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The Interpretation of the Hubble-Effect and of Human Vision
Based on the Differentiated Structure of Space

Gerhard Dorda
Institute of Physics, University of Armed Forces Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.

E-mail: physik@unibw.de

Based on the differentiated structure of space, observed by the Quantum-Hall-Effect,
a comprehensive equation is presented for the description of the Hubble-Effect. This
Hubble-Effect equation reflects the experimental observation showing a casual connec-
tion to the Hubble time TU and thus to the cosmic length LU and the cosmic mass MU.
The obtained results are substantiated by the cosmic background radiation and by the
agreement of the derived data with the experimental data of the Milky Way. It is shown
that the differentiated structure of space, used for the description of the Hubble-Effect,
also refers to the process of human vision, dominating the observation.

1 Introduction

After the discovery of the Quantum-Hall-Effect (QHE) and
the associated exceptional side effects [1], it proved to be nec-
essary to re-evaluate many physical and biological phenom-
ena, e.g. the interpretation of the Hubble-Effect (HE) and, of
the basis of it, even the process of human vision, referring
to the differentiated structure of space. The differentiated
structure of the three-dimensional space was first observed
at the analysis of the experimental data of the QHE, which
was discovered in 1980 by K. von Klitzing based on MOS-
field-effect transistors.

The QHE is the first experimental observation of quanti-
zation in the macroscopic scale in solid-state physics. Only
gradually, the fundamental importance of this discovery and
of all with this discovery connected spectacular experimental
observations became apparent for the entire range of physics.
In the first instance, it was the observation of the QHE on
GaAs–AlxGa(1−x)As heterostructures [2], presented by D. C.
Tsui et al, which showed that this effect is generally valid for
the whole solid-state physics. More detailed investigations of
the experimental data revealed that the QHE is not only inde-
pendent from atomic mass, but also from the strength of the
electric current used, i.e. from frequency, i.e. from time, and
also from the form of the sample with the considered QHE
structure, i.e. from space [3].

Really, the state of QHE shows a spectacular simultaneity
of Rxx = h/ie2 = 2.58128 × 104/i Ω and Rxx = 0 Ω (i is the
quantization number), measured between different contacts at
any place of the QHE structure. This effect of the spatial in-
dependence of the observed simultaneity in resistivity is the
background of the disclosed two-dimensionality of electro-
magnetism at the causal situation. Besides that, it should be
emphasized that the simultaneity of the quantized resistivity
shows that the three-dimensional state of electromagnetism
can be clearly separated spatially in two independent condi-
tions: On one side in a 2-D state, given by the simultaneity,
and on the other side in a 1-D state, realized capacitively by

the interaction of the electron charges. The experimental ob-
servation of the possibility to split up electromagnetism in
a 2-D and a 1-D state will be described by the “differenti-
ated structure of the space” [3]. Analyzing all these novel
experimental insights allowed to deliver convincing physical
answers, for example Lee Smolin’s book The Trouble with
Physics posed fundamental and unsolved questions [4], in
particular also about the category of time [3].

The description of space and time, i.e. frequency, based
on the QHE, leads to the notion that also open questions in
astronomy and cosmology could be answered with the help of
the observations of the QHE. This, for example, includes the
question about cosmic expansion, which, on the basis of the
interpretation of the Hubble-Effect (HE), generated a vivid
discussion, leading to the unfolding of several cosmic models,
but without final solutions [5,6]. Therefore, in this work, it is
attempted to explore the experimental data of the HE on the
basis of the so-called differentiated structure of space [3].

2 The analysis of the Hubble-Effect (HE) with respect to
the differentiated structure of space

The cosmic expansion model is based on the experimentally
observed Hubble-law, given by [5]

vHE,y =
RHE,y

TU
. (1)

Here in (1), vHE,y is the velocity of a given galaxy, RHE,y has
the significance of a distance referred to a given galaxy and
TU is interpreted as the Hubble time, defining the so-called
age of the cosmos (an assumption which requires the expan-
sion of the cosmos). The index HE signifies the relation of the
Hubble-Effect (HE) to the associated redshift of the observed
radiation and the index y refers this redshift to the observed
galaxy [5, 6].

The figures of the experimental HE in [5] and [6] show
the so-called escape velocity vHE,y in relation to the velocity
of light c, meaning that (1) can be rewritten by use of c. As
a result, we receive a form which defines the HE in relation
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to the so-called length of the cosmos, obtained by LU = TU c,
and we may write

RHE,y

LU
=
vHE,y

c
. (2)

The value of the redshift is usually specified by the number
zy, which means

zy =
vHE,y

c
. (3)

Since the HE merely reflects the observation of light, i.e. pho-
ton energies, the number zy may, in accordance with (1) and
(2) and due to the c-standardization, be considered to be re-
lated to the limit of the light frequency fC or to the limit of
the light wavelength λC. As shown in Section 4, this is of
fundamental importance for the interpretation of the HE.

The concept of an escape velocity vHE,y, as stated in
(1), must originate from the existence of a given position, e.g.
from the place of observation, or in a general sense from any
localized place in the cosmos, in order to have the possibility
to speak of place in sense of the classic conception of velocity,
a model, which so far has been crucial for the interpretation
of the HE. The concept of a place requires the existence of lo-
calization related to atomic mass, i.e. to protons and neutrons,
constituting a gravitationally induced localization which only
can become real through an atomic solid-state structure.

Starting from these findings it can be shown that based on
the experimental data of the QHE, which is independent of
atomic mass, a novel form of velocity can be defined. This
velocity is also given by the relation of length and frequency,
but this specific form of velocity is merely deduced from
the dualistic character of the electron, i.e. without any con-
tribution of proton-neutron-mass related gravity. This spe-
cific i.e. structural space-time condition, which is identifi-
able in the QHE, reveals that the electron-related velocity is
given by the relation of the category of length, reflected by
the electron mass me, and the category of frequency, real-
ized by two-dimensional electromagnetism, i.e. by the elec-
tron charge e. This length-frequency, i.e. length-time rela-
tion is, in spatial terms, always mutually perpendicular to
each other, which is the background for the notion of three-
dimensionality of space and also the background for the free-
dom of choice concerning the value of light velocity. As
shown in [3, pp. 33–34,45,49–50], it therefore follows the
possibility of differentiation between the one-dimensionali-
ty, i.e. 1-D, and the two-dimensionality, i.e. 2-D. These fun-
damental circumstances were characterized in summary as a
differentiated three-dimensional spatial structure.

It is evident that this electron related form of velocity
is given at light effects, i.e. given by λ f (λ = wavelength,
f = frequency). Thus, it can be assumed that this form of ve-
locity is also displayed in the observation of the HE-galaxies,
playing an essential key role in the here presented reinterpre-

tation of the HE. Hence, unexpected statements about the HE-
galaxies may be obtained when the Hubble-law, i.e. (1), and
the model of the differentiated structure of space are applied
to Kepler’s third law.

3 The application of the Hubble-Effect to Kepler’s third
law

To begin with, it seems necessary to appropriately transform
Kepler’s third law. In doing so, we assume that due to the
cosmological principle [6], Kepler’s third law has general va-
lidity in the entire universe.

Kepler’s third law is given by [3],(
TG,y

2π

)2

= t2
G,y =

R3
G,y

G MG,y
, (4)

whereby G in (4) is the gravitational constant, given by

G = c2 L
M

. (5)

Eq. (4), in conformity with the MKSA- or MKS-system of
units, represents a universal linkage of the category of length
with the category of time, modified by the category of mass.
TG,y in (4) is the so-called orbital period of the given solid-
state celestial body (SSCB), which planets, suns and stars are
to be counted as part of. tG,y in (4) is the so-called effective
time, referred to the surface of the SSCB, RG,y is the distance
to the center of the SSCB and MG,y its mass. The index G

signifies the connection to the SSCBs. In (5), L bears the
meaning of the Planck length, L = 4.051 × 10−35 m, and M
represents the Planck mass, M = 5.456 × 10−8 kg [7]. By
transforming (4), we receive the following form, being valid
for all SSCBs

v2
G,y

c2 =
L

RG,y,1−D

MG,y

M
, (6)

whereby

vG,y =
RG,y,2−D

tG,y
. (7)

In (6), the left-hand side represents the electromagnetic ef-
fect, i.e. an effect reflecting spatial two-dimensionality, and
the right-hand side reflects a distance related, i.e. a one-di-
mensionality related gravitational effect.

Here, in (6) and (7), the findings from the Quantum-Hall-
Effect (QHE) about the possibility of the differentiated space
is used, according to which the three-dimensional space, in
case of it being structured, can be considered partitioned, and
that [3]:

1. in a one-dimensional space, described by the 1-D state,
covered by RG,y,1−D, and

2. in a two-dimensional space, described by the 2-D state,
ascertainable by R2

G,y,2−D.

4 Gerhard Dorda. The Interpretation of the Hubble-Effect and of Human Vision Based on the Differentiated Structure of Space
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Attention should be paid to the fact that the one-dimen-
sional gravitational distance RG,y,1−D of the SSCBs, as given
in (6), could be described by the number aG,y, which due to
the reference to one-dimensionality was termed gravitational
number. In [3, see p. 14], it is given by

RG,y,1−D = aG,y λG,y . (8)

Here, λG,y is a one-dimensional reference length, defined by

λG,y = MG,y
L
M

. (9)

It is easily recognizable that in accordance with (4) – (8), this
reference length λG,y signifies the connection between the cat-
egory length and the atomic mass related gravitation.

When discussing (6), it is of importance to consider that
the Planck relation L/M in (5) and (9) possess, due to the cos-
mological principle, validity for the entire being in the cos-
mos. Therefore, as an extension of L/M, we may write

L
M

=
λG,y

MG,y
=

LU

MU
, (10)

which is a consequence of the general validity of Kepler’s
third law. Here in (10), λG,y stands for the reference length
of the SSCB and MG,y for its related mass. Furthermore, LU
and MU are the limit length LU and the limit mass MU of the
cosmos, introduced by means of (1) and (2), i.e. by means of
the HE.

The masses MG,y in (4), (6), and (9) are effective as ho-
mogeneity parameters. As will be shown, the state of ho-
mogeneity can be related to two different structures in the
cosmos, which, in the three-dimensional cosmic space, are
identifiable by their dot-like centered unity. These two forms
are:

1. Celestial bodies which consist of solid state, i.e. SS-
CBs, and which can, by means of Kepler’s third law, be
very well described as spherical structures, given by in-
terwoven gravitational-electromagnetic structures ( [3],
page 44). All planets, suns and stars are to be counted
as part of this. With regard to (4), the boundary con-
dition for the homogeneity of the SSCB is the equality

RG,y,1−D =
√

R2
G,y,2−D, which enables dynamics, i.e. the

category of time, to be revealed in Section 4.

2. Celestialbodies whose existence onlyisobservablewith
the aid of optical methods, i.e. with the aid of eyesight
and technically with the aid of optical absorption meth-
ods. This includes galaxies, theoretically ascertained
by (1) and (2) of the HE. These cosmic structures are
not given by a coherent, gravitational-electromagne-
tic interwoven state, but they are to be considered a
free, i.e. dynamic cluster of different SSCBs, which,
as part of above all electromagnetic interactions, form

by the so-called “black hole” a homogeneous, i.e. dot-
like centered unity. Due to the free cluster of SSCBs,
which show only insignificant gravitational interaction,
the possibility of creating the categoryof time by means
of galaxies does not exist. Hence, we are able to clar-
ify the boundary condition for the homogeneity of the
HE-galaxies only in Section 5.

To clearly show the difference between the SSCBs and the
galaxies, (6) must be adapted to (1) and (2). Based on (6) and
(10), we may write( vHE,y

c

)2
=

LU

RHE,y,1−D

MHE,y

MU
, (11)

whereby vHE,y is given by

vHE,y =
RHE,y,2−D

TU
. (12)

MHE,y signifies the mass related to the given galaxy. The dis-
tances RHE,y,1−D and RHE,y,2−D in (11) and (12) are, according
to the cosmological principle, to be interpreted as character-
istic distances, i.e. lengths, of the given galaxy.

In conformity with (6) and (11), the fundamental differ-
ence between the SSCBs and the HE-galaxies should become
above all apparent by means of the different definitions of
vG,y, (7), and of vHE,y, (12). Thus, this difference is discussed
in the following sections.

4 The difference between solid-state celestial bodies (SS-
CBs) and HE-galaxies

When comparing the velocities vG,y and vHE,y, we proceed that
both RG,y,2−D, the distance of the given solid-state celestial
body (SSCB), and RHE,y,2−D, the distance of the given galaxy,
are to be considered their distinctive characteristic. In doing
so, the cosmological principle is to be heeded, stating that in
the cosmos there is no center and consequently no defined
position [6]. Moreover, the fundamental difference between
the time statements tG,y and TU, given in (4) and (1), has to
be taken into account since it points out that, as (4) and (6)
show, the time tG,y is one of the characteristic parameters of
any given SSCB, whereas the time TU, being valid for all HE-
galaxies, is solely a cosmic constant. From Kepler’s third law,
(4) and (6), it results that the time tG,y is given by

tG,y =
√

aG,y
RG,y,2−D

c
, (13)

whereby aG,y is the SSCB related gravitational number, de-
fined in (8). Thus, considering (6), (7), and (13), the solid-
state celestial body is characterized not only by the mass MG,y
and the radius RG,y, but also by the SSCB related category of
time tG,y.

In contrast to vG,y, the velocity vHE,y can experimentally
only be experienced by optical means, in fact with aid of the
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light i.e. photon energies, emitted by the given galaxy. This
energy spreads from the galaxy with the velocity of light and
is registered by the eye or by appropriate appliances (tele-
scopes) via absorption. Since the respective galaxies distin-
guish from each other by the emitted light i.e. photon energy,
it is physically permitted, in compliance with the observed
value of the so-called redshift zy, to ascribe an appropriate
frequency fy to the observed galaxy, which reflects the en-
ergy h fy. That means, the in (2) presented relation vHE,y/c
can be replaced by an appropriate frequency or wavelength
relation, and we may write

zy =
h fy
h fC

=
hc/λy

hc/λC
=
λC

λy
. (14)

It then again follows that the HE can be described by means
of an equation of light

λy fy = λC fC = c , (15)

which inter alia reflects the fact that the frequency, in local-
ized form known as the category of time, is an expression of
pure electromagnetism [3].

Here in (14) and (15), fy is the given galaxy related fre-
quency or λy wavelength, whereas fC is the Compton fre-
quency and λC the Compton wavelength. In (14), zy is, unlike
in the classic Doppler-effect model, not valued as a difference
from wavelengths, but as a direct information about the ob-
served galaxy state, given by fy or λy, respectively. Thus,
(14) and (15) determine the state of the HE-galaxies. Hence,
instead of interpreting vHE,y mechanically as an escape veloc-
ity of the galaxies, it proves to be physically acceptable, with
regard to (14) and (15), to replace the concept of the classi-
cal velocity with the frequency or wavelength relation given
by (14) and to describe the redshift as a light wave radiation,
which reflects the heat radiation laws, i.e. Wien’s displace-
ment law. That means, it is postulated that any HE-galaxy
emits radiation in the form of photon energy as a result of its
homogeneity.

5 The equation of the Hubble-Effect

Starting the analysis of this novel description of the HE, abo-
ve all it must be emphasized that the existence of the param-
eter of the HE galaxies, given by TU, attests the validity of
Kepler’s third law for the whole cosmos, i.e. the form of the
gravitational constant (5), and also the extension of L/M, pre-
sented in (10). Thus it is – from a physical point of view – le-
gitimate to use the (4), (5), and (10) as basic equations for the
further analysis of (11), at which we take the form RHE,y,1−D
in place of λG,y of (9). Furthermore, it appears absolute nec-
essary for the description of the HE to apply the model of the
differentiated structure of the space to (11). This requirement
indicates to formulate (11) in a particular form, reflecting this
spatial differentiation. It can be achieved by a completion of

(11) by the factor z2
y, hence formulating( vHE,y

c

)2
=

LU z2
y

RHE,y,1−D

MHE,y

MU
. (16)

Really, it should be considered, the experimental HE data
shows that the factor zy is causally related to the distance
RHE,y,2−D, as it was on the basis of (2) and (3) expressed by
(12). Thus, to be in accordance with the required differentia-
tion of the HE-state from the usual three-dimensionality into
the one-dimensionality and the two-dimensionality, we have
to conclude that the factor z2

y must be related to the 1-D related
distance RHE,y,1−D, to ensure the causality at the whole HE-
state. Evidently, these requirements are realized by means of
(16).

Taking into consideration all the presented experimental
data and the related conclusions, given in Sections 2 – 4, we
are able to present the solution of the whole HE state, and that
in form of a comprehensive, generally valid equation, given
by

RHE,y,1−D = zy RHE,y,2−D = z2
y LU

= zx
y MHE,y = zx+2

y MU ,
(17)

at which zx
y is given by

zx
y =

L
M

=
RHE,y,1−D

MHE,y
=

LU

MU
= 7.426 × 10−28 m kg−1 . (18)

Equation (17) shows that with respect to (2) it is possible to
formulate the relations

RHE,y,2−D = zy LU , (19)

as well as

RHE,y,1−D = zy RHE,y,2−D (20)

and

MHE,y = z2
y MU . (21)

Furthermore, on the basis of (16), it becomes evident that
the difference between the SSCBs and the state of HE-galax-
ies is simply describable by the factor zy , which is, according
to (6), for the SSCBs without exception given by zy = 1.

The numerical value of (18) results from the experimen-
tally explored gravitational constant [4] G = 6.6738 × 10−11

m3kg−1s−2, using (5). It demonstrates the value zx
y to be a nat-

ural constant. Besides, it should also be emphasized that (18)
is therefore significant for our model, as it discloses the func-
tional background of the homogeneity of the HE galaxies.

The validity of (17) and (18), and thus of (19) – (21), can
be verified using both the knowledge of the cosmic back-
ground radiation and the known experimental data of the Mil-
ky Way, since according to our model the Milky Way galaxy
is assessed to be a homogeneous galaxy.
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6 The analysis of the cosmic background radiation with
respect to the Milky Way galaxy radiation

At first, when analyzing (17) and (18), which describe the
state of all HE galaxies, it must be pointed out that in the spa-
tially differentiated state, as it is the case for the optical ob-
servation of the HE galaxies, only the electron related electro-
magnetic variability is ascertained, so that a specific proton-
neutron one-dimensional mass-effect cannot be observed at
this effect by experiment. Thus to solve this problem, the ob-
servation of the cosmic background radiation is considered.
It shows that this radiation, represented by the temperature
Tcosm = 2.73 ◦K, is the result of the interaction of hydrogen
atoms, extended over the whole cosmos, see [5] and [12].

Thus when we value the cosmic background radiation as a
heat radiation effect, given by the displacement law of Wien,
obtaining zT = λC/λcosm = Tcosm λC/(3.40× 10−3) [3, part III]
and assess this value with respect to the heat radiation factor
of the Milky Way, given by zMW = λC/λMW, evidently this zT
value has to be modified by the relation mp/me, correspond-
ing to the temperature relation TMW/Tcosm. Here mp is the
mass of the proton, me the mass of the electron and TMW has
reference to zMW. In other words, the factor of modification
mp/me represents the energetic difference between the cosmic
background radiation, being a result of the interaction of hy-
drogen atoms, and the radiation of the localized, i.e. spatially
differentiated electromagnetism of the HE galaxies.

Using the HE-related (9) and (10), as well as the (17) and
(20), and assuming that the heat radiation factor of the Milky
Way is identical with the cosmic background radiation factor
zT, then we obtain the following relationship

RHE,MW,2−D =
3.4 × 10−3

Tcosm λC

me

mp

LU

MU
MHE,MW

= 2.08 × 10−22 MHE,MW .

(22)

Here, in place of the Milky Way radiation factor zMW, the
assumed identity of zMW to zT was used, resulting in

zMW = zT =
Tcosm λC

3.4 × 10−3

mp

me
= 3.58 × 10−6 . (23)

At (23), Tcosm was replaced with the background radia-
tion value Tcosm = 2.73 ◦K, and the causal relation λmax T =

3.40 × 10−3, i.e. Wien’s displacement law, was used for λT .
When we use the Hubble time TU = 4.32 × 1017 s, reflect-
ing a Hubble constant of Ho = 71.4 km s−1Mpc−1, lastly ob-
tained from the Hubble telescope, we obtain a cosmic length
LU = c TU = 1.30 × 1026 m, and by means of (10) a cosmic
mass MU = 1.74 × 1053 kg.

Finally, by means of (19) – (23), for the Milky Way we
obtain the values

RHE,MW,2−D = zMW LU = 15.05 kpc = 4.63 × 1020 m ,

MHE,MW = z2
MW MU = 1.12 × 1012 solar masses

= 2.23 × 1042 kg .

(24)

Considering these results with respect to the experimentally
observed data of the Milky Way, given in [6] by the approx-
imate values of the radius RHE,MW,2−D = 15 kpc = 4.6 ×
1020 m and of the mass MHE,MW = 1012 solar masses = 2 ×
1042 kg, we assess for the radius a factor of inaccuracy of only
3 %, and for the mass MHE,MW of only 12%. This finding,
especially the agreement of the order of magnitude of both
RHE,MW,2−D and MHE,MW, is very important, as it convincingly
demonstrates that (17) and (18) can be assessed as a novel,
physically justified description of the Hubble-effect.

The Sections 2–6 have shown that the novel HE model is
based on the QHE-observation about the differentiated struc-
ture of the 3-dimensional space. The application of the differ-
entiated space structure on the gravitational constant G , (5),
shows that c2 is related to electromagnetism, in the case of the
HE-galaxy to the 2-D state, represented by the RHE,y,2−D dis-
tance, whereas L/M refers to the gravity of the HE-galaxies,
i.e. to the 1-D state, represented by the RHE,y,1−D distance,
which is in this situation in a causal connection to the mass
MHE,y. The HE-circumstance, described by (16) – (18) and
thus by (20), shows that the connection between the distances
RHE,y,2−D and RHE,y,1−D is given by the factor zy.

These results are confirmed by the agreement of the cal-
culated data with the experimental data of the Milky Way and
support also the conception, formulated by (10), that the re-
lation RHE,y,(1−D)/MHE,y of any HE galaxy is always identical
with the L/M-relation.

7 The description of human vision on the basis of the
differentiated structure of space

A particular confirmation of the value zMW is obtained by con-
sidering the general limitation of vision. Seen in this connec-
tion, it should be pointed out that not only that of human eyes,
but also the vision of all animals breaks off at the wavelength
λy = 6.8× 102 nm [13]. This particular observation manifests
the rightness of the identity between the limiting value of the
wavelength of visible light and the specific wavelength of the
radiation of the Milky Way λMW = 6.79 × 102 nm.

A further very interesting observation about the process of
seeing is obtainable, when we become aware of the connec-
tion between human vision and the differentiated structure of
space. As disclosed extensively in The Feynman Lectures on
Physics [13], human vision is the result of processing of two
signals, independently given on the one side by the rod cells,
and on the other side by the uvula cells. In this textbook, it is
shown that the rod cells yield signals at the twilight, i.e. sig-
nals without any colored light absorption, whereas the uvulas
show signals solely by means of colorful light.

This biological differentiation reflects in an absolute man-
ner the physical model of spatial differentiation between grav-
itation and electromagnetism, suggesting that the rod-signals
represent the 1-D related gravitational interaction, whereas
the uvula-signals the 2-D related electromagnetic interaction.
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Thus it is physicallyacceptable to suggest the biologicalstruc-
ture of human eyes to be the consequence of the effect of the
discussed existence of the differentiated structure of space,
given outside of masses. Consequently we can state that this
interesting biological differentiation between rods and uvu-
las reflects the spatial differentiation between the 1-D state
and the 2-D state, showing that the differentiated structure of
space is the particular mediator of these effects.

Considering these circumstances, it becomes evident that
due to the existence of the differentiated structure of space,
the human eyes become the main processing not only of the
perceptibility of solids and thus of the observation in gen-
eral, but also, simply by the absorption of particular quanta
of light, of the perceptibility of stars and galaxies, and attain
therefore, together with the help of telescopes, the possibility
to discover the HE and the related equations (16), (17) and
(18).

8 Concluding findings

In the cosmos, there are two forms of homogeneous struc-
tures: Solid-state celestial bodies (SSCBs) and HE-galaxies
(HE). Homogeneous solid-state celestial bodies consist of e-
lectromagnetic-gravitational interwoven structures,whichcan
be described by Kepler’s third law. This law shows that the
SSCBs can not only be characterized by mass and radius, but
also by the category time, whose lapse is dependent on the
strength of gravity of the given SSCB [3].

In contrast, the existence of HE-galaxies is solely observ-
able by means of optical signals, i.e. by eyes and/or by tech-
nical methods, using telescopes. Here, signals undisturbed
by atmospheric absorption are required, which correspond
to the state of a differentiated three-dimensional space. In-
cidentally, in this connection it should be emphasized that
the Pythagorean theorem, considered in conjunction with the
three-body problem, entirely corresponds to this differenti-
ated three-dimensional space model. Therefore, it should be
pointed out that the application of the differentiated structure
of space to the optical signals of galaxies leads, with analyz-
ing the HE, to (16) – (18). In addition, it was demonstrated
that the validity of (17) and (18) can be established by the
cosmic background radiation, and what is more, by the excel-
lent agreement of the deduced data of mass and radius of the
Milky Way with the corresponding values.

The presented new model of the Hubble-effect, which is
based on the black-body radiation, shows – according to the
experimental, generally valid disclosures of the Quantum-Ha-
ll-Effect (QHE) – that the so-called HE-velocity vHE,y is a
pure electron effect. Therefore it has been stated that, ac-
cording to the differentiated structure of space, the frequency,
i.e. the category time, should not be considered an absolute
basic magnitude, but an electromagnetic 2-D state, which be-
comes localized, i.e. observable only in connection with the
existence of masses. Therefore, as generally known – and

also being in agreement with the differentiated space model
– time can be observed only in a causal relation to the 1-D
length state [4]. This conclusion follows from (4) and (8) and
has been manifested by experimental data of the lapse of time,
in particular described in [3] by (26).

Finally, the importance of the differentiated structure of
space in nature has been further made evident by the analysis
of human vision, showing that the difference of the function
of the uvula cells and the rod cells reflects the separateness
of the 2-D and 1-D spatial state of seeing, an effect, being in
accordance with the description of the Hubble-Effect. This
observation is of extraordinary importance, as the process of
seeing is the main background of the human observation of
all being. As will be shown in a next paper, this important
conclusion can be additionally substantiated by the physical
description of the process of hearing [14, 15].
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Predictability Is Fundamental

Felix Tselnik
E-mail: tselnik@bgu.ac.il

1 General concept of trajectory

In his relationship with Nature, the person might be active if
he wants to get to some state of the world, and then he is look-
ing for a means to reach this state. Although the content of the
state is completely in his mind, he needs the prediction for his
action to reach the desired. Typically, this is difficult in real
life, and people act according to more or less uncertain hopes,
past experience, beliefs etc. However, sometimes predictions
might exist to recommend actions with the universally guar-
antied results – always and everywhere. Though infrequent,
such predictions are therefore recommended to be looked for
first of all, and our so valued technologies are based solely on
these.

The related scheme of the world states must be able to
formulate predictions in its own internal terms. If some state
in the scheme is associated with the desired, so being the final
for the person’s purpose, the initial state, from which the ac-
tion should start, must be defined in the internal terms of the
scheme as well. Since the final state is not reached as yet, it
should be set in the future with respect to the initial. If being
in the initial state the person is guaranteed to reach the final,
no prediction is needed. As the first order development, we
might include in the scheme some intermediate state such that
transitions from the initial state to this intermediate and from
the intermediate to the final are both sure. Then the problem
is reduced to finding this intermediate state. Only one such
state might be there, because the existence of even one more
would provide uncertainty as to which one to choose, so mak-
ing the prediction incomplete.

Giving the number 0 to the initial state and 1 to the final,
let us give 1

2 , say, to this intermediate (no metric is implied
– just the order). In the same way we define next 1

4 and 3
4

states and so on. This procedure involves only rational num-
bers, so some infinite sequences of the states might not con-
verge to a state with the rational number to become the initial
for the further part of the sequence. Therefore all sequences,
i.e., all real numbers are required for guaranteed predictions
(Dedekind). In so doing, only order is important, and a state
might correspond either to the rational or irrational number as
well. Again, no state not belonging to this sequence can exist
in the prediction of the steady transition from 0 to 1, other-
wise the prediction becomes incomplete. In the Lagrange’s
version of mechanics, its basic least action principle reflects
just this singleness.

Such state sequences are called trajectories, and we are
ready now to approach the Newton’s scheme, starting with

the very condition of the universal predictability. It should be
stressed that the scheme is only the necessary language for
making universal predictions; it is supported by, though not
coming from, our senses that connect us with Nature also in
great many other respects.

2 Principles of the Newtonian mechanics

In this essay, I don’t consider the post-Newton development
of his ideas; even the contribution of Maxwell and Einstein
will not be discussed here. My purpose is to understand
whether or not the very scheme of mechanics elaborated by
Newton is the only possible one. Upon working over many
decades in experimental physics, I couldn’t refrain from ask-
ing myself as to what if there is some other and more effi-
cacious way to address Nature. To this end, I’m going to
scrutinize the Newton’s scheme in every respect.

Following the method of Descartes of representing geo-
metrical figures with numbers and related equations, New-
ton has formulated his three ‘Laws of Mechanics’ in order to
apply the similar procedure to physics, i.e., to describe also
motion by means of Cartesian coordinates.

The first Newton’s law introduces rectilinear and uni-
form trajectories as free from an external influence (“force”).
However, this law is just a vicious circle. As Einstein men-
tioned in his “The Meaning of Relativity”: “The weakness
of the principle of inertia lies in this, that it involves an ar-
gument in a circle: a mass moves without acceleration if it
is sufficiently far from other bodies; we know that it is suf-
ficiently far from other bodies only by the fact that it moves
without acceleration.”

Aiming at numbering arbitrary motions, we have first of
all to match abstract geometric images with real operations.
Indeed, what does it mean “rectilinear” in Nature? How rec-
tilinear a trajectory should be for the scheme still being suit-
able? How to make it sure that a line is straight? Suffices
it to be described by linear equations in a reference frame
formed as the Cartesian structure? But then, we have to rec-
ognize first that our reference frame itself is comprised of
straight axes. The commonly accepted agreement suggests
using some standard rigid rods. How rigid? Sometimes rigid
might appear soft. This depends on the inter-atomic dis-
tances, but the concept of distance is still to be introduced
using standard rods. (Circle!) We are to transport the rod as
along the reference frame axes for marking them evenly, so
also over the whole space with parallel shifts and rotations,
being sure that it remains rigid. In so doing, we believe that
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no actions destroy these operations. The marks on the axes
define Cartesian coordinates, which will further be used to
define a scalar – squared “length” as the sum of the squared
coordinate differences. Only then can we construct the full
Cartesian structure using equal length rods to obtain the nec-
essary symmetries of reference frames. (One more circle!)
Also collimated light rays might be used, whenever diffrac-
tion (still depending on wavelength!) could be neglected, ei-
ther solely to define linearity, or together with rods for paral-
lelism and other symmetries. Being applied to measurements
of motions, we inquire the relevance of these devices, since
in fact this procedure has nothing to do with the motion in
question. It might well happen that in the study of motion
our artificial rods either add something of their own or hide
something, so being suitable within only some limited scope
of motions. We cannot refer here to great many successful
technical applications as well as to the broad experimental
support, since all these are carried out within the introduced
in advance basic conceptions, so being relevant only within
some narrow areas of the implied research.

Even more difficult questions spring up upon considering
the time intervals measurement and its universal applicability
to real motion. How do we know that the duration of one hour
now is equal to that in the future (see, e.g., H.Weyl, “Space-
Time-Matter”)? How uniform free motion is to be for the
scheme to remain suitable? Beginning with Zeno, Aristotle
etc., philosophers were burdened by the mystery of time, and
Newton himself attempted, in vain, to develop the concept
of “genuine” time, that runs uniformly and is free from any
influence, our astronomic time being only an approximation
of. The summary of his meditations might be found in his
“Mathematical Principles of Natural Philosophy”: “I do not
define time, space, place, and motion, as being well-known to
all.”

Not belonging to these “all”, I want to examine the very
necessity of the conventional definitions. Intrinsic to our
mind (i.e., being a priory, as in Kant’s works) ideas of “space”
and “time” suggest only some freedom of motion. How-
ever in the Newtonian scheme, the space is already supplied
with the three-dimensional Euclidean geometry, that is, it is
a somehow defined set of elements – positions – that form
the non-compact metric space with all the related properties.
The time is not merely “past-now-future” but also a one-di-
mensional metric space with the countable base of open sets
(neighborhoods), and its metrics is monotonous. Why all
these?

Imagine a body placed into empty space. How can we
tell between its being at rest and moving? The question is
quite senseless provided nothing else is there. A reference
frame is this “else” in the Newtonian mechanics. Only then
can we define the trajectory of this body using readings on
the reference frame axes. Still, this frame is only an auxiliary
means in the problem. But why do we need to know this tra-
jectory? This becomes meaningful only if some other bodies

may come into contact with this one, and it is this contact that
is in question of any real problem in mechanics and generally
– in physics.

The purpose actually consists in predictions of the con-
tacts, implying the further action to influence the reaching of
this contact. Then, why do we need an intermediary like an
external reference frame, rather than to directly consider only
the motion of the bodies of interest in our problem? If the
event of contact in question does occur, the coordinates of the
bodies coincide at some time moment. Hence, the trajecto-
ries must (in the Newtonian mechanics) be written in numbers
as time-functions of the coordinates taken from the reference
frame. Only if times for different trajectories are appropri-
ately coordinated, the predictions of contacts become possi-
ble. The accepted solution is one time for all trajectories in
the problem, and the synchronized clocks are needed at each
position in the reference frame.

All this rather complex measurement system is feasible,
provided:

(i) Synchronizing signals connect all positions of the ref-
erence frame instantly. Believing that “for any fast motion
a faster one might be found”, an overcoming signal must al-
ways be used, so that observation of the body that could come
into contact of interest would never have been lost.

(ii) Suitable clocks are to be made somehow. In daily life
rough astronomical timing: years, months, days, hours, might
be inappropriate. However, the design of mechanical clocks
is based on the previously established principles of mechan-
ics that are still under examination in our essay (One more
circle!).

(iii) Identity of the clocks periods is perfect.
The second Newton’s law describes some external influ-

ence on the trajectory – a force. The idea consists in inte-
grating the series of free trajectories’ segments to approxi-
mate the actual trajectory as altered from the free motion by
this (smooth) force. The end points of each segment con-
tact those of its neighbors. With the reference frame read-
ings their lengths can be used to obtain the measure for inte-
gration. The transitions between the segments normalized to
the related time intervals define the proportional to the force
‘acceleration’ as the measure for the transitions between the
segments. Leaving aside the mathematical details of these ap-
proximations and their limits to the Calculus, I want to focus
on the very measurement of a force in Newtonian mechan-
ics. Indeed, where to find the vector of the force? Tradition-
ally, some particular kind of forces is suggested for the prob-
lem of interest like the gradient of an external potential (as,
e.g., in oscillations, gravity), friction, electromagnetic field
etc. There is no general concept of force in the geometrical
terms of the scheme itself. Provided the force is given in ad-
vance all over space-time, the whole trajectory can be found
step by step. However, this approach cannot produce a gen-
uine prediction as yet, being dependent on the knowledge of
force up to the final state where no prediction is already in-
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teresting. In the Newtonian mechanics, inertia determining
acceleration makes the scheme really predictable: Given the
force, a sufficiently big mass of the body will send this force
to the second order perturbation in the trajectory determining
equation. It is just the demand of predictability that is re-
sponsible for second order terms in the equations to be suffi-
cient: Force collected over the first order linear segment pro-
vides the next inter-segment transition, and no higher order
terms are needed to determine them. So, the specification of
only the initial free segment suffices to predict the final con-
tact. This fact is not always understood, especially by mathe-
maticians, believing in the known from experiment harmony
of Nature. For instance, V. Arnold in his famous textbook
“Mathematical Methods of Classical Mechanics” declared:
“It is possible to fancy a world, in which for the determina-
tion of the future of a system one has to know in the initial
moment also acceleration. Experiment shows that our world
is not such.”

However, any statement and result of experiment is for-
mulated in terms of the already accepted theoretical models
(Einstein: “In order to measure the velocity of light, the theo-
retical concept of velocity is necessary.”). All these concepts
originate in predictability. As a matter of fact, there is no har-
mony in our world, but the demand for predictability bounds
us to develop a scheme ready for advising the person, looking
obliviously around for the solution of his problem, to try first
of all physics for the reaching of his wanted state.

The third Newton’s law introduces the concept of inter-
action between bodies as a sole source of force, so providing
some certainty to the second Newton’s law. Then, an isolated
from external influences collection of either or not interacting
bodies taken as a whole must move freely according to the
first Newtonian law. In particular, a solid body, considered
as comprised of two parts separated with an infinitesimally
thin gap, moves freely while, according to the second New-
ton’s law, an additional force would be needed to keep each
part moving free in spite of their reciprocal attraction. Hence
we have to admit that the action of one part on the other is
compensated by the opposite action.

3 Alternative numbering of motion

Newton considered velocities of bodies extendable in their
values up to infinity, and then the using of located in advance
clocks and rods became indispensible. Success in geometry
tempted the using of the trajectory as the basic entity to start
a theory with. On the contrary, the existence of the top-speed
signal makes it possible to suggest a different numbering of
motion. In so doing, we need no metric – no rods, no clocks,
no material points, no reference frames. Our main concept
is “contact”, defined solely by its existence – “yes/no”. The
concept of body will be used just as a picturesque representa-
tion of contacts. It is the prediction of a contact using some
auxiliary contacts – the Contact Problem (CP), that is the only

issue of physics as a method to make universal predictions
whenever relevant.

Attempts to define the space-time geometry with trajecto-
ries of limited velocities have been carried out in the middle
of the past century [1-6]. In the interior of the light cone,
trajectories were used to define neighborhoods generating the
space-time topology as sets of points (events) such that any
trajectory reaching a point of the neighborhood starting from
outside passes also some other points of it, and there is some
open interval in the order of the 1-dimensional continuum of
this trajectory contained in this neighborhood (see Ref. 7 for
details).

Consider two bodies A and B moving, each one along
its (ordered) trajectory, toward their possible contact denoted
(A,B). Let a set of auxiliary bodies be simultaneously emitted
from A so that some of them reach B. Find the first of them
to come into contact with B in the own B-order (One might
imagine this first to put a mark on B, so that others meet B al-
ready marked.). Such a body will be taken for the top-speed
signal, provided the emitted set is rich enough to cover all
possible applications. A top speed must exist in the scheme
for B not to be lost from observation upon its accelerations, so
making predictions impossible. In so doing, we don’t provide
this top speed with a numerical value (no cm/sec, just topmost
as defined!). Let further B emit instantly in response a sim-
ilar set to reach A; it might be regarded as ‘reflected’ from
B. This procedure being multiple repeated will be called the
oscillation of the top-speed signal between A and B.

Our scheme of numbering motion consists solely in
counting the numbers of these oscillations nAB. Let us start
this counting at some state of A. If (A,B) exists, the number
of the oscillations is infinite, since were it finite some last os-
cillation before (A,B) will be there, in contradiction with the
top-speed property of the signal, since either A or B would
then reach (A,B) sooner. It is tempting to take the infinity
of nAB for the prediction of the contact, but in the absence
of (A,B) this number is still infinite though in the Newtonian
scheme it would take infinite time; but we claim to use no
measure for time, only the order.

In order to obtain the prediction, we can use an auxil-
iary body X with (A,X) known in advance and measure the
ratio nAB/nAC for the triple (A,B,X), beginning at arbitrary
point. (Both numbers being infinite, the ratio doesn’t de-
pend on this point.) The prediction of (A,B) follows from
that of (A,B,X) provided such X can be found that this ratio
is finite. Again, this is not a genuine prediction as yet, be-
cause we are counting the ratio up to the (A,B,X), and then
nothing is left to predict. Hence, a scheme is to be devel-
oped to predict (A,B) already at the beginning of the oscil-
lation numbers (ON) counting. Although we dispensed with
all Newtonian intermediaries and turned to measure a motion
solely by means of some auxiliary motions, we have yet to
develop a scheme similar to the Newtonian to obtain genuine
predictability.

12 F. Tselnik. Predictability Is Fundamental



Issue 1 (April) PROGRESS IN PHYSICS Volume 16 (2020)

For this to be possible, we ought now to consider suit-
able for our numbering scheme intersections of trajectories
that allow for using the related concept of force. To this end,
we define first the class Q of trajectories, the contacts be-
tween which are not too dense, so that with ON counting it
be always possible to distinguish contacts however multiple.
For instance, two trajectories, which in the Newtonian version
have contacts only in all points with rational values of even
one of coordinates, don’t belong to Q. Hence, if trajecto-
ries from Q have two or more mutual contacts, ON counting,
wherever started, might become infinite for only one of these.
Only trajectories from Q are suitable for CP.

If the top-speed body signal S emitted from A at some of
its point to contact B at some of its point, then no body emit-
ted from A simultaneously with S can contact B in all points
earlier than (S,B) in the B-order. So, we have now points
in A and B that cannot be connected with trajectories unlike
that in the Newtonian scheme. The set of all points, no pair
of which can be so connected is called “spacelike hypersur-
face” W, and its elements will be called positions; therefore
the trajectory of A, say, can contact W only at a single posi-
tion. In particular, all top-speed signals connecting a point of
A apart from W define some boundary in W: Only positions
of W within this boundary can be connected with the part of
A bounded by this point. An open in its order interval of A,
crossing W at some of its points can be projected on W inside
this boundary. This can be done using a series of mutually
“parallel” trajectories (The notion of parallelism might be de-
fined using a system of four ratios of ON’s, and so defined
parallel trajectories are not necessarily straight lines.) as fol-
lows. Take r points on A such that the finite ON’s between
neighboring pairs of parallel trajectories, connecting them to
W, differ by only one oscillation. Increase r keeping this con-
dition. In the limit r going to infinity we obtain a path of posi-
tions in W, which are in one-to-one correspondence with the
set of r points in A trajectory to form (again being completed
with irrational limits) the one-dimensional continuum. Un-
like trajectories, paths might have self-intersections, though
“rarefied” in accord with the trajectories they are projections
of.

The whole W is an “envelope” for various combinations
of possibly intersecting paths. If paths intersect, then the
contact of their trajectories either exists or not. However, if
paths don’t intersect no contact can be there. It is only this
purely topological property that is important for CP. W must
have enough freedom to allow all the variety of combinations
of passes. Since paths and their allowed combinations are
one-dimensional, they might be topologically embedded in
the 3-dimensional Euclidean space (Remember traffic inter-
changes. In general, a wide class of n-dimensional spaces,
including our paths, might be so embedded in the Euclidean
space of the dimension 2n+1, according to the Noebeling-
Pontryagin theorem. Hence the geometry of space, taken in
the Newtonian scheme as fallen from heaven, merely results

from the union of all paths, and more dimensions for W would
be redundant, because already some 3-dimensional subspace
of it can include all cases for CP. Importantly, W cannot be
considered as a sub-space of the 4-dimentional Lorentz space-
time, otherwise its meaningless topology with non-countable
neighborhoods would be only1-dimensional in both Lebesgue
and Poincare senses.

A top-speed signal cannot have more than one contact
with any other trajectory in our scheme. Some other trajecto-
ries might have single contacts too, and these will be useful to
define a force. Let us therefore select a special class of trajec-
tories – the measurement X-kit with the following properties:

(i) Two trajectories from X either have no contacts or have
only one;

(ii) Any point of a trajectory from Q has contacts with
some trajectories from X.

(iii) Any two points of a trajectory from Q can be con-
nected by a trajectory from X. Free trajectories of the first
Newton’s law are such, and just these properties of them, per-
haps only locally, are actually needed in our scheme too.

In the second Newton’s law acceleration is determined by
force. Let us now inverse this law so as to determine force via
acceleration, though not of the body of interest in the CP but
of a body from the specially prepared auxiliary test P-kit with
the same scheme of contacts as the X-kit, however comprised
of bodies with some fixed constants to be specified for the par-
ticular kind of forces. Provided such standard constants exist
over the whole Q, one is able to determine the acceleration of
the body A that is of interest in CP comparing its acceleration
at each point to that of the test body from the P-kit here, given
the related constants of both. If the bodies participating in this
comparison differ from each other only by the values of their
constants, the trajectory of A can be defined, and therefore it
is worthwhile to represent a force as the product of a constant
and an entity defined by the ON counting – field. With the
definition of our two kits, the said comparison might always
be achieved with the counting of ON’s and their ratios. The
mentioned properties of the kits are specified just to allow for
this comparison, so defining situations, in which we claim to
make reliable predictions.

In the chain of links approximating a trajectory with a bro-
ken line, it is sufficient to specify only the first link. Then the
force defining inter-link transitions (given the required con-
stants) provide the prediction.

It remains now to define the required constants in terms
of ON. We specify first a regular P-star, comprised of trajec-
tories of some P’s from the P-kit with the common contact,
in which the ON ratios are distributed regularly:

(i) Each trajectory of P has the neighbors, that is, a num-
ber of trajectories, the ratios of the ON between P and any its
neighbor to that between P and any other trajectory from the
star exceeds 1; it follows that the ratios of the ON between P
and any pair of its neighbors equals 1.

(ii) This feature is the same for all trajectories of the star.

F. Tselnik. Predictability Is Fundamental 13
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In 3-dimensional Q these conditions can be exact only for a
star with the configuration of a Platonic solid (If a star com-
prises great many trajectories, this inexactness might be ig-
nored in the definition of a measure as the numbers of trajec-
tories in subsets of the star; this is used, e.g., in the problems
of field propagation, however not referred to further on in this
essay restricted to mechanics.).

Consider a Platonic solid star with the bodies from the
P-kit moving from its vertices toward the center solely un-
der their interactions (Remember the third Newton law.). It is
convenient to describe the gauge procedure for the constants
in Newtonian terms (translation into the ON counting will be
evident). These bodies are assumed to have some masses m
and charges q. The completely identical bodies can reach the
center only being mutually attracted as for gravity; otherwise
some charge compensation is needed. Then only two of the
Platonic solids might be relevant: the cube and the icosa-
hedron. Indeed, in both it is possible to distribute opposite
charges so as to obtain a regular star for bodies from P-kit.

The cube might be arranged out of two interwoven tetra-
hedrons – one with +q, another with −q; hence the star is
neutral as a whole. All 8 initial velocities are radial and equal,
and 8 equal initial radii are also the same for all bodies of the
cube. All these bodies are being equally accelerated propor-
tionally to q2/m toward the center along rays, whatever radial
dependence of their (isotropic) interaction force. We ascribe
the cube star to electromagnetic (EM) interaction, the mag-
netic component of which is then equal 0 on the rays, and the
electric field is purely radial.

Starting ON counting from the initial radii, we find their
ratios for each ray with its neighbors to be 1 for any n. Re-
versing argument, the value 1 of these ratios can be taken as
the criterion for the cube star to be perfect. After passing the
star center the bodies decelerate to reach initial velocity at
the same radii as the initial ones. Here some of them can be
used, with an appropriate order of the vertices, to form the
descendant star from this seed, adding more similar bodies.
A triple of the neighboring seed star bodies completely deter-
mines all other members of the descending star with ON ra-
tios counting. In the progress of this descending step by step
in all directions, the charge and mass are transported over the
whole network in Q, so determining the same pair of standard
constants everywhere. Importantly, both m and q must be the
same in the cube: Varying any of them in a part of cube, even
keeping the value q2/m unchanged, destroys the star symme-
try. Hence, the network transports both standards unchanged.

In a more general case of CP, e.g., with an arbitrary exter-
nal EM field, the source of which is not known in advance,
unlike that in the Newtonian approach, the acceleration of
charged bodies is proportional to the q/m rather than to q2/m.
However, the value of q/m is also determined by the cube
star gauge, since both q and m are preserved upon the de-
scent transportation. So, predictions based on ON counting
are available in CP even beyond the Newtonian scheme.

The icosahedron regular star of oppositely charged bod-
ies (also neutral as a whole) exists only if, in the Newtonian
sense, the interaction force increases with radius. Whereas
the cube is a sub-star of the full dodecahedron, the icosahe-
dron stands alone; hence its charge and mass have nothing in
common with EM q and m. With the distance increasing of
its force, allowing for confinement and asymptotic freedom,
the icosahedron star symmetry might be suggested to explain
the Dark Cold Matter and the Dark Energy in cosmology.

4 Postscript

The origin of the “Laws of Nature” for any method of num-
bering motion as well as of the concept of motion itself results
merely from the very problem statement by the person-user
to find, whenever possible, a universally predictable course
of action. To this end, physics suggests CP. Nature has no
harmony of its own; only living creatures are looking for re-
liable schemes to make predictions. In particular, it is clear
now why quantum mechanics had not developed its own vari-
ables instead of classical position and momentum. However
modified, these variables still present information in terms re-
quired by the user.

Received on November 19, 2019
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It is shown that the experimental data of sound, obtained by the investigation of
H. Fletcher and W. A. Munson [4], can be physically described on the basis of the differ-
entiated structure of three-dimensional space (DSS), showing an analogy to the physi-
cal interpretation of the process of human vision. The analysis of the experimental data
indicates that the process of hearing at frequencies below 800 Hz depends on the dif-
ferentiated structure of the space related to air. Furthermore, it has been shown that the
existence of sound at frequencies higher than 800 Hz is the result of quantization phe-
nomena of the differentiated space-related state of the air, revealing to be an analogy to
the quantum effects of the differentiated structure of space of the quantum-Hall-effect
(QHE). The presented results about sound, considered with respect to the findings of
the QHE, the Hubble-effect galaxies and the process of seeing, result in the fundamen-
tal statement that the human ability of the observation of being refers exclusively to the
existence of the differentiated structure of three-dimensional space.

1 Introduction

The discovery of a macroscopic quantization in the field of
solid state physics, called quantum-Hall-effect (QHE) or
Klitzing-effect [1], which was first experimentally observed
by K. von Klitzing in 1980, opened the door to a new inter-
pretation of various physical phenomena, such as the origin
of the category time or dynamics in the field of mechanics,
or thermodynamics and theory of heat [2], but also to some
human-related biological processes [3]. The experimental
findings of the QHE provided basic indications of the possi-
bility of the existence of a specific space state, characterized
by a division of three-dimensional space into a clearly sep-
arated, independent 2-D and 1-D dimensional space, called
Differentiated Structure of Space (DSS) [2, 3]. This sepa-
ration is recognizable e.g. by the simultaneous existence of
two different forms of electromagnetism, effective not only
in the context of MOS transistors, but also in the observation
of the Hubble-effect (HE) galaxies, a process that is even re-
flected in the process of human vision, among other things.
As shown in [3], the fundamental investigations into the ex-
istence of HE galaxies lead to the physical realization that
the vision of humans, and to some extent also of animals,
depends on the given DSS-state of space. The fundamental
importance of the DSS-space state for humans becomes addi-
tionally apparent when we discuss the sound process phys-
ically. The experimental data of the investigations of hu-
man hearing carried out by H. Fletcher & W. A. Munson in
1933 [4], which show the relationships found between the
sound pressure, the sound intensity and the loudness level
on the one hand and the sound frequency on the other hand,
presented here in Fig. 1, have so far been interpreted as bi-
ologically caused effects [5–7]. In contrast, the presented
work shows that all the dependencies measured by Fletcher

& Munson [4] (except for the conditions at the initial and
final frequencies of human sound sensitivity are almost ex-
clusively of physical origin, since, as is shown, they are due
solely to the existence of the DSS-state of the air atmosphere.

Based on the data in Fig. 1, it must first be pointed out
that for the investigation of sound intensity and sound pres-
sure at the boundary condition of approximately 20◦ C and a
sound velocity of vs = 343 m/s, the frequency of f0 = 800 Hz
proves to be a suitable boundary condition, since the physi-
cal processes involved in the realization of sound, arising at
frequencies fx < f0, differ considerably from the processes at
frequencies fx > f0. Therefore, we divide the physical analy-
sis of the sound process into Part I and Part II.

2 The analysis of the Part I area of sound

Sound generation and its transmission are based on the prop-
erties of air. The air molecules as components of the air,
which we may evaluate as an ideal gas in the closest approx-
imation, are mainly subject to the influence of earth gravity.
Since these forces can be regarded as constant in wide ar-
eas above the earth’s surface, there is the special possibil-
ity of not paying attention to the gravitational forces when
analysing the origin of sound. Following this idea, we can
therefore assume that in our case the kinetic energy of the air
molecules and their variability can be considered as purely
electromagnetic in nature, which, however, as the experimen-
tal data show, is causally related to the temperature of the en-
vironment, i.e. more precisely, the fundamental electromag-
netic energy of the air molecules is indirectly proportional to
the ambient temperature, observable especially in the variable
value of the speed of sound. This in turn means that the air
can be considered a so-called Boltzmann gas, i.e. the electro-
magnetic energy of the air molecules can be put into a causal

Gerhard Dorda. The Interpretation of Sound on the Basis of the Differentiated Structure of Three-Dimensional Space 15
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FIGURE 3.12. Curves of equal loudness (Fletcher and Munson 1933) In a sound 
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relation to the Boltzmann energy kT . Based on these consid-
erations and on the experimental data of the sound investiga-
tions of Fletcher & Munson, the following basic equation is
formulated for the analysis of sound:

kT
h fx

= nB,x vs
px

Ix
= nB,x

Ep,x

EI,x
. (1)

Here, k is the Boltzmann constant, T the temperature of the
environment, h the Planck constant, fx the given frequency,
vs the speed of sound, px the sound pressure, Ix the sound
intensity, and nB,x the number of air molecules corresponding
to the given frequency in order to reach the so-called hearing
threshold, as shown in Fig. 1 [4]. The index x in (1) refers to
the given frequency fx for all quantities. The sound intensity
energy EI,x occurring in (1) is given by EI,x = Ix/ fx, and the
corresponding sound pressure energy by Ep,x = pxlx, taking
into account the sound velocity of lx fx = vs = 343 m/s, lx

represents the so-called sound length.
As can be seen from the definition of a so-called Boltz-

mann relation of sound presented in (1), this relation at the
frequency fx is given by the relation of the corresponding en-
ergies, which in turn can be determined by the indirect pro-
portionality between the sound pressure px and the sound in-
tensity Ix. In order to be in accordance with the experimental
findings, the energy relation was, as shown in (1), additionally
modified by the number of molecules nB,x considered at the
given frequency fx in order to be able to causally represent the

variation of the energy relation. The fundamental importance
and necessity of the introduction of the number nB,x will be
presented in the following analysis, because this number nB,x
is not only of decisive importance in the description of the
course of the (human) hearing threshold at the frequencies of
approximately 20 Hz < fx < 800 Hz, but it is the essential
factor that helps to physically fathom the process of sound
realization in nature.

In the following it is shown that the special form of the
Boltzmann relation equation formulated in (1) can and must
be used as a starting point for sound analysis.

3 The relationship between sound and the air-related
DSS-condition

The experimental results of Fletcher & Munson [4] are not
only fundamental for the description of human hearing, but,
as is shown, are generally valid and therefore fundamental [5–
7]. In the analysis to interpret the realization and propagation
of sound, the following experimentally observed facts must
be considered:

1) The sound intensity Ix and the sound pressure px are
in a mutually causal relationship at any volume (indicated in
phon∗) and at any observed frequency. Special attention must
be paid to the finding which reveals that a constant connection

∗The phon is a unit of perceived loudness of pure tones, indicated in
Fig. 1 as “Loudness Level”.
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is given between the square of the sound pressure, i.e. p2
x, and

the sound intensity Ix. This physically conditioned circum-
stance, which is valid for each sound intensity Ix and for each
corresponding sound pressure px, namely at each frequency
fx [4], see Fig. 1, can be described by

p2
x

Ix
= const. . (2)

This means that with an increase in sound intensity Ix (phon
strength), the increase in sound pressure px must always be
smaller than the increase in the associated sound intensity Ix

2) It should also be noted that the curves of equal loud-
ness dependent on fx, shown in Fig. 1 in phon, do not touch
each other, i.e. the intensity distances, independent of the fre-
quency(!), have almost the same values, i.e. the increase of
the Ix-phon distances is almost always constant at a given fre-
quency fx. This important experimental finding indicates that
the so-called loudness of the sound refers solely to the sound
intensity Ix.

These two experimental findings show that the energy val-
ues characteristic of the air molecules, expressed in purely
electromagnetic form using EI,x = Ix/Fx and Ep,x = pxlx, can
be recorded and expressed in two different ways when sound
is observed.

Here are a few remarks: The specific type of the DSS-
air-state (Differentiated Space Structure state of air), seen in
terms of the boundary conditions of the existence of the Hub-
ble-effect (HE) galaxies [3], is to be sought in the theoret-
ically possible cancellation of the gravitational effect of the
Earth as a boundary condition for the emergence of the spe-
cific type of the DSS-air-state, described in the beginning of
Part I.

The essential consequence of this cancellation is that the
variability of the sound-related energies of the air molecules
is limited to changes of electromagnetic nature alone. This
means that, in contrast to the states observed in the HE galax-
ies, the molecules of air in the given DSS-state in this case
show only purely electromagnetic variable effects, and that
within the framework of our common three-dimensional un-
derstanding of space, they are separated into a so-called 2-D
and a 1-D “space”.

The special feature of this insight is that it clearly reveals
for the first time that, “spatially” considered, air molecules
as energy carriers can be observed in two different forms,
i.e. “spatially” differentiated, whereas inour common, i.e. cla-
ssical understanding of space, on the one hand the EI,x-energy
refers to the two-dimensionality of this energy, i.e. to the 2-D
“space”, which is interpreted as intensity energy, and on the
other hand the Ep,x-energy refers to the one-dimensionality,
i.e. to the 1-D “space”, which is interpreted as pressure en-
ergy. However, the possibility of the existence of such a spe-
cial state is only given if we may consider nature, evaluating
in spatial categories, as differentiated, recorded as DSS-state.

This specific spatial state was first discussed in 2017 in [2,
pp. 33–34, 45, and 49–50], based on the analysis of the ex-
perimental findings of the quantum-Hall-effect published in
1980 by K. von Klitzing et al. [1], and its unusual existence
was again proven by the analysis of HE galaxies [3]. Seen
in this context, the analysis of the Fletcher & Munson data
shown in Fig. 1 and its conclusion are of extraordinary im-
portance, because they show that the possibility of sound for-
mation is only given when this specific “differentiated space
state”, unusual to our daily understanding of space, is given
in the air and thus the boundary condition for the formation
of sound is real. The correctness of such an unusual model,
which was presented on the basis of the specific electromag-
netic DSS-state of the air, can be confirmed impressively and
convincingly by a further detailed analysis of the experimen-
tal data of Fletcher & Munson.

The essential functional significance of the number of mo-
lecules nB,x given in (1) at the given intensity Ix is to guaran-
tee the DSS-state of the air in the form of (1) and (2), which
physically reflect the limit value of the hearing threshold as
equations. This in turn means that, for the experimentally
given values of sound intensity Ix and sound pressure px,
we can use (1) to write the specific magnitude of the value
nB,x as a function of the frequency fx, where we have to de-
fine the frequency fx, normalized in relation to the reference
frequency f0, as the relation n f ,x = fx/ f0. And in order to
be able to mathematically record the homogeneity of the air
in the DSS-state, it is also necessary to define the relation
np,x = px/p0, i.e. to set the sound pressure px in relation to the
standard value of the air pressure p0 by means of the number
np,x. Starting from the limit values I0 = 1 × 10−12 W/m2 and
p0 = 2 × 10−5 N/m2 given in Fig. 1, for every frequency we
then obtain the constant value (nB,x/n f ,x np,x) = 1.122. The
constancy of this value, which captures the homogeneity of
the air condition, and above all the small size of this dimen-
sionless value 1.122 suggests the possibility of replacing this
value by the number 1, followed by the associated necessity
to modify the experimentally given values Ix and px accord-
ingly. In order to minimize the change of the value p2

x/Ix, the
validity of which must be maintained, it is sufficient to reduce
the value from I0 = 1×10−12 W/m2 to I0 = 0.9×10−12 W/m2,
while keeping the value p0 = 2 × 10−5 N/m2. The smallness
of the correction of the I0 value is fully acceptable, as it is
within the given measuring accuracy.

If we now try to represent a causal connection of the val-
ues nB,x/n f ,x to the experimental values nexp,x = Ix/I0 , which
are given by the known data of [4], by means of an equa-
tion, an extraordinarily meaningful connection, valid for all
frequencies fx < f0 emerges, which can be described by

nexp,x =

(
nB,x

n f ,x

)2

. (3)

Using a simple calculation, it can be shown that (3) is a com-
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pellingly necessary causal consequence of the hearing pro-
cess (1) and (2).

Since in the framework of the DSS-model, the values of
nexp,x readable in Fig. 1 can be unambiguously related to the
specific energies of the 2-D space, i.e. to the sound-intensity
radiations Ix, but the relation values nB,x/n f ,x within the fra-
mework of (nB,x/n f ,x np,x) = 1 can be related to the specific
energies of the 1-D space, i.e. with the sound-pressure val-
ues px, the simple and clear form of (3) proves that every fre-
quency x < 800 Hz must be the condition of the differentiated
state of space. Furthermore, (3) testifies that this DSS-state is
necessary as a boundary condition in order to reach the sound
limit by means of the Ix and px limit values, i.e. to generate
and transmit sound in our environment of the earth’s surface.

The number nB,x in (1) is also of great importance for non-
physical reasons: As shown, it is necessary for the realization
of the DSS-state and thus brings the mental development of
man to fruition. The analysis of the sound indirectly shows
clearly that the acoustic communication between humans is
solely caused by the existence of this DSS-state of the air.
In fact, an interesting analogy to the process of seeing and
thus to the human perception process in general can be seen,
because the process of seeing, as shown in [3] and explained
by the existence of specifically suitable uvula and rod cells,
is also based on the existence of the DSS-state, as it were, in
the field of optics, i.e. light.

4 The analysis of the Part II region of sound and the
analogies to the integral and fractional quantum-Hall-
effect

On the basis of the sound interpretation model presented in
Part I, it is clear that sound mediation at frequencies fx above
the limit value f0, i.e. at fx > f0 , must be fundamentally
different from the process presented in Part I, because once
the sound intensity value I0 is reached, there should be no
further normal possibility of reaching the DSS-state for the
production of sound. In fact, however, it is observed that ini-
tially, with increasing values from f0 to approximately fx =

1300 Hz, the hearing threshold limit value of I0, given by ap-
proximately 1×10−12 W/m2, remains quasi-constant in order
toreach anew minimum in Ix of approximately2×10−13W/m2

at fx = 3200 Hz. Afterwards, starting at fx = 3200 Hz, an in-
crease in the hearing threshold limit values Ix is observed with
increasing fx values, followed – which is particularly impor-
tant – by an indication of a small decrease in the Ix limit val-
ues at fx = 1.28 × 104 Hz. After that, a strong increase of the
curves of equal loudness is measured further on with increas-
ing frequency, and to stop at fx = 1.6 × 104 Hz, at all phon
levels. In order to be able to interpret these experimentally
observed complex Ix- fx-dependencies, we have to assume the
existence of two different processes which, as we will show,
relate to the 2-D space component on the one hand and to the
1-D space component on the other.

One process concerns the interpretation of the minima of
Ix at fx = 3.2x103 Hz and at fx = 1.28 × 104 Hz: They can be
interpreted as the consequence of an area quantization given
in the two-dimensional space part, describable with the quan-
tum number 4 and 16. With this, it is postulated here that – de-
spite the sound limit value of I0 = 1×10−12 W, as explained in
Part I – also at higher frequencies, i.e. at fx = 3.2×103 Hz and
fx = 1.28 × 104 Hz – which is due to this experimentally ob-
servable macroscopic 2-D quantization – an air-related DSS-
state can be present, which means that in nature it is possible
to also generate sound at fx > 8 × 102 Hz.

An analogous macroscopic quantization related to two-
dimensional space, namely the quantization discovered by
K. von Klitzing, was renamed in later years to Integral quan-
tum-Hall-effect (IQHE), observed at the quantum numbers 2,
4, (6), 8, 12 and 16 [2, 8, 9]. In order to be able to consider
the assumed two-dimensional surface quantization for sound
as physically acceptable in comparison with IQHE quantiza-
tion, some additional remarks are necessary: In the IQHE,
the magnetic field B is in causal interaction with the elec-
tron density Ne, i.e. in the DSS-space model with the 2-D
space state. In the so-called Fractional quantum-Hall-effect
(FQHE), discovered for the first time by D. C. Tsui et al. at
GaAs–AlxGa(1−x)As heterostructures [10], the magnetic field
Bx corresponds to a frequency fx. This model of the different
functioning of the magnetic field, given on the one hand by
the IQHE and on the other hand by the FQHE, could actu-
ally be indirectly confirmed by targeted measurements within
the QHE, as shown in [11, pp. 34–42]. This means that the
magnitude of the magnetic field, which is expressed in Tesla
units in the MKSA unit system, can also be expressed simply
by the quantity “frequency” in the MKS unit system, which
makes a possible analogy of the process between the sound
effect and the QHE appear possible.

As already mentioned in [3], the QHE state is always
present in the DSS-space state. As a consequence, IQHE
quantization is to be interpreted as a 2-D space quantization,
in contrast to FQHE quantization, which can be interpreted
as a 1-D space quantization. This insight leads us to the addi-
tional conclusion that the discovery of the length-related har-
mony theory, which stems from Pythagoras, actually reflects
a 1-D space quantization, which is today presented in every
musical harmony theory as a consequence of the existence of
overtones that always belong to the fundamental tones. But
this important insight must be further expanded by the discov-
ery of the existence of deep harmony tones associated with
each fundamental tone, recognizable by the existence of the
so-called deep combination tones, see [6, p. 38]. It is evi-
dent that the existence of these deep harmony tones can be
understood as an analogy to the existence of FQHE quantiza-
tion. This leads to the conclusion, which is important for our
analysis, that the unexpected sound generation at frequencies
fx > 8 × 102 Hz according to our model must be a conse-
quence of the existence of 2-D space and 1-D space quanti-
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zations associated with the given fundamental tones, a model
which is fully consistent with the extensive experimental find-
ings of both the IQHE and the FQHE. In addition, an inter-
esting fact can be seen that the QHE, where the observation
of the FQHE was initially completely unexpected, fully re-
flects this “unexpectedness” when listening to deep harmony
tones [6]. The relatively small probability of low combina-
tion tones therefore means that a strong increase in the hear-
ing threshold limit values Ix is to be expected with increasing
frequency, which, as Fig. 1 shows, was actually observed.

The found sudden stop of sound generation at fx = 1.6 ×
104 Hz at all phon values can only be interpreted in such a
way that in humans in the cochlea there are no stereocilia for
these high frequencies that would process such electromag-
netic signals. This means that we can only speak of a phys-
iological effect in this case of the general cessation of sound
sensitivity at extremely high frequencies. The same reason-
ing can be applied to the description of the sudden occurrence
of hearing ability observed at all phon levels, which occurs in
humans at about 20 Hz. This means that the onset of hear-
ing must be physiological and therefore cannot be attributed
to a physical effect. Otherwise, as explained, the sound data
of Fig. 1 observed by Fletcher & Munson can be attributed to
physical processes, which all, without exception, indicate the
existence of an air-related DSS-condition.

