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Unification of Interactions in Discrete Spacetime

Franklin Potter

Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA, USA
Formerly at Department of Physics, University of California, Irvine

E-mail: drpotter@lycos.com

I assume that both spacetime and the internal symmetry space of the Standard Model
(SM) of leptons and quarks are discrete. If lepton and quark states represent specific
finite binary rotational subgroups of the SM gauge group, unification with gravitation
is accomplished by combining finite subgroups of the Lorentz group SO(3,1) with
the specific finite SM subgroups. The unique result is a particular finite subgroup
of SO(9,1) in discrete 10-D spacetime related to E8 × E8 of superstring theory. A
physical model of particles based upon the finite subgroups and the discrete geometry
is proposed. Evidence for discreteness might be the appearance of a b’ quark at about
80–100 GeV decaying via FCNC to a b quark plus a photon at the Large Hadron
Collider.

1 Introduction

I consider both spacetime and the internal symmetry space of
the Standard Model (SM) of leptons and quarks to be discrete
instead of continuous. Using specific finite subgroups of
the SM gauge group, a unique finite group in discrete 10-
D spacetime unifies the fundamental interactions, including
gravitation. This finite group is a special subgroup of the
continuous group E8 × E8 that in superstring theory (also
called M-theory) is considered to be the most likely group
for unifying gravitation with the SM gauge group.

This unique result follows directly from two fundamental
assumptions: (1) the internal symmetry space is discrete,
requiring specific finite binary rotational subgroups of the SM
gauge group to dictate the physical properties of the lepton
and quark states, and (2) spacetime is discrete, and therefore
its discrete symmetries correspond to finite subgroups of the
Lorentz group. Presumably, this discreteness must occur as
one approaches the Planck scale of about 10−35 meters.

I suggest a particular physical model of fundamental
fermions based upon these finite subgroups in the discrete
geometry. Further evidence for this discreteness might be
the appearance of a b’ quark at about 80–100 GeV decaying
via FCNC to a b quark plus a photon at the Large Hadron
Collider.

2 Motivation

The Standard Model (SM) of leptons and quarks successfully
describes their electromagnetic, weak and color interactions
in terms of symmetries dictated by the SU(2)L × U(1)Y ×
SU(3)C continuous gauge group. These fundamental fermi-
ons and their antiparticles are defined by their electroweak
isospin states in two distinct but gauge equivalent unitary
planes in an internal symmetry space “attached” at a space-

time point. Consequently, particle states and antiparticle
states have opposite-signed physical properties but their
masses are the same sign.

In an earlier 1994 paper [1] I discussed how the SM
continuous gauge group could be acting like a “cover group”
for its finite binary rotational subgroups, thereby hiding any
important underlying discrete rotational symmetries of these
fundamental particle states. From group theory, one knows
that the continuous SM gauge group contains thousands
of elements of finite order including, for example, all the
elements of the finite binary rotational subgroups in their
3-dimensional and 4-dimensional representations. I showed
that these subgroups were very important because they are
connected to the j-invariant of elliptic modular functions
from which one can predict the mass ratios for the lepton
and quark states.

The mathematical properties of these finite subgroups of
the SM dictate the same physical properties of the leptons
and quarks as achieved by the SM. However, electroweak
symmetry breaking to these specific finite binary rotational
subgroups occurs without a Higgs particle. More importantly,
some additional physical properties are dictated also, such as
their mass ratios, why more than one generation is present,
the important family relationships, and the dimensionalities
of the particle states because they are no longer point part-
icles.

The gravitational interaction is not included explicitly in
the SM gauge group. However, because the finite binary ro-
tational subgroup approach determined the lepton and quark
mass ratios, one suspects that the gravitational interaction
is included already in the discretized version of the gauge
group. Or, equivalently, since mass/energy is the source of the
gravitational interaction, the gravitational interaction arises
from the discrete symmetries associated with the finite rota-
tional subgroups.

F. Potter. Unification of Interactions in Discrete Spacetime 3
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Therefore, I make some conjectures. If leptons and quarks
actually represent the specific discrete symmetries of the
finite subgroups of the SM gauge group as proposed, the
internal symmetry space may be discrete instead of being
continuous. Going one step further, then not only the internal
symmetry space might be discrete but also spacetime itself
may be discrete, since gravitation determines the spacetime
metric. Spacetime would appear to be continuous only at
the low resolution scales of experimental apparatus such as
the present particle colliders. Unification of the fundamental
interactions then requires combining these finite groups
mathematically.

3 4-D internal symmetry space?

I take the internal symmetry space of the SM to be discrete,
but we need to know how many dimensions there are. Do
we need two complex spatial dimensions for a unitary plane
as suggested by SU(2), or do we need three as suggested by
the SU(3) symmetry of the color interaction, or do we need
more?

The lepton and quark particle states are defined as elec-
troweak isospin states by the electroweak part of the SM
gauge group, with particles in the normal unitary plane C2

and antiparticles in the conjugate unitary plane C ′2. Photon,
W+, W−, and Z0 interactions of the electroweak SU(2)L×
U(1)Y gauge group rotate the two particle states (i. e., the
two complex basis spinors in the unitary plane) into one
another. For example, e− + W+→ νe. These electroweak
rotations can be considered to occur also in an equivalent
4-dimensional real euclidean space R4 and in an equivalent
quaternion space Q, both these spaces being useful for a
better geometrical understanding of the SM.

The quark states are defined also by the color symmetries
of SU(3)C , i. e., each quark comes in one of three possible
colors, red R, green G, or blue B, while the lepton states
have no color charge. Normally, one would consider SU(3)C
operating in a space of three complex dimensions, or its
equivalent six real dimensions. In fact, SU(3)C can operate
successfully in the smaller unitary plane C2, because each
SU(3) operation can be written as the product of three specific
SU(2) operations [2]. An alternative geometrical explanation
has the gluon operations of the color interaction rotate one
color state into another in a 4-dimensional real space, as
discussed in my 1994 article. Briefly, real 4-dimensional
space R4 has four orthogonal coordinates (w, x, y, z), and its
4-D rotations occur simultaneously in two orthogonal planes.
There being only three distinct pairs of orthogonal planes,
[wx, yz], [xy, zw], and [yw, xz], each color R, G, or B
is assigned to a specific pair, thereby making color an exact
geometrical symmetry. Consequently, the gluon operations
of SU(3)C occur in the 4-D real space R4 that is equivalent
to the unitary plane. Detailed matrix operations confirm that

hadrons with quark-antiquark pairs, three quarks, or three
antiquarks, are colorless combinations.

Therefore I take the internal symmetry space to be a
discrete 4-dimensional real space because this space is the
minimum dimensional space that allows the SM gauge group
to operate completely. One does not need a larger space, e. g.,
a 6-dimensional real space, for its internal symmetry space.

4 Dimensions of spacetime?

I take physical spacetime to be 4-dimensional with its one
time dimension. Spacetime is normally considered to be
continuous and 4-dimensional, with three spatial dimensions
and one time dimension. However, in the last two decades
several approaches toward unifying all fundamental interact-
ions have considered additional mathematical spatial dimens-
ions and/or more time dimensions. For example, superstring
theory [3] at the high energy regime, i. e., at the Planck
scale, proposes 10 or 11 spacetime dimensions in its present
mathematical formulation, including the one time dimension.
These extra spatial dimensions may correspond to six or
seven dimensions “curled up” into an internal symmetry
space for defining fundamental particle states at each space-
time point in order to accommodate the SM in the low energy
regime. The actual physical spacetime itself may still have
three spatial dimensions and one time dimension.

I take 4-D spacetime to be discrete. We do not know
whether spacetime is continuous or discrete. If the internal
symmetry space is indeed discrete, then perhaps spacetime
itself might be discrete also. Researchers in loop quantum
gravity [4] at the Planck scale divide spacetime into discrete
subunits, considering a discrete 4-D spacetime with its dis-
crete Lorentz transformations to be a viable approach.

The goal now is to combine the finite subgroups of the
gauge group of the SM and the finite group of discrete
Lorentz boosts and discrete spacetime rotations into one uni-
fied group. All four known fundamental interactions would
be unified. Although many unification schemes for the fun-
damental interactions have been attempted over the past three
decades utilizing continuous groups, I believe this attempt is
the first one that combines finite groups. Mathematically, the
result must be unique, otherwise different fundamental laws
could exist in different parts of the universe.

5 Discrete internal space

The most important finite symmetry groups in the 4-D dis-
crete internal symmetry space are the 3-D binary rotational
subgroups [3, 3, 2], [4, 3, 2], and [5, 3, 2] of the SM gauge
group because they are the symmetry groups I have assigned
to the three lepton families. They contain discrete rotations
and inversions and operate in the 3-D subspace R3 of R4

and C2.

4 F.Potter. Unification of Interactions in Discrete Spacetime
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Being subgroups of SU(2)L × U(1)Y , they have group
operations represented by 2×2 unitary matrices or, equiv-
alently, by unit quaternions. Quaternions provide the more
obvious geometrical connection [5], because quaternions per-
form the dual role of being a group operation and of being a
vector in R3 and in R4. One can think visually about the 3-D
group rotations and inversions for these three subgroups as
quaternions operating on the Platonic solids, with the same
quaternions also defining the vertices of regular geometrical
objects in R4.

The two mathematical entities, the unit quaternion q and
the SU(2) matrix, are related by

q = w + x i+ y j+ z k ⇐⇒

(
w + iz x+ iy
−x+ iy w − iz

)

(1)

where the i, j, and k are unit imaginaries, their coefficients
are real, andw2+x2+y2+z2 = 1. The conjugate quaternion
q′ = w− x i− y j− z k and its corresponding matrix would
represent the same group operation in the conjugate unitary
plane for the antiparticles. Recall that Clifford algebra and
Bott periodicity dictate that only R4, R8, and other real
spaces Rn with dimensions divisible by four have two equiv-
alent conjugate spaces, the specific mathematical property
that accommodates both particle states and antiparticle states.
The group U(1)Y for weak hypercharge Y then reduces the
symmetry to being gauge equivalent so that particles and
antiparticles have the same positive mass.

One might expect that we need to analyze each of the
three binary rotational subgroups separately when the dis-
crete internal symmetry space is combined with discrete
spacetime. Fortunately, the largest binary rotational group
[5, 3, 2] of icosahedral symmetries can accommodate the
two other groups, and a discussion of its 120 quaternion
operations is all inclusive mathematically. The elements of
this icosahedral group, rotations and inversions, can be re-
presented by the appropriate unit quaternions.

The direct connection between the 3-D and 4-D spaces is
realized when one equates the 120 group operations on the
regular icosahedron (3, 5) to the vectors for the 120 vertices
of the 600-cell hypericosahedron (3, 3, 5) in 4-D space in
a particular way. These operations of the binary icosahedral
group [5, 3, 2] and the vertices of the hypericosahedron are
defined by 120 special unit quaternions qi known as isosians
[6], which have the mathematical form

qi =
(
e1 + e2

√
5
)
+
(
e3 + e4

√
5
)
i

+
(
e5 + e6

√
5
)
j +

(
e7 + e8

√
5
)
k ,

(2)

where the eight ej are special rational numbers. Specifically,
the 120 icosians are obtained by permutations of

(±1, 0, 0, 0) , (±1/2,±1/2,±1/2,±1/2) ,

(0,±1/2,±g/2,±G/2) ,
(3)

where g = G−1 = G − 1 = (−1 +
√
5)/2. Notice that

in each pair, such as (e3 + e4
√
5), only one of the ej is

nonzero, reminding us that the hypericosahedron is really a
4-D object even though we can now define this object in
terms of icosians that are expressed in the much larger R8

euclidean real space.
So the quaternion’s dual role allows us to identify the 120

group operations of the icosahedron with the 120 vertices
of the hypericosahedron expressed both in R4 and in R8,
essentially telescoping from 3-D rotational operations all the
way to their representations in an 8-D space. These special
120 icosians are to be considered as special octonions, 8-
tuples of rational numbers which, with respect to a particular
norm, form part of a special lattice in R8.

Now consider the two other subgroups. The 24 quatern-
ions of the binary tetrahedral group [3, 3, 2] are contained
already in the above 120 icosians. So we are left with ac-
commodating the binary octahedral group [4, 3, 2] into the
same icosian format. We need 48 special quaternions for its
48 operations, the 24 quaternions defining the vertices of
the 4-D object known as the 24-cell contained already in
the hypericosahedron above and another 24 quaternions for
the reciprocal 24-cell. The 120 unit quaternions reciprocal to
the ones above will meet this requirement as well as define
an equivalent set for the reciprocal hypericosahedron, and
this second set of 120 octonions also forms part of a special
lattice in R8. Together, these two lattice parts of 120 icosians
in each combine to form the 240 octonions of the famous E8
lattice inR8, well known for being the densest lattice packing
of spheres in 8-D.

Recall that the three binary rotation groups above are
assigned to the lepton families because, as subgroups of the
SM gauge group, they predict the correct physical properties
of the lepton states, including the correct mass ratios. There-
fore, the lepton states as I have defined them span only
the 3-D real subspace R3 of the unitary plane. That is why
leptons are color neutral and do not participate in the color
interaction, a physical property that requires the ability to
undergo complete 4-D rotations.

So how do quark states fit into the icosian picture? I
have the quark states in the SM spanning the whole 4-D real
space, i. e., the whole unitary plane, because they are the
basis states of the 4-D finite binary rotational subgroups of
the SM gauge group. But free quarks in spacetime do not
exist because they are confined according to QCD, forming
the colorless quark-antiquark, three-quark, or three-antiquark
combinations called hadrons. Mathematically, these colorless
hadron states span the 3-D subspace only, so their resultant
discrete symmetry group must be isomorphic to one of the
three binary rotational subgroups we have just considered.
Consequently, the icosians enumerated above account for all
the lepton states and for all the quark states in their allowed
hadronic combinations.

F. Potter. Unification of Interactions in Discrete Spacetime 5
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6 Discrete spacetime

Linear transformations in discrete spacetime are the discrete
rotations and the discrete Lorentz boosts. Before considering
these discrete transformations, however, I discuss the contin-
uous transformations of the “heavenly sphere” as a useful
mathematical construct before reducing the symmetry to
discrete transformations in a discrete spacetime.

The continuous Lorentz group SO(3,1) contains all the
rotations and Lorentz boosts, both continuous and discrete,
for the 4-D continuous spacetime with the Minkowski metric.
Its operations are quaternions because there exists the iso-
morphism

SO(3, 1) = PSL (2,C) . (4)

The group PSL(2,C) consists of unit quaternions and is
the quotient group SL(2,C)/Z formed by its center Z, those
elements of SL(2,C) which commute with all the rest of the
group. Its 2×2 matrix representation has complex numbers
as entries.

The continuous Lorentz transformations (including the
spatial rotations) operate on the “heavenly sphere” [7], i. e.,
the famous Riemann sphere formed by augmenting the com-
plex plane C by the “point at infinity”. The Riemann sphere
is also the space of states of a spin-1/2 particle. For the
Lorentz transformations in spacetime, if you are located at
the center of this “heavenly sphere” so that the light rays
from stars overhead each pass through unique points on
a unit celestial sphere surrounding you, then the Lorentz
boost is a conformal transformation of the star locations.
The constellations will look distorted because the apparent
lengths of the lines connecting the stars will change but the
angles between these connecting lines will remain the same.

These conformal transformations are called fractional
linear transformations, or Möbius transformations, of the
Riemann sphere, expressed by the general form [8]

w 7→
αw + β

γw + δ
, (5)

with α, β, γ, and δ complex, and αδ − βγ 6= 0. The 2×2
matrix representation for transformation of a spinor v as the
map v 7→ Mv is

M =

(
α β
γ δ

)

. (6)

Thus, M is the spinor representation of the Lorentz trans-
formation. M acts on a vector A = vv† via A 7→ MAM†

[9]. All these relationships are tied together by the group
isomorphisms in continuous 4-D spacetime

SO(3, 1) = Möbius group = PSL (2,C) . (7)

Discrete spacetime has discrete Lorentz transformations,
not continuous ones. These discrete rotations and discrete
Lorentz boosts are contained already in SO(3,1), and they

tesselate the Riemann sphere. That is, they form regular
polygons on its surface that correspond to the discrete sym-
metries of the binary tetrahedral, binary octahedral, and bina-
ry icosahedral rotation groups [3, 3, 2], [4, 3, 2], and [5, 3, 2],
the same groups I used in the internal symmetry space for the
discrete symmetries. Therefore, the 240 quaternions defined
previously are required also for the discrete rotations and
discrete Lorentz boosts in the discrete 4-D spacetime. Again,
there are the same 240 icosian connections to octonions in
R8 to form a second E8 lattice.

Thus, the Lorentz group SO(3,1) with its linear trans-
formations in a continuous 4-D spacetime, when reduced to
its discrete transformations in a 4-D discrete spacetime, is
connected mathematically by icosians to the E8 lattice in
R8, telescoping the transformations from a smaller discrete
spacetime to a larger one. Hence all linear transformations
for the particles in a 4-D discrete spacetime have become
represented by 240 discrete transformations in the 8-D dis-
crete spacetime.

7 Resultant spacetime

The discrete transformations in the 4-D discrete internal
symmetry space and in the 4-D discrete spacetime are each
represented by an E8 lattice in the 8-D space R8. The finite
group of the discrete symmetries of the E8 lattice is the Weyl
group E8, not to be confused with the continuous exceptional
Lie group E8. Thus, the Weyl E8 is a finite subgroup of
SO(8), the continuous group of all rotations of the unit sphere
in R8 with determinant unity. In this section I combine the
two Weyl E8 groups to form a bigger group that operates in
a discrete spacetime, and then in the next section I suggest a
simple physical model for fundamental fermions that would
fit the geometry.

I have now two sets of 240 icosians each forming E8
lattices in R8, each obeying the symmetry operations of the
finite group Weyl E8. Each finite group of octonions acts as
rotations and as vectors in R8. I identify their direct product
as the elements of a discrete subgroup of the continuous
group PSL(2,O), where O represents all the unit octonions.
That is, if all the unit octonions in each were present, not
just the subset of unit octonions that form the E8 lattice, their
direct product group would be the continuous group of 2×2
matrices in which all matrix entries are unit octonions. So
the spinors in R8 are octonions.

The 8-D result is analogous to the 4-D result but different.
Recall that in the 4-D case, one has PSL(2,C), the group
of 2×2 matrices with complex numbers as entries, with
PSL(2,C) = SO(3,1), the Lorentz group in 4-D spacetime.
Here in 8-D one has a surprise, for the final combined
spacetime is bigger, being isomorphic to a 10-dimensional
spacetime instead of 8-dimensional spacetime because

PSL(2,O) = SO(9, 1) , (8)

6 F.Potter. Unification of Interactions in Discrete Spacetime
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the Lorentz group in 10-D spacetime.
Applied to the discrete case, the combined group is the

finite subgroup

finite PSL(2,O) = finite SO(9, 1) , (9)

that is, the finite Lorentz group in discrete 10-D spacetime.
The same results, expressed in terms of the direct product of
Weyl E8 groups, is

Weyl E8 ×Weyl E8 = “Weyl” SO(9, 1) , (10)

where “Weyl” SO(9,1) is defined by the direct product on
the left and is a finite subgroup of SO(9,1).

Working in reverse, the discrete 10-D spacetime divides
into two parts as a 4-D discrete spacetime plus a 4-D discrete
internal symmetry space. There is a surprise in this result:
combining a discrete 4-D internal symmetry space with a
discrete 4-D spacetime creates a discrete 10-D spacetime,
not a discrete 8-D spacetime. Therefore, a continuous 10-D
spacetime, when “discretized”, is not required to partition
into a 4-D spacetime plus a 6-D “curled up” space as pro-
posed in superstring theory.

8 A physical particle model

In the 1994 paper I proposed originally that leptons have
the symmetries of the 3-D regular polyhedral groups and
that quarks have the symmetries of the 4-D regular polytope
groups. Now that I have combined the discrete 4-D internal
symmetry space with a discrete 4-D spacetime to achieve
mathematically a discrete 10-D spacetime, the fundamental
question arises: Are the leptons and quarks really 3-D and
4-D objects physically, or are they something else, perhaps
8-D or 10-D objects?

In order to answer this question I need to formulate a
reasonable physical model of fundamental particles in this
discrete spacetime environment. The simplest mathematical
viewpoint is that discrete spacetime is composed of identical
entities, call them nodes, which have no measureable phys-
ical properties until they collectively distort spacetime to
form a fundamental particle such as the electron, for example.
The collection of nodes and its distortion of the surrounding
spacetime exhibit the discrete symmetry of the appropriate
finite binary rotation group for the specific particle. For
example, the electron family has the discrete symmetry of
the binary tetrahedral group and the electron is one of its
two possible orthogonal basis states. So the distortion for
the collection of nodes called the electron will exhibit the
discrete symmetries of its [3, 3, 2] group as all of its physical
properties emerge for this specific collection and did not exist
beforehand. The positron forms in the conjugate space.

One can begin with a regular lattice of nodes in both
the normal unitary plane and in its conjugate unitary plane,
or one can consider the equivalent R4 spaces, and then

imagine that a spacetime distortion appears in both to form
a particle-antiparticle pair. Mathematically, one begins with
an isotropic vector, also called a zero length vector, which is
orthogonal to itself, that gets divided into two unit spinors
corresponding to the creation of the particle-antiparticle pair.
No conservations laws are violated because their quantum
numbers are opposite and the sum of the total mass energy
plus their total potential energy is zero. The spacetime dis-
tortion that is the particle and its “field” mathematically
brings the nodes closer together locally with a corresponding
adjustment to the node spacing all the way out to infinite
distance, all the while keeping the appropriate discrete rota-
tional symmetry intact. The gravitational interaction associ-
ated with this discrete symmetry therefore extends to infinite
distance.

This model of particle geometry must treat leptons as
3-D objects and quarks as 4-D objects in a discrete 4-D
spacetime. We know that there are no isolated quarks, for
they immediately form 3-D objects called hadrons. These
lepton states and hadron states are described by quaternions
of the form w+x i+ y j+ z k, so these 3-D objects “live” in
the three imaginary dimensions, and the 4th dimension can be
called time. Therefore, leptons and hadrons each experience
the “passage of time”, while indiviual quarks do not have this
characteristic until they form hadrons in the 3-D subspace.

If this physical model is a reasonable approximation
to describing the world of fundamental particles, why are
superstring researchers working in 10-dimensions or more?
Because one desires a single symmetry group that includes
both the group of spacetime transformations of particles and
the group of internal symmetries for the particle interactions.
At the Planck scale, if one has a continuous group, then
the smallest dimensional continuous spacetime one can use
is 10-D in order to have a viable Lagrangian. Reducing
this 10-D spacetime to the low energy regime of the SM
in 4-D spacetime, the 10-D continuous spacetime has been
postulated to divide into 4-D spacetime plus an additional 6-
dimensional “curled up” space in which to accommodate the
SM. In M-theory, one may be considering an 11-D spacetime
dividing into a 4-D spacetime plus a 7-D “curled up” space.
But this approach using continuous groups to connect back
to the SM has proven difficult, although some significant
advances have been achieved.

The analysis presented above for combining the two finite
Weyl E8 groups shows that the combined group operates
in 10-D discrete spacetime with all the group operations
being discrete. The particles are 3-D objects “traveling” in
spacetime. No separate “curled up” space is required at
the low energy limit corresponding to a distance scale of
about 10−23 meters or larger. The discreteness at the Planck
scale and the “hidden” discreteness postulated for all larger
distance scales is the mathematical feature that permits the
direct unique connection through icosians from the high
energy world to the familiar lower energy world of the SM.

F. Potter. Unification of Interactions in Discrete Spacetime 7
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9 Mathematical connections

The mathematical connections of these binary polyhedral
groups to number theory, geometry, and algebra are too
numerous to list and discuss in this short article. In fact,
according to B. Kostant [10], if one were to choose groups
in mathematics upon which to construct the symmetries of
the universe, one couldn’t choose a better set, for “. . . in a
very profound way, the finite groups of symmetries in 3-space
‘see’ the simple Lie groups (and hence literally Lie theory)
in all dimensions.” Therefore, I provide a brief survey of
a few important connections here and will discuss them in
more detail in future articles.

Geometrical connections are important for these groups.
The continuous group PSL(2,C) defines a torus, as does
PSL(2,O). In the discrete environment, finite PSL(2,C) and
finite PSL(2,O) have special symmetry points on each torus
corresponding to the elements of the finite binary polyhedral
groups. An important mathematical property of the binary
polyhedral groups is their connection to elliptic modular
functions, the doubly periodic functions, and their famous j-
invariant function, which has integer coefficients in its series
expansion related to the largest of the finite simple groups
called the Monster.

The binary tetrahedral, octahedral and icosahedral rota-
tion groups are the finite groups of Mobius transformations
PSL(2,Z3), PSL(2,Z4), and PSL(2,Z5), respectively, where
Zndenotes integers mod (n). PSL (2,Zn) is often called the
modular group Γ(n). PSL(2,Zn) = SL(2,Zn) /{± I}, so
these three binary polyhedral groups (along with the cyclic
and dihedral groups) are the finite modular subgroups of
PSL(2,C) and are also discrete subgroups of PSL(2,R).
PSL(2,Zn) is simple in only three cases: n = 5, 7, 11. And
these three cases are the Platonic groups again: A5 and its
subgroup A4, S4, and A5, respectively [11].

An important mathematical property for physics is that
our binary polyhedral groups, the Γ(n), are generated by the
two transformations

X : τ 7→ −1/τ Y : τ 7→ τ + 1 , (11)

with τ being the lattice parameter for the plane associated
with forming the tesselations of the toroidal Riemann surface.
The j-invariant function j(τ ) of elliptic modular functions
exhibits this transformation behavior. Consequently, funct-
ions describing the physical properties of the fundamental
leptons and quarks will exhibit these same transformation
properties. So here is where the duality theorems of M-theory,
such as the S duality relating the theory at physical coupling
g to coupling at 1/g, arise naturally from mathematical
properties of the finite binary polyhedral groups.

One can show also that octonions and the triality conn-
ection for spinors and vectors in R8 are related to the fun-
damental interactions. In 8-D, the fundamental matrix rep-
resentations both for left- and right-handed spinors and for

vectors are the same dimension, 8×8 [12], leading to many
interesting mathematical properties. For example, an electron
represented by a left-handed octonionic spinor interacting
with a W+ boson represented by an octonionic vector be-
comes an electron neutrino, again an octonionic spinor. Geo-
metrically, this interaction looks like three E8 lattices com-
bining momentarily toform the famous 24-dimensional Leech
lattice!

By using a discrete spacetime, we have begun to suspect
that Nature has established a universe based upon funda-
mental mathematics that dictates unique fundamental physics
principles. Moreover, one might expect that all physical
constants will be shown to arise from fundamental math-
ematical relationships, dictating one universe with unique
constant values for a unique set of fundamental laws.

10 Experimental tests

There is no direct test yet devised for discrete spacetime.
However, my discrete internal symmetry space approach
dictates a fourth quark family with a b’ quark state at about
80 GeV and a t’ quark at about 2600 GeV. The production of
this b’ quark with the detection of its decay to a b quark and a
high energy photon seems at present to be the only attainable
empirical test for discreteness. Its appearance in collider
decays would be an enormously important event in particle
physics, strongly suggesting that the internal symmetry space
and its “surrounding” spacetime are discrete.

However, the b’ quark has remained hidden among the
collision debris at Fermilab because its flavor changing neu-
tral current (FCNC) decay channel has a very low probability
compared to all the other particle decays in this energy
regime. This b’ quark decay may even be confused with
the decay of the Higgs boson, should such a particle exist,
until all the quantum numbers are established. The t’ quark at
around 2600 GeV has too great a mass to have been produced
directly at Fermilab.

I expect the production of b’ quarks at the Large Hadron
Collider in a few years to be the acid test for discreteness
and to verify the close connection of fundamental physics to
the mathematical properties of the finite simple groups.
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Currently, Hubble’s law is often considered as the observational evidence of an
expanding universe. It is shown that Hubble’s Law need not be related to the notion
of Doppler redshifts of the light from receding Galaxies. In the derivation of the
receding velocity, an implicit assumption, which implies no expansion, must be used.
Moreover, the notion of receding velocity is incompatible with the local light speeds
used in deriving the light bending. The notion of an expanding universe is based on
an unverified assumption that a local distance in a physical space is similar to that
of a mathematical Riemannian space embedded in a higher dimensional flat space,
and thus the physical meaning of coordinates would necessarily depend on the metric.
However, this assumption has been proven as theoretically invalid. In fact, a physical
space necessarily has a frame of reference, which has a Euclidean-like structure that
is independent of the yet to be determined physical metric and thus cannot be such an
embedded space. In conclusion, the notion of an expanding universe could be just a
mathematical illusion.

1 Introduction

Currently, Hubble’s law is often considered as the observat-
ional evidence of the expanding universe. This is done by
considering Hubble’s law essentially as a manifestation of the
Doppler red shift of the light from the receding Galaxies [1].
Thus, the further a galaxies is from the Milky Way, the faster
it appears to receding. However, Hubble himself rejected
this interpretation and concluded in 1936 that the Galaxies
are actually stationary [2]. In view of the fact that this
interpretation of relating to the receding velocities is far from
perfect [3], perhaps, it would be useful to reexamine how
solid is such an interpretation in terms of general relativity
and physics.

It will be shown that Hubble’s Law need not be related
to the Doppler redshifts of the light from receding Galaxies
(section 2). It is pointed out, in the derivation of the receding
velocity, an implicit assumption, which implies no expansion,
must be used (section 3). Moreover, the receding velocity
is incompatible with the light speeds used in deriving the
light bending (section 4). In short, the notion of expanding
universe is a production due to confusing notion of the
coordinates and also due to inadequate understanding of a
physical space. Thus, such a universe is unlikely related to
the reality (section 5).

2 Hubble’s law

Hubble discovered from light emitted by near by galaxies
that the redshifts S are linearly proportion to the present
distance L from the Milky Way as follows:

S = HL (1)

where H is the Hubble constant although the redshifts of
distant galaxies will deviate from this linear law with a
slightly different constant. In terms of general relativity, it is
well known that this law can be derived with the following
metric [1, 3],

ds2 = −dτ 2 + a2(τ )(dx2 + dy2 + dz2) , (2)

since

S =
λ2 − λ1
λ1

=
ω1
ω2
− 1 =

a(τ2)

a(τ1)
− 1 , (3)

where ω1 is the frequency of a photon emitted at event P1 at
time τ1, and ω2 is the frequency of the photon observed at
P2 at time τ2 [1]. Furthermore, for nearby galaxies, one has

a(τ2) ' a(τ1) + (τ2 − τ1) ȧ . (4)
If

(τ2 − τ1) = L =

∫ 2

1

√
dx2 + dy2 + dz2 , (5)

then

S =
ȧ

a
L = HL, and H =

ȧ

a
. (6)

Formula (5) is compatible with the calculation in the be-
nding of light. Please note that Hubble’s Law need not be
related to the Doppler redshifts. Understandably, Hubble re-
jected such an interpretation himself [2]. In fact, there is act-
ually no receding velocity since L is fixed (i. e., dL/dτ =0).

3 Hubble’s law and the Doppler redshifts

On the other hand, if one chooses to define the distance
between two points as

R =

∫ 2

1

a(τ )
√
dx2 + dy2 + dz2 = a(τ )L , (7)
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then

v=
dR

dτ
=
da

dτ
L+

dL

dτ
a=

da

dτ

R

a
=HR, if

dL

dτ
=0. (8)

According to relation (7), v would be the receding veloc-
ity. Note also that according to (7), (5) would have to change
into (τ2 − τ1) = R , and (1) into S = HR. Thus,

v = S. (9)

This means that the redshifts could be superficially con-
sidered as a Doppler effect. Thus, whether Hubble’s Law
represents the effects of an expanding universe is a matter
of the interpretation of the local distance. From the above
analysis, the crucial point is what is a valid physical velocity
in a physical space.

It should be noted that dL/dt = 0 means that the space
coordinates are independent of the metric. In other words,
the physical space has a Euclidean-like structure [4], which
is independent of time. However, since L between any two
space-points is fixed, the notion of an expanding universe, if
it means anything, is just an illusion. Moreover, the validity
of (7) as the physical distance has no known experimental
supports since it is not really measurable (see section 5).
Moreover, a problem is that the notion of velocity in (8)
would be incompatible with the light speeds in the calculation
of light bending experiment.

4 The coordinates of an Einstein physical space

In mathematics, the Riemannian space is often embedded in
a higher dimensional flat space [5]. Then the coordinates dxμ

are determined by the metric through the metric,

ds2 = gμν dx
μdxν , or − g00dt

2 + gij dx
idxj (10)

such as the surface of a sphere in a three-dimensional Eu-
clidean space. For a physical space, however, there are in-
sufficient conditions to do so. Since the metric is a variable
function, it is impossible to determine the coordinates with
the metric. In view of this, the coordinates must be physically
independent of the metric. As shown in metric (2), a physical
space has a Euclidean-like structure as a frame of reference.(1)

Moreover, it has been proven from the theoretical framework
of general relativity [4] that a frame of reference with the
Euclidean-like structure must exist for a physical space.

For a spherical mass distribution with the center at the
origin, the metric with the isotropic gauge is,

ds2 = −[(1−Mk/2r)2/(1 +Mk/2r)2]c2dt2+

+(1 +Mk/2r)4 (dx2 + dy2 + dz2) ,
(11)

where k = G/c2 (G = 6.67×10−8erg×cm/gm2), M is the
total mass, and r =

√
x2 + y2 + z2. Then, if the equivalence

principle is satisfied, the light speeds are determined by
ds2 = 0 [6, 7], i. e.,

√
dx2 + dy2 + dz2

dt
= c

1−Mκ/2r

[1 +Mκ/2r]3
. (12)

However, such a definition of light speeds is incompatible
with the definition of velocity (8) although compatible with
(5). Since this light speed is supported by observations, (8)
is invalid in physics. Nevertheless, Liu [8] has defined light
speeds, which is more compatible with (8), as

√
gij dxidxj

dt
= c

1−Mκ/2r

1 +Mκ/2r
(13)

for metric (11). However, (13) implies only half of the
deflection implied by (12) [6, 7].

