but
will remain finite.

5 Discussion

The suggestion about the origin of the EHT image of Sagittar-
ius A*, namely that part of the light we receive comes from
the collapsar itself, has implications for the direction future
observations with the telescope should take. A central prob-
lem is to explain the present-day value of the parallax, which
is 37µas as opposed to the 52µas we obtained in Section 2. We
note that the size of this image is not at all well defined, be-
cause of the need to separate the signal from the background
noise of nearby objects; this is reflected by the wide error bar
in the above parallax. It should be noted also that the image
of the accretion disc has almost the same diameter as the one

∗This entails classifying Sagittarius A* as a supermassive white giant.
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described in Section 2 if the disc is inside the photonsphere,
and that its image is larger if it lies outside the photonsphere.

The fringes of the image, described in Section 2, do not
seem to have been noticed previously, though they are surely
present also in the image of the accretion disc. To distinguish
between the two images, arising, as they do, from two su-
perimposed sources of almost the same diameter, will require
further analysis along the lines of Section 2; the principal dif-
ference is the three-dimensional form of the collapsar, as op-
posed to the flat, effectively two-dimensional form of the disc.
Some progress, both in image enhancement and in theoretical
modelling, would help to clarify matters.

The classic article of Oppenheimer and Snyder [4], based
in turn on the equally classic one of Tolman [11], was essen-
tial for the construction of the matched orbits. In particular
these articles (see also [12]) enable us to identify the comov-
ing coordinate R used in Section 3. But the step required
to describe fully the orbits of particles of “dust”, that is the
stellar material, and of light rays near the surface, is the iden-
tification of the time coordinate t(r,R) made in our earlier ar-
ticle [1] and in Section 4 of this one.
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We modify the propagator of the quantum fields for the quarks and gluons. With that
we have finite results (without ultraviolet divergence) in the perturbation theory. Then
we search for a2 p2 → 0 and a2k2 → 0 with fixing the Lagrangian parameters Zi, there-
fore we can ignore our modification. We find the situation a2 p2 → 0 and a2k2 → 0
associates with the free particles situation g → 0 (g is the coupling constant) and the
situation a , 0 associates with the perturbation breaking. We try to give the modifi-
cation terms a2 p2/(1 + a2 p2) and a2k2/(1 + a2k2) physical aspects, for that we find the
corresponding terms in the Lagrangian. To do that we find the role of those terms in
the Feynman diagrams, in self energies, quarks gluons vertex, . . . We see we can relate
the propagator modification to fields dual behavior, pairing particle-antiparticle appears
as scalar particles with mass 1/a. For the quarks we can interrupt these particles as
pions with charges (−1, 0,+1). If we used the propagator modification for deriving the
quarks static potential U(r) of exchanged gluons and pions we find U(0) ∼ 1/a if we
compare this with the Coulomb potential we find the length a equivalent to the smallest
distance between the interacting quarks. We use the static potential in quarks plasma
study. We find the free and confinement quarks phases. We suggest a nuclear compres-
sion. We find there is a decrease in the global pressure due to the nuclear condensation.
We use this decrease in the Friedman equations solutions, we find we can control the
dark matter and dark energy, we can cancel them.

1 Quarks and gluons propagator modification

To remove the ultraviolet (UV) divergences in the quarks and
gluons perturbed interaction, we modify the propagator like:

∆
ab
µν(k

2) =
gµν δ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
for gluons (1.1)

S̄ i j(/p) =
−/pδi j

p2 − iε

(
1 −

a2 p2

1 + a2 p2

)
for quarks (1.2)

the indexes a and b are gluons indexes, i and j color indexes
and a is critical length, ~ = c = 1. We use this modification
in calculating the quarks self-energy for the perturbation in-
teraction with the gluons, then we renormalize the interaction
and search for the condition a2 p2 → 0 and a2k2 → 0. We
have

Fig. 1: The quarks self energy in strong interaction.

iΣi j(/p) =

∫
d4`

(2π)4

[
igsγ

µT a
ik

S kl(/p + /̀)
i

igsγ
νT b

l j

] ∆
ab
µν(`

2)

i

= g2
sT a

ikT b
l j

∫
d4`

(2π)4

[
γµ

(−/p − /̀)δkl

(p + `)2 γν
] gµνδab

`2 .

So

iΣi j(/p) = g2
sT a

ikT a
k j

∫
d4`

(2π)4

[
γµ

(−/p − /̀)
(p + `)2 γ

ν
] gµν
`2

= g2
sC(R)δi j

∫
d4`

(2π)4

[
γµ

(−/p − /̀)
(p + `)2 γµ

] 1
`2

using γµ(−/p − /̀)γµ = 2(−/p − /̀), it becomes

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2 .

Now we use the gluon modified propagator

∆
ab
µν(k

2) =
gµνδ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
we get

iΣi j(/p) = 2g2
sC(R)δi j∫

d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2

(
1 −

a2`2

1 + a2`2

)
(1.3)

= 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2

1
1 + a2`2 . (1.4)

For massive quarks, the self-energy becomes:

iΣi j(/p) = g2
sC(R)δi j

∫
d4`

(2π)4

N
(p + `)2 + m2

q

1
`2 + m2

γ

1
1 + a2`2
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with N = γµ(−/p − /̀ + m)γµ, using the Feynman formula:

1
((p + `)2+m2) · (`2+m2

γ) · (1/a2 + `2)

=

∫
dF3

1[
((p + `)2+m2)x1 + (`2+m2

γ)x2 + (1/a2 + `2)x3

]3

with
∫

dF3 = 2
∫ 1

0 dx1dx2dx3 δ(x1 + x2 + x3 − 1) and setting
the transformation q = ` + x1 p with changing the integral to
be over q and making transformation to Euclidean space, the
self-energy becomes [2]

iΣi j(/p) = g2
sC(R)δi ji

∫
d4q̄

(2π)4

1
a2

∫
dF3

N
[q̄2 + D]3

with D = −x2
1 p2 + x1 p2 + x1m2 + x2 + m2

γ + (1− x1 − x2)1/a2.
The linear term in q integrates to zero, using q = ` + x1 p, N
is replaced with [2]

N → −2(1 − x1)/p − 4m .

Using the relation∫
ddq̄

(2π)d

(q̄2)a

(q̄2 + D)b =
Γ(b − a − d

2 )Γ(a+ d
2 )

(4π)
d
2 Γ(b)Γ( d

2 )
D−(b−a− d

2 ) ,

the integral over q in Euclidean space becomes:

Σi j(/p) = g2
sC(R)δi j

1
a2

∫
dF3N

Γ(3−2)Γ(2)
(4π)2Γ(3)Γ(2)

D−(3−2)

= g2
sC(R)δi j

1
a2

∫
dF3

N
16π2 × 2

D−1 .

The self-energy becomes

Σi j(/p) = g2
sC(R)δi j

1
a2

∫ 1

0
dx1

∫ 1−x1

0
dx2

N
16π2

1
D

=
g2

sC(R)δi j

16π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

−2(1 − x1)/p − 4m

a2
[
−x2

1 p2 + x1 p2 + x1m2 + x2m2
γ + (1 − x1 − x2)/a2

] .
We write

Σi j(/p) = C(R)δi j
g2

s

8π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

−(1 − x1)/p − 2m[
a2 f + (1 − x1 − x2)

] (1.5)

with f = −x2
1 p2 + x1 p2 + x1m2 + x2m2

γ this is a finite result
(without divergences).

Now we renormalize the fermions propagator to give the
real states and let a → 0. The interacting quarks propagator
becomes [2]:

S (/p)−1 = /p + m − Σ(/p) . (1.6)

To renormalize the interacting field, we write it as

S (/p)−1 = /p + m − Σ(/p) = Z2/p + Zmm . (1.7)

The parameters Z2 and Zm are the renormalization parameters,
later we try to make them constants. For the interacting field
ψ we have:

〈0|ψ(/p)ψ̄(−/p) |0〉 =
1
i

1
/p + m − Σ(/p)

=
1
i

1
Z2/p + Zmm

=
1

iZ2

1

/p + Z−1
2 Zmm

.

We can rewrite as

〈0|
√

Z2ψ(/p)
√

Z2ψ̄(−/p) |0〉 =
1
i

1

/p + Z−1
2 Zmm

and make m0 = Z−1
2 Zmm and ψ0=

√
Z2ψ with that we have

bare fields ψ0 that are like the free fields and like the classical
fields, so we can make them independent of the interaction, so
∂ψ0/∂p2 = ∂m0/∂p2 = 0 for a→ 0 and by that we renormal-
ize the interaction. We make ψ the interacting field with mass
m the physical mass, but we have to make < [Σ(−m)] = 0 in
(1.6) but with m2

γ < 0. From (1.5) and (1.7) we have

Z2 = 1 + C(R)
g2

s

8π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

1 − x1[
a2 f + (1 − x1 − x2)

]
Zm = 1 + C(R)

g2
s

8π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

2[
a2 f + (1 − x1 − x2)

]
and f = −x2

1 p2 + x1 p2 + x1m2
q + x2m2

γ.

By that we remove the self-energy of the interacting qu-
ark and make the mass variable. For easiness we ignore mq

and mγ so

Z2 = 1 + C(R)
αs

2π

∫ 1

0
(1 − x) ln

(
1 +

1
a2 p2x

)
dx

= 1 +
C(R)αs

4π(a2 p2)2

[
(a2 p2)2 ln

(
1 +

1
a2 p2

)
−

− a2 p2 + (2a2 p2 + 1) ln(a2 p2 + 1)
]
.

Now we fix Z2 = constant and search for the situations −a2 p2

→ 0 for timelike and a2 p2 → 0 for spacelike, we have

αs

(a2 p2)2

[
(a2 p2)2 ln

(
1 +

1
a2 p2

)
−

−a2 p2 + (2a2 p2 + 1) ln
(
a2 p2 + 1

) ]
= c .

For spacelike p2 > 0, we have Fig. 2. According to this figure,
we have a2 p2 = exp(−c/αs) → 0 when αs → 0 this is the
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Fig. 2: The behavior of the length a with fixing Z2.

decoupling; p2 � Λ2
QCD. It is the free quarks and gluons

situation; αs → 0 occurs at high energy for the free quarks
phase. Because ap → 0 so p � 1/a this gives r � a →
0, therefore the propagator modification is ignored. So the
behavior of the length a is like the behavior of the coupling
constant αs and the modification terms are removed ap � 1
at high energy (free quarks phase).

For the limited low energy we fix αs/a2 = constant×σ, σ
is string tension that appears in the low energy static potential
U(r) as we will see, for a→ 0 we have

Z2 = 1+C(R)
αs

4π

(
3
2
− ln

(
p2a2

)
+ O(p2a2)

)
→ 1,when a→ 0

Zm = 1 +C(R)
αs

π

(
1 − ln

(
p2a2

)
+ O(p2a2)

)
→ 1,when a→ 0

We know the strong interaction coupling constant αs in-
creases extremely at low limited energy, therefore, according
to the figure, we can’t let a→ 0, so we assume when the per-
turbation breaks down the length a could not be removed and
takes non-zero value, let it be a0, so the propagator modifica-
tion takes place.

1.1 The confinement situation

According to Fig. 2 it is possible to have ap > 1 (the coupling
constant αs increases extremely at low energy), therefore p >
1/a → r < a which is the quarks confinement phase at low
energy.

To study the quarks confinement, we use the modified glu-
ons propagator in deriving the static potential of the quark-
quark gluons exchange. We define this potential in momen-
tum space using M matrix elements for quark-quark (glu-
ons exchange) interaction, with ω0 = k0 = 0 (like the Born
approximation to the scattering amplitude in non-relativistic

quantum mechanics [1])

iM = −iṼ(k)Jµ(p′2, p2)Jµ(p′1, p1)

with the transferred current Jµ(p′, p) = ū(p′)γµu(p) where
spinor states u(p) include the helicity states.

We find M matrix elements using the Feynman diagrams
for quark-quark gluons exchange using color representation
for one quark like

u(p)color⊗spinor =
1
√

3

 1
1
1

 u(p)spinor .

For distinguishable quarks (only one diagram), we have

iM = ūi(p′2)igsγ
µ(T a) j

i u j(p2)
∆ab
µν(k

2)

i
ūk(p′1)igsγ

ν(T b)`ku`(p1)

with k = p′2 − p2 = p1 − p′1.
Using Gell-Mann matrices, we consider the matrices T a =

λa; λ1, . . . , λ8 as SU(3) generators, and using the modified
gluons propagator we have

iM =
∑
i jk`

ig2
s ūi(p′2)γµ(T a) j

i u j(p2)
gµνδ

ab

k2

(
1 −

a2k2

1 + a2k2

)
ūk(p′1)γν(T b)`ku`(p1)

to sum over the color indexes i, j with the color representation
like above and over gluon index a we write∑

i j

ūi(p′2)γµ(T a) j
i u j(p2)

= ū(p′2)γµ
1
√

3

(
1 1 1

)
(T a)

1
√

3

 1
1
1

 u(p2)

and

1
√

3

(
1 1 1

)
(T a)

1
√

3

 1
1
1

 =
1
3

∑
i j

(T a) j
i .

Therefore the M matrix elements become

M =
1
9

∑
a

∑
i j

(T a) j
i

2

g2
s ū(p′2)γµu(p2)

1
k2

(
1 −

a2k2

1 + a2k2

)
ū(p′1)γµu(p1) .

The Gell-Mann matrices with nonzero sum of the elements
are

λ1 =

0 1 0
1 0 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 and λ6 =

0 0 0
0 0 1
0 1 0

 .
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So ∑
a

∑
i j

(T a) j
i

2

= 3 (2)2 = 12.

Therefore we have

M =
12g2

s

9
1
k2

(
1 −

a2k2

1 + a2k2

)
ū(p′2)γµu(p2)ū(p′1)γµu(p1) .

We have the potential Ṽ(k) in momentum space as we defined

iM = −iṼ(k)Jµ(p′2, p2)Jµ(p′1, p1)

= i
12g2

s

9
g2

s ū(p′2)γµu(p2)
1
k2

(
1 −

k2

k2 + 1/a2

)
ū(p′1)γµu(p1)

with the transferred currents Jµ(p′2, p2) = ū(p′2)γµu(p2) and
Jµ(p′1, p1) = ū(p′1)γµu(p1). So we have

Ṽ(k) = −
4g2

s

3
1
k2

(
1 −

k2

k2 + 1/a2

)
.

Making the Fourier transformation to the space XYZ, we have
the static potential U(x) (k0 = 0) like the electric potential [1]

U (x) =

∫
d3k

(2π)3 Ṽ(k) eik·x

= −
4g2

s

3

∫
d3k

(2π)3

1
k2

(
1 −

k2

k2 + 1/a2

)
eik·x

= −
4g2

s

3 × 4πr

(
1 − exp

(
−

r
a

))
with r =

√
x2 + y2 + z2 .

For low limited energy we have ap > 1 (Fig. 2) so r < a, the
static potential becomes

U (r) = −
4g2

s

3 × 4πr

[
1 − exp

(
−

r
a

)]
= −u0 + a1r − a2r2 + . . .

with

u0 =
4
3
g2

s

4πa
=

4αs

3a
,

a1 = σ =
g2

s

3 × 2πa2 =
2αs

3a2 ,

a2 =
4αs

3 × 6a3 .

To fix u0 = 4αs/3a we write it as

u0 =
4αs

3a
=

4αs

3a2 a = 2σa

fixing the string tension σ and the length a → a0 at low en-
ergy.

This potential appears at low limited energy and prevents
the quarks from spreading away, r < a so it holds the quarks
inside the hadrons. But starting from the high energies a →

0, although the quarks masses are small but they are created
only at high energies where they are free and by dropping the
energy the situation r < a appears, the length a would run and
becomes higher at low energies, so have −a2k2 > 1 for r < a
which is the confinement. The confinement (at low limited
energy) means when r → a the two interacting quarks kinetic
energy becomes zero (ignore the quark mass), therefore the
highest kinetic energy that the quark can get equals σa which
relates to the potential U(r) = −u0 + σr + . . . for r < a.

We can make U(r) the potential for all quarks in r < a
so σ →

∑
σ and consider r as average distance between the

interacting quarks, so the energy σa becomes the highest ki-
netic energy of all quarks. When r → a the potential becomes
U(0) = −u0 = −4αs/3a = −σa < 0 therefore the total quarks
energy becomes negative.

In this situation the free quarks disappear, they become
condensed in the hadrons. So the role of the potential is re-
ducing the number of free quarks. Therefore the potential
u0 = σa leads to decrease of the free quarks chemical poten-
tial µ0, and we have

µ0 → µ0 + U(r) = µ0 −
αs

r

(
1 − e−r/a

)
= µ(r)

≈ µ0 − u0 + σr for r < a

where we replaced 4αs/3 with αs. We renormalize this step
at high energy for the free quarks, quarks plasma.

2 The quarks field dual behavior

To have finite results in the perturbation interaction, we mod-
ified the propagator like

∆
ab
µν(k

2) =
gµνδ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
for gluons

S̄ i j(/p) =
−/pδi j

p2 − iε

(
1 −

a2 p2

1 + a2 p2

)
for quarks .

We saw we can ignore the modification terms a2 p2/(1+a2 p2)
and a2k2/(1 + a2k2) at high energy, but when the energy drops
down to limited energy, those terms take place, we can give
them a physical meaning, for that we search for the corre-
sponding terms in the Lagrangian.

To do this, we find the role of those terms in the Feynman
diagrams, in self energies, quarks-gluons vertex, . . . We find
that the terms a2 p2/(1 + a2 p2) and a2k2/(1 + a2k2) can be re-
lated to pairing quark-antiquark that appear as scalar particles
with mass 1/a and charges (−1, 0,+1) and we can interpret
these particles as pions.

That appears in the particles-antiparticles composition in
Feynman diagrams which mean for the fields, there is fields
dual behavior, free fields and composite fields, this behavior
leads to the possibility of separating the particles and possi-
bility for their composition, so the dual behavior of the fields
is elementary behavior. In general, for any particle A and its
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antiparticle A, in pertubation interaction, they pair and have a
scalar particle AA, this leads to reduce the currents (charges)
of particles and antiparticles.

That is, for each outcoming particle, in Feynman dia-
grams, there is incoming antiparticle with positive energy and
negative mass, depending on the coupling constant behavior
(this is at high energy for the electromagnetic interaction and
at low energy for the strong interaction, quarks and gluons).
Therefore reducing their interactions with the charges in a
way leads to finite results in the perturbation results.

Using the gluons modified propagator, the quark self-en-
ergy becomes (1.3)

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2

(
1 −

a2`2

1 + a2`2

)
.

We can separate it into two parts

1. Quark−gluon part:

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2 ;

2. pairing quarks part:

iΣi j(/p) = 2g2
sC(R)

∫
d4`

(2π)4

(−/p − /̀)δi j

(p + `)2

1
`2

(
−

a2`2

1 + a2`2

)
.

It appears that in the pairing part there is a scalar field ϕ prop-
agator:

1
i

1
`2 + 1/a2

which is real scalar particles field propagator with mass 1/a,
to preserve the charges, spin, . . ., this particle must be con-
densed of quark-antiquark |qq〉 (particle-antiparticle in gen-
eral) so we have new diagram (Fig. 3), we rewrite

Fig. 3: Representation the dual behavior, joined particle−antiparticle
with opposite momentum−energy.

iΣi j(/p) = 2(−gs)2C(R)
∫

d4`

(2π)4

(−/p − /̀)δi j

i(p + `)2

−i
(`)2 + 1/a2 .

Therefore we must add new interaction terms to the quarks
Lagrangian, the possible terms are:

∆L = −igϕqϕQ̄Q with gϕq = gs
√

2C(R)

or
∆L = gϕqϕQ̄γ5Q .

We expect the pairing particles-antiparticles preserve the fla-
vor symmetry, so the real scalar field ϕ becomes |qiq j〉. For
two flavors qi and q j we write the quarks field like Q =(
qi q j

)T
so

∆L = −igϕqϕ
aQ̄T a

2 Q or ∆L = gϕqϕ
aQ̄T a

2γ5Q .

The real scalar fields ϕa could interact with itself and have
real non-zero ground value υ then 〈ϕ〉 = υ so we can renor-
malize it like

ϕaT a
2 → ν − iνπaT a

2 + ...

then we have

∆L = −igϕqQ̄ (ν − iνπaT a
2 + ...) Q

= −igϕqνQ̄Q − gϕππQ̄Q + ... Chiral symmetry breaking

or

∆L = gϕqQ̄(ν− iνπaT a
2 + ...)γ5Q→ gπqQ̄γ5Q− igπqπQ̄γ5Q+ ...

Here the particles πaT a
2 → π = (π0, π−, π+) are the pions.

The unusual terms −igϕaνQ̄Q and gπqQ̄γ5Q are not hermitian
and violate the symmetries, so they let the quarks disappear,
damping at low energy r < a :

ei∆Et |Q〉 = e−i∆Lt |Q〉 = e−gϕqνq̄qt |Q〉

=
∑

n

e−gϕqν(q̄q)t |En〉 〈En |Q〉 → |0〉 〈0 |Q〉 .

En is the energy of the quarks in state |n〉 and eiĤt |Q〉 is the
eigenstate of the quarks field operator Q̂(t) in Heisenberg pic-
ture, Q̂(t) = eiĤtQ̂e−iĤt.

Fig. 4: The quarks interaction with pions as a result of dual behavior.

That damping in the states is because of the pairing quark-
antiquark at low energy a , 0, this pairing reduces the charges
(currents) of free quarks (Fig. 5). We can see that if we relate
the minus sign in −a2`2/(1 + a2`2) to the fermions propaga-
tor:

S (x − y) =

∫
d4 p

(2π)4

−/p
p2 eip(x−y) (propagator from y to x)

so

−S (x − y) = −

∫
d4 p

(2π)4

−/p
p2 eip(x−y) =

∫
d4 p

(2π)4

+/p
p2 eip(x−y)
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change p→ −p (propagator from x to y)

−S (x − y) =

∫
d4 p

(2π)4

−/p
p2 e−ip(x−y) =

∫
d4 p

(2π)4

−/p
p2 eip(y−x) .

So it is equivalent to invert the propagator y→x to x→y with
positive energy and negative mass. Therefore it reduces the
charges, currents, energies, . . . of the particles and antiparti-
cles, we have

Fig. 5: Omitting the distance x-y from the propagator.

(p + `) + (−p − `) = 0 and (−`) + (`) = 0

so incoming with p and outcoming with p, it is like to say
the particles jump from y to x, in other words the distance
y − x is removed from the interaction. We expect the fields
dual behavior takes place in negative potential. If there is
no negative potential the paired particles would not survive
(never condense). For the quarks, the case 0 < r < a must
associate with negative potential u and E + u < 0. Because
the behavior of the strong interaction coupling constant at low
energy αs is high, we expect negative potential at low energy
E + u < 0 (E > 0, u < 0), so the quarks condense.

Because of the dual behavior of the quarks field which
leads to quarks composite in scalar charged particles like the
pions (π−, π0, π+) and because of their quantized charges (−1,
0,+1) we expect the hadrons charges to be also quantized
(−Q,−Q+1, . . . 0,+1, . . . ,+Q) this quantization relates to the
dual behavior of the quarks field in different hadrons, pairing
quarks of different hadrons, so these condensed quarks; pions,
kaons, . . . are shared between the hadrons, so we put them to-
gether with the hadrons in groups, like the pions (−1, 0,+1)
which can be inserted in SU(2) generators which can repre-
sent the proton-neutron pairing. Therefore the protons and
neutrons Lagrangian contains the terms −igπNπ

αN̄Tα
2 N with

the nucleon field N =

(
p
n

)
.

3 The quarks plasma

We tried before to explain how the quarks are confined, for
the strong interaction, we have the condition r < a , 0 at
low limited energy and the condition r > a → 0 at high en-
ergies for free quarks where the length a is removed from the
propagators. But it appears to be fixed at low limited energy.
In the last section we showed there is dual behavior for the
quarks field, but when the length a is fixed, the result is scalar

particles (pions) with mass 1/a0 at low limited energy and the
result is the chiral symmetry breaking. We found the length
a appears in the quark-quark strong interaction (gluons ex-
changing) potential U(r)r<a < 0, so it relates to interaction
strength. That is because the behavior of the length a is like
the behavior of the coupling constant αs. The confinement
(at low energy r < a) means when r → a the two interacting
quarks kinetic energy becomes zero (ignore the quark mass),
therefore the highest kinetic energy the quark can get equals
σa which relates to the potential U(r) = −u0 + σr + . . . for
r < a (at low limited energy). When r → a the potential be-
comes U(0) = −u0 = −4αs/3a < 0 therefore the total quarks
energy becomes negative. In this situation the free quarks
disappear (µ0 → 0), they become condensed in the hadrons.

We try here to use statistical thermodynamics to show
how the free quarks disappear at low energies (low tempera-
tures) where the length a becomes fixed, so the chiral symme-
try breaking and the quarks condensation. One of the results
is that the confinement phase (3.14) not necessarily associates
with chiral symmetry breaking, that is, the chiral symmetry
breaking appears at the end of the cooling process when the
expanding and cooling are ended and the length a becomes
fixed, therefore the chiral symmetry breaking occurs and the
pions become massive m = 1/a0.

We start with the massless quarks, their energy in volume
V is

E = c
∫

a3
d3r

∫ ∞

0
dε g(ε) ε

1
eβ(ε−µ(r)) + 1

: g(ε) = gq
V

2π2 ε
2

(3.1)

where µ(r) = µ0 + u(r) with u(r) = −
4αs
3r

(
1 − e−r/a

)
.

Here we inserted the quark-quark strong interaction po-
tential U(r) in the chemical potential (for decreasing the free
quarks energy, as we think, the quarks potential reduces the
free quarks chemical potential and make them condense at
low energy) and because r < a we integrate over the volume
a3: r is the distance between the interacting quarks. We can
replace 4αs/3→ αs.

The constant c is determined by comparing with free qu-
arks high energy where the potential U(r) → 0 and αs → 0
(decoupling) at high energies, so the length a → 0 that is as
we said before, the behavior of the length a is like the behav-
ior of the coupling constant gs therefore the quarks become
free at high energies.

By integrating over the energy (Maple program) we have:

E = cgq
V

2π2

∫
a3

d3r
∫ ∞

0
dε

ε3

eβ(ε−µ(r)) + 1

= cgq
V

2π2β4

∫
a3

d3r
[
7π4

60
+
π2

2
u0(r)2 +

1
4

u0(r)4+

+ 6
∞∑

k=1

(−1)ke−kβµ(r)

k4

]
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with u0(r) = βµ(r) = β(µ0 + u(r)). By integrating over r (the
distance between the interacting quarks) we have

E = cgq
2Va3

πx4

[
3.78 + 2 (βµ0)2

(
0.82 − 1.16

αs

aµ0
+

+ 0.41
(
αs

aµ0

)2 )
+ (βµ0)4

(
0.08 − 0.23

αs

aµ0
+

+ 0.25
(
αs

aµ0

)2

− 0.12
(
αs

aµ0

)3

+ 0.02
(
αs

aµ0

)4 )
+

+ 6
∞∑

k=1

∫ 1

0
x2dx

(−1)ke−kβµ(x)

k4

]
.

gq is the quarks degeneracy number and x = βµ0. For eas-
iness we write αs/aµ0 = 2σa/µ0 = y in the energy relation.
So it becomes

E = cgq
2Va3

πx4

[
3.78 + 2(βµ0)2

(
0.82 − 1.16y + 0.41y2

)
+ (βµ0)4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

)
+ 6

∞∑
k=1

∫ 1

0
x2dx

(−1)ke−kβµ(x)

k4

]
. (3.2)

at high energy: x = βµ0 = µ0/T → 0. To find the constant
c we compare with quarks high energy where they are free
massless particles:

Ehigh = gqV
7π2

240
T 4 .

When T is high, x = (µ0/T ) → 0 and y → 0 therefore
βµ(x)→ 0 so we expand e−kβµ(x) near βµ(x) = 0, we have:

Ehigh = cgq
2a3V
πx4

[
3.78 − 1.88 + O(x, y)

]
→ cgq

2a3V
πx4 1.9

→ gq
7π2V
240

T 4 = cgq
2a3V
πx4 1.9→ c =

π

2a31.9
7π2

240
µ4

0 (3.3)

The energy becomes:

E =
1

1.9
7π2

240
µ4

0gq
V

(βµ0)4

[
3.78 + 2(βµ0)2(0.82 − 1.16y +

+ 0.41y2) + (βµ0)4(0.08 − 0.23y + 0.25y2 − 0.12y3 +

+ 0.02y4) + 6
∞∑

k=1

∫ 1

0
x2dx

(−1)ke−ku0(x)

k4

]
.

Now we see the effects of the length a on the energy, at
high energy, by fixing x = µ0/T and varying y = σa/2µ0 < 1:

Ehigh =
1

1.9
7π2

240
gqVµ4

0 x−4
[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y + (3.4)

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]

x=βµ0→0
.

We expanded e−kβµ(x) near βµ(x) = 0 and fixed the tension σ
as we assumed before, so we have Fig. 6.

Fig. 6: Decreasing the high energy with increasing y.

It appears in the figure that the high energy quarks lose en-
ergy when the length a increases although the temperature is
fixed. That means, when the length a increases the number of
the excited quarks decreases. That is because of the attractive
linear potential σr . . . between the quarks, that potential ab-
sorbs an energy (r < a confinement, section 1), so the quarks
are cooled faster by the expansion. As we said before, the be-
havior of length a is like the behavior of the coupling constant
αs so when the energy dropped to lowest energy, the length
a increased extremely and this is fast cooling (extreme cool-
ing). That occurs when the particles spread away, the length
a, as a distance between the quarks, increases.

To determine the end, we search for the balance situa-
tions, such as zero pressure, confinement condition, ... First
we find the high energy pressure including the effects of the
potential σa. Starting from the general pressure relation:

p = −
∂

∂V
F where F = −T ln Z = −

1
β

ln Z

here we use the relation:

ln Z = c
∫

a3
d3r

∫ ∞

0
dε g(ε) ln

(
e−β(ε−µ(r)) + 1

)
: g(ε) = gq

V
2π2 ε

2

and the pressure becomes

P =
1
3

∂

∂V
E
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so for high energy x = βµ0 → 0 we have the pressure:

Phigh =
1
3

∂

∂V
Ehigh

=
∂

∂V
1

3 × 1.9
7π2

240
gqVµ4

0 x−4
[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y +

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]
.

Now the key point is, we want to include the potential
effect on the pressure so we replace the volume V with the
volume a3 ∼ y3 so

Phigh →
∂

∂y3 y
3 1

3 × 1.9
7π2

240
gq µ

4
0 x−4

[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y + (3.5)

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]

which is represented in Fig. 7, without conditions on y or on
the length a.

Fig. 7: The effects of potential σa on the pressure.

It is clear (without conditions on y) the pressure decreases
with increasing the length a (decreasing the quarks energy
−p2) until it becomes zero, then negative. That becomes clear
at low energy where there are conditions on y and so on the
length a.

For the low energy quarks, T → 0 so βµ(x) → ∞ so
e−kβµ(x) → 0. The energy becomes:

Elow =
1

1.9
7π2

240
µ4

0 gq
V

(βµ0)4

[
3.78 +

+ 2 (βµ0)2
(
0.82 − 1.16y + 0.41y2

)
+ (3.6)

+ (βµ0)4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

Making x = T/µ0 so

Elow =
1

1.9
7π2

240
µ4

0 gqV x4
[
3.78 + 2x−2

(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

Now the key point, we want to show the effect of the potential
σa on the energy so we see the behavior of the energy in the
volume a3 with respect to y = 2σa/µ0 the diagram is given
in Fig. 8. That is extreme behavior after y = 0.6 where the

Fig. 8: The extremely decreasing in quarks low energy in the strong
interaction.

energy (E/V) a3 decreases when the volume a3 increases, the
end in y = 1 where the free quarks disappear for y > 1.

Now we can distinguish between the confinement and the
chiral symmetry breaking, when y > 0.6 there is confine-
ment: extreme cooling, negative pressure. But when reach
y = 1 there is chiral symmetry breaking where the length a
becomes fixed, and from the quarks field dual behavior there
are scalar charged particles with mass 1/a appear when the
length a is fixed with non-zero value a0. Here the evidence for
fixing the length a is the lowest limited quarks energy, that is
as we said before, the behavior of the length a is like the be-
havior of the coupling constant αs so when the quarks energy
dropped (extreme cooling) the length a increases extremely
to reach the highest value when y = 1 which is equivalent to
smallest energy E = 0 (the cooling end). Another evidence
for fixing the length a (chiral symmetry breaking) is the low
energy pressure:

Plow =
1
3

∂

∂V
Elow →

1
3

∂

∂y3

Elow

V
y3 .

To include the potential effect we study the pressure using the
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volume a3 ∼ y3 therefore

Plow →
1
3

∂

∂y3

1
1.9

7π2

240
gq µ

4
0 y

3 x4
[
3.78 +

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
and therefore

Plow

µ4
0

=
1

9 × 1.9
7π2

240
gq

[
3 × 3.78 x4 +

+ 3 × 2 × x2
(
0.82 − 1.16y + 0.41y2

)
(3.7)

+ 3 × (0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4) +

+ 2yx2 (−1.16 + 0.82y) +

+ y
(
−0.23 + 0.5y − 0.36y2 + 0.08y3

) ]
.

We see its behavior in Fig. 9 below

Fig. 9: The extremely decreasing in the pressure at low energy.

It is clear from the figure, when y > 0.6 the quarks pres-
sure becomes negative. We expect the condensed quarks pha-
se (confinement quarks) has positive pressure, so the pre-
ferred phase is the condensed quarks phase. So when y > 0.6
the quarks condense until y = 1 : a → a0 ≈ 1/(135 −
140 Mev) the quarks disappear, the scalar charged particles
(pions) appear instead of them, that is because of the quarks
dual behavior (free-condensed quarks), but at low limited en-
ergy the condensed phase has a big chance instead the free
phase.

3.1 The confinement phase

In this paper we study two quarks (up and down) conden-
sation in the pions (π0, π+, π−) and baryons (n, p+, p−), so the
degeneracy number is gq = 2 f lavor×2charge×2spin×3color = 24.

We need more clarifying for determining if the quarks
could stay free particles or they condense in hadrons. We

can think they could be free if their energy is enough for cov-
ering the strong interaction potential and stay free particles
with least possible energy (at 0 temperature). Unless they
condense in the hadrons.

To cover the strong interaction potential means to lose an
energy Eu which is transferred to the exchanged static gluons
and pions which are created between the low energy quarks.
So the remaining energy in the volume 4πa3/3 is

Eq,low

V
4π
3

a3 −
Eu

V
4π
3

a3 . (3.8)

This energy must be enough for the least possible free quarks.
Therefore we must determine the chemical potential µ0 of the
free quarks with smallest possible density at 0 temperature.

According to the quarks confinement r < a at low limited
energy, which means the highest possible distance between
the two interacting quarks is a, we expect the least quarks
density is two quarks in the volume 4π (a/2)3/3.

Fig. 10: The quarks confinement at low energy.

From this view we can calculate the least quarks chemical
potential µ0 of free quarks:

2
(

4π
3

( a
2

)3
)−1

=
1
V

∫ µ0

0
g(ε) dε = gq

µ3
0

6π2

→

(
µ0

a
2

)3
=

9π
gq

→ (µ0a)3 =
8 × 9π
gq

1/a is the pion mass when a → a0 in the end of free quarks
phase so 1/a → (135 − 140) Mev. So the least free quarks
energy density in 0 temperature is

ε f ree

V
=

1
V

∫ µ0

0
g(ε) ε dε = gq

µ4
0

4 × 2π2 .

The smallest energy of the free quarks in the volume 4πa3/3
is

ε f ree,a3 = gq
µ4

0

4 × 2π2

4πa3

3
=

4π
3
gq

µ0

4 × 2π2 (µ0a)3

=
4π
3
gq

µ0

4 × 2π2

8 × 9π
gq

=
4π
3

9
π
µ0 (3.9)
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therefore
ε f ree,a3

2µ0
=

4π
3

9
2π

=
4π
3
× 1.43 .

Because the chemical potential µ ∼ 1/a and µ → µ0 when
a→ a0 and because y ∼ a so we modified µ0 → µ0/y so

4π
3
× 1.43→

4π
3
×

1.43
y

. (3.10)

Now we find the least energy Eu which is transferred to the
static exchanged gluons and pions according to the potential

u(r) = −
4αs

3r

(
1 − e−r/a

)
≈ −u0 + σr : r < a .

We absorbed 4/3 to αs so and made αs/aµ0 = 2σa/µ0 = y the
constant σ is the string tension. This potential is inserted to
reduce the chemical potential µ0 and the energy is renormal-
ized at high energy. So we have µ0 → µ0 + u(r) :

µ(r) = µ0 −
αs

r

(
1 − e−r/a

)
≈ µ0 − u0 + σr : r < a .

Therefore we can calculate the least absorbed energy by this
potential, by calculating the changes on the energy density at
0 temperature

ε(αs/a)
V

=
ε(y)
V

=
1
V

c
∫ a

0
4πr2dr

∫ µ(r)

0
g(ε) ε dε

= c
∫ a

0
4πr2dr gq

µ(r)4

4 × 2π2 .

The constant c is determined

c =
π

2a31.9
7π2

240

so the interaction energy is

ε(αs/a)
V

=
ε(y)
V

= gq
π

2a31.9
7π2

240
4π

4 × 2π2

∫ a

0
r2drµ(r)4

= gq
7π2

4 × 1.9 × 240a3

∫ a

0
r2drµ(r)4 .

This becomes

ε(y)
V

= gq
7π2

4 × 1.9 × 240a3

∫ a

0
r2dr

[
µ0 −

αs

r

(
1 − e−r/a

)]4

= gq
7π2

4 × 1.9 × 240a3 (µ0)4
∫ a

0
r2dr

[
1 −

αs

µ0r

(
1 − e−r/a

)]4

Using the change r = ax so

ε(y)
V

= gq
7π2

4 × 1.9 × 240a3 (µ0)4∫ 1

0
a3x2dx

[
1 −

αs

µ0ax
(
1 − e−x)]4

therefore

ε(y)
V

= gq
7π2

4 × 1.9 × 240
(µ0)4

∫ 1

0
x2dx

[
1 −

y

x
(
1 − e−x)]4

.

The spent energy for the interaction in the volume 4πa3/3 is

εu,a3 =
ε(1) − ε(0)

V
4πa3

3

=
4π
3
gq

7π2(µ0a)3µ0

4 × 1.9 × 240
(3.11)∫ 1

0
x2dx

[
1 −

1
x
(
1 − e−x)]4

−

∫ 1

0
x2dx


and it becomes

εu,a3 = −
4π
3
gq

7π2

4 × 1.9 × 240
(µ0a)3µ0 0.33

= −
4π
3
gq

7π2

4 × 1.9 × 240
8 × 9π
gq

µ0 × 0.33 .

Therefore

εu,a3 = −
4π
3
gq

7π2

4 × 1.9 × 240
(µ0a)3µ0 × 0.33 (3.12)

= −
4π
3

7 × 8 × 9 × 0.33π3

4 × 1.9 × 240
µ0 = −

4π
3
× 2.82 µ0 .

So we have
εu,a3

2µ0
= −

4π
3
× 1.41 .

As for E f ree we replace

4π
3
× 1.41→

4π
3
×

1.41
y

.

Now we find the confinement condition at any temperature,
if the quarks energy is not enough to cover the interaction
energy Eu and give free quarks with smallest density, at 0
temperature, then they become confinement (r < a), so the
confinement condition

E(T, y) − εu − ε f ree ≺ 0 . (3.13)

Then

E(T, y)
V

4πa3

3
−
εu

V
4πa3

3
−
ε f ree

V
4πa3

3
≺ 0

or

E(T, y)
2µ0V

4πa3

3
−

εu

2µ0V
4πa3

3
−
ε f ree

2µ0V
4πa3

3
≺ 0 .

We consider

σa3 a =
ε f ree

V
4πa3

3
as critical energy of free quarks for lowest energy, the tension
σa3 here is the volume tension. Therefore this critical energy
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is transferred to the produced hadrons and photons. Using the
quarks low energy

Elow =
1

1.9
7π2

240
gq µ

4
0 V x4

[
3.78 +

+ 2 x−2
(
0.82 − 1.16y + 0.41y2

)
+

+ x−4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

With x = T/µ0 � 1, the confinement condition becomes

1
2

1
1.9

7π2

240
µ3

0 gq x4 4πa3

3

[
3.78 +

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+

+ x−4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
εu

2µ0V
4πa3

3
−
ε f ree

2µ0V
4πa3

3
≺ 0 .

It becomes

1
2

1
1.9

7π2

240
gq

4π(µ0a)3

3

[
3.78x4 +

+ 2x2
(
0.82 − 1.16y + 0.41y2

)
+

+
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
4π
3
×

1.41
y
−

4π
3
×

1.43
y
≺ 0 .

We had the relation

(µ0a)3 =
8 × 9π
gq

,

therefore, the condition becomes

1
2

1
1.9

7π2

240
4 × 8 × 9π2

3

[
3.78x4 +

+ 2 x2
(
0.82 − 1.16y + 0.41y2

)
+

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
4π
3
×

1.41
y
−

4π
3
×

1.43
y
≺ 0 .

It becomes

3.78x4 + 2x2
(
0.82 − 1.16y + 0.41y2

)
+

+
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

)
− (3.14)

− 0.16y−1 ≺ 0

with the curve of Fig. 11.
The critical situation xc with y → 1 (the end of the ex-

treme cooling)

3.78x4
c + 2 × 0.07x2

c − 0.16574 = 0→ xc = 0.438 .

Fig. 11: The critical x2
cyc curve separates the free and confinement

quarks phases.

So the critical temperature of the confinement condition when
y → 1 from xc = Tc/µ0 is Tc = 0.438µ0. We determine µ0
from

(µ0a)3 =
8 × 9π
gq

when y → 1 so a → a0 we set 1/a0 = pion mass = (135 −
140) Mev so therefore, the condition becomes

µ0 =
1
a

(
8 × 9π
gq

) 1
3

→ 135
(

8 × 9π
24

) 1
3

= 285.15 Mev for
1
a0

= 135 Mev.
(3.15)

Hence the critical temperature is Tc = 0.438 × 285.15 =

124.9 Mev.
Now we try to find the produced hadrons, after cover-

ing the potential (3.12), the quarks critical energy (possible
smallest energy) E f ree (3.9) is transferred to the produced
hadrons and photons. The key idea here is: because the cool-
ing is an extreme cooling, it is expanding a : 0 → a0 =

1/(135 − 140 Mev) so this process is thermally isolated from
the other fields (adiabatic change), therefore the produced
particles are in Tc = 124.9 Mev. We assume that the pro-
duced particles are hadrons (fermions and bosons) and pho-
tons. When a : 0 → a0 : y → 1 the pions become massive
m = 1/a0 so we expect the other hadrons become massive at
this stage, we assume that is in T → Tc.

Therefore we assume when T > Tc massless hadrons and
T < Tc massive hadrons. Anyway in xcyc curve we find the
confinement is possible at high energy (T � Tc : a → 0).
First we write using (3.9)

ε f ree

V
=
ε f ree,a3

4πa3/3
= gq

µ4
0

4 · 2π2 (3.16)

=
σa3 a

4πa3/3
→

Ehadrons + Ephotons

V
below xcyc curve

Malik Matwi. The Dual Behavior of Quantum Fields and the Big Bang 251



Volume 12 (2016) PROGRESS IN PHYSICS Issue 3 (April–July)

or
σa3 a

4πa3/3
= gq

µ4
0

4 · 2π2 → ε f + εb + εph .

With the densities

ε f =
E f

V
, εb =

Eb

V
and εph =

Eph

V

for spin 1/2 hadrons (fermions p+, p−, n), spin 0 hadrons (bo-
sons π0, π−, π+) and photons densities. For massless phase
T � Tc and yc ≈ 0 ignoring the chemical potential we have

n f =
N f

V
= g f

3ζ(3)
4π2 T 3 ,

nb =
Nb

V
= gb

ζ(3)
π2 T 3 and (3.17)

εph =
Eph

V
= gph

π2

30
T 4 .

Now the key point, because the cooling is extreme cooling,
to take all the particles (quarks) from high temperature and
put them at low temperature, so the same structure at high
energy will be at low energies, like the charges ratios, energy
distribution over the particles, spins, . . . At T → Tc and yc =

1 the hadrons become massive, we approximate: for bosons
(pions with mass 1/a0 = 135 − 140 Mev) the energy density
becomes:

εb = gb
π2

30
T 4 → εb = gb

π2

30
T 4 + mpionnb

with nb =
Nb

V
= gb

ζ(3)
π2 T 3 and mpion =

1
a0
.

And for fermions (let them be p+, p−, n) we approximate (ig-
noring the chemical potential)

ε f = g f
7
8
π2

30
T 4 → ε f = g f

7
8
π2

30
T 4 + m f n f

with n f =
N f

V
= g f

3ζ(3)
4π2 T 3 .

So (3.15) becomes

σa3 a
4πa3/3

= gq
µ4

0

4 · 2π2 = ε f + εb + εph (3.18)

= g f
7
8
π2

30
T 4

c + m f n f + gb
π2

30
T 4

c +
1
a0

nb + gph
π2

30
T 4

c .

with gquarks = 2 f lavor×2charge×2spin×3color, g f = 3charge×2spin,
gb = 3charge and gph = 2polarization.

Now we calculate (3.17) for 1/a0 = 135 Mev (π0), µ0 =

285.15 Mev, and Tc = 124.9 Mev we have

2.0096 × 109 Mev4 = 6 ×
7
8
π2

30
(124.9)4+

+ m f 6 ×
3ζ(3)
4π2 (124.9)3 + 3 ×

π2

30
(124.9)4+

+ 135 × 3 ×
ζ(3)
π2 (124.9)3 + 2 ×

π2

30
(124.9)4 .

Its solution is m f = 1023 Mev. We keep 2.0096 × 109 Mev4

as smallest possible energy density.
For 1/a0 = 140 Mev, µ0 = 295.7 Mev so Tc = 129.5 Mev

the mass m f becomes m f = 798.4 Mev. Therefore it must be
135 Mev < 1/a0 < 140 Mev.

For 1/a0 = 136.8 Mev we have Tc = 126.56 Mev then the
mass m f becomes m f ≈ 938 Mev so the fermions (hadrons)
are the baryons (p+, p−, n).

Therefore we fix it 1/a0 = 136.8 Mev, we use it to cancel
the dark matter. Maybe there is an external pressure −Pex so
the lost energy is Pex 4πa3/3.

Now we try to calculate the ratio Nq/Nh. From the con-
densation relation

Nqδµq + Nhδµh = 0

Nh is the hadrons (consider only the fermions) and µh is their
chemical potential.

We assumed before the relation for the quarks chemical
potential

µ(r) = µ0 + u(r) with u(r) = −
αs

r

(
1 − e−r/a

)
so δµq(r) = u(r) = −

αs

r

(
1 − e−r/a

)
.

The effect of this changing appeared in y = αs/aµ0 in the
results. For the hadrons we have

δµh = −
Nq

Nh
δµq = −

Nq

Nh
u(r) .

That is right if we consider the hadrons are massless, that is
when T � Tc and y � 1 (in the condensation phase, be-
low the curve xcyc) so we have the chemical potential for the
hadrons

µh(r) = µ0h − u(r) with u(r) = −
αs

r

(
1 − e−r/a

)
therefore we replace y→ (−Nqµ0q/Nhµ0h) y in the quarks en-
ergy to get the hadrons energy. The energy of the hadrons
becomes

EH,low =
1

1.9
7π2

240
µ4

0h gh V x4
[
3.78 +

+ 2x−2
(
0.82 + 1.16

(
Nqµ0q

Nhµ0h

)
y + 0.41

(
Nqµ0q

Nhµ0h

)2

y2
)

+

+ x−4
(
0.08 + 0.23

(
Nqµ0q

Nhµ0h

)
y + 0.25

(
Nqµ0q

Nhµ0h

)2

y2 +

+ 0.12
(

Nqµ0q

Nhµ0h

)3

y3 + 0.02
(

Nqµ0q

Nhµ0h

)4

y4
)]
.
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Assume µ0h = µ0q and y = 1 so

EH,low =
1

1.9
7π2

240
µ4

0q gh V
[
3.78x4 + 2x2

(
0.82 +

+1.16
(

Nq

Nh

)
+ 0.41

(
Nq

Nh

)2 )
+

(
0.08 + 0.23

(
Nq

Nh

)
+

+ 0.25
(

Nq

Nh

)2

+ 0.12
(

Nq

Nh

)3

+ 0.02
(

Nq

Nh

)4 )]
.

So the chemical potential µh of the hadrons becomes

µ4
h = µ4

0q

(
1 +

0.23
0.08

(
Nq

Nh

)
+

0.25
0.08

(
Nq

Nh

)2

+

+
0.12
0.08

(
Nq

Nh

)3

+
0.02
0.08

(
Nq

Nh

)4 )
.

When T < Tc the hadrons become massive, as we assumed
before, so for massive hadrons with m f = 938 Mev we expect
µh = m f = 938 Mev when they cooled with small densities.
Therefore

(938)4 = (285.15)4
(
1 +

0.23
0.08

(
Nq

Nh

)
+

0.25
0.08

(
Nq

Nh

)2

+

+
0.12
0.08

(
Nq

Nh

)3

+
0.02
0.08

(
Nq

Nh

)4 )
.

Its positive solution is Nq/Nh = 3.1 so they are the baryons
(fermions with three quarks). For 0 temperature fermions the
chemical potential is approximated by

µ2
0 = m2 +

(
N
V

6π2

g f

)2/3

.

For low hadrons density we ignored the term(
N
V

6π2

g f

)2/3

.

4 The nuclear compression

The cooled hadrons have high density, so there is hidden high
pressure, that pressure makes influence δa so δy near y = 1
or it makes y = 1 + δy: δy ≈ 0.005 so the cooled quarks
inside the hadrons fluctuate, this depends on the energy, if the
energy is high then there are new hadrons. These processes
let the interacting hadrons lose kinetic energy and form the
pions.

Because the number of quarks increases although the ha-
drons are fixed, therefore the hadrons energy decreases and
they cannot spread away. We can see how the chemical poten-
tial of the interacting hadrons changes under the fluctuation
δy ∼ δa (due to the quarks interaction) from the condensation

relation Nqδµq + Nhδµh = 0 we have δµh = −Nqδµq/Nh for
the fluctuation δy we have

δµh = −
Nq

Nh

∂µq

∂y
δy

from quarks chemical potential (4.4), we find

∂µq

∂y
≺ 0 so −

∂µq

∂y
� 0

therefore we have

δµh =
Nq

Nh

(
−
∂µq

∂y

)
δy ≺ 0 when δy ≺ 0

which is the quarks compressing, when the hadrons collide
together this leads to δy < 0 (compression) so the hadrons
lose energy and new hadrons are created. And when they try
to extend (spread away) δy > 0 so δµh > 0, there will be a
negative potential.

For the interacting hadrons pressure we have the phase
changing relation VqδPq + VhδPh = 0 : V volume, we have

δPh = −
Vq

Vh
δPq = −

Vq

Vh

∂Pq

∂y
δy

because ∂Pq/∂y < 0 → −∂Pq/∂y > 0 therefore when the
hadrons collide together δy < 0 so their pressure decreases,
they lose energy, so new hadrons are created.

We have

δy =

(
−

Vq

Vh

∂Pq

∂y

)−1

δPh at y = 1 .

So the hadrons chemical potential becomes

δµh =
Nq

Nh

(
−
∂µq

∂y

) (
−

Vq

Vh

∂Pq

∂y

)−1

δPh : y = 1 .

It becomes

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh : y = 1 . (4.1)

We can relate this changing to a constant nuclear potential.
Like to write

δµh = −V0 . (4.2)

V0 is the potential for each hadron.
So when the hadron (fermions, like protons or neutrons)

join, their density increases δµh > 0 so their pressure rises
δPh > 0, therefore there is a negative potential V0 < 0. At low
energies this potential prevents them from spreading away.

Now we calculate

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh : y = 1 .
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We use the pressure at low energy (3.7)

Plow/µ
4
0 = (9 × 1.9 × 240)−1 7π2gq

[
3 × 3.78x4+

+ 3 × 2 × x2
(
0.82 − 1.16y + 0.41y2

)
+ 3 (0.08 − 0.23y+

+ 0.25y2 − 0.12y3 + 0.02y4) + 2yx2 (−1.16 + 0.82y) +

+y
(
−0.23 + 0.5y − 0.36y2 + 0.08y3

) ]
and we get

∂Pq

∂y
= −

0.076 × 7 × π2 × gqµ
4
0

240 × 3 × 1.9
: xc = 0.438 , y = 1 . (4.3)

Using the relation

µ0 =
1
a0

(
8 × 9π
gq

) 1
3

we have

µ0 = 285.15 Mev for gq = 24 and 1/a0 = 135 Mev for π0

µ0 = 295.7 Mev for 1/a0 = 140 Mev for π− and π+ .

So the chemical potential µ0 is in the range from 285.15 Mev
to 295.7 Mev therefore

∂Pq

∂y
= −6.06 × 108 Mev4 for µ0 = 285.15 Mev

∂Pq

∂y
= −7.01 × 108 Mev4 for µ0 = 295.7 Mev .

Now we try to calculate ∂µq/∂y, according to low energy

Elow = (1.9 × 240)−1 7π2 µ4
0 gq V x4

[
3.78+

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
we can equivalence

µ4 = µ4
0

(
1 −

0.23
0.08

y +
0.25
0.08

y2 −
0.12
0.08

y3 +
0.02
0.08

y4
)
. (4.4)

But ∂µ/∂y→ ∞ when y→ 1 so we replace

∂µq

∂y
→

µy=1 − µy=0

1 − 0
=

0 − µy=0

1 − 0
= −µy=0 = −µ0 .

Therefore we have

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh

=
NqVh

NhVq
µ0

(
0.09µ4

0

)−1
δPh

=
NqVh

NhVq

(
0.09µ3

0

)−1
δPh .

So we have

δµh =
NqVh

NhVq

(
0.09 µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev . (4.5)

We use them to cancel the dark matter and dark energy.

5 The Big Bang

We assume there were two universal phases, high energies
massless particles phase (let them be the quarks plasma) and
then the massive low energies particles (let them be the ha-
drons).

The first phase associated with high energy density (drops
from infinity to finite), the time of that stage is τ : 0 → a0 =

1/(135−140) Mev then the massive hadrons phase begins (the
time t : 0→ ∞).

In both stages the highest universal expansion must not
exceed the light speed, for the first phase, high energies mass-
less quarks phase, the density of the energy is the same in all
space points so the universal expansion is the same in every
point in the space, we let the speed of that expansion equal
the light speed, therefore the Hubble parameter H(t < a0) of
this stage t < a0 is given by (5.2).

To find the Hubble parameter for the massive hadrons
phase H(t > a0), we suggest the geometry transformation
(5.3) in which the time τ : 0→ a0 for the quarks corresponds
to the time t : 0→ ∞ for the massive hadrons phase. We can
relate that change in the geometry to the high differences in
the energy densities of the two phases. The phase τ : 0 → a0
high quarks energy, uniform high energy density, massless,
. . . The phase t : 0 → ∞ the massive hadrons, low energy
density, separated particles, . . .

Now we try to explain how the universe exploded and ex-
panded, we start from our assumptions we made before and
find the Hubble parameter and try to find the dark energy
and matter. We found that the quarks expand to the length
a0 = 1/(135 − 140) Mev then the hadrons appear instead.

We assume that the universe was created in every point in
two dimensional space XY then the explosion in the Z direc-
tion. That is by the quarks, in each point in the XY plane the
quarks were created and then they expanded in each point XY
to the length a0 then the explosion in the Z direction, the result
is the universe in the space XYZ. There was no universal ex-
plosion in the XY plane, the universal explosion was only in
the Z direction, in the plane XY there was extension due to the
quarks expanding from r = 0 to r = a0 = 1/(135 − 140) Mev
the plane XY was infinity before the quarks expansion and it
is infinity after that expansion, what happened is an increase
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in the number of the XY points, then the explosion in the Z
direction. We assume both expansion (XY and Z) occurred
with the light speed c.

To find the lost matter, dark matter and dark energy, we
use the relation (4.5) we found before:

δµh =
NqVh

NhVq

(
0.09 µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev .

Here we relate this changing in the pressure δP (indepen-
dent of time) to the hadrons condensation process to form
the nucleuses, where the global pressure δP = δPh dropped
extremely due to the nuclear attractive potential (make it the
nuclear binding energy) V0 = (−7−8) Mev [3]. This pressure
δPh remains contained in the nucleuses, but globally is not
visible.