5 Summary and conclusion

Based on the analysis of experimental data of the quantum-
Hall-effect [1], it was found that in nature, spatially speak-
ing, a specific state can exist, called differentiated structure
of three-dimensional space (DSS-state) [2, 3]. Based on this
discovery not only a novel description of the category “time”
as a consequence of localized, i.e. 1-D related electromag-
netism could be presented [2, page 45], but also the back-
ground of the existence of the Hubble-effect galaxies as well
as the process of human vision based on the DSS-state could
be physically described [3]. This visual model, which asso-
ciates the rod cells with the specific 1-D space state and the
uvula cells with the specific 2-D space state, does not dif-
fer in any essential point from the process of human hearing
based on the process of the DSS-state, as the analysis of the
Fletcher & Munson data reveal, revealing also the analogy
between the processes of sound generation and those of the
quantum Hall effect. Thus, within the DSS-model, the air
molecules are the “carriers” of both the 1-D space structures
in terms of sound pressure px, and the 2-D space structures
in terms of sound intensity Ix. The detailed analysis of the
Fletcher & Munson data also clearly indicated that the limit
of the hearing threshold is determined by the existence of the
DSS-air-state. This experimental discovery is a fundamen-
tally important discovery from a physical point of view be-
cause it proves that the process of hearing is conditioned by
the existence of the DSS-state of the air molecules. Conse-

quently, it can be concluded that the DSS-state as the basis of
hearing, but also of seeing, as shown in [3], is the fundamen-
tal state that enables human kind to mentally recognize what
is happening in nature, i.e. all being. But this also means that
the DSS-state is the fundamental physical background which
is the starting point for all human evaluations and interpreta-
tions of both static and dynamic, i.e. time-related processes
in nature [2, 3, 11] and should therefore always be taken into
consideration additionally.
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Without using the common methodologies of quantum mechanics – albeit, methodolo-
gies that always involve some demanding mathematical concepts, we herein demon-
strate that one can derive in a very natural, logical and trivial manner, Heisenberg’s
quantum mechanical uncertainty principle on the new phase-space whose name we have
herein coined Stochastic Phase-Space. This stochastic phase-space – is a mathemati-
cal space upon which we previously demonstrated [2] the naturally implied existence
of the First Law of Thermodynamics from Liouville’s theorem. In addition to Heisen-
berg’s uncertainty principle, we derive an upper limiting uncertainty principle and it is
seen that this upper limiting uncertainty principle describes non-ponderable tachyonic
particles.

It must have been one evening after midnight when I suddenly

remembered my conversation with Einstein and particularly

his statement, ‘It is the theory which decides what we can

observe.’ I was immediately convinced that the key to the

gate that had been closed for so long must be sought right

here. I decided to go on a nocturnal walk through Faelled

Park and to think further about the matter . . . Werner Karl

Heisenberg (1901-1976). Adapted from [3, p. 6].

1 Introduction

The present paper is the third in a five part series where we
make the endeavour to understand the meaning and origins
of what drives the unidirectional forward arrow of thermo-
dynamic entropy. In our first instalment [4, hereafter Paper
I], we demonstrated that the Second Law of Thermodynamics
(SLT) can possibly be understood if there exists a new kind
of probability measure, pr, which drives thermodynamic pro-
cesses and this thermodynamic probability evolves in such a
manner that, whenever this thermodynamic probability chan-
ges its value when a system moves from one state to the next,
it always takes higher values than the value it previously held
– i.e. dpr ≥ 0, at all physical and material times. In a nutshell,
thermodynamic events will at the very least, progressively
evolve from a probabilistically less likely state – to a prob-
abilistically more likely state. Such an evolution sequence is
what is naturally expected from probability calculus anchored
on common binary logic where natural systems are expected
to steadily progress into their most likely state.

In the construction of our new ideas, naturally, we ex-
pected that this thermodynamic probability pr, would turn out
to be the usual Boltzmann probability, i.e.

pr = Z−1 exp (−Er/kBT ) ,

where pr is the probability that for a system at temperature
T , the microstate with energy Er, will be occupied and Z is
the partition function. As will be demonstrated in the sequel
paper [5, hereafter Paper IV], this probability pr, cannot be
the usual Boltzmann probability, but a new kind of probability
associated not with the occupation of the given microstate,
but its evolution; where by evolution, it is understood to mean
– moving or progression from its present state to a new state
altogether.

Further on, in the paper [2, hereafter Paper II], we demon-
strated that Liouville’s theorem [6] can actually be viewed
as a subtle statement of the First Law of Thermodynamics
(FLT). This we did by defining the Liouville density function,
δ%, in-terms of some new physical quantity, δSTD, that we
called the thermodynamic phase (or the thermodynamic ac-
tion), i.e. δ% = exp(δSTD/~), where ~ is Planck’s normalized
constant. Furthermore, in Paper IV, we shall identify δ% as
the appropriate thermodynamic probability of evolution, that
is, the thermodynamic probability responsible for the SLT.

In the present paper, we shall demonstrate that when cast
as a probability measure, δ% naturally yields the universally
celebrated quantum mechanical uncertainty principle of Hei-
senberg [1]. In addition to Heisenberg’s lower limiting (i.e.
δE δt ≥ ~/2 and δp δx ≥ ~/2) uncertainty principle, we de-
rive an upper limiting uncertainty principle – i.e. δE δt ≤ ~/2
and δp δx ≤ ~/2. As initially pointed out in [7], this up-
per limiting uncertainty principle strongly appears to describe
non-ponderable tachyonic particles.

Without a doubt, Heisenberg’s quantum mechanical un-
certainty principle is certainly one of the most famous aspects
of quantum mechanics and this very aspect of the theory is
universally regarded as the most distinctive feature of the the-
ory. It is a unique characteristic feature which makes quan-
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tum mechanics differ radically from all classical theories of
the physical world. For example, the uncertainty principle for
position and momentum δp δx ≤ ~/2 states that one cannot
simultaneously assign exact values to the position and mo-
mentum of a physical system. Rather, these quantities can
only be determined with some intrinsic, inherent and charac-
teristic uncertainties that cannot – simultaneously – become
arbitrarily small.

In its popular understanding, the Heisenberg uncertainty
principle is assumed to be a principle to do with the accuracy
in the results of measurements of physical variables such as
momentum, position, energy, etc. Strictly speaking, this is not
true. For example Millette [8] argues that the Heisenberg un-
certainty principle arises from the dependency of momentum
on wave number (p = ~k) that exists at the quantum level, and
that ultimately the uncertainty principle is purely a relation-
ship between the effective widths of Fourier transform pairs
of conjugate variables. Our ideas propagated herein do sup-
port these views and as an addition, these quantum mechani-
cal uncertainties associated with physical variables are seen to
arise from pure stochastic processes occurring on some new
phase-space that we have coined the stochastic phase space.

Now, in closing this introductory section, we shall give a
synopsis of the present paper – i.e. this paper is organised as
follows: in §2, we derive the uncertainty relations that govern
ordinary ponderable matter and thereafter in §3, we derive
the uncertainty relations that govern exotic non-ponderable
matter. Lastly, in §4, we give a general discussion.

2 Derivation of the uncertainly principle

As stated in the introductory section, we are going to demon-
strate in this section (i.e. in §2.2) that one can derive in a ve-
ry natural and logical manner, the position-momentum and
energy-time quantum mechanical Heisenberg uncertainty pri-
nciple on the newly proposed Stochastic Phase-Space (here-
after δΓ-space) upon which we demonstrated [2] the naturally
implied existence of the FLT from Liouville’s theorem. In
addition to Heisenberg’s uncertainty principle, we will also
derive in §3, upper limiting position-momentum and energy-
time uncertainty principles and these upper limiting uncer-
tainty principles describe non-ponderable tachyonic particles.

Before we proceed, we need to explain what it is we mean
by upper limiting uncertainty principle. If there is an upper
limiting uncertainty principle, from the viewpoint of common
logic, there also must be a lower limiting uncertainty princi-
ple. Indeed, the uncertainty principle of Heisenberg is a lower
limiting uncertainty principle because it gives the lowest pos-
sible value that the product of the energy (δE) & time (δt),
and momentum (δp) & position (δr) uncertainties would ever
take. That is to say, the products δE δt and δp δr, can take
whatever value they can or may take for so long as this value
does not exceed the minimum threshold value of ~/2, hence,
in this way, it becomes pristine clear that the Heisenberg un-

certainty principle (δE δt ≥ ~/2 and δp δr ≥ ~/2) is indeed a
lower limiting uncertainty principle.

Now, if – by the sleight of hand, we are to flip the sign
in the Heisenberg lower limiting uncertainty principle so that
we now have δE δt ≤ ~/2 and δp δr ≤ ~/2, the resulting
uncertainty principle is an upper limiting uncertainty prin-
ciple since it now gives an upper limit in the value that the
products (δE δt and δp δr) of the uncertainties can ever take.
Whence, we must hasten at this point and say we already
have discussed the implications of a upper limiting uncer-
tainty principle in our earlier works (i.e. in [7]) where we ar-
gued that if such particle exist to being with, not only will
they travel at superluminal speeds – they also will have to be
non-ponderable as-well; that is to say, they must be invisible
and absolutely permeable. In simpler colloquial terms, such
particles must be capable of passing through solid walls with
no hindrance at all whatsoever.

2.1 Preliminaries

Now, before we can go on to present our derivation of Heisen-
berg’s uncertainty principle in §2.2, we will need to set-up
the stage for that event. First, in order for that, we shall give
in §2.1.1, a description of the particle system that we shall
consider, and, in §2.1.2, we shall describe the normalization
across all spacetime for the thermodynamic probability func-
tion δ% and in §2.1.3, we shall describe the normalization
across a given space-and-momentum axis for the thermody-
namic probability function, δ%. Lastly, in §2.1.4, we present
some useful mathematical equations that we will need in our
endeavours to derive the Heisenberg uncertainty principle.

2.1.1 Description of particle system

As initially suggested in Paper II, we envisage the existence
of two mutually exclusive spacetimes and these we have term-
ed – the Classical Canonical Spacetime (hereafter, CC-Spa-
cetime), and, the non-Canonical Spacetime (hereafter, NC-
Spacetime). The NC-Spacetime can also be called the Sto-
chastic Spacetime. On the deterministic CC-Spacetime, a
particle has its usual deterministic classical four position (x, y,
z, c0t) that we are used to know, while on the non-determinis-
tic NC-Spacetime, the non-deterministic jittery quantum ran-
domness and fuzziness associated with the usual determinis-
tic classical canonical position (δx, δy, δz, c0δt) are defined on
this non-deterministic NC-Spacetime.

For example, considering only the x-axis, a particle will
have x as its canonical position and δx as its associated non-
canonical position as defined on the NC-Spacetime. It is δx
that should give this particle the quantum fuzziness leading to
the weird quantum probabilistic nature of physical systems.
For the human observer – assuming zero human-induced er-
ror in measuring the position of the particle – the effective po-
sition x̂ of the particle at any given time is x̂ = x ± δx. So, in
general, xµ is the canonical four position of the particle and
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δxµ is the associated quantum randomness that leads to the
mysterious, strange and bizarre fuzzy quantum probabilistic
nature of natural systems.

In our description above, when we say particle, we mean a
point-particle – i.e. particles of zero spatial dimension, hence
zero volume. Obviously, there will be some trouble in accept-
ing this – as point-particles, are – in physics – no more than
idealization of real finite-sized particles that are smeared-out
in a finite region of space. That is, a point-particle is in gen-
eral an appropriate or convenient representation of any object
whatever its size, shape, and structure – all these details of
size, shape, and structure, etc, are irrelevant under the general
particle model.

To further complicate this issue of the particle description
of matter, we all know pretty well that the existence of point-
particles is strictly forbade by Heisenberg’s uncertainty prin-
ciple. With this in mind, of these particles, what we envisage
is them having all their charge such as their gravitational mass
and electrical charge being concentrated on that very single
point with this point being trapped in the finite sized spher-
ical region of radius: δr =

√
(δx)2 + (δy)2 + (δz)2, with the

the centre of this finite spherical region fixed in space about
the canonical position (x, y, z). Because of the fields that the
trapped charged point-particle carries – i.e. fields with which
this particle interacts with other particles; the fuzzy, random
wandering and dotting back-and-forth, up-and-about of this
particle inside this finite region should create the impression
of a solid billiard-like ball of radius δr with oft cause the
bulk of its charge (gravitational, electrical, etc) expected to
be trapped in this spherical region. Surely, such a particle-
system will be localized and it will have the property of pon-
derability that we experience with electrons, protons, etc. Let
us call such a particle-system, a Ponderable Material Parti-
cle.

Now, for a minute, let us assume that the above described
point-particle is not trapped. If that were the case, then, what
is it that we are going to have for such a particle-system?
Clearly, it must be an unbounded point-particle that is free to
roam all of the Universe’s length, breath and depth – from
one end of the Universe, to the other in an instant! Such
a particle-system should have its charge (gravitational, elec-
trical, etc) spread-out evenly throughout the entire Universe.
Not only this, while such a particle-system will have a defi-
nite fixed canonical position, the entire particle-system must
be invisible as it will not have the property of ponderability
(localization). Likewise, let us call such a particle-system, a
non-Ponderable Material Particle.

Now, as shall soon become clear in our derivation of Hei-
senberg’s uncertainty principle, two classes of particles will
emerge and the first is that class whose random quantum fuz-
ziness as described on the NC-Spacetime obeys the usual qua-
ntum mechanical uncertainty principle of Heisenberg, i.e. δE
δt ≥ ~/2 and δp δr ≥ ~/2; and these particles travel at speeds

less than, or equal to the speed of light in vacuo. The sec-
ond class is that of particles whose quantum fuzziness as de-
scribed on the NC-Spacetime obeys not the usual quantum
mechanical uncertainty principle Heisenberg, but obey the
converse of Heisenberg’s uncertainty principle, namely δE δt
≤ ~ and δp δr ≤ ~ and these particles travel at speeds that are
at the very least, greater than the speed of light in vacuo.

At this juncture, we feel very strongly that we have pre-
pared our reader to meet the strange new proposal of invisible
particles that travel at superluminal speeds, thus – assuming
the reader somewhat accepts or at the very least, finds some
modicum of sense in what we have had to say above – we
shall quietly proceed to the main business of this paper – that
of demonstrating the natural existence of Heisenberg’s un-
certainty principle on the proposed NC-Spacetime where the
jittery, fuzzy quantum randomness has here been defined.

2.1.2 Normalization across all space

If δ% is assumed to be some probability function, then it must
be normalizable. Normalization is oft cause one of the most
fundamental and most basic properties that a probability func-
tion must satisfy. As is the norm: normalization of this func-
tion, δ%, across all of the six dimensions of δΓ-space requires
that:

1
~3

δpmax︷    ︸︸    ︷∫ ∫ ∫
︸    ︷︷    ︸

δpmin

δrmax︷    ︸︸    ︷∫ ∫ ∫
︸    ︷︷    ︸

δrmin

(δ%+) d3xd3 p = 1, (1)

where: δ%+ = δ%+
x δ%

+
y δ%

+
z δ%

+
0 . In writing δ% in (1), we have

appended a subscript + and this is not a mistake, it is deliber-
ate. This + appendage has been instituted – for latter purposes
– so that a distinction can be made between a thermodynamic
system with a positive δSTD thermodynamic phase (action)
and that with a negative −δSTD thermodynamic phase (ac-
tion), i.e.: δ%+ = δ%+(δSTD), while: δ%− = δ%−(−δSTD). The
two functions describe two different kinds of phenomenon,
namely δ%+ describes ponderable matter as we know it, while
δ%− describes some (exotic) non-ponderable (invisible) tachy-
onic matter. This shall be made clear as we go, hence the need
to make a distinction of δ%+ and δ%−.

Now, the normalization in (1) is the probability of finding
the particle in the spatial (r̂) and momentum ( p̂) region:

δrmin ≤ r̂ ≤ δrmax

δpmin ≤ p̂ ≤ δpmax ,
(2)

where r̂ and p̂ are the actual measured radial coordinate and
magnitude of the momentum of the particle as measured from
the spatial canonical point of origin of the particle (system) in
question.
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2.1.3 Normalization across a given axis

Now, given that δ%+ = exp(δSTD/~), where:

δSTD = δp · δr − δEδt = δpµδxµ , (3)

it follows that the quantities δ%+
x , δ%+

y , δ%+
z , δ%+

0 are such that:

δ%+
x = exp

(
δSx

~

)
= exp

(
δpxδx
~

)
. . . (a)

δ%+
y = exp

(
δSy
~

)
= exp

(
δpyδy
~

)
. . . (b)

δ%+
z = exp

(
δSz

~

)
= exp

(
δpzδz
~

)
. . . (c)

δ%+
0 = exp

(
−
δS0

~

)
= exp

(
−
δEδt
~

)
. . . (d)

(4)

where oft cause δSx = δpxδx, δSy = δpyδy, δSz = δpzδz,
and, δS0 = δp0δx0 = δEδt. Clearly, written in this manner,
these functions δ%+

x , δ%+
y , δ%+

z , δ%+
0 are the thermodynamic

probability evolution functions describing the particle across
the δx-δpx axis, δy-δpy axis, δz-δpz axis, and the δt-δE axis
respectively.

The probability of finding the particle along the x-px, y-
py, z-pz and t-E axis respectively, in the region of its bounds
is unity and this is expressed:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

x
)

dxdpx = 1 , (5)

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

y

)
dydpy = 1 , (6)

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

z

)
dzdpz = 1 , (7)

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

(
δ%+

0

)
dtdE = 1 . (8)

Before we can deduce the Heisenberg uncertainty principle
from the above equations (5)-(8), we shall lay down some
necessary mathematical formulae.

2.1.4 Necessary mathematical equations

In our derivation of Heisenberg’s uncertainty principle in §2.2
and §2.3, we are going to encounter the function eax/x, where
x is the variable and a is some constant. Of this function, we
will need to know its integral and limit as x 7→ 0. It is not
difficult to show that:∫ (

eax

x

)
dx =

eax

ax
+ k , (9)

where k is some integration constant and:

lim
x 7→0

(
eax

x

)
= a . (10)

Now, we are ready to derive Heisenberg’s uncertainty princi-
ple (and more).

2.2 Position-momentum uncertainty

In this section, we are now going to derive a lower and up-
per bound uncertainty principle for momentum and position.
Taking (5) and substituting δ%+

x = exp (δpxδx/~), we will
have:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

exp
(
δpxδx
~

)
dxdpx = 1 . (11)

Now, using the result of (9) to integrate (11) with respect to
x, and evaluating the resulting integral, we will have:∫ δpmax

δpmin

(
eδpxδrmax/~ − eδpxδrmin/~

δpx

)
dpx = 1 . (12)

Further, we need to integrate (12) with respect to px. In doing
so, we will encounter again an integral of the form given in
(9). The result of this integration is therefore:

~

[
eδpxδrmax/~

δpxδrmax
−

eδpxδrmin/~

δpxδrmin

]δpmax

δpmin

= 1 . (13)

Evaluating this, we will have:

Term I︷         ︸︸         ︷
~eδpmaxδrmax/~

δpmaxδrmax
−

Term II︷         ︸︸         ︷
~eδpminδrmax/~

δpminδrmax

−
~eδpmaxδrmin/~

δpmaxδrmin︸         ︷︷         ︸
Term III

+
~eδpminδrmin/~

δpminδrmin︸         ︷︷         ︸
Term IV

= 1 . (14)

Furthermore, for ponderable material particles, as discussed
in §2.1.1, we wantour particle system to be bounded (trapped)
between the regions 0 ≤ r̂ ≤ δrmax and 0 ≤ p̂x ≤ δpmax. This
means that we must evaluate (14) in the limits δrmin 7→ 0 and
δpmin 7→ 0.

Now, making use of the limit given (10), it follows that
as:

δrmin 7→ 0 ,

δpmin 7→ 0 ,
(15)

for the Terms I, II, III and IV in (14), we will have:

Term I =
~e
δpmaxδrmax

~

δpmaxδrmax
,

Term II 7→ 1 ,

Term III 7→ 1 ,

Term IV 7→ 1 ,

(16)

hence from (16), it follows from this that (14) will reduce to:

~eδpmaxδrmax/~/δpmaxδrmax − 1 = 1 ,
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where, after some re-arrangement, we will have:

1
2
~

δpmaxδrmax
= e−δpmaxδrmax/~ . (17)

From a meticulous inspection of (17), it is clear and goes
without saying that in order for this equation to hold true
δpmaxδrmax > 0, hence:

1
2
~

δpmaxδrmax
= e−δpmaxδrmax/~ < 1 , (18)

thus, we will have:

δpmaxδrmax >
1
2
~ . (19)

With the subscript “max” removed from pmax and rmax, this
(19) is without any doubt whatsoever the famous 1927 positi-
on-momentum quantum mechanical uncertainty principle of
Heisenberg. One can work this out for the other three cases –
i.e. for the (δy, δpy) dimension as given in (6) and the (δz, δpz)
dimension as given in (7) and they would arrive at the same
result.

It is important to note that the exact Heisenberg upper
uncertainty principle involves a greater than or equal to sign,
that is “≥”, yet in (19), the equal sign “=” is missing. This
issue shall be addressed in Paper IV where it shall be seen
that this case represents only those particles that travel at the
speed of light. Next, we consider the energy-time uncertainty
relation.

2.3 Time-energy

Now, in §2.3.1 and §2.3.2, we are going to derive a lower and
an upper bound uncertainty principle for energy and time and
as we do this, we must have at the back of our mind that sta-
ble ponderable particles ought to have no upper bound in their
temporal fluctuations. Yes, they can only have a lower bound
in their temporal fluctuations and this lower bound must co-
incide with the moment of their creation. On the contrary, un-
stable ponderable particles ought to have a finite upper bound
in their temporal fluctuation.

2.3.1 Lower bound energy-time uncertainty

We are now going to derive the energy-time uncertainty prin-
ciple. The derivation is similar to the one given in §2.2 above.
To that end, from (4d) and (8), we know that:

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

exp
(
−
δEδt
~

)
dtdE = 1 . (20)

Now, using (9) to evaluate (20), we obtain the following:

Term I︷           ︸︸           ︷
~e−δEmaxδtmax/~

δEmaxδtmax
−

Term II︷          ︸︸          ︷
~e−δEminδtmax/~

δEminδtmax

−
~e−δEmaxδtmin/~

δEmaxδtmin︸          ︷︷          ︸
Term III

+
~e−δEminδtmin/~

δEminδtmin︸          ︷︷          ︸
Term IV

= 1 . (21)

In the limit as:
δtmin 7→ 0 ,

δEmin 7→ 0 ,
(22)

for Terms I, II, III and IV in (21), according to (10), we will
have:

Term I =
~e
δEmaxδtmax

~

δEmaxδtmax
,

Term II 7→ 1 ,

Term III 7→ 1 ,

Term IV 7→ 1 ,

(23)

hence, it follows from this – that (21) will reduce to:

~eδEmaxδtmax/~/δEmaxδtmax − 1 = 1 ,

where, after some algebraic re-arrangement, we can rewrite
this equation as:

1
2
~

δEmaxδtmax
= e−δEmaxδtmax/~ . (24)

Similarly, from an inspection of (24), one will clearly obtain
that for this equation holds true δEmaxδtmax > 0, hence:

1
2
~

δEmaxδtmax
= e−δEmaxδtmax/~ < 1 , (25)

thus:

δEmaxδtmax >
1
2
~ . (26)

Once again, this is the famous 1927 energy-time quantum me-
chanical uncertainty principle of Heisenberg. Just as in (19),
the reason for having the greater than sign and not the greater
than or equal to sign are the same as those given in the case
of (19). This uncertainty relation (i.e. (26)) describes a pon-
derable (spatially bound) material particle that is unstable and
has a lifetime τ that is such that τ < δtmax.
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2.3.2 Upper bound energy-time uncertainty

Now, for the same reason given in §2.3.1, we are going to
proceed further and consider the case of a ponderable mate-
rial particle system that has no upper bound in its temporal
fluctuations – i.e. a stable ponderable material particle system
that can live forever (e.g. like an electron or a proton). Such a
particle will have δtmax and δEmax being such that:

δtmax 7→ ∞ ,

δEmax 7→ ∞ .
(27)

According to (10) under the given conditions (i.e. (27)), for
the Terms I, II, III and IV in (21), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(28)

hence, it follows from this that (21) will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some basic algebraic re-arrangement, we can
rewrite this equation as:

~

δEminδtmin
= eδEminδtmin/~ . (29)

As before, it is not difficult to see that for (29) to hold true, this
requires that δEminδtmin > 0, hence, and from this, it clearly
follows that:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (30)

thus:
δEminδtmin < ~ . (31)

Insofar as its interpretation is concerned, by no stitch of the
imagination is this (31) related to the famous 1927 energy-
time quantum mechanical uncertainty principle of Heisenberg
and this is so because of the less-than-sign “<” appearing in
it. What this equation is “telling” us is that the energy and
time fluctuations are not bound above, but below. When it
comes to the lifetime of the particle in question, this translates
to the reality that the particle can live forever – i.e. τ = ∞.
Therefore, this uncertainty relation describes stable ponder-
able particle systems – i.e. ordinary electrons and protons,
which by-and-large strongly appear to be stable particle sys-
tems.

3 Non-ponderable matter

From a symmetry and bona fide mathematical standpoint, if
we have the physics of particles described by the thermody-
namic phase +δSTD, there surely is nothing wrong, but ev-
erything natural and logical for one to consider the physics
of particle systems described by the opposite thermodynamic
phase – i.e.−δSTD. Such necessary and beautiful symme-
try considerations is what lead the great English theoretical
physicist – Paul Adrian Maurice Dirac (1902-1984) to fore-
tell the existence of antimatter [9–11]. We here consider the
said particle systems whose thermodynamic phase is −δSTD.

Before even going into investigating the said particle sys-
tems, natural questions will begin to flood the mind, questions
such as: Will such particles violate the FLT? The answer is:
No, they will not. To see this, one simply substitutes −δSTD
into the equations of Paper II, where-from they certainly will
come to the inescapable conclusion that these particles will
indeed obey the FLT. Further – a question such as: Will these
particle systems violate the SLT? may also visit the curious
and searching mind. An answer to this will be provided in
Paper IV.

Furthermore – in the extreme and zenith of one’s state of
wonderment, they might excogitate: Will such particles be
visible and ponderable? By visible it is understood to mean:
will these particle systems emit or reflect electromagnetic ra-
diation that we are able to sense? And by ponderable, we
mean will such particle systems be able to clump-up and form
touchable materials like rocks, etc? This is the question we
are going to answer. To preempt our findings, such particle
systems will be invisible and non-ponderable.

To commence our expedition, we shall start by writing
down the functions δ%−x , δ%−y , δ%−z , δ%−0 and these are such that:

δ%−x = exp
(
−
δSx

~

)
= exp

(
−
δpxδx
~

)
. . . (a)

δ%−y = exp
(
−
δSy
~

)
= exp

(
−
δpyδy
~

)
. . . (b)

δ%−z = exp
(
−
δSz

~

)
= exp

(
−
δpzδz
~

)
. . . (c)

δ%−0 = exp
(
δS0

~

)
= exp

(
δEδt
~

)
. . . (d)

(32)

Now, just as in the case of ponderable matter in the previous
section, in order for us to derive the implied uncertainty rela-
tions from (32), we are going to consider (in §3.1, §3.2 and
§3.3, respectively) the normalization of δ%−x and δ%−0 .

3.1 Lower bound position-momentum uncertainty

As before, normalization of δ%−x requires that:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

exp
(
−
δpxδx
~

)
dxdpx = 1 . (33)
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Just as we have already done with (11) and (20); integrating
and evaluating (33), we obtain:

Term I︷           ︸︸           ︷
~e−δpmaxδrmax/~

δpmaxδrmax
−

Term II︷          ︸︸          ︷
~e−δpminδrmax/~

δpminδrmax

−
~e−δpmaxδrmin/~

δpmaxδrmin︸          ︷︷          ︸
Term III

+
~e−δpminδrmin/~

δpminδrmin︸          ︷︷          ︸
Term IV

= 1. (34)

Likewise, with (34) in place, one may try to bound the particle
in space and momentum, in much the same way as it has been
done in §2.2 by instituting the asymptotic conditions δrmin 7→

0 and δpmin 7→ 0. So doing, they surely would obtain the
unpleasant result:

~e−δpmaxδrmax/~/δpmaxδrmax = 0 .

This result is surely unpleasant because it means that we must
have δpmaxδrmax = ∞. Overall, this means that this particle
system has no upper bounds in quantum of action δpmaxδrmax;
this surely is uncomfortable as the quantum of action must be
bound either above or below. Given this uncomfortable result
δpmaxδrmax = ∞, a much better way to approach this particle
system is to start off by setting no upper bounds in space and
momentum and in the end obtain finite lower bounds in the
quantum of action δE δt, that is to say, start off by setting:

δrmax 7→ ∞ ,

δpmax 7→ ∞ .
(35)

Instituting the above (35) limits into (34), for the Terms: (I),
(II), (III) and (IV), one obtains:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δpminδrmin

~

δpminδrmin
,

(36)

hence:

~e
−
δpminδrmin

~

δpminδrmin
= 1 . (37)

In much the same fashion as in the preceding sections, re-
arranging this (37), we will have:

~

δpminδrmin
= e

δpminδrmin

~ > 1 , (38)

hence:
δpminδrmin < ~ . (39)

This means the fuzziness in the momentum and spatial lo-
cation of the particle about its canonical centre is bounded
above and not below.

3.2 Lower bound energy-time uncertainty

Further, for the energy-time uncertainty relation, normaliza-
tion of δ%−0 requires that:

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

exp
(
δEδt
~

)
dtdE = 1 . (40)

As before, integrating and evaluating this (40), we obtain:

Term I︷           ︸︸           ︷
~e−δEmaxδtmax/~

δEmaxδtmax
−

Term II︷          ︸︸          ︷
~e−δEminδtmax/~

δEminδtmax

−
~e−δEmaxδtmin/~

δEmaxδtmin︸          ︷︷          ︸
Term III

+
~e−δEminδtmin/~

δEminδtmin︸          ︷︷          ︸
Term IV

= 1 . (41)

In the limit as:
δtmax 7→ ∞ ,

δEmax 7→ ∞ ,
(42)

for the Terms I, II, III and IV in (41), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(43)

hence, it follows from this that (41) will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some re-arrangement, we can rewrite:

~

δEminδtmin
= eδEminδtmin/~ . (44)

As before, from a meticulous inspection of (44), it is abun-
dantly clear that δEminδtmin > 0, hence:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (45)

thus:
δEminδtmin < ~ . (46)

Just as with (39), (46) means that the fuzziness in the energy
and temporal fluctuations of the particle are bounded above
and not below.
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3.3 Upper bound energy-time uncertainty

Lastly, we now consider the case of a non-ponderable ma-
terial particle system that has no upper bound in its tempo-
ral fluctuation – i.e. a stable non-ponderable material particle
system that can live forever. Such a particle will have δtmax
and δEmax such that:

δtmax 7→ ∞ ,

δEmax 7→ ∞ .
(47)

Under the given conditions (i.e. (47)), for the Terms I, II, III
and IV in (41), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(48)

hence, it follows from this that (21), will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some re-arrangement, we can rewrite:

~

δEminδtmin
= eδEminδtmin/~. (49)

Likewise, for it to hold true always, (49) requires that δEmin
δtmin < 0, hence:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (50)

thus:
δEminδtmin < ~ . (51)

Again, we here have an upper bounded uncertainty relation.

4 General discussion

Since the inception of Heisenberg’s uncertainty principle in
1927, severalattempts see e.g. [8,12–15, and references there-
in] have been made to derive this mysterious mathematical re-
lationship from much more fundamental soils of physics than
those on which Heisenberg [1] derived this relation. In his
original paper, Heisenberg began by deriving the uncertainty
relation for position and momentum on the basis of a sup-
posed experiment in which an electron is observed using a
γ-ray microscope and second, by consideration of the theory
of the Compton effect, he proceeded to argue that the pre-
cision of the determination of position and momentum are
connected by the uncertainty relation.

In 1929, using the usual definition of expectation values
(inner product) of Hermitian Hilbert-space operators (observ-
ables) and the mathematical property of the Cauchy–Bunya-
kovsky–Schwarz inequality, Robertson [12] proceeded in a
rigorous manner, to demonstrate a more general and funda-
mental origin of the quantum mechanical uncertainty princi-
ple. The present attempt is just but one such derivation – al-
beit – on the soils of a new kind of phase space – the Stochas-
tic Phase Space.

However, unlike all previous attempts on the derivation
of the uncertainty principle, what makes the present attempt
different is that we have not only derived the lower limit un-
certainty principle, but an upper bound uncertainty principle
that seems to describe invisible non-ponderable particles that
travel at superlumical speeds. This unique prediction seem
to suggest not only the existence of darkmatter, but darken-
ergy as well. Dark matter is already required by physicists
in order to explain the flat rotation curves of spiral galaxies,
while dark energy is required to explain the supposed accel-
erated expansion of the Universe. This subject of invisible
non-ponderable particles, dark matter and dark energy would
require a separate and lengthy paper in order to cover it in a
just manner.

Another important point to note about the present deriva-
tion is that the enigmatic jittery quantum randomness leading
to the uncertainty principle is here an intrinsic and inherent
property of all quantum mechanical systems, it (i.e. the jittery
quantum randomness) is not induced by the act of measure-
ment as is the case of Heisenberg’s uncertainty principle and
its latter versions or attempts at a derivation of this relation.
Yes, human measure will introduce statistical errors that are
statistically predictable. The stochastic quantum randomness
is not predictable at all – not even by the most rigours known
(or unknown, or yet to be unknown) statistical methods.

In closing, allow us to say that we have always held cen-
tral to our philosophy of Physics the strong and seemingly
unshakeable belief system similar to that of Albert Einstein
– namely, that the fundamental laws of Nature are exact, and
as such, one day it will be shown that this is the case. That
is to say, in the character of Einstein’s philosophy, we have
held fast to his influential and deep philosophy that indeed
God does not play dice with the World, and that The moon
exists whether or not one is looking at it or not. Contrary
to this, we must admit and say that as we continue to peer
deeper into the fabric and labyrinth of physical and natural
reality as it lies bare for us to marvel at, this dream or be-
lief system now stands shattered into minuscule pieces – for
it now seems clearer to us that the enigmatic jittery quantum
randomness must be real.

Received on February 23, 2020
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Magnetism due to the translational, possibly oscillatory, motion of charge, as opposed
to the ordering of dipoles, is not well understood, but is well described by the Dar-
win Lagrangian. The Coulomb interaction is used universally in atomic, molecular and
solid state physics, but its natural extension when going to higher accuracy, the mag-
netic Darwin-Breit interaction, is not. This interaction is a velocity dependent long
range interaction and as such unfamiliar to the majority of theoreticians. The (v/c)2

dependence makes it at most a perturbation in few-body systems, but does not stop it
from becoming potentially important as the number of particles increase. For systems
where particle velocities are correlated (or coherent) over larger distances this interac-
tion is shown to have major consequences. Based on these findings I suggest that this
interaction should be investigated as the interaction responsible for superconductivity.
I also speculate that, on an interstellar scale, it is responsible for the missing dark mat-
ter. Some numerical estimates and intuitive arguments are presented in support, but no
proofs. Instead it is my hope that the ideas presented will deserve further serious study.

A man hears what he wants to hear and disregards the rest.

Paul Simon in The Boxer

1 Introduction

We first introduce the Darwin Lagrangian which describes
the magnetic interaction energy between moving charged par-
ticles. This is a velocity dependent long range interaction
which is very small for few-body systems but which can be-
come dominating in macroscopic systems. In particular the
Lagrangian predicts that the effective mass, or equivalently
inductive inertia, can grow with the square of the number of
particles.

The Darwin Lagrangian makes simple predictions for par-
ticles that are assumed to have the same velocity. Here we use
this constraint to study the effect of the magnetic interaction
energy for collectively moving charges. The crucial fact that
emerges from these studies is that the effective mass of many
collectively moving particles far exceeds the sum of their rest
masses. In the case of superconductivity this means that the
zero-point energy of coherent oscillators decreases with the
number of oscillators, and this presumably leads to the super-
conducting phase transition. In the case of cosmic plasma fil-
aments it leads to the conclusion that their gravitational mass
can far exceed the rest mass content of the participating parti-
cles. Could this be the missing dark matter? Some numerical
estimates indicate that this is a possibility.

2 The Darwin Lagrangian

The Darwin Lagrangian [1] describes the majority of electro-
magnetic phenomena correctly. The exception is radiation,
which is neglected. The theory behind this Lagrangian is pre-
sented in a few textbooks such as Landau and Lifshitz [2,
§65] and Jackson [3, Sec. 12.6]. More extensive discussions

can be found in Page and Adams [4, Sec. 96], Podolsky and
Kunz [5, Sec. 27], Szasz [6, Appendix], Schwinger et al. [7,
Eq. (33.23)], or Stefanovich [8]. Basic articles of interest are
Breitenberger [9], Kennedy [10], Essén [11–13]. Various ap-
plications of the Darwin Lagrangian illustrating its usefulness
can be found in Kaufman [14], Stettner [15], Boyer [16, 17],
Krause et al. [18], Essén et al. [19–25].

Vector potentials are not always mentioned in connection
with the Darwin Lagrangian, but it can be derived by approx-
imating the Liénard-Wiechert potentials. Landau and Lif-
shitz [2, §65] make a gauge transformation to the Coulomb
gauge after truncating series expansions of these. Jackson [3,
Sec. 12.6] solves the vector Poisson equation obtained by ne-
glecting the time derivative in the wave equation. Page and
Adams derive it by approximating the forces [4, Sec. 96]. It
can also be motivated as the best approximately relativistic
action-at-a-distance Lagrangian [10, 26] and it can be shown
to take retardation into account to order (v/c)2.

The Darwin Lagrangian for N charged particles, of mass
ma and charge ea, can be written

LD =

N∑
a=1

[ma

2
u2a −

ea

2
φa(ra) +

ea

2c
ua · Aa(ra)

]
(1)

where

φa(ra) =

N∑
b(,a)

eb

|ra − rb|
(2)

and

Aa(ra) =

N∑
b(,a)

eb

2c
[ub + (ub · êab)êab]

|ra − rb|
. (3)

Here êab = (ra − rb)/|ra − rb|, and relativistic corrections
to the kinetic energy are neglected. In many circumstances
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one can neglect the magnetic interaction energies since the
Coulomb electric interaction dominates strongly, especially
in few-body systems. As will be seen below, however, when
there are macroscopic numbers of correlated charged parti-
cles this is no longer permissible. It is noteworthy that macro-
scopic numbers of correlated charged particles is the rule ra-
ther than an exception in plasmas, conductors, and supercon-
ductors.

3 Plasma oscillations

One can use (1) to calculate how a charge density of electrons
oscillates relative to a fixed background of positive charge.
For collective motion of N electrons with velocity u = ẋêx the
kinetic energy is simply T = Nme ẋ2/2. If one further assumes
that the particles have fixed distributions in space apart form
the relative translational motion one can get (nearly) analyti-
cal results for the remaining two terms, for simple geometries
in the continuum limit. If we denote the displacement of the
negative charges by x the total Coulomb potential energy is
well approximated by,

Φ(x) =

Ntot∑
a=1

ea

2
φa(ra) = Φ(0) +

1
2

(
d2Φ

dx2

)
x=0

x2 , (4)

in the limit of small x. Here Φ(0) is a large negative constant
that does not contribute to the dynamics; the positive back-
ground only provides the restoring force in the oscillation.
The assumption that the electrons (ma = me, ea = −e) move
collectively along the x-direction simplifies the magnetic con-
tribution, the third term in (1). One finds

UD =

N∑
a=1

e
2c
ua · Aa(ra)

=

 e2

2c2

N−1∑
a=1

N∑
b=a+1

1 + cos2 θab

|ra − rb|

 ẋ2 ,

(5)

where cos θab = êx · êab. For a charge density of electrons
with fixed geometry this is simply a constant times ẋ2. We
thus find that the Darwin Lagrangian for the system becomes

LD = N
(

1
2

meff ẋ2 −
1
2
κx2

)
. (6)

Here meff is me plus a contribution from (5).
Calculations of the constants meff and κ can be done by el-

ementary methods. The result will be a formula for the square
of the oscillation frequency ω2 = κ/meff . This was done for a
sphere of radius R in [19] with the result

ω2 =

Ne2

R3

me

(
1 + 4

5
reN
R

) . (7)

Here re = e2/(mec2) is the classical electron radius. ω(R)
is plotted in Fig. 1. In the limit of few particles, or negli-
gible Nre/R, this gives the plasma oscillation frequency as

Fig. 1: The frequency ω of (7) as a function of radius R. Atomic
units are used (e = me = ~ = 1, c = 137) and the density is assumed
to be one electron per sphere of one Bohr radius a0. The formula

plotted is ω(R) =

√
4π/3

(
1 + 16π

15(137)2 R2
)

and R is in atomic units
(Bohr radii). The frequency is reduced by one order of magnitude at
R = 750 a0.

normally given in the literature,

ω2
p =

4π
3

e2n0

me
(8)

where n0 = N/V is the number density inside the sphere. In
the opposite limit of macroscopic numbers of electrons N one
obtains

ω2
∞ =

5c2

4R2 . (9)

This seems to be the frequency of a longitudinal electromag-
netic wave in the sphere. A similar calculation for a (two-
dimensional) square of side length L gives a similar result,

ω2 =

2e2N
L3 Ks

me

(
1 + 3

4
Nre
L Cs

) , (10)

where Cs = (4/3)
[
1 −
√

2 − 3 ln
(√

2 − 1
)]

and Ks = 16 (2 −
√

2) [27].

4 Superconductivity

In the early history of superconductivity it was conjectured
that a transition of the electrons at the Fermi surface to a
Wigner crystal [28] was responsible for the phase transition.
Since no new interaction comes into play this did not seem
correct, even if the Wigner crystal idea is still investigated
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[29,30]. When one takes the magnetic interaction energy into
account, however, the zero point energy E0 = ~ω/2 and os-
cillation frequency of the (pairs of) electrons go down con-
siderably if they oscillate coherently with coherence length
R, as indicated in Fig. 1. It is interesting to note that Vasiliev
[31, 32] finds that superconductivity is caused by ordering of
the zero point oscillations. Frenkel [33] advanced the theory
that the increased inductive inertia of correlated conduction
electrons explains superconductivity, and the present author
presented estimates indicating that the Darwin energy is im-
portant in superconductors [34]. In Fig. 1 it is seen that the
zero point energy goes down by one order of magnitude in
750 Bohr-radii, assuming one electron per cubic Bohr-radius.
In general coherence lengths in superconductors is one or two
orders of magnitude larger [35], so the numbers are quite rea-
sonable. The isotope effect agrees well with the assumption
that lattice oscillations destroy the coherence.

5 Dark matter?

The decay time of currents is τ ∼ L/R where L is induc-
tance and R resistance. As emphasized by Kulsrud [36] these
times are enormous in astrophysical plasmas. The currents
producing astrophysical magnetic fields will only decay on a
time scale comparable to the age of the universe. These plas-
mas are thus effectively superconducting. The effective mass
meff of (6) is a measure of the inductance, or inductive iner-
tia. Simple estimates show that this mass is in general much
larger than the rest mass. That this is the case for conduction
electrons in a metal was noted already in 1936 by Darwin [37]
and several times later [23, 38].

It is tempting to speculate that dark matter is in fact due
to magnetic energy in interstellar plasmas. Here we make
some simple estimates. The Darwin magnetic energy, the first
term of (6), UD = Nmeff ẋ2/2, will contribute MD = UD/c2 to
gravitational mass in the universe. Consider a cube of side
length L. If we assume that the number of protons in this
cube is N and that L also is a typical distance between them
we find from (5) that

UD

c2 = MD ∼
1
4

e2

c2

N
L

2

β2 (11)

where β = |ẋ|/c. This magnetic mass should be compared to
the total proton mass Mp = Nmp. The ratio is

MD

Mp
∼

(e2/c2) (N/L)
4mp

β2 . (12)

Putting in the numerical values gives

MD

Mp
∼ (3.83 × 10−19 m)

N
L
β2 . (13)

The number of protons is N = npL3 where np is the proton
number density. This gives

MD

Mp
∼ (3.83 × 10−19 m) np L2β2 . (14)

To get some numbers we assume that np = 4.0 m−3 and that
the ratio MD/Mp is 10 (magnetic mass is 10 times proton
mass). This gives

10 ∼ 3.83 × 10−19 × 4.0 L2 β2 m−2 . (15)

The side length of the cube over which velocity must be cor-
related is then

L ∼ 2.5 × 109 β−1 m . (16)

assuming that the speed is c/100, so that β = 10−2, we find
that L ∼ 2.5 × 1011 m. This is somewhat more that one astro-
nomical unit (AU ≈ 1.5×1011 m), a tiny distance in the inter-
stellar perspective. So, with a density of 4 protons per cubic
meter and a correlated speed of 1% of the speed of light over
a distance of order of magnitude one AU one finds that the
gravitational mass MD of the magnetic energy is ten times the
total proton rest mass. This suggests to me that dark matter
may, in fact, reside in magnetic energy and the effective mass
of the cosmic magnetic fields.

6 Conclusions

Since Darwin’s 1936 paper [37] it should have been clear that
investigations of conduction electrons in metals that do not
take into account the magnetic interaction energy are mean-
ingless. No amount of mathematical wizardry will make this
interaction go away. It is also a natural candidate for emer-
gent properties in larger systems, such as superconductivity,
while remaining a perturbation in few body systems.

The insight that large plasmas with coherent velocities
have energies that are many orders of magnitude larger than
that corresponding to the rest mass of the constituent particles
should be investigated as a possible candidate for dark mat-
ter. Recently Nicastro et al. [39] found that missing baryons
are believed to reside in large-scale filaments in the warm-hot
intergalactic medium. Perhaps the rest of the missing dark
matter is also there in the form of magnetic energy?
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In this article we propose a dynamic quantum state tomography model for qutrits sub-
ject to laser cooling. We prove that one can reduce the number of distinct measurement
setups required for state reconstruction by employing the stroboscopic approach. The
results are in line with current advances in quantum tomography where there is a strong
tendency to investigate the optimal criteria for state reconstruction. We believe that the
stroboscopic approach can be considered an efficient tool for density matrix identifica-
tion since it allows to determine the minimal number of distinct observables needed for
quantum state tomography.

1 Introduction

The term quantum tomography is used in reference to a wide
variety of methods which aim to reconstruct the accurate rep-
resentation of a quantum system by performing a series of
measurements. Mathematically, the complete knowledge ab-
out the state of a quantum system can be encoded in, for ex-
ample, the density operator, the wavefunction or the Wigner
function. In this article we discuss the problem of the density
matrix reconstruction.

One of the most fundamental approaches to quantum state
tomography, the so-called static tomography model, enables
to reconstruct the density matrix of a quantum system pro-
vided one can measure N2 − 1 distinct observables (where
N = dimH). Any density matrix can be decomposed in the
basis of SU(N) generators in such a way that the coefficients
correspond to the mean values of the operators [1]. This
approach has been excessively studied in many papers and
books, such as [2, 3]. However, there is a significant disad-
vantage connected with this method. In a laboratory one usu-
ally is not able to define N2 − 1 distinct physical quantities
that could be measured.

The most important property that all tomography mod-
els should possess is practicability, which means that a the-
oretical model should have a potential to be implemented in
an experiment in the future. Therefore, when dealing with
quantum state tomography we should bear in mind the lim-
itations related to laboratory reality. For this reason, in this
article we employ the stroboscopic approach to quantum to-
mography, which for the first time was proposed by Andrzej
Jamiolkowski in [4]. Later it was developed in other research
papers such as [5] and [6]. In order to get a broad perspective
one may also refer to a very well-written review paper [7].
Recently some new results concerning the stroboscopic ap-
proach has been presented in [8, 9].

The stroboscopic tomography concentrates on determin-
ing the optimal criteria for quantum tomography of open sys-
tems. The main goal of this method is to reduce the number
of distinct observables required for quantum tomography by

utilizing knowledge about time evolution of the system. The
data for the density matrix reconstruction is provided by mean
values of some hermitian operators {Q1, . . . ,Qr}, where nat-
urally Qi = Q∗i . The set of observables is not informationally
complete, which means that a single measurement of each
operator does not provide sufficient information for quantum
state reconstruction.

The underlying principle behind the stroboscopic appro-
ach claims that if one has the knowledge about the evolution
of the system, each observable can be measured repeatedly
at a certain number of time instants. Naturally, each indi-
vidual measurement is performed over a distinct copy of the
system since we do not consider the collapse of the quantum
state caused by measurements. Therefore, we assume that our
source can prepare a large sample of systems in the identical
(but unknown) quantum state.

In the stroboscopic approach to quantum tomography the
fundamental question that we are interested in concerns the
minimal number of distinct observables required for quantum
state reconstruction. One can recall the theorem concerning
the minimal number of observables [5].

Theorem 1. For a quantum system with dynamics given by a
master equation of the form [10, 11]:

ρ̇(t) = L[ρ(t)] , (1)

one can calculate the minimal number of distinct observables
for quantum tomography from the formula:

η := max
λ∈σ(L)

{dim Ker(L − λI)} , (2)

where by σ(L) one should understand the spectrum of the
operator L.

The linear operator L that appears in (1) shall be called
the generator of evolution. The number η is usually referred
to as the index of cyclicity of a quantum system.

The theorem 1 means that for any linear generator L there
exists a set of observables {Q1, . . . ,Qη} such that their ex-
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pectation values determine the initial density matrix. Con-
sequently, they also determine the complete trajectory of the
state (one can compute the density matrix at any time instant).

If we denote the number of required measurements of
each observable from the set {Q1, ...,Qη} by Mi for i = 1, . . . ,
η, then one can also recall the theorem on the upper limit of
moments of measurement [6].

Theorem 2. In order to provide sufficient data for the density
matrix reconstruction the number of times that each observ-
able from the set {Q1, ...,Qη} should be measured satisfies the
inequality:

Mi ≤ deg µ(L) , (3)

where by µ(L) we denote the minimal polynomial of L.

The theorem 2 gives the upper boundary concerning the
number of measurements of each single observable. One can
notice that the ability to compute the minimal polynomial of
the generator L is crucial in order to determine the upper limit
for the number of measurements. Naturally, another problem
relates to the choice of the time instants. Some considerations
about this issue can be found in [6].

In the next section the theorems concerning the strobo-
scopic tomography shall be applied to three-level quantum
systems with the evolution known as laser cooling. This ar-
ticle brings substantial advancement to the field of quantum
state tomography. In [8] the author introduced optimal crite-
ria for quantum tomography of qubits. In the current work we
proceed towards higher dimensional Hilbert space. We prove
that the stroboscopic tomography can be an effective method
of state reconstruction for qutrits provided one knows how the
system evolves.

2 Quantum tomography schemes for three-level systems
subject to laser cooling

2.1 Static approach to quantum tomography of qutrits

In case of three-level quantum systems one would naturally
employ the Gell-Mann matrices in order to decompose any
density matrix. We follow the original notation from [12]
and therefore, the Gell-Mann matrices shall be denoted by
{λ1, λ2, . . . , λ8}. They have the following forms:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,
λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1
√

3

1 0 0
0 1 0
0 0 −2

 .

The Gell-Mann matrices are the generators of the SU(3)
group. They are the generalization of the Pauli operators
for three-level systems. They have some algebraic properties
which are useful for quantum state tomography, i.e.:

λi = λ∗i , Tr λi = 0 and Tr λiλ j = 2δi j . (4)

For three-level quantum systems the initial density matrix
ρ(0) ∈ S(H) can be decomposed in the basis of the Gell-
Mann matrices [1]:

ρ(0) =
1
3
I3 +

1
2

8∑
i=1

〈λi〉λi , (5)

where 〈λi〉 is the expectation value of the observable λi. Math-
ematically, it can be computed as 〈λi〉 = Tr{λiρ(0)}.

If one would like to directly apply this decomposition in
order to reconstruct the density matrix, one would have to
know the mean values of eight distinct observables {λ1, λ2,
. . . , λ8}. Such data would be necessary to complete the for-
mula for ρ(0). This approach to quantum tomography, which
does not take advantage of the knowledge about evolution,
shall be referred to as the static approach. This scheme ap-
pears impractical since one is not able to define eight distinct
physical quantities. This observation justifies the need for
more economic approach which aims to decrease the number
of distinct observables.

2.2 Dynamic approach to quantum state tomography of
qutrits

Laser cooling is a very widely investigated topic in modern
Physics, e.g. [13, 14]. A lot of attention has been paid to dif-
ferent aspects of this problem. In particular, one may refer
to applications of atoms subject to laser cooling in quantum
information encoding [15]. In this paper we search for a link
between laser cooling and quantum state tomography.

An example often studied in the area of laser spectroscopy
is a quantum system subject to laser cooling with three energy
levels (dimH = 3) [16]. The evolution of the density matrix
of such a three-level system is given by a master equation of
the form:

dρ(t)
dt

= −i[H(t), ρ(t)]+

+ γ1

(
E1ρ(t)E∗1 −

1
2
{E∗1E1, ρ(t)}

)
+

+ γ2

(
E2ρ(t)E∗2 −

1
2
{E∗2E2, ρ(t)}

)
,

(6)

where E1 = |1〉 〈2| and E2 = |3〉 〈2|. The vectors {|1〉 , |2〉 , |3〉}
denote the standard basis inH .

This kind of dynamics appears when the excited state |2〉
decays spontaneously into two ground states |1〉 and |3〉 with
corresponding decoherence rates γ1 and γ3.
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Moreover in this analysis we take H(t) = [0], where [0]
denotes a 3−dimensional matrix with all entries equal 0. This
assumption means that we shall analyze only the Lindbladian
part of the evolution equation.

In case of a three-level open quantum system with dynam-
ics given by the master equation from (6) we can formulate
and prove a theorem which provides the minimal number of
distinct observables required for quantum tomography.

Theorem 3. For a quantum system subject to laser cooling
according to (6) there exists four distinct observables such
that their average values (measured at selected time instants
over different copies of the system) suffice to determine the
initial density matrix ρ(0).

Proof. Based on the method of matrix vectorization [8, 17],
the dissipative part of the generator of evolution (6) can be
explicitly expressed as a matrix:

L = γ1

(
E1 ⊗ E1 −

1
2

(
I9 ⊗ ET

1 E1 + ET
1 E1 ⊗ I9

))
+

+ γ2

(
E2 ⊗ E2 −

1
2

(
I9 ⊗ ET

2 E2 + ET
2 E2 ⊗ I9

))
.

(7)

Taking into account the fact that the vectors {|1〉 , |2〉 , |3〉}
constitute the standard basis, the matrix form of the quantum
generator L can be obtained:

L =



0 0 0 0 γ1 0 0 0 0
0 −Γ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −Γ 0 0 0 0 0
0 0 0 0 −2Γ 0 0 0 0
0 0 0 0 0 −Γ 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −Γ 0
0 0 0 0 γ2 0 0 0 0


, (8)

where Γ = 1
2 (γ1 + γ2).

Having the matrix form of the generator of evolution L,
one can calculate its eigenvalues:

σ(L) = {0, 0, 0, 0,−2Γ,−Γ,−Γ,−Γ,−Γ} . (9)

Since in this case the operator L is not self-adjoint, the
algebraic multiplicity of an eigenvalue does not have to be
equal to its geometric multiplicity. But one can quickly de-
termine that there are four linearly independent eigenvectors
that correspond to the eigenvalue 0. Therefore, we can find
the index of cyclicity for the operator in question:

η = max
λ∈σ(L)

{dim Ker(L − λI9)} = 4 , (10)

which means that we need exactly four distinct observables
to perform quantum tomography of the analyzed system. �

One can instantly notice that if the static approach was
applied to three-level laser cooling, one would have to mea-
sure 8 distinct observables whereas in the dynamic approach
4 observables suffice to perform quantum tomography. If one
thinks of potential applications in experiments, then our result
means that one would have to prepare 4 different experimen-
tal setups instead of 8. This observation demonstrates that
the stroboscopic approach has an advantage over the static
approach because it is more economic when it comes to the
number of distinct kinds of measurement.

The next issue that we are interested in is the minimal
polynomial for the operator L. Assuming that this polynomial
has the monic form, i.e.:

d3L
3 + d2L

2 + d1L + d0I = 0 , (11)

one can get :

d3 = 1, d2 =
3
2

(γ1 + γ2), d1 =
1
2

(γ1 + γ2)2, d0 = 0 . (12)

Thus, we see that deg µ(L) = 3. This means that each ob-
servable should be measured at most at three different time
instants. One can conclude that, since we need 8 independent
pieces of information to reconstruct the initial density matrix,
not every observable will be measured the maximum number
of times. To provide a precise answer to the question concern-
ing the algebraic structure of the observables and the choice
of time instants, we shall accept additional assumptions con-
cerning the generator of evolution.

Let us consider a special case of the generator of evolu-
tion defined in (8) such that γ1 = 1/4 and γ2 = 3/4. For this
specific generator, we can formulate a theorem.

Theorem 4. The initial density matrix ρ(0) of a three-level
system subject to laser cooling can be reconstructed from the
mean values of four observables of the form:

Q1 =

1 0 0
0 −1 1 + i
0 1 − i 0

 , Q2 =

 0 0 1 + i
0 0 0

1 − i 0 0

 ,
Q3 =


0 1 0
1 1

√
3

0
0 0 − 2

√
3

 , Q4 =

 0 i 0
−i 0 0
0 0 0

 ,
(13)

where the mean values of Q1 and Q2 are measured at 3 dis-
tinct time instants and the observables Q3 and Q4 once at
t = 0.

Proof. According to the assumptions of the stroboscopic to-
mography, the information that one can obtain from an ex-
periment is encoded in the mean values of some observables,
which mathematically can be written as:

mi(t j) = Tr{Qiρ(t j)} , (14)

where ρ(t j) = exp(Lt j)[ρ(0)].
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One is aware that exp(Lt j) can be decomposed as:

exp(Lt) = α0(t)I9 + α1(t)L + α2(t)L2 , (15)

where the functions {α0(t), α1(t), α2(t)} are linearly indepen-
dent. In order to determine these functions, we need to em-
ploy the minimal polynomial of L and then solve a system of
differential equations [6, 8]. Having done the necessary com-
putations, one gets:

α0(t) = 1
α1(t) = e−t − 4e−

1
2 t + 3

α2(t) = 2e−t − 4e−
1
2 t + 2 .

(16)

Since one is able to decompose exp(Lt j) in the basis of
three operators {I9,L,L2} due to linearity of the matrix trace
we get:

mi(t j) = α0(t j)Tr{Qiρ(0)} + α1(t j)Tr{QiL[ρ(0)]}+

+ α2(t j)Tr{QiL
2[ρ(0)]} .

(17)

If by L∗ we shall denote the dual operator to L, then by
changing the perspective from the Schrödinger picture to the
Heisenberg representation we can obtain:

mi(t j) = α0(t j)Tr{Qiρ(0)} + α1(t j)Tr{L∗[Qi]ρ(0)}+

+ α2(t j)Tr{(L∗)2[Qi]ρ(0)} .
(18)

This means that if the mean value of the observable Q1
is measured at three distinct time instants, one gets a matrix
equation:m1(t1)
m1(t2)
m1(t3)

 =

α0(t1) α1(t1) α2(t1)
α0(t2) α1(t2) α2(t2)
α0(t3) α1(t3) α2(t3)


 Tr{Q1ρ(0)}

Tr{L∗[Q1]ρ(0)}
Tr{(L∗)2[Q1]ρ(0)}

 (19)

Since the functions {α0(t), α1(t), α2(t)} are linearly inde-
pendent one can agree that if we select three different non-
zero time instants such that t1 , t2 , t3, then the matrix
[αk(t j)] must be invertible. It implies that the measurement
results {m1(t1),m1(t2),m1(t3)} can be translated into a set of
scalar products:{

Tr{Q1ρ(0)},Tr{L∗[Q1]ρ(0)},Tr{(L∗)2[Q1]ρ(0)
}
.

The very same measurement procedure, which must re-
sult in a matrix equation analogous to (19), can be performed
for the observable Q2. Triple measurement of Q2 at distinct
time instants yields a set of the scalar products:{

Tr{Q2ρ(0)},Tr{L∗[Q2]ρ(0)},Tr{(L∗)2[Q2]ρ(0)
}
.

Finally, a single measurement of the average value of Q3
and Q4 at time instant t = 0 provides another two scalar prod-
ucts: {Tr{Q3ρ(0)},Tr{Q4ρ(0)}.

One can check numerically that the operators:{
I3,Q1,L

∗[Q1], (L∗)2[Q1],Q2,L
∗[Q2], (L∗)2[Q2],Q3,Q4

}
constitute a spanning set (they are all linearly independent),
which means that they span the space B∗(H).

The spanning criterion is the necessary and sufficient con-
dition for the ability to reconstruct the initial density matrix
of a qutrit subject to laser cooling. This condition is satisfied
for the observables defined in the theorem 4, which can be
observed numerically by using the software Mathematica 11.

In other words, the operators:{
I3,Q1,L

∗[Q1], (L∗)2[Q1],Q2,L
∗[Q2], (L∗)2[Q2],Q3,Q4

}
constitute a quorum, i.e. they span the space to which ρ(0)
belongs. Therefore, the scalar products that one can calculate
from the measurement results can be considered a complete
set of information. Thus, the measurement procedure, which
utilizes only 4 distinct kinds of measurement, provides 8 in-
dependent pieces of information which are sufficient for the
density matrix reconstruction. �

The theorems 3 and 4 provide a complete description of
the quantum tomography scheme. One knows exactly what
steps should be taken in order to compute the unknown den-
sity matrix.

The results are in accord with current trends in quantum
state tomography where a lot of attention is paid to the meth-
ods which aim to reduce the experimental effort, e.g. [18,19].
If one can access the knowledge about dynamics of the sys-
tem encoded in the generator of evolution, it seems more con-
venient to perform repeatedly the same kind of measurement
(over distinct copies of the system) rather than develop a large
number of different experimental setups.

3 Summary

In this paper we presented a complete quantum tomography
model for qutrits subject to laser cooling. The stroboscopic
approach was applied to determine the optimal criteria for
density matrix reconstruction. It was demonstrated that one
can reduce the number of distinct observables by 50% pro-
vided the knowledge about evolution is applied. The alge-
braic structure of the observables was presented along with a
detailed description of the scheme. Dynamic methods of state
reconstruction appear to be very practical since they allow to
retrieve the initial density matrix in the most economical way,
by minimizing the number of distinct measurement setups.

The article indicates a link between quantum state tomog-
raphy and laser cooling. Both topics play a substantial role in
the field of quantum communication. The ability to recon-
struct the quantum state from measurements is crucial to de-
termine the efficiency of quantum communication protocols.
Whereas atoms subject to laser cooling are often utilized to
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encode quantum information. The dynamic quantum tomog-
raphy scheme presented in this article combines these two
lines of research.

The current work can be extended in the future research
by studying the problem of quantum state tomography for
systems subject to laser cooling with more than three en-
ergy levels. This task requires advanced algebraic methods
to study the spectrum of the generator of evolution as well as
to determine its minimal polynomial.

Received on March 4, 2020
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To be part of a nucleus, the constituent nucleons lose part of the original area they have.
This can be measured by subtracting this area from the surface area of the nucleus.
This was measured and plotted against the respective nuclear binding energy. A straight
linear relationship was found for all elements, light or heavy. For a given element,
the nuclear binding energy is inversely proportional to the lost original area. Thus
meaning, that more area lost corresponded to a larger binding energy. β− decay occurred
to produce a nucleus with less loss of the nucleons’ original area. β+ decay occurred
to produce a nucleus with less Coulomb repulsion. The nucleus stability just follows a
trade-off between these two trends.

1 Introduction

Even though there is a very complete understanding of nu-
clear forces, they are so complicated that this knowledge can
not be used to construct a complete theory of the nucleus. In
other words, it is not possible to explain all nuclei proper-
ties based on the nuclear force acting between protons and
neutrons. However, there is a number of models, or rudimen-
tary theories with certain validity, which can explain a limited
number of certain properties. In between those theories, the
liquid drop model has been used with success and it has not
changed for more than sixty years [1]. Theoretically, the nu-
clear liquid drop model calculates the nuclear binding energy
by taking into account a number of interactions [2], i.e.

Eb = aV A−aS A2/3−aC
Z(Z − 1)

A1/3 −aA
(A − 2Z)2

A
±δ(A,Z) (1)

where the coefficients aV , aS , aC , aA and δ(A,Z) are determi-
ned empirically. The volume of the nucleus is proportional
to A, thus the term aV A. Nucleons on the surface of the nu-
cleus have fewer nearest neighbors. This can also be thought
of as a surface tension term. If the volume term is propor-
tional to A, the surface term should be proportional to A1/3.
The Coulomb term is due to the electric repulsion between
protons in the nucleus. The asymmetry term aA is due to the
Pauli exclusion principle and the pairing term which capture
the effect of spin-coupling. This formula gives the nuclear
binding energy with a positive sign for exothermic reactions.

Besides its original success and continuous efforts, this
model has not progressed more and still does not perform well
with light nuclei [1]. There could be a number of reasons
for that. Forcing a correlation between the nuclear binding
energy against the number of nucleons, A; or putting several
parameters to be fit against powers of A could be some of the
reasons.

Nowadays, there is plenty of data about the radiuses of
all isotopes for all elements, which are reported in [3]. Thus,
a better correlation between the nuclear binding energy and
the nucleons’ surface term could be achieved. In this paper,
a straight linear correlation was found between a geometrical

construct that measures how much surface area has been lost
by a given isotope’s nucleons (Ω) and its nuclear binding en-
ergy. Changes between parent and daughter nucleus’ Ω and
the Coulomb repulsion are sufficient to explain β decay, emis-
sion of protons, α particles and neutrons, as well as electron
capture. The nucleus stability appears as a consequence of a
trade-off between these two trends.

2 Experimental

All isotope radiuses were reported in [3]. The radiuses of the
proton and neutron used were: rp = 0.8783 fm [3] and rn =

1.21 fm [4], respectively. Assuming they are all spheres∗, the
formula created to compute how much of the nucleons spher-
ical surface area has been lost or gained to form the nucleus
was

Ω =
4π(r2

i − Zr2
p − Nr2

n)

Z + N
. (2)

Ω is the surface area difference between the isotope and its
components per number of nucleons, A = Z + N, in fm2, ri

is the radius of the isotope, Z is the number of protons and N
is the number of neutrons. The nuclear binding energy (mass
defect) was calculated by the following formula [5]

Eb = (Zme + Zmp + Nmn − mi)c2 (3)

where me, mp and mn are the masses of the electron, proton
and the neutron respectively and mi is the mass of the isotope.
The masses of the isotopes were reported in [6], the decay
mode, energy and yields were reported in [7]. The following
figures present the graphs of Ω versus the nuclear binding
energy for different elements. In the case of nuclear decays,
∆Ω is the difference between daughter and parent nucleus’ Ω.

3 Results

Fig. 1 shows that Ω for a given group of isotopes is inversely
proportional to its nuclear binding energy. It is also observed
that the rate of its change diminished as the number of protons
increase. In this way, helium presents the largest changes in

∗It is known the nucleus has different shapes. A sphere is one of them.

38 Omar Yépez. Can the Nuclear Liquid Drop Model Be Improved?



Issue 1 (April) PROGRESS IN PHYSICS Volume 16 (2020)

Ω within smaller changes in nuclear binding energy, whereas
radon showed very small changes in Ω corresponding to lar-
ger changes in binding energy.

Fig. 2 presents Ω versus nuclear binding energy for He,
Li, Be and B isotopes. The isotope with a red circle are the
stable ones. It is clearly observed that as the binding energy
increases, the nucleons of a given isotope presents a more
negative Ω and requires more binding energy to form.