The above analysis also explains why many current theo-
rists insist on that the light speeds are not defined even though
Einstein defined them clearly in his 1916 paper as well as
in his book, The Meaning of Relativity. They might argued
that the light speeds are not well defined since diffeomorphic
metrics give different sets of light speeds for the same frame
of reference. However, they should note that Einstein defines
light speeds after the assumption that his equivalence princ-
iple is satisfied [6, 7]. Different metric for the same frame of
reference means only that at most only one of such metrics
is physically valid [4], and therefore the definition of light
speeds are, in principle, uniquely well-defined.

However, since the problem of a physical valid metric
has not been solved, whether a light speed is valid remains a
question. Nevertheless, it has been proven that the Maxwell-
Newton Approximation gives the valid first order approxi-
mation of the physical metric, the first order of the physically
valid light speeds are solved [4]. Since metric (11) is compa-
tible with the Maxwell-Newton approximation, the first order
of light speed (12) is valid in physics.

Thus, the groundless speculation that local light speeds
are not well defined is proven incorrect. In essence, the
velocity definition (8), which leads to the notion of the
Doppler redshifts, has been rejected by experiments. Never-
theless, some skeptics might prefer to accept formula (6)
after light speed (12) is confirmed by the experiment of local
light speeds [4].

5 Discussions and Conclusions

A major problem in Einstein’s theory, as pointed out by
Whitehead [9] and Fock [10], the physical meaning of co-
ordinates is ambiguous and confusing. In view of this, it is
understandable that the notion in an embedded Riemannian
space is used when the physical nature of the problem is
not yet clear.(2) A major difference between physics and
mathematics is that the coordinates in physics must have
physical meaning. Since Einstein is not a mathematician,
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his natural step would be to utilize the existing theory of
Riemannian space. However, as Whitehead [9] saw, this
created a seemingly irreconcilable problem between coordi-
nates of a curved space-time and physics.

Under such a circumstances, the notion of an expanding
universe is created while an implicit assumption that restricts
the universe as static is also used. This kind of inconsistency
is expectedly inevitable because of contradictory principles,
Einstein’s equivalence principle that requires space-time co-
ordinates have physical meaning and the “principle of covar-
iance” that necessarily means that coordinates are arbitrary,
are concurrently used in Einstein’s theory [11]. Recently, it is
proven [12] that Einstein’s “principle of covariance” has no
theoretical basis in physics or observational support beyond
what is allowed by the principle of general relativity.(3)

This analysis demonstrates that the Hubble’s Law is
not necessarily related to the Doppler redshifts. It is also
pointed out that the notion of an expanding universe is
related to contradictory assumptions and thus is unlikely a
physical possibility. Moreover, this kind notion of velocity is
incompatible with the light speeds used in the calculation of
light bending [6, 7].

In Einstein’s theory of measurement, a local distance in a
physical space is assumed to be similar to that of a mathem-
atical Riemannian space embedded in a higher dimension-
al flat space, and thus the physical meaning of coordinates
would necessarily depend on the metric. Recently, this un-
verified assumption is proven to be inconsistent with Ein-
stein’s notion of space contractions [13]. In other words,
this unverified assumption contradicts Einstein’s equivalence
principle that the local space of a particle at free falling must
be locally Minkowskian [7], from which he obtained the time
dilation and space contractions.

In conclusion, the notion of an expanding universe is
unlikely a physical reality, although metric (2) is only a
model among other possibilities. Currently, there are three
theoretical explanations for the cause to observed red shifts.
They are: (1) the expanding universe; (2) Doppler redshifts;
and (3) gravitational redshifts. In this paper, it has been
shown that the current receding velocity of an expanding
universe is only a theoretical illusion and is unrelated to
the Doppler redshifts. If the notion of expanding universe
cannot be explained satisfactorily, it is difficult to imagine
that Doppler effects are the cause of observed Hubble’s law.
Moreover, this law also cannot be explained in terms of
gravitational redshifts.

Then, one may ask if the observed gravitational redshifts
are not due to an expanding universe, what causes such
redshifts that are roughly proportional to the distances from
the observer. One possibility is that the scatterings of a light
ray along its path to the observer. In physics, it is known that
different scatterings are common causes for losing energy
of a particle, and for the case of photons it means redshifts.
Since such an effect is so small, it must be the scattering of

a weak field. In fact, the inelastic scattering of light by the
gravitational field has been speculated [14]. Unfortunately,
to test such a conjecture is not possible because no current
theory of gravity is capable of handling the inelastic scatter-
ings of lights.

At present, Einstein’s equation even does not have any
dynamic solution [15, 16]. Thus, to solve this puzzle rigor-
ously seems surely in the remote future. Nevertheless, the
assumption that observed redshifts could be due to inelastic
scatterings may help to explain some puzzles of observed
facts [17]. For instance, it is known that younger objects
such as star forming galaxies have higher intrinsic redshifts,
and objects with the same path length to the observer have
much different redshifts while all parts of the object have
about the same amount of redshifts.(4)

A noted advancement of the Euclidean-like structure [4]
is that notions used in a Euclidean space could be adapted
much easier in general relativity. Many things would be
calculated as if in a Euclidean space. On the other hand, the
speculations related to the notion of an expanding universe
[1] would crease to function, and physics should return
to normal. Nevertheless, when a transformation between
different frames of reference is considered, the physical space
is clearly Riemannian as Einstein discovered.
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Endnotes

(1) A common problem is overlooking that the metric of a
Riemannian space can actually be compatible with the space
coordinates with the Euclidean-like structure. For example,
the Schwarzschild solution in quasi-Minkowskian coord-
inates [18; p. 181] is,

ds2=−(1−2Mκ/r)c2dt2+(1−2Mκ/r)−1dr2+

+ r2(dθ2+ sin2 θdϕ2),
(1a)

where (r, θ, ϕ) transforms to (x, y, z) by,

x = r sin θ cosϕ, y = r sin θ sinϕ,

and z = r cos θ .
(1b)

Coordinate transformation (1b) tells that the space coord-
inates satisfy the Pythagorean theorem. The Euclidean-like
structure represents this fact, but avoids confusion with the
notion of a Euclidean subspace determined by the metric.
Metric (1a) and Euclidean-like structure (1b) are comple-
mentary to each other in the Einstein space. These space-time
coordinates form not just a mathematical coordinate system
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since a light speed (ds2 = 0) is defined in terms of dx/dt,
dy/dt, and dz/dt [19].

(2) In the initial development of Riemannian geometry, the met-
ric was identified formally with the notion of distance in
analogy as the case of the Euclidean space. Such geometry
is often illustrated with the surface of a sphere, a subspace
embedded in a flat space [5]. Then, the distance is determined
by the flat space and can be measured with a static method.
For a general case, however, the issue of measurement was
not addressed before Einstein’s theory. In general relativity,
according to Einstein’s equivalence principle, the local dis-
tance represents the space contraction [7, 19], which is act-
ually measured in a free fall local space [13]. Thus, this
is a dynamic measurement since the measuring instrument
is in a free fall state under the influence of gravity, while
the Euclidean-like structure determines the static distance
between two points in a frame of reference. Einstein’s error
is that he overlooked the free fall state, and thus has mistaken
this dynamic local measurement as a static measurement.

(3) If the “covariance principle” was valid, it has been shown
that the “event of horizon” for a black hole could be just any
arbitrary constant [20]. Zhou [21] is probably the earliest
who spoke out against the “principle of covariance” and
he pointed out, “The concept that coordinates don’t matter
in the interpretation of Einstein’s theory necessarily leads
to mathematical results which can hardly have a physical
interpretation and are therefore a mystification of the theory.”
More recently, Morrison [12] commented that Einstein’s
“covariance principle” discontinuously separates special re-
lativity from general relativity.

(4) These two types of puzzles would be very difficult to be ex-
plained in terms of an expanding universe alone. One might
object the scattering of gravitational field on the ground that
the photon flight path would be deviated and the images
blurred. However, although the scattering by random objects
would make blurred images, it is not clear this is the case for
a scattering by a weak field. Moreover, since the scattering
in the path of photons by the weak gravitational field is very
weak, the deviation from the path would not be noticeable,
and this is different from the gravitational lenses effects that
can be directly observed.
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Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss
how unmatter entities (the conjugations of matter and antimatter) may be formed as
clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon
clusters are present as a parton (sensu Feynman) superposition within the spatial
confinement of the proton (1H1), the neutron, and the deuteron (1H2). If model
predictions can be confirmed both mathematically and experimentally, a new physics
is suggested. A proposed experiment is connected to othopositronium annihilation
anomalies, which, being related to one of known unmatter entity, orthopositronium
(built on electron and positron), opens a way to expand the Standard Model.

1 Introduction

According to Smarandache [1, 2, 3], following neutrosophy
theory in philosophy and set theory in mathematics, the union
of matter <A> and its antimatter opposite <AntiA> can form
a neutral entity <NeutA> that is neither <A> nor <AntiA>.
The <NeutA> entity was termed “unmatter” by Smarandache
[1] in order to highlight its intermediate physical constitution
between matter and antimatter. Unmatter is formed when
matter and antimatter baryons intermingle, regardless of the
amount of time before the conjugation undergoes decay.
Already Bohr long ago predicted the possibility of unmatter
with his principle of complementarity, which holds that nat-
ure can be understood in terms of concepts that come in
complementary pairs of opposites that are inextricably con-
nected by a Heisenberg-like uncertainty principle. However,
not all physical union of <A> with <AntiA> must form
unmatter. For instance, the charge quantum number for the
electron (e−) and its antimatter opposite positron (e+) make
impossible the formation of a charge neutral state — the
quantum situation must be either (e−) or (e+).

Although the terminology “unmatter” is unconventional,
unstable entities that contain a neutral union of matter and
antimatter are well known experimentally for many years
(e. g, pions, pentaquarks, positronium, etc.). Smarandache
[3] presents numerous additional examples of unmatter that
conform to formalism of quark quantum chromodynamics,
already known since the 1970’s. The basis that unmatter
does exists comes from the 1970’s experiments done at
Brookhaven and CERN [4–8], where unstable unmatter-like
entities were found. Recently “physicists suspect they have
created the first molecules from atoms that meld matter
with antimatter. Allen Mills of the University of California,
Riverside, and his colleagues say they have seen telltale
signs of positronium molecules, made from two positronium
atoms” [9, 10]. A bound and quasi-stable unmatter baryon-

ium has been verified experimentally as a weak resonance
between a proton and antiproton using a Skyrme-type model
potential. Further evidence that neutral entities derive from
union of opposites comes from the spin induced magnetic
moment of atoms, which can exist in a quantum state of both
spin up and spin down at the same time, a quantum con-
dition that follows the superposition principal of physics. In
quantum physics, virtual and physical states that are mutually
exclusive while simultaneously entangled, can form a unity
of opposites <NeutA> via the principle of superposition.

Our motivation for this communication is to the question:
would the superposition principal hold when mass sym-
metrical and asymmetrical matter and antimatter nucleon
wavefunctions become entangled, thus allowing for possible
formation of macroscopic “unmatter” nucleon entities, either
stable or unstable? Here we introduce how the novel Nucleon
Cluster Model of the late R. A. Brightsen [11–17] does pre-
dict formation of unmatter as the product of such a superpo-
sition between matter and antimatter nucleon clusters. The
model suggests a radical hypothesis that antimatter nucleon
clusters are present as a hidden parton type variable (sensu
Feynman) superposed within the spatial confinement of the
proton (1H1), the neutron, and the deuteron (1H2). Because
the mathematics involving interactions between matter and
antimatter nucleon clusters is not developed, theoretical work
will be needed to test model predictions. If model predictions
can be experimentally confirmed, a new physics is suggested.

2 The Brightsen Nucleon Cluster Model to unmatter
entities inside nuclei

Of fundamental importance to the study of nuclear physics is
the attempt to explain the macroscopic structural phenomena
of the atomic nucleus. Classically, nuclear structure mathem-
atically derives from two opposing views: (1) that the proton
[P] and neutron [N] are independent (unbound) interacting
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Matter
Clusters −→

Antimatter
Clusters

−
→

[NP]
Deuteron

i
Stable

[NPN]
Triton

j
Beta-unstable

[PNP]
Helium-3

k
Stable

[NN]
Di-Neutron

l

[PP]
Di-Proton

m

[NNN]
Tri-Neutron

n

[PPP]
Tri-Proton

o

[N P̂̂ ]
a

Stable

[N]
|NP| |N P̂̂ |

[P]
|NP| |N P̂̂ |

Pions
(q q̂ )

Pions
(q q̂ )

[N]
|NN| |N P̂̂ |

[P]
|N P̂̂ | |PP|

[N P̂̂ N ]̂
b

Beta-unstable

[N ]̂
|NP| |N P̂̂ |

Pions
(q q̂ )

[P̂ ]
|NN| |NˆN |̂

[N ]̂
|N P̂̂ | |PP|

Pions
(q q̂ )

Tetraquarks
(q q q̂ q̂ )

[P̂ N P̂̂ ]
c

Stable

[P̂ ]
|NP| |N P̂̂ |

Pions
(q q̂ )

[P̂ ]
|N P̂̂ | |NN|

[N ]̂
|PP| |P P̂̂ |

Tetraquarks
(q q q̂ q̂ )

Pions
(q q̂ )

[NˆN ]̂
d

Pions
(q q̂ )

[N]
|NN| |NˆN |̂

[P]
|NP| |NˆN |̂

Tetraquarks
(q q q̂ q̂ )

[N]
|NN| |NˆN |̂

[P]
|PP| |NˆN |̂

[P̂ P̂ ]
e

Pions
(q q̂ )

[N]
|NP| |P P̂̂ |

[P]
|NP| |P P̂̂ |

Tetraquarks
(q q q̂ q̂ )

[N]
|P̂ P̂ | |NN|

[P]
|PP| |P P̂̂ |

[NˆNˆN ]̂
f

[N ]̂
|NP| |NˆN |̂

Pions
(q q̂ )

Tetraquarks
(q q q̂ q̂ )

[N ]̂
|NN| |NˆN |̂

[N ]̂
|NˆN |̂ |PP|

Hexaquarks
(q q q q̂ q̂ q̂ )

[P̂ P̂ P̂ ]
g

[P̂ ]
|NP| |P P̂̂ |

Tetraquarks
(q q q̂ q̂ )

Pions
(q q̂ )

[P̂ ]
|P̂ P̂ | |NN|

[P̂ ]
|P̂ P̂ | |PP|

Hexaquarks
(q q q q̂ q̂ q̂ )

Table 1: Unmatter entities (stable, quasi-stable, unstable) created from union of matter and antimatter nucleon clusters as predicted by
the gravity-antigravity formalism of the Brightsen Nucleon Cluster Model. Shaded cells represent interactions that result in annihilation
of mirror opposite two- and three- body clusters. Top nucleons within cells show superposed state comprised of three valance quarks;
bottom structures show superposed state of hidden unmatter in the form of nucleon clusters. Unstable pions, tetraquarks, and hexaquark
unmatter are predicted from union of mass symmetrical clusters that are not mirror opposites. The symbol ˆ= antimatter, N = neutron, P
= proton, q = quark. (Communication with R. D. Davic).

fermions within nuclear shells, or (2) that nucleons interact
collectively in the form of a liquid-drop. Compromise models
attempt to cluster nucleons into interacting [NP] boson pairs
(e.g., Interacting Boson Model-IBM), or, as in the case of
the Interacting Boson-Fermion Model (IBFM), link boson
clusters [NP] with un-paired and independent nucleons [P]
and [N] acting as fermions.

However, an alternative view, at least since the 1937
Resonating Group Method of Wheeler, and the 1965 Close-
Packed Spheron Model of Pauling, holds that the macro-
scopic structure of atomic nuclei is best described as being
composed of a small number of interacting boson-fermion
nucleon “clusters” (e. g., helium-3 [PNP], triton [NPN], deu-
teron [NP]), as opposed to independent [N] and [P] nucleons
acting as fermions, either independently or collectively.
Mathematically, such clusters represent a spatially localized
mass-charge-spin subsystem composed of strongly correlated
nucleons, for which realistic two- and three body wave funct-
ions can be written. In this view, quark-gluon dynamics are

confined within the formalism of 6-quark bags [NP] and
9-quark bags ([PNP] and [NPN]), as opposed to valance
quarks forming free nucleons. The experimental evidence in
support of nucleons interacting as boson-fermion clusters is
now extensive and well reviewed.

One novel nucleon cluster model is that of R. A. Bright-
sen, which was derived from the identification of mass-
charge symmetry systems of isotopes along the Z-N Serge
plot. According to Brightsen, all beta-stable matter and anti-
matter isotopes are formed by potential combinations of
two- and three nucleon clusters; e.g., ([NP], [PNP], [NPN],
[NN], [PP], [NNN], [PPP], and/or their mirror antimatter
clusters [N P̂ ]̂, [PˆN P̂ ]̂, [N P̂ˆN ]̂, [NˆN ]̂, [P P̂ ]̂, [P P̂ P̂ ]̂,
[NˆNˆN ]̂, where the symbol ˆ here is used to denote anti-
matter. A unique prediction of the Brightsen model is that a
stable union must result between interaction of mass asym-
metrical matter (positive mass) and antimatter (negative
mass) nucleon clusters to form protons and neutrons, for
example the interaction between matter [PNP] + antimatter
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[N P̂ ]̂. Why union and not annihilation of mass asymmetrical
matter and antimatter entities? As explained by Brightsen,
independent (unbound) neutron and protons do not exist in
nuclear shells, and the nature of the mathematical series of
cluster interactions (3 [NP] clusters = 1[NPN] cluster + 1
[PNP] cluster), makes it impossible for matter and antimatter
clusters of identical mass to coexist in stable isotopes. Thus,
annihilation cannot take place between mass asymmetrical
two- and three matter and antimatter nucleon clusters, only
strong bonding (attraction).

Here is the Table that tells how unmatter may be formed
from nucleon clusters according to the Brightsen model.

3 A proposed experimental test

As known, Standard Model of Quantum Electrodynamics
explains all known phenomena with high precision, aside
for anomalies in orthopositronium annihilation, discovered
in 1987.

The Brightsen model, like many other models (see Ref-
erences), is outside the Standard Model. They all pretend to
expand the Standard Model in one or another way. Therefore
today, in order to judge the alternative models as true or false,
we should compare their predictions to orthopositronium
annihilation anomalies, the solely unexplained by the Stand-
ard Model. Of those models the Brightsen model has a chance
to be tested in such way, because it includes unmatter entities
(the conjugations of particles and anti-particles) inside an
atomic nucleus that could produce effect in the forming of
orthopositronium by β+-decay positrons and its annihilation.

In brief, the anomalies in orthopositronium annihilation
are as follows.

Positronium is an atom-like orbital system that includes
an electron and its anti-particle, positron, coupled by electro-
static forces. There are two kinds of that: parapositronium
SPs, in which the spins of electron and positron are oppositely
directed and the summary spin is zero, and orthopositronium
TPs, in which the spins are co-directed and the summary spin
is one. Because a particle-antiparticle (unmatter) system is
unstable, life span of positronium is rather small. In vacuum,
parapositronium decays in τ ' 1.25×10−10 s, while ortho-
positronium is τ ' 1.4×10−7 s after the birth. In a medium
the life span is even shorter because positronium tends to
annihilate with electrons of the media.

In laboratory environment positronium can be obtained
by placing a source of free positrons into a matter, for
instance, one-atom gas. The source of positrons is β+-decay,
self-triggered decays of protons in neutron-deficient atoms∗

p → n+ e+ + νe.

Some of free positrons released from β+-decay source

∗It is also known as positron β+-decay. During β−-decay in nucleus
neutron decays n → p+ e−+ ν̃e.

into gas quite soon annihilate with free electrons and elec-
trons in the container’s walls. Other positrons capture elec-
trons from gas atoms thus producing orthopositronium and
parapositronium (in 3:1 statistical ratio). Time spectrum of
positrons (number of positrons vs. life span) is the basic
characteristic of their annihilation in matter.

In inert gases the time spectrum of annihilation of free
positrons generally reminds of exponential curve with a
plateau in its central part, known as “shoulder” [29, 30]. In
1965 Osmon published [29] pictures of observed time spectra
of annihilation of positrons in inert gases (He, Ne, Ar, Kr,
Xe). In his experiments he used 22NaCl as a source of β+-
decay positrons. Analyzing the results of the experiments,
Levin noted that the spectrum in neon was peculiar compared
to those in other one-atom gases: in neon points in the
curve were so widely scattered, that presence of a “shoulder”
was unsure. Repeated measurements of temporal spectra of
annihilation of positrons in He, Ne, and Ar, later accomplish-
ed by Levin [31, 32], have proven existence of anomaly in
neon. Specific feature of the experiments done by Osmon,
Levin and some other researchers in the UK, Canada, and
Japan is that the source of positrons was 22Na, while the
moment of birth of positron was registered according to γn-
quantum of decay of excited 22∗Ne

22∗Ne → 22Ne+ γn ,

from one of products of β+-decay of 22∗Na.
In his experiments [33, 34] Levin discovered that the

peculiarity of annihilation spectrum in neon (abnormally
wide scattered points) is linked to presence in natural neon of
substantial quantity of its isotope 22Ne (around 9%). Levin
called this effect isotope anomaly. Temporal spectra were
measured in neon environments of two isotopic composit-
ions: (1) natural neon (90.88% of 20Ne, 0.26% of 21Ne,
and 8.86% of 22Ne); (2) neon with reduced content of 22Ne
(94.83% of 20Ne, 0.22% of 21Ne, and 4.91% of 22Ne).
Comparison of temporal spectra of positron decay revealed:
in natural neon (the 1st composition) the shoulder is fuzzy,
while in neon poor with 22Ne (the 2nd composition) the
shoulder is always clearly pronounced. In the part of spectr-
um, to which TPs-decay mostly contributes, the ratio between
intensity of decay in poor neon and that in natural neon (with
much isotope 22Ne) is 1.85±0.1 [34].

Another anomaly is substantially higher measured rate of
annihilation of orthopositronium (the value reciprocal to its
life span) compared to that predicted by QED.

Measurement of orthopositronium annihilation rate is
among the main tests aimed to experimental verification of
QED laws of conservation. In 1987 thanks to new precision
technology a group of researchers based in the University of
Michigan (Ann Arbor) made a breakthrough in this area. The
obtained results showed substantial gap between experiment
and theory. The anomaly that the Michigan group revealed
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was that measured rates of annihilation at λT(exp)= 7.0514±
±0.0014 μs−1 and λT(exp) = 7.0482 ± 0.0016 μs−1 (with
unseen-before precision of 0.02% and 0.023% using vacuum
and gas methods [35–38]) were much higher compared to
λT(theor) = 7.00383 ± 0.00005 μs−1 as predicted by QED
[39–42]. The effect was later called λT-anomaly [43].

Theorists foresaw possible annihilation rate anomaly not
long before the first experiments were accomplished in Mi-
chigan. In 1986 Holdom [44] suggested that “mixed type”
particles may exist, which being in the state of oscillation
stay for some time in our world and for some time in the
mirror Universe, possessing negative masses and energies. In
the same year Glashow [45] gave further development to the
idea and showed that in case of 3-photon annihilation TPs
will “mix up” with its mirror twin thus producing two effects:
(1) higher annihilation rate due to additional mode of decay
TPs → nothing, because products of decay passed into the
mirror Universe can not be detected; (2) the ratio between
orthopositronium and parapositronium numbers will decrease
from TPs : SPs = 3:1 to 1.5 : 1. But at that time (in 1986)
Glashow concluded that no interaction is possible between
our-world and mirror-world particles.

On the other hand, by the early 1990’s these theoretic
studies encouraged many researchers worldwide for experi-
mental search of various “exotic” (unexplained in QED) mo-
des of TPs-decay, which could lit some light on abnormally
high rate of decay. These were, to name just a few, search
for TPs→ nothing mode [46], check of possible contribution
from 2-photon mode [47–49] or from other exotic modes
[50–52]. As a result it has been shown that no exotic modes
can contribute to the anomaly, while contribution of TPs→
nothing mode is limited to 5.8×10−4 of the regular decay.

The absence of theoretical explanation of λT-anomaly
encouraged Adkins et al. [53] to suggest experiments made
in Japan [54] in 1995 as an alternative to the basic Michigan
experiments. No doubt, high statistical accuracy of the Japan-
ese measurements puts them on the same level with the
basic experiments [35–38]. But all Michigan measurements
possessed the property of a “full experiment”, which in this
particular case means no external influence could affect wave
function of positronium. Such influence is inevitable due to
electrodynamic nature of positronium and can be avoided
only using special technique. In Japanese measurements [54]
this was not taken into account and thus they do not possess
property of “full experiment”. Latest experiments of the
Michigans [55], so-called Resolution of Orthopositronium-
Lifetime Pussle, as well do not possess property of “full
experiment”, because the qualitative another statement in-
cluded external influence of electromagnetic field [56, 57].

As early as in 1993 Karshenboim [58] showed that QED
had actually run out of any of its theoretical capabilities to
explain orthopositronium anomaly.

Electric interactions and weak interactions were joined
into a common electroweak interaction in the 1960’s by com-

monly Salam, Glashow, Weinberg, etc. Today’s physicists
attempt to join electroweak interaction and strong interaction
(unfinished yet). They follow an intuitive idea that forces,
connecting electrons and a nucleus, and forces, connecting
nucleons inside a nucleus, are particular cases of a common
interaction. That is the basis of our claim. If that is true, our
claim is that orthopositronium atoms born in neon of different
isotope contents (22Ne, 21Ne, 20Ne) should be different from
each other. There should be an effect of “inner” structure
of neon nuclei if built by the Brightsen scheme, because
the different proton-neutron contents built by different com-
positions of nucleon pairs. As soon as a free positron drags
an electron from a neon atom, the potential of electro-weak
interactions have changed in the atom. Accordingly, there
in the nucleus itself should be re-distribution of strong inter-
actions, than could be once as the re-building of the Brightsen
pairs of nucleons there. So, lost electron of 22Ne should have
a different “inner” structure than that of 21Ne or 20Ne. Then
the life span of orthopositronium built on such electrons
should be as well different.

Of course, we can only qualitatively predict that dif-
ference, because we have no exact picture of what really
happens inside a “structurized” nucleus. Yet only principal
predictions are possible there. However even in such case
we vote for continuation of “isotope anomaly” experiments
with orthopositronium in neon of different isotope contents.
If further experiments will be positive, it could be considered
as one more auxiliary proof that the Brightsen model is true.
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A preon-based composite model of the fundamental fermions is discussed, in which the
fermions are bound states of smaller entities — primitive charges (preons). The preon is
regarded as a dislocation in a dual 3-dimensional manifold — a topological object with
no properties, save its unit mass and unit charge. It is shown that the dualism of this
manifold gives rise to a hierarchy of complex structures resembling by their properties
three families of the fundamental fermions. Although just a scheme for building a
model of elementary particles, this description yields a quantitative explanation of
many observable particle properties, including their masses. PACS numbers: 12.60.Rc,
12.15.Ff, 12.10.Dm

1 Introduction

The hierarchical pattern observed in the properties of the
fundamental fermions (quarks and leptons) points to their
composite nature [1], which goes beyond the scope of the
Standard Model of particle physics. The particles are group-
ed into three generations (families), each containing two
quarks and two leptons with their electric charges, spins and
other properties repeating from generation to generation: the
electron and its neutrino, e−, νe, the muon and its neutrino,
μ−, νμ, the tau and its neutrino, τ−, ντ , the up and down
quarks, u+2/3, d−1/3, charm and strange, c+2/3, s−1/3, top
and bottom, t+2/3, b−1/3 (here the charges of quarks are
indicated by superscripts). The composite models of quarks
and leptons [2] are based on fewer fundamental particles
than the Standard Model (usually two or three) and are
able to reproduce the above pattern as to the electric and
colour charges, spins and, in some cases, the variety of
species. However, the masses of the fundamental fermions
are distributed in a rather odd way [3]. They cannot be pre-
dicted from any application of first principles of the Standard
Model; nor has any analysis of the observed data [4] or
development of new mathematical ideas [5] yielded an ex-
planation as to why they should have strictly the observed
values instead of any others. Even there exist claims of ran-
domness of this pattern [6]. However, the history of science
shows that, whenever a regular pattern was observed in the
properties of matter (e. g., the periodical table of elements
or eight-fold pattern of mesons and baryons), this pattern
could be explained by invoking some underlying structures.
In this paper we shall follow this lead by assuming that
quarks and leptons are bound states of smaller particles,
which are usually called “pre-quarks” or “preons” [7]. Firstly,
we shall guess at the basic symmetries of space, suggesting
that space, as any other physical entity, is dual. We propose
that it is this property that is responsible for the emergence

of different types of interactions from a unique fundamental
interaction. To be absolutely clear, we have to emphasise that
our approach will be based on classical (deterministic) fields,
which is opposed to the commonly-held view that quarks and
leptons are quantum objects. But we shall see that by using
classical fields on small scales we can avoid the problems
related to the short-range energy divergences and anomalies,
which is the main problem of all quantum field theories.

2 The universe

Let us begin from a few conjectures (postulates) about the
basic properties of space:

P1 Matter is structured, and the number of its structural
levels is finite;

P2 The simplest (and, at the same time, the most complex)
structure in the universe is the universe itself;

P3 The universe is self-contained (by definition);

P4 All objects in the universe spin (including the universe
itself).

The postulate P1 is based on the above mentioned historical
experience with the patterns and structures behind them.
These patterns are known to be simpler on lower structural
levels, which suggests that matter could be structured down
to the simplest possible entity with almost no properties.
We shall relate this entity to the structure of the entire
universe (postulate P2). This is not, of course, a novelty,
since considering the universe as a simple uniform object
lies in the heart of modern cosmology. The shape (topology)
of this object is not derivable from Einstein’s equations, but
for simplicity it is usually considered as a hyper-sphere (S3)
of positive, negative or zero curvature. However, taking into
account the definition of the universe as a self-contained
object (postulate P3), the spherical shape becomes inap-
propriate, because any sphere has at least two unrelated
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hyper-surfaces, which is incompatible with the definition of
the uniqueness and self-containedness of the universe. More
convenient would be a manifold with a unique hyper-surface,
such as the Klein-bottle, K3 [8]. Similarly to S3, it can be of
positive, negative or zero curvature. An important feature of
K3 is the unification of its inner and outer surfaces (Fig. 1). In
the case of the universe, the unification might well occur on
the sub-quark level, giving rise to the structures of elementary
particles and, supposedly, resulting in the identification of the
global cosmological scale with the local microscopic scale
of elementary particles. In Fig. 1b the unification region is
marked as Π (primitive particle).
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Fig. 1: (a) Klein-bottle and (b) its one-dimensional representation;
the “inner” (I) and “outer” (II) hyper-surfaces are unified through
the region Π (primitive particle); R and ρ are, respectively, the
global and local radii of curvature.

3 The primitive particle

Let as assume that space is smooth and continuous, i.e.,
that its local curvature cannot exceed some finite value ε:
| ρ |−1< ε. Then, within the region Π (Fig. 1b) space will
be locally curved “inside-out”. In these terms, the primitive
particle can be seen as a dislocation (topological defect)
of the medium and, thus, cannot exist independently of
this medium. Then, the postulate P4 about the spinning
universe gives us an insight into the possible origin of the
particle mass. This postulate is not obvious, although the
idea of spinning universe was proposed many years ago
by A. Zelmanov [9] and K. Gödel [10]. It comes from the
common fact that so far non-rotating objects have never been
observed.

The universe spinning with its angular velocity ω (of
course, if considered from the embedding space) would result
in the linear velocity ±ωR of the medium in the vicinity
of the primitive particle, where R is the global radius of
curvature of the universe; and the sign depends on the choice
of the referent direction (either inflow or outflow from the
inversion region).

Due to the local curvature, ρ−1, in the vicinity of the
primitive particle, the spinning universe must give rise to
a local acceleration, ag, of the medium moving through
the region Π, which is equivalent to the acceleration of
the particle itself. According to Newton’s second law, this
acceleration can be described in terms of a force, Fg=

=mgag, proportional to this acceleration. The coefficient
of proportionality between the acceleration and the force
corresponds to the inertial mass of the particle. However,
for an observer in the coordinate frame of the primitive
particle this mass will be perceived as gravitational (mg)
because the primitive particle is at rest in this coordinate
frame. Thus, the spinning universe implies the accelerated
motion of the primitive particle along its world line (time-
axis). If now the particle is forced to move along the spatial
coordinates with an additional acceleration ai, it will resist
this acceleration in exactly the same way as it does when
accelerating along the time-axis. A force Fi=miai, which
is required in order to accelerate the particle, is proportional
to ai with the coefficient of proportionalitymi (inertial mass).
But, actually, we can see that within our framework the
inertial, mi, and gravitational, mg, masses are generated by
the same mechanism of acceleration. That is, mass in this
framework is a purely inertial phenomenon (mi ≡ mg).

It is seen that changing the sign of ωR does not change

the sign of the second derivative ag =
∂2(ict)

∂t2
, i. e., of the

“gravitational” force Fg = mgag. This is obvious, because
the local curvature, ρ−1, is the property of the manifold and
does not depend on the direction of motion. By contrast,
the first derivative ∂(ict)

∂t
can be either positive or negative,

depending on the choice of the referent direction. It would
be natural here to identify the corresponding force as electro-
static. For simplicity, in this paper we shall use unit values
for the mass and electric charge of the primitive particle,
denoting them as m◦ and q◦.