So there is hidden global pressure δPh and we have to
include that problem in the Friedman equations solutions, we
notice that the nuclear attractive potential leads to increasing
in the cooled hadrons densities. Therefore the decreasing in
the hadrons pressure associated with the increasing of their
densities (inside the nucleuses). The result is excess in the
local energy density, that effects appear in the equations, that
is, the matter density appears to be larger than the right energy
density. So there is neither dark matter nor dark energy, it is
just global and local densities.

We start from the definition of the scale parameter R(t) for
the universe expansion, we write [6]

ds2 = −dt2 + R2(t)
(

dr2

1 − kr2 + r2dΩ2
)
. (5.1)

We set k = 0 flat Universe. Now we try to find the Hubble
parameter

H(t) =
1

R(t)
dR(t)

dt
=

Ṙ(t)
R(t)

.

There are two phases t < a0 free quarks phase and t > a0
hadrons phase which is the expansion in the Z direction. That
means there are two different spacetime geometry, t < a0 and
t > a0.

In the first phase τ = t < a0 the expansion is the same in
all space points, so the expansion velocity

dR1

dt
= Ṙ(t) r

is the same in all space points and equals the light speed c =

~ = 1 here, so
1 = Ṙ(t)r : t < a = a0 .

Therefore
Ṙ(t) =

1
r

: t < a = a0 .

So we can write

R(t) =
t
r

: t < a = a0 .

So the Hubble parameter becomes

H(t) =
Ṙ(t)
R(t)

=
1/r
t/r

=
1
t

: t < a = a0 . (5.2)

Now we want to find the Hubble parameter in the phase t > a0
low energy phase. Actually when the quarks expand from
r = 0 to r = a → a0 there will be infinity points expanding,
so infinity expanding distance in XY space, but the expansion
cannot exceed the light speed c = 1 therefore an explosion
occurs in the Z direction, so the universal explosion. There-
fore the time t = τ : 0 → a0 for the free quarks phase will
associate with t : 0 → ∞ for the universal expansion, so we
make the geometry transformation

t =
−c0

τ − a0
: τ < a0 . (5.3)

c0 is constant, we can relate that relation to a difference in
spacetime geometry. That means if the quarks space r < a0 =

1/(135 − 140) Mev is flat, so the hadrons space is not, it is
curved space, where we live. It is convenient to consider the
quarks space (r < a0 large energy density) is curved not our
space (low energy density).

Now we can find the Hubble parameter for the universe
t : 0 → ∞. We can find the Hubble parameter H(t > a0) for
the geometry t : 0→ ∞ from H(t < a0) :

H(τ < a) =
1

R(τ < a)
dR(τ < a)

dτ

=
1

f (r, θ, ϕ)R(t > a)
d
dτ

f (r, θ, ϕ)R(t > a) .

We set the geometry transformation

R(τ < a) = f (r, θ, ϕ) R(t > a)

so

1
τ

=
1

f (r, θ, ϕ)R(t > a)
d
dτ

f (r, θ, ϕ)R(t > a)

=
1

R(t > a)
d
dτ

R(t > a) (5.4)

or

1
τ

=
1

R(t > a)
dt
dτ

d
dt

R(t > a)

=
dt
dτ

1
R(t > a)

d
dt

R(t > a) =
dt
dτ

H(t > a) .
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Using the geometry transformation

t =
−c0

τ − a0
: τ < a→ a0 ,

we have the Hubble parameter of the low energy density of
the cold Universe

H(t > a0) =
1

R(t > a0)
d
dt

R(t > a0)

=
c0

t(a0t − c0)
=

1

t
(

a0
c0

t − 1
) =

1

t
(
c′0t − 1

)
where c′0 is constant.

The Friedman equations can be written, for k = 0, like [6]

3
Ṙ2(t)
R2(t)

= 8πGNρ + Λ (1)

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGN(ρ + p) (2) (5.5)

d
dt

(ρ + δp) = −3(ρ + p)
Ṙ(t)
R(t)

. (3)

To control (or cancel) the dark matter and energy, we make
the transformations in the Friedman equations which keep the
Hubble parameter unchanged

3
Ṙ2(t)
R2(t)

= 8πGN(ρ + δP) + Λ − 8πGNδP (1′)

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGN(ρ + δP + p − δP) (2′) (5.6)

d
dt

(ρ + δp) = −3(ρ + δP + p − δP)
Ṙ(t)
R(t)

. (3′)

So we have (for same Hubble parameter we had before)

ρ′ = ρ + δph

p′ = p − δph

Λ′ = Λ − 8πGNδph = 0 .

For the universal nuclear condensation, we assume the uni-
versal change δρ = δP = δph > 0 is independent of the time.

We can say ρ′, p′ and Λ′ = 0, P′ = 0 are for the located
matter, when the hadrons are cooled, they condense and lo-
cate in small volumes with high matter density, because of
the strong nuclear attractive interaction, so their pressure de-
creases extremely P′ ≈ 0. That pressure is contained (hidden)
in the nucleus. It is like to condense a gas with certain mass m
and fixed volume V , the density m/V is the same before and
after the condensation, but the real density of the produced
liquid is not. Like that we consider ρ the right matter ρmatter

and the problems; the increasing ρ′ = ρ + δph and Λ , 0 are
because of the phase changing.

We set ρ′ = ρ(t) and solve the two equations:

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGNρ(t) (2′)

d
dt

(ρ + δp) = ρ̇(t) = −3ρ(t)
Ṙ(t)
R(t)

(3′)

using the Hubble parameter

H(t) =
1
R

dR
dt

=
1

t
(
c′0t − 1

) : t > a0 .

From (3’) we have

−
1
3

R(t)
Ṙ(t)

ρ̇(t) = ρ(t)

so (2’) becomes

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= −
4πGN

3
R(t)
Ṙ(t)

ρ̇(t) .

This equation becomes

Ṙ(t)
R(t)

(
−

R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

)
= −

4πGN

3
ρ̇(t)

or

H(t)
(
−

R̈(t)
R(t)

+ H2(t)
)

= −
4πGN

3
ρ̇(t) .

Using
d
dt

Ṙ(t)
R(t)

=
R̈(t)
R(t)
−

Ṙ2(t)
R2(t)

we get

H(t)
d
dt

H(t) =
4πGN

3
ρ̇(t)→

1
2

H(t)2 =
4πGN

3
(ρ(t) − ρ0) .

For finite results we put ρ0 = 0 so

1
2

H(t)2 =
4πGN

3
ρ(t) .

Now we calculate the contributions of the vacuum energy to
the total energy using the cosmological constant Λ′ from (1’)

ΩΛ′ =
ρ′

Λ

ρc
=

Λ′

3H2 =
3H2 − 8πGNρ(t)

3H2

= 1 − 2
4πGN

3H2 ρ(t) = 1 − 2
1

H2

1
2

H(t)2 = 0

with the critical energy density

ρc =
3H2

8πGN
.

So the vacuum energy density is canceled, and the total en-
ergy is the matter energy Ωmatter = 1 so ρ(t)/ρc = 1. Here
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ρ(t) = ρc is ρ(t) = ρ′ = ρmatter + δph, so ρ(t) is higher than the
right matter ρmatter.

Now we see if this relation is satisfied or not. We use the
global change on the pressure δp = δph > 0 which we derived
in (4.5):

δµh =
NqVh

NhVq

(
0.09µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev .

Now we try to find Vq/Vh the quarks volume Vq = S dq and
the hadrons volume Vh = S dh as shown in Fig. 12 where the

Fig. 12: The universal explosion in Z direction starting from XY flat.

universal explosion is in the Z = d direction. If we assume
the explosion speed is the same for both hadrons and quarks,
light speed ν = c = 1, so for the quarks

Hq(t) =
Ṙ(t)q

R(t)q
=
νq

dq
=

1
dq
.

For the hadrons

Hh(t) =
Ṙ(t)h

R(t)h
=
νh

dh
=

1
dh

therefore
Vq

Vh
=

S dq

S dh
=

dq

dh
=

Hh

Hq
,

Hh is the universal Hubble parameter, today is

H = 71 km/s/mpc = 2.3 × 10−18 s−1

= 2.3 × 10−18 × 6.58 × 10−22 Mev = 151.34 × 10−41 Mev .

The quarks Hubble parameter Hq = 1/τ→1/a0 = (135 −
140) Mev. So we have (for 135 Mev)

Hh

Hq
=

151.34 × 10−41 Mev
135 Mev

= 1.127 × 10−41 .

Therefore
Vq

Vh
=

Hh

Hq
= 1.127 × 10−41 .

We set δµh = −V0 = (7 − 8) Mev the nuclear potential (nu-
cleon binding energy). Therefore, from (4.5), we have

δρ = δPh = −
Nh

Nq
× 1.127 × 10−41 ×

−V0

47
× 108 Mev4

for
1
a0

= 135 Mev : µ0= 285.15 Mev

and

δρ = δPh = −
Nh

Nq
× 1.087 × 10−41 ×

−V0

42
× 108 Mev4

for
1
a0

= 140 Mev : µ0= 295.7 Mev .

For Nh/Nq = 1/5, like the interaction P++π− → n the neutron
n appears to have five quarks, that is acceptable according to
the fields dual behavior. Therefore

δρ = δPh = −
1
5
× 1.127 × 10−41 ×

−7
47
× 108 Mev4

= 335.7 × 10−37 Mev4

for µ0= 285.15 Mev and V0 = −7 Mev

and

δρ = δPh = −
1
5
× 1.087 × 10−41 ×

−8
42
× 108 Mev4

= 414 × 10−37 Mev4

for µ0= 295.7 Mev and V0 = −8 Mev.

So the change δρ = δPh is in the range:

from 335.7 × 10−37 Mev4 to 414 × 10−37 Mev4 .

Therefore the visible matter is in the range

from ρmatter = ρc − δph = 335.7 × 10−37 Mev4

to ρmatter = ρc − δph = 414 × 10−37 Mev4 .

For the critical energy ρc = 406×10−37 Mev4 the visible mat-
ter is in the range

from ρmatter = 0 to ρmatter = 70 × 10−37 Mev4 .

The right baryonic matter energy density is

ρb = 4.19 × 10−31g/cm3 ≈ 17.97 × 10−37 Mev4

which belongs to the range 0 to 70 × 10−37 Mev4. We can
control this and have

ρmatter=ρc − δPh = 406 × 10−37 − δPh = 17.97 × 10−37 Mev4
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by finding r:

140r + 135(1 − r) =
1
a0

where 1/a0 satisfies

406 × 10−37 Mev4 − δPh = 17.97 × 10−37 Mev4.

For 1/a0 = 136.8 Mev (we used it in (3.17) to have m f ≈

938 Mev), the chemical potential becomes µ0 = 288.95 Mev.
And with V0 = 7.776 Mev we get

δρ = δPh = 335.7 × 10−37 ×

(
288.95
285.15

)3

×
7.776

7
Mev4

= 388 × 10−37 Mev4 .

The matter density becomes

ρmatter = 406 × 10−37 Mev4 − 388 × 10−37 Mev4

= 17.9 × 10−37 Mev4 .

which is the right matter (global visible matter density). The-
refore we can control the dark matter and dark energy. We
can cancel them.
Note that not all of those ideas are contained in the references.
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We use a mass-resonance equation to analyze the known elementary particles mass

spectrum; we first show that masses and charges are quantized together and all couplings

are geometry of movement. Next, the long-expected connection between gravitation

and the rest of physics appears as we deduce and compute from the equation parameters

the resonance corresponding to the reduced Planck mass. In this way, quantum fields

and general relativity can be emergent theories where the natural law is unique.

It is in the admission of ignorance and the admission of

uncertainty that there is a hope for the continuous motion

of human beings in some direction that doesn’t get confined,

permanently blocked, as it has so many times before in vari-

ous periods in the history of man. R.P. Feynman.

1 Introduction

In a celebrated paper, Dirac [8] showed that the existence of

magnetic poles and quantum mechanics imply symmetrical

quantization of magnetic and electric charges. This is the very

first attempt to explain the observation of a universal charge

quantum. Since then other theories were produced in which

the magnetic charge differs. But even though charges have

definite symmetry nothing imposes the charge ratio; namely

the fine structure constant α.

It is often believed that the standard model (SM) of par-

ticles physics is part of a wider theory in which its free pa-

rameters are calculable — but possibly free in essence or ac-

cepting multiple solutions. One can see the seeds of this line

of thoughts in Dirac’s quantization: once the idea is extended

to all fields, it may structure the logical constraints in such

a manner that the full set of equations can be solved. Such

result is expected in super-symmetry and string theory.

However, we must remind that we discuss the parameters

of a theory, not a-priori of nature. At the other extreme, as-

sume quantum theory incomplete or not fully understood, a

possibility exists that all known parameters are already cal-

culable from known physics. If so, it may be possible to de-

code some field characteristics directly from known data. At

present time, the only rich group of parameters is the elemen-

tary particles mass spectrum as we know 12 samples, and it

may be enough to understand its underlying structure.

In short, and in a general manner:

• Assume the 12 known masses correspond to solutions

of a set of unknown equations.

• In the most favorable case, if no other mass exists (or

close enough) all degrees of freedom are used.

• Hence it may be possible to find or approach the equa-

tions and the structure of the solution.

The approach is subtler and a lot more risky than any other

since instead of building on theoretical knowledge we assume

ignorance — and we do not know what we do ignore.

The object of this paper is to prove the existence of a solu-

tion, probably unique, and one of the equations in which the

solution is visible. One can infer its validity in two manners;

firstly by its agreement with phenomenology, and secondly,

by its logical coherence, compactness and simplicity.

In a suite of papers [3, 4], we showed how the mass spec-

trum is structured. We found firstly that the elementary par-

ticles mass obey a simple equation, which is geometrical and

based on integral resonances; secondly, two coupling con-

stants (including α) are used in the equation while we find no

specific couplings related to the SM weak and Higgs fields

as they use only specific geometrical degrees of freedom;

thirdly, all calculi and equations are compatible with a sim-

ple form of compositeness. On this basis, we showed [5] that

the electron and muon magnetic moment anomalies can be

computed from the equation parameters with no use of QED.

In the next sections, we first repeat the main demonstra-

tions, fix some errors, and then discuss the results and impli-

cations; since the mass equation is geometrical, its use of cou-

pling constants and the manner they combine imply that they

are also geometrical; we deduce that they correspond to reso-

nance paths and find or approach the related equations. In this

way, the field is geometrically self-quantized and has no free

parameter related to energy. The same applies to gravitation

since, using Wheeler-Feynman absorber equations, we de-

duce and compute its coupling (and the reduced Planck mass)

from the constants and integral resonances used in the mass

equation. In this way this mass-resonance theory is linked to

gravitation and cosmology; it needs no dark matter and no big

bang but comes with a constant linear expansion and energy

creation.

We shall use measurement data and constants from CO-

DATA 2014 or the Particle Data Group 2014 except where

mentioned. The point is of importance considering the pre-

cision reached with leptons masses, anomalies, and α. The

reader should keep in mind that the initial study used older

values which imposed no difference to the model.
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2 Deriving a mass equation

De Broglie [2] imagined a stationary wave of length h c/E

which relativistic transformation gives a phase wave of length

h/p. This is the origin of the wave equations of quantum

mechanics. The question of the nature of those waves is still

open; in this section, we imagine how a stationary wave can

be born and ring; then we predict some characteristics of the

resonances that we shall later use as verification.

We assume that the wave is the physical exchange at the

origin of mass. Energy exchange is momentum, and it gives

a pressure field that “cages” the particle charges and some as-

sociated self-energy. The initial idea is similar to the Poincaré

stress [11] though not identical as we split the particle.

Roughly speaking, we cage a permanent photon-like cur-

rent in a box also made of currents and we guess that the box

and the charge quantize each other. Assume the box size uni-

versal, it is sufficient to use a length 1. In the one dimensional

case, the pressure is a simple force, and resonance implies an

integral number M such that we have:

m = µ + X M,

where m is the particle mass and X is a universal constant.

The quantity µ represents a massless self-energy that neces-

sarily propagates, and it implies a double resonance. Hence

the resonance corresponds to a product M = N P:

m = µ + X N P.

In the 1-dimensional case, we should have N = P correspond-

ing to identical inbound and outbound currents, but we shall

need a more general equation and then we use a product. In a

wave representation, it represents the number of times the in-

bound and outbound wave crests hit each other in a universal

period of time or within a definite length.

Caging a massless particle requires symmetry, a force that

opposes the particle charge to the pressure field, that is pre-

cisely the resonance N P and the self-energy µ. There must

be a residual distance d , 0 between the first resonance wall

and the current µ at which the force applies. It gives:

m = µ +
X

d +
1

N P

.

Now the distance d should also depend on N and P because

energy comes from the distance (d + 1/NP) which is equiv-

alent to a potential. A potential is quantized and 1/NP is

already quantized as it comes from XNP = XM. Then we

use d = KD, with K an integral number and D a length. Last,

in three dimensions we get a cube:

m = µ +
X

(

K D +
1

N P

)3
. (2.1)

The equation has 6 degrees of freedom that can be reduced to

5 by division by X or µ and give unit-less quantities.

Now let us discuss the equation geometry; contrary to the

one-dimensional case, we have more degrees of freedom in

the resonance and the paths associated to N and P can be ra-

dial or circular; here we can use group theory arguments:

— Case 1: A double radial resonance. It needs identical

inbound and outbound waves, then N = P, giving a stationary

wave. Except for the cube, it is identical to the 1-dimensional

case then it should address leptons and U(1), and also the

Poincare stress in which case we should have KD > 0, with

K increasing with mass as 1/NP reduces since the leptons

charges are identical.

— Case 2: A double circular resonance: The resonance

geometry is conserved when we invert rotation axis; hence it

must be identified to SU(2) and by symmetry N = P. But

we must change (2.1) with X → X/k π with k a constant in-

tegral number; this is because compared to the first case even

though the resonance is circular the pressure is still applied to

its geometrical center. The equation becomes:

m = µ +
X

k π

(

K D +
1

N P

)3
.

It addresses massive bosons, which role in nature is to carry

interactions. They are similar to a photon and we must inte-

grate to X the term µ (that would be an intrinsic mass). There-

fore we will compute their masses (index b) comparatively to

the full electron mass (index e) as follows:

mb

me

=

(

1

NePe

+ KeDe

)3

k π

(

1

NbPb

+ KbDb

)3
. (2.2)

- Case 3: A mixed resonance. It includes both symme-

tries U(1) and SU(2), it is then SU(3) and this case addresses

quarks. If D is related to the strong force and asymptotic

freedom (≈ inverse to the Poincare stress) we should have

KD < 0, ideally constant. It implies N , P with a geometri-

cal constraint between π, N and P since a phase lock between

the two paths must exist; it requires to squaring a circle, then

logically we should get approximate relations like:

N P π ≈ an integral number, (2.3)

If the logic above is valid, it follows that particles distant

interactions are a manifestation of the resonance; hence we

should find relations between the resonance numbers (N, P)

and the known symmetries, and also between some coupling

constants and the non-integral values of D, X, and µ. De

facto, and most importantly, we cannot understand mass and

charge quantization separately.

260 Jacques Consiglio. On Quantization and the Resonance Paths



Issue 3 (April–July) PROGRESS IN PHYSICS Volume 12 (2016)

3 Massive elementary particles resonances

In this section, we shall fit the equation parameters to all

known elementary particles masses; since the equation is re-

lated to symmetry, the natural strategy is to proceed by groups

(leptons, quarks, massive bosons). We shall assume X univer-

sal and µ specific to leptons (where enough precision exists)

and, since D addresses forces, it must be group-dependent.

Recall also that a number of relations must be verified

by the fit; they can be used as verification of the geometrical

constraints imposed by symmetry and by the equation.

3.1 Leptons

The Table 1 shows charged leptons resonances. It uses very

small numbers, we get N = P as expected. The equation

parameters are given hereafter:

µ = 241.67661953 eV,

De = 0.0008532218937, (3.1)

X = 8.1451213299073 KeV.

Table 1: Electron, muon, tau in MeV/c2.

– P = N K Computed Measured

e 2 2 0.510 998 9461 0.510 998 9461(31)

µ 5 3 105.658 3752 105.658 3745(24)

τ 9 5 1 776.84 1 776.82(16)

Using α, the fine structure constant, we define a new con-

stant that will be used later:

AS = De/α ≈ 0.11692, (3.2)

which name AS is chosen for its value is reminiscent of the

strong force coupling.

The values in (3.1) can be tuned so that all masses match

exactly regardless of uncertainty; instead those values have

been chosen to compute exactly the electron mass and mag-

netic moment anomaly (assuming the related equations de-

veloped later are good-enough for such precision).

3.2 Quarks

Using X and µ constant from (3.1) the quarks resonances are

shown Table 2 (masses in the natural scheme) where a regular

pattern is obvious.

As expected, the parameter D is slightly different from

(3.1) to compute those masses:

Dq = De(1 + α) = AS (α + α2). (3.3)

Using De like for leptons gives the top mass out of range

≈ 167 GeV, and then a difference with leptons exists. Quarks

masses are no more published in the natural scheme; the esti-

mates used in Table 2 are dated 2011 except for the top [18],

see also [19].

We get N , P as expected; P and K are constant which

is surprisingly simple. The constancy of K = −6 < 0 is

reminiscent of asymptotic freedom and then also agrees with

a connection between De and αs. Note that varying K by ±1

gives computed quarks masses out of uncertainty range for

the four heaviest.

Table 2: Quarks resonances in MeV/c2.

– P N K Computed Estimate

u 3 2 –6 1.93 1.7 – 3.1

d 3 19/7 –6 5.00 4.1 – 5.7

s 3 7 –6 106.4 80 – 130

c 3 14 –6 1,255 1,180 – 1,340

b 3 19 –6 4,285 4,130 – 4,370

t 3 38 –6 172,380 172,040±190 ± 750

The approximate relations with N P π (2.3) are verified

for the second and third generations; they are:

c, s : 7 × 3π ≈ 65.97 ≈ 66/1.0004025,

t, b : 19 × 3π ≈ 179.07 ≈ 179 × 1.0003954.

We also notice that between 1 and 19 no other integral num-

bers come close to verifying (2.3).

It is interesting that the multiplication of N by 2 in the

second and third generations corresponds to the difference in

electric charges (1/3, 2/3) as it links mass and charge quanti-

zation. For the first generation the down quark needs a frac-

tion N = 19/7 which is barely acceptable, and we notice that

the relations with (2.3) match with 2 π for the d and also indi-

rectly for the u instead of 3 π for the four heavier quarks.

Those particularities may relate to quarks mixing, which

we see in the fraction 19/7 = 38/14, and the same logic for u

also holds since 2 = 38/19 = 14/7.

u : 2 × 3π ≈ 19/1.008,

d : (19/7) × 2π ≈ 17 × 1.0032.

Hence something unique happens to the u and d.

3.3 Massive Bosons

We assume that the W±, Z0 and H0 acquire their masses from

the same geometry; recall that we only have three geometries

(or mechanisms) and then we cannot address the weak force

bosons and the H0 separately. Using (2.2), it corresponds to

the same resonance, that is on the circular path we must have

N = P = constant, and only the radial K varies (though this

is not exact since we shall later find a slight difference).
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A factor k π at the denominator of (2.2) is needed since the

resonance is supposed circular, but we do not find a perfect

fit with k integral. We need a factor k ≈ 1; it seems at first

that we add a degree of freedom but we shall show that it is a

geometrical constraint.

The analysis of those masses is iterative and leads to im-

portant reasoning which is repeated hereafter in details. In

practice:

• The empirical fit gives the resonances, which are N =

P = 12, and K = −2,−7,−19 for the W±, Z0 and H0

respectively. The weak force bosons come in range but

the error on the H0 is 1 GeV. Those numbers immedi-

ately suggests the same underlying geometry as quarks

and maybe leptons, then the same field combining po-

tentials expressed by De and α.

• The empirical value of D for massive bosons is first ap-

proximated as Db ≈ α2(1+AS/2−A2
S
/6); it suggests an

interaction term that depends on α and De; the former

is known and the later estimated with precision.

• The expression [De(1+α)]2 = α2(1+2 AS +A2
S

) is sim-

ilar and may give Db ≈ α2(1+AS /2−A2
S
/6) depending

on the effective algebra. (Doubling the forces divides

the distance, then 2AS → AS /2, and the term −A2
S
/6

fits with the K = −6 in table 2.) .

On this basis we may have enough information to model

the interaction; the equations (3.2 – 3.3) suggest:

• Two types of charges corresponding to the mass µ : E

and C (≈ electric and color) on which D depends.

• A free field (charges X), and the pressure is given by

interactions: X×X, E×X, and C×X, hence Db includes

3 terms, but its expression is incomplete as we do not

yet compute all masses with precision.

Now we shall complete the reasoning, compute the predicted

bosons masses, and compare to experimental data.

Classification and immediate identification gives Table 3.

It shows that each individual interaction adds a piece of coef-

ficient in Db — like simple potentials adding or subtracting.

But we can only compute a radial distance (which gives a ra-

dial strength), not the orientation of the force which can be

symmetry-dependent as we discuss rotations.

Table 3: Classification and minimal interpretation of the coefficients.

– D Coeff Interaction Interpretation/logic

1 De αAS X × E Leptons

2 Dq αAS X × E Leptons→ Quarks

3 Dq α(αAS ) X ×C Quarks Charge

4 Db α2 X × X –

5 Db α(αAS )/2 X ×C Quarks→ Bosons

6 Db (αAS )2/6 (X × E)2 Leptons→ Bosons

The important point in this table is that quarks charges re-

sume to X × C = X × (X × E), and the coefficient 1/2 line 5

implies two distinct charges (augmenting the force and then

reducing the distance). Interpretation details are given here-

after (referring to the line of the Table 3) and lead to under-

standing.

Leptons — Line 1; charge E.

• X × E → α AS : There is only one elementary interac-

tion; it just gives us its coefficient.

Quarks — Lines 2 and 3; charges E and C.

• X × E → α AS : Same as electrons, and independent of

the quark electric charge.

• X × C = X × (X × E) → α(α AS ): This is a different

interaction; it is not a new kind of charge but it has the

same nature and quantum as X.

Massive Bosons — Lines 4, 5, and 6: charges E and C.

We found the same coefficients for the W± and the Z0.

One is electrically neutral but not the other. Still, we find

coefficients related to electricity and color charge, and then

those bosons are made of two fractional electric charges and

their two color charges (as we shall see the term charge is

abusive here). Then it is:

• X × X → α2: The interaction of two charges X gives

a distance α2. This is the main force on the circular

path that other interactions will impact — they are sec-

ondary forces or loops impacting this path.

• X × C = X × (X × E) → α(α AS )/2: The coefficient

α(αAS ) comes with quarks color charge; it also shows

that the charges of a weak force boson are equivalent

to that of two quarks, and different of that of a lepton.

Increasing the force by a factor 2 reduces the length

proportionally; thus the factor 1/2.

• (X×E)× (X×E)→ −(αAS )2/6: This coefficient corre-

sponds to the effect of the main resonance on separate

electric charges. We recognize De = αAS from lep-

tons, but 1/6 is new; it is only associated to D2
e and this

interaction is not present in Tables 1 and 2.

At this point, we understand how the interaction works

and we can logically deduce all missing terms in the expres-

sion of Db using α and AS . For this, we need to complete the

series of interaction loops with the field X:

X×X×X → −α4: Since X×X → α2 positive, and K < 0,

the force in X × X is compressive and then this coefficient is

scalar (and positive), it increases the compression and then

reduces the length: the coefficient is then negative −α4. The

next coefficient is positive as it reduces −α4. Similarly, we

must add loops indefinitely (X × X × X × X etc.); it gives a

simple series converging to α2/(1 + α2).
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Last, each interaction must be augmented with any num-

ber of X where the corresponding length is modified depend-

ing on its sign; then the coefficient −A2
S
/6 is multiplied by

1/(1 + α2) and the coefficient AS /2 by 1/(1 − α2). The series

make a small difference in Db which is far from negligible

when it comes to computing masses. The coefficient Db for

the W± and Z0 is then:

DWZ = α
2













1

1 + α2
+

AS

2(1 − α2)
−

A2
S

6(1 + α2)













,

DWZ = 5.62404904× 10−5. (3.4)

It also reads:

DWZ =
α2

1 + α2
+

De

2(1 − α2)
−

D2
e

6(1 + α2)
.

But it cannot be identical for the H0, firstly because its spin is

not 1. Assuming it holds four charges organized in a tetrahe-

dral manner, a tetrahedron has 6 lines of forces, and the last

interaction term is six times stronger:

DH = α
2













1

1 + α2
+

AS

2(1 − α2)
−

A2
S

1 + α2













,

DH = 5.56338664× 10−5. (3.5)

Or, alternately,

DH =
α2

1 + α2
+

De

2(1 − α2)
−

D2
e

1 + α2
.

It may also include additional loops thru the tetrahedron. The

strength of a line linking two charges is 1/6, it gives the first

term A2
S

in (3.5), but for the H0 it propagates thru 6 lines of

a tetrahedron and it gives 6 A4
S

. But it is not a free field, and

then it may not need an infinite number of loops. We shall

use a one-loop approximation since additional loops makes a

small difference (≈ −10 MeV):

DH = α
2
(

1

1 + α2
+

AS

2(1 − α2)
−

A2
S

(1 + 6A2
S

)

1 + α2

)

,

DH = 5.55741566× 10−5. (3.6)

This expression is the only reason here for AS to be physical

since all others uses of this coefficient reduce to De.

Now let us come back to the coefficient k in (2.2). In

Table 4, we have N = P, and then those two resonances have

the same orientation with opposite paths, but we find K in

(−2,−7,−19) the same numbers as for the quarks N which

resonance is mixed.

Consequently, there is, like for quarks (2.3), a geometrical

constraint which here is between the length Db and the circu-

lar path π/NP. Taking only the circular path into account and

keeping the constraint coming from the radius, Db should be

a divisor of π/NP = π/144, a division that must hold with

any K in −2,−7,−19. Since all Ks are primes numbers the

constraint applies to their product. In this simplified picture

(that cannot hold yet) we should have:

(π/144)/Db = 2 × 7 × 19→ π/144 = 266 Db

Now Db is radial and a 3-sphere volume depends on the cube

of its radius. Then we must use Dbπ
1/3 on the right hand side;

it gives a modified equation that is close to hold:

π/144 = 266 Dbπ
1/3.

This equation is equivalent to squaring the circle, then we

miss the coefficient k which is now a logical geometrical con-

straint related to phase lock. In (2.2), π is multiplied by k

and this equation addresses a volume; hence we must use its

cube on the left hand side, and reduce π accordingly on the

right-hand side; in this way we get comparable quantities and

it gives the geometrical resonance constraint:

k3 π/144 = 266 Db (π/k)1/3. (3.7)

Here the interaction term Db constrains k thru geometry. The

two sides of (3.7) represent lengths, and then taking their cube

we get volumes verifying:

(266 Db)3 = k10 π2 (1/144)3. (3.8)

It equates the volume of a 3-cube of edge 266 Db on the left

hand-side to that of a 4-ball (V4 = π2 R4/2) divided by half its

radius on the right-hand side, where a correction k is needed

for cubing the sphere. Here Db is an interaction term in 4D,

k a geometrical wave coherence constraint, and (3.8) links a

radial and a circular path in 4D. Now compute from (3.8):

(3.4)→ kWZ = 1.00128565, (3.9.1)

(3.5)→ kH = 0.998033312, (3.9.2)

(3.6)→ kH = 0.997711845. (3.9.3)

Using the coefficients above and (2.2), gives the masses in

Table 4, where precision is impressive.

Table 4: Bosons resonances in MeV/c2 , H0 mass in [17].

– P = N K Computed Measured

W± 12 −2 80, 384.9 80, 385± 15

Z0 12 −7 91, 187.56 91, 187.6± 2.1

H0 12 −19 125, 206 125.090± 240

H0 12 −19 125, 094 125.090± 240

After modeling the interaction we compute the weak force

bosons masses in perfect agreement with measurement and it

and confirms the validity of our reasoning. We get an effective
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unified theory of resonances where the forces compositeness

decays from leptons and quarks and this is truly unexpected.

In this table, the last two lines correspond to the equations

(3.5 – 3.9.2) and (3.6 – 3.9.3) respectively for DH and kH .

We can now better analyze the resonance in Table 4. Con-

sider the length 2 × 7 × 19 = 266. A phase lock between the

radial and circular paths and the K = −7 and −19 imply two

circular path lengths which are L1 = 2 π (1 − 7/266), and

L2 = 2 π (1 − 19/266). Those are compatible if and only if

A L1 = B L2, with A and B integral numbers. We must solve

the following equation which solution is trivial:

A × 2 π (266− 7)

266
=

B × 2 π (266− 19)

266
,

A = 266−19 = 247, B = 266−7 = 259, B − A = 12. (3.10)

The resonance number, 12, appears on the left hand side of

(3.10); it comes from phase coherence between the circular

path and the spots on the radius and we naturally get N =

P = A − B = 12 which then depends only on K (we use only

−7 and −19, but K = −2 is not a problem since 12 is even).

Finally all numbers and parameters used in Table 4 ap-

pear constrained; the specific degree of freedom used here is

just geometry. We have two forces coefficients (α and De) and

no specific coupling in this sector which is then emergent; this

result disagrees with the SM concept and requires unification

from below (as opposed to distinct fields).

3.4 Bosons widths

The expression (2.2) is a resonance equation and the com-

puted masses correspond to the poles of the resonances. Then

it should be possible to compute widths and then lifetimes;

at best, the widths are the size of some working resonance

“spots”; it would show that this theory gives the SM weak

field. For this we have to understand the phase coherence

between multiple paths. Recall that the bosons charges are

found interacting and organized in a minimal manner; in 3D,

it is a tetrahedron for the H0 and a simple straight line for the

Z0 and W±. For the weak force bosons:

With two circular phases the symmetry is loose, it has

some freedom, and on the circular path it suffices that N and

P hold on 1/2 phase to stabilize the resonance. It authorizes

a circular phase shift ±π/12 which extends or reduces the

sphere; with two charges, it gives on the radial part ∆K =

(±1/2)(1/12) = ±1/24.

In the radial direction, we have 266 slots, and the same

reasoning applies; it adds ∆K = ±1.

For the H0, with 4 charges, the symmetry is fully con-

strained in 3D; N and P hold together: ∆K = 1/144. A tetra-

hedron has 6 lines of force that can break; hence the width is

reduced accordingly∆K = 1/144/6. Other loops add nothing

since a tetrahedron is fully constrained in 3D.

On this basis, the resonance width is the difference in

mass ∆M given by (2.2) with respect to the pole in Table 4

when we use K + ∆K in (2.2) to compute the particle mass

M + ∆M. We get:

W± → ∆K = (1 + 1/24) → ΓW = 2.0857 GeV, a perfect

match with experiment (2.085 ± 0.042 GeV).

Z0 → ∆K = (1+ 1/24)→ ΓZ = 2.468 GeV, 1% less than

expected (2.4952 ± 0.0023 GeV).

H0 → ∆K = 1/(144 × 6) → ΓH = 4.10 MeV, which

agrees with the SM prediction at 125.09 GeV.

Hence, the widths come straightforwardly from geometry.

But the Z0 width is out of range and this can only be due to

the difference in charges with the W± that we have ignored.

Reasoning simply:

W±: The charges e/3 and 2e/3 (or opposite) repel each

other with a force coefficient 2e2/9.

Z0: The charges e/3 and -e/3 (or 2e/3 and -2e/3) attract

each other, the force coefficient is e2/9 or 4e2/9.

The difference in inner charges between the Z0 and the

W± gives a difference in forces which is:

2e2

9
+

e2

9
=

e2

3
Or :

2e2

9
+

4e2

9
=

2e2

3
.

It implies that the forces cannot be balanced in the same man-

ner for the two bosons. Assuming the W± width computed

value is exact, we need an additional term to compute the

Z0 width. Since the forces in the calculus of Db depend on

charges, from the equations above the missing coefficient is

1.5/137 or 1.5α. It gives:

Z0 → ∆K = (1 + 1/24 + 1.5/137)→ ΓZ = 2.4946 GeV,

which agrees with the SM prediction and experimental

data. However the experimental precision for the W± and Z0

widths differ by one order of magnitude; hence this reasoning,

which is differential, is risky and non conclusive.

3.5 Resonance terms, analysis and reduction

The resonance terms found in the previous tables (all N and

P) reduce to 2, 3, 7, and 19 in the following manner:

Leptons: 2, 7 – 2, and 7 + 2.

Quarks: 3, 7, 2 × 7, 19, and 2 × 19, if we omit the u and d

where we know from the CKM matrix that mixing is large as

compared to the other angles.

Massive bosons: 12 = 19 – 7.

It is remarkable that 7 = 23 − 13, and 19 = 33 − 23; here it

reduces to the three “symmetry numbers” of U(1), SU(2) and

SU(3), and their cubes differences. Moreover for all quarks

we get P = 3, including the u and d, where the polarity ap-

pears, meanwhile for leptons it seems that we have the polar-

ity 2 in a mixed manner. In this way the radial paths are based

on 2 and 3, while 7 and 19 only come with circular paths (and

unstable or mixing particles).

Moreover, the difference in resonance between the elec-

tron and the muon and tau relate to the K = −7 of the Z0,

while the heavy quarks decays include a factor 2 in charge

and resonance which fit the K = −2 of the W±.
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Therefore we get the strong impression that the equation

relates to an intricate resonance scheme based only on the SM

symmetries — or something close. The simplicity of the rea-

soning and numerical results suggest that the mass spectrum

may be unavoidable, and since it relies on charges it also sug-

gests the absence of free parameters in nature.

3.6 Charges ratios

The results in this section suggest a single field “below” and

it is interesting to estimate charges ratios, but we can only

compute their radial effect, not the forces orientation; from

the analysis of Table 3 the distances building the Ds are in

reverse proportions of charges. Then for the electron, K = 2,

and for quarks, K = −6, and De ≈ Dq.

From Table 3 and the different parameters D, taking into

account the differences in K, since we have X × E → 2 × De

for the electron and for quarks X×C → −6αDe; we estimate:

C

E
=

2 De

6αDe

→ C =
E

3α
,

which has a clear scent of monopole; importantly, it does not

depend on the quark electric charge since the coefficient 3

(from K = −6) is constant in Table 2.

In Table 3, we also have X×X → α2 and X×C → 6αDe,

and then we estimate:

C

X
=
α2

6αDe

= 1.4254503 ≈
√

2,

which is in the range of 1 and then the same type of charges

(≈
√

2 suggests geometry of the force orientation).

4 Coupling constants

4.1 Introduction

We found two real constants in the expression of the param-

eters D which represents a length in the equation. In the ex-

pressions (3.4 – 3.5 – 3.6) used for Db those two constants

stand on equal grounds. Hence since α is the coupling con-

stant of QED, then De is also a coupling constant. It then

relates directly to the strong and weak forces couplings (re-

call that we also have AS = De/α in the range of αS (MZ))

and since K appears constant for quarks, Dq should be related

to asymptotic freedom. Therefore it seems that the equation

addresses a field below with two and only two couplings (ne-

glecting gravitation for now).

Since all resonances are integral (N, P, K) and reduce to a

few numbers, it is minimal and elegant to generalize the con-

cept and assume that the field is entirely self-quantizing (or

self-constraining) and that quantization is entirely based on

geometry and integral numbers; in this way, those two cou-

pling correspond to some counter-resonances (1/N → N or

N → N) and then to constant path lengths (or relative path

lengths).

In practice the only known constant integral path length

is that of photons for which r2 − c2t2 = 0. At the opposite, in

special relativity, massive particles obey r2−c2t2 = const , 0

which we write r2−c2t2−const = 0. But now the paths of the

resonance define the massive particles — we mean entirely; it

is a repeat pattern that fits into this equation and it first implies

that the path includes a rotation which is around the time axis.

Then we guess that De (as a length) must be computed from

a pseudo-norm like expression of the form:

n2 + m π2 − p2 = D−2
e

where the central term introduces a rotation and n, m, and

p are expressions based on the resonance terms. Now of

course, αmust obey a similar pattern and, since α and De have

distinct but complimentary roles, the expressions giving De

and α should use resonance terms in a complimentary man-

ner. Last, the bosons resonances are based on 4-dimensional

paths; then n, m, and p must be seen as the coordinates of

a 4-path which projection on 3-dimensional space gives real

numbers.

Because of 4D resonances, we shall suppose that there

is no punctual particle or 1D string and that the field is en-

tirely fluid. It implies that some currents propagating in a

direction orthogonal to the observable 3-space (possibly back

and/or forth in time) are preserving and propagating the char-

acteristics of the particle and we shall abusively denote those

“time-currents”. In this way the electric field of the electron

is seen similar to the effect of a magnetic current propagating

forward and/or backward in time with respect to the present.

Here the present is seen as the surface of an expanding 4-

sphere, but 4D space is assumed preexisting and permanent.

It results in an interesting minimal model where all known

massive particles are composites of time-currents:

Leptons:

• e− : [↑−↓+],

• µ− : [↑−↓+ ↓−↓+],

• τ− : [↑−↓+ ↑−↑+].

Quarks:

• t+ : [↑+↓−↓+↑−↑+],

• b− : [↓+↑−↑+],

• c+ : [↑+↓−↓+],

• s− : [↓+].

Bosons:

• Z0: [↓+↓−],

• W±: [↑+↓−] and [↑−↓+],

• H0 : [↑+↑−↓+↓−].

where the notations are trivial for up-time and down-time cur-

rents sign and directions (the sign is the current, not the elec-

tric charge which, by convention, is inverted for down cur-

rents); the apparent electric charge is 2/3 for an up-time cur-
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rent and 1/3 for a down-current (still by convention). Several

aspects of the model are of interest:

• The model is based on 4 dimensions of space; it is then

coherent with the calculus of the coefficient k used for

bosons, but it is also reminiscent of QCD where quarks

live in 4 dimensions.

• The difference between the H0 and the weak bosons is

consistent with the calculus of DWZ and DH .

• All quarks decays consist in a separation of currents

where the sum of the produced W± boson’s current and

quark is equal to the currents of the original quark (and

of course the picture is reversible).

• The same is valid for leptons decay, but with a Z0.

• There is no room to make a d quark except by mixing

(and the d comes with resonances ratios).

• The notion of time-currents removes the need for par-

ticles “inhabiting space”. In this way, the concept is

minimalist and particularly elegant since, eventually, it

must result in self-quantizing movement where we do

not need to distinguish space and matter.

• All particles include a down-type current (taking this

as strict rule implies mixing for the u and d, and the

absence of FCNC). The model agree with Cramer’s in-

terpretation of quantum mechanics — though in an al-

most classical 4-dimensional manner. All particles are

connected to and can send information to their past or

receive some from their future because a communica-

tion channel exists which is the particle itself.

4.2 Coincidences

In this sub-section we discuss three numerical coincidences

involving the numerical values found in section 3. In this

way, we seek coherence with known but older theory.

4.2.1 Lamb shift, Bethe’s equation

Bethe [1] computes the hydrogen Lamb shift; he gets:

∆E =
α5 me c2

6 π
ln

(

m2
e c2

8.9α2 m2
e c2

)

, (4.1)

where me is the electron mass; the expression in the logarithm

depends on the cutoff and gives a ratio between the electron

absorption and self-interaction and then in our model µ and

(me−µ) respectively (though according to the mass-equation,

self-interaction and absorption may be reversed with respect

to QED,) we find:

(me − µ)
µ

=
1

8.8857α2
. (4.2)

The relative difference with respect to Bethe’s result is

1.6×10−3 (or 2×10−4 for ∆E) and then µ seems relevant with

respect to Bethe’s analysis. We notice a similar coincidence:

(me − µ)
µ

≈
√

2

4π α2
. (4.3)

The relative error in (4.3) is ≈ 1.25 × 10−5. Consequently,

since Bethe’s paper is seen as the very first step to QED, X and

µ should be fundamental quantities directly linked to QED.

4.2.2 The electron mass and spin, rough analysis of the

coincidences

A physical action is a product of charges or currents; then

we analyze action and not energy. Accordingly, the electron

mass comes as a repeated action (E = hν).

Action is a product that we first write in complex form:

(

G +
i e

2

) (

G − i e

2

)

= G2 +
e2

4
→ me, (4.4)

where e/2 represents the currents, not the apparent charges,

and G the resonant component. Now we write (4.4) in quater-

nion form:

(

G +
i e

2

)

(

G +
k e

2

)

= G2 − j e2

4
+ (k + i)

e G

2
. (4.5)

Those equations may approach the natural algebra, but the

result seems wrong. Still, assume the algebra is broken, (4.4)

gives the mass and (4.5) angular momentum:

G2 +
e2

4
→ me; (k + i)

e G

2
→ angular momenta. (4.6)

The angular momentum splits into two components on or-

thogonal axis — which agrees with the idea of time-currents.

Then one is the magnetic moment and the other is along the

time axis; we will denote the latter “spin”. Now we identify

the squared charges in (4.6) with the masses in (4.3); it gives:

4π α2G2 ≈ e2

√
2

4
.

Substituting G with a Dirac charge, we get 1 ≈
√

(2)/4π;

now multiply each side of this ridiculous result by the Planck

constant we get the following correspondence:

h↔
√

2
~

2
=

∣

∣

∣

∣

∣

(k + i)
e G

2

∣

∣

∣

∣

∣

, (4.7)

which interpretation is obvious: a repeated action h is energy

(E = hν) and it makes the leptons spin and magnetic moment.

4.2.3 The Dirac condition and the parameters X and µ

Dirac [8] analyzes the possibility of existence of magnetic

monopoles using quantum mechanics. Based on the mathe-

matical properties of the electron wave function interpreted
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as a density of probability of presence, he shows that a mag-

netic monopole is compatible with the existence of quantum

mechanics in Hamiltonian form if and only if the so called

Dirac condition is respected:

e g =
(n ~ c)

2
→ g = n e

2α
. (4.8)

It results in the elegant idea that the existence of magnetic

poles fixes the electric charge and conversely.

Now let us assume that the electron wave is a magnetic

current; since Dirac’s demonstration is based on the “fields

of force” acting on the electron wave then magnetic currents

acting on electric charges must obey the same condition. But

in our model e is an apparent charge (say ee) and also a sum

of time-currents (say em) and its monopole (denoted gm).

Both must be taken into account in the condition as part

of the total current; then the condition is:

ee(gm + em) =
(n ~ c)

2
. (4.9)

Now compare with our data and use em = ee. The fundamen-

tal resonance in equation (2.1) corresponds to a theoretical

half electron, that is N = P = 1,K = 0, and a self-energy µ/2

that we shall ignore. It gives, as per (1 – 3.3):

m = X/1 = 8.1451213299073 keV/c2. (4.10)

This mass must be compared to µ as it comes from the in-

teraction of the time-currents (not the apparent charges) and

then, for an electron, as the product e2/4. The rest of the elec-

tron mass (N = P = K = 2) is given by the resonance; then in

(4.10) the numbers (N = P = 1) correspond to a hypothetical

particle where a current G is interacting with e/2 which mass

is given by an action corresponding to Ge/2.

Now we analyze how action comes as a product of cur-

rents, but not energy for which we rely on resonances. In the

hypothetical resonance above, it corresponds to the products

e G and e2/4, where G2 is absent. It leads to a correspondence

between action and energy:

e G

2
↔ m;

e2

4
↔ µ. (4.11)

We divide the two expressions in (4.11) and in light of (4.9)

we add µ/2 that we initially ignored; we find:

2 G

e
=

m

µ
→ 4 G + e = 68.4051246306057 e ≈

e

2α
. (4.12)

We want to recognize here the modified Dirac condition in

(4.5), because the fine structure constant appears linked to

the equation parameters.

But the result seems approximate; at first the relative dis-

crepancy (−1.65×10−3) seems acceptable since we analyze a

hypothetical particle but we shall see that this numerical value

holds precisely.

There is a second aspect related to the Dirac condition

which comes from the time-currents model and the apparent

electric charges e/3 and 2e/3 going respectively down and up

the time; assume their individual self interactions are squared

charges. Once again, we can link action and energy:

(e/3)2 + (2e/3)2 → µ(1/3)2 + µ(2/3)2 = 5µ/9. (4.13)

Now from (4.10):

4(m + 5µ/9)/µ = 137.032471483434 ≈ 1/α (4.14)

The relative discrepancy with respect to α is ≈ 2.26 × 10−5.

The coincidence can, at first sight, be seen redundant with the

equation (4.12) as it is almost identical, but it comes from a

different interaction and we shall see now that this value also

holds.

4.3 Leptons magnetic moment anomaly

We assumed that the resonances in the previous section “con-

struct” the leptons waves; unlike the classical wave equa-

tions the geometrical construction is not unique but lepton-

dependent. Thus, even for the electron it seems hardly pos-

sible to make an exact link with the Dirac equation which,

according to (2.1), should be too general; consequently we

go back to de Broglie’s thesis which is fully relativistic.

4.3.1 De Broglie wave geometry

In his thesis, de Broglie uses a standing wave, that we will de-

note the Compton wave and finds a phase wave as a result of

the relativistic transformation of the former. The agreement

of the stationary wave assumption with the results in Table 1

is straightforward since we get N = P for all leptons.

The change in phase of the de Broglie wave over the first

Bohr orbit of a hydrogen atom is 2 π, while the Compton

wavelength change in phase over this orbit is 2 π/α. Then

over any number of Compton wavelengths, we have:

∆φD = α∆φC , (4.15)

where∆φD and∆φC are the changes in phase of the de Broglie

and Compton waves over any length. On the nth orbit we find:

∆φD =
α∆φC

n
, (4.16)

There are n de Broglie wavelengths around the nth Bohr

orbit and we get a constant angular differential term α. The

same reasoning applies in the case of a nucleus of charge

Z e and gives the same value. Hence, considering that the

de Broglie wave defines the motion of the electron this term

is universal in the Bohr model. As a result, and taking into ac-

count simultaneously the motion of the electron and the phase

velocity of the de Broglie wave going around the proton, the
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Fig. 1: Left, the electron classical Bohr orbit; right, the same cylin-

der unfolded (the angle is ≈ α).

phases of the two waves at any location of the electron clas-

sical trajectory are permanently identical.

Assume α is a path length based on integral and geomet-

rical numbers. On the cylinder Figure 1, and using a system

of unit where the radius of the cylinder is 1, the length of the

unfolded tangent is approximated with L ≈
√

1372 + (2 π)2.

Now we know that the electron spin is 1/2, and then the rota-

tion of the resonance is reduced to π when the electron runs

one turn; we get the well-known
√

1372 + π2 ≈ α.

Consider now the de Broglie wave as a shortcut perma-

nently joining the electron with itself, but one (or n) Comp-

ton wavelength later, with an action 1/137/2 (taking again the

spin 1/2 into account), it gives:

α−1 ≈
√

1372 + π2 − 1

137
× 1

2

which holds with a relative precision ≈ 3 × 10−8. Last, con-

sider that the electron progresses in time, but that its waves

are composed of two currents going up and down. If the up-

time part of the waves gives a factor 1/2, the down-time part

sees the electron with a charge twice lesser since in the case

of quarks the down-time and up-time currents manifest fields

1/3 and 2/3 respectively. It must be augmented with a reso-

nance length dependent on the time-velocity of the electron;

twice longer for the same reason (charges 1/3, 2/3); finally it

gives a factor 1/8 for the down-time part and we get:

α−1 =

√

1372 + π2 − 1

137

(

1

2
+

1

8

)

→ α = 72 973 525 698 × 10−13

which is exactly the value of α given in CODATA 2012! Con-

sidering precision together with the simplicity of this geome-

try, it looks pretty much like time-currents exist.

In special relativity, one would consider the so called ra-

pidity of the electron defined as a hyperbolic angle. How-

ever, the path length α can also be seen as a simple angle in

the Euclidean coordinates (x, y, z, i ct) as originally used by

Minkowski. Moreover, one must consider this angle univer-

sal, and it implies a complimentary angle π/2 − α. At first

the existence of those angles can be checked numerically as

it must also correspond to the coincidence (4.3); after appro-

priate replacements of α2 by two coefficients corresponding

to the two angles α and (π/2 − α), the equation (4.3) gives:

4π (me − µ) sin(α)

[

(

π

2
− α

)

sin

(

α

π/2 − α

)]

= µ
√

2,

which holds with a relative precision of 2.9 × 10−8 instead of

1.25 × 10−5 for (4.3).

4.3.2 Other resonance coefficients and action

When the electron is on the first orbit there is a rotation of

the time-current of a hyperbolic angle α which ratio to the

space current changes in proportion of the hyperbolic tangent

of this angle. As stated, the impact is a phase differential and

considering resonances, a simple angle gives tan(α); it runs

around the full Bohr orbit and then the instantaneous action

term is tan(α)/2π. The action given by tan(α) is that of a

resonance going around the full orbit.

It must cycle on 1/2 quantum; hence the first correction

term to the electron magnetic moment anomaly is:

ae
0 =

tan(α)

2π
≈ g − 2

2
(4.17)

where we denote a0 and g the correction and the g-factor

respectively. Compare to the first order QED correction by

Schwinger [12], the well known α/2π. The difference comes

from a different manner to taking into account relativistic

effects. Here it suggests that taking into account together

the particle resonances and special relativity in the original

Minkowski manner could give an analytic solution. In facts,

the difference is that we consider the electron as a 4D gyro-

scope which axis is bent by velocity. This axis is shown with

the orientation of the resonances N, P,K in Figure 2.

Therefore in (2.1) the resonance N P corresponds to G2 in

(4.13) while K corresponds to e2/4. The product N P makes

and “absorbs” the spin and the full space-resonance cycle is

then (N P − 2) K which is a product G2e2 while the spin is

given by G e. Action depends on the number of currents C

(which, according to the model, is lepton-dependent) while

the mass µ is constant; then we divide this coefficient by the

number of currents.
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We get a spin-dependent coefficient where the spin relates

to the interaction of the G-currents and the apparent electric

charges — which is logical. It is:

E =

√

NP − 2

C
K. (4.18)

In the direction of time (K in Figure 2), the same reasoning

gives NK2 for a product e2/4. But we get a spin indepen-

dent coefficient which relates only to the currents and does

not need a square root; it is:

F =
N K2

4
. (4.19)

The coefficients above are valid for an electron but for the

muon and tau the coefficient a0 corresponding to the time

current rotation is not α like in (4.17), it depends on the res-

onance numbers. The electron is the special case because all

resonance numbers are identical and even (N = P = K = 2)

and then all phases are identical.

For the muon and the tau, N = P and K are odd and prime

with each other, and then the action cycle is N K. Using (4.18)

for an electron, the cycle uses N = K = 2 and its angle should

be written 2α/2. Then for a muon and a tau the correspond-

ing coefficient is:

φ =
tan(N K α/2)

NK/2
, a0 =

φ

2 π
. (4.20)

The expression mixes angles and resonance and fits with the

interaction of current where action is angle-dependent; it will

be the geometric form used in this section. We introduce α/2

which we now consider as the physical angle of each time-

current — it gives α for two currents of opposite directions

taken together.

4.3.3 The electron

Now we want to compute the anomaly from the following

picture: the electron is seen as a 4D rotation which (in all

cases) has the following mathematical property: two orthog-

onal planes exist which are conserved by the rotation. The

identifications are then obvious; the angles in the previous

Fig. 2: Resonance geometry on N, P, and K. Left: an electron seen

at rest, K on the time axis, N and P in 3-space. Right: an angle ≈ α
appears as a relativistic shift on the first Bohr orbit where axes are

bent by velocity.

section define the two planes rotations and correspond to the

resonances. The rotation is said double since we find distinct

angles α and (π/2 − α). The planes intersect at a single point

(a mathematical property of any 4D rotation) where the res-

onances apply, and it defines the punctual particle — but we

do not need to introduce anything material at this place (no

particle). The planes intersection point also moves in space

and in the direction of time defining a classical trajectory.

One plane is orthogonal to the time axis and hosts the

leptons resonances N = P, and K is on the other one which in-

cludes the “time translation” of the particle. Finally those two

planes are lepton-independent and then their translation and

the associated angles define entirely the seemingly anoma-

lous values in (4.8 – 4.10) as they are also lepton-independent.

Consequently, the lepton-dependent resonances imply differ-

ent magnetic moment anomalies. Therefore we can reverse-

compute the anomaly from those two quantities. In this way,

we define:

From (4.8): 4(X/µ + 1/2) = β−1
1
= 136.810249261211,

From (4.10): 4(X/µ + 5/9) = β−1
2
= 137.032471483434.

The Dirac equation gives g = 2 and it is known that

the correction is entirely related to relativistic shifts. The

quantities above correspond to distinct interactions and then

distinct types of charges; hence the correction is a product

aT = a0 a1 a2 where a0 is geometrical and corresponds to the

angle α in (4.17) or φ in (4.20), a1 to the action of the appar-

ent electric charges (4.10), and a2 to the action of (magnetic)

currents (4.8).