Beginning with two stable isotopes, 3He’s Ω is positive
because the addition of the area of two protons and one neu-
tron is not larger than the area of the isotope. Whereas 4He’s
Ω is negative because the addition of the areas of two protons
and two neutrons is larger than the area of that isotope. Once
6He formed, the stability is lost. Given that 6Li has a lower
mass than 6He, β− decays occur, liberating 3.51 MeV. This
process follows an Ω increase and therefore ∆Ω was 6.48 fm2

for this reaction.
In the same manner, 8He suffers β− decay and neutron

emission to 7Li, with 16% reaction yield. It liberates 8.63
MeV. This is also accompanied by the emission of one neu-
tron. Again, the daughter nucleus presents a more positive Ω

and therefore ∆Ω = 6.41 fm2 for this reaction.
8He also suffers β− decay to 8Li, with 83% yield. It liber-

ates 10.66 MeV and ∆Ω = 3.86 fm2.
7Be suffers 100% β+ decay into 7Li. Contrary to the previ-

ous trend, in this process the daughter presented a more neg-
ative Ω than the parent nucleus. But also, β+ diminished the
number of protons in the daughter nucleus, thus diminishing
the Coulomb repulsion. Contrary to previous β− decay, in this
case ∆Ω = -3.13 fm2.

9Li repeats 6He’s behavior. 11Li presents neutron emis-
sion to 10Be with 86.3% yield and β− decay to 11Be with 6%
yield∗. This is very similar to 8He transmutation. Finally,
10Be repeats 6He’s behavior. Table 1 summarizes the nuclear
processes observed in Fig. 2. It is clearly observed that β−

and neutron emission presents a positive ∆Ω, whereas β+ de-
cay shows a negative ∆Ω.

Fig. 3 presents Ω versus nuclear binding energy for O, F,
Ne, Na and Mg isotopes. A 100% of 17Ne transmutes to 16O
after β+ decay and a proton emission, producing 11.63 MeV.
∆Ω in this case was -1.88 fm2. A 100% of 19Ne transmutes
to 19F after β+ decay, producing 2.20 MeV and ∆Ω = -0.88
fm2. 20Na goes to 20Ne with 75% yield, producing 12.87
MeV and ∆Ω = -0.26 fm2. It also emits an alpha particle and a
positron to produce 16O with 25% yield, generating 8.14 MeV
and ∆Ω = -0.26 fm2. Table 2 presents the transitions observed
in Fig. 3. It is clearly observed that β+, proton and alpha par-
ticle emissions present a negative ∆Ω, whereas β− and 2β−

decays show a positive ∆Ω.
Fig. 4 presents Ω versus nuclear binding energy for Ar,

K, Ca, Sc and Ti isotopes. A 100% of 38K transmutes to 38Ar

∗This nucleus also experiences double and triple neutron emission, α
emission and fission in lower yields.

Fig. 1: Ω vs. binding energy for Noble gases. The red circles are the
stable isotopes.

Fig. 2: Ω vs. mass defect for He, Li, Be and B isotopes. The red
circles are the stable isotopes. The energy of the transitions (MeV)
were reported in [7].

after β+ decay, producing 4.89 MeV and ∆Ω in this case was
-0.28 fm2.

A 100% of 39Ca transmutes to 39K after β+ decay, pro-
ducing 6.52 MeV and ∆Ω = -0.28 fm2. 40K goes to 40Ca with
89.28% yield, producing 1.31 MeV and ∆Ω = 0.30 fm2. 40K
also suffers electron capture to 40Ar with 10.72% yield, pro-
ducing 0.48 MeV and ∆Ω = -0.24 fm2. A 100% of 41Ca trans-
mutes to 41K after β+ decay, producing 0.42 MeV and ∆Ω

= -0.32 fm2. Also, 41Ar suffers β− decay to 41Ca producing
2.49 MeV and ∆Ω = 0.21 fm2. Table 3 depicts the transitions
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Fig. 3: Ω vs. mass defect for O, F, Ne, Na and Mg isotopes. The red
circles are the stable isotopes. The energy of the transitions (MeV)
were reported in [7].

observed in Fig. 4. It is clearly observed that electron capture
presents a negative ∆Ω.

4 Discussion

4.1 Meaning of Ω and the Nuclear Liquid Drop Model

Ω was computed by using one dimension (the radius) and the
three dimensions (the volume). All elements kept a good lin-
ear relationship between Ω and the nuclear binding energy.
However, in the case of helium, either the linear relationship
was lost or the isotopes did not occur proportionally. For ex-
ample: 6He occurred between 3He and 4He. This relationship
is also very sensitive to the neutron radius. Overall, to keep
4He to land between 3He and 6He, rn needs to be at least 0.05

Fig. 4: Ω vs. mass defect for Ar, K, Ca, Sc and Ti isotopes. The red
circles are the stable isotopes. The energy of the transitions (MeV)
were reported in [7].

fm larger than rp. This may be an indication that the spherical
model is only partly applicable to helium. According to the
results presented in Fig. 1, it seems that a surface-based Ω is
a fundamental property of the isotopes of any element. Given
the nature of Ω, it is obvious that larger changes per nucleon
would occur in the lowest mass element, helium. This is be-
cause the number of nucleons is the lowest. As the number
of protons increase, Ω changes less because it is divided by a
progressively larger number of nucleons. In a given element,
Ω becomes more negative because the addition of the area
of the components of the nucleus is progressively larger than
its isotope’s area. This corresponds to an increasing nuclear
binging energy. Which can be interpreted as more energy is
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needed to compress the nucleons’ area into the nucleus. This
means that all nucleons share the nucleus surface.

This proportionality between the nuclear binding energy
and the surface lost to create the nucleus contrasts with the
semi-empirical mass formula (1). This is because Fig. 1 pres-
ents explicitly that the nuclear binding energy is just propor-
tional to the normalized nucleons’ surface area lost to form
the isotope. As will be discussed, the other important term
is the Coulomb repulsion. This makes (1) to have too many
terms to fit. This is because the underlying model for (1) is a
sphere-like structure with the neutrons and protons gathered
together but still separated as individual spherical particles.
The underlying model that Fig. 1 suggests is one where all
nucleons share the surface of the nucleus. Which means that
protons and neutrons are blended, fused.

4.2 Calculation of 8Be’s radius

Not shown in Fig. 2, 8Li transmutes to 8Be and this decays
into two 4He. 8Be is not shown in Fig. 2 because its radius
was not reported in [3]. An estimation of 8Be’s radius can be
accomplished by using the inverse proportion between Ω and
the other Be isotopes. Fig. 5 shows the result. 8Be nuclear
binding energy is 56.50 MeV. Thus, its Ω = -5.65 fm2 and the
calculated 8Be radius was 2.31 fm. This puts 8Be and 9Be at
the same Ω as shown in Fig. 5.

4.3 Why a decay occurs

Fig. 2 depicts the helium isotopes in more detail. Given that
2He is unstable, it seems that helium needs at least one neu-
tron for stability, which occurs in 3He. This suggests the neu-
tron is acting as a Coulomb repulsion insulator. This effect
continues in 4He. However, 5He and heavier isotopes become
unstable again. It seems that there is a limit to how much
area can be lost from the nucleons to form the nucleus, after
which a decay is needed to resolve the instability. The first
beta decay occurs between the more massive parent 6He and

Fig. 5: Ω vs. mass defect for B isotopes. The red circle is the stable
isotope.

the lighter daughter 6Li producing 3.51 MeV. As observed,
β− decay involves: to go from a heavier and lower Coulomb
repulsion, which has more nucleons’ surface area lost (NSL),
to a lighter and higher Coulomb repulsion, which has less
NSL. Therefore, the driving force for β− decay is to reduce
the NSL. This is why the ∆Ω for this reaction is positive.
This is a feature of β− decay and several examples where ∆Ω

is positive are shown in Tables 1, 2 and 3. In a more com-
plicated process with 16% reaction yield , 8He suffered neu-
tron emission and β− decay to transmute to 7Li. This process,
nevertheless, has the same features already described for β−

decay, i.e. in neutron emission ∆Ω is also positive. Another
example of a positive Ω is 11Li going to 10Be.

7Be is the first example of β+ decay to 7Li. As observed,
this process involves: to go from a heavier and higher Cou-
lomb repulsion nucleus, which has less NSL, to a lighter and
lower Coulomb repulsion nucleus, which has more NSL. This
is why the ∆Ω for this reaction is negative. Hence, the driving
force for β+ decay is to reduce the Coulomb repulsion. Other
examples can be observed in Tables 2 and 3.

Fig. 3 shows that: a) 17Ne transmutes to 16O with 100%
yield suffering β+ decay and proton emission and b) 20Na
transforms into 16O by the emission of an α particle and a
positron. In both cases, ∆Ω is negative. Therefore, these pro-
cesses are driven by the reduction of Coulomb repulsion.

Fig. 4 presents 40K suffering β−decay to 40Ca with 89.28%
yield. This overwhelms the β+ decay to 40Ar with 10.72%
yield. This reaction suggests that, in this case, to reduce the
nucleons’ surface area lost is more favorable than to reduce
its Coulomb repulsion.
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4.4 Nucleus stability

It seems that there is a trade-off between the NSL and Cou-
lomb repulsion for nucleus stability. In Fig. 2, 3He increases
the NSL until it reaches 6He. Then, β decay increases the
number of protons to produce 6Li. But also to reduce the
original NSL in 6He.

At the same Coulomb repulsion,6Li increases the NSL un-
til it reaches 9Li. Again, β decay diminished the NSL trans-
muting to 9Be. This element starts again to increase NSL up
to 10Be, which again β decayed to 10B to diminish NSL and so
on. Hence, every time the surface area per nucleon increases
to the unstable limit, β decay occurs to resolve the instability.
This produces continuous step decreases all through stable
nuclei. The process just described pass through different ele-
ments. For example, in Fig. 3 there is an increase in the NSL
in the series 16O:17O:18O. Then, there is a small NSL decrease
through continuous elements, creating the row 18O:19F:20Ne.
This is occurring even though the Coulomb repulsion is in-
creasing. The NSL increases in Ne again, following the series
20Ne:21Ne:22Ne.

Then, another small NSL decrease occurs through ele-
ments, forming the row 22Ne:23Na:24Mg with progressive in-
crements in Coulomb repulsion. This is followed by another
increase in the NSL in the series 24Mg:25Mg:26Mg. In Fig. 4,
the first small decrease in NSL is observed in the row 38Ar:
39K:40Ca. If we follow this row, the next element would
be 41Sc. This isotope is unstable because it has too much
Coulomb repulsion for the small NSL decrease trade-off. As
a consequence, the next stable nucleus occurs in an increase
of the NSL, producing 40Ar, which also is accompanied by a
significant decrease in Coulomb repulsion. From 40Ar a new
row of small decrease of the NSL but progressive increase
in Coulomb repulsion starts again, 40Ar:41K:42Ca. This will
end at 43Sc, which is unstable for the same reasons discussed
above.

Once 42Ca is reached, a new trend of increasing NSL
started, 42Ca:43Ca:44Ca. This makes a hole in stability for
41Ca. This isotope is not stable because 41K presented a more
favorable trade-off between the NSL and Coulomb repulsion.
The next row would be 44Ca:45Sc:46Ti. And the next series
46Ti: 47Ti:48Ti and so on.

46Ca however, appeared as an outlier in this trend. It could
be argue that it makes a row with 46Sc but it does not decay
to it. It looks like it is an island of NSL stability.

The evidence presented calls to build a model where all
nucleons share the surface of the nucleus.

5 Conclusions

The nuclear binding energy is directly related to the nucle-
ons’ surface area lost (NSL). A trade-off between the NSL
and the Coulomb repulsion is related to the nucleus stability.
The progressive increase of the mass in an element will pro-
duce different isotopes until its NSL reaches an upper limit

for its Coulomb repulsion. Then, β− decay or neutron emis-
sion occur to diminish the NSL and resolve the instability. If
there is not enough neutrons (electric insulation) for a given
Coulomb repulsion, β+ decay, proton or α emission occur to
diminish it.

Received on March 7, 2020
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The nuclear superdeformed bands in A∼ 190, A∼ 130 mass regions have been system-
atically analyzed by using the perturbed SU(3) limit of the interacting boson model. The
g-bosons have been taken into consideration and the SU(3) symmetry is perturbed by in-
troducing an interaction holding the SO(5) symmetry. A four parameters simple analytic
formula for the eigenvalue equation has been derived. The spin determines of the stud-
ied superdeformed (SD) bands are considered from our previous works. The improved
model parameters for each nucleus have been determined by operating a computer sim-
ulated search program so as to obtain a minimum root mean square divergence of the
evaluating gamma ray transition energies and the observed ones. With these adopted
model parameters the transition energies Eγ, the rotational frequencies ~ω, the kine-
matic J(1) and dynamic J(2) moments of inertia have calculated and are in accordance
with experimental data. The behavior of J(1) and J(2) as a function of ~ω have been
studied. The calculated Eγ have been used to investigate the anomalous ∆I = 2 stag-
gering by considering the five point formula of Cederwall staggering parameter which
represent the finite deviation calculation to the fourth order derivative of the transition
energies at a determined spin.

1 Introduction

It was known that the interacting boson model (IBM) [1] with
s and d bosons (sdIBM) is successful in studying the spectro-
scopic properties of low-lying collective states in heavy and
medium nuclei. This simple sdIBM allows the utilization of
the algebraic symmetries for approaching different type of nu-
clear spectra, known as dunamical symmetries U(5), SU(3)
and O(6) which geometrically describe vibrational, axially
deformed and gamma soft nuclei respectively. These three
symmetry limits form a Casten triangle [2], that represent the
nuclear phase diagram [3]. Transitions of shape phase be-
tween these vertices of Casten triangle were widely calcu-
lated along several isotopic chains [4–10]. Extended version
of IBM where one includes the g-bosons in addition to s and
d bosons to account for hexadecapole deformation of the nu-
cleus is receiving a considerable attension of several research
groups [11,12]. This hexadecapole deformation is the second
most important mulitipolarity in the description of nuclear
properties in addition to the quadrupole deformation. An in-
terest in this multipolarity is increased by the observation of
the ∆I = 2 energy staggering of superdeformed rotational
bands (SDRB’s) in some nuclei [13, 14], where nuclear spins
with rotational sequences splitting by two may divide into
two branches. Several theoretical attempts were made for the
possible explanation of this ∆I = 2 staggering phenomenon
[15–25]. To describe the dynamical symmetries of nuclear
states consisting of spdf bosons, it was found [26, 27] that
one must begin with a supersymmetric group chain U(15,10)

and ending at O(3) due to conservation of angular momen-
tum passing through SU(3) limit of the sdg IBM which is a
reasonable starting point to describe SD states in IBM [28].
The sdg IBM is well adopted for study of starting deformed
and SD nuclei [15, 16, 26] there is seven different limits of
SU(15) [29]. These limits can be splitted into two sets, the
first set consists of the three limits which include only partial
mixing between the bosons, however the second set consists
of four limits which include a mixing of all bosons. If we con-
sider the case of two s, d or g bosons, then the possible angu-
lar momenta are L = 03, 24, 3, 44, 5, 62, 8 where the exponent
indicates the multiplicity. The L = 3, 5 states are pure dg con-
figurations while the L = 8 states is pure g2. All other states
however are mixtures of s, d and g bosons. The difficulty with
performing sdg IBM computations for normal deformed and
superdeformed nuclei that have boson numbers N = 12 − 16
is that the core is too large, and the numerical methods (diag-
onalization) of the Hamiltonian is not possible. It was proved
that the mathematical properties of the SU(5)sdg can be de-
scribe the deformed nuclei [30] because by using the intrin-
sic coherent states [11] the potential energy surface (PES)
of the SU(5)sdg limit displays two minima. Since SDRB’s
are known in the second minimum of the potential well, this
property was used [31] to justify an applications of SU(5)sdg

limit in SD states. The group SU(3) which relates to the rep-
resentations [ f1, f2, f3] through λ = f1 − f2 and µ = f1 − f3 is
very important in studying the axial symmetric SDRB’s. The
one boson state belongs to the (λ, µ) = (4, 0) representation
while the two bosons states belongs to (7,0), (4,2), (0,4) rep-
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resentation. To appear the ∆I = 2 staggering, the SU(3) must
be broken down by adding the SO(5)sdg symmetry as a pertur-
bation. The aim of this work is to use this perturbed SU(3) of
sdgIBM to investigate the main properties of superdeformed
rotational bands in different nuclei and especially exhibit the
∆I = 2 staggering in their transition energies.

2 Outline of the model

The states of SD bands can be classified in framework of su-
persymmetric group chain as:

U(m, n) ⊃ UB(m) ⊗ UF(n) ⊃ ... ⊃ S OB+F(3) ⊗ S UF(ǹ) ⊃ O(3)
↓ ↓ ↓ ↓ ↓ ↓

[N] [NB]m [NF]n L S I

The notation under those of groups are the corresponding
irreducible (irrep) representation. The particles total number
N = NF + NB with NF and NB the fermion and boson num-
bers respectively. L is the effective core angular momentum
and S is the total pseuduspin and I is the total spin of the nu-
cleus. m is determined by the constituent of bosons, while
n is determined by the single particle configuration of the
fermions and ǹ is the total pseudospin. Since the bosons to
describe positive parity SD states should be s, d, g bosons
[17, 20, 22] and p,f bosons are essential to show negative par-
ity states [27], the space spanned by the single boson states is∑
`(2` + 1) = 1 + 3 + 5 + 7 + 9 = 25 dimensions. So that, we

have the group chain for the boson part
Usdgp f (25) ⊃ Usdg(15) ⊗ Up f (10) ⊃ S Usdg(3) ⊗ S Up f (3) ⊃ S U(3) ⊃ O(3)

↓ ↓ ↓ ↓ ↓ ↓ ↓

[NB] [Nsdg] [Np f ] (λ, µ)sdg (λ, µ)p f (λ, µ) I

The law-lying positive parity states are from the Nsdg bosons
only, while negative parity states are one pf boson coupled
states with Nsdg = N − 1 sdg bosons. There are also negative
parity states formed by coupling odd number of pf bosons
with residual sdg bosons and states of positive parity formed
by even number of pf bosons with the sdg bosons. Here
NB = Nsdg + Np f with Nsdg = 0, 1, 2, ....,N physically N is
the number of positive parity bosons. All the irres can be
determined with the branching rules [14] of the irres reduc-
tion. The reductionS U(3)sdg⊗S U(3)p f ⊃ S U(3) can be done
in standard Young diagram method [10] and the reduction
S U(3) ⊃ O(3) is the Elliott rule [11]. We notice that for the
positive parity states the results of the sdgIBM are still valid.
The interaction Hamiltonian of the nucleus corresponding to
the above chain takes the form

H = εC1[U(15)] + kC2[S U(3)] + cC2[O(3)] (1)

in which Ck[G] is the k-order Casimir operator of the group
G. The energy of the states can be formulated as

E(I) = E0 + εN + k[λ2 + µ2 + λµ + 3λ + 3µ]
+CI(I + 1) (2)

the C2 [O(3)] operator gives the rotational structure. In
varaible moment of inertia model [32], the moment of iner-
tia is spin dependent, such that as I increases, the moment
of inertia increase due to the antipairing effect. Therefore,
Hamiltonian equation (1) can be written as

H = εC1[U(15)] + kC2[S U(3)]

+C0
C2[O(3)]

1 + f1C2[O(3)] + f2(C2[O(3)])2
(3)

where the terms with f1 and f2 take into account many-body
interactions which induce antipairing driving and pairing
damping effects on the moment of inertia. The energy of the
state I in a band considering only the relative excitation of the
states in a rotational band is given by

E(I) = C0
I(I + 1)

1 + f1[(I + 1)I] + f2[(I + 1)I]2 (4)

To describe the superdeformed rotational bands, we break
SU(3) symmetry by adding the symmetry S Osdg(5) as a per-
turbation to the Hamiltonian. Therefore, the excited energy
of the state of positive parity with spin I in SD band is thus
given by

E(I) = B[τ1(τ1 + 3) + τ2(τ2 + 1)]

+
C0

1 + f1[(I + 1)I] + f2[(I + 1)I]2 I(I + 1) (5)

The (τ1, τ2) is the irrep of SO(5) group. In practical τ1, τ2
being fixed with the branching rules of the irrep reduction
as [21–24]

(τ1, τ2) = ( I
2 , 0) if I = 4k, 4k + 1 (k = 0, 1, 2, ...)

(τ1, τ2) = ( I
2 − 1, 2) if I = 4k + 2, 4k + 3 (k = 0, 1, 2, ..)

3 Analysis of ∆I = 2 staggering in transition energies in
SD bands

In framework of collective model [33], the rotational
frequency ~ω, the kinematic moment of inertia (J(1)) and the
dynamic moment of inertia (J(2)) calculated from γ-ray tran-
sition energies for SDRB’s are given from the following def-
initions

~ω =
1
4

[
Eγ(I + 2→ I) + Eγ(I → I − 2)

]
(MeV) (6)

J(2) =
4

Eγ(I + 2→ I) − Eγ(I → I − 2)
(~2MeV−1)

(7)

J(1) =
2I − 1

Eγ(I → I − 2)
(~2MeV (−1))

(8)
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Table 1: The adopted best model parameters C0, B, f1, f2 obtained from the fitting procedure for the studied SD bands. The bandhead spin
I0 and the experimental lowest transition energy Eγ(I0 + 2→ I0) for each SD is also given.

SD band I0 C0 B f1 f2 Eγ

(~) ~−2 keV keV ~−2 ~−4 (keV)
194Tl(SD1) 14 0.503298E+01 0.18912E-02 0.326365E-03 -0.34134E-03 268.00
194Tl(SD3) 12 0.522016E0+1 0.37473E-01 0.401374E-04 -0.39907E-08 240.50
194Tl(SD5) 10 0.492810E+01 0.36833E-01 0.307779E-04 -0.42746E-08 187.90
130Ce(SD2) 24 0.909181E+01 -0.34824E-02 0.171564E-04 -0.50224E-08 841.00
132Ce(SD1) 30 0.647195E+01 -0.13947E-01 -0.299066E-04 0.34647E-10 808.55
132Nd(SD1) 40 0.419310E+01 0.16107E-01 -0.547523E-04 -0.11468E-10 797.00
136Sm(SD1) 30 0.640396E+01 0.51834E-03 -0.111011E-03 0.17709E-07 888.00

Fig. 1: The calculated results of the kinematic J(1) (open circles) and
dynamic J(2) (solid curves) moments of inertia plotted as a function
of rotational frequency ~ω for the studied SD bands and the compar-
ison with experimental data for J(2) (closed circles with error bars)

Fig. 2: The calculated ∆I = 2 staggering quantity ∆4Eγ obtained by
the five point formula as a function of spin for the studied SD bands.
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The anomalous ∆I = 2 staggering phenomenon was
found in several SD bands [17,18]. Sequences of states which
are differing by four units of angular momentum displace rel-
ative to each other was shown in superdeformed rotational
bands. That is, the SD band can be seen as two sequences of
cases with values of spin I + 4n and I + 4n + 2(n = 1, 2, 3, ...),
respectively. This is commonly called ∆I = 4 bifurcation, be-
cause the bands divide into two branches with levels differing
in spin by 4~. To explore this ∆I = 2 staggering, the devia-
tion of the γ−ray energies from a smooth reference ∆4Eγ(I)
was determined by Cederwall [12], by calculating the finite
difference approximation of the fourth order derivation of the
γ−ray energies Eγ at a given spin I by

∆4Ere f
γ (I) = 1

16

[
Eγ(I − 4) − 4Eγ(I − 2)

+6Eγ(I) − 4Eγ(I + 2) + Eγ(I + 4)
] (9)

with Eγ(I) = Eγ(I)− Eγ(I − 2). The formula (9) contains five
energies of consecutive transition and is denoted by the five
point formula.

4 Numerical calculations and discussion

For each band of our studied SDRB’s, the spin of the band-
head I0 is taken from our previous works [19–25]. The model
parameters C0, B, f1, f2 are determined by using a computer
simulated search program in order to obtain a minimum root-
mean square (rms) deviation of the calculated transition ener-
gies Ecal

γ (I) from the experimental one Eexp
γ (I), we employed

the common definition of χ

χ =
1
N

√√√ N∑
i=1

∣∣∣∣∣∣Eexp
γ (Ii) − Ecal

γ (Ii)

δEexp
γ (Ii)

∣∣∣∣∣∣
2

(10)

where N is the number of the data points entering into the
fitting procedure and δEexp

γ (Ii) are the experimental errors in
γ−ray energies. Table(1) shows the predicted bandhead spins
and the best values of the model parameters C0, B, f1, f2 for
each band. Also indicated in Table(1) are the lowest γ−ray
transition energies Eγ(I + 2 → I0). Using the adopted model
parameters, the transition energies Eγ, rotational frequencies
~ω, the kinematic J(1) and dynamic J(2) moments of inertia
of our selected SD bands are obtained. A very good agree-
ment between the calculated and the experimental values is
obtained which gives good support to the model. The kine-
matic J(1) and dynamic J(2) moments of inertia are plotted as
a function of rotational frequency ~ω in Figure(1) compared
to the experimental ones. In A∼190 mass region, J(1) val-
ues are found to be smaller than J(2) and J(2) exhibits a grad-
ual increases with increasing ~ω, while in A∼130 the values
of J(2) are smaller than that the corresponding values of J(1)

for all ranges of frequencies and J(2) mostly decrease with
a great deal of variation from nucleus to nucleus. Another
result in the present work is the observation of a ∆I = 2 stag-
gering effect in γ−ray energies Eγ(I + 2 → I) in the studied

SDRB’s. The the staggering pattern is illustrated in Figure(2)
where the staggering parameters ∆4Eγ(I) introduced by Ced-
erwall et al [14] defined as the fourth derivative of Eγ are
presented as a function of rotational frequency ~ω. A signifi-
cant zigzag has been observed the resulting numerical values
for each band are listed in Tables(2 and 3).

5 Conclusion

The SDRB’s namely 194Tl(SD1, SD3, SD5), 130Ce(SD1),
132Nd and 136Sm(SD1) are studied in the version of the per-
turbed SU(3) limit of sdgIBM with supersymmetry scheme
including many body interaction. The bandhead spins are
taken from our previous works while the model parameters
are adjusted by fitting procedure in order to minimize the rel-
ative root mean square deviation between experimental tran-
sition energies Eexp

γ and the calculated ones Ecal
γ . Excellent

agreement are given which gives good support to the pro-
posed model. Rotational frequencies, kinematic J(1) and dy-
namic J(2) moments of inertia are calculated and the evolu-
tion of J(1) and J(2) with ~ω are studied. The calculated Eγ

are used to investigate the occurrence of a ∆I = 2 stagger-
ing effect in the studied SDRB’s by using the fourth order
derivative of the γ−ray transition energies. A large amplitude
staggering pattern is found in all the studied SDRB’s.
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The Flyby Anomaly is one of the unsolved problems of current physics in that the
Doppler-shift determined speeds are inconsistent with expected values assuming the
validity of Newtonian gravity. We postulate that the Flyby Anomaly is a consequence
of the assumption that the speed of light is isotropic in all frames, and invariant in the
method used to measure the velocity of the space probes by means of the Doppler Effect.
The inconsistent anomalous values measured: positive, null or negative are simply ex-
plained relaxing this assumption. During space probe energy assistance maneuvers the
velocity components of the probe in the direction of the observer Vo are derived from the
relative displacement ∆ f of the radiofrequency f transmitted by the probe, multiplied
by the local speed of the light c′ by the Doppler effect: Vo = (∆ f / f ) c′. According to the
Céspedes-Curé hypothesis, the movement through variable gravitational energy density
fields produces slight variations of the refractive index n′ of space and therefore of the
speed of light c′ which leads to unaccounted corrections of the Doppler data that are
based on an invariant c. This leads to incorrect estimates of the speed or energy change
in the flyby maneuver in the Earth’s frame of reference. The simple theory presented is
applied to hyperbolic flyby trajectories of Galileo I and the spacecraft NEAR accurately
reproducing the NASA measured values and thereby providing additional experimental
evidence for a variable speed of light dependence on the gravitational energy density of
space with fundamental consequences in astrophysics and cosmology.

1 Introduction

The Flyby Anomaly is an unexpected energy increase or de-
crease of spacecraft during flybys maneuvers of Earth and
other planets employed as gravitational assist techniques for
Solar system exploration. The anomalous measurements have
been observed as shifts in the S-band and X-band Doppler
and ranging telemetry. It has been observed in a number of
spacecraft: NEAR, Galileo I and II, Cassini, Rosetta I, II and
III, Messenger, Juno, Hayabusa, and EPOXI I and II [1–3].
The Flyby Anomaly has been included in a list of “unsolved
problems in physics”. We find very significant a comment of
Anderson et al. [2], that the same inconsistency in the Doppler
residuals which lead to the velocity anomaly are found in the
ranging data, as we believe both can be explained by the the-
ory developed here.

A large number of papers have been advanced in attempts
to explain the anomalous, and at times inconsistent, measure-
ment results of the very small, but significant, unaccounted
speed and energy change experienced by spacecraft during
maneuvers to increase or decrease its relative energy.

A comprehensive review of anomalous phenomena ob-
served in the solar system was published by Lämmerzahl et al.
(2006) [4] which includes prominently the Flyby Anomaly.
It lists numerous possible causes of the anomaly. It reaches
the conclusion, in this respect, that none of them can ex-
plain the observed measurements. “New physics” has been
attempted by postulating variants of gravitational theories [5–
9], or modification of inertia [10], and also the possible influ-

ence of halos of dark matter [11].
More conventional causes that have been considered in-

clude: The effect of Earth oblateness which is known to pro-
duce perturbations of orbiting spacecraft. Hence a possible
cause of the Flyby Anomaly might be the non spherical mass
distribution of the oblate Earth. An unsuccessful attempt has
been made by K. Wilhelm and B.N. Dwivedi (2015) [12] to
explain the anomalous Earth flybys of several spacecraft on
the basis of asymmetry of the mass distribution of the Earth
causing an offset of the effective gravitational centre from the
geometric centre.

The possibility of electromagnetic forces acting between
a charged probe and the Earth’s magnetic fields has been exa-
mined [13], also the influence of the Earth high atmosphe-
re [14] or the emission of thermal energy from the space-
craft [15]. However, to this date none of the above adequately
explains the cause of the anomaly.

A light speed anisotropy hypothesis is used by R.T. Cahill
to argue that the Doppler-shift determined speeds are incon-
sistent with expected speeds, and hence affect the measure-
ment of the probe during flyby [16]. Cahill revisits the Mi-
chelson-Morley experiment controversy citing numerous new
interferometer results which take into account the effect if the
medium that light transverses in these experiments (e. g. gas,
coaxial cable or optical fiber). He points out that speed ano-
malies are not real and are actually the result of using an
incorrect isotropic light speed relationship between the ob-
served Doppler shift and the speed of the spacecraft.
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An empirical formula that adequately predicts the flybys
measured up to 2005 was published by Anderson et al. [1, 2]
using all likely variables in the problem. The empirical for-
mula developed by Anderson et al. did not fit later anomalous
flybys. However, a modification by Jouannic et al. (2015) [3]
was able to predict the new data. From the conclusions of this
work we read that “This could signify that it (the anomaly) is
caused by a force related either to mass, altitude, or both”. In
this paper we show that indeed, planet mass and distance from
the planet, which are some of the important variables in de-
termining the gravitational energy density of space and hence
of the local index of refraction of quasi-empty space [17, 18]
produces minute variations in the local speed of light c′ due to
the Céspedes-Curé hypothesis [19], explained below. These
unaccounted variations of the local index of refraction lead
to small erroneous measurements of spacecraft velocity and
derived energy, based on a constant c, and is shown here to
be the cause of the Flyby Anomaly. Hence we coincide with
Cahill in that speed anomalies are not real but rather an ar-
tifact of how the speeds are measured with the Doppler ef-
fect. In this paper the fundamentals of the proposed Flyby
Anomaly explanation are presented with analytical relations
showing how the anomalous behavior can be accurately pre-
dicted. Numerical calculations are presented for the Galileo I
(December, 1990) Earth flyby and NEAR (January, 1998)
Earth flyby. We also show how the anomaly can be simply
predicted for any other spacecraft provided detailed informa-
tion of the measurement of entry and exit points are available.
Additionally we briefly discuss some of the fundamental con-
sequences of the Céspedes-Curé hypothesis for astrophysics
and cosmology.

2 Speed and energy measurement of spacecraft and the
Doppler effect

All remote velocity estimations of astronomical bodies use
the first order Doppler effect of light [20]. In spacecraft the
procedure employs a locally produced radio or light frequen-
cy f of accurately known value, or it could be a retransmitted
signal such as the case of Pioneer spacecraft [21]. The speed
component in the direction of the observer Vo is deduced from
the shift ∆ f of the radio or light frequency f , times the lo-
cal speed of light c′ by means of Vo = (∆ f / f ) c′. At the
present time (year 2020) it is conventionally assumed that the
local speed of light c′ at any point in the universe is isotropic
and identical to the speed of light c = 299792458 ms−1 mea-
sured in vacuum to high accuracy on the surface of the Earth.
Clearly, if there are small variations of c′ as a result of chang-
ing locations with differing gravitational energy density ρ,
as occurs during flyby maneuvers, the measured speed com-
ponent in the direction of the observer Vo, calculated with
the Doppler effect, assuming a constant c, will lead to erro-
neous estimations of the spacecraft speed and resulting en-
ergy change during the maneuver. Presently the speed of light

c is considered a fundamental constant being the base of the
definition of the meter, the length unit in the SI system of
units. However, a variable speed of light has been consid-
ered by a number of authors, notably including A. Einstein in
1907 [22] and in 1911 [23] and also by R. Dicke in 1957 [24].
In Einstein’s early work the speed of light was influenced by
the gravitational potential and a constant speed could not be
conceived in a gravitational field with variable strength. In
Dicke’s work he assumes a refractive index n of empty space,
different from 1, given by an expression where the value in-
creases with the gravitational field:

n = 1 +
GM
r c2 .

This proposal provides an alternative to the lensing pheno-
menon predicted by General Relativity Theory (GRT). There
are other more modern variable speed of light theories as re-
viewed by Magueijo J. in 2003 [25]. The Céspedes-Curé hy-
pothesis [19] is reminiscent of the early proposals of Einstein
and Dicke. It predicts that the speed of light is a function of
the local total energy density of space ρ according to (1), so
that if this hypothesis is correct, it could explain the space-
craft anomalous behavior derived by the Doppler effect.

c =
k
√
ρ
, (1)

where k is a proportionality constant and ρ is the sum of all the
sources of energy density including gravitational, ρG, electric,
ρE , magnetic, ρM , and any other that may be acting at the site.
Calculations [26] show that gravitational energy density is
much larger than electric or magnetic. And that the most im-
portant source of energy density by several orders of magni-
tude is the “Cosmic energy density” due to the far away stars
and galaxies which has a value of ρ∗ = 1.094291 × 1015 Jm−3

deduced by Céspedes-Curé [19], see Appendix A, and by
Greaves E.D. [18, 26, 27], see Appendix B. Compared to ρ∗,
the Sun’s ρS , the planet about which the flyby maneuver is
being done, ρp, and all other massive bodies in the vicinity
contribute in a very minor amount to the variable total energy
density at points along the trajectory of the spacecraft. Hence,
this is the cause of the minute amount found for the anoma-
lous values of velocity and energy of spacecraft performing
the flyby maneuver. The gravitational energy density ρ due to
a mass M at a distance r from its center is given by [19, see
page 163],

ρ =
1
2

GM2

4πr4 =
GM2

8πr4 , (2)

where G is the universal constant of gravitation. Using this
relation the gravitational energy density of any astronomical
mass can be calculated at any point in space located a distance
r from the mass center. The energy density of space ρB and ρE

associated with the presence of static magnetic B and electric
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E fields are given by [28]:

ρB =
1

2µ0
B2 , (2a)

and

ρE =
1
2
ε0 E2 , (2b)

where µ0 is the magnetic permeability and ε0 is the electric
permittivity of free space. With the usual definition of the in-
dex of refraction at a point in space, n′, as the ratio of the
speed of light of vacuum c on the surface of Earth to the
speed of light c′ at the point considered (conventionally in-
side a transparent material) n′ = c/c′ it is possible with the
use of (1) to obtain a relation for n′ which is only dependent
on values of the energy density of space at the point in ques-
tion and at the surface of the Earth:

n′ =
c
c′

=

√
ρ′
√
ρ

=

√
ρ′

√
ρ∗ + ρS + ρE

. (3)

Here ρ∗ + ρS + ρE is the gravitational energy density at the
surface of the Earth. The terms in the sum are: the energy
density due to the far away stars and galaxies ρ∗, the Sun, ρS

and Earth, ρE . The values shown in Table 1 and Fig. 1 in-
dicate that the contributions to the local gravitational energy
density due to nearby planets is small and negligible com-
pared to the all-pervading energy density ρ∗ due to the far
away stars and galaxies. Hence for a spacecraft in a flyby
maneuver the local value of the index of refraction n′ and the
local value of the speed of light c′ is very nearly equal to the
values on the surface of Earth. This leads to the fact that the
observed anomalous variations of the speed of spacecraft de-
duced by the Doppler effect are very small indeed. It also
shows that the anomalies are dependent on the mass of the
planet and on the distance to the planet as mentioned in the
conclusions of the work of Jouannic et al. in [3].

3 Calculation of the anomaly

In order to predict quantitatively the measured energy change
that shows an anomalous value it is necessary to have very
detailed information of the particular flyby event considered.
The information required is data that refers to the spacecraft
such as the radio frequencies used for transmission which
are used for determining the relative radial velocity via the
Doppler effect. The information related to the planet, about
which the maneuver takes place, is information that defines
the orbit of the spacecraft: the hyperbolic orbit parameters
of the flyby: a (semi-mayor axis) and e (eccentricity) and
the entry and exit velocity of the probe: V−∞ and V+

∞, the
measured anomalous velocity Vanom and, most important, the
points of entry and exit where the velocities were measured.
NASA determines the Flyby Anomaly with the Orbit Deter-
mination Program (ODP) of the Jet Propulsion Laboratory

Fig. 1: Gravitational energy density (Jm−3) as a function of distance
from the center of the Sun in AU (0 to 2.5 AU) due to the far away
stars and galaxies (top line ρ∗ = 1.094291×1015 Jm−3), ρS due to the
Sun (middle line) and ρE due to Earth (Line centered at 1 AU) [26].

(JPL) as well as other software at the Goddard Space Flight
Center and at the University of Texas [2]. These programs
incorporate all the physics mentioned above and the informa-
tion gathered by the Deep Space Network (DSN) during the
flyby. According to the hypothesis presented in this paper the
anomaly is due to errors committed due to sub-estimation or
over-estimation of the velocity calculated by the use of the
Doppler effect formula as explained previously. Below we
show how the anomaly can be calculated in reference to Earth
flybys. The same considerations apply to flybys about other
planets. From (3) we derive

c′ = c
√
ρ
√
ρ′
. (4)

The radial velocity of the spacecraft during the flyby is ob-
tained by the use of Vr = ∆ f / f c′ which with (4) gives

Vr = c′
∆ f
f

= c
∆ f
f

√
ρ
√
ρ′
, (5)

where the gravitational energy density ρ′ is a function of the
position of the spacecraft in its orbit and ρ is the gravitational
energy density on the surface of the Earth whose value is
ρ = ρ∗ + ρS + ρE with ρS and ρE calculated on the surface
of Earth. As the spacecraft nears the planet it moves into
varying values of ρ′ which according to (5) results in a sub-
estimation or over-estimation of the velocity. Likewise, as the
spacecraft leaves the vicinity of Earth and gets further away,
it travels into different values of the gravitational energy den-
sity ρ′ which according to (5) results in differing values of the
velocity. Important factors determining the value of ρ′ are the
radial distance to the center of the planet producing the energy
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Table 1: Values of the energy density of space at the surface of Earth produced by: the far away stars and galaxies, the mass of the Sun,
Earth, the Moon and other planets.

Source of energy
density

Symbol Energy density
due to source at

Magnitude
(Joules/m3)‡

Reference

Far away Stars
and Galaxies

ρ∗ Earth 1.094291 × 1015 Céspedes-Curé [19, p. 279]

Sun ρS Earth 1 AU 2.097 × 104 Greaves [17, 18]

Sun ρS @AU− 1 AU−ESI
† 2.150250 × 104 This work

Sun ρS @AU+ 1 AU+ESI
† 2.046034 × 104 This work

Earth ρE Earth surface 5.726 × 1010 Greaves [18]

Moon ρMoon Earth 6.57 × 10−1 Greaves [18]

Jupiter ρJup Earth 1.91 × 10−2 Greaves [18]

Venus ρVen Earth 2.14 × 10−5 Greaves [18]

Mars ρMar Earth 2.91 × 10−8 Greaves [18]

† ESI is the radius of Earth’s Gravitational Sphere of Influence: (929000 km) [29, 30].
‡ These values are deceptive due to the 1/r4 dependence of the gravitational energy density (2). The energy density of the Earth at its surface is 6 orders of
magnitude greater than the Sun’s. However, it decreases abruptly so that at a distance greater than 41 earth radii the energy density due to the Sun is higher.

assistance and the radial distance to the Sun. Hence, in order
to calculate exactly the anomalous energy change reported, it
is necessary to know the exact position of the spacecraft at the
point or points where its velocity was calculated in order to
establish the initial spacecraft energy and the point or points
where the velocity was finally calculated to establish the final
spacecraft energy. Also needed are the methods used for the
speed measurements such as the frequency used by the space-
craft in its transmission to the Earth tracking stations, and
whether it is a spacecraft transmission or an Earth sent-signal
retransmitted by the spacecraft. Such detailed information is
ordinarily not included in papers publicly available.

Examination of (5) shows that the anomaly is caused by
the square root term (SQR)

SQR =

√
ρ

ρ′
=

√
ρ

ρ∗ + ρS + ρE
. (6)

Here ρ and ρ∗ are constants while ρS and ρE are functions of
position, ρS is dependent on the radial distance to the center
of the Sun and ρE is dependent on the radial distance to the
center of Earth.

Let us consider ρS first, which is given by

ρS =
GM2

S

8πr4
S

. (7)

Here MS is the mass of the Sun and rS the radial distance
from the center of the Sun. In order to estimate the influence
of this term we calculate the value of ρS over the Earth’s grav-
itational Sphere of Influence, ESI, that is at a distance of one

AU from the Sun in the range of 1 AU ±ESI (plus or minus
the radius of the Earth’s Sphere of Influence). The values ob-
tained range from ρS = 2.150250×104 to 2.046034×104 Jm−3

as shown in Table 1. The variation over the Earth’s sphere of
influence is of the order of 5%. However, the values of the
variation of the gravitational energy density due to the Sun
are 5 orders of magnitude less than the energy density due to
Earth at its surface. But, as shown by calculations, they be-
come more important than the Earth’s energy density due to
the 1/r4 term in (2) as discussed below.

In (6), the value of ρE is given by

ρE =
GM2

E

8πr4
E

(8)

with ME the mass of the Earth and rE the radial distance from
the center of Earth.

Taking these considerations into account in (5) we can
write an expression for the corrected speed of the spacecraft
which takes into account the change of the index of refraction
of space due to the variation of the space gravitational energy
density along the spacecraft trajectory:

Vr = c
∆ f
f

√
ρ

ρ∗ + ρS + ρE

= c
∆ f
f

√√ ρ

ρ∗ +
GM2

S

8πr4
S

+
GM2

E

8πr4
E

.

(9)

Numerical calculations show that the influence of the third
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term of the denominator, namely the variation of the Earth’s
gravitational energy density is important only at small dis-
tances above the surface of the Earth and it becomes very
small at distances where a spacecraft is beginning its appro-
ach to the surface of the planet during a flyby.

4 Calculation of the Flyby Anomaly in three cases

To calculate the anomaly, we suppose that the speed of the
spacecraft is measured at two points: a point of entry into the
Earth’s sphere of influence where the speed is V−∞ and a point
of exit from the Earth’s sphere of influence where the speed
is V+

∞. If we ignore the change of c, the measured velocities
are given by:

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f
.

Hence the anomaly measured by NASA is given by

An = V+
∞ − V−∞ =

c
f
(
∆ f + − ∆ f −

)
. (10)

At each of these points a correct measurement, one that takes
into account the change of the index of refraction, as we pro-
pose in this paper, must be done with (9), with V−∞ the ob-
served Doppler shift at the point of entry, and with V+

∞ the
observed Doppler shift at the point of exit as shown below:

V+
∞ = c

∆ f +

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r+

S

)4 +
GM2

E

8π
(
r+

E

)4

(11a)

V−∞ = c
∆ f −

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r−S
)4 +

GM2
E

8π
(
r−E
)4

(11b)

In the Earth’s coordinate system, energy is conserved, so that
if the correct equations (11a) and (11b) are used, then mea-
surements should give: V+

∞ − V−∞ = 0 that is:

0 = c
∆ f +

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r+

S

)4 +
GM2

E

8π
(
r+

E

)4

−

− c
∆ f −

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r−S
)4 +

GM2
E

8π
(
r−E
)4

.

(12)

However, if the SQR terms are different, for (12) to be true
it requires that ∆ f + , ∆ f −, and hence measurements done
by NASA with (10) will show an anomaly. The anomaly is
contained in the difference of the SQR terms in (12). Since

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f

are almost the same, both of the order of km/s differing by an
amount 6 orders of magnitude smaller, of the order of mm/s,

we can write the following relation to calculate the measured
anomaly:

Vanom = V∞
√√√ ρ

ρ∗ +
GM2

S

8π
(
r+

S

)4 +
GM2

E

8π
(
r+

E

)4

−

−V∞
√√√ ρ

ρ∗ +
GM2

S

8π
(
r−S
)4 +

GM2
E

8π
(
r−E
)4

.

(13)

Numerical analysis of (13) shows it is possible to identify
three cases.

4.1 First case

The distances from the point of entry and the point of exit to
the Sun and to Earth are the same. (r+

S = r−S and r+
E = r−E).

In this case the two terms in the parenthesis of (13) are the
same and no anomaly will be detected (incoming and outgo-
ing points are symmetric with respect to the Sun and Earth).

4.2 Second case

In this second case entry point and the exit point are at dif-
ferent distances from the Sun but at the same distance from
Earth. It means that r+

S , r−S , hence:

GM2
S

8π
(
r+

S
)4 ,

GM2
S

8π
(
r−S

)4 ,

so that the SQR terms in (12) are different. For this relation
to be correct it requires that ∆ f + , ∆ f −. Hence if the speeds
are being measured with relations

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f

as in (10) the flyby will certainly show an anomaly: V+
∞ , V−∞.

However, numerical calculations show that the anomalous
values in this case are very small and non measurable.

4.3 Third case

In this third case entry point and the exit point are at different
distances from the Sun and at different distance from Earth.
It means that, r+

S , r−S and r+
E , r−E . In this case the two terms

in the parenthesis of (13) are different. Hence if the speeds
are being measured with relations

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f

as in (10) the flyby will certainly show an anomaly: V+
∞ ,

V−∞. Numerical calculations show that an anomaly will be
measured in the range of values reported, negative or positive,
with a value and sign that depends on the entry and exit points
used for measurement. We conclude that the anomaly is due
to neglect of the SQR terms in the calculation of the entry and
exit velocities derived from the Doppler flyby data.
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Table 2: Distances to the Sun and to Earth with calculated entry and exit points that predict, with (13), the measured Flyby Anomaly of the
Galileo 1 (December 1990) flyby and the NEAR (January 1998) flyby.

Galileo 1 NEAR
Entry point Exit point Entry point Exit point

Distance from Sun (m) 1.502803 × 1011 1.502831 × 1011 1.495630 × 1011 1.495950 × 1011

Distance from Earth (m) 1.7651 × 107 1.4864 × 107 7.2000 × 107 1.2200 × 107

Spacecraft Velocity (m/s) 8949 6851
Measured Flyby Anomaly (mm/s) 3.930 13.46
Calculated Flyby Anomaly (mm/s) 3.944 13.38
Difference (%) +0.40 −0.57

5 Results

In order to apply the theory described above to predict the
anomaly measured for any given spacecraft flyby it is neces-
sary to introduce into (13) the values of the parameters of the
spacecraft maneuver, namely the spacecraft speed at the entry
point and the distances to the Sun and to Earth of the incom-
ing and outgoing points. The spacecraft speed is available,
however, the required information of entry and exit points has
not been possible to obtain. Only the right ascension and dec-
lination of these vector directions are given by Anderson et
al. [2]. With these angular parameters we have defined vec-
tors, from the Earth, for incoming and outgoing directions as
well as from the Earth to the Sun’s direction along its right
ascension and declination on the day of the Flyby. Then with
calculated tables of numerical values of the SQR terms of
(13) for varying entry and exit points along the incoming and
outgoing vectors (i.e. values of r+

S , r−S and of r+
E , r−E) excluding

the immediate distances (1h 40min before and after the clos-
est approach location) we have arrived at likely entry and exit
points that closely predict the observed NEAR (January 23,
1998) flyby. For Galileo I (December 8, 1990) flyby the in-
coming and outgoing points were calculated along likely in
and out points not specifically along the actual incoming and
outgoing vectors. Results of these calculations are shown in
Table 2.

6 Possible measurement of ρ∗ with the Flyby Anomaly

Based on the Flyby Anomaly explanation given above, it is
possible to use the experimental results of measured flyby
anomalies in spacecraft to calculate, in an independent way,
the gravitational energy density values that lead to the mea-
sured anomalies. Since the gravitational energy density is
composed of the contribution due to the planets and the Sun,
which can be accurately calculated with (8), the contribution
due to the far away stars and galaxies, ρ∗, could be solved as
a single adjustable parameter, and calculated. This could be
done by programming the theory presented here in the Orbit
Determination Program of the JPL, or by an accurate knowl-
edge of the points of entry and exit in the hyperbolic trajectory

where the measurements were made that produced a Flyby
Anomaly. This measurement of ρ∗, the gravitational energy
density of the far away stars and galaxies, would provide an
additional estimation of its value besides that given by Jorge
Céspedes-Curé [19, page 279], ρ∗ = 1.094291 × 1015 Jm−3,
obtained using starlight deflection measurements during total
sun eclipses, see Appendix A, or that given by Greaves [26]:
ρ∗ = 1.0838×1015 Jm−3, obtained using NASA accurate mea-
surement of the Pioneer Anomaly when Pioneer 10 was at
20 AU, see Appendix B.

7 Discussion

Eq. (2) assumes a spherical mass distribution for the mass of
the Earth or Sun in the calculation of the gravitational en-
ergy density. It does not consider the possible influence of
the Earth’s oblate shape, which is known to affect orbiting
spacecraft and could affect hyperbolic orbits.

Estimation has been done of the magnitude of the mass of
Earth that deviates from spherical shape in order to calculate
to what extent this can affect the gravitational energy density
along the Flyby Anomaly trajectory. The calculation gives
that the non spherical mass is of the order of less than 0.337%
of the Earth mass. This amount influences the third term of
the denominator in (9) and quantities derived from it. How-
ever, the subtraction or addition of this mass to the mass of
Earth on the SQR term of (9) affects this term in less than the
tenth significant figure. This estimate implies that the mass
of Earth causing the gravitational quadrupole does not affect
the calculations based on the Céspedes-Curé hypothesis.

The hypothesis also predicts that ranging measurements
based on a constant value of c will be affected in the same
manner as the anomalous speed measurements based on the
Doppler data. Anomalous ranging is briefly mentioned by
Anderson et al. [2]. However, no numerical data of this ano-
maly has been provided. Perhaps due to the small signal-to-
noise ratio on the incoming ranging signal and a long integra-
tion time (typically minutes) that must be used for correlation
purposes [21, page 7].

We calculate the speed of light at the International Space
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Station to be
c′ = 299798845.6 ms−1,

that is 6387.6 ms−1 higher than c on the Earth’s surface, about
0.002% [31]. Ranging measurements based on a constant c
that is lower than is predicted by this theory will be in slight
error. And the error will be in the same manner as the anoma-
lous speed measurements. The Cépedes-Curé hypothesis pre-
dicts the anomalous measurements of the Pioneer spacecraft
without any adjustable parameter [27]. There are reports that
that the Pioneer Anomaly was resolved as a thermal effect on
papers by Rievers and Lammerzahl [15], Turyshev et al. [32]
and Francisco et al. [33]. These reports do complex parame-
terized models of the thermal recoil to explain the anomaly.

We have reasons to doubt this explanation:
First. A detailed paper about the Pioneer Anomaly (55 pages
in Phys. Rev. by Anderson et al. 2002) [21] clearly argues
(see sections VIII. B, C and D, pages 32–35) that thermal
recoil cannot account for the anomaly,
Second. Rievers and Lämmerzahl [15] do a very complex
computational model of the spacecraft constructing all parts
of the spacecraft internal and external in finite elements; as-
signing thermal, and radiative properties for each component,
(absorption, reflection and emittance coefficients) in order to
arrive at their resulting thermal radiation pressure.

Turyshev et al. [32] do a complex parameterized model
for the thermal recoil force of the Pioneer spacecraft with sev-
eral adjustable parameters. In particular the two adjustable
parameters of Eq. (1) on page 2 predict the anomaly. How-
ever, any other parameters would negate the thermal origin of
the anomaly.

Francisco et al. [33] use different modeling scenarios re-
sulting in different acceleration values and choosing the 4th

one with which a Monte Carlo modeling procedure is used to
arrive at a value of the reported acceleration of the Pioneer 10
at an instant 26 years after launch.

All of these reports imply models with numerous adjusta-
ble parameters which could disprove the thermal origin of the
anomaly.
Third. If the anomalous acceleration towards the sun de-
pended on the thermal emission of heat from the RTG, Plu-
tonium 238Pu power sources, with a half life time of 87.74
years, the anomalous acceleration should decrease in time at
the same rate, however, this is contrary to the almost flat long
term behavior observed [21].
Forth. An anomaly similar to the Pioneer spacecraft was de-
tected in Galileo spacecraft (see Section V. C, page 21) with
a value of (acceleration) of (8±3)×10−8 cm/s2, a value simi-
lar to that from Pioneer 10, with additional evidence based on
ranging data, and in the Ulysses spacecraft (see Section V. D,
page 21) Ulysses was subjected to an unmodelled accelera-
tion towards the Sun of (12 ± 3) × 10−8 cm/s2, in Anderson
et al. [21]. Both spacecraft have completely different geome-
tries and the thermal recoil theory is not applicable to them.

There are some unexplored fundamental aspects to the
Céspedes-Curé hypothesis. The elementary relation (4) that
is deduced for the relative speed of light c′ measured on a
space site relative to c on Earth, coupled to Einstein’s relation
for the rest mass E = mc2 leads to an analytical relation that
predicts Mach’s principle, i.e. that mass and inertia depend on
the far away stars and galaxies. Likewise, the Céspedes-Curé
Hypothesis coupled to the electromagnetic expression for the
speed of light, c = 1/

√
ε0µ0 leads to a direct relationship be-

tween the electromagnetic and gravitational forces.

8 Conclusions

The values shown in Table 2 indicate that the Flyby Ano-
maly can be accurately predicted by the theory presented in
this work. This theory is capable of explaining qualitatively
and quantitatively the anomaly, both, the measured positive,
null and negative values. To calculate exact values of the
anomaly of a spacecraft it is necessary to know the incoming
and outgoing points where the spacecraft velocity was mea-
sured. The precise calculation of the Flyby Anomaly provides
additional confirmation of the Céspedes-Curé hypothesis, that
c the speed of light depends on the gravitational energy den-
sity of space as defined by (1) namely:

c′ =
k
√
ρ′
.

The evidence presented in this work for the Céspedes-
Curé hypothesis has profound consequences in the current
cosmology theories since it implies a revision of all astro-
nomical measurements of velocity based on the Doppler, blue
and red shifts, of stars and galaxies. These have importance
in determination of matters such as the Hubble constant, the
expansion of the universe, the flat rotation curve of galax-
ies (which gave birth to the theory of dark matter) and the
extreme values of the redshifts of very far away galaxies (so
called inflation) which gave birth to the theory of dark energy.
These redshifts do not follow the linear relation proposed by
Hubble but rather seem to imply an accelerated rate of ex-
pansion. The theories that follows from this hypothesis, the
evidence and attempts to gather evidence for it and some of
its consequences on current physics are explored in [18] and
in the unpublished work mentioned above in [31].

Appendix A. Supporting data (Céspedes-Curé)

See Table 3: Data of starlight deflection measurements, re-
ported by P. Merat [34] (δ in seconds of arc) at different dis-
tances from the Sun during total eclipses, used by J. Céspe-
des-Curé [19, see page 279], to calculate ρ∗ = 1.094291 ×
1015 Jm−3, the energy density of space due to far-away stars
and galaxies.

Appendix B. Supporting data (Greaves)

Data used by E. D. Greaves in [26] for the arithmetic to cal-
culate ρ∗ = 1.0838 × 1015 Jm−3, the energy density of space
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Table 3: Data of starlight deflection measurements, reported by P.
Merat [34] (δ in seconds of arc) at different distances from the Sun
during total eclipses, used by J. Céspedes-Curé [19, see page 279],
to calculate ρ∗ = 1.094291 × 1015 Jm−3, the energy density of space
due to far-away stars and galaxies.

Row r (Ro Units) δ ± ∆δ (Merat)

1 2.09 1.02 ± 0.11
2 3.12 0.67 ± 0.08
3 4.02 0.58 ± 0.04
4 5.10 0.40 ± 0.07
5 6.06 0.41 ± 0.04
6 7.11 0.31 ± 0.04
7 7.84 0.24 ± 0.04
8 9.51 0.20 ± 0.06
9 11.60 0.16 ± 0.03

due to far-away stars and galaxies.
The calculation uses the following equations from [26]:

Eq. (8) ρ∗ =
ρSfar + ρEfar − n′2

(
ρS 1AU + ρE

)
n′2 − 1

, and

Eq. (19) n′ = 1 −
ED c

2 fe G
(

MS

r2
S

+ ME

r2
E

) ,
where: (numerical values in SI units)

n′, index of refraction of space at 20 AU (comes out to
0.999973567943846),

ρ∗, energy density of space due to far-away stars and galax-
ies,

ED, a steady frequency drift of 5.99 × 10−9 Hz/s from the
Pioneer 10 spacecraft [21, page 20],

fe = 2295 MHz, the frequency used in the transmission to
the pioneer spacecraft [21, page 15],

c = 299792458.0 m/s. Speed of light on Earth at surface,
G = 6.67300 × 10−11 m3kg−1s−2, Newton’s universal con-

stant of gravitation,
MS = 1.98892 × 1030 kg, mass of the Sun,
ME = 5.976 × 1024 kg, mass of the Earth,
1 Astronomical Unit (AU) = 149 598 000 000 m.

The distances rS and rE are the distances from the spacecraft
at 20 AU (20 AU from the Sun, 19 from Earth) to the center
of the Sun and Earth respectively. To calculate Eq. (8) of [26]
use is made of the energy density ρi given by Eq. (4) also
of [26]:

ρi =
GM2

i

8πr4 ,

where r is the distance from the centre of the Sun or Earth
to the point where the energy density is being calculated as
follows:

For the Earth’s surface: rE = 63781.40 m, radius of Earth,
For the Sun at 1 AU: rS = 149598000000 m,
For the Sun at 20 AU: Twenty times the previous value used

to calculate ρSfar,
For the Earth at 20 AU: radius of earth + 19 times 149 598

000 000 m used to calculate ρEfar.

All values were calculated with Microsoft Office Excel 2003
which uses 15 significant digits of precision.
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23. Einstein A. Über den Einfluß der Schwerkraft auf die Ausbre-
itung des Lichtes. (About the influence of gravity on the propaga-
tion of light). Annalen der Physik, 1911, v. 35 (10), 898–906. DOI:
10.1002/andp.19113401005.

24. Dicke R. Gravitation without a Principle of Equivalence. Reviews of
Modern Physics, 1957, v. 29 (3), 363–376. DOI: 10.1103/RevMod-
Phys.29.363.

25. Magueijo J. New varying speed of light theories. Reports on
Progress in Physics, 2003, v. 66 (11), 2025–2068. DOI: 10.1088/0034-
4885/66/11/R04.

26. Greaves E. D. NASA’s astonishing evidence that c is not constant: The
Pioneer Anomaly. arXiv: gen-ph/0701130.

27. Greaves E. D. A Neo-Newtonian Explanation of the Pioneer Anomaly.
Rev. Mex. AA (Serie de Conferencias), 2009, v. 35, 23–24.

28. Halliday D. and Resnick R. Physics for Students of Science and En-
gineering, Part II. John Wiley & Sons, Inc, New York and London,
1960.

29. Bate R., Mueller D. and White J. Fundamentals of Astrodynamics. 1st

ed. Dover Publications Inc, New York, 1971.

30. Kaplan M. Modern Spacecraft Dynamics and Control. 1st ed. John Wi-
ley & Son Inc, New York, 1976, 287–289.

31. Greaves E. D. The index of refraction of quasi-empty space. Uni-
versidad Simón Bolı́var, Caracas Venezuela. 2015. Unpublished.
http://www.nuclear.fis.usb.ve/fn/wp-content/uploads/

2015/07/GREAVES-ED-Index-of-refraction-of-quasi-

empty-space-V11.pdf, Retrieved 19 April 2019.

32. Turyshev S. G., Toth V. T., Kinsella G., Lee S. C., Lok S. M. and Ellis
J. Support for the Thermal Origin of the Pioneer Anomaly. Phys. Rev.
Letters, 2012, v. 108 (24), 241101. arXiv: gr-qc/1204.2507. Bibcode:
2012PhRvL.108x1101T. DOI: 10.1103/PhysRevLett.108.241101.

33. Francisco F., Bertolami O., Gil P. J. S. and Páramos J. Modelling the
reflective thermal contribution to the acceleration of the Pioneer space-
craft. arXiv: space-ph/1103.5222v2.

34. Merat P. Analysis of the optical data on the deflection of light in the
vicinity of the solar limb. GRG, 1974, v. 5 (3), 757–764.

Eduardo D. Greaves, Carlos Bracho, and Imre Mikoss. A Solution to the Flyby Anomaly Riddle 57



Volume 16 (2020) PROGRESS IN PHYSICS Issue 1 (April)

Gravity in the Microworld

Anatoly V. Belyakov
E-mail: belyakov.lih@gmail.com

A brief review article gives examples of using the physical model based on the mech-
anistic interpretation of J. Wheeler’s geometrodynamics. The examples show the need
to consider gravity in the microworld. The latter is based on the balance of magnetic
and gravitational forces.The gravitational constant was used in calculating the masses
of quarks, neutrinos, proton size, coupling constants, etc. A new deviation of 28 GeV
in the physical experiments of CMS Collaboration was confirmed by calculations. The
unusual value of s- quark and b- quark masses is explained.

1 Introduction

In the Standard Model of Fundamental Interactions (SM),
gravitational forces are not taken into account. However, the
model based on the geometrodynamics of John Wheeler
(Wheeler John Archibald) has proved the need for introduc-
ing gravitational forces into the microworld.

In the mechanistic interpretation of J. A. Weheler’s geo-
metrodynamic, charged microparticles are singular points on
a non-simply connected two-dimensional surface of our
world, connected by a “wormhole” or a drain-source current
line in an additional dimension, forming a closed contour. But
“wormholes”, by necessity and by virtue of physical analogy
in their mechanistic interpretation, can only be vortex current
tubes, where the charge is in the “coulombless” form pro-
portional to the medium momentum along the vortex current
tube, spin, respectively, to the angular momentum relative to
the longitudinal contour axis, and the magnetic interaction be-
tween the conductors is similar to the forces acting between
the current tubes [1].

In this model, the electron size with mass me and radius re

is taken as a medium unit element, and then the contour mass
becomes proportional to its length. It is this hidden mass
and its motion that is responsible for gravity, charge, spin,
and magnetic interaction in the microworld. The introduction
of gravity into the microworld allows one to explain various
micro-phenomena and in some cases to calculate some im-
portant parameters quite accurately, using only fundamental
constants and an elementary mathematical apparatus.

2 On the structure of microparticles

Thus, microparticles are not point objects, but are likened to
vortex formations in an ideal fluid, which can reside in two
extreme forms — the vortex on the surface of radius rx along
the X-axis (let it be the analog of a fermion of the mass mx)
and the vortex thread under the surface in depth of radius r, of
the angular velocity v, and of the length ly, filling the current
tube of the radius re along the Y-axis (let it be the analogue of
a boson of the mass my).

In a real medium these structures oscillate, passing into
each other (oscillation of oscillators), where fermions retain

part of the bosonic mass, introducing a half spin. Note that
bosonic masses cannot in principle be stable, like their physi-
cal counterparts — vortex formations in a continuous medium
(if they do not lean on a phase boundary). The parameters of
the vortex thread my, v, r, ly for an arbitrary p+- e−-contour
were determined in dimensionless units of the electron mass
me, its classical radius re, and the speed of light c [2]:

my = ly = (an)2, (1)

v =
c1/3

0

(an)2 , (2)

r =
c2/3

0

(an)4 , (3)

where n is the main quantum number, a is the inverse fine
structure constant, while c0 is the dimensionless light velocity
c/[m/sec].

It is further shown particles themselves to be similar to the
contour and have their own quantum numbers ni, which deter-
mine, as it were, the zone of influence of these microparticles
with the size li = (ani)2. For the proton and electron ni are
0.3338 and 0.5777, respectively. A vortex tube of radius re

is filled spirally with a vortex thread; therefore, with extreme
“compression” and full filling, its length along the Y-axis is
shortened proportional to 1/r. In this case its compressed
length Lp = lyr coincides numerically with the boson contour
mass energy of units mec2, and then it is true:

Lp = lyr = myr = myv
2 =

c2/3
0

(an)2 . (4)

It is obvious that an arbitrary boson mass in the mass-
energy units will match of its own numerical value my only
when the vortex tube ultimate excitation’s case, wherein we
have r → re, v → c, and ni → 0.189 (in experiments at
high energie, for example). According to [2], the standard
contour bosonic mass my is c2/3

0 = 4.48 × 105 (in units of
me), which approximately corresponds to the summary mass
of W, Z-bosons. Therefore, it can be argued the vortex cur-
rent tube to be form by three vortex threads rotating around
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mx 6.10 × 106 2090 1 (4.4 ± 0.1) × 10−7

ni 0.189 0.334 0.577 1.643
rx 669 2090 6270 5.07 × 104

mk = Lp 1.02 1.80 3.10 8.83
n 4.88 3.64 2.77 1.643
ly = my 4.48 × 105 2.49 × 105 1.44 × 105 5.07 × 104

a common longitudinal axis. These threads are finite struc-
tures. They possess, by necessity, the right and left rotation;
the last thread (it is evidently double one) possesses summary
null rotation. They can be associated with the vector bosons
W+, W−, Z0.

This model assumes that a closed contour is created be-
tween charged particles in a region X (a p+- e−-contour, for
example); and only a temporary contour appears in a region
Y, when a case of the weak interaction occurs (when a pro-
ton absorbs an electron, for example). The temporary contour
then loses its charge (longitudinal momentum) and becomes
a one-dimensional neutrino vortex tube, retaining spin. Since
current tubes (i.e. field lines of some field) are treated as mate-
rial objects, there are gravitational and magnetic interactions
between them.