In fact, the above mass acquisition scheme has to be mod-
ified because, besides the local curvature, one must account
for torsionof the manifold (corresponding to theWeyl tensor).
In the three-dimensional case, torsion has three degrees of
freedom, and the corresponding field can be resolved into
three components (six — when both manifestations of space,
I and II , are taken into account). It is reasonable to relate
these three components to three polarities (colours) of the
strong interaction.

Given two manifestations of space, we can resolve the
field of the particle into two components, φs and φe. To
avoid singularities we shall assume that infinite energies are
not accessible in nature. Then, since it is an experimental fact
that energy usually increases as distance decreases, we can
hypothesise that the energy of both φe and φs, after reaching
a maximum, decays to zero at the origin. The simplest form
for the split field that incorporates the requirements above is
the following:

F = φs + φe ,

φs = s exp(−ρ−1) , φe = −φ
′
s(ρ) .

(1)

Here the signature s=±1 indicates the sense of the
interaction (attraction or repulsion); the derivative of φs is
taken with respect to the radial coordinate ρ. Far from the
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source, the second component of the split field F mimics
the Coulomb gauge, whereas the first component extends to
infinity being almost constant (similarly to the strong field).

In order to formalise the use of tripolar fields we have to
introduce a set of auxiliary 3 × 3 singular matrices Πi with
the following elements:

±πijk = ±δ
i
j (−1)

δkj , (2)

where δij is the Kronecker delta-function; the (±)-signs cor-
respond to the sign of the charge; and the index i stands for
the colour (i = 1, 2, 3 or red, green and blue). The diverging
components of the field can be represented by reciprocal
elements: π̃jk = π−1jk . Then we can define the (unit) charges
and masses of the primitive particles by summation of these
matrix elements:

qΠ = u
ᵀΠu, q̃Π = u

ᵀΠ̃u

mΠ =| u
ᵀΠu |, m̃Π =| u

ᵀΠ̃u |
(3)

(u is the diagonal of a unit matrix; q̃Π and m̃Π diverge). As-
suming that the strong and electric interactions are manifest-
ations of the same entity and taking into account the known
pattern [11] of the colour-interaction (two like-charged but
unlike-coloured particles are attracted, otherwise they repel),
we can write the signature sij of the chromoelectric inter-
action between two primitive particles, say of the colours i
and j, as:

sij = −u
ᵀΠiΠju . (4)

4 Colour dipoles

Obviously, the simplest structures allowed by the tripolar
field are the monopoles, dipoles and tripoles, unlike the
conventional bipolar (electric) field, which allows only the
monopoles and dipoles. Let us first consider the colour-dipole
configuration. It follows from (4) that two like-charged part-
icles with unlike-colours will combine and form a charged
colour-dipole, g±. Similarly, a neutral colour-dipole, g0, can
also be formed — when the constituents of the dipole have
unlike-charges.

The dipoles g± and g0 are classical oscillators with
the double-well potential V (ρ), Fig. 2, derived from the
split field (1). The oscillations take place within the region
ρ ∈ (0, ρmax), with the maximal distance between the com-
ponents ρmax≈ 1.894ρ◦ (assuming the initial condition E0=
=V (0) and setting this energy to zero).

Let us assume that the field F (ρ) does not act instant-
aneously at a distance. Then, we can define the mass of a
system with, say, N primitive particles as proportional to
the number of these particles, wherever the field flow rate
is not cancelled. For this purpose we shall regard the total
field flow rate, vN , of such a system as a superposition of
the individual volume flow rates of its N constituents. Then
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Fig. 2: Equilibrium potential based on the split field (1)

the net mass of the system can be calculated (to a first-order
of approximation) as the number of particles, N , times the
normalised to unity (Lorentz-additive) field flow rate vN :

mN =| N | vN . (5)

Here vN is calculated recursively from

vi =
qi + vi−1

1+ | q |i vi−1
, (6)

with i= 2, . . . , N and putting v1= q1. Then, when two
unlike-charged particles combine (say red and antigreen),
the magnitudes of their oppositely directed flow rates cancel
each other (resulting in a neutral system). The corresponding,
acceleration also vanishes, which is implicit in (5), formal-
ising the fact that the mass of a neutral system is nullified.
This formula implies the complete cancellation of masses in
the systems with vanishing electric fields, but this is only an
approximation because in our case the primitive particles are
separated by the average distance ρ◦, whereas the complete
cancellation of flows is possible only when the flow source
centres coincide.

In the matrix notation, the positively charged dipole, g+12,
is represented as a sum of two matrices, Π1 and Π2:

g+12 = Π
1 +Π2 =

(
−1 +1 +1
+1 −1 +1
0 0 0

)

, (7)

with the charge qg+12 =+2 and mass mg+12
≈ 2 and m̃g+12

=∞,
according to (3). If two components of the dipole are oppo-
sitely charged, say, g012=Π

1+Π2 (of whatever colour com-
bination), then their electric fields and masses are nullified:
qg0 = 0, mg0 ≈ 0 (but still m̃g0 =∞ due to the null-elements
in the matrix g0). The infinities in the expressions for the
reciprocal masses of the dipoles imply that neither g± nor
g0 can exist in free states (because of their infinite energies).
However, in a large ensemble of neutral colour-dipoles g0,
not only electric but all the chromatic components of the field
can be cancelled (statistically). Then, the mass of the neutral
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dipole g0ik with an extra charged particle Πl belonging this
ensemble but coupled to the dipole, will be derived from the
unit mass of Πl:

m(Πi,Π
k
,Πl) = 1 ,

but still m̃(Πi,Π
k
,Πl) =∞ .

(8)

The charge of this system will also be derived from the
charge of the extra charged particle Πl.

5 Colour tripoles

Three primitive particles with complementary colour-charges
will tend to cohere and form a Y-shaped structure (tripole).
For instance, by completing the set of colour-charges in the
charged dipole [adding the blue-charged component to the
system (7)] one would obtain a colour-neutral but electrically
charged tripole:

Y = Π1 +Π2 +Π3 =

(
−1 +1 +1
+1 −1 +1
+1 +1 −1

)

,

which is colour-neutral at infinity but colour-polarised nearby
(because the centres of its constituents do not coincide). Both
m and m̃ of the tripole are finite, mY = m̃Y = 3 [m◦], since
all the diverging components of its chromofield are mutually
cancelled (converted into the binding energy of the tripole).

6 Doublets of tripoles

a b

Fig. 3: The tripoles (Y-particles) can combine pairwisely, rotated
by 180◦ (a) or 120◦ (b) with respect to each other.

One can show [12] that two like-charged Y-tripoles can
combine pole-to-pole with each other and form a charged
doublet δ+= ............

....................Y ....... ...................
......
Y

(Fig. 3a). Here the rotated symbol

Y

is
used to indicate the rotation of the tripoles through 180◦ with
respect to each other, which corresponds to their equilibrium
position angle. The marked arm of the symbol ............

....................Y indicates
one of the colours, say, red, in order to visualise mutual
orientations of colour-charges in the neighbouring tripoles.
The charge of the doublet, qδ = +6 [q◦], is derived from the
charges of its two constituent tripoles; the same is applied
to its mass: mδ = m̃δ = 6 [m◦]. Similarly, if two unlike-
charged Y-particles are combined, they will form a neutral
doublet, γ = ............

....................Y ....... ...................
......
Y

(Fig. 3b) with qγ = 0 and mγ = m̃γ = 0.
The shape of the potential well in the vicinity of the doublet
allows a certain degree of freedom for its components to
rotate oscillating within ±120◦ with respect to their equilibr-
ium position angle (see [12] for details). We shall use the
symbols � and 	 to denote the clockwise and anticlockwise
rotations.

7 Triplets of tripoles

The 2
3π-symmetry of the tripole allows up to three of them

to combine if they are like-charged. Necessarily, they will
combine into a loop, denoted hereafter with the symbol e. It
is seen that this loop can be found in one of two possible
configurations corresponding to two possible directions of
rotation of the neighbouring tripoles: clockwise, e+�=

............
....................Y ..........

.....................Y .......................Y,
and anticlockwise, e+	 =

............
....................Y .......................Y ..........

.....................Y. The vertices of the tripoles
can be directed towards the centre of the structure (Fig. 4a) or
outwards (Fig. 4b), but it is seen that these two orientations

c

Fig. 4: Three like-charged tripoles joined with their vertices directed
towards (a) and outwards (b) of the centre of the structure; (c):
trajectories of colour charges in this structure.

correspond to different phases of the same structure, with its
colour charges spinning around its ring-closed axis. These
spinning charges will generate a toroidal (ring-closed) mag-
netic field which will force them to move along the torus.
Their circular motion will generate a secondary (poloidal)
magnetic field, contributing to their spin around the ring-axis,
and so forth. The corresponding trajectories of colour-charges
(currents) are shown in Fig. 4c. This mechanism, known
as dynamo, is responsible for generating a self-consistent
magnetic field of the triplet e.

To a first order of approximation, we shall derive the mass
of the triplet from its nine constituents, suggesting that this
mass is proportional to the density of the currents, neglecting
the contribution to the mass of the binding and oscillatory
energies of the tripoles. That is, we put me= 9 [m◦] (bearing
in mind that the diverging components, m̃◦, are almost null-
ified). The charge of the triplet is also derived from the
number of its constituents: qe=±9 [q◦].

8 Hexaplets

Unlike-charged tripoles, combined pairwisely, can form
chains with the following patterns:

νe� =
............

....................Y ..........
.....................Y+ ..........................

.....
Y.......................Y

+ .......................Y ............
....................Y+ ....... ...................

......
Y

..........................

.....
Y

+ ..........
.....................Y .......................Y+

.......................Y....... ...................
......
Y

+ . . .

νe	 =
............

....................Y .......................Y+

.......................Y..........................
.....

Y

+ ..........
.....................Y ............

....................Y+ ....... ...................
......
Y.......................Y

+ .......................Y ..........
.....................Y+ ..........................

.....
Y

....... ...................

......
Y

+ . . .
(9)

corresponding to two possible directions of rotation of the
neighbouring tripoles with respect to each other. The cycle
of rotations repeats after each six consecutive links, making
the orientation of the sixth link compatible with (attractive
to) the first link by the configuration of their colour-charges.
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This allows the closure of the chain in a loop (which we
shall call hexaplet and denote as νe). The pattern (9) is
visualised in Fig. 5a where the antipreons are coded with
lighter colours. The corresponding trajectories of charges
(currents) are shown in Fig. 5b. They are clockwise or
anticlockwise helices, similar to those of the triplet e−. The
hexaplet consists of nνe = 36 preons (twelve tripoles); it is
electrically neutral and, therefore, almost massless, according
to Eq. (3).

Some properties of the simple preon-based structures are
summarised in Table 1.

a b

Fig. 5: (a) Structure of the hexaplet νe = 6YY and (b) the corres-
ponding helical trajectories (currents) formed by the motions of the
hexaplet’s colour-charges.

9 Combinations of triplets and hexaplets

The looped structures e = 3Y and νe = 6YY can combine
with each other, as well as with the simple tripole Y, because
of their 2

3π-symmetry and residual chromaticism. That is,
separated from other particles, the structure νe will behave
like a neutral particle. But, if two such particles approach one
another, they will be either attracted or repulsed from each
other because of van der Waals forces caused by their residual
chromaticism and polarisation. The sign of this interaction
depends on the twisting directions of the particles’ currents.
One can show [12] that the configuration of colour charges
in the hexaplet νe matches (is attractive to) that of the triplet
e if both particles have like-helicities (topological charges).
On the contrary, the force between the particles of the same
kind is attractive for the opposite helicities (2e+	� or e+	e

−
�)

and repulsive for like-helicities (2e+		 or e+	e
−
	). So, the

combined effective potential of the system 2e with unlike-
helicities, will have an attractive inner and repulsive outer
region, allowing an equilibrium configuration of the two
particles. In the case of like-helicities, both inner and outer
regions of the potential are repulsive and the particles e with
like-helicities will never combine. This coheres with (and
probably explains) the Pauli exclusion principle, suggesting
that the helicity (topological charge) of a particle can straight-
forwardly be related to the quantum notion of spin. This
conjecture is also supported by the fact that quantum spin
is measured in units of angular momentum (~), and so too
— the topological charge in question, which is derived from
the rotational motion of the tripoles Y around the ring-closed
axis of the triplet e or hexaplet νe.

Relying upon the geometrical resemblance between the
tripoles Y, triplets e, and hexaplets νe and following the pat-
tern replicated on different complexity levels we can deduce
how these structures will combine with each other. Obvious-
ly, the hexaplet νe, formed of twelve tripoles, is geometrically
larger than a single tripole. Thus, these two structures can
combine only when the former enfolds the latter. The combin-
ed structure, which we shall denote as Y1 = νe+Y, will have
a mass derived from its 39 constituents: mY1 =nνe +mY =
= 36+ 3= 39 [m◦]. Its charge will be derived from the
charge of its central tripole: qY1 =±3 [q◦]. By their prop-
erties, the tripole, Y, and the “helical tripole”, Y1, are alike,
except for the helicity property of the latter derived from the
helicity of its constituent hexaplet.

When considering the combination of the hexaplet, νe,
with the triplet, e, we can observe that the hexaplet must be
stiffer than the triplet because of stronger bonds between the
unlike-charged components of the former, while the repulsion
between the like-charged components of the latter makes
the bonds between them weaker. Then, the amplitude of the
fluctuations of the triplet’s radius will be larger than that
of the hexaplet. Thus, in the combined structure, which we
shall denote as W = 6YY3Y (or νee), it is the triplet that
would enfold the hexaplet. The charge of this structure will
correspond to the charge of its charged component, e: qW =
=±9 [q◦]; its mass can also be derived from the masses of
its constituents if oscillations are dampened:

mW = me + nνe = 9+ 36 = 45 [m◦].

Like the simple Y-tripoles, the “helical” ones, Y1, can
form bound states with each other (doublets, strings, loops,
etc.). Two hexaplets, if both enfold like-charged tripoles,
will always have like-topological charges (helicities), which
means that the force between them due to their topological
charges will be repulsive (in addition to the usual repulsive
force between like-charges). Thus, two like-charged helical
tripoles Y1 will never combine, unless there exists an inter-
mediate hexaplet (νe) between them, with the topological
charge opposite to that of the components of the pair. This
would neutralise the repulsive force between these com-
ponents and allow the formation of the following positively
charged bound state (“helical” doublet):

u+ = Y1�νe	Y1� or Y1 G Y1 . (10)

For brevity we have denoted the intermediate hexaplet
with the symbol G, implying that it creates a bond force
between the otherwise repulsive components on its sides.
By its properties, the helical doublet can be identified with
the u-quark. Its net charge, qu = +6 [q◦], is derived from
the charges of its two charged components (Y1-tripoles).
Its mass is also derived from the number of particles that
constitute these charged components: mu= 2×39= 78 [m◦].
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Table 1: Simple preon-based structures

Structure
Constituents of
the structure

Number of colour
charges in the structure

Charge (q◦ units) Mass (m◦-units)

The primitive particle (preon Π)

Π 1Π 1 +1 1

First-order structures (combinations of preons)

% 2Π 2 +2 2
g0 1Π+ 1Π 2 −1+ 1 = 0 ∼ 0
Y 3Π 3 +3 3

Second-order structures (combinations of tripoles Y)

δ 2Y 6 +6 6
γ 1Y+ 1Y 6 −3+ 3 = 0 ∼ 0
e− 3Y 9 −9 9

Third-order structures

2e− 3Y+ 3Y 9+ 9 = 18 −18 18
e−e+ 3Y+ 3Y 9+ 9 = 18 −9+ 9 = 0 ∼ 16†

νe 6YY 6×(3+ 3) = 36 6×(−3+ 3) = 0 7.9×10−8 †

Y1 νe + Y 36+ 3 = 39 0− 3 = −3 36+ 3 = 39
W− νe + e− 36+ 9 = 45 0− 9 = −9 36+ 9 = 45
u Y1 G Y1 39+ 36+ 39 = 114 +3+ 0+ 3 = +6 39+ 39 = 78

νμ Y1
... Y1 39+ 36+ 39 = 114 −3+ 0+ 3 = 0 1.4×10−7 †

d u + W− 114+ 45 = 159 +6− 9 = −3 78+ 45 = 123

μ νμ + W− 114+ 45 = 159 0− 9 = −9 48+ 39
‡

and so on. . .

†quantities estimated in [13]
‡system with two oscillating components (see further)

The positively charged u-quark can combine with the neg-
atively charged structure W−= νee

− (of 45-units mass),
forming the d-quark:

d− = u+ + νee
− (11)

of a 123-units mass (md = mu + mW = 78 + 45). The
charge of this structure will correspond to the charge of
a single triplet: qd = qu+ qe = +6−9 = −3 [q◦] (see Fig. 6
that below).

Charge:

Net charge −3
︷ ︸︸ ︷
−9 +3 +3

Number
of charges: 36 9︸︷︷︸

νe e−

336 (36) 36 3︸ ︷︷ ︸
u+
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Fig. 6: Scheme of the d-quark. The symbol ♦ is used for the triplet
(e), the symbols 〈| and |〉 denote the tripoles (Y-particles), and the
symbols ∩

∪p p denote the hexaplets (νe).

10 The second and third generations of the fundamental
fermions

When two unlike-charged helical tripoles combine, their po-
larisation modes and helicity signs will always be opposite
(simply because their central tripoles have opposite charges).
This would cause an attractive force between these two part-
icles, in addition to the usual attractive force corresponding
to the opposite electric charges of Y1 and Y1. Since all the
forces here are attractive, the components of this system
will coalesce and then disintegrate into neutral doublets γ.
However, this coalescence can be prevented by an additional
hexaplet νe with oscillating polarisation, which would create
a repulsive stabilising force (barrier) between the combining
particles:

νμ = Y1�νe�	Y1	. (12)

It is natural to identify this structure with the muon-
neutrino — a neutral lepton belonging to the second family of
the fundamental fermions. The intermediate hexaplet oscil-
lates between the tripoles Y1� and Y1	, changing synchron-
ously its polarisation state: νe� ! νe	 . For brevity, we
shall use vertical dots separating the components of νμ to
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denote this barrier-hexaplet:

νμ = Y1
... Y1 . (13)

By analogy, we can derive the tau-neutrino structure:

ντ = Y1
... Y1

... Y1
... Y1 , (14)

as well as the structures of the muon (Fig. 7):

μ− = νμνee
− (15)

and tau-lepton (Fig. 8):

τ− = ντνμμ
−. (16)

Drawing also an analogy with molecular equilibrium
configurations, where the rigidness of a system depends
on the number of local minima of its combined effective
potential [14], we can consider the second and third gener-
ation fermions as non-rigid structures with oscillating com-
ponents (clusters) rather than stiff entities with dampened
oscillations. In Fig. 7 and Fig. 8 we mark the supposedly
clustered components of the μ- and τ -leptons with braces.
Obtaining the ground-state energies (masses) of these com-
plex structures is not a straightforward task because they may
have a great variety of oscillatory modes contributing to the
mass. However, in principle, these masses are computable,
as can be shown by using the following empirical formula:

mclust = m1 +m2 + ∙ ∙ ∙+mN = mm̃, (17)

where N is the number of oscillating clusters, each with the
mass mi (i = 1, . . . , N ); m is the sum of these masses:

m = m1 +m2 + ∙ ∙ ∙+mN ,

and m̃ is the reduced mass based on the components (3):

m̃−1 = m̃−1
1 + m̃−1

2 + ∙ ∙ ∙+ m̃−1
N .

For simplicity, we assume that unit conversion coeffi-
cients in this formula are set to unity. Each substructure
here contains a well-defined number of constituents (preons)
corresponding to the configuration with the lowest energy.
Therefore, the number of these constituents is fixed by the
basic symmetry of the potential, implying that the input
quantities in (17) are not free parameters. The fermion masses
computed with the use of this formula are summarised in
Table 2.

As an example, let us compute the muon’s mass. The
masses of the muon’s substructures, according to Fig. 7, are:
m1= m̃1= 48, m2= m̃2= 39 (in units of m◦). And the

muon’s mass will be: mμ=48+39= 48+39
1/48+1/39

=1872[m◦].

For the τ -lepton, the constituent masses arem1 = m̃1= 201,
m2= m̃2= 156 (Fig. 8), and its mass is mτ = 201+156=
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Fig. 7: Scheme of the muon.
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Fig. 8: Scheme of the tau-lepton.

= 31356 [m◦]. For the proton, the positively charged fermion
consisting of two up (Nu= 2), one down (Nd= 1) quarks
and submerged into a cloud of gluons g0, the masses of its
components are mu= m̃u= 78, md= m̃d= 123. The total
number of primitive charges comprising the proton’s struc-
ture is Np= 2mu +md= 2×78 + 123= 279, which would
correspond to the number of gluons (Ng) interacting with
each of these charges (Ng =Np= 279). The masses of these
gluons, according to (8), are mg0 = 1, m̃g0 =∞, and the
resulting proton mass is

mp = Numu +Ndmd +Ngmg = 16523 [m◦] , (18)

which also reproduces the well-known but not yet explained
proton-to-electron mass ratio, since mp

me
= 16523

9 ≈ 1836.

With the value (18) one can convert me, mμ, mτ , and
the masses of all other particles from units m◦ into proton
mass units, mp, thus enabling these masses to be compared
with the experimental data. The computed fermion masses
are listed in Table 2 where the symbols Y1, Y2 and Y3
denote complex “helical” tripoles that replicate the properties
of the simple tripole Y on higher levels of the hierarchy.
These helical tripoles can be regarded as the combinations
of “heavy neutrinos” with simple triplets. Like νe, the heavy
neutrino consists of six pairs of helical triplets: νh = 6Y1Y1.
They can further combine and form “ultra-heavy” neutrinos
νuh = 3(Y1νhu)e− and so on. The components Y2 and Y3
of the c and t quarks have the following structures: Y2=
=uνeuνee

−, consisting of 165 primitive particles, and Y3=
= νuhY, consisting of 1767 primitive particles.
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Table 2: Computed masses of quarks and leptons. The values in the 4th column taken in units of m◦ are converted into proton mass units
(5th column) mp=16523, Eq.(18). The overlined ones are shorthands for Eq. (17). The masses of νe, νμ and ντ are estimated in [13].

Particle and its
structure (components)

Number of charges in the non-
cancelled mass components

Computed masses
in units of [mp]

Masses converted
into mp

Experimental masses [3]
in units of [mp]

First family

νe 6YY ≈ 0 7.864×10−8 4.759×10−12 < 3×10−9

e− 3Y 9 9 0.0005447 0.0005446170232
u Y1 G Y1 78 78 0.004720 0.0021 to 0.0058
d u + νee

− 123 123 0.007443 0.0058 to 0.0115

Second family

νμ Y1
... Y1 ≈ 0 1.4×10−7 8.5×10−12 < 2×10−4

μ− νμ + νee
− 48+ 39 1872 0.1133 0.1126095173

c Y2 G Y2 165+ 165 27225 1.6477 1.57 to 1.95
s c + e− 165+ 165+ 9 2751 0.1665 0.11 to 0.19

Third family

ντ Y1
... Y1

...Y1
... Y1 ≈ 0 1.5896×10−7 9.6192×10−12 < 2×10−2

τ− ντ + νμμ
− 156+ 201 31356 1.8977 1.8939± 0.0003

t Y3 G Y3 1767+ 1767 3122289 188.94 189.7± 4.5
b t + μ− 1767+ 1767+ 48+ 39 76061.5 4.603 4.3 to 4.7

11 Conclusions

The results presented in Table 2 show that our model agree
with experiment to an accuracy better then 0.5%. The dis-
crepancies should be attributed to the simplifications we have
assumed here (e. g., neglecting the binding and oscillatory
energies, as well as the neutrino residual masses, which
contribute to the masses of many structures in our model).

By matching the pattern of properties of the fundamental
particles our results confirm that our conjecture about the
dualism of space and the symmetry of the basic field cor-
responds, by a grand degree of confidence, to the actual
situation. Thus, our model seems to unravel a new layer of
physical reality, which bears the causal mechanisms underly-
ing quantum phenomena. This sets a foundation from which
one can explain many otherwise inexplicable observational
facts that plague modern physics.
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The new dynamical “quantum foam” theory of 3-space is described at the classical
level by a velocity field. This has been repeatedly detected and for which the dynamical
equations are now established. These equations predict 3-space “gravitational wave”
effects, and these have been observed, and the 1991 DeWitte data is analysed to reveal
the fractal structure of these “gravitational waves”. This velocity field describes the
differential motion of 3-space, and the various equations of physics must be generalised
to incorporate this 3-space dynamics. Here a new generalised Schrödinger equation
is given and analysed. It is shown that from this equation the equivalence principle
may be derived as a quantum effect, and that as well this generalised Schrödinger
equation determines the effects of vorticity of the 3-space flow, or “frame-dragging”,
on matter, and which is being studied by the Gravity Probe B (GP-B) satellite gyroscope
experiment.

1 Introduction

Extensive experimental evidence [1, 2, 3] has shown that a
complex dynamical 3-space underlies reality. The evidence
involves the repeated detection of the motion of the Earth
relative to that 3-space using Michelson interferometers op-
erating in gas mode [3], particularly the experiment by Miller
[4] in 1925/26 at Mt.Wilson, and the coaxial cable RF travel
time measurements by Torr and Kolen in Utah, and the
DeWitte experiment in 1991 in Brussels [3]. All such 7 ex-
periments are consistent with respect to speed and direction.
It has been shown that effects caused by motion relative to
this 3-space can mimic the formalism of spacetime, but that
it is the 3-space that is “real”, simply because it is directly
observable [1].

The 3-space is in differential motion, that is one part
has a velocity relative to other parts, and so involves a
velocity field v (r, t) description. To be specific this velocity
field must be described relative to a frame of observers,
but the formalism is such that the dynamical equations for
this velocity field must transform covariantly under a change
of observer. As shown herein the experimental data from the
DeWitte experiment shows that v (r, t) has a fractal structure.
This arises because, in the absence of matter, the dynamical
equations for v (r, t) have no scale. This implies that the
differential motion of 3-space manifests at all scales. This
fractal differential motion of 3-space is missing from all the
fundamental equations of physics, and so these equations
require a generalisation. Here we report on the necessary
generalisation of the Schrödinger equation, and which results
in some remarkable results: (i) the equivalence principle
emerges, as well as (ii) the effects of vorticity of this velocity

field. These two effects are thus seen to be quantum-theoretic
effects, i. e. consequences of the wave nature of matter. The
equivalence principle, as originally formulated by Galileo
and then Newton, asserts that the gravitational acceleration
of an object is independent of its composition and speed.
However we shall see that via the vorticity effect, the velocity
of the object does affect the acceleration by causing rotations.

It has been shown [1, 5] that the phenomenon of gravity is
a consequence of the time-dependence and inhomogeneities
of v (r, t). So the dynamical equations for v (r, t) give rise to
a new theory of gravity, when combined with the generalised
Schrödinger equation, and the generalised Maxwell and
Dirac equations. The equations for v (r, t) involve the New-
tonian gravitational constant G and a dimensionless constant
that determines the strength of a new spatial self-interaction
effect, which is missing from both Newtonian Gravity and
General Relativity. Experimental data has revealed [1, 5] the
remarkable discovery that this constant is the fine structure
constant α ≈ 1/137. This dynamics then explains numerous
gravitational anomalies, such as the bore hole g anomaly, the
so-called “dark matter” anomaly in the rotation speeds of
spiral galaxies, and that the effective mass of the necessary
black holes at the centre of spherical matter systems, such as
globular clusters and spherical galaxies, is α/2 times the total
mass of these systems. This prediction has been confirmed
by astronomical observations [6].

The occurrence of α suggests that space is itself a quan-
tum system undergoing on-going classicalisation. Just such
a proposal has arisen in Process Physics [1] which is an
information-theoretic modelling of reality. There quantum
space and matter arise in terms of the Quantum Homotopic
Field Theory (QHFT) which, in turn, may be related to the
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standard model of matter. In the QHFT space at this quantum
level is best described as a “quantum foam”. So we interpret
the observed fractal 3-space as a classical approximation to
this “quantum foam”.

While here we investigate the properties of the general-
ised Schrödinger equation, analogous generalisations of the
Maxwell and Dirac equations, and in turn the corresponding
generalisations to the quantum field theories for such sys-
tems, may also be made. In the case of the Maxwell equations
we obtain the light bending effects, including in particular
gravitational lensing, caused by the 3-space differential and
time-dependent flow.

2 The physics of 3-space

Because of the dominance of the spacetime ontology, which
has been the foundation of physics over the last century, the
existence of a 3-space as an observable phenomenon has been
overlooked, despite extensive experimental detection over
that period, and earlier. This spacetime ontology is distinct
from the role of spacetime as a mathematical formalism
implicitly incorporating some real dynamical effects, though
this distinction is rarely made. Consequently the existence
of 3-space has been denied, and so there has never been a
dynamical theory for 3-space. In recent years this situation
has dramatically changed. We briefly summarise the key
aspects to the dynamics of 3-space.

Relative to some observer 3-space is described by a ve-
locity field v (r, t). It is important to note that the coordinate
r is not itself 3-space, rather it is merely a label for an
element of 3-space that has velocity v, relative to some
observer. This will become more evident when we consider
the necessary generalisation of the Schrödinger equation.
Also it is important to appreciate that this “moving” 3-space
is not itself embedded in a “space”; the 3-space is all there
is, although as noted above its deeper structure is that of a
“quantum foam”.

In the case of zero vorticity ∇×v=0 the 3-space dyn-
amics is given by, in the non-relativistic limit,

∇∙

(
∂v

∂t
+ (v∙∇)v

)

+
α

8

(
(trD)2 − tr(D2)

)
=

= −4πGρ ,
(1)

where ρ is the matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

The acceleration of an element of space is given by the
Euler form

g (r, t) ≡ lim
Δt→0

v
(
r+ v (r, t)Δt, t+Δt

)
− v (r, t)

Δt
=

=
∂v

∂t
+ (v∙∇)v .

(3)

These forms are mandated by Galilean covariance under
change of observer∗. This non-relativistic modelling of the
dynamics for the velocity field gives a direct account of
the various phenomena noted above. A generalisation to
include vorticity and relativistic effects of the motion of
matter through this 3-space is given in [1]. From (1) and
(2) we obtain that

∇∙g = −4πGρ− 4πGρDM , (4)

where

ρDM (r) =
α

32πG

(
(trD)2 − tr(D2)

)
. (5)

In this form we see that if α → 0, then the acceleration
of the 3-space elements is given by Newton’s Law of Gravi-
tation, in differential form. But for a non-zero α we see that
the 3-space acceleration has an additional effect, the ρDM
term, which is an effective “matter density” that mimics the
new self-interaction dynamics. This has been shown to be the
origin of the so-called “dark matter” effect in spiral galaxies.
It is important to note that (4) does not determine g directly;
rather the velocity dynamics in (1) must be solved, and then
with g subsequently determined from (3). Eqn. (4) merely
indicates that the resultant non-Newtonian aspects to g could
be mistaken as being the result of a new form of matter,
whose density is given by ρDM . Of course the saga of “dark
matter” shows that this actually happened, and that there has
been a misguided and fruitless search for such “matter”.

The numerous experimental confirmations of (1) imply
that Newtonian gravity is not universal at all. Rather a key
aspect to gravity was missed by Newton because it so
happens that the 3-space self-interaction dynamics does not
necessarily explicitly manifest outside of spherical matter
systems, such as the Sun. To see this it is only necessary to
see that the velocity field

v (r) = −

√
2GM ′

r
r̂ , (6)

is a solution to (1) external to a spherical mass M , where
M ′ = (1+ α

2 )M+. . . Then (6) gives, using (3), the resultant
external “inverse square law” acceleration

g (r) = −
GM ′

r2
r̂ . (7)

Hence in this special case the 3-space dynamics predicts
an inverse square law form for g, as confirmed in the non-
relativistic regime by Kepler’s laws for planetary motion,
with only a modified value for the effective mass M ′. So
for this reason we see how easy it was for Newton to have
overlooked a velocity formalism for gravity, and so missed
the self-interaction dynamics in (1). Inside a spherical matter

∗However this does not exclude so-called relativistic effects, such as the
length contraction of moving rods or the time dilations of moving clocks.
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system Newtonian gravity and the new gravity theory differ,
and it was this difference that explained the bore hole g
anomaly data [5], namely that g does not decrease down a
bore hole as rapidly as Newtonian gravity predicts. It was
this anomaly that lead to the discovery that α was in fact
the fine structure constant, up to experimental errors. As
well the 3-space dynamics in (1) has “gravitational wave”
solutions [7]. Then there are regions where the velocity
differs slightly from the enveloping region. In the absence of
matter these waves will be in general fractal because there
is no dimensioned constant, and so no natural scale. These
waves were seen by Miller, Torr and Kolen, and by DeWitte
[1, 7] as shown in Fig. 2.

However an assumption made in previous analyses was
that the acceleration of the 3-space itself, in (3), was also
the acceleration of matter located in that 3-space. The key
result herein is to derive this result by using the generalised
Schrödinger equation. In doing so we discover the additional
effect that vorticity in the velocity field causes quantum states
to be rotated, as discussed in sect. 7.