Since β1 and β2 are deduced from the leptons masses, they

are related to the tangent of some angles part of the resonance

geometry (in the same manner as tan(α)/2π). The anomaly is

angular and differential and then a1 and a2 must be computed

as ratios involving α and the arctangents of some angles in-

volving respectively β2 or β1, and resonance numbers. The

electron correction term ae
1

is then given by an expression of

following form:

tan(α)Y

tan−1(β2Y)
→ ae

1.

It links an action given by the angle α and another one given

by β2 and the anomaly relates to their ratio. Now β2 relates to

the apparent electric charges giving the spin; then Y = E as

defined in (4.18). The angle α/2 also impacts the coefficient

and subtracts from K.

Then we write:

E →
√

NP − 2

C

(

K +
α

2

)

(4.21)

ae
1 =

tan(α)
√

2 + α/2

tan−1
(

β2

√
2 + α/2

) (4.21.1)

Now β1 comes from the time-currents of the electron; we

must make a similar reasoning involving F defined in (4.19).
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Naturally, this correction will be similar in form to the equa-

tion above. The logic is:

• The first order effect is null; it is second order where

the cross-products cancel.

• The angle must be α instead of α/2 since the two angles

α/2 on the axis of K sum up.

It gives, for an electron:

ae
2 =

tan(α)F
(

1 − α2
)

tan−1
(

β1F
(

1 − α2
)) , (4.22)

ae
2 =

tan(α)
(

2 − 2α2
)

tan−1
(

β1

(

2 − 2α2
)) . (4.22.1)

Note that in the equations (4.21 – 4.22) the angle α/2 affects

K and −α2 affects K2; it is the same geometry where only K

is impacted. Now from (4.17 – 4.21.1 – 4.22.1) and using the

value of α in CODATA 1014 we find:

ge
T/2 = 1 + a0 a1 a2 = 1.00115965218091. (4.23)

The values of X and µ in (3.1) were tuned to fit with CODATA

2014 which gives:

ge/2 = 1.00115965218091 (26). (4.24)

The relative error on ge
T

in (4.23) with respect to (4.24) is less

than 10−14, but it can be down to ≈ 10−8 − 10−9 without ad-

hoc tuning and keeping all leptons masses within uncertainty

— the result would still be very significant.

4.3.4 The muon and tau

We get the equations needed to compute the muon anomaly

in the same manner as for the electron but using (4.20) and

including in (4.21) the four currents given by the model, and

the resonance numbers in Table 1. We get:

g
µ

T
/2 = 1.00116592081. (4.25)

The CODATA 2014 experimental value is:

gµ/2 = 1.00116592089 (63). (4.26)

The result is well within experimental uncertainty and inde-

pendent of the adjustments of (3.1) since the precision is in

the range 10−9. The SM prediction disagrees with a 2 − 4σ

discrepancy. Typically:

a
µ

S M
− a
µ

experiment
= (2.8 ± 0.8) × 10−9. (4.27)

The very short lifetime of the tau makes impossible at present

to measure its (g − 2). The SM prediction is:

gτS M/2 = 1.00117721 (5). (4.28)

Using the tau resonances in Table 1 we get:

gτT/2 = 1.00125789. (4.29)

But on the other hand, in the tau resonance, N = P = 9 is not a

prime number, it is a square and then, perhaps, we should use

3 instead of 9 in the equations to compute its anomaly (we

find a second reason later). It gives:

gτT/2 = 1.00117037, (4.30)

where the difference with the SM prediction is more coherent

with that of muons.

4.4 The fine structure constant

We made a first calculus of α as a simple path length. Now we

shall first show that the shortcuts in this path length, namely

1/2 and 1/8, also defines the leptons resonances, and then find

an immediate origin to the number 137.

4.4.1 A second view on leptons resonances

Our analysis of the resonances in Table 1 fits with the sup-

posed geometry, and complimentary angles α and (π/2 − α).

It is a quasi-symmetrical picture that suggests the existence

of a second view on the leptons resonances agreeing with the

equation (2.1). In this equation we use three resonance terms

(N, P, and K), but the rotation is in 4 dimensions; then the

resonance terms correspond to one rotation plane used com-

pletely (N, and P), while K lives in the other plane but we only

use an axis (not the full plane). The second view should split

oppositely; it cannot hold with N = P but it must with P = K

because of phase coherence. Then using angular ratios, we

should have a different mass: µ′ ≈ µ π/2 ≈ 380 eV/c2. Start-

ing with this value, imposing P = K, and using the equation

(2.1), an empirical fit to the same decimal as shown in Table

1 gives Table 5 and the coefficients in (4.31).

Table 5: Second view on electron, muon, tau in MeV/c2.

– P=K N Computed Measured

e 2 2 0.510 998 9461 0.510 998 9461(31)

µ 3 8 105.658 3752 105.658 3745(24)

τ 4 16 1 776.84 1 776.82(16)

µ′ = 385.6750521055 eV/c2,

D′ = 0.0002255984538, (4.31)

X′ = 8.02160795579 keV/c2.

P = K is verified, and we can estimate:

µ′ = µ
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which was used to compute (4.31); it uses 1/137 and no sim-

ple fit was found with α.

The remarkable point in Table 5 is that we find for N the

numbers 2 and 8, and their product 16 for the tau. Those num-

bers show that, in the EM field, the resonance is tachyonic and

the shortcuts can ring independently or in a combined man-

ner. The product 16 also justifies our doubts for the tau (g−2)

in (4.29).

4.4.2 Alpha and 137

Following the first equation giving α, assuming time-currents

exist and correspond to e/2→ 1/274 we find an empirical fit

compatible with CODATA 2014:

α−1 =

√

1372 + π2 +
1

2742
− 1

137

(

1

2
+

1

8

)

→ α = 72 973 525 672 × 10−13, (4.32)

where the difference with CODATA 2014 is about half the

standard deviation:

αCODAT A 2014 = 72 973 525 664 (17)× 10−13.

But now, why 137? A straightforward calculus gives a possi-

ble origin; taking all integral N and P from all tables, we get

a seemingly absurd suite of numbers that sums to:

ΣNP = 2 + 3 + 4 + 5 + 7 + 8 + 9 + 12 + 14 + 16 + 19 + 38

= 137. (4.33)

Is that a coincidence, or rather the signature of a discrete wave

packet? If one thinks of exponentiation, each term of the sum

corresponds to a different piece of the phase of a unique sig-

nal which includes all symmetries and all the manners they

combine, interact and condense (or ring). Since N and P are

space currents, ΣNP defines a universal oscillator. With re-

spect to field theory, it is straightforward that such a wave

includes or represents all virtual particles fields.

A complimentary result on K → 274 seems doubtful;

however, taking 266 from bosons instead of (-2, -7, -19), and

the distinct values of K from leptons and quarks, we notice:

ΣK = (2 × 7 × 19) + 2 + 3 + 4 + 5 − 6 = 274. (4.34)

The interpretation is less obvious and the link with known

theory is nil, because this quantity addresses the effect in

space of vibrations or rotations along the time axis and their

participation to particles mass and interactions; there is no

such concept in known theory.

In any case, those relations are complimentary to each

other and provide with numerical coherence linked to the con-

cepts developed before.

4.4.3 Splitting De and D′

Now, α is a 4D path length as seen in 3+1D, then the cou-

plings D′ (4.31) and De (3.1) should have a similar form

but in a complimentary manner with respect to the resonance

terms; hence they should also be expressed with similar ex-

pressions but using 3, 7, and 19 (the resonances of quarks)

and ΣK = 274; we find the following empirical fit which terms

show an obvious symmetry:

D−1
e =

√

((7 − 3) × (274 + 19))2 + 7π2 − 19π

19 − 1
, (4.35.1)

D′−1 =

√

((19 − 3)(274 + 3))2
+ 22 × 3 × 7π2 −

3

3 − 1
. (4.35.2)

Those expressions were used to compute the values in (3.1 –

4.31) and then all masses.

Several aspects are remarkable in those expressions:

• We notice that 274 + 3 = 277 and 274 + 19 = 293

are also prime numbers; hence those are not reducible.

Their difference is 16 which is also (7 − 3)2 in De and

(19 – 3) in D′.

• The rotation term 7π2 in (4.36.1) is a perfect fit with the

µ and τ resonances (5 = 7 – 2, and 9 = 7 + 2), where 7

was inferred a rotation.

• D′ includes a factor 2, which can be inserted in K in

Table 5, but not in P; then P and K act on the time

and magnetic moment axis respectively and it must be

identical to the classical g-factor = 2. This is necessary

since Table 5 is in the symmetry of QED.

Importantly, the expressions above are obtained by simple

divisions based on the initial empirical fit of the De and D′.

The left term is the closest square to the empirical value of

D−2 from which it is subtracted; the middle integral term is

the division of the rest by π2 that gives a small residual term.

Then we search to express all terms with integral numbers —

preferably those we expect.

5 Gravitation, the keystone

The mass equation and the time-current model are coherent

with Cramer’s transactional interpretation of quantum me-

chanics which fills the gap of non-locality (the true signature

of quantum physics) but without spooky action in 3-space.

Since the reasoning to the mass equation (thru N and P)

and Cramer’s interpretation are relevant in absorber theory

and uses a pressure field, gravity must be analyzed in a shield-

ing manner using Wheeler-Feynman equations [13, 14]; in

this way, it was shown compatible with gravitation in a recent

paper [6]. It does not require the existence of dark matter to

explain the observations at the origin of this hypothesis and it

also explains the cosmos energy densities (visible, dark, and

visible + dark). In this section, we shall not restate the piece

of theory in [6] but only the logic and main results.
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The absorber free energy equivalent mass MA is given by

symmetry of the absorber process in gravitation; we first write

the energetic part of the Schwarzshild metric:

c2 dτ2 = (c2 − 2 G m/r) dt2 − c2

c2 − 2 G m/r
(dx2 + dy2 + dz2)

Then, in the spirit of absorber theory, we symmetrize the

equation in geometry and mass terms:

2 G m

r
=

m Ru

MA r
→

RU

2 MA

=
G

c2
, (5.1)

→ MA =
RU c2

2 G
=

Pp T

2 c2
= 9.790 × 1052 kg (5.2)

where RU = cT , T = 1/H is the age of the event horizon

while H is the Hubble factor and Pp is the Planck power.

Concerning visible energies MV c2, the ratio MV/MA is

a geometrical constant. This constant links a 4-volume and

a linear interaction in 3-space; the surface of a 4-sphere is

2 π2 R3, and then the factor 2 in (5.2) becomes 4 π2 in 3 + 1D

where visible energies interact thru the light cone. It gives:

MA

MV

= 2π2 → MV = 4.453 × 1051 kg. (5.3)

Summing, we get the total energy MU of the visible universe:

MU = MA + MV = 9.236 × 1052 kg. (5.4)

It gives to a total density ρ = 9.91 × 10−27 kg/m3 and the

visible energy (5.3) is 4.82% of the total. The benchmark

at this time is the Planck mission results [20] which gives

ρ = 9.90 (6) × 10−27 kg/m3 and 4.86 (10)% of visible matter.

Hence according to the standard model of cosmology we get

valid quantities. The equation (5.1) also means that the rate

of dark energy creation (MA) since the initial bang is constant

and half the non-reduced Planck power: the universe energy

is identical to its expansion and we do not find a big bang

but a permanent process. Next, using the Wheeler-Feynman

equations or Newtonian gravity this creation gives an accel-

eration excess up to H c at the galaxy borders, meaning the

absence of dark matter.

But now what is the relation with our analysis of mass?

According to (4.34 – 4.35), the numbers 137 and 266 address

space and time respectively. They interfere at the point of

origin which is visible thru the solid angle 4π, and we should

find there the reduced Planck mass giving the Planck power:

Mp =

√

hc

G
× 1

4π
= 2.43536 (6)× 1018 GeV/c2.

Using the mass equation (2.1) with the parameters in (3.1)

and taking N = P = 1372, and K = +1/2662 gives a mass:

M = 2.464 × 1018 GeV/c2,

which is very close to Mp.

Looking at (4.36.1), we find 7π2 in the expression of De

while 19 has a role similar to 7 in the case of quarks (N, Table

2) and bosons (K, and N = P = 19 – 7 in Table 4); then in order

to symmetrize the equation we take:

N = P = 1372 − 19 π2; K = +1/2662,

M = 2.43526× 1018 GeV/c2.

Finally, the next two decimals are given by addition of ≈ 2/3

to N = P; a small empirical term which is expected as it

makes this expression homogeneous to coupling:

N = P = 1372 − 19 π2 + 2/3; K = +1/2662, (5.5)

M = 2.43536× 1018 GeV/c2. (5.6)

Since 1/(N P) < K D this resonance is not permitted in 3+1D.

Considering that we now discuss reconciliation of quan-

tum theory and general relativity through a common origin

this result is keystone on top of the study. It shows that the

same field also leads gravitation.

Here we can define a unit-less quantum gravitational cou-

pling constant which reads:

αG =
X2

M2
p

=

(

1

(1372 − 19π2 + 2/3)2
+

De

2662

)6

, (5.7)

αG = 1.1186 × 10−47,

where we see that the rest of quantization lives in and from a

single oscillator defining gravity; it is “below” quantum the-

ory and it does not need the existence of a graviton particle.

Unlike the classical definitions of αG, since X is universal

and represents the pressure field, (5.7) is unique and does not

depend on an arbitrary choice of mass.

But now the ratio of the electron mass to the Planck mass

is constant, which seems a contradiction with (5.1). On the

other hand, the observable cosmos has constant atomic physic

and chemistry and then its laws use relative constants varying

in time and not absolute ones. Thus, only unit-less quantities

are constant; since G is used with constant masses in classical

theories, then hc and G vary together in the same manner as

α = e2/~c is constant.

Therefore, here is the big picture, the minimal interpreta-

tion of all results in this paper (no doubt it can be made more

complex and elegant):

• A Planck particle exists at the origin; it emits a wave

of Planck length and time. This resonance exists in 4

dimensions, it is not energy but its wave defines the

quantum of action.

• This wave interacts thru the light cone (and gives 137

in α), and thru a radial line (giving 266 and 274). In a

symmetric absorber concept, it means that the universe

and its origin are quantizing each other.
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• The emission is constant and corresponds to the Planck

power; it builds MA, and the visible energies field MV

is the absorber. It creates a deficit which is gravitation

(see the absorber equations in [6]).

• For complete quantization thru time-currents, 137 is

the sum of all resonances in space, and 266 is the prod-

uct of the bottom space-type resonances, radial or cir-

cular (2, 7, 19).

• Increasing masses and the constancy of e2/~c and hc/G

are equivalent to and interpreted as time dilation. It de-

notes the emergence of the observable time in a frame

where it does not exist. The observable time is seen as

a radial progression in 4D space.

6 Discussion

Firstly, what have we been discussing all along? Essentially,

the reasoning to the mass equations (2.1 – 2.2) is based on the

existence of a stationary wave in a universe where:

a) everything propagates,

b) mass and charges do not have a proper existence,

c) the field is self-quantizing, and consequently a unique

field and mechanism exists.

We end-up with a wide picture where all (free) parame-

ters of the SM related to energy are self-quantizing geome-

try of movement (at this stage, and taking all results above,

only the SM parameters expressed as phases or angles are not

computed); the same is valid in gravitation and cosmology.

Hence we discuss the very nature of energy, of its forms and

formation on top of a unique field; something looking like the

natural reductionist path of science.

Secondly, what does it means with respect to the standard

theories? In its present form QFT neither considers de f inite

rotations nor signals going up and down the time. Therefore

no true comparison with our results is possible. Still, we find

a number of connections like coupling constants and other

aspects which will be discussed in the next paragraph.

In cosmology and using general relativity, a permanent

energy creation is not even envisioned. Still, energy conser-

vation comes from time-translation invariance and Neuter’s

theorem; but we know that the background (RU) increases and

then there is no mathematical reason that energy is conserved

in cosmology.

The third point to discuss is the possibility of a different

universe (a fashion question). But it seems unlikely because,

as shown before, all resonances decay from 2, 3, 7 = 23 − 1,

and 19 = 33 − 23; then probably only 2 and 3. It leads to

conjecturing further the role of symmetry in the mass equa-

tion; essentially how do we get 2, 3, 7 and 19, and what is the

limiting factor if any? Now let us reason on this aspect.

In the mass equations, the resonances N and P should

come straight from the equation geometry and group theory.

We shall use 1, 2, 3 to denote U(1), SU(2) and SU(3) respec-

tively and discuss field polarization in the resonance equation.

With field polarization p we mean dipoles or tri-poles where

summing p charges makes a neutral. In the following, one

must just keep in mind that U(1) ⊂ S U(2) ⊂ S U(3).

• At the core of a particle resonance, time currents give

a charge Q constant; its polarity is p (in 2, 3). In any

sphere centered on Q the sum of charges is Q. Then

except for Q, the total charge separation in a scale-

independent 3-sphere depends on a cube, say n3 (since

the resonance radius is arbitrary) and it is neutral.

• In the radial case, with resonance P, on each layer of

the resonance the radial action is layer independent,

then the radial coefficient of polarization in 1/n2 for

each layer, with 1 6 n 6 P; then P = n. The polarity of

Q is p and defines the interaction of the particle which

is also radial, then on the radial path n = p = P. Here P

defines simultaneously a radial exchange of action and

polarity (the symmetry). This is immediately verified

for quarks (P = 3), and for leptons if we decompose P

as shown before.

• On a circular path, a resonance N gives N circular sec-

tors with identical action and action coefficients. Then

N = n3 on this path. Since this number does not define

the radial interaction of the particle, any subgroup of p

is acceptable, then 1 6 n 6 p.

We get the following suites of numbers:

• On a radial path the polarity is p, and P = p = 2 or 3;

• On a circular path the polarity is n with 1 6 n 6 p →
N = n3; limited to 2→ 8, 3→ 27.

But the latter is a rotation, not a resonance as needed, and we

need to complete the reasoning.

With geometry and currents (and nothing else), the logi-

cal manner is to combine symmetries. Say in the resonance

volume we have two symmetries at work; a structural point

of equilibrium needs a transformation. Therefore, on the cir-

cular path a resonance is seen as a transformer in n ≤ p

and the subgroups of n, where coefficients are the same for

n and its subgroup. Hence, on circular paths we get cubes

differences 7 and 19; those come like transformer of charges

or currents between a group and its sub-group. That is to

say that the field polarization n → n3 is always balanced by

(n − 1) → (n − 1)3. Importantly, there is nothing in this

reasoning preventing more complex oscillators, for instance

19 − 7 = 12.

This discussion leads to introduce U(1) which is a very

special case; since 13 − 03 = 1 it seems to be a massless field

with any oscillator; the same reasoning on 0 suggests a con-

tinuous current — an amplitude according to which masses

and then the observable lengths and the rate of time vary in

reverse proportions.

Now why only 0, 1, 2, and 3? Within the logic above,

the first mathematical explanation is Hurwitz theorem [10].

Consider two charges or currents x and y, we may need to
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compute the impact of y on the self-interaction of x; it is equal

to the action on x of the interaction of x and y (conservation

and symmetry), then:

(x x) y = x (x y).

This is the definition of alternative algebra; according to Hur-

witz theorem [10], only four exist which are R real numbers,

C complex numbers ∼ U(1), H quaternions ∼ SU(2), and O

octonions ∼ SU(3). One can consider this as limiting either

the symmetry spectrum, or just our ability to model with par-

ticles and charges — or both.

A peculiar case arises with x X = 1 or unitary; the im-

pact of x X on any other quantity of the same group does not

change its amplitude. Then x X addresses structural conserva-

tion and we find simultaneously 137, 1/137, and 274, 1/274

in the expression of couplings.

In this way those quantities are related to the monopole

as quantized rotational 4D paths, like α and De, where only

couplings can be measured in 3+1D as seemingly arbitrary

real numbers.

7 Conclusions

The breakthrough to wave equations was the assumption of a

stationary wave pervading all space. But how can such a wave

exist in relativity without a mass of its own? How could it be

distinct from the mass of the particle or system it describes?

Then how could it be distinct from gravitation?

Those naive but unsolved questions are almost a century

old as they address the nature of the wave, wave-particle dual-

ity, the completeness of quantum mechanics, and the physical

link between gravitation and quantum physics.

The novelty here is that those questions are justified by

the existence of a solution to the free parameters problem,

including and linking particles physics, gravitation, and cos-

mology, not only by conceptual disagreements or theoretical

incompatibilities.

As stated in introduction, we do not solve any equation;

the existence of a solution is first seen when the mass equation

is fit to phenomenology, and then extended to couplings. We

find logical coherence, a reductionist concept and fantastic

precision. Of course it does not look like the usual manner in

modern physics where theory and principles reign; but, con-

sidering the difficulty of solving this problem from theory, it

might be the only practicable way — at least at present time.

As a matter of conclusion, it looks as though the solution

shown here can be found only as a whole and provided that

we do not build on existing concepts (and maybe even princi-

ples); but one must first recognize the existence of a problem

together with its ramifications. This situation is fantastic and

terrible; if that solution exists, physics could remain stuck

endlessly in its present conceptual state because of this con-

ceptual state: whatever new particles discovered in collision

machines modeled with ad-hoc SM extensions, its framework

may never be contradicted by experiment.

8 Addendum

As for the 750 GeV resonance possibly detected at CERN

[21], since it decays to two photons we assume the same equa-

tion and parameters as the H0 and only K can be fit; it gives

K = −133/2 which is immediately remarkable. However,

since K is not integral the width must be reconsidered, logi-

cally to ∆K = 1/4, giving from (2.2 – 3.6 – 3.9.3):

N = P = 12,K = −133/2→ m ≈ 744.9 GeV/c2,

∆K = 1/4→ Γ ≈ 9.6 GeV/c2.

Using (3.9.2) instead of (3.9.3) adds +3 GeV/c2 to the mass.

The other candidate with ∆K ≈ 1 gives Γ ≈ 40 GeV/c2.

At this scale, the equation (2.2) is very sensitive to D and

the model in time-currents must be identical to the H0 other-

wise the computed mass is far from the estimate. It would be

very similar, but it leads to remark that there are two manners

to put four distinct charges at the corners of a tetrahedron;

there may be a chiral difference with the H0, justifying dis-

tinct masses and a probable impact on the particle decays.

Last, the number 133/2 verifies (2.3) like 7 and 19, but

with P = 1 instead of P = 3, since 133 π/2 ≈ 209/1.0004. It

is even doubly remarkable since 209 is multiple of 19.

Hence the existence of this particle, if confirmed, should

not change the values of ΣNP and ΣK ; it fits well and naturally

with the logic and results in this paper.
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On the Nature of Ball Lightning

Anatoly V. Belyakov
E-mail: belyakov.lih@gmail.com

The author proposes a model of ball lightning based on a mechanistic interpretation

of John Wheeler’s ideas. It is assumed that ball lightning is a quasi-particle that has

the Planck mass and consists of closed contours, which in turn are based on the mag-

netic and gravity force balance. These contours are hard packed in a small volume of

ball lightning, forming a multilayer capacitor containing a substantial charge and elec-

trostatic energy. This paper provides calculations of characteristic parameters of ball

lightning, which are well consistent with its phenomenology.

1 Introduction

There are many theories about ball lightning. However, the

nature of this mysterious phenomenon remains unclear. This

paper proposes a model of ball lightning based on a mecha-

nistic interpretation of John Wheeler’s concept. Previously,

such an approach has been successfully applied to construct

both micro-world and space models (see [1–4], etc.).

To some extent, the model proposed is similar to the quan-

tum model by Geert Dijkhuis, Professor at Eindhoven Univer-

sity of Technology and Secretary of the International Com-

mittee on Ball Lightning. His model suggests that ball light-

ning is a macroscopic quantum object. Earlier, a similar hy-

pothesis was proposed by Boris Ignatov [4]. Nevertheless, it

must be noted that there is no complete understanding of the

nature of such objects. It is assumed that a quasiparticle can-

not carry a substance. It only carries energy, pulse, and mo-

mentum, while the electrons inside such an object are com-

pletely coherent and make up a single wave function. Energy

of such a quasiparticle is gradually dissipating, in the visible

range in particular. Therefore, ball lightning can be observed

as an optical object.

2 Presuppositions

Recall that (according to Wheeler) there are original primary

elements of space and matter, which have different names —

wormholes, appendices, current tubes, threads or force lines

of a field. If they are real objects and not just mathemati-

cal abstractions, in physical terms, they must be some kind

of vortex structures resting on the phase boundary (surface).

In particular, Wheeler treats charges as singular points on the

surface source-drain connected by current tubes in an addi-

tional dimension forming a closed contour.

Paper [1] shows that, from a purely mechanistic point of

view, the charge is proportional to its momentum about the

contour of the vortical tube and reflects the extent of non-

equilibrium of physical vacuum; spin is proportional to the

angular momentum relative to the longitudinal axis of the

contour, respectively; and the magnetic interaction between

the conductors is similar to forces existing between the cur-

rent tubes. It is customary that a single element of such a tube

is an element with the size of a classical electron radius re and

its mass me.

The model of ball lightning was only built using the ratio

of fundamental interactions as in the above-mentioned papers

of the author. The mechanistic interpretation of Wheeler’s

ideas makes it possible to record formulae for electric and

magnetic forces in a Coulomb-free form, where the charge is

replaced with the ultimate electron momentum. In this case,

the electric and magnetic constants, ε0 and µ0, are as follows:

ε0 =
me

re

= 3.33 × 10−16 kg/m, (1)

µ0 =
1

ε0c2
= 0.0344 N−1, (2)

where the electric constant becomes linear density of the vor-

tical tube, and the reciprocal of the magnetic constant is the

centrifugal force produced by rotation of the vortical tube ele-

ment with me mass with the velocity of light c along re radius.

This value is also equivalent to the force existing between two

elementary charges at the given radius.

For the purpose of mutual comparison of interactions, for-

mulae for the electric, magnetic, gravity, and inertial forces

are written in a dimensionless form with a single dimension

factor of force 1/µ0. With (1) and (2) in mind, we have the

following:

Fe =
1

µ0

(

re

r0

)2

ze1
ze2
, (3)

Fm =
1

µ0

(

l

2πr0

) (

re

c × [sec]

)2

ze1
ze2
, (4)

Fg =
1

µ0

1

f

(

re

r0

)2

zg1
zg2
, (5)

Fi =
1

µ0

re

r0

(

V0

c

)2

zg , (6)

where V0, r0, l, ze, zg, and f stand for circumferential veloc-

ity, circumferential radius or distance between vortical tubes,

length of the vortex tube (thread) or contour, relative values of

the charge and mass of the electron charge and mass, and the
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electric-gravity force ratio, respectively, with the latter having

the following formula with the same designations:

f =
c2

ε0 γ
= 4.16 × 1042, (7)

where γ is the gravitational constant.

3 Calculation of characteristic parameters of ball light-

ning

Ball lightning often originates from streak one. Imagine

streak lightning as a bundle of vortex threads, which (under

certain conditions) form vortical current tubes. The latter, in

turn, are closed into contours. It is obvious that there must

be balances of some pairs of interactions for ball lightning to

exist. They are the following:

1. Ball lightning mass M satisfies the condition of equal-

ity of electric and gravity forces, so with unit charges we have

the following:

M = f 1/2me = 1.86 × 10−9 kg, (8)

which is in agreement with the Plank mass by order of mag-

nitude.

2. Closed contour branches with opposed currents satisfy

the balance of magnetic and gravity forces resulting in a linear

geometric mean dimension of the contour:

lk = (r0 l)1/2 =

(

zg1
zg2

ze1
ze2

)1/2 (

2π

f

)1/2

c × [sec], (9)

where the ratio of the product ε = (zg1
zg2

)/(ze1
ze2

) is an evo-

lutionary parameter that characterizes the state of the envi-

ronment and its changes as the mass carriers dominate over

electric ones, and in fact shows the distinction between ma-

terial medium and vacuum. Hereinafter, we shall take it as

being close to the unit in our case, while lk = 3.68× 10−13 m,

and the vortical tube’s mass is

mk = ε0lk = 1.19 × 10−28 kg. (10)

In addition, if we express vortical tubes’ masses in (9) —

zgme as ε0l, then we shall get the following relation between

the contour axes for unit charges with (7) in mind:

r0

l
= 2πρeγ × [c2] = 17070 ≈ a2, (11)

where ρe is the electron density equal to me/r
3
e = 4.071×1013

kg/m3; and a is the reverse fine structure constant equal to

137.036. Thus, the individual contour is most likely to have

axes equal to the size of an electron re and Bohr atom rea2.

3. Vortical tubes of a contour consist of a number of unidi-

rectional parallel individual vortex threads spinning about the

longitudinal axis of the contour with circumferential velocity

V0i. Their stability is ensured by the balance of magnetic and

inertial forces, which give rise to the following formula:

V0i =

(

ze1
ze2

zg

)1/2 (

rel

2π

)1/2
1

[sec]
. (12)

Individual vortex filaments having length l and mass car-

riers in the number of zg = l/re are spinning about the lon-

gitudinal axis along an indefinite radius. In the case of unit

charges, we have the following minimum circumferential ve-

locity about the longitudinal axis:

V0i =
re

(2π)1/2
× [c]

= 1.124 × 10−15 m/sec. (13)

The total number of contours (and the same of unit

charges, respectively) may be as follows:

z =
M

mk

= 1.56 × 1019. (14)

The way these contours are packed in the volume of ball

lightning is unclear. Possibly, a contour may be one-dimen-

sional with the total length of z × lk. It can be expected that

with transformation into the more energetically favourable

structure the contour (folding repeatedly) forms a large num-

ber of loops or cells, which are enclosed in a spherical vol-

ume with a bright centre (nucleus). In both cases, with the

elements being the most densely packed in the volume, the

reduced minimum linear dimension of the outer spherical sur-

face will be as follows:

lmin = z1/2lk = 0.00145 m, (15)

However, if we consider the ratio in (11) and take one

of the axes of the Bohr radius instead of lk for individual

contours, then we can estimate the maximum size of such

a sphere as lmax ≈ 0.00145× a ≈ 0.2 m.

Let us calculate the rest limit parameters of ball lightning

— energy, charge, electric potential of streak lightning re-

quired for generation of ball lightning, and its ultimate den-

sity:

Elim = Mc2 = 1.67 × 108 J, (16)

qlim = ze0 = 2.50 K, (17)

Ulim =
Elim

qlim

= 6.68 × 107 V. (18)

The density will be calculated taking lmin as the sphere’s

diameter:

ρlim =
M

4
3
π
(

lmin

2

)3
= 1.17 kg/m3, (19)

which corresponds to the air density.

Contour branches with parallel unidirectional currents

have to twist, so ball lightning contours are gradually open-

ing losing the charge. Therefore, ball lightning has a sort of
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an electrostatic tail behind. The maximum lifetime of ball

lightning can be determined in a similar way as the neutron

lifetime [2], i.e., as the time constant of the contour deforma-

tion (the ratio of the contour’s characteristic dimension to the

circumferential velocity):

τlim =
lk

V0i

= 327 sec. (20)

When crossing the initial surface of our world, an open

contour (vortical tube) actually forms an elementary charge

(according to Wheeler). It can be assumed that the physical

basis of ball lightning is formed by electrons. Their fermionic

part is arranged into corresponding structures observable in

the form of a fireball, while their bosonic parts converge in

the centre of the ball going to the additional dimension (Y

area) [2].

Let us also determine the capacity, electrostatic energy,

and size required for ball lightning with qlim charge. Pa-

per [?] found a connection between new electrical units in a

Coulomb-free form and SI-system units. It was shown that the

mass of electrons 2.90×10−6 kg on the capacitor plates corre-

sponded to one Farad. Velocity of 587 m/sec corresponded to

1 Volt, with the electrostatic capacity of the surface at which

the charge begins to flow spontaneously into the external en-

vironment being Um = 511, 000 V.

Thus, ball lightning has the following capacity:

C =
zme

2.90 × 10−6
= 4.89 × 10−6 F, (21)

with the same result in the SI system:

C =
qlim

511, 000
= 4.89 × 10−6 F, (22)

and the maximum electrostatic energy of ball lightning being

Em =
1

2
CU2

m = 6.39 × 105 J. (23)

To have such a capacity, ball lightning must have a mul-

tilayer structure, e.g., the structure of a multilayer spherical

capacitor. Paper [5] shows that the average distance between

unit charges of a charged sphere with R radius is π (Rre)
1/2.

Let us assume that the average linear dimension between the

charges in the volume of ball lightning is the same. Then we

can determine the size of ball lightning through the following

equation:














4
3
πR3

z















1/3

= π (Rre)
1/2 , (24)

therefore

R =

(

3π2z

4

)2/3

re = 0.067 m. (25)

Let us determine the temperatures of the nucleus and the

outer shell with the assumption that the radiation of ball light-

ning is the radiation of a blackbody. If the total energy is

evenly lost over the lifetime of ball lightning, the average ra-

diation power shall be as follows:

N =
Em

τlim

= 1950 W, (26)

then

T =

(

N

σ S

)1/4

, (27)

where σ is a Stefan-Boltzmann constant equal to 5.67 × 10−8

Wm−2 (◦K)−4; and S is the area of the spherical surface of

ball lightning. Taking lmin as the nucleus diameter and lmax as

the diameter of the outer shell, we calculate the respective ar-

eas S and determine their temperatures using formula (27) —

8.500◦K and 724◦K. External appearance of ball lightning, its

behaviour, and results of its effect on the environment are ex-

tremely varied. Given its unpredictability, it is rarely possible

to obtain objective instrumental data on ball lightning.

In his paper [6], Mikhail Dmitriev — a chemist having

vast experience in working with low-temperature plasma —

describes an encounter with ball lightning and an attempt to

make a chemical analysis of ionized air behind it. Based on

the analysis results, the author estimated the potential of ball

lightning discharge at 300–400 kV. The temperature, degree

of ionization, and concentration of charged particles in ball

lightning was estimated at 1.14 × 1017 per cm3 judging on its

glow. It is easy to calculate that, in accordance with the pro-

posed model and given such a concentration, the estimated

diameter of ball lightning with z unit charges shall be 6.4

cm, which corresponds to its typical size. This means that

the discharge potential and charge concentration of real ball

lightning encountered by Dmitriev are consistent with the es-

timated model.

Since ball lightning does not consist of atoms and mole-

cules, it does not interact with molecules of other media. This

explains its ability to penetrate through obstacles and move

against the wind, but actively respond to electric and mag-

netic fields at the same time.

Finally, it should be noted that people often associate ball

lightning with a living being. Let us assume that life can be

organized on another material basis. Then, indeed, given the

number of unit elements (z = 1.56 × 1019) and complexity

of their packing in the volume of ball lightning, it is appro-

priate to draw an analogy with a DNA strand, which is two

meters long, packed in a microscopic cell nucleus, and con-

tains information about the structure and behaviour of a living

organism.

4 Conclusion

Thus, model ball lightning is a ball with its size ranging from

0.14 to 20 cm (its typical diameter is 13.4 cm), having density

of no more than 1.17 kg per m3, glow temperature of 724 to

8,500◦K, and energy of 639 kJ concentrated in a small volume

in the form of an electrostatic charge with 511 kV potential.
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During the lifetime of ball lightning (up to 6.5 minutes), it is

constantly losing the charge leaving an ionised trail behind.

Ball lightning is able to penetrate obstacles.

In general, eyewitness accounts are in good agreement

with the calculated characteristic parameters of the model ob-

ject. Of course, some phenomena of real ball lightning fall

outside the scope of the obtained characteristic parameters.

At least this is due to the fact that its charge can be formed

by not only electrons, but also by ions, and the evolutionary

parameter ε may exceed the unit.

The ball lightning phenomenon and its complete internal

organization can only be understood on the basis of an appro-

priate theory. However, from a phenomenological point of

view, this model of ball lightning is in good agreement with

the real object by its appearance and its basic aspects, and can

serve as the basis for such a theory.

Submitted on April 28, 2016 / Accepted on May 20, 2016
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LETTERS TO PROGRESS IN PHYSICS

Dialogue Concerning the Two Chief World Views

Craig Alan Feinstein
2712 Willow Glen Drive, Baltimore, MD 21209, USA. E-mail: cafeinst@msn.com

In 1632, Galileo Galilei wrote a book called Dialogue Concerning the Two Chief World

Systems which compared the new Copernican model of the universe with the old Ptole-

maic model. His book took the form of a dialogue between three philosophers, Salviati,

a proponent of the Copernican model, Simplicio, a proponent of the Ptolemaic model,

and Sagredo, who was initially open-minded and neutral. In this paper, I am going to

use Galileo’s idea to present a dialogue between three modern philosophers, Mr. Spock,

a proponent of the view that P , NP, Professor Simpson, a proponent of the view that

P = NP, and Judge Wapner, who is initially open-minded and neutral.

Since 2006, I have published four proofs that P , NP [5–8].

Yet at the present time, if one asks the average mathematician

or computer scientist the status of the famous P versus NP

problem, he or she will say that it is still open. In my opinion,

the main reason for this is because most people, whether they

realize it or not, believe in their hearts that P = NP, since this

statement essentially means that problems which are easy to

state and have solutions which are easy to verify must also

be easy to solve. For instance, as a professional magician, I

have observed that most laymen who are baffled by an illu-

sion are usually convinced that the secret to the illusion either

involves extraordinary dexterity or high technology, when in

fact magicians are usually no more dexterous than the av-

erage layman and the secrets to illusions are almost always

very simple and low-tech; as the famous designer of illusions,

Jim Steinmeyer, said, “Magicians guard an empty safe” [13].

The thinking that extraordinary dexterity or high technology

is involved in a magician’s secret is, in my opinion, due to

a subconscious belief that P = NP, that problems which are

difficult to solve and easy to state, in this case “how did the

magician do it?”, must have complex solutions.

I have had many conversations in which I have tried to

convince all types of people, from Usenet trolls to graduate

students to professors to famous world-class mathematicians,

that P , NP with very little success; however, I predict that

there will soon come a day when the mainstream mathematics

and computer science community will consider people who

believe that P = NP to be in the same league as those who be-

lieve it is possible to trisect an angle with only a straightedge

and compass (which has been proven to be impossible) [14].

I got the idea to write this paper after I learned of Galileo’s

book Dialogue Concerning the Two Chief World Systems [4],

which presents a dialogue between three philosophers, Sal-

viati, a proponent of the new Copernican model, Simplicio, a

proponent of the old Ptolemaic model, and Sagredo, who was

initially open-minded and neutral. The dialogue that follows

is a dialogue between three modern philosophers, Mr. Spock,

a proponent of the view that P , NP, Professor Simpson, a

proponent of the view that P = NP, and Judge Wapner, who

is initially open-minded and neutral. Professor Simpson, who

is a fictitious anglicized straw man character like Simplicio,

is a composite of many of the people whom I have had dis-

cussions with over the years about the P versus NP problem.

He presents many challenges and questions, all of which have

been raised before by real people, that Mr. Spock, the epitome

of truth and logic, attempts to answer. And Judge Wapner,

the epitome of open-mindedness and fairness, always listens

to both sides of their arguments before drawing conclusions.

Spock: Yesterday we discussed the P versus NP problem

[2, 3] and agreed that it is a problem of not only great philo-

sophical importance, but also it has practical implications.

We decided to look at a proof that P , NP offered by Craig

Alan Feinstein in a letter entitled “A more elegant argument

that P , NP” [8]. The proof is surprisingly short and simple:

Proof: Consider the following problem: Let {s1, . . . , sn} be a

set of n integers and t be another integer. Suppose we want

to determine whether there exists a subset of {s1, . . . , sn} such

that the sum of its elements equals t, where the sum of the el-

ements of the empty set is considered to be zero. This famous

problem is known as the SUBSET-SUM problem.

Let k ∈ {1, . . . , n}. Then the SUBSET-SUM problem is

equivalent to the problem of determining whether there exist

sets I+ ⊆ {1, . . . , k} and I− ⊆ {k + 1, . . . , n} such that
∑

i∈I+
si = t −

∑

i∈I−
si.

There is nothing that can be done to make this equation sim-

pler. Then since there are 2k possible expressions on the left-

hand side of this equation and 2n−k possible expressions on

the right-hand side of this equation, we can find a lower-

bound for the worst-case running-time of an algorithm that

solves the SUBSET-SUM problem by minimizing 2k + 2n−k

subject to k ∈ {1, . . . , n}.
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When we do this, we find that 2k+2n−k = 2⌊n/2⌋+2n−⌊n/2⌋ =

Θ(
√

2n) is the solution, so it is impossible to solve the

SUBSET-SUM problem in o(
√

2n) time; thus, because the

Meet-in-the-Middle algorithm [10,11,15] achieves a running-

time of Θ(
√

2n), we can conclude that Θ(
√

2n) is a tight

lower-bound for the worst-case running-time of any deter-

ministic and exact algorithm which solves SUBSET-SUM.

And this conclusion implies that P , NP. �

To me, Feinstein’s proof is not only logical but elegant too.

Also, his conclusion is confirmed by history; just as Fein-

stein’s theorem retrodicts, no deterministic and exact algo-

rithm that solves SUBSET-SUM has ever been found to run

faster than the Meet-in-the-Middle algorithm, which was dis-

covered in 1974 [10, 15].

Simpson: But there is an obvious flaw in Feinstein’s “proof”:

Feinstein’s “proof” only considers a very specialized type of

algorithm that works in the same way as the Meet-in-the-

Middle algorithm, except that instead of sorting two sets of

size Θ(
√

2n), it sorts one 2k-size set and one 2n−k-size set.

Under these restrictions, I would agree that the Meet-in-the-

Middle algorithm is the fastest deterministic and exact algo-

rithm that solves SUBSET-SUM, but there are still many pos-

sible algorithms which could solve the SUBSET-SUM prob-

lem that the “proof” does not even consider.

Wapner: Professor Simpson, where in Feinstein’s proof does

he say that he is restricting the algorithms to the class of al-

gorithms that you mention?

Simpson: He does not say so explicitly, but it is obviously

implied, since there could be algorithms that get around his

assertion that the minimum number of possible expressions

on both sides is Θ(
√

2n).

Spock: How do you know that there could be such algo-

rithms?

Simpson: I do not know, but the burden of proof is not on

me; it is on Feinstein. And he never considers these types of

algorithms.

Wapner: It is true that Feinstein never explicitly considers al-

gorithms which work differently than the Meet-in-the-Middle

algorithm, and the burden of proof is on Feinstein to show that

these types of algorithms cannot run any faster than Θ(
√

2n)

time.

Spock: Professor Simpson, is the burden of proof on Fe-

instein to consider in his proof algorithms which work by

magic?

Simpson: No, only algorithms that are realistic.

Spock: Then why would you think that algorithms that get

around the assertion that the minimum total number of possi-

ble expressions on both sides is Θ(
√

2n) are realistic?

Simpson: I do not know, but the burden of proof is not on

me; it is on Feinstein.

Spock: Have you considered the fact that an algorithm which

determines in o(
√

2n)-time whether two sets of size Θ(
√

2n)

have a nonempty intersection must work by magic, unless

there is a way to mathematically reduce the two sets into

something simpler?

Wapner: Yes, I see your point; the minimum total number

of possible expressions on each side of the SUBSET-SUM

equation puts a natural restriction on the time that an algo-

rithm must take to solve the SUBSET-SUM problem.

Simpson: But how do you know it is impossible to reduce

the SUBSET-SUM problem into something simpler, so that

the number of possible expressions on both sides is o(
√

2n)?

Spock: Simple algebra. Try to simplify the SUBSET-SUM

equation above. You cannot do it. The best you can do is

manipulate the equation to get Θ(
√

2n) expressions on each

side.

Simpson: I’ll agree that you cannot do it algebraically, but

what about reducing the SUBSET-SUM problem to the 3-

SAT problem in polynomial-time? This can be done since

3-SAT is NP-complete. If there is an algorithm that can solve

3-SAT in polynomial-time, then it would also be able to solve

SUBSET-SUM in polynomial-time, contradicting Feinstein’s

lower-bound claim of Θ(
√

2n).

Spock: But this is magical thinking. If a problem is shown

to be impossible to solve in polynomial time, then reducing

the problem to another problem in polynomial-time will not

change the fact that it is impossible to solve the first problem

in polynomial time; it will only imply that the second problem

cannot be solved in polynomial time.

Wapner: Spock is right about this. Do you have any other

objections to Feinstein’s argument?

Simpson: I have many objections. For instance, Feinstein’s

argument can be applied when the magnitudes of the integers

in the set {s1, . . . , sn} and also t are assumed to be bounded

by a polynomial to “prove” that it is impossible to solve this

modified problem in polynomial-time. But it is well-known

that one can solve this modified problem in polynomial-time.

Spock: But Feinstein’s argument in fact cannot be applied in

such a circumstance, because there would only be a polyno-

mial number of possible values on each side of the equation,
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even though the total number of possible expressions on each

side is exponential. Feinstein’s argument implicitly uses the

fact that the total number of possible values on each side of

the SUBSET-SUM equation is usually of the same order as

the total number of possible expressions on each side, when

there is no restriction on the magnitude of the integers in the

set {s1, . . . , sn} and also t.

Simpson: Then here is a better objection: Suppose the set

{s1, . . . , sn} and also t consist of vectors in Zm
2

for some pos-

itive integer m, instead of integers. Then one could use the

same argument that Feinstein uses to “prove” that it is im-

possible to determine in polynomial-time whether this modi-

fied SUBSET-SUM equation has a solution, when in fact one

can use Gaussian elimination to determine this information in

polynomial-time.

Spock: Feinstein’s argument would not apply to this situation

precisely because one can reduce the equation

∑

i∈I+
si = t −

∑

i∈I−
si.

to a simpler set of equations through Gaussian elimination.

But when the set {s1, . . . , sn} and also t consist of integers,

nothing can be done to make the above equation simpler, so

Feinstein’s argument is applicable.

Simpson: OK, then how would you answer this? Consider

the Diophantine equation:

s1 x1 + . . . + sn xn = t,

where xi is an unknown integer, for i = 1, . . . , n. One could

use the same argument that Feinstein uses to “prove” that it

is impossible to determine in polynomial-time whether this

equation has a solution, when in fact one can use the Euclid-

ean algorithm to determine this information in polynomial-

time.

Spock: But again Feinstein’s argument would not apply to

this Diophantine equation, precisely because this Diophantine

equation can be reduced via the Euclidean algorithm to the

equation,

gcd(s1, . . . , sn) · z = t,

where z is an unknown integer. And it is easy to determine in

polynomial-time whether this equation has an integer solution

by simply testing whether t is divisible by gcd(s1, . . . , sn). No

such reduction is possible with the SUBSET-SUM equation.

Simpson: The Euclidean algorithm is a clever trick that has

been known since ancient times. But how do I know that

another clever trick cannot be found to reduce the SUBSET-

SUM equation to something simpler? Like for instance, if

I take the greatest common denominator of any subset of

{s1, . . . , sn} and it does not divide t, then I can automatically

rule out many solutions to SUBSET-SUM, all at once.

Spock: But such a clever trick does not always work; what if

the gcd does divide t? The P versus NP problem is a prob-

lem about the worst-case running-time of an algorithm, not

whether there are clever tricks that can be used to speed up

the running-time of an algorithm in some instances. Fein-

stein’s proof only considers the worst-case running-time of

algorithms which solve SUBSET-SUM.

Wapner: Also, it is simple high school algebra that it is im-

possible to make the SUBSET-SUM equation simpler than it

is: Whenever one decreases the number of possible expres-

sions on one side of the equation, the number of possible ex-

pressions on the other side increases. Mathematicians can be

clever, but they cannot be clever enough to get around this

fact.

Simpson: OK, but what about the fact that Feinstein never

mentions in his proof the model of computation that he is

considering? To be an valid proof, this has to be mentioned.

Spock: Feinstein’s proof is valid in any model of computa-

tion that is realistic enough so that the computer cannot solve

an equation with an exponential number of possible expres-

sions in polynomial-time, unless it is possible to reduce the

equation to something simpler.

Simpson: Or what about the fact that Feinstein never men-

tions in his paper the important results that one cannot prove

that P , NP through an argument that relativizes [1] or

through a natural proof [12]?

Spock: Feinstein’s proof does not relativize, because it im-

plicitly assumes that the algorithms that it considers do not

have access to oracles, and Feinstein’s proof is not a natural

proof, since it never even deals with the circuit complexity of

boolean functions.

Simpson: What about the 2010 breakthrough by Howgrave-

Graham and Joux [9] which gives a probabilistic algorithm

that solves SUBSET-SUM in o(
√

2n) time? I realize that the

P versus NP problem is not about probabilistic algorithms,

but what if their algorithm can be derandomized and solved

in o(
√

2n) time?

Spock: The algorithm by Howgrave-Graham and Joux does

not in fact solve SUBSET-SUM, because it cannot determine

for certain when there is no solution to a given instance of

SUBSET-SUM; it can only output a solution to SUBSET-

SUM in o(
√

2n) time with high probability when a solution
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exists. Furthermore, even if their algorithm can be derandom-

ized, this does not guarantee that it will run in o(
√

2n) time.

And Feinstein has already proven that such a deterministic

and exact algorithm is impossible.

Wapner: Are there any more objections to Feinstein’s argu-

ment?

Simpson: I have no more specific objections. But the fact

that the P versus NP problem has been universally acknowl-

edged as a problem that is very difficult to solve and Fein-

stein’s “proof” is so short and simple makes it almost certain

that it is flawed. The fact that I could not give satisfactory

responses to Spock’s arguments does not mean that Feinstein

is correct; Feinstein’s proof has been out on the internet for a

few years now, and still the math and computer science com-

munity as a whole does not accept it as valid. Hence, I believe

that they are right and that Feinstein is wrong.

Wapner: Professor Simpson, isn’t your reason for not be-

lieving Feinstein’s proof the same reason Feinstein suggested

for why most people do not believe his proof? Because most

people believe in their hearts that P=NP, that problems which

are difficult to solve and easy to state, in this case the P versus

NP problem, cannot have short and simple solutions?

Spock: Indeed it is.

Wapner: And yes indeed, I am convinced that Feinstein’s

proof is valid and that P , NP.

Submitted on May 22, 2016 / Accepted on May 24, 2016
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Liquid water is widely regarded as a hallmark of planetary habitability but, whilst its
presence may be a prerequisite for life, aerial locomotion imposes additional constraints
on the somewhat over-simplistic concept of a circumstellar habitable zone. Could an-
imals of comparable physiology to birds be envisaged sustaining flight without envi-
ronmental assistance on super-Earth planets of terrestrial density? A quantitative eval-
uation of flight athleticism in avian species provides the basis for extrapolation here.
At constant atmospheric fraction, assuming a plentiful supply of combustible gas, the
“aerial locomotion zone” would be restricted to planets .6.86 M⊕. However, due to the
inevitable thermal impediments at higher altitudes, it is conceivable that the majority
of the Earth’s avian species could evolve sufficient athleticism for flight on temperate
isoatmospheric planets of up to 15 M⊕, without adjustments in body mass.

1 Introduction

Birds, bats, insects and pterosaurs have independently sur-
mounted the challenges of actively-powered flight [1], per-
haps during hyperoxic episodes in the Earth’s history [2].
Avian species span some four orders of magnitude in body
mass [3] yet birds of all sizes undertake arduous seasonal mi-
grations [4,5]. Flight is a complex and intrinsically dangerous
activity especially in arboreal environments, over mountain-
ous terrain, in regions where birds of prey are prevalent or
during unfavourable weather [6]. Thus, there is a need for
sophisticated neural control [7]. Exoplanet discoveries con-
tinue apace [8,9] and NASA’s Kepler mission has already es-
tablished that those of 1–2 Earth radii (“super-Earths”) are re-
markably abundant [10]. Neutrally buoyant aquatic animals
are immune to changes in gravity and land animals can evolve
sturdier bones or additional legs to cope with conditions on
more massive planets. However, the feasibility of environ-
mentally unassisted flight in stronger gravitational fields is
clearly an intricate issue meriting more detailed scrutiny.

The Earth’s oxygenated air provides birds not only with
a breathable atmosphere but also a medium for generating
propulsion and weight support during flight [11]. Conse-
quently, gravity, atmospheric density and the chemical com-
position of an atmosphere influence the prospects for aerial
locomotion. There is no evidence that the laws of physics
vary either with time or location, so animals that are as anato-
mically and physiologically well-adapted to flight as any liv-
ing here could have evolved elsewhere in the universe. This
analysis therefore commences by evaluating the athleticism
of Earth’s avian species during environmentally unassisted
horizontal flight. The limits of flight athleticism on Earth are
then used as a basis for extrapolation to different planetary
environments, leading to criteria that are likely to be satisfied
if circumplanetary atmospheres are compatible with flight.

2 Flight power and athleticism

The following analysis concerns flying animals capable of
supporting their own weight in still air conditions, building
upon an established result from aerodynamic theory pertain-
ing to hovering flight [12]. If a bird’s wings have combined
area Awing and the air they sweep is on average accelerated to
a downward velocity va then the volume of air being swept in
unit time is vaAwing. In an atmosphere of density ρ, the mass
of this parcel of air is ma = ρvaAwing and so the rate of change
of momentum in the air is mava = ρv2

aAwing. For a bird of
body mass mb, Newton’s second law requires that this equals
the bird’s weight mbg which allows the downward velocity of
the air to be obtained as va =

√
mbg/ρAwing. The power re-

quired during hovering is the rate at which kinetic energy is
imparted to the air

Phov =
mav

2
a

2
=
ρAwingv

3
a

2
=

1
2

√
m3

bg
3

ρAwing
. (1)

Providing only a small fraction of the power relating to
forward horizontal flight, P f , is required to overcome the drag
associated with forward motion, it can be argued that P f and
Phov should scale almost identically. If, furthermore, avian
anatomy scales isometrically then Awing ∝ m2/3

b and

P f ∝

m7
bg

9

ρ3

1/6

. (2)

For an individual animal this simplifies to P f ∝
√
g3/ρ,

a term which concisely encapsulates environmental condi-
tions. Thus, flight becomes more challenging on planets with
stronger gravitational fields and reduced atmospheric densi-
ties [13]. On Earth, flying birds and flightless birds are de-
lineated by the boundary

√
g3/ρ =27.7 m3 s−3 kg−1/2. De-

partures from isometry are likely [14] and the allometrically
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neutral relationship Awing ∝ m2/3
b is only marginally compat-

ible with empirical data – actual wing measurements suggest
Awing ∝ m0.780±0.112

b [15] . This implies the following modi-
fication involving an exponent α = 0.110 ± 0.056,

P f ∝ m1+α
b

√
g3

ρ
. (3)

Since α > 0, mass-specific flight power, P f /mb, gener-
ally increases with body mass [12]. A quantity χ is now in-
troduced which is directly proportional to the mass-specific
flight power needed to fly horizontally in still air. It is adopted
as a proxy for flight athleticism and defined as

χ =

(
mb

m̃

)α √
g3

ρ
(4)

where m̃ is a fiducial mass term used for normalisation and
can be arbitrarily chosen. In particular, heavier animals capa-
ble of flight in hypodense air would score well on this mea-
sure. At a similar airspeed, aerodynamic drag is of less con-
cern to large birds, in keeping with the earlier assumption that
P f ∝ Phov.

3 Aeronautical limits

Avian lungs utilise a cross-current airflow assisted by a com-
plementary vasculature allowing for efficient gas exchange
[16], advantageous during high altitude flight where the par-
tial pressure of oxygen is reduced. At least three species ap-
pear to be capable of entirely self-powered flight 7000 m or
more above sea level. An iconic example is the bar-headed
goose, Anser indicus, whose seasonal migrations involve nav-
igating the Himalaya [17] and the prominent obstacle of the
Tibetan plateau. Having been satellite-tracked at 7290 m [18]
they are more tolerant of hypoxia than brent geese, Branta
bernicla, which have difficulty crossing the Greenland ice-
caps at altitudes of 2500 m [19]. Despite a body mass plac-
ing them in the 98th percentile of bird species [3], they have
also been observed flying in formation at almost 8000 m by
mountaineers climbing the Annapurna massif [20]. A number
of cardiovascular, pulmonary, morphological and biochemi-
cal adaptation mechanisms could be responsible for this strik-
ing athleticism including high ventilation rates [21], relative
immunity to respiratory alkalosis and haemoglobin of supe-
rior O2 affinity, higher cardiac output [17] and tissue enhance-
ments such as cardiac hypertrophy, greater capillary density
and mitochondrial abundance [22].