For a counter-currents closed contour the characteristic
contour size lk, which is the geometric mean of two linear
quantities, is derived. This size is based on the balance of
gravitational and magnetic forces written in the “Coulomb-
less” form [2]. Applied to the X-axis lk is:

lk = (lxrx)1/2 =

(
zg1 zg2

ze1 ze2

)1/2

(2πγρe)1/2 × [sec], (5)

where zg1 , zg2 , ze1 , ze2 , rx, lx are gravitational masses and
charges expressed through the mass and charge of the elec-
tron, the distance between the current tubes (charges) and
theirs length, γ is the gravitational constant, while ρe is the
electron density me/r3

e = 4.07 × 1013 kg/m3.
A vortex tube having a momentum equivalent to the elec-

tron charge was shown in [3] really to contain three single
vortex threads (the calculated value is 2.973). These unidirec-
tional vortex threads rotate about a longitudinal axis. Their
peripheral speed v0 is derived from the balance of magnetic
and inertial (centrifugal) forces. In the case of unit charges, it
is equal to:

v0 =
re

(2π)1/2 × [sec]
= 1.12 × 10−15 m/sec, (6)

and does not depend on the length of the vortex threads and
the distance between them.

3 On the weak interaction

The proton has a complex structure, and quarks are in this
model an active part of its mass, a kind of ring currents inside

the proton, where in three local sections the medium velocity
reaches critical parameters [2]. In the p+- e−-contour, proton
quarks are involved in the circulation, and their mass as zg1

is included in equation (5) and depends on the contour size.
For the weak interaction, the contour is limited only by its
influence zone li = (ani)2. Setting rx = li and taking into ac-
count formulas (1–5), for the mass of quarks at unit charges,
we obtained:

mk = zg =
anic

1/3
0

2πγρe × [sec2]
. (7)

It should be noted that the quarks charges are integer ones
inside the proton, and in the form of fractional quantities they
are only projected onto the outer surface of the proton.

In the case of the weak interaction (electron absorption by
the proton) the quark mass-energy is assumed to compar with
the compressed bosonic contour mass-energy Lp in the Y-
region, which, having lost a longitudinal momentum (charge),
becomes the bosonic neutrino vortex tube [4]. This process is
something similar to the charge and spin separation — a phe-
nomenon registered in ultrathin conductors [5], which can be
likened to a one-dimensional vortex current tube. Under this
condition mk = Lp, the quantum number n of Y-contour is
calculated from formula (4), and the mass my (relative length)
according to formula (1).

Table 1 that above shows the calculated parameters un-
der various conditions of the weak interaction, i.e. for vari-
ous distances between the proton and the electron, namely:
the characteristic masses of fermions mx, their own quantum
numbers ni, distances between charges rx, quark masses mk,
boson tube quantum numbers and masses n and my.

The relationship between the fermion and bosonic masses
was established in [2]. The most probable fermionic mass of
neutrinos was determined in [4] under the additional condi-
tion of symmetry, when rx = ly and n = ni (see Table 1);
moreover, there are three more independent formulas con-
taining the gravitational constant and giving actually that the
result, equal to 4.4×10−7 (0.225 eV). It is not known whether
neutrinos appear as a fermion at higher n; in these cases, their
masses would be negligible, because they are inversely pro-
portional to n14. As for the structure of the neutrino, then,
having no charge, it should have a closed shape. Appar-
ently, the bosonic vortex tube, consisting a total of four vortex
threads, is as a result organized into a pair of closed vortex
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threads with left-right rotation and, conversely, with right-left
rotation (with respect to the motion axis direction).

The minimum quark mass, as follows from the table,
matches to the electron mass, and the most probable one
(when neutrino is released) matches to the d-quark mass of
8.83 (4.8 MeV). The bosonic masses my are close to the mass-
es of three, two (Higgs mass), one and one third of the W,
Z particles masses. Although the last boson with a mass of
5.07 × 104 (26 GeV) has not yet been detected, events with
close energies of about 28 GeV have already been recorded
in the CMS Collaboration experiments [6].

These bosons are considered, on the one hand, to be truly
fundamental particles, and on the other, to be pointlike virtual
particles, moreover having enormous mass-energy. This fact
is in no way compatible with the particles or atoms internal
energy. They exist only about 10−25 seconds, although the
duration of the weak interaction is t > 10−12 seconds. The
latter in this model is understandable, because t determines
the time of a medium runing with speed v around the entire
“extended” contour length. That is, given (1–4), we have:

t =
a8n8

c0

re

c
, (8)

that in the indicated range n gives 10−9 . . . 10−13 seconds,
there is an interval corresponding to possible times of the
weak interaction.

Given the inconsistencies in the W and Z bosons prop-
erties and based on the calculated masses my, these bosons
(including the Higgs boson) are probably not fundamental
particles, but rather the excited boson forms of neutrinos,
which during high energy experiments acquired (or did not
have time to lose) for a short time a longitudinal momentum
(charge).

4 On the coupling constants

It was found [7] that the formula for the number of threads in
a vortex tube, cubed, is the ratio of the inertia forces arising
from the acceleration of the bosonic standard contour mass
and acting towards the periphery, to the gravitational forces
acting between fermionic masses of me at a distance re. The
numerator is a constant, so this dependence is only deter-
mined by gravity, i.e. interacting masses and the distance be-
tween them

n3
i =

mec2/3
0 re/

(
(2π)1/2 × [sec2]

)
(2π)1/2 γm2

e/r2
e

= 26.25. (9)

This formula indicates the strength of bonds between the
structural elements of microparticles (quarks) and, as it turns
out, can serve as the equivalent of the coupling constant as

for weak and strong interactions. Suppose that quarks are
located in the corners of a regular triangle at a distance re.
Then, taking into account the geometry of their interaction

and after calculating the constants, the formula (9) can for the
general case be represented in a dimensionless form:

as = 15.15 (r/m)2. (10)

At low energies of interacting particles, affecting only the
external structure of nucleons (small “depth” along Y), the
peripheral inertia forces exceed the attractive forces, therefore
quarks are weakly coupled to each other within a vortex tube
of radius re, and they interact with quarks of nearby nucleons.
At high energies (about 100 GeV, a great “depth” along Y)
they reach within the proton itself vortex thread the minimum
distance of r sin 60◦ (here r is calculated from (3)); in this
case the mutual attraction forces keep the quarks in a bound
state within the nucleon size. Then, with the quark minimum
mass, mk = 1, substituting r = 1 and r = 0.0887 in (10), we
obtain: as = 15.15 and as = 0.119. These values coincide
with the actual ones.

The validity of the above is also convincingly confirmed
by the determination of the proton radius rp provided that
as = 1 and mk = 1. Obviously, it is the vortex tube cir-
cumferential size and it is equal to r/ sin 60◦. Revealing the
constant in (10) and using the above formulas, we finally get:

rp =

 8πγρe

31/2c2/3
0

1/2

× [sec] = 0.297 or 0.836 Fm, (11)

which exactly coincides with the value obtained in recent ex-
periments (0.833 femtometers, with an uncertainty of ±0.010
femtometers) [8].

In the weak interactions, bosonic vortex tubes take part
in, but since their mass is high, the coupling constant for the
weak interaction is very low (about 10−5). With increasing
interaction energy, vortex tubes are excited and their radius
increases, and then this constant increases significantly. Thus,
the coupling constant determines neither the nature of nuclear
forces, nor the strength of interaction, but only indicates the
strength of bonds within the complex structure of nucleons.

5 On the masses of s- and b- quarks

In [2] the total masses of the second and third generation
quarks were approximately determined. But the masses of
negative s- and b- quarks was in experiments found to be
much smaller than the masses of their positive partners, and
it can not be explained in SM. In this model the mass or-
der of these quarks is at least reliably determined when using
formula (5), derived from the balance of magnetic and gravi-
tational forces. It was shown in [2] that any contour connect-
ing charged particles can consider similar to a particle that
is part of a larger contour, where the smaller contour mass
is assumed to be a hypothetical fermion mass (a proton ana-
log) for the larger one. Thus three generations of elementary
particles are formed.
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For the second generation (µ-contour), the proton ana-
log is the mass of the standard contour c2/3

0 , for the third (τ-
contour) one is the mass of the µ-contour, determined from
the limiting conditions at ni = 0.189 and equal to 6.10 × 106.
Thus, for contours of subsequent orders it can be assumed
of linear scale unit’s increasing in proportion to the ratios of
the µ-contour and τ-contour masses to the proton mass mp.
Since quarks masses is directly proportional to lxrx, i.e. to a
linear parameter square, and inversely proportional to leptons
masses, then, bearing in mind (5), we can write the relation:

s- quark mass mk s =
mk(c2/3

0 /mp)2

mµ
= 222 mk ,

b- quark mass mk b =
mk(6.10 × 106/mp)2

mτ
= 2450 mk ,

where mµ and mτ are the µ- and τ- particles masses.
Consequently, the s- and b- quarks masses order is deter-

mined correctly: for the s- quark it is several hundred masses
of the first generation quark, for b- quarks it is several thou-
sand masses of the first generation quark.

6 Conclusion

Thus, the above examples show that gravity has a significant
effect in the microworld, and the gravity constant should in-
evitably be included in the more accurate theories describing
the microworld. Perhaps it is just this factor that may con-
tribute to the further creation of the “theory of everything”.

Submitted on April 15, 2020
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We have developed the relevant setup and studied a possibility of the influence on the
radioactive decay by an external impulsive electromagnetic field. It is shown that such
action can result not only in a change in the rate of decay (rate of counting of gamma-
quanta), but also in a clear variation of the statistical properties of the series of suc-
cessive measurements of the counting rate such as the appearance of periodicities and
hyperrandom properties. It is found that the excitation of a system of radioactive nuclei
induced by the external influence disappears approximately in 4–6 days.

1 Introduction

We will describe our attempt to find a possibility to affect
parameters of the radioactive decay with the help of an im-
pulsive electromagnetic field. As is known, at the radioac-
tive decay, the number of decays per unit time is a random
variable which is described by the Poisson distribution [1].
Hence, from the viewpoint of the statistical analysis, the prob-
lem of search for the signs of changes after some treatment of
a radioactive specimen can be reformulated as a problem of
changes in the statistical properties of samples which are the
records of the results of measurements before and after the
treatment.

It should be emphasized that we intend to seek the weak
changes which can be only precursors of the changes seen
by naked eye (hence, of those possessing a practical signifi-
cance). From the viewpoint of the dominant theory, the rate
of radioactive decay cannot be affected at all (see [2]). While
experimentally determining the influence of some factor, the
researchers try to find, as a rule, the changes in the counting
rate at least on the level of the statistical effects. We pose the
problem in a more general form: to seek the differences be-
tween samples which can or cannot be reduced to a change in
the mean counting rate.

The sought signs can be the periodic variations in a count-
ing rate or the appearance of irregular “splashes” of the inten-
sity or other irregularities leading to that the series of mea-
surements of the counting rate cease to be random in the sense
of mathematical statistics. In this case, a change in the form
of a distribution function (loss of the Poisson property) can
be only one of the possible sought signs.

The radioactive decay can be considered as an example of
the process (if the radioactive half-life is much more than the
time of measurements), for which the long series of measure-
ments of its parameters is considered to be stationary in the
sense of mathematical statistics, i.e. its statistical parameters
do not vary with time. For comparison, we can indicate exam-

ples of other natural processes without the property of station-
arity such as the noise of the ocean, where ships move from
time to time near a detector of noises. The problem of the
analysis of such data was considered, for example, in [3, 4].

In the present work, we will analyze changes in the decay
statistics for signals of the rate of counting of gamma-quanta
from radioactive specimens after the action of an impulsive
electromagnetic field onto them.

2 Data and methods of their analysis

We will examine a possibility to influence the process of ra-
dioactive decay by external impulsive electromagnetic field.
The setup generating the electromagnetic impulses that act on
a radioactive specimen will be called a driver for simplicity.
In order to use the statistical methods of analysis, we need the
long series of regular measurements of the rate of decay. Such
series were recorded with the use of a dosimeter-radiometer
“Pul’s” aimed at the remote radiation control. The device was
produced at the small joint-stock enterprise “Opyt”, includes
a detector on the basis of NaI(Tl), and allowed us to execute
every-second measurements with the record of results into a
memory unit.

We analyzed the results of measurements of a specimen
treated with a driver during February–May in 2018 in the
city of Chornobyl’. As a specimen, we took monazite sand,
i.e. we measured and analyzed the summary signal (gamma-
radiation) from decay products of 232Th. First, before the
treatment of the specimen with a driver, we carried out the
measurements of the counting rate for several days. Later on,
we compared those data with the results obtained after the
action of a driver onto the specimen.

In the analysis of the statistical properties of the measured
signals, we used the statistical theory of hyperrandom phe-
nomena [5]. This theory is based on the hypothesis that the
results of measurements of natural processes are not indepen-
dent and identically distributed. Hence, they do not obey the
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basic preconditions for the application of well-known meth-
ods of mathematical statistics. In other words, the basic as-
sertion of the theory of hyperrandomness consists in that the
process under study can undergo the action of external influ-
ences, which induces, respectively, changes in the statistics
of a signal. This is manifested in the loss of the statistical
stability by data, i.e. the results of measurements become de-
pendent on the time. However, it can turn out that very long
series of measurements should be made for such changes to
be revealed.

The main distinction of the hyperrandom data from the
standard random numbers which are independent and iden-
tically distributed consists in that the variance of the former
does not decrease, as the number of measurements increases
(increase in the size of a sample). On the contrary, starting
from some number of measurements, the variance of hyper-
random data increases [3, 4]. Such effect can be a conse-
quence of the tendency to a change in the mean, the autocor-
related function, etc during the measurement. (We emphasize
once more that the similar changes in a sample can have the
statistical character and can be invisible for naked eye.)

The formulas for the analysis of hyperrandom data can be
found in [5, 6]. We now indicate only the principle of such
analysis. Let us have the sample of the results of measure-
ments X with size N: X = (x1, x2, . . . xN) is a regular tempo-
ral series of the results of measurements. We accentuate that
the series is ordered in the meaning that the elements of the
series should not be permuted. We are interested in the de-
pendence of its parameters on the size of a sample, i.e. on the
time. For this purpose, we calculate the accumulated means,
i.e. the means for the first two, three, etc elements of the input
series. As a result, we get a new first-order series of data in
the form of accumulated means Y (1) = (Y1,Y2, . . .YN), where
Yn = 1

n
∑n

i=1 xi(n = 1,N), with its mean mYN = 1
N
∑N

n=1 Yn. Then
we can repeat the procedure and form the series of higher or-
ders Y (2), Y (3), etc.

The object of our analysis is the function, being the un-
biased variance of fluctuations from the accumulated mean,
DYN = 1

N−1
∑N

n=1 (Yn − mYN )2.

As the quantitative measure of one of the hyperrandom
properties, specifically, the statistical instability of a series of
data, we take the coefficient γN characterizing the absolute

level of statistical instability: γN =
M[DYN ]
NDYN

, where M[∗] is the
operator of mathematical expectation.

To have a possibility to compare different samples with
one another, the units of statistical instability are introduced
in the theory. For the coefficient γN , the role of a unit of sta-
tistical instability of measurements is played by the quantity
γ0N which corresponds to the noncorrelated series of read-
ings with constant variance Dxn = Dx and zero mathematical
expectation at a fixed value of N. The coefficient γ0N is given

by the formula

γ0N =
N + 1

(N − 1) N
CN −

2
N − 1

, where CN =

N∑
n=1

1
n
.

Using the unit of measurements γ0N , we introduce the ra-
tio hN =

γN
γ0N

, i.e. the coefficient characterizing the absolute
level of statistical instability in units of γ0N . These coeffi-
cients are dimensionless. The degree of hyperrandomness hN

of the analyzed data will be considered in what follows.
We note that though the hyperrandom properties of our

data are manifested undoubtedly (see below), the derivation
of the quantitative estimates of the degree of hyperrandom-
ness is not a simple matter. We clarify this point by the exam-
ple. Let us deal with a really random stationary process, so
that its signal has no signs of the hyperrandomness. At some
time moment, let a quite short external influence arise (the du-
ration of the external action is assumed to be much less than
the time of observations). It causes an increase in the mean
and, respectively, to the appearance of the hyperrandomness.
After some time period, the signal again becomes random and
stationary.

Hence, the sample as a temporal signal can be partitioned
into three parts. The midsection is hyperrandom, and the be-
ginning and the end are normal stationary signals. In this
situation, the sample has, on the whole, hyperrandom proper-
ties. But the results of calculations for each of the three parts
separately will give different results.

In real situations, the information about the very fact of
the external influence (treatment by a driver) can be unknown.
Hence, we should consider the problem of determination of
changes in the statistics of a series, the problem of analysis
of the dynamics of those changes in time, and the problem
of searching for the time, when the driver acts. If, for exam-
ple, the aftereffect is present and varies in time, we can say
nothing about the time moment of the transition of the sam-
ple into the third part, even if we are based on the analysis of
the whole series. Moreover, the very fact of such transitions
should be studied. We reformulate this problem as follows:
Are there some regularities of changes in the hyperrandom-
ness indicating the action of a driver and can we determine,
for example, the characteristic time of relaxation of the “hy-
perrandomness state” arisen due to the action of a driver?

In view of the above discussion, we need to analyze the
separate parts of samples with the purpose to find the distinc-
tions between them and to establish the optimum size of such
subsamples. To make it, we chose a “window” of a definite
size, i.e. we set the size of a subsample. With such window,
we scan the whole series of measurements. For each “win-
dow”, we calculated the necessary parameters.

3 Results and discussion

As was indicated, the hyperrandomness by its nature arises
at a change in time of some parameters of the process such
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Fig. 1: Analysis for hyperrandomness of a series of measurements
during 13 days from 14.02.2018 to 26.02.2018 (prior to the treat-
ment). There is the sign of the hyperrandomness, which is revealed
as an increase in hN after approximately 5000–8000 min of measure-
ments.

as, in particular, the solitary short-time splashes. The statis-
tical characteristics of a series calculated before the splash
can be changed after it. If the duration of the action of a
driver is from several minutes up to several hours, it can be
considered a short-time influence against the background of
measurements during several days.

One of the tasks of the present work is the search for the
time of relaxation of a signal after the action of a driver, which
is reduced to the analysis of short segments of the entire se-
ries. In Fig. 1, we present the results of a test for the hyper-
randomness. We took a sufficiently long-time (13 days) series
of measurements before the action of a driver in order to esti-
mate the order of long-time changes.

In each of the figures below, the upper plot is the input se-
ries of data; the middle plot presents a variation in time of the
accumulated variance; and the lower plot shows the param-
eter hN which characterizes the degree of hyperrandomness.
The results of calculation of the hyperrandomness parameter
are accompanied by the analysis of whether such result can
be formed accidentally. It is a reasonable question, because
we analyze the series of random numbers. For this purpose,
we generated a computer-created sample of random numbers
with the same parameters (mean and variance), as those of the
experimental series. For such model sample with the same
programs, we made analysis for hyperrandomness. This pro-
cedure was repeated several times for the sake of reliability,
and the results were drawn on one figure. In the presence of
a noticeable hyperrandomness, the experimental curve must
be outside the zone, where the curves for model samples are
placed. This zone for the model series of random numbers is
shown in the lower plot by dotted lines.

As is seen in Fig. 1, the series manifests some hyperran-

domness during 13 days before the treatment. It starts to re-
veal itself after approximately 5–6 days of measurements.

Then, on 27.02.2018, we executed the treatment of the
specimen with a driver (impulsive electromagnetic field).

In Fig. 2, we present the results of analysis for the hyper-
randomness of a series of measurements before and after the
action of a driver. We recall that our purposes are to register
the time of a manifestation of the action of a driver and to de-
termine the temporal changes of the signs of such action. We
analyzed the subsamples 4 days in duration. In other words,
we analyzed a part of the series 4 days in duration, then the
“window” was shifted by one day, and so on. Hence, the
subsamples were overlapped during 3 days in order to more
or less reliably notice the times of changes in the degree of
hyperrandomness.

In view of Fig. 2, we can formulate the following main
results:

1. After the action of a driver, the rate of counting of
gamma-quanta somewhat increased.

2. In the analyzed series, the hyperrandomness was not
observed practically for 4 days (accepted size of a scan-
ning “window”) before the treatment: the variance de-
creased, as the size of a sample increased.

3. After the action of a driver on 27.02.2018, we observe
a sharp increase in the hyperrandomness. The vari-
ance starts to grow already approximately in 1200 min
(20 h).

4. This effect of hyperrandomness practically disappeared
on 04.03.2018 (in 4–5 days) to the level of noises.

4 Conclusions

1. We have revealed that, under the action of electromag-
netic impulses, the statistics of the radioactive decay is
changed.

2. It is found that, after the action of a driver, the pro-
cess of decay became hyperrandom. This means that
its characteristic such as the accumulated variance in-
creases in time, rather than decreases. In turn, this
means that the process of decay stops to be stationary.

3. This forced nonstationarity was observed during ap-
proximately 5 days. Then the process of decay returns
to the stationary mode (experimental curve in Fig. 2f is
located in the zone of random values).

4. Such time of existence of the aftereffect (tens of hours),
which is much more than the characteristic time of the
evolution of a separate nucleus, is, most probably, the
experimental confirmation of the theories (see [7–10])
that assert that the radioactive decay is a collective pro-
cess in the system of correlated nuclei. From this po-
sition, we may assert that the quantitative estimates of
the process of relaxation of a system of nuclei are made
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Fig. 2: Analysis for hyperrandomness: the series of successive overlapping subsamples from 28.02.2018 to 03.03.2018. The measurement
at once after the treatment which occurred 27.02.2018. After the action of a driver, the hyperrandomness appeared: an increase in the
variance and in h is clearly seen. On the fifth day, the hyperrandomness drops to the level of random noises.
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for the first time. The determined time of the relaxation
has the order of hours.
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We have determined a mode of treatment of a radioactive material (232Th and daughter
products in a colloid solution of monazite sand) with a sequence of short impulses of
an electromagnetic field which results in a change in the intensity (counting rate) of
gamma-radiation. The value of changes in the intensity as a general trend is approxi-
mately 1.8 % for a period of about 1 month. In addition to the changes in the intensity,
we observed changes in the statistics of the radioactive decay. In the long-term signal
of every-second regular measurements of the counting rate for daughter products of the
decay of 232Th obtained after the treatment of the specimen with an impulsive electro-
magnetic field, we have found the periodic components among which the periods of
0.5, 1, and 6.6 days are distinguished most clearly.

1 Statement of the problem

The regular periodic changes in the intensity of signals of
the radioactive decay, as well as the sporadic splashes of the
counting rate, were observed many times (see [1]). They in-
clude the seasonal changes with periods of 1 year, 1 month,
and 1 day which can be obviously related to astronomical
phenomena. While analyzing the periodicity of the 1-day
radioactive decay, it is necessary to separate the studies of
the changes in the intensity of signals from radon and beryl-
lium in the near-Earth layer of the atmosphere, which are
caused mainly by geophysical or meteorological factors and
are omitted in the present work, from the studies of the ra-
dioactive decay under controlled conditions (see [2–4] and
references therein), where the manifestations of the variabil-
ity of a signal are assigned to changes namely in the rate of
radioactive decay. The presence of changes in the rate of de-
cay can be related, in our opinion, to such fundamental causes
as cosmophysical factors. Separately, we mention the works
by S. E. Shnoll [5], where the regular changes in the statis-
tics of separate parts of the series of measured data on the
rate of radioactive decay, namely, the changes in a form of
the distribution function, were observed. It is worth to note
the fundamental cycle of works executed by opponents of this
idea [6–8], where the special studies of this question revealed
no existence of seasonal changes in the half-life period.

But earlier, the existence of that or other regularities of the
radioactive decay was discussed without any experimental in-
terference at laboratories. Moreover, the possibility of the in-
fluence of external physical factors, being outside the nuclear
scale of energies, on the rate of radioactive decay was con-
sidered impossible since Rutherford’s times [1,9,10]. Hence,
the studies in this direction have a fundamental meaning, be-
cause they would prejudice the basic assertions of the theory
that, first, all events of a radioactive decay are mutually in-

dependent, and, second, the internal processes in a nucleus
which define the processes of decay can be affected only by
the fluxes of particles and quanta with energies of the order
of those of nuclear transitions from kiloelectronvolts to mega-
electronvolts. However, we mention a well-known exclusion,
isotope 229Th, whose excitation energy is about 1 eV.

In this work, we present the results of laboratory stud-
ies of the influence of an external electromagnetic field with
sufficiently low intensity on the rate of counting of gamma-
quanta from a radioactive specimen and will show that such
influence is possible.

Especially, we note that, though the revealed changes in
the intensity of a signal after the action of an external factor
for the period of observations up to 40 days are rather small,
the changes in the statistical properties of the obtained regular
series of measurements are obvious and objective.

2 Materials and methods

The setup realizing the action on a specimen (for simplicity,
we call it a driver) is a system of coils with special structure
aimed at the creation of an impulsive electromagnetic field.
The duration of impulses is 1–10 nsec. The treatment was
carried on for 10–30 min. The power of the setup is about
25 W. The energy of impulses is at most 2.5 J.

The scheme of the experiment is as follows. First, we car-
ried on the control measurements for some time. After the
action of a driver, the specimen was returned to a counter,
and we measured the radiation from the specimen for sev-
eral days. Such procedure can be repeated several times. In
this case, we studied the intensity of the summary gamma-
radiation from a specimen of natural monazite sand (mineral
with 232Th) for the period from 20.12.2017 to 15.01.2018.
The results are obtained in a laboratory, i.e. under controlled
conditions. During the indicated period of measurements, the
driver did not act on the specimen, i.e. the presented results
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are a manifestation of the aftereffect.
To gauge the counting rate, we used a counter of gamma-

quanta such as a dosimeter “Pul’s” for the remote radiation
control. It was produced at the small joint-stock enterprise
“Opyt” and includes a detector on the basis of NaI(Tl). The
construction of the counter itself contains no lead-based pro-
tection. The counter can operate in the automatic mode and
can write the result of measurements in the memory every
second. During the measurements, the counter with a speci-
men have no special protection or can be placed inside a lead
cylinder. The latter was open from one end, was about 30 cm
in length, and has walls 10 cm in thickness. The measure-
ments were carried out on different specimens, in different
modes of action of a driver, many times, under the lead pro-
tection, and without it. On the whole, the results were in-
variable, i.e. the below-described effects did not disappear.
The described conditions of measurements are given for the
concreteness. The measurements were performed in heated
premises. The changes on the temperature were in the inter-
val 17–22 oC, but they were not regular with daily period.

In the room, where the measurements were performed,
the background was much lower than the level of signals. For
the indicated period, we have got a series of every-second
measurements of the intensity of gamma-radiation with inter-
ruptions for the time, when the treatment of a specimen was
executed.

Since the purpose of the present work is the search for the
periodicity of a signal, we applied the wavelet-analysis using
Gauss–Morlet wavelets [11, 12].

In Fig. 1, we show the signal from the untreated speci-
men in the form of a noisy path and its wavelet-expansion as
a two-dimensional pattern of disordered spots. If some peri-
odic regularities of the type of modulation by a sinusoid are
present in the signal, the pattern of coefficients of the Gauss
wavelet-expansion will contain the series of spots regularly
arranged along the horizontal. The distance between such
regular spots along the horizontal is equal to the half-period
in units of the horizontal axis.

In view of the low rate of counting, while seeking the
periodicities with a period of 1 h and more, we transformed
the input series of data into a series of measurements for each
10 minutes (sum of sequential values for each 600 sec without
the overlapping of intervals, where the number of counts is
calculated).

3 Results

The analyzed signal itself after the action of a driver and the
result of its wavelet-expansion are given in Fig. 2. The upper
plot is the series of data which should be analyzed. Below, the
two-dimensional pattern is the representation of coefficients
of the wavelet-expansion (result of a wavelet-transformation
of some series of data is the two-dimensional matrix of co-
efficients of the expansion). On the horizontal axis of the
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Fig. 1: Wavelet-expansion of a signal of the intensity of gamma-
radiation from a specimen of monazite sand without the treatment
with a driver. The upper plot is a signal; below, the two-dimensional
pattern is the representation of the matrix of coefficients of the
wavelet-expansion of this signal.

pattern, we indicate the number of a measurement which is
proportional to the time from the start of measurements.

We note that the measurements are regular, and, in this
case, each measurement corresponds to a time interval of 10
min. Therefore, for example, the number 1000 on the hori-
zontal axis corresponds to a time moment of 10 000 min from
the start of measurements. Along the vertical axis of the two-
dimensional pattern, we give the half-period of a signal in
units of the horizontal axis. We see clearly several horizontal
rows of “spots,” the distances between which are equal to the
half-period (by assuming the modulation by a sinusoid).

In the table near the wavelet-expansion pattern, we show,
as an example, several distances between spots for the rows
indicated by arrows directly from the two-dimensional pat-
tern in Fig. 2. This allows us to draw conclusion about the
uncertainty of those estimates.

In addition to the appearance of a periodic daily modu-
lation on the wavelet-expansion patterns, we observe that the
signal itself looks as a uniform noisy path. We see also a tooth
ripple of the daily variation and a small asymptotic decline.

4 Discussion of results and conclusions

The obtained array of results about the dynamics of the rate
of counting of gamma-quanta after the treatment of a speci-
men with a driver testifies indisputably to the presence of the
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Fig. 2: Wavelet-expansion of a signal of the intensity of gamma-radiation of a specimen with Th after the treatment with a driver. The upper
plot is the signal; below, the two-dimensional pattern is the representation of the matrix of coefficients of the wavelet-expansion of this
signal. Arrows indicate the periodic series. The signal is the number of impulses for 1 min. The table on the right shows some examples of
the estimates of distances between spots. The lower row gives the mean values.

external influence on the process of radioactive decay. This
fact cannot be a result of erroneous measurements or, espe-
cially, improper analysis: the effect is not observed prior to
the treatment and is seen after it.

Because the described result, i.e. the appearance of a peri-
odicity in the noisy signal, is reliably established experimen-
tally, we may ask: why was no effect observed earlier? The
possible causes are as follows:

1. The effect is reliably registered only in definite opera-
tional modes of a driver. To observe it, one needs to
perform special long-term experiments, since the effect
can reveal itself in several tens of days after the action
of a driver.

2. In the whole array of experimental data, the effect of
a variation of the trend of the rate of counting is not
strong (several percents) and is variable in time. There-
fore, without regular long-term measurements, the ef-
fect can be considered as a noise or the uncertainty of
a procedure of measurements.

Thus, we showed experimentally the presence of many
periodicities with noninteger ratios in measured sequences of
the rates of counting. The logical consequence of these results
and of the up-to-date model representations about the fractal
dynamics of intranuclear clusters [13–15] and about the nu-
clear structure [13–18] is the conclusion that sufficiently weak
electromagnetic signals can excite the dynamics of intranu-
clear clusters, and, hence, it is possible to observe a manifes-
tation of this changed dynamics in the probabilities of nuclear

processes.

Received on May 4, 2020
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17. Dechargeé J., Berger J.-F., Girod M., Dietrich K. Bubble and semi-
bubbles as a new kind of superheavy nuclei. Nuclear Physics A, 2003,
v. 716, 55–86.

18. Berezovoj V. P., Bolotin Yu. L., Yanovsky V. V. et al. Stochastic Rezo-
nance in nuclear fission. Problems of Atomic Science and Technology,
2001, No. 6, 226–229.

70 S. Adamenko et al. Periodic Phenomena in the Rate of Radioactive Decay Under the Action of an Electromagnetic Field



The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics

PROGRESS IN PHYSICS
A quarterly issue scientific journal, registered with the Library of Congress (DC, USA). This journal is peer reviewed and included in the abstracting
and indexing coverage of: Mathematical Reviews and MathSciNet (AMS, USA), DOAJ of Lund University (Sweden), Scientific Commons of the
University of St. Gallen (Switzerland), Open-J-Gate (India), Referativnyi Zhurnal VINITI (Russia), etc.

Electronic version of this journal:
http://www.ptep-online.com

Advisory Board

Dmitri Rabounski,
Editor-in-Chief, Founder
Florentin Smarandache,
Associate Editor, Founder
Larissa Borissova,
Associate Editor, Founder

Editorial Board

Pierre Millette
millette@ptep-online.com
Andreas Ries
ries@ptep-online.com
Gunn Quznetsov
quznetsov@ptep-online.com
Ebenezer Chifu
chifu@ptep-online.com

Postal Address

Department of Mathematics and Science,
University of New Mexico,
705 Gurley Ave., Gallup, NM 87301, USA

Copyright© Progress in Physics, 2020

All rights reserved. The authors of the ar-
ticles do hereby grant Progress in Physics
non-exclusive, worldwide, royalty-free li-
cense to publish and distribute the articles in
accordance with the Budapest Open Initia-
tive: this means that electronic copying, dis-
tribution and printing of both full-size ver-
sion of the journal and the individual papers
published therein for non-commercial, aca-
demic or individual use can be made by any
user without permission or charge. The au-
thors of the articles published in Progress in
Physics retain their rights to use this journal
as a whole or any part of it in any other pub-
lications and in any way they see fit. Any
part of Progress in Physics howsoever used
in other publications must include an appro-
priate citation of this journal.

This journal is powered by LATEX

A variety of books can be downloaded free
from the Digital Library of Science:
http://fs.gallup.unm.edu/ScienceLibrary.htm

ISSN: 1555-5534 (print)
ISSN: 1555-5615 (online)

Standard Address Number: 297-5092
Printed in the United States of America

October 2020 Vol. 16, Issue 2

CONTENTS

Nyambuya G. G. Fundamental Geometrodynamic Justification of Gravitomagnetism (I) 73

McCulloch M. E. Can Nano-Materials Push Off the Vacuum? . . . . . . . . . . . . . . . . . . . . . . . . 92

Czerwinski A. New Approach to Measurement in Quantum Tomography . . . . . . . . . . . . . . 94

Millette P. A. The Physics of Lithospheric Slip Displacements in Plate Tectonics . . . . . . . 97

Bei G., Passaro D. Symmetry Breaking Model of Volume Pulsating Walking Droplets . 102

van Hoek A. N. The Ambiguity of Celestial Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Noh Y. J. Propagation of a Particle in Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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Fundamental Geometrodynamic Justification of Gravitomagnetism (I)

G. G. Nyambuya

National University of Science and Technology, Faculty of Applied Sciences – Department of Applied Physics,
Fundamental Theoretical and Astrophysics Group, P. O. Box 939, Ascot, Bulawayo, Republic of Zimbabwe.

E-mail: physicist.ggn@gmail.com

At a most fundamental level, gravitomagnetism is generally assumed to emerge from
the General Theory of Relativity (GTR) as a first order approximation and not as an
exact physical phenomenon. This is despite the fact that one can justify its existence
from the Law of Conservation of Mass-Energy-Momentum in much the same manner
one can justify Maxwell’s Theory of Electrodynamics. The major reason for this is that
in the widely accepted GTR, Einstein cast gravitation as a geometric phenomenon to be
understood from the vantage point of the dynamics of the metric of spacetime. In the
literature, nowhere has it been demonstrated that one can harness the Maxwell Equa-
tions applicable to the case of gravitation – i.e. equations that describe the gravitational
phenomenon as having a magnetic-like component just as happens in Maxwellian Elec-
trodynamics. Herein, we show that – under certain acceptable conditions where Weyl’s
conformal scalar [1] is assumed to be a new kind of pseudo-scalar and the metric of
spacetime is decomposed as gµν = AµAν so that it is a direct product of the components
of a four-vector Aµ – gravitomagnetism can be given an exact description from within
Weyl’s beautiful but supposedly failed geometry.

My work always tried to unite the Truth with the Beautiful,

but when I had to choose one or the other, I usually chose the

Beautiful.

Herman Klaus Hugo Weyl (1885-1955)

1 Introduction

Exactly 102 years ago, the great, brilliant and esoteric Ger-
man mathematician cum mathematical physicist and philoso-
pher – Herman Klaus Hugo Weyl (1885-1955) – astounded
the world of Physics with the first ever unified field theory
of gravitation and electromagnetism. At the time, gravitation
and electromagnetism were the only known forces of Nature,
hence, from the viewpoint of the collective wisdom of the day,
Weyl’s [1] theory was seen as a unified field theory of all the
forces of Nature. Since Weyl’s [1] maiden efforts, unification
of the gravitational phenomenon with the other forces of Na-
ture has remained as one of the greatest – if not the greatest
– and most outstanding problem in all of physics today. This
endeavour of unification of all the forces of Nature first con-
ducted by Weyl [1], became Albert Einstein’s (1879-1955)
final quest in the last 30 years of his brilliant and eventful
life.

Since it is a widely accepted position, it perhaps is only
fair for us to say at this very point, that – overall – while
he failed in his titanic 30-year long quest and battle with the
problem of an all-encompassing unified field theory of all the
forces of Nature, Einstein made serious meaningful contribu-
tions to this seemingly elusive grand dream of a Final Theory
that ties together all the known forces of Nature – the Grav-
itational force, the Electromagnetic force, the Weak and the
Strong force – into one, giant, neat, beautiful, coherent and

consistent mathematical framework that has a direct corre-
spondence with physical and natural reality as we know it.

Despite his legendary lifelong failure to attain a unified
field theory, Einstein [2, 3] understood very well the need for
tensorial affine connections in the construction of a unified
field theory. Einstein [2, 3] was not alone in this esoteric pot
of wisdom; amongst others, towering figures of history such
as Eddington [4] and Schrödinger [5–7] all but made similar
noteworthy attempts to attain a unified field theory that made
use of tensorial affines.

In the present work, this idea of tensorial affine connec-
tions is a fundamental lynchpin in the construction of what
we believe is a noteworthy stepping stone to a Final Unified
Field Theory (FUFT) of the gravitational phenomenon and
the other forces of Nature. When we here say Final Uni-
fied Field Theory, we mean this in the context of the path
(see [8–10]) that we are pursuing in order to arrive at what
we believe is the FUFT.

In order for us to give the reader the correct scope of the
present work, we must hasten and say that the present work
is part and parcel of our upcoming monograph on this grand
dream of Einstein. What we present herein is but a portion
thereof. We herein demonstrate that gravitomagnetism has a
fundamental geometric justification well within the scheme
of Weyl’s [1] supposed failure. We strongly believe – or
are of the innate view – that the much sought for path to a
successful Quantum Geometrodynamic (QGD) theory will be
achieved very soon via a recasting of the gravitational phe-
nomenon into a Maxwell-type formalism where the quanti-
zation of the gravitational field will prove to be the trivial
exercise of quantizing a four-vector field Aµ associated with
the gravitational field. Through the well known quantization
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procedures discovered in the quantization of the electromag-
netic four-vector field in Quantum Electrodynamics (QED),
the gravitational four-vector field can be quantized too in this
very same manner.

We must say that our theory is directly inspired by Weyl’s
geometry [1] – a geometry that for the first time made the
great and esoteric stride and endeavour to bring the electro-
magnetic and gravitational forces together into a fruitful and
harmonious union that did not last beyond Einstein’s first crit-
icism of it (see e.g. [11]). Unlike what we have done in our
previous work (in [8–10]), we shall not anymore bother our
reader with the plethora of the exciting and fascinating his-
toric anecdotes associated with the pursuit of a unified field
theory that brings the gravitational and quantum phenomenon
into one giant, neat, coherent and consistent mathematical
framework. We deal here directly with the purest portions
and jewels of our effort.

In their noble quest and search for a unified field theory
of the quantum and gravitational phenomenon, physicists –
and mathematicians alike – have been motivated by various
reasons. In our case, our motivation has been, and is solemnly
to overcome the obvious great difficulty associated with the
General Theory of Relativity (GTR)’s geodesic equation of
motion, namely:

d2xλ

ds2 − Γλαδ
dxα

ds
dxδ

ds
= 0 (1)

where ds = cdτ is the line element, τ is the relativistic proper
time, c = 2.99792458 × 108 m s−1 (CODATA 2018) is the
speed of light in vacuo, xµ is the four-position of the particle
in spacetime, and Γλµν are the usual Christoffel three-symbols
[12]∗. Because of the non-tensorial nature of the affine con-
nection Γλµν, this geodesic (1) of motion does not hold fast –
in the truest sense – to the depth of the letter and essence of
the philosophy deeply espoused and embodied in Einstein’s
Principle of Relativity (PoE) [13], namely that physical laws
must require no special set of coordinates where they are to
be formulated.

The non-tensorial nature of the affine connection requires
that the equation of motion must first be formulated in spe-
cial kind of coordinate systems known as a geodesic coor-
dinate system†, yet the PoE forbids this. This problem has
never been adequately addressed in the GTR. As Einstein [2]
noted, a permanent way out of this dilemma is to find a ge-
ometry whose affine connections are tensors. This is what
we do herein. At the end of our quest – for the gravitational

∗These symbols are named after German mathematician and physicist
Elwin Bruno Christoffel (1829-1900). Christoffel first introduced these sym-
bols in a paper on differential forms in n variables, published in Crelle’s
Journal: see [12].

†A geodesic coordinate system is one in which the Christoffel three-
symbols Γλµν vanish at all points on the given set of coordinates – i.e. Γλµν = 0.
An example is the flat rectangular (x, y, z) system of coordinates. However,
when one moves from this (x, y, z) rectungular system of coordinates to say
the spherical (r, θ, ϕ), the resulting affine Γλ

′

µ′ν′
is not zero – i.e. Γλ

′

µ′ν′
, 0.

phenomenon as a whole – we arrive not by design, but rather
by serendipity, at a gravitomagnetic theory similar to that of
Maxwell [14].

In current efforts being made on both the theoretical (in
e.g. [15–19]), and observational front (in e.g. [20–24]), grav-
itatomagnetism is predominately understood in the context of
Einstein’s [25–28] linearised first order approximation of the
GTR. Our approach is different to this predominant approach.

We herein consider gravitomagnetism as an exact theory
independent of the GTR in much the same way it was con-
ceived by Maxwell [14] and Heaviside [29, 30] and further
championed (in modern times) e.g. by Jefimenko [31] and Be-
hera [32] amongst others. The present gravitomagnetic the-
ory falls within the realm of a more ambitious attempt that we
are currently working on, i.e. an attempt at an all-encompass-
ing Unified Field Theory (UFT) of all the forces of Nature
(see [10, 33]). We shall say nothing about this attempt but
direct the interested reader to these works.

In closing this introductory section, we shall give a brief
synopsis of the remainder of the paper. In §2, we give a brief
exposition of the GTR. In §4, we give an exposition of Weyl’s
theory [1]. In §3, we give a non-geometric justification of
gravitomagnetism. In §5, we present our theory. Thereafter,
in §6, in preparation for the presentation of the gravitomag-
netic field equations, we express the new affine (Γλµν) and the
Riemann tensor (Rµν) in terms of the gravitational Maxwell-
type field tensor (Fµν). Therein §6, we also work out the
geometrically derived material tensor (Tµν) so that its terms
correspond with what we know from the physical world. In
§7, we write down the resultant field equations. Lastly, in §8,
a general discussion is given.

2 Brief exposition of the GTR

As is well known, Einstein’s Special Theory of Relativity [34]
deals with inertial observers while the GTR deals with non-
inertial observers. The problem with non-inertial observers is
that gravitation becomes a problem since it is an all pervad-
ing non-vanishing force. By analysing the motion of a test
body in free fall motion in a gravitational field, Einstein [13]
was able to overcome this problem of gravitation by noting
that if the gravitational (mg) and inertia mass (mi) were equal
or equivalent, then gravitation and acceleration are equivalent
too. This meant that the effect(s) of acceleration and grav-
itation are the same. One can introduce or get rid of the
gravitational field by introducing acceleration into the sys-
tem. Because of the importance of this, it came to be known
as the Principle of Equivalence, and Einstein [25] took this
as a foundational pillar to be used for the construction of his
GTR.

2.1 Principle of Equivalence

The deep rooted meaning of the Principle of Equivalence is
that physical laws should remain the same in a local reference
system in the presence of a gravitational field as they do in
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an inertial reference system in the absence of gravitation. In
Einstein’s own words [13]:

Einstein’s Principle of Equivalence (PoE): We shall
therefore assume the complete physical equivalence of
a gravitational field and the corresponding accelera-
tion of the reference system. This assumption extends
the Principle of Relativity to the case of uniformly ac-
celerated motion of the reference system.

A consequence of this is that no mechanical or optical ex-
periment can locally distinguish between a uniform gravita-
tional field and uniform acceleration. It is here that we would
like to point out that the PoE as used in the formulation of
the GTR does not demand that the physics must remain in-
variant. By “the physics” we mean that the description of a
physical event ought to remain invariant unlike, for example,
in black hole physics – where, depending on the coordinate
system employed (and not the reference system – this is im-
portant), a particle can be seen to pass or not pass through the
Schwarzschild sphere for the same observer supposedly un-
der the same conditions of experience. Also the chronological
ordering of events is violated – i.e. the Law of Causality is not
upheld.

For example, as first pointed out by the great mathemati-
cian, logician and philosopher Kant Gödel [35], in a rotat-
ing Universe, it is possible to travel back in time, invariably
meaning to say it is possible in principle to violate the Sec-
ond Law of Thermodynamics. Though the idea of time travel
is very fascinating and appealing to the mind, it is difficult
to visualize by means of binary logical reasoning how it can
work in the physical world as we know it. From intuition,
the laws of Nature must somehow have deeply engraved and
embedded in them the non-permissibility of time travel. We
believe that such illogical outcomes emerging out from a le-
gitimate application of the laws of Nature can be solved if the
geometry of the Universe is built on tensorial affinities.

2.2 Generalized Principle of Equivalence

Therefore, in order to avoid physical absurdities emerging
from supposedly well-founded laws of Nature, we must de-
mand of our theories that “the physics” emerging from the
theory, that is to say, the physical state and the chronologi-
cal ordering of events, must remain invariant – i.e. we must
extend the Principle of Equivalence to include the physical
state or physical description of events and as well the Law of
Causality. Because this must be universal and important, let
us call the extended Principle of Equivalence, the Generalized
Principle of Relativity:

Generalized Principle of Relativity (GPR): Physi-
cal laws have the same form in all equivalent reference
systems independently of the coordinate system used
to express them and the complete physical state or
physical description of an event emerging from these

laws in the respective reference systems must remain
absolutely and independently unaltered – i.e. invariant
and congruent – by the transition to a new coordinate
system.

This forms the basic guiding principle of the present theory.
The deeper meaning of the GPR is that, if one is describ-
ing the same physical event in spacetime e.g. a black hole, it
should not be permissible to transform away a singularity by
employing a different set of coordinates as is common place
in the study of the Schwarzchild metric. If the singularity
exists, it exists independently of the coordinate system and
reference system used – it is intrinsic and permanent, it must
exist at all levels of the theory.

Therefore, if we are to have no singularities, the theory
itself must be free of these. If a particle is seen not to pass
through the event horizon, it will not be seen to pass through
the boundary of the event horizon no matter the coordinate
system employed and the reference system to which the cur-
rent situation is transformed into. In order for this, there is
need for the affine connections to be tensors and this is what
we shall try to achieve in the present – i.e. a geometry en-
dowed with tensorial affine connections. For completeness,
self-containment and latter instructive purposes, in the next
subsection, we will take a look at the non-tensor affine con-
nections of Riemann geometry.

2.3 Affine connection

Now, back to the main vein: the Principle of Equivalence is,
in the context of Riemann geometry, mathematically embod-
ied in the equation:

gµν;α = gµν,α − Γδαµgδν − Γδανgµδ = 0 (2)

where gµν is the metric tensor describing the geometry of
spacetime and Γλµν is the affine connection. This affine con-
nection is obtained as follows (e.g. [36, pp. 59–60]): first we
write down two equations obtained by way of right-cyclically
permuting the µνσ-indices in (2) for the term gµν,σ, i.e.:

gµν;α = gµν,α − Γδαµgδν − Γδανgµδ = 0 , (3)

gµν;α = gµν,α − Γδαµgδν − Γδανgµδ = 0 . (4)

Second, we now subtract from (2) the sum of (3) and (4), and
use the symmetry of the connection (Γλµν = Γλνµ) and as well
of the metric (gµν = gνµ) to obtain:

(
gµν,α − gαµ,ν − gνα,µ

)
+

2gαδΓδµν = 0, hence:

Γλµν =
1
2

gδλ
(
gδµ,ν + gνδ,µ − gµν,δ

)
. (5)

The affine connections play an important role in that they re-
late tensors between different reference systems and coordi-
nate systems. Its drawback insofar as physical laws are con-
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cerned is that it is not a tensor. It transforms as follows:

Γλ
′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Γδµν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′︸          ︷︷          ︸
extra term

. (6)

The extra term on the right makes it a non-tensor and without
it, the Christoffel symbol would be a tensor. Most of the prob-
lems facing the GTR can be traced back to the non-tensorial
nature of the affine connections. Some of the problems will
be highlighted in the succeeding section. Due to the nature
of these affinities, the real problem is that in its bare form,
Riemann geometry does not provide a way to determine per-
missible and non-permissible coordinate and reference sys-
tem transformations. The new hybrid geometry on which the
UFT being championed is built, does have a way to deter-
mine permissible and non-permissible coordinate and refer-
ence system transformations.

2.4 Line element

Now, both the invariance and covariance of physical laws un-
der a change of the coordinate system and/or reference sys-
tem transformation is, in Riemann geometry, encoded and/or
expressed through the invariance of the line element: ds2 =

gµνdxµdxν. The line element is a measure of the distance be-
tween points in spacetime and remains invariant under any
kind of transformation of the reference system and/or the co-
ordinate system. This is the essence of the GTR. From this,
Einstein was able to deduce that gravitation is and/or can be
described by the metric tensor gµν thus, according to the Ein-
stein doctrine of gravitation, it (gravitation) manifests itself
as the curvature of spacetime. Through his (Einstein) own
intuition and imagination, he was able to deduce that the cur-
vature of spacetime ought to be proportional to the amount
of matter-energy present in spacetime — a fact that has since
been verified by numerous experiments.

2.5 Einstein’s field equations

The resulting gravitational law emerging from Einstein’s the-
sis stated above – namely that the curvature of spacetime
should be proportional to the amount of matter-energy present
in spacetime – is:

marble︷                    ︸︸                    ︷
Rµν −

1
2

Rgµν + Λgµν︸                    ︷︷                    ︸
beautiful and splendour

=

wood︷︸︸︷
κETµν︸︷︷︸

ugly and loathsome

(7)

where κE = 8πG/c4 is Einstein’s constant of gravitation, G =

6.67430(15) × 10−11 kg−1 m3 s−2 (CODATA 2018) is New-
ton’s universal constant of gravitation, Rµν is the contracted
Riemann curvature tensor, R is the Ricci scalar, and Tµν =

%gvµvν + pgµν is the stress and energy tensor where %g is the
density of matter, p is the pressure, vµ the four-velocity, and Λ

is the controversial ad hoc Cosmological Constant term added
by Einstein [37] so as to stop the Universe from expanding.
Einstein [37] was motivated to include the cosmological con-
stant because of the strong influence from the astronomical
wisdom of his day that the Universe appeared to be static and
thus was assumed to be so.

In the later years of his scientific life while in hot pursuit
of a unified field theory – according to his official scientific
biographer – Abraham Pais [38], Einstein would look at his
equation (7) and compare the left-hand side with marble and
the right-hand side with wood, and he would admire the mar-
ble side calling it beautiful and splendour and, on looking at
the right-hand side, he would be filled with sadness whereby
he would moan calling it ugly and loathsome. His prime and
hence immediate goal therefore (see e.g. [39]) was to turn the
ugly wood into beautiful marble.

All Einstein hoped for and wanted in his quest, was that
all the fields including the material field Tµν, be derived from
pure geometry, rather than “glue” the two seemingly indepen-
dent parts (i.e. the curvature Rµν −Rgµν/2 and material tensor
Tµν) via some mere constant κE . Einstein was extremely dis-
satisfied with this state of affairs [38] and thus hoped that a
theory would be found in the future where the material tensor
is derived directly from the geometry as a direct consequence
of the geometry itself. We must say, that, if our ideas prove
themselves worthy, it appears we have just managed to derive
the material fields from the Resultant World Geometry.

3 Present justification of gravitomagnetism

For example, take Maxwell’s Five Equations of Electrody-
namics [14] – i.e. the typical four equations that we are used
to involving the reciprocal E and B-fields plus the Law of
Conversation of Electric Charge and Current. Certainly, to
a foremost theoretical physicist such as Paul Dirac (see e.g.
[40–42]), these equations are without doubt beautiful in ev-
ery aspect of the word beauty; and to seal the matter, their
foundations are well verified and anchored in experience. But
asking what is the fundamental basis for their existence led
José Heras [43] to the tangibly solid mathematical fact that
Maxwell’s equations [14] are nothing more than a consequen-
ce of the conservation of electronic charge. That is to say,
what you need for the existence of Maxwell’s equations [14]
is just the conservation of electric charge and current; nothing
more and nothing less. Surely – to say that only the conserva-
tion of electronic charge and current is all that is needed for
Maxwell’s Equations to exist – this is certainly deep, isn’t it?

Given that the gravitational mass – which is responsi-
ble for gravitation – follows a similar law of conversation
in the form of the conservation of mass-energy and momen-
tum, rather trivially, one can easily extend this to the grav-
itational phenomenon and justify the need for gravitomag-
netism. Heras [43] did not make this trivial and obvious ex-
trapolation. In addition to this, we must say that we have not

76 G. G. Nyambuya. Fundamental Geometrodynamic Justification of Gravitomagnetism



Issue 2 (October) PROGRESS IN PHYSICS Volume 16 (2020)

seen in the most recent literature any attempt to use Heras’
[43] existence theorem to justify gravitomagnetism. How-
ever, by way of analogy with the equations of electrodynam-
ics given the similarity between Newton and Coulomb’s in-
verse square laws, Maxwell [14] and Heaviside [29, 30] al-
ready had introduced gravitomagnetism. Sadly, because of
lack of experimental backing, gravitomagnetism derived in
this way has largely been treated as an endeavour belonging
to the realm of pseudo-science, rather than science. Many
scientists that have followed in an effort to try and investigate
this gravitomagnetic phenomenon have struggled to shrug-off

the pseudo-science tag hanging at the nimbus of gravitomag-
netism.

In the present section, we are going to give a brief ex-
position of Heras [43] and Behera’s [32] existence theorems.
These theorems are enough to convince sceptics that like elec-
tricity and magnetism, the gravitational phenomenon aught
to be described by a four-vector potential. In addition to
Heras [43] and Behera’s [32] existence theorems, this pa-
per will add a purely geometric justification and this geo-
metric justification follows the same geometric path as the
GTR wherein the gravitational phenomenon is described by
the metric. Because this demonstration – that we are going
to give of the geometric justification of gravitomagnetism –
uses the modern description of gravitation as a metric phe-
nomenon, it certainly is not far-off in its outlook, vision and
conception with the modern idea of a metric description of
gravity. Surely, this aspect of the present ideas must – some-
how – make the ideas propagated herein appeal to the reader.
In the next subsection, we shall give an exposition of Heras’
theorem [43].

3.1 Heras’s (2007) existence theorem

In a nutshell, Heras [43] formulated – what in our view is – a
very important Existence Theorem that states that, given any
space and time-dependent localized scalar and vector sources
satisfying the continuity equation – as is the case with electro-
magnetism – there exists in general, two retarded vector fields
(X,Y) that satisfy a set of four field equations that are similar
in nature and form to Maxwell’s equations. By applying the
theorem to the usual electrical charge and current densities,
the two retarded fields are identified with the reciprocal elec-
tric (E) and magnetic (B) fields and the associated field equa-
tions with Maxwell’s equations [14], i.e.: X := E,Y := B.

In brief, what Heras [43] proved is that if %e is the charge
density and ~J is the associated current corresponding to this
charge, i.e.:

∂%e

∂t
= −~∇ · ~J , (8)

then, there must exist two corresponding fields, X and Y, that

satisfy the following set of equations:

~∇ · X = α%e (a)

~∇ · Y = 0 (b)

~∇ × X + γ
∂Y
∂t

= 0 (c)

~∇ × Y −
β

α

∂X
∂t

= β ~J (d)

(9)

where α, β, γ are arbitrary positive constants and are related
to the speed of light c by the equation α = βγc2. In the
case of electricity and magnetism, if X and Y are identified
with the electric and magnetic fields respectively, then we will
have Maxwell’s classical equations [14] for electrodynamics
– in which case α = 1/ε, β = µ, and, γ = 1. Clearly, this
axiomatic and fundamental approach of deriving Maxwell’s
field equations [14] strongly suggests that electric charge and
current conservation – and nothing else – can be considered
to be the most fundamental assumption underlying Maxwell’s
equations [14] of electrodynamics. Next, we give an exposi-
tion of Behera’s [32] theorem.

3.2 Behera’s (2006) theorem

Using the Law of Conservation 0f Mass-Energy-Momentum
and the Poisson-Laplace equation (10), the endeavour of the
present section is to demonstrate – as Behera [32] did – that
much the same as the Coulomb electrical potential, the New-
tonian gravitational potential %g has an associated vector field.
We shall denote this vector field by the symbol Ag and we
shall call it the gravitomagnetic vector potential and in short
we shall call it the g-magnetic vector potential. This fact that
we can associate %g with Ag has been known for a consider-
able amount of time now. That is, for more than a century
(≥ 120 years), it has been known (since Heaviside [29, 30])
that the inclusion of a magnetic-like vector field in Newtonian
gravitational theory can be justified from two immutable facts
(see e.g. Behera [32]), i.e. from the Poisson-Laplace equation
for gravitation, namely:

~∇ · ~g = −4πG%g (10)

where ~g is the gravitational field intensity at a given point in
the gravitational field, %g is the gravitational potential, and
from the equation of conservation of mass-energy and mo-
mentum, namely: ∂%g/∂t = −~∇ · ~J, where ~J = %gv, is the
momentum density with v being the velocity of the material
whose density is %g.

In order to see this, from (10) we know very well that:
%̇g = −(1/4πG) (~∇ · ~̇g). Let us set: µ̃ = 1/4πG, so that: %̇g =

(1/4πG) (~∇ · ~̇g) can now be written as: %̇g = −µ̃~∇ · ~̇g. From
this, it follows that:

∂%g

∂t
= −~∇ · ~J = −~∇ ·

(̃
ε
∂~g

∂t

)
, (11)
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hence:

~∇ ·

[̃
ε
∂~g

∂t
+ ~J

]
= 0. (12)

Now, it is a bona fide mathematical fact that for any general
vector say ~B = ~B(x), the following holds always:

~∇ ·

 ~∇ × ~Bµ̃
 ≡ 0. (13)

where µ̃ is a constant – which, akin to the electromagnetic
permeability (µ0) and permittivity (ε0) of free space, we shall
define this constant µ̃ is such that: c̃ = 1/

√
µ̃ε̃, where c̃ is the

speed of gravity in free space. By comparing (12) and (13), it
follows that:

~∇ × ~B

µ̃
= −~J + ε̃

∂~g

∂t
. (14)

What this really means is that the gravitational field ~g has an
associated magnetic-like field ~B. Hence, one can make the
very bold conclusion that the very laws of Nature (10) and
∂%g/∂t = −~∇ · ~J invariably imply an associated magnetic-like
field for the gravitational field. Following tradition, we shall
call this magnetic-like field the gravitomagnetic field and for
short, we shall call it the g-magnetic field.

Now, (10) and (14) have a seductive and irresistible re-
semblance with Maxwell’s source-coupled equations somuch
so that for the brave that have set their mind on this, they have
proceeded without detouring to make a complete formal ana-
logue with Maxwell’s equations [14], in which process, the
phenomenon known as gravitomagnetism found its original
birth certificate. Therefore, as a complete set, the Field Equa-
tions of Gravitomagnetism, are:

~∇ · ~g = −%g/ε̃ (a)

~∇ × ~g = −
1
c̃
∂~B

∂t
(b)

~∇ · ~B = 0 (c)

~∇ × ~B = −µ̃~J +
1
c̃2

∂~g

∂t
. (d)

(15)

This completes our exposition of the non-geometric justifi-
cation of gravitomagnetism. In the next section, we shall
for self-containment and latter instructive purposes, present
a brief exposition of Weyl’s theory [1] and in the penultimate
thereof, we present our partial modification of it.

4 Weyl geometry

In §4.1, we give a brief exposition of Weyl’s geometry [1] and
thereafter in §4.2, we present the New Weyl Geometry (NWG)
upon which the proposed gravitomagnetic theory is based.

4.1 Original Weyl geometry

By way of addition of a conformal factor e2φ to the metric
gµν 7→ e2φgµν, Weyl [1] built his geometry by supplementing
the Christoffel affine connection Γλµν of Riemann geometry
with a tensorial affine W λ

µν:

W λ
µν = gλµAν + gλνAµ − gµνAλ , (16)

where Aµ is a four-vector that Weyl [1] had to define as the
electromagnetic four-vector appearing in Maxwell’s theory of
electrodynamics [14].

In Weyl’s geometry [1] where the length of vector chan-
ges from point to the next (see e.g. [33]), the new affine con-
nection Γλµν (or Christoffel-Weyl connection) is given by:

Γλµν = Γλµν + W λ
µν . (17)

The transformational properties of the new Christoffel-Weyl
affine connection Γλµν are identical to those of the original
Christoffel three-symbol Γλµν. So, from a “transformational
properties” (topological) standpoint, Weyl’s [1] addition is
justified.

The versatile and agile Weyl [1] was quick to note that
this new Christoffel-Weyl affine (17) is invariant under the
following rescaling of the metric gµν and the four-vector Aµ:

gµν 7−→ e2χgµν

Aµ 7−→ Aµ + κ−1
0 ∂µχ

, (18)

where χ = χ(r, t) is a well behaved, arbitrary, smooth, differ-
entiable, integrable and uniform continuous scalar function,
and κ0 is a constant with the dimensions of inverse length.
This constant κ0 has been introduced for the purposes of di-
mensional consistency, since we here assume that the four-
vector Aµ and the true scalar χ are dimensionless physical
quantities.

Now, because Maxwell’s electromagnetic theory [14] is
invariant under the same gauge transformation which thefour-
vector Aµ has been subjected to in (18), the great mind of
Weyl seized the golden moment and identified thisfour-vector
Aµ with the electromagnetic four-vector potential. Weyl went
on to assume that the resulting theory was a unified field the-
ory of gravitation and Maxwellian electrodynamics. Weyl’s
hopes where dashed – first, starting with Einstein’s lethal cri-
tique of the theory. Later, others joined Einstein in their mer-
ciless critique and dismissal of Weyl’s theory [1], where they
argued that despite its irresistiblegrandeurand exquisite beau-
ty, Weyl’s theory [1] cannot possibly describe the measured
reality of our present world.

4.2 New Weyl geometry

Despite the many ingenious attempts (starting with e.g. Weyl
[44, 45]) to rework and revive it over the course of time since
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Fig. 1: Parallel Transport: The vector V is parallel transported in a
closed circuit. Upon arrival at its original position, the vector is not
equal to the original vector and this is a result of the curvature of the
space in question.

its inception, and its apparent refusal to go away as evidenced
by the continued interest∗ in this beautiful geometry of Weyl
[1], it is a generally accepted view that as a basis for a phys-
ical theory, Weyl’s [1] arcanely beautiful geometry exists be-
yond redemption. This geometry is the geometry on which
[1] made his attempt – the first such – on a UFT of the grav-
itational and electromagnetic fields. Against this deeply en-
trenched belief in the non-redeemability of the Weyl [1] ge-
ometry into something with a bearing and correspondence
with physical and natural reality, we made in [33] the endeav-
our of calling forth this theory out of the tomb where it was
resting. In the present, we go further to give it a perdurable
fresh breath of life.

As pointed out by e.g. Schrödinger and Einstein [3, 5–7]
and is well known, is that – tensorial affine connections pre-
serve both the length and direction of a vector upon parallel
transport. The Christoffel symbols of Riemann geometry pre-
serve only the length and the angle changes from one point
the next and this is where the issue with Einstein’s GTR [55]
lies. Preservation of both the length and angle of a vector
upon parallel transport has always been known to be a funda-
mental key to the attainment of a truly generalized Theory of
Relativity [56, 57].

The proposed RWS is a spacetime which preserves both
the length and direction of a vector upon parallel transport.
As shown in Fig. 1, say the vector V is transported in a closed
circuit such that it returns to its original position and V′ is the
resulting vector after parallel transport; in normal Riemann
geometry, while |V| = |V′|, the angle δθ between these two
vectors, while it can in some cases equal zero, is not neces-
sarily zero i.e. V ·V′ , 0. However, on the RWS, we have for
all points of space and time on this spacetime the constraints
|V| = |V′| and V · V′ = 0: i.e. both the length and direction of
a vector are preserved upon parallel transport of any vector.

∗See e.g. [46–54].

The preservation of both the length and angle on the RWS
is attained by requiring that the affine connections of this
spacetime be tensors. As far as we can tell from our wide
ranging searches across the length, breath and depth of the
available literature on unified theories (cf. [56, 57]), with the
failure to obtain tangible results on this front, the idea of ten-
sorial affinities as key to the attainment of a unified field the-
ory seems to have naturally fallen on the wayside with very
few – if any – researchers taking it up. As one will be able
to judge for themselves and by themselves, the novelty of our
approach lies in our treatment of the unit vectors.

As pointed out in the instance of (18), to attain the de-
sired tensorial affinities, we noted that Weyl [1] had built his
very beautiful but failed unified field theory of gravitation and
electromagnetism on a pseudo-Riemann spacetime that is in-
variant under the re-gauging of the metric from gµν to e2χgµν:
i.e. after the transformation gµν 7−→ e2χgµν, the field equa-
tions of the resulting geometry or theory thereof remain un-
altered provided the four-vector of his theory Aµ also under-
went the following gauge transformation: Aµ 7−→ Aµ+κ

−1
0 ∂µχ.

The mathematical structure of the resulting Weyl unified field
theory, insofar as the properties of the affine connections is
concerned, this theory – despite its elegant introduction of a
four-vector field – has the same topological deformations as
the original Riemann spacetime.

4.2.1 Riemann-Weyl metric

As already pointed out in §4.1, Weyl added a tensor W λ
µν to

the Christoffel three-symbol Γλµν, that is to say, if Γ̃λµν is the
new Christoffel symbol for the Weyl space, then:

Γ̃λµν = Γλµν + W λ
µν . (19)

Because W λ
µν is a tensor, the fundamental transformational

properties of the new Christoffel three-symbol Γ̃λµν are the
same as the old Christoffel three-symbol Γλµν; therefore, the
Weyl space inherits the same topological and structural de-
fects and problems of the Riemann spacetime – that is, prob-
lems to do with non-tensorial affinities.

In [33], for the metric of the RWS gµν, instead of making
it conformal only at the instance of a gauge transformation,
we chose that it (gµν) be intrinsically and inherently confor-
mal. That is to say, the fundamental metric gµν of the RWS be
such that gµν = % gµν, where gµν remains as the metric of the
usual Riemann spacetime and this metric is what is used on
the RWS to raise and lower the Greek indices (µν . . . ) just as
happens in normal Riemann spacetime. In Weyl’s theory [1],
the function % is a scalar. However in [33], this function takes
a decisive new role: . . . it (the scalar χ) must – for better or
for worse, yield in the favour of our desideratum – i.e. it must
yield for us nothing but tensorial affinities. This is our quest,
desire and uncompromising demand.
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Thus, in recasting Weyl’s theory [1] so that it overcomes
once and for all-time Einstein’s criticism, we will not take
the traditional route that was taken by Weyl [1] because in so
doing, we will fall into the same trap which the great Weyl
fell victim to. At our point of departure, we wave goodbye
to Riemann geometry and efferently prepare to embrace a to-
tally new geometry, a hybrid Riemann geometry which has
the same feature as Weyl [1], less of course the change of
length of vectors under transformations or translations. The
route that we are about to take is equivalent and the reason
for changing the sails is that the present route allows us to
demonstrate later how Weyl would have overcome Einstein’s
critique that gave the theory a still birth. Actually, this route
allows us to pin down exactly where Weyl’s theory [1] makes
an unphysical assumption.