3 Newtonian gravity and the Schrödinger equation

Let us consider what might be regarded as the conventional
“Newtonian” approach to including gravity in the Schrödin-
ger equation [8]. There gravity is described by the Newtonian
potential energy field Φ(r, t), such that g = −∇Φ, and we
have for a “free-falling” quantum system, with mass m,

i~
∂ψ(r, t)

∂t
= −

~2

2m
∇2ψ(r, t) +mΦ(r, t)ψ(r, t) ≡

≡ H(t)ψ ,

(8)

where the hamiltonian is in general now time dependent,
because the masses producing the gravitational acceleration
may be moving. Then the classical-limit trajectory is obtained
via the usual Ehrenfest method [9]: we first compute the time
rate of change of the so-called position “expectation value”

d<r>

dt
≡

d

dt
(ψ, rψ) =

i

~
(Hψ, rψ)−

i

~
(ψ, rHψ) =

=
i

~
(ψ, [H, r]ψ) ,

(9)

which is valid for a normalised state ψ. The norm is time
invariant when H is hermitian (H† = H) even if H itself is
time dependent,

d

dt
(ψ,ψ) =

i

~
(Hψ,ψ)−

i

~
(ψ,Hψ) =

=
i

~
(ψ,H†ψ)−

i

~
(ψ,Hψ) = 0 .

(10)

Next we compute the matter “acceleration” from (9)

d2<r>

dt2
=
i

~
d

dt
(ψ, [H, r]ψ) =

=
( i
~

)2(
ψ,
[
H, [H, r]

]
ψ
)
+
i

~

(

ψ,

[
∂H(t)

∂t
, r

]

ψ

)

=

= −(ψ,∇Φψ) =
(
ψ,g (r, t)ψ

)
=<g (r, t)>,

(11)

where for the commutator
[
∂H(t)

∂t
, r

]

=

[

m
∂Φ(r, t)

∂t
, r

]

= 0 . (12)

In the classical limit ψ has the form of a wavepacket
where the spatial extent of ψ is much smaller than the spatial
region over which g (r, t) varies appreciably. Then we have
the approximation <g (r, t)> ≈g (<r>, t), and finally we
arrive at the Newtonian 2nd-law equation of motion for the
wavepacket,

d2<r>

dt2
≈ g (<r>, t) . (13)

In this classical limit we obtain the equivalence principle,
namely that the acceleration is independent of the mass m
and of the velocity of that mass. But of course that followed
by construction, as the equivalence principle is built into (8)
by having m as the coefficient of Φ. In Newtonian gravity
there is no explanation for the origin of Φ or g. In the new
theory gravity is explained in terms of a velocity field, which
in turn has a deeper explanation within Process Physics.

4 Dynamical 3-space and the generalised Schrödinger
equation

The key insight is that conventional physics has neglected the
interaction of various systems with the dynamical 3-space.
Here we generalise the Schrödinger equation to take account
of this new physics. Now gravity is a dynamical effect arising
from the time-dependence and spatial inhomogeneities of
the 3-space velocity field v (r, t), and for a “free-falling”
quantum system with mass m the Schrödinger equation now
has the generalised form

i~

(
∂

∂t
+ v∙∇+

1

2
∇∙v

)

ψ (r, t) = −
~2

2m
∇2ψ(r, t) , (14)

which we write as

i~
∂ψ(r, t)

∂t
= H(t)ψ(r, t) , (15)

where now

H(t) = −i~

(

v∙∇+
1

2
∇∙v

)

−
~2

2m
∇2 . (16)

This form for H specifies how the quantum system must
couple to the velocity field, and it uniquely follows from two
considerations: (i) the generalised Schrödinger equation must
remain form invariant under a change of observer, i. e. with
t→ t, and r→ r+v t, where v is the relative velocity of the

two observers. Then we compute that ∂
∂t
+ v∙∇+ 1

2
∇∙v→
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→ ∂
∂t
+ v∙∇+1

2
∇∙v, i. e. that it is an invariant operator, and

(ii) requiring thatH(t) be hermitian, so that the wavefunction
norm is an invariant of the time evolution. This implies
that the 1

2 ∇∙v term must be included, as v∙∇ by itself
is not hermitian for an inhomogeneous v (r, t). Then the
consequences for the motion of wavepackets is uniquely
determined; they are fixed by these two quantum-theoretic
requirements.

Then again the classical-limit trajectory is obtained via
the position “expectation value”, first with

vO ≡
d<r>

dt
=

d

dt
(ψ, rψ) =

i

~
(ψ, [H, r]ψ) =

=

(

ψ,

(

v (r, t)−
i~
m
∇

)

ψ

)

=<v (r, t)>−
i~
m
<∇>,

(17)

on evaluating the commutator using H(t) in (16), and which
is again valid for a normalised state ψ.

Then for the “acceleration” we obtain from (17) that∗

d2<r>

dt2
=

d

dt

(
ψ,

(
v −

i~
m
∇

)
ψ

)
=

=

(
ψ,

(
∂v (r, t)

∂t
+
i

~

[
H,

(
v −

i~
m
∇

)])
ψ

)
=

=

(
ψ,
∂v (r, t)

∂t
ψ

)
+

+

(
ψ,

(
v∙∇+

1

2
∇∙v −

i~
2m

∇2

)(
v −

i~
m
∇

)
ψ

)
−

−

(
ψ,

(
v−

i~
m
∇

)(
v∙∇+

1

2
∇∙v−

i~
2m

∇2

))
ψ

)
=

=

(
ψ,

(
∂v(r, t)

∂t
+
(
(v∙∇)v

)
−
i~
m
(∇×v)×∇

)
ψ

)
+

+

(
ψ,

i~
2m

(
∇×(∇×v)

)
ψ

)
≈

≈
∂v

∂t
+ (v∙∇)v + (∇×v)×

(
d<r>

dt
− v
)
+

+
i~
2m

(
∇×(∇×v)

)
=

=
∂v

∂t
+ (v∙∇)v + (∇×v)×

(
d<r>

dt
− v
)
=

=
∂v

∂t
+ (v∙∇)v + (∇×v)×vR ,

(18)

where in arriving at the 3rd last line we have invoked the
small-wavepacket approximation, and used (17) to identify

vR ≡ −
i~
m
<∇>= vO − v, (19)

where vO is the velocity of the wavepacket or object “O”
relative to the observer, so then vR is the velocity of the

∗Care is needed to indicate the range of the various ∇’s. Extra
parentheses (. . . ) are used to limit the range when required.

wavepacket relative to the local 3-space. Then all velocity
field terms are now evaluated at the location of the wave-
packet. Note that the operator

−
i~
m
(∇× v)×∇+

i~
2m

(
∇× (∇× v)

)
(20)

is hermitian, but that separately neither of these two operators
is hermitian. Then in general the scalar product in (18) is
real. But then in arriving at the last line in (18) by means
of the small-wavepacket approximation, we must then self-
consistently use that ∇× (∇×v)= 0, otherwise the accel-
eration acquires a spurious imaginary part. This is consistent
with (27) outside of any matter which contributes to the
generation of the velocity field, for there ρ=0. These observ-
ations point to a deep connection between quantum theory
and the velocity field dynamics, as already argued in [1].

We see that the test “particle” acquires the acceleration
of the velocity field, as in (3), and as well an additional vorti-
city induced acceleration which is the analogue of the Helm-
holtz acceleration in fluid mechanics. Hence we find that
the equivalence principle arises from the unique generalised
Schrödinger equation and with the additional vorticity effect.
This vorticity effect depends on the absolute velocity vR
of the object relative to the local space, and so requires a
change in the Galilean or Newtonian form of the equivalence
principle.

The vorticity acceleration effect is the origin of the Lense-
Thirring so-called “frame-dragging” effect† [10] discussed in
sect. 7. While the generation of the vorticity is a relativistic
effect, as in (27), the response of the test particle to that
vorticity is a non-relativistic effect, and follows from the
generalised Schrödinger equation, and which is not present
in the standard Schrödinger equation with coupling to the
Newtonian gravitational potential, as in (8). Hence the gen-
eralised Schrödinger equation with the new coupling to the
velocity field is more fundamental. The Helmholtz term in
(18) is being explored by the Gravity Probe B gyroscope
precession experiment, however the vorticity caused by the
motion of the Earth is extremely small, as discussed in sect. 7.

An important insight emerges from the form of (15)
and (16): here the generalised Schrödinger equation involves
two fields v (r, t) and ψ (r, t), where the coordinate r is
merely a label to relate the two fields, and is not itself
the 3-space. In particular while r may have the form of a
Euclidean 3-geometry, the space itself has time-dependence
and inhomogeneities, and as well in the more general case
will exhibit vorticity ω = ∇×v. Only in the unphysical case
does the description of the 3-space become identified with
the coordinate system r, and that is when the velocity field
v (r, t) becomes uniform and time independent. Then by a
suitable choice of observer we may put v (r, t)= 0, and the
generalised Schrödinger equation reduces to the usual “free”

†In the spacetime formalism it is mistakenly argued that it is
“spacetime” that is “dragged”.
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Schrödinger equation. As we discuss later the experimental
evidence is that v (r, t) is fractal and so cannot be removed
by a change to a preferred observer. Hence the generalised
Schrödinger equation in (15)–(16) is a major development for
fundamental physics. Of course in general other non-3-space
potential energy terms may be added to the RHS of (16). A
prediction of this new quantum theory, which also extends to
a generalised Dirac equation, is that the fractal structure to
space implies that even at the scale of atoms etc there will be
time-dependencies and inhomogeneities, and that these will
affect transition rates of quantum systems. These effects are
probably those known as the Shnoll effects [11].

5 Free-fall minimum proper-time trajectories

The acceleration in (18) also arises from the following ar-
gument, which is the analogue of the Fermat least-time
formalism. Consider the elapsed time for a comoving clock
travelling with the test particle. Then taking account of the
Lamour time-dilation effect that time is given by

τ [r0] =

∫
dt

(

1−
v2R
c2

)1/2
(21)

with vR given by (19) in terms of vO and v. Then this
time effect relates to the speed of the clock relative to the
local 3-space, and that c is the speed of light relative to
that local 3-space. We are using a relativistic treatment in
(21) to demonstrate the generality of the results∗. Under a
deformation of the trajectory

r0(t)→ r0(t) + δr0(t), v0(t)→ v0(t) +
dδr0(t)

dt
, (22)

and then

v
(
r0(t) + δr0(t), t

)
=

= v
(
r0(t), t

)
+
(
δr0(t)∙∇

)
v
(
r0(t), t

)
+ . . .

(23)

Evaluating the change in proper travel time to lowest
order

δτ = τ [r0 + δr0]− τ [r0] =

= −

∫
dt
1

c2
vR∙δvR

(
1−
v2R
c2

)−1/2
+ ∙ ∙ ∙ =

=

∫
dt
1

c2

vR∙(δr0∙∇)v − vR∙
d(δr0)

dt√

1−
v2R
c2

=

=

∫
dt
1

c2






vR∙(δr0∙∇)v√

1−
v2R
c2

+ δr0∙
d

dt

vR√

1−
v2R
c2





 =

∗A non-relativistic analysis may be alternatively pursued by first
expanding (21) in powers of 1/c2.

=

∫
dt
1

c2
δr0∙






(vR∙∇)v+vR×(∇×v)√

1−
v2R
c2

+
d

dt

vR√

1−
v2R
c2





 .

Hence a trajectory r0(t) determined by δτ = 0 to
O
(
δr0(t)

2
)

satisfies

d

dt

vR√

1−
v2R
c2

= −
(vR∇)v + vR×(∇×v)√

1−
v2R
c2

. (24)

Substituting vR(t) = v0(t)− v
(
r0(t), t

)
and using

dv
(
r0(t), t

)

dt
=
∂v

∂t
+ (v0∙∇)v , (25)

we obtain

dv0
dt

=
∂v

∂t
+ (v∙∇)v + (∇× v)× vR−

−
vR

1−
v2R
c2

1

2

d

dt

(
v2R
c2

)

.
(26)

Then in the low speed limit vR� c we may neglect
the last term, and we obtain (18). Hence we see a close
relationship between the geodesic equation, known first from
General Relativity, and the 3-space generalisation of the
Schrödinger equation, at least in the non-relativistic limit. So
in the classical limit, i.e when the wavepacket approximation
is valid, the wavepacket trajectory is specified by the least
propertime geodesic.

The relativistic term in (26) is responsible for the preces-
sion of elliptical orbits and also for the event horizon effect.
Hence the trajectory in (18) is a non-relativistic minimum
travel-time trajectory, which is Fermat’s Principle. The re-
lativistic term in (26) will arise from a generalised Dirac
equation which would then include the dynamics of 3-space.

6 Fractal 3-space and the DeWitte experimental data

In 1991 Roland DeWitte working within Belgacom, the Bel-
gium telecommunications company, accidently made yet an-
other detection of absolute motion, and one which was 1st-
order in v/c. 5 MHz radio frequency (RF) signals were sent
in both directions through two buried coaxial cables linking
the two clusters of cesium atomic clocks.

Changes in propagation times were observed and event-
ually observations over 178 days were recorded. A sample
of the data, plotted against sidereal time for just three days,
is shown in Fig. 1. The DeWitte data was clear evidence
of absolute motion with the Right Ascension for minimum/
maximum propagation time agreeing almost exactly with
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Fig. 1: Variations in twice the one-way travel time, in ns, for an
RF signal to travel 1.5 km through a buried coaxial cable between
Rue du Marais and Rue de la Paille, Brussels. An offset has been
used such that the average is zero. The cable has a North-South
orientation, and the data is ± difference of the travel times for
NS and SN propagation. The sidereal time for maximum effect
of ∼5hr (or ∼17hr) (indicated by vertical lines) agrees with the
direction found by Miller[4]. Plot shows data over 3 sidereal days
and is plotted against sidereal time. The main effect is caused by the
rotation of the Earth. The superimposed fluctuations are evidence
of turbulence i.e gravitational waves. Removing the Earth induced
rotation effect we obtain the first experimental data of the fractal
structure of space, and is shown in Fig. 2. DeWitte performed this
experiment over 178 days, and demonstrated that the effect tracked
sidereal time and not solar time[1].

Miller’s direction∗ (α = 5.2hr, δ = −67◦)†, and with speed
420 ± 30 km/s. This local absolute motion is different from
the CMB motion, in the direction (α = 11.20hr, δ = −7.22◦)
with speed of 369 km/s, for that would have given the data
a totally different sidereal time signature, namely the times
for maximum/ minimum would have been shifted by 6hrs.
The CMB velocity is motion relative to the distant early
universe, whereas the velocity measured in the DeWitte and
related experiments is the velocity relative to the local space.
The declination of the velocity observed in this DeWitte
experiment cannot be determined from the data as only three
days of data are available. However assuming exactly the
same declination as Miller the speed observed by DeWitte
appears to be also in excellent agreement with the Miller
speed. The dominant effect in Fig. 1 is caused by the rotation
of the Earth, namely that the orientation of the coaxial cable

∗This velocity arises after removing the effects of the Earth’s orbital
speed about the Sun, 30 km/s, and the gravitational in-flow past the Earth
towards the Sun, 42 km/s, as in (6).

†The opposite direction is not easily excluded due to errors within
the data, and so should also be considered as possible. A new experiment
will be capable of more accurately determining the speed and direction, as
well as the fractal structure of 3-space. The author is constructung a more
compact version of the Torr-Kolen - DeWitte coaxial cable RF travel-time
experiment. New experimental techniques have been developed to increase
atomic-clock based timing accuracy and stability, so that shorter cables can
be used, which will permit 3-arm devices.

Fig. 2: Shows the velocity fluctuations, essentially “gravitational
waves” observed by DeWitte in 1991 from the measurement of
variations in the RF coaxial-cable travel times. This data is obtained
from that in Fig. 1 after removal of the dominant effect caused by
the rotation of the Earth. Ideally the velocity fluctuations are three-
dimensional, but the DeWitte experiment had only one arm. This
plot is suggestive of a fractal structure to the velocity field. This is
confirmed by the power law analysis shown in Fig. 3.

with respect to the direction of the flow past the Earth
changes as the Earth rotates. This effect may be approx-
imately unfolded from the data, leaving the gravitational
waves shown in Fig. 2. This is the first evidence that the
velocity field describing 3-space has a complex structure,
and is indeed fractal.

The fractal structure, i. e. that there is an intrinsic lack of
scale, to these speed fluctuations is demonstrated by binning
the absolute speeds |v| and counting the number of speeds
p(|v|) within each bin. A least squares fit of the log–log
plot to a straightline was then made. Plotting log[p(|v|)] vs
log |v|, as shown in Fig. 3 we see that the fit gives p(v) ∝
|v|−2.6. With the new experiment considerably more data
will become available.

7 Observing 3-space vorticity

The vorticity effect in (18) can be studied experimentally in
the Gravity Probe B (GP-B) gyroscope satellite experiment
in which the precession of four on-board gyroscopes has
been measured to unprecedented accuracy [12, 13]. In a
generalisation of (1) [1] the vorticity ∇×v is generated by
matter in motion through the 3-space, where here vR is the
absolute velocity of the matter relative to the local 3-space.

∇×(∇×v) =
8πGρ

c2
vR . (27)

We then obtain from (27) the vorticity (ignoring homo-
geneous vortex solutions)

~ω(r, t) =
2G

c2

∫
d3 r′

ρ(r′, t)

|r− r′|3
vR(r

′, t)× (r− r′) . (28)
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Fig. 3: Shows that the velocity fluctuations in Fig. 2 are scale free,
as the probability distribution from binning the speeds has the form
p(v) ∝ |v|−2.6. This plot shows log[p(v)] vs log |v|. This shows
that the velocity field has a fractal structure, and so requiring the
generalisation of the Schrödinger equation, as discussed herein, and
also the Maxwell and Dirac equations (to be discussed elsewhere).

For the smaller Earth-rotation induced vorticity effect
vR(r) = w × r in (28), where w is the angular velocity of
the Earth, giving

~ω (r)rot = 4
G

c2
3(r ∙ L) r− r2L

2r5
, (29)

where L is the angular momentum of the Earth, and r is the
distance from the centre.

In general the vorticity term in (18) leads to a apparent
“torque”, according to a distant observer, acting on the ang-
ular momentum S of the gyroscope,

~τ =

∫
d3rρ(r) r×

(
~ω (r)×vR(r)

)
, (30)

where ρ is its density, and where now vR is used here to
describe the motion of the matter forming the gyroscope
relative to the local 3-space. Then dS = ~τdt is the change in
S over the time interval dt. For a gyroscope vR(r) = s× r,
where s is the angular velocity of the gyroscope. This gives

~τ =
1

2
~ω × S (31)

and so ~ω/2 is the instantaneous angular velocity of precession
of the gyroscope. The component of the vorticity in (29) has

been determined from the laser-ranged satellites LAGEOS
(NASA) and LAGEOS 2 (NASA-ASI) [14], and the data
implies the indicated coefficient on the RHS of (27) to ±10%.
For GP-B the direction of S has been chosen so that this
precession is cumulative and, on averaging over an orbit,
corresponds to some 7.7×10−6 arcsec per orbit, or 0.042
arcsec per year. GP-B has been superbly engineered so that
measurements to a precision of 0.0005 arcsec are possible.

However for the Earth-translation induced precession if
we use vR = 430 km/s (in the direction RA = 5.2hr, Dec =
= −67◦), (28) gives

~ω(r)trans =
2GM

c2
vR×r
r3

, (32)

and then the total vorticity is ~ω = ~ωrot+ ~ωtrans. The maxi-
mum magnitude of the speed of this precession component is
ωtrans/2 = gvC/c

2 = 8×10−6 arcsec/s, where here g is the
usual gravitational acceleration at the altitude of the satellite.
This precession has a different signature: it is not cumulative,
and is detectable by its variation over each single orbit, as
its orbital average is zero, to first approximation.

Essentially then these spin precessions are caused by the
rotation of the “wavepackets” describing the matter forming
the gyroscopes, and caused in turn by the vorticity of 3-space.
The above analysis shows that the rotation is exactly the same
as the rotation of the 3-space itself, just as the acceleration of
“matter” was exactly the same as the acceleration of the 3-
space. We this obtain a much clearer insight into the nature
of motion, and which was not possible in the spacetime
formalism.

8 Conclusions

We have seen herein that the new theory of 3-space has
resulted in a number of fundamental developments, namely
that a complex “quantum foam” dynamical 3-space exists and
has a fractal “flow” structure, as revealed most clearly by the
extraordinary DeWitte coaxial-cable experiment. This fractal
structure requires that the fundamental equations of physics
be generalised to take account of, for the first time, the
physics of this 3-space and, in particular, here the inclusion
of that dynamics within the dynamics of quantum systems.
We saw that the generalisation of the Schrödinger equation
is unique, and that from an Ehrenfest wavepacket analysis
we obtained the equivalence principle, with the acceleration
of “matter” being shown to be identical to the acceleration
of the 3-space; which while not unexpected, is derived here
for the first time. This result shows that the equivalence
principle is really a quantum-theoretic effect. As well we
obtained by that same analysis that any vorticity in the 3-
space velocity field will result in a corresponding rotation
of wavepackets, and just such an effect is being studied in
the GP-B gyroscope experiment. So for the first time we see
that the original Schrödinger equation actually lacked a key
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dynamical ingredient. We saw that self-consistency within
the small-wavepacket approximation imposed restrictions on
the dynamical equations that determine the vorticity, giving
yet another indication of the close connection between quan-
tum theory and the phenomena of 3-space and gravity. As
well because the 3-space is fractal the generalised Schrödin-
ger equation now contains a genuine element of stochasticity.

This research is supported by an Australian Research
Council Discovery Grant.
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Zelmanov’s Anthropic Principle, although introduced in the 1940’s, has been published
only recently: “The Universe has the interior we observe because we observe the
Universe in this way. It is impossible to divorce the Universe from the observer. If
the observer is changed, then the observed world will present in some other way, so
the Universe observed will also be changed. If no observers exist then the observable
Universe as well does not exist.” Zelmanov’s mathematical apparatus of physical
observable quantities employs the Principle to the General Theory of Relativity. Using
this apparatus he developed the Infinite Relativity Principle: “In homogeneous iso-
tropic cosmological models spatial infinity of the Universe and infinity of its evolution
span depend on our choice of the observer’s reference frame.”

Abraham Zelmanov (1913–1987), a prominent cosmologist,
introduced his Anthropic Principle in the 1940’s, but it has
been published only recently. It is probable that he reached
his ideas not only from his pure mathematical studies on
the General Theory of Relativity and relativistic cosmology
— besides these he had an excellent knowledge of religious
considerations on world-genesis and the origin of humanity.
We can now only guess at the way in which he came to his
idea of the Anthropic Principle. The fact is that for more
than 60 years his Anthropic Principle remained known only
a close circle of several of his pupils. His book containing
his main fundamental studies on the General Theory of
Relativity and relativistic cosmology was written in 1944 and
had survived only in manuscript until it has been published
in 2004 [1].

Zelmanov stated his Anthropic Principle in two versions.
The first version sets forth the law of human evolution
dependent upon fundamental physical constants:

Humanity exists at the present day and we observe
world constants completely because the constants bear
their specific numerical values at this time. When the
world constants bore other values humanity did not
exist. When the constants change to other values hu-
manity will disappear. That is, humanity can exist
only with the specific scale of the numerical values
of the cosmological constants. Humanity is only an
episode in the life of the Universe. At the present
time cosmological conditions are such that humanity
develops.

In the second form he argues that any observer depends on
the Universe he observes in the same way that the Universe
depends on him:

The Universe has the interior we observe, because we
observe the Universe in this way. It is impossible to
divorce the Universe from the observer. The observ-
able Universe depends on the observer and the ob-
server depends on the Universe. If the contemporary

physical conditions in the Universe change then the
observer is changed. And vice versa, if the observer
is changed then he will observe the world in another
way. So the Universe he observes will be also chang-
ed. If no observers is exist then the observable Uni-
verse as well does not exist.

It is probable that by proceeding from his Anthropic
Principle, in 1941–1944 Zelmanov solved the well-known
problem of physical observable quantities in the General
Theory of Relativity [1, 2]. It should be noted, many re-
searchers were working on the theory of observable quan-
tities in the 1940’s. For example, Landau and Lifshitz in
their famous The Classical Theory of Fields [3] introduced
observable time and the observable three-dimensional in-
terval similar to those introduced by Zelmanov. But they
limited themselves only to this particular case and did not
arrive at general mathematical methods to define physical
observable quantities in pseudo-Riemannian spaces. It was
only Cattaneo, an Italian mathematician, who developed his
own approach to the problem, not far removed from Zel-
manov’s solution. Cattaneo published his results on the theme
in 1958 and later [4, 5].

In 1944 Zelmanov completed a complete mathematical
apparatus [1, 2] to calculate physical observable quantities in
four-dimensional pseudo-Riemannian space, that is the strict
solution of that problem. He called the apparatus the theory
of chronometric invariants. The essence of his theory is
that if an observer accompanies his physical reference body,
his observable quantities are projections of four-dimensional
quantities on his time line and the spatial section — chrono-
metrically invariant quantities, made by projecting operators

bα= dxα

ds
and hαβ =−gαβ + bαbβ which fully define his

real reference space (here bα is his velocity with respect
to his real references). Thus, the chr.inv.-projections of a

world-vector Qα are bαQα=
Q0√
g00

and hiαQ
α=Qi, while

chr.inv.-projections of a world-tensor of the 2nd rank Qαβ
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are bαbβQαβ =
Q00
g00 , hiαbβQαβ =

Qi0√
g00

, hiαh
k
βQ

αβ =Qik.

Physically observable properties of the space are derived

from the fact that chr.inv.-differential operators
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+ 1
c2
vi

∗∂
∂t

are non-commutative
∗∂2

∂xi∂t
−

−
∗∂2

∂t ∂xi
= 1
c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
= 2
c2
Aik

∗∂
∂t

, and

also from the fact that the chr.inv.-metric tensor hik may not
be stationary. The observable characteristics are the chr.inv.-
vector of gravitational inertial force Fi, the chr.inv.-tensor of
angular velocities of the space rotation Aik, and the chr.inv.-
tensor of rates of the space deformations Dik, namely

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00=1−

w

c2

Aik=
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) ,

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, Dk

k=
∗∂ ln

√
h

∂t
,

where w is gravitational potential, vi=−c
g0i√
g00

is the linear

velocity of the space rotation, hik=−gik+ 1
c2
vivk is the

chr.inv.-metric tensor, and also h=det ‖hik‖, hg00=−g,
g=det ‖gαβ‖. Observable inhomogeneity of the space is
set up by the chr.inv.-Christoffel symbols Δijk=h

imΔjk,m,
which are built just like Christoffel’s usual symbols Γαμν =
= gασΓμν,σ using hik instead of gαβ .

A four-dimensional generalization of the main chr.inv.-
quantities Fi, Aik, and Dik (by Zelmanov, the 1960’s [10])
is: Fα=−2c2bβaβα, Aαβ = ch

μ
αhνβaμν , Dαβ = ch

μ
αhνβdμν ,

where aαβ = 1
2 (∇α bβ −∇β bα), dαβ =

1
2 (∇α bβ +∇β bα).

In this way, for any equations obtained using general
covariant methods, we can calculate their physically observ-
able projections on the time line and the spatial section of
any particular reference body and formulate the projections
in terms of their real physically observable properties, from
which we obtain equations containing only quantities mea-
surable in practice.

Zelmanov deduced chr.inv.-formulae for the space curva-
ture [1]. He followed that procedure by which the Riemann-
Christoffel tensor was built: proceeding from the non-
commutativity of the second derivatives of an arbitrary vector
∗∇i∗∇kQl−∗∇k∗∇iQl=

2Aik
c2

∗∂Ql
∂t

+H
...j
lki∙Qj , he obtain-

ed the chr.inv.-tensor H ...j
lki∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km−

−ΔmklΔ
j
im, which is similar to Schouten’s tensor from the

theory of non-holonomic manifolds. The tensor H ...j
lki differs

algebraically from the Riemann-Christoffel tensor because
of the presence of the space rotation Aik in the formula.

Nevertheless its generalization gives the chr.inv.-tensor

Clkij =
1

4
(Hlkij −Hjkil +Hklji −Hiljk) ,

which possesses all the algebraic properties of the Riemann-
Christoffel tensor in this three-dimensional space and, at the
same time, the property of chronometric invariance. There-
fore Zelmanov called Ciklj the chr.inv.-curvature tensor as
the tensor of the observable curvature of the observer’s
spatial section. Its contraction step-by-step

Ckj = C ∙∙∙i
kij∙ = himCkimj , C = C

j
j = hljClj

gives the chr.inv.-scalar C, which is the observable three-
dimensional curvature of this space.

Chr.inv.-projections of the Riemann-Christoffel tensor

are [1]: Xik=−c2R
∙i∙k
0∙0∙
g00 , Y ijk=−cR

∙ijk
0 ∙∙∙√
g00

, Zijkl=c2Rijkl.

Solving Einstein’s equations with this mathematical ap-
paratus, Zelmanov obtained the total system of all cosmo-
logical models (senarios of the Universe’s evolution) which
could be possible as derived from the equations [1, 6]. In
particular, he had arrived at the possibility that infinitude may
be relative. Later, in the 1950’s, he enunciated the Infinite
Relativity Principle:

In homogeneous isotropic cosmological models spa-
tial infinity of the Universe depends on our choice
of that reference frame from which we observe the
Universe (the observer’s reference frame). If the three-
dimensional space of the Universe, being observed in
one reference frame, is infinite, it may be finite in
another reference frame. The same is just as well true
for the time during which the Universe evolves.

In other words, using purely mathematical methods of
the General Theory of Relativity, Zelmanov showed that
any observer forms his world-picture from a comparison
between his observation results and some standards he has
in his laboratory — the standards of different objects and
their physical properties. So the “world” we see as a result
of our observations depends directly on that set of physical
standards we have, so the “visible world” depends directly
on our considerations about some objects and phenomena.

The mathematical apparatus of physical observable quan-
tities and those results it gave in relativistic cosmology were
the first results of Zelmanov’s application of his Anthropic
Principle to the General Theory of Relativity. To obtain
the results with general covariant methods (standard in the
General Theory of Relativity), where observation results do
not depend on the observer’s reference properties, would be
impossible.

Now, according to the wishes of those who knew Zel-
manov closely, I would like to say a few good words in
memory of him.

Abraham Leonidovich Zelmanov was born in May 15,
1913 in Poltava Gubernya of the Russian Empire. His father
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was a Judaic religious scientist, a specialist in comments
on Torah and Kabbalah. In 1937 Zelmanov completed his
education at the Mechanical Mathematical Department of
Moscow University. After 1937 he was a research-student at
the Sternberg Astronomical Institute in Moscow, where he
presented his dissertation in 1944. In 1953 he was arrested for
“cosmopolitism” within the framework of Stalin’s campaign
against Jews, however as soon as Stalin had died Zelmanov
was set free after some months of in gaol. For several decades
Zelmanov and his paralyzed parents lived in a room in a
shared flat with neighbours. He took everyday care of his
parents, so they lived into old age. Only in the 1970’s did he
obtain a personal municipal flat. He was married three times.
Zelmanov worked on the academic staff of the Sternberg
Astronomical Institute all life, until his death on the winter’s
day, the 2nd of February, 1987.

Abraham Zelmanov, 1940’s

He was very thin in physique,
like an Indian yogi, rather shorter
than average, and a very delicate
man. From his appearance it was
possible to think that his life and
thoughts were rather ordinary or
uninteresting. However, in acquain-
tance with him and his scientific
discussions in friendly company one
formed another opinion about him.
Those were discussions with a great
scientist and humanist who reasoned
in a very unorthodox way. Some-

times we thought that we were not speaking with a con-
temporary scientist of the 20th century, but some famous
philosopher from Classical Greece or the Middle Ages. So
the themes of those discussions are eternal — the interior of
the Universe, what is the place of a human in the Universe,
what are space and time.

Zelmanov liked to remark that he preferred to make math-
ematical “instruments” more than to use them in practice.
Perhaps thereby his main goal in science was the mathemati-
cal apparatus of physical observable quantities in the General
Theory of Relativity known as the theory of chronometric
invariants [1, 2]. In developing the apparatus he also created
other mathematical methods, namely — kinemetric invari-
ants [9] and monad formalism [10]. Being very demanding
of himself, Zelmanov published less than a dozen scientific
articles during his life (see References), so every publication
is a concentrate of his fundamental scientific ideas.

Most of his time was spent in scientific work, but he
sometimes gave lectures on the General Theory of Relativity
and relativistic cosmology as a science for the geometrical
structure of the Universe. Stephen Hawking, a young scientist
in the 1960’s, attended Zelmanov’s seminars on cosmology at
the Sternberg Astronomical Institute in Moscow. Zelmanov
presented him as a “promising young cosmologist”. Hawking
read a brief report at one of those seminars.

Because Zelmanov made scientific creation the main goal
of his life writing articles was a waste of time to him.
However he never regreted time spent on long discussions
in friendly company, where he set forth his philosophic
concepts on the geometrical structure of the Universe and the
ways of human evolution. In those discussions he formulated
his famous Anthropic Principle and the Infinite Relativity
Principle.

Now everyone may read it. I hope that Zelmanov’s clas-
sical works on the General Theory of Relativity and cos-
mology, in particular his Anthropic Principle and the Infinite
Relativity Principle known to a very close circle of his pupils,
will become more widely known and appreciated.
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A new nonlinear Schrödinger equation is obtained explicitly from the (fractal)
Brownian motion of a massive particle with a complex-valued diffusion constant.
Real-valued energy plane-wave solutions and solitons exist in the free particle case.
One remarkable feature of this nonlinear Schrödinger equation based on a (fractal)
Brownian motion model, over all the other nonlinear QM models, is that the quantum-
mechanical energy functional coincides precisely with the field theory one. We finalize
by showing why a complex momentum is essential to fully understand the physical
implications of Weyl’s geometry in QM, along with the interplay between Bohm’s
Quantum potential and Fisher Information which has been overlooked by several
authors in the past.