Alpine choughs, Pyrrhocorax graculus also inhabit the
Himalaya. Nesting as high as 6500 m [17], they have been
known to follow climbers on Everest at altitudes approach-
ing 8200 m – within the mountaineering “death zone”. Small
birds such as choughs readily take to the air but swans are
much larger and typically require 15–20 wingbeats to become
aloft when taking off from water, even though they can obtain

some acceleration and weight support from webbed feet. On
becoming airborne they continue to gain speed and gradually
start to ascend, necessitating continued effort [23]. Thus, un-
like smaller birds for which a short period of anaerobic exer-
tion is adequate for take-off, swans must demonstrate aerobic
athleticism at the commencement of each flight. This applies
also to juveniles – cygnets only start to fly at 4–5 months of
age. The athleticism demanded by take-off may confer upon
swans an ability to sustain high altitude flight, even if they are
not ecologically coerced to do so. Lowland species may be
incapable of take-off in hypodense air but that does not pre-
clude, per se, an ability to fly high – even though swans tend
not to during migration [24]. In still air conditions, flying
low in dense air facilitates flight – in accordance with (4).
However, strong tailwinds capable of drastically curtailing
migration times and total energy expenditure are sometimes
available, especially at higher altitudes. During lengthier mi-
gratory flights, the additional costs of ascent and high altitude
cruising can easily be fully recovered. In the cold and feature-
less seascape of the north Atlantic, which is neither conducive
to the generation of strong thermals nor orographic updrafts,
a flock of some 30 whooper swans, Cygnus cygnus, was de-
tected in 1967 by radar then visually identified by a pilot to be
flying at 8200 m with a ground-speed of 38 m s−1 towards the
end of a ∼1000 km migration from Iceland to the UK [25].

The air density at 8200 m is 0.513 kg m−3. Setting m̃ =

mw = 11 kg, the mass of a whooper swan, and making al-
lowances for variations in α, the maximum value of χ at whi-
ch flight is possible at this altitude is 42.8 m3 s−3 kg−1/2 for
whooper swans, 34.1–39.8 m3 s−3 kg−1/2 for bar-headed geese
and 22.4–34.6 m3 s−3 kg−1/2 for Alpine choughs. Results for
various species are presented in Fig. 1. Whooper swans ap-
pear to top the list for avian athleticism making them well-
suited for astrobiological extrapolations. To compete, bar-
headed geese, would need to be capable of flight at altitudes
of 9.4–11.7 km, which seems unrealistically high [18].

4 Planetary environments

The radii, R, of terrestrial super-Earths are expected to scale
with M, the planet mass, as R ∝ M0.274 [26]. Hence, surface
gravity, gs, should scale as gs ∝ M0.452. The effective increase
in sea level on a super-Earth planet with a similar water con-
tent to Earth can be estimated from the relationship plotted
in Fig. 2. It is also relevant to mention that enhanced grav-
ity tends to attenuate topographical features such as moun-
tains and ridges. Super-Earth planets are variously taken to
have a mass of 1–10 M⊕ or a radius of 1–2 R⊕ (1–12 M⊕)
where the subscript ⊕ denotes the Earth. This analysis consid-
ers the slightly expanded range 1–15 M⊕ in order to encom-
pass the largest planets capable of possessing hexagonally
close-packed iron at their core [27, 28]. On Earth, a whooper
swan can fly in air of density as low as ρw = 0.513 kg m−3.
Since athleticism is not an environmental variable, the min-
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Fig. 1: Flight athleticism, χ, for various species. Estimated max-
imum altitudes are given in km (in parentheses) for unassisted
flight. Selected results are also provided for flightless birds assum-
ing (mostly with undue optimism) that they might be capable of
flying in air slightly denser than that of sea level. Lightly shaded
areas represent the uncertainty in the allometric scaling exponent,
0.054 < α < 0.166, using a fiducial mass m̃=11 kg.

imum air density required by whooper swans on other plan-
ets is ρmin = ρw(M/M⊕)1.356. For a 15 Earth-mass planet,
ρmin=20.18 kg m−3.

As with discussions of circumstellar habitable zones, so-
me simplifying assumptions are helpful. Due to uncertain-
ties such as cloud cover, humidity levels and fluctuations in
atmospheric heating due to planetary rotation, an isothermal
model atmosphere is adopted. In hydrostatic equilibrium the
ideal gas law predicts that air density, ρ, is proportional to air
pressure, p = βρ. According to the International Standard
Atmosphere, β has a value of about 82714 m2 s−2 for a tem-
perature of 15◦C at sea level where ρ =1.225 kg m−3. Gravity
is taken to be insensitive to changes in altitude, z. By consid-
ering the weight of a thin horizontal layer of air,

dp
dz

=
dp
dρ
×

dρ
dz

= β
dρ
dz

= −ρgs. (5)

The air density at height h is obtained by integrating from
z = 0 to z = h,

β (ln ρ − ln ρs) = −gsh, (6)

where ρs represents the air density at the surface. Thus, ρ =

ρs exp (−gsh/β) and the total mass contained by the atmo-
sphere below height h is

Mh = 4πR2
∫ h

0
ρ(z) dz =

4πβρsR2

gs

[
1 − exp

(
−gsh
β

)]
. (7)

Mh converges as h → ∞ to yield the total mass of the
entire atmosphere,

Matm =
4πβρsR2

gs
. (8)

Fig. 2: Planets more massive than Earth but with an identical water
fraction (VH2O ∝ M) would have somewhat deeper oceans, the addi-
tional depth (in km) being at least 2.6 [(M/M⊕)0.452 − 1] depending
on topography. However, if planetary water is exclusively delivered
from space via comets and asteroids whose spatial distribution varies
little with galactic location, one would anticipate ocean depths to be
largely independent of planet mass.

For an isothermal atmosphere, under the assumption of
spherical symmetry, half the air mass lies below a scale height
ĥ given by

ĥ =
β ln 2
gs

=
β ln 2
g⊕

( M⊕
M

)0.452

. (9)

This expression is entirely independent of ρs. Plots of
surface gravity, planetary radius and atmospheric scale height
against planetary mass are provided in Fig. 3.

5 Criteria for aerial locomotion

From (8) we have ρs = gsMatm/4πβR2. Recalling that gs ∝

M0.452 and R ∝ M0.274,

ρs =
g⊕Matm(M/M⊕)0.452

4πβR2
⊕(M/M⊕)0.548

∝ M0.904
( Matm

M

)
. (10)

Since gs = g⊕(M/M⊕)0.452, the quantity
√
g3

s/ρs, a factor
previously found to be proportional to the power required by
flight, can be expressed as follows

g3
s

ρs
=

4πβR2
⊕(M/M⊕)0.096

g⊕Matm

[
g⊕(M/M⊕)0.452

]3

=
4πβR2

⊕g
2
⊕

Matm

(
M
M⊕

)1.452

,

(11)

√
g3

s

ρs
= γ

(
M
M⊕

)0.226 √
M

Matm
(12)

where γ = 2g⊕R⊕
√
πβ/M⊕ = 0.026 m3 s−3 kg−1/2. The max-

imum mass of an isoatmospheric planet (i.e. having a ratio
Matm/M identical to Earth’s) that is compatible with flight for
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Fig. 3: Upper panel: planetary radius and surface gravity obey sim-
ple power law relationships according to planetary mass, R ∝ M0.274

and gs ∝ M0.452 respectively. Lower panel: the scale height of the
atmosphere, ĥ = β ln 2/gs, is independent of the surface air den-
sity and hence total mass of the atmosphere. It decreases for larger
planets since a higher surface gravity is better able to confine the
atmosphere close to the surface.

a whooper swan can be obtained by requiring that ρs = ρmin.
This implies that ρw(M/M⊕)1.356 = ρ⊕(M/M⊕)0.904, and

M = M⊕ ×
(
ρ⊕
ρw

)1/0.452

≈ 6.86M⊕. (13)

The surface gravity of this planet of 6.86 M⊕ would be
2.388g. The maximum range and minimum power airspeeds
of flying birds are expected to vary as ρ−0.5 [12]. The sur-
face air density of an isoatmospheric 6.86 Earth-mass planet
would be ∼ 5.68ρ⊕ so a typical airspeed of 21 m s−1 for a
swan [24] might decline to 8.8 m s−1, roughly the pace of an
elite 400 m runner. In this same 2.385g environment, how-
ever, most people would struggle to walk at all and horses
would be incapable of standing.

Since P f ∝ m1+α
b

√
g3/ρ and ρs ∝ M0.904, the flight power

at zero altitude on isoatmospheric planets scales as P f ∝

M0.226. Because M/M⊕ = (gs/g⊕)1/0.452, it is apparent from
(13) that gs/g⊕ = ρ⊕/ρs for the limiting planet mass. There-
fore, a particularly simple inverse relationship exists, ρeq ∝

Fig. 4: For isoatmospheric planets the Earth-equivalent air density,
ρeq, at the athleticism of zero-altitude flight, is inversely related to
the surface gravity of a planet, ρeq ∝ 1/gs.

1/gs, allowing translation of the surface gravity of an isoat-
mospheric planet to the Earth-equivalent air density (and hen-
ce also equivalent maximum flight altitude via the Interna-
tional Standard Atmosphere). Results are presented in Fig. 4.

Might smaller birds be capable of flight on an isoatmo-
spheric planet of 15 Earth masses? The surface air density
would be 1.225 (M/M⊕)0.904 = 14.17 kg m−3, lower than the
minimum air density required by whooper swans for the same
planet mass, ρmin = 20.18 kg m−3. Since χ ∝ ρ−1/2

s , flight ath-
leticism would have to be boosted by a factor of 1.1934. To
achieve this, body mass could be reduced so that mb < mw

and flight would become feasible on a 15 Earth-mass planet
if mb = mw×1.1934−1/α. Hence, flying animals of 0.42–3.8 kg
or less (according to the value of α) may be capable of aerial
locomotion on a 15 Earth-mass planet if they can match the
flight athleticism of a whooper swan. Some ∼88% of species
have a body mass below 0.42 kg and ∼99% have a body mass
below 3.8 kg [3].

For an isoatmospheric 15-Earth mass planet one finds that√
g3

s/ρs > 51.1 m3 s−3 kg−1/2. On Earth this is equivalent to
ρ < 0.36 kg m−3 or flight at altitudes & 11 km. Even if
smaller birds lack the athleticism of whooper swans, some
may be able to fly in such rarefied air. The possibility could
be investigated using a hypobaric wind tunnel operated at
a comfortable flight temperature. Ruby-throated humming-
birds, which have a body mass of only 2–6 grams, can sus-
tain hovering at densities down to 47% that of sea level air
(0.576 kg m−3) [29,30]. In forward flight, this species is likely
to be capable of flying in yet more rarefied air. However,
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Fig. 5: Flight power (effort increases from blue to red) is a function of planet mass (or surface gravity) and atmospheric density. Conditions
compatible with aerial locomotion lie upward of the solid contours. An 11 kg whooper swan appears capable of unassisted horizontal
flight on isoatmospheric planets up to 6.86 M⊕. The influence of doubling or halving body mass relative to the whooper swan is shown for
α=0.11. The trace marked dwarf swan corresponds to a hypothetical flying animal of the same flight athleticism as a whooper swan but of
body mass 0.04–0.34mw (corresponding to 0.054 < α < 0.166). Dashed contours represent atmospheric mass content relative to the Earth’s
fraction (862 parts per billion).

even then, due to its relatively small body mass, it is unlikely
to challenge whooper swans for flight athleticism. The same
argument applies also to flying insects.

Sufficient information has now been collected to describe
circumstances compatible with environmentally unassisted
circumplanetary flight in which buoyancy effects can be safe-
ly ignored. A planet would ideally occupy an orbit within
the conventional circumstellar habitable zone [31] and, based
upon the flight athleticism of whooper swans, the following
criterion should also be satisfied:(

mb

mw

)α √
g3

s

ρs
. 42.8 m3 s−3 kg−1/2. (14)

By virtue of (12), an equivalent formulation involving
only normalised mass terms is possible(

mb

mw

)α (
M
M⊕

)0.226 √
M

Matm
. 1646. (15)

Limitations in respiration or gas perfusion could poten-
tially impinge upon the present analysis but oxygen delivery
is not constrained in birds by the pulmonary system [23] and,
in more inert atmospheres, flow-through breathing arrange-
ments requiring little or no biomechanical effort can be imag-
ined. Changes in atmospheric composition are likely over
geological timescales [2]. Thus, it would ideally be useful
to know whether an exoplanetary atmosphere has remained
breathable and non-toxic for sufficient time to support the
evolution of complex organisms.

Another factor which might well impact on these results is
a change in atmospheric temperature, Tatm. The molar mass
of the air, Mair = 0.029 kg mol−1, the air temperature, Tair,
and the universal gas constant, Rair = 8, 314 N m mol−1 K−1,
obey the relationship β = RairTair/Mair. Since both γ and
Matm are linearly dependent on β, the value of

√
g3

s/ρs is pro-
portional to

√
β. Since the value of β adopted here corre-

sponds to an air temperature of 15◦C, different atmospheric
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Fig. 6: Flight power according to planet mass and the atmospheric fraction relative to that of the Earth. Aerial locomotion is possible
upwards of the solid contours. Dashed contours here represent the surface density of the atmosphere (kg m−3), and correspond to isobars
for the isothermal atmospheric model used here.

temperatures can be accommodated by applying a correction
factor of

√
288.15/Tatm to the right-hand sides of the inequal-

ities (14) and (15).
The results of this analysis are presented graphically in

Figs. 5 and 6. These limits are likely to be somewhat cau-
tious since it is possible that, with determined effort, whooper
swans may be capable of flying higher than the flock sight-
ing at 8200 m. Although it has been conjectured that their
initial ascent was aided by lee waves, such assistance would
not have been present during the sea crossing from Iceland
to Scotland [24]. Furthermore, this species regularly takes
off in the dense air present at sea level which prohibits the
evolution of larger wings that would tend to facilitate flight
at extreme altitudes. Flying animals of extraterrestrial origin
may not have been subjected to evolutionary pressures of this
kind, particularly if their planets lack elevated land masses
obstructing low altitude flight.

6 Discussion

Expressions (14) and (15) present criteria for aerial locomo-
tion to be realistically possible in circumplanetary atmosphe-

res. Comparisons of relative flight power under different en-
vironmental circumstances can utilise the expression P f ∝√
g3

s/ρs. This predicts, for example, that flight in conditions
resembling Saturn’s moon Titan would be ∼ 23 times easier
than at sea level on Earth. The wing-scaling exponent α has
a small but positive value [15]. If this holds for a wide range
of body masses then one can envisage animals flying in such
conditions which are larger than any that have ever graced
this planet. However, transport costs (or the energy/distance
ratio), should approximately scale as m0.7

b during flight but
only m0.6

b for running [1]. Above a certain body size, there-
fore, terrestrial locomotion would be energetically favoured
to flight, though transit times might increase.

A primary finding is that, in the presence of a breathable
atmosphere, winged animals of a body mass resembling the
majority of the Earth’s indigenous avian species could poten-
tially evolve the ability to fly on isoatmospheric planets of
at least 15 M⊕ (gs = 3.4g). However, this work also high-
lights how even mildly reduced atmospheric fractions might
potentially prohibit aerial locomotion. Novel techniques ca-
pable of remotely determining atmospheric composition, sur-
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face atmospheric density and oceanic coverage could there-
fore be useful in augmenting future exoplanetary searches.
Even worlds entirely covered in water could host flying an-
imals. If in time the Earth were to become an ocean planet
through continuing bombardment by comets and meteorites
then seabirds could emulate penguins by mating, laying eggs
and incubating them on floating icebergs.

That birds possess superb navigation skills has long been
apparent but only recently have we appreciated that numerous
species are adept problem-solvers [32] with an innate abil-
ity to fashion tools [33]. Eurasian Magpies (Pica pica) have
demonstrated self-recognition when confronted with a mirror,
a trait commonly associated with self-awareness [34]. Most
birds are proficient hunters, potentially capable of stimulat-
ing the evolution of higher intelligence in land-based prey –
such as our early mammalian ancestors. That cannot be said
of insect-like creatures, which should in general cope more
comfortably with higher gravitational fields due to the advan-
tages of relatively small body masses and large area to volume
ratios, facilitating respiration.

Flapping flight is a highly effective mode of locomotion
for animals possessing sufficient athleticism. However, as
aerial manoeuvres demand considerable coordination and spa-
tiotemporal awareness, and body weight is critical, evolution-
ary pressures arise for efficient neurochemistry and neuroar-
chitecture. Volant organisms may well have played a pivotal
role in shaping the Earth’s natural history, enriching its biodi-
versity and accelerating the evolution of intelligent life. Avian
species demonstrated considerable resilience in surviving the
ecological catastrophe responsible for the extinction of most
dinosaurs. In times of adversity, an ability to swiftly and ef-
ficiently relocate over planetary distances and flexibly forage
on both land and sea may assist the propagation of flying an-
imals over geological∼stellar timescales. Accurate determi-
nation of whether circumplanetary flight is possible should
not be overlooked if future missions to extrasolar worlds are
intent on maximising the chances of encountering complex
lifeforms and, perhaps, even extraterrestrial civilisations of
comparable sophistication to our own.
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Considering the complex vector electromagnetic field, the energy of the photon is ex-
pressed as an even multivector consisting of a scalar kinetic energy part and a bivector
rotational energy part. Since any even multivector can be expressed as a rotor represent-
ing internal rotations, the electromagnetic energy even multivector represents internal
complex rotations. It has been shown that the spin angular momentum is the generator
of rotations in the plane normal to the propagation direction and the orbital angular mo-
mentum is the generator of rotations in a plane normal to the spin plane. The internal
structure of the photon may be visualized as a superposition of electromagnetic field
flow or rotation in two normal orientations in complex vector space. The cause of such
complex rotations is attributed to the presence of electromagnetic zeropoint field.

1 Introduction

Even after the photon inception into the field of physics over a
century ago, the obscurity in understanding the photon struc-
ture persists. The concept of the photon, the energy quanta
of electromagnetic radiation, was introduced by Planck in the
blackbody radiation formula and Einstein in the explanation
of the photoelectric effect. The photon is normally consid-
ered as a massless bundle of electromagnetic energy and the
photon momentum is defined as the ratio between the energy
of the photon and the velocity of light. It is well known from
Maxwell’s theory that electromagnetic radiation carries both
energy and momentum [1]. The linear momentum density
is given by the Poynting vector E × B and the angular mo-
mentum is the cross product of the Poynting vector with the
position vector. Poynting suggested that circularly polarized
light must contain angular momentum and showed it as the
ratio between the free energy per unit volume and the angular
frequency. In 1936, Beth [2] first measured the angular mo-
mentum of light from the inference that circularly polarized
light should exert torque on a birefringent plate and that the
ratio between angular momentum J and linear momentum P
was found to be λ/2π, where λ is the wavelength of light. The
measured angular momentum agreed in spin magnitude with
that predicted by both wave mechanics and quantum mechan-
ics. The Beth angular momentum is in general considered as
the photon spin angular momentum.

The energy momentum tensor of the electromagnetic field
T µν is not generally symmetric. By adding a divergence term
∂µUµαν to T µν, one can construct a symmetric energy momen-
tum tensor Θµν which is normally known as the Belinfante
energy momentum tensor [3]. The tensor Uµαν is asymmet-
ric in the last two indices. The symmetric energy momen-
tum tensor satisfies the conservation law ∂µΘ

µν = 0. The
advantage of the symmetric energy momentum tensor is that
the angular momentum calculated from Θk0 is a conserved
quantity. Belinfante established the fact that the spin could
be regarded as a circulating flow of energy and this idea was
well explained by Ohanian [4]. In an infinite plane wave, the

electric and magnetic field vectors are perpendicular to the
propagation direction. In a finite transverse extent, the field
lines are closed loops and represent circulating energy flow
and imply the existence of angular momentum whose orien-
tation is in the plane of circulation and it is the spin angular
momentum. Further, as the electromagnetic waves propagate,
the energy also flows along the direction of propagation. The
translational energy flow implies the existence of additional
orbital angular momentum. The magnetic field vector can be
expressed as the curl of a vector potential A and the angu-
lar momentum density becomes E × A. A close inspection
shows that the total angular momentum has two components:
one the spin angular momentum associated with the polariza-
tion and the other the orbital angular momentum associated
with the spatial distribution [1]. The total angular momentum
J can be split into a spin angular momentum S and an orbital
angular momentum L [5]

J =
1

4π

∫
E × A d3r +

1
4π

∫
En(r × ∇)An d3r . (1)

The first term on the right is dependent on polarization and
hence it is called spin angular momentum S and the second
term is independent of polarization and depends on spatial
distribution and identified with orbital angular momentum L.
It has been argued that the photon angular momentum cannot
be separated into a spin part and an orbital part in a gauge
invariant way and the paradox was a subject for several papers
and in standard textbooks for the past few decades [6].

In recent times the definitions of these angular momenta
raised certain controversy. In all these definitions the angular
momentum is defined as a vector product containing the posi-
tion coordinate. The decomposition of total angular momen-
tum of the photon into spin and orbital parts basically involves
how we split the vector potential in a gauge invariant way and
it has been studied by several authors and a detailed discus-
sion is given in the review article by Leader and Lorce [7].
The absence of any rest frame for the photon suggests that
the total angular momentum is observable but not separately

Kundeti Muralidhar. The Structure of the Photon in Complex Vector Space 291



Volume 12 (2016) PROGRESS IN PHYSICS Issue 3 (April–July)

as spin angular momentum and orbital angular momentum.
Though this separation is normally considered to be unphysi-
cal and not observable, Van Enk and Nienhuis [8] argued that
both spin and orbital angular momenta are separately measur-
able quantities and gauge invariant. The gauge invariant spin
and angular momentum parts are expressed as

J =
1

4π

∫
E × A d3r +

1
4π

∫
r × En∇An d3r . (2)

In this expression A = A⊥ and therefore both terms are gauge
invariant. The canonical expression En∇An gives pure me-
chanical momentum which is responsible for the orbital an-
gular momentum of a photon. The azimuthal flow of elec-
tromagnetic field is given by En∇An which is half of E × B
and the other half is spin flow [9]. In an analogous way, in
quantum chromodynamics, the gluon angular momentum can
be decomposed into a spin part and an angular momentum
part which plays an important role in understanding nucleon
structure. Recently, Chen et al. [10] decomposed the gauge
potential into pure and physical parts: A = Apure + Aphys,
the pure part is related to gauge invariance and the physical
part is related to physical degrees of freedom. In the decom-
position by Wakamatsu et al. [11], the orbital angular mo-
mentum is defined similar to a classical expression r × Pkin,
where Pkin = − 1

4π

∫
Aphys × E d3r and in this decomposition

each term is gauge invariant and observable. Further studies
by several authors revealed the fact that there could be in-
finitely many different ways to perform such decomposition
in a gauge invariant way [7, 12]. In Beth’s experiment, ac-
tually the spin angular momentum was measured. The mea-
surement of orbital angular momentum has been performed in
recent times. The amplitude of a Laguerre-Gaussian mode of
light wave has an azimuthal angular dependence of exp(−ilφ),
where l is the azimuthal mode index. The ratio between the
angular momentum to the energy is 1/ω or L = l (E × B)/ω
and for Laguerre-Gaussian laser mode, it has been shown that
the angular momentum is equal to l~ and the total angular mo-
mentum of the whole light beam is (l+σz)~, whereσz is a unit
vector along the direction of propagation [13]. The measure-
ment of orbital angular momentum was reported by several
authors [14–16].

Another important aspect of the photon is its internal zit-
terbewegung motion. It is well known from the first observa-
tion of Schrödinger [17] that a Dirac electron possesses zit-
terbewegung motion which is the oscillatory motion of the
electron with very high frequency ω = 2mc2/~ with inter-
nal velocity equal to the velocity of light. Such internal mo-
tion arises because of the classical electromagnetic fluctuat-
ing zeropoint field present throughout space [18]. The spin
angular momentum of the electron is identified as the zero-
point angular momentum [18, 19]. On the basis of electron
internal oscillations, classical models of electron were devel-
oped [20–22]. It is quite interesting that such zitterbewe-
gung motion for the photon was derived from the relativis-

tic Schrödinger like equation of the photon by Kobe [23].
It has been proved that the photon velocity contains paral-
lel and perpendicular components with respect to the direc-
tion of propagation. The time dependent perpendicular com-
ponent of velocity rotates about the direction of propagation
with an angular frequency ω equal to the frequency of the
electromagnetic wave. The finite special extension of inter-
nal rotation is equal to the reduced wavelength. The photon
spin is then identified as the internal angular momentum due
to zitterbewegung. Considering internal dynamical variables
in the configuration space the zitterbewegung is attributed to
the normal component of velocity vector oscillations about
the particle centre [24]. In the quantum field theory, it has
been shown that the zitterbewegung of a photon is attributed
to the virtual transition process corresponding to the contin-
uous creation and annihilation of virtual pairs of elementary
excitations [25, 26]. Recently, Zhang [27] proposed that zit-
terbewegung of the photons may appear near the Dirac point
in a two dimensional photonic crystal. In the case of an elec-
tron, the spin angular momentum is an intrinsic property. In
the same way both spin and orbital momenta of the photon
are intrinsic in nature [28, 29]. Thus one can anticipate that
the photon is also having an internal spin structure described
by the internal oscillations or rotations.

One of the most important applications of the photon an-
gular momentum lies in the exploitation of the photon spin
and angular momentum states for quantum computation and
quantum information processing [30]. Superposition of po-
larization states can be used to construct qubits and transmit
information. A standard approach to visualise the transfor-
mation of qubits is provided by the Poincaré sphere repre-
sentation. Generally, any completely polarized state can be
described as a linear superposition of spin states and corre-
sponds to a point on the surface of a unit sphere. Analogous
representation of orbital angular momentum states of the pho-
ton was introduced by Padgett and Courtial [31] and Agar-
wal [32]. Quantum entanglement of states is a consequence of
quantum non-locality. The entanglement involving the spatial
modes of electromagnetic field carrying orbital angular mo-
mentum was studied by Mair et al. [33] and Franke-Arnold
et al. [34]. The phase dependence of angular momentum may
provide multi-dimensional entangled states which are of con-
siderable interest in the field of quantum information.

In vector algebra, the angular momentum is defined by a
cross product of position and momentum vectors and identi-
fied as a vector normal to the plane containing the position
and momentum vectors. However, the angular momentum is
basically a planar quantity and better defined as a bivector in a
plane [35]. Note that the cross product cannot be defined in a
plane. In the case of the electron, the classical internal bivec-
tor spin was obtained from the multivector valued Lagrangian
by Barut and Zhangi [20]. It has been shown that the particle
executes internal complex rotations by absorbing zeropoint
field and the angular momentum of these internal rotations
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is identified as the bivector spin of the particle [36]. In an
analogous way, the photon spin is a bivector quantity. There-
fore, the photon spin may be visualised as a bivector prod-
uct between an internal finite extension of the photon and an
internal momentum. Similarly, one can visualise the orbital
angular momentum of the photon as a bivector. Considering
the electromagnetic field as a complex vector, it is possible
to express the set of Maxwell’s equations into a single form.
The basics of complex vector algebra have been discussed in
detail previously in references [37, 38].

Recently, the nature of the photon was discussed at length
by several authors in the book edited by Roychoudhuri et
al. [39]. The main views of understanding the nature or the
structure of the photon are as follows. Einstein viewed the
photon as a singular point which is surrounded by electro-
magnetic fields. In quantum electrodynamics, the photon is
introduced as a unit of excitation associated with the quan-
tised mode of the radiation field and it is associated with pre-
cise momentum, energy and polarization. In another view, the
photon is interpreted as neither a quantum nor a wave but it
can be a meson which produces off other hadronic matter and
attains physical status. Photons are just fluctuations of ran-
dom field or wave packets in the form of needles of radiation
superimposed in the zeropoint field. However, understanding
the photon structure still remains an open question.

The aim of this article is to explore the structure of the
photon in complex vector space. To understand the struc-
ture of the photon, the electromagnetic field is expressed as
a complex vector and the total energy momentum even mul-
tivector is developed in section 2. Section 3 deals with the
internal angular momentum structure of the photon and con-
clusions are presented in section 4. Throughout this article,
Lorentz–Heaviside units are used, i.e. ε0 = µ0 = 1 and en-
ergy terms are divided by 4π and conveniently we choose
c = 1 [1]. However, for clarification sake in some places c
is reintroduced.

2 Energy momentum multivector of the electromagnetic
field

In the complex vector formalism, we express the electric field
as a vector E and the magnetic field as a bivector iB and the
electromagnetic field F is expressed as a complex vector [37,
38]

F =
1
2

(E + iB) . (3)

Here, i is a pseudoscalar in geometric algebra of three dimen-
sions [40], it commutes with all elements of the algebra and
i2 = −1. A reversion operation changes the order of vectors
and is indicated by an overbar

F̄ =
1
2

(E − iB) . (4)

Now, the product F̄F is written as

F̄F =
1
4

(E2 + B2) +
1
2

(E ∧ iB) . (5)

Similarly, we find

FF̄ =
1
4

(E2 + B2) −
1
2

(E ∧ iB) . (6)

The energy density of the electromagnetic field can be ob-
tained from the scalar product

F̄ · F =
1
2

(F̄F + FF̄) =
1
4

(E2 + B2) . (7)

Further, the product F̄ ∧ F gives a vector of the form

p = −
1
c

F̄ ∧ F = −
1
2c

(F̄F − FF̄) = −
1
2c

(E ∧ iB) , (8)

and the dual of p is expressed as

ip =
1
2c

(E ∧ B) . (9)

From the above expression, one can express the energy den-
sity of internal electromagnetic flux flow in the bivector plane
normal to the propagation direction

ipc =
1
2

(E ∧ B) . (10)

This energy density of the photon can be identified as the ro-
tational energy density. However, the energy density obtained
in (7) represents the energy density of the photon as it prop-
agates and it may be treated as the kinetic energy density of
the photon. An even multivector is a sum of a vector and a
bivector. The energy terms in (7) and (10) combine to give
the total energy of the photon in even multivector form

E =
1

4π

∫
E2 + B2

4
d3r +

1
4π

∫
E ∧ B

2
d3r = Ekin +Erot. (11)

The scalar part shows the flow of energy in the direction of
propagation which can be identified as the kinetic part of en-
ergy Ekin and the bivector part can be identified as the rota-
tional energy Erot representing circulation of electromagnetic
energy in a plane normal to the direction of propagation. In
general, twice the kinetic energy is treated as the electromag-
netic energy per unit volume and it is the energy of the pho-
ton. Since the energy of a photon is expressed as momentum
times its velocity, we define kinetic momentum of a photon
as pk = Ekin/v, where the velocity v = nc and n is a unit
vector along the direction of propagation. Introducing an in-
ternal velocity u satisfying the condition u · v = 0 and |u| = c,
the internal momentum representing the rotational flux flow
can be defined as pr = Erot/u. From these definitions gen-
eralised photon velocity and momentum complex vectors can
be constructed as

U = v + iu , (12)
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P = pk + ipr . (13)

A reversion operation on P gives P̄ = pk − ipr. Since the mag-
nitudes |pk | and |pr | are equal, we have P2 = P̄2 = 0. There-
fore, the complex vector P is a complex null vector which
represents the lightlike nature of the photon. Similarly, the
complex velocity vector is also a complex null vector. Now,
the total energy of the photon is expressed as

E = pk · v + pr ∧ u . (14)

The even multivector form given in the above equation can
be compared to the symmetric energy momentum tensor Θµν

with the identification of the scalar part with Θ00 and bivector
part with Θi j . In three dimensions, the property of an even
multivector is that it represents rotations in the bivector plane
[35]. Then, the energy multivector can be expressed as a rotor
with angular frequency ω

E = E0 eĴωt , (15)

where Ĵ is a unit bivector in the plane normal to the prop-
agation direction. This relation shows that the photon con-
tains internal complex rotations and these rotations are anal-
ogous to the internal complex rotations or zitterbewegung of
the electron. The cause of these internal rotations is attributed
to the fluctuations of the zeropoint field [38]. In (15) the inter-
nal rotation represents the clockwise or right-handed rotation.
A reversion operation on E gives

Ē = E0 e−Ĵωt . (16)

In this case, the internal rotation represents counterclockwise
or left-handed rotation. The frequency of internal rotation is
the rate per unit energy flux flow within the photon

Ω = −Ĵωt = −
1
E

dE
dt

. (17)

Here, the frequency of internal rotation represents the coun-
terclockwise direction. The internal complex rotations sug-
gest that there exists an internal complex structure of the pho-
ton.

3 Internal structure of the photon

In general, the internal complex rotations represent the an-
gular momentum of the photon. The angular momentum of
a photon is defined as the ratio between the rotational en-
ergy of the photon and the frequency of internal rotation.
Since the energy of the photon is a sum of kinetic and ro-
tational energy components, we expect that the angular mo-
mentum of the photon contains two parts: one corresponding
to the rotational flow of energy and the other to the transla-
tional flow of energy. According to the definition given in
(2), the spin angular momentum bivector is in the orientation
of the plane A ∧ E which is a plane normal to the propaga-
tion direction. Let us consider a set of orthogonal unit vectors

{σk; k = 1, 2, 3} along x, y and z axes. If we choose the propa-
gation direction along the z-axis, then the unit bivector along
the spin orientation is iσ3. To understand the orientation of
spin and orbital angular momenta, let us consider circularly
polarized light waves propagating along the z-direction and
the waves have finite extent in the x− and y-directions. The
propagating wave has cylindrical symmetry about the z-axis.
The energy of the wave can be visualised as a sum of circu-
lating energy flow in the x-y plane and a translational energy
flow in the z-direction. In the case of circularly polarized light
the vector potential A contains only two components

A =
E0

ω
[σ1cos(k · r − ωt) + σ2sin(k · r − ωt)] . (18)

Here, k is the wave vector. The three vectors E, B and A
rotate in a plane normal to the propagation direction. Differ-
entiation of (18) with respect to time gives the electric field
vector

E = E0 [−σ1sin(k · r − ωt) + σ2cos(k · r − ωt)] . (19)

Then, the bivector product A ∧ E becomes

A ∧ E = iσ3
E2

0

ω
, (20)

where σ1σ2 = iσ3. The spin angular momentum of electro-
magnetic field or the photon is expressed as

S = iσ3
1

4π

∫
E2

0

ω
d3r = iσ3~ , (21)

where the energy density of the electromagnetic wave is nor-
malized so that the energy is one quantum. Normally, because
of the fact σ3 ∧ k = 0, the z-component of angular momen-
tum goes to zero but not the other components of the orbital
angular momentum. From the second term on the right of (2),
the angular momentum density is expressed as a sum of two
terms

r ∧ En∇An = r ∧ Ex∇Ax + r ∧ Ey∇Ay . (22)

Substituting individual components of E and ∇A in the above
equation, we find the orbital angular momentum density

r ∧ En∇An =
E2

0

ω
r ∧ k . (23)

Then the orbital angular momentum of the photon is express-
ed as

L = r ∧ k
1

4π

∫
E2

0

ω
d3r . (24)

In the above equation, the vector r is restricted to the plane
iσ3 and contains only x and y components. If the magni-
tude of r is equal to the reduced wavelength, then the product

294 Kundeti Muralidhar. The Structure of the Photon in Complex Vector Space



Issue 3 (April–July) PROGRESS IN PHYSICS Volume 12 (2016)

|r||k| = 1 for circularly polarized light. The orbital angular
momentum is now expressed as

L = r̂ ∧ σ3
1

4π

∫
E2

0

ω
d3r = im~ , (25)

where the unit vector r̂, in an arbitrary direction, lies in the
plane iσ3, the unit vector m is chosen normal to the orienta-
tion of r̂∧σ3 and the integral term in (25) represents the ratio
between the energy of the photon and the frequency. Thus the
orientation of the orbital angular momentum is always normal
to the orientation of spin angular momentum in a photon. In
the case the photon is propagating in an arbitrary direction say
n then from the above analysis, the spin angular momentum
and orbital angular momentum are expressed as

S = in~ , (26)

L = im~ . (27)

The vectors n and m satisfy the condition n · m = 0 and
the vector m lies in the plane of the unit bivector in. Since,
the direction of unit vector m or the orientation of the plane
im is arbitrary, the rotation of m is expressed by the relation
m′ = R̄mR. Here, R = einφ/2 is a rotor and in this way the
orbital angular momentum depends on the angle φ. The spin
angular momentum describes the intrinsic angular momen-
tum of a photon and commutes with the generator of trans-
lation n|k|. The spin angular momentum causes the complex
vector field F to rotate in the E ∧ B plane without chang-
ing the direction of propagation vector k. The photon spin
is the generator of rotations in the plane normal to the prop-
agation direction. Whereas, the orbital angular momentum
causes the plane having orientation defined by the bivector
r ∧ k to rotate without changing the direction of the vector k
and the orientation of the plane E ∧ B. The orbital angular
momentum does not commute with the generator of transla-
tion. The photon orbital angular momentum is the generator
of rotations in a plane normal to the spin plane. Thus one can
conclude that both the spin and orbital angular momenta of
a photon are intrinsic. The intrinsic nature of orbital angu-
lar momentum was discussed by Berry [28]. Further, Allen
and Padgett [29] argued that the spin and the orbital angular
momenta are intrinsic in nature in the case when the trans-
verse momentum is zero for the helical wave fronts. The spin
and orbital angular momenta of the photon are fundamental
quantities and produce complex rotations in space and such
rotations are actually produced by the fluctuating zeropoint
fields present throughout space [38, 41]. The internal com-
plex rotations are not only limited to the rotations pertain-
ing to the plane of spin angular momentum but also exists
in the plane of orbital angular momentum. In the Laguerre-
Gaussian modes of laser beams it has been shown explicitly
in the quantum mechanical approach that the orbital angular
momentum of light beams resembles the angular momentum
of the harmonic oscillator [42].

4 Conclusions

The electromagnetic field per unit volume is represented by
an energy momentum even multivector and expressed as a
sum of scalar and bivector components, and we identify the
scalar part as the kinetic part which shows the flow of energy
in the direction of propagation and the bivector part as the
rotational energy flow in the plane normal to the direction of
propagation over a finite extent. The even multivector form
of energy shows that there exist internal complex rotations
of the electromagnetic field. The cause of these internal ro-
tations is attributed to the fluctuations of the zeropoint field.
In general, the internal complex rotations represent the an-
gular momentum of the photon. The angular momentum of
the photon is defined as the ratio between the rotational en-
ergy of the photon and the angular frequency of rotation. The
spin angular momentum bivector represents a plane normal
to the propagation direction. We find that the orientation of
orbital angular momentum is always normal to the orientation
of spin angular momentum in a photon. The photon spin is the
generator of rotations in the plane normal to the propagation
direction. The photon orbital angular momentum is the gen-
erator of rotations in a plane normal to the spin plane. Thus,
one can conclude that both spin and orbital angular momenta
of a photon are intrinsic in nature. The internal structure of
the photon may be visualized as the superposition of elec-
tromagnetic field flow or rotation in two normal orientations
in complex vector space. Because of the formal similarity be-
tween gluons and photons, the conclusions obtained here may
be extended to the gluon structure.
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A theory is developed for the study of spherical gravitational waves by constructing a

Generalized Gravitational Field Equation from Newton’s gravitational field equation.

The Euclidean Laplacian ∇2 is replaced with the Riemannian Laplacian ∇2
R. A general

gravitational field equation is obtained which resolves the incompleteness in Newton’s

gravitational field equation. The general gravitational field equation reduces to the pure

Newtonian gravitational field equation in the limit of c0 as required by the Principle of

Equivalence of Physics. It also contains post Newton correction terms of orders of c−2

and all degrees of nonlinearity in the gravitational scalar potential and its derivatives.

Considering a sinusoidally varying homogeneous spherical distribution of mass in the

frame work of the obtained general gravitational field equation, gravitational waves are

predicted with phase velocity equivalent to the speed of light in vacuo.

1 Introduction

According to General Relativity Theory, gravitational waves

are oscillations of spacetime or small distortions of spacetime

geometry, or ripples of spacetime curvature which propagate

in the time through space as waves. Gravitational waves are

produced mainly by extremely massive binary stellar objects,

such as binary neutron stars or binary black holes. Though

gravitational waves can be produced by all mass interactions,

the amplitude of these waves is far too small to be detected.

Normal solar systems produce gravitational waves when their

planets orbit their primary, but again, these are incredibly

tiny ripples. Even a binary black hole — which produces

the most powerful gravitational waves we can imagine — re-

quires measurements of distances of about 1/1000 of the di-

ameter of a proton [1].

The search for gravitational waves has been the centre of

current research in Astronomy and Cosmology. Higher pre-

cision and more sensitive detectors have been developed over

the years. Experiments on gravitational waves started with

Weber’s experiments on gravitational antennae; in which he

registered weak signals [2]. He concluded that some pro-

cesses at the centre of the Galaxy were the origin of the de-

tected signals. Other attempts were made in detecting grav-

itational waves such as [3-6]. The most recent experimental

attempt by Abbott et al. in 2015 [7] claims that two detec-

tors of the Laser Interferometer Gravitational-Wave Observa-

tory simultaneously observed a transient gravitational-wave

signal.

Much theoretical work has also been done to either proof

or disproof the existence of gravitational waves. In a nut-

shell, theoretical studies of gravitational waves can be classi-

fied into three main groups [2]:

• Research targeted at giving an invariant definition for

gravitational waves. These include Pirani [8], Bondi

[9], and others.

• Searching for solutions to Einstein gravitational field

equations by proceeding from physical considerations

to describe gravitational radiations. These include

studies by Einstein and Rosen [10], Petrov [11], Chifu

and Taura [1] and others.

• Studying gravitational inertial waves, covariant with re-

spect of transformations of spatial coordinates and also

invariant with respect of transformations of time [12].

This research article falls in the second group. The so-

called “Great Metric Tensor” [13-14] is used to deduce a gen-

eral gravitational wave equation; which is later applied to a

sinusoidally varying mass for a homogeneous spherical dis-

tribution of mass.

2 The general spherical gravitational field equation

Newton’s gravitational field equation is given by

∇2 f (r, t) = 4πGρ0(r, t) (1)

where, ρ0 is the density of proper mass in a distribution or

system, ∇2 is the pure Euclidean Laplacian, G is the universal

gravitational constant and f is the gravitational scalar poten-

tial.

The incompleteness of equation (1) are as follows:

1. The density of proper mass (source of gravitational

field) in equation (1) can vary with coordinate time and

the Euclidean Laplacian cannot account for this possi-

ble variation.
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2. Time variation of proper mass should result in the ra-

diation of energy possibly in the form of gravitational

waves or radiation that can propagate in space-time

with or without gravitational field.

3. Newton’s gravitational intensity vector g is given by

g = −∇ f (2)

where ∇ is the Euclidean gradient operator.

The Euclidean operator in equation (2) above has no vari-

ation with time and hence will not be sufficient for the com-

plete description of gravitational intensity vector of time de-

pendent gravitational fields.

From the foregoing it becomes necessary to seek a gen-

eral gravitational field equation which will be sufficient for

the description of all gravitational fields. Howusu in 2009

[13] proposed that a general gravitational field equation based

on Riemannian coordinate geometry may be obtained by re-

placing the Euclidean Laplacian with Riemannian Laplacian

to obtain

∇2
R f (r, t) = 4πGρ0(r, t) (3)

where ∇2
R

is the Riemannian Laplacian based on the great

metric tensor for all possible gravitational fields. The gravi-

tational intensity (acceleration due to gravity) for all possible

gravitational fields can also be defined in terms of the Rie-

mannian gradient operator ∇R. The most general form of the

Riemannian Laplacian is given as

∇2
R =

1
√
g

∂

∂xµ

(

√
ggµν

∂

∂xν

)

(4)

where gµν is the contravariant metric tensor. Thus, for any

function f (r, t) we can write

∇2
R f (r, t) =

1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1
√
g

∂

∂x0

(

√
gg00 ∂

∂x0

)

f (r, t).

(5)

Using Einstein’s coordinates with x0 = ct, equation (5)

can be written explicitly as

∇2
R f (r, t) =

1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1

c2
√
g

∂

∂t

(

√
gg00 ∂

∂t

)

f (r, t).

(6)

Hence equation (3) can be written more explicitly as

4πGρ0(r, t) =
1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1

c2
√
g

∂

∂t

(

√
gg00 ∂

∂t

)

f (r, t).

(7)

Equation (7) is the general field equation which resolves

the incompleteness of Newton’s gravitational field equation.

Remarkably, the general gravitational field equation reduces

to the pure Newton’s gravitational field equation in the limit

of c0 ( as required by the Principle of Equivalence of Physics).

It may also be noted that the gravitational field equation con-

tains post Newton correction terms of orders of c−2 and all de-

grees of nonlinearity in the gravitational scalar potential and

its derivatives.

The Great Metric Tensor for all spherical gravitational

fields in spherical polar coordinates (r, θ, φ, x0) is given as

[13-14]:

g11(r, θ, φ, x0) =

(

1 +
2

c2
f (r, θ, φ, x0)

)−1

, (8)

g22(r, θ, φ, x0) = r2, (9)

g33(r, θ, φ, x0) = r2 sin2 θ , (10)

g00(r, θ, φ, x0) = −
(

1 +
2

c2
f (r, θ, φ, x0)

)

(11)

where f is the gravitational scalar potential. From equation

(8) to (11) it can be deduced that

√
g = r2 sin θ. (12)

Equation (7) can thus be written as:

4πGρ0(r, t) =
1

r2

∂

∂r

[(

1 +
2

c2
f

)

r2

]

f

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

f

+
1

r2 sin2 θ

∂2

∂φ2
f

− 1

c2

∂

∂t















(

1 +
2

c2
f

)−1
∂

∂t
f















.

(13)

Equation (13) is the general spherical gravitational field

equation interms of the great metric tensor. The following

important facts can be drawn from equation (13):

1. It contains the
(

1 + 2
c2 f

)

term which is not found in

Newton’s gravitational field equation. The conse-

quence of this is that it predicts correction terms to the

gravitational field of all massive spherical bodies.

2. The time component of this equation predicts the ex-

istence of gravitational waves with velocity which is

equal to the speed of light in vacuo.

3 Special case: sinusoidally varying homogenous

spherical distribution of mass

Now, consider a sinusoidally varying homogenous spherical

distribution of mass. In this case, the mass varies in such a
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way that f is independent of the polar angle θ and the az-

imuthal angle φ, [15] such that equation (13) reduces to

4πGρ0(r, t) =
1

r2

∂

∂r

[(

1 +
2

c2
f

)

r2 ∂

∂r

]

f

− 1

c2

∂

∂t















(

1 +
2

c2
f

)−1
∂

∂t
f















.

(14)

Linearizing equation (14) we obtain:

f ′′ +
2

r
f ′ − 1

c2
f̈ = 4πGρ0. (15)

Suppose we have a dipole antenna which consists of two

spherical bodies where electrons are driven by an oscillator

[1]; then the movement of the electric charges driven by the

oscillator is equivalent to an exponential factor. We therefore

modify equation (15) in such a way that the proper mass den-

sity varies sinusoidally within a homogeneous spherical mass

distribution such that:

f ′′ +
2

r
f ′ −

1

c2
f̈ = 4πGρe eiωt. (16)

In order to solve equation (16) we seek a solution such that

f (r, t) = R(r) eiωt (17)

where R is the radius of the spherical mass distribution. Equa-

tion (15) will thus become

R′′(r) +
2

r
R′(r) +

1

c2
ω2R(r) = 4πGρe. (18)

Let

R(r) =
1

r
F(r),

then

R′ = − 1

r2
F(r),

and

R′′(r) =
1

r
F′′(r) − 2

r2
F′(r) +

2

r3
F(r).

It therefore follows that equation (18) becomes

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe. (19)

Hence, the interior field equation for this distribution of mass

is given as

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe ; r < R (20)

and the corresponding exterior field equation as:

1

r
F′′(r) +

ω2

c2r
F(r) = 0 ; r > R. (21)

Equation (21) is a simple harmonic function which can have

three solutions viz:

F(r) = Beikr, (22)

F(r) = D cos(kr), (23)

and

F(r) = E sin(kr). (24)

Taking the first and second derivatives of equation (22)

we have

F′(r) = ikB eikr

and

F′′(r) = −k2B eikr,

which can be substituted into (21) to yield

−k2B eikr +
ω2

c2
B eikr = 0, (25)

hence

k = ±ω
c
. (26)

We thus state the complimentary solution as

F−c (r) = E sin

(

ω

c
r

)

; r > R (27)

F+c (r) = D cos

(

ω

c
r

)

; r < R. (28)

The particular solution for the interior field equation is

given by

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe; r < R. (29)

Let F(r) = Ar, then F′(r) = A and F′′(r) = 0 and equa-

tion(29) yields

A =
4πGc2ρe

ω2
, (30)

and hence

F−p (r) =
4πGc2ρe

ω2
r. (31)

Equation (31) is thus the particular solution for the exte-

rior field equation. The general solution for the exterior field

is then given as

R+(r) =
D

r
cos

(

ω

c
r

)

4πGc2ρe

ω2
. (32)

Equation (17) can thus be fully expressed as

f +(r, t) =
D

r
cos

(

ω

c
r

)

cos(ωt) +
iD

r
cos

(

ω

c
r

)

sin(ωt) (33)

with independent solutions

f +(r, t) =
D

r
cos

(

ω

c
r

)

cos(ωt) (34)
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and

f +(r, t) =
D

r
cos

(

ω

c
r

)

sin(ωt). (35)

The two solutions (34) and (35) can be combined to yield

f +(r, t) =
1

2

D

r

[

cos

(

ω

(

r

c
+ t

))

+ cos

(

ω

(

r

c
− t

))]

. (36)

From equation (36) it is clear that the phase of the wave equa-

tion φ is given by

φ =
ωr

c
± ωt, (37)

hence
dr

dt
= c. (38)

4 Concluding remarks

In this paper we have shown [equation (36)] that in the limit of

linear terms, the general gravitational field equation predicts

gravitational waves with phase velocity which is equal to the

speed of light in empty space. These waves will not vary with

any angle, hence they will move along radial lines from in-

side the sphere outwards(radial waves). A sinusoidally vary-

ing mass thus radiates spherical gravitational waves. The

obtained results gives similarlar predictions as in [1, 16] in

the limit c−2 though in the limit c0 [16] predicts gravitational

waves with imaginary phase.
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Gravitational Shielding as Viewed in the Planck Vacuum Theory
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This paper argues that gravitational shielding does not exist, because gravitational

waves travel within the vacuum state rather than free space.

1 Introduction

The concept of gravitational shielding has been around for a

long time and it would incorrectly assert, for example, that

when the earth lines up between the moon and the sun, the

moon-sun gravitational attraction is reduced. The fact that

this shielding (by the earth in this case) does not occur is one

of the great mysteries in the history of physics. The theory of

the Planck vacuum (PV) state, however, offers an easy expla-

nation for the absence of such shielding.

As a counter example to the gravitational force, consider

the free space Coulomb force (e2/r2) between two charges e

separated by the distance r. If a shield of any type whatsoever

is placed between the charges, the resulting force is changed

dramatically. Indeed, if a large enough grounded screen were

inserted between the charges, the force would vanish entirely.

2 Newton Force

Now consider the gravitational force between two free space

masses m in the center-of-mass (CoM) coordinate frame de-

fined by mr1 + mr2 = 0 (with −r1 = r2 = r):

Fgr(r) = −
m2G

(2r)2
= −

m2c4

4r2(c4/G)
= −

(mc2/2r)2

(c4/G)
(1)

= −
(mc2/2r)2

(m∗c2/r∗)
= −n2

2r

m∗c
2

r∗
(2)

where the n-ratio

n2r =
mc2/2r

m∗c2/r∗
< 1 (3)

is the normalized force either mass m exerts on the PV at the

position of the opposite mass, where the masses are centered

at ±r from the origin of the CoM coordinates. The normaliza-

tion force m∗c
2/r∗ is the maximum force the PV can sustain

before breaking down. This force also normalizes the Ein-

stein field equation [1, eqn.15].

The three ratios in (1) are the force equation expressed

in terms of Newton’s secondary constant G, an experimental

constant that makes (1) agree with the experimental data. As

such, however, G hides a significant amount of physics. The

substitution c4/G = m∗c
2/r∗ [1, eqn.5] replaces G by a com-

bination of primary (fundamental) constants that lead to (2)

and the following nonrelativistic explanation of the gravita-

tional force.

The gravitational field g(r) of either mass can be defined

in the usual manner and yields

g(r) =
Fgr(r)

m
= −

c2n2r

2r
(4)

which is again centered at the radii ±r from the CoM origin,

where r is the coordinate radius common to both free space

and its underlying PV state.

From (2) and (4) it is easy to carry these calculations

a step further. Newton’s second law applied to either mass

gives the acceleration

r̈ =
dṙ

dt
= ṙ

dṙ

dr
= −

c2n2r

2r
= −

c2
· mc2

4 · m∗c2/r∗

1

r2
(5)

or

ṙdṙ = −
c2
· mc2

4 · m∗c2/r∗

dr

r2
(6)

of the masses. Integrating both sides of (6) from r0 to r leads

to
ṙ2
− ṙ2

0

2
=

c2n2r0

2

(

r0

r
− 1

)

(7)

where ṙ0 is the velocity of either mass at r = r0, and r ≤ r0.

Without changing the final conclusions, it is convenient to set

ṙ0 = 0 — i.e., to assume that the masses are released from

rest at ±r0. Then (7) yields their relative velocities toward the

origin
ṙ

c
= −

[

n2r0

(

r0

r
− 1

)]1/2

(8)

where

n2r0 =
mc2/2r0

m∗c2/r∗
(9)

and [· · ·] in (8) is the normalized force either mass exerts on

the PV at the position of the other mass.

3 Conclusions

Three important observations are evident from the previous

calculations: equations (2), (4), and (8) are all expressed in

terms of PV parameters, implying that the vacuum state me-

diates the dynamics of the gravitational force between free

space masses. A corollary to this conclusion is that gravi-

tational waves, the carrier of the gravitational force, do not

propagate in free space — they propagate within the degener-

ate PV state. Thus free-space gravitational shielding does not

change the gravitational force between free space masses.

William C. Daywitt. Gravitational Shielding as Viewed in the Planck Vacuum Theory 301



Volume 12 (2016) PROGRESS IN PHYSICS Issue 3 (April–July)

Finally, the fact that the PV is a degenerate state implies

that the Planck particles making up the PV quasi-continuum

cannot execute macroscopic (as opposed to microscopic) mo-

tions. Thus the gravitational waves that propagate through the

PV state must be percussion-like waves, similar to the waves

traveling on the surface of a kettle drum.
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This note complements the calculus of the fine structure constant provided in [2] in

agreement with the theory of mass/resonances developed therein. It shows that the

value of α can be predicted from geometry using a) the assumption of integral reso-

nances, b) de Broglie’s thesis, and c) the Wheeler-Feynman absorber theory and its

time-symmetry; hence independently of precision measurement.

1 Introduction

Using Quantum Electro-Dynamics (QED), precise measure-

ment of the electron magnetic moment anomaly enables to

compute the value of the fine structure constant.

In this note, we show that the resulting value of α pulls

us back almost to square one, namely Bohr’s model and de

Broglie’s thesis, since the assumption of integral resonances

used in [2] and its use of the Wheeler-Feynman absorber the-

ory [5], [6] give the same result, straight from geometry.

2 The calculus

In order to complete the calculus, we shall need two assump-

tions used sequentially:

• All elementary particles are integral-number based res-

onances of physical currents. We uses the verb “to be”

in its full sense: there is nothing else to deal with.

• The Wheeler-Feynman absorber theory [5], [6], is close

to the right picture. The universe expands in a 4th spa-

tial dimension and we live at some sort of boundary

or membrane that expands spherically. Up and Down-

time currents exist making particles.

Now according to de Broglie [1] the phase coherence of

the wave gives the Bohr orbits. Second, consider the first orbit

and imagine the figure, a helicoid, in x, y, t. Considering

a system of unit where the Bohr radius is 1 in x, y, and its

Compton frequency is 1 on the time axis, the helix length is:

L2
h = 1372 + (2π)2.

According to the assumptions, this expression is the effect

of a resonance, but α is the coupling of the electron with

the field; therefore it is the amplitude and the geometry from

which Lh develops. Since α < 1, we necessarily have:

α← L−1
h .

But the electron makes one turn when the helix makes two

turns. With respect to the electron “being” a resonance, its

rotational path length must be reduced by half and we get a

resonance length:

L2
r ≈ 1372 + π2.

Now we need to take into account the wavelength h/p as part

of the electron resonance. According to de Broglie, its phase

velocity is V = c2/v, with v the electron velocity; here dis-

tances are inverted and velocity dependent. Its length around

the proton is then 1/274 (the electron phase repeats every 274

Compton periods). But when the wave makes one turn the

electron progresses; therefore the resonance makes 275 turns

when the electron resonance makes a full turn. The wave

misses 1 turn over 275, which gives a negative term:

L2
r ≈ 1372 + π2

−

1

275
.