4.2.2 Pseudo-scalar and affine vector

In mathematics – linear algebra in particular – a pseudo-sca-
lar is a function which upon a transformation of the coordi-
nate system behaves like a true scalar – albeit – upon a par-
ity transformation, it changes sign (see e.g. [58, 59]). A true
scalar does not do this, it remains invariant. As has already
been made clear in the exposition of Weyl’s theory [1] is the
fact that one of the most powerful ideas in physics is that
physical laws do not change when one changes the coordinate
system used to describe these physical laws. The fact that a
pseudo-scalar reverses its sign when the coordinate axes are
inverted clearly suggests that these objects are not the best
objects to describe a physical quantity, as this could percolate
to the physical laws themselves.

Now, because we want to introduce a new kind of pseudo-
scalar that will help us in our endeavours to obtain tensorial
affinities, in order to distinguish this new and soon to be de-
fined pseudo-scalar from the above described pseudo-scalar,
we shall call the above described pseudo-scalar a pseudo-
scalar of the first kind, and the new pseudo-scalar to be de-
fined shortly, a pseudo-scalar of the second kind. To that end,
we shall hereafter start off by defining a “new” mathematical
object, Vµ, that we shall call an affine vector. This quantity,
Vµ, is the derivative of the dot-product of an arbitrary four-
vector Bλ and the (non-arbitrary) four-position xλ i.e.:

Vµ =
∂µS

S
= ∂µ ln S (20)

where:
S = Bδxδ . (21)

From (20) and (21), it follows that:

Vµ = Bµ +
xδ∂µBδ

S
. (22)

Clearly, upon a coordinate and/or transformation of the refer-
ence system, the vector-like quantity Vµ′ = ∂µ′S ′/S ′ is related

to Vµ as follows:

Vµ′ =
∂xδ

∂xµ′
Vδ +

∂2xδ

∂xµ′∂xΩ′
. (23)

From (23), we see that the quantity Vµ transforms like the
affine tensor hence our calling it – affine vector. The scalar
S in (21) is what we shall define as a pseudo-scalar of the
second kind. Such a scalar has the property that its four-
position derivative is not a four-vector as one would expect
in the case of a true scalar. In the next section, we shall now
consider the Riemann-Weyl covariant derivative in the light
of the new mathematical object that we have just defined –
i.e. the pseudo-scalar of the second kind.

4.2.3 Riemann-Weyl covariant derivative

Taking into account the above defined pseudo-scalar of the
second kind, as we consider the Riemann-Weyl covariant der-
ivative, we will begin with the usual Riemann covariant deri-
vative gµν;σ = 0 of Riemann geometry. As already alluded,
the condition gµν;σ = 0 is the foundation stone of Riemann
geometry. We will uphold this covariant derivative condition
under the Weyl conformal transformation gµν 7−→ gµν = %gµν
of the metric i.e. gµν;σ = 0. Likewise, the condition gµν;σ =

0 is to be taken as the foundation stone of the new hybrid
Riemann-Weyl geometry. Written in full, the equation gµν;σ =

0 is given by:

gµν;σ = %

[
gµν,σ + gµν

(
∂σ%

%

)
− gµδΓδνσ − gδνΓδµσ

]
= 0 (24)

where the “bar” on Γλµν has been put so that it is made clear
that this affine is neither the Christoffel symbol nor the usual
Weyl connection, but is the new hybrid Riemann-Weyl con-
nection. In conformity with the definition of a pseudo-scalar
of the second kind given in (21), we shall at this point set or
define the %-quantity as:

% = −2Jδxδ (25)

where Jσ is the (gravitational) four-current density. With this
definition for %, it follows that (24) will reduce to:

gµν,σ − gµδΓδνσ − gδνΓδµσ = 2 (Jσ + Qσ) gµν (26)

where Qσ = xδ∂σJδ/% = xδ∂σJδ/Jδxδ. As is the case with
Weyl’s original geometry [1], the covariant derivative gµν;σ
does not vanish since gµν;σ , 0.

4.2.4 Calculation of the Riemann-Weyl affine

Now – we have to calculate the resulting affine connections
and for this, we have to write down the three expressions that
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result from an anti-clockwise cyclic permutation of the in-
dices µ, ν and σ in gµν,σ, i.e.:

gµν,σ − gµδΓδνσ − gδνΓδµσ = 2 (Jσ + Qσ) gµν (a)

gσµ,ν − gσδΓδµν − gδνΓδσµ = 2 (Jν + Qν) gσµ (b)

gνσ,µ − gνδΓδσµ − gδµΓδνσ = 2
(
Jµ + Qµ

)
gνσ (c)

(27)

As usual, subtracting from (27) (a) the sum of (27) (b) and (c),
and making use of the symmetries of gµν and Γλµν (i.e. gµν =

gνµ and Γλµν = Γλνµ), one obtains:

gµν,σ − gσµ,ν − gνσ,µ + gσδ
[
Γδµν + gδνΓδσµ

]
=

= 2
[
(Jσ + Qσ) gµν − (Jν + Qν) gσµ −

(
Jµ + Qµ

)
gνσ

]
.

(28)

Contracting the σ-index in (28) by multiplying (28) through-
out by gσλ and thereafter resetting this σ-index to δ, we ob-
tain:

− gδλ
[
gδµ,ν + gνδ,µ − gµν,δ

]
+ 2Γλµν =

− 2gδλ
[
(Jν + Qν) gδµ +

(
Jµ + Qµ

)
gνδ − (Jδ + Qδ) gµν

]
,

(29)

hence:
Γλµν = Γλµν −W λ

µν − Q λ
µν , (30)

where Γλµν is the usual Christoffel three-symbol given in (5),
and

W λ
µν = gλµJν + gλνJµ − gµνJ λ (31)

is the (redefined) Weyl tensor, and the new non-tensorial ob-
ject:

Q λ
µν = gλµQν + gλνQµ − gµνQ λ (32)

is a new affine connection that is defined thereon the hybrid
Riemann-Weyl space and its purpose is to allow the hybrid
Riemann-Weyl affine Γλµν to be a tensor. Let us call this affine
the Q -affine connection or simply the Q -affine. The geometry
that we have just described is what we shall call the New Weyl
Geometry (NWG).

4.2.5 Transformation of the Riemann-Weyl affine

Now from (6), we know that the old Christoffel three-symbol
Γλµν transforms as follows:

Γλ
′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Γδµν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′
(33)

and that W λ
µν is a tensor, hence, it transforms like a tensor.

Verily, if the Q -affine Q λ′

µ′ν′ were to transform just as the Chris-
toffel three-symbol Γλ

′

µ′ν′ , as follows:

Q λ′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Q δ
µν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′
, (34)

then it follows and goes without saying that the object Γλµν
will clearly be a tensor. Because Qµ is an affine vector, the
Q -tensor will transform as desired, that is, as given in (34),
hence the object Γλµν will be a tensor as desired. What this all
means is that Q is a pseudo-scalar and not a pure scalar. This
is exactly what we did in [33]. Therein [33], we achieved this
by forcing Qµ to yield in the favour of our desires and trans-
form as an affine vector as defined in §4.2.2. The resulting
theory that one can build from this NWG has been presented
in [33] and, in the present paper, it is this same theory that we
are now improving on.

As one can verify for themselves, this theory of [33] pro-
duces field equations that we are already familiar with – i.e.
the Maxwell equations [14]. At this stage of the development
of the theory – whether or not the resulting theory is correct
– what is important for the reader to appreciate – as has just
been here demonstrated thus far – is that a tensorial affine
theory can be attained. The problem suffered by Weyl’s the-
ory [1] does not apply to the NWG.

5 Theory

We here lay down our theory. What makes the present work
different from the preceding works in [8–10] is that the pre-
sent work incorporates the new results from various research
that we have conducted. Because we shall at five instances
(i.e. (37), (44), (79a), (79b), and (79c] need to do some gauge
fixing, we shall start off by addressing this issue of gauge
fixing, i.e. within the context of the present work.

5.1 Gauge fixing

In the physics of Gauge Theories, gauge fixing (also called
choosing a gauge) denotes a mathematical procedure for cop-
ing with redundant degrees of freedom in the field variables.
The introduction of a gauge effectively reduces the number of
degrees of freedom of the theory. In the present expedition,
we shall need the fixing of the gauge and this fixing shall be
done in such a manner that one seeks to obtain equations that
are congruent with reality. That is, equations that we are al-
ready used to know. We shall identify two types of gauges,
i.e.:

1. Natural Gauge: A natural gauge shall here be understood
as an exogenous constraint the theory must satisfy in order
to meet a global physical requirement. For example, in the
present pursuit, we seek a theory based on a spacetime which
is such that the magnitude and direction of a vector (tensor)
upon parallel transport remains unaltered by the act or pro-
cedure of parallel transport of the vector on this spacetime.
So, the gauge fixing that will lead us to the attainment of this
global symmetry, we shall call a natural gauge or – alterna-
tively – an exogauge constraint.

2. Gauge Constraint: A gauge constraint shall here be under-
stood as an endogenous constraint the theory must satisfy in
order to yield equations that are congruent with reality as we
are used to know. For example, in the present pursuit, we

G. G. Nyambuya. Fundamental Geometrodynamic Justification of Gravitomagnetism 81



Volume 16 (2020) PROGRESS IN PHYSICS Issue 2 (October)

seek a theory that will at least yield field equations that are
similar to Maxwell’s equations [14]. So, the gauge fixing
that will lead us to the attainment of such equations, we shall
call a gauge constraint or – alternatively – an endogauge con-
straint.

Each time we encounter a natural gauge(exogauge constraint)
or a gauge constraint (endogauge constraint), we shall make
a clear indication of this.

5.2 Hybrid Riemann-Weyl tensor

From Fig. 1, if say we have a (four-) vector vλ and we parallel
transport it along a closed circuit ABCD in the order (A 7−→
B) then (B 7−→ C) then (C 7−→ D) and then finally (D 7−→ A),
if the space in question has a non-zero curvature, upon arrival
at its original location, while the length of this vector may be
equal to the length of the original vector, its direction will at
the very least be different. The infinitesimal changes of this
vector’s direction and length along these paths (see e.g. [10,
for details of the derivation]), are:

dvλ = Rλ
µσνv

µdaνdbσ , (35)

where:

Rλ
µσν =

linear terms︷         ︸︸         ︷
Γλµν,σ − Γλµσ,ν + ΓλδσΓδµν − ΓλδνΓ

δ
µσ︸              ︷︷              ︸

non−linear terms

. (36)

is the Hybrid Riemann-Weyl Tensor.

5.3 Linear Riemann tensor

Given that we have attained a geometry with tensorial affini-
ties, it goes without saying that – insofar as the beleaguering
problems besieging pure Riemann geometry is concerned –
now is our time to reap the sweet fruits of our hard labour
i.e. it is time to take the fullest advantage of the tensorial na-
ture of the affinities. We now have at our disposal the math-
ematical and physical prerogative, legitimacy and liberty to
choose a spacetime where the non-linear terms do not van-
ish identically i.e. Γλµν , 0, but are bound by the gauge con-
straint∗:

ΓδµνΓ
λ
δσ = ΓλδνΓ

δ
µσ . (gauge constraint) (37)

Clearly, from this, the resulting Riemann tensor becomes lin-
ear, i.e.:

Rλ
µσν = Γλµν,σ − Γλµσ,ν . (38)

Just like that, we have thrown the non-linear terms out of our
sight once and for all-time.

Clearly and without any doubt, this fact that we have cho-
sen a spacetime that is governed by the gauge constraint (37),

∗This gauge constraint allows us to obtain linear equations. This con-
straint is made possible by the fact that the affine connections are tensors.

means that we have just rid ourselves of the troublesome non-
linear terms in the Riemann tensor (38), because with this
beautiful and elegant choice (37), the non-linear terms now
vanish identically to become but footnotes of history. The
justification for this choice of gauge will become clear later
when we derive from this tensor (38), the Maxwell equa-
tions [14] that we are used to know – albeit this time, these
equations are being derived not for the electrodynamic phe-
nomenon, but for the gravitodynamic phenomenon. In the
next subsection, we will redefine the Riemann metric gµν in
terms of the four-vector field Aµ via the decomposition of the
metric.

5.4 Decomposition of the metric tensor

A key feature of the present theory, as well as the previous
versions of it as given in [8–10], is that of the decomposition
of the metric tensor. The Riemann metric gµν is a compound
rank two tensor field symmetric in the µν-indices and because
of this symmetry, it consists of ten independent functions. In
the present, the components of the metric tensor gµν are a
product of the components of a four-vector field Aµ, thus –
this metric consists of four independent functions instead of
ten as is the case in pure Riemann geometry.

The covariant Aµ and contravariant Aµ four-vectors are
here to be defined as follows:

Aµ = (Aµ)† (39)

where the dagger-operation (†) is the usual transpose-com-
plex-conjugate operation applied to the object in question†,
while the covariant gµν, contravariant gµν and mixed covari-
ant and contravariant metric g ν

µ , g
µ
ν tensors are defined in

terms of the covariant Aµ and contravariant Aµ four-vectors
as follows:

gµν = AµAν , g ν
µ = AµAν ,

gµν = AµAν , gµν = AµAν .
(40)

The mixed covariant and contravariant metric g ν
µ and gµν ten-

sors are in Riemann defined such in terms of the covariant gµν
and contravariant gµν as follows:

g ν
µ = gµδgδν = AδAδg ν

µ = g δ
δ g ν

µ = δ ν
µ

gµν = gµδgδν = AδAδg
µ
ν = gδδg

µ
ν = δ

µ
ν

(41)

where δ ν
µ and δ

µ
ν are the usual Kronecker-Delta functions.

From (41), it follows that:

g δ
δ = AδAδ = gδδ = AδAδ = 4 . (42)

†The four-vector Aµ can either be a 4× 4 or zero rank object. We are not
sure at the moment which is which. If it turns out that Aµ is a zero rank object,
then the dagger-operation simple reduces to a complex-conjugate operation.
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On this new Riemann-Weyl spacetime, the usual raising and
loweringof the indices applicable in Riemanngeometryholds,
i.e.:

Vµ = gµδVδ = g δ
µ Vδ

Vµ = gµδVδ = gµδV
δ
. (43)

With the metric now having been redefined and its nature
regarding the lowering and raising of indices, and that the
length of the four-vector Aµ is four units throughout all space-
time, we will proceed in the next subsection to deduce the first
set of the field equations.

5.5 Field equations

Having set the stage, we shall now proceed to write down the
resulting field equations.

5.5.1 Field equations I

If both the length and angles are to remain unaltered upon
parallel transport, this can only happen if the curvature tensor
Rλ
µσν vanishes at all points of this spacetime, i.e.:

Rλ
µσν = 0 . (natural gauge) (44)

Eq. (44) is a natural equation of the geometry; it emanates
from the hypothesis of requiring that both the length and an-
gles are to remain unaltered upon parallel transport. In gen-
eral, the affine Γλµν is non-vanishing, i.e. Γλµν , 0. So, the
present Hybrid Riemann-Weyl Spacetime (HRWS) is a curvat-
ure-less space because vectors maintain or preserve both their
length and orientation under parallel transport. Embedded or
cojoined in this HRWS curvature tensor Rλ

µσν are the Riemann
curvature tensor Rλ

µσν and the geometrically derived material
tensor T λ

µσν. Because of the vanishing nature of HRWS cur-
vature tensor Rλ

µσν, together with its linear nature (see §5.3),
we will in the next subsection use these facts to unbundle
the Riemann curvature tensor and the material tensor, thereby
achieve what Einstein desired but failed to achieve – i.e. a
material field derived from pure geometry.

5.5.2 Field equations II

Now that we have a theory linear in the curvature tensor –
i.e. a theory in which the non-linear terms vanish – we can
use this to separate the Weyl terms W λ

µσν from the Riemann
terms Rλ

µσν and as well from the Q -tensor Q λ
µσν. That is, we

can now rewrite the linear Riemann-Weyl curvature tensor
Rλ
µσν as is given in (38) as follows:

Rλ
µσν = Rλ

µσν −
(
W λ

µσν + Q λ
µσν

)︸           ︷︷           ︸
T λ
µσν

(45)

where:
Rλ
µσν = Γλµν,σ − Γλµσ,ν (a)

W λ
µσν = W λ

µν,σ −W λ
µσ,ν (b)

Q λ
µσν = Q λ

µν,σ − Q λ
µσ,ν (c)

(46)

are the linear Riemann curvature tensor (46a), the linear Weyl
curvature tensor (46b), and the linear Q -curvature tensor
(46c) or simply the Q -tensor.

An excogitative inspection of the Riemann curvature ten-
sor will clearly reveal that this tensor is a function of the four-
vector field Aµ, i.e. Rλ

µσν = Rλ
µσν(Aα), while the Weyl and

the Q -tensors are functions of %, i.e. W λ
µσν = W λ

µσν(Jα) and
Q λ
µσν = Q λ

µσν(%). The Q -tensor is a direct function of % while
the Weyl tensor is not – remember (25) that Jα = − 1

2∂α%,
hence, as said W λ

µσν = W λ
µσν(%). Why are we talking of the

functional dependence of these tensors?
The reason for excogitating on the functional dependence

of these tensors is that we not only want to, but shall identify
the Riemann curvature tensor as describing Einstein’s beau-
tiful marble that, in Einstein’s vision and desideratum, is de-
scribed by the metric tensor gµν; while the Weyl curvature
tensor and the Q -curvature tensor describe Einstein’s ugly
wood – albeit – varnished (polished) wood this time around
since the field % is later to be identified with the beautiful –
albeit – arcane quantum mechanical object, namely the quan-
tum probability amplitude.

After the above deliberations, it therefore makes much
sense to house the Weyl curvature tensor and the Q -curvature
tensor under one roof since they constitute the material tensor.
To that end, let us represent the sum total material curvature
tensor using the symbol T λ

µσν where:

T λ
µσν = W λ

µσν + Q λ
µσν . (47)

With the above definition (47) of the material tensor, it fol-
lows that the Riemann-Weyl curvature tensor Rλ

µσν can now
be written as an object comprising two main tensors express-
ing the fields (Rλ

µσν) and their corresponding material (T λ
µσν)

counterpart:
Rλ
µσν = Rλ

µσν − T λ
µσν . (48)

What we have done – from (45) to (48) above – is to indulge
and cajole the reader to the idea of envisioning the Riemann-
Weyl tensor in Einstein’s vision of a marble and wood com-
ponent, albeit, with the wood now recast into its quantum me-
chanical description.

Now, from (44) and (48), it follows that:

Rλ
µσν = T λ

µσν . (49)

At this point – if it turns out that this theory proves to be a cor-
rect description of physical and natural reality as we know it –
we have no doubt in our mind that if Einstein were watching
from above or from wherever in the interstices of spacetime,
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he must be smiling endlessly because his lifelong endeavour
was to derive∗ the material tensor from pure geometry and not
to insert it by sleight of mind as he did with his gravitational
field (7). In-line with Einstein’s deepest quest and longing
insofar in attaining a final UFT of all the forces of Nature,
we have in the present derived the material tensor from pure
geometry.

As we saw previously in §2.5, Einstein’s ultimate goal
was to turn wood into marble so to speak, which meant deriv-
ing the material field from pure geometry. Einstein wanted to
find the final theory; this he pursued to the very end of his life
to a point that while on his deathbed on April 18, 1955, in-
stead of worrying about the imminent end of his fruitful life,
he asked for a pen and his notes so that he could continue to
work on the unified field theory that he was working on at the
time. It is sad to say that Einstein never laid a fertile egg on
this front – i.e. the front of unification.

Be that as it may, it is without an iota of doubt that we say
that if what is before us proves itself to have a correspondence
with physical and natural reality, then we can safely say we
have achieved one of Einstein’s goals to attaining the “elicit
dream of a Final Theory” by deriving the material tensor from
pure geometry – wood, one way or the other, has finally been
turned into marble! This we are certain has been achieved
in the present UFT. The only question is, Does the theory
correspond with physical and natural reality? This we leave
in the able hands of our reader so that they may be their own
judge on that very important matter.

5.5.3 Field equations III

First Voss-Bianchi Identities: Further, we shall derive other
field equations. We know that the Riemann curvature tensor
satisfies the first Voss-Bianchi† identity, namely:

Rλ
µσν + Rλ

νµσ + Rλ
σνµ ≡ 0 . (50)

From this first Bianchi identity and as well from (49), it fol-
lows that:

T λ
µσν + T λ

νµσ + T λ
σνµ ≡ 0 . (51)

In the next subsection, we present the second Voss-Bianchi
identity.

∗Here, we must hasten to say that we have not exactly derived the ma-
terial tensor field T λ

µσν, but merely justified its physical existence on the fun-
damental basis of the need for tensorial affinities. Thus, this material field
is not only justifiable on a fundamental physical level, but very much a part
and parcel of the whole edifice of the marvellous structure of the spacetime
continuum.

†In the wider literature – if not every common text where these identi-
ties are considered – they are referred to as the Bianchi Identities after the
Italian mathematician – Luigi Bianchi (1856-1928) who published them in
1902 [60]. However, the reality to the matter is that these identities were first
derived and published by the German mathematician Aurel Voss (1845-1931)
in 1880 [61]. Hence, keeping matters in their correct historic record and per-
spective, and to give due credit and acknowledgement of the work of Aurel
Voss, we herein refer to these identities ((50) and (52)) as the Voss-Bianchi
Identities.

5.5.4 Field equations IV

Second Voss-Bianchi Identities: Furthermore, we are going
to derive our last set of field equations. We know that the
Riemann curvature tensor satisfies the second Voss-Bianchi
identity, namely:

Rλ
υµσ,ν + Rλ

υνµ,σ + Rλ
υσν,µ ≡ 0 . (52)

From this second Bianchi identity and as well from (49), it
follows that:

T λ
υµσ,ν + T λ

υνµ,σ + T λ
υσν,µ ≡ 0 . (53)

In the next section, we shall explore (49), (50), (51), (52) and
(53), and from these equations, we shall see that one is able
to obtain field equations that we are already familiar with.
Before we depart this section, we must say that while we have
shown that the material tensor T λ

υµσ,ν does satisfy the Voss-
Bianchi identities, the subcomponents (W λ

υµσ,ν; Q λ
υµσ,ν) of this

tensor also satisfy the Voss-Bianchi identities, i.e.:

W λ
µσν + W λ

νµσ + W λ
σνµ ≡ 0 (a)

Q λ
µσν + Q λ

νµσ + Q λ
σνµ ≡ 0 (b)

W λ
υµσ,ν + W λ

υνµ,σ + W λ
υσν,µ ≡ 0 (c)

Q λ
υµσ,ν + Q λ

υνµ,σ + Q λ
υσν,µ ≡ 0 (d)

(54)

where in (54a,b) and (54c,d), we have the first and second
Voss-Bianchi identities of W λ

υµσ,ν and Q λ
υµσ,ν respectively.

6 Affine, Riemann and the material tensor

In the present section, we are going to calculate or express
the affine tensor Γλµν, the Riemann tensor Rµν, and the mate-
rial tensor Tµν in terms of a Maxwell field tensor Fµν. This
exercise is meant to prepare us for the work to be conducted
in §7 where we are going to write down our desired Maxwell
Gravitomagnetic Field Equations.

6.1 Affine tensor

We already know from (5) that the affine connection Γλµν is
such that 2Γλµν = gδλ

(
gδµ,ν + gνδ,µ − gµν,δ

)
, and from the pre-

sent new findings that the decomposed Riemann metric tensor
is such that gµν = AµAν. What we want – and will – do here is
to substitute the decomposed metric into the affine wherefrom
we expect to obtain the usual Maxwell-type field tensor of
electromagnetism. To that end, we substitute the metric into
the affine and then differentiate this metric as required by the
differentials in the affine – doing so, we obtain:

2Γλµν = gδλ
[ Term I︷︸︸︷

AδAµ,ν +

Term II︷︸︸︷
AµAδ,ν +

Term III︷︸︸︷
AδAν,µ +

+ AνAδ,µ︸︷︷︸
Term IV

−AµAν,δ︸︷︷︸
Term V

− AνAµ,δ︸︷︷︸
Term VI

]
.

(55)

84 G. G. Nyambuya. Fundamental Geometrodynamic Justification of Gravitomagnetism



Issue 2 (October) PROGRESS IN PHYSICS Volume 16 (2020)

Now, we shall identify the labelled terms in (55), that is, terms
that will yield for us the desired Maxwell-type field tensor of
electromagnetism.

1. Terms II and V: Combining Term II and Term V, we will
have:

AµFδν = Aµ

(
Aδ,ν − Aν,δ

)
(56)

where:
Fδν = Aδ,ν − Aν,δ (57)

is the gravitomagnetic field tensor. This tensor (57) is our de-
sired Maxwell-type field tensor of electromagnetism – albeit
– this time – as per our desire – it is appearing in the equations
of gravitation and not electromagnetism.

2. Terms IV and VI: Further, combining Term IV and Term VI,
we will have:

AνFδµ = Aν

(
Aδ,µ − Aµ,δ

)
(58)

where – as in (57):

Fδµ = Aδ,µ − Aµ,δ (59)

is the same gravitomagnetic field tensor – the only difference
is the interchange of the indices.

3. Terms I and III: Lastly, combining Term I and Term III, we
will have:

AδΩµν = Aδ

(
Aµ,ν + Aν,µ

)
(60)

where – this time:

Ωµν = Aµ,ν + Aν,µ (61)

is not a gravitomagnetic field tensor, but some non-tensorial
object that will prove to be absolutely essential and necessary
in the generation of the source-free Maxwell-type equations
for gravitomagnetism.

From the foregoing, it follows from (57), (59) and (61), that:

Γλµν =
1
2

gδλ
[
AµFδν + AνFδµ + AδΩµν

]
. (62)

Now, multiplying the terms in the square bracket by gδλ, the
meaning of which is that we have to raise the δ-index in these
square brackets and reset it so that it now equals λ, i.e.:

Γλµν =
1
2

[
AµF

λ
ν + AνF

λ
µ + AλΩµν

]
. (63)

In (63), we most importantly have expressed the Christoffel
affine in terms of the Maxwell field tensor Fµν. In the next
section, we shall proceed to express the Riemann tensor in
terms of the same Maxwell field tensor Fµν.

For the purposes of convenience in the coming computa-
tions to be made in the subsequent sections, we shall write
down the Christoffel affine (i.e. (63)), as follows:

Γλµν = Γ̆λµν + Ωλ
µν (64)

where:
Γ̆λµν =

1
2

(
AµF

λ
ν + AνF

λ
µ

)
(65)

and:
Ωλ
µν =

1
2

AλΩµν . (66)

The object Γ̆λµν is a tensor while Ωλ
µν is not, for, upon a trans-

formation of the system of coordinates, this affine Ωλ
µν trans-

forms in the exact same manner as the Christoffel symbols
(see (6)), that is, it transforms as follows:

Ωλ′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Ωδ
µν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′
. (67)

In the next subsection, as we continue to work toward the
writing down of the resultant field equations, we shall express
the Riemann tensor in terms of the gravitomagnetic Maxwell-
type tensor Fµν.

6.2 Riemann tensor

We are not only going to express the Riemann tensor in terms
of the gravitomagnetic Maxwell-type field tensor Fµν but de-
compose this tensor into three tensors. To that end, we will
start-off by substituting the newly re-expressed Christoffel
affine in (64) into the linear Riemann tensor (46a); so doing,
we obtain:

Rλ
µσν = Γ̆λµν,σ − Γ̆λµσ,ν + Ωλ

µν,σ −Ωλ
µσ,ν

= R̆λ
µσν + Ωλ

µσν

(68)

where:
R̆λ
µσν = Γ̆λµν,σ − Γ̆λµσ,ν

Ωλ
µσν = Ωλ

µν,σ −Ωλ
µσ,ν

(69)

are tensors. The reader will need to verify for themselves that
– indeed – these objects are tensors.

Further, we will express R̆λ
µσν in terms of the field tensor

Fµν by substituting Γ̆λµν as it is given in (65); so doing, one
obtains:

R̆λ
µσν =

1
2

(
AµF

λ
ν,σ + AνF

λ
µ,σ

)
−

−
1
2

(
AµF

λ
σ,ν + AσF

λ
µ,ν

)
+

+
1
2

(
Aµ,σF

λ
ν + Aν,σF

λ
µ

)
−

−
1
2

(
Aµ,νF

λ
σ + Aσ,νF

λ
µ

)
= Ŕλ

µσν + R̀λ
µσν

(70)

where:
Ŕλ
µσν =

1
2

(
AµF

λ
ν,σ + AνF

λ
µ,σ

)
−

1
2

(
AµF

λ
σ,ν + AσF

λ
µ,ν

) (71)

and:
R̀λ
µσν =

1
2

(
Aµ,σF

λ
ν + Aν,σF

λ
µ

)
−

−
1
2

(
Aµ,νF

λ
σ + Aσ,νF

λ
µ

) (72)
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are tensors. Once again, the reader will need to verify for
themselves that these objects are indeed tensors. Therefore,
from (68) and (70), it follows that:

Rλ
µσν = Ŕλ

µσν + R̀λ
µσν + Ωλ

µσν . (73)

In (73), we have – as desired – not only re-expressed the Rie-
mann tensor, but decomposed it into three part tensors. Now
– in the next subsection, we will conduct the same exercise
with the material tensor. All this re-expression and decom-
position is all gearing up for the derivation of the result field
equation of the theory.

6.3 Material tensor

Just as we have decomposed the Riemann curvature tensor
into three parts in (73), we are now going to decompose the
material curvature tensor T λ

µσν into three parts by decompos-
ing into two parts, the linear Weyl curvature tensor W λ

µσν. To
that end, decomposing the Weyl part of the material tensor
field by differentiating the products gλµJν, we obtain that:

T λ
µσν =

(
gλµJν,σ + g λ

ν Jµ,σ − gµνJ λ,σ
)
−

−
(
gλµJσ,ν + g λ

σ Jµ,ν − gµσJ λ,ν
)
+

+
(
gλµ,σJν + g λ

ν,σJµ − gµν,σJ λ
)
−

−
(
gλµ,νJσ + g λ

σ,νJµ − gµσ,νJ λ
)
+

+ Q λ
µσν

= T́ λ
µσν + T̀ λ

µσν + Q λ
µσν

(74)

where the newly introduced tensors T́ λ
µσν and T̀ λ

µσν are explic-
itly defined as follows:

T́ λ
µσν =

(
gλµJν,σ + g λ

ν Jµ,σ − gµνJ λ,σ
)
−

−
(
gλµJσ,ν + g λ

σ Jµ,ν − gµσJ λ,ν
)

=
[
g λ
ν Jµ,σ − gµνJ λ,σ

]
−

[
g λ
σ Jµ,ν − gµσJ λ,ν

] (75)

and:
T̀ λ
µσν =

(
gλµ,σJν + g λ

ν,σJµ − gµν,σJ λ
)
−

−
(
gλµ,νJσ + g λ

σ,νJµ − gµσ,νJ λ
)
.

(76)

Written in a much clearer manner:

T λ
µσν = T́ λ

µσν + T̀ λ
µσν + Q λ

µσν . (77)

At this juncture, having now written down the Riemann and
the material curvature tensors in the manner that we have
written them in (73) and (77), we are now ready to explore
the Resultant Field Equations.

7 Resultant field equations

Having calculated in (73) and (77), the Riemann and the ma-
terial curvature tensors into a form that allows us to exe-
cute the main business of the day of deriving (deducing) the
source-coupled and source-free field equations respectively,
we are going to start by writing main field (49) with the de-
coupled Riemann and the material curvature tensors, i.e.:

marble︷                      ︸︸                      ︷
Ŕλ
µσν︸︷︷︸
L I

+ R̀λ
µσν︸︷︷︸

L II

+ Ωλ
µσν︸︷︷︸

L III︸                      ︷︷                      ︸
Rλµσν(Aα)

=

varnished wood︷                      ︸︸                      ︷
T́ λ
µσν︸︷︷︸
R I

+ T̀ λ
µσν︸︷︷︸

R II

+ Q λ
µσν︸︷︷︸

R III︸                      ︷︷                      ︸
T λ
µσν(%)

. (78)

Eq. (78) is the single most important equation of our theory
and it is out of this equation that we are to derive the rest of
the field equations of the theory. The setting up of the said
field equations of the theory we shall do by way of introduc-
tion of the appropriate gauge constraints. If it were us creat-
ing the Universe out of (78), how were we going to proceed to
accomplish this monumental task? Our thinking is that a term
on the left-hand side in (78) has a corresponding term on the
right. Therefore, if our said thinking is reasonable or correct,
then our task to finding the sought-for field equations is sim-
ply to correctly match the left- and right-hand side terms in
(78). If the choice we make turns out to describe our Universe
as we know it, then this choice will somehow be the choice
that has been made in creating the Universe! This should give
us a foothold in seeking answers to some of Einstein’s deep
philosophical questions about the creation of the Universe.

With regard to the creation of the Universe, Einstein is fa-
mously quoted as having said I want to know the mind of God
... whether or not He had a choice in making the Universe
and on a different occasion, as having said When I am judg-
ing a theory, I ask myself whether, if I were God, I would have
arranged the World in such a way. [62]. These are very deep
questions that Einstein was asking about physical and natu-
ral reality. Using Einstein’s words as a source of inspiration,
strength and guidance, we find ourself asking How are we to
construct the resulting field equations from (78)?

It is with great equanimity that we say that we are of
the veritable standpoint that the first term (labelled L I) on
the left-hand side of (78) corresponds to the first term on the
right-hand side (labelled R I); that, the second term on the left
(labelled L II) corresponds to the second term on the right-
hand side (labelled R II); and, likewise, that, the L III term
corresponds to the R III term, i.e.:

Ŕλ
µσν = T́ λ

µσν (a)

R̀λ
µσν = T̀ λ

µσν (b)

Ωλ
µσν = Q λ

µσν (c)

(gauge constraints)

(79)
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Eqs. (79a), (79b) and (79c) are constraints on (78), albeit en-
dogauge constraints of the theory. Shortly in §7.1 and §7.2,
we shall show that (79a) and (79c) are the gravitational sour-
ce-coupled and source-free Maxwell’s field equations [14].
Exploration of (79b) is left for a later paper.

7.1 Source-coupled field equations

As claimed above, we shall now proceed to show that (79a)
is indeed the gravitomagnetic Maxwell-type source-coupled
field equation. To see this, we shall multiply (79a) on both
sides by Aα and thereafter contracting the (α, µ) and (λ, σ)-
indices by setting α = µ = β and λ = σ = δ; so doing, we
obtain:

AβŔδ
βδν = AβT́ δ

βδν . (80)

On the other hand, for AβŔδ
βδν, we have that:

AβŔδ
βδν = Fδ ν,δ , (81)

and this already looks very familiar – is this not the well
known left-hand side of Maxwell’s source-coupledfield equa-
tion [14] – albeit – in the realm of the gravitational phenome-
non? It certainly is.

For AβT́ δ
βδν, we have that:

AβT́ δ
βδν = −2AδJδ,ν − J δ,δAν

= −2Aδ∂δ∂ν% + (�%/2) Aν

= −µ̃Jν + κ2Aν

(82)

where from our foreknowledge and, by way of inference and
inspiration from experience, we have set in (82):

2Aδ∂δ∂ν% = µ̃Jν ,

with µ̃ being a coupling constant that restores dimensional
consistency and Jν is the conserved gravitational four-current
density (or four-momentum density). Thus from the forego-
ing, it follows that Fδ ν,δ = −µ̃Jν. We expect that µ̃ should
embody (represent) Newton’s gravitational constant. For aes-
thetic reasons, we prefer to write this equation Fδ ν,δ = −µ̃Jν
in the form:

∂µFµν = −µ̃Jν + κ2Aν . (83)

The above (83) is Maxwell’s source-coupled field equations
[14], albeit in the present case, these equations are emerg-
ing not in the realm and domain of electrodynamics, but pure
gravitation. This derivation of (83) completes the first part of
the main task of the present paper. In the next section, we
tackle the second part where we shall derive the source-free
gravitomagnetic field equations.

7.2 Source-free field equations

Having derived the source-coupled field (83), we are now go-
ing to deduce (derive) the source-free field equations from

the field (79c) by means of the first Voss-Bianchi identities
(in (50)). To that end, we shall achieve this by conducting a
cyclic permutation of the µσν-indices in (79c), i.e.:

Ωλ
[µσν] = Q λ

[µσν] . (84)

The square-brackets in (84) here and after indicate the cyclic
permutation of the indices for the particular tensor in ques-
tion.

Now for Q λ
[µσν], we already know from (54b) that Q λ

[µσν] ≡

0. For Ωλ
[µσν], a computation of this tensor will yield Ωλ

[µσν] =

AλFµσ,ν + AλFνµ,σ + AλFσν,µ. Therefore, combining this with
(54b) and (84), it follows that:

∂νFµσ + ∂σFνµ + ∂µFσν ≡ 0 . (85)

If anything, the above (85) is indeed Maxwell’s source-free
field equations [14] written in terms of the covariant deriva-
tive, albeit in the present case, this equation is emerging deep
within the full domains of gravitation, i.e. from the pure soils
of geometry. The derivation of (85) technically completes the
main task of the present paper. We surely have shown that one
can derive Maxwell’s equations [14] from the viewpoint of a
Riemann-Weyl geometry standpoint. This must give a strong
leverage and impetus to gravitomagnetism as a legitimate and
plausible fundamental phenomenon lying well within the do-
main and realm of real science that is well worthy of the at-
tention of a knowledge seeking scientific mind.

8 Discussion

For what we wanted to achieve in the present paper, we are of
the view that we have succeeded – i.e. succeeded in demon-
strating that – a legitimate fundamental geometrodynamicjus-
tification of gravitomagnetism can be found from the fertile
soils of Weyl’s [1] beautiful but now thought to be dead and
obsolete theory. We further believe that this justification adds
much greater impetus to the justification one obtains from
say Heras’s [43] insightful and powerful existence theorem,
or from Behera’s [32] interesting theorem that much like the
electromagnetic force, the gravitational force is susceptible
to a four-vector description. Furthermore, we are also con-
fident that what we have presented herein is being presented
for the first time in the scientific literature, hence, these are
new blossoms in the realm of ideas.

In the following subsections (i.e. §8.1 and §8.3), we shall
discuss (in §8.2) rather briefly, the gauge conditions arising
in the present theory and in §8.3, our thoughts regarding a
Quantum Theory of Gravity. No tangible conclusion is drawn
from this paper as this is left for our able and agile reader
to makeup their own mind regarding what has herein been
presented. We are of the view that this paper is clear and
straight forward enough, so much that it should not be diffi-
cult to come to a conclusion as to what this paper really means
regarding gravitomagnetism.
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8.1 Architecture and design of theory

We have used Weyl’s modified theory [1] to give a legal and
fundamental basis for the existence of gravitomagnetism, and
this gravitomagnetic theory can and will be extended in the
next paper to demonstrate a possible unity between gravita-
tion and electricity. Naturally and with justification, one will
(or may) ask the interesting question: What in the present
have we now done differently that no one has done in the past
to this 102 year old theory that suffered a moumental still-
birth under the able hands and agile eyes of Albert Einstein’s
razor sharp intellect whose criticism made sure that Weyl’s
theory [1] failed?

In a nutshell, what we have done in our quest to give
a fundamental geometrodynamic justification of gravitomag-
netism, is to modify Weyl’s [1] supposedly failed geometry
whose endeavour was to bring the gravitational and electro-
magnetic forces into one grand scheme, via the subtle addi-
tion of a conformal scalar leading to the addition of a tensorial
affine connection that is a function of a four-vector field and
have turned Weyl’s [1] scalar into a pseudo-scalar of the sec-
ond kind. Succinctly stated – in just nine major steps – this is
what we have done:

1. The first insight has been to make the Weyl [1] confor-
mal scalar a pseudo-scalar of the second kind and this
allows us to obtain tensorial affinities within the realm
of Weyl’s theory [1].

2. The second insight is to realize that the Riemann met-
ric tensor gµν can be decomposed into a product of a
four-vector Aµ so that, instead of describing the metric
using ten potentials, it is now described by only four
potentials: gµν = AµAν.

3. Third – in a Weyl [1] fashion – via the newly introduced
pseudo-scalar, we added a new non-tensorial affinecon-
nection Q λ

µν (i.e. Γλµν = Γλµν −W λ
µν − Q λ

µν) and demanded
of it to yield for us a resultant affine connection that
is a tensor. Once we have a tensorial affine connec-
tions, it means we now have the tool required to obtain
Einstein’s desired geometry that is such that both the
length and direction of a vector under parallel transport
are preserved.

4. Fourth, the preservation of both the direction and length
of the vector under parallel transport automatically im-
plies that the curvature tensor Rλ

µσν will vanish identi-
cally everywhere, i.e. Rλ

µσν ≡ 0. The equation Rλ
µσν ≡ 0

becomes our theory’s first and main field equation.
5. Fifth – because the affine connections are now tensors,

it is possible to construct for ourself – by way of choice
(gauge constraint) – an effective geometrywhich issuch
that the non-linear terms ΓδµνΓ

λ
δα and ΓλδνΓ

δ
µα in the cur-

vature tensor Rλ
µσν vanish identically. This gauge choi-

ce results in three separate linear curvature tensors ma-
king up the resultant curvature tensor, namely Rλ

µσν,

T λ
µσν, and Q λ

µσν.

6. Sixth – the main field equation Rλ
µσν ≡ 0 is split into

parts as Rλ
µσν = T λ

µσν where Rλ
µσν is the Riemann curva-

ture tensor and T λ
µσν the material curvature tensor.

7. Seventh – a set of gauge conditions (constraints) are
then deliberately introduced – i.e. conditions which,
when used in conjunction with the source-coupled field
equation Rλ

µσν = T λ
µσν, yield for us the desired source-

coupled Maxwell Geometrodymanic Equations [14].
8. Ante-penultimate – we split each of the curvature ten-

sors Rλ
µσν and T λ

µσν into three parts each of which are
also tensors.

9. Penultimate – we deduce the resultant field equations
by relating each of the three tensors making up the
Riemann curvature tensor Rλ

µσν to the three parts mak-
ing up the material curvature tensor T λ

µσν, wherefrom
we obtain the first and second Maxwell’s field equa-
tions [14], albeit in the realm of gravitomagnetism.

The above nine steps are an executive summary of the road
leading to the theory here laid down. There is not much to
say any further regarding the construction and architecture
of the theory, except that we have given gravitomagnetism
a fundamental geometric justification that we hope will lead
researchers to reconsider gravitomagnetism as a fundamental
phenomenon to be considered separately and independently
as a physical phenomenon.

8.2 Gauge conditions

In total, the theory has required five gauge conditions for its
architecture and design. These gauge conditions are presen-
ted in (37), (44), (79a), (79b), and (79c). Of these gauge con-
ditions, (44) is the only natural gauge condition, while the rest
are gauge constraints. The solo natural gauge is necessary in
order that on a global level, the theory meets our most sought
for requirement – of a geometry whose vectors during par-
allel transport in spacetime will have both their lengths and
angles remain invariant. The gauge constraints (37), (79a),
(79b), and (79c) have been instituted (imposed) so that we
obtain a theory whose resulting equations have the form that
we desire or that we are used to – which in this case, is the
Maxwell form [14].

8.3 Quantum theory of gravity

Lastly, as our final word, we will briefly touch on the long
sought – albeit elusive and contentious – dream of attaining a
Quantum Theory of Gravity (QTG). Given the obvious sim-
ilarities not only in the formulae of Sir Isaac Newton’s uni-
versal law of gravitation Fg = −GMgmg/r2 and Coulomb’s
electrostatic law Fe = Q q/4πεr2, but in the two physical
phenomenon themselves, we can learn one or two things from
QED if we are to one day find a quantum mechanical descrip-
tion of the gravitational field.
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For example, if we are to accept the thesis presented here-
in – this would mean that, like electricity, gravity is repre-
sented by a four-vector field. From this deduction, logically
and intuitively, it would appear that the same method(s) used
to quantize the electrodynamic phenomenon – can (and must)
be applied somehow to the much sought for quantization pro-
gram of the gravitational field. We know very well that QED
is built on the fundamental soils of three very beautiful equa-
tions, namely the Dirac equation [63, 64] and Maxwell’s two
equations of electrodynamics [14], i.e.:

ı~γµ∂
µψ = m0cψ (a)

∂µFµν = µ0Jν (b)

∂λFµν + ∂νFλµ + ∂µFνλ = 0 (c)

(86)

where (86a) is the Dirac equation [63, 64] and (86b & c)
are Maxwell’s two equations of electrodynamics [14] respec-
tively. In the Dirac equation (86a), γµ, m0, and ψ are the usual
four 4 × 4 Dirac matrices, the rest mass of the particle, and
the four-component Dirac wavefunction, respectively.

Thus, in much the same manner, the gravitational field
might be quantizable via the quantization of the gravitational
four-vector field Aµ, in much the same way the electromag-
netic four-vector Aµ has been quantized in QED under the
scheme of the three equations given in (86). In order for
this, the Dirac equation will have to be replaced by its curved
spacetime equivalent. In [65], we did propose such a curved
spacetime version of the Dirac equation, namely ı~γ(a)

µ Aµ∂
µψ

= m0cψ, and in our search for a QTG, we shall take this
equation as the appropriate curved spacetime Dirac equation.
Thus, we propose that the three equations to be used in the
quantization program are:

ı~γ(a)
µ Aµ∂

µψ = m0cψ (a)

∂µFµν = −µ̃Jν (b)

∂νFµσ + ∂σFνµ + ∂µFσν ≡ 0 . (c)

(87)

At the time when the curved spacetime Dirac equation (87a)
was proposed, we where not sure how to identify the grav-
itational four-vector field Aµ because we had not conceived
of the gravitational field as capable of being described by a
four-vector. But after the fundamental work of Behera [32]
and Heras [43], and what we have presented herein, we are
more than convinced that the gravitational field must submit
to a four-vector description as suggested herein and e.g. by
Heras [43], Behera [32], Heaviside [29,30] and Maxwell [14].

8.4 In closing

In closing, allow us to say that as already stated a number
of times, the purpose of the present paper has been to show
that gravitomagnetism can be given a geometric description
gµν = e2φgµν on spacetime in exactly the same manner as Ein-
stein gave gravity a geometric description on spacetime via

the metric tensor gµν. For fear of digression and loss of focus,
we have avoided going deeper in the many areas that this pa-
per can possibly touch. We shall be making follow-up work
which will dwell on these matters. We are very much aware
of these many areas and we have not even mentioned some of
them but silently passed as though we are not aware of them
– this has been done intentionally. Further, for the same rea-
sons, we have not done a serious comparative analysis of the
present ideas with similar attempts in the literature. We must
say that, the present paper is already an unavoidably lengthy
one, so mush so that there really is no need to burden you
our reader with more material. This can efficiently be done in
separate papers in the future.
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Can Nano-Materials Push Off the Vacuum?
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The theory of quantised inertia (QI), which predicts galaxy rotation without dark matter,
also predicts that electromagnetic energy input into an asymmetric cavity perceives a
gradient in the quantum vacuum in the cavity producing a force on that cavity. Here it is
shown that if the cavity is less than 129 nm in scale, then no input power is needed and
the predicted thrust can be comparable to gravity. Arrays of these nano-cavities could
produce a self-thrusting material.

1 Introduction

Many astrophysical observations show that stars at the outer
edges of galaxies orbit far too fast to be gravitationally bound
to the galaxy [1, 2] and an identical phenomenon is observed
for globular clusters [3] and wide binaries [4]. On a much
smaller scale, some laboratory experiments have shown that
asymmetric metal cavities of various types with strong elec-
tromagnetic fields resonating within them (emdrives) show an
unexpected thrust towards their narrower ends [5, 6].

All these phenomena can be predicted by a theory called
quantised inertia, which assumes that the inertial force arises
because the Rindler horizon that objects see when they ac-
celerate damps the excited zero point field (Unruh radiation)
behind them creating an imbalance which pushes them back
against their original acceleration [7, 8]. This model success-
fully predicts galaxy and wide binary rotations without any
adjustment [9,10]. Quantised inertia also predicts that an arti-
ficial horizon can be produced when high acceleration matter
or electromagnetic radiation is confined inside an asymmet-
ric cavity, producing a new kind of thrust [11, 12] that may
already have been seen in the emdrive. It was pointed out
by [13] that using light and supermirrors to contain it, might
enhance this force.

It is shown here that QI also predicts that if the asymmet-
ric metal cavities are as small as 129 nm then a thrust compa-
rable to gravity can be obtained even from the unexcited zero
point field. This implies that if a material was constructed
with arrays of asymmetric nano-cavities, then the force would
be enough to levitate that material.

2 Method & result

We start with Heisenberg’s uncertainty principle for a single
photon inside a double-cavity that has a wide part and a nar-
row part (see Figure 1). A photon oscillates repeatedly along
a distance d between the wide and narrow cavities as shown
by the arrow. The uncertainty principle states that the uncer-
tainty in momentum (∆p) and position (∆x) of the photon in
each cavity is

∆p∆x ≥ ~/2 . (1)

The uncertainty in position is assumed, in quantised iner-
tia, to be the size of the cavity the photon is in. [14,15] pointed

Fig. 1: The asymmetrical metal cavity. A photon moves back and
forth along the dashed arrow.

out that Heisenberg’s original form for the uncertainty prin-
ciple intended an equal sign, not an inequality so that in the
wide cavity we can write

∆pw =
~

2L
(2)

and for the narrow cavity

∆pn =
~

2l
. (3)

The force is the change of momentum with time

F =
∆p
∆t

=
c(∆pn − ∆pw)

d
=

~c

2
(

L
2 + l

2

) (
1
l
−

1
L

)
. (4)

If we assume that the width of the smaller cavity is half
that of the larger (l = L/2) then

F = ma =
2~c
3L2 . (5)

The mass of the cavity, assuming it is two hollow spheres,
is m = 5πL2ρδ/4 where ρ is the density of the metal walls and
δ is their thickness. So

L2 =
2~c
3ma

=
8~c

15πL2ρδa
. (6)
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Rearranging, we can now calculate the size of cavity at
which the energy solely from the zero point field (~) is enough
to produce acceleration a

L =
4

√
8~c

15πρδa
. (7)

Assuming that the density of the metal is 2000 kg/m3, its
thickness is 1 mm and the acceleration to be overcome is that
of gravity at the Earth’s surface, g = 9.8 m/s2, then we get

L = 129 nm . (8)

The implication is that if we build an asymmetric metal
cavity such as that shown in Figure 1, with its narrow end up-
wards and on a scale of 129 nm or less, then it should levitate
simply from the already-present zero point field without any
input power.

3 Discussion

It follows from the above that if a material can be manu-
factured that is composed of an array of asymmetric nano-
structures of size 129 nm or less then the material will levitate
without input power.

One difficulty will be that, on the nanoscales considered
here, other thermal or plasmonic effects will become impor-
tant so the effectiveness of this approach will be dependent on
these other effects cancelling out.

4 Conclusions

Quantised inertia predicts that asymmetric metal cavities
make a gradient in the quantum vacuum, causing thrust.

The smaller the cavity, the larger the predicted thrust. At
scales of 129 nm, the thrust equals gravity at the Earth’s sur-
face.

If a material can be constructed with arrays of such asym-
metric nano-cavities then it should levitate without input
power.
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In this article we propose a new approach to quantum measurement in reference to the
stroboscopic tomography. Generally, in the stroboscopic approach it is assumed that
the information about the quantum system is encoded in the mean values of certain
hermitian operators Q1, ...,Qr and each of them can be measured more than once. The
main goal of the stroboscopic tomography is to determine under which conditions one is
able to reconstruct the initial density matrix ρ(0) on the basis of the measurement results
〈Qi〉t j . In this paper we propose to treat every complex matrix as a measurable operator.
This generalized approach to quantum measurement may bring some improvement into
the models of stroboscopic tomography.

1 Introduction

In this paper by H we shall denote the Hilbert space and we
shall assume that dimH = n < ∞. By B(H) we shall de-
note the complex vector space of all bounded linear opera-
tors in H . The space B(H) is isomorphic with the space of
all complex matrices that shall be represented by Mn(C). Fi-
nally, B∗(H) shall refer to the real vector space of all hermi-
tian (self-adjoint) operators on H . The elements of B∗(H)
shall be called observables.

The term quantum state tomography refers to a wide va-
riety of methods and approaches which aim to reconstruct the
accurate representation of a quantum system by performing
a series a measurements. Among many different approaches
to quantum tomography, one can especially mention the so-
called static model of tomography, which requires n2−1 mea-
surements of different observables taken at time instant t = 0
(see more in [1–3]). A paper published in 2011 initiated an-
other approach to quantum tomography which is based on
weak measurement. The paper revealed that the wave func-
tion of a pure state can be measured in a direct way [4]. Fur-
ther papers proved that this approach can be generalized also
for mixed state identification [5].

In this paper we follow yet another approach to quantum
tomography – the so-called stroboscopic tomography which
originated in 1983 in the article [6]. Subsequently, the ap-
proach was developed in other papers, such as [7–9]. The
assumption that lies at the very foundation of this method
claims that the evolution of an open quantum system can be
expressed by a master equation of the form

ρ̇(t) = L[ρ(t)], (1)

where the operator L is called the generator of evolution and
its most general form have been introduced in [10]. In or-
der to determine the initial density matrix ρ(0) one assumes
to have a set of identically prepared quantum systems which
evolve according to the master equation with the generator L.
Each system can be measured only once, because any mea-
surement, generally, influences the state.

The other underlying assumption connected with the stro-
boscopic approach is that the knowledge about the quantum
system is provided by mean values of certain observables
{Q1, ...,Qr} (obviously Q∗i = Qi) such that r < n2 − 1. These
mean values are mathematically expressed as

〈Qi〉t = Tr(Qi ρ(t)) (2)

and are assumed to be achievable from an experiment. If we
additionally assume that the knowledge about the evolution
enables us to perform measurements at different time instants
t1, ..., tg, we get from an experiment a matrix of data [〈Qi〉t j ],
where i = 1, ..., r and j = 1, ..., g. The fundamental question
of the stroboscopic tomography that one asks is: whether the
matrix of experimental data is sufficient to reconstruct the ini-
tial density matrix ρ(0). Other problems relate to the minimal
number of observables and time instants, the properties of the
observables and the choice of time instants. In general the
conditions under which it is possible to reconstruct the initial
state have been determined and can be found in [6–8].

Compared with the static model of tomography, the stro-
boscopic approach makes it possible to decrease significantly
the number of different observables that are necessary to per-
form quantum state tomography. From the experimental point
of view, it means that in the static model one needs to prepare
n2−1 different experimental systems (e.g. for dimH = 4 one
would need to measure 15 different quantities), which seems
rather unrealistic. Therefore, the stroboscopic approach ap-
pears to have an advantage over the static model as it aims to
reduce the number of distinct observables.

2 Generalized observables and measurement results

According to one of the most fundamental concepts of quan-
tum mechanics, to every physical quantity we can assign a
hermitian operator which is called an observable. Thus, when
talking about measurements in the context of the stroboscopic
tomography, we consider mean values of certain hermitian
operators [6]. In general, any hermitian operator can be de-
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composed according to the spectral theorem:

Q =
∑

i

λiPi. (3)

where Pi is the projector onto the eigenspace of Q with the
eigenvalue λi [11]. Physically speaking, the possible results
of measurement correspond to the eigenvalues of Q, whereas
the probability of getting the result λi (upon measuring the
state ρ) can be expressed as:

pi = Tr(Pi ρ). (4)

Finally, we can compute the expectation value of Q as:

〈Q〉 =
∑

i

λi pi = Tr(Q ρ), (5)

which gives the famous formula for the mean value of any
observable.

In other words, any observable is associated with a pro-
jective measurement, which stems from the spectral theorem.
The main goal of this section is to prove that this approach
to measurement can be generalized in such a way that any
complex matrix A ∈ Mn(C) can be considered a measurable
operator.

We shall formulate and employ the following theorem.

Theorem 1. (Hermitian decomposition of a complex matrix)
For any matrix A ∈ Mn(C) there exist two matrices Q, R ∈
B∗(H) such that the matrix A can be decomposed as

A = Q + i R. (6)

Proof. Let us first denote A = [ai j] and since in general ai j ∈

C we can put
ai j = Re ai j + i Im ai j. (7)

Moreover we can denote Q = [qi j] and R = [ri j]. Then we
shall define the entries of the matrices Q and R in the way:

qi j :=
Re ai j + Re a ji

2
+ i

Im ai j − Im a ji

2
, (8)

ri j :=
Im ai j + Im a ji

2
+ i

Re a ji − Re ai j

2
. (9)

One can easily notice that qi j = q ji and ri j = r ji. Therefore
Q,R ∈ B∗(H).

Furthermore, one can check that

qi j + iri j =
Re ai j + Re a ji

2
+ i

Im ai j − Im a ji

2
+

+ i
Im ai j + Im a ji

2
+

Re ai j − Re a ji

2
= ai j,

(10)

which implies that
A = Q + i R. (11)

�

The above theorem states that every complex matrix A ∈
Mn(C) can be uniquely decomposed into two hermitian ma-
trices. In other words, every complex matrix can be regarded
as a pair of observables (hermitian matrices), i.e.

A→ (Q1,Q2), where Q1,Q2 ∈ B∗(H). (12)

Since in general any observable is considered measurable,
therefore, any complex matrix can also be considered a mea-
surable operator.

In this paper it has been proven that for any A ∈ Mn(C)
there exist two observables Q1,Q2 ∈ B∗(H) such that

A = Q1 + i Q2. (13)

If we generalize the idea of quantum measurement, we
can define the mean value of any operator A ∈ Mn measured
upon a quantum system characterized by a density matrix
ρ(t). Such a quantity, denoted by 〈A〉t, shall be defined in
the following way:

〈A〉t := Tr[Aρ(t)] = Tr
[
(Q1 + i Q2)ρ(t)

]
. (14)

Taking into account the fact that trace is linear, one obtains

〈A〉t = Tr[Q1ρ(t)] + i Tr[Q2ρ(t)], (15)

which can be equivalently presented as

〈A〉t = 〈Q1〉t + i 〈Q2〉t. (16)

One can observe that if we generalize the idea of quantum
measurement in such a way that we treat any complex matrix
A ∈ Mn(C) as a measurable operator, the mean value of A is
a complex number such that its real and imaginary parts are
mean values of the observables Q1,Q2 which appear in the
hermitian decomposition of A. Therefore, the measurement
of any complex operator A can be understood as the mea-
surement of two physical quantities that are mathematically
represented by the hermitian matrices Q1,Q2.

3 Connection with the stroboscopic tomography

When considering problems in the stroboscopic tomography,
one needs to bear in mind the necessary condition that the
set of observables Q1,Q2, ...,Qr has to satisfy so that an open
quantum system with dynamics given by (1) will be recon-
structible.

Theorem 2. An open quantum system with evolution given by
Eq. 1 is (Q1, ...Qr)-reconstructible if and only if the operators
Qi satisfy the condition [6, 7]

r⊕
i=0

Kµ(L,Qi) = B∗(H), (17)

where
⊕

refers to the Minkowski sum, µ is the degree of the
minimal polynomial of L and Kµ(L,Qi) denotes the Krylov
subspace which standard definition reads:

Kµ(L,Qi) := Span{Qi,L
∗Qi, (L∗)2Qi, ..., (L∗)µ−1Qi}. (18)

Artur Czerwinski. New Approach to Measurement in Quantum Tomography 95



Volume 16 (2020) PROGRESS IN PHYSICS Issue 2 (October)

In reference to this condition for observability of a quan-
tum system we can propose the following theorem.

Theorem 3. Assume that the set of hermitian matrices de-
noted by {λ1, λ2, ..., λn2 } constitutes a basis in the space of all
hermitian operators B∗(H), where n = dimH . Then they
also constitute a basis in the space of all linear operators
Mn(C).

Proof. Taking into account the assumption, one can write:

∀Q∈B∗(H) ∃α1,...,αn2∈R Q =

n2∑
k=1

αkλk. (19)

Then from the theorem on hermitian decomposition of a com-
plex matrix it follows that ∀A∈Mn(C) ∃Q,R∈B∗(H) such that the
matrix A can be decomposed as

A = Q + i R. (20)

Assuming that Q has such decomposition as in (19) and tak-
ing R in the analogous form:

R =

n2∑
k=1

βkλk, βk ∈ R, (21)

matrix A can be represented as

A =

n2∑
k=1

αkλk + i

 n2∑
k=1

βkλk

 , (22)

which can be transformed into the form

A =

n2∑
k=1

(αk + iβl) λk. (23)

Finally, the matrix A can be decomposed as

A =

n2∑
k=1

zkλk, (24)

where zk ∈ C and zk = αk + iβk.
From (24) one can easily draw the conclusion that the set of
matrices {λ1, λ2, ..., λn2 } is a basis inMN(C). �

The link between the above theorem and the stroboscopic
tomography is that in (17), which expresses the necessary
condition for observability, on the right hand side you can
put either B∗(H) or B(H). On the basis of theorem 3 one can
conclude that if certain operators span one of these spaces,
they also have to span the other.

4 Summary

In this paper it has been proved that any complex matrix A ∈
Mn(C) can be uniquely determined by two hermitian matrices

(i.e. observables). In general, mean values of hermitian ma-
trices can be obtained from an experiment (based on projec-
tive measurement). Thus, from this observation one can con-
clude that any complex matrix can be regarded as a measur-
able operator. The measurement of a complex matrix should
be understood as the measurement of the mean values of two
observables which determine the complex operator. The mea-
surement result of a complex matrix is then a complex num-
ber which real and imaginary parts are obtained from an ex-
periment. Further research is planned to investigate whether
the generalized approach to measurable operators can im-
prove the models of the stroboscopic tomography.
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In this paper, we present physical calculations to support a mechanism of slip displace-
ments of the lithosphere in the plate tectonics model of the earth sciences. In particular,
for a lithospheric slip displacement to occur, a force must be applied to the lithospheric
plate to overcome the force of static friction that is holding it in place on top of the as-
thenosphere. The magnitude of the required applied force can be generated by asteroid
impact and is found to depend on the mass of the plate, the mass, velocity and angle of
incidence of the asteroid, and the duration of the momentum transfer. The distance that
is covered by the plate as a result of the lithospheric slip displacement is calculated and
provides an explanation for observed sudden changes in direction and/or speed of plate
motions. The model calculations presented in this paper provide a framework to analyze
lithospheric slip displacements in plate tectonics resulting from asteroid impacts.

1 Introduction

In this paper, we present physical calculations to support a
mechanism of slip displacements of the lithosphere in the
plate tectonics model of the earth sciences [1–3]. The litho-
sphere consists of the Earth’s crust of thickness ∼10 km and
the upper part of the mantle composed of rigid rocks of av-
erage density ρ ∼ 3.3 gm/cm3, with overall average thick-
ness ∼100 km [3] [4, p. 76], divided into the tectonic plates
covering the surface of the Earth. It rests on the upper part
of the asthenosphere of average density ρ ∼ 3.1 gm/cm3 [4,
p. 70], which is plastic and subject to viscous flows due to
the nature of the rocks and the heat and densities involved.
The asthenosphere becomes more rigid and stronger with in-
creasing depth in the mantle, with average density ρ ∼ 3.4 −
4.4 gm/cm3. The earth’s crust is differentiated from the litho-
spheric part of the mantle by the Mohorovic̆ić, usually re-
ferred to as the Moho, discontinuity. See Fig. 1.

Given the structure of the lithosphere and the plastic and
viscous nature of the upper part of the asthenosphere (low-
viscosity zone LVZ [5, pp. 11,181]), it is quite conceivable
that the lithosphere could move over the asthenosphere by a
slip displacement movement, given the appropriate applied
force to initiate the process. We calculate the applied force
that would be required to initiate this process, and the type
and nature of displacement movements that could be gener-
ated by such an applied force.

2 Lithospheric slip displacements

As currently understood, plate tectonics is a convective pro-
cess, thermally driven by colder lithospheric slabs sinking
into the interior of the hotter mantle at subduction zones [4,
p. 11]. Continental drift and plate tectonics are considered
to be sufficient proof of convection in the upper mantle [6,
pp. 207–211].

However, as pointed out by Price [4, p. 63], “the models
... are completely unusable to explain the abrupt changes of
rate and direction of plate motion which are, from time to

Fig. 1: Cross-section of the layers of the Earth’s upper mantle and
crust (not to scale). Force model for the lithospheric slip displace-
ment.

time, exhibited in the geological record”. As stated in [7]
quoted in Price [4, p. 191], “Unfortunately, we cannot repro-
duce the toroidal/poloidal partitioning ratios observed from
the Cenozoic, nor do our models explain apparently sudden
plate motion changes that define stage boundaries.” [empha-
sis in Price]. A process of lithospheric slip displacement is
needed to explain such sudden plate motions.

2.1 The force model

In this and subsequent sections, we seek to understand the
lithospheric slip displacement process by performing order-
of-magnitude simplified calculations. This first portion is a
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simple force model (see Fig. 1).
We consider a tectonic plate of mass M resting on the as-

thenosphere with a static coefficient of friction µs. The force
of static friction between the plate and the asthenosphere is
then given by Fs = −µsN, where the normal force N is given
by N = Mg where g is the acceleration due to gravity. Com-
bining these quantities, the force of static friction Fs is then
given by

Fs = −µs Mg . (1)

For the lithospheric slip displacement to occur, a force Fa

must be applied to the plate to overcome the force of static
friction that is holding it in place. This applied force must be
greater than the force of static friction Fa > Fs, and substitut-
ing from (1), we obtain the slip condition

Fa > µs Mg . (2)

We consider a sample calculation for the North Ameri-
can plate as an order-of-magnitude estimate of the forces in-
volved. The area of the North American plate is given by
58.8×106 km2 [4, p. 7]. For an average thickness ∼100 km and
an average density ρ ∼ 3.3 gm/cm3 (see section 1), the mass
of the North American plate is given by M = 1.8 × 1022 kg.
Using these values and an estimated static coefficient of fric-
tion of 0.28 (greasy nickel) [8], the slip condition (2) then
becomes

Fa > 5 × 1022 N , (3)

where N is the Newton unit of force. This estimated applied
force slip condition could be higher in the case of a higher
static coefficient of friction, but it would likely not exceed a
factor of two higher (i.e. Fa > 1023 N). For example, the
static coefficient of friction between concrete and silty clay is
estimated at 0.30-0.35 in [9]. This applied force required for
a lithospheric slip displacement to occur is very significant.

The applied force provides the impulse to set the plate in
motion. Once the plate is set in motion, the only force that is
applicable is the force of kinetic friction between the plate and
the asthenosphere which is slowing down the plate’s move-
ment. This force is given by Fk = −µkN, where the normal
force N is again given by N = Mg. The kinetic coefficient of
friction µk is smaller than the static coefficient of friction µs.
Combining these quantities, the force of kinetic friction Fk is
then given by

Fk = −µk Mg , (4)

which decelerates the plate at the rate a = −µk g. For the
example previously considered, using an estimated kinetic
coefficient of friction of 0.12 (greasy nickel) [8], the decel-
eration is given by a = −1.2 m s−2. The deceleration could
be greater in the case of a higher kinetic coefficient of fric-
tion, but it would likely not exceed a factor of two higher
(i.e. a = −2.4 m s−2). For example, the sliding (kinetic) coef-
ficient of friction between cement and wet clay is estimated
at 0.2 in [8].

2.2 The asteroid impact model

As we have seen in (3), the applied force required for a litho-
spheric slip displacement to occur is very significant. This
magnitude of force would only be available in a collision pro-
cess, such as the impact of an asteroid or comet with the plate.
We use the term asteroid impact in a generic fashion to rep-
resent both asteroid and comet impacts. Neville Price has
considered the effect of major impacts on plate motion in his
book [4, see chapters 6–8], but does not consider the litho-
spheric slip displacement introduced in this paper.

We consider an asteroid impact process which is known
to be a low, but greater-than-zero probability event [10, 11].
We assume that the asteroid impacts the plate at an angle of
incidence θ with respect to the surface of the plate. For a per-
pendicular angle of incidence θ = 90o, the impact will cause
damage to the crust/lithosphere, with no slip displacement.