1 Introduction

Over the years there has been a considerable debate as
to whether linear QM can fully describe Quantum Chaos.
Despite that the quantum counterparts of classical chaotic
systems have been studied via the techniques of linear QM,
it is our opinion that Quantum Chaos is truly a new paradigm
in physics which is associated with non-unitary and nonlinear
QM processes based on non-Hermitian operators (imple-
menting time symmetry breaking). This Quantum Chaotic
behavior should be linked more directly to the Nonlinear
Schrödinger equation without any reference to the nonlinear
behavior of the classical limit. For this reason, we will
analyze in detail the fractal geometrical features underlying
our Nonlinear Schrödinger equation obtained in [6].

Nonlinear QM has a practical importance in different
fields, like condensed matter, quantum optics and atomic
and molecular physics; even quantum gravity may involve
nonlinear QM. Another important example is in the modern
field of quantum computing. If quantum states exhibit small
nonlinearities during their temporal evolution, then quantum
computers can be used to solve NP-complete (non poly-
nomial) and #P problems in polynomial time. Abrams and
Lloyd [19] proposed logical gates based on non linear Schrö-
dinger equations and suggested that a further step in quantum
computing consists in finding physical systems whose evol-
ution is amenable to be described by a NLSE.

On other hand, we consider that Nottale and Ord’s form-
ulation of quantum mechanics [1], [2] from first principles
based on the combination of scale relativity and fractal space-
time is a very promising field of future research. In this work
we extend Nottale and Ord’s ideas to derive the nonlinear
Schrödinger equation. This could shed some light on the
physical systems which could be appropriately described by

the nonlinear Schrödinger equation derived in what follows.
The contents of this work are the following: In section 2

we derive the nonlinear Schrödinger equation by extending
Nottale-Ord’s approach to the case of a fractal Brownian
motion with a complex diffusion constant. We present a
thorough analysis of such nonlinear Schrödinger equation
and show why it cannot linearized by a naive complex scaling
of the wavefunction ψ → ψλ.

Afterwards we will describe the explicit interplay be-
tween Fisher Information, Weyl geometry and the Bohm’s
potential by introducing an action based on a complex mo-
mentum. The connection between Fisher Information and
Bohm’s potential has been studied by several authors [24],
however the importance of introducing a complex moment-
um Pk= pk+ iAk (where Ak is the Weyl gauge field of
dilatations) in order to fully understand the physical impli-
cations of Weyl’s geometry in QM, along with the interplay
between Bohm’s quantum potential and Fisher Information,
has been overlooked by several authors in the past [24], [25].
For this reason we shall review in section 3 the relationship
between Bohm’s Quantum Potential and the Weyl curvature
scalar of the Statistical ensemble of particle-paths (an Abel-
ian fluid) associated to a single particle that was initially
developed by [22]. A Weyl geometric formulation of the
Dirac equation and the nonlinear Klein-Gordon wave equat-
ion was provided by one of us [23]. In the final section 4,
we summarize our conclusions and include some additional
comments.

2 Nonlinear QM as a fractal Brownian motion with
a complex diffusion constant

We will be following very closely Nottale’s derivation of
the ordinary Scrödinger equation [1]. Recently Nottale and
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Celerier [1] following similar methods were able to derive
the Dirac equation using bi-quaternions and after breaking
the parity symmetry dxμ↔−dxμ, see references for details.
Also see the Ord’s paper [2] and the Adlers’s book on
quaternionic QM [16]. For simplicity the one-particle case
is investigated, but the derivation can be extended to many-
particle systems. In this approach particles do not follow
smooth trajectories but fractal ones, that can be described
by a continuous but non-differentiable fractal function ~r (t).
The time variable is divided into infinitesimal intervals dt
which can be taken as a given scale of the resolution.

Then, following the definitions given by Nelson in his
stochastic QM approach (Lemos in [12] p. 615; see also [13,
14]), Nottale define mean backward an forward derivatives

d±~r (t)

dt
= lim

Δt→±0

〈
~r (t+Δt)− ~r (t)

Δt

〉

, (1)

from which the forward and backward mean velocities are
obtained,

d±~r (t)

dt
= ~b± . (2)

For his deduction of Schrödinger equation from this
fractal space-time classical mechanics, Nottale starts by de-
fining the complex-time derivative operator

δ

dt
=
1

2

(
d+
dt
+
d−
dt

)

− i
1

2

(
d+
dt
−
d−
dt

)

, (3)

which after some straightforward definitions and transform-
ations takes the following form,

δ

dt
=

∂

∂t
+ ~V ∙ ~∇− iD∇2, (4)

D is a real-valued diffusion constant to be related to the
Planck constant.

The D comes from considering that the scale dependent
part of the velocity is a Gaussian stochastic variable with
zero mean, (see de la Peña at [12] p. 428)

〈dξ±i dξ±j〉 = ±2Dδijdt . (5)

In other words, the fractal part of the velocity ~ξ, proport-
ional to the ~ζ , amount to a Wiener process when the fractal
dimension is 2.

Afterwards, Nottale defines a set of complex quantities
which are generalization of well known classical quantities
(Lagrange action, velocity, momentum, etc), in order to be
coherent with the introduction of the complex-time derivative
operator. The complex time dependent wave function ψ is
expressed in terms of a Lagrange action S by ψ = eiS/(2mD).
S is a complex-valued action but D is real-valued. The
velocity is related to the momentum, which can be expressed
as the gradient of S, ~p = ~∇S. Then the following known
relation is found,

~V = −2iD~∇ lnψ . (6)

The Schrödinger equation is obtained from the Newton’s
equation (force = mass times acceleration) by using the
expression of ~V in terms of the wave function ψ,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ . (7)

Replacing the complex-time derivation (4) in the New-
ton’s equation gives us

−~∇U = −2im

(

D
∂

∂t
~∇ lnψ

)

− 2D~∇

(

D
∇2ψ
ψ

)

. (8)

Simple identities involving the ~∇ operator were used by
Nottale. Integrating this equation with respect to the position
variables finally yields

D2∇2ψ + iD
∂ψ

∂t
−

U

2m
ψ = 0 , (9)

up to an arbitrary phase factor which may set to zero. Now
replacing D by ~/(2m), we get the Schrödinger equation,

i~
∂ψ

∂t
+
~2

2m
∇2ψ = Uψ . (10)

The Hamiltonian operator is Hermitian, this equation is
linear and clearly is homogeneous of degree one under the
substitution ψ → λψ.

Having reviewed Nottale’s work [1] we can generalize
it by relaxing the assumption that the diffusion constant is
real; we will be working with a complex-valued diffusion
constant; i. e. with a complex-valued ~. This is our new con-
tribution. The reader may be immediately biased against such
approach because the Hamiltonian ceases to be Hermitian
and the energy becomes complex-valued. However this is
not always the case. We will explicitly find plane wave solu-
tions and soliton solutions to the nonlinear and non-Hermit-
ian wave equations with real energies and momenta. For a
detailed discussion on complex-valued spectral representat-
ions in the formulation of quantum chaos and time-symmetry
breaking see [10]. Nottale’s derivation of the Schrödinger
equation in the previous section required a complex-valued
action S stemming from the complex-valued velocities due
to the breakdown of symmetry between the forwards and
backwards velocities in the fractal zigzagging. If the action
S was complex then it is not farfetched to have a complex
diffusion constant and consequently a complex-valued ~
(with same units as the complex-valued action).

Complex energy is not alien in ordinary linear QM. They
appear in optical potentials (complex) usually invoked to
model the absorption in scattering processes [8] and decay
of unstable particles. Complex potentials have also been
used to describe decoherence. The accepted way to describe
resonant states in atomic and molecular physics is based on
the complex scaling approach, which in a natural way deals
with complex energies [17]. Before, Nottale wrote,

〈dζ± dζ±〉 = ±2Ddt , (11)
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with D and 2mD = ~ real. Now we set

〈dζ± dζ±〉 = ±(D +D
∗)dt , (12)

withD and 2mD = ~ = α+iβ complex. The complex-time
derivative operator becomes now

δ

dt
=

∂

∂t
+ ~V ∙ ~∇−

i

2
(D +D∗)∇2. (13)

In the real case D = D∗. It reduces to the complex-time-
derivative operator described previously by Nottale. Writing
again the ψ in terms of the complex action S,

ψ = eiS/(2mD) = eiS/~, (14)

where S, D and ~ are complex-valued, the complex velocity
is obtained from the complex momentum ~p = ~∇S as

~V = −2iD~∇ lnψ . (15)

The NLSE (non-linear Schröedinger equation) is obtain-
ed after we use the generalized Newton’s equation (force =
mass times acceleration) in terms of the ψ variable,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ . (16)

Replacing the complex-time derivation (13) in the gen-
eralized Newton’s equation gives us

~∇U = 2im

[

D
∂

∂t
~∇ lnψ − 2iD2(~∇ lnψ ∙ ~∇)×

× (~∇ lnψ)−
i

2
(D +D∗)D∇2 (~∇ lnψ)

]

.

(17)

Now, using the next three identities: (i) ~∇∇2=∇2~∇;
(ii) 2 (~∇ lnψ ∙ ~∇)(~∇ lnψ)= ~∇(~∇ lnψ)2; and (iii) ∇2 lnψ=
=∇2ψ/ψ− (~∇ lnψ)2 allows us to integrate such equation
above yielding, after some straightforward algebra, the NLSE

i~
∂ψ

∂t
= −

~2

2m

α

~
∇2ψ + Uψ − i

~2

2m

β

~

(
~∇ lnψ

)2
ψ . (18)

Note the crucial minus sign in front of the kinematic
pressure term and that ~=α+ iβ=2mD is complex. When
β=0 we recover the linear Schrödinger equation.

The nonlinear potential is now complex-valued in gener-
al. Defining

W =W (ψ) = −
~2

2m

β

~

(
~∇ lnψ

)2
, (19)

and U the ordinary potential, we rewrite the NLSE as

i~
∂ψ

∂t
=

(

−
~2

2m

α

~
∇2 + U + iW

)

ψ . (20)

This is the fundamental nonlinear wave equation of this
work. It has the form of the ordinary Schrödinger equation

with the complex potential U+ iW and the complex ~.
The Hamiltonian is no longer Hermitian and the potential
V =U+ iW (ψ) itself depends on ψ. Nevertheless one could
have meaningful physical solutions with real valued energies
and momenta, like the plane-wave and soliton solutions stud-
ied in the next section. Here are some important remarks.
• Notice that the NLSE above cannot be obtained by a

naive scaling of the wavefunction

ψ = eiS/~0 → ψ′ = eiS/~ = e (iS/~0)(~0/~) =

= ψλ = ψ~0/~, ~ = real
(21)

related to a scaling of the diffusion constant ~0 = 2mD0 →
→ ~ = 2mD. Upon performing such scaling, the ordinary
linear Schrödinger equation in the variable ψ will appear to
be nonlinear in the new scaled wavefunction ψ′

i~
∂ψ′

∂t
= −

~2

2m

~0
~
∇2ψ′ + Uψ′−

−
~2

2m

(
1−
~0
~

)(
~∇ lnψ′

)2
ψ′,

(22)

but this apparent nonlinearity is only an artifact of the change
of variables (the scaling of ψ).

Notice that the latter (apparent) nonlinear equation, de-
spite having the same form as the NLSE, obtained from a
complex-diffusion constant, differs crucially in the actual
values of the coefficients multiplying each of the terms.
The NLSE has the complex coefficients α/~ (in the kinetic
terms), and −iβ/~ (in the nonlinear logarithmic terms) with
~=α+ iβ= complex. However, the nonlinear equation ob-
tained from a naive scaling involves real and different num-
erical coefficients than those present in the NLSE. Therefore,
the genuine NLSE cannot be obtained by a naive scaling
(redefinition) of the ψ and the diffusion constant.

Notice also that even if one scaled ψ by a complex
exponent ψ → ψλ with λ = ~0/~ and ~ = complex, the
actual numerical values in the apparent nonlinear equation,
in general, would have still been different than those present
in the NLSE. However, there is an actual equivalence, if, and
only if, the scaling exponent λ = ~0/~ obeyed the condition:

α = ~0 ⇒ 1−
~0
~
= 1−

α

~
= 1−

~− iβ
~

= i
β

~
(23)

in this very special case, the NLSE would be obtained from
a linear Schrödinger equation after scaling the wavefunction
ψ → ψλ with a complex exponent λ = ~0/~ = α/~. In
this very special and restricted case, the NLSE could be
linearized by a scaling of the wavefunction with complex
exponent.

From this analysis one infers, immediately, that if one
defines the norm of the complex ~: ‖~‖ =

√
α2+β2 = ~0

to coincide precisely with the observed value ~0 of Planck’s
constant, then α 6= ~0, iβ 6= ~− ~0 and, consequently, the
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NLSE cannot be obtained from the ordinary (linear) Schrö-
dinger equations after a naive scaling, with a complex expo-
nent, ψ → ψλ=ψ~0/~. Therefore, a complex diffusion con-
stant 2mD = ~ = α+ iβ, with the condition 2m‖D‖=
= ‖~‖=

√
α2+β2= ~0 (observed value of Planck’s con-

stant) ensures that the NLSE is not a mere artifact of the
scaling of the wavefunction ψ → ψλ=ψ~0/~ in the ordinary
linear Schrödinger equation.

It is important to emphasize that the diffusion constant
is always chosen to be related to Planck constant as follows:
2m‖D‖=‖~‖= ~0 which is just the transition length from a
fractal to a scale-independence non-fractal regime discussed
by Nottale in numerous occasions. In the relativistic scale it
is the Compton wavelength of the particle (say an electron):
λc= ~0/(mc). In the nonrelativistic case it is the de Broglie
wavelength of the electron.

Therefore, the NLSE based on a fractal Brownian motion
with a complex valued diffusion constant 2mD= ~=α+ iβ
represents truly a new physical phenomenon and a hallmark
of nonlinearity in QM. For other generalizations of QM see
experimental tests of quaternionic QM (in the book by Adler
[16]). Equation (18) is the fundamental NLSE of this work.
• A Fractal Scale Calculus description of our NLSE

was developed later on by Cresson [20] who obtained, on a
rigorous mathematical footing, the same functional form of
our NLSE equation above ( although with different complex
numerical coefficients) by using Nottale’s fractal scale-
calculus that obeyed a quantum bialgebra. A review of our
NLSE was also given later on by [25]. Our nonlinear wave
equation originated from a complex-valued diffusion con-
stant that is related to a complex-valued extension of Planck’s
constant. Hence, a fractal spacetime is deeply ingrained with
nonlinear wave equations as we have shown and it was later
corroborated by Cresson [20].
• Complex-valued viscosity solutions to the Navier-

Stokes equations were also analyzed by Nottale leading to
the Fokker-Planck equation. Clifford-valued extensions of
QM were studied in [21] C-spaces (Clifford-spaces whose
enlarged coordinates are polyvectors, i. e. antisymmetric
tensors) that involved a Clifford-valued number extension
of Planck’s constant; i. e. the Planck constant was a hyper-
complex number. Modified dispersion relations were derived
from the underlying QM in Clifford-spaces that lead to faster
than light propagation in ordinary spacetime but without
violating causality in the more fundamental Clifford spaces.
Therefore, one should not exclude the possibility of having
complex-extensions of the Planck constant leading to non-
linear wave equations associated with the Brownian motion
of a particle in fractal spacetimes.
• Notice that the NLSE (34) obeys the homogeneity

condition ψ → λψ for any constant λ. All the terms in the
NLSE are scaled respectively by a factor λ. Moreover, our
two parameters α, β are intrinsically connected to a complex
Planck constant ~ = α+ iβ such that ‖~‖=

√
α2+β2= ~0

(observed Planck’s constant) rather that being ah-hoc con-
stants to be determined experimentally. Thus, the nonlinear
QM equation derived from the fractal Brownian motion with
complex-valued diffusion coefficient is intrinsically tied up
with a non-Hermitian Hamiltonian and with complex-valued
energy spectra [10].
• Despite having a non-Hermitian Hamiltonian we still

could have eigenfunctions with real valued energies and
momenta. Non-Hermitian Hamiltonians (pseudo-Hermitian)
have captured a lot of interest lately in the so-called PT
symmetric complex extensions of QM and QFT [27]. There-
fore these ideas cannot be ruled out and they are the subject
of active investigation nowadays.

3 Complex momenta, Weyl geometry, Bohm’s potential
and Fisher information

Despite that the interplay between Fisher Information and
Bohm’s potential has been studied by several authors [24] the
importance of introducing a complex momentum Pk= pk+
+ iAk in order to fully understand the physical implications
of Weyl’s geometry in QM has been overlooked by several
authors [24], [25]. We shall begin by reviewing the relation-
ship between the Bohm’s Quantum Potential and the Weyl
curvature scalar of the Statistical ensemble of particle-paths
(a fluid) associated to a single particle and that was developed
by [22]. A Weyl geometric formulation of the Dirac equation
and the nonlinear Klein-Gordon wave equation was provided
by one of us [23]. Afterwards we will describe the interplay
between Fisher Information and the Bohm’s potential by
introducing an action based on a complex momentum Pk=
= pk+ iAk.

In the description of [22] one deals with a geometric
derivation of the nonrelativistic Schrödinger Equation by
relating the Bohm’s quantum potential Q to the Ricci-Weyl
scalar curvature of an ensemble of particle-paths associated
to one particle. A quantum mechanical description of many
particles is far more complex. This ensemble of particle
paths resemble an Abelian fluid that permeates spacetime
and whose ensemble density ρ affects the Weyl curvature
of spacetime, which in turn, determines the geodesics of
spacetime in guiding the particle trajectories. See [22], [23]
for details.

Again a relation between the relativistic version of
Bohm’s potential Q and the Weyl-Ricci curvature exists but
without the ordinary nonrelativistic probabilistic connections.
In relativistic QM one does not speak of probability density
to find a particle in a given spacetime point but instead
one refers to the particle number current Jμ= ρdxμ/dτ . In
[22], [23] one begins with an ordinary Lagrangian associated
with a point particle and whose statistical ensemble average
over all particle-paths is performed only over the random
initial data (configurations). Once the initial data is specified
the trajectories (or rays) are completely determined by the
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Hamilton-Jacobi equations. The statistical average over the
random initial Cauchy data is performed by means of the
ensemble density ρ. It is then shown that the Schrödinger
equation can be derived after using the Hamilton-Jacobi
equation in conjunction with the continuity equation and
where the “quantum force” arising from Bohm’s quantum
potential Q can be related to (or described by) the Weyl
geometric properties of space. To achieve this one defines
the Lagrangian

L(q, q̇, t) = LC(q, q̇, t) + γ (~
2/m)R(q, t) , (24)

where γ = (1/6)(d − 2)/(d − 1) is a dimension-dependent
numerical coefficient and R is the Weyl scalar curvature of
the corresponding d-dimensional Weyl spacetime M where
the particle lives.

Covariant derivatives are defined for contravariant vec-
tors V k: V k,ß = ∂iV

k−ΓkimV
m where the Weyl connection

coefficients are composed of the ordinary Christoffel con-
nection plus terms involving the Weyl gauge field of dilatat-
ions Ai. The curvature tensor Rimkn obeys the same sym-
metry relations as the curvature tensor of Riemann geometry
as well as the Bianchi identity. The Ricci symmetric tensor
Rik and the scalar curvature R are defined by the same
formulas also, viz. Rik = Rnink and R = gikRik

RWeyl = R Riemann+

+(d− 1)

[

(d− 2)AiA
i −

2
√
g
∂i(
√
gAi)

]

,
(25)

where R Riemann is the ordinary Riemannian curvature defined
in terms of the Christoffel symbols without the Weyl-gauge
field contribution.

In the special case that the space is flat from the Rie-
mannian point of view, after some algebra one can show that
the Weyl scalar curvature contains only the Weyl gauge field
of dilatations

RWeyl = (d− 1)(d− 2)(AkA
k)− 2(d− 1)(∂kA

k) . (26)

Now the Weyl geometrical properties are to be derived
from physical principles so the Ai cannot be arbitrary but
must be related to the distribution of matter encoded by the
ensemble density of particle-paths ρ and can be obtained by
the same (averaged) least action principle giving the motion
of the particle. The minimum is to be evaluated now with
respect to the class of all Weyl geometries having arbitrarily
Weyl-gauge fields but with fixed metric tensor.

A variational procedure [22] yields a minimum for

Ai(q, t)=−
1

d−2
∂k(log ρ)⇒ Fij=∂iAj−∂jAi=0 , (27)

which means that the ensemble density ρ is Weyl-covariantly
constant

Di ρ = 0 = ∂i ρ+ ω(ρ) ρAi = 0 ⇒

⇒ Ai (q, t) = −
1

d− 2
∂i(log ρ) ,

(28)

where ω (ρ) is the Weyl weight of the density ρ. Since Ai
is a total derivative the length of a vector transported from
A to B along different paths changes by the same amount.
Therefore, a vector after being transported along a closed
path does not change its overall length. This is of funda-
mental importance to be able to solve in a satisfactory manner
Einstein’s objections to Weyl’s geometry. If the lengths were
to change in a path-dependent manner as one transports
vectors from point A to point B, two atomic clocks which
followed different paths from A to B will tick at different
rates upon arrival at point B.

The continuity equation is

∂ρ

∂t
+

1
√
g
∂i (
√
gρ vi) = 0 . (29)

In this spirit one goes next to a geometrical derivation of
the Schrödinger equation. By inserting

Ak = −
1

d− 2
∂ log ρ

∂xk
(30)

into

RWeyl = (d− 1)(d− 2)(AkA
k)− 2(d− 1) ∂kA

k (31)

one gets for the Weyl scalar curvature, in the special case
that the space is flat from the Riemannian point of view, the
following expression

RWeyl =
1

2γ
√
ρ
(∂i ∂

i√ρ) , (32)

which is precisely equal to the Bohm’s Quantum potential
up to numerical factors.

The Hamilton-Jacobi equation can be written as

∂S

∂t
+HC(q, S, t)− γ

(
~2

2m

)

R = 0 , (33)

where the effective Hamiltonian is

HC − γ

(
~2

m

)

R =
1

2m
gjkpjpk + V − γ

~2

m
R =

=
1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V − γ

~2

m
R .

(34)

When the above expression for the Weyl scalar curvature
(Bohm’s quantum potential given in terms of the ensemble
density) is inserted into the Hamilton-Jacobi equation, in
conjunction with the continuity equation, for a momentum
given by pk= ∂kS, one has then a set of two nonlinear
coupled partial differential equations. After some straight-
forward algebra, one can verify that these two coupled dif-
ferential equations equations will lead to the Schrödinger
equation after the substitution Ψ =

√
ρ eiS/~ is made.

For example, when d=3, γ=1/12 and consequently,
Bohm’s quantum potential Q=−(~2/12m)R (when R Riemann

is zero) becomes

R=
1

2γ
√
ρ
∂i g

ik∂k
√
ρ∼

1

2γ

Δ
√
ρ

√
ρ
⇒Q=−

~2

2m

Δ
√
ρ

√
ρ

(35)
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as is should be and from the two coupled differential equat-
ions, the Hamilton-Jacobi and the continuity equation, they
both reduce to the standard Schrödinger equation in flat space

i~
∂Ψ(~x, t)

∂t
= −

~2

2m
ΔΨ(~x.t) + VΨ(~x, t) (36)

after, and only after, one defines Ψ=
√
ρ eiS/~.

If one had a curved spacetime with a nontrivial metric one
would obtain the Schrödinger equation in a curved spacetime
manifold by replacing the Laplace operator by the Laplace-
Beltrami operator. This requires, of course, to write the
continuity and Hamilton Jacobi equations in a explicit covar-
iant manner by using the covariant form of the divergence
and Laplace operator [22], [23]. In this way, the geometric
properties of space are indeed affected by the presence of
the particle and in turn the alteration of geometry acts on the
particle through the quantum force fi = γ (~2/m)∂iR which
depends on the Weyl gauge potential Ai and its derivatives.
It is this peculiar feedback between the Weyl geometry of
space and the motion of the particle which recapture the
effects of Bohm’s quantum potential.

The formulation above from [22] was also developed
for a derivation of the Klein-Gordon (KG) equation. The
Dirac equation and Nonlinear Relativistic QM equations
were found by [23] via an average action principle. The
relativistic version of the Bohm potential (for signature
−,+,+,+) can be written

Q ∼
1

m2

(∂μ∂
μ√ρ)
√
ρ

(37)

in terms of the D’Alambertian operator.
To finalize this section we will explain why the Bohm-

potential/Weyl scalar curvature relationship in a flat space-
time

Q=−
~2

2m

1
√
ρ
gik∂i∂k

√
ρ=

~2gik

8m

(
2∂i∂kρ

ρ
−
∂iρ∂kρ

ρ2

)

(38)

encodes already the explicit connection between Fisher In-
formation and the Weyl-Ricci scalar curvature RWeyl (for
Riemann flat spaces) after one realizes the importance of
the complex momentum Pk= pk+ iAk. This is typical of
Electromagnetism after a minimal coupling of a charged
particle (of charge e) to the U(1) gauge fieldAk is introduced
as follows Πk= pk+ ieAk. Weyl’s initial goal was to unify
Electromagnetism with Gravity. It was later realized that the
gauge field of Weyl’s dilatations A was not the same as the
U(1) gauge field of Electromagnetism A.

Since we have reviewed the relationship between the
Weyl scalar curvature and Bohm’s Quantum potential, it is
not surprising to find automatically a connection between
Fisher information and Weyl Geometry after a complex mo-
mentum Pk = pk+iAk is introduced. A complex momentum
has already been discussed in previous sections within the
context of fractal trajectories moving forwards and back-
wards in time by Nottale and Ord.

If ρ is defined over an d-dimensional manifold with
metric gik one obtains a natural definition of the Fisher
information associated with the ensemble density ρ

I = gikIik =
gik

2

∫
1

ρ

∂ρ

∂yi
∂ρ

∂yk
dny. (39)

In the Hamilton-Jacobi formulation of classical mechan-
ics the equation of motion takes the form

∂S

∂t
+

1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V = 0 . (40)

The momentum field pj is given by pj = gjk(∂S/∂xk).
The ensemble probability density of particle-paths ρ (t, xμ)
obeys the normalization condition

∫
dnxρ=1. The conti-

nuity equation is

∂ρ

∂t
+
1

m

1
√
g

∂

∂xj

(
√
g ρgjk

∂S

∂xk

)

= 0 . (41)

These equations completely describe the motion and can
be derived from the action

S =

∫
ρ

(
∂S

∂t
+

1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V

)

dtdnx (42)

using fixed endpoint variation in S and ρ.
The Quantization via the Weyl geometry procedure is

obtained by defining the complex momentum in terms of
the Weyl gauge field of dilatations Ak as Pk= pk+ ieAk
and constructing the modified Hamiltonian in terms of the
norm-squared of the complex momentum P kP ∗k as follows

HWeyl =
gjk

2m

[
(pj + ieAj)(pk − ieAk)

]
+ V. (43)

The modified action is now:

SWeyl=

∫
dtdnx

[
∂S

∂t
+
gjk

2m
(pj+ieAj)(pk−ieAk)+V

]

. (44)

The relationship between the Weyl gauge potential and
the ensemble density ρ was

Ak ∼
∂ log(ρ)

∂xk
(45)

the proportionality factors can be re-absorbed into the coupl-
ing constant e as follows Pk= pk+ ieAk= pk+ i ∂k(log ρ).
Hence, when the spacetime metric is flat (diagonal) gjk=δjk,
SWeyl becomes

SWeyl =

∫
dtdnx

∂S

∂t
+
gjk

2m

[(
∂S

∂xj
+ i

∂ log(ρ)

∂xj

)

×

×

(
∂S

∂xk
− i

∂ log(ρ)

∂xk

)]

+ V =

∫
dtdnx

[
∂S

∂t
+ V+

+
gjk

2m

(
∂S

∂xj

)(
∂S

∂xk

)]

+
1

2m

∫
dtdnx

[
1

ρ

∂ρ

∂xk

]2
.

(46)
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The expectation value of SWeyl is

<SWeyl> = <SC> +S Fisher =

∫
dtdnxρ

[
∂S

∂t
+

+
gjk

2m

(
∂S

∂xj

)(
∂S

∂xk

)

+V

]

+
1

2m

∫
dtdnxρ

[
1

ρ

∂ρ

∂xk

]2
.

(47)

This is how we have reproduced the Fisher Information
expression directly from the last term of <SWeyl>:

S Fisher ≡
1

2m

∫
dtdnxρ

[
1

ρ

∂ρ

∂xk

]2
. (48)

An Euler variation of the expectation value of the action
<SWeyl> with respect to the ρ yields:

∂S

∂t
+
δ <SWeyl>

δρ
− ∂j

(
δ <SWeyl>

δ(∂j ρ)

)

= 0 ⇒ (49)

∂S

∂t
+ V +

1

2m
gjk
[
∂S

∂xj
∂S

∂xk
+

+

(
1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)]

= 0 .

(50)

Notice that the last term of the Euler variation

1

2m
gjk
[(

1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)]

(51)

is precisely the same as the Bohm’s quantum potential ,
which in turn, is proportional to the Weyl scalar curvature. If
the continuity equation is implemented at this point one can
verify once again that the last equation is equivalent to the
Schrödinger equation after the replacement Ψ =

√
ρ eiS/~ is

made.
Notice that in the Euler variation variation of <SWeyl >

w. r. t the ρ one must include those terms involving the
derivatives of ρ as follows

−∂j

(
δ
[
ρ(∂kρ/ρ)

2
]

δ(∂jρ)

)

=−
1

ρ
∂j

(
δ(∂kρ)

2

δ(∂jρ)

)

=−
2

ρ
∂j∂

jρ. (52)

This explains the origins of all the terms in the Euler
variation that yield Bohm’s quantum potential.

Hence, to conclude, we have shown how the last term
of the Euler variation of the averaged action <SWeyl >, that
automatically incorporates the Fisher Information expression
after a complex momentum Pk= pk+ i∂k(log ρ) is intro-
duced via the Weyl gauge field of dilations Ak∼−∂k log ρ,
generates once again Bohm’s potential:

Q ∼

(
1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)

. (53)

To conclude, the Quantization of a particle whose Stati-
stical ensemble of particle-paths permeate a spacetime back-
ground endowed with a Weyl geometry allows to construct a

complex momentum Pk= ∂kS+ i∂k(log ρ) that yields auto-
matically the Fisher Information S Fisher term. The latter Fisher
Information term is crucial in generating Bohm’s quantum
potential Q after an Euler variation of the expectation value
of the <SWeyl> with respect to the ρ is performed. Once
the Bohm’s quantum potential is obtained one recovers the
Schrödinger equation after implementing the continuity eq-
uation and performing the replacement Ψ=

√
ρ eiS/~. This

completes the relationship among Bohm’s potential, the Weyl
scalar curvature and Fisher Information after introducing a
complex momentum.

4 Concluding remarks

Based on Nottale and Ord’s formulation of QM from first
principles; i. e. from the fractal Brownian motion of a massive
particle we have derived explicitly a nonlinear Schrödinger
equation. Despite the fact that the Hamiltonian is not Her-
mitian, real-valued energy solutions exist like the plane wave
and soliton solutions found in the free particle case. The
remarkable feature of the fractal approach versus all the
Nonlinear QM equation considered so far is that the Quantum
Mechanical energy functional coincides precisely with the
field theory one.

It has been known for some time, see Puskarz [8], that the
expression for the energy functional in nonlinear QM does
not coincide with the QM energy functional, nor it is unique.
The classic Gross-Pitaveskii NLSE (of the 1960’s), based
on a quartic interaction potential energy, relevant to Bose-
Einstein condensation, contains the nonlinear cubic terms
in the Schrödinger equation, after differentiation, (ψ∗ψ)ψ.
This equation does not satisfy the Weinberg homogeneity
condition [9] and also the energy functional differs from the
EQM by factors of two.

However, in the fractal-based NLSE there is no dis-
crepancy between the quantum-mechanical energy functional
and the field theory energy functional. Both are given by

H NLSE
fractal = −

~2

2m

α

~
ψ∗∇2ψ + Uψ∗ψ−

− i
~2

2m

β

~
ψ∗(~∇ lnψ)2ψ .

(54)

This is why we push forward the NLSE derived from the
fractal Brownian motion with a complex-valued diffusion
coefficient. Such equation does admit plane-wave solutions
with the dispersion relation E = ~p 2/(2m). It is not hard
to see that after inserting the plane wave solution into the
fractal-based NLSE we get (after setting U = 0),

E =
~2

2m

α

~
~p 2

~2
+ i

β

~
~p 2

2m
=
~p 2

2m

α+ iβ

~
=
~p 2

2m
, (55)

since ~ = α+ iβ. Hence, the plane-wave is a solution to our
fractal-based NLSE (when U = 0) with a real-valued energy
and has the correct energy-momentum dispersion relation.
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Soliton solutions, with real-valued energy (momentum)
are of the form

ψ ∼
[
F (x− vt) + iG(x− vt)

]
eipx/~−iEt/~ , (56)

with F , G two functions of the argument x − vt obeying a
coupled set of two nonlinear differential equations.