Here the negative term is not squared. The explanation is a

little less trivial than the rest of the calculus. Denoting an the

radius of the nth Bohr orbit and λdn the associated de Broglie

wavelength, we have:

an = n2 a0; λdn = n λd0 .

Those quantities are physical. The round trip of the wave is

n λdn = n2 λd0 and corresponds to quantized angular momen-

tum; at the opposite, the same trip includes 137 n2 Compton

periods. Therefore a different treatment is needed for 137 and

1/275. The former is squared in (1) and associated to n2; then

since the latter is associated to n, it cannot be squared; other-

wise this expression would be orbit dependent in n. This is the

physical aspect, it means that on any Bohr orbit we can use a

system of units in the space dimensions where n2 a0 = 1, and

the de Broglie wavelength and its angle (its phase velocity)

defines the unit for V > c. We end-up with a system of units

which is entirely defined by de Broglie’s geometry, where all

quantities are defined by h or ~, and the electron mass.

Let us now use the second assumption. The field is time-

symmetrical for an observer which is fixed in time (this is

also the perspective of QED). Time symmetry implies that

the electron is composite of up and down-time currents: Up-

time = – e/2, down-time = +e/2. Those currents are cen-
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tered like the electron resonance (on the helix) and mani-

fest an electric charge which contribution (sign) depends on

their own sign and time-orientation. Their interaction gives

(– e/2)(+e/2) = – e2/4, which compares to − e2, the interac-

tion electron-proton.

We must apply the same reasoning to the wave; by sym-

metry it is also composed of two currents of opposite direc-

tions, but of identical charges, centered on the electron. Then

we just add 1/4 as follows:

L2
r = 1372 + π2

−

1

275

(

1 +
1

4

)

. (1)

Last we compute the inverse of this length to get α:

(1)→ L−1
r = 7.29 735 256 656 433 e−3. (2)

Compare with CODATA 2014:

α = 7.29 735 256 64 (12) e−3. (3)

The difference is on the last digit and 1/7th the uncertainty.

You can stop your chronometer.

3 Conclusions

The fine structure constant was computed from de Broglie’s

geometry under the following assumptions:

• The electron “is” an integral resonance,

• The existence of symmetrical currents, where we see

the signature of a resonant system,

• Asymmetry in currents between space and time, which

is implicit in the reasoning.

This result completes the calculus provided in [2] where

a logical origin of 137 is uncovered.

Interestingly, it was possible to predict this value of α

about 70 years ago pushing Wheeler-Feynman’s absorber the-

ory to its natural consequences in terms of time-symmetry,

since α ≈ 1/137 was known.

By the way, it also requires to use de Broglie’s geometry

in its full extent; not only the wavelength λd = h/p, but also

the phase velocity V = c2/v > c for which no experimental

verification exists. We showed that this velocity is consistent

with the current best estimate of α.

Last but not least, the coefficient 1/4 in (1) addresses the

wave compositeness; an aspect of importance, or rather a

possibility meaning the incompleteness of wave mechanics,

quantum mechanics and field theory.
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References

1. De Broglie L. Recherches sur la théorie des quanta. Annales de
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Data from spacecrafts tracking exhibit many anomalies that suggest the dependence of
the speed of electromagnetic radiation with the motion of its source. This dependence
is different from that predicted from emission theories that long ago have been demon-
strated to be wrong. By relating the velocity of light and the corresponding Doppler
effect with the velocity of the source at the time of detection, instead of the time of emis-
sion, it is possible to explain quantitatively and qualitatively the spacecraft anomalies.
Also, a formulation of electromagnetism compatible with this conception is possible
(and also compatible with the known electromagnetic phenomena). Under this theory
the influence of the velocity of the source in the speed of light is somewhat subtle in
many practical situations and probably went unnoticed (i.e. below the detection limit)
in other measurements.

1 Introduction

In these lines I intend to show that there exists consistent ev-
idence pointing to the need of revision and further study of
what seem at present a settled issue, namely the independence
of the speed of electromagnetic radiation on the motion of its
source.

The main point in the evidence is the range disagreement
during the Earth flyby of the spacecraft NEAR in 1998. Its
range was measured near the point of closest approach using
two radar stations, Millstone and Altair, of the Space Surveil-
lance Network, and compared with the trajectory obtained
from the Deep Space Network [1]. As for the range, the
two measurements should match within a meter-level accu-
racy (the resolution is 5 m for Millstone and 25 m for Altair),
but actual data showed a difference that varies linearly with
time (with different slopes for the two radar stations) up to a
maximum difference of about 1 km, i.e. more than 100 times
larger than the accuracy of the equipment used (see figure 10
of [1]). Further, when NEAR crossed the orbits of Global Po-
sitioning System (GPS) satellites, orbital radius 26,600 km,
the measured range difference was 650 m, that is, a time dif-
ference of 2 µs. Is it reasonable that any standard GPS re-
ceiver performs better than the Deep Space Network or the
Space Surveillance Network?

There has not been a complete explanation for the range
discrepancy. It is very difficult to find any physical reason
that may produce this anomaly, for any physical disturbance
of the path of the spacecraft should manifest equally in the
Deep Space Network and the Space Surveillance Network
data. Guruprasad [2] proposed an explanation that points to
a time lag in the Deep Space Network signals proportional
to the range, but the model is, at best, within 10% of the
measured data (i.e. larger than the instrumental error) and,
more important, it fails to explain an important feature, that
is, the different slope for the two radars. If we assume that

systems are working properly, then the measured range dif-
ference (time lag) could be due to different propagation time
of the employed signals.

Additional points in the evidence come from anomalies
related to the tracking of spacecrafts, present in both Doppler
and ranging data. The Pioneer anomaly [3] and the flyby
anomaly [4] refer to small residuals of the differences be-
tween measured and modeled Doppler frequencies of the ra-
dio signals emitted by the spacecrafts. Although these resid-
uals are very small (less than 1 Hz on GHz signals) the prob-
lem is that they follow a non-random pattern, indicating fail-
ures of the model. According to the temporal variation of
those residuals the Pioneer anomaly exhibits a main term,
an annual term, a diurnal term and a term that appears dur-
ing planetary encounters. It should be clarified that a few
years ago an explanation of the Pioneer anomaly was pub-
lished [5]. However, it is a very specific solution that applies
only to the main term of the Pioneer spacecraft anomaly, but
left unresolved many other anomalies, including those of the
spaceships Cassini, Ulysses and Galileo; the annual term; the
diurnal term; the increases of the anomaly during planetary
encounters; the flyby anomaly; and the possible link between
all them (it is hard to think that there are so many different
causes for the mentioned anomalies). For all this, I believe
that the issue can not be closed as it stands.

2 Range disagreement

As a matter of fact, the range difference between the Space
Surveillance Network and the Deep Space Network, δR, is
perfectly fitted with

δR (t) = −
R (t) · v (t)

c
, (1)

where R (t) is a vector range pointing from the spacecraft to
the radar, v (t) the spacecraft velocity relative to the radar,
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and c the speed of light. Figure 1 shows this fit and its com-
parison with measured data. The orbital and measured data
were taken from [1]. Although the exact location of the radar
stations are unknown to the author (approximate values are:
Millstone 42.6◦ N 71.43◦ W, and Altair 9.18◦ N 167.42◦ E),
the fit is statistically significant for both radar stations (p <

10−3) including the first outliers points. It reproduces the (al-
most) linear dependence with time during the measured in-
terval, and the two different slopes for Millstone and Altair
stations due to their different locations.
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Fig. 1: Range disagreement between the Space Surveillance Net-
work and the Deep Space Network, for 1998 NEAR flyby (Millstone
blue points, upper trace, and Altair red points, lower trace). Also the
fit (1) is plotted (full lines, Millstone in blue and Altair in red). For
Millstone, the error bars refer to the uncertainties in the extraction
of the data from figure 10 of [1], rather than to its tracking error (5
m), while for Altair, the accuracy is 25 m.

Since range measurements are based on time-of-flight
techniques, the validity of (1) means that the electromagnetic
waves (microwave) of the Deep Space Network and the Space
Surveillance Network travel at different speeds. Specifically,
in the radar frame of reference, if the Space Surveillance Net-
work waves travel at c, then the Deep Space Network waves
travel at c plus the projection of the spacecraft velocity in the
direction of the beam, in sharp contrast with the Second Pos-
tulate of the Special Relativity Theory.

In view of the above result one may ask what is estab-
lished, at present, about the relation of the speed of elec-
tromagnetic radiation (light for short) to the motion of the
source. In order to elaborate this point the following ques-
tions are of relevance:

1. Are there simultaneous measurements of the speed of
light from different moving macroscopic sources (not
moving images) with different velocities?;

2. Since ballistic (emission) theories are ruled out (see,
for example, DeSitter [6,7], Brecher [8] and Alväger et
al [9]), how else could the speed of light depend on the
source movement?;

3. How is it possible that there is a first order difference
in v/c in spacecraft range measurements, while at the
same time there are many experiments on time dila-
tion that are consistent with Special Relativity Theory
to second order in v/c (see, for example, [10])?;

4. If the velocity of light depend on the velocity of the
source, why has this not been observed in other phe-
nomena in the past?

In answer to the previous questions, so far as the author is
aware, there is no known experimental work that simultane-
ously measures the speed of light from two different sources
(not images), or that simultaneously measures the speed of
light and that of its source. For example, in the work by
Alväger et al, [9] the speed of light is measured at a later time
(≈ 200 ns) than the emission time, and there is no measure-
ment of the speed of the source at the time of the detection of
the light.

Note that measurements involving moving images pro-
duce different results from those produced by mobile sources.
For example, under Special Relativity Theory, a moving
source is affected by time dilation while a moving image is
not. Therefore, to ensure the independence of the speed of
light from its source movement, it is essential to have two
sources with different movements.

Although controversial and beyond the scope of the this
note, time dilatation phenomena may be of different physi-
cal origin from first order terms, as it may be inferred from
the work of Schrödinger [11]. Thus, measurements of time
dilatation phenomena in accordance with Special Relativity
Theory, does not necessarily imply the independence of the
speed of light with the movement of the source.

The experiments mentioned above [6–9] only rule out bal-
listic theories in which radiation maintains the speed of the
source at the time of emission, but do not rule out other ideas,
like Faraday’s 1846 [12].

3 Faraday’s ray vibrations

In order to remove the ether, Faraday introduced the concept
of vibrating rays [12], in which an electric charge is con-
ceived as a center of force with attached “rays” that extend
to infinity. The rays move with their center, but without rotat-
ing. According to this view, the phenomenon of electromag-
netic radiation corresponds to the vibration of these “rays”,
that propagates at speed c relative to the rays (and the cen-
ter). That is, the radiation remains linked to the source even
after emitted. Today we could describe the interaction as a
kind of entanglement between the charge and the photon. A
framework for the electromagnetic phenomena according to
Faraday’s ideas was developed. It was called “Vibrating Rays
Theory” [13] in reference to Faraday’s “vibrating rays”.

Under Faraday’s idea, the velocity of radiation at a given
epoch will be equal to c plus the velocity of the source at
the same epoch, in contrast with ballistic theories in which
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the emitted light retains the speed of the source at the emis-

sion epoch. In this sense the radiation is always linked to
the charge at every time after the emission. Consequently,
the measured Doppler Effect corresponds to the speed of the
source at the time of reception, as well.

Further, a difference between active and passive reflec-
tion is expected, since the latter is still related to the origi-
nal source according to Vibrating Rays Theory. The Deep
Space Network works with the so called active reflection (the
spacecraft re-emits in real time a signal in phase with the re-
ceived signal from Earth), while the Space Surveillance Net-
work works with passive radar reflection. In consequence, the
down-link signal from the approaching spacecraft will prop-
agate faster that the reflected one. Using the available orbital
data [1] we found that, under Vibrating Rays Theory, the the-
oretical time-of-flight difference between active and passive
reflection gives exactly the same range disagreement as (1),
see Part 6 of [13].

4 Pioneer anomaly

The Pioneer anomaly refers to the fact that the received
Doppler frequency differs from the modeled one by a blue
shift that varies almost linearly with time, and whose deriva-
tive is

d(∆ f )

dt
≈ −6 × 10−9 Hz/s, (2)

where ∆ f is the frequency difference between the measured
and the modeled values.

In the case of a source with variable speed, the main dif-
ference in Doppler (to first order) between Vibrating Rays
Theory and Special Relativity Theory, is that Special Rela-
tivity Theory relates to the speed of the source at the time of
emission, while Vibrating Rays Theory relates to the speed of
the source at the time of reception. Precisely, this difference
seems to be present in the spacecraft anomalies.

If Vibrating Rays Theory is valid, it automatically invali-
dates all calculations and data analysis of spacecraft tracking
which are based on Special Relativity Theory. So, it is not
easy to make a direct comparison between the expected re-
sults from Special Relativity Theory and Vibrating Rays The-
ory. However, to see whether or not the main features pre-
dicted by Vibrating Rays Theory are present in the measure-
ments, we can evaluate the residual by simulating a measured
Doppler signal assuming that light propagates in accordance
to Vibrating Rays Theory but analyzed according to Special
Relativity Theory.

Calling t2 the emission time of the downlink signal from
the spacecraft toward Earth and t3 the reception time at Earth,
the first order difference of the Doppler shift between Vibrat-
ing Rays Theory and Special Relativity Theory is (see [13]
Part 4)

∆ f = fVRT − fS RT ≈ f0r̂ ·
v2 − v3

c
, (3)

where v2 and v3 represent the velocities of the spacecraft at
the corresponding epoch, r̂ is the unit vector from the space-
ship to the antenna, and f0 the proper frequency of the sig-
nal. That is, the velocity used in the Special Relativity The-
ory formula is that at the time of emission while according
to Vibrating Rays Theory is that corresponding at the time of
reception.

Since the spacecraft slows down as it moves away, then
r̂ · (v2 − v3) > 0, therefore the difference corresponds to a
small blue shift mounted over the large red shift, as it has been
observed in the Pioneer anomaly. It should be noted that this
difference appears because of the active reflection produced
by the on-board transmitter. In case of a passive reflection (for
example, by means of a mirror) the above difference vanishes.

4.1 Main term

An estimate of the order of magnitude of 3 is obtained by us-
ing that the variation of the velocity of the spacecraft between
the time of emission and reception is approximately

v2 − v3 ≈ a (t2 − t3) , (4)

where a is a mean acceleration during the down-link interval.
An estimate for the duration of the down-link is simply

t3 − t2 ≈
r

c
, (5)

where r is a mean position of the spaceship between t2 and t3,
therefore

∆ f ≈ − f0
r · a

c2
.

Since

a = −
GM

r2
r̂,

where G is the gravitational constant, and M the mass of the
Sun, then, the time derivative becomes

d (∆ f )

dt
≈ f0

v · a

c2
. (6)

If the difference (6) is interpreted as an anomalous accel-
eration we get

aa ≈
v

c
a, (7)

that is, the so-called anomalous acceleration is v/c times the
actual acceleration of the spacecraft.

Using data from HORIZONS Web-Interface [14] for the
spacecraft ephemeris, some characteristic value for aa can be
obtained. Consider the anomalous acceleration detected at
the shortest distance of the Cassini spacecraft during solar
conjunction in June, 2002. The spacecraft was at a distance
of 7.42 AU moving at a speed of 5.76 km/s. The anomalous
acceleration given by (7) is aa ≈ 2×10−9 m/s2 of the same or-
der of the measured one (≈ 2.7×10−9 m/s2 ). Also, the closest
distance at which the Pioneer anomaly has been detected was
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about 20 AU. the anomalous acceleration predicted by (7) at
that distance is aa ≈ 7.3× 10−10 m/s2 of the same order as the
measured one.

The “anomaly” given by (7) decreases in time in a way
that has not been observed. Note, however, that according
to Markwardt [15] the expected frequency at the receiver in-
cludes an additional Doppler effect caused by small effective
path length changes, given by

∆ fpath = −
2 f0

c

dl

dt
, (8)

where dl/dt is the rate of change of effective photon trajec-
tory path length along the line of sight. This is a first order
effect that can partially hide the difference between Special
Relativity Theory and Vibrating Rays Theory. Therefore, a
more careful analysis should take into account the additional
contribution of (8) in (7).

Further, other first order effects may appear, for exam-
ple, by a slight rotation of the orbital plane. Due to spacecraft
maneuvers or random perturbations the orbital parameters are
obtained by periodically fitting the measurements with theo-
retical orbits. Therefore there is no straightforward way to
weight the importance of these fittings in (7). In other words,
data acquisition and analysis may hide part of the Vibrating
Rays Theory signature.

4.2 Annual term

Apart from the residual referred to in the preceding paragraph
there is also an annual term. According to Anderson et al [16]
the problem is due to modeling errors of the parameters that
determine the spacecraft orientation with respect to the refer-
ence system. Anyway, Levy et al [17] claim that errors such
as errors in the Earth ephemeris, the orientation of the Earth
spin axis or the stations coordinates are strongly constrained
by other observational methods and it seems difficult to mod-
ify them sufficiently to explain the periodic anomaly.

The advantage of studying the annual term over the main
term, is that the former is less sensitive to the first order cor-
rection mentioned above, and, for the case of Pioneer, also
to the thermal propulsion correction [5]. Clearly, the Earth
orbital position does not modify those terms.

As before, the annual term is explained by the difference
between the velocity of the spacecraft at the time of emis-
sion and that at the moment of detection, which depends on
whether the spaceship is in opposition or in conjunction rel-
ative to the Sun. When the spacecraft is in conjunction, light
takes longer to get back to Earth than in opposition. The time
difference between emission and reception will be increased
by the time the light takes in crossing the Earth orbit. Specif-
ically, taking into account the delay due to the position of
Earth in its orbit, in opposition equation (5) should be written
as

t3 − t2 ≈
r + Rorb

c
, (9)

while in conjunction it would be

t3 − t2 ≈
r − Rorb

c
, (10)

where Rorb is the mean orbital radius of Earth.
Therefore, an estimate of the magnitude of the amplitude

of the annual term is

∆ f ≈ f0
aRorb

c2
. (11)

For the case of Pioneer 10 at 40 AU we get

∆ f ≈ 14 mHz, (12)

and at 69 AU
∆ f ≈ 4.8 mHz, (13)

in good agreement with the observed values.
Using data from HORIZONS Web-Interface [14] a more

complete analysis of the time variation of ∆ f has be per-
formed. The residual (that is, simulated Doppler using Vi-
brating Rays Theory but interpreted under Special Relativ-
ity Theory) during 12 years time span is plotted in figure 2.
Also the dumped sine best fit of the 50 days average mea-
sured by Turyshev et al [18] is plotted showing an excellent
agreement between measurements and Vibrating Rays The-
ory prediction. The negative peaks (i.e., maximum anoma-
lous acceleration) occur during conjunction when the Earth
is further apart from the spacecraft, and positive peaks dur-
ing opposition. Also, the amplitude is larger at the beginning
of the plotted interval and decreases with time, as it was ob-
served [4, 18].

5 Flyby anomaly

Like the Pioneer anomaly, the Earth flyby anomaly can be as-
sociated to a modeling problem, in the sense that relativistic
Doppler includes terms that are absent in the measured sig-
nals. The empirical equation of the flyby anomaly is given
by Anderson et al [4], which, notably, can be derived using
Vibrating Rays Theory, as is done in Part 6 of [13].

Consider the case of NEAR tracked by 3 antennas lo-
cated in USA, Spain, and Australia (a full description of the
tracking system is found in a series of monographs of the Jet
Propulsion Laboratory [19]). The receiving antenna was cho-
sen as that having a minimum angle between the spacecraft
and the local zenith.

Using available orbital data, a simulated Doppler signal
has been calculated using Vibrating Rays Theory. Thus, the
simulated residual is obtained by subtracting the theoretical
Special Relativity Theory Doppler, from the Vibrating Rays
Theory calculation. We observed, however, that the term that
contains the velocity of the antennas, that is

d =
γu3

γu1

1 − r̂23 · u3/c

1 − r̂12 · u1/c
, (14)
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Fig. 2: Annual variation of the frequency difference between Vi-
brating Rays Theory and Special Relativity Theory (full line) and
anomalous dumped sine best fit of the 50 days average measured by
Turyshev et al [18] (dashed line), for Pioneer 10 from January 1987
to January 1999.

is not enough to completely remove the first order (in u/c)
Earth signature (u is the velocity of the antenna, 1 refers to
the emission epoch and 3 to the reception epoch, as in [13]
Part 4).

This is so because the velocity of the antennas is not uni-
form and the evaluation of the emission time is different for
Vibrating Rays Theory and Special Relativity Theory. Then,
a small first order term remains. Anyway, since orbital param-
eters are obtained by periodically fitting the measurements to
theoretical orbits, thus a similar procedure is needed for Vi-
brating Rays Theory. Curiously, by doing so, the first order
term is removed. The only difference between orbits adjusted
by Special Relativity Theory and Vibrating Rays Theory is a
slight rotation of the orbit plane, as mentioned above. Note
that in the case of range disagreement (discussed above) two
different orbital adjustment would be needed by the Deep
Space Network and the Space Surveillance Network due to
the different propagation speed. In consequence, it will be
impossible to fit a simultaneous measurement, as it seems to
happen with the range disagreement.

The final result shows that each antenna produces a sinu-
soidal residual with a phase shift at the moment of maximum
approach. Therefore, if we fit the data with the pre-encounter
sinusoid a post-encounter residual remains and vice versa.

In figure 3 are simultaneously plotted the result of fitting
the residual by pre-encounter data (right half in red, corre-
sponding to figure 2a of [4]) and by post-encounter data (left
half in blue, corresponding to figure 2b of [4]).

Note that the simulated plots are remarkably similar to the
reported ones, including the amplitude and phase (i.e., min-
ima and maxima) of the corresponding antenna. The fitting of
post-encounter data (blue) can be improved by appropriately
setting the exact switching times of the antennas (which are
unknown to the author). The flyby Doppler residual exhibits
a clean signature of the Vibrating Rays Theory.
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Fig. 3: Fitting the pre- (right half, in red) and post-encounter (left
half, in blue) X-band Doppler data residual, for the NEAR flyby
under an ideal hyperbolic orbit. Solid lines simulated according to
Vibrating Rays Theory. Crosses, actual data extracted from refer-
ence [4].

6 Conclusions

In this work I have presented observational evidence favoring
a dependence of the speed of light on that of the source, in the
manner implied in Faraday’s ideas of “vibrating rays”.

It is remarkable and very suggestive that, as derived from
Faraday’s thoughts, simply by relating the velocity of light
and the corresponding Doppler effect with the velocity of the
source at the time of detection, is enough to quantitatively and
qualitatively explain a variety of spacecraft anomalies.

Also, it is worth mentioning that a formulation of elec-
tromagnetism compatible with Faraday’s conception is pos-
sible, as shown in [13] Part 8, which is also compatible with
the known electromagnetic phenomena. The most remark-
able fact of this new formalism is the simultaneous presence
of instantaneous (static terms) and delayed (radiative terms)
interactions (i.e., local and nonlocal phenomena in the same
interaction).

Finally, under Vibrating Rays Theory the manifestation of
the movement of the source in the speed of light is more sub-
tle than the naive c+kv hypothesis (k is a constant, 0 ≤ k ≤ 1)
usually used to test their dependence [8]. Thus, it is also of
fundamental importance the fact that, from the experimental
point of view, it is very difficult to detect differences between
Vibrating Rays Theory and Special Relativity Theory, as dis-
cussed in [13], which is also manifest in the smallness of the
measured anomalies, and in the non clear manifestation of the
effect in usual experiments and observations. For example, it
produces a negligible effect on satellite positioning systems,
see Part 7 of [13].

I am aware of how counterintuitive these conceptions are
to the modern scientist, but also believe that, given the above
evidence, a conscientious experimental research is needed to
settle the question of the dependence of the speed of light on
that of its source as predicted by Vibrating Rays Theory, and
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that has been observed during the 1998 NEAR flyby. As a
closure, I recall Fox’s words regarding the possibility of con-
ducting an experiment on the propagation of light relative to
the motion of the source: “Nevertheless if one balances the

overwhelming odds against such an experiment yielding any-

thing new against the overwhelming importance of the point

to be tested, he may conclude that the experiment should be

performed” [20].
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Editorial Comment

This paper plays an importance in the understanding of the physical observ-
able velocity of light that differs from the world-invariant in the General The-
ory of Relativity.

Defining physical observable quantities in the General Theory of Rel-
ativity is not a trivial problem. This is because we are looking at objects
in a four-dimensional space-time, and we have to determine which compo-
nents of these four-dimensional tensor quantities are physically observable.
A complete mathematical theory for calculating physically observable quan-
tities in the four-dimensional space (space-time) of General Relativity was
introduced in 1944 by Abraham Zelmanov, and is known as the theory of

chronometric invariants∗. Landau and Lifshitz in §84 of their The Classi-

cal Theory of Fields also introduced physically observable time and observ-
able three-dimensional intervals similar to Zelmanov. But they limited them-
selves only to this particular case, while only Zelmanov arrived at the versa-
tile mathematical theory. A compendium of Zelmanov’s theory of physical
observable quantities can also be found in the books†.

In short, physically observable are the projections of four-dimensional
quantities onto the time line and the three-dimensional spatial section of the
observer, which can be non-uniform, deformed, curved and rotating. These
projections are calculated through the special projecting operators which take
all the aforementioned factors into account. In particular, the physical ob-
servable velocity of light differs from the world-invariant, and is depended
on the gravitational potential and the rotation velocity of the observer’s space.
In ultimate physical conditions, as is shown in Chapter 5 of Particles Here

and Beyond the Mirror†, the observable velocity of light can even become
zero, that is verified by the frozen light experiment (Lene Hau, 2001).

Even more. In a physical space (space-time metric) wherein is a shift at
one of the spatial directions (that means a spatial anisotropy), the observable
velocity of light is depended on the signal source’s velocity at this preferred
direction. We drafted such a space-time metric in the last decade.

Einstein’s postulates have now only a historical meaning. Once Ein-
stein moved his theory on the mathematical basis of Riemannian geometry,
he found that all the postulates are the manifestations of geometry of Rie-
mannian spaces. It is as well true about the world-invariant of the velocity
of light. In a space, which is free of gravitation, is uniform, non-deformed,
and non-rotating, the physical observable velocity of light coincides with the
world-invariant. However in a real physical space it does not.

For this reason the experimental compendium and the analysis presented
in Bilbao’s paper will maybe give a new fresh stream in search for the further
theoretical predictions of the General Theory of Relativity.

Dmitri Rabounski, Editor-in-Chief

Larissa Borissova, Assoc. Editor
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hoboth (NM), 2006. Zelmanov A. Chronometric invariants and accompany-
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†Borissova L. and Rabounski D. Fields, Vacuum, and the Mirror Uni-

verse. 2nd ed., Svenska fysikarkivet, Stockholm, 2009. Rabounski D. and
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search Press, Rehoboth (NM), 2012.
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We assume here a slightly varying cosmological term which readily induces a perma-
nent background field filling the physical vacuum. A precise form of the variable cos-
mological term is introduced containing an infinitesimal Killing vector which accounts
for the space-time variation of this term. As a result the term can be added to the Ein-
stein Lagrangian without affecting the varied action δS . As a result, we showed in an
earlier publications that the permanent background field filling the vaccum is excited in
the vicinity of matter which precisely corresponds to its gravitational field classically
described by a pseudo-tensor. With this preparation, the global energy-momentum ten-
sor of matter and gravity field is no longer a pseudo-tensor and is formally conserved
like the Einstein tensor. In the excited state, this antisymmetric tensor can be con-
veniently symmetrized by applying the Belinfante procedure which automatically self
excludes far from matter since the background field tensor is naturally symmetric.

Introduction

The substance of this study is inspired by the following con-
siderations. In the framework of the Theory of General Rel-
ativity (GR), the Einstein tensor exhibits a conceptually con-
served property, while any corresponding stress-energy tensor
does not, which leaves the theory with a major inconsistency.
When pure matter is the source, a so-called “pseudo-tensor”
describing its gravitational field is introduced so that the four-
momentum of both matter and its gravity field is conserved
[1]. Unfortunately in this approach, the gravitational field
maybe transformed away at any point and by essence, its
pseudo-tensor cannot appear in the Einstein’s field equations,
as it should be.

We will tackle the problem in another way : Restricting
our study to neutral massive flow, we proceed as follows. We
introduce a space-time variable term that supersedes the so-
called cosmological term Λgab in the Einstein’s field equa-
tions [2]. Under this latter assumption, we formally show that
the gravity field of a massive source is no longer described by
a vanishing pseudo-tensor, but it is represented by a true ten-
sor which can explicitly appear with the bare matter tensor
together with another specific field, on the right hand side of
the Einstein’s field equations. Inspection also shows that this
global stress-energy tensor now complies with the intrinsic
conservation property of the Einstein tensor as it should be.
As a result, the physical vacuum is here filled with a homoge-
neous vacuum background field which is always present in the
so-called Einstein’s “source free” equations and whose tensor
exhibits a conserved property. Our theory leads to admit that
matter causes the surrounding background field to produce
its gravitational field which decreases asymptotically to the
level of this vacuum field. Naturally, since we will deal with
energy-momentum canonical field tensors which are not sym-
metric, the total angular momentum of the isolated system is
not conserved. In this case, it is always possible to apply the

symmetrizing procedure to these tensors according to J. Be-
linfante [3]. In the absence of matter, the inferred Belinfante
tensor reduces to the symmetric background field tensor as it
should be.

Notations

Space-time Latin indices run from a = b: 0, 1, 2, 3, while
spatial Greek indices run from α = β: 1, 2, 3. The space-time
signature is −2. In the present text, κ is Einstein’s constant
4πG/c4, where G is Newton’s gravitational constant.

1 The field equations in General Relativity

1.1 The problem of the conserved gravity tensor

The General Theory of Relativity requires a 4-dimensional
pseudo-Riemannian manifold. A Riemannian manifold is
characterized by the line element ds2 = gab dxadxb. It is well
known that by varying the action S = LEd4x with respect to
the metric tensor gab with the Lagrangian density given by

LE =
√−g gab

[{
e

ab

} {
d

de

}
−
{
d

ae

} {
e

bd

}]
, (1.1)

g = det ∥ gab ∥. (1.2)

Also one infers the symmetric Einstein tensor

Gab = Rab −
1
2
gab R , (1.3)

where

Rbc = ∂a

{
a

bc

}
− ∂c

{
a

ba

}
−
{
d

bc

} {
a

da

}
−
{
d

ba

} {
a

dc

}
(1.4)

is the Ricci tensor with its contraction R, the curvature scalar
(the
{
e

ab

}
denote the Christoffel symbols of the second kind).

The 10 source free field equations are

Gab = 0 . (1.5)
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The second rank Einstein tensor Gab is symmetric and is only
function of the metric tensor components gab and their first
and second order derivatives. The relations

∇a Ga
b = 0 (1.6)

are the conservation identities provided that the tensor Gab

has the form [4]

Gab = k
[

Rab −
1
2
gab (R + 2Λ)

]
, (1.7)

where k is a constant, which is here assumed to be 1, while Λ
is usually named the cosmological constant.

Einstein’s field equations for a source free field are

Gab = Rab −
1
2
gab R − Λgab = 0 . (1.8)

In the case where the field source is present, the field equa-
tions become

Gab = Rab −
1
2
gab R − Λgab = κTab , (1.8 bis)

where Tab is the energy-momentum tensor of the source.
However, unlike the Einstein tensor Gab which is concep-

tually conserved, the conditions

∇a T a
b = 0 (1.9)

are never satisfied in a general coordinates system [5]. There-
fore, the Einstein tensor Gab which intrinsically obeys a con-
servation condition inferred from the Bianchi’s identities, is
generally related with a tensor Tab which obviously fails to
satisfy the same requirement.

Hence, we are faced here with a major inconsistency in
GR which can be removed in the case of a neutral massive
source upon a small constraint.

1.2 The tensor density representation

We first set
g

ab =
√−g gab (1.10)

thus the Einstein tensor density is

G
ab =

√−g Gab , (1.10 bis)

G
c
a =
√−g Gc

a , (1.10 ter)

R
ab =

√−g Rab . (1.11)

In the density notations, the field equations with a source
(1.8) will read

G
ab = Rab − 1

2
gab
R − √−g gabΛ = κTab , (1.12)

where Tab =
√−g T ab.

2 The new approach on gravity

2.1 The canonical gravity pseudo-tensor

Let us consider the energy momentum tensor for neutral mat-
ter density ρ

Tab = ρ c2uaub (2.1)

as the right hand side of the standard field equations

Gab = Rab −
1
2
gab R = κ Tab . (2.2)

The conservation condition for this tensor are written

∇a T a
b =
√−g ∂aT a

b −
1
2

Tac∂b gac = 0 (2.3)

with the tensor density

T
a
b =
√−g T a

b . (2.4)

However, across a given hypersurface dS b, the integral

Pa =
1
c

∫
T ab √−g dS b (2.5)

is conserved only if [6]

∂a T
a
b = 0 . (2.6)

This problem can be cured only if the metric admits a
Killing vector field [7]. If this is not so, we write (2.3) for the
bare matter tensor density

∂a(Ta
b)matter =

1
2

(Tcd)matter ∂b gcd . (2.7)

Inspection then shows that

Ril dgil =
√−g

[
−Rie +

1
2
gieR
]

dgie =

= − κ (Tie)matter dgie . (2.8)

Taking now into account the Lagrangian formulation for
Ril which is

Ril =
dLE

gil
= ∂k

[
∂LE

∂(∂k g
il)

]
− dLE

∂ gil
, (2.9)

we obtain

− κ (Til)matter dgil =

{
∂k

[
∂LE

∂ (∂k g
il)

]
− ∂LE

∂gil

}
dgil =

= ∂k

[
∂LE dgil

∂ (∂k g
il)

]
− dLE

or

− κ (Til)matter ∂m gil = ∂k

[
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

]
=

= 2 κ ∂k(tkm)field , (2.10)

314 Patrick Marquet. Vacuum Background Field in General Relativity



Issue 4 (October) PROGRESS IN PHYSICS Volume 12 (2016)

where (tkm)field denotes the field tensor density extracted from

2 κ (tkm)field =
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE (2.11)

so that we have the explicit canonical form

(tkm)field =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

}
(2.12)

where

∂k(Tk
i )matter =

1
2

(Tek)matter ∂k gei = −∂k(tki )field

that is, the required conservation relation is

∂k

[
(Tk

i )matter + (tki )field

]
= 0 . (2.13)

Looking back of the deduction, (2.12) defines the canon-
ical gravity pseudo-tensor density of matter

(tkm)pseudogravity =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

}
. (2.14)

Expressed with the explicit form of the Lagrangian den-
sity LE (1.1), (2.14) can be written in the form

(tkm)pseudogravity =

=
1

2κ

({
k

il

}
∂m g

il −
{
i

il

}
∂m g

lk − δkm LE

)
. (2.15)

This is the mixed Einstein-Dirac pseudo-tensor density
[8] which is not symmetric on k and m, and therefore is not
suitable for basing a definition of angular momentum on.

Thus, our aim is to look for:

• A true tensor;
• A symmetric tensor.

2.2 The new canonical tensor

In the density notations, the field equations with a massive
source (1.8 bis) can be re-written as

G
ab = Rab − 1

2
g

ab
R − gab ζ = κ (Tab)matter , (2.16)

where in place of the constant cosmological term Λ
√−g, we

have introduced a scalar density denoted as

ζ = Ξ
√−g . (2.17)

Unlike Λ, the scalar Ξ is slightly space-time variable and
can be regarded as a Lagrangian characterizing a specific vac-
uum background field.

We will choose the variation of Ξ as follows

Ξ = ∇a κ
a, (2.17 bis)

where κa is a Killing vector. Hence

ζ =
√−g ∇a κ

a. (2.17 ter)

We will first write the field equations with a massive
source together with its gravity tensor density

G
ab = Rab − 1

2
gab
R = κ

[
(Tab)matter + (tab)gravity

]
(2.18)

where (tab)gravity is related to ζ as

G
ab = Rab − 1

2
gab
R = κ

[
(Tab)matter +

gabζ

2κ

]
. (2.19)

Re-instating the term ζ accordingly, the gravitational field
tensor density now reads

(tkm)gravity =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm (LE − ζ)

}
. (2.20)

A first inspection shows that ζ represents the Lagrangian
density of the background field, therefore the modified field
equations (2.19) should be derived from an Einstein Lagran-
gian density different from LE (1.1) and which includes ζ.

By choosing the form (2.17 ter), we check that

ζ =
√−g ∇a κ

a = ∂a

(√−g κa) .
Now, if we write the new action as

SM =

∫
LM d4x =

∫
LE d4x +

∫
∂a

(√−g κa) d4x

due to Gauss’ theorem we see that the last integral can be
transformed in an integral extended to an hyperfurface which
does not contribute in the variation of SM and

δ

∫
LM d4x = δ

∫
LE d4x .

Therefore, it is legitimate to maintain (tkm)gravity as per (2.20).
The presence of the scalar density ζ characterizing the

background field is here of central importance, as it means
that (tkm)gravity can never be zero in contrast to the classical
theory where the gravitational field is only described by an
awkward pseudo-tensor.

The quantity (tkm)gravity constitutes thus a true tensor den-
sity describing the gravity field attached to the neighbouring
matter.

It is then easy to show that we have the conserved quantity

∂a

[
(Tb

a)matter + (tba)gravity

]
= 0 . (2.21)

In this picture and examining (2.20), we clearly see that
the gravitational field of matter appears as an excited state
of the homogeneous background energy field which perma-
nently fills the physical vacuum.
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Far from its matter source, the field sharply decreases
down to the level of the background field described by the
tensor density (tab)background field. Therefore the “source free”
field equations should always retain a non-zero right hand
side according to

G
ab = Rab − 1

2
gab
R = κ (tab)background field (2.22)

which are the equivalent of (1.8)

G
ab = Rab − 1

2
gab
R = κ

gab ζ

2κ
. (2.23)

In this case, the conservation law applied to the right hand
side of the tensor density field equations is straightforward

∂a(tba)background field = ∂a

(
ζ

2κ
δba

)
= 0 . (2.24)

2.3 Symmetrization of the gravity tensor

Let us consider the new gravity tensor expressed with the ex-
plicit form of the Lagrangian density LE (1.1):

(tkm)gravity =

=
1

2κ

[{
k

il

}
∂m g

il −
{
i

il

}
∂m g

lk − δkm (LE − ζ)
]
. (2.25)

Like we mentioned, this tensor includes the Einstein-
Dirac pseudo-tensor which is not symmetric. We can how-
ever follow the Belinfante procedure used to symmetrize the
canonical tensor (Θk

m)gravity that extracted from (tkm)gravity =√−g (Θk
m)gravity.

The total angular momentum is known to be the sum

Mcba = xb(Θca)gravity − xa(Θcb)gravity + S cab, (2.26)

where S cab is the contribution of the intrinsic angular mo-
mentum. By definition,

S cab = −S cba.

Local conservation of the total angular momentum, i.e.
∇c Mcab = 0, requires that

∇c S cab = (Θab)gravity − (Θba)gravity . (2.27)

We now add a tensor Υbca which is antisymmetric with
respect to the first two indices b, c:

(tca)gravity = (Θca)gravity + ∇b Υ
bca, (2.28)

where
Υcba =

1
2

(
S cba + S bab − S acb

)
. (2.29)

The (tab)gravity should be identified to the Belinfante-Rosenfeld
tensor [9] which is found to be symmetric.

In addition, the antisymmetry of Υcba guarantees that the
conservation law remains unchanged

∇a (Θa
b)gravity = ∇a (tab)gravity = 0 . (2.30)

Staying far distant from matter (unexcited state), we have

(Θab)gravity −→ (tab)background field , Υcba = 0 .

By essence, (tab)background field is thus symmetric.

Conclusions and outlook

Like we mentioned in an earlier publication, from the begin-
ning of General Relativity, the cosmological constant Λ has
played an unsavory rôle Einstein included this constant in his
theory, because he wanted to have a cosmological model of
the Universe which he wrongly thought static. Shortly after
the works published by De Sitter and Lemaı̂tre, he decided to
reject it.

But to-day, despite its smallness, a term like Λ seems
to be badly needed to explain some astronomical observa-
tions, all related with the basic dynamical expanding model
(Robertson-Walker et al.), even though its occurrence was
never clearly explained.

In the classical General Relativity, the space-time is ei-
ther filled with ponderomotive energy or devoid of source,
which is accepted as a physical vacuum. However, numer-
ous experiments predict that quantum vacuum is not “empty”
but permanently subjected to virtual particles exchanges of
energy.

Heisenberg’s Uncertainty Principle, which allows for this
process to take a place, has not been used in our demonstra-
tion, but it certainly plays a role in the variable property of
the cosmological background field which our study relied on.

To sum up all that above, we have eventually reached the
following important results:

• The gravitational energy can be represented by a true
tensor;
• Its nonlocalizability doesnot hold anymore;
• The existence of a vacuum field is inferred from GR,

which confirms the quantum predictions.

This last conclusion is noteworthy since our theory shows
that General Relativity and Quantum Physics have convergent
results.

Submitted on July 8, 2016 / Accepted on July 14, 2016
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On the Physical Nature of the de Broglie Wave

Patrick Marquet

18 avenue du Président Wilson, 62100 Calais, France

E-mail: patrick.marquet6@wanadoo.fr

Here is revisited de Broglie’s Wave Mechanics Theory of Double Solution wherein a

particle endowed with a variable proper mass is required to propagate within a hidden

medium in order to describe a physical scalar wave carrying its own associated mass.

Since the experiment that detected the wave applied to electrons, we extend the de

Broglie’s theory to the Dirac spinor, so that we can outline the physical reality of this

fermion field.

Introduction

Some hundred years ago, was established the famous rela-

tion E = hν later verified for the photon. On this basis,

in 1924, Louis de Broglie extended the wave dualism to all

massive particles. The predicted original wave function as-

sociated with a given particle was soon detected in 1927 by

Davisson and Germer in their famous experience on electrons

diffraction by a nickel crystal lattice [1]. The wave produc-

ing physical effects, was an overwhelming evidence of its true

existence.

Nevertheless, since the Brussels Solvay Symposium was

held in 1927, official physics interpretation prevailed which

considered quantum mechanics on the pure statistical grounds

and then leading to accept the notion of non-real wave

functions.

Although it is unquestionable that use of a probabilistic

wave and its generalization did lead to accurate prediction

and fruitful theories, de Broglie could never believe that ob-

servable physical phenomena follow from abstract mathemat-

ical wave functions. In his opinion, the wave function had to

remain an objective physical entity which is intimately re-

lated with its mass, rather than the subjective probabilistic

representation currently adopted in modern quantum physics.

Since the real wave was detected by means of electrons scat-

tering, we will here formally show that there is a strict identity

between its phase and the one of its associated wave which

therefore physically carries the particle. To make this iden-

tity possible, the electron proper mass must be variable ac-

cording to the Planck-Laue relation [2]. Within this frame,

de Broglie’s theory inferred a so-called “guidance formulae”

which forces the electron to be always in motion. However,

because of the stationary property of energy levels inside an

atom, a static electron is not compatible with its dynamic

guided state. de Broglie then postulated the existence of a hid-

den medium which permanently exchanges energy and mo-

mentum with the electron causing it to oscillate and then

avoiding a motionless location.

When I first met Louis de Broglie in summer 1966, this

issue was debated with a great deal of speculation. Today,

another explanation can be pushed forward.

Notations

Space-time Latin indices run from a = b: 0, 1, 2, 3, while

spatial Greek indices run from α = β: 1, 2, 3. The space-time

signature is −2.

1 Spinor field-electron duality

1.1 The origins of the Double Solution Theory

1.1.1 Basics of the wave mechanics

From standard optics, we first recall the definition of the clas-

sical wave with a frequency v

ψ = a(n) exp [i(νt − k · r)] (1.1)

which propagates along the direction of the unit vector n.

(Here k is the 3-wave vector, k · r = φ is the wave spatial

phase, n is the refractive index of the medium.)

Formula (1.1) is a solution of the classical propagation

equation

∆ψ =
1

w2

∂2ψ

c2∂t2
, (1.2)

where w is the wave phase velocity of the wave moving in

a dispersive medium whose refractive index is n(ν) generally

depending on the coordinates, and which is defined by

1

w
=

n(ν)

c
. (1.3)

This medium is assumed to be homogeneous and only de-

pends on the frequency ν. The (constant) phase φ of the

wave is progressing along the given direction with a sepa-

ration given by a distance λ = w/ν, called wavelength.

Consider now the superposition of a group of stationary

(monochromatic) waves having each a very close frequency

along the x-axis

ψ =

∫ ν0+∆ν

ν0−∆ν

a(n) exp
[

i(νt − φ(ν))
]

. (1.4)

Such a group of waves moves with a constant velocity called

group velocity vg according to the Rayleigh’s formula

1

vg
=

d(ν/v)

dν
=

1

ν0

∂nν

∂ν
. (1.5)
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The wave mechanics eventually shows that the group veloc-

ity vg of waves associated with a particle of rest mass m0,

coincides with the velocity of this particle whose momen-

tum along the x-axis (in vacuum) is given by the famous de

Broglie’s relation [3]

px = m0 vx =
h

λ
. (1.6)

We clearly note that there is an obvious first physical link

between the particle and its associated wave which will be

further substantiated.

1.1.2 Double nature of the wave function

Like we mentioned above, de Broglie was firmly convinced

that the wave associated with a massive particle should be a

real observable quantity, therefore, he introduced a true plane

wave of the usual form

ψ = a(xα) exp

[

i

h
φ(xα)

]

, (1.7)

which is connected to a probabilistic Ω-wave by the relation

Ω = f ψ , (1.8)

where f is a constant normalizing factor.

The original wave mechanics is thus complemented with

the Double Solution Theory [4], forΩ and ψ are two solutions

of the same propagation equation. The Ω-wave (normed in

the usual quantum machanical formalism), has the nature of a

subjective probability representation formulated by means of

the objective ψ-wave.

Defining ψ∗ as the complex conjugate of ψ, it is well

known that ψ2dV = ψψ∗ dV gives the absolute value of find-

ing the particle in the volume element dV so that the normal-

ization condition is adapted with f as

∫

V

ΩΩ∗dV = 1 . (1.8 bis)

This guarantees that the particle is present in the arbitrary vol-

ume V .

The Ω and ψ have the same phase φ, but the constant f

ought to be much larger than 1. Indeed, the current theory

which only uses the Ω-function assumes this quantity to be

spread out over the whole wave, i.e. spread out over a related

physical quantity b (e.g. energy of the particle) according to

∫

V

ΩΩ∗dV = b . (1.8 ter)

In the double solution theory however, b should be con-

centrated in a very small region occupied by the particle and

the integral of a2bdV taken over the ψ-wave in the volume V

is much smaller than b, which eventually leads to |b| ≫ 1.

2 Extension to the spinor

2.1 The real spinor wave

2.1.1 The Dirac operators and Dirac equation (reminder)

In order to write the Schrödinger equation under a relativistic

form, P. A. M. Dirac has defined a specific four-components

wave function ΨA called spinor [5] which must necessarily

apply to any spin-1/2 particles thus in our case, the electron.

(Capital Latin spinorial indices are: A = B = 1, 2, 3, 4.)

To this effect, he introduced a system of (4 × 4) non local

trace free matrices γa = (γa
A

B
). (In the classical theory, it is

customary to omit the spinorial indices.)

The matrices γ a can display the standard following com-

ponents [6]:

γ0 =





















0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0





















, γ1 =





















0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0





















,

γ2 =





















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





















, γ3 =





















0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0





















(2.1)

in order to satisfy the fundamental relation

γaγb + γbγa = −2ηab I , (2.2)

where ηab is the Minkowskian tensor, and I is the unit matrix.

Formula W = γa∂a is known as the Dirac operator where

the Planck constant h is absorbed in the ∂a.

For a free massive spin 1/2-field, the Dirac equation is

eventually written as

(W − m0c)Ψ = 0 , (2.3)

where the proper mass m0 is attributed to the associated spin

1/2-electron.

2.1.2 The normed spinor density

Since we are here considering a spin 1/2-fermion particle we

must look for a wave which is a real spinor Ψ that physically

carries the electron. From the classical Dirac theory, it is well

known that the probability density of the electron’s presence.

is the time component of the (real) Dirac current vector den-

sity [7]

(Ja)D = i ( ♯ΨγaΨ ) , (2.4)

where ♯Ψ is the Dirac adjoint spinor Ψ+γ0, and Ψ+ is the

(complex) conjugate transpose of Ψ. So, this density of the

electron reads

(J0)D = i ( ♯Ψγ0Ψ ) (2.4 bis)

which is easily shown to be always definite and positive.

Without the loss of generality, we could express Ψ under the

form of a plane wave spinor [8] as

Ψ = ̟(xa) exp

[

i

h
φ (xa)

]

,
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where the wave spinor amplitude ̟ and the phase φ are real

local functions. The Dirac spinor amplitudes ̟ could then

be tuned so as to possess the orthogonality and completeness

properties that guarantee that the plane waves Ψ have the ad-

equate normalization to delta functions [9]. However, only

a single spinor Ψ can be considered as a physical wave func-

tion, whereas we are left with 4-componentsΨA. Then, at first

glance, one might be tempted to consider the simple combi-

nation

Ψ = Ψ1 + Ψ2 + Ψ3 + Ψ4.

Unfortunately, theΨ-components are defined with respect

to a spinorial frame S (V4) distinct from the structural Min-

kowski space, which renders those physically irrelevant. In-

stead, we will follow another extremely simple way: since ρ
is here a real value, we have always the freedom to define a

scalar wave function Φ such that

ΦΦ∗ = ρ . (2.5)

Moreover, we assume that this wave function has the same

form as ψ (1.7)

Φ = ω (xa) exp

[

i

h
φ (xa)

]

. (2.6)

We state that Φ is the true wave function of the electron

which was actually detected in the Davisson and Germer ex-

periment upon a given set of gamma matrices γa, simply be-

cause it is derived from a real quantity which is itself inferred

from the 1/2-spinor definition (2.4 bis) as it should.

Thus, we apply the same hypothesis conjectured by de

Broglie (1.8 bis), and we are now able to write the normed

expression as
∫

V

ΞΞ∗ dV = 1 , (2.7)

where

Ξ = gΦ (2.7 bis)

is the subjective wave function and g is a normalizing factor

which satisfies (2.7).

In all the following text, Φ will be denoted as the “spinor

wave”.

2.1.3 Internal frequency of the electron

From (2.6), the energy and momentum of the electron located

at xa are

E = ∂tφ , (2.8)

P = Pa = −gradφ . (2.9)

In order to outline the physical nature of the Φ-spinor

wave, we start from the following consideration: in the frame-

work of the Special Theory of Relativity, the frequency of a

plane monochromatic wave is transformed as

ν =
ν0

√

1 − v2/c2
, v = va , (2.10)

whereas the clock’s frequency νc is transformed according to

νc = ν0

√

1 − v2/c2 . (2.11)

If an electron is assumed to contain a rest energy m0c2 = hν0,

it is likened to a small clock of frequency ν0, so that when

moving with velocity v, its frequency νc differs from that of

the wave which is here noted ν.
In this concept, our main task will consist of showing that

the electron is permanently in phase with its associated spinor

wave, thus justifying the true nature of Φ that physically car-

ries the electron

2.2 The physical nature of the spinor-electron duality

2.2.1 The Planck-Laue relation

We now postulate that the electron possesses a variable proper

mass m′
0

from which an important useful equation will be in-

ferred.

Let us first write the Lagrange function for an observer

who sees the electron of variable proper mass m′
0

moving at

the 3-velocity v

L = −m′0c2
√

1 − v2/c2 (2.12)

so that the least action principle applied to this Lagrangian be

still expressed by

δ

∫ t1

t0

Ldt = δ

∫ t1

t0

(

−m′0 c2
√

1 − v2/c2
)

dt = 0 . (2.13)

From this principle are inferred the equations of motion

d

dt

∂L

∂ẋa

=
∂L

∂xa

(2.14)

with ẋa = dxa/dt. It leads to

dP
′

dt
= −c2

√

1 − v2/c2 grad m′0 (2.15)

(since m′
0

is now variable).

Hence, by differentiating the well know relativistic rela-

tion
E′ 2

c2
= P

′ 2 + m′0
2 c2 (2.16)

we obtain
dE′

dt
= c2
√

1 − v2/c2
∂m′

0

∂t
. (2.17)

Combining (2.15) and (2.17) readily gives

dE′

dt
−

vdP
′

dt
= c2
√

1 − v2/c2
dm′

0

dt
(2.18)

where
dm′

0

dt
=
∂m′

0

∂t
+ grad m′0
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is the variation of the mass in the course of its motion.

On the other hand, we have

d
(

P
′ · v
)

dt
=

vdP
′

dt
+

m′
0
c2

√

1 − v2/c2

v

c

d v
c

dt
=

=
vdP

′

dt
− m′0 c2 d

dt

√

1 − v2/c2 (2.19)

or

d

dt

(

m′0

√

1 − v2/c2
)

=

= c2
√

1 − v2/c2
dm′

0

dt
+ m′0 c2 d

dt

√

1 − v2/c2 .

Hence, (2.18) can be written as

d

dt

(

E′ − v · P′ − m′0c2
√

1 − v2/c2
)

= 0 (2.20)

which is satisfied when the electron is at rest (that is v = 0,

E′
0
= m′

0
c2).

Therefore, we must have always

E′ =
m′

0
c2

√

1−v2/c2
= m′0c2

√

1−v2/c2 +
m′

0
v2

√

1−v2/c2
. (2.21)

This is known as the Planck-Laue formula which plays a

central rôle in our present theory.

2.2.2 Phase identity of the electron and its spinor wave

Let us first recall the relativistic form of the Doppler formula

ν0 = ν
1 − v/w
√

1 − v2/c2
, (2.22)

where ν0 is the wave’s frequency in the frame attached to the

electron, ν and w are respectively the frequency and phase

velocity of the spinor wave in a reference frame where this

electron has a velocity v.

With this formula, and taking the classical Planck relation

E = hν into account, we find

E = E0

1 − v2/c2

1 − v/w
. (2.23)

However, inspection shows that the usual equation

E =
E0

√

1 − v2/c2
(2.24)

holds only if

1 − v/w = 1 − v2/c2 (2.25)

that implies

wv = c2. (2.26)

This latter relation is satisfied provided we set up

E′ =
m′

0
c2

√

1 − v2/c2
, (2.27)

P
′ =

m′
0
v

√

1 − v2/c2
. (2.28)

A variable proper mass is then required to insure that the

electron as it moves, remains constantly in phase with that of

the associated spinor wave. To see this, let us first multiply

the Planck-Laue equation by dt















m′
0
c2

√

1−v2/c2
−

m′
0

v2

√

1−v2/c2















dt = m′0c2
√

1−v2/c2 dt. (2.29)

If n is the unit vector normal to the phase surface, we

then consider that the electron whose internal frequency is

ν0 = m′
0
c2/h has travelled a distance dn during a time interval

dt, so that its internal phase φi has been changed by

dφi = hν0

√

1 − v2/c2 dt = m′0c2
√

1 − v2/c2 dt . (2.30)

At the same time, the corresponding spinor wave phase vari-

ation is

dφ = ∂tφ dt + ∂nφ dn =
(

∂t φ + v gradφ
)

dt

and, by analogy with the classical formulae (2.8) and (2.9),

one can write

P
′ = − gradφ =

m′
0
v

√

1 − v2/c2
,

E′ = ∂t φ =
m′

0
c2

√

1 − v2/c2
,

so we find

dφ =















m′
0
c2

√

1 − v2/c2
−

m′
0

v2

√

1 − v2/c2















dt. (2.31)

Hence, from (2.29) we obtain the fundamental result

which states that the internal phase of the electron is identical

to that of its associated spinor wave

dφ = dφi . (2.32)

With (1.6), there is an obvious second physical link be-

tween the electron and the spinor wave Φ which clearly car-

ries the lepton.

This is what we wanted to show.
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Conclusions and outlook

Within the above theory, the electron is guided by its spinor

wave which means that it is always in motion. In this case,

the electron doesnot apparently comply with atomic quantum

stationary states for which the electron is required to have

zero velocity. De Broglie et al. [10] thus postulated a vacuum

hidden thermostat whereby the electron is permanently ex-

changing energy and momenta. According to the authors this

sub-quantum medium would cause the electron to fluctuate in

a Brownian-like manner so as to exhibit a static situation only

at the atomic level. In this way, the wavy-electron would be

allowed to undergo perpetual infinitesimal propagation. Our

opinion however differs from this hypothesis which we be-

lieve, would mark the limitation of the Double Solution the-

ory. Preferably, we suggest that each energy level of an atom

be characterized by a stationary limited spinor wave packet

carrying a dynamical electron: the mean energy of the pair

wavepacket-moving electron would then represent the quan-

tized energy level of the atom.