In addition, we consider an asteroid of mass m and speed
v with respect to the plate which is assumed to initially be at
rest. Then the asteroid’s momentum in the plate’s local plane
is given by

p = mv cos θ . (5)

When the asteroid collides with the plate, the collision’s ap-
plied force impulse is given by

Fa =
∆p
∆t

(6)

where ∆p = mv cos θ is the change in momentum of the plate
assuming it is initially at rest and ∆t = ∆tp is the time interval
for the momentum transfer, which is much shorter than ∆tc,
the duration of the collision. Thus

Fa =
mv cos θ

∆tp
. (7)

Combining (2) and this equation, the slip condition for a plate
slip displacement to occur in the direction of the collision as
a result of the applied force overcoming the force of static
friction becomes

mv cos θ
∆tp

> µs Mg . (8)

The variables on the L.H.S. are dependent on the characteris-
tics of the asteroid and the collision, while those on the R.H.S.
are dependent on the plate impacted.

We return to our sample calculation for the North Ameri-
can plate of section 2.1 to obtain an order-of-magnitude esti-
mate of the effect under consideration. We consider a collid-
ing asteroid of diameter d ∼ 20 km, mass m ∼ 2 × 1016 kg,
v ∼ 30 km/s, and use an angle of incidence θ = 45o [12, 13].
Then substituting into (8) and using (3), we obtain slip con-
dition

4 × 1020

∆tp
> 5 × 1022 N , (9)
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which is dependent on the momentum transfer time. We con-
sider three momentum transfer times: 1 s, 1 ms and 1 µs:

for ∆tp = 1 s, 4 × 1020 N ≯ 5 × 1022 N ,

for ∆tp = 1 ms, 4 × 1023 N > 5 × 1022 N ,

for ∆tp = 1 µs, 4 × 1026 N > 5 × 1022 N .

(10)

Price [4, p. 171] notes that two stress waves are generated at
the point of impact, one in the asteroid rocks and one in the
plate rocks. These he estimates to each propagate at about
8 km/s, which points to a momentum transfer time in the ms
range.

The slip condition is satisfied for the two shorter collision
times (1 ms and 1 µs), but not for the longer one (1 s). Thus
we find that lithospheric slip displacements are possible in
plate tectonics under certain asteroid impact conditions. The-
se are found to depend on the mass of the plate, the mass, ve-
locity and angle of incidence of the asteroid, and the duration
of the momentum transfer. The probability of a lithospheric
slip displacement would be much higher for larger asteroids.
We now investigate some of the details of the resulting mo-
tion of lithospheric slip displacements under asteroid impact
conditions.

3 The conservation of energy model

In the previous section, we have considered the force model
underlying lithospheric slip displacements in plate tectonics.
In this section, we examine the motions resulting from the
law of conservation of energy.

Before the collision, the energy of the plate-asteroid sys-
tem, assuming the plate is at rest, is given by the kinetic en-
ergy of the incoming asteroid

Ei =
1
2

mv2 , (11)

where the variables are as defined previously. The collision
is completely inelastic and the kinetic energy of the colliding
body is transferred to the plate. In addition, energy is lost in
the fracas, cratering and deformation of the plate as a result
of the collision. After the collision, the energy of the plate-
asteroid system is given by

E f =
1
2

(M + m) V2 + Erel , (12)

where m � M, V is the velocity of the plate after the colli-
sion, and Erel is the non-kinetic energy released in the colli-
sion. It should be noted that the slip of the plate as a result of
the collision will reduce the non-kinetic energy Erel released
in the collision as the plate will yield to the asteroid and its
motion will absorb a proportion of the collision energy.

To simplify our calculations, from the conservation of en-
ergy equation Ei = E f , we write

1
2

(M + m) V2 =
1
2
ε mv2 , (13)

Fig. 2: Figure 6.1 from Price [4, p. 196], caption: “Tracks related
to four known impact structures. Examples a, b and c are of cer-
tain impacts. (a) is that for the Popigai crater, diameter 100 km and
age 34.6 Ma. (b) is that of Chicxulub, diameter about 200 km and
age 66.25 Ma. (c) is that of Manicouagan, diameter 100 km and age
208 Ma. (d) is for a ‘near certain’ CNCF [Central Nevada Circular
Feature] impact, diameter about 220 km and date 364.8 Ma.” Note
the significant change in speed of the plate in example (c) after the
change in direction.

where ε ≤ 1 is the proportion of the initial energy transformed
into kinetic energy of the plate, with the rest released as non-
kinetic energy. Solving for V , we obtain

V =

√
ε

m
M
v (14)

where we have neglected m in the term (M + m).
We wish to calculate the distance that will be covered

by the plate as a result of the lithospheric slip displacement.
From (4) of the force model of section 2.1, we know that the
plate will be subject to a constant deceleration a = −µk g. We
can thus use the dynamic equation

V2
f = V2

i + 2as (15)

where Vi is given by (14) and V f = 0 when the plate stops
moving. Solving for the distance s, we obtain

s =
ε

2 µkg

m
M
v2 . (16)

Using the values used in the sample calculation for the
North American plate of section 2.1 and ε = 1 implying that
most of the energy is available as kinetic energy, we get an
initial plate velocity Vi = 32 m/s from (14) and a lithospheric
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slip displacement s = 420 m from (16). For ε = 0.5 imply-
ing that 50% of the collision energy is available as kinetic
energy, we get an initial plate velocity Vi = 22 m/s from (14)
and a lithospheric slip displacement s = 210 m from (16).
These values would be evident in the analysis of tectonic plate
movements in the case of observed sudden changes in direc-
tion and/or speed of plate motions. In Fig. 2, we give exam-
ples from Price [4, Figure 6.1, p. 196] of plate tracks likely
caused by lithospheric slip displacements resulting from as-
teroid impacts.

4 Discussion and conclusion

In this paper, we have considered simple models for order-
of-magnitude proof-of-concept model calculations for litho-
spheric slip displacements in plate tectonics. We have ob-
tained physically realistic results that provide an explanation
for the observations:
• For a lithospheric slip displacement to occur, a force Fa

must be applied to the lithospheric plate to overcome
the force of static friction Fs that is holding it in place
on top of the asthenosphere: Fa > Fs = µs Mg.
• The magnitude of the required applied force Fa can be

generated in asteroid impacts. Lithospheric slip dis-
placements are then possible under the following slip
condition: mv cos θ/∆tp > µs Mg. The asteroid impact
condition is found to depend on the mass of the plate,
the mass, velocity and angle of incidence of the aster-
oid, and the duration of the momentum transfer.
• The distance s that is covered by the plate as a re-

sult of the lithospheric slip displacement is given by
s = εmv2/ 2 µkgM, under the action of a constant de-
celeration a = −µk g, which explains observed sudden
changes in direction and/or speed of plate motions as
seen in Fig. 2.

The model calculations presented in this paper provide
proof-of-concept evidence for lithospheric slip displacements
in plate tectonics resulting from asteroid impacts. The model
depends on many variables including the plates, asteroid and
impact involved, and provides a framework to analyze such
problems.

Many simplifications have been made that can lead to
inaccuracies and complications, such as irregularities of the
lithosphere and asthenosphere impacting the friction force,
the proportion of collision energy being lost in the inelastic
collisional process and not transformed into kinetic energy,
etc. In addition, subsequent plate collisions resulting from
the initial lithospheric slip displacement have to be analyzed
for individual event conditions. Subsequent high-speed plate
collisions could be a contributing factor to orogeny events re-
sulting from violent plate collisions.

It should be noted that residual plate speeds, believed to
be generated by mantle convection, are in the cm/annum ran-
ge [4, p. 16]. Plates can thus be initially taken to be at rest in

Fig. 3: Figure 6.7 from Price [4, p. 202], caption: “(a) Track of
’Bombay’ over the period 72-60 Ma. It can be inferred from the dis-
tances between the points representing specific times that there was
an abrupt change in velocity of the plate at about 67 Ma. (b) A de-
tail of the track shown in (a) reveals that the velocity of plate motion
doubled in a period which is assumed to be about 5000 years.” There
is an error in the units of the reported plate motion (cm/s instead of
the correct cm/a) in the insert in (b).

the calculations in this paper. As Price [4, Figure 6.1, p. 196]
notes, plate speed is changed along with direction in impact
events. For example, he notes that the Manicouagan impact
event (item (c) in Fig. 2) sped up the plate speed by a factor
of 4 (in cm/annum), while for the others, the changes were
-4-5% for item (a), 5-6% for item (b) and 11% for item (d).

The process of lithospheric slip displacement proposed
in this paper would lead to a rapid change in plate direction
and speed which would be followed by a change in residual
plate speed in the cm/annum range, likely arising from the
follow-on plate collisions that occur following a lithospheric
slip displacement. The change in direction and the change
in speed depend on the particulars of the impact event and
cannot be easily calculated, requiring a detailed analysis of
the particular impact event of interest.

Price, using the Atlas Version 3.3 software system [4,
p. 192] to analyze plate track changes, has studied the Indian
Deccan Traps geological structure that he attributes to a ma-
jor impact event at 67.23 Ma which resulted in a change in
plate direction and speed from 8.8 cm/a to 17.6 cm/a, to try
to better understand the timeframe involved for the change
in plate speed. In Fig. 3, we show the figure from Price [4,
Figure 6.7, p. 202] in which he narrowed down the interval
of plate speed change to less than 5 000 years (as shown in
Fig. 3b). As he mentions, the rise-time would likely follow
the S-curve shown in the insert in Fig. 3b, hence over a time
interval shorter than 5 000 years. In his analysis, he attributes
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a time for acceleration and for deceleration before the plate
settles in its new residual plate speed (the short horizontal
portions before and after the vertical portion of the S-curve
shown in the insert in Fig. 3b).

The change in plate direction and speed is thus extremely
short in geologic time. The model suggested in this paper
shows that the time duration of the lithospheric slip displace-
ment would indeed be very short both in geologic and in ac-
tual event time. This model provides an explanation for the
abrupt changes of rate and direction of plate motion observed
in the geological record. It provides a physical and mathemat-
ical framework for the analysis of lithospheric slip displace-
ments in plate tectonics.

Received on July 7, 2020
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In this article, we propose a generalized model of dynamic of extended pulsating walk-
ing droplets. In the first section, we provide a brief overview of the open problems of
walking droplets. In the second section, we analyze some critical issues of the general
stroboscopic models. In the third section, we elaborate our proposal of a generalized
model of pulsating droplets. Finally, we suggest a link between walking droplets dy-
namic and the acoustic gravity wave induced on the surface of the vibrating bath.

1 Open problems of walking droplets

In the last fifteen years, the classical study of hydrodynamical
Faraday waves has attracted great renewed interest since the
discovery of walking droplets and the more general discovery
of hydrodynamical pilot wave models [1,2]. Notwithstanding
that many papers have cleared and rationalized a lot of phe-
nomena with similarities to quantum mechanics (wave/parti-
cle duality, discrete orbits, tunnelling effect, statistical prop-
erties, etc [3, 4, 6, 7]), we propose that something is missing
in the general approach to these issues. For example, as far as
the authors are aware, there are no papers which explore an
hydrodynamic analogue of the Planck law or of the de Broglie
hypothesis or an analogue of the Born statistical interpreta-
tion of the wavefunction.

In particular, we propose that the role of volume pulsa-
tions and bath deformation may be caused by the impact of
the droplet and its influence on the dynamic and conservation
of the momentum of the global systems should be explored.

From our point of view, the problem of defining the total
momentum of the particle-wave coupled system is deserving
of closer study, since we believe that not only the momentum
of droplet and the vibrating bath must be considered, but also
those of the surface acoustic wave produced by the impact
and of the vibrating borders of the vessel.

Our proposal is that the symmetry breaking force of the
transition from the bouncing to the walking regime could be
due to space asymmetries of one between the deformation of
droplet, or the bath’s deformation or the acoustic wave pattern
or to an asymmetric vibration of the border.

In fact, the actual modellization of the transition between
the bouncing regime and the walking regime is based on the
surface orography of the vibrating bath, but this model does
not yet justify the mechanism by which the surface has a bro-
ken symmetry and moreover it assumes that the droplet is
punctiform. We assume that the surface bath geometry asym-
metry is caused by an acoustic gravity wave and not just by a
surface gravity wave [20].

Furthermore, at present there is no model that has a fre-
quency dependent broken symmetry mechanism.

Finally, although there are some experimental studies of

the droplet volume pulsation, presently we lack a model that
tries to implement this experimental fact. In the following
section, we analyze some critical aspects of the stroboscopic
model which we believe are yet to be explored.

2 Critical aspects of stroboscopic models

The stroboscopic model of Bush-Molaceck and the general-
ized integral model of Oza [9, 11, 13] has been till now the
most successful and most used model to rationalize walking
droplets.

The two major hypotheses on which it is based are the
following [5]:

1) The bath height oscillations are described by standing
monochromatic waves.

2) The bath Faraday wave field is resonant with the bounc-
ing oscillations (the mode is (2,1)).

The efforts to improve and generalize this model are stim-
ulated by the desire to extend it to multiple droplets dynamics
and to describe more accurately the spatio-temporal decay of
the bouncing induced Faraday waves.

In the following, we will describe some other hypothe-
ses which we consider need to be better justified and maybe
generalized.

The general approach to describe droplet-bath dynamics
is to separate the horizontal and the vertical dynamics during
flight; on the contrary, we believe that if we want to describe
more accurately the real spatio-temporal extended impact be-
tween the drop and the bath, we have to consider the succes-
sive volume oscillations of the droplet and the acoustic waves
beneath the surface bath.

In fact, they persist after the impacts and therefore imple-
ment a dynamical memory dependent coupling which more-
over hides some energy and momentum whose conservation
may be deepened.

The first stroboscopic model [9] contained discrete sums
of Bessel functions describing the wavefield and used in the
trajectory equation averaged over the bouncing period:

mẍi + Dẋi = −mg S (hi(xi, t))∇hi(xi, t) (1)
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where D is the drag coefficient, h is the bath height and S =

sin Φ is the impact phase which is dependent on the mean
phase of the wave during the drop contact.

In particular, this model assumes that the height of the
vibrating bath is given by a linear superposition of n circular
waves each one generated by the drop impact described by
the following relation:

h(x, tN) =

N−1∑
−∞

Ae−(x−xn)/δ

|x − xn|
−1/2 e−(tN−tn)/τ cos(kF | x− xn|+ Φ) . (2)

Recently, some authors [12] have proposed generaliza-
tions based on the mean wave field, but all the generalizations
are based on the hypothesis of instantaneous and punctiform
gradient of the surface wave slope and are aimed to rational-
ize the wavelike statistics of irregular unstable orbits.

Finally, we wish to note that thus far we lack a self-consis-
tent explanation of the origin of the symmetry breaking force
and its associated horizontal momentum transfer.

In the following section, we want to discuss a proposal
which attempts to overcome these difficulties and to connect
this problem to the search of an energy minimization prin-
ciple which could explain the main features of the walking
droplets stable orbits.

3 Generalized stroboscopic model

We propose to generalize the stroboscopic model by introduc-
ing a horizontal force which depends on the frequency and the
volume pulsation of the droplet. In particular we implement
a memory dependent force taking into account the previous
volume oscillation.

Given an horizontal plane of the non-vibrating bath repre-
sented by x and y, our generalized symmetry breaking force
starting from [10] is the following:

~Fxy =

∫ t

t−t0
∇p V̇ dτ = m

∆~vxy

τ0
(3)

where:

• t0 is the impact time of the droplet with the bath and it
is the inverse of the frequency of the volume pulsation;

• V is the volume of the droplet and V̇ is the derivative
with respect to time;

• ∇p is the gradient of the bath pressure wave.

This force disappears when t0 = 0, while it converges to that
one of the stroboscopic model when the frequency of the pul-
sation is 0.

Our proposal assumes that this force is present only dur-
ing the impact and that the pressure on the droplet is due to
the potential gravitational energy of the deformed bath.

In fact, differently from the Bush-Molacek model, the real
geometrical profile of the vibrating path during the impact is
no more sinusoidal. The bath absorbs elastic energy from

the bouncing droplet during the impact and consequently it is
deformed.

The height difference between the sinusoidal profile and
the modified profile gives the potential energy to the deform-
ed droplet.

Our hypothesis is that the pressure p and the height dif-
ference are given by the following formula derived from the
theorem of conservation of the fluid energy:

p + ρbath ge f f ∆h = cos t (4)

where ρ is the bath density, ge f f is the same used in the stro-
boscopic model [13] (also denoted as g∗) and p is the pressure
induced in the bath after the droplet’s impact.

This equation can be generalized since the external vibrat-
ing force continuously adds energy to the bath:

p + ρbath ge f f ∆h = α(t) (5)

where α(t) is a periodic function dependent on the oscillatory
force and on the volume deformation; ∆h is the variation of
the harmonic oscillation of the height of the bath caused by
the impact of the droplet.

The introduction of this force (which is present only dur-
ing the impact) requires a generalization of the horizontal
dynamics of the walking droplet. Moreover we continue to
assume the usual vertical periodic dynamic of stroboscopic
model.

If during the impact, we apply to Newton equation (3) us-
ing the formalism of the finite difference instead of the deriva-
tive, the gradient operator to (5), we arrive at the following
model (since we assumed that α depended only on the time
t):

m
∆~vxy

τ0 + TF
+

∫ t+TF

t−τ0

D
~vxy V̇ dτ

∆V
=

= −

∫ t+TF

t−τ0

ρ∇(ge f f ∆h) V̇ dτ

(6)

where:

• TF is the inverse of the Faraday frequency of the vibrat-
ing bath;

• the instantaneous acceleration used by the stroboscopic
model has been substituted by the finite difference vari-
ation of the velocity during the impact time τ0;

• V(t) is the time dependent volume pulsation of the dro-
plet that can be assumed to be described by the follow-
ing formula:

V(t) − V0 = V0 cos(ωt) e−λt

an exponential decay of an harmonic oscillation with
ω the frequency of droplet self-mode oscillation and λ
the time decay coefficient;
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• ge f f is the asymmetric effective gravity dependent on
the local frequency given by the following relation:

ge f f = γ sin[2π f (x) t]

where f (x) is the space-dependent local frequency cau-
sed by the asymmetric acoustic wave interference pro-
cess not considering the dissipation;

• the first integral is a temporal average of the drag force
over the past volume pulsation of the droplet of the drag
force;

• the second integral has been obtained from (4);

• the gradient in the last integral is due to space asym-
metry of the effective gravity of the bath, which we hy-
pothesized could be associated to a space dependence
of the bath vibrating frequency.

It is interesting to show that it is possible to recover the main
aspect of the stroboscopic model in the following way:

• the first term m ∆~vxy

τ0+TF
gives the usual discretized accel-

eration when the impact time τ0 goes to zero;

• the second term
∫ t+TF

t−τ0
D ~vxyV̇dτ

∆V becomes the dissipative
term during the flight when the impact time goes to
zero;

• the second member is able to reproduce the slope gra-
dient term −F(t)∇h(xp, t) introduced by Bush et al [11]
when τ0 tends to zero and applying the gradient to (4);
in the stroboscopic model the effective gravity is assu-
med to be space-independent differently from our mo-
del.

This model, of course, contains a hidden variable that is the
space-dependent frequency vibrating of the bath. This vari-
able allows to fit the numerical model in order to be in agree-
ment with the stroboscopic model, but could be deduced by
coupling (6) with another law that relates the pressure with
the volume pulsation, assuming that α(t) of (5) is proportional
to the second time derivative of the droplet volume [16].

On the contrary to the stroboscopic models, we don’t ma-
ke any ad hoc assumption on the geometric pattern of the sur-
face wave since we think that it should be deduced by inves-
tigating experimentally the acoustic spectrum of the surface
acoustic gravity wave.

Among many ad hoc and arbitrary hypotheses, we think
that a simple option could be the sound emission law taken
from [16]:

φ = −
V̇(t)
4πr

(7)

where r is the position of a point with respect to the initial
impact of the droplet and φ is the usual velocity potential of
the bath that is related to the effective gravity described by the
following formula:

∇φ̇ = a · ge f f (8)

with a a dimensional constant.
Finally, we assume that the oscillating acoustic pressure

perturbation and the acoustic velocity field obey the following
equations of motion:

ρ dt~v = −∇p , β dt p = −∇ ·~v . (9)

where ρ is the density of the bath, p is the acoustic pressure,
dt~v is the convective temporal derivative of the moving fluid,
β is the inverse of B the bulk modulus of the acoustic pressure
wave [15]; this is a self-consistent system of partial differen-
tial equations which determines the coupled dynamic of the
system.

This choice is motivated by the link between an oscillat-
ing volume and the generation of an acoustic spin wave in a
fluid as described in [19]. We suggest that it could be inter-
esting for the experimental researcher to study the change of
the acoustic spectrum during the transition from the bouncing
regime to the walking regime and could be an operative way
to verify or, eventually, falsify the general model proposed.

4 Conclusions

We have studied the problem of the origin of the symmetry
breaking force that causes the asymmetry of the wave pat-
tern of vibrating bath. We propose a generalized stroboscopic
model of an extended and deformable walking droplet.

In particular, our proposal is based on the hypothesis that
each bounce generates an acoustic gravity on the surface and
its asymmetric reflection causes a space dependent bath vi-
brating frequency.

Recently a new class of walking droplets, called super-
walkers, have been discovered [21]. These new observations
show a strong correlation between the volume of the droplet
and the duration of the impact with the velocity of the walking
droplet. This property may be interpreted as an indirect con-
firmation of our hypothesized coupling between the volume
deformation and the droplet dynamic.

We hope that our approach will stimulate more exten-
sive experimental research on the energy of the global system
(droplet and vibrating bath).

In particular we think that all the models lack an expla-
nation of the role of the energy and its non-conservation and
minimization on the discrete orbit of the walking droplets; in
fact, the dynamics of stroboscopic models of walking droplets
is based on empirical models and not on a general variational
principle of this peculiar dissipative system.

Our insight is that the energy and the impulse of the hor-
izontal motion of the walking droplets are associated to the
volume oscillation and the deformation of the bath which in-
duces an acoustic gravity wave with momentum and energy.

Furthermore, our opinion is that the volume oscillation
would induce density waves in the bath whose turbulence
could be explained by onset of turbulence as studied by Fran-
cois et al [17], whose origin could be caused by helicoidal
under surface sound waves.
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We think that this hidden energy due to volume pulsa-
tion could be experimentally investigated studying the rela-
tion with the momentum of the under bath acoustic wave; it
is fascinating to speculate that the law behind this could be
given by an acoustic hydrodynamic de Broglie-like relation
inherent to the energy of droplet volume pulsation:

m ∆vxy = H k (10)

where the first member refers to the kinematic momentum of
the droplet, and the second member is related to the acoustic
wave momentum with H the hydrodynamic analogue of the
Planck constant.

Finally, we think that it could be useful to explore ex-
perimentally the possibility to induce the transition from the
bouncing regime to the walking regime, making oscillating
the vessel keeping constant the frequency and the modulus
of the shaker vertical acceleration; we expect that there will
be a critical phase transition in a preferred direction from the
bouncing to the walking regime.

Received on June 26, 2020
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Since the discovery of stellar aberration, human perception failed to recognize the fun-
damental property of motion parallax to recover the depth of the universe. Stellar aber-
ration, the motion of the fixed stars in the perceived direction of Earth’s motion, is the
essence of reversed perspective [Purves D., Andrews T. J. Proc. Natl. Acad. Sci. USA,
1997, v. 94, 6517–6522]. The true-to-reality perception requires a finite-radius celestial
sphere, which functions as a non-inertial frame of reference; its coordinates along the
line-of-sight describe a Coriolis circulation at a parallax distance of 58.13 light-days.

1 Introduction

Theperception of a three-dimensional universe projected onto
a two-dimensional projection surface of the celestial sphere
is or becomes equivocal, because the uncertainty [1] requires
the distinction between illusion and veridicality. The recov-
ery of the missing third dimension, the depth of field is prone
to these two possibilities and may be best described by the
Necker illusion [1], which switches between proximal and
distal faces of a two dimensional representation of a cube.
The spatial relationship of the proximal and distal faces can
be ascertained by motion parallax so that the object moves
laterally in relation to the background, thereby providing per-
spective or true-to-reality perception [1]. The illusionary per-
ception, the distal and proximal faces of the cube are per-
ceived to be front, respectively, back, associates with reversed
perspective and motion parallax fails; the background appears
to rotate in the direction of motion. When considering ce-
lestial sphere grids at a finite and at an infinite distance, the
motion of Earth around the Sun will cause parallax of the
proximal grid in annual fashion with respect to the fixed stars.
However, perceiving the sphere surface as the distal grid, the
motion of the Earth will cause negative parallax of the stars,
which is known as stellar aberration [2]. Special relativity
proposed that space contraction in the direction of motion
is a logical consequence of the universal constant, the finite
speed of light. Among other laws of motion, it proclaimed the
law of stellar aberration [3], which as it stands is incompati-
ble with the finite-radius celestial sphere. To discern illusion
from reality, we address the intricacy of celestial sphere radii
(finite or infinite) in this thesis.

2 Celestial sphere considerations

The nature of a celestial sphere centered on Earth with a fixed
orientation (Fig. 1) and the apparent alignment with the fixed
stars suggests a stationary frame of reference. However, the
discovery of stellar aberration in the direction of Earth’s mo-
tion was a surprising phenomenon because a fixed point at
the firmament should not cause any measurable displacement.
Mathematically, centering the celestial sphere to Earth or to
an arbitrary planet in a fixed configuration, as shown in Fig. 1,

two rotational frame of references need to be reconciled with.
The anti-clockwise planetary orbit drives the celestial sphere
into rigid body circulation, subjecting the coordinates, ema-
nating from the centre towards the surface of the sphere along
the spindles, to the nonzero curl of the velocity field u,

ξ = ∇ × u, (1)

also known as the vorticity ξ. Because the rotation occurs in
the x-y plane, the vertical component ζ is nontrivial,

ζ =
∂v

∂x
−
∂u
∂y
, (2)

where u and v are the velocity components of the planetary
orbital velocity Ω × R, i.e.

u = −Ωy x̂

v = Ωx ŷ.
(3)

Substitution of (3) into (2) leads to the identity

ζ = 2Ω. (4)

This means that the unit vectors x̂, ŷ, ẑ (Fig. 1, left panel)
are locked to the orbital period of the planet, i.e, the vector
x̂ is facing the rotational axis Ω. To steady the sphere in a
fixed orientation requires a clockwise turning about its cen-
tre, which orients it in the stationary position (Fig. 1, right
panel). This clockwise turning does not nullify the vorticity
field of planetary motion, defining the celestial sphere sys-
tem as a non-inertial frame of reference. Fig. 2A is a graphi-
cal representation of a celestial sphere centered on the planet
with radial distance equal to the orbital radius of the planet.
An arbitrary spindle, from the centre of the planet to the sur-
face of the sphere, marked as 1-1, 2-2, 3-3, 4-4, 5-5 (Fig. 2A),
represents the fixed line-of-sight towards the firmament and
will describe an anti-clockwise circular trajectory. Divergent
light-rays (exemplified in Figs. 2A, 2B) from a star to a re-
ceiver become convergent lines from receiver to the source as
if they are parallel lines that vanish in perspective (Fig. 2A,
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Fig. 1: Coordinate systems. An orbiting coordinate system around the stationary Sun is period locked (a).The unit vectors maintain a
fixed orientation (b) by the clockwise annual spin of the celestial sphere about its axis ẑ to oppose the counterclockwise spin-orbit locking
about Ω. The origin of the celestial sphere moves at constant angular velocity about the axis Ω with a fixed distance r from the centre of an
inertial frame of reference.

2B), which also should hold when the light rays are truly par-
allel. This contrasts the divergent spindles of the celestial
sphere that never can become parallel and cannot vanish in
perspective as true parallel lines do∗. Thus, with respect to the
spindle of the celestial sphere, the direction to a star changes,
forming different angles with the chosen spindle. The orbital
trajectory of a spindle occurs further out in space when the
radius of the celestial sphere is increased. The completion of
a full planetary orbit of the sphere results in an imaginary Lis-
sajous figure that is produced by a hula-hoop mechanism of
the celestial sphere. The width of the donut-shaped Lissajous
equals the diameter of the planetary orbit. This imaginary
orbit, composed by the time-dependent endpoint of a single
spindle, is thus formed by a bundle of parallel lines (Fig. 2C).
If the radial distance of the spindle is increased we should
expect the imaginary orbit to vanish in perspective. But the
angling of the telescope as observed [2] appears to be a re-
quirement to adjust the celestial sphere coordinate system to
steady the stars [this thesis], suggesting a finite-radius celes-
tial sphere. We then could conclude, from whatever direction
observations are made, that the velocity field of a planet cre-
ates an imaginary orbit of a coordinate spindle about a star
representing the Sun. The imaginary Sun is then, alike the
endpoint of the celestial sphere spindle, located at the celes-
tial sphere surface, exemplifying the imaginary Sun-Earth or-
bit system at a finite distance. This “kinematic optical” ef-

∗Infiniteness of the celestial sphere is usually interpreted as if the spin-
dles are parallel lines. It then may be practical given the centre of the celestial
sphere would be everywhere [5].

fect at a distance, the frame-dependent Coriolis circulation, is
what aberration of light may represent and could be an equiv-
alent to Snell’s law.

3 The finite-radius celestial sphere

Figs. 3A and 3B highlight the angling necessary to maintain
the line-of-sight towards the perceived stationary imaginary
Sun Q in the ecliptic and pole directions, respectively. The
line-of-sight coincides with a spindle of the celestial sphere
and as shown the color coded circle and matching color-coded
spindle/radius defines the line EQ with length C, and is equal
to the centre-to-centre distance of the imaginary orbit and its
planetary orbit. Since the line-of-sight can be chosen at will
towards a star or an invisible point of interest, the angling
towards Q in the figures, is caused by the changing position
of the celestial sphere anchored to the orbital motion around
the Sun. The fixed distance C, i.e. EQ, suggests (Fig. 4) the
Scotch yoke reciprocating motion where the orbital position
of the planet, point E, changes the position of the centre of
the celestial sphere with respect to point Q (cf. Fig. 3). From
the viewpoint of O, Q will slide along the vertical axis that
coincides with the line OQ. According to the cosine rule, we
have

(EQ)2 = (OE)2 + (OQ)2 − 2 · OE · OQ · cos θ ,

(OE)2 = (EQ)2 + (OQ)2 − 2 · EQ · OQ · cos φ ,

where EQ is the equivalent of the crank rod length equaling
C and OE represents the orbital radius R. Substitution of the
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Fig. 2: Celestial sphere radius and the velocity field. Views of a planetary body rotating in a stationary frame of reference with the Sun
as its centre. The celestial sphere centered on the planet with the same radius as the orbit (a) has a fixed orientation. The spindle of the
celestial sphere at positions 1 trough 5 does not change in direction, while the direction to a star is dependent on the orbital motion of
the planet. The increase of the celestial sphere radius (b) and (c) reduces the angling to a star at a finite distance. The line-of-sight to the
surface of the celestial sphere (c) describes a circulation with the radius equal to the orbital radius. In perspective the subtended angle is
equal to the parallax angle. To keep the celestial sphere in a fixed orientation, the axial clockwise rotation opposes the counterclockwise
orbital motion of the celestial sphere. At the parallax distance the orbital velocity of the sphere surface is equal to the speed of light.

first cosine formula into the second cosine formula, replacing
(EQ)2, yields

OQ = R cos θ + C cos φ, (5)

where OQ represents the projection of the lines R and C with
respect to the stationary reference frame of the Sun. The first
term at the right hand side is the offset of point Q with respect
to the Sun, caused by orbital motion. The second term at
the right hand side describes the radial component of stellar
aberration. The law of sines,

R sin θ = C sin φ, (6)

corresponds to the tangential component of stellar aberration.
Substitution of (6) into (5) provides the combined form, in-
dependent of the subtending angle φ term, where the angle θ
equals the angular velocity θ̇ of the planet at time t, yielding

OQ = R cos θ +
√

C2 − R2 sin2 θ. (7)

Motion of point Q away or towards the Sun is the quintessen-
ce of the hula-hoop motion of the celestial sphere (Fig. 2 and
3), contributing to the decreasing and increasing parallax an-
gle φ, when observing aberration in the direction of the plane
of the ecliptic. The second term at the right hand side of (7),
normalized to C,

cos φ =

√
1 −

R2

C2 sin2 θ, (8)

is complementary to (6). In terms of v and c, multiplying the
radii R and C with the planetary angular velocity v = Ω × R
and c = Ω × C, the identities vc−1 = β = RC−1 modify the
above sine and cosine of φ (Eqs. 6, 8) to

sin φ = β sin θ (9)

and

cos φ =

√
1 − β2 sin2 θ. (10)
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Fig. 3: Geometry of negative parallax. Point O represents the Sun and E is the position of the Earth in its orbit. Earth is the centre of
the celestial sphere, the light blue circle is the Earth orbital plane and the dark blue filled circle is the traced-out orbital path of the Earth at
distance C. (a): geometry of the celestial sphere in the ecliptic plane. (b): geometry of the celestial sphere towards the poles of the sphere.

Eq. (9) is reminiscent of the formula used to describe Snell’s
law, when referring to light or other waves passing through a
boundary, which would be the celestial sphere surface that has
a tangential velocity equal to the luminal speed c (Fig. 2C).
The spindle EQ (Fig. 4) is the line-of-sight to and coincides
with a light ray from the faraway fixed star of interest. The
flight time of light from Q to E (see Sections 5 and 6) equals
one radian of the orbit and is another property of the “kine-
matic optical” effect at a distance. The value of the aberration
of light is defined when θ = ±90◦. The Pythagorean (9–10)
becomes a right triangle. This condition is also equivalent
to the line-of-sight when EQ is perpendicular to the ecliptic.
The right triangle in terms of β is a Lorentz triangle with sides
1, β and γβ, where

sin φ = β,

cos φ =

√
1 − β2 = γ−1.

(11)

The cosine term is identical to the reciprocal of the Lorentz
gamma factor, i.e. γ = sec φ, which in terms of the special
theory scales the Lorentz transformation matrix. Thus, the
outcome of this treatise on the fixed and finite celestial sphere
radius, leads to the same aberration of stellar light β but with
opposite sign. In terms of the three-dimensional universe the
stars are no longer perceived illusory and will behave veridi-
cally [1].

4 Transformation matrices

The general form of the special case (11), embodied by (9)
and (10), also provides novel insight in which motion in-
volves not only a change of β when considering the direction
cosine, the line-of-sight, but also a change of the gamma-like

factor (10). Given the radial vector r and time t, utilizing
(9–10) instead of γ and β (11) as defined and used in the
Lorentz transformation matrix [3], premultiplication of the
vector [t, r] with the generalized and modified Lorentz trans-
formation matrix containing the vorticity entries, i.e. (9) and
(10), [

t′

r′

]
=

[
sec φ −c−1 tan φ
−c tan φ sec φ

] [
t
r

]
, (12)

results in

t′ = sec φ
(
t − rc−1 sin φ

)
(13a)

r′ = sec φ (r − ct sin φ) . (13b)

The derivation of the Lorentz transformation, matrix L in-
volved the Galilean matrix, G, and an assisting∗ or temporal
matrix, T. In generalized vorticity forms (cf. (12)) they be-
come

G� =

[
1 0

−c sin φ 1

]
(14)

and

T� =

[
cos φ −c−1 tan φ

0 sec φ

]
. (15)

Premultiplication of G� with T� gives the Lorentz matrix
(cf. (12))

L� = T�G� . (16)

If θ = ±90◦ (9–10), these matrices reduce to those Einstein
derived. The subscript � refers to a circular path with the
line-of-sight along a spindle of the celestial sphere. Matrix
L� exemplifies the finite speed of light embodied by matrix

∗The Lorentz matrix was heralded by the Zeitgeist of thence. The assist-
ing system did not gain significance given its auxiliary status.
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Fig. 4: Scotch yoke reciprocating motion. Earth’s celestial sphere (light blue) with respect to the origin O, (the Sun) at (a), (b) and (c),
affects the position of point Q, which is the imaginary Sun (see Section 2) as seen from Earth, E, sliding it up and down along the vertical
line from O to Q. The line EQ is the line-of-sight (a celestial sphere spindle) with a fixed length. A complete revolution of Earth replicates
the orbit of Earth (red colored). Earth’s celestial sphere at (c) in the equatorial plane is replicated as (d) when the line-of-sight is towards
the celestial pole.

T�, exemplifies the invariance of c and G� exemplifies the
Galilean transform. The location of a point in space and time
is described by matrix G�; to detect this point by light re-
quires a method, a transformation by using matrix T�. The
identities

G� = T−1
� L� , (17a)

T� = L�G−1
� , (17b)

constitute a mechanism to transform a light-clock signal orig-
inating from a point and defined by matrix L� to what will
be an ordinary light-independent point in space and time de-
fined by matrix G�. The true form of identifying an object is
not perceived by light, which confirms Bradley’s assessment
300 years ago or in other words these matrices correct for the
delay of arrival time of light. The identities (17) suggest to

convert light-signal based data to real data allowing ordinary
addition of velocities and if necessary use the identity (16) to
determine the Doppler effect.

5 The one radian of an orbit

The parallactic displacement of the coordinate system defined
by β equaling vc−1 = RC−1 for each of the planets of the solar
system were calculated from their orbital radius R (Table 1,
row 1) and period T (Table 1, row 2), yielding β, the radius of
the celestial sphere C and the aberration angle φ = arcsin β
(Table 1, row 3). The celestial sphere radii increase with
decreasing aberration angle, while the ratio of the celestial
sphere radius C and period T of the planetary orbit

C
T

=
Ω ×C

2π
=

c
2π

(18)
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Table 1: The planets of the solar system are listed with their orbital radius R (row 1, [au]), period T (row 2, [year]) and the aberration angle
φ [arcsec]. The duration of a light signal from the celestial sphere surface to the planet µ−1 (row 4, [day]) equals the one radian of the orbit,
see (18). Based on the planet-Sun barycentre distance, bc (row 5, [km]), the solar orbit velocity vS un (row 6, [m/s]) was calculated using the
planetary period T . The ratio of solar orbit velocity and the speed of light is provided in terms of an aberration angle φbc (row 7, [arcsec]),
representing the planetary-specific celestial sphere of the Sun (see Section 7).

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

R 0.39 0.72 1 1.52 5.2 9.54 19.2 30.1
T 0.241 0.615 1 1.88 11.9 29.5 84.1 164.8
φ 33.19 24.09 20.49 16.6 8.99 6.64 4.68 3.74
µ−1 14.01 35.75 58.13 109.28 691.75 1,714.83 4,888.73 9,578.82
bc 10 265 445 74 742,465 408,110 12,585 230,609
vS un 0.007936 0.08577 0.08955 0.007786 12.467 2.759 0.2967 0.2786
φbc 0.000005 0.00006 0.00006 0.000005 0.0086 0.0019 0.0002 0.0002

is a constant, 10 066.61 au/year, i.e. one radian of the orbit,
which equals the duration of a light signal from the celestial
sphere surface to the centre of Earth – for Earth it is 58.13
days (Table 1, row 4). This value is the reciprocal of the
Gaussian gravitational constant confirming planetary-specific
finite-radius celestial spheres and aberration angles according
to Kepler’s third law of planetary motion and Newton’s law
of gravitation. In terms of β, Kepler’s law becomes

rk =
4π2K

c2 = β2R, (19)

where K is Kepler’s constant and the radius rk is half the value
of the Schwarzschild radius. Newton’s law becomes

rk =
GM
c2 = β2R (20)

with G the gravitational constant, and M the mass of the solar
system. The value of rk equals 1476.24711 m. The relation
between the Kepler radius (or half the Schwarzschild radius),
the parallactic aberration angle and the one radian of an orbit
may lead to the concept of discrete radii of the celestial sphere
with the vanishing of Earth’s imaginary orbit in perspective to
infinity, depending on the optical resolution of detection.

6 Multiple discrete stellar aberrations

The one radian of a circle is the equivalent of a phase shift of
1 rad between planetary motion and the arrival time of light
from the surface of the celestial sphere, which can be under-
stood from considering the planetary orbit and its imaginary
orbit at distance C. Both orbits are in phase, but a light sig-
nal requires time to arrive and during the delay the planet
travels a curved distance equal to its orbital radius R. This
phase difference of 1 rad, noting its association with the ra-
dius C = β−1R may suggest additional radii β−nR, because the
phase-shift will be precisely 1 rad under these conditions. For

Earth, when n equals 2, the flight time of light is a little over
1 602 light-years, i.e. equivalent to 1 602 orbital revolutions.
The wobbling (hula hoop) of the celestial sphere traces out
the planetary orbit at β−1R and β−2R, and thus, light from ∼58
days ago and from ∼1 602 years ago are simultaneously ob-
served along the same celestial sphere spindle and in-phase.
The vanishing of imaginary planetary orbits at discrete dis-
tances in perspective and by virtue of the visibility of the stars
by vanishing stellar aberrations (20.49 arcsec, 0.002 arcsec,
. . . ) in perspective is a powerful mechanism to observe depth.
Instead of having a celestial sphere with an infinite radius to
measure parallactic displacement of stars in the opposite di-
rection of motion, a finite-radius celestial sphere causes neg-
ative parallax of all the stars, not some (Fig. 2). Each depth
marker on a spindle defines the coordinate at a distance and
motion of the observer perpendicular to the line-of-sight does
not significantly alter the coordinates at the depth markers
faraway with respect to the line-of-sight, in contrast to depth
markers nearby. Multiple markers along a spindle and van-
ishing parallel lines in perspective provide depth perception
because the line-of-sight cross spindles when the coordinate
system is in motion. The multitude of discrete radii for a
given celestial sphere and a fixed line-of-sight along a spin-
dle, i.e. when the telescope is not adjusted, will scan a cir-
cular area of the firmament creating a radial field of view
of 90◦ (β0 = 1, cf. Fig. 2A), a radial field of view of 20.49
seconds of an arc (β1, cf. Fig. 2C), a radial field of view of
0.002 seconds of an arc (β2), a radial field of view of 0.2
microseconds of an arc (β3), and so on, centered on an imag-
inary Sun in an anti-clockwise fashion. Large scale rotations
suggesting a cosmic web have been reported recently. For
example, galaxy rotation appeared to be considerably coher-
ent with the average line-of-sight motion of neighbors at far
distances (1–6 Mpc). These rotations are counterclockwise
and have a mean velocity at ∼30.6 km/s [4], which resembles
Earth’s orbital velocity. The values reported are consistent
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Fig. 5: Inversion Circle. The logarithmic scale with base β−1 separates the circles (left and right panels). The inversion circle (black)
is identical to the planetary orbit (red) when n = 0 ( 24). The green circles represent a circle with radius R/β equal to C when n = 1,
the principal celestial sphere radius as described in this paper, and its inverse with the inverse radius βR when n = −1. Likewise, the blue
circle with n = 2 is the secondary radius of the celestial sphere (cf. (25)) and its inverse, blue circle with n = −2, is the Kepler radius rk

(19–20). The 3-dimensional view (right panel), when viewed from the top, shows the discrete vanishing orbit of Earth in perspective and
when viewed from the bottom indicates the stepwise increase of the radius of the celestial sphere.

with a radial field of view equivalent to β3. Stellar aberration
correction in the context of an infinite-radius celestial sphere
overcorrects the position of the stars. It causes the fixed stars
to have positive parallax and inadvertently make them nearby
stars. Instead, abandoning corrective measures and recog-
nizing the finite-radius celestial sphere, stars or nebulae ex-
hibiting positive parallax above 0.002 arcsec are within 1 602
light-years of Earth, and those with less than 0.002 arcsec but
above 0.2 µarcsec are within 16 million light-years (4.9 Mpc)
from Earth.

7 Solar barycentre precession

With respect to Earth, motion of the other planets add addi-
tional aberration of the fixed stars by the wobbling Sun be-
cause the solar system barycentre is composed by the indi-
vidual barycenters for each planet∗. Sun and planet share a
common celestial sphere because the angular velocity, cen-
tered on the barycentre of the Sun and planet orbits, is iden-

∗en.wikipedia.org/wiki/Barycentric coordinates (astronomy)

tical, but the orbital velocities of Sun and planet are different
and so are the subtending angles that define stellar aberration
when viewed from the Sun and planet, respectively. Table 1
(rows 3–6) tabulates specific planetary-based values of Sun’s
offset to and orbital velocity around the individual barycen-
tre. Major contributors to affect the common barycentre are
Jupiter, Saturn, Neptune and Uranus in that order. In return,
orbits of planetary celestial spheres change with the periods
of the outer planets adding offsets to stellar aberration. Focus-
ing on the effect of Jupiter has on each of the planetary celes-
tial spheres, the torque produced by Jupiter on the Sun adds
a wobble with a period of 11.9 Earth-years. The stellar aber-
ration from the Sun orbit around the Sun-Jupiter barycentre
equals a subtending angle of 0.00858 seconds of an arc (Ta-
ble 1, row 7) and becomes an independent component of stel-
lar aberration as observed on Earth. Saturn, Neptune, Uranus
contribute significantly and affect the solar system barycentre
radius, giving rise to a precession of the celestial sphere co-
ordinates, or in other words, the counterclockwise precession
of the solar system barycentre will be “written” at each and
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every point of the coordinate system. The barycentre-induced
wobble of the Sun might explain S-02’s motion centered on
Sagittarius A* that has currently a period of about 15 years,
has an inclination similar to the ecliptic with respect to the
galactic centre and matches the Sun’s current orbit and pe-
riod around the solar system barycentre. The year-by-year
(Earth year) subtending angle of the apparent orbit of S-02
as seen from Earth matches the 0.00858 seconds of an arc
(Table 1, row 7). Additional contributions are caused by Sat-
urn and Uranus because they are currently located relatively
close to Jupiter’s position. S-02 is known to rotate in a clock-
wise direction and is consistent with the notion that Jupiter
lags Earth’s motion and Earth is the reference against which
Jupiter will have the clockwise direction as has the Sun. We
note that there are other stars revolving Sagittarius A* with
significant longer periods and different inclinations, not asso-
ciated with the solar barycentre or the ecliptic; this does not
take away a possible explanation for S-02’s motion.

8 Geometric inversions about an inversion circle

The tracing out of multiple imaginary orbits at discrete dis-
tances (Fig. 5), according to

Cn = β−nR, (21)

suggests also considerations when n ≤ 0. If n = 0 it follows
that the celestial sphere radius C0 equals the orbital radius R
and (7) becomes (cf. (6))

OQ = R cos θ ± R cos θ, (22)

because θ = φ. This scenario is the equivalent of the fictitious
annual circulation (negative parallax) of the Sun through the
zodiac. When n < 0, and by generalizing (19), (cf. (21)) we
get

rk = β2+nCn (23)

celestial sphere radii less than the orbital radius. Since the
vorticity, i.e. the velocity field, is determined by the angu-
lar velocity of the orbit, the tangential velocity of the celes-
tial sphere coordinates will be less than the orbital velocity.
Defining uC as the tangential velocity of the coordinates and
Ω as the angular velocity of the planetary orbit and utilizing
(21) for n ∈ N, and defining u′C when n is negative, we get

uC = Ω ×Cn = Ω × β−nR = β−nv

u′C = Ω ×C′n = Ω × βnR = βnv.
(24)

These equations suggest geometric inversion of points on the
circle Cn to their inverse points on circle C′n with respect to an
inversion circle with inversion centre E and inversion radius
R. The points on circles Cn and C′n obey CnC′n = R2, the
defining feature of circle inversion. Furthermore, the radius
C′2 = β2R, identical to the Kepler radius rk (19), has its inverse

r′k = β−2R (25)

as defined by C2. The tangential velocities of points and their
inverse points (the coordinates) obey

uC u′C = v2 ⇔
u′C
v

=
v

uC
. (26)

The Sun’s position O and its inverse O′, where O′ = O, are
located on the inversion circle. The line-of-sight from the
inversion centre E (Fig. 4) to point Q on C1 harbors Q′ on C′1
(5). In other words, when n is positive, the fictitious orbit is
located at the radial distance Cn; when n is negative, C′n is the
radius of the vanishing fictitious orbit in perspective (Fig. 5).

9 Velocity field of the orbit of the Sun

Diurnal and annual motion of the heavens led to paradigm re-
versals, leading to the first and second motions of the Earth.
The third motion of Earth, now known as the axial preces-
sion, was, in ancient and medieval times, ascribed to the pre-
cession of the equinoxes, a westward motion of the equinoxes
along the ecliptic relative to the fixed stars in a cycle of 25 776
years. Precession affected all fixed stars as well as the appar-
ent position of the Sun relative to the backdrop of the stars.
The heavens slowly regress a full 360◦ through the zodiac at
the rate of 50.3 seconds of arc per year∗. Also, other ancient
astrologers discovered that the equinoxes “trepidated”, par-
ticularly along an arc of 46◦40’ [6], i.e. twice the obliquity
of the equinoxes, in one direction and a return to the starting
point, resembling how stellar aberration was discovered [2].
The precession and the trepidation appear to be two aspects of
the same to-be-proposed frame dependent circulation (Fig. 6),
which contrasts Newton’s axial precession involving gravita-
tional forces of the Sun and the Moon. Envisioning the Sun
orbiting a centre counterclockwise with a period of 25 776
years, with the axis of the Earth in a fixed position (Fig. 6)
and noting (18), the radius of the celestial sphere of the Sun
becomes 4 102 light-years. Because the equinoctial aberra-
tion of the stars is 23.4◦, β equals 0.3971, we get an orbital
velocity of 119 062 km/s. The radius of the orbit (cf. (21)) is
491.5 pc, or 1 602 light-years and Kepler’s radius (19) equals
75.0 pc, which translates to 1.57 × 1015 solar masses at the
centre of rotation, vastly exceeding (by 4 magnitudes) cur-
rent estimates of the Milky Way. The inclination of the zo-
diacal plane with respect to the invariable plane of the Milky
Way galaxy may suggest that the centre of the precession of
the equinoxes is not Sagittarius A*. While these values are
staggering, concerning or exciting, there may be truth from
ancient recordings.

10 Doppler shift measurements from a non-inertial ref-
erence frame

Spectroscopic measurement of electromagnetic radiation re-
quires knowledge of Earth’s motion, which includes not only
the first and second motions, but also the third (Section 9) and

∗en.wikipedia.org/wiki/Axial precession
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Fig. 6: Stellar aberration by the precession of the equinoxes. The orbit of Earth around the Sun is shown at four different positions of
the Sun in its orbit about the equinoctial center shown as a blue-colored donut shaped symbol. The color coded arrows centered on Earth
depicts the north celestial pole of Earth’s celestial sphere. The color coded arrows centered on the Sun defines the north celestial pole of
the celestial sphere of the Sun. It is assumed that the orbit of the Sun has an obliquity of 30◦. Sun’s orbit causes stellar aberration with
an angular distance of 23.4◦, causing equinoctial precession aberration at the vernal equinox. The line-of-sight in the direction of the first
point of Aries (0◦) is shown by a black arrow. Equinoctial aberration occurs in all directions of the line-of-sight similar to the oscillatory
motion of the annual stellar aberration caused by Earth’s motion around the Sun.

higher motions. The transformations (13), according to ma-
trix L� (16), transform the arguments of a sinusoidal wave,

ωt′ = kr′, (27)

whereω is the angular frequency and k is the angular wavenu-
mber of the waveform, to

ω sec φ
(
t − rc−1 sin φ

)
= k sec φ (r − ct sin φ) . (28)

Because ωk−1 = c, the above identity after rearranging be-
comes

ωt sec φ (1 + sin φ) = kr sec φ (1 + sin φ) . (29)

We note that the velocity u of the wave is not affected because

u =
r
t

=
ω sec φ (1 + sin φ)
k sec φ (1 + sin φ)

= c, (30)

which is the defining feature of the Lorentz matrix. The trans-
formation changes the waveform by sec φ(1+sin φ) in the fre-
quency and wavenumber domains with sin φ representing the

direction cosine, i.e. the line-of-sight. This Doppler effect,
alternatively expressed in terms of sin θ (7–9) along the line-
of-sight relative to the position of the planet in its orbit, yields
a shift z by

z + 1 = sec φ(1 + sin φ) =

√
1 + β sin θ
1 − β sin θ

. (31)

Eq. (31) is applicable to any circular motion obeying Kepler’s
law, such as the Global Position System that sends radio sig-
nals. Receivers on Earth will detect a changing Doppler shift
depending on the line-of-sight φ. Another example tied to
(31) is the meaning of a gravitational redshift, which is the
equivalent of traversing the Kepler circulation encountering
an ever decreasing vorticity with increasing radial distance
(19). The cosmological redshift, representing the expansion
of the coordinate system, allows speeds greater than the speed
of light, where v represents the speed of expansion, not of mo-
tion. However, when the ratio of frequencies is equated with
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(peculiar) motion v/c,

z + 1 =
ωreceiver

ωsource
=
v

c
+ 1, (32)

and noting the last reported value z = 11.1 from galaxy GN-
z11, the matrix identities (16,17) and their interpretation(Sec-
tion 4) do not indicate incompatibility with the Doppler ef-
fect. Hence, the expanding universe is likely to be illusionary.
In the context of Earth and its celestial sphere being subject
to a multitude of circular motions and considering (31) that
has two unknowns, θ and β, they may indicate novel periodic
changes of the Doppler shift. It is possible that a multitude
of orbits would temporally increase Earth’s nominal velocity
to go beyond the speed of light. The detection of frequency
shifts of the order of GN-z11, using L� (16), may indicate
this and if assuming the Milky Way has an orbital velocity
close to the speed of light and assuming sin θ = 1, we have
β = 0.984 for z = 11.1. So (32) becomes (cf. (31)),

ω2
r

ω2
s

=
1 + β sin θ
1 − β sin θ

⇒ β sin θ =
ω2

r − ω
2
s

ω2
r + ω2

s
. (33)

Stars and nebulae beyond the Milky Way may sometimes
shine very bright or become very dim at the firmament if
Earth obtains a nominal speed equal to the speed of light.
Beyond the speed of light the square root of (31) produces
an imaginary, inverse result. Geometric inversion (cf. (24))
means passing the luminal barrier, such that

u
c

=
c
u′
⇒ uu′ = c2, (34)

where u ≤ c and u′ ≥ c. We get

ω2
r

ω2
s

=
u′ + c sin θ
u′ − c sin θ

=
c2/u + c sin θ
c2/u − c sin θ

=
c + u sin θ
c − u sin θ

, (35)

which is identical to (31). The waveform emanating from a
body with velocity u′ is not different from a waveform em-
anating from a body with velocity u and the velocity of our
galaxy with respect to the speed of light might be either u or
u′. We might not know, but acknowledging frame-dependent
induced negative parallaxes may shed further insight in what
the universe looks like.

11 Conclusions

Illusion, paradox and true-to-reality phenomena are intertwi-
ned in our current worldview, governed by an infinite-radius
celestial sphere and merged with the theory of relativity that
suggests that space and time are not absolute. The human
perception of the third dimension of the universe, be it rela-
tivistic or classical in nature, suffers from reversed perspec-
tive. The transformations to detect the location of a point by
light is governed by the set of the Lorentz L, the Galilean G
and the light retardation T matrices. Vice versa, light signals

from objects are transformed by premultiplying the Lorentz
matrix with the inverse of the light retardation matrix to ob-
tain the Galilean transform. The finite-radius celestial sphere,
providing true-to-reality perception, changes the sign of the
direction of stellar aberration and therefore parallax of the
coordinate system. This recognition may explain co-rotating
satellite systems such as a large-scale structure of the universe
or the cosmic web. Another large structure of the universe is
envisioned based on a fixed Earth axis and a solar orbit with
a 1 602 light-year radius about an intragalactic centre caus-
ing the precession of the equinoxes with an equinoctial stel-
lar aberration of 23.4◦. The infinite-radius celestial sphere is
a relic of ancient times when Earth was considered the centre
of the universe. When the second motion of Earth became
main stream physics, it should have been accompanied with
a finite-radius celestial sphere. It did not because stellar aber-
ration was not discovered until 300 years ago.
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In the concept of discrete time, we can guess the causal delay. A new analysis of causal
delays in the dynamics can provide views of two different worlds: type 1 and type 2.
In the case of a free particle, the evolution operator for each of them was obtained
and analyzed. As a result, type 1 particle could be interpreted as ordinary matter that
satisfies existing relativistic quantum mechanics. Type 2 particle is outside the quantum
mechanics category, but has some interesting physical properties. Type 2 particle acts
on gravity in the same way as ordinary matter, and does not interact with the U(1) gauge
field, and considering its energy density value, it can be interpreted as dark matter.

1 Introduction

The dynamical system aims to find dynamic variables that
change over time, which is the process of solving the equa-
tions of motion. The structure of the equation of motion com-
bines the amount of change of the dynamic variables with
time and the cause of the change.

As an example, let’s take a look at Newton’s laws of mo-
tion. Newton expressed his second law as follows:

Change of motion is proportional to impressed
motive force and is in the same direction as the
impressed force.

The equation of motion is as follows.

lim
∆t→0

∆~p
∆t

= ~F (t) .

Applying the cause-effect category to Newton’s law of motion
mentioned above, force is the cause and momentum changes
are the effects.

However, the point to note here is the time difference be-
tween the moment t when the cause force is applied and t+∆t
which is the moment when the resultant momentum change
appears. Naturally, in continuous space and time, this time
difference is infinitely small, so the cause and effect are “si-
multaneous”. Let’s call this simultaneity infinitesimally dif-
ferent simultaneity. This infinitesimally different simultane-
ity is assumed in all dynamic systems based on continuous
space and time: Newtonian mechanics, Lagrangian mechan-
ics, Hamiltonian mechanics, Quantum mechanics, etc.

By the way, this infinitesimally different simultaneity is
two different points, unlike true simultaneity which is iden-
tical. Because if they are the same, then at any moment an
object has to have both momentum before the cause and mo-
mentum after the cause. The distinction between two points
in infinitesimally different simultaneity in continuous space
and time is meaningless, but in discrete time, there is a mini-
mum value ∆td for time change and two points for cause and
effect, resulting in a delay of time ∆td between cause and ef-
fect.

The delay between cause and effect will of course affect
the description of the dynamics, which requires an evolution
operator for a particle in discrete time. There are two types of
results in this process, one that is consistent with existing rel-
ativistic quantum mechanics and another that is entirely new.

2 Definitions

2.1 Cause-effect vectors

Considering the causal delay, we cannot define the “real state”
at one moment, as in quantum mechanics, and define the “real
state” within the minimum time ∆td. The existing quantum
mechanical state with 4-momentum pµ at a point xα in space-
time can be called φp (xα) which is caused by xα − ∆xα or
xα + ∆xα due to the causal delay. Where ∆xα is a timelike
4-vector, meaning cause-effect delation in space-time. The
time component of ∆xα is an amount representing the cause-
effect time delation ∆td and the spatial component represents
the distance the object moved during the time delay.∗

Therefore, the definition of the “real state” in discrete
time must be made by combining coordinate values with
φp (xα). So there are two definitions, past-future cause-effect
vector and future-past cause-effect vector. Where φp (xα) is
tentatively scalar.

past-future cause-effect vector : xµφp (xα + ∆xα) ,

future-past cause-effect vector : (xµ + ∆xµ) φp (xα) .

2.2 Difference of cause-effect vectors

Since there are two states between ∆xα as discussed above,
by combining them, the state change can be of two types:

type 1 : (xµ + ∆xµ) φp (xα) − xµφp′ (xα + ∆xα) . (1)

type 2 : xµφp′
(
xα + ∆x′α

)
− (xµ − ∆xµ) φp (xα) . (2)

∗In this paper, unlike time, distance in space does not assume its mini-
mum value. The discreteness of space is a controversial topic and has nothing
to do with the content of this paper.
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The two types are shown schematically in Fig. 1.∗ As
shown in Fig. 1, type 1 is the difference between future-past
cause-effect vector and past-future cause-effect vector, and
type 2 consists onlyof the difference between past-future cau-
se-effect vectors.
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                    type1                       type2

Fig. 1: Schematics of type 1 and type 2

3 Calculations of difference of cause-effect vectors for a
free particle

Assumption 1 : In type 1, the state value φp (xα) at point xα

has the same magnitude of contribution at xα − ∆xα and xα +

∆xα.

                                                                
                                                        

                                               
                                             

               

            

                                                                                     

                                                                 
                                                                   

                                 
                                    

                                       

                                      

Fig. 2: Contributions to each φ

In Fig. 2, φ (x) is a mixture of contributions from x − ∆x
and x + ∆x. The same applies to the other φ’s. This can be
written in the following way. p is omitted because it is the
same.

φ (x) = φx−∆x (x) + φx+∆x (x) . (3)

This contribution in space-time is shown in Fig. 3.
As shown in the Fig. 3, the two contributions to φ (x) at

xµ will act in opposite directions on the tangent of the dotted
world line. Thus both contributions will be offset. The same
is true for vectors. That is, scalars and vectors cannot describe
type 1.

∗In discrete time, the trajectory in space-time cannot be a solid line,
only a jump from point to point. The solid trajectory in Fig. 1 and 2 is just
for readability.

   
    

                                            
 

                                             

                                                 

              
 

                                              

                                                

                                              

           

          

                                                                                                                        

Fig. 3: two contributions to φ (x)

What about the spinor? In Fig. 3, the two spinors are also
the same magnitude and in opposite directions, but the sum
is not zero. Because in spinor space the two spinors are or-
thogonal. Two orthogonal spinors correspond to

(
1
0

)
and

(
0
1

)
,

respectively, which correspond to spin 1
2 . Thus, only spin 1

2
spinors can describe type 1.

Now, if the spinor is constant, the difference of cause-
effect vectors for a 2-component spinor Ψa (x) is defined as
follows.

type 1 : (xµ + ∆xµ) Ψa (x) − xµΨa (x + ∆x) . (4)

In the case of a free particle, the difference of cause-effect
vectors for type 2 is also shown.

type 2 : xµφ (x + ∆x) − (xµ − ∆xµ) φ (x) . (5)

Assumption 2 : Ψ and φ are analytic functions.

But in reality it is discontinuous and it is difficult to figure
this out. This assumption approximates discontinuous Ψ and
φ as C∞ functions, which means looking at the dynamical
point of view that we are familiar with.

3.1 Type 1

Let’s express the spinor function Ψa (x) as a spinor part and a
scalar part depending on the coordinates as follows.

Ψa (x) = uaφ (x) . (6)

Then, (4) is as follows.

ua {(xµ + ∆xµ) φ (x) − xµφ (x + ∆x)} . (7)

So we only need to calculate the part for scalar.

(xµ + ∆xµ) φ (xα) − xµφ (xα + ∆xα)

= (xµ + ∆xµ) φ (xα) − xµ
∞∑

n=0

1
n!

(
∆xα

∂

∂xα

)n

φ (xα)

= ∆xλ
{
δ
µ
λφ (xα) − xµ

∂φ (xα)
∂xλ

}
−

− xµ
∞∑

n=2

1
n!

(
∆xα

∂

∂xα

)n

φ (xα) .
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For n ≥ 2

xµ
(
∆xα

∂

∂xα

)n

=

[
xµ,

(
∆xα

∂

∂xα

)n]
commutation

.

Thus
(xµ + ∆xµ) φ (xα) − xµφ (xα + ∆xα)

= −

[
xµ,∆xα

∂

∂xα

]
φ (x)−

−

xµ,
∞∑

n=2

1
n!

(
∆xα

∂

∂xα

)n φ (x)

= −

xµ,
∞∑

n=1

1
n!

(
∆xα

∂

∂xα

)n φ (x)

= −

[
xµ, exp

(
∆xα

∂

∂xα

)
− 1

]
φ (x)

= −

[
xµ, exp

(
∆xα

∂

∂xα

)]
φ (x) .

For the progress of the calculation, we define the 4-mom-
entum operator Pλ, and commutation relation of xµ and Pλ as
follows.

Pλ ≡ i~
∂

∂xλ[
xµ, Pλ

]
≡ −i~δµλ

(9)

and metric ηαβ = diag
[
1 −1 −1 −1

]
.

Using the following (10), the final result is as shown in
(11).

[xi, F (Pi)] = i~
dF
dPi

[x0, F (P0)] = −i~
dF
dP0

.

(10)

(xµ + ∆xµ) φ (xα) − xµφ (xα + ∆xα)

= ∆xµ exp
(
−

i
~

∆xαPα

)
φ (x) .

(11)

Therefore, the equation for spinor function Ψa (x) is

(xµ + ∆xµ) Ψa (x) − xµΨa (x + ∆x)

= ∆xµ exp
(
−

i
~

∆xαPα

)
Ψa (x) .

(12)

3.2 Type 2

After a similar calculation process as in type 1, the equation
that corresponds to (12) is (16).

xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

= xµ
∞∑

n=0

1
n!

(
∆xα

∂

∂xα

)n

φ (x) − (xµ − ∆xµ) φ (x)

= ∆xα
(
xµ

∂

∂xα
+ δ

µ
α

)
φ (x) + xµ

∞∑
n=2

1
n!

(
∆xα

∂

∂xα

)n

φ (x) .

For n ≥ 2

xµ
(
∆xα

∂

∂xα

)n

=

{
xµ,

(
∆xα

∂

∂xα

)n}
anticommutation

.

xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

=

{
xµ,∆xα

∂

∂xα

}
φ (x) +

xµ,
∞∑

n=2

1
n!

(
∆xα

∂

∂xα

)n
 φ (x)

=

xµ,
∞∑

n=1

1
n!

(
∆xα

∂

∂xα

)n
 φ (x)

=

{
xµ, exp

(
∆xα

∂

∂xα

)
− 1

}
φ (x) .

(13)

Note that unlike type 1, anticommutation occurs. There-
fore, for calculation, we need to define the anticommutation
relation of 4-vector x and P as below.

Pλ ≡ i~
∂

∂xλ

{xµ, Pλ} ≡ i~δµλ .
(14)

And using the following (15), the final equation corre-
sponding to (12) of type 1 is the following (16).

{xi,G (Pi)} = −i~
dG
dPi

{x0,G (P0)} = i~
dG
dP0

.

(15)

xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

=

(
∆xµ exp

(
−

i
~

∆xαPα

)
− 2xµ

)
φ (x) .

(16)

To understand the meaning of the right sides of (12) and
(16) for type 1 and type 2, we first briefly review the time evo-
lution operator in quantum mechanics in the next chapter. In
a similar manner, in space-time, the right side of (12) will be
defined as the evolution operator of the type 1 particle and the
right side of (16) will be defined as the evolution operator of
the type 2 particle.

4 Evolution operator

In quantum mechanics, the time evolution operator U from
state | α, t0 〉 to | α, t0; t 〉 is defined as follows.

| α, t0; t 〉 = U (t, t0) | α, t0 〉 .

Determining this time evolution operator is equivalent to
determining the equation of motion for the state of the sys-
tem. If the time evolution operator is as follows, this operator
satisfies the Schrodinger equation.

U (t, t0) = exp
(
−

iH (t − t0)
~

)
i~
∂U (t, t0)

∂t
= HU (t, t0)

i~
∂

∂t
U (t, t0) | α, t0 〉 = HU (t, t0) | α, t0 〉 .
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That is, the Schrodinger equation for the state is estab-
lished as below.

i~
∂

∂t
| α, t0; t 〉 = H | α, t0; t 〉 .

Now let’s discuss type 1 and type 2. Type 1 and type 2
discussed here are free particles, so we can apply the concept
of evolution operator in quantum mechanics.

4.1 Type 1
(xµ + ∆xµ) Ψa (x) − xµΨa (x + ∆x)

= ∆xµ exp
(
−

i
~

∆xαP̂α

)
Ψa (x)

≡ ∆xµU (∆x) Ψa (x) .