It is warranted to study solutions when one turns-on an
external potential U 6= 0 and to generalize this construction
to the Quaternionic Schrödinger equation [16] based on the
Hydrodynamical Nonabelian-fluid Madelung’s formulation
of QM proposed by [26]. And, in particular, to explore
further the consequences of the Non-Hermitian Hamiltonian
(pseudo-Hermitian) associated with our NLSE (34) within
the context of the so-called PT symmetric complex exten-
sions of QM and QFT [27]. Arguments why a quantum theory
of gravity should be nonlinear have been presented by [28]
where a different non-linear Schrödinger equation, but with
a similar logarithmic dependence, was found. This equation
[28] is also similar to the one proposed by Doebner and
Goldin [29] from considerations of unitary representations
of the diffeomorphism group.
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It is pointed out that Special Relativity together with the principle of causality
implies that the gravity of an electromagnetic wave is an accompanying gravitational
wave propagating with the same speed. Since a gravitational wave carries energy-
momentum, this accompanying wave would make the energy-stress tensor of the light
to be different from the electromagnetic energy-stress tensor, and thus can produce
a geodesic equation for the photons. Moreover, it is found that the appropriate
Einstein equation must additionally have the photonic energy-stress tensor with the
antigravity coupling in the source term. This would correct that, in disagreement
with the calculations for the bending of light, existing solutions of gravity for an
electromagnetic wave, is unbounded. This rectification is confirmed by calculating the
gravity of electromagnetic plane-waves. The gravity of an electromagnetic wave is
indeed an accompanying gravitational wave. Moreover, these calculations show the
first time that Special Relativity and General Relativity are compatible because the
physical meaning of coordinates has been clarified. The success of this rectification
makes General Relativity standing out further among theories of gravity.

1 Introduction

The physical basis of Special Relativity is constancy of the
light speed, which is also the velocity of an electromagnetic
wave [1]. On the other hand, the physical basis of quantum
mechanics is that light can be considered as consisting of
the photons [2]. Currently, it seems, there is no theoretical
connection between constancy of light speed and photons,
except that both are proposed by Einstein. However, since
constancy of the light speed and the notion of photon are
two aspects of the same physical phenomenon, from the
viewpoint of physics, a theoretical connection of these not-
ions must exist. Moreover, such a connection would be a key
to understand the relationship between these two theories.

To this end, General Relativity seems to hold a special
position because of the bending of light. The fact that a
photon follows the geodesic of a massless particle [3, 4]
manifests that there is a connection between the light speed
and the photon. This suggests that General Relativity may
provide some insight on the existence of the photons. In other
words, the existence of the photons, though an observed fact,
may be theoretically necessary because the light speed is the
maximum.

On the other hand, since electromagnetism is a source
for gravity [5], an electromagnetic wave would generate
gravity. Thus, it is natural to ask whether its gravity is related
to the existence of the photon. In other words, would the
existence of the photon be an integral part of the theory of
General Relativity? It will be shown here that the answer
is affirmative. In fact, this is also a consequence of Special

Relativity provided that the theoretical framework of General
Relativity is valid.

2 Special Relativity and the accompanying gravity of
an electromagnetic wave

In a light ray, the massless light energy is propagating in
vacuum with the maximum speed c. Thus, the gravity due
to the light energy should be distinct from that generated by
massive matter [6–7]. Since a field emitted from an energy
density unit means a non-zero velocity relative to that unit,
it is instructive to study the velocity addition. According to
Special Relativity, the addition of velocities is as follows [1]:

ux =

√
1− v2/c2

1 + u′zv/c
2
u′x , uy =

√
1− v2/c2

1 + u′zv/c
2
u′y ,

and uz =
u′z + v

1 + u′zv/c
2
,

(1)

where velocity ~v is in the z-direction, (u′x, u
′
y , u

′
z) is a ve-

locity in a system moving with velocity v, c is the light speed,
ux= dx/dt, uy = dy/dt, and uz = dz/dt. When v= c,
independent of (u′x, u

′
y , u

′
z) one has

ux = 0 , uy = 0 , and uz = c . (2)

Thus, neither the direction nor the magnitude of the velocity
~v (=~c) have been changed.

This implies that nothing can be emitted from a light ray,
and therefore no field can be generated outside the light ray.
To be more specific, from a light ray, no gravitational field
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can be generated outside the ray although, accompanying the
light ray, a gravitational field gab ( 6= ηab the flat metric) is
allowed within the ray.

According to the principle of causality [7], this accom-
panying gravity gab should be a gravitational wave since an
electromagnetic wave is the physical cause. This would put
General Relativity into a severe test for theoretical consist-
ency. However, this examination would also have the benefit
of knowing that electrodynamics is completely compatible
with General Relativity.

3 The accompanying gravitational wave and the pho-
tonic energy-stress tensor

Observations confirm that photons follow a geodesic. One
may expect that the light energy-stress tensor T (L)ab would
generate the photonic geodesic since the massive tensor
T (m)ab generates the geodesic through ∇c T (m)cb =0 [5].
This means that T (L)ab is different from the electromagnetic
energy-stress tensor T (E)ab since ∇c T (E)cb is the Lorentz
force [7, 8].

Nevertheless, this can be resolved since a gravitational
wave carries an additional energy-stress tensor T (g)ab, i. e.,
one should have

T (L)ab = T (E)ab + T (g)ab (3)

since there is no other type of energy. Then, one may expect
that Eq. (3) allows ∇c T (L)cb=0 to generate the necessary
geodesic equation for photons.

If the light is emitted and absorbed in terms of photons,
physically the photons contain all the energy of the light,
i. e., the photonic energy-stress tensor,

T (P )ab = T (L)ab . (4)

One might object on the ground that, in quantum theory,
T (E)ab is considered as identical to the photonic energy-
stress tensor T (P )ab. However, one should note also that
gravity is ignored in quantum electrodynamics.

4 The Einstein equation for an electromagnetic wave

Einstein [9] suggested the field equation for the gravity of an
electromagnetic wave was

Gab = −KT (E)ab , (5)

where Gab is the Einstein tensor, and K is the coupling
constant. However, to generate the photonic geodesic, the
source term must include the photonic energy-stress T (P )ab.
The need of a modified equation is supported by the fact that
all existing solutions, in disagreement with light bending
calculation, are unbounded [7].

Moreover, if the gravity of an electromagnetic wave is
a gravitational wave, validity of Eq. (5) is questionable. It

has been known from the binary pulsar experiments, that
when radiation is included, the anti-gravity coupling must be
included in the Einstein equation [10],

Gab = −K
[
T (m)ab − t(g)ab

]
, (6)

where T (m)ab and t(g)ab are respectively the energy-stress
tensors for massive matter and gravity. The need of t(g)ab
was first conjectured by Hogarth [12]. The possibility of
such an coupling was suggested by Pauli [13]. Moreover,
if a space-time singularity is not a reality, the existence of
an antigravity coupling is implicitly given by the singularity
theorems which assume the coupling constants are of the
same sign [14].

There are theories such as the Brans-Dicke’s [15] and the
Yilmaz’s [16] that provide an extra source term in vacuum.
However, it is not clear that they can provide the right
formula for the gravity of an electromagnetic wave since their
connection with the notion of photon was never mentioned.
Besides, it is more appropriate to consider a fundamental
problem from the basics.

The above analysis suggests that, to obtain an appropriate
Einstein equation, one may start from considering the gravita-
tional radiation with Einstein’s radiation formula as follows:

(a) For the gravitational wave generated by massive
matter, the gravitational energy-stress t(g)ab of Einstein’s
radiation formula is approximately [11].

t(g)ab =
G
(2)
ab

K
, where G

(2)
ab = Gab −G

(1)
ab , (7)

where G(1)ab consists of all first order terms of Gab. Moreover,
if the gravitational energy is the same as the gravitational
wave energy, one has

t(g)ab = T (g)ab . (8)

(b) Since gab is a wave propagating with the electromag-
netic wave, one may have the linear terms, G(1)ab =0 on a
time average. This suggestsGab=KT (g)ab . Thus, it follows
from Eqs. (3) and (4) that

Gab = KT (g)ab = −K
[
T (E)ab − T (P )ab

]
(9)

would be the appropriate Einstein equation. Comparing with
Eq. (5), there is an additional term T (P )ab.

(c) Since the Lorentz force∇c T (E)cb=0 and∇cGcb=0,
as expected, one has the necessary formula

∇c T (P )cb = 0 (10)

generate the photonic geodesic equation. However, to verify
Eq. (9), one must first show that Eq. (5) cannot be valid for
at least one example and then find the photonic energy-stress
tensor T (P )ab for Eq. (9).

Alternatively, Eq. (9) can be derived from the principle
of causality [7, 8] since the electromagnetic plane-wave as a
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spatial local idealization has been justified in electrodynam-
ics. In general, without an idealization, to solve the gravity
of an electromagnetic wave is very difficult [4].

5 The reduced Einstein equation for plane-waves

Due to the speed of light is the maximum, the influence
of an electromagnetic wave to its accompanying gravity is
spatially local. Thus, an electromagnetic plane-wave is also
a valid modeling for the problem of gravity.

Now, let us consider the electromagnetic potential
Ak (t − z) which represents the photons moving in the z-
direction. Then, Eq. (5) is reduced to a differential equation
of u (= t− z) [6] as follows:

G′′ − g′xxg
′
yy + (g

′
xy)

2 −G′
g′

2g
= 2GRtt =

= 2K
(
F 2xt gyy + F

2
yt gxx − 2FxtFyt gxy

)
,

(11)

where
G = gxxgyy − g

2
xy , g = | gab |

is the determinant of the metric, Fab= ∂aAb− ∂bAa is the
electromagnetic field tensor, and Rab is the Ricci tensor. The
metric elements are connected as follows:

g = Gg2t , where gt ≡ gtt + gtz. (12)

Moreover, the massless of photons implies that

gtt + 2gtz + gzz=0, and gtt − 2gtz + gzz=0 .

Note that Eq. (35.31) and Eq. (35.44) in reference [4] and
Eq. (2.8) in reference [17] are special cases of Eq. (5). They
believed that bounded wave solutions can be obtained [7].

It has been shown that At, gxt, gyt, and gzt are allowed to
be zero. Although there are four remaining metric elements
(gxx, gxy , gyy , and gtt) to be determined, based on Einstein’s
notion of weak gravity and Eq. (5), it will be shown that
there is no physical solution [6]. In other words, in contrast
to Einstein’s belief [9], the difficulty of his equation is not
limited to mathematics.

6 Verification of the rectified Einstein equation

Now, consider an electromagnetic plane-waves of circular
polarization, propagating to the z-direction

Ax =
1
√
2
A0 cosωu , and Ay =

1
√
2
A0 sinωu , (13)

The rotational invariants with respect to the z-axis are
constants. These invariants are: Gtt, Rtt, T (E)tt, G,
(gxx+ gyy), gtz , gtt, g, and etc. It follows that [6, 7]

gxx = −1− C +Bα cos(ω1u+ α) ,

gyy = −1− C −Bα cos(ω1u+ α) ,

gxy = ±Bα sin(ω1u+ α) ,

(14)

where C and Bα are small constants, and ω1=2ω. Thus,
metric (14) is a circularly polarized wave with the same
direction of polarization as the electromagnetic wave (13).
On the other hand, one also has G = (1 + C)2 −B2α > 0,

Gtt =
2ω2B2α
G

> 0 , (15)

T (E)tt =
gyy
G

ω2A20 (1 + C −Bα cosα) > 0 .

Thus, it is not possible to satisfy Einstein equation (5)
because T (E)tt and Gtt have the same sign [6]. Thus, it is
necessary to have a photonic energy-stress tensor.

Given that a geodesic equation must be produced, for a
monochromatic wave, the form of a photonic energy tensor
should be similar to that of massive matter. Observationally,
there is very little interaction, if any, among photons of the
same ray. Theoretically, since photons travel in the velocity
of light, there should not be any interaction among them.

Therefore, the photonic energy tensor should be dust-like
with the momentum of the photon Pa as follows:

Tab(P ) = ρPaPb , (16)

where ρ is a scalar and is a function of u. In the units
c = ~ = 1, Pt = ω. It has been obtained [6] that

ρ(u) = −Am g
mnAn > 0 . (17)

Here, ρ(u) is related to gravity through gmn. Since light
intensity is proportional to the square of the wave amplitude,
ρ which is Lorentz gauge invariant, can be considered as the
density function of photons. Then

Tab = −T (g)ab = T (E)ab − T (P )ab =

= T (E)ab + Am g
mnAnPaPb .

(18)

Thus, Tab(P ) has been derived completely from the
electromagnetic wave Ak and gab.

Physically, such a tensor should be unique. It remains
to see whether all the severe physical requirements can be
satisfied. In particular, validity of the light bending calcul-
ation requires compatibility with the notion of weak gravity
[3]. Also, the photonic energy tensor of Misner et al. [4], is
an approximation of the time average of Tab(P ).

As expected, this tensor Tab(P ) enables a gravity solution
for wave (13). According to Eq. (8),

Ttt = −
1

G
ω2A20Bα cosα 6 0 , (19)

since Bα= K
2 A

2
0 cosα. the energy density of the photonic

energy tensor is indeed larger than that of the electromagnetic
wave. T (g)tt is of order K. Note that, pure electromagnetic
waves can exist since cosα=0 is also possible. To confirm
the general validity of (16), consider a wave linearly polari-
zed in the x-direction,
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Ax = A0 cosω(t− z) . (20)

Then, one has

Ttt =
gyy
G

ω2A20 cos 2ω(t− z) , (21)

since the gravitational component is not an independent
wave, T (g)tt is allowed to be negative. Eq. (21) implies
that its polarization has to be different.

It turns out that the solution is a linearly polarized gravi-
tational wave and that the time-average of T (g)tt is positive
of order K [7]. From the viewpoint of physics, for an x-
directional polarization, gravitational components related to
the y-direction, remains the same. In other words,

gxy = 0, and gyy = −1 . (22)

It follows that the general solution of wave (20) is:

−gxx = 1 + C1 −
K

2
A20 cos 2ω(t− z) ,

and gtt = −gzz =
√

g

gxx
,

(23)

where C1 is a constant. Note that he frequency ratio is the
same as that of a circular polarization, but there is no phase
difference to control the amplitude of the gravitational wave.

For a polarization in the diagonal direction of the x − y
plane, the solution is:

gxx = gyy = −1−
C1
2
+
K

4
A20 cos 2ω(t− z) , (24)

gxy = −
C1
2
+
K

4
A20 cos 2ω(t− z) , (25)

gtt = −gzz =

√
−g

1− 2gxy
. (26)

Note that for a perpendicular polarization, the metric
element gxy changes sign. The time averages of their Ttt
are also negative as required. If g=−1, relativistic causality
requires C1 > KA20/2.

7 Compatibility between Special Relativity and General
Relativity

We implicitly use the same coordinate system whether the
calculation is done in terms of Special Relativity or General
Relativity. However, according to Einstein’s “covariance
principle” [1], coordinates have no physical meaning whereas
the coordinates in Special Relativity have very clear meaning
[18]. Thus, all the above calculations could have no meaning.
Recently, it has been proven that a physical coordinate system
for General Relativity necessarily has a frame of reference(1)

with the Euclidean-like structure [19–21]. Moreover, the time

coordinate will be the same as in Special Relativity if the
metric is asymptotically flat.

Many theorists, including Einstein, overlooked that the
metric of a Riemannian space actually is compatible with
the space coordinates with the Euclidean-like structure. Let
us illustrate this with the Schwarzschild solution in quasi-
Minkowskian coordinates [11],

−ds2=−

(

1−
2Mκ

r

)

c2dt2+

(

1−
2Mκ

r

)−1
dr2+

+ r2(dθ2+ sin2 θdϕ2),

(27)

where (r, θ, ϕ) transforms to (x, y, z) by,

x = r sin θ cosϕ , y = r sin θ sinϕ ,

and z = r cos θ .
(28)

Coordinate transformation (28) tells that the space coord-
inates satisfy the Pythagorean theorem. The Euclidean-like
structure represents this fact, but avoids confusion with the
notion of a Euclidean subspace, determined by the metric.
Metric (27) and the Euclidean-like structure (28) are com-
plementary to each other in the Riemannian space. Then, a
light speed (ds2=0) is defined in terms of dx/dt, dy/dt,
and dz/dt [1]. This is necessary though insufficient for a
physical space [19–21].

Einstein’s oversight made his theory inconsistent, and
thus rejected by Whitehead [22] for being not a theory in
physics. For instance, his theory of measurement is incorrect
because it is modeled after(2) measurements for a Riemann-
ian space embedded in a higher dimensional space [19–21].
In General Relativity, the local distance (

√
−ds2, where

dt=0) represents the space contraction, which is measured
in a free fall local space [1, 3]. Thus, this is a dynamic
measurement since the measuring instrument is in a free fall
state.

Einstein’s error is that he overlooked the free fall state,
and thus has mistaken this dynamic local measurement as
a static measurement. Moreover, having different states at
different points, this makes such a measurement for an ex-
tended object not executable.

The Euclidean-like structure determines the distance be-
tween two points in a frame of reference, and the observed
light bending supports this physical meaning. This is why the
interpretation of Hubble’s law as a consequence of receding
velocity(3) is invalid [23]. Because the measurement theory
of Einstein is invalid, the miles long arms of the laser inter-
ferometer in LIGO would not change their length under the
influence of gravitational waves [24]. In other words, LIGO
would inadvertently further confirm that Einstein’s theory of
measurement is invalid.

It has been solved that the coordinate system of General
Relativity and that of Special Relativity are actually the same
for this problem. We must show also that the plane waves
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would satisfy the Maxwell equation in General Relativity,
see [11; p. 125],

∂

∂xa
√
g F ab = −

√
g Jb, (29)

∂

∂xa
F bc +

∂

∂xb
F ca +

∂

∂xc
F ab = 0 . (30)

Since equation (30) is the same as in Special Relativity,
it remains to show that (29) is satisfied for Ja = 0. To show
this, we can use the facts that gab and F ab are function of u,
and that gtt + gzz = 0. It follows that

∂

∂xa
√
g F ab =

∂
√
g

∂t
(F tb − F zb) =

=
∂
√
g

∂t
gtt (∂tAc + ∂zAc) g

cb = 0 .

(31)

We thus complete the compatibility proof.

8 Conclusions and Discussions

A crucial argument for this case is that both Special Relativity
and General Relativity use the same coordinate system. This
is impossible, according to Einstein’s theory of measurement.
A major problem of Einstein’s theory is that the physical
meaning of coordinates is not only ambiguous, but also
confusing(4) since the physical meaning of the coordinates
depends on the metric. Moreover, Einstein’s equivalence
principle actually contradicts the so-called “covariance prin-
ciple”. P. Morrison of MIT [21, 25] remarked that the “covar-
iance principle” is physically invalid because it disrupts
the necessary physical continuity from Special Relativity to
General Relativity.

Now, a photonic energy-stress tensor has been obtained
as physics requires. The energy and momentum of a photon
is proportional to its frequency although, as expected from
a classical theory, their relationship with the Planck constant
~ is not yet clear; and the photonic energy-stress tensor
is a source term in the Einstein equation. As predicted by
Special Relativity, the gravity of an electromagnetic wave
is an accompanying gravitational wave propagating with the
same speed. Moreover, the gravity of light is proven to be
compatible with the notion of weak gravity.

In the literature [4, 26–29], however, solutions of Eq. (5)
are unbounded.(5) Thus, they are incompatible with the ap-
proximate validity of electrodynamics and violate physical
principles including the equivalence principle and the prin-
ciple of causality [7, 30]. (The existence of local Minkowski
spaces is only a necessary condition(6) for Einstein’s equiv-
alence principle [31].) Naturally, one may question whether
the gravity due to the light is negligible. Now, the claim that
the bending of light experiment confirms General Relativity,
is no longer inflated.

In addition, the calculation answers a long-standing quest-
ion on the propagation of gravity in General Relativity. Since
an electromagnetic wave has an accompanying gravitational
wave, gravity should propagate in the same speed as electro-
magnetism. It is interesting to note that Rabounski [32]
reached the same conclusion on the propagation of gravity
with a completely different method, which is independent of
the Einstein equation.

One might argue that since E=mc2 and the gravitational
effect of the wave energy density should be outside a light
ray. However, this is a misinterpretation [33, 34]. One should
not, as Tolman [35] did, ignore Special Relativity and the
fact that the light energy density is propagating with the
maximum velocity possible. There are intrinsically different
characteristics in such an energy form according to Special
Relativity. This calculation confirms a comment of Einstein
[23] that E=mc2 must be understood in the contact of
energy conservation.

To illustrate this, consider the case of a linear polarizat-
ion, for which Eq. (5) still has a solution [6]

−gxx = 1−
K

4
A20
[
2ω2(t− z)2+ cos 2ω(t− z)

]
. (32)

However, solution (32) is invalid since (t − z)2 grows
very large as time goes by. This would “represent” the effects
that the wave energy were equivalent to mass. This illustrates
also that Einstein’s notion of weak gravity may not be com-
patible with an inadequate source.

The theoretical consistency between Special Relativity
and General Relativity is further established. This is a very
strong confirming evidence for General Relativity beyond
the requirements of the equivalence principle. Moreover, this
rectification makes General Relativity standing out among all
theories of gravity. Moreover, since light has a gravitational
wave component, it would be questionable to quantize grav-
ity independently as in the current approach.
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Endnotes

(1) In a Riemannian geometry, a frame of reference may not
exist since the coordinates can be arbitrary. However, for a
physical space, a frame of reference with the Euclidean-like
structure must exist because of physical requirements [19–
21]. Note that the Euclidean-like structure is independent of
the metric.
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(2) In the initial development of Riemannian geometry, the met-
ric was identified formally with the notion of distance in
analogy as the case of the Euclidean space. Such geometry
is often illustrated with the surface of a sphere, a subspace
embedded in a flat space [4, 36]. Then, the distance is
determined by the flat space and can be measured with
a static method. For a general case, however, the issue of
measurement was not addressed before Einstein’s theory.

(3) Einstein’s theory of measurements is not supported by ob-
servation, which requires [21, 37] that the light speed must
be defined in terms of the Euclidean-like structure as in
Einstein’s own papers [1, 3].

(4) If the “covariance principle” was valid, it has been shown
that the “event of horizon” for a black hole could be just any
arbitrary constant [38].

(5) In fact, all existing solutions involving waves are unbounded
because the term to accommodate gravitational wave energy-
stress is missing. It is interesting that Einstein and Rosen are
the first to discover the non-existence of wave solutions [39].
However, their arguments that led to their correct conclusion
was incorrect. Robertson as a referee of Physical Review
pointed out that the singularities mentioned are actually
removable [39]. However, there are other reasons for a wave
solution to be invalid. It has been found that a wave solution
necessarily violates Einstein’s equivalence principle and the
principle of causality [10, 19].

(6) Many theorists do not understand Einstein’s equivalence
principle because they failed in understanding the Einstein-
Minkowski condition that the local space of a particle under
gravity must be locally Minkowskian [1, 3]. This condition is
crucial to obtain the time dilation and space contractions [21].
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Physical Space is identified as the universal Aether Space. An Aether Equation is
deduced, predicting the Temperature of the Cosmic Background Radiation TCMBR, and
indicating that G and c are universal dependent variables. The strong nuclear force
is found to be a strong gravitational force at extreme energy densities of the neutron,
indicating a Grand Unified Theory, when gravity is a process of enduring exchange of
radiant energy between all astrophysical objects. The big bang hypothesis is refuted
by interpretation of the Hubble redshift as evidence of gravitational work. Conditions
for application of STR and GTR in the scientific cosmological research are deduced.

Gravity must be caused by an agent acting constantly
according to certain laws; but whether this agent be
material or immaterial, I have left to the consideration
of my readers.

Newton. Letter to Bentley, 1693.

We assume to find in every point of space a flow in all
directions of radiant energy from all astrophysical objects,
meaning that space everywhere has a specific energy U [erg]
and an energy density u = U/V [erg/cm3], which of course
is a local variable depending on the position in space.

The radiant energy will we name the “Aether”, and since
it is present throughout the Universe, we will call space the
“Aether-Space”. Presuming the aether the medium sustaining
all physical fields and forces, the aether-space is the universal
physical space.

A set of equations can be found for this situation [1] from
which may be derived the aether equation with the minimum
energy U at the temperature TAether, which has been confirmed
by the COBE observations of TCMBR = 2.735±0.06 Kelvin (1)

κUV = Ghc2,

U = 3.973637×10−13 erg at TAether = 2.692064 Kelvin ,

K = Gc/κL2 = UL/hc = 2.000343×103.

Defining κ ≡ 1 erg/(sec×g2) and V = 1 cm3, it is seen
that if U is a variable, then the Newtonian G and the velocity
of light c are dependent variables if Planck’s h is a universal
constant.

At higher energy densities of the aether, such as in the
galaxies, G and c would have other and higher values than
G=6.672426×10−8 cm3/(g×sec2) and c=2.99792458×1010

cm/sec of the aether equation and will need some coefficient
ρ to G, while the maximum value of c is supposed from a
possible coefficient function to be cmax =

√
2 c.

To have an idea of the extreme energy densities and their
corresponding ρ-values, we will have a look at the Schwarz-
schild solution for the electron, from which to derive G:(2)

Gme/rec
2 = 1/ρe = Gm2

e/e
2,

ρeGe
2 = c4r2e ,

me = 9.109535×10−28 g ,

e = 4.803242×10−10 esu ,

re = 2.817937×10−13 cm ,

ρe = 4.166705×1042.

Considering the composite neutron, the proton+, and
the neutron-meson− we find that the meson must be the
mass difference between the neutron and the proton, and that
the meson must be a special heavy neutron-electron, since
the free neutron in relatively short time disintegrates into a
proton, an electron, and some neutrino energy depending on
the velocities and directions of the parting massive particles.
We therefore have with α, the fine structure constant:

mn = 1.674954×10−24 g ,

mp = 1.672648×10−24 g ,

mm = 2.305589×10−27 g ,

mpmm/m
2
e = αK2/2π = K3e2/UL =

= ρe/ρp,m = 4.64723×103,

α = 7.297349×10−3,

ρp,m = 8.965996×1038.

As an analogon to the Schwarzschild electron solution
we find:

ρp,mGmn/rnc
2 = ρp,mGmpmm/e

2 = 1 ,

rn= 1.11492×10−13 cm would then be the radius of the
neutron, and if the proton is calculated with the same co-
efficient ρp,m,

ρp,mGmp/rpc
2 = 1 ,

rp = 1.113386×10−13 cm .
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If the neutron-meson should in fact be a heavy electron,
and mm/me∼ 2.53, it would make sense if the mass-
difference mm−me was the virtual gravitational mass of
the neutron’s intrinsic proton-electron pair, whence we find
from a first calculation mvir:

ρp,mGmpme/rnc
2 = 9.096998×10−28 g ,

ρp,mGmpme/rpc
2 = 9.109531×10−28 g .

We have hereby accounted for a neutron-meson of twice
the electron’s mass, while we need an explanation for the
extra mass of 12 electron-mass in the neutron-meson. We will
abstain from further calculations here and for the moment
consider it sufficient to have shown a double electron-mass
in the meson, pointing to the self-gravitation also of the
virtual mass as a probable solution to the deficiency of
∼ 4.83×10−28 g meson-mass.

Regarding the self-gravitation of the neutron, it may be
shown from a normalization of the neutron’s gravitational
potential P , that the potential with respect of the central
proton, when the self-gravitation means an increment of the
meson-mass from ∼2me to mm, would result in a slight-
ly greater value of ρ by a factor of rn/rp=mn/mp=
=1.001378 (3) from ρp,m to ρn, so that ρn=1.001378ρp,m=
= 8.978353×1038. We then find from considering the gravi-
tational potential of the neutron, as if produced by the central
proton alone in the distance rn, that it leads to the resulting
potential

P = ρnGmp/rn = ρp,mGmn/rn = c2,

ρnGmpmm/rn = Em .

Em=mmc
2 is the total energy of the heavily augmented

neutron-electron to the full mass of the neutron-meson,
mm=mn−mp. That the virtual gravitational mass of the
free neutron equals one electron-mass may be seen from
the following equation, which interestingly shows the ratio
between radii rp and re. It appears then that all the relational
conditions of the free neutron are completely deduced:

mvir = ρp,mGmpme/rpc
2 = mmrp/re = e2/rec

2 = me ,

mm = e2/rpc
2.

Having demonstrated that the Newtonian G must be a
variable of very great values at extreme energy densities,
such as in the composite neutron (ρp,mG∼ 6×1031), it seems
reasonable to believe that the strong nuclear force is caused
by such extreme values of the Newtonian gravitational factor.

We therefore assume that the neutron-meson would be
able to bind two protons in the atomic nucleus by orbiting in
such a way that it shifts constantly between the two protons,
of which the one may be considered a neutron, when the other
is a proton and vice versa in constant shifts of constitution
in the neutron-proton pair of a nucleus.

The binding orbit may hence be thought of in a most
simple theoretical illustration as the meson following an Oval
of Cassini around the two heavy electrically positive charged
particles, forcing them to the constant shifts of neutron-
proton phase. And as will be known, the Lemniscate is the
extreme curve of the Cassini Oval, with the parameters a = b,
where the strong particle-binding would break in a proton and
a free neutron that may possibly leave the nucleus.(4)

Of course, the real conditions of an “orbiting neutron-
meson” cannot be made really lucid, since we know that the
interaction is rather a question of probability of distribution
of charges and masses, when we observe the weak magnetic
moment of the electrically neutral neutron.

However, it seems that the strong nuclear force may be
accounted for as a very strong gravitational force at extreme
energy densities, to which it is remarked that in the galaxies,
with their very intense radiation from stars and gasses, we
may also expect special dynamics due to the variablility of
the factor G, which would therefore account for the observed
galactic differential velocities and probably would explain
also the so-called “problem of missing mass in the Universe”.

As in fact gravitational action according to the aether
physics is an electromagnetic phenomenon of energy ex-
change in Planck quanta leaving an enduring train of im-
pulses unto the gravitating masses, it seems that a unification
of the four fundamental forces in nature may be expected
from consideration of the physics of the aether.

From the aether equation we have found the constant
K. Considering the composite neutron, mp+mm=mn, we
have the mass relation and the energy-charge relation:

(mpmm)/m
2
e = K3(e2/UL) = K2(e2/hc),

Eere = Emrp = Eprm = e2.

It further follows that KΦ/c = Gmxmy/L
2 for any pair

of gravitating masses in mutual distance L = 1 cm, when the
radiant flux Φ [erg/sec] is Φx,y =κmxmy .

We will therefore show that a radiant aether flux Φ is
the common cause of the Coulomb force and the extremely
strong force of gravity in the neutron, manifest as the strong
nuclear force

e2/r2n = ρp,m [(KΦp,m)/c]× [L
2/r2n] =

= ρp,mGmpmm/r
2
n dynes ,

e2c/r2n= ρp,mKΦp,mL
2/r2n= ρp,mGmpmmc/r

2
n erg/sec ,

e2/mpmm = ρp,mKκL
2/c = ρp,mκUV/hc

2 = ρp,mG ,

e2/G = ρp,mmpmm =M2
JS .

For any pair of fundamental particles of unit charge ± esu
there seems to exist a dimensionless factor of proportionality
ρ1,2, which, if made a coefficient of G, will balance the
electrostatic Coulomb force and the Newtonian force of
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gravity at any distance between the charged particles. For any
charged pair of mass1 and mass2 the factor of proportionality
will be ρ with the Johnstone-Stoney mass squared e2/G as a
constant: ρ1,2=M

2
JS/(m1m2).

Demonstrating the validity of the foregoing derivations,
it may be shown that, with the magnitude found for the co-
efficient ρp,m, the dimensions rn, rp, and rm of the neutron
massesmn,mp, andmm are most easily given by the follow-
ing simple relations:

ρKκmL2/c3 = ρGm/c2 = r ;

as is with ρe and me the Schwarzschild radius of the elect-
ron re.

Generally, provided a local value of ρ can be found or
estimated, the local gravitational potential P at any distance
R from the center of a gravitating mass M will be:

P = ρGM/R (cm/sec)2.

When, however, all ponderable matter is constituted as a
sum of charged particles, and the force of gravity as shown is
an electromagnetic phenomenon by energy exchange in the
aether space between any pair of masses via a radiant flux
Φ [erg/sec], which is proportional to the product of the two
masses, we generally have with some local value of ρ the
Newtonian force between M1 and M2:

F = ρGM1M2/R
2 = ρκM1M2UV/hc

2R2 =

= ρK [Φ/c]× [L2/R2] dynes .

The radiant flux KΦ may be thought of as aether energy
at the velocity of light, which is bound in the line of distance
R between the gravitating masses, representing the gravitat-
ional energy KΦL2/Rc and the equivalent virtual gravitat-
ional mass KΦL2/Rc3 that belongs to the binary system. It
should therefore be added to the sum of gravitating masses
for calculations of total potential and force including the
self-gravitation of the aether energy in Φ.

In the composite neutron, however, only two elementary
charges are acting, the proton’s + e esu and the meson-
electron’s−e esu. The latter is an ordinary electron, when the
neutron disintegrates, and we have no idea whatsoever of a
variation in the elementary charge e = 4.803242×10−10 esu.
We conclude from the neutron equation, as from Schwarz-
schild’s electron solution:

e2/r2n = ρp,mGmpmm/r
2
n ,

e2/mpmm = ρp,mG ,

that gravity is an electromagnetic phenomenon, and that it
is the relation shown herein between charges and masses
which governs the gravitational force between the neutron’s
proton and electron at the extreme energy density of the free
neutron.

Presumably, it is the gravitational interaction between
the free neutron and all other masses in the aether space,
by enduring energy exchange with the radiant energy of the
aether, that makes the neutron unstable by emitting more
energy to the aether field than is absorbed in the same interval
of time. This loss of energy is by radiation at the cost of the
meson-mass, which diminishes, meaning a loss of mass and
of the neutron’s energy density, thereby a reduction of the
coefficient ρ, of G. That means an increase in rn, the radius
of the free neutron, to a considerably greater dimension as
a so-called “cold neutron” until the proton and the neutron-
electron part with a random measure of the electron-meson’s
binding energy as a massless supply of neutrino-energy to
the aether.