“Squeezing” stepwise the wave packet (i.e. increasing the

frequency) would mean jumping to a higher energy level and

vice versa, which actually could reflect the excited/desexcited

states of the atom. This process tends to validate the spectro-

scopic sharpness of the atomic rays as it is observed. All in

all, the exposed theory seems to cope with an electron whose

physical wave interacts with a physical diffraction device,

and yet satisfies the established relativistic features of Dirac’s

theory.

Submitted on July 14, 2016 / Accepted on July 16, 2016
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This paper explores the ideas of antigravity and vacuum propulsion from a fundamental-

physics point of view, making use of the Planck vacuum (PV) model of the vacuum

state.

1 Introduction

It is shown in a previous paper [1] that free-space gravita-

tional shielding is ineffective, because gravitational waves,

the carrier of the gravitational force, propagate within the PV

state rather than free space. This result suggests that, as the

gravitational waves are interior to the vacuum state, they may

be affected by perturbations to that state. The following cal-

culations are focused on that assumption in an attempt to de-

termine if antigravity and vacuum propulsion are viable con-

cepts.

Section 2 examines Newton’s gravitational force between

the earth (or any other large object), and a much smaller mass,

from the viewpoint of the PV theory. The structure of that

force is revealed in equations (2) and (3) in terms of n-ratios,

which are normalized mass/PV coupling forces between the

free space masses and the invisible vacuum state.

2 Newton’s gravity

Newton’s gravitational force Fgr between the two spherical

masses m ≪ M separated by a distance r (= a+ h+ A) can be

expressed as

− Fgr(r) =
mMG

r2
=

(mc2/r)(Mc2/r)

c4/G
(1)

=
(mc2/r)(Mc2/r)

m∗c2/r∗
= nr(m)nr(M)

m∗c
2

r∗
(2)

=
aA

r2
na(m) nA(M)

m∗c
2

r∗
=

mc2

r

AnA(M)

r
(3)

using G = e2
∗
/m2
∗

and r∗m∗c
2 = e2

∗
[2], where a and A are the

radii of the masses m and M respectively, and h is the shortest

distance between their surfaces. The mass m∗ and Compton

radius r∗ belong to the separate Planck particles making up

the degenerate PV state. The n-ratios in (2) and (3) are de-

fined as

nr(m) =
mc2/r

m∗c2/r∗
, nr(M) =

Mc2/r

m∗c2/r∗
, (4)

and

na(m) =
mc2/a

m∗c2/r∗
, nA(M) =

Mc2/A

m∗c2/r∗
. (5)

The coupling forces and the n-ratios are all less that one.

The force m∗c
2/r∗ (= c4/G) is the maximum coupling

force sustainable by the PV state [3, Fig.1]. Of particular

interest to the present paper is na(m), which is the normalized

coupling force the mass m exerts on the PV at the surface of

m. It is noted that the force m∗c
2/r∗ normalizing the coupling

forces also normalizes the Einstein field equation, and that

the n-ratios are at the core of the metrics associated with the

Schwarzschild equation [2] [4].

The mass/PV coupling forces in the numerators of (4) and

(5) represent gravity-like forces the various free-space masses

exert on the PV state. For example

mc2

r
=

mc2G

r ·G
=

mc2G

r · e2
∗
/m2
∗

=
mm2

∗
c2G

r · r∗m∗c2

=
mm∗G

rr∗
(6)

is the force the mass m exerts on the Planck particles within

the PV that are at a radius r from the center of m. The other

coupling forces in (4) and (5) are similarly interpreted — e.g.,

Mc2/A = Mm∗G/Ar∗.

Newton’s dynamical equations start from his second law

of motion (mr̈ = Fgr) and the final expression in (3). With

dr = dh and r̈ = ḧ:

mr̈ = mḧ = −
mc2

r

AnA(M)

r
(7)

or

r̈ = ḧ = −
c2

r

AnA(M)

r
(8)

for the acceleration of m toward M. Equation (8) is easily

integrated over r via

r̈ =
dṙ

dt
= ṙ

dṙ

dr
=

d(ṙ2/2)

dr
= −

Ac2

r2
nA(M) (9)

from r0 (> r + a) to r, and yields

ṙ2
− ṙ2

0 = 2c2
(

r0

r
− 1

)

nr0
(M)

= 2c2 [nr(M) − nr0
(M)
]

(10)

or
(

ṙ2
− ṙ2

0

)1/2
= −
{

2c2 [nr(M) − nr0
(M)
]

}1/2
(11)

which is an equation involving only n-ratios and implying that

the gravity dynamic takes place within the vacuum state.
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3 PV state

The PV state [2] is assumed to be a degenerate state of neg-

ative energy Planck particles (−e∗,m∗). Its degenerate nature

implies that the Planck particle eigenstates within the vacuum

are fully occupied. Thus the Planck particles are not free to

exhibit macroscopic motion. The vacuum is bathed, however,

in microscopic zero-point Planck-particle agitation.

Due to this degeneracy, when the PV is perturbed it ex-

hibits percussion-like response waves, much like the waves

on the surface of a kettle drum. For example, the free space

electron core (−e∗,me) perturbs the vacuum with the two-term

coupling force “e2
∗
/r2
−mec2/r”, leading to the Dirac-equation

response [5], where that response does not involve macro-

scopic Planck particle motion.

The previous section outlines the PV response to coupling

forces of the form mc2/r — thus the PV response is of the na-

ture of gravitational percussion waves traveling within the PV

between the positions of the free space masses m and M. It is

this type of wave motion that is envisioned in the discussion

to follow; i.e., wave motion that does not involve macroscopic

Planck particle motion.

4 Summary, conclusions, and comments

From a survey of equations (1)–(11), it is clear: that the final

expression in (3) is the springboard for the Newtonian dy-

namics, equations (7)–(11); and that none of the expressions

in (2) and (3) show any sign of a direct free-space gravita-

tional force acting between m and M — the force is channeled

through the vacuum state. The second conclusion implies that

there can be no free-space gravitational shielding [1].

The first expression in (3),

Fgr(r) = −
aA

r2
na(m) nA(M)

m∗c
2

r∗
(12)

suggests that, if the coupling force mc2/a in na(m) could be

masked or eliminated, then Fgr = 0 and m would experience

no gravitational attraction toward the mass M; so the mass m

would be effectively weightless. The vanishing of the n-ratio

na(m) thus leads to a simple explanation for antigravity, once

the physical mechanism for nullifying na(m) is specified.

It is difficult to find experimental data in the open litera-

ture that addresses the preceding theoretical calculations. The

one source germane to the present work the author could find

is contained in the e-book entitled “What Goes Up. . . ” [6],

which is a novel that claims to discuss real experimental data.

The principle interest here is the composite electrical coil that

is at the heart of a craft that is claimed to exhibit antigravity

and vacuum propulsion.

The doughnut shaped coil consists of two current loops

each of which supports a separate a.c.-d.c. signal, where the

two a.c. signals in the two loops are set at different frequen-

cies. This heuristic description is sketchy due to unavailable

details in the coil design. The book claims that the mag-

netic fields (or the magnetic flux) produced by the coil are

the source of antigravity and vacuum propulsion (though the

book doesn’t use the term “vacuum propulsion”). The a.c.

field destroys the gravity force Fgr; and the (±) d.c. field

causes the craft to move up or down at a high rate of speed.

The second paragraph of the present section and the a.c. cur-

rents in the coil thus account for antigravity. (The a.c. and

d.c. stand for “alternating current” and “direct current” re-

spectively.)

Although much theoretical knowledge concerning the PV

state exists [2], there is much still to be learned. The antigrav-

ity conundrum was readily resolved with the force equation

(12). Even then, details of how the a.c. flux from the coil

nullifies the effect of na(m) is not fully understood. Concern-

ing vacuum propulsion, things are even worse. For closure

sake, then, it will just be stated (assumed) that the ± d.c. flux

interacting with the charges (−e∗) of the separate Planck par-

ticles within the PV result in the rapid systematic movement

of the coil, and hence the space-craft. Reflecting upon the in-

tricacy of the electron spinor field caused by the electron/PV

interaction [5], the idea of vacuum propulsion doesn’t seem

so strange.
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The zitterbewegung of massless elementary electrical charges consists of two distinct

vacuum induced fluctuations. The first, random loops (spin) at the light speed (co-

moving frame) [1], is attributed to absorptions and emissions of zero-point radiation

at the Compton’s rate (stochastic electrodynamics). It will be shown that the second

(de Broglie) emerges because such radiation, just passing but tangled for a while (rest

mass), doesn’t submit to the ordinary motion of bodies; its light speed is ensured by

truncations and restoration of the translational motion (inertia). Synchronized with

absorption-emission, kinetic energy becomes vibrational energy (x-ray), and vice versa.

The implied works are due to back and forth self-stresses (contractions) triggered by im-

minent violations of the light speed limit (loops at the light speed plus ordinary motion)

implicit in the improper de Broglie phase velocity. Time spent to preserve the normal

motility of the tangled radiation is observed only in the fixed frame (time dilation).

1 Introduction

Due to permanent interactions with the Planck’s vacuum [2–

4], massless elementary electrical charges (MEEC) are in-

duced to move along quantum-relativistic paths at the speed

of the interacting radiation, independently of the observed or-

dinary motion of particles, as implicit in the approach origi-

nating the concept of zitterbewegung [5]. In such approach,

it was considered a particle (an electron) of rest mass m0,

which, therefore, must be attributed (respecting the peculiari-

ties of the interaction) to the mass-equivalent of the zero-point

energy absorbed (incident momentum) and emitted (reaction

momentum) by MEEC. It means that MEEC, on average, re-

tain zero-point radiation; a boson giving the rest mass.

In the particular case of free particles, the argued paths are

continual random “jumps” (diffusion of probability) among

trajectories belonging to the ensemble dictated by the Dirac

equation [6]. Theoretical results indicate that such trajec-

tories are curvilinear, over which particles are found at the

light speed, which agrees with experimental facts. Indeed, if

they are seen as random loops of electrical current in the co-

moving frame (a charge e moving at the light speed c over

a spherical shell of average radius rc), then we find that the

corresponding magnetic moment,

µz = IA =
ec

2πrc

πr2
c =

ecrc

2
, (1)

matches the observed magnetic moment of spin-1/2 particles,

µz ≈
e~

2m0

, (2)

if 2πrc = λc, where λc = h/m0c is the Compton’s wavelength.

Alternatively, if an electron can be found over circles at

the light speed (co-moving frame), then its momentum com-

ponents should fluctuate like p′ =m0q̇′ =m0c cos(ω′t′ + φq′),

where φq′ are random phases. It implies the coordinates

q′ =
c

ωc

sin(ω′t′ + φq′ ) , (3)

where c/ω′ is the radius of the loops of current (fluctuations

with spherical shape). Inserting the corresponding variances

(averaging over random phases),

∆p′2 =
1

2
(m0c)2, ∆q′2 =

1

2

c2

ω′2
, (4)

into the minimum uncertainty relation, ∆p′∆q′ = ~/2, yields

ω′ =
m0c2

~
, rc =

c

ω′
=
λc

2π
, (5)

that is, the Compton’s angular frequency (ω′ =ωc).

Considering the center of mass of the fluctuations (vibra-

tions) at the origin of the co-moving frame (x′ = 0), it implies

that a free particle moving in the x-direction of the fixed frame

will be seen as a material wave of wave number k= (k, 0, 0).

Phase invariance, considering special relativity, i.e.

ω′t′ − k′ · x′ = ωt − k · x, (6)

implies

t′ =
ω

ωc

(

t −
x

vp

)

, vp =
ω

k
, (7)

where vp is the phase velocity. Comparing the Eq. (7) with

the Lorentz transformation

t′ = γ

(

t −
v

c2
x

)

(8)

one gets the parameters of the material wave [7]:

ω = γ
m0c2

~
, k = γ

m0v

~
, vp =

ω

k
=

c2

v
, (9)

from which we can see that vp is a violation of the natural

speed of electromagnetic waves. This fact makes vp meaning-

less in the context of the special relativity, which is reinforced
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by the existence of a group velocity (transport of matter) co-

inciding with the particle velocity, i.e.

vg =
∂ω

∂k
=
∂E

∂p
= v . (10)

Technically, the concept of group velocity requires that

the resultant material wave be a superposition of waves of dif-

ferent frequencies, which agrees with the successful concept

of wave packet [8]. However, a wave packet implies a set of

phase velocities. As the phase velocity of the resultant mate-

rial wave is a violation of the natural speed of radiation, then

we should expect that the phase velocities of the constituent

waves also are speed violations (at least mostly).

Here, is it wise keep in mind that such speed violations,

being in full agreement with the concepts expressed by equa-

tions (6), (8) and (10), cannot be meaningless. In effect, no-

tice that an evolution at the phase velocity (x= vpt) implies

that time “stops” in the co-moving frame (t′ = 0). Emphasiz-

ing, in this particular situation, time is computed only in the

fixed frame. Remarkably, despite of being an improper evo-

lution, it agrees with the ultimate meaning of time dilation.

Until now, we have seen that single frequency (ωc) fluctu-

ations of spherical shape (rc = c/ωc) become multi-frequency

fluctuations in the fixed frame [9], which manifest as a wave

packet (material wave). The emergence of multiple angu-

lar frequencies implies that the translational motion cause a

break of the spherical shape of the fluctuations, given that

for each emerging angular frequency there must correspond

a different radius (ωiri = c, where c is invariant). Coinciden-

tally, this agrees with length contraction, i.e., according to the

theory of special relativity, in the fixed frame the fluctuations

must present an ellipsoidal shape.

The above argumentation implies that the phase velocity

vp is a statistical quantity; given that all frequencies implied in

the wave packet do not exist simultaneously but in the elapsed

time of an ordinary measurement (much greater than 2π/ωc).

Physically, contractions of the vacuum induced fluctua-

tions requires back and forth forces, whose resultant, at least

on average, must be zero. Moreover, these forces — defined

only in the fixed frame — do not have the same nature of the

electromagnetic forces (from the Planck’s vacuum) responsi-

ble by the fluctuations in the co-moving frame.

The search for forces triggered by the translational motion

must begin noting that the speed violation vp is dominant in

the Lorentz transformations (LT), i.e.

x′ = γ (x − vt) , t′ = γ

(

t −
x

vp

)

, γ =

(

1 −
v

vp

)

−
1
2

, (11)

which suggests that LT — to account for the light speed limit

in both reference frames — just consider imminent velocity

violations when the linear translational motion takes place.

In other words, the emerging vibrations, whose statistical su-

perposition gives vp, must relate to a mechanism ensuring the

speed limit of the zero-point radiation (ZPR) tangled for a

moment by MEEC (co-moving frame), given that the relative

velocity is lower than c.

Let us analyze, heuristically, the complete motion. From

the equations (1) to (5) and the presence of the Planck’s vac-

uum, it is implicit that in the co-moving frame MEEC are

found over circular trajectories at the speed of the “impreg-

nating” zero-point radiation (ZPR). Therefore, it be expected

the occurrence of all sort of violations of the light speed limit

when the ordinary translational motion is added. However,

resulting velocities for MEEC — imbued with the properties

of radiation — either greater or smaller than c are forbidden

by the well-known Maxwell’s relation µεc2 = 1. So, it is plau-

sible to think that the vibrations implied in the wave packet

— related to radii contraction of the fluctuations — arise to

avoid any possible speed violation of the tangled ZPR, which

would result from the simple combination of random orbits at

light speed with the observed motion of matter.

In the next sections, based on well-known physical facts,

it will be presented some evidences that the periodical mo-

tion induced by the Planck’s vacuum combined with the ordi-

nary motion of particles implies the appearance of periodical

back and forth self-stresses, which are imposed by the normal

motility of the tangled radiation. Here, it must be emphasized

the following: First, tangled radiation is ZPR continually im-

prisoned during an infinitesimal time (less than 2π/ωc) by

MEEC. Second, normal motility relates to evolutions of free

radiation; assumed to be extensible to the tangled radiation,

given the massless nature of the “host”.

2 The need for periodical longitudinal self-stresses

The energy carried by the material wave is the vibrational

energy, E = ~ω, which must be the energy of the particle,

E = γm0c2. Therefore,

ω =
m0c2

~
+

(γ − 1)m0c2

~
= ωc + ωT , (12)

where the Compton’s frequency (ωc) expresses the rate at

which zero-point energy is going in and out of the MEEC (on

average remaining as rest energy), and ωT accounts for all

vibrations implied in the wave packet; likewise that vp repre-

sents all corresponding phase velocities (one at a time).

Given the statistical nature of the wave packet (in the

sense of the quantum superposition), it implies that particles

can present, at a given time, only kinetic energy, or only vi-

brational energy, or a mix of them; all these possibilities oc-

curring, in accordance with energy conservation, at a very

high rate (synchronized with ωc).

Coincidentally, for v ≪ c, ωT is the maximum frequency

emitted by electrons in a x-ray apparatus (Duane-Hunt for-

mula, ~ωmax = eV =m0v
2/2), which does not contradict the

fact that electrons can collide presenting frequencies different

from ωmax. In effect, these other frequencies can be built into
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the well-known wavelength spread of x-ray data; the comple-

mentary energy (kinetic) simply warm the target.

The above facts suggest that kinetic energy becomes vi-

brational energy, and vice-versa, but the sum of them, at any

time, is (γ − 1)m0c2 or ~ωT , as required by energy conser-

vation. Inexorably, such changes of the kinetic energy imply

positive and negative works on the particle. Nonetheless, if

one takes into account that the MEEC-ZPR electromagnetic

interaction is completely resolved, in the sense that it yields

well-defined rest energy (mass), spin and Compton’s param-

eters, then there must be another reason for the emergence

of vibrations triggered by the translational motion. Only re-

mains to appeal to the dynamics allowed by the tangled ZPR,

which, in view of the above, only can be attributed to peri-

odical back and forth self-stresses, whose sole purpose is to

ensure its light speed limit; an imposition of the hindmost na-

ture of radiation.

Here, it should be pointed up that these self-stresses —

ensuring the normal motility of the tangled radiation — can-

not be interpreted in the same sense of Poincaré stresses [10],

which were postulated in order to guarantee the stability of

the Abraham-Lorentz model for the electron. In effect, the

semi-classical electron stability should be understood as an

electromagnetic pressure balance involving the Planck’s vac-

uum, as proposed by Casimir [11].

3 The Zitterbewegung and self-stresses

A formal account for the two kind of vacuum induced fluc-

tuations, as exposed elsewhere, can be seen in the quantum-

relativistic approach of the zitterbewegung [12], although not

working the properties of the Planck’s vacuum of explicit

way; that is, using the recipes of the stochastic electrodynam-

ics. This is possible because Lorentz transformations as well

as quantum equations takes into account non-localized statis-

tical features of the wave packet (the ultimate product of the

matter-vacuum interaction). Hence, the following results, de-

spite of evidencing the co-moving loops of electrical current

(spin), should be interpreted statistically [13].

Inserting the Dirac Hamiltonian, H = cα j p j+βm0c2, into

the Heisenberg picture of quantum mechanics and consider-

ing that the matrices α j and β commute with momentum (p j)

and position (x j) operators, one gets

dp j

dt
=

i

~

[

H, p j

]

= 0 ,
dx j

dt
=

i

~

[

H, x j

]

= cα j , (13)

where the first implies that H and p j commute (constants of

the motion), and the second, in the full sense of the operation

cα jψ = ±cψ , (14)

where ψ represents a four-component spinor, means that “a

measurement of a component of the velocity of a free electron

is certain to lead to the result ±c” [5, p. 262], which is not the

ordinary velocity of free particles, but that of the tangled ZPR.

The result (14) means that — on average, everywhere, in

all directions and with equal probability — electrons go forth

and back at the light speed; an expected behavior, consider-

ing the main properties of the interacting ZPR (homogeneity,

isotropy, randomness and Lorentz invariant spectral density).

Whenever the electron is on a permitted Dirac trajectory,

despite of being temporarily, it must obey the parameters of

such trajectory. As the trajectories are curvilinear, then there

are accelerations. In fact, they are given by ẍ j = (i/~)[H, ẋ j],

where ẋ j = cα j, which corresponds to the equations

ẍ j =
2i

(

Hẋ j − c2 p j

)

~
, ẍ j =

2i
(

c2 p j − ẋ jH
)

~
, (15)

since Hcα j + cα jH = 2cp j. Integrating, yields respectively

ẋ j = c2 p jH
−1 + η je

i2Ht/~, ẋ j = c2 p jH
−1 + η′je

−i2Ht/~, (16)

where the operators η and η′ (constants of integration) must

take into account that these components must match, peri-

odically, the tangential velocity (cα j), as implicit in Eq. (14),

which implies that η= η′ = cα j−c2 p jH
−1. Moreover, on aver-

age the velocity must be the observed one (c2 p jH
−1). There-

fore, the velocity operator becomes

ẋ j = c2 p j H−1 +
(

cα j − c2 p j H−1
)

cos (2Ht/~) , (17)

from which, considering the same above conditions, one gets

the position operator

x j(t) = c2 p j H−1t+

(

~cα j H−1
−~c2 p j H−2

)

2
sin

(

2H

~
t

)

. (18)

Notice, for p j = 0 the operators (17) and (18) violate the

minimum uncertainty relation (m0∆ẋ j∆x j = ~/2) by a factor 2

(the eigenvalues of α j are unitary and H → m0c2). This hap-

pens because the Dirac Hamiltonian takes into account matter

and antimatter, whose energy gap is 2H [14, p. 949]. For only

one kind of particle (e.g. free electrons in the two slit ex-

periment, where is not verified the presence of positrons), it

suffices to ignore the factor 2 in the equations (15).

Regardless of the comment made in the previous para-

graph, the statistical components of the velocity of an elec-

tron (moving at the speed of light), as expressed by Eq. (17),

show that — in order to maintain the speed imposed by the

tangled radiation — the translational velocity c2 p jH
−1 is pe-

riodically subtracted and added, depending on the sign of c.

Indeed, apart intermediary values, for forward evolutions of

the local motion (+c), the translational motion is completely

subtracted, and for backward evolutions (−c), it is completely

restored, as can be seen from the allowed values of the co-

sine and the Eq. (14). Clearly, synchronized with absorptions

and emission of zero-point energy (rest energy), the kinetic

energy changes at the Compton’s rate (considering only one

kind of particle). As truncations and restorations of the trans-

lational motion behaves as vibrations, then kinetic energy is
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being transformed into vibrational energy, and vice versa.

These positive and negative works, necessarily, imply back

and forth forces (zero, on average). However, as there are no

external forces — other than those yielding the well-defined

evolutions in the co-moving frame — then such works must

be assigned to periodical longitudinal self-stresses (PLSS),

which are imposed by the very motility of radiation, as in-

ferred in the preceding paragraph.

From the position operators (18) — statistical coordinates

defined in the fixed frame — we can verify the following:

First, they do not explicit a set of vibrations composing the

wave packet, but the motion of the resulting material wave,

whose statistical frequency is ω=H/~. Second, for p j = 0,

these coordinates agree with the proposed equations (3); evo-

lutions with spherical shape in the co-moving frame. Third,

in the fixed frame (p j , 0), the amplitude of the vibration (en-

closed difference of operators) suffers a contraction in the di-

rection of the motion; evolutions with ellipsoidal shape.

4 Final remarks

Fluctuations with spherical shape (co-moving frame) becom-

ing fluctuations with ellipsoidal shape (fixed frame) explains

the emergence of all vibrations implied in the wave packet,

but in the sense that a motion with constant tangential veloc-

ity (light speed) over an ellipsoid implies an infinite number

of angular frequencies. The wave packet is a statistical con-

cept; it simply expresses the fact that during the time of an

ordinary measurement the particle can be found at any posi-

tion on the ellipsoidal surface; each one corresponding to a

given angular frequency (particle states). This is the funda-

mental feature of quantum superposition.

As “self-impulses”, in principle, cannot be observed in

the co-moving frame, then the corresponding time intervals

also not. From another point of view, the strength of self-

stresses depends of the relative velocity, but an observer in the

co-moving frame cannot decide about the constant velocity

of such frame (principle of relativity); therefore, also cannot

decide about self-stresses (and its duration). This is implicit

in the LT, as can be seen inserting the improper evolution x =

(c2/v)t (triggering a given self-stress), which gives t′ = 0. In

short, the time spent to preserve the “integrity” of the tangled

ZPR is computed only in the fixed frame, which is in full

agreement with the cumulative time dilation.

The vibrational energy corresponding to self-stresses only

are emitted as radiation under non-uniform decelerations (as

in a x-ray apparatus). Contrasting with thermal excitations

(external forces), PLSS only imply restrictions to the mobility

of vacuum induced fluctuations (without external forces); so,

radiationless.

The corresponding back and forth strains (restrictions to

the translational motion) explain the non-cumulative length

contraction.

Newton’s inertia relates to the de Broglie periodicity [15];

that is, the periodicity of the wave packet, whose correspond-

ing vibrations come from PLSS; “opposing forces”.

To finalize, truncations of the ordinary motion followed

by complete restoration of the kinetic energy, as implicit in

the Eq. (17), is in full agreement with the observed energy

conservation (first Newton’s law).

5 Conclusion

In the light of the foregoing, the quantum relativistic behavior

of particles emerge because the ZPR, continually entrapped

by MEEC during the time of an absorption-emission of zero-

point energy, does not submit to the ordinary motion of bod-

ies. From another point of view, the quantum of the Higgs

field (Higgs boson) does not move with the observed veloc-

ities of the corresponding particle; its light speed is ensured

by conservative periodical truncations and restorations of the

ordinary motion, whose momentum dependent strength (am-

plitude of emerging vibrations) explain why inertia (mass) in-

creases with the particle velocity.
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9. Dávid G., Cserti J. General theory of Zitterbewegung. Physical Review

B, 2010, v. 81, 121417-1–121417-4.
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We present a symmetric spacetime, admitting closed timelike curves (CTCs) which

appear after a certain instant of time, i.e., a time-machine spacetime. These closed

timelike curves evolve from an initial spacelike hypersurface on the planes z = constant

in a causally well-behaved manner. The spacetime discussed here is free from curvature

singularities and a 4D generalization of the Misner space in curved spacetime. The

matter field is of pure radiation with cosmological constant.

1 Introduction

One of the most intriguing aspects of Einstein’s theory of

gravitation is that solutions of field equations admit closed

timelike curves (CTC). Presence of CTC in a spacetime leads

to time-travel which violates the causality condition. The first

one being Gödel’s spacetime [1] which admits closed time-

like curves (CTC) everywhere and an eternal time-machine

spacetime. There are a considerable number of spacetimes

in literature that admitting closed timelike curves have been

constructed. A small sample would be [1–21]. One way of

classifying such causality violating spacetimes would be to

categorize the metrics as either eternal time-machine in which

CTC always exist (in this class would be [1, 2]), or as time-

machine spacetimes in which CTC appear after a certain in-

stant of time. In the latter category would be the ones dis-

cussed in [18–20]. Many of the models, however, suffer from

one or more severe drawbacks. For instance, in some of these

solutions, for example [13,14,20], the weak energy condition

(WEC) is violated indicating unrealistic matter-energy con-

tent and some other solutions have singularities.

Among the time-machine spacetimes, we mention two:

the first being Ori’s compact core [17] which is represented

by a vacuum metric locally isometric to pp waves and sec-

ond, which is more relevant to the present work, the Misner

space [22] in 2D. This is essentially a two dimensional metric

(hence flat) with peculiar identifications. The Misner space is

interesting in the context of CTC as it is a prime example of

a spacetime where CTC evolve from causally well-behaved

initial conditions.

The metric for the Misner space [22]

ds2
Misn = −2 dt dx − t dx2 (1)

where −∞ < t < ∞ but the co-ordinate x is periodic. The

metric (1) is regular everwhere as det g = −1 including at

t = 0. The curves t = t0, where t0 is a constant, are closed

since x is periodic. The curves t < 0 are spacelike, but t > 0

are timelike and the null curves t = t0 = 0 form the chronol-

ogy horizon. The second type of curves, namely, t = t0 > 0

are closed timelike curves (CTC). This metric has been the

subject of intense study and quite recently, Levanony and

Ori [23], have studied the motion of extended bodies in the

2D Misner space and its flat 4D generalizations. A non-

flat 4D spacetime, satisfying all the energy conditions, but

with causality violating properties of the Misner space, pri-

marily that CTC evolve smoothly from an initially causally

well-behaved stage, would be physically more acceptable as

a time-machine spacetime.

In this paper, we shall attempt to show that causality vio-

lating curves appear in non-vacuum spacetime with compar-

atively simple structure. In section 2, we analyze the space-

time; in section 3, the matter distribution and energy condi-

tion; in section 4, the spacetime is classified and its kinemat-

ical properties discussed; and concluding in section 5.

2 Analysis of the spacetime

Consider the following metric

ds2 = 4 r2 dr2 + e2α r2
(

dz2 − t dφ2 − 2 dt dφ
)

+

+ 4 β z r e−α r2

dr dφ

(2)

where φ coordinate is assumed periodic 0 6 φ 6 φ0, where

α is an integer and β > 0 is a real number. We have used

co-ordinates x1 = r, x2 = φ, x3 = z and x4 = t. The ranges

of the other co-ordinates are t, z ∈ (−∞,∞) and 0 6 r < ∞.

The metric has signature (+,+,+,−) and the determinant of

the corresponding metric tensor gµν, det g = −4 r2 e6α r2

. The

non-zero components of the Einstein tensor are

G
µ
µ = 3α2,

Gt
φ = −

1

2
e−6α r2

β2 .
(3)

Consider an azimuthal curve γ defined by r = r0, z = z0 and

t = t0, where r0, z0, t0 are constants, then we have from the

metric (2)

ds2 = − t e2α r2

dφ2. (4)

These curves are null for t = 0, spacelike throughout for t =

t0 < 0, but become timelike for t = t0 > 0, which indicates the

presence of closed timelike curves (CTC). Hence CTC form

at a definite instant of time satisfy t = t0 > 0.

It is crucial to have analysis that the above CTC evolve

from a spacelike t = constant hypersurface (and thus t is a
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time coordinate) [17]. This can be ascertained by calculating

the norm of the vector ∇µt (or by determining the sign of the

component gtt in the inverse metric tensor gµν [17]). We find

from (2) that

gtt = t e−2α r2

+ β2 z2 e−6α r2

. (5)

A hypersurface t = constant is spacelike provided gtt < 0 for

t = t0 < 0, but becomes timelike provided gtt > 0 for t = t0 >

0. Here we choose the z-planes defined by z = z0, (z0, a con-

stant equal to zero) such that the above condition is satisfied.

Thus the spacelike t = constant < 0 hypersurface can be cho-

sen as initial conditions over which the initial may be speci-

fied. There is a Cauchy horizon for t = t0 = 0 called Chronol-

ogy horizon which separates the causal and non-causal parts

of the spacetime. Hence the spacetime evolves from a par-

tial Cauchy hypersurface (initial spacelike hypersurface) in a

causally well-behaved manner, up to a moment, i.e., a null

hypersurface t = 0 and CTC form at a definite instant of time

on z = constant plane.

Consider the Killing vector η = ∂φ for metric (2) which

has the normal form

ηµ = (0, 1, 0, 0) . (6)

Its co-vector is

ηµ =
(

2 β z r e−α r2

, −t e2α r2

, 0, −e2α r2
)

. (7)

The (6) satisfies the Killing equation ηµ ; ν + ην ; µ = 0. For

cyclicly symmetric metric, the norm ηµ η
µ of the Killing vec-

tor is spacelike, closed orbits [24–28]. We note that

ηµ ηµ = −t e2α r2

(8)

which is spacelike for t < 0, closed orbits (φ co-ordinate be-

ing periodic).

An important note is that the Riemann tensor Rµνρσ can

be expressed in terms of the metric tensor gµν as

Rµνρσ = k
(

gµρ gνσ − gµσ gνρ
)

(9)

where k = −α2 for the spacetime (2).

Another important note is that if we take β = 0, then the

spacetime represented by (2) is maximally symmetric vac-

uum spacetime and locally isometric anti-de Sitter space in

four-dimension. One can easily show by a number of trans-

formations the standard form of locally isometric AdS 4 met-

ric [29]

ds2 =
3

(−Λ) x2

(

−dt2 + dx2 + dφ2 + dz2
)

(10)

where one of the co-ordinate φ being periodic.

3 Matter distribution of the spacetime and energy con-

dition

Einstein’s field equations taking into account the cosmologi-

cal constant

Gµν + Λ gµν = T µν , µ, ν = 1, 2, 3, 4 . (11)

Consider the energy-momentum tensor of pure radiation field

[30]

T µν = ρ nµ nν (12)

where nµ is the null vector defined by

nµ = (0, 0, 0, 1) . (13)

The non-zero component of the energy-momentum tensor

T t
φ = −ρ e2α r2

. (14)

Equating field equations (11) using (3) and (14), we get

Λ = −3α2,

ρ =
1

2
β2 e−8α r2

, 0 6 r < ∞ .
(15)

The energy-density of pure radiation or null dust decreases

exponentially with r and vanish at r → ±∞. The matter

field pure radiation satisfy the energy condition and the en-

ergy density ρ is always positive.

4 Classification and kinematical properties of the space-

time

For classification of the spacetime (2), we can construct the

following set of null tetrads (k, l,m, m̄) as

kµ = (0, 1, 0, 0) , (16)

lµ =

(

−2 β z r e−α r2

,
t

2
e2α r2

, 0, e2α r2
)

, (17)

mµ =
1
√

2
(2 r, 0, i eα r, 0) , (18)

m̄µ =
1
√

2

(

2 r, 0,−i eα r2

, 0
)

, (19)

where i =
√
−1. The set of null tetrads above are such that

the metric tensor for the line element (2) can be expressed as

gµν = −kµ lν − lµ kν + mµ m̄ν + m̄µmν . (20)

The vectors (16)–(19) are null vectors and are orthogonal ex-

cept for kµ lµ = −1 and mµ m̄µ = 1. Using this null tetrad

above, we have calculated the five Weyl scalars

Ψ3 = −
iα β e−2α r2

2
√

2
,

Ψ4 = −
1

4
β e−2α r2

(

i + 2α z eα r2
)

(21)

are non-vanishing, while Ψ0 = Ψ1 = Ψ3 = 0. The space-

time represented by (2) is of type III in the Petrov classifi-

cation scheme. Note that the non-zero Weyl scalars Ψ3 and

Ψ4 are finite at r → 0 and vanish as r → ±∞ indicating

asymptotic flatness of the spacetime (2). The metric (2) is free
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from curvature singularities. The curvature invariant known

as Kretchsmann scalar is given by

Rµνρσ Rµνρσ = 24α4 (22)

and the curvature scalar

R = −12α2 (23)

are constant being non-zero.

Using the null tetrad (16) we have calculated the Optical

scalars [30] the expansion, the twist and the shear and they

are

Θ =
1

2
k
µ
; µ = 0 ,

ω2 =
1

2
k[µ ; ν] kµ ; ν = 0 ,

σ σ̄ =
1

2
k(µ ; ν) kµ ; ν − Θ2 = 0

(24)

and the null vector (16) satisfy the geodesics equation

kµ ; ν kν = 0 . (25)

Thus the spacetime represented by (2) is non-diverging, has

shear-free null geodesics congruence. One can easily show

that for constant r and z, the metric (2) reduces to conformal

Misner space in 2D

ds2
con f o = Ω ds2

Misn (26)

where Ω = e2α r2

is a constant.

5 Conclusion

Our primary motivation in this paper is to write down a met-

ric for a spacetime that incorporates the Misner space and its

causality violating properties and to classify it. The solution

presented here is non-vacuum, cyclicly symmetric metric (2)

and serves as a model of time-machine spacetime in the sense

that CTC appear at a definite instant of time on the z-plane.

Most of the CTC spacetimes violate one or more energy con-

ditions or unrealistic matter source and are unphysical. The

model discussed here is free from all these problems and mat-

ter distribution is of pure radiation field with negative cosmo-

logical constant satisfying the energy condition.
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Several papers by Cahill, et al. assert that Michelson-Morley type experiments per-
formed in gas have small but non-null results which, when properly analyzed, show
that the absolute speed of the earth was detected. Here we show that Cahill made a
fundamental error in his assumptions and that the mathematical analysis upon which he
based his conclusions is invalid. We also include a report on an experiment that ver-
ifies these mathematical conclusions. The experiment uses water instead of air as the
wave medium. The much larger index of refraction of water (1.33 vs. 1.00029) greatly
amplifies the effect Cahill predicts and makes the null result of the new experiment
dramatically apparent. This confirms both theoretically and experimentally that abso-
lute velocity was not and cannot be detected in Michelson-Morley type experiments
regardless of the refractive medium in which they are performed.

1 Introduction

I was intrigued by several papers by Cahill [1–4] that purport
to re-evaluate the original Michelson-Morley (MM) and other
“gas-mode” interferometer experiments and prove that they
actually measured the absolute speed of the earth through
space. Cahill shows in these papers that the index of refrac-
tion of air caused results that although small were not com-
pletely null. He asserts that the absolute velocity of the earth
was measured and that absolute space was detected — but
was it?

I set out to test Cahill’s assertions by designing an exper-
iment capable of getting a larger non-null result. This ex-
periment uses water as the medium through which the light
propagates so that the “incomplete cancellation of the geo-
metrical effects” (according to Cahill) would be greatly am-
plified by the much larger index of refraction. This allows
easy detection of the interference-fringe shifts in a low-cost
Michelson-type interferometer.

The experiment had a resolution that was more than 103

times greater than the effect Cahill’s equations predicted. The
results of the experiment were unequivocally null. Based on
the null results, I set out to reexamine Cahill’s assumptions
and mathematical derivations. It was through this reexam-
ination that I derived the correct equations and proved that
the so-called “cancellation of the geometrical effects” is com-
plete and the results of any MM type experiment must be null
whether done in vacuum or in a refractive medium. We show
that both the herein derived equations and the results of the
present experiment are in complete agreement that absolute
space cannot be detected with these types of experiments.

Our derivations (and Cahill’s) are based on classical phy-
sics. By “classical physics” we mean merely that the equa-
tions of the special theory of relativity (SRT) will not be used
to transform values between inertial reference frames. All

measurements in the derivations are made in the rest frame
(or what Cahill calls the “quantum foam” frame) where light-
speed is constant and isotropic. But in SRT, light-speed is
constant and isotropic in all frames. Therefore our deriva-
tions will be in complete compliance with the formalism of
SRT, while at the same time satisfying Cahill and his follow-
ers that they are also valid in Cahill’s absolute frame.

The value measured in the experiment is the shift, mea-
sured in wavelengths, of the interference pattern of two light
beams. Because this measurement is a scalar value, indepen-
dent of the actual length of the wavelength, it is invariant in
all reference frames. This is what allows us to do the entire
analysis from the rest frame but make the actual measurement
in the laboratory frame — they must agree.

2 Correcting Cahill’s derivations

We will use Cahill’s equations as derived in [1] for this anal-
ysis.

Cahill begins his analysis by making the following (incor-
rect) assumption regarding the speed of light in the refractive
medium of air: “If the gas is moving with respect to the quan-
tum foam, as in an interferometer attached to the earth, then
the speed of light relative to the quantum foam is still V = c/n
up to corrections due to the Fresnel drag. But this dragging
is a very small effect and is not required in the present anal-
ysis”. [emphasis added]) He is correct that Fresnel drag is a
very small effect, but as will soon be evident, it is not small
compared to the effect he is trying to measure and it cannot
be ignored.

The laboratory frame is assumed to have an arbitrary ve-
locity v with respect to the rest frame. We also make the fol-
lowing two assumptions which Cahill made in his analysis
and which are entirely consistent with SRT: 1) clocks slow
down with velocity and 2) lengths contract with velocity. The
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factor by which they slow down is defined as

γ =
1√

1 − v2/c2
. (1)

For convenience, we also make the following definition:

β =
v

c
⇒ γ =

1√
1 − β2

. (2)

If both arms of the interferometer are of rest-length L and
one is aligned parallel to the velocity of the laboratory and the
other is aligned at right angles to this velocity, then the length
of the orthogonal arm in the rest frame is still L, but the length
of the parallel arm experiences a contraction if measured in
the rest frame,

L∥ = L
√

1 − β2 =
L
γ
. (3)

Cahill defines n to be the index of refraction of the gas
and uses the same value n in both frames. This seems per-
fectly reasonable, since n is a scalar and therefore invariant.
But just because it has the same value in both frames does
not mean that it affects the path of the waves in both frames
the same way. This will be demonstrated by observing from
within the rest frame how observers within the moving frame
measure and define n. It then becomes apparent that in the rest
frame the velocity of light in a moving refractive medium is
not simply c/n plus the traditional drag term.

Before observing how n is measured, we must first under-
stand how clocks are synchronized using Einstein’s method.
We will do this by observing from the rest frame as clocks
are synchronized in the laboratory frame. Let there be clocks
at each end of the arm aligned parallel to the velocity which
we designate as clock A and clock B. According to Eq. (3)
this distance between the two clocks is L/γ in the rest frame.
The procedure for synchronizing the two clocks in the mov-
ing frame is as follows:

1. A light wave leaves clock A at time 0 on clock A in the
moving frame and also at time 0 in the rest frame.

2. The light beam propagates towards clock B at velocity
c in both frames. In the rest frame clock B is moving at
velocity v in the same direction as the light beam.

3. The light arrives at B at time t1 in the rest frame.
4. The total distance the light travels in the rest frame on

the outbound path is c t1. This can be separated into two
distances: 1) the length of the contracted arm L/γ and
the distance clock B moved during the time t1 which is
v t1. Solving for t1, we get

t1 =
L

γ (c − v) . (4)

5. The light reflects from a mirror at B and returns to A at
time t2 in the rest frame. Since the clock at A was mov-
ing towards the light during this leg, the distance that

the light traveled before reaching A was L/γ−v (t2 − t1).
Using the same logic as above, the time t2 − t1 to make
the return trip as measured in the rest frame is

t2 − t1 =
L

γ (c + v)
. (5)

6. Solving for t2, the total time to make the round trip as
measured in the rest frame is

t2 =
L/γ
c + v

+
L/γ
c − v =

2 L/γ
c
(
1 − v2/c2) = 2 L

c
γ. (6)

7. The clocks in the moving frame run slower by a factor
of γ than the clocks in the rest frame. Therefore, the
time on clock A when the light returns is

tA =
t2
γ
=

2 L
c
. (7)

8. Using Einstein’s method of synchronization, clock B is
defined to be synchronized to clock A if at the moment
of reflection the time on clock B is set to tA/2.

tB =
L
c
. (8)

As expected, the observers in the laboratory frame mea-
sure the speed of light to be c in both directions. But notice
that at the moment of reflection of the light from clock B, the
time is t1 in the rest frame and tB on clock B in the moving
frame. But what is the time on clock A at that moment? Since
clock A was defined to be 0 at time 0 in the rest frame, and
since clock A runs slower by a factor of γ than clocks in the
rest frame, the time on clock A must be t1/γ. But that means
that to an observer in the rest frame, there is a bias between
clocks A and B,

tbias = tB −
t1
γ
=

L
c
− L
γ2 (c − v) = −

v L
c2 . (9)

Please note that this is in complete agreement with SRT.
Position-dependent clock biases are the source of relative si-
multaneity in SRT. Events are defined to be simultaneous in
the moving frame when the clocks at the sites of the two
events read the same value. But because of the permanent
bias between the clocks (when observed from the rest frame),
those same two events are never simultaneous within the rest
frame. From this exercise we see that there is nothing mys-
terious or magical about relative simultaneity — it is simply
a byproduct of defining the one-way time of flight of a light
wave to be 1/2 of the two-way time of flight.

The bias in Eq. (9) is the same position-dependent bias
that occurs in the transformation of time between frames us-
ing the Lorentz transformation of SRT. But we have deter-
mined its value not by performing this transformation but by
simply observing from the rest frame as clocks were synchro-
nized in the moving frame. We have used nothing more than
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this definition and classical physics to derive the same bias
between the clocks as defined in SRT.

Now that we understand how clocks in the moving frame
appear to observers in the rest frame, we are ready to see how
the index of refraction, when measured in the laboratory, ap-
pears to observers in the rest frame. To measure the index of
refraction in the laboratory, a light beam is sent from clock A
at time 0 through a refractive material and arrives at clock B
at time tBn, where the n in the subscript indicates time through
the refractive material. This is the time of flight of the light
beam as measured in the laboratory. The index of refraction
is then defined as

n =
c tBn

L
. (10)

This corresponds to a velocity of light in the refractive
medium of c/n as measured in the laboratory. Let us now look
at that same velocity as measured in the rest frame. Because
of the bias on clock B, although the time on clock A is 0
when the light is emitted, the observer in the rest frame sees
the light wave leave clock A when clock B reads −v L/c2. The
elapsed time on clock B for the time of flight is therefore

∆tBn = tBn +
v L
c2 . (11)

Using Eq. (10) to substitute for tBn, and remembering that
clocks in the moving frame run slower by a factor of γ, the
elapsed time in the rest frame for the time of flight is

∆t0 =
L (c n + v) γ

c2 . (12)

We defined the direction from A to B to be the same di-
rection as the velocity of the moving frame. Since lengths
contract with velocity, the total distance the light propagated
during this time, as measured in the rest frame, is

∆d0 =
L
γ
+ v∆t0 =

L
γ
+
v L (c n + v) γ

c2 . (13)

The velocity of the light beam in the refractive material
as measured in the rest frame is this distance divided by the
propagation time, which simplifies to

cn0+ =
∆d0

∆t0
=

c (c + n v)
c n + v

. (14)

Notice that this can be put in the following form:

cn0+ =
c/n + v

1 +
(c/n) v

c2

. (15)

In this form it is very obvious that we have derived the
velocity addition formula of SRT where the two velocities
are c/n and v. This shows that there is nothing mysterious
about the velocity addition formula of SRT. It is easily de-
rived using classical physics if one acknowledges that clocks

and lengths change with velocity. The only mystery is what
causes velocity-dependent lengths and clock-rates in the first
place. But that is a topic for a separate paper.

We can also write this equation in a different form,

cn0+ =
c
n
+

(
n2 − 1

n2

) (
n

n + β

)
v. (16)

In this form, we can clearly see that the Fresnel drag co-
efficient is simply a consequence of the velocity addition for-
mula. They are not separate phenomena. Prior to Lorentz and
Einstein, it was thought that the Fresnel drag term consisted

only of the
n2 − 1

n2 v term. The
n

n + β
term is so close to 1 that

except for extremely high velocities it was unobservable.
What we have shown in this derivation is that the Fresnel

drag term is automatically included in our derivation once we
acknowledge that lengths and times change with velocity. In
fact, Fresnel drag is proof that lengths and times really do
change with velocity.

When the light is sent in the opposite direction through
the refractive medium, the sign of the laboratory’s velocity v
in equation (14) is inverted resulting in a reverse speed of

cn0− =
c (c − n v)

c n − v . (17)

Summing the times of propagation for these out and back
velocities, we can calculate the total time for a round trip on
the parallel arm in the rest frame if the light is passing through
a moving refractive medium with an index of refraction n:

∆t∥0 =
L

γ (cn0+ − v)
+

L
γ (cn0− + v)

= 2
L

c/n
γ. (18)

Not surprisingly, this is the same value we would have
calculated if we had simply used the Lorentz transforms of
SRT to transform the time on clock A into the rest frame for a
round trip of length 2 L at velocity c/n. Be we have derived it
using nothing but classical physics and the two assumptions
regarding length contraction and the slowing of clocks with
velocity.

We will now look at the time for the round trip on the
orthogonal arm. In the laboratory frame, n has the same value
in all directions.∗ Therefore, as measured in the laboratory
frame, the round-trip time in the orthogonal direction is

∆t⊥ =
2 L
c/n
=

2 L n
c
. (19)

With the arm oriented orthogonal to the velocity, the light-
propagation times for the outbound and return trips are equal
in the rest frame so there is no bias between clocks A and B.
Since clocks in the moving frame run slower when observed

∗This is proven in Section 4.2 where the velocity of light in a moving
refractive medium is derived for any arbitrary direction.

334 Jay R. Seaver. Test of Cahill’s Detection of Absolute Velocity



Issue 4 (October) PROGRESS IN PHYSICS Volume 12 (2016)

from the stationary frame, this same time in the stationary
frame is simply the elapsed time in the rest frame multiplied
by γ,

∆t⊥0 = 2
L

c/n
γ. (20)

We see that this is exactly the same as the time for the
parallel path given in equation (18) so the MM experiment is
doomed to give null results regardless of the index of refrac-
tion of the medium.

3 Comparing to Cahill’s results

We now compare these results to Cahill’s results (we use sub-
script C for Cahill’s times), which come from his equations
(7) and (10) in [1]:

∆t∥C =
2 L

γ
c
n

(
1 − v

2

c2 n2

) = 2 L γ
c/n

(
1

γ2 (
1 − n2 β2) )

∆t⊥C =
2L√

c2

n2 − v
2

=
2 L γ
(c/n)

 1

γ
√

1 − n2 β2




. (21)

The right-most terms in parenthesis are the error factors
Cahill introduced by ignoring the “drag” effect. Without these
terms, the times are identical. Notice that both of these error
terms are very close to 1. In fact for a velocity of 360 km/sec
and n = 1.00029 (which are the approximate values Cahill
used in his paper), the two terms in parenthesis are (1 + 8 ×
10−10) and (1 + 4 × 10−10), respectively. It is easy to see why
Cahill thought they could be ignored and simply set to 1.

The difference between equations (21) is Cahill’s mea-
sured time difference between the parallel and orthogonal ori-
entations. It can be shown that for v/c = β << 1 this differ-
ence can be approximated by

∆t∥C − ∆t⊥C =
L n
γ c


(
n2 − 1

)
β2

1 − n2β2

 . (22)

In the original MM experiment, L = 11 and n ≈ 1.00029.
The absolute velocity that Cahill calculated was on the order
of 360 km/sec, which results in β ≈ 0.0012. Substituting
these into equation (22) results in a measured time difference
of

∆t∥C − ∆t⊥C ≈ 3.1 × 10−17. (23)

This confirms Cahill’s estimate of a difference on the or-
der of 10−17 sec. The wavelength of light used in the original
experiment was approximately 600 nm which for a velocity
of c has a temporal period of about 2.0 × 10−15 sec. Since
there is one spatial period (wavelength) for each temporal pe-
riod, the fringe shift in wavelengths is the total time delay of
Eq. (23) divided by the temporal period of the light wave:

∆λ =
3.1 × 10−17

2.0 × 10−15 λ ≈ 0.016λ. (24)

This represents a predicted fringe shift of about 1.6% of
a wavelength in the original experiment. It is this value that
Cahill used to predict the non-null results.

We conclude that Cahill made a fatal mistake when he as-
sumed he could ignore the Fresnel drag effects. It is precisely
the ignoring of Fresnel drag that creates the 1.6% difference
in phase. Quoting Cahill, “Of course experimental evidence
is the final arbiter in this conflict of theories.” In that spirit,
we will present the design and results of an experiment that
proves that an index of refraction greater than 1 does not give
non-null results in Michelson-interferometer experiments as
Cahill asserts.

Cahill’s analysis of the raw data from the original MM ex-
periment shows a non-null result which is sidereal in nature
and which agrees, according to Cahill, with his above calcula-
tions. It is beyond the scope of this paper to address the source
of the non-null, sidereal effect found in the raw data. But one
paper that has addressed this issue shows that the very large
drift in the experiment combined with an improper statisti-
cal analysis is entirely responsible for the apparent non-null
result [5].

4 Design of the new experiment

The analysis of the experiment to test Cahill’s results is again
done as if we are an observer in a rest frame where light speed
is isotropic. Since we are constrained to make all of the ac-
tual measurements in the moving frame of our laboratory, we
define the results of the experiment in terms of an invariant
scalar value that will have the same value in all frames. This
is done by measuring the shift of an interference pattern in
units of wavelengths. This is a scalar value that must be the
same in all frames and allows us to make measurements in
the moving frame that are in full agreement with those same
measurements made in the hypothetical rest frame.

As mentioned above, the non-null result that Cahill pre-
dicted is less than 2% of a wavelength. This is much too small
to be measured in an inexpensive, home-built interferometer.
To increase the sensitivity of the experiment, the index of re-
fraction was increased from 1.00029 of air to 1.33 of water.
Of course, the experiment cannot be done completely sub-
merged in water, so a refractive block containing water was
introduced into one of the paths.

Figure 1 shows the physical layout of the experiment. A
laser emits a beam that is split into two separate beams. One
beam travels exclusively through air on its path to the de-
tector. The other beam travels the same distance, but part
of this path passes through a block of refractive material of
length L that slows the wave down. When it exits the refrac-
tive block (RB), it then continues at the normal speed of light
until it is recombined with its sister beam at the detector. Dis-
tilled water with an index of refraction of 1.33 is used for the
refractive block. Unfortunately, using a refractive block is
not the same as performing the entire experiment while im-
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Fig. 1: Layout of experiment.

mersed in a high-refractive medium. Specifically, it compli-
cates the mathematics by introducing refraction in the beam
as it passes through the boundary between the air and the
water. But the complication is worth it because it allows
a large enough fringe shift (according to Cahill’s equations)
that even our inexpensive interferometer is sensitive enough
to measure it.

The wavelength that is emitted from the laser after taking
into account the velocity-dependent slowing of the clocks and
the Doppler shift, is designated as the incident wavelength λi.
At the first beam splitter, one wave goes straight along an un-
refracted path. The other beam gets reflected downward (in
the figure) before reflecting off a second mirror that puts it on
a trajectory that is parallel to the first beam but which passes
through the refractive block. The two beams recombine at
the beam combiner and propagate together to the camera de-
tector. The phase and frequency shifts due to the reflection
of the mirrors and beam splitters are exactly the same for the
two paths and exactly cancel one another so they can be ig-
nored. The wavelength leaving the laser and arriving at the
phase detector is also the same for both paths.

It is the phase relationship between the two beams at the
detector that we are interested in. Since the entire path is
identical for both beams except for the length L of the RB,
we only need to calculate the phase shift that occurs through
the RB and compare it to the phase change that occurs over
this same distance in the other path to account for the entire
phase shift at the detector. All other effects will be identical
on both paths and cannot alter the phase difference caused
by the delay through the RB. By rotating the experiment 90
degrees we can measure the phase shift in each direction. Any
difference between the two directions is a measure of absolute
velocity through space — which Cahill predicts will be non-
zero.

4.1 Velocity and the path of the beam

In this analysis, we are only going to look at the two cases
where the velocity of the laboratory is orthogonal to the beam
and parallel to the beam, respectively. We will be discussing
multiple angles in this analysis. To keep these angles straight,
the following definitions will be used:

1. The symbol φ will be used for the angle between the
velocity vector of the refractive medium (laboratory)
and the light wave path within the medium. It will have
no subscript in the moving frame and a 0 subscript in
the rest frame.

2. The symbol θi will be used for the incident angle of the
wave path at the surface of the refractive block. It is
defined as the angle between the light wave path and
the normal to the refractive surface, which is the stan-
dard definition from geometric optics. It will have a
subscript 0 when measured in the rest frame and no ad-
ditional subscript in the moving frame.

3. The symbol θr will be used for the refracted angle of
the wave path within the refractive block. It is defined
as the angle between the light wave path in the RB and
the line that is normal to the refractive surface, which is
again the standard definition from geometric optics. It
will have a subscript 0 when measured in the rest frame
and no additional subscript in the moving frame.

4. In the case where the velocity is parallel to the line that
is normal to the refractive surface, the θ angles will
have an additional ∥ symbol in the subscript. If the ve-
locity is orthogonal to the normal a ⊥ symbol will be
used. Since the φ angles are by definition between the
light path and the velocity, no subscript is necessary to
indicate velocity direction.

Figure 2 shows a laser diode with a highly divergent beam
that is collimated using an aperture. In actual lasers, a colli-
mating lens is used instead of an aperture because a lens can
capture most of the light. Obviously the aperture loses all of
the light that doesn’t pass through it. But for our purposes
the math and visualization is easier with the aperture and the
principle is the same. The view in Figure 2 is for a laser that
is stationary with respect to the observer.

Figure 3 shows what happens to the path of the beam if
the laser is moving up (orthogonal to beam) in this figure at
velocity v. The laser and aperture position are shown at time
t for an emission that occurred at time 0. Notice that during
the time that a wave front in the beam travels a distance c t
(in vacuum), the aperture and laser move a distance v t. This
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Fig. 2: Laser collimation using an aperture.

Fig. 3: Path of a single wavelet/photon for orthogonal direction.

means that only waves that left the laser at an angle of θi0⊥ (in
the rest frame) make it through the aperture — hence we have
only shown one path in the figure. This angle assures that the
orthogonal component of the velocity of the wave is exactly v
and the parallel velocity of the wave is

√
c2 − v2.