(17)

Suppose U (∆x) in (17) is an evolution operator by ∆x in
space-time. Then

Ψ
p
a (∆x) ≡ U (∆x) Ψ

p
a (0)

= exp
(
−

i
~

∆x · P̂
)
Ψ

p
a (0) = exp

(
−

i
~

∆x · p
)
Ψ

p
a (0) .

(18)

Successive evolution by n∆xα = xα can be expressed as
below.

exp
(
−

i
~

∆x · P̂
)
· · · · exp

(
−

i
~

∆x · P̂
)
Ψ

p
a (0)

= exp
(
−

i
~

n∆x · p
)
Ψ

p
a (0) = exp

(
−

i
~

x · p
)
Ψ

p
a (0)

= exp
(
−

i
~

x · P̂
)
Ψ

p
a (0) = U (x) Ψ

p
a (0) .

Therefore, U (x) satisfies the following equation.

Ψ
p
a (x) = U (x) Ψ

p
a (0) . (19)

If we apply the Klein-Gordon operator to (19) and use p
as constant, we get the following result (~ = 1).(

∂µ∂
µ

+ m2
)
Ψ

p
a (x)

=
(
∂µ∂

µ

+ m2
)

e−ix·P̂Ψ
p
a (0)

=
(
∂µ∂

µ

+ m2
)

e−ix·pΨ
p
a (0)

=
(
−pµpµ + m2

)
e−ix·pΨ

p
a (0)

= 0 .

(20)

As you can see from (20), Ψ
p
a (x) is the solution of the

Klein-Gordon equation. And, as discussed above, Ψ
p
a (x) is

spin 1
2 , so Ψ

p
a (x) can be said to be a component of a spinor

that satisfies the Dirac equation.
In summary, for a free particle, type 1 can be interpreted

as a conventional ordinary matter that satisfies the Dirac equa-
tion, and U (x) can be interpreted as an evolution operator. It
is also worth noting that type 1 particles, although their begin-
nings are unusual, are in agreement with existing relativistic
quantum mechanics, indicating some of the validity of the
causal delay.

4.2 Type 2
xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

=

(
∆xµexp

(
−

i
~

∆xαPα

)
− 2xµ

)
φ (x)

≡ ∆xµVφ (x) .

(21)

We have dicussed that U of type 1 can be interpreted as
an evolution operator. Based on that, we will define V as an
evolution operator of type 2. But unlike U, V is not a unitary
operator, i.e. type 2 particles are broken in unitarity. Never-
theless, type 2 particles have very interesting physical mean-
ings.

5 Properties of type 2 particle

5.1 xµ � ∆xµ

The evolution operator at large x is

∆xµV ' −2xµ (22)

Since V is a linear function of x in (22), the equation that
V must satisfy is the second order differential equation, i.e.
∂α∂βV = 0. Thus, the equation of motion that x must satisfy
can be written in covariant form as

d2xµ

dτ2 = 0 (23)

where τ is the proper time.
Eq. (23) is the classical relativistic equation of motion for

a free particle, not a wave equation. This means that in large
x there is only motion as a particle and no quantum waves.

More discussion is needed about the above. If we take
∆x→ 0 limit on both sides in (16), it is as follows.

xµ
(
φ (x) + ∆xα

∂φ

∂xα

)
− (xµ − ∆xµ) φ (x)

= ∆xµ
{
φ (x) −

i
~

∆xαpαφ (x)
}
− 2xµφ (x)

∆xα
∂φ (x)
∂xα

= −2φ (x) .

∴ φ (x) ∝ exp
(
−2

∆x · x
∆x · ∆x

)
. (24)

As shown in (24), the particle position is very localized. How-
ever, this is the position value in the state where the mo-
mentum is determined. In other words, type 2 particle can
be determined at the same time the position and momentum,
which means that there is no quantum wave phenomenon in
the type 2 particle. Although quantum waves do not exist, it
has a physical meaning because it satisfies the classical equa-
tion of motion.

Eq. (23) holds for an inertial frame in flat spacetime. If a
curved spacetime manifold is locally flat at an arbitrary point
P, (23) always holds at P because ∂

∂xγ gαβ (P) = 0. This means
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that in locally flat manifolds, type 2 particle undergo free-
falling motion with a straight geodesic. That is, type 2 particle
is affected by gravity in the same way as ordinary matter.

5.2 xµ ' ∆xµ

The evolution operator in this case is as follows.

V ' exp
(
−

i
~

x · P̂
)
− 2 . (25)

The first term in (25) is the operator giving the Klein-
Gordon equation. Thesecond term, as discussed in 5.1, means
acceleration, which is related to mass. Thus, (25) can be seen
as an operator that gives an equation that modifies the mass
part of the Klein-Gordon equation. If the modified Klein-
Gordon equation is set as shown in (26) below, f is obtained
as follows (~ = 1).(

∂µ∂
µ + m2 f

)
φp (x) = 0 . (26)

where φp (x) = V (x) φp (0).(
∂µ∂

µ + m2 f
) (

e−ix·P̂ − 2
)
φp (0) = 0 .

∴ f (x) =
e−ix·p

e−ix·p − 2
.

(27)

In the modified Klein-Gordon equation, the mass term is a
complex number.

We will now discuss the internal symmetry of type 2 par-
ticles.

The equation that satisfies φ (x) and φ∗ (x) in (26) is as
follows. (

∂µ∂
µ + m2 f (x)

)
φ (x) = 0(

∂µ∂
µ + m2 f ∗ (x)

)
φ∗ (x) = 0 .

(28)

As can be seen from (28), the equations satisfying φ (x)
and φ∗ (x) are different. This means that the type 2 particles
do not have antiparticles and, as will be seen later, do not have
internal symmetry. To show that the type 2 particles do not
have internal symmetry, the Lagrangian density must be de-
termined. However, defining the Lagrangian density implies
that type 2 is assumed to be a field only locally, although this
is not the case for large x. In addition, the Lagrangian density
should be a locally holomorphic complex Lagrangian.

By the way, the Lagrangian density of a normal complex
scalar field cannot produce (28). Therefore, some process is
required.

First, changing the expression (28) using f ∗ (x) = f (−x)
is as follows. (

∂µ∂
µ + m2 f (−x)

)
φ∗ (x) = 0 .

And x→ −x gives(
∂µ∂

µ + m2 f (x)
)
φ∗ (−x) = 0 . (29)

In (28) and (29), it can be seen that φ (x) and φ∗ (−x) sat-
isfy the same equation. Thus Lagrangian density can be writ-
ten as

L = ∂µφ
∗ (−x) ∂µφ (x) − m2 f (x) φ∗ (−x) φ (x) . (30)

Now consider the following gauge transformations.

φ (x)→ e−iqθ(x)φ (x) , φ∗ (−x)→ eiqθ(−x)φ∗ (−x) .

δφ (x)
δθ (x)

= −iqφ (x) ,
δφ∗ (−x)
δθ (x)

= iqφ∗ (−x)
δθ (−x)
δθ (x)

.
(31)

According to Noether’s theorem, if the action is invariant
under gauge transformations, there is a vanishing divergence
current, whose value is

Jµ = −

 ∂L

∂
(
∂µφ (x)

) δφ (x)
δθ (x)

+
∂L

∂
(
∂µφ∗ (−x)

) δφ∗ (−x)
δθ (x)


= iq

[
φ (x) ∂µφ∗ (−x) − φ∗ (−x) ∂µφ (x)

δθ (−x)
δθ (x)

]
.

(32)

However, the divergence of current in (32) is not zero. And
this means that there is no conserved charge.

Therefore, we can say that Lagrangian density in (30) has
no internal symmetry. In other words, type 2 particles cannot
construct covariant derivatives that satisfy gauge invariance,
which means that type 2 particles do not interact with the U(1)
gauge field.

In addition, since type 2 particles lack an intenal symme-
try, it means that it is a kind of scalar without components,
so SU(2) and SU(3) gauge symmetry cannot be defined. Ac-
cordingly, type 2 particles do not have weak interactions and
strong interactions as well as electromagnetic interactions,
but is connected only by gravity.

5.3 Mass and energy density

Let’s first discuss the mass of type 2 particle.
In the modified Klein-Gordon equation, mass is distribu-

ted in space-time like a wave, and its distribution is deter-
mined by f . Therefore, to find the mass of type 2 particle, we
need to find the integral value for the space. Let t = 0,~p =

(p, 0, 0) be for simplicity. Then f is

f (x) =
eipx

eipx − 2
. (33)

In (33), f diverges at x → ±∞. This is because the ex-
pression (33) holds for xµ ' ∆xµ. Therefore, to find the in-
tegral, we need to define a function value at x → ±∞. As
discussed in section 5.1, type 2 particles do not have a wave
function for large x. Consequently, we can set the boundary
condition f → 0 at x → ±∞. In order for f to converge
at x → ±∞, we need to modify f in (33). By introducing
damping factor ε, modified f is presented as below.

fm =
ei(p+iε)|x|

ei(p+iε)x − 2
. (34)
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Therefore, the mass M of type 2 particle can be defined
as (35). And m is the mass of ordinary matter that satisfies
Klein-Gordon equation.

M2 ≡ m2

∣∣∣∣∣∣
∫ ∞

−∞

ei(p+iε)|x|

ei(p+iε)x − 2
dx

∣∣∣∣∣∣ . (35)

In order to calculate the integral value of (35), the follow-
ing integral of a complex variable must be obtained.∮

dz
ei(p+iε)|z|

ei(p+iε)z − 2
. (36)

The poles and residues are

simple pole z0 = −
(ε + ip)
ε2 + p2 ln 2 .

residue at z0

a−1 =
ei(p+iε)|z|

ei(p+iε)z − 2
·
(
ei(p+iε)z − 2

)
|z=z0

= 2
i (p+iε)
√

p2+ε2

= 2i (for ε → 0) .

The contour of integration is shown in Fig. 4.

                             -R                                                           R

                                                         
                                                            

                                                                                               C

                                                                      -iR

Fig. 4: Contour of integration

∮
dz

ei(p+iε)|z|

ei(p+iε)z − 2

= lim
R→∞

∫ R

−R
dx

ei(p+iε)|x|

ei(p+iε)x − 2
+

∫
C

dz
ei(p+iε)|z|

ei(p+iε)z − 2
= 2πia−1 = 2πi · 2

i
.

(37)

Since the second integral term in (37) is 0 as R → ∞, the
mass value to be obtained is

M2

m2 =
∣∣∣2πi · 2i

∣∣∣ = 2π . (38)

Let’s discuss the energy density. First, the energy density
of type 1, that is, ordinary matter, is as follows in the case of

a complex scalar field.

L = ∂µφ
∗ (x) ∂µφ (x) − m2φ∗ (x) φ (x)

T µλ =
∂L

∂∂µφi
∂λφi − η

µλL = ∂µφ∗∂λφ + ∂µφ∂λφ∗ − ηµλL .

Accordingly, the energy density in the case of a free par-
ticle is as follows.

T 00 =
(
~p2 + m2

)
φ∗φ .

Ignoring the kinetic part:

T 00
type 1 ' m2 |φ1|

2 . (39)

Lagrangian density and energy momentum tensor of type 2
are as follows.

L = ∂µφ
∗ (−x) ∂µφ (x) − m2 f (x) φ∗ (−x) φ (x)

T µλ = ∂µφ∗ (−x) ∂λφ (x) + ∂µφ (x) ∂λφ∗ (−x) − ηµλL .
(40)

However, as discussed earlier, the Lagrangian density of
type 2 is a complex number, so the energy momentum tensor
of the above formula is also a complex number. Therefore,
the above energy momentum tensor cannot be applied to the
physical system as it is.

This issue is intended to find meaning through the follow-
ing discussion. As discussed earlier, type 2 has no internal
symmetry, so there is no short distance interaction. That is,
only long distance interaction (gravity) is possible. However,
at far distances, there is no wave property, but only particle
properties, so type 2 has only meaning as particles in the long
distance interaction. Acting as a particle means that it partic-
ipates in gravity as a particle having a mass M of the type 2
obtained above. In this case, the behavior of the particles as
mass M is equivalent to ordinary matter. Therefore, the en-
ergy density of type 2 can be treated as the energy density of
the scalar field of mass M. Accordingly, the same process as
the energy density of type 1 discussed above is as follows.

T 00
type 2 ' M2 |φ2|

2 . (41)

Consequently, the energy densityratio of type 1 and type 2
particles is as follows.

T 00
type 2

T 00
type 1

'
M2 |φ2|

2

m2 |φ1|
2 . (42)

One thing to note here is that the mass m of ordinary mat-
ter compared in the above formula is the mass of the particle
as a free particle.

In (42), |φ2|
2 / |φ1|

2 is the ratio of mass-independent am-
plitudes, so we can make them equal. Accordingly, the fol-
lowing results can be obtained.

T 00
type 2

T 00
type 1

'
M2

m2 = 2π =
86.3%
13.7%

. (43)
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Since type 1 and type 2 have the same opportunity for gen-
eration in their origin, the number density of the two will be
the same. Therefore, the ratio of the above equation is the
ratio of the energy density of the total amount of type 1 and
type 2 in the universe. The value is within the range of the
energy density ratios of dark matter and ordinary matter that
are currently estimated.

6 Conclusions

The interpretation of the dynamical system with a new con-
cept of causal delay, which originated from the discrete con-
cept of time, gave us a perspective on two different worlds.
For a free particle, type 1 particle can be interpreted as or-
dinary matter that satisfies existing relativistic quantum me-
chanics. This type 1 particle can only have spin 1

2 , which can
explain why the spin of all fermions observed is 1

2 .
Type 2 particle is a matter of a whole new perspective.

This particle does not follow the existing laws of quantum
mechanics. Type 2 is only a classical particle that satisfies
the theory of relativity at a long distance, and has a property
as a kind of field that does not have gauge symmetry at a
short distance. So, these type 2 particles act on gravity in the
same way as ordinary matter, do not interact with light, and
considering their energy density value, it can be interpreted
as dark matter.

Type 2 particles do not have any gauge interactions. And
there is no antiparticle, including itself, so no annihilation oc-
curs. Therefore, direct or indirect detection based on them is
not possible, only indirect verification through gravity. How-
ever, given the local nature of type 2, it is not a point-like
particle, so self-interaction through collision seems to be pos-
sible.

Received on July 24, 2020
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On the Electron Pair, the Single Bond C-C Rotational Energy Barrier
and Other Molecular Mechanisms
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To find evidence of the electron pair has proven to be a very difficult task. Bader et al.
tried to unsuccessfully find evidence of the electron pair in the topological analysis of
the Laplacian of the electron density of molecules. By using electron localization func-
tions, Silvi et al. pointed out where these pairs might be in the molecule and represented
them as attractors. Still, to locate the electron pair does not give answers to different
molecular mechanisms. For instance, the mechanism of hindered rotation about the
carbon-carbon single bond in ethane, which is of great interest and controversy. This
phenomenon is not yet explained by Silvi’s most advanced molecular model (state of
the art). A new alternative uses the relationship between the area of the electron density
and the energy of the bond. This approach also provides the electron pair localization.
Furthermore, by allowing the magnetic momenta of the bonding electrons to interact,
an explanation of the rotational barrier appeared straightforwardly. Also, the model
presented in this paper find bonding electrons not found by Silvi’s model. The results
agree and/or complement the state of the art.

1 Introduction

The valence theory of Lewis remains the basis for most mod-
ern ideas on the chemical bond. According to Lewis struc-
tures, there are bonding electron pairs in the valence shell
of an atom in a molecule, and there are nonbonding electron
pairs or lone pairs in the valence shell of many atoms in a
molecule. From the topological analysis of the electron den-
sity, Bader et al. had extracted useful information about the
bonding in a molecule. But, not much progress was made to
reveal the location of these electron pairs [1].

According to Silvi et al. [2], the electron density alone
does not easily reveal the consequences of the Pauli exclusion
principle on the bonding. The work of several authors have
produced a series of electron localization functions, which at-
tempt to measure the Pauli repulsion by considering the Fermi
hole. Hence, an alternative interpretation of these electron lo-
calization functions is to consider a system of fermions and
a system of bosons with identical densities. The ground-state
local kinetic energy of the non-interacting bosonic system is
a lower bound to the local kinetic energy of the fermionic
one. The excess local kinetic energy due to the Pauli princi-
ple is just the difference between the two. Where electrons are
alone or form pairs of opposite spins, the Pauli principle has
little influence on their behavior and they almost behave like
bosons. In such regions the excess local kinetic energy has a
low value. This identifies regions called attractors, every at-
tractor consists of two electrons. There are three types: point,
core and ring attractors. In this way, Silvi et al. is capable to
locate and classify the electron pairs in organic molecules.

Nevertheless, in order to have this “non-interacting boso-
nic system”, the magnetic momenta of the pairs of opposite
spins are necessarily cancelling each other. Therefore, if the

rotational energy barrier for the single bond in ethane has a
magnetic origin, Silvi’s model would not be able to explain it.
The need to understand this molecular mechanism had driven
chemists away from Silvi’s most advanced model to semi-
empirical ones. Currently, the origin of a rotational barrier in
a C-C single bond has a wide range of explanations. The bar-
rier is often attributed to: 1) torsional strains in the molecule,
2) steric strains, 3) charge transfer, exchange or electrostatic
and 4) hyperconjugative interactions [3].

This is of a foremost interest because it has been found
that the rotational speed of the bond reduces in the presence
of an external magnetic field [4].

In the model used in this paper∗, covalent bonds, lone
pairs and core electrons will be detected by using the struc-
tures observed in Fig. 1, namely: the two separated spheres
(ts), the torus (t) and the sphere in a sphere (ss) [5]. In the case
of a single C-C bond, the magnetic momenta of the two bond-
ing electrons are left to interact between each other. The C-C
double bond would be two single bonds that consequently
are locked for rotation. The C-C triple bond presents a lone
pair (a torus) around its double bond structure and benzene
presents interacting toroidal lone pairs, which are responsible
for aromaticity.

Full count and location of the electron pairs forming dif-
ferent bonds, as well as, lone pairs is achieved. This was
comparable or better than Silvi’s model (the state of the art)
[2]. The model/method presented in this paper: 1) confirmed
Silvi’s model electron count for certain molecules, 2) pro-
duced more information about missed electrons, not account-
ed by Silvi’s model and shed light on the possible mechanism
behind rotational barrier and aromaticity.

∗which has already been described in [5].
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Fig. 1: Observables structures of the electron. The arrow represents
its magnetic moment

2 Experimental

After observing the Laplacian of the electron density contour
map of different hydrocarbon molecules, it was easy to iden-
tify C-C and C-H bonds and cut their silhouettes printed on
paper. These silhouettes were weighted. The C-C or C-H
bond lengths were used to calibrate the area measured in each
bond. By this way, the bond area was calculated and it is re-
ported in pm2. An example of this process is in Fig. 4 for
the C-H bond, and in Fig. 8 for the C-C bond. Then, these
areas were correlated with their respective bond energies. A
linear correlation was possible after dividing the bond area
by a whole number, n. This whole number is interpreted as
the number of electrons participating in the bond and it is re-
ported on the right side of the molecule formula. These are
observed in Figs. 2 and 3. This method has been sufficiently
described in [5] and, in this paper, it was applied to the hydro-
carbon molecules: ethane, ethene, ethyne and benzene. The
contour map of the Laplacian of the charge density for C-H
and C-C bonds in ethane, ethene and ethyne molecules are
in [6]. Benzene C6H6 in [7] and C2 is in [8].

2.1 Electron count

Fig. 2 shows that with n very close to 2, the C-H bond area
linearizes against the bond energy in the molecules: ethane
C2H6, 2; benzene C6H6, 2.01 and ethyne C2H2, 2. In the case
of ethene C2H4 it is 1.824. Fig. 2 shows that n is exactly 2 in
the case of C-C ethane and benzene, 8 in the case of dicarbon
and 4 in the case of C-C ethyne. Ethene, however, presents
2.6 for the C-C bond in the plane of the molecule and 4 in the
plane perpendicular to it and at the C-C axis.

The number of electrons involved in the C-H bond was
very close to 2 regardless the class of C-H bond. The C-H

Fig. 2: Bond area vs. bond energy for C-H bonds in different
molecules.

Fig. 3: Bond area vs. bond energy for C-C bonds in different
molecules.

bond that was far from this behavior was C-H ethene with
1.824. This deviation will be further discussed later. Thus,
two electrons are involved in the C-H bond in the cases of
ethane, ethyne and benzene.

Given that Fig. 3 provides the number of electrons in-
volved in each C-C bond for these molecules, one is ready
to do the full count of electrons in each molecule.

2.1.1 Ethane, C2H6

Figs. 2 and 3 inform that the C-H and C-C bonds have two
electrons each. Hence, as it is observed in Fig. 4a, ethane
has the expected electron count for each bond. This elec-
tron distribution coincides with the one presented by Silvi et
al. (Fig. 4b) where the black circles are point attractors with
two electrons each. Silvi’s model put these attractors at the
mid-point of the C-C bond and towards the hydrogen atom in
the C-H bond. This is probably due to electronegativity dif-
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Fig. 4: a) Contour map of the Ethane molecule and its electron
count. The green line shows how the C-H bond was cut. The C-C
bond was also cut accordingly. Reprinted and adapted with permis-
sion from [6]. Copyright (1996) American Chemical Society. b)
Silvi’s et al. structure from [2]. It presents point attractors (black
circles) alongside C-C and C-H bonds. It also shows core attrac-
tors (open circles) on the carbon atoms, used with permission of the
publisher.

ferences between the bonding atoms. He also localized core
attractors (open circles) on the carbon atoms. The model pre-
sented in this paper does not have that.

2.1.2 Rotational barrier

The ethane molecule presents one of the long standing prob-
lems in physical chemistry. This molecule has an energy bar-
rier to its rotation. This barrier produces two types of con-
formers: the eclipsed and the staggered (see Fig. 5). The en-
ergy barrier between them is about 12 kJ/mol. Also, the C-C
bond contracts from 153 pm in the staggered to 130 pm in the
eclipsed conformer [3].

In between several explanations, the most favored ones
are: 1) steric hindrance and 2) hyperconjugation. Although
the steric effect is usually defined as the repulsion between
C-H bonds or vicinal H atoms in the eclipsed conformation,
the difference between torsional and steric strain is not clear.
This is because they are not explicitly associated with a well-
defined physical property.

Within the framework of natural bond orbital analysis,
NBO, hyperconjugation is considered to be the source of the
conformational preference of the molecule, bymeans ofσC−H

- σC−H∗ vicinal interactions, rather than the electrostatic con-
tribution or Pauli repulsion.

Most other explanations in the literature are given either
in terms of orbital interactions or based on an energetic anal-
ysis of the problem. The discussion is far from over [3].

In the model presented in this paper, the electron is ob-
served as the size of the whole bonding region. Given that the
electron is also a tiny magnet, the interaction of the magnetic
momenta between the two bonding electrons of the C-C bond
is directly the cause of this torsional barrier and the differ-
ences in the C-C length between conformers.

Fig. 5 presents the two configuration and the magnetic

momenta of the two bonding electrons. In the eclipse con-
former, these magnetic momenta are at an angle of 180 de-
grees (maximum magnetic attraction). This shortens the C-C
bond to 130 pm. Upon rotation of one of the carbon atoms,
the angle between electron’s magnetic momenta decreases.
At 180 − 60 = 120◦, a combination of distance between mo-
ments and the angle vanished this magnetic interaction. This
lengthens the C-C bond (minimum magnetic attraction) in the
staggered conformer.

The equation that describe the interaction between the two
electron magnets is,

F =
3µ0

4π
m2

e

r4 cos θ (1)

where µ0 is the permeability of the free space, me is the elec-
tron magnetic moment, r is the distance between magnetic
moments and θ is the angle between them. Mimicking the
magnitude of the Ehrenfest forces acting on the C atoms,
Fe(C) for diferent C-C distances presented in [3]. The change
in magnetic force, equation (1), needed to explain the barrier
at different C-C distances is presented in Fig. 6.

Given that there are no other energy barrier, it is believed
that the bond rotation occurs in step between the carbon atoms
in the bond. This means that once one carbon reached the
weakening angle, the other rotates to reach 180◦ again. This
mechanism would be consistent with a reduction in the rota-
tion speed in the presence of an external magnetic field, which
has been experimentally detected [4]. Silvi’s model is simply
incapable to reproduce this interaction because the bonding
electrons’ magnetic momenta are not free to interact in this
way.∗

2.2 Ethene, C2H4

Fig. 7a shows so far, the electron count extracted from the re-
sults in Figs. 2 and 3. Since 4 (1.824) + 2.6 ≈ 10, a deficit of
two electrons remains unexplained. However, the C-C elec-
tron count in the plane perpendicular to the molecular plane
at the C-C axis gives exactly 4 (see Figs. 3 and 7b). This is,
even though no indication of localization in this region is ob-
served and these 4 electrons look to be in the same region of
space (fused). This count probably means that the C-H elec-
tron count on the molecular plane, 1.824 is 2 in the plane per-
pendicular to it. Thus, a full electron count of this molecule
is obtained. Coincidently, Silvi’s model presents same elec-
tron count and localization. Two point attractors (4 electrons)
at the plane perpendicular to the molecular plane for ethene:
one over and the other under the molecular plane and point
attractors (2 electrons each) for the four C-H bonds in the
molecular plane (see Fig. 7c).

The C-C single bond results, already described for ethane,
provide a way to understand the double bond. Simply, after

∗they are cancelling each other, completely coupled to obey the Pauli
principle.
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Fig. 5: Eclipsed (top) and Staggered (down) ethane conformers. The
eclipsed conformer present the maximum magnetic attraction and
shorter C-C bond length. Whereas, the staggered conformer has the
lowest magnetic attraction and the longest C-C bond length. The
extra projection shown down right is to present the angle between
the two bonding electrons magnetic momenta in the staggered con-
former. All distances are in pm.

Fig. 6: Magnetic force between carbon atoms in the C-C bond for
different C-C distances. The insert present the force values, distance
between magnetic dipoles and angle assigned to each C-C distance.
The integral of the curve is 12 kJ/mol.

the first single bond occurs, a second single bond in the C-C
bond will lock any possibility for rotation. This is concurrent
in both models presented here. Furthermore, Silvi’s model
does not present a point attractor in the line between the two
carbons. Thus, the double bond looks like two out of line
sigma bonds.

Fig. 7: Contour map of the Ethene molecule and its electron count.
The C-C bond electron count at the plane of the nuclei (a) is different
from the count at the perpendicular plane (b). The green line shows
how the C-C bond was cut. Reprinted (adapted) with permission
from [6]. Copyright (1996) American Chemical Society. c) Silvi’s
et al. structure from [2] used with permission of the publisher.

Fig. 8: a) Contour map of the ethyne molecule and its electron count,
there is a lack of two electrons. The green line shows how the C-C
bond was cut. b) These two electrons are fused in a toroidal lone
pair around the C-C bond. Reprinted (adapted) from [6]. Copy-
right (1996) American Chemical Society. c) This structure has been
observed in the molecular electrostatic potential of ethyne. This is
from [9] used with permission of the publisher. d) Silvi’s et al. struc-
ture from [2] used with permission of the publisher.

2.3 Ethyne, C2H2

Fig. 2 presents that C-H bond has two electrons in ethyne,
Fig. 3 shows that the C-C bond has 4. Therefore, Fig. 8a
presents a lack of two electrons. These two electrons will
be bonded outside of the ethyne’s C-C bond and at its mid-
point, completely fused, producing a lone pair with a toroidal
shape (see Fig. 8b). This has been observed in the molecular
electrostatic potential of this molecule (see Fig. 8c [9]). This
toroidal shape has also been noticed as a “ring attractor” in the
electron localization function, η(r), of this molecule in [6].
Concurrently, Silvi’s structure also presents this ring attrac-
tor (2 electrons) and the point attractors for the C-H bonds,
see Fig. 8d. But, it misses the other four electrons in the C-
C bond. Fig. 8b depicts the complete electron count for the
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Fig. 9: a) Contour map of the Benzene molecule and its electron
count. There is a lack of six electrons. These electrons are fused in
two lone pairs at both sides of the C6 ring. The green line shows how
the bonds were cut. This is from [7] used under Creative Commons
license. b) Silvi’s et al. structure from [2] used with permission of
the publisher.

ethyne molecule.
The evidence shows that the triple bond is a double bond

with a lone pair. Also, the availability of two more bond-
ing electrons would make this lone pair to disappear into a
quadruple bond, which has been observed in dicarbon [5].

2.4 Benzene, C6H6

Figs. 2 and 3 show that the C-H and C-C bond in benzene
have two electrons each. Fig. 9a presents the electron count
for benzene. Silvi’s structure (Fig. 9b) also depicts the same
C-H and C-C electron count. None of these structures inform
the whereabouts of the six remaining electrons. It is believed
that they will go to two fused toroids (three electrons each) on
both sides of the C6 molecular plane. This is because that has
been observed in the molecular electrostatic potential of ben-
zene [9] (see Fig. 10). The aromatic stabilization energy for
benzene is 120 kJ/mol [10], which is comparable to a weak
chemical bond (for example F-F with 155 kJ/mol [5]). Thus,
it is believed that these lone pairs act as such.

2.4.1 Aromaticity

In the customary view of aromaticity, an external magnetic
field induces a molecular plane ring current in the delocal-
ized π electrons of the aromatic ring. This current will pro-
duce its own magnetic field, which will go against the ex-
ternal magnetic field. This effect will deshield protons out-
side of the molecular plane. According to Fig. 10, there are
three electrons in each toroidal lone pair; two of them are
magnetically coupled and the third one will be uncoupled.
The same structure occurs on the other side of the molec-
ular plane. Therefore, they will magnetically attract across
such plane (see Fig. 10). When an external magnetic field is
imposed on the benzene molecule, these toroidal lone pair

structures will align their magnetic momenta against the ex-
ternal magnetic field naturally resisting to lose its original and
more stable configuration. As in the customary explanation,
this effect will deshield the protons outside of the molecular
plane.

Fig. 10: Molecular electrostatic potential of benzene. The arrows
depict the coupling of the three electrons in each lone pair. When an
external magnetic field B is imposed, the magnetic moments of the
two odd electrons aligned against it as shown.This is from [9] used
with permission of the publisher.

3 Conclusions

A new experimental method to find the number of electrons
shared in a chemical bond has been applied to selected hydro-
carbon molecules. The information obtained is comparable
and/or complements the state of the art. The total distribu-
tion of electrons in four fundamental hydrocarbons has been
achieved. The long standing mystery of the ethane rotational
barrier has been explained. The interaction between bonding
electron magnets presents itself as fundamental to understand
organic molecules.
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Quantum Electrodynamics (QED) is considered the most accurate theory in the his-
tory of science. However, this precision is limited to a single experimental value: the
anomalous magnetic moment of the electron (g-factor). The calculation of the electron
g-factor was carried out in 1950 by Karplus and Kroll. Seven years later, Petermann
detected and corrected a serious error in the calculation of a Feynman diagram; how-
ever, neither the original calculation nor the subsequent correction was ever published.
Therefore, the entire prestige of QED depends on the calculation of a single Feynman
diagram (IIc) that has never been published and cannot be independently verified.

1 Introduction

According to the Dirac equation, the value of the magnetic
moment of the electron should be exactly one Bohr magne-
ton. In 1947 it was discovered that the experimental value of
the magnetic moment of the electron presented an anomaly
of 0.1% with respect to the theoretical value [1] [2]. This
anomaly was called the electron g-factor

µe = gµB = g
e~

2me
. (1)

Schwinger carried out the first theoretical calculation of
the electron g-factor obtaining a value very similar to the ex-
perimental value. This value is known as the Schwinger fac-
tor [3]

g = 1 +
α

2π
= 1.001162 . (2)

According to Quantum Electrodynamics (QED), the theo-
retical value of the electron g-factor is obtained by calculating
the coefficients of a number series called the Dyson series [4].
When Feynman, Schwinger, and Tomonaga received the 1965
Nobel Prize for the development of QED, only the first two
coefficients in the series had been calculated. The rest of the
coefficients in the Dyson series were calculated many years
later with the help of supercomputers

g = C1

(
α

π

)
+ C2

(
α

π

)2
+ C3

(
α

π

)3
+ C4

(
α

π

)4
+ C5

(
α

π

)5
... (3)

Each coefficient in the series requires the calculation of an
increasing number of Feynman diagrams. The first coefficient
in the Dyson series is the Schwinger factor and has an exact
value of 0.5. The second coefficient was calculated in 1950
by Karplus and Kroll [6], who obtained a result of -2.973.
This result was corrected seven years later by Petermann [8],
who obtained a result of -0.328, almost 10 times lower than
the previous calculation

g = 1 +
1
2

(
α

π

)
− 0, 328

(
α

π

)2
= 1, 0011596 . (4)

The error was found in the calculation of the Feynman
diagram IIc. According to the Karplus and Kroll original cal-
culation, the value of diagram IIc was -3.178 while in the
Petermann correction the value of diagram IIc was -0.564.

Fig. 1: Feynman diagram IIc.

The entire prestige of QED is based on its impressive level
of precision of the electron g-factor. Currently QED allows
the achievement of the electron g-factor with a precision of
12 decimal places of the theoretical value with respect to the
experimental value

• 2008 Gabrielse’s experimental value [13]:

1.001 159 652 180 73(28) ;

• 2018 Kinoshita’s theoretical value [14]:

1.001 159 652 182 032(720) .

The calculation of the electron g-factor is based on the
calculation of the second coefficient of the Dyson Series. The
second coefficient of the Dyson series is based on the calcu-
lation of the Feynman diagram IIc. Therefore, the calculation
of the Feynman diagram IIc performed by Karplus and Kroll
in 1950 [6] can be considered the most important calculation
in the history of modern physics.

Surprisingly, the original calculation of this diagram IIc
turned out to be wrong and was corrected seven years after its
publication. Inexplicably, both the original Feynman diagram
IIc calculation and the subsequent correction have never been
published, so the most important calculation in the history of
modern physics cannot be independently verified.
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2 Original calculation

2.1 Karplus and Kroll’s paper

In 1949, Gardner and Purcell [5] published a new experimen-
tal result for the electron g-factor of 1.001146. In response,
Karplus and Kroll performed the necessary calculations to
obtain the second coefficient in the Dyson series.

In 1950, Karplus and Kroll [6] published a value of -2.973
for the second Dyson series coefficient and a new theoretical
value of 1.001147 for the electron g-factor, in good agreement
with the experimental data

g = 1 +
α

2π
− 2.973

(
α

π

)2
= 1.001147 . (5)

The paper, published February 14 in the Physical Review
Journal 77, consists of 14 pages full of complex mathemat-
ical calculations.

On the second page of the document, the authors indicate
that to obtain the coefficient, it is necessary to calculate 18
Feynman diagrams grouped in five groups (I, II, III, IV and
V). However, on pages 3 and 4, they argue that groups III,
IV and V are not necessary. Therefore, it is only necessary
to calculate seven Feynman diagrams, identified as I, IIa, IIb,
IIc, IId, IIe, IIf. A lot of calculations are done between pages
4 and 11 that only serve to show that diagrams IIb and IIf
are not necessary either. Therefore, it is only necessary to
calculate five Feynman diagrams (I, IIa, IIc, IId, IIe).

Fig. 2: Feynman diagrams.

The calculation of diagrams IIe (0.016) and IId (-0.090)
are performed on pages 11 and 12 respectively. It follows
that [6] “The expressions for I, IIa and IIc become succes-
sively more complicated and very much more tedious to eval-
uate and cannot be given in detail here”. In other words, the
complete calculation of three of the five diagrams was never

published. On page 13, the results of the three remaining di-
agrams are shown (I = -0.499, IIa = 0.778 and IIc = -3.178).
Finally, page 14 of the paper presents the“Summary of Re-
sults” with the results of each of the five diagrams

C2 = I + IIa + IIc + IId + IIe = −2, 973 . (6)

I IIa IIc IId IIe Total
-0.499 0.778 -3.178 -0.090 0.016 -2.973

Table 1: Values of the five Feynman diagrams.

From the analysis of the results, it is evident that diagram
IIc is the dominant diagram. Diagrams I and IIa are less rele-
vant and practically cancel each other out. Diagrams IId and
IIe are the only two diagrams whose calculations are included
in the paper; however, their values are completely irrelevant.

The calculation of Feynman diagram IIc is made up of
four components:

IIc = −
323
24

+
31
9
π2 −

49
6
π2 ln(2) +

107
4
ζ(3) . (7)

Constant π2 π2 ln 2 ζ(3) Total

-13.458 33.995 -55.868 32.153 -3.178

Table 2: Value of the four components of Feynman diagram IIc.

The four components of IIc have abnormally high values
(-13, 34, -55 and 32) which surprisingly compensate for each
other, resulting in -3,178, an order of magnitude lower. It
is not possible to say anything more about the calculation of
diagram IIc because the complete calculation was never pub-
lished.

The authors indicate that [6]: “The details of two inde-
pendent calculations which were performed so as to provide
some check of the final result are available from the authors”.
That is, the authors affirm that the calculations were carried
out independently by two teams who obtained the same re-
sult, as a guarantee that the calculations were correct.

2.2 New experimental value

Six years after the publication of the Karplus and Kroll pa-
per, Franken and Liebes [7] published new and more precise
experimental data that showed a very different value for the
electron g-factor (1.001165). This value was higher than the
Schwinger factor, so the value of the second coefficient cal-
culated by Karplus and Kroll not only did not improve the
Schwinger factor, but made it worse. With the new experi-
mental data, the value of the second coefficient in the series
should have been +0.7 instead of -2.973.
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Karplus and Kroll admitted that two independent calcu-
lations had not been carried out, so it was possible that there
were errors in the calculations. According to Kroll [15]: “Ka-
rplus and I carried out the first major application of that pro-
gram, to calculate the fourth order magnetic moment, which
calculation subsequently turned out to have some errors in it,
which has been a perpetual source of embarrassment to me,
but nevertheless the paper I believe was quite influential. (...)
The errors were arithmetic (...) We had some internal checks
but not nearly enough. (...) it was refereed and published and
was a famous paper and now it’s an infamous paper”.

The history of this correction is complex and confusing.
We will now try to reconstruct this story from the published
papers and quotes from its protagonists.

3 The history of the correction

3.1 Petermann’s numerical calculation

Petermann was the first person to identify an error in the orig-
inal calculation of Karplus and Kroll. He performed a numer-
ical analysis of the five Feynman diagrams and he found that
the solution of diagram IIc was clearly wrong, since its value
was outside the limits. The rest of the diagrams were within
limits [9]: “The numerical results for the terms I, IIa, IIc, IId,
IIe in the work by Karplus and Kroll have been checked by
rigorous upper and lower bounds. Whereas every other term
fell well between these bounds, agreement could not be ob-
tained for diagram IIc. (...) The numerical value for this term
has been found to satisfy IIc = -1.02 +/- 0.53”.

Petermann published a second paper where he adjusted
his calculations [10]: “the diagram IIc is found to satisfy IIc
= -0.60 +/- 0.11 in contradiction with the value -3.18 given
by the previous authors”.

Between the publication of these two papers, Petermann
communicated privately to Sommerfield the result of another
calculation [11]: “Note added in proof. Petermann has placed
upper and lower bounds on the separate terms of Karplus and
Kroll. He finds that their value for IIc does not lie within the
appropriate bounds. Assuming the other terms to be correct,
he concludes that the result is -0.53 +/- 0.37”.

Petermann worked for three months following a numeri-
cal methodology that allowed him to narrow the margin of er-
ror in diagram IIc. Surprisingly, fourteen days after his third
numerical calculation, he made an unexpected change in his
methodology and published the exact analytical calculation,
with no margins of error.

The articles published by Petermann on the calculation of
the Feynman diagram IIc are summarized in Table 3.

3.2 Sommerfield and the Green’s functions

After the publication of the new experimental value by Fran-
ken and Liebes [7], Schwinger commissioned a 22-year-old
student named Sommerfield to redo the Kroll and Karplus

Date IIc Method Publication
28/5 -1.02 +/- 0.53 Numerical Nuclear Phys. 3
1/7 - 0.53 +/- 0.37 Numerical Phys. Rev. 107,

Note added in
proof. Private
comm. with
Sommerfield

3/8 -0.60 +/- 0.11 Numerical Nuclear Phys. 5
17/8 -0.564 Analytical Helvetica Phys-

ica Acta 30

Table 3: Petermann’s publications.

calculations. Schwinger proposed using his own method bas-
ed on Green’s functions instead of using Feynman diagrams.

According to Sommerfield’s testimony [16]: “Julian as-
signed us three problems, one of which involved the anoma-
lous magnetic moment (...). At my meeting with him, he sug-
gested that I continue the calculation of the anomalous mag-
netic moment to the next fourth order (...). Schwinger wanted
me to use the other method, while respecting gauge invari-
ance at every step. Many years later Roy Glauber told me
that the faculty was not entirely happy that a graduate stu-
dent had been given such a problem”.

In May 1957, Sommerfield sent a two-page paper to the
Physical Review Journal where he published his results [12]:
“The fourth-order contribution to the moment is found to be
−0.328 (..) Thus the result is 1.0011596”. This new theoreti-
cal value of the electron g-factor was in good agreement with
the new experimental value of Franken and Liebes.

As Schwinger states [18]: “Interestingly enough,although
Feynman-Dyson methods were applied early [by Karplus and
Kroll], the first correct higher order calculation was done by
Sommerfield using [my] methods”.

The second coefficient of the Dyson series calculated by
Sommerfield consisted of four components, the same as the
original result for Karplus and Kroll, but with very different
values:

[K&K]

C2 = −
2687
288

+
125
36

π2 − 9π2 ln(2) + 28ζ(3) = −2.973 . (8)

[Sommerfield]

C2 =
197
144

+
1

12
π2 −

1
2
π2 ln(2) +

3
4
ζ(3) = −0.328 . (9)

Sommerfield’s paper does not includethe calculations per-
formed, but the author states that [11]: ““The present calcu-
lation has been checked several times and all of the auxiliary
integrals have been done in at least two different ways”. As a
guarantee that the calculations were correct.
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Const. π2 π2 ln(2) ζ(3) Total

K&K -9.329 34.269 -61.569 33.656 -2.973

Pet. 1.368 0.822 -3.421 0.901 -0.328

Diff. 10.697 -33.447 58.148 -32.754 2.645

Table 4: Comparative components of C2.

In 1958, Sommerfield published his g-factor calculations
in the Annals of Physics [12] as part of his doctoral thesis.
If we analyze his extensive 32-page paper, we verify that he
used Green’s functions instead of Feynman diagrams. For this
reason, the calculation of the enigmatic Feynman diagram IIc
does not appear in this paper.

In the third volume of “Particles, Sources, and Fields”
published in 1989 [3], Schwinger devoted more than 60 pages
to a detailed calculation of the second coefficient of Dyson
series getting exactly the same result, but, once again, using
Green’s functions instead of Feynman diagrams.

In his 1957 paper, Sommerfield also states that [11]: “The
discrepancy has been traced to the term I and IIc of Karplus
and Kroll”. This statement about the origin of the error cannot
be deduced from Sommerfield’s calculations, since he used
Green’s functions instead of Feynman diagrams. So Som-
merfield had to receive this information from other sources
(Petermann, Karplus or Kroll).

3.3 Petermann’s definitive correction

The definitive solution to the problem was presented in 1957
by Petermann in a paper published in the Swiss journal Hel-
vetica Physica Acta [8]. Although the paper was signed by a
single author, actually the result was obtained by consensus
between the results of the Petermann’s numerical analysis,
the Sommerfield calculation of C2 using Green’s functions
and the correction of the Feynman diagrams carried out by
Kroll himself. Petermann acknowledges that the result was
obtained by consensus [8]: “The new fourth order correction
given here is in agreement with: (a) The upper and lower
bounds given by the author. (b) A calculation using a differ-
ent method, performed by C. Sommerfield. (c) A recalculation
done by N. M. Kroll and collaborators”.

The article was signed by a single author due to an in-
ternal conflict between the researchers. As Sommerfied re-
calls [16]: “In the meantime Schwingerian Paul Martin had
gone to the Niels Bohr Institute in Copenhagen and had spo-
ken to Andre Petermann, a postdoc with the Swedish theoreti-
cian Gunnar Kallen. Martin told Petermann about my work
(...) In the end, however, after both of our calculations were
completely finished they were in agreement with each other
but not with Karplus and Kroll. We agreed to cite each other’s
work when published. However, Schwinger and Kallen had
had a somewhat acrimonious discussion (...) and Kallen had

forbidden Petermann to mention my work. Petermann’s apol-
ogy to me was profuse”.

The Petermann final result for the electron g-factor was
identical to the Sommerfield result published three months
earlier

C2 =
197
144

+
1
12
π2 −

1
2
π2ln(2) +

3
4
ζ(3) = −0.328 . (10)

In the paper, Petermann states that: “We have performed
an analytic evaluation of the five independent diagrams con-
tributing to this moment in fourth order. The results are the
following (I = -0.467, IIa = 0.778, IIc = -0.564, IId = -0.090,
IIe = 0.016, Total = -0.328). Compared with the values in
their original paper by Karplus and Kroll, one can see that
two terms were in error: I differs by 0.031 and IIc differs by
2.614”.

I IIa IIc IId IIe Total

-0.467 0.778 -0.564 -0.090 0.016 -0.328

Table 5: Corrected values of the five Feynman diagrams.

Comparing the results of the calculations of the Feynman
IIc diagram carried out by Karplus and Kroll with the Peter-
mann calculations we observe the following:

[K&K]

IIc = −
323
24

+
31
9
π2 −

49
6
π2ln(2) +

107
4
ζ(3) (11)

[Petermann]

IIc = −
67
24

+
1
18
π2 +

1
3
π2ln(2) −

1
2
ζ(3) (12)

The calculation of each of the four factors in diagram IIc
is shown in the following table:

Const. π2 π2 ln(2) ζ(3) Total

K&K -13.458 33.995 -55.868 32.153 -3.178

Pet. -2.791 0.548 2.280 -0.601 -0.564

Diff. 10.667 -33.447 58.148 -32.754 2.614

Table 6: Comparative components of Feynman diagram IIc.

The corrections are huge, one or two orders of magnitude
for each component of diagram IIc. We cannot know the ori-
gin of these discrepancies because the correction calculations
were also not published.

4 Summary

The calculation of the Feynman diagram IIc can be consid-
ered the most important calculation in the history of mod-
ern physics. However, the history of this calculation is sur-
rounded by errors and inexplicable coincidences.
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• The original calculation of the Feynman diagram IIc
published in 1950 was wrong.
• Karplus and Kroll stated that the calculation had been

performed by two teams independently. This statement
was made to give guarantees about the validity of the
calculations, and yet it turned out to not be the case.
• Despite having published a wrong result, the prestige

of Karplus and Kroll was not affected at all. On the
contrary, both enjoyed brilliant careers full of awards
and recognition for their professional achievements.
• The Karplus and Kroll miscalculation was consistent

with the experimental value previously published by
Gardner and Purcell, even though that experimental va-
lue was also wrong.
• The error in the calculation was not reported until seven

years after its publication.
• The error in the calculation was detected just when a

new experimental value was published by Franken and
Liebes. The corrected theoretical value also coincided
with the new experimental value.
• Neither the original calculation of the Feynman dia-

gram IIc nor its subsequent correction has been pub-
lished to date.

Received on September 7, 2020
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A Model of the Universe Expanding at a Constant Speed

Rostislav Szeruda
Roznov p.R. 75661, Czech Republic. E-mail: rostislav.szeruda@seznam.cz

This article deals with the possibility of finding an alternative model to the expanding
universe model which can be in accordance with our astronomical observations. This is
considered an easy but not usual model of closed universe with k = 1, Λ = 0 and q = 0
which provides that mass of this universe is not constant but stepwise increasing.

1 Basic ideas and existing work

This article is based on four basic ideas:

1. Model of the universe expanding at a constant speed
[3]. Such a model of the universe is not by itself con-
sistent with observation. We observe that the rate of
expansion of our universe is accelerating.

2. The idea that the universe may be a black hole is dealt
with in [2].

3. The universe was born from a single quantum of ener-
gy. The mass of the universe, its size, and the instant
speed of particles with a non-zero rest mass are inter-
related. The idea was inspired by the book [1].

4. The relative particle size shrinking. This effect makes
it seem to us that the universe is not expanding at a
constant speed, but that the speed of its expansion is
increasing. This idea is new.

2 Constant speed expanding universe

We assume that there is no difference between what our uni-
verse is and how it appears to us. But is that true? Let us
imagine that we are in a room the walls of which are expand-
ing, and we are shrinking just as quickly at the same time.
How would this room seem to us?

Let us consider a universe expanding at a constant rate.
The elementary particles try to move at the maximum possi-
ble speed. The speed of expansion of the universe is a lim-
itation of the instantaneous velocity of the elementary parti-
cles within. Thus, particles with zero rest mass (photons) can
move as fast as the universe expands:

ȧ ≡ c (1)

where:

ȧ – speed of the universe expansion

c – speed of light in vacuum.

Further, let’s suppose that particles with non zero rest
mass have a tendency to move at the speed of light in va-
cuum too but due to their non zero rest mass they are not able
to achieve that speed. The more their speed gets closer to the
speed of light in vacuum, the higher their mass becomes and
prevents them from moving faster.

Let’s have a model of the universe described by Fried-
mann equations:

3
( ȧ
a

)2
+

3kc2

a2 − Λc2 = 8πGρ (2)

ä
a

= −
4πG
3c2

(
ρc2 + 3p

)
+

Λc2

3
(3)

where:

G – gravitational constant
ρ = ρ(t) – matter density in universe
p = p(t) – pressure in the universe
a – expansion factor of the universe
ä – acceleration of the universe expansion (ä = 0 for the

model)
k – parameter of the universe curvature
Λ – Einstein cosmological constant.

Let’s consider a Riemann space with a positive curvature,
where:

1. k = 1.
2. Λ = 0.

The Friedmann equations are simplified to:

ρ =
3c2

4πGa2 (4)

p = −
1
3

c2ρ . (5)

The density of the universe is then inversely proportional
to the square of the expansion factor a. It means that the
linearly expanding universe is possible only on the condition
that its mass is not constant but it rises proportionally to a.
The more matter the universe contains, the larger it becomes
and vice versa.

For a closed universe (k = 1), we can call the expansion
factor a as the radius of the universe. Its volume is an elemen-
tary inter-sphere with surfaces 4πa2 sin2 ψ and its thickness
a dψ (0 ≤ ψ ≤ π). We get it by integration:

V = a3 4π

π∫
0

sin2 ψ dψ = 2π2a3 . (6)
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The universe mass is then given by the equation:

Mv =
3πc2a

2G
. (7)

3 Initial parameters of the universe

Consider that the universe didn’t begin its existence with all
of the matter contained therein today, but was born from a sin-
gle energy quantum M0 in a space of the size of the minimal
quantum packet:

a0 =
~

2M0c
=

G~
3πa0c3 . (8)

Thence

a0 =

√
G~

3πc3 � 5.26 × 10−36 m . (9)

The minimum time interval then:

t0 =
a0

c
=

√
~G

3πc5 � 1.76 × 10−44 s . (10)

The first quantum mass M0 of the universe is given by the
relation:

M0 =

√
3π~c
4G
� 3.34 × 10−8 kg . (11)

The universe we describe here resembles a black hole. Its
size is directly proportional to the amount of matter it con-
tains:

a• =
2GM•

c2 (12)

a• – radius of a black hole (Schwarzschild radius, horizon of
events)

M• – mass of a black hole.

The mass of the first quantum of the universe M0 is big
enough to create a black hole, because the minimum mass of
a black hole is given by Planck’s relationship:

M•0 =

√
~c
4G
� 1.09 × 10−8 kg . (13)

Thus, the initial quantum was below the event horizon, which
began at a distance given by the minimum size of the black
hole:

a•0 =

√
G~
c3 � 1.62 × 10−35 m . (14)

A black hole of this mass is characterized by temperature:

T•0 =
~c3

8πkGM•0

= 1.13 × 1031 K . (15)

4 The evolution of the universe

Let the mass of the universe be varied by quanta correspond-
ing to the mass of the first quantum M0. Then the size of
the universe will change in discrete values, and the passage
of time won’t be continuous, but it will flow in elementary
jumps:

Mv = nM0 (16)

a = na0 (17)

t = nt0 = n
a0

c
(18)

where:
n – natural number higher then zero.

The space where the initial quantum can occur is limited
by the expansion function of the universe a. As the mass of
the universe starts to grow, a will increase and matter will
have more space to be located and to move. The total energy
of the universe is permanently zero.

The universe can have zero total energy if the total grav-
itational potential energy that holds all its components to-
gether is negative and in absolute value is exactly equal to
the sum of all positive energy in the universe contained in the
masses and movements of the particles.

The matter growth within the universe does not occur by
locally emerging new matter, but by increasing the velocity
of motion of the initial quantum of energy to a speed close to
the speed of light in vacuum:

Mv = αvm M0 =
M0√
1 − v2

m
c2

= nM0 (19)

where:
vm – instant speed of all elementary particles with non zero

rest mass. Consider that this speed is the same for all
the quantum of energy in the universe. However, the re-
sulting velocity of the particles made up of these quanta
appear to be slower as the quantum of energy can move
back and forth through space.

The instant speed of particles with rest mass is given by:

vm = ȧ

√
1 −

1
n2 = c

√
1 −

1
n2 . (20)

The older the universe is, the closer the instant speed of
particles with a non zero rest mass is to the universe expan-
sion speed.

lim
n→∞

vm = c .

At the present time, the two values are not practically distin-
guishable.

Considering quanta of energy as moving one-dimensional
objects, their size should appear smaller due to relativistic
contraction:

l =
l0
αvm

= l0

√
1 −

v2
m

c2 . (21)
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The inner observer doesn’t know that he is shrinking to-
gether with his entire planet, his solar system or his galaxy,
at the same time that the universe itself expands. Because he
measures the expansion of the universe in comparision with
himself, it will seem to him that the universe is expanding
faster than it actually is. Due to the contraction of distance,
the gravitational force will appear to him stronger. He will
attribute it to the greater mass of interacting objects.

Therefore, from the perspective of the internal observer,
the size and mass of the universe will appear:

ai = α2
vm

a0 = n2a0 (22)

Mi = α2
vm

M0 = n2M0 . (23)

The fact, that the universe expands with speed ȧ = c per-
pendicular to our three-dimensional space and to all speed
vectors in it, can be expressed by adding an imaginary mark
before the value of the expansion speed. Generally, we can
express the speed of a mass object w this way:

w = v + ıȧ (24)

where:

v – an object speed in our three-dimensional space.

The square of w can be expressed in the form:

w2 = v2 − ȧ2
(
1 −

v2

c2

)
. (25)

Now the Einstein relativistic coefficient α gets the more
general form:

αw =
1√

1 − w2

c2

= αvαȧ

=
1√

1 − v2

c2

1√
1 + ȧ2

c2

=
1√

1 − v2

c2

1
√

2
.

(26)

The first coefficient αv in the relation (26) is the standard
form of Einstein coefficient α. The second coefficient αȧ is
related with the speed of the universe expansion and it is con-
stant. So the universe will appear to us

√
2 times bigger but

not more massive.
ai =

√
2n2a0 (27)

Mi =

√
2n23πc2a0

2
√

2G
= n2M0 . (28)

The universe density will seem to be equal with the criti-
cal density:

ρi =
3c2

4πGρ( a
αȧ

)2 =
3ȧ2

8πGa2 =
3H2

8πG
= ρk (29)

where:

H – Hubble constant:

H ≡
ȧ
a

=
c
a
. (30)

The density of the universe, in case of inner observer, thus
seems to be equal to the critical density. It corresponds to our
observation. In contrast to the inflation model it happens not
only effectively. Therefore, the entire universe appears to be
non-curved - flat, even though it is closed.

5 The universe pressure

The change of the internal energy of the universe corresponds
with the change of its energy. The universe can’t exchange
heat with its surroundings. Then the first theorem of thermo-
dynamics has an easy form by which we can express a change
of the universe energy as:

dU = −pdV = c2dM . (31)

Mass movement in the direction of the expansion of the
universe and its rise with time induce a force, which has size:

F = ı2
dM
dt

c = −
3πc4

2G
. (32)

This force acts on the surface:

S = 6π2a2 . (33)

This creates a pressure that is already known from the relation
(5):

p =
−c4

4Gπa2 = −
1
3

c2ρ . (34)

The pressure in the universe is negative at a positive en-
ergy density. However, matter and radiation create positive
pressure. It thus appears rather a local phenomenon operat-
ing in three-dimensional space, which has no effect on the
four-dimensional universe as a whole.

6 The universe age and mass

Three-dimensional black holes radiate energy from their hori-
zon into the surrounding space. The horizon of a black hole
bound up to the universe produces radiation which is moving
on the surface of a four-dimensional sphere and remains part
of it. As the universe expands, it cools down in such a way
that its temperature corresponds to the current temperature of
the black hole horizon.

The temperature of the radiation emitted at the beginning
of the universe is now the same as the temperature of the ra-
diation from the event horizon. The universe thus appears as
the interior of the black body, where the radiation density is
given by:

U =
π2

15
(kT )4

(~c)3 . (35)

For the temperature of the relict radiation Tr = 2.726 K re-
sults the energy density U � 4.18× 10−14 J m3 � 0.26 eV cm3
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out of the relation (34). This corresponds to the measured
value of the density of the relict radiation 0.25 eV cm3.

If the temperature of the universe at its beginning corre-
sponded to the temperature of the black hole horizon accor-
ding to the relation (15), today it should correspond to the
temperature:

T•n =
~c3

8πkGM•n

=
T•0

n
. (36)

If the temperature of the relict radiation Tr = 2.726 K
corresponds to the present temperature of the universe and at
the same time to the temperature of the radiation from the
early universe:

n � 4.14 × 1030 . (37)

The size of the universe (from the perspective of an inner
observer) is then:

ai =
√

2n2a0 � 1.27 × 1026 m . (38)

The Hubble constant H is then according to (29):

H =
c
a
� 2.35 × 10−18 s−1 � 72.63 km s−1 Mpc−1 . (39)

This value is consistent with the value of the Hubble con-
stant determined in 2018: H = 73.52 ± 1.62 km s−1 Mpc−1.
The actual age of the universe is therefore:

t =
1
H
� 13.5 × 109 yrs . (40)

The mass of the universe (from the point of view of an internal
observer) is:

Mi = n2M0 � 5.72 × 1053 kg . (41)

7 Visible and invisible matter

We already know how the mass and size of the universe as
a whole changes. How can the mass and size of its parts
change? The mass of all objects has to change, for an internal
observer, according to:

m2 = m1
t2
t1

= m1
n2

2

n2
1

(42)

where:

m1 – object mass at time t1 (∼ n2
1)

m2 – object mass at time t2 (∼ n2
2) .

The fact that this relationship is true can be seen in the
motion of matter around the centers of galaxies. Outside the
galaxy, the mass should move with velocity according to the
standard model (see curve A in Fig. 1)

v2 =
GMg

r
(43)

where:

Mg – galaxy mass
r – distance from the galaxy center.

If the mass at the edge of the galaxies is pulled away from
the center of the galaxy due to the universe expansion and
grows with distance (Mg(r) ∼ r) according to the relation
(42), although most of this mass cannot be observed, their
velocity around the galaxy’s gravitational center remains the
same in Fig .1 – the rotation curve becomes flat from a certain
distance from the center.

Fig. 1: Dependence of orbital velocity on distance from center of
galaxy

The relation (42) describes the total amount of matter
(perceivable or non-perceivable) that increases depending on
space-time expansion. So what about the perceivable matter?
If the relation (42) also applies to photons, and we still ob-
serve a redshift, this means that the first quantum of energy
must be fragmented into a larger number of smaller quanta.
For photons:

m f 2 = m f 1
n f 1

n f 2

t2
t1

(44)

where:

n f 1 – number of photons at time t1
n f 2 – number of photons at time t2
m f 1 – photon mass at time t1
m f 2 – photon mass at time t2.

If the universe with temperature T1 at time t1 contained
n f 1 particles then it will have at time t2 temperature T2 and
will contain n f 2 particles:

n f 2

n f 1
=

p2V2

p1V1

T1

T2
=

a2

a1

T1

T2
=

t2
t1

T1

T2
=

n3
2

n3
1

. (45)

After insertion into (44):

m f 2 = m f 1
T2

T1
= m f 1

n1

n2
(46)

λ2 = λ1
T1

T2
= λ1

n2

n1
. (47)
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As the temperature of the universe is decreasing, the mass
of the photons has to decrease too. The radiation on the way
through the universe gets colder, but the number of observable
photons increases – as if the universe in the past contained the
same amount of matter as today.

The particulate mass with non-zero rest mass will grow
by (42) but simultaneously their wavelength will lengthen ac-
cording to (47). Their mass is then given:

m2 = m1
T2

T1

t2
t1

= m1
n2

n1
(48)

where:
m1 – mass of a “cold” particle at time t1
m2 – mass of a “cold” particle at time t2.

As the mass of the universe increases, the number of qua-
nta energies increases faster and thus their energy decreases.
The smallest quanta of energy now have mass:

M0n =
n2M0

n3 =
M0

n
� 8.08 × 10−39 kg . (49)

Relationships (46) and (48) describe observable mass. This
is obviously lesser than the mass objects should have by the
equation (42). Mass corresponding to the difference we can’t
directly observe, but we can observe its gravitational effect.
The matter we name: “dark matter”. This is the “missing”
matter around the galaxies.

8 Observable quantity of energy

A standardized wave packet is related with the whole universe
and it moves in direction of the universe expansion [4]:

|ψ(a; t)|2 =
1

√
2π∆at

exp
[
−

(a − ct)2

2(∆at)2

]
. (50)

The wave packet related to the universe shows a dispersion
which causes it to seem higher. For as much that the mass
of the universe increases linearly with time, the dispersion is
independent of time:

∆at =

√
(∆a0)2 +

(
∆(m0ȧ)

m
t
)2

=

√
a2

0 +

(
m0ct0

m0

)2

= a0
√

2 .

(51)

This result is in agreement with αȧ = 1/
√

2 from the re-
lation (26). The amplitude of this wave package relative to a0
is then:

|ψ(a = ct; t)|2 a0 =
1

2
√
π
� 0.282 . (52)

It means that if the universe size is a, then on quantum level
corresponding to this size it is about 28.2 % of the whole uni-
verse energy. The rest of the universe energy 71.8 % occurs
on near quantum levels.

If we are situated on quantum level at the size a from
imaginary centre of our universe, we are able to observe only
the mass situated on the same quantum level. It means that
the rest of our universe mass is not observable for us even
though it gravitationally influences our universe as a whole.

9 Cosmological shift of spectrum

Perception (measurement) of time flow was obviously differ-
ent than it is today. Physical process lasting 1 s at present time
lasted n2/n1 times longer in the past. Dimensions of mass ob-
jects were n2/n1 times bigger and photons radiated from them
had n2/n1 times longer wavelength than they have in the same
process today.

The shift of the spectrum of the radiation of the cosmo-
logical objects is defined:

z ≡
λr − λe

λe
. (53)

This relation presumes that the spectrum of cosmological sou-
rce was the same in the past and today and the cosmological
shift has happened during the travel from the source to an ob-
server in consequence of the universe expansion. If the parti-
cles that create mass had smaller mass in the past than today
then the energy radiated from them was equivalently smaller
than today. We should rather write:

z =
λr − λe−today

λe−today
. (54)

In case that the mass of elementary particles were smaller
in the past, then:

λe = λe−today
nr

ne
. (55)

According to (42), (54) and (55) results (as in classical the-
ory):

z + 1 =
λr

λe−today
=
λr

λe

nr

ne
=

ar

ae
. (56)

10 Luminosity of cosmological sources

If the red shift does not exist, the apparent luminosity l of a
cosmological source would be given by relation:

l =
L
S

(57)

where:

L – absolute luminosity of a cosmological source
S – area on which photons from the cosmological source fall

to.

The radiation energy from a cosmological source decrea-
ses in three ways:

1. The energy of the detected photons is lower then their
original energy due to red shift according to (57).
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2. Photons radiated during time interval te−today (time the
process would last today) will reach target during time
interval ∆tr:

∆tr
∆te−today

=
λr

λe−today
= 1 + z . (58)

3. We can’t forget influence of lesser particle mass in the
past:

λe

λe−today
=

√
ar

ae
=
√

1 + z . (59)

The relative luminosity l of a typical cosmological source
(cosmological candle) can be then written in the form:

l =
L

4πd2
L

=
L

4πr2
e a2(1 + z)2.5 (60)

where:

dL – distance of a cosmological source given by:

dL = rea(1 + z)1.25 . (61)

The variable re is given by [5] for k = 1 and ä = 0 by the
relation:

re = c sin


tr∫

te

dt
a

 = sin
(
ln

tr
te

)
= sin [ln (1 + z)] . (62)

The relative magnitude of stars m is defined by the Pogson
equation [6]:

m = −2.5 log
(

I
I0

)
(63)

where I0 is the bolometric reference value 2.553×10−8W m−2.
Now we can calculate value l (for suitable L) in the rela-

tion (60) and calculate the curve m = m(z) using the rela-
tion (63) (see Fig. 2). The best fit with real measured values
of relative magnitude of supernovas type Ia [7] we get for
L � 2.765 × 1028 W. It acknowledges that the model above
can correspond with our reality.

Fig. 2: Relative supernova magnitude – calculated for L = 2.765 ×
1028 W

We can construct the so-called residual Hubble diagram
– relative luminosity of supernovas related to the case of an
empty universe (Ω = 0, k = −1, q = 0) (see Fig. 3).

∆(m − M) = 5 log
(

re

re0

)
. (64)

re0 = sinh[ln(1 + z)] . (65)

Fig. 3: Residual Hubble diagram – without consideration of dust
influence

11 Conclusion

Our universe doesn’t have to be necessarily open and acce-
larating its expansion in order to be in accordance with our
present observation and knowledge. In this article, I tried to
show that our universe can be closed and uniformly expand-
ing supposing that its mass increases proportionally to its size
and analogically its size increases proportionally to its mass,
similarly as black holes do.

Received on July 22, 2020
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The paper analyzes the two-step coordinate transformations, known as the simple (or
“heuristic”) approach to the Schwarzschild metric [3, 5, 22]. The main finding of
the analysis is that such transformations are unique as they correspond to the Iwa-
sawa decomposition for the special linear group SL(2,R) with the subgroup of rota-
tion SO(1, 1)+. It is noted that all original transformations utilize de facto determinant
of unity. However, as shown, this property is related to the action invariance under
diffeomorphism for gravity. The noted group symmetry of the coordinate transfor-
mations may shed light on the “paradox” of the original approach for obtaining the
Schwarzschild metric based on the Equivalence Principle only and enable its further
study. The path to generalization in SL(4,R) is suggested.

1 Introduction

In work “What is wrong with the Schwarzschild coordinates”
[5], J.Czerniawski demonstrated the two-step coordinatetran-
sformations from the Minkowski to the Schwarzschild metric.
Recently, Christillin and Morchio [3] slightly updated the ap-
proach by clarifying the step of the transformation from the
Gullstrand-Painlevé (G-P) to the Schwarzschild metric. With-
out this, the original path would not be consistent. Even if
the approach of obtaining the Schwarzschild metric via the
“heuristic” to be considered with certain cautiousness, the
original work was over-cited, bringing the substantial interest
in this topic [1,3,7,14,22]. The approach recently was called
the “inherent paradox of GR” [3], and the original question
has not been answered. This paper aims to walk through the
approach with maximum formality to present the correspon-
dence and possible path to the generalization.