The aether energy represented in the radiant flux Φ is,
according to the theory, present in the aether space of infinite
energy as random radiation at all wavelengths and in all
directions to and from the gravitating systems. Therefore the
action of gravity is immediate, say if one of the gravitating
masses is suddenly increased, while any change in the grav-
itating system will result in a signal which propagates in the
aether space as a gravitational wave with the velocity of light.
Such a signal may therefore be thought of as a modulation of
the present radiant aether energy. The flux Φ is not a flow of
energy from mass 1 to mass 2 and back again. It is a result
of the energy exchange in all directions between the aether
and the complete system and its single gravitating masses.
According to the aether theory we have:

α(Kme)
2 = 2πmpmm g2,

m

[e2/hν]× [Gm2
e/λ

2] = [LΦp,m/U ]× [h/λ] erg .

Aether energy which is absorbed by a mass is immedia-
tely re-emitted randomly to the aether, and in all directions.
The action of gravity means work by impulses hν/c = h/λ
both at absorption and radiation of energy, while reflection
means a double-pulse [2]. The gravitational work done by
the aether causes an increasing loss of aether energy, shown
in the Hubble-effect of increasing redshift with distance of
all light from distant sources. The universal redshift thus
is evidence of gravitational work, and not of any universal
expansion interpreted as a Doppler-effect. The redshift is in
complete accordance with the gravitational effect described
by Einstein’s theory of relativity, where we have to discrimi-
nate between two types of gravitational effects: (1) the local
redshift of a single mass also deflecting passing rays of light;
(2) the redshift of distance called the Hubble redshift.

The speculative big-bang hypothesis therefore seems
absurd and way beyond rational science, since General Rela-
tivity has meaning only in application to a finite physical
space of known and observable contents of masses and
energy, while the Universe is for all reasons of an infinite
mightiness beyond some apparent limit of observation, and
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when the idea of the Newtonian gravitational factor G as
an universal constant cannot be upheld. The multitude of
individual “galactic worlds” of very different types and ages
in some general ongoing process of creation and decay by age
should, on the other hand, be an obvious goal for scientific
cosmological research.

The loss of energy to gravitational work is replenished by
the stars and all the energy producing astrophysical objects
by irradiation of new energy into the aether space at the
cost of their masses. It seems clear that there ought to exist
a feedback effect working to keep the aether at a constant
energy level, which, however, may be left to future research.

The replenishment of free radiant energy to the aether-
space by irradiation of Planck quanta at the velocity of light
is, as seen from the aether equation, regardless of any local
coefficient ρ:

hν/c = κUV/(Gc2λ) = (U/Kc)× L/λ ;

Khν = U × L/λ .

By the foregoing presentation of the theory and physics of
the aether we have shown that gravitation is an electromag-
netic phenomenon, and that the force of gravity is the result
of an enduring exchange of radiant energy between mass
and aether, by which the energy of the fundamental particles
fluctuates consistently with the QED-findings regarding the
fundamental charge/mass proportion of the electron.

The theory of the aether thereby seems to confirm also
Einstein’s finding 1928 [3] that “The separation of the grav-
itational and the electromagnetic field appears artificial”, —
when, of course, the aether-space is the seat of all physical
fields and forces.

In modern 5-dimensional Kaluza-Klein Theory the spe-
cific space energy of the aether, or some identical local
aether-parameter, such as for instance TAether Kelvin, would
apparently represent the 5th dimension.

Provided the speculative unphysical STR is defined with
a local energy density u of the aether space, and with the
condition that u shall be constant all over the actual physical
space, ensuring a constant light-velocity c, the Special
Theory of Relativity is a valid physical theory confirmed
by observations.

Provided in any application of GTR the λ-term is defined
with the parameters of a black body radiation of energy
density u at the temperature TAether in the actual finite physical
aether space, and provided the local coefficient ρ to the
Einsteinian gravitational factor χ is estimated correct, the
General Theory of Relativity may be applied to a first ap-
proximation.

STR and GTR thereby should be useful sub-theories
in the Theory and Physics of the Aether which, as here
described, appears as a natural continuation and extension of
Drude’s famous Physik des Aethers [4]. In thermodynamics
it should be noted that gravitational energy exchange by

radiation is a reversible process in open systems, therefore
in no matter of the 2nd law.
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Endnotes

(1) Since the aether is a perfect boson-gas, we have with a=
=8πV/c3 and b= kT/h, when ζ(x) is the Riemann ζ-
function, L=1 cm, V =1 cm3, m=1 g the following sol-
utions:

pV/kT = a2b3ζ(4) , U = ah6b4ζ(4) ;

p = u/3 , pV = U/3 ;

R/N = RG/NA = k = 1.380662×10−16 erg/Kelvin;

RT = ah2b4ζ(3) = kTN ;

RAether = 5.464489×10−14 erg/Kelvin ;

NAether = a2b3ζ(3) = 3.957876×102;

S = 4U/3T = Rζ(4)/ζ(3) = 4Ghc2/3kV T ;

SAether = 1.968074×10−13 erg/Kelvin ;

κ = Φ/m2 = χhc4/8πUV = 4Ghc2/3SV T ;

χ = Einstein’s gravitational factor ;

Φ/L2 = (Gm2/L2)× (4hc2/3SV T ) = κm2/L2.

(2) When for every mass m it holds that E=mc2, and the
de Broglie wavelength λB=h/mv, we have for v= c that
EmλB = C =hc. When further the fine structure constant is
α=2πe2/hc, a precise theoretical value of the Newtonian
G may be derived from iterations on the shown Schwarz-
schild solution for the electron and the very well known
value of α.

This theoretical value of G, which of all physical mag-
nitudes is the most difficult to measure experimentally,
is the universal Newtonian constant G= 6.672426×10−8

cm3/(g×sec2) at the minimum specific energy of the aether
at the defined universal mimimum temperature TAether=
= 2.692064 Kelvin=TCMBR according to the theory of the
aether. At any higher aether temperature TAether >TCMBR, thus
at a proportionally greater local energy density u erg/cm3,
uAether >uCMBR, the Newtonian constant becomes a variable:
ρG>GCMBR by a dimensionless coefficient of proportion-
ality.

According to the aether equation we furthermore find
KEmλC=UL, confirming the derived magnitudes of U
and G with utmost precision; thereby also the predicted
temperature TAether comparable with the experimental value
from measurements of TCMBR.
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The relation K =UL/EmλC=UL/hc may be of in-
terest in particle physics as in wave mechanics, since ac-
cording to Planck the fundamental particles may be regarded
as oscillating electromagnetic energy in standing waves, with
the oscillator parameters L [cm] andC [Farad], in which case
we have for the elementary charged particles of energy Em,
and besides for the electron of energy Ee=mec

2 especially:
Em = hν = mc2 = hc/λB = C = mLCω2; Ee = Em(e) =
= e2/re .

(3) One finds from the small factor 1.001378=rn/rp=mn/mp,

rnmp/rpmn = reme/rpmm = 1 ,

reme = e2me/mec
2 = e2/c2 = rpmm ,

rnmp/reme = rn/r
′
p = rn/(rn − rp) ,

rn − rp = r′p = e2/mpc
2 ,

rememn/mmmprn = 1 ,

[e2/mmmp]×mn/rnc
2 = 1 ,

e2/(mmmp) = ρp,mG ,

e2/G = ρp,mmmmp =M2
JS ,

ρp,mGmn/rn = c2,

that both ρp,mG and the Johnstone-Stoney mass M2
JS can

be derived with extreme precision alone from the found
dimensions rx and masses mx, when at the same time
showing correctly that the meson-mass mm and the proton-
mass mp are both charged with e esu, whereas no electric
charge occurs at the neutron mn. It is such an overwhelming
demonstration of the valid derivation of all the found dim-
ensions, that no doubt seems possible.

The small extension r′p= 1.534×10−16 cm of space the
proton-radius up to the neutron-radius, which in fact would
be the radius r′p of the proton, if calculated strictly like
the radius of the electron according to the Schwarzschild
solution, is the thickness of an outer spherical shell surround-
ing the central proton of the free neutron, is why we may say
that the volume of this spherical shell of extremely narrow
depth r′p is the location of the bound heavy neutron-meson.

Calculation of r′n= 1.532×10−16 cm= e2/mnc
2 retains

the ratio 1.001378= r′p/r
′
n and the exceedingly small dif-

ference r′p− r
′
n= 2.113×10−19 cm< 0.002 pro mille of the

neutron radius rn. If of any relevance at all, it will have to
await the results and precision of future research.

(4) From two protons in a torus of radii rp and re may be
generated the family of Cassini Ovals in planes parallel with
the torus axis. The Lemniscate may be seen in a section cut
in a plane parallel to the axis through a point on the inside
of the torus, i. e. in the distance (re− rp) from the axis.

The mutual distance of the protons in the Lemniscate is
2
√
(re)2− (re− rp)2= 4.488×10−13 cm, or 4.031×rp cm

apart (according to Pythagorean calculation).

In case of a change of radii, re→ rp, or contrary rp→ re,
the torus will degenerate into a non-Riemannian surface with
one singularity in the axis.
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Open Letter by the Editor-in-Chief

Declaration of Academic Freedom
(Scientific Human Rights)

Article 1: Preamble

The beginning of the 21st century reflects more than at any
other time in the history of Mankind, the depth and signifi-
cance of the role of science and technology in human affairs.

The powerfully pervasive nature of modern science and
technology has given rise to a commonplace perception that
further key discoveries can be made principally or solely by
large government or corporation funded research groups with
access to enormously expensive instrumentation and hordes
of support personnel.

The common perception is however, mythical, and belies
the true nature of how scientific discoveries are really made.
Large and expensive technological projects, howsoever com-
plex, are but the result of the application of the profound
scientific insights of small groups of dedicated researchers
or lone scientists, often working in isolation. A scientist
working alone is now and in the future, just as in the past,
able to make a discovery that can substantially influence the
fate of humanity and change the face of the whole planet
upon which we so insignificantly dwell.

Groundbreaking discoveries are generally made by indi-
viduals working in subordinate positions within government
agencies, research and teaching institutions, or commercial
enterprises. Consequently, the researcher is all too often
constrained or suppressed by institution and corporation di-
rectors who, working to a different agenda, seek to control
and apply scientific discovery and research for personal or
organizational profit, or self-aggrandisement.

The historical record of scientific discovery is replete
with instances of suppression and ridicule by establishment,
yet in later years revealed and vindicated by the inexorable
march of practical necessity and intellectual enlightenment.
So too is the record blighted and besmirched by plagiarism
and deliberate misrepresentation, perpetrated by the unscru-
pulous, motivated by envy and cupidity. And so it is today.

The aim of this Declaration is to uphold and further the
fundamental doctrine that scientific research must be free of
the latent and overt repressive influence of bureaucratic, po-
litical, religious and pecuniary directives, and that scientific
creation is a human right no less than other such rights and
forlorn hopes as propounded in international covenants and
international law.

All supporting scientists shall abide by this Declaration,
as an indication of solidarity with the concerned international
scientific community, and to vouchsafe the rights of the
citizenry of the world to unfettered scientific creation ac-

cording to their individual skills and disposition, for the
advancement of science and, to their utmost ability as decent
citizens in an indecent world, the benefit of Mankind. Science
and technology have been far too long the handmaidens of
oppression.

Article 2: Who is a scientist

A scientist is any person who does science. Any person who
collaborates with a scientist in developing and propounding
ideas and data in research or application is also a scientist.
The holding of a formal qualification is not a prerequisite for
a person to be a scientist.

Article 3: Where is science produced

Scientific research can be carried out anywhere at all, for
example, at a place of work, during a formal course of edu-
cation, during a sponsored academic programme, in groups,
or as an individual at home conducting independent inquiry.

Article 4: Freedom of choice of research theme

Many scientists working for higher research degrees or in
other research programmes at academic institutions such as
universities and colleges of advanced study, are prevented
from working upon a research theme of their own choice
by senior academic and/or administrative officials, not for
lack of support facilities but instead because the academic
hierarchy and/or other officials simply do not approve of the
line of inquiry owing to its potential to upset mainstream
dogma, favoured theories, or the funding of other projects
that might be discredited by the proposed research. The
authority of the orthodox majority is quite often evoked to
scuttle a research project so that authority and budgets are not
upset. This commonplace practice is a deliberate obstruction
to free scientific thought, is unscientific in the extreme, and
is criminal. It cannot be tolerated.

A scientist working for any academic institution, author-
ity or agency, is to be completely free as to choice of a
research theme, limited only by the material support and
intellectual skills able to be offered by the educational insti-
tution, agency or authority. If a scientist carries out research
as a member of a collaborative group, the research directors
and team leaders shall be limited to advisory and consulting
roles in relation to choice of a relevant research theme by a
scientist in the group.
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Article 5: Freedom of choice of research methods

It is frequently the case that pressure is brought to bear upon
a scientist by administrative personnel or senior academics
in relation to a research programme conducted within an
academic environment, to force a scientist to adopt research
methods other than those the scientist has chosen, for no
reason other than personal preference, bias, institutional pol-
icy, editorial dictates, or collective authority. This practice,
which is quite widespread, is a deliberate denial of freedom
of thought and cannot be permitted.

A non-commercial or academic scientist has the right to
develop a research theme in any reasonable way and by any
reasonable means he considers to be most effective. The final
decision on how the research will be conducted is to be made
by the scientist alone.

If a non-commercial or academic scientist works as a
member of a collaborative non-commercial or academic team
of scientists the project leaders and research directors shall
have only advisory and consulting rights and shall not other-
wise influence, mitigate or constrain the research methods or
research theme of a scientist within the group.

Article 6: Freedom of participation and collaboration in
research

There is a significant element of institutional rivalry in the
practice of modern science, concomitant with elements of
personal envy and the preservation of reputation at all costs,
irrespective of the scientific realities. This has often led to
scientists being prevented from enlisting the assistance of
competent colleagues located at rival institutions or others
without any academic affiliation. This practice is too a de-
liberate obstruction to scientific progress.

If a non-commercial scientist requires the assistance of
another person and that other person is so agreed, the scientist
is at liberty to invite that person to lend any and all assistance,
provided the assistance is within an associated research
budget. If the assistance is independent of budget consider-
ations the scientist is at liberty to engage the assisting person
at his sole discretion, free of any interference whatsoever by
any other person whomsoever.

Article 7: Freedom of disagreement in scientific discus-
sion

Owing to furtive jealousy and vested interest, modern science
abhors open discussion and wilfully banishes those scientists
who question the orthodox views. Very often, scientists of
outstanding ability, who point out deficiencies in current
theory or interpretation of data, are labelled as crackpots,
so that their views can be conveniently ignored. They are
derided publicly and privately and are systematically barred
from scientific conventions, seminars and colloquia so that
their ideas cannot find an audience. Deliberate falsification

of data and misrepresentation of theory are now frequent
tools of the unscrupulous in the suppression of facts, both
technical and historical. International committees of scientific
miscreants have been formed and these committees host and
direct international conventions at which only their acolytes
are permitted to present papers, irrespective of the quality of
the content. These committees extract large sums of money
from the public purse to fund their sponsored projects, by
resort to deception and lie. Any objection to their proposals
on scientific grounds is silenced by any means at their dis-
posal, so that money can continue to flow into their project
accounts, and guarantee them well-paid jobs. Opposing sci-
entists have been sacked at their behest; others have been
prevented from securing academic appointments by a net-
work of corrupt accomplices. In other situations some have
been expelled from candidature in higher degree programmes
such as the PhD, for expressing ideas that undermine a fash-
ionable theory, however longstanding that orthodox theory
might be. The fundamental fact that no scientific theory is
definite and inviolable, and is therefore open to discussion
and re-examination, they thoroughly ignore. So too do they
ignore the fact that a phenomenon may have a number of
plausible explanations, and maliciously discredit any explan-
ation that does not accord with orthodox opinion, resorting
without demur to the use of unscientific arguments to justify
their biased opinions.

All scientists shall be free to discuss their research and the
research of others without fear of public or private materially
groundless ridicule, or be accused, disparaged, impugned
or otherwise discredited by unsubstantiated allegations. No
scientist shall be put in a position by which livelihood or
reputation will be at risk owing to expression of a scientific
opinion. Freedom of scientific expression shall be paramount.
The use of authority in rebuttal of a scientific argument is not
scientific and shall not be used to gag, suppress, intimidate,
ostracise, or otherwise coerce or bar a scientist. Deliberate
suppression of scientific facts or arguments either by act or
omission, and the deliberate doctoring of data to support an
argument or to discredit an opposing view is scientific fraud,
amounting to a scientific crime. Principles of evidence shall
guide all scientific discussion, be that evidence physical or
theoretical or a combination thereof.

Article 8: Freedom to publish scientific results

A deplorable censorship of scientific papers has now become
the standard practice of the editorial boards of major journals
and electronic archives, and their bands of alleged expert
referees. The referees are for the most part protected by
anonymity so that an author cannot verify their alleged ex-
pertise. Papers are now routinely rejected if the author dis-
agrees with or contradicts preferred theory and the main-
stream orthodoxy. Many papers are now rejected automat-
ically by virtue of the appearance in the author list of a
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particular scientist who has not found favour with the editors,
the referees, or other expert censors, without any regard
whatsoever for the contents of the paper. There is a black-
listing of dissenting scientists and this list is communicated
between participating editorial boards. This all amounts to
gross bias and a culpable suppression of free thinking, and are
to be condemned by the international scientific community.

All scientists shall have the right to present their scientific
research results, in whole or in part, at relevant scientific
conferences, and to publish the same in printed scientific
journals, electronic archives, and any other media. No scien-
tist shall have their papers or reports rejected when submitted
for publication in scientific journals, electronic archives, or
other media, simply because their work questions current
majority opinion, conflicts with the views of an editorial
board, undermines the bases of other current or planned
research projects by other scientists, is in conflict with any
political dogma or religious creed, or the personal opinion
of another, and no scientist shall be blacklisted or otherwise
censured and prevented from publication by any other person
whomsoever. No scientist shall block, modify, or otherwise
interfere with the publication of a scientist’s work in the
promise of any presents or other bribes whatsoever.

Article 9: Co-authoring of scientific papers

It is a poorly kept secret in scientific circles that many co-
authors of research papers actually have little or nothing
to do with the research reported therein. Many supervisors
of graduate students, for instance, are not averse to putting
their names to papers written by those persons who are
but nominally working under their supervision. In many
such cases, the person who actually writes the paper has
an intellect superior to the nominal supervisor. In other situ-
ations, again for the purposes of notoriety, reputation, money,
prestige, and the like, non-participating persons are included
in a paper as co-author. The actual authors of such papers
can only object at risk of being subsequently penalised in
some way, or even being expelled from candidature for their
higher research degree or from the research team, as the
case may be. Many have actually been expelled under such
circumstances. This appalling practice cannot be tolerated.
Only those persons responsible for the research should be
accredited authorship.

No scientist shall invite another person to be included
and no scientist shall allow their name to be included as a
co-author of a scientific paper if they did not significantly
contribute to the research reported in the paper. No scientist
shall allow himself or herself to be coerced by any repre-
sentative of an academic institution, corporation, government
agency, or any other person, to include their name as a co-
author concerning research they did not significantly contri-
bute to, and no scientist shall allow their name to be used
as co-author in exchange for any presents or other bribes.

No person shall induce or attempt to induce a scientist in
howsoever a way to allow that scientist’s name to be included
as a co-author of a scientific paper concerning matters to
which they did not significantly contribute.

Article 10: Independence of affiliation

Many scientists are now employed under short-term con-
tracts. With the termination of the employment contract,
so too is the academic affiliation. It is often the policy
of editorial boards that persons without an academic or
commercial affiliation will not be published. In the absence
of affiliation many resources are not available to the scientist,
and opportunities to present talks and papers at conferences
are reduced. This is a vicious practice that must be stopped.
Science does not recognise affiliation.

No scientist shall be prevented from presenting papers
at conferences, colloquia or seminars, from publication in
any media, from access to academic libraries or scientific
publications, from attending scientific meetings, or from
giving lectures, for want of an affiliation with an academic
institution, scientific institute, government or commercial
laboratory, or any other organisation.

Article 11: Open access to scientific information

Most specialised books on scientific matters and many sci-
entific journals render little or no profit so that commercial
publishers are unwilling to publish them without a contri-
bution of money from academic institutions, government
agencies, philanthropic foundations, and the like. Under such
circumstances commercial publishers should allow free
access to electronic versions of the publications, and strive
to keep the cost of the printed materials to a minimum.

All scientists shall strive to ensure that their research
papers are available to the international scientific community
free of charge, or in the alternative, if it cannot be avoided, at
minimum cost. All scientists should take active measures to
make their technical books available at the lowest possible
cost so that scientific information can be available to the
wider international scientific community.

Article 12: Ethical responsibility of scientists

History testifies that scientific discoveries are used for ends
both good and evil, for the benefit of some and the destruction
of others. Since the progress of science and technology
cannot stop, some means for the containment of malevolent
application should be established. Only a democratically
elected government, free of religious, racial and other bias,
can safeguard civilisation. Only democratically elected gov-
ernment, tribunals and committees can safeguard the right of
free scientific creation. Today, various undemocratic states
and totalitarian regimes conduct active research into nuclear
physics, chemistry, virology, genetic engineering, etc in order
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to produce nuclear, chemical and biological weapons. No
scientist should willingly collaborate with undemocratic
states or totalitarian regimes. Any scientist coerced into work
on the development of weapons for such states should find
ways and means to slow the progress of research programmes
and to reduce scientific output so that civilisation and demo-
cracy can ultimately prevail.

All scientists bear a moral responsibility for their scien-
tific creations and discoveries. No scientist shall willingly
engage in the design or construction of weapons of any sort
whatsoever for undemocratic states or totalitarian regimes
or allow his or her scientific skills and knowledge to be
applied to the development of anything whatsoever injurious
to Mankind. A scientist shall live by the dictum that all
undemocratic government and the violation of human rights
is crime.

November 22, 2005 Dmitri Rabounski
Editor-in-Chief,

Progress in Physics
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Correct Linearization of Einstein’s Equations

Dmitri Rabounski
E-mail: rabounski@yahoo.com

Routinely, Einstein’s equations are be reduced to a wave form (linearly independent of
the second derivatives of the space metric) in the absence of gravitation, the space rota-
tion and Christoffel’s symbols. As shown herein, the origin of the problem is the use of
the general covariant theory of measurement. Herein the wave form of Einstein’s equa-
tions is obtained in terms of Zelmanov’s chronometric invariants (physically observable
projections on the observer’s time line and spatial section). The equations so obtained
depend solely upon the second derivatives, even for gravitation, the space rotation and
Christoffel’s symbols. The correct linearization proves that the Einstein equations are
completely compatible with weak waves of the metric.

1 Introduction

Gravitational waves are routinely considered as weak waves
of the space metric, whereby, one takes a Galilean metric
g(0)
�� , whose components are g(0)

00 = 1, g(0)
0i = 0, g(0)

ik =��ik,
and says: because gravitating matter is connected to the field
of the metric tensor g�� by Einstein’s equations�

R�� � 1
2
g��R = ��T�� + �g�� ; � = const> 0 ;

gravitational waves are weak perturbations ��� of the Gali-
lean metric. Thus the common metric, consisting of the ini-
tially undeformed and wave parts, is g�� = g(0)

�� + ��� .
According to the theory of partial differential equations,

a wave of a field is a Hadamard break [1] in the derivatives
of the field function along the hypersurface of the field equa-
tions (the wave front). The first derivative of a function at a
point determines a direction tangential to it, while the second
derivative determines a normal direction. Thus, if a surface in
a tensor field is the front of the field wave, the second deriva-
tives of this tensor have breaks there. It is possible to prove
in relation to this case in a Riemannian space with the metric
g�� , that d’Alembert’s operator = g��r�r� of this field
equals zeroy. For instance, the wave field of a tensor Q�� is
characterized by the d’Alembert equations Q�� = 0.

We can apply the d’Alembert operator to any tensor field
and equate it to be zero. For this reason any claims that waves
of the space metric cannot exist are wrong, even from the
purely mathematical viewpoint, independently of those de-
ductions that the authors of those claims adduced.

So, the front of weak wave perturbations ��� of a Galilean
metric g(0)

�� is determined by breaks in their second deriva-
tives, while the wave field ��� itself is characterized by the
d’Alembert equations

��� = 0 :

�We write the Einstein equations in the main form containing the �-term,
because our consideration is outside a discussion of the �-term.
yNote that the d’Alembert operator consists of the second derivatives.

If the left side of the Einstein equations for the common
metric g�� = g(0)

�� + ��� reduced to ��� ,z the equations
could be reduced to the form

a ��� = ��T�� + �g�� ; where a = const ;

which, in the absence of matter, become the wave equations
��� =0, meaning that the perturbations ��� are waves.

As one calculates the left side of the Einstein equations
for the common metric, he obtains a large number of terms
where only one is ��� with a numerical coefficient. Thus
one concludes: the Einstein equations are non-linear with re-
spect to the second derivatives of ��� .

In order to prove gravitational waves, theory should lead
to cancellation of all the non-linear terms, as argued by Ed-
dington [2], and Landau and Lifshitz [3]. This process is so-
called the linearization of the Einstein equations.

2 Problems with the linearization

There is much literature about why the non-linear terms can
be cancelled (see Lichnerowicz [4] or Zakharov [5] for de-
tails). All the reasons depend upon one initial factor: the
theory of measurements we use.

We know two theories of measurements in General Rela-
tivity: Einstein’s theory of measurements and Zelmanov’s
theory of physically observable quantities. The first one was
built by Einstein in the 1910’s. Following himx, we consider
the space-time volume of nearby events in order to find a par-
ticular reference frame satisfying the properties of our real
laboratory. We then express our general covariant equations
in terms of the chosen reference frame. Some terms drop
out, because of the properties of the chosen reference frame.
Briefly, as one calculates the Ricci tensor R�� = g��R����
by the contraction of the Riemann-Christoffel tensor

zActually, this problem is to reduce the Ricci tensor for the common
metric g�� = g(0)

�� + ��� to ��� .
xEinstein gave his theory of measurements partially in many papers. You

can see the complete theory in Synge’s book [6], for instance.
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R���� = ����� ���;� + ���� ���;� +

+
1
2

�
@2g��
@x�@x�

+
@2g��
@x�@x�

� @2g��
@x�@x�

� @2g��
@x�@x�

�
for g�� = g(0)

�� + ��� (see §105 in [3]), he can reduce it to

R�� =
1
2
g(0)�� @2���

@x�@x�
=

1
2

���

and the left side of the Einstein equations to ��� , only if:

1. The reference frame is free of forces of gravity;
2. The reference frame is free of rotation;
3. Christoffel’s symbols ���� , containing the inhomogene-

ity of space, are all zero.

Of course, we can find a reference frame where the gravi-
tational potential, the space rotation, and the Christoffel sym-
bols are zero at a given point�. However they cannot be redu-
ced to zero in an area. Moreover, a gravitational wave detec-
tor consists of two bodies located far away from each other.
In a Weber solid-body detector the distance is several metres,
while in a laser interferometer the distance can take even mil-
lions of kilometres, as LISA in a solar orbit. It is wrong to
interpret any of those as points. So, gravitational forces, the
space rotation or the Christoffel symbols cannot be obviated
in the equations. This is the main reason why:

By the methods of Einstein’s theory of measurements,
the Einstein equations cannot be mathematically cor-
rectly linearized with respect to the second derivatives
of the weak perturbations ��� of the space metric.

Some understand this incompatibility to mean that Gener-
al Relativity does not permit weak waves of the metric.

This is absolutely wrong, even from the purely mathem-
atical viewpoint: the d’Alembert operator = g��r�r�
may be applied to any tensor field, the field of the weak per-
turbations ��� of the metric included, and equated to zero.

This obvious incompatibility can arise for one or both of
the following reasons:

1. Einstein’s equations in their current form are insuffi-
cient to describe our real world;

2. Einstein’s theory of measurements is inadequate for the
four-dimensional pseudo-Riemannian space.

Einstein’s equations were born of his intuition, only the
left side thereof is derived from the geometry. However main
experimental tests of General Relativity, proceeding from the
equations, verify the theory. So, the equations are adequate
for describing our real world to within a first approximation.

At the same time, Einstein’s theory of measurements has
many deficiencies. There are no clear methods for recogni-
tion of physically observable components of a tensor field. It
set up so that the three-dimensional components of a world-
vector field compose its spatially observable part, while the
�See §7 Special Reference Frames in Petrov’s book [7].

time component is its scalar potential. However this problem
becomes confused for a tensor of higher rank, because it has
time, spatial, and mixed (space-time) components. There are
also other drawbacks (see [8], for instance).

The required mathematical methods have been found by
Zelmanov, who, in 1944, fused them into a complete theory
of physically observable quantities [9, 10, 11].

3 The theory of physically observable quantities

According to Zelmanov, each observer has his own spatial
section, set up by a coordinate net spanned over his real ref-
erence rest-body and extended far away with its gravitational
field. The net is replete with a system of synchronized clocksy.
Physically observed by him are projections of world-quan-
tities onto his time line and spatial section, made by the pro-
jection operators b�= dx�

ds and h��=�g��+b�b� . Chr.inv.-

projections of a world-vector Q� are b�Q� = Q0p
g00

and

hi�Q� =Qi, while those of a 2nd rank world-tensor Q��

are b�b�Q�� = Q00
g00

, hi�b�Q�� = Qi0p
g00

, hi�hk�Q�� =Qik.

Physically observable properties of the space are determined
by the non-commutativity of the chr.inv.-operators

�@
@t =

= 1p
g00

@
@t and

�@
@xi = @

@xi + 1
c2 vi

�@
@t , and the fact that the

chr.inv.-metric tensor hik =�gik + 1
c2 vivk may not be sta-

tionary. They are the chr.inv.-quantities: the gravitational in-
ertial force Fi, the space rotation tensor Aik, and the space
deformational rates Dik

Fi=
1pg00

�
@w
@xi
� @vi
@t

�
;

p
g00 = 1� w

c2
;

Aik=
1
2

�
@vk
@xi
� @vi
@xk

�
+

1
2c2

(Fivk�Fkvi) ; vi=� cg0ipg00
;

Dik=
1
2

�@hik
@t

; Dik=�1
2

�@hik
@t

; D=Dk
k=

�@ ln
p
h

@t
;

where w is gravitational potential, vi is the linear velocity
of the space rotation, h= det khikk, and

p�g=
p
h
p
g00 .

The chr.inv.-Christoffel symbols �i
jk =him�jk;m are built

like the usual ���� = g�����;� , using hik instead of g�� .
By analogy with the Riemann-Christoffel curvature ten-

sor, Zelmanov derived the chr.inv.-curvature tensorz

Clkij =
1
4

(Hlkij �Hjkil +Hklji �Hiljk) ;

from which the contraction Ckj=C ���ikij�=himCkimj gives the
chr.inv.-scalar observable curvature C =Cjj =hljClj .

yProjections onto such a spatial section are independent of trans-
formations of the time coordinate — they are chronometric invariants.

zHere H :::j
lki�=

�@�j
il

@xk
� �@�j

kl
@xi

+ �m
il �j

km��m
kl�

j
im.
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4 Correct linearization of Einstein’s equations

We now show that Einstein’s equations expressed with phys-
ically observable quantities may be linearized without prob-
lems; proof that waves of weak perturbations of the space
metric are fully compatible with the Einstein equations.

Zelmanov already deduced [9] the Einstein equations in
chr.inv.-components (the chr.inv.-Einstein equations) in the
absence of matter: —

�@D
@t

+DjlDjl + AjlAlj +
�
�rj � 1

c2
Fj
�
F j = 0 ;

�rj �hijD �Dij � Aij�+
2
c2
FjAij = 0 ;

�@Dik
@t
� (Dij+Aij)

�
Dj
k+A�jk�

�
+DDik+ 3AijA

�j
k�+

+
1
2

(�riFk + �rkFi)� 1
c2
FiFk � c2Cik = 0 ;

where Zelmanov’s �rk denotes the chr.inv.-derivative�.
The components of the metric g�� = g(0)

�� + ��� , consist-
ing of a Galilean metric and its weak perturbations, arey

g00 = 1 + �00 ; g0i = �0i ; gik = ��ik + �ik ;
g00 = 1� �00; g0i = ��0i; gik = ��ik � �ik;
hik = �ik � �ik; hik = �ik ; hik = �ik+ �ik:

Because ��� are weak, the products of their components
or derivatives vanish. In such a case,

Fi =
c

1 + �00

�
@�0i
@t
� c

2
@�00

@xi

�
;

Aik =
cp

1 + �00

�
@�0i
@xk

� @�0k
@xi

�
;

Dik = � 1
2
p

1 + �00

@�ik
@t

; D = hikDik = �ikDik ;

Cimnk =
@2�mk
@xi@xn

+
@2�in
@xm@xk

� @2�mn
@xi@xk

� @2�ik
@xm@xn

:

After some algebra, we obtain the chr.inv.-Einstein equa-
tions for the metric g�� = g(0)

�� + ��� :

1
c2 (1 + �00)

@2�
@t2

+
�km

(1 + �00)

�
@2�00

@xk@xm
� 2
c
@2�0m
@xk@t

�
= 0 ;

�So �rkQi =
�@Qi
@xk

+ �i
mkQ

m and �rkQi =
�@Qi
@xk

��m
ikQm are

the chr.inv.-derivatives of a chr.inv.-vector Qi.
yThe contravariant tensor g�� , determined by the main property

g��g�� = ��� of the fundamental metric tensor as (g(0)
��+ ���)g�� = ���,

is g�� = g(0)�� � ��� , while its determinant is g= g(0)(1+ �). This is
easy to check, taking into account that, because the values of the weak cor-
rections ��� are infinitesimal, their products vanish; while we may move
indices in ��� by the Galilean metric tensor g(0)

�� .

�ij

c2
p

1 + �00

@2�
@xj@t
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+
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� @2�ik
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�
= 0 :

Note that the obtained equations are functions of only the
second derivatives of the weak perturbations of the space met-
ric. So, the Einstein equations have been linearized, even in
the presence of gravitational inertial forces and the space ro-
tation. This implies: —

By the methods of Zelmanov’s mathematical theory of
chronometric invariants (physically observable quan-
tities), the Einstein equations are linearized in a
mathematically correct way, i. e. without the assum-
ption of a specific reference frame where there are no
gravitational forces or the space rotation.