Since every wave leaving the laser that makes it through
the aperture follows a similar path, the resulting beam, which
is made up of all of these individual wavelets, appears to re-
main perfectly aligned with the laser and with the aperture.
The solid red line in Figure 3 shows the path of an individual
wavelet from its emission at the laser surface to its exit from
the aperture. Although the wavelet moves at an angle , the
beam one would see at any instant in time is the collection of
all of the wavelets that have left the laser. A “snapshot” of the
positions of several of these wavelets, each on its own unique
path, is shown in Figure 4 . Notice that the three wavelets that
have been propagating for times t1, t2 and t3 each remain per-
fectly aligned with each other and with the center of the laser
because the aperature assures that their velocity component
in the orthogonal direction is exactly v. Any wavelets with
different orthogonal velocities are blocked by the aperture.

Fig. 4: Snapshot of laser beam for orthogonal direction.

We see that Mother Nature has conspired with light so
that an observer in any frame sees a straight, horizontal beam
going from the center of the laser through the center of the
aperture and arriving at a distant target still centered — just
as it appears when the system is stationary. This assures that
the path of the composite beam relative to the laboratory is
independent of the velocity of the laboratory even though the
individual wavelets are moving at a velocity-dependent angle.

Since the index of refraction of air is so close to 1 and
since the effect of the index of refraction of the refractive
block is so much larger, we are going to simplify the math
by treating the air as if the index of refraction were exactly 1.
From Figure 3, we can see that the sine and cosine of θi0⊥ are
given by

sin θi 0⊥ =
v

c
= β

cos θi 0⊥ =

√
1 − sin2 θi 0⊥ =

√
1 − β2 =

1
γ

 . (25)

4.2 Velocity of light in a moving medium at arbitrary
angle

In the orthogonal direction, we can see that the wavelets enter
the refractive block at an angle. This means that the wavelet
angle will be refracted upon passing through the surface of
the RB. The angle of refraction of a moving block cannot be
determined by Snell’s law alone – it is much more compli-
cated.

Before calculating exactly how a beam refracts in a mov-
ing medium, we will first derive the general term for the ve-
locity of light in a moving medium where the angle between
the wavelet path and the velocity of the medium is an arbi-
trary angle between 0 and π.

In the rest frame of the medium, the geometry is as shown
in Figure 5. The path AB is that of a laser beam propagating a
distance L in a medium with an index of refraction of n. The
source A and destination B are on opposite ends of an arm
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Fig. 5: Beam path at arbitrary angle in rest frame of medium.

of the experiment. The arm and the medium are both moving
in the direction shown at velocity v with respect to the rest
frame. The values given in the figure are for measurements
made by an observer within the moving frame. In this frame,
the time for a wavelet in the beam to travel from the source to
the destination is by definition of the index of refraction n,

∆t =
L n
c
. (26)

Figure 6 shows the path of the same wavelet if the beam
is observed from the rest frame. The dotted lines show the in-
stantaneous positions of the ensemble of wavelets that make
up the beam at two different times. And the angle φ′0 is the an-
gle that the visible composite beam makes with the velocity.
The bold solid line shows the path that an individual wavelet
takes.

In the moving frame, the clocks at A and B are assumed
to have been synchronized using Einstein’s method. As we
derived earlier, synchronizing the clocks in the moving frame
will create a bias between the clocks when observed from the
rest frame:

t0bias =
v L cosφ

c2 . (27)

Taking this into account and also accounting for the fact
that clocks run slower in the moving frame, the time for a
wavelet to propagate from A to B′ in the rest frame is

∆t0 = (∆t − t0bias) γ =
(L n

c
+
v L cosφ

c2

)
γ. (28)

Length contraction in the direction of the velocity causes
the angle φ in the moving frame to increase to φ′0 in the rest

Fig. 6: Wavelet path at arbitrary angle in absolute frame.

frame (beam and wavelet path are the same within the moving
frame). The length of the arm L will decrease in the rest frame
to L0:

L0 = L

√
cos2 φ

γ2 + sin2 φ. (29)

Since lengths do not contract in directions orthogonal to
the velocity,

L sinφ = L0 sinφ′0. (30)

From the right triangle with hypotenuse AB′ in Figure 6,
we get the following relationship for angle φ0:

sinφ0 =
L sinφ
cn0 ∆t0

. (31)

Pythagorean’s Theorem requires that

(cn0∆t0)2 =
(
v∆t0 + L0 sinφ′0

)2
+

(
L0 sinφ′0

)2
. (32)

Using equations (30), (31) and (32) we can solve for cn0
and sinφ0:

cn0 =

√√√√
L2

0

∆t2
0

+ v2 ±
2
√(

L2
0 − L2 sin2 φ

)
v2

∆t0
, (33)

sinφ0 =
L sinφ√√√√

L2
0

∆t2
0

+ v2 ±
2
√(

L2
0 − L2 sin2 φ

)
v2

∆t0

. (34)
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Substituting equations (28) and (29) into these equations,
results in solutions involving only the angle φ in the rest frame
of the medium:

cn0 = c

√
1 − n2 − 1
γ2 (n + β cosφ)2 , (35)

sinφ0 =
sinφ√

γ2 (n + β cosφ)2 − n2 + 1
. (36)

From which we can also calculate the cosine:

cosφ0 =

√
1 − sin2 φ

γ2 (n + β cosφ)2 − n2 + 1
. (37)

Equation (35) is the speed of an individual wavelet as
measured in the rest frame when the medium (i.e. labora-
tory) is moving at velocity v = c β. It demonstrates that there
is not a unique index of refraction n0 = c/cn0 for a moving
medium. The speed of light through the medium is a func-
tion of both the velocity of the medium and the angle which
the beam makes with that velocity. Cahill ignored the “drag”
component and assumed the velocity in the moving medium
was the same c/n as in the stationary medium. This is what
introduced his error.

The angle φ is the angle as measured in the moving frame
between the velocity of the frame and the direction of the
light waves. Equations (36) and (37) describe the angle φ0 at
which the light waves are moving in the rest frame in terms
of φ in the moving frame.

The velocity of the light wavelets can be separated into
two components, one parallel to the laboratory velocity and
one orthogonal to the laboratory velocity. In Figure 6, these
two components are

cn0⊥ = cn0 sinφ0,

cn0∥ = cn0 cosφ0

 . (38)

Substituting equations (35), (36) and (37) into these equa-
tions gives us the expressions for the parallel and orthogonal
components of wavelet velocity in the rest frame:

cn0⊥ =
c
n

 sinφ

γ
(
1 +
β

n
cosφ

)


cn0∥ =
c
n

 cosφ + β n

1 +
β

n
cosφ




. (39)

With the parallel and orthogonal components of the ve-
locity, we know everything about the velocity and direction of
the wavelets within the moving medium. We are now ready
to investigate how this affects the refraction of a beam that is
entering a moving medium as observed from the rest frame.

4.3 Refraction of light entering a moving refractive me-
dium

For our analysis of refraction, we will refer to Figure 7 where
we have added the incident and refracted angles. This figure
again shows a moving refractive medium with index of re-
fraction n as measured in the moving frame. A laser source
is attached to and moving along with the refractive medium.
Both the medium and the laser are moving at velocity v in the
rest frame in the direction shown, which is orthogonal to the
line which is normal to the refractive surface. The line normal
to the refractive surface will be referred to as the normal line.
The medium is shown at two different positions separated in
time. The laser source is shown at three different times.

The dotted lines leaving the laser again show the location
of the ensemble of wavelets that make up the composite visi-
ble laser beam at these times. This is the apparent path of the
laser beam. The bold line shows the path that is actually taken
by an individual wavelet or photon within the beam in prop-
agating from the source to A and then through the medium
to B′.

It is readily apparent that the relationship between the an-
gles is

θr0⊥ =
π

2
− φ0. (40)

This can be expressed as

sinφ0 = cos θr0⊥

cosφ0 = sin θr0⊥

 . (41)

These angles as measured in the moving frame will have
a similar relationship:

sinφ = cos θr⊥
cosφ = sin θr⊥

 . (42)

From Snell’s law, the incident and refracted angles in the
moving frame (i.e. in the rest frame of the RB) are related by

sin θi⊥ = n sin θr⊥. (43)

Substituting this into equations (42) results in

sinφ =

√
1 − sin2θi⊥

n2

cosφ =
sin θi⊥

n

 . (44)

Substituting these into equations (39) gives us the parallel
and orthogonal components of the wave velocity in the rest
frame as a function of the incident angle in the moving frame:

cn0 ∥ =
c
n

 sin θi⊥ + β n2

n + βn sin θi⊥

 (45)
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Fig. 7: Refraction of laser beam upon entering a moving medium.

cn0⊥ =
c
n


n

√
1 − sin2θi⊥

n2

γ
(
n +
β

n
sin θi⊥

)
 . (46)

A similar set of equations can be obtained when the ve-
locity is parallel to the normal line. Although the parallel case
is not shown in the figure, it is easy to see that in this case the
refracted angle is equal to φ0 so that

sinφ = sin θr ∥ =
sin θi∥

n

cosφ = cos θr ∥ =

√
1 − sin2θi∥

n2

 . (47)

Substituting these into equation (39) gives the orthogonal
and parallel components of the wave velocity for the parallel
orientation:

cn0 ∥ =
( c
n

)
n β +

√
1 − sin2θi ∥

n2


1 +
β

n

√
1 − sin2θi ∥

n2

, (48)

cn0⊥ =
( c
n

) sin θi∥

γ

n + β
√

1 − sin2θi∥

n2


. (49)

We now have a complete description of how an incident
wave is refracted when it enters a moving refractive medium.
Equations (45) and (46) govern the refraction if the medium
is moving orthogonal to the normal line. Equations (48) and
(49) govern when the medium is moving parallel to the nor-
mal line.

4.4 Refraction with θi = 0 and velocity orthogonal to
beam

With the general equations derived, we are now ready to an-
alyze the specific situation of this experiment. The incident
angle, as measured in the moving frame (i.e. rest frame of
the medium) is zero whether the direction is orthogonal or
parallel:

θi ∥ = θi⊥ = 0. (50)

Substituting these into the expressions for the wave veloc-
ity components when the velocity is orthogonal to the normal
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line (Equations (45) and (46)), we get

cn0 ∥ =
c
n

(
β n2

n

)
= v, (51)

cn0⊥ =
c
n

n
√

1
γ (n)

 = c
n γ
. (52)

And for the case when the velocity is parallel to the nor-
mal line (Equations (48) and (49)), we have

cn0 ∥ =
( c
n

) (n β + 1)

1 + βn
=

c + c n β
n + β

=
c (c + n v)

c n + v
, (53)

cn0⊥ = 0. (54)

We already derived this expression for the parallel case in
equation (14). We repeat it here to show that equations (48)
and (49) are consistent with the earlier derivation.

The angle of propagation in the parallel case is 0, but in
the orthogonal case it is defined by

sinφ0 =
cn0 ∥√

cn0 ∥2 + cn0⊥2
=

v√
v2 +

c2

n γ2

. (55)

Equations (51) and (52) are quite remarkable. Equation
(51) shows that the velocity component of the wave veloc-
ity that is parallel to the medium velocity v is always exactly
equal to v. It is completely independent of the index of refrac-
tion n. This is what guarantees that the path that a wave takes
through the medium will not change relative to the medium
no matter how fast the source and medium are moving or no
matter what the index of refraction is. This is why observers
in the medium cannot detect any change in the trajectory of
the waves when their velocity changes.

Equation (52) gives the component of wave speed that is
orthogonal to the velocity of the medium. This is the term
that guarantees that the time measured for the wave to pass
through the medium is always measured to be c/n in the mov-
ing frame (the rest frame of the medium). For example, if the
laboratory is at rest the velocity of a wave is c/n, and the time
to pass through a block that is of length L is L n/c. If the lab-
oratory is then accelerated to a velocity of v in the orthogonal
direction, the clocks in that frame slow so that the time L n/c
becomes L n γ/c. But from equation (52) we see that the or-
thongonal component of the wave speed slows down by the
same factor of γ so that the time measured in the laboratory
to traverse length L remains at L n/c.

5 Calculating time delays and phase shifts

Knowing the incident wavelengths, velocities and directions,
we can calculate the change in phase shift that occurs with
velocity. The only place that the phase can be different be-
tween the two paths is when the beam is passing through

the refractive block. The distance that the unrefracted beam
races ahead of the refracted wave while the refracted wave is
slowed down by the RB is proportional to the phase difference
between the two paths.

We will begin by analyzing the parallel direction where
the velocity of the medium and velocity of the light beam are
aligned.

5.1 Time delay and phase shift with light beam parallel
to velocity

In this case, the laboratory is moving at velocity v with the
light beam parallel to the velocity. The length of the RB will
contract to

L0 ∥ =
L
γ
. (56)

The velocity of the light within the refractive material,
with respect to the rest frame, is given by equations (53)
and (54):

cn0 ∥ =
c
n

1 + β n

1 +
β

n

 = c (c + n v)
c n + v

cn0⊥ = 0


. (57)

The refractive block itself is moving at velocity v, so the
effective velocity of the light with respect to the RB is

cn0 ∥ e = cn0 ∥ − v =
c (c + n v)

c n + v
− v = c

γ2

(
1

n + β

)
. (58)

At this relative velocity, the total time it takes a wave to
propagate through the RB is

∆t0 ∥ =
L0 ∥

cn0 ∥ e
=

L

γ
c
γ2

(
1

n + β

) = L (n + β) γ
c

. (59)

The total distance a wavelet propagates in the parallel di-
rection while inside the RB is measured in the rest frame to
be

∆x0 ∥ =
L
γ
+ v∆t0 ∥ =

L
γ
+ L β (n + β) γ = L γ (1 + nβ) . (60)

The total distance the unrefracted beam propagates in this
same time is

∆x0u ∥ = c∆t0 ∥ = L (n + β) γ. (61)

The difference between these two distances for the re-
fracted and unrefracted paths is the spatial phase shift that oc-
curred between the two waves as a result of the path through
the RB:

∆x∥ = ∆x0 ∥ − ∆x0u ∥ = L γ (n − 1) (1 − β) . (62)
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Dividing this difference by the wavelength of the incident
wave gives the phase shift in wavelengths in the parallel ori-
entation:

k∥ =
L
λi0 ∥
γ (n − 1) (1 − β) . (63)

This is a scalar value. Like the number of marbles in a
bowl, it is the same for all observers in all frames. It rep-
resents the phase difference between the refracted path and
the unrefracted path in the parallel direction as measured in
wavelengths.

Since it is an invariant, we should be able to verify that
it is the same value as measured in the moving frame. The
phase shift in that frame that would be expected is

k∥ =
(
c − c

n

)
∆t
λi
=

(
c − c

n

) ( L n
λi c

)
=

L
λi

(n − 1) . (64)

To show that equations (63) and (64) are, in fact, the
same scalar value, we note that the frequency of the laser
source will be reduced in the rest frame and there will also
be a Doppler shift of the wavelength in that frame. Thus, the
wavelength of the incident wave in the rest frame is

λi0 ∥ = λi γ (1 − β) = λi

√
(1 − β)2

(1 + β) (1 − β) = λi

√
1 − β
1 + β

. (65)

Substituting this into equation (63) gives the total phase
shift in wavelengths between the two paths in the parallel ori-
entation:

k∥ =
L
λi

√
1 + β
1 − β γ (n − 1) (1 − β) = L

λi
(n − 1) . (66)

This is, of course, the same scalar value measured in the
moving frame in equation (64). The interesting thing about
this number is that it is completely independent of the veloc-
ity of the medium. That is just another way of saying that
no matter what the velocity of the frame, all observers will
always measure exactly the same phase shift.

Notice that k is a very large number since L is measured
in meters and the wavelength is measured in hundreds of
nanometers. This number is not measurable by the interfer-
ometer. It is only able to measure differences in phase. Fortu-
nately it is the difference between the orthogonal and parallel
phase shifts that we are interested in. We will now repeat the
above procedure to determine the phase shift for the orthogo-
nal direction.

5.2 Time delay and phase with the light beam orthogo-
nal to velocity

When the light beam is orthogonal to the velocity of the labo-
ratory, no contraction occurs and the length of the RB remains
at its rest length of L. Since the individual wavelets are mov-
ing through the RB at an angle, the time that it takes for an

individual wavelet to travel through the block is determined
by the component of its velocity that is parallel to the normal
line.

This is obtained from equation (52):

cn0⊥ =
c

n γ
. (67)

Of course, it propagates a distance L in this direction at
this speed. Since the velocity of the laboratory is orthogonal
to the RB, this is also the velocity of a wave relative to the
RB. The total time for a wave to propagate through the RB is

∆t0⊥ =
L

cn0⊥
=

L n γ
c
. (68)

During this same time, the unrefracted beam is propagat-
ing at speed c but not exactly orthogonal. It’s velocity in the
orthogonal direction is also given by equation (52), but with
n = 1, since it is moving through vacuum:

cn0u⊥ =
c
γ
. (69)

The distance that the unrefracted beam travels in this time
is

∆x0u⊥ =
c
γ
∆t0⊥ =

c
γ

L n γ
c
= L n. (70)

The difference between the two distances is

∆x⊥ = ∆x0u⊥ − ∆x0⊥ = n L − L = L (n − 1) . (71)

We divide this by the wavelength in the orthogonal direc-
tion to get the total phase shift:

k⊥ =
L
λi 0⊥

(n − 1) . (72)

For calculating λi0⊥ we must again account for the longer
wavelength due to the slowing of the frequency source. While
there is no Doppler shift orthogonal to a moving source, we
must consider the change in wavelength due to the angle at
which it is propagating in the rest frame. So

λi 0⊥ = λi γ cos θi 0⊥. (73)

Since this wavelength is measured in vacuum while the
wave is moving at velocity c, from equation (69), we see that

cos θi 0⊥ =
c/γ
c
=

1
γ
. (74)

Thus, λ0⊥ = λi and the total phase shift in wavelengths
from equation (72) becomes

k⊥ =
L
λi

(n − 1) . (75)

Comparing this to the phase shift for the parallel case in
equation (66), we see that they are identical. We have now
proven mathematically that regardless of whether or not the
experiment is performed in vacuum or in a refractive medium
there is no difference in phase between the two orientations
— it will always be a null experiment.
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6 Numerical values of Cahill’s predictions

Cahill, on the other hand, predicted that there will be a mea-
surable phase difference. Cahill predicts in his equation (11)
in [1] that the time difference between the two paths will ap-
proximate to his equation (12). Again using a “C” in the sub-
scripts to indicate Cahill’s predictions, his time difference is

∆tC ≈ L n
(
n2 − 1

) (β2

c

)
. (76)

But this is for a two-way experiment. Our experiment is
a one-way measurement. Cahill’s one-way time in the paral-
lel direction through the refractive block is derived from his
equations (1) and (2):

∆t0 ∥C =
L n
c

(
1

γ (1 − n β)

)
. (77)

His time in the orthogonal direction is given in his equa-
tion (8) in [1]:

∆t0⊥C =
L n
c

 1√
1 − n2 β2

 . (78)

Both of these times are as measured in the rest reference
frame and represent the total time between a wavelet entering
the refractive block until it exits.

According to Cahill, the speed of light in the refractive
material is approximately c/n in both cases and Fresnel drag
is insignificant. In the orthogonal case, from his Figure 1 (b)
this requires that the direction of the wave is actually at an
angle that satisfies the equations

sin θr0⊥C =
v n
c

cos θr0⊥C =

√
1 −

(
v n
c

)2
=

√
1 − n2 β2

 . (79)

Therefore the distances traveled in the parallel and or-
thogonal directions during the times of equations (77) and
(78) are respectively

∆x0 ∥C =
c
n
∆t0 ∥ =

L
γ (1 − n β)

∆x0⊥C =
c
n
∆t0⊥ cos θr0⊥

= L

 1√
1 − n2β2

 √
1 − n2 β2 = L


. (80)

On the other hand, the distances traveled by the light in
the unrefracted paths in these times are

∆x0u ∥C = c∆t0 ∥ =
L n

γ (1 − n β)

∆x0u⊥C = c∆t0⊥ cos θi0⊥ =
L n
γ

 1√
1 − n2 β2


 . (81)

For each direction, respectively, the differences between
the refracted and unrefracted lengths are

∆x∥C = ∆x0u ∥C − ∆x0 ∥C =
L

γ (1 − n β)
(n − 1)

∆x⊥C = ∆x0u⊥C − ∆x0⊥C = L

 n

γ
√

1 − n2β2
− 1


 . (82)

Using equation (65) for the parallel incident wavelength
(orthogonal incident wavelength is unchanged), we can con-
vert these distances to wavelengths:

k∥C =
∆x∥C
λi0 ∥C

=
L

γ λi (1 − nβ)
(n − 1)

√
1 + β
1 − β

k⊥C =
∆x⊥C

λi0⊥C
=

L
λi

 n

γ
√

1 − n2β2
− 1




. (83)

The total phase shift predicted by Cahill’s equations is the
difference between these two values, which simplifies to

∆kC =
L

λi (1 − n β)

n − β − n
γ

√
1 − n β
1 + n β

 . (84)

In this experiment

L = 1 m n = 1.33 λi = 650 nm. (85)

Cahill claims that the original MM experiment measured
a velocity of about 360 km/sec. Thus,

v = 3.6 × 105 ⇒ β = 0.0012. (86)

Substituting all these values into equation (84) gives us
the phase shift that Cahill predicts for this experiment:

∆kC = 1421 wavelengths. (87)

This is an enormous phase difference which would easily
be detected by this experiment if it existed.

7 Results of experiment

The present experiment is capable of measuring phase differ-
ences with a resolution of about 0.1 wavelengths. The phase
shift was measured between a north-south orientation and an
east-west orientation each hour for 12 hours. Had there been
any significant velocity difference in any direction, one or
more of these measurements would have been able to de-
tect it.

The peak phase difference (after averaging) was measured
to be 0.1 wavelengths at 10 a.m. This is within the error toler-
ance of the experiment and is therefore not statistically differ-
ent from zero. After averaging the 10 measurements at each
time, the measured phase shifts in wavelengths are graphed
in Figure 8.
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Fig. 9: Overview of interferometer system.

Fig. 8: Measured phase shift.

The results of this experiment are the “final arbiter” and
clearly rule in favor of the derivation in this paper and against
Cahill’s derivation. The measured phase shifts are 4 orders
of magnitude less than those predicted by Cahill and they are
within the measurement tolerances of the null prediction of
this paper. We can conclude that the mathematical derivations
in this paper are correct and that it is impossible to detect
the absolute velocity of the earth using MM type experiments
regardless of the index of refraction of the medium used.

8 Description and procedures of experiment

Figures 9, 10 and 11 show actual annotated photographs of
the interferometer system used in the experiment. It is ar-
ranged according to the layout shown in Figure 1. Not shown
in these pictures are two polarizers — one at the output of the
laser and one at the input to the camera. These were rotated
relative to one another to attenuate the light to just the right
brightness so that the camera image was optimized for visu-
alization of the fringe pattern. Without them the image was
too bright and the camera’s CMOS detector bloomed to an
all-white image.

Fig. 10: Closeup of camera/detector end.

Fig. 11: Closeup of laser diode end.

8.1 Measurement considerations

The fringe shifts are measured by displaying the output of the
camera on a computer monitor. Figure 12 shows the cam-
era output plus two drafting triangles that were placed on the
monitor as references to assist in measuring fringe movement.

The entire system is mounted on a 4-foot (1.22 m) alu-
minum base that is painted black. The thermal expansion co-
efficient of aluminum causes it to expand about 29 µm per
degree C. That is 45 wavelengths of light per degree C or
about one half wavelength for each hundredth of a degree C.
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Fig. 12: Fringe pattern output from camera.

An even larger sensitivity occurs due to the fluctuations in
barometric pressure which change the index of refraction of
the air. Because of this extreme sensitivity to temperature and
pressure, there is a constant drifting of the fringe patterns that
must be taken out of the measurement.

To minimize the thermal drift, the following mitigating
techniques were employed:

1. The entire interferometer was placed inside a cardboard
tubular shipping container and sealed on both ends.

2. The system was allowed to warm up and reach a stable
temperature prior to making any measurements.

3. The measurements were taken inside a room with no
outside walls or windows.

4. The heating and air conditioning system was turned off
so that only slow, convection heating from outside the
building could affect the temperature inside the room.

5. A 4 foot wooden dowel was used to rotate the system
so that human body temperature was kept away from
the system.

6. The system was rotated very slowly (about 30 seconds
for a 90 degree rotation) to minimize the cooling and
pressure effects of the air flow.

By doing all of these things, the drift was reduced to signifi-
cantly less than 1 fringe per minute (probably mostly due to
barometric pressure drift), which was easy to remove from
the measurements.

Mechanical disturbances were minimized by placing the
system on pillows and attaching it to a rotatable platform
with a bungee cord pressing it into the pillows. The plat-
form is made from an aluminum trailer hitch-mounted cargo
carrier with the hitch attachment removed. The platform was
mounted to the base of a rotating office chair (after removing
the seat) so that it could be rotated very smoothly and with lit-
tle effort. The pillows prevented any residual vibrations of the
platform from propagating to the interferometer. The result is
that almost no vibrations affected the fringes so they were
very easy to follow as they drifted slowly across the screen.

Fig. 13: Complete system with vibrational and thermal mitigation.

Figure 13 shows the system after employing these temper-
ature and vibration mitigating techniques. The interferometer
is sealed inside the tubular cardboard shipping container with
the camera output coming through a small hole in the back of
the container into the monitor.

8.2 Measurement procedure

To improve accuracy and resolution, 10 measurements were
made at 1 hour intervals for 12 hours – which corresponds to
10 measurements every 15 degrees of earth’s rotation for 180
degrees total rotation. The measurements were performed in
Longmont, Colorado between 7 am and 6 pm on September
22 and 23, 2015. The following procedure was used:

1. Turn on the system and let it warm up for 2 hours.

2. At the top of each hour, position the system in a north-
south orientation.

3. Place the edge of a triangle in the middle of the fringe
nearest to the center of the screen.

4. Very slowly rotate the system clockwise 90 degrees un-
til it reaches an east-west orientation. (about 30 sec-
onds)

5. Estimate the movement of the fringe to the nearest 0.1
wavelength – including any drift that occurred. Record
this as phase 1.

6. Reposition the edge of the triangle in the middle of the
center fringe.

7. Very slowly rotate the system counterclockwise to re-
turn to the north-south orientation.

8. Estimate the movement of the fringe to the nearest 0.1
wavelength – including any drift that occurred. Record
this as phase 2.

9. Repeat steps 2 to 8 until 10 pairs of phase 1 and phase
2 measurements have been recorded.

10. Wait until the top of the next hour and repeat steps 2 to
9 until data for 12 hours have been recorded.
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After all data were recorded, the phase shift of each measure-
ment was calculated as

PhaseShift =
1
2

(Phase1 − Phase2) . (88)

This removes any drift from the measurement because
it will be constant in both phases.∗ For example, suppose
Phase1 includes a real shift of k and a drift of d. Then when
returning, Phase2 will measure a real shift of −k and the same
drift d. The phase shift recorded will be

PhaseShiftR =
(k + d) − (−k + d)

2
= k. (89)

This was done for each of the 10 measurements at each
hour. The 10 measurements for each hour were averaged.
This improves the resolution of the final answer and averages
out drift errors due to each “slow” rotation not being exactly
the same amount of time. These results are tabulated in Table
1 and were graphed earlier in Figure 8.

Time Average Phase Shift

7:00 0.01
8:00 0.06
9:00 −0.03

10:00 −0.10
11:00 −0.10
12:00 0.00
13:00 0.00
14:00 −0.01
15:00 0.02
16:00 0.02
17:00 0.04
18:00 −0.06

Table 1: Measured phase shifts.

9 Conclusions

We have now shown both mathematically and experimentally
that Michelson-Morely-type interferometer experiments can-
not detect the absolute speed of the earth through space re-
gardless of the medium through which the light is propagat-
ing. This experiment and the accompanying mathematical
analysis show that the conspiracy between Mother Nature and
light is complete. They have conspired to make it impossible
to detect our absolute speed using light signals.
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The dark matter problem in the context of spiral galaxies refers to the discrepancy be-
tween the galactic mass estimated from luminosity measurements of galaxies with a
given mass-to-luminosity ratio and the galactic mass measured from the rotational speed
of stars using the Newton’s law. Newton’s law fails when applied to a star in a spiral
galaxy. The problem stems from the fact that Newton’s law is applicable to masses rep-
resented as points by their barycenter. As spiral galaxies have shapes similar to a disk,
we shall correct Newton’s law accordingly. We found that the Newton’s force exerted
by the interior mass of a disk on an adjacent mass shall be multiplied by the coefficient
ηdisk estimated to be 7.44 ± 0.83 at a 99% confidence level. The corrective coefficient
for the gravitational force exerted by a homogeneous sphere at it’s surface is 1.00±0.01
at a 99% confidence level, meaning that Newton’s law is not modified for a spherical
geometry. This result was proven a long time ago by Newton in the shell theorem.

1 Introduction

Dark matter is an hypothetical type of matter, which refers
to the missing mass of galaxies, obtained from the difference
between the mass measured from the rotational speed of stars
using the Newton’s law and the visual mass. The visual mass
is estimated based on luminosity measurements of galaxies
with a given mass-to-luminosity ratio.

The problem of galaxy rotational curves was discovered
by Vera Rubin in the 1970s [1–3], with the assistance of the
instrument maker Kent Ford. In Figure 1, we show the ro-
tational velocity curve of stars versus the expected rotational
velocity curve from visible mass as a function of the radius of
a typical spiral galaxy. According to [4], the estimated dark
matter to visible matter ratio in the universe is about 5.5.

It has been hypothesized that dark matter is made of in-
visible particles which do not interact with electromagnetic
radiations. The hunt for the dark matter particle has already

Fig. 1: The problem of galaxy rotational curves, where (1) is the ac-
tual rotational velocity curve of stars; and (2) the expected rotational
velocity curve from the visible disk.

begun. The Xenon dark matter experiment [5] is taking place
in a former gold mine nearly a mile underground in South
Dakota. The idea is to find hypothetical dark matter particles
underneath the earth to avoid particule interference from the
surface.

Other experiments seek dark matter in space. In 2011,
NASA lauched the AMS (Alpha Magnetic Spectrometer) ex-
periment, a particle detector mounted on the ISS (Interna-
tional Space Station) aimed at measuring antimatter in cos-
mic rays and search for evidence of dark matter. In December
2015, the Chinese Academy of Sciences lauched the DAMPE
(Dark Matter Particle Explorer), a satellite hosting a powe-
ful space telescope for cosmic ray detection and investigating
particles in space and hypothetical dark matter.

An investigation of the amount of planetary-mass dark
matter detected via gravitational microlensing concluded that
these objects only represent a small portion of the total dark
matter halo [6]. The study of the distribution of dark matter
in galaxies led to the development of two models of the dark
matter halo. These models are known as the dark matter halo
profile of Navarro, Frenk and White [7], and the Burkert dark
matter halo profile [8, 9].

Dark matter is a hot topic in particle physics, and has led
to the development of various theories. According to [10],
the favoured candidates for dark matter are axions, supersym-
metric particles, and to some extent massive neutrinos. The
Majorana fermion has also been proposed as a candidate for
dark matter [11, 12]. Other candidates for dark matter would
be dark pions, a set of pseudo-Goldstone bosons [13]. Many
alternatives have been proposed including modified Newto-
nian gravity. Mordehai Milgrom proposed the MOND the-
ory, according to which Newton’s law is modified for large
distances [14, 15]. Moffat proposed a modified gravity the-
ory based on the action principle using field theory [16, 17].
James Feng and Charles Gallo proposed to model galaxy ro-
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Fig. 2: Force exerted by an infinitesimal mass dM of the disk on a
mass m located at the edge of the disk using polar coordinates. The
radius of the disk is R. Let the mass dM be at a distance r from the
center of the disk. Let α be the angle between the two axis passing
by the center of the disk in the direction of the two masses dM and m.

tational curves by applying Newtonian dynamics to a rotating
thin disk [18, 19]. Their approach is similar to the route we
undertake in the current work, although the latter was done
independently.

According to Pavel Kroupa, the dark matter crisis is a
major problem for cosmology [20]. In addition, he states
that the hypothesis that exotic dark matter exists must be re-
jected [21]. In the present study we find that dark matter is
mainly a problem of geometry because Newton’s law is ap-
plicable to masses which can be approximated by a point in
space. Below, we compute the corrective coefficient to New-
ton’s law in a disk and in a sphere.

2 Calculation of the gravitational force in a disk

The Newton’s law states that the gravitational force between
two bodies is expressed as follows:

FNewton =
G M m

R2 , (1)

where G is the gravitational constant, M and m the respective
masses of the two bodies in interaction, and R the distance
between the barycenters of the two masses.

The shape of spiral galaxies allows us to use the gravita-
tional force computed for a disk. Let us assume a homoge-
neous disk of surface density ρs, and radius R. A mass m is
located at the edge of this disk at a distance R from the center
of the disk.

In Figure 2, we represent the force exerted by an infinites-
imal mass dM of the disk on the mass m using polar coordi-
nates. Because of the symmetry of the disk with respect to

Fig. 3: Triangle to compute the projection of the force exerted by the
infinitesimal mass dM on mass m on the axis passing by the center
of the disk to the mass m

the axis passing between its center and the mass m, we need
to compute the projection of the force exerted by the infinites-
imal mass dM on this axis. For this purpose we apply basic
trigonometric rules (see figure 3). For convenience, we con-
sider the polar coordinates (r, α) to describe the position of
dM, where r is the radial distance, and α the angle between
the mass dM and an arbitrary direction as viewed from the
center of the disk.

Let us say x is the distance between the mass dM and m.
From trigonometry we calculate x as follows:

x2 = r2 sin2 α + (R − r cosα)2 . (2)

Hence, we get:

x2 = r2 + R2 − 2Rr cosα . (3)

Let β be the angle between the center of the disk and the
mass dM as viewed from the mass m. The angle β is calcu-
lated as follows:

cos β =
R − r cosα

x
. (4)

By Newton’s law, the infinitesimal force exerted by dM
on m projected on the axis passing through the center of the
disk and the mass m is as follows:

dF =
G m dM

x2 cos β . (5)

Combining (4) and (5), we get:

dF =
G m dM

x3 (R − r cosα) . (6)

Combining (3) and (6), we get:

dF =
G m dM (R − r cosα)(
r2 + R2 − 2Rr cosα

) 3
2

. (7)
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Fig. 4: Spherical coordinate system, where r is the radial distance, θ
the polar angle, and φ the azimutal angle.

Because we are using polar coordinates, the surface ele-
ment dA is as follows:

dA = r dr dα . (8)

To obtain the infinitesimal mass dM, we multiply the in-
finitesimal surface dA by the surface density ρs; hence, we
get:

dM = ρs r dr dα . (9)

Therefore, the infinitesimal force dF is as follows:

dF =
ρs G m

(
Rr − r2 cosα

)
(
r2 + R2 − 2Rr cosα

) 3
2

dr dα . (10)

Because the total mass of the disk is M = ρs π R2, we get:

dF =
G M m
πR2

(
Rr − r2 cosα

)
(
r2 + R2 − 2Rr cosα

) 3
2

dr dα . (11)

The total force F exerted by the disk on the mass m is
obtained by the following integral:

F =
G M m
πR2

∫ R

r=0

∫ 2π

α=0

(
Rr − r2 cosα

)
(
r2 + R2 − 2Rr cosα

) 3
2

dr dα . (12)

We rearrange the terms in the integral to obtain:

F =
G M m
πR2 ×

×
∫ R

r=0

∫ 2π

α=0

R2
(

r
R
−

( r
R

)2
cosα

)
R3

(( r
R

)2
+ 1 − 2

( r
R

)
cosα

) 3
2

dr dα . (13)

Hence:

F =
G M m
πR3 ×

×
∫ R

r=0

∫ 2π

α=0

(
r
R
−

( r
R

)2
cosα

)
(( r

R

)2
+ 1 − 2

( r
R

)
cosα

) 3
2

dr dα . (14)

We apply the change of variable u = r
R , hence dr = R du.

Therefore, we get:

F =
G M m
πR2

∫ 1

u=0

∫ 2π

α=0

(
u − u2 cosα

)
(
u2 + 1 − 2u cosα

) 3
2

du dα . (15)

From (15), we see that in a disk, Newton’s force FNewton =
G M m

R2 needs to be multiplied by the following coefficient:

ηdisk =
1
π

∫ 1

u=0

∫ 2π

α=0

(
u − u2 cosα

)
(
u2 + 1 − 2u cosα

) 3
2

du dα . (16)

3 Calculation of the gravitational force in a sphere

Let us consider a homogeneous sphere of radius R and aver-
age mass density ρ. We consider an infinitesimal mass dM
of the sphere represented by its spherical coordinates (r, θ, φ),
where r is the radial distance, θ the polar angle, and φ the az-
imuthal angle (see Figure 4). Let the volume of the sphere be
defined by the following boundaries: r ∈ [0,R], θ ∈ [0, π],
and φ ∈ [0, 2π]. We assume that a mass m is located at the
surface of this sphere on the x-axis.

In Cartesian coordinates we have x = r sin θ cosφ, y =
r sin θ sinφ and z = r cos θ. Hence, the distance x between the
mass dM and m is as follows:

x =
√

(R−r sin θ cosφ)2+r2 sin2 θ sin2 φ+r2 cos2 θ. (17)

Let β be the angle as viewed from the mass m between the
direction of the center of the sphere and the mass dM. Hence,
we get:

cos β =
R − r sin θ cosφ

x
. (18)

The volume element in spherical coordinates is as fol-
lows:

dV = r2 sin θ dθ dφ dr . (19)

Therefore, the infinitesimal force exerted by dM on m
projected in the axis passing through m and the center of the
sphere is as follows:
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dF =
G m ρ r2 sin θ cos β

x2 dθ dφ dr =
G m ρ r2 sin θ (R − r sin θ cosφ)

x3 dθ dφ dr . (20)

Let M = ρ 4
3πR

3 be the total mass of the sphere, hence:

F = G m M
3

4πR3

∫ R

r=0

∫ π

θ=0

∫ 2π

φ=0

r2 sin θ (R − r sin θ cosφ)(
R2 + r2 sin2 θ cos2 φ − 2Rr sin θ cosφ + r2 sin2 θ sin2 φ + r2 cos2 θ

) 3
2

dθ dφ dr . (21)

We rearrange the terms in the integral to obtain a function of ratios of r/R, and apply the substition u = r
R ; hence, we get:

F =
G m M

R2

3
4π

∫ 1

u=0

∫ π

θ=0

∫ 2π

φ=0

u2 sin θ (1 − u sin θ cosφ)(
1 + u2 sin2 θ cos2 φ − 2u sin θ cosφ + u2 sin2 θ sin2 φ + u2 cos2 θ

) 3
2

dθ dφ dr . (22)

Therefore, the corrective coefficient to Newton’s law in a sphere is as follows:

ηsphere =
3

4π

∫ 1

u=0

∫ π

θ=0

∫ 2π

φ=0

u2 sin θ (1 − u sin θ cosφ)(
1 + u2 sin2 θ cos2 φ − 2u sin θ cosφ + u2 sin2 θ sin2 φ + u2 cos2 θ

) 3
2

dθ dφ dr . (23)

4 Numerical evaluation of the gravitational corrective
coefficients

Because the integrals in (16) and (23) do not have a known
closed-form solution, we need to evaluate them numerically.
Monte Carlo simulation is an appropriate method for com-
puting multidimentional integrals. Using Monte Carlo simu-
lation we can compute both an estimate of the integral and its
standard deviation.

4.1 Numerical evaluation of the double integral over the
disk

Let us consider the integration of a function f (r, α) over a disk
of radius R in polar coordinates, where r is the radius and α
an angle from a reference direction. The integral to evaluate
is expressed as follows:∫ 2π

0

∫ R

0
f (r, α) r dr dα . (24)

We shall apply the following change of variables:

α = 2πu1 , (25)

and
r = R

√
u2 , (26)

where u1 and u2 are two independent random variables of uni-
form distribution over [0, 1]. This change of variables gives a
uniform distribution on the disk of radius R.

Let N be the number of times we generate the random set
(u1, u2). Hence, the integral of f (r, α) over the disk converges
towards the following estimate for N large:

I = πR2
∑N

1 fi
N
, (27)

where fi is the function f (r, α) evaluated for each draw of the
random set (u1, u2) with the change of variables (25) and (26).

Because the variance of a random variable X is given by
Var(X) = E[X2] − (E[X])2 and the variance of the sample
mean is Var(X̄) = Var(X)

N , the variance of the estimate is com-
puted as follows:

Var(I) =
π2R4

∑N
1 fi2

N
−

πR2
∑N

1 fi
N

2

N
. (28)

The standard deviation of the estimate of ηdisk is equal to
the square root of the variance of the estimate of the double
integral on the disk divided by π. To evaluate the integral in
(16), we used the Mersenne Twister pseudo-random number
generator [22] with N= 1.2×1010. We obtained ηdisk = 7.44
with standard deviation of 0.320.

4.2 Numerical evaluation of the triple integral over the
sphere

As for the disk, let us use Monte Carlo simulation to evaluate
the triple integral of f (r, θ, φ) over the sphere of radius R in
the spherical coordinate system. The integral to evaluate is
expressed as follows:∫ R

0

∫ π

0

∫ 2π

0
f (r, θ, φ) r2 sin θ dφ dθdr . (29)

For this pupose we generate a set of three independent
random variables (u1, u2, u3), each with a uniform distribution
over the interval [0, 1]. We apply the following change of
variables, which gives a uniform distribution over the sphere:

θ = 2 arcsin
(√

u1

)
, (30)
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and
φ = 2πu2 , (31)

and
r = R u

1
3
3 . (32)

Let N be the number of time we generate the random set
(u1, u2, u3). Hence, the triple integral over the sphere con-
verges towards the following estimate for N large:

I =
4πR3

3

∑N
1 fi
N
, (33)

where fi is the function f (r, θ, φ) evaluated for each draw of
the random set (u1, u2, u3) using the change of variables (30),
(31) and (32).

The variance of the estimate is computed as follows:

Var(I) =

(
4πR3

3

)2 ∑N
1 f 2

i

N
− 4πR3

3

∑N
1 fi
N

2

N
. (34)

The standard deviation of the estimate of ηsphere is equal
to the square root of the variance of the estimate of the triple
integral on the sphere multiplied by 3

4π . To evaluate the in-
tegral in (23), we used the Mersenne Twister pseudo-random
number generator with N= 1×108. We obtained ηsphere = 1.00
with standard deviation of 3.85×10−3.

5 Interpretation

In the present study, we have solved the dark matter puzzle
in the context of spiral galaxies by considering the geome-
try of massive bodies. Dark matter is a hypothetical mass
introduced to fill the discrepancy between galaxy mass as
measured from the rotational speed of stars and visible mass.
Isaac Newton proved the shell theorem [23], which applies to
objects of spherical geometry. The shell theorem states that:

1. A spherical body affects external objects gravitation-
ally as though all of its mass were concentrated in a
point at its barycenter.

2. For a spherical body, no net gravitational force is
exerted by the external shell on any object inside the
sphere, regardless of the position.

Because spiral galaxies have shapes which can be approx-
imated by a disk, the distribution of matter will directly affect
the perceived gravitational force for a mass rotating on such
a disk, and the shell theorem does not apply. By considering
an interior mass distributed in space according to an idealised
homogeneous disk, we found that Newton’s law is corrected
by a multiplicative coefficient. This coefficient is estimated
to be about 7.44 based on our calculations above of the dark
matter to visible mass ratio of 5.5. This coefficient can be in-
terpreted as if the mass of the disk was excentered towards the
object perceiving it. In our calculations, we only considered

the interior mass of the disk for radii below the position of the
object. For an object located on the disk, the outer mass of
the disk for radii above of the position of the object may also
exert a gravitational force of opposite direction on the object,
mitigating the gravitational force exerted by the interior of the
disk. This effect which was not quantified should create the
asymptotic behavior for galaxy rotational curves when mov-
ing far away from the galaxy’s central bulge.

Furthermore, for a spiral galaxy, the mass density may in-
crease as we move closer to the center of the disk, causing a
departure from the idealised homogeneous disk. In addition,
the closer we move towards the central supermassive black
hole, which is spherical, the more the interior mass tends
towards a sphere and the gravitational corrective coefficient
converges towards unity. The shift in the gravitational correc-
tive coefficient at different radii on the galactic disk ought to
explain the observed shape of galaxy rotational curves.

Let us illustrate the impact of the gravitational coefficient
we found on the mass of the Milky Way. The centripetal force
of a star in orbit is expressed as Fc =

mv2
R , where m is the

mass of the star, v the tangential velocity and R the radius
to the center of the galaxy. Hence, the interior mass of the
galaxy for a given star is expressed as M = Rv2

ηG , where v = wR
with w the angular velocity, η the gravitational coefficient,
and G the gravitational constant. The apparent mass of the
Milky Way was estimated to be around 6.82×1011 M⊙ [24].
Let us approximate the Milky Way by a homogeneous disk;
therefore, the gravitational coefficient at the periphery of the
disk is about η = 7.44. This leads to an intrinsic mass of the
Milky Way of 9.17×1010M⊙.

6 Conclusion

To address the discrepancy between galaxy mass estimated
from the rotational velocity of stars and visual mass estimated
from luminosity measurements, the existence of dark matter
was hypothesized. A number of approaches have taken to
hunt for both the dark matter particle and modified gravity.
For instance, Milgrom proposed that Newton’s law should be
modified for large distances. Dark matter remains an unre-
solved problem challenging cosmology and particle physics.

In the present study, we propose a geometrical approach
as Newton’s law applies to masses that can be approximated
by a point in space corresponding to their barycenter. As spi-
ral galaxies have shapes close to a disk, we derived the cor-
rective coefficient to Newton’s law in an idealised disk of ho-
mogeneous mass distribution. We found that the Newton’s
law in a homogeneous disk shall be multiplied by the coef-
ficient ηdisk estimated to be 7.44 ± 0.83 at a 99% confidence
level, which fills the dark matter gap in galaxy haloes. We
conclude that dark matter in spiral galaxies is a problem of
geometry, and that Newton’s law needs to be corrected to ac-
count for the geometry of the mass. For a spherical geometry,
we found that the corrective gravitational coefficient ηsphere is
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1.00 ± 0.01 at a 99% confidence level.
This means that the Newton’s law is not modified for

spherical geometry, which was proven a long time ago by
Newton.
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A new principle of spacetime black hole equivalence (SBHEP) is proposed. In addition
to Einstein’s general relativity and the cosmological principle, the SBHEP principle
provides the third base for the black hole universe model that was recently developed
by the author in attempt to model the universe, explain existing observations, and over-
come cosmic problems and difficulties without relying on a set of hypothetical entities.
A black hole universe does not have the horizon and flatness problems so that an in-
flation epoch is not required. Its origin from starlike and supermassive black holes
removes the initial big bang singularity and magnetic monopole problems. A black
hole or spacetime is static or in equilibrium when it does not accrete or merge with oth-
ers, otherwise it becomes dynamic, expands, and emits. Gamma ray bursts, X-ray flares
from galactic centers, and quasars can be self-consistently explained as emissions of dy-
namic starlike, massive, and supermassive black holes. Cosmic microwave background
radiations are blackbody radiations of the black hole universe, an ideal blackbody. A
black hole universe can accelerate if it accretes matter in an increasing rate, so that an
explanation of the supernova measurements does not need dark energy.

1 Introduction

Cosmology is the study of the origin and development of the
universe. The currently accepted standard big bang model of
the universe (BBU) stands on two bases, which are (1) Ein-
stein’s general relativity (GR) that describes the effect of mat-
ter on spacetime and (2) the cosmological principle (CP) of
spacetime isotropy and homogeneity that generates the Fried-
mann-Lemaı̂tre-Robertson-Walker (FLRW) metric of space-
time [1–4]. The Einstein field equation given in GR along
with the FLRW metric of spacetime derived from CP pro-
duces the Friedmann equation (FE) that governs the develop-
ment and dynamics of the universe. Although the big bang
theory has made incredible successes in explaining the uni-
verse, there still exists innumerable problems and difficulties.
Solutions of these problems and difficulties severely rely on
an increasing number of hypothetical entities (HEs) such as
dark matter, dark energy, inflation, big bang, and so on [5].
Therefore, the BBU consists of GR, CP, and innumerable
HEs, i.e. BBU = {GR, CP, HE, HE, HE,....} (see the blue
part of Fig. 1). Although it has only two bases (GR and CP),
the BBU severely relies on an increasing number of HEs that
have not yet been and may never be tested or falsifiable.

Fig. 1: The comparison of fundamentals between BBU and BHU
(see Section 1 for details).

Describing the universe without relying on a set of HEs
to explain observations and overcome cosmic problems and
difficulties is essential to developing a physical cosmology.
Recently, the author has developed a new physical cosmol-
ogy called black hole universe (BHU) [6–7]. Instead of mak-
ing many those HEs as the BBU did, the BHU proposes a
new principle to the cosmology – the Principle of Spacetime
Black Hole Equivalence (SBHEP) – in an attempt to explain
all the existing observations of the universe and overcome all
the existing problems and difficulties [8–12]. Standing on the
three bases (GR, CP, and SBHEP), the new cosmological the-
ory – BHU = {GR,CP,SBHEP} (see the red part of Fig. 1)
– can fully explain the universe in various aspects as well
as to conquer all the cosmic problems according to the well-
developed physics without making any other HEs and includ-
ing any other unsolved difficulties. GR and CP are common
to both BBU and BHU. The BBU stands on two legs unsta-
bly so that needs many crutches for support, while the BHU
stands on three legs stably without needing any other props.
In the BHU, a single SBHEP removes all of innumerable HEs
made in the BBU. This paper describes how this new black
hole universe model explains the universe and conquers the
cosmic difficulties with the principle of spacetime black hole
equivalence.

2 Equivalence between spacetime and black hole

The effect of matter on spacetime can be obtained by solving
Einstein’s field equation provided in GR [13],

Gµν =
8πG
c4 Tµν (1)

where the subscripts µ and ν are the four-dimensional (4D)
spacetime coordinate indices running through 0–3. Gµν is
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Einstein’s curvature tensor, G is the gravitational constant, c
is the speed of light in free space, and Tµν is the 4D energy-
momentum tensor. Adding a term of Λgµν to the left hand
side of (1), Einstein developed a static cosmology [14] and
de Sitter developed a dynamic cosmology [15]. Here Λ is the
cosmological constant and gµν is the metric of spacetime,

According to the cosmological principle, the universe, if
it is viewed on a scale that is sufficient large, is homogeneous
and isotropic. This principle implies that there is no special
location and direction in the universe. The properties of the
universe are the same for all observers in the universe. More
strongly, physical laws are all universal. If a physical law is
applicable to the Earth, then it can be applied to everywhere.
The isotropic and homogeneous spacetime can be described
by the FLRW metric [1–4],

ds2 = −gµνdxµdxν

= c2dt2 − R2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdφ2

)]
,

(2)

where R(t) is the radius of curvature of the space and k is the
curvature constant of the space.

Substituting the FLRW metric of spacetime into the Ein-
stein field equation of general relativity, one can have the
Friedmann equation [16],

H2(t) ≡
Ṙ2(t)
R2(t)

=
8πGρ(t)

3
−

kc2

R2(t)
, (3)

where H(t) is the Hubble parameter or the expansion rate of
the universe and ρ is the density of matter. The dot sign refers
to the derivative of the quantity with respect to time, Ṙ(t) ≡
dR(t)/dt. Including the cosmological constant, (3) has a term
of Λ/3 on the right hand side.

According to the Schwarzschild field solution of (1) [17],
the metric of spacetime surrounding a spherical body with
mass M appears to be singular at the Schwarzschild radius
rg = 2GM/c2, which divides the space into two disconnected
patches. This indicates that a region of space, where matter
accumulates up to a critical level such that the mass-radius
(M-R) ratio reaches up to M/R = c2/(2G) ' 6.67 × 1026

kg/m, forms a black hole and constructs its own spacetime,
which is singular in space and non-causal in time to the out-
side. Therefore, it is reasonable to suggest or postulate that
a black hole once formed constructs its own spacetime and a
spacetime encloses its own unique black hole [6–7]. In other
words, spacetime and black hole are equivalent. This pos-
tulate of the equivalence between spacetime and black hole
plays a fundamental role in the modeling of the universe;
therefore, we raise it as a new principle of the cosmology
[18]. Without matter, a physical spacetime cannot be formed;
without a spacetime, matter cannot become into existence. As
a moral idea or belief, we cannot prove its correctness math-
ematically, but the truth for the principle of spacetime black
hole equivalence can be justified and validated through ex-
plaining various observations of the universe, such as CMB

and supernova measurements, etc., and overcoming cosmic
problems, such as dark energy and inflation problems, etc., in
accordance with the black hole model of the universe that is
developed on the basis of this principle. In the following sec-
tions, we will demonstrate how the black hole model of the
universe developed on the basis of this new principle to ex-
plain the observations of the universe and overcome the cos-
mic problems and difficulties.

Fig. 2: The hierarchically layered structure of black hole universe.
Inside our spacetime or black hole universe (the region represented
or circled by the solid black lines), there are a number of subspace-
times (the regions represented or circled by the solid color lines),
which are the observed star-like, massive, and supermassive black
holes.

3 Black hole universe

From this principle of spacetime black hole equivalence, we
understand that our universe, because it is constructed in a
4D spacetime, is or wraps a black hole, which is extremely
supermassive and fully expanded. Its big radius and enor-
mous mass can be determined in terms of the measurement
of matter density of the universe as detailed below in the sub-
section 3.1. The inside observed star-like, massive, and super-
massive black holes can be considered as subspacetimes (or
called child universes) of our black hole universe (see Fig. 2).
This hierarchically layered structure of spacetimes and sub-
spacetimes genuinely overcomes the horizon problem, which
was identified to exist in the big bang model of the universe
primarily by Charles Misner in 1960s [19–20] and solved by
Alan Guth in 1980s with the hypothesis of cosmic inflation
[21] according to a field that does not correspond to any phys-
ical field. Therefore, in the black hole model of the universe,
there does not exist the horizon problem at all.

3.1 Mass-radius relation and spacetime equilibrium

The boundary of a spacetime or black hole is determined, ac-
cording to the Schwarzschild solution, by

2GM
c2R

= 1, (4)

which is also the relation of the effective mass and radius of
the universe according to Mach’s principle [22–24] as well as

354 T. X. Zhang. Principle of Spacetime Black Hole Equivalence



Issue 4 (October) PROGRESS IN PHYSICS Volume 12 (2016)

the relation of the observable mass and radius of the universe
according to observations. The mass and radius of a space-
time or black hole satisfy this Mach-Schwarzschild M-R re-
lation. The space curvature constant of a closed spacetime or
black hole is positive, i.e.

k = 1. (5)

It is noted here that the big bang model suggests that the
spacetime of the universe is flat (i.e. k = 0).

The cosmological principle expresses the matter inside a
spacetime or black hole to be uniformly (i.e. isotropically and
homogeneously) distributed in a scale which is sufficiently
large (i.e. comparable rather than too small) in comparison
with respect to the size of the spacetime. Then, the density of
matter in a spacetime or black hole is given by

ρ ≡
M
V

=
3c2

8πGR2 =
3c6

32πG3M2 , (6)

which is inversely proportional to the square of radius or the
square of mass. This square-law density expression (ρR2 =

constant or ρM2 = constant) naturally removes the flatness
problem of the universe, which was first pointed out by Ro-
bert Dicke in the BBU [25–26].