2 Preliminaries and Notation

Diffeomorphism of a manifold M by definition is a smooth
invertible map φ : M → M such as the inverse map φ−1

be smooth as well. General diffeomorphism can be thought
as the deformation that does not preserve the metric on M.
The map φ : M → M of the transformation from affine η
to curvilinear g coordinates may be considered as a vector-
valued function of n-variables. By retaining the requirements
of smoothness, the transformation may be defined in terms of
partial derivatives in the form of the Jacobian matrices that
constitute second rank tensors

Jµa =
∂xa

∂xµ
Jµa =

∂xa

∂xµ
. (1)

The barred symbols denote the curvilinear coordinates, and
unbarred are for flat coordinates∗. The metric tensor is

gµν = JµaJνb ηab gµν = JaµJbνηab (2)

∗Since the order of indexes for J in the notation is arbitrary, it is chosen
such as the covariant form coincides with the “vierbein” or tetrad. So, one
can treat them as the same objects.

where indexes are (0, 1, 2, 3) and η has the signature (− +

+ +). The transformation is non-singular J , 0, the matrix
is bijective, and the inverse transform represents the simple
inverse matrix J = J−1. If the order of indexes as per (1),
the equation can be written in the matrix notation (for both
covariant and contravariant forms) as

g = J · η · JT . (3)

The capital letters are used for matrices excluding the metric
tensor g, and Minkowski η. In matrix notation, the form (co-
variant or contravariant) will be specified in the text. For the
spherical symmetry case, the Jacobian matrices are 4 × 4[

J 0
0 I2

]
.

Therefore, J can be written as 2 × 2 for the temporal and ra-
dial coordinates only, dropping the symmetric angular and
tangential terms that are not affected by transformations. The
spherical symmetry provides the unique case to consider the
transformations as being “two-dimensional” with certain lim-
itations. Though later in Section 7, the four-dimensional form
is reviewed. Natural units (c = 1) are employed through-
out. As a matter of choice, the common hyperbolic notation
is used for the radial escape velocity for shortness

v = th(β) =

√
rg
r

sinh(β) =
v

√
1 − v2

γ = cosh(β) =
1

√
1 − v2

=
1√

1 − rg
r

3 Step one: from Minkowski to Gulfstrand-Painlevé

The first coordinate transformation as given in [5, 22] is

dx1 = dx1
− vdx0 dx0 = dx0 (4)
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where v is the radial escape velocity of the gravitational field
or the river velocity [7]. The equations have the differen-
tial form; therefore, the term “Galilean transformations” can
be used with certain cautiousness. Despite the similarity in
the look, the latter is defined as the affine transformations of
the coordinates∗. According to [3,5], this transformation em-
bodies the Equivalence Principle (EP) and therefore plays the
central role in the approach.

The Jacobian matrix for the first transformation as per
definition (1) is then

J(1)
µa =

[
1 v
0 1

]
=

[
1 th(β)
0 1

]
Jµa

(1) =

[
1 0
v 0

]
=

[
1 0

th(β) 0

] (5)

where v can be taken with an arbitrary ± sign as not affect-
ing the final transform [5, 14]. Such transformation can be
classified as the spacetime shear deformation. It obviously
represents shear mapping transformation on the hyperbolic
plane. The value of “shear” is given by the relativistic veloc-
ity v = th(β) and the (imaginary) shear angle is β or rapidity.
Further, the term shear is used for this transformation for the
current purposes leaving aside its physical significance and
the relation to the EP. It leads to the G-P coordinates with the
metric tensor which has following covariant form

g1 = J(1) · η · J(1)T =

[
−

(
1 − v2

)
v

v 1

]

=

 −
(
1 − rg

r

) √
rg
r√

rg
r 1

 .
(6)

4 Step two: to the Schwarzschild metric

The second coordinate transformation J2 is pull-back from
the comoving G-P frame to the coordinate frame of reference
redefining time coordinate. The covariant form is

J(2) =

[
1 0
b 1

]
(7)

where b is the arbitrary parameter †. The total coordinate
transformation is the product of both transforms

J = J(2) · J(1) =

[
1 0
b 1

]
·

[
1 v
0 1

]
=

[
1 v
b vb + 1

]
(8)

∗The differential form of the Lorentz transformations has the same form
and obviously Λ η ΛT = η is valid for the differential form. For more on
differential transformation see [8].

†As suggested in [3] “the requirement to eliminate the off-diagonal term
of the P-G metric is generally accomplished just by redefining time in an ad
hoc way”.

that leads to the metric tensor

g = J · η · JT =

[
−(1 − v2) (v2 − 1) b + v

(v2 − 1) b + v (vb + 1)2 − b2

]
. (9)

Choosing b in the way to eliminate the off-diagonal terms one
obtains the Schwarzschild metric

gµν =

 −
(
1 − v2

)
0

0
(
1 − v2

)−1


=

[
−cosh−2(β) 0

0 cosh(β)

]
.

(10)

After b has been defined, the second transformation becomes

J(2)
µa =

[
1 0

sinh(β) cosh(β) 1

]
Jµa

(2) =

[
1 sinh(β) cosh(β)
0 1

]
.

(11)

As a result, the parameter ±b = vγ2 = sinh(β) cosh cor-
responds to the proper velocity of free-falling observer in the
Schwarzschild metric. It stands in the well-known expression
for the time coordinate transformation between the G-P and
the Schwarzschild metrics.

5 S L(2,R) with the Lorentz signature

The remarkable property of all Jacobian matrices is that they
all have the unity determinant‡. In order to classify them as
elements of a group, one may note that matrices are defined
on the Minkowski basis (space-time or the hyperbolic plane).
In fact, the Jacobian matrices can be expressed using an imag-
inary value for the time coordinate as

Jµa =
∂xa

∂xµ
=

 ∂x0
∂x0

1
i
∂x1
∂x0

i ∂x0
∂x1

∂x1
∂x1

 . (12)

In such a way, the Jacobian matrices constitute the subgroup
of SL(2,C) with only two imaginary off-diagonal elements in
the matrices. Let’s denote this group as SL(2,C)∗ ∈ SL(2,C).
Then, considering only the real parts, there is one-to-onemap-
ping of Z′ ∈ SL(2,C)∗ to Z ∈ SL(2,R) as follows

Z′ =

[
a −i b
i c d

]
→ Z =

[
a b
c d

]
. (13)

Ignoring the imaginary unit, in the way as it is done for the
Minkowski time coordinate, allows one to use the real val-
ues in the matrix as per the defined mapping to SL(2,R). In-
troduced in such a way, the group SL(2,C)∗ is isomorphic
to SL(2,R). This mapping is multiplicative and a bijection.
Hence,alloperations in SL(2,R) can betranslated to SL(2,C)∗

and vice versa using this isomorphism. Such mapping allows
one to utilize SL(2,R) on the Lorentz/Minkowski basis H1(2),
instead of its default, the Euclidean basis R2.

‡To be consistent, the fact is taken a priori “knowing” that the resulting
metric has |g| = |η| = −1. Section 8 reviews a physical ground for this.
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6 The group decomposition

The Iwasawa decomposition is the factorization of a semisim-
ple Lie group to the product of three closed subgroups as K
× A × N (“compact, Abelian and nilpotent”) [9, 13]. In the
application to SL(2,R) it is well studied [4, 12], and in terms
of the matrices is even obvious. Importantly, it implies the
uniqueness of the factorization of the element of the group to
the product of three subgroups, those elements are N is upper
triangular, A is diagonal, and K is orthogonal matrices, the
spatial rotations K ∈ SO(2).

One may see that using the mapping (13), the elements of
these three groups become the matrices of the following form

N =

[
1 b
0 1

]
A =

[
k 0
0 k−1

]
K =

[
cosh(α) sinh(α)
sinh(α) cosh(α)

] (14)

with k > 0. Since the mapping results in the complex conju-
gation of the angle of rotation (β→ iβ), the foremost notable
distinction from the decomposition of SL(2,R) is that K be-
comes the group of hyperbolic rotations SO(1, 1)+, that is the
pure Lorentz boost.

The covariant form of J(1), and contarvariant J(2) are ∈ N
(upper triangular matrices). Therefore, the decomposition
can be applied to contravariant J(1) and to contarvariant J(2)

which are lower triangular. In fact, they are explicitly the
Iwasawa decomposition J(2) = A · K · N (covariant form) and
J(1) = N · A · K (contravariant form). The latter is as follows

Jµa
(1) =

[
1 0

th(β) 0

]
=

[
1 −sinh(β) cosh(β)
0 1

]
·

·

[
cosh(β) 0

0 cosh−1(β)

]
·

[
cosh(β) sinh(β)
sinh(β) cosh(β)

]
.

(15)

Notably, that N in the factorization becomes already known
matrix N = J−1

(2) (11). The resulting transformation is

J = J(2) J(1) = A · K (16)

where J(2) J(1) has the form of the product of two upper and
lower triangular matrices N1 · N2. And since K ≡ Λ is the
Lorentz boost, that leaves the original metric invariant η = Λ ·

η ·ΛT, then K drops being at the right side of (16). Therefore
the resulting Schwarzschild metric

g = J · η · JT = A · η · AT (17)

is obviously defined by the diagonal matrix A∗

Aνb =

[
cosh(β) 0

0 cosh−1(β)

]
∗It coincidences with the Schwarzschildian vierbein or “metric

squared”.

Aνb =

[
cosh−1(β) 0

0 cosh(β)

]
. (18)

Therefore, all approach can be represented as just the diago-
nalization of the first shear transformation matrix.

Proposition: If J1 is the shear transformation in the con-
travariant form with the shear value v, then its Iwasawa de-
composition with the mapping (13) provides the diagonal ma-
trix A that uniquely represents the Jacobian matrix J that maps
the Minkowski to the Schwarzschild metric. The process is
that A normalizes N, or A is the unique diagonal form of the
original shear transformation†.

7 The generalization to the Cartesian coordinates

The suggested approach can be generalized to four-dimensio-
nal spacetime in the Cartesian coordinates. The hyperbolic
shear parameter v is non-Lorentz invariant four-vector v =

(1, vx, vy, vz), and its norm is ||v|| = cosh(β)−1. It shall consti-
tute the column of contravariant shear transformation in the
Cartesian coordinates‡

Jνa(1) =


1 0 0 0
vx 1 0 0
vy 0 1 0
vz 0 0 1

 . (19)

The KAN decomposition of this form provides the unique Ja-
cobian matrix for the metric as described in the Proposition.
In case if vy = vz = 0, implying that one direction via co-
ordinate x is considered, then it converges to the reviewed
case above. It is known that the Iwasawa decomposition can
be also applied to elements of SL(4,R) group [4, 19]. The
straightforward approach is to use the Gram–Schmidt pro-
cess that leads to QR decomposition, from which the KAN
form can be obtained [19]. However, the more elegant way
is to use the Givens rotations, which are literally spatial rota-
tions of the SO(3) group. Obviously, the shear vector in the
Cartesian coordinates can be represented as

v = (1, th(β) sin(θ) cos(φ), th(β) sin(θ) sin(φ), th(β) cos(θ))

where θ and φ are the angles between vector v and the coor-
dinate axes. Hence, two sequential spatial rotations Rz(φ) ∈
SO(3) and Ry( π2 − θ) ∈ SO(3) reduce the matrix to the case
above, eliminating second and third components (vy and vz).
Treated in such way, a general transformation in four-dimen-
sional spacetime (19) is {SL(2,R),SO(3)}.

The details and the analysis of the decomposition of (19)
lay out of the scope of this work and can be an interesting
topic for future research.

†NAK, as shown, results in contrvariant form of A, similarly KAN de-
composition gives the covariant form of A.

‡Note, the Jacobian’s column vectors’ signature becomes opposite to the
metrics signature (η and g) as per definition of SL(2,C)∗ above.
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8 Discussion

At the critical angle, a possible weak point of the original
path should be also noted. When one uses “one coordinate
change” transformations (5) and (7), in fact, the additional
condition on the determinant |J| = 1is taken “under the hood”.
During the classical derivation of the Schwarzschild metric in
the GR, |g| = −1 is the obtained results from the field equa-
tions (note: even with Tµν = 0). Contrary to that, the re-
viewed “heuristic” approach uses |J| = 1 that explicitly leads
to |g| = −1 a priori knowing the resulting metric.

Once this principle physically has solid ground, then the
above parallel can be considered fundamental. Without this,
one may still regard this approach as a coincidence. From
the prospect of the physics, the value of g00 for the Schwarz-
schild metric can be obtained from the Newtonian gravitation
[15] or the equivalence principle and red-shift experiments
[20, 21]. If one would a priori know that |g| = −1, then the
Schwarzschild metric easily follows by defining grr = −g−1

00 .
From another perspective, the fact is that the spherically

symmetric static gravitational field has explicitly |g| = −1
cannot be just a coincidence but may potentially signal a hid-
den symmetry attached to such property.

Consider the action in the Minkowski spacetime S 1(x) =∫
L(x, ẋ) dV4 and in the spacetime with the curvature S 2(x) =∫ √
−gL(x, ẋ) dV4 expressed by the Lagrangian density. The

diffeomorphism invariance of the action would require that
under the map φ : S 1 → S 2 = S 1 and therefore |g| = −1. On
the other hand, the action invariance under diffeomorphism
implies the equivalence of the conservation of energy, mo-
mentum, and the continuity equations for the system.

9 The conclusion

The analyzed approach shows the striking correspondence
between coordinate transformation from the Minkowski spa-
cetime to the Schwarzschild metric and SL(2,R) group using
the mapping to the Lorentz base. The original “heuristic” ap-
proach to the Schwarzschild metric can be considered via the
unique group decomposition by obtaining the first coordinate
transformation’s corresponding diagonal form.

SL(2,R) group has already appeared in the application to
the gravitation metric in [10] and in two-dimensional quan-
tum gravity [17]. This review gives a more classical and intu-
itive outlook on the group’s correspondence to the coordinate
transformations of the metrics.

The work outlines a critical point of the original approach,
though suggesting further prospects for the method general-
ization and research. The reviewed case brings an additional
question on the action invariance under diffeomorphism for
the gravity. The group symmetry of the reviewed coordinate
transformations may probably shed light on the resolution of
the mentioned “inherent paradox of GR”.
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A Wave Representation for Massless Neutrino Oscillations:
The Weak Interaction Transmutes the Wave Function

Edward R. Floyd

10 Jamaica Village Road, Coronado, California 92118, USA. E-mail: floyd@san.rr.com

There are solutions of the Klein-Gordon equation for the massless neutrino that pro-
duce massless neutrino oscillation of flavor. These solutions serve as a counterexample
to Pontecorvo, Maki, Nakagawa, and Sakata theory for neutrino oscillation of flavor,
which implies neutrinos must have mass contrary to the standard model. We show that
the wave function for the massless antineutrino for an inverse β decay (IBD) is a su-
perposition of two independent solutions of the Klein-Gordon equation. One solution
represents the latent incident wave upon an IBD. The other solution represents the latent
reflected wave from the IBD. This superposition renders a compound modulated wave
function with regard to amplitude and phase modulations. This compound modulation
is shown to facilitate neutrino oscillation that may be massless and, therefore, consistent
with the standard model. Extra to a massless counterexample, the weak interaction is
shown to transmute the wave function during an IBD by changing the amounts of the
latent incident and latent reflected wave functions that are allocated to the superposition.

1 Introduction

The Pontecorvo, Maki, Nakagawa, and Sakata (PMNS) the-
ory for oscillation of neutrino (ν) flavor implies that the neu-
trino has a finite mass in contrast to the standard model [1]–
[4]. PMNS theory, which was developed in the mid-twentieth
century in the absence of a contending theory, soon became
preeminent regarding neutrino oscillations including its im-
plication that the neutrino must have a finite mass in order
to oscillate. A counterexample to PMNS theory now exists:
the quantum trajectory representation of quantum mechan-
ics had predicted in 2017 that massless neutrino oscillation is
an alternative possibility that is consistent with the standard
model [5]. However, the quantum trajectory representation
is presently arcane, for it is couched in a quantum Hamilton-
Jacobi formulation [5]–[17]. As a result, PMNS theory has
maintained its preeminence on neutrino oscillation. A way to
overcome this preeminence is to describe massless neutrino
oscillation in the more familiar wave function representation,
which would be more accessible to a much broader audience.
Our objective in this paper is to provide such.

A wave function representation that is a counterexample
to PMNS theory is attainable. This theoretical counterexam-
ple renders massless neutrino oscillation while also showing
that PMNS theory is not the exclusive explanation of neu-
trino oscillation. In this paper, we show that there are math-
ematical solutions of wave equations, which to the best of
our knowledge have been used only a few times [18]–[23] to
describe wave phenomena, and which invite further investiga-
tion. We study massless neutrino oscillation with these math-
ematical solutions of the Klein-Gordon equation for a mass-
less antineutrino. This mathematical solution is synthesized
by the superpositional principle from two independent solu-
tions of the Klein-Gordon equation for an antineutrino before

encountering a charged current interaction. The two solutions
are the latent incident solution and the latent reflected solu-
tion. The “quantum action” of the Klein-Gordon equation is
composed of both independent solutions of the Klein-Gordon
equation [14] and can be seen as the order ~0 term of the
quantum action of QFT.

Extra to the initial goal of adducing a massless counterex-
ample, the behavior of the synthesized solution also gives in-
sight into the weak interaction (weak force). A byproduct
of this investigation shows that the weak interaction with-
out causing any exchange of energy can transmute the Klein-
Gordon solution from a synthesized solution to a plane-wave
solution.

The particular charged current interaction that we exam-
ine herein is the inverse beta decay (IBD) where [24]

νe + p
W+ boson exchange
−−−−−−−−−−−−−−−−−→ e+ + n, (1)

in which the antineutrino ν participates as an electron antineu-
trino νe. The wave function for ν is specified by ψ. When νe

arrives at the point qb ready for IBD absorbtion in (1), its ψ is
assumed in this ab initio calculation to be then a traveling
complex-exponential plane wave exp(ikq) with wave num-
ber k, in cartesian coordinate q, and tacitly with amplitude 1.
While the ab initio calculation develops flavor oscillations for
a massless ν, the conventional terminology “neutrino oscilla-
tion” is retained for referencing the oscillation phenomenon
herein.

An outline of the rest of this paper follows. In §2 we de-
velop a model by an ab initio computation for massless neu-
trino oscillation for an IBD. The wave function for the neu-
trino is synthesized from the latent solutions for the incident
and reflected wave functions by the superpositional princi-
ple. The latent incident and latent reflected wave functions are
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traveling complex-exponential plane waves that are indepen-
dent one-dimensional solutions of the Klein-Gordon equa-
tion. This synthesized solution is shown to be compoundly
modulated with regard to amplitude and phase. This com-
pound modulation induces periodic nonuniform propagation
that in turn facilitates neutrino oscillation. The amplitude
and phase modulations are individually analyzed. We ap-
ply the same modulation analyses to the wave function’s spa-
tial derivative. In this wave function representation for mass-
less oscillation, the weak interaction changes the synthesized
wave function to a traveling complex-exponential plane-wave
solution, which is then ready for absorption by the IBD pro-
cess. In §3, we examine selected didactic examples. The ex-
amples show that the individual contributions of phase mod-
ulation and amplitude modulation complement each other.
Where one modulation is at a peak, the other is at a null. The
examples also show that the compound modulations of the
wave function and its derivative supplement each other. That
is where the amplitude modulation increases dilation in one, it
decreases it in the other. And where phase modulation rotates
the phase of one clockwise, it rotates the other’s phase coun-
terclockwise. In §4 a brief discussion is presented. Together,
the complementing and supplementing are shown to facilitate
periodic nonuniform propagation that permits massless neu-
trino oscillation. Findings and conclusions are presented in
§5.

2 Ab initio calculation

The one-dimensional stationary Klein-Gordon equation
(SKGE) for an antineutrino with mass m and for the Cartesian
dimension q is a second-order, linear, homogeneous ordinary
differential equation given by [25]

−~2c2 ∂
2ψ(q)
∂q2 +

(
m2c4 − E2

)
ψ(q) = 0 (2)

where ~ is Plank’s constant, c is speed of light and E is energy.
As such, the superpositional principle applies to the SKGE’s
solutions. The inertial reference frame for describing ψ of (2)
is the frame for which the target proton of the IBD is at rest.
This makes E dependent on the dynamics of the target pro-
ton. The threshold energy for executing an IBD is Ethreshold =

1.806 MeV for νe and progressively greater for the analogous
charged current interactions for νµ and ντ. Herein, it is always
assumed the ν has energy greater than the threshold energy.
The notation ψ denotes that the wave function of the antineu-
trino is a solution of (2) but does not specify whether it is unis-
pectral, ψ = exp(ikq), or bispectral ψ2. Eq. (2) remains well
posed should m = 0 in agreement with the standard model.
Studying the case m = 0 is sufficient to render a massless
counterexample to PMNS. For antineutrino energy E and nil
mass, a set of independent solutions sufficient to solve (2)
may be given by {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} where the
wave number k = E/(~c).

The incident antineutrino is assumed to propagate in the
+q direction toward the target proton of an IBD, while any
reflection from an IBD would propagate in the −q direction.
The solution ψ = exp(ikq) is a unispectral wave function with
one spectral component, +k (the solution of the homogeneous
SKGE is defined to within a constant in phase). Its derivative
∂qψ = ikψ is also unispectral and is displaced in phase from
ψ1 by a constant π/2 radians. The amplitude of ∂qψ relative
to that of ψ is multiplied by the factor k. Thus, the unispectral
ψ(q) displays uniform rectilinear motion, which presents a
constant relationship

∂qψ
/
ψ = ∂q ln(ψ) = ik (3)

to any encountered current interactions. The constant charac-
ter of (3) is expected, for ψ(q) is an exponential of the linear
variable q. Uniform rectilinear propagation precludes flavor
oscillations.

Let the incident antineutrino to an IBD have a bispectral
wave function ψ2 with spectral components given by wave
numbers {+k,−k}. We can synthesize a bispectral ψ2 by the
superpositional principal from the set {exp(+ikq), exp(−ikq)}
of independent solutions for the SKGE. The incident bispec-
tral ψ2 may be presented in a few representative forms as [5]

ψ2 =

bispectral solution of SKGE by superpositional principle︷                                  ︸︸                                  ︷
α exp(+ikq)︸        ︷︷        ︸

latent incident wave

+ β exp(−ikq)︸        ︷︷        ︸
latent reflected wave

(4)

= (α − β) exp(ikq)︸              ︷︷              ︸
traveling wave

+ 2β cos(kq)︸      ︷︷      ︸
standing wave

= (α + β) cos(kq) + i(α − β) sin(kq)︸                                     ︷︷                                     ︸
coherent standing waves

(5)

= Aψ exp(i Pψ),︸          ︷︷          ︸
compoundly modulated traveling wave

(6)

where all forms (4)–(6) are solutions of the SKGE. In (6), ψ2
is compoundly modulated for its amplitude Aψ and phase Pψ

are modulated as given by

Aψ =

amplitude modulation︷                              ︸︸                              ︷
[α2 + β2 + 2αβ cos(2kq)]1/2

and

Pψ =

phase modulation [5]︷                      ︸︸                      ︷
arctan

(
α − β

α + β
tan(kq)

)
.

Eqs. (4)–(6) for the antineutrino’s wave function are all
representations of a wave function synthesized by the super-
positional principle. As such, each individual equation of (4)
through (6) represents a synthesized solution of the SKGE
consistent with the orthodox interpretation of quantum me-
chanics. The coefficients α and β respectively specify the
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amplitudes for the latent incident and reflected waves asso-
ciated with an IBD. Propagation of the latent incident wave
in the +q direction implies that α2 > β2. The coefficients α
and β are normalized by

α2 − β2 = 1 (7)

consistent with one νe in (1) for an IBD (it is also the normal-
ization used in the quantum trajectory representation). Know-
ing the value of one coefficient implies knowing the value of
the other by normalization, (7). If the conditions α > 1 and
0 < β2 = α2 − 1 exist, then bispectral propagation in the
+q direction follows. The bispectral propagation for ν con-
sistent with (4)–(6) is nonuniform, albeit still rectilinear, in
the +q direction. As such, ψ2(q) may also be considered to
be the wave function synthesized by the superposition of the
latent incident wave and the the latent reflected wave upon
each other. Note that herein the coefficients could have been
expressed hyperbolically by α = cosh(γ) and β = sinh(γ)
consistent with (7).

For completeness, if the incident and reflected waves were
neither latent nor superimposed, then the wave function rep-
resentation would be in a two-dimensional space {qincident,
qreflected} given by

ψ(qincident, qreflected) = α exp(+ikqincident)

+ β exp(−ikqreflected),

which is not equivalent to ψ2(q) of (4)–(6). Eqs. (4)–(6) in-
dividually show the superpositioning to describe ψsuperimposed
in one-dimensional space by a single independent variable
q. Also for completeness, a literature search for “reflected
neutrinos” on the web has found nothing for reflected neutri-
nos from charged current interactions per se but did find an
unpublished report regarding reflections of antique neutrinos
from the big bang [26].

Let us examine the compoundly modulated traveling wa-
ve (6) in special situations for didactic reasons. Should β =

0, then the amplitude Aψ and phase Pψ would respectively
become

Aψ

∣∣∣
β=0 = [α2 + β2 + 2αβ cos(2kq)]1/2|β=0 = α|β=0 = 1 (8)

and

Pψ

∣∣∣
β=0 = arctan

(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
β=0

= kq. (9)

Then, (6) would represent unispectral propagation as expec-
ted. Next, we consider the case (|β| = α) < {0 ≤ β2 = α2 −

1} and in violation of the normalization (7). Nevertheless,
|β| = α is a limit point for β → ∞. Should ±β = ∞ (i.e.
where a latent total reflection would preempt any IBD), then
the amplitude would reduce to trigonometric identities with
scaling factor 2α given by [27]

Aψ

∣∣∣
β=α

= 2α
(

1 + cos(2kq)
2

)1/2

= 2α cos(kq) (10)

and

Aψ

∣∣∣
−β=α

= 2α
(

1 − cos(2kq)
2

)1/2

= 2α sin(kq) (11)

consistent with (5). The corresponding phase would be

Pψ

∣∣∣
β=α

= arctan
(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
β=α

= 0 (12)

and

Pψ|−β=α = arctan
(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
−β=α

=
π

2
(13)

also consistent with (5). Then, in either case and consistent
with (4), (6) would represent a scaled standing cosine wave
for β = α and a scaled standing sine wave for −β = α. Stand-
ing waves, while mathematically permitted, would have rel-
ativistic issues in addition to the aforementioned total reflec-
tion issue. Thus, the representation for the wave function (6)
covers all solutions of physical interest of (2) propagating in
the +q direction with normalization α2 − β2 = 1 (7).

If the neutrino and antineutrino are considered to form a
Majorana pair of particles (an unsettled question), then the
wave functions for the neutrino and antineutrino would be
complex conjugates of each other. Under the Majorana hy-
pothesis, the latent reflected wave β exp(−ikq) in (4) would
be the wave function for a neutrino with amplitude β. In this
case, (6) would represent the superposition of the wave func-
tions of the Majorana neutrino and antineutrino upon each
other. This is consistent with Pontecorvo’s proposal [28] that
a mixed particle consisting of part antineutrino and part neu-
trino may exist. Furthermore, the set of independent solu-
tions {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} = {ψ, ψ} that solve the
SKGE, form a pair of Majorana solutions that are sufficient
to solve the SKGE. Any solution, e.g. (4)–(6), of the SKGE
formed from this pair by the superpositional principle would
itself have a Majorana partner that would also be its com-
plex conjugate. While the wave functions given by (4)–(6)
are Pontecorvo “mixed” solutions [28], they are still speci-
fied herein as ψs of the ν as determined by the directional
characteristic (+q) of the latent incident wave.

Let us briefly discuss how this ab initio calculation de-
scribes the evolution of the bispectral ψ2 during consumma-
tion of an IBD. The weak interaction is not a “force” per
se. It does not cause an energy exchange among its partici-
pants. Rather, for purposes of this paper, it enables beta decay
where a neutron decays into a proton, electron, and neutrino,
which is the inverse of an IBD (1). Let us consider that the
weak interaction occurs in a black box over the short range
of the weak interaction between qa, where the antineutrino
initially encounters the weak interaction, and qb where the
antineutrino is absorbed by the target proton. The short range
of the weak interaction is given by qb − qa ≈ 10−18 m, a
value much smaller than the radius of the proton. Within the
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black box qa < q < qb, the same set of independent solutions
{exp(+ikq), exp(−ikq)}, which are sufficient to solve (2), are
used to describe ψ2 while it is subject to the forceless weak in-
teraction that precludes any energy exchange. In the absence
of an energy exchange, the wave number k remains a con-
stant in (4)–(6) during νe’s transit of the black box from qa to
qb. But the coefficients {α, β} are changed! During the transit
of νe from qa to qb in this ab initio calculation, the forceless
weak interaction by W+ exchange smoothly changes coeffi-
cients {α, β}|qa → {1, 0}|qb while continuously maintaining the
normalization α2 − β2 = 1 of (7). In other words, the coef-
ficients while inside the black box boundaries become vari-
ables {α(q), β(q)}qa≤q≤qb that are explicitly still subject to the
normalization

α2(q) − β2(q) = 1, qa ≤ q ≤ qb,

which is consistent with (7). A smooth transition of the coeffi-
cients from {α(qa), β(qa} to {1, 0}|qb with C1 continuity would
be sufficient to maintain C1 continuity of the νe’s wave func-
tion as it evolves, during its transit of the black box with
constant E and wave number k, from a bispectral ψ2(qa) to a
unispectral exp(ikqb) ready to be absorbed. At qb, the output
transmitted wave function of the black box will have become
a unispectral wave function as given by

ψ2(qa) = α(qa) exp(ikqa) + β(qa) exp(−ikqa)

= [1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)

q→qb, ∴ β(q)→0
−−−−−−−−−−−−→ exp(ikqb), qa ≤ q ≤ qb

(14)

under the influence of the exchange of the W+ boson between
the proton and antineutrino. In the extended black box, a pro-
visional form for β(q) with C1 continuity during the transmu-
tation of ψ from ψ2(qa) to exp(ikqb) in (14) is offered by

β(q) =
β(qa)

2

[
1 + cos

(
q − qa

qb − qa
π

)]
, qa ≤ q ≤ qb.

Again, no energy is exchanged between the proton and
antineutrino by the W+ boson exchange. (If the transmitted
wave function at qb had not been unispectral exp(ikq), then
its initial values at qa would have been flavor incompatible
ν(qa) , νe(qa), which would have preempted an IBD. Con-
summated IBDs are rare events.) The transmitted unispec-
tral wave function exp(ikq) is the wave function for νe in (1).
The normalization α2 − β2 = 1 (7) specifies that the value of
the amplitude of the transmitted unispectral wave function is
1, consistent with the assumptions for νe’s wave function for
(1). The transmitted unispectral νe is compatible with being
absorbed by the proton consistent with (1). The function of
the black box in the IBD process (to change the input bispec-
tral wave function to an output unispectral wave function of
amplitude 1 in a forceless manner for νe’s E never changes)
has been completed with the νe positioned at qb, ready to be

absorbed with the target proton. The W+ boson exchange
has now been completed. The IBD carries on. The IBD
completes consummation consistent with (1) where its par-
ent particles, the proton and the unispectral antineutrino, are
absorbed, and the IBD emits its daughter products, a positron
and a neutron. The latent transmission coefficient T and re-
flective coefficient R of the black box for the weak interaction
process are the expected

T =
α2 − β2

α2 =
1
α2 and R =

β2

α2 , (15)

where the coefficients {α, β} are their pre-weak interaction
values.

Flavor compatibility for an IBD is determined by the bou-
ndary conditions {ψ, ∂qψ} at the black box’s input barrier in-
terface qa. The black box in this ab initio calculation ren-
ders a transmitted unispectral wave function exp(ikq), if and
only if ψ2 has proper IBD initial values for the black box,
{ψ, ∂qψ}q=qa .

Future research may refine the aforementioned descrip-
tion of the evolution of the antineutrino’s wave function in
the black box. If so, the principle of superposition of the
wave functions of the latent incident and the latent reflected
waves could still describe a generalized (14). For example,
future research may find that the transmitted wave function
of energy E from the black box should have coefficients {(1 +

β2
b)1/2, βb}|q=qb with β > 0 for IBD absorption of the antineu-

trino. For a successful IBD, the black box model of the weak
force would then transmute the incident wave function de-
scribed by

[1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)
q→qb, ∴ β(q)→βb
−−−−−−−−−−−−−→

(1 + β2
b)1/2 exp(ikqb) + βb exp(−ikqb)

(16)

where qa < q ≤ qb. This generalizes (14) and would still
describe a counterexample permitting massless neutrino os-
cillation. Eqs. (14) and (16) are analogous to the invariance
of the Schwarzian derivative under a Möbius transformation
in the quantum trajectory representation [14], [29].

Chirality and helicity are the same for massless leptons
propagating with speed c. The quantum measure of helic-
ity, normalized over a cycle of nonuniform propagation, for
a massless antineutrino before encountering the black box,
q < qa, would by (4)–(6) be α2−β2 = 1, which is also the nor-
malization (7). Upon completing the transit of the black box
at qb, the antineutrino, with ψ = exp(ikqb), would still have
the helicity value of 1 conserving helicity (chirality). Thus,
the interaction of the massless antineutrino with the black box
would be reflectionless. This is consistent with (14) and (16).
The concept of superimposing a latent reflected wave and the
latent incident wave upon each other to achieve reflectionless
transmission had initially been applied to an acoustical ana-
logue [20].
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The representation of ψ2 by (6) may be derived from the
trigonometric form of (5) by using either Bohm’s scheme for
complex wave functions to render ψ2’s amplitude and phase
[30] or by vector analysis. The amplitude Aψ = [α2 + β2 +

2αβ cos(2kq)]1/2 is recognized as a re-expressed law of cosi-
nes where the exterior angle argument 2kq is the supplement
of π − 2kq or

Aψ = [α2 + β2 − 2αβ cos(π − 2kq)]1/2︸                                   ︷︷                                   ︸
law of cosines

= [α2 + β2 + 2αβ cos(2kq)]1/2︸                              ︷︷                              ︸
law of cosines for exterior angles

.

For completeness, the phase is established [30] by Pψ(q) =

arctan{=[ψ(q)]/<[ψ(q)]}, which by (5) renders

Pψ = arctan
(
α − β

α + β
tan(kq)

)
. (17)

Also for completeness, the phase is related to the quantum
Hamilton’s characteristic function (quantum reduced action)
W by Pψ = W/~ [7], [10], [14]. The W has been shown
to change values monotonically [14] implying that Pψ also
behaves monotonically.

The bispectral ψ2 as represented by (6) exhibits the su-
perposition of the latent incident and reflected wave func-
tions upon each other that are described by functions of q
(4). The superposition induces a compound modulation in
ψ2, which in turn induces nonuniform rectilinear propagation
for massless neutrinos as shown in §3. PMNS theory achieves
nonuniform rectilinear propagation in one dimension by su-
perimposing three different masseigenstates within the neu-
trino [1]–[4]. Application of Eq. (6)-like representations have
been made to study step barriers [18] and tunneling [19].

Before an IBD, q ≤ qa, the nonuniform propagation of
the compoundly modulated ψ2(q) with q can be examined
more closely by considering the phase and amplitude mod-
ulations separately. The phase modulation may be described
by the phase displacement between the phase of the bispec-
tral ψ2 given by (6) and the phase kq of the corresponding
unispectral wave function exp(ikq), which propagates recti-
linearly with uniform motion. This phase displacement is a
rotational displacement in complex ψ-space between ψ2(q)
and the unispectral exp(ikq). The phase displacement due to
phase modulation Pmψ may be expressed in units of radians
as a function of phase kq, also in units of radians, as given by

Pmψ = arctan
(
α − β

α + β
tan(kq)

)
− kq, q ≤ qa (18)

where kq, which is also the phase of unispectral exp(ikq), is
not restricted to its principal value.

The derivative of phase with respect to q, for the bispec-

tral wave function (6) is given by [5]

∂ arctan
(
α−β
α+β

tan(kq)
)

∂q
=

(α2 − β2)k
α2 + β2 + 2αβ cos(2kq)

=
k

α2 + β2 + 2αβ cos(2kq)
.

(19)

Eq. (19) for the bispectral wave function exhibits nonuniform
phase propagation that is periodic in q. The derivative of
phase with respect to q remains positive definite for the de-
nominator on the right side of (19) is always positive for
all q by the Schwarzian inequality. Meanwhile, the corre-
sponding derivative of phase for the unispectral wave func-
tion exp(ikq) is ik, which is constant and manifests uniform
rectilinear propagation. For completeness in the quantum tra-
jectory representation, the derivative of phase with regard to q
renders the conjugate momentum ∂qW divided by ~ [8]–[14].

The relative amplitude dilation Amψ due to amplitude mo-
dulation Aψ of (6) or (8), relative to (α2 + β2)1/2, is defined to
be a dimensionless variable that is a function of phase kq and
given by

Amψ ≡
[α2 + β2 + 2αβ cos(2kq)]1/2 − (α2 + β2)1/2

(α2 + β2)1/2

=

[
1 +

2αβ cos(2kq)
α2 + β2

]1/2

− 1, q ≤ qa.

(20)

Any finite β = (α2 − 1)1/2 is sufficient to cause ψ2 to generate
nonuniform rectilinear motion consistent with the compound
modulation implied by (18) and (20).

As the wave function ψ2 for the antineutrino must be C1

continuous until absorbed in anIBD, thebehavior of itsderiva-
tive ∂qψ2 must also be considered. If the dividend of ∂qψ2 / ψ2
were a constant or independent of q, then neutrino oscillation
would not be supported as previously noted. From (4)–(6),
the derivative of the bispectral wave function ∂qψ2 is given
by

∂qψ2 = ik[α exp(ikq) − β exp(−ikq)]

= k[(α − β) cos(kq) − i(α + β) sin(kq)] exp(iπ/2)

= k [α2 + β2 − 2αβ cos(2kq)]1/2︸                              ︷︷                              ︸
law of cosines

× exp
[
i arctan

(
α + β

α − β
tan(kq)

)
+ i

π

2

]
.

(21)

A difference between (4)–(6) for ψ2 and (21) for ∂qψ2 is the
change of the sign of β and the phase shift π/2. A finite β by
(4) and (21) ensures that

∂qψ2(q)

ψ2(q)
= ik

(
α exp(ikq) − β exp(−ikq)
α exp(ikq) + β exp(−ikq)

)
(22)

would be a variable of q in contrast to the unispectral case
(3). The bispectral ψ2(kq) propagates in a nonuniform manner
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that facilitates neutrino oscillation without the need for mass-
eigenstates of PMNS theory.

There is an alternative expression for ∂qψ2(kq) that con-
veniently shows its relation to ψ(kq − π/2). This relation is
shown by (4) and (21) to be

∂qψ2(kq) = ik[α exp(ikq) − β exp(−ikq)]

= k{α exp[i(kq + π/2)] + β exp[−i(kq + π/2)]}

= k ψ2(kq + π/2).

(23)

Eq. (23) can be generalized to

∂qψ2(kq) = kψ2(kq + n1π),

n1 = ±1/2, ±3/2, ±5/2, · · · .
(24)

where n1 is bound by the antineutrino’s creation point and the
point qa where an IBD commences. The bispectral derivative
∂qψ2 by (21)–(24), like ∂qψ1, is also a solution of the SKGE.

The derivative of the bispectral wave function is com-
poundly modulated. Its amplitude Aψ

′ and phase Pψ
′ are re-

spectively given by

Aψ
′ = k[α2 + β2 − 2αβ cos(2kq)]1/2, q ≤ qa (25)

and

Pψ
′ = arctan

(
α + β

α − β
tan(kq)

)
+
π

2
, q ≤ qa. (26)

Its relative amplitude dilation Amψ
′ due to amplitude mod-

ulation and its phase displacement (a rotation) due to phase
modulation Pmψ

′ for ∂qψ2(kq) are given respectively by

Amψ
′ = k

[
1 −

2αβ cos(2kq)
α2 + β2

]1/2

− k, q ≤ qa (27)

and

Pmψ
′ = arctan

(
α + β

α − β
tan(kq)

)
− kq, q ≤ qa. (28)

The dilations and rotations of (27) and (28) for ∂qψ2(kq)
are analogous to those for ψ2, (20) and (18)respectively. Whi-
le ∂qψ2(kq) has compound modulation with the same period
(oscillation cycle) as that of the associated ψ2(kq), the of di-
lations and rotations differ by being out of phase, cf. (6) and
(21)–(28). The relative amplitude dilation and phase rotation
of ∂qψ2(kq) are opposite to those of ψ2(kq). This is desirable
for flavor oscillation.

Let us now examine the measurement of momentum p
for the bispectral antineutrino. The applicable quantum mo-
mentum operator herein is ~i ∂q. The orthodox measurement
of momentum of the bispectral ψ2 with box normalization is

over one repetitive cycle. This box length is π/k. The mo-
mentum of ψ2, using (4), (7) and (21), is given by

p =

∫ π/k
0 ψ

†

2 (q) ~i ∂qψ2(q) dq∫ π/k
0 ψ

†

2 (q)ψ2(q) dq

= ~
k
∫ π/k

0 [α2 − β2 + 2αβ sin(2kq)] dq∫ π/k
0 [α2 + β2 + 2αβ cos(2kq)] dq

= ~
(α2 − β2)π

(α2 + β2)π/k
=

~k
α2 + β2 .

(29)

An orthodox measurement of momentum of the bispectral an-
tineutrino (29) is a constant and positive definite, i.e. p > 0,
in the direction of latent incident wave (4). This is consistent
with the quantum trajectory representation where the quan-
tum reduced actionW changes monotonically [14].

Let us extend our examination of p to find under what
conditions [α2 − β2 + 2αβ sin(2kq)], the integrand in the nu-
merator in (29), becomes negative over any portions of its
repetitive cycle. The particular point of interest for investiga-
tion is q = 3π/(4k) where the integrand becomes

[α2 − β2 + 2αβ sin(2kq)]q=3π/(4k) =

=1︷  ︸︸  ︷
α2 − β2 −2αβ. (30)

For |β| sufficiently small, (30) would be positive; sufficiently
large, negative. The |β| for which (30) is nil marks the upper
bound where [α2 − β2 + 2αβ sin(2kq)], the integrand, is never
negative. Because −β2 is a negative quantity, the Schwarz
inequality is not applicable to (30). The right side of (30)
becomes nil for

2αβ = 1. (31)

The particular values of α and |β| that satisfy both Eqs. (7)
and (31) are identified by αthreshold and |βthreshold|. The thresh-
old coefficients separate α, |β|-space into two domains: one
where the integrand is always positive-definite; the other, not
always positive consistent with the value of sin(2kq) in (29).
Eq. (7) for normalization, α2 − β2 = 1, and (31) are sufficient
to resolve αthreshold and |βthreshold| by algebraic means. The so-
lutions for the threshold coefficients are

{αthreshold, βthreshold} =

{(
21/2+1

2

)1/2
,
(

21/2−1
2

)1/2
}
. (32)

The logic relationship

α < / > αthreshold ⇐⇒ |β| < / > |βthreshold|

between α and β follows. If |β| < |βthreshold|, then the integrand
ψ
†

2 (q) (~/i)∂q ψ2(q) of (29) would always be positive (in the
direction of the latent incident wave of (4)) for all q through-
out the repetitive oscillation cycle. If |β| > |βthreshold|, then for
some q, but not a preponderance of q of the repetitive oscilla-
tion cycle, the integrand ψ

†
(~/i)∂q ψ2 would be negative (in
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Fig. 1: The phase displacement due to phase modulation Pmψ as a
function of kq over a Riemann sheet for selected values of F. Both
Pmψ and kq are exhibited in units of radians.

the direction of the latent reflected wave of (4)). Nevertheless,
even if |β| > |βthreshold|, the orthodox measure for momentum
would still remain valid, for (29) yields positive momentum
as α2 − β2 = 1 > 0.

3 Examples

Let us now illustrate with didactic examples how a bispectral
wave function facilitates massless flavor oscillation. We con-
sider the contributions of phase and amplitude modulations
separately. These contributions are examined for the selected
cases given by

(α, β) = (1, 0), (4/151/2, 1/151/2), (2/31/2, 1/31/2),

(4/71/2, 3/71/2).
(33)

These cases are compliant with normalization α2 − β2 = 1
(7). The selected cases may be identified for convenience by
the fraction F ≡ β/α = (α2 − 1)1/2/α = β/(1 − β2)1/2. Also,
F is related to the reflection coefficient (15) for F = R1/2.
The fractions F for the selected cases with respect to (33) are
given by

F = 0, 1/4, 1/2, 3/4. (34)

Comparisons of the effects of either phase or amplitude
modulations among the selected cases of F are developed as
a function of phase kq measured in radians.

The value F = 0 represents a unispectral wave function,
which precludes massless flavor oscillation. The unispec-
tral F = 0 is still included for comparison to the bispectral
Fs where F = 1/4, 1/2, 3/4. For comparison, the value
Fthreshold for 2αβ = 1 with normalization α2 − β2 = 1, which
establishes F’s upper bound for no reversals of sign of the

integrand ψ
†

2 (~/i)∂q ψ2 as a function of q (32) is given by

Fthreshold =
βthreshold

αthreshold
=

(
21/2 − 1
21/2 + 1

)1/2

= 21/2 − 1

=
1

21/2 + 1
= 0.41421356 · · · .

We first consider phase modulation. The phase displace-
ments Pmψ of (18) as a function of kq, where kq is also the
phase of ψ, are exhibited for the various values of F on Fig. 1
over the extended Riemann sheet π/2 ≤ kq ≤ 3π/2 of the
arc tangent function on the right side of (6). The phase dura-
tion of the Riemann sheet is consistent with box normaliza-
tion of ψ2. Each extended Riemann sheet specifies an oscil-
lation cycle. Fig. 1 exhibits one cycle for phase modulation
Pmψ over a Riemann sheet. The cycle of Pmψ for bispec-
tral Fs has one concave segment and one convex segment.
The cycle is repetitive over other Riemann sheets. As ex-
pected, a Pmψ for the unispectral F renders the horizontal
straight line Pmψ = 0. Thus, the unispectral case prohibits
phase modulation, which does not facilitate flavor oscilla-
tion. The absolute value of Pmψ for kq , π/2, π, 3π/2
is shown on Fig. 1 to increase with increasing F. At kq =

π/2, π, 3π/2, the phase difference Pmψ = 0 for all F. These
points kq = π/2, π, 3π/2 for F , 0, are inflection points of
Pmψ with nil curvature, which are between Pmψ’s alternat-
ing concave and convex segments. At these inflection points,
|Pmψ(q)| attains its maximum slope (rate of change with kq).
Had Fig. 1 included the standing-wave case where F = 1,
then, consistent with (10) and (11), it would have generated a
straight line from Pmψ (kq) = (π/2, π/2) to (−π/2, 3/π/2) on
an extended Fig. 1. Had the cases F = −1/4, −1/2, −3/4
been examined instead (e.g. the values of F for the anal-
ogous phase differences for ∂qψ2 would be negative), then
Fig. 1 would have changed its exhibition of the antisymmet-
ric phase modulation from the first-and-third (upper/left-and-
lower/right) quadrants to the second-and-fourth of Fig. 1. The
phase modulation Pmψ is antisymmetric within the Riemann
sheet for

Pmψ (π − kq) = −Pmψ (π + kq), 0 < q < π/2.

Each extended Riemann sheet contains one cycle of Pmψ for
the bispectral ψ2.

For the amplitude modulation, Amψ is examined for F =

0, 1/4, 1/2, 3/4. Again, F = 0 represents the unispectral
case, which does not support flavor oscillation. The ampli-
tude modulations are exhibited on Fig. 2. Positive differences
on Fig. 2 represent a dilation that is an expansion; negative
differences, a contraction. The absolute values of Amψ for
kq , 3π/4, π/4 are shown on Fig. 2 to increase with increas-
ing F. In Fig. 2, Amψ for bispectral F is symmetric with its
convex segments disjointed on the Riemann sheet. In compar-
ing Figs. 1 and 2 for bispectral F = 1/4, 1/2, 3/4, either the
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Fig. 2: The relative amplitude dilation Amψ as a function of kq over
a Riemann sheet for selected values of F. Amψ is dimensionless,
and kq is exhibited in units of radians.

Fig. 3: The relative amplitude dilations due Amψ and Amψ ′ as func-
tions of kq over a Riemann sheet for F = 1/2. For an unbiased
Amψ

′ , k = 1 to facilitate comparison to dimensionless Amψ. The
amplitude modulations are dimensionless, and kq is exhibited in
units of radians.

Pmψ or the Amψ has an extremum where the other is nil. This
ensures that at least one type of modulation of ψ2 is changing
for all q on the extended Riemann sheet π/2 ≤ kq ≤ 3π/2. A
local maximum rate of change of a modulation occurs at its
zero-crossings where the modulation has inflection points be-
tween concave and convex segments as shown by Figs. 1 and
2. The greater (lesser) rate of change of modulation implies
the greater (lesser) opportunity for flavor oscillation. The
modulation extrema, where the rate of change of a particular
modulation is nil, are isolated phase (kq) points where that
particular modulation does not contribute to neutrino oscilla-
tion.

A comparison between the amplitude modulation Amψ of
the bispectral ψ2 (6) and the amplitude modulation Amψ

′ of
the associated bispectral ∂qψ2 (21) are presented in Fig. 3 for
the particular values F = 1/2, and k = 1. As Amψ

′ by (25) has
a linear factor k while Amψ does not, the choice k = 1 makes

Fig. 3 unbiased. The amplitude modulations Amψ and Amψ
′

exhibit the same repetitive periodicity but are displaced in
phase (kq) by the constant π/2 radians. This kq displacement
increases the opportunity for neutrino oscillation for Amψ(kq)
is positive (negative) where Amψ

′ (kq) is negative (positive).
The ratio of amplitudes of ∂qψ2(kq) relative to ψ2(kq) by (6)
and (21) is given as a function of phase (kq) in fractional form
by

∣∣∣∂qψ2(kq)
∣∣∣ :

∣∣∣ψ2(kq)
∣∣∣ ∣∣∣∂qψ2(kq)

∣∣∣∣∣∣ψ2(kq)
∣∣∣ =

Aψ
′ (kq)

Aψ(kq)︸                      ︷︷                      ︸
fractional form

)

= k

︷                               ︸︸                               ︷(
α2 + β2 − 2αβ cos(2kq)
α2 + β2 + 2αβ cos(2kq)

)1/2

.

(35)

On the extended Riemann sheet π/2 ≤ kq ≤ 3π/2, the ratio
Aψ

′ (kq) : Aψ(kq) for F = 1/2 by (33)–(35) has maxima of
3k at kq = π/2, 3π/2; has a minimum of k/3 at kq = π; and
equals k at kq = 3π/4, 5π/4 in accordance with (35). The
values of the extrema of ratio in fractional form (35) may be
generalized and are given on this extended Riemann sheet by

Aψ
′ (kq)

Aψ(kq)

∣∣∣∣
maximum

= k
α + β

α − β
at kq =

π

2
,

3π
2

and
Aψ

′ (kq)

Aψ(kq)

∣∣∣∣
minimum

= k
α − β

α + β
at kq = π.

The nature of (35) implies that its logarithmic presentation
would exhibit for unbiased k = 1 a periodic antisymmetry
within the extended Riemann sheet {π/2 ≤ kq ≤ 3π/2} given
by

ln
Aψ

′ (kq)

Aψ(kq)

 = − ln
Aψ

′ (kq ± π/2)

Aψ(kq ± π/2)

 , for k = 1.

The variation of the ratio (35) is one of the factors that facil-
itate flavor oscillation. On the other hand, the corresponding
ratio for the unispectral case (F = 0) is the constant k for all
q.

A comparison of (9) and (26) shows the relationship be-
tween Pψ(kq) and Pψ

′ (kq) is that the sign of β has changed
(also the sign of the associated F would change). Therefore
Pψ

′ (kq)−π/2 and Pψ(kq) are a half-cycle out of phase. While
the undulations of Pψ

′ and Pψ when summed are in oppo-
sition, their difference is reinforced. Their changing differ-
ence is another factor enabling flavor oscillation. The rel-
ative phase difference 4Pψ

′
,ψ(kq) in radians between Pmψ

′

and Pmψ is reinforced for they are out of phase as shown by

4Pψ
′
,ψ(kq) = Pψ

′ (kq) − Pψ(kq)

= Pψ(kq + π/2) + π/2 − Pψ(kq).
(36)
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Fig. 4: The Phase difference 4Pψ
′
,ψ(kq) as a function of kq over a

Riemann sheet for F = 0, 1/2. Both 4Pψ
′
,ψ(kq) and kq are exhib-

ited in units of radians.

The relative phase difference 4Pψ
′
,ψ(kq) is exhibited on Fig. 4

for F = 1/2 and F = 0 (the unispectral case). For the bis-
pectral case, Fig. 4 also exhibits coherent reinforcement of
the undulations of Pψ

′ and Pψ of 4Pψ
′
,ψ(kq) consistent with

(23). Larger undulations increase the opportunity for flavor
oscillations.

The two factors, the ratio of amplitudes and the phase dif-
ference, describe the relative relationship between ∂qψ and ψ
as a function of phase kq. The ratio of amplitudes (35) and the
phase difference of Fig. 4 each complete one cycle on an ex-
tended Riemann sheet, e.g. π/2 < kq < 3π/2. However, their
respective extrema are displaced by a quarter cycle π/4 from
each other. The phase difference 4Pψ

′
,ψ(kq) has extrema on

the extended Riemann sheet at kq = 3π/4, 5π/4 while the
ratio Aψ

′ : Aψ(kq) has extrema at kq = π/2, π, 3π/2. Where
one factor has an extremum at some particular kq, the other
factor has an inflection point there. And where one factor
has an inflection point, the other has an extremum. A local
extremum for a factor implies that the factor has a local nil
in facilitating flavor oscillation while the other factor having
an inflection point implies a local peak in facilitating flavor
oscillation. Furthermore, where one factor’s support for fla-
vor oscillation decreases, the other factor’s support increases.
Thus, the two factors complement each other to ensure that
the bispectral antineutrino can facilitate possible flavor oscil-
lation for some interaction throughout its repetitive cycle.

Both phase and amplitude modulations exhibit the same
kq periodicity on Figs. 1–4. This may be shown by trigonom-
etry for the general situation. Periodicity of phase modulation
(19) is consistent with the extended Riemann sheet of the arc
tangent,

(2n − 1)π/2 ≤ kq ≤ (2n + 1)π/2, n = 0,±1,±2, · · · .

Hence, Pmψ (kq) = Pmψ (kq + π). Periodicity of amplitude
modulation (20) is consistent with the argument 2kq of the
cosine term in the law of cosines completing its cycle 2π.

Periodicity of Amψ is also given by

Amψ (kq) = Amψ (kq + nπ), n = ±1,±2,±3, · · · .

For completeness, the quantum trajectory representation also
has the same kq periodicity [5].

4 Discussion

Compound modulation makes ∂qψ2 / ψ2 a periodic variable
in phase kq and spatially periodic for a given k. The phase
and amplitude modulations complement each other for they
are a quarter-cycle out of phase with each other as shown by
Figs. 1 and 2. The modulations of ψ2 and ∂qψ2 supplement
each other. The amplitude modulation induces continuous di-
lations with respect to phase kq of the ∂qψ2(q) and ψ2(q) dif-
ferently by (25) and (8) respectively. The dilations of ∂qψ2(q)
and ψ2(q) are opposed: where one is an expansion; the other
is a contraction. These amplitude modulations being in op-
position increase the amount of dilation (either expansion or
contraction) of the ratio

∣∣∣∂qψ2(kq)
∣∣∣ :

∣∣∣ψ2(kq)
∣∣∣ with respect to

phase kq as exhibited by (35) and Fig. 3. This increases the
opportunity for neutrino oscillation. Meanwhile, phase mod-
ulation induces continuous rotations with respect to phase
kq of Pmψ(q) (18) and Pmψ

′ (q) (28). These rotational dis-
placements are opposed: where one rotation is clockwise; the
other, counterclockwise. This opposition in rotations enlarges
4Pψ

′
,ψ(kq) as exhibited by (36) and Fig. 4. This opposition

between the behavior of ψ2(q) and its derivative is typical
of well behaved functions undergoing periodic motion. Note
that either phase or amplitude modulation, by itself, could fa-
cilitate neutrino oscillation of the bispectral antineutrino. To-
gether, they increase the opportunity for oscillation.

The transmutation of coefficients {α, β} → {1, 0} of (14)
by the weak interaction nulls out the compound modulation
of νe’s wave function without any exchange of energy. This
is shown for phase modulation on Fig. 1 and for amplitude
modulation on Fig. 2 where modulation effects decrease with
decreasing absolute values of |F| and are completely nulled at
|F| = 0.

The periodic, nonuniform propagation by a massless an-
tineutrino results in flavor oscillations where the antineutrino
in a particular phase (kq) segment within an oscillation cy-
cle may execute a flavor-compatible current interaction with
C1 continuity of its wave function. Future work may show
that these segments for various flavors {νe, νµ, ντ} may be dis-
jointed, and the segments for the flavors may not densely fill
the oscillation cycle.

Should the segments for the active flavors {νe, νµ, ντ} not
densely fill the oscillation cycle, then the voids of the oscil-
lation cycle would be locations where the antineutrino is in-
active and would behave as the elusive sterile antineutrino
νs [31], [32]. By precept, the sterile antineutrino was hy-
pothesized to be subject only to gravity and explicitly not to
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the weak interaction. The MiniBooNE Collaboration has re-
cently inferred its existence from experiment [31], but such
existence has not yet been independently confirmed by other
ongoing experiments [32]. As the hypothetical sterile an-
tineutrino would not partake in charged current interactions,
the voids in the oscillation cycle could manifest the existence
of this hypothetical sterile antineutrino. This hypothetical
sterile antineutrino, by (2)–(6), could be massless and have
a bispectral wave function. As this hypothetical bispectral
sterile antineutrino could propagate nonuniformly, it would
oscillate in flavor to become an active antineutrino {νe, νµ, ντ}.
Flavor oscillation of the sterile antineutrino would imply that
it would have the same right handedness of the active antineu-
trinos. Again, this support for the existence of the sterile an-
tineutrino is predicated on the existence of voids in the oscil-
lation cycle.

The orthodox measurement of the momentum operator
~
i ∂q acting on a bispectral antineutrino over a box length,
which is consistent with an oscillation cycle, has been shown
by (29) to give a finite positive momentum in the direction of
the latent incident wave (4). An IBD event is a good way to
observe antineutrinos for the antineutrino reacts only to grav-
ity and the weak interaction. Observed momentum, in prin-
ciple, need not be averaged over a box length. Should future
work find that box normalization is too coarse, then restrict-
ing the absolute value of β to |β| ≤ |βthreshold| = [(21/2−1)/2]1/2

(32) would maintain positive momentum for the bispectral
antineutrino throughout the oscillation cycle, i.e.

ψ
†

2 (q)
~

i
∂qψ2(q) > 0

by (30)–(32) for all q within the box normalization.
Future work may also show that the different charged or

neutral current interactions may scramble the flavors. In other
words, the antineutrino flavors may be interaction dependent
where the values of ψ and ∂qψ for some given E at a point
q0 may specify an antineutrino of a particular flavor for an
interaction while concurrently at q0 also specifying a differ-
ent flavor associated with another different interaction. This
would cause the segments for the various flavors of the oscil-
lation cycle to overlap.

Future work may also yield a better understandingofIBDs
and the weak force. Nevertheless, the concept of a bispec-
tral wave function representation should be robust enough to
adjust assumptions and still facilitate flavor oscillation by a
massless antineutrino.

5 Findings and conclusions

The principal finding is the existence of a wave function rep-
resentation for massless neutrino oscillation of flavor, which
is a counterexample to PMNS theory’s finding that m > 0.
The wave function representation for m = 0 is compatible
with an orthodox interpretation of the bispectral wave func-
tion, ψ2. One spectral component represents the embedded

latent incident wave function for an IBD; the other, the em-
bedded latent reflected wave function. Such a bispectral wave
function is capable of flavor oscillations without any need for
mass-eigenstates, which confirms that PMNS theory is not
the exclusive theory for neutrino oscillation. Once created, a
bispectral, massless antineutrino, with super-threshold energy
(E > 1.806 MeV), has the possibility by flavor oscillation to
initiate an IBD.

The co-principal finding, which is extra to the massless
oscillation finding, is that the forceless weak interaction for
this oscillation model transmutes the wave function of the an-
tineutrino from bispectral to unispectral. There is no energy
exchange during the transmutation for the weak interaction is
forceless. In general, the weak interaction can transmute the
wave function to a different superposition of its set of inde-
pendent solutions without any exchange of energy.

The first secondary finding is that flavor oscillations are
compatible with classifying neutrinos to be Majorana leptons.

The second secondary finding is that the elusive sterile
neutrino may be just where the antineutrino is in a location,
q, in the oscillation cycle where its values {ψ2, ∂qψ2}|q are in-
compatible initial values for initiating a current interaction of
any flavor there (sterile is not a flavor). This finding is predi-
cated upon the existence of such a location in the oscillation
cycle.

The third secondary finding establishes a relationship be-
tween the amplitude β of the latent embedded reflected wave
and the opportunity to observe negative momentum,
i.e., ψ

†

2 (q) ~i ∂qψ2(q) < 0. There exists a βthreshold for which,

if |β| < |βthreshold|, then ψ
†

2 (q) ~i ∂qψ2(q) > 0 for all q before an
IBD. For cases of super-threshold |β|, the orthodox quantum
measurement of momentum over one repetitive box length
would still yield positive momentum (29).

The fourth secondary finding confirms the similar pre-
diction for massless neutrino oscillation by the less familiar
quantum trajectory representation of quantum mechanics [5].
This finding also substantiates that wave mechanics and quan-
tum trajectories are equivalent for free particles [7], [33]. In
addition, incisive insights rendered by the wave function rep-
resentation complement those of the trajectory representation
to substantiate massless neutrino oscillation.

A tertiary finding supports Pontecorvo’s suggestion [28]
that a neutrino may be composed of a mixture of neutrino and
antineutrino components.

In conclusion, massless neutrino oscillation implies the
validity of the standard model to consider neutrinos to be
massless.

A co-conclusion is that the forceless weak interaction pre-
pares the antineutrino for interaction with other particles by
transmuting the antineutrino’s wave function. The transmu-
tation changes the wave function in this ab initio calculation
from a bispectral wave function to a unispectral wave func-
tion exp(ikq) without an exchange of energy. Conversely, the
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wave function of the antineutrino manifests the effects of the
forceless weak interaction by a change in the superposition of
its independent solutions for a given energy.

A secondary conclusion is the confirmation of the similar
prediction of the validity of the standard model by the quan-
tum trajectory representation, which substantiates that such a
prediction is not an anomaly of the quantum trajectory repre-
sentation.
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dimensional Möbius Group and the hidden antisymmetric tensor of
quantum mechanics. Class. Quant. Grav., 2000, v. 17, 3965–4006.
arXiv: hep-th/9909201.

16. Porrier B. Reconciling semiclassical and Bohmian mechanics.
I. Stationary states. J. Chem. Phys., 2004, v. 121, 4501–15.

17. Wyatt R. E. Quantum Dynamics with Trajectories. Springer, New
York, 2005, pp. 354–68.

18. Floyd E. R. A trajectory interpretation of transmission and reflection.
Phys. Essays., 1994, v. 7, 135–145.

19. Floyd E. R. A trajectory interpretation of tunneling. An. Fond. L. de
Broglie, 1995, v. 20, 263–79.

20. Floyd E. R. The form the normal mode that ensures escape from a
surface channel. Proceedings 16th International Congress of Acous-
tics and 135th Meeting Acoustical Society of America, v. II. Kuhl P. K.
and Crum L. A., eds. Acoustical Society of America, Woodbury, NY,
1998, pp. 951–2.

21. Floyd E. R. Interference, reduced action and trajectories. Found. Phys.,
2007, v. 37, 1386–1402. arXiv: quant-ph/0605120v3.

22. Pandey A., Porier B., Peralta L., Siddique M., Ho Y.-C., and Farooq H.
An unorthodox study of bidirectional light waves. 2019 Joint Meeting
of Texas Sections of APS, APT and Zone 13 of SPS, v. 64 Number 18,
E01.00005, 2019.

23. Faraggi A. E. and Matone M. The Geometrical Origins of Dark Energy.
arXiv: 2006.11935.

24. An F. P., Balantekin A. B., Band H. R., Bishai M., (Daya Bay Collabo-
ration). Measurement of the reactor neutrino flux and spectrum at Daya
Bay. Phys. Rev. Lett., 2016, v. 116, 061801. Erratum: Phys. Rev. Lett.,
2017, v. 118, 099902.

25. Faraggi A. E. OPERA data and the equivalence principal of quantum
mechanics. Eur. Phys. J., 2011, v 72, 1944. arXiv: 1110.1857v2.

26. Arafune A. and Takeda G. Total Reflection of Relic Neutrinos from
Material Targets. U. of Tokyo, ICEPP Report, ut-icepp 08-02, unpub-
lished.

27. Dwight H. B. Table of Integrals and Other Mathematical Data.
MacMillan, New York, 1961. p. 82, ¶ 403.4 & ¶ 403.5.

28. Pontecorvo B. Inverse beta decay and nonobservation of lepton charge.
Sov. Phys. JETP, 1958, v. 7, 172–3; in Russian: Zh. Eksp. Teor. Fiz.,
1958, v. 4, 247–9.

29. Perelman C. C. Bohm’s potential classical/quantum duality and repul-
sive gravity. Phys. Lett. B, 2019, v. 778, 546–51.

30. Bohm D. A suggested interpretation of quantum theory in terms of
“Hidden Variables”. Phys. Rev., 1953, v. 85, 166–79.

31. Aguilar-Arcvalo A. A., Brown B. C., Bugel L., Cheng G., (MiniBooNE
Collaboration). Observation of a significant excess of events in the
MiniBooNE short-baseline neutrino experiment. arXiv: 1805.12028.

32. Cho A. Report of sterile neutrino resurrection may be greatly
exaggerated. Science, 10.1126/science.aau3773, 2018. url:
<http//www.sciencemag.org/news/2018/06/reports-sterile-neutrino-
s-resurrection-may-be-greatly-exaggerated> (accessed 20 August
2020).

33. Floyd E. R. The Ermakov invariant for the trajectory representation of
quantum mechanics. Phys. Lett. A, 1996, v. 214, 259–65.

Edward R. Floyd. A Wave Representation for Massless Neutrino Oscillations 153





Progress in Physics is an American scienti�c journal on advanced studies in physics, regi-
stered with the Library of Congress (DC, USA): ISSN 1555-5534 (print version) and ISSN 1555-
5615 (online version). The journal is peer reviewed and listed in the abstracting and indexing 
coverage of: Mathematical Reviews of the AMS (USA), DOAJ of Lund University (Sweden), 
Scienti�c Commons of the University of St.Gallen (Switzerland), Open-J-Gate (India), Refe-
rential Journal of VINITI (Russia), etc. Progress in Physics is an open-access journal published 
and distributed in accordance with the Budapest Open Initiative: this means that the electro-
nic copies of both full-size version of the journal and the individual papers published therein 
will always be accessed for reading, download, and copying for any user free of charge. 
The journal is issued quarterly (four volumes per year).

Electronic version of this journal: http://www.ptep-online.com

Postal address: 
Department of Mathematics and Science, University of New Mexico,
705 Gurley Avenue, Gallup, NM 87301, USA

Advisory Board of Founders:
Dmitri Rabounski, Editor-in-Chief
Florentin Smarandache, Assoc. Editor
Larissa Borissova, Assoc. Editor
   

Editorial Board:
Pierre Millette
Andreas Ries
Gunn Quznetsov
Ebenezer Chifu   