Therefore, the flatness (or fine-tuning) problem does not
exist in the black hole model of the universe. Furthermore, by
measuring the density, we can determine both the radius and
mass of the universe. For the density of the present universe
to be about the critical density ρ0 ∼ ρc ≡ 3H2

0/(8πG), we
have the mass and radius of the present universe to be M0 ∼

8.8×1052 kg (about a half hundred sextillions of solar masses)
and R0 ∼ 1.32 × 1026 m (about forty-three hundred Mpc or
one Hubble length). Here, according to measurements [27–
30], the Hubble constant is chosen as H0 = 70 km/s/Mpc.
Therefore, the present universe is an extremely supermassive
and fully expanded black hole with extremely low density and
weak gravity. The gravitational field at its surface is g0 =

GM0/R2
0 ∼ 3 × 10−10 m/s2 and thus a 100-kg object at the

surface or inside only weighs 3 × 10−8 N or less.
The big bang universe is an isolated system and the to-

tal energy or mass (though unknown) is a constant, so that
the density is inversely proportional to the cube of radius (i.e.
ρR3 = constant). Fig. 3 plots the density of a black hole as a
function of its radius in the unit of kilometers (the solid line)
or a function of the mass in the unit of 0.337 solar masses (the
same line). The dashed line plots the density of the big bang
universe as a function of its radius with mass equal to M0 (for
a bigger mass, the line is shifted to a larger radius). The dot-
ted line marks the density of the present universe (ρ0) and its
intersection with the solid line shows the mass (M0), density
(ρ0), and radius (R0) of the present universe. Three circles
along the solid line represent a star-like black hole with three
solar masses, a supermassive black hole with three billion so-
lar masses, and the present black hole universe with mass M0.
The black hole universe is not an isolated system because its

mass increases as it expands. The density decreases inversely
proportional to the square of the radius (or the mass) of the
black hole universe. Considering that matter can enter but
cannot exit a black hole, we can suggest that the black hole
universe is a semi-open system surrounded by outer space and
matter. The entire space is infinite, existed forever, and iso-
lated. It contains everything without outside and edge. Inside
the entire space, any universe has outside space and matter
and thus cannot be isolated.

Fig. 3: The density of the black hole universe versus its mass and
radius (the solid line). The dotted line refers to ρ = ρ0, so that
the intersection of the solid and dotted lines represents the density,
radius, and mass of the present universe. The dashed line plots the
density of the big bang universe, if it has mass M0, as a function of
the radius.

In the black hole universe model, we have that the effec-
tive and observable radii are the actual radius of the universe
at all time, so that the black hole universe is always all ob-
servable and Mach’s principle holds forever. In the big bang
theory, the ratio between the effective radius and the radius of
the universe increases as the universe expands and will reach
the unity at a point, which is the present time if the universe
has mass M0. Before the point, the effective radius is less than
the radius of the universe. While, after the point, the effective
radius will be greater than the radius of the universe, at which
Mach’s principle does not hold, so that other physical laws
neither hold.

According to GR and the stellar physics, a star with 20
or more solar masses, at the end of its life, will form a black
hole after a supernova explosion [31]. Therefore, the black
hole model of the universe does not need a big bang. The
universe can be considered to originate from a star-like black
hole (child universe) with several solar masses, which grows
through a supermassive black hole with billion solar masses
to the present universe with hundred-sextillion solar masses
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by accreting ambient matter and merging with other black
holes. Which one was the first or initial black hole that the
universe has grown up from is not critical or important to the
present universe because the mass of the original one only
takes one part of a sextillion in the present universe. This ori-
gin of the universe from black holes not only overcomes the
fine-tuning problem but also conquer the difficulty of bang-
ing the universe out from nothing that violates the law of
conservation of energy. This resolves the big bang singu-
larity problem. In addition, if the universe originated from
a star-like black hole, it would not be hot enough to create a
magnetic monopole in any time period, thus solving the mag-
netic monopole problem. The recent discovery of gravita-
tional waves confirms the existence and merger of black holes
[32] and thus support this black hole model of the universe.

Substituting the Mach-Schwarzschild M-R relation (4) (or
density (6)) and positive space curvature constant (5) into the
Friedmann equation (3), we have Ṙ = 0 and Ṁ = 0 – a zero
rate of change in radius or mass. This indicates that a space-
time or black hole is static [7,33] when it neither accretes
matter from the outside nor merges with other black holes. In
the static state, the spacetime reaches equilibrium because the
positive curvature balances the gravity entirely. A spacetime
with the curvature radius R can hold the matter with mass
equal to c2R/(2G) in equilibrium. Hawking [34] theorized
the surface radiation of a static black hole with the quantum
effect. For a star-like or more massive black hole, the Hawk-
ing radiation is negligibly weak and ultra-cold, which leads
to the entropy of a static black hole to be 20 orders higher
than its massive parent star. Including the cosmological con-
stant, (3) determines Λ in the static state as Λ = 3H2, which
is ∼ 1.55 × 10−35 s−2.

3.2 Expansion and acceleration of spacetime

When a spacetime or black hole accretes its ambient matter
or merges with other black holes, it becomes dynamic and
expands. The rate of expansion or Hubble parameter is given
by

H =
Ṙ
R

=
Ṁ
M
, (7)

and the deceleration parameter is given by

q = −
RR̈
Ṙ2

= −
MM̈
Ṁ2

. (8)

Here, the double dot symbol refers to the second order deriva-
tive of the parameter with respect to time. A spacetime or
black hole expands if it gains matter, i.e. Ṁ > 0, and ac-
celerates if it gains matter in an increasing rate, i.e. M̈ > 0.
The expansion of spacetime is physical and outward with-
out violating Einstein’s light-speed upper limit and conserva-
tion of energy. A spacetime or black hole grows its space as
it accretes matter by taking the outside space rather than by
stretching the space of itself geometrically.

Fig. 4: A simple sketch of the innermost three layers of the entire
space that is structured hierarchically. The black circle represents the
mother universe. Our black hole universe is coded as red, in which
three child universes (i.e. star-like or supermassive black holes) were
drawn. Parallel to our universe, there are sister universes. Here two
adult sister universes (blue and green circles) and three little sister
universes (brown circles). The adult sister universes have also their
child or baby universes, but the little sister universes are too young
to have their babies.

For a spacetime or black hole including our black hole
universe to expand, it must have an outside, where matter is
available for accretion. The black hole model of the universe
suggests that the entire space is structured with layers, hierar-
chically and family-like. Fig. 4 sketches the innermost three
layers of the black hole universe including the mother uni-
verse (black circle), our universe itself (red circle), and child
or baby universes (i.e. star-like or supermassive black holes).
We have only drawn three child universes (yellow circles).
We have also drawn two adult sister universes (blue and green
circles) and three little sister universes (brown circles), which
are universes parallel to our black hole universe. The adult
sister universes have also their child universes. There should
have a number of child universes and may also have many
sister universes. A child universe grows by accreting mate-
rial from its outside or by merging with other child universes.
This universe grows up by accreting material from the mother
universe or by merging with sister universes. The mother uni-
verse will also grow up if it has outside; otherwise, it is static.
If the whole space is finite, then the number of layers is fi-
nite. Otherwise, it has infinite layers and the outermost layer
corresponds to the limit of zero Kelvin for the absolute tem-
perature, zero for the density, and infinite for the radius and
mass.

From the data of type Ia supernova measurements, Daly
et al. obtained the deceleration parameter of the present uni-
verse to be q0 ∼ −0.48 for the flat spacetime (for a closed
spacetime, q0 is smaller, e.g. q0 = −0.6) [35]. Riess et al.
and Perlmutter et al. explained the acceleration of the uni-
verse by suggesting the big bang universe to be dominated by
dark energy up to about ∼ 73% [36–37]. In the black hole
universe model, however, the universe accelerates because it
inhales the outside matter in an increasing rate, i.e. a positive
M̈ > 0. To have q0 = −0.48, the present black hole universe
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only needs to inhale the outside matter in an increasing rate
at M̈0 = −q0M0H2

0 ∼ 2.2 × 1017 kg/s2 (or about 220 solar
masses per year square).

Fig. 5: Mass of black hole universe versus time with various decel-
eration parameters q = −4,−2,−0.6, 0, 1, 3.

For a constant acceleration expansion universe, the time-
dependent mass can be analytically solved from (8) as [10],

M
M0

=
[
(q + 1)H0t + 1

]1/(q+1) . (9)

To quantitatively see how the mass M(t) varies with time and
depends on the deceleration parameter q, we plot in Fig. 5
according to (9) the mass as a function of time with various
values of q = −4,−2,−0.6, 0, 1, 3. The lines with negative
q are concave upward, which show that the mass increases in
an increasing rate and the universe accelerates. The lines with
positive q are concave downward, which show that the mass
increases in a decreasing rate and the universe decelerates.
For q = 0, the black hole universe accretes matter or increases
its mass in a constant rate and thus expands uniformly.

The cosmological redshift of light from a source in an
expanding spacetime is determined by

1 + Z =
R0

R
=

M0

M
. (10)

The luminosity distance of the light source depends on the
redshift as [10,38–39],

dL = (1 + Z)M0 sin
[∫ 0

t

cdt
M

]
= (1 + Z)R0 sin

[
c3

2GM0H0

1 − (1 + Z)−q

q

]
.

(11)

Here we have applied (9) and (10) to complete the integration.
Eq. (11) reduces to the Hubble law, H0dL = cZ, at Z � 1 [40]

and perfectly explains the type Ia supernova measurements if
the universe accretes matter in an increasing rate of q = −0.6
[34]) or M̈ ∼ 3 × 1017 kg/s2 in average [10].

Fig. 6: Luminosity distance-redshift relation of type Ia supernovae.
Blue dots are measurements credited by the Union2 compilation of
580 SNeIa data from Supernova Cosmology Project [41–42]. Red
line is analytical results from this study with q = −0.6. The distance
modulus is plotted as a function of the cosmological redshift.

Fig. 6 plots the luminosity distance-redshift relation (red
line) along with the type Ia supernova measurements (blue
dots), which are credited by the Union 2.1 compilation of
580 SNIA data from Supernova Cosmology Project [41–42].
In this plot the Hubble constant is chosen to be H0 = 70
km/s/Mpc and the deceleration parameter is chosen to be q =

−0.6. The distance modulus, which is defined by µ = 5 log10
dL − 5 with dL in parsecs, is plotted as a function of redshift.
The chi-square statistic is very close to unity [10]. Therefore,
the black hole universe model can perfectly explain the mea-
surements of type Ia supernovae without dark energy, which
is needed to take ∼ 73% in the big bang universe [36–37].

3.3 Temperature of spacetime and background radia-
tion

The temperature inside a spacetime or black hole depends on
the state and density of matter enclosed and hence depends
on the radius or mass. The stellar physics has shown that a
neutron star can reach trillions of Kelvin at the moment of
its birth and then quickly cools down to hundred millions of
Kelvin due to strong radiation and neutrino emissions. Since
it is compact as a neutron star, a star-like black hole should
also initially reach trillions of Kelvin but statically holds this
hotness due to lack of significant emissions to the outside
(the Hawking radiation is negligible). The thermal radiation
inside a spacetime or black hole is the blackbody radiation
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governed by the Planck law, from which one can derive the to-
tal energy of blackbody radiation inside a spacetime or black
hole with radius R and temperature T to be

Uγ = αR3T 4. (12)

Here, the constant α is given by, α ≡ 32π6k4/(45h3c3) ∼
3.2×−15 J/m3/K4, with k the Boltzmann constant and h the
Planck constant.

When a spacetime or black hole accretes matter and radi-
ation from its outside, it becomes dynamic and expands. Con-
sidering that the gain of matter and radiation inside is equal
to the loss of matter and radiation outside, we have [8]

dT
dR

= −
3T
4R

1 − (
Tp

T

)4 , (13)

where T is the temperature inside and Tp is the temperature
outside. This equation governs the thermal history of the
black hole universe from its origin as a star-like black hole
with several solar masses and growing through a supermas-
sive black hole with billions of solar masses to the present
state with hundred sextillions of solar masses. Since the tem-
perature outside is always less than that inside, Tp < T , the
temperature of a spacetime or black hole decreases with its ra-
dius. As the black hole universe grows in size from a star-like
black hole to the present state, its temperature decreases from
trillions of Kelvin to about 3 K [8]. The cosmic microwave
background radiation (CMB) is explained as the blackbody
radiation of the black hole universe – an ideal blackbody –
rather than the fireball leftover of the big bang universe.

Considering the black hole universe to decrease its rela-
tive temperature in a rate slightly faster than the mother uni-
verse, we have [8]

Tp = aT b, or Tp/T = aT b−1 (14)

Here b is a constant slightly less than 1 and a can be derived
from b according to the temperature and radius of the present
universe (T0 and R0). Then, (13) can be analytically solved as

T = R−3/4
(
a4R3−3b + T 4−4b

s R3−3b
s

)1/(4−4b)
, (15)

where the constant a is given by

a =

T 4−4b
0 −

(
Rs

R0

)3−3b1/4

. (16)

Choosing b appropriately (or slightly less than 1), we can
completely determine the thermal history of the black hole
universe that evolved from a hot star-like black hole with tem-
perature Ts and radius Rs to the present universe with tem-
perature T0 and radius R0. In Fig. 7, the temperature of the
black hole universe is plotted as a function of the universe
radius with b = 0.93. Here we have chosen T0 = 2.725 K,
R0 = 1.32 × 1026 m, Rs = 8.9 km, and Ts = 1012 K.

Fig. 7: The possible thermal history of the black hole universe. A
hot star-like black hole with Ts = 1012 K expands to the size of the
present universe and cools down to ∼ 2.725 K. The temperature line
is curved by concaving upward and approaches ∼ 2.725 K at the
present time as the black hole universe expands to the present size.

It is seen that the temperature line is concave upward and
approaches ∼ 2.725 K as the black hole universe expands to
the present size. The initial temperature of the star-like black
hole Ts is not critical to the present universe. The reason is be-
cause most matter and radiation are from the mother universe.
This reason also explains why all other physical properties of
the star-like black hole, including its size (or mass), angular
momentum, and charge, and the evolution of the early uni-
verse are not critical to the present universe. Furthermore, the
early process of material accretion and black hole mergers do
not have significant leftover in the present universe.

The above explanation of the CMB of this universe re-
quires a decreasing temperature outside, i.e. an expanding
mother universe. To have an expanding mother universe and
explain its CMB with a decreasing temperature, there needs
an expanding grandmother universe, and so forth. Therefore,
the entire space is eternal and infinite, containing everything
with infinite layers (Fig. 8). Nothing can be outside the en-
tire space. The star-like or supermassive black holes called
child universes belong to the innermost layer. They are sub-
spacetimes of our black hole universe (the second innermost
layer) that we live in. Our black hole universe is a subspace-
time of the mother universe (the third innermost layer). The
mother universe may contain a great number of child uni-
verses that are parallel to (and hence sisters of) our black hole
universe. Mathematically, we can use an infinite large fam-
ily tree that contains infinite generations or an infinite large
set that contains infinite subsets to represent the relationships
among different generations of black hole universes. The out-
ermost layer called grand universe is infinitely large in size,
mass, and entropy but has zero limits for both the density and
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absolute temperature.

Fig. 8: The entire space with infinite layers or subspacetimess [8].
The bottom layer is a child universe or an empty spacetime. The
child universe is a subspacetime of the universe in which we live in.
Similarly, our universe is a subspacetime of the mother universe, and
so on. The top layer is the entire space of all subspacetimes.

Each layer or black hole universe tends to absorb its out-
side matter and radiation and takes its outside space and ex-
pands outward. When our black hole universe expands to be
one as large as the mother universe, the inside star-like and su-
permassive black holes will have merged and grown up into
a black hole universe that is similar to the present one. This
process is irreversible with neither a beginning nor an end.
The evolution of black hole universe is iterative – beginning-
less and endless. When one black hole universe is expanded
out, a new similar black hole universe is formed from inside
child universes [7]. The black hole model of the universe is
complete because it can address our universe not only at the
present as well as its inside, but also in the past and future as
well as its outside.

The total radiation energy inside the black hole universe
is plotted in Fig. 9 as a function of the radius. It is seen that
a young black hole universe with radius less than 1015 m or
mass less than some hundred billions of solar masses remains
the total radiation energy as a constant. This characteristic
allows us to explain the activities and emissions of dynamic
star-like and supermassive black holes observed in the uni-
verse.

3.4 Emissions of dynamic black holes

For a star-like black hole with several solar masses to grow
through a supermassive black hole with billion solar masses,
the temperature outside is negligibly lower than the temper-
ature inside, i.e. Tp � T . In this case, (13) can be solved
as

R3T 4 = Constant, (17)

which implies that the total radiation energy inside a space-
time or black hole with mass about billions of solar masses or

Fig. 9: Radiation energy of the black hole universe. As a hot star-
like black hole with Ts = 1012 K expands to the size of the present
universe and cools down to ∼ 2.725 K, its radiation energy first re-
mains as a constant and then rapidly increases with radius when it
grows into a supermassive black hole with radius greater than about
thousand billions of kilometers or mass greater than about hundred
billions of solar masses.

less remains the same amount as shown in Fig. 9. Therefore,
accreting outside matter and radiation or merging with other
black holes into a single one, a black hole not only becomes
dynamic and expands but also intensively emits its inside hot
and hence high-frequency blackbody radiation out of its hori-
zon, which has been disturbed or broken by the accretion or
merger in order for the total energy of its inside radiation to
remain as a constant.

This emission mechanism of dynamic black holes can
self-consistently explain the observed gamma ray bursts, X-
ray flares from galactic centers, and quasar emissions as emis-
sions of dynamic star-like, massive, and supermassive black
holes, respectively (the details on these have been described
in [9,11–12]). Dynamic star-like black holes with trillions
of Kelvin radiate gamma rays and produce gamma ray bursts,
while dynamic massive or supermassive black holes with mil-
lions to billions of Kelvin radiate X-rays such as X-ray emis-
sions from quasars and X-ray flares from Sgr A* (a massive
black hole at the Milky Way center). The energetic events as-
sociated with black holes are activities of child universes. The
author has shown that a child universe with radius R & 1018

m or mass M & 3 × 1014 solar masses does not emit [9], but
can strongly attract and accrete its ambient matter including
galaxies, which may help us to understand great attractors ob-
served with thousand trillions of solar masses, e.g. the Norma
Cluster. On the other hand, quasars if electrically charged
may have a significant electric redshift as illustrated by [43].
The merger of star-like black holes if missing mass may re-
lease significant gravitational waves as recently detected by
LIGO [32].
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4 Discussion and conclusions

In addition to above issues that have been addressed in de-
tails in the early papers [7–12,39], the black hole model of
the universe can also self-consistently illustrate various other
problems of the universe such as why the redshifts of galax-
ies are quantized, how the galaxies and clusters are formed,
why the expansion of the universe can be anisotropic, how the
elements are synthesized, why the universe increases its en-
tropy extremely without significantly increasing its disorder,
how the heavy-ion enriched objects are formed in extremely
deep fields or the young universe, what the great attractor is,
why the voids exist, and so on. Preliminary results on some
of them have been presented in a sequence of AAS (213rd-
215th, 217th, 219th-224th, 228th) meetings and the details on
all these problems will be addressed in future in full length
papers.

The BHU stands on three bases, which are (1) GR of de-
scribing matter effect on spacetime, (2) CP of spacetime ho-
mogeneity and isotropy, and (3) SBHEP of spacetime black
hole equivalence. We have not yet explored the quantum ef-
fect on this model to pop up baby universes and holes. In this
model, baby or child universes are star-like and supermassive
black holes, which are formed from stars and galaxies. To
appropriately explain CMB, the entire space is favored to be
infinite and eternal and includes infinite universes, which are
layered hierarchically and evolved iteratively. Due to gravity
and Jeans collapse criterion, matter forms stars, which then, if
massive, end as black holes or child universes. A black hole,
once formed, will grow and expand by accreting its ambient
matter and merging with other black holes. A galaxy (usu-
ally including a massive black hole at its center), once most
stars run out their fuels and died as dwarfs, neutron stars, and
black holes, will eventually form a supermassive black hole
(or quasar) by accreting all galactic matter and objects, and
merging all stellar black holes into the massive black hole at
the center. LIGO recently discovered the gravitational wave
that confirms the existence of black holes and their merger
[32]. A black hole universe can be considered to be originated
or born from a star-like black hole (or child universe) with-
out a big bang singularity, flatness, horizon, and magnetic
monopole problems. It gradually grows or expands by accret-
ing outside matter or merging with other black holes without
dark energy and inflation problems. Each star-like black hole
or supermassive black hole is usually rotating with significant
angular momentum. But when many randomly rotating black
holes merge to form a large universe like our present universe,
the net angular velocity may be negligibly small. Inside a
fully expanded or grown universe, objects formed from the
collapse of matter (e.g. planets, stars, galaxies, clusters, etc.)
can rotate globally. Gamow speculated that the rotations of
these objects might be due to the cosmic rotation [44] and
Godel obtained a cosmological solution of Einstein’s field
equation for rotating universes [45]. The black hole model

of the universe is a model with multiverses (infinite or un-
countable), which are hierarchically layered. It is different
from other models of multiverse such that the many-world
(or universes) interpretation of quantum physics proposed by
[46] and the branes model of multiverse that suggested the
visible 4D spacetime universe to be restricted inside a higher-
dimensional space [47].

The three bases of BHU (GR, CP, and SBHEP) with well-
developed physics theories and laws such as the conservation
of energy, Planck’s radiation, and so on can derive some laws
or regularities of the BHU such as the spacetime equilibrium,
the spacetime expansion and acceleration, the conservation
of blackbody radiation, the increase of entropy, and so on
that regulate and govern the development and dynamics of
black hole universes. These laws or regularities can help us
to explain and describe the origin, structure, expansion, evo-
lution, acceleration of the universe, CMB, quasar, Sgr A* X-
ray flare, etc. and meantime to overcome problems such as
the horizon, flatness, monopole, dark matter, dark energy, low
initial entropy, redshift quantization, big bang, old objects in
the young universe, entropy, and so on. The BHU does not
have unknowns. Both the charge and angular momentum are
zero (Q = 0 and J = 0). The mass M is the only or key pa-
rameter. The radius or scale factor R, the temperature T , and
the entropy S are derived from M according to the relations
given by (4), (13), and entropy equations of thermodynamics.
Measuring density tells us the radius R, and thus T and S .
Measuring the Hubble parameter H tells the rate of change in
Ṁ, and thus Ṙ, Ṫ , Ṡ . Measuring the deceleration parameter q
tells us the double rate of change in mass M̈, and thus radius
R̈, temperature T̈ , entropy S̈ . Measuring CMB, supernovae,
etc. also tells us R and thus M, T , S , so that finds how the
universe expands, e.g. acceleration or not.

As a consequence, installing one more leg (or fundamen-
tal) – the Principle of Spacetime Black Hole Equivalence – to
the cosmology, we can attempt to fully explain the universe
and simply overcome the difficulties according to the well-
developed physics without needing to make other hypothe-
ses such as inflation, dark energy, and so on. The black hole
model of the universe is robust by only needing one stroke
(the single postulate or principle SBHEP) rather than rely-
ing on an increasing number of hypothetical entities (HEs) as
done in the big bang model [5] to explain the universe and
solve the cosmic problems.
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Attempt to Replicate Cahill’s Quantum Gravity Experiment to Measure
Absolute Velocity

Jay R. Seaver

Energy Matters Foundation, PO BOX 2588, Longmont, CO 80502, USA
E-mail:jay@energy-matters.org

In December 2015 in a laboratory in Longmont, Colorado, USA, I attempted to repeat
the experiments of Reginald T. Cahill for detecting dynamical space by using reverse
biased Zener diodes as quantum tunnelling devices whose tunnelling currents are mod-
ulated by the motion of dynamical space relative to the earth. I successfully produced
the correlated signals of the same frequency and amplitude as Cahill has produced in
his laboratory in Adelaide, Australia. But I determined that rather than being distur-
bances in space, these signals were merely transient responses to local electromagnetic
disturbances which appeared to be correlated due to the identical natural frequencies of
the two detectors. This paper is a report on those experiments.

1 Introduction

Recent papers by Cahill [1–3] discuss gravity wave detection
using reverse-biased Zener diodes as “quantum gravitational
wave detectors”. In December 2015, in Longmont, Colorado,
I built these quantum wave detectors using the identical parts
and schematic as Cahill in order to confirm his measurements.
I consulted with Cahill via email to make sure they were ex-
actly as he designed them.

Fig. 1: Inside of Quantum Detector used in experiment.

Figure 1 shows a photograph of the inside one of the quan-
tum detectors used in the experiment. It consists of a parallel
connected array of three 3.0 V 1N4728 Zener diodes serially
connected to a 1.5 V battery and a 10 kOhm sense resistor.
The voltage across the sense resistor goes through a BNC
connector and a 3 ft. RG58 coax cable to the AC-coupled
input of a LeCroy 1 GHz bandwidth Digital Sampling Oscil-
loscope (DSO). The schematic and a picture of the inside of
Cahill’s detector can be seen in Figure 1 of [1].

Figure 2 shows the detector after it has been sealed up
inside an aluminum case and connected to the coax cable that
goes to the DSO input.

In my correspondence with Cahill in December 2015, he
was kind enough to take some additional measurements and
send me the oscilloscope pictures of the correlated quantum
waves he is detecting in his laboratory in Adalaide, Australia.

Fig. 2: Enclosed Quantum Detector used in experiment.

I was able to capture nearly identical correlated signals in my
laboratory in Longmont, Colorado. However, upon further
investigation of these signals I determined that they were of
local origin and that the frequency of the waveforms was tied
to the resonant frequency of the detector-cable system. I have
concluded that the “correlation” Cahill sees is only an ap-
parent correlation because the circuits of the two detectors,
when excited by an external disturbance, produce nearly the
same transient response due to their being nearly identical
circuits with nearly the same natural frequency. An external
disturbance, such as a nearby static discharge is required to
excite the transient response. The correlated signals start out
in phase but slip with time because the two resonant frequen-
cies are not exactly the same. The measured phase difference
is simply a function of how much time elapses from the mo-
ment of excitation until the scope triggers and captures the
waveforms.

This paper documents the experiments I performed and
my reasoning for coming to the above conclusions.

2 Cahill’s data

Figures 3 and 4 show data from Dec. 13 and 14, 2015, taken
by Cahill in his laboratory in Adelaide, Australia, and sent
to me via email as an example of what the current fluctua-
tions from the gravity waves look like for collocated detec-
tors. Similar pictures of gravity waves in his detectors can
be seen in [1–3]. Notice that the frequencies in these two
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Fig. 3: Cahill Dec 13 Typical Data with detectors collocated.

Fig. 4: Cahill Dec 14 Typical Data with detectors collocated.

plots are near 200 MHz and appear almost like a tone super-
imposed on noise. This seemed odd to me given that Cahill
in his papers says that the frequency spectrum of the fluctu-
ations in the detectors has a 1/f amplitude relationship. The
reason the tone seen in his data does not show up in the fre-
quency spectrum plots, is because they occur so infrequently.
Most of the time the current fluctuations are at very small qui-
escent levels that look like random, uncorrelated noise. This
quiescent current is disturbed at random periods by bursts of
energy at mostly a single frequency, which are the waveforms
captured in Cahill’s pictures. Because these energy bursts are
short with long periods of time between them, they have little
effect on the Fourier transform over a wide frequency band
— hence the 1/f relationship without evidence of these tones.

3 My experimental data

Figure 5 is a photo of my oscilloscope on Dec. 11, 2015,
showing the quiescent signal from the detectors. Notice that
there is little, if any, evidence of correlation between the two
waveforms. The scale is 2 mV per division vertically and
10 ns per division horizontally. Notice also that the peak-to-
peak fluctuations are typically less than 1 mV.

On December 11, when I took the picture in Figure 5, I
was unable to detect any signals except the quiescent current.

Fig. 5: Quiescent waveforms of collocated detectors.

Fig. 6: Burst of energy from collocated detectors in my laboratory
on Dec. 21, 2015.

I tried various orientations of the detectors but gave up after
a few hours of searching. After communicating with Cahill
via email, he sent me the pictures of Figures 3 and 4 showing
me what he was seeing in his laboratory. I then went back
into my laboratory on Dec 21 and set up my oscilloscope to
trigger on any signals above 1.5 mV. After several minutes, I
suddenly got a large burst of energy at about 200 MHz just
like Cahill. This is shown in Figure 6.

The fundamental frequency of this waveform is highly
correlated between the two detectors. However, I noticed a
subtle difference between the two waveforms that should not
be there if they are truly being modulated by the same source.
The phase of the two waveforms is nearly perfectly aligned on
the left side of the screen but it is drifting apart as one moves
towards the right side of the screen. This is what one would
see if two different, but nearly identical frequencies were ob-
served. It is not what one would see from a single modulating
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Fig. 7: Another captured waveform from collocated detectors in my
laboratory on Dec. 21, 2015.

source observed on two different detectors.
I set the scope up to capture another signal and got the

waveform shown in Figure 7. Notice again the same effect.
The phase is aligned on the left and is slowly drifting apart
as it moves to the right. If collocated detectors were being
excited by the exact same gravity waves, the phase between
them would not drift. At this point I realized that something
was not right. My first suspicion was that my two “identical”
detectors were not quite identical, but had natural frequencies
in their circuits (including the cables) that were not quite the
same. They were being excited by some external signal, but
the actual response I was seeing was not a gravity wave, but
simply the transient response of each of these circuits as they
resonated at their not-quite-equal natural frequencies.

To test this theory, I replaced the cable on one of the de-
tectors with a longer cable. I now had a 3 ft. coax cable on the
detector going to channel 3 (blue) of the scope and a 5 ft. ca-
ble on channel 2 (red). The result was the waveforms shown
in Figure 8. This shows very clearly that the red waveform
has a fundamental frequency significantly lower than the blue
waveform. I had proof positive that these 200 MHz energy
bursts were not from 200 MHz gravity waves.

But there was still the question of what caused the excita-
tion of the circuits to start with. Could it be Cahill’s gravity
waves that provide the initial excitation? Or was the source
of local origin? My next experiment was to separate the de-
tectors by a few millimeters to see if the phases of the two
waveforms would start out with an initial phase difference.
This is what would happen if they were being exited by pass-
ing through Cahill’s gravity waves due to the velocity of space
past the earth. Cahill asserts that the velocity of the earth is
about 500 km/sec which represents about 2 ns/mm in phase
shift if the detectors are directly aligned with this velocity. If

Fig. 8: Waveforms from collocated detectors with different cable
lengths.

they are not aligned, an even larger phase shift per mm would
be observed. I saw no change in the phase relationship be-
tween the two signals as the detectors were moved relative to
each other. The waveforms remained in phase at the begin-
ning and drifted with time. This indicates an initial excitation
disturbance moving at the velocity of light — not 500 km/sec.

In [4], Vrba noted that the battery, diode and resistor cir-
cuit form an electromagnetic wave sensing loop having a sub-
stantial cross section. Although the circuit is enclosed inside
an aluminum box that shields electric fields, it is not a perfect
shield. It will highly attenuate an electromagnetic wave, but
with the oscilloscope set to its most sensitive level of 2 mV
per division, even an attenuated signal could still be large
enough to be detected.∗

As I was pondering how to identify the source of the ini-
tial excitation, I noticed something very interesting. My oscil-
loscope would not trigger unless there were people in the lab-
oratory. If everyone left and there was no nearby human ac-
tivity, the signals would remain at their quiescent (< 1.4 mV)
level and the scope would never trigger. But once nearby hu-
man activity resumed the scope would begin triggering again
every few minutes. It didn’t take long to find a correlation be-
tween static discharges from human activity and the energy
bursts in the scope. By experimenting, I found that I could
generate a frequency burst that would trigger the scope from
as far away as 20 meters by shuffling my shoes on the car-

∗Although not reported in this paper, I designed a second experiment
using an architecture similar to Vrba’s. It included 200× amplification with
a bandwidth of 10 MHz to detect even smaller signals. The resonant distur-
bances disappeared, which left only the random noise. Visually examining
these waveforms, I saw no evidence of correlated signals. The raw data files
are available upon request at the email address given above for anyone de-
siring to perform a more sophisticated search for correlation between the
waveforms.
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Fig. 9: Waveforms from collocated detectors with battery bypassed
with 1 nF capacitor.

pet and touching something metallic. The waveforms looked
identical in amplitude and frequency to those above.

As an additional proof that the detected frequency was en-
tirely determined by the circuit, I made 2 modifications to the
circuit. First, I put a 1 nF capacitor across the battery to pro-
vide a low impedance path for high frequencies. It caused the
frequency of the transient response to drop to below 50 MHz
as shown in Figure 9. I then removed the quantum detector
entirely, and just left the two 3-foot, collocated coax cables
disconnected. The waveforms are shown in Figure 10. These
results further strengthen the argument that the frequency of
the waveforms are determined entirely by the circuit itself.

4 Conclusions

After attempting to repeat the gravity wave detection experi-
ments of Cahill using reverse biased Zener diodes as quantum
tunnelling devices, I found no evidence of current fluctua-
tions due to anything but normal random noise or local dis-
turbances followed by a transient oscillation at the natural fre-
quency of the detector circuits. The so-called correlation of
the signals between detectors was merely an apparent corre-
lation due to the fact that the circuits have natural frequencies
that are nearly identical. This was proven by changing the
natural frequencies of the circuits and showing that the fre-
quency of the “gravity waves” changed to the new frequency.

The initial excitation of the circuits was shown to be from
local sources — not disturbances in “dynamical space” as
proposed by Cahill. The detectors exhibited no evidence of
being excited by anything but uncorrelated random noise un-
less nearby human activity was generating static discharges.
No evidence of any correlated signals between detectors was
ever seen at any frequency other than the natural frequency
of the detector circuits (superimposed on noise and/or reflec-

Fig. 10: Waveforms from collocated disconnected coax cables.

tions in the cables).
Whether Cahill has ever detected disturbances due to dy-

namical space, I cannot say. But I am satisfied that in Long-
mont, Colorado in December of 2015, there was no evidence
that dynamical space was detectable using the Zener diode
circuit Cahill has proposed in his papers.
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In our publication “Vacuum Background field in General Relativity” (Progress in
Physics, 2016, v. 12, issue 4, 313–317) we introduced a kind of “relic” field perma-
nently filling the empty space-time. This proved to be a necessary ingredient to for-
mulate a true vector describing the gravitational field arising from matter, in contrast to
the awkward pseudo-tensor usually suggested to ensure the conservation of the energy-
momentum in the field equations. In this short paper, we give this field a mathematical
description in terms of geodesics.

The background field that persists in vacuum devoid of any
matter or energy, finds a physical meaning if we consider
the Landau-Raychaudhuri equation for a congruence of non-
intersecting timelike unit vectorial field X, (XaXa = 1), i.e.:

Ra
b XaXb = −◦Xa

;a − ωabω
ab + σabσ

ab + ◦θ +
1
3
θ2, (1)

where ◦ means differentiation with respect to proper time τ.
In the scalar ζ which is the Lagrangian density of the vacuum
background field

ζ =
√−g ∇a κ

a (2)

we set up
∇a κ

a = θ2, (3)

where θ is the space time volume expansion characterizing
this background field through

θ = Xa
;a = habθab (4)

with the expansion tensor θab = hc
a hd

b X(c;d) (hac = gac − Xac is
the projection tensor).

The formula of X(c;d) can be regarded as measuring the
rate of change of the space-time 4-volume, i.e. either expan-
sion if positive, or contraction if negative.

The form (3) has been chosen so as to preserve the in-
tegrity of the gravity tensor equation irrespective of the sign
of θ.

In our case (absence of energy/matter), the background
field obviously follows a contraction process (negative expan-
sion) of space-time, and the Landau-Raychaudhuri reduces to

◦θ = Ra
b XaXb − σabσ

ab − 1
3
θ2 < 0 (5)

(since the vorticity tensor ωab induces expansion, while the
shear tensor σab induces contraction and the geodesic equa-
tion ◦Xa

;a is zero).
Ra

b XaXb (sometimes referred to as the Raychaudhuri
scalar) is always positive ensuring that the Strong Energy

Condition (SEC) is not violated when energy/matter is there.
Therefore, we are left with the inequality

◦θ ⩽
1
3
θ2. (6)

Integrating it with respect to the proper time τ yields

θ−1 ⩾ θ−1
1 +

1
3
τ , (7)

where θ1 is the initial value which can be positive to start
with, but very soon after the short expansion, it is followed
by re-collapse. The mathematical fate of (timelike) geodesics
is a final focusing to a caustic (θ → −∞) after a finite proper
time of at most

τ ⩽
3
θ1

(8)

after the measurement of the initial value.
Such a state is called geodesic incompleteness which is a

notion introduced by Hawking-Penrose, to describe (or not !)
a geodesics path of observers through space-time that can
only be extended for a finite time as measured by an observer
travelling along one.

Presumably, at the end of the geodesic, the observer has
fallen into a “kink” or encountered some other pathology at
which the laws of General Relativity breakdown.

As Landau pointed out, in a synchronous comoving frame
of reference attached to a homogeneous fluid, such a singu-
larity can be removed by the introduction of a pressure which
tends to substantiate our space-time contraction hypothesis.

All these contribute to our impossibility to give a full de-
scription of the vacuum background field. In a sense, this
marks the lowest horizon level of the space-time.

Submitted on August 31, 2016 / Accepted on September 30, 2016

References
1. Marquet P. Vacuum background field in General Relativity. Progress in

Physics, 2016, v. 12, issue 4, 313–317.

366 Patrick Marquet. Some Insights on the Nature of the Vacuum Background Field in General Relativity



Issue 4 (October) PROGRESS IN PHYSICS Volume 12 (2016)

2. Kramer D., Stephani H., Hertl E., MacCallum M. Exact Solutions of
Einstein’s Field Equations. Cambridge University Press, Cambridge,
1979.

3. Marquet P. The generalized warp drive concept in the EGR theory.
The Abraham Zelmanov Journal, 2009, v. 2, 261–287.

4. Raychaudhuri A.K. Relativistic cosmology. I. Physical Review, 1955,
v. 90, issue 4, 1123–1126.

5. Dadhich N. Derivation of the Raychaudhuri equation. arXiv: gr-qc/
0511123v2.

6. Natario J. Relativity and singularities — a short introduction for math-
ematicians. arXiv: math.DG/0603190.

7. Kar S., SenGupta S. The Raychaudhuri equations: a brief review. arXiv:
gr-qc/0611123v1.

Patrick Marquet. Some Insights on the Nature of the Vacuum Background Field in General Relativity 367



Volume 12 (2016) PROGRESS IN PHYSICS Issue 4 (October)

Conservation Laws and Energy Budget in a Static Universe

Yuri Heymann

3 rue Chandieu, 1202 Geneva, Switzerland. E-mail: y.heymann@yahoo.com

The universe is characterized by large concentrations of energy contained in small,
dense areas such as galaxies, which radiate energy towards the surrounding space. How-
ever, no current theory balances the loss of energy of galaxies, a requirement for a con-
servative universe. This study is an investigation of the physics nature might use to
maintain the energy differential between its dense parts and the vacuum. We propose
time contraction as a principle to maintain this energy differential. Time contraction has
the following effects: photons lose energy, while masses gain potential energy and lose
kinetic energy. From the virial theorem, which applies to a system of bodies, we find
that the net energy resulting from the gain in potential energy and the loss in kinetic en-
ergy remains unchanged, meaning that the orbitals of stars in galaxies remain unaffected
by time contraction. However, each object in a galaxy has an internal potential energy
leading to a surplus of energy within the object. This internal energy surplus should
balance with the energy radiated at the level of a galaxy. We illustrate this principle
with a calculation of the energy balance of the Milky Way.

1 Introduction

We are in a universe governed by energy fluxes and exchanges
either in the form of waves or particles in motion. Energy
flows in space allow life to exist. The universe is character-
ized by vast concentrations of energy confined in small spaces
such as galaxies in the immensity of a surrounding vacuum.
Supermassive black holes at the center of galaxies contain a
large portion of this energy. However, we do not understand
how such energy segregation came into existence. Most of
the energy in the universe radiates outward from these dense
galaxies. The supermassive black holes at the center of galax-
ies may be the cosmic embryos that give rise to the birth of the
stars and planets. Massive particles and atoms are attracted
by gravitation to the dense points of the universe, a process
which maintains the segregation between the vacuum and the
dense parts. Because galaxies radiate a large amount of en-
ergy, they appear to have energy deficits. Here we investigate
the physics of how the energy difference between the vacuum
and the dense parts of the universe is maintained.

Many profound questions related to this issue have not yet
been answered. Most notably, how did the galaxies come into
existence? Do the galaxies have a life time? About 90% of
galaxies are dwarf galaxies, and most are elliptical or lentic-
ular in shape. Large spiral galaxies such as the Milky Way
are the minority. What are the conditions for galaxies to form
stars? For a galaxy to form a spiral it must rotate rapidly. We
have observed powerful jets of particles ejected from galaxy
central supermassive black holes in the direction of the axis of
rotation of the galaxy. These jets, together with a vortex in the
black hole, supposedly induce the galaxy to rotate, and then
form arms and spirals of stars. A galaxy which has few stars
radiates less energy than a galaxy forming stars in abundance.
Without a doubt, the lives of galaxies should be considered
among the greatest mysteries in the universe.

Nowadays, many people consider the static model of the
universe outdated. Nevertheless, we believe there is a lesson
to learn when considering the energy balance of the universe.
After all, energy conservation is a cornerstone of physics. The
elusive dark energy encourages us to inspect the energy bal-
ance of the universe from a different angle, in a static uni-
verse.

2 The entropic principle

The entropic principle in a thermal context is regarded as
an indicator of the effectiveness or usefulness of a particu-
lar quantity of energy. Mixing a hot supply of energy with a
cold one produces a mix of intermediate temperature, which
is less effective. If we apply this principle at the level of
the universe, it will eventually lead to the so-called “heat
death of the universe”, when the outbound and inbound en-
ergy fluxes of galaxies reach an equilibrium that should stay
at low temperature provided that the universe does not main-
tain its present energy differential between the vacuum and
its denser parts. The inbound energy flow from cosmic radi-
ations is much lower than the outbound flow radiating from
a galaxy, giving galaxies the appearance of an energy deficit.
Present theories do not permit us to balance this deficit.

3 Photon-particle interactions

We could conceive of a wind of particles that sweeps the rem-
nant undulating energy in the vacuum of the universe in some-
thing like the Compton effect and brings it back to the denser
parts of the universe to enrich the galactic gas and nebulae
where new stars are formed. This scenario appears to be very
unlikely as the inbound flux of cosmic rays is very low, and
known interactions between low-energy photons and particles
do not subtract energy to the photons. In Thomson scatter-
ing, the scattered photon energy is left at the same level, and
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an increase of the scattered photon energy is obtained in the
photon-particle interaction of the Sunyaev-Zeldovich effect.
Compton scattering, which subtracts energy from the pho-
tons, is known to occur for high-energy light sources such
as X-rays and gamma rays. Furthermore, there is no ev-
idence that cosmic rays come from outside the galaxy, al-
though most cosmic rays originate from outside the solar sys-
tem [1]. Cosmic rays are composed primarily of high-energy
protons and atomic nuclei. Some cosmic rays originate from
supernovae [2]; however, this is not the only source of cos-
mic rays. Active galactic nulei also ought to produce cosmic
rays [3].

Compton scattering is an interaction between photons and
charged particles such as electrons [4,5]. During this interac-
tion, part of the photon energy is transferred to the recoiling
electron. The scattering of the photons produces a blurring
effect of light.

Thomson scattering intervenes between photons having
much lower energies compared to the mass energy of the par-
ticle [6–8]. This interaction occurs between free charged par-
ticles and photons. Thomson scattering is an elastic scatter-
ing, meaning that the energies of the particles and photons
remain unchanged in this interaction. However, the wave is
scattered, producing a blurring effect. This interaction pro-
duces polarization of light in the direction of its motion. The
cosmic microwave background ration (CMBR) is linearly po-
larized and as such must have undergone Thomson scattering.

The Sunyaev-Zel’dovich effect is an interaction occurring
between the CMBR and high-energy particles, which pro-
duces an inverse Compton effect [9]. It is the result of high-
energy electrons transferring some of their energy to the pho-
tons. This interaction is observed in the hot gases contained
in galaxy clusters, which change the frequency of the CMBR.

The images of galaxies we observe in the sky are not
blurred, meaning a priori that no photon-particle interactions
occur for these wave frequencies. For all these reasons we
dismiss photon-particle interaction as a mechanism to regu-
late photon energy in the vacuum.

4 Stationary waves

Stationary waves, also called standing waves, are formed by
the superposition of two waves of the same amplitude and
frequency moving in opposite directions [10]. The result of
this interference is a wave with no net propagation of energy.
The locations at which the amplitude of the wave intersect
with the x-axis are fixed points called the nodes, and the part
of the wave contained between two nodes oscillates upside
down in a given amplitude range. Because of the vibration of
the standing wave, some energy would be stored in the vac-
uum, but with no energy being transmitted. Because of the
isotropy of the universe we can assume that for every wave
there exists another wave of same frequency and amplitude
moving in the opposite direction. Standing waves may cause

Fig. 1: A photon climbs up to a heigh h. Then, the photon is con-
verted at the top of the tower into a mass m, and falls back to the
ground. Perpetual motion is created unless the photon loses energy
while climbing in the gravitational field.

an accumulation of energy in the vacuum, but do not explain
redshifts. Nevertheless, we would still need additional mech-
anisms to regulate the energy budget of galaxies and of the
universe as a whole.

5 Time contraction

5.1 Gravitational redshift and potential energy

Another way to look at the problem of energy budget in the
universe is by considering gravitational redshift, a phe-
nomenon based on the principle of energy conservation. Ein-
stein imagined the following thought experiment. Let us con-
sider a photon moving away from the ground surface in the
direction of the sky up to a given height h. At this height, the
photon is converted into mass according to E = mc2, and then
falls back to the ground (see Figure 1).

In this system there is an apparent gain of energy from
the time the photon left the ground to the time when the mass
came back to its initial position due to the potential energy
gain when the photon moved upwards. This energy gain, of
course is paradoxical. In terms of energy conservation, when
considering the energy of a photon, we associate it with the
potential energy of its virtual mass counterpart. In order to
maintain the system at constant energy, the photon must lose
energy when moving away from a mass in a gravitational
field, which causes a redshift. The reciprocal is also true:
when a photon moves towards a mass in a gravitational field,
it is blueshifted. Another solution of the gravitational redshift
is obtained with general relativity using the Schwarzschild
metric. Both methods give similar solutions that converge
asymptotically when the gravitational field is weak.

The gravitational redshift from mass-energy equivalence,
which stems from special relativity, is derived as follows. By
converting the photon energy into a rest mass we get E =
hν = mc2. The gravitational potential energy is:

U = −GMm
r
= −GMhν0

rc2 , (1)
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where ν is the light-wave frequency, G the gravitational con-
stant, M the mass producing the gravitational field, r the dis-
tance between the center of gravity of the mass M and the
photon, c the speed of light, and h the Planck constant.

Hence, the frequency change of a photon of frequency ν0
moving relative to a gravitational mass is hν = hν0

(
1 − GM

rc2

)
.

Therefore, we get:

ν

ν0
= 1 − GM

rc2 . (2)

The equation of the gravitational redshift from general
relativity with the Schwarzschild metric is obtained from the
equation [21]:

δτ =

(
1 − 2GM

rc2

) 1
2

δt , (3)

where δτ is the proper time interval, and δt the Schwarzschild
time interval.
Because the light wavelength can be expressed as a function
of the time interval, λ = cδτ, we get the gravitational redshift

ν

ν0
=

(
1 − 2GM

rc2

) 1
2

, (4)

where ν is the light-wave frequency, G the gravitational con-
stant, M the mass producing the gravitational field, r the dis-
tance between the center of gravity of the mass M and the
photon, and c the speed of light.

For weak gravitational fields, we can use the Taylor ap-
proximation (1 − x)

1
2 ≈ 1 − x

2 when x is small; hence, we ob-
tain the same equation as the gravitational redshift obtained
from mass-energy equivalence.

From general relativity, moving away from the ground
surface at increasing altitude causes the clock to tick more
rapidly, meaning that time is contracting as in the dichoto-
mous cosmology presented in [11–13]. Based on the prin-
ciple of time contraction in a static universe, we are able
to derive Etherington’s distance-duality equation [12]. This
principle as an explanation of cosmological redshift is worth
considering. One way to look at the problem of photon and
matter energy is by linking time with energy, meaning that
time contraction is causing both a decrease in the photon en-
ergy and an increase in the potential energy of a mass. If
this is valid in a gravitational field, does it hold in general?
From the mass-energy equivalence, there is an implicit dual-
ity between photon and mass, in which energies appear to be
indissociable from one another.

Emmy Noether proved a theorem according to which ev-
ery differentiable symmetry of the action of a physical system
has a corresponding conservation law. From the Noether the-
orem, the law of conservation of energy follows from time
homogeneity, meaning the Lagrangian is time-translation in-
variant. Time is preponderant in energy conservation. In spe-
cial relativity we learn that time dilation has a direct effect on

the energy balance between reference frames. In general rela-
tivity, the flow of time and gravitational potential are directly
linked. This is a very simple principle that nature could use
to regulate energy fluxes in the universe. Accordingly, time
contraction would allow maintenance of the energy differen-
tial between the vacuum and the massive parts of the universe.

5.2 Effect of time contraction on the photon energy and
the energy of a mass

In the dichotomous cosmology [12], we found that the time-
contraction factor is expressed as γt = exp(−H0t). Therefore,
the energy of the photon decreases according to an exponen-
tial law of the form:

Ephoton(t) = E0 exp(−H0t) , (5)

where H0 is the Hubble constant, E0 the initial photon energy,
and t the time.

Because the gain in potential energy is in the same propor-
tion as the photon energy loss from mass-energy equivalence,
the gravitational potential energy of a mass shall increase ac-
cording to the law:

Umass(t) = U0 exp(−H0t) , (6)

where U0 is a negative potential energy at time zero, H0 the
Hubble constant, and t the time.

We still need to quantify the effect of time contraction on
the kinetic energy of a mass. As time contracts, a clock is
ticking more rapidly, and an object in motion appears to slow
down. The apparent velocity of an object decreases in direct
proportion to the time-contraction factor. Because the kinetic
energy is expressed as K = 1

2 mv2, the kinetic energy of a mass
decreases by the square of the time-contraction factor. Hence,
the kinetic energy of a mass decreases according to the law:

Kmass(t) = K0 exp(−2H0t) , (7)

where K0 is the kinetic energy at time zero, H0 the Hubble
constant, and t the time.

These are the laws that we propose regulate the energy
budget of the universe.

Let us show that for a star in orbit in a galaxy, its orbital
radius remains unchanged under time contraction. The total
energy of the star with respect to other bodies in the galaxy is
expressed as follows:

Etot(t) = U + K = U0 exp(−H0t) + K0 exp(−2H0t) . (8)

Let us take the time derivative of Etot; therefore, we get:

dEtot

dt
(t) = −H0 U0 exp(−H0t) − 2H0 K0 exp(−2H0t) . (9)

We evaluate this expression at t = 0, hence:

dEtot

dt
= −H0 U0 − 2H0 K0 . (10)
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From the virial theorem, which applies to stable systems
composed of many bodies, we get:

2K0 + U0 = 0 , (11)

where K0 is the kinetic energy and U0 the potential energy
between the bodies.

From (10) and (11), we obtain dEtot
dt = 0. Therefore, the

total energy of a star in orbit remains unchanged under time
contraction, meaning its orbital radius is not affected. This is
the condition required to have stable galaxies in the universe.

The virial theorem only considers the potential energy be-
tween the bodies of the system. Because each object in a
galaxy, either solid or fluid, has an internal potential energy,
and that the kinetic energy inside a solid or fluid at rest is neg-
ligible, there is a surplus of potential energy from (6). This
surplus of potential energy is converted into internal energy
within the object. This is the principle we propose to balance
the energy radiated by galaxies.

5.3 Energy balance of the Milky Way

From this principle, we would expect that the surplus of in-
ternal potential energy due to time contraction, at the level of
a galaxy, balances with the outbound radiation flux. Let us
do a rough estimation for the Milky Way. The luminosity of
the Milky Way is estimated to be about 3.8×1010L⊙ [15], with
the Sun radiating about 4.6 ×1026 watts, leading to an overall
radiation of about 1.74×1037 watts. We need to estimate the
sum of the internal potential energy of each object contained
in the Milky Way.

For a spherical solid, the internal potential energy is given
by the equation [14]:

Usphere = −
3GM2

5R
, (12)

where G is the gravitational constant, M the mass, and R the
radius of the sphere.

Let us consider the estimated mass of the Milky Way in-
cluding dark matter to be about 1.39 ×1042 kg or 7×1011

M⊙ [16]. In [17] we show that the dark matter of a spiral
galaxy is due to a correction coefficient applied to Newton’s
force in a disk. Hence, we need an estimate of the total bary-
onic mass of the Milky Way, which is approximatly one sev-
enth of the apparent mass or about 1.87×1041 kg. The mass
of the cental supermassive black hole Sagittarius A* is about
4.0×106 solar masses [18], and its radius about 31.6 solar
radii. Hence, the potential energy of Sagittarius A* from (12)
is −1.15×1053 joules. We have used a gravitational constant
G of 6.67×10−11 m3 kg−1 s−2.

Because the majority of stars in the Milky Way are red
dwarfs, and due to other dense objects such as neutron stars,
white dwarfs, and black holes, the average radius of objects
in the Milky Way is lower than the radius of the Sun. An
estimate of 100 million neutron stars in the Milky Way was

obtained by estimating the number of stars that have gone
supernova [19]. Let us assume that these 100 million neu-
tron stars in the Milky Way have an average mass of 1.35
solar masses. From the density of neutronium, we can infer
that the radius of such a neutron star would be about 15 km.
Therefore, from (12), the internal potential energy of those
100 million neutron stars all together is −1.92×1054 joules.
According to [20] there are about 10 million black holes in
the Milky Way. Let us assume that these 10 million black
holes have an average mass of ten solar masses and a radius
of 45 km. The radius of a black hole is computed from the
“photon sphere” which is 1.5 times the Schwarzschild radius.
The internal potential energy of those 10 million black holes
all together is −6.42×1054 joules from (12). Let us assume
there are 2 billion white dwarfs having an average mass of
half a solar mass and a radius equal to the radius of the earth.
The internal potential energy of those 2 billion white dwarfs
is −1.28×1052 joules. Let us assume there are 200 billion
stars lefts (mainly red dwarfs) having an average radius of
0.3 solar radii and average mass of 9.36×1029 kg. The inter-
nal potential energy of those 200 billion stars all together is
−3.34×1052 joules from (12).

Adding together the potential energies of Sagittarius A*,
the 100 million neutron stars, the 10 million black holes, the
2 billion white dwarfs, and the 200 billion stars, the overall
internal potential energy of the Milky Way is estimated to
be about −8.49×1054 joules. The densest objects, although
not the most numerous, contribute the greatest share of to the
internal potential energy of the Milky Way. For this reason,
black holes and neutron stars are responsible for most of the
Milky Way’s internal potential energy. The calculations for
the internal potential energy of objects in the Milky Way are
summarized in Table 1.

When multiplying the overall internal potential energy of
the Milky Way by the Hubble constant of H0 = 2.16 × 10−18

per second (corresponding to 67.3 km s−1 Mpc−1), we obtain
a surplus of internal energy of 1.83×1037 watts. We com-
pare this value with the estimate of the energy radiated of
1.74×1037 watts. Of course this is a crude estimate, but from
our calculations the internal energy surplus of the Milky Way
is the same order of magnitude as the energy radiated by the
galaxy.

Compact objects such as black holes and neutron stars are
known to produce highly energetic jets emitted at relativistic
velocities along their axis of rotation. We propose that the
surplus of potential energy of compact objects is released to
the galaxy through these jets. These jets might be made of
neutrons that undergo beta decay to form protons, electrons
and antineutrinos.

6 Conclusion

According to the entropic principle in a thermal context, mix-
ing a hot source with a cold source produces a mix of average
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Table 1: Internal potential energy of objects in the Milky Way

Object Number Mass Radius Potential energy

Sagittarius A* (central black hole) 1 4.0×106 M⊙ 2.2×107 km −1.15 ×1053 joules

Black holes 10 million 10 M⊙ 45 km −6.42×1054 joules

Neutron stars 100 million 1.35 M⊙ 15 km −1.92×1054 joules

White dwarfs 2 billion 0.5 M⊙ 6.30×103 km −1.28×1052 joules

Remaining stars (mainly red dwarfs) 200 billion 0.47 M⊙ 2.09×105 km −3.34×1052 joules

Total — — — −8.49×1054 joules

temperature that is less useful from a mechanical standpoint.
The universe is based on energy fluxes and exchanges, and
galaxies radiate a large amount of energy. For the universe to
be conservative there must be a mechanism to balance the en-
ergy deficit of galaxies, otherwise it will lead to the so-called
“heat death of the universe”. We analyzed photon-particle
interactions, and concluded that such interactions cannot reg-
ulate the energy budget of the universe. We propose time
contraction as a principle to regulate the energy balance in
the universe, which would decrease photon energy, increase
the potential energy of a mass, and decrease the kinetic en-
ergy of a mass. From the virial theorem, which applies to
systems of bodies, we find that the net energy resulting from
the gain in potential energy and loss in kinetic energy remains
unchanged, meaning that the orbitals of stars in galaxies re-
main unaffected by time contraction. However, each object in
a galaxy has an internal potential energy leading to a surplus
of energy within the object. At the level of a galaxy, this in-
ternal energy surplus should balance with the energy radiated.
We illustrated this principle with a calculation of the energy
balance of the Milky Way.
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