This is the mathematical proof to the statement: —
Waves of the weak perturbations of the space metric
are fully compatible with the Einstein equations.
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The theoretical foundation of LIGO’s design is based on the equation of motion derived
by Thorne. His formula, motivated by Einstein’s theory of measurement, shows that
the gravitational wave-induced displacement of a mass with respect to an object is
proportional to the distance from the object. On the other hand, based on the observed
bending of light and Einstein’s equivalence principle, it is concluded that such induced
displacement has nothing to do with the distance from another object. It is shown that
the derivation of Thorne’s formula has invalid assumptions that make it inapplicable
to LIGO. This is a good counter example for those who claimed that Einstein’s
equivalence principle is not important or even irrelevant.

1 Introduction

Since the behavior of binary pulsars has been interpreted
successfully as due to gravitational radiation [1, 2], the exist-
ence of gravitational waves is generally accepted. Moreover,
the Maxwell Newton Approximation,(1) which generates
gravitational waves, has been established independent of the
Einstein equation [3]. However, a direct observation of the
gravitational waves has not been successful because a grav-
itational wave is very weak in nature [4].

To obtain the required sensitivity of detection for gravita-
tional waves, two gigantic laser interferometer gravitational
wave observatories (LIGO) have been built.(2) Currently
they represent the hope of detecting the gravitational waves
directly. The confidence on these new apparatus is based on
the perceived high sensitivity [5] that is designed according
to Thorne’s equation, which is motivated on Einstein’s theory
of measurement [6, 7].

Thorne’s [8] equation of motion is as follows [9]:

m
d2δxj

dt2
=
1

2
m
∂2hTT

jk

∂t2
xk, (1)

where δxk is the displacement of the test particle with mass
m from a fixed object, xk is the Euclidean-like distance
(or the particle’s Cartesian coordinate position) of the test
particle from the fixed object (at the original the space
coordinates), and hTT

jk is the first order of the dimensionless
“gravitational wave field” that induces the displacement.
Then the integration of equation (1) gives,

δxj =
1

2
hTT
jkx

k. (2)

The superscript TT on the gravitational field is to remind
us that the field is “transverse and traceless”.

On the other hand, according to Einstein’s equivalence
principle [10], the Euclidean-like structure [11, 12] that de-
termines the distance between two points is independent

of gravity, and this is supported the observed bending of
light. Thus, the displacement from a fixed object induced
by gravitational wave, according the geodesic equation, has
nothing to do with the distance between them (see Section 2).
In this paper, it will be shown the errors related to eqs. (1)
and (2).

2 Problems in the theory of Thorne

Now let us first derive, according the theory of Thorne
[8], the induced phase delay in the interferometer. Since
the sources of the gravitational waves are very far away,
the waves look very nearly planar as they pass through the
observer’s proper reference frame.(3) If we orient the x, y,
z spatial axes, so the propagation in the z direction, then
the transversality of the waves and traceless mean that the
non-zero components of the wave field are hTT

xx = −hTT
yy ,

hTT
xy = hTT

yx , called respectively the + and ×-polarization.
For a (+)-polarization, if the arm length of the interferometer
is L, we have

δx(t) =
1

2
Lh+(t) for mass on x axis,

δy(t) = −
1

2
Lh+(t) for mass on y axis.

(3)

For a light wavelength λ, if B is the number of bounce
back and forth in the arms, the total phase delay is

4φT = 8πB
δx

λ
= 4πB

L

λ
h+ . (4)

Thus, the sensitivity of the interferometer would be in-
creased with longer arms. If Einstein’s theory of measure-
ment was valid, then eq. (3) would be an expected result.
This explains that eq. (1) was accepted. To show the errors,
some detailed analysis is needed.
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In a Local frame of free fall, Manasse and Misner [12]
claimed that the metric have approximately,

−ds2=(1+R0l0mx
lxm)dt2+

(
4

3
R0ljmx

lxm
)

dxjdt−

−

(

δij−
1

3
Riljmx

lxm
)

dxidxj−O(|xj |3)dxαdxβ
(5)

accurate to the second order in small |xj |. The observer in
the free fall is located at the origin of the local frame. Eq.
(5) is the equation (13.73) in Misner et al. [9]. In the next
step (35.12), they claimed to have the equation,

D2nj

dτ 2
= −Rj0k0n

k = −Rj0k0n
k,

where nj = xjB − x
j
A = xjB

(6)

since xjA=0. In eq. (5), |xj | is restricted to be small. How-
ever, a problem in this derivation is that Rj0k0 may not be
the same at points A and B. Nevertheless, one may argue
that Γμαβ =0 at A, and (6) is reduced to

d2x
j
B

dτ 2
= −Rj0k0 x

k
B =

1

2

∂hTT
jk

∂τ 2
xkB . (7)

If it is applied to the case of LIGO, one must show at
least a miles long xjB could be regarded as very small as (5)
requires. From the geodesic equation, clearly it is impossible
to justify (7) for any frame of reference.

More important, since LIGO is built on the Earth, its
frame of reference is not at free fall when gravitational waves
are considered. The radius of the Earth is 6.3×103 km, but
the expected gravitational wave length is only about 15 km
[9]. Thus, the Earth can no longer be considered as a test
particle when only the gravity of the Sun is considered. In
other words, (5) and (7) are inapplicable to LIGO.

Note that Misner et al. [9] have mistaken Pauli’s ver-
sion(4) as Einstein’s equivalence principle [10], it is natural
that they made related mistakes. For instance, Thorne [15]
incorrectly criticized Einstein’s equivalence principle as
follows:

“In deducing his principle of equivalence, Einstein
ignored tidal gravitation forces; he pretended they do not
exist. Einstein justified ignoring tidal forces by imagining
that you (and your reference frame) are very small.”

However, Einstein has already explained these problems.
For instance, the problem of tidal forces was answered in
Einstein’s letter of 12 July 1953 to Rehtz [16] as follows:

“The equivalence principle does not assert that every
gravitational field (e. g., the one associated with the Earth)
can be produced by acceleration of the coordinate system.
It only asserts that the qualities of physical space, as they
present themselves from an accelerated coordinate system,
represent a special case of the gravitational field.”

Clearly, his principle is for a space where physical requi-
rements are sufficiently satisfied.

In fact, Misner et al. [9] do not understand Einstein’s
equivalence principle and related theorems in Riemannian
space [14, 17]. A simple and clear evidence is in their
eq. (40.14) [9; p. 1107], and they got a physically incorrect
conclusion on the local time of the Earth in the solar system.
Moreover, Ohanian and Ruffini [5; p. 198] also ignored the
Einstein-Minkowski condition and had the same problems as
shown in their eq. (50). However, Liu [18], Straumann [19],
Wald [20], and Weinberg [4] did not make the same mistake.
Note that Ohanian, Ruffini, and Wheeler have proclaimed
that they are non-believers of Einstein’s principles [5].

3 Remarks

In the theory of Thorne, there are major errors because his
understanding of Einstein’s equivalence principle is inad-
equate. His equation was motivated by Einstein’s theory of
measurement, and the superficial consistency with such a
theory makes many theorists had confidence on his equation.
Now, it is clear that such a support from an invalid theory
is proven to be useless. Because Misner et al. [9] do not
understand Einstein’s equivalence principle, they cannot
see that Einstein’s theory of measurement is not self-
consistent [21, 22].

In addition, since LIGO is built on the Earth, the frame
is not at free fall. The radius of the Earth is 6.3×103 km, but
the expected gravitational wave length is only about 15 km
[9]. Thus, the Earth cannot be regarded as a test particle for
gravitational waves. Moreover, Thorne was not aware that
the Einstein equation has no wave solution [1, 2]. Although
Misner, Thorne, and Wheeler [9] claimed plane wave solu-
tions exist, their derivation has been found to be invalid [2,
23]. The second problem has been resolved by a modified
Einstein equation, and it has the Maxwell-Newton Approxi-
mation as the first order equation [1].

In short, the current theory on the detection of grav-
itational waves for LIGO is incorrect. The root of these
problems is due to that they do not understand Einstein’s
equivalence principle.(5) Consequently, they also failed to
see the Euclidean-like structure is necessary(6) in a physical
space [12]. This is a very good counter example for those who
believed the Einstein’s equivalence principle is not important
or even irrelevant [2]. The sensitivity of LIGO will be ad-
dressed in a separate paper [24].
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Endnotes

(1) The Maxwell-Newton Approximation, whose sources are
massive matter, could be identified as a special case of the
so-called linearized approximation that has been found to
be incompatible with Einstein equation for a dynamic situa-
tion [1].

(2) M. Bartusiak [25] has written an interesting book on the
great efforts to build LIGO.

(3) Einstein equation has no physically valid wave solution be-
cause there is no term in Einstein’s equation to accommodate
the energy-stress tensor of a gravitational wave that must
move with the wave [23]. Thus, a wave solution must come
from the modified equation of 1995.

(4) Pauli’s [26] version of the principle of equivalence was
commonly but mistakenly regarded as Einstein’s principle,
although Einstein strongly objected to this version as a mis-
interpretation [15]. In fact, Misner, Thorne, and Wheeler [9;
p. 386] falsely claimed that Einstein’s equivalence principle
is as follows:
“In any and every local Lorentz frame, anywhere and any-
time in the universe, all the (Nongravitational) laws of phys-
ics must take on their familiar special-relativistic form.
Equivalently, there is no way, by experiments confined to
infinitestimally small regions of spacetime, to distinguish one
local Lorentz frame in one region of spacetime frame any
other local Lorentz frame in the same or any other region.”
However, this is only an alternative version of Pauli’s be-
cause the Einstein-Minkowski condition,(7) which requires
that the local space in a free fall must have a local Lorentz
frame, is missing.

(5) There are other surprises. In spite of Einstein’s clarification,
many theorists, including the editors of Nature, Physical
Review, and Science, still do not fully understand special
relativity, in particular E = mc2 [27–30].

(6) An existence of the Euclidean-like structure (that Einstein [6]
called as “in the sense of Euclidean geometry”) is necessary
for a physical space [11, 12]. The Euclidean-like structure
is operationally defined in terms of spatial measurements
essentially the same as Einstein defined the frame of refer-
ence for special relativity [31]. Since the attached measuring
instruments and the coordinates being measured are under
the influence of the same gravity, a Euclidean-like structure
emerges from such measurements as if gravity did not exist.

(7) For the Einstein-Minkowski condition, Einstein [10] address-
ed only the metrics without a crossing space-time element.
This creates a false impression that the Einstein-Minkowski
condition is trivial.
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17. Synge J. L. Relativity: The General Theory. North-Holland,
Amsterdam, 1971.

18. Liu Liao. General Relativity. High Education Press, Shanghai,
China), 1987, p. 42.

19. Straumann N. General Relativity and relativistic astrophysics.
Springer, New York, 1984.

20. Wald R. M. General Relativity. The Univ.of Chicago Press,
Chicago, 1984.

21. Lo C. Y. Phys. Essays, 2005, v. 18(4).

22. Lo C. Y. Progress in Physics, 2006, v. 1, 10.

23. Lo C. Y. Phys. Essays, 1997, v. 10(3), 424.

24. Lo C. Y. The detection of gravitational wave with the laser
interferometer and Einstein’s theoretical errors on measure-
ments. In preparation.

25. Bartusiak M. Einstein’s unfinished symphony. Berkley Books,
New York, 2000.

26. Pauli W. Theory of Relativity. Pergamon Press, London, 1958,
p. 163.

27. Lo C. Y. Astrophys. J., 1997, 477, 700–704.

28. Lo C. Y. Phys. Essays, 1997, v. 10 (4), 540–545.

29. Lo C. Y. Remarks on interpretations of the Eötvös experiment
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A theory of 3-space explains the phenomenon of gravity as arising from the time-
dependence and inhomogeneity of the differential flow of this 3-space. The emergent
theory of gravity has two gravitational constants: GN — Newton’s constant, and a
dimensionless constant α. Various experiments and astronomical observations have
shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice
Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision
this value of α. This and other successful tests of this theory of gravity, including the
supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect
in spiral galaxies, shows the validity of this theory of gravity. This success implies that
the non-relativistic Newtonian gravity was fundamentally flawed from the beginning,
and that this flaw was inherited by the relativistic General Relativity theory of gravity.

1 Introduction

In the Newtonian theory of gravity [1] the Newtonian gravi-
tational constant GN determining the strength of this pheno-
menon is difficult to measure because of the extreme weak-
ness of gravity. Originally determined in laboratory experi-
ments by Cavendish [2] in 1798 using a torsion balance, Airy
[3] in 1865 presented a different method which compared
the gravity gradients above and below the surface of the
Earth. Then if the matter density within the neighbourhood
of the measurements is sufficiently uniform, or at most is
horizontally layered and known, then such measurements
then permitted GN to be determined, as discussed below, if
Newtonian gravity was indeed correct. Then the mass of the
Earth can be computed from the value of g at the Earth’s
surface. However two anomalies have emerged for these two
methods: (i) the Airy method has given gravity gradients
that are inconsistent with Newtonian gravity, and (ii) the
laboratory measurements of GN using various geometries for
the test masses have not converged despite ever increasing
experimental sophistication and precision. There are other
anomalies involving gravity such as the so-called “dark-
matter” effect in spiral galaxies, the systematic effects related
to the supermassive blackholes in globular clusters and ellipt-
ical galaxies, the Pioneer 10/11 deceleration anomaly, the so-
called galactic ‘dark-matter’ networks, and others, all suggest
that the phenomenon of gravity has not been understood
even in the non-relativistic regime, and that a significant
dynamical process has been overlooked in the Newtonian
theory of gravity, and which is also missing from General
Relativity.

The discovery of this missing dynamical process arose
from experimental evidence [4, 8, 9] that a complex dyn-
amical 3-space underlies reality. The evidence involves the

repeated detection of the motion of the Earth relative to that
3-space using Michelson interferometers operating in gas
mode [8], particularly the experiment by Miller in 1925/26
at Mt. Wilson, and the coaxial cable RF travel time measure-
ments by Torr and Kolen in Utah in 1985, and the DeWitte
experiment in 1991 in Brussels [8]. In all 7 such experiments
are consistent with respect to speed and direction. It has been
shown that effects caused by motion relative to this 3-space
can mimic the formalism of spacetime, but that it is the 3-spa-
ce that is “real”, simply because it is directly observable [4].

The 3-space is in differential motion, that is one part
has a velocity relative to other parts, and so involves a
velocity field v (r, t) description. To be specific this velocity
field must be described relative to a frame of observers, but
the formalism is such that the dynamical equations for this
velocity field must transform covariantly under a change of
observer. It has been shown [4, 6] that the phenomenon of
gravity is a consequence of the time-dependence and inhomo-
geneities of v (r, t). So the dynamical equations for v (r, t)
give rise to a new theory of gravity when combined with
the generalised Schrödinger equation, and the generalised
Maxwell and Dirac equations [10]. The equations for v (r, t)
involve the gravitational constant∗ G and a dimensionless
constant that determines the strength of a new 3-space self-
interaction effect, which is missing from both Newtonian
Gravity and General Relativity. Experimental data has re-
vealed [4, 5, 6] the remarkable discovery that this constant is
the fine structure constant α≈ e2/~c≈ 1/137. This dynamics
then explains numerous gravitational anomalies, such as the
borehole g anomaly, the so-called “dark matter” anomaly in
the rotation speeds of spiral galaxies, and that the effective

∗This is different from the Newtonian effective gravitational constant
GN defined later.
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mass of the necessary black holes at the centre of spherical
matter systems, such as globular clusters and spherical gal-
axies, is α/2 times the total mass of these systems. This pre-
diction has been confirmed by astronomical observations [7].

Here we analyse the Greenland and Nevada Test Site
borehole g anomalies, and confirm with increased precision
this value of α.

The occurrence of α suggests that space is itself a quan-
tum system undergoing on-going classicalisation. Just such
a proposal has arisen in Process Physics [4] which is an
information-theoretic modelling of reality. There quantum
space and matter arise in terms of the Quantum Homotopic
Field Theory (QHFT) which, in turn, may be related to the
standard model of matter. In the QHFT space at this quantum
level is best described as a “quantum foam”. So we interpret
the observed fractal∗ 3-space as a classical approximation to
this “quantum foam” [10].

2 Dynamical 3-space

Relative to some observer 3-space is described by a velocity
field v (r, t). It is important to note that the coordinate r is
not itself 3-space, rather it is merely a label for an element
of 3-space that has velocity v, relative to some observer.
Also it is important to appreciate that this “moving” 3-space
is not itself embedded in a “space”; the 3-space is all there
is, although as noted above its deeper structure is that of a
“quantum foam”.

In the case of zero vorticity ∇×v=0 the 3-space dyn-
amics is given by [4, 6], in the non-relativistic limit,

∇∙

(
∂v

∂t
+(v ∙∇)v

)

+
α

8

(
(trD)2−tr(D2)

)
=−4πGρ, (1)

where ρ is the matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

The acceleration of an element of space is given by the
Euler form

g(r, t) ≡ lim
Δt→0

v
(
r+v (r, t)Δt, t+Δt

)
−v (r, t)

Δt
=

=
∂v

∂t
+ (v ∙ ∇)v .

(3)

It was shown in [10] that matter has the same acceleration†

as (3), which gave a derivation of the equivalence principle as
a quantum effect in the Schrödinger equation when uniquely
generalised to include the interaction of the quantum system
with the 3-space. These forms are mandated by Galilean
covariance under change of observer‡. This minimalist non-
relativistic modelling of the dynamics for the velocity field

∗The fractal property of 3-space was found [10] from the DeWitte data.
†Except for the acceleration component induced by vorticity.
‡However this does not exclude so-called relativistic effects, such as the

length contraction of moving rods or the time dilations of moving clocks.
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Fig. 1: Upper plot shows speeds from numerical iterative solution
of (7) for a solid sphere with uniform density and radius r= 0.5
for (i) upper curve the case α=0 corresponding to Newtonian
gravity, and (ii) lower curve with α= 1/137. These solutions only
differ significantly near r=0. Middle plot shows matter density
and “dark matter” density ρDM , from (5), with arbitrary scales.
Lower plot shows the acceleration from (3) for (i) the Newtonian
in-flow from the upper plot, and (ii) from the α= 1/137 case. The
difference is only significant near r = 0. The accelerations begin
to differ just inside the surface of the sphere at r= 0.5, according
to (15). This difference is the origin of the borehole g anomaly, and
permits the determination of the value of α from observational data.
This generic singular-g behaviour, at r=0, is seen in the Earth, in
globular clusters and in galaxies.
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Fig. 2: The data shows Log10[MBH/M ] for the “blackhole” or “dark matter” masses MBH for a variety of spherical matter systems with
masses M , shown by solid circles, plotted against Log10[M/M0], where M0 is the solar mass, showing agreement with the “α/2-line”
(Log10[α/2] = −2.44) predicted by (10), and ranging over 15 orders of magnitude. The “blackhole” effect is the same phenomenon as the
“dark matter” effect. The data ranges from the Earth, as observed by the bore hole g anomaly, to globular cluster M15 and G1, and then
to spherical “elliptical” galaxies M32 (E2), NGC 4374 (E1) and M87 (E0). Best fit to the data from these star systems gives α = 1/134,
while for the Earth data in Figs.3,4,5 give α = 1/137. In these systems the “dark matter” or “black hole” spatial self-interaction effect is
induced by the matter. For the spiral galaxies, shown by the filled boxes, where here M is the bulge mass, the blackhole masses do not
correlate with the “α/2-line”. This is because these systems form by matter in-falling to a primordial blackhole, and so these systems are
more contingent. For spiral galaxies this dynamical effect manifests most clearly via the non-Keplerian rotation-velocity curve, which
decrease asymptotically very slowly. See [7] for references to the data.

gives a direct account of the various phenomena noted above.
A generalisation to include relativistic effects of the motion
of matter through this 3-space is given in [4]. From (1) and
(3) we obtain that

∇ ∙ g = −4πGρ− 4πGρDM , (4)

where
ρDM (r) =

α

32πG

(
(trD)2 − tr(D2)

)
. (5)

In this form we see that if α → 0, then the acceleration
of the 3-space elements is given by Newton’s Universal Law
of Gravitation, in differential form. But for a non-zero α
we see that the 3-space acceleration has an additional effect,
from the ρDM term, which is an effective “matter density”
that mimics the new self-interaction dynamics. This has been
shown to be the origin of the so-called “dark matter” effect
in spiral galaxies. It is important to note that (4) does not
determine g directly; rather the velocity dynamics in (1)
must be solved, and then with g subsequently determined
from (3). Eqn. (4) merely indicates that the resultant non-
Newtonian g could be mistaken as the result of a new form
of matter, whose density is given by ρDM . Of course the
saga of “dark matter” shows that this actually happened, and

that there has been a misguided and fruitless search for such
“matter”.

3 Airy method for determining α

We now show that the Airy method actually gives a technique
for determining the value of α from Earth based borehole
gravity measurements. For a time-independent velocity field
(1) may be written in the integral form

|v (r)|2 = 2G
∫
d3r′

ρ(r′) + ρDM (r
′)

|r− r′|
. (6)

When the matter density of the Earth is assumed to be
spherically symmetric, and that the velocity field is now
radial∗ (6) becomes

v(r)2 =
8πG

r

∫ r

0

s2
[
ρ(s) + ρDM (s)

]
ds+

+ 8πG

∫ ∞

r

s
[
ρ(s) + ρDM (s)

]
ds ,

(7)

∗This in-flow is additional to the observed velocity of the Earth through
3-space.
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where, with v′ = dv(r)/dr,

ρDM (r) =
α

32πG

(
v2

2r2
+
vv′

r

)

. (8)

Iterating (7) once we find to 1st order in α that

ρDM (r) =
α

2r2

∫ ∞

r

sρ(s) ds+O(α2) , (9)

so that in spherical systems the “dark matter” effect is con-
centrated near the centre, and we find that the total “dark
matter” is

MDM ≡ 4π
∫ ∞

0

r2ρDM (r)dr =

=
4πα

2

∫ ∞

0

r2ρ(r)dr +O(α2) =
α

2
M +O(α2) ,

(10)

where M is the total amount of (actual) matter. Hence to
O(α) MDM/M = α/2 independently of the matter density
profile. This turns out to be a very useful property as complete
knowledge of the density profile is then not required in order
to analyse observational data. As seen in Fig. 1 the singular
behaviour of both v and g means that there is a blackhole∗

singularity at r=0. Interpreting MDM in (10) as the mass
of the blackholes observed in the globular clusters M15 and
G1 and in the highly spherical “elliptical” galaxies M32,
M87 and NGC 4374, we obtained [7] α≈ 1/134, as shown
in Fig. 2.

From (3), which is also the acceleration of matter [10],
the gravity acceleration† is found to be, to 1st order in α,
and using that ρ(r)= 0 for r >R, where R is the radius of
the Earth,

g(r) =






(
1 + α

2

)
GM

r2
, r > R ;

4πG

r2

∫ r

0

s2ρ(s) ds+

+
2παG

r2

∫ r

0

(∫ R

s

s′ρ(s′)ds′
)

ds , r < R .

(11)

This gives Newton’s “inverse square law” for r >R, even
when α 6=0, which explains why the 3-space self-interaction
dynamics did not overtly manifest in the analysis of planetary
orbits by Kepler and then Newton. However inside the Earth
(11) shows that g(r) differs from the Newtonian theory, cor-
responding to α=0, as Fig. 1, and it is this effect that allows
the determination of the value of α from the Airy method.

Expanding (11) in r about the surface, r=R, we obtain,
to 1st order in α and for an arbitrary density profile,

∗These are called blackholes because there is an event horizon, but in
all other aspects differ from the blackholes of General Relativity.

†We now use the convention that g(r) is positive if it is radially inward.

g(r) =






GNM

R2
−
2GNM

R3
(r −R) , r > R ;

GNM

R2
−

(
2GNM

R3
− 4π

(
1−

α

2

)
GNρ

)

×

× (r −R) , r < R .

(12)

where ρ is the matter density at the surface, M is the total
matter mass of the Earth, and where we have defined

GN ≡
(
1 +

α

2

)
G . (13)

The corresponding Newtonian gravity expression is ob-
tained by taking the limit α→ 0,

gN(r) =






GNM

R2
−
2GNM

R3
(r −R) , r >R ;

GNM

R2
−
(
2GNM

R3
− 4πGNρ

)
(r−R) , r <R .

(14)

Assuming Newtonian gravity (14) then means that from
the measurement of difference between the above-ground and
below-ground gravity gradients, namely 4πGNρ, and also
measurement of the matter density, permit the determination
of GN. This is the basis of the Airy method for determining
GN [3].

When analysing the borehole data it has been found [11,
12] that the observed difference of the density gradients was
inconsistent with 4πGNρ in (14), in that it was not given by
the laboratory value of GN and the matter density. This is
known as the borehole g anomaly and which attracted much
interest in the 1980’s. The key point in understanding this
anomaly is that even allowing for the dynamical rescaling
of G, expressions (12) and (14) have a different dependence
on r−R beneath the surface. The borehole data papers [11,
12] report the discrepancy, i. e. the anomaly or the gravity
residual as it is called, between the Newtonian prediction
and the measured below-earth gravity gradient. Taking the
difference between (12) and (14), assuming the same un-
known value of GN in both, we obtain an expression for the
gravity residual

Δg(r) ≡ gN(r)− g(r) =

{
0 , r > R ;

2παGNρ(r−R) , r < R .
(15)

When α 6= 0 we have a two-parameter theory of gravity,
and from (11) we see that measurement of the difference be-
tween the above ground and below ground gravity gradients
is 4π

(
1− α

2

)
GNρ, and this is not sufficient to determine

both GN and α, given ρ, and so the Airy method is now
understood not to be a complete measurement by itself, i. e.
we need to combine it with other measurements. If we now
use laboratory Cavendish experiments to determine GN, then
from the borehole gravity residuals we can determine the
value of α, as already indicated in [5, 6]. As discussed in
Sect. 7 these Cavendish experiments can only determine GN
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Fig. 3: The data shows the gravity residuals for the Greenland
Ice Shelf [11] Airy measurements of the g(r) profile, defined as
Δg(r)= gNewton− gobserved, and measured in mGal (1mGal =
= 10−3 cm/s2) and plotted against depth in km. The gravity
residuals have been offset. The borehole effect is that Newtonian
gravity and the new theory differ only beneath the surface, provided
that the measured above surface gravity gradient is used in both
theories. This then gives the horizontal line above the surface.
Using (15) we obtain α−1 = 137.9± 5 from fitting the slope of the
data, as shown. The non-linearity in the data arises from modelling
corrections for the gravity effects of the irregular sub ice-shelf rock
topography.

up to corrections of order α/4, simply because the analysis
of the data from these experiments assumed the validity of
Newtonian gravity. So the analysis of the borehole residuals
will give the value of α up to O(α2) corrections, which is
consistent with the O(α) analysis reported above.

4 Greenland Ice Shelf borehole data

Gravity residuals from a bore hole into the Greenland Ice
Shelf were determined down to a depth of 1.5 km by Ander
et al. [11] in 1989. The observations were made at the
Dye 3 2033 m deep borehole, which reached the basement
rock. This borehole is 60 km south of the Arctic Circle
and 125 km inland from the Greenland east coast at an
elevation of 2530 m. It was believed that the ice provided
an opportunity to use the Airy method to determine GN, but
now it is understood that in fact the borehole residuals permit
the determination of α, given a laboratory value for GN.
Various steps were taken to remove unwanted effects, such as
imperfect knowledge of the ice density and, most dominantly,
the terrain effects which arises from ignorance of the profile
and density inhomogeneities of the underlying rock. The

borehole gravity meter was calibrated by comparison with an
absolute gravity meter. The ice density depends on pressure,
temperature and air content, with the density rising to its
average value of ρ = 920 kg/m3 within some 200 m of
the surface, due to compression of the trapped air bubbles.
This surface gradient in the density has been modelled by
the author, and is not large enough the affect the results.
The leading source of uncertainty was from the gravitational
effect of the bedrock topography, and this was corrected for
using Newtonian gravity. The correction from this is actually
the cause of the non-linearity of the data points in Fig. 3. A
complete analysis would require that the effect of this rock
terrain be also computed using the new theory of gravity, but
this was not done. Using GN= 6.6742×10−11 m3s−2kg−1,
which is the current CODATA value, see Sect. 7, we obtain
from a least-squares fit of the linear term in (15) to the data
points in Fig. 3 that α−1= 137.9±5, which equals the value
of the fine structure constant α−1= 137.036 to within the
errors, and for this reason we identify the constant α in (1)
as being the fine structure constant. The first analysis [5, 6]
of the Greenland Ice Shelf data incorrectly assumed that
the ice density was 930 kg/m3 which gave α−1= 139 ± 5.
However trapped air reduces the standard ice density to
the ice shelf density of 920 kg/m3, which brings the value
of α immediately into better agreement with the value of
α= e2/~c known from quantum theory.

5 Nevada Test Site borehole data

Thomas and Vogel [12] performed another borehole experi-
ment at the Nevada Test Site in 1989 in which they measured
the gravity gradient as a function of depth, the local average
matter density, and the above ground gradient, also known as
the free-air gradient. Their intention was to test the extracted
Glocal and compare with other values of GN, but of course
using the Newtonian theory. The Nevada boreholes, with
typically 3 m diameter, were drilled as a part of the U.S.
Government tests of its nuclear weapons. The density of
the rock is measured with a γ− γ logging tool, which is
essentially a γ-ray attenuation measurement, while in some
holes the rock density was measured with a coreing tool. The
rock density was found to be 2000 kg/m3, and is dry. This is
the density used in the analysis herein. The topography for
1 to 2 km beneath the surface is dominated by a series of
overlapping horizontal lava flows and alluvial layers. Gravity
residuals from three of the bore holes are shown in Figs.4,
5 and 6. All gravity measurements were corrected for the
Earth’s tide, the terrain on the surface out to 168 km distance,
and the evacuation of the holes. The gravity residuals arise
after allowing for, using Newtonian theory, the local lateral
mass anomalies but assumed that the matter beneath the
holes occurs in homogeneous ellipsoidal layers. Here we
now report a detailed analysis of the Nevada data. First we
note that the gravity residuals from borehole U20AO, Fig. 6,
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Fig. 4: The data shows the gravity residuals for the Nevada
U20AK borehole Airy measurements of the g(r) profile [12],
defined as Δg(r)= gNewton− gobserved, and measured in mGal,
plotted against depth in km. This residual shows regions of linearity
interspersed with regions of non-linearity, presumably arising from
layers with a density different from the main density of 2000 kg/m3.
Density changes generate a change in the (arbitrary) residual offset.
From a least-squares simultaneous fit of the linear form in (15)
to the four linear regions in this data and that in Fig. 5 for the
data from borehole U20AL, we obtain α−1= 136.8 ± 3. The two
fitted regions of data are shown by the two straight lines here and
in Fig. 5.

are not sufficiently linear to be useful. This presumably
arises from density variations caused by the layering effect.
For boreholes UA20AK, Fig. 4, and UA20AL, Fig. 5, we
see segments where the gravity residuals are linear with
depth, where the density is the average value of 2000 kg/m3,
but interspersed by layers where the residuals show non-
linear changes with depth. It is assumed here that these non-
linear regions are caused by variable density layers. So in
analysing this data we have only used the linear regions,
and a simultaneous least-squares fit to (15), with again GN=
= 6.6742×10−11 m3 s−2kg−1 as for the Greenland data
analysis, of these four linear regions gives α−1 = 136.8± 3,
which again is in extraordinary agreement with the value of
137.04 from quantum theory.

6 Ocean measurements

The ideal Airy experiment would be one using the ocean, as
all relevant physical aspects are accessible. Such an expe-
riment was carried out by Zumberge et al. in 1991 [13]

Fig. 5: The data shows the gravity residuals for the Nevada U20AL
borehole Airy measurements of the g(r) profile [12], defined
as Δg(r)= gNewton− gobserved, and measured in mGal, plotted
against depth in km. This residual shows regions of linearity
interspersed with regions of non-linearity, presumably arising from
layers with a density different from the main density of 2000 kg/m3.
Density changes generate a change in the (arbitrary) residual offset.
From a least-squares simultaneous fit of the linear form in (15) to
the four linear regions in this data and that in Fig. 4 for the data
from borehole U20AK in Fig. 4, we obtain α−1= 136.8 ± 3. The
two fitted regions of data are shown by the two straight lines here
and in Fig. 4.

using submersibles. Corrections for sea floor topography,
seismic profiles and sea surface undulations were carried
out. However a true Airy experiment appears not to have
been performed. That would have required the measurement
of the above and below sea-surface gravity gradients. Rather
only the below sea-surface gradients were measured, and
compared with a predicted gravity gradient using the density
of the water and a laboratory value of GN from only one
such experiment and, as shown in Fig. 7, these have a
large uncertainty. Hence this experiment does not permit an
analysis of the data of the form applied to the Greenland
and Nevada observations. The value of GN from this ocean
experiment is shown in Fig. 7 as experiment #12.

7 G experiments

The new theory of gravity, given in (1) for the case of zero
vorticity and in the non-relativistic limit, is a two-parameter
theory; G and α. Hence in experiments to determine G
(or GN) we expect to see systematic discrepancies if the
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Fig. 6: The data shows the gravity residuals from the third Nevada
U20AO borehole Airy measurements of the g(r) profile [12]. This
data is not of sufficient linearity, presumably due to non-uniformity
of density, to permit a fit to the linear form in (15), but is included
here for completeness. There is an arbitrary offset in the residual.

Newtonian theory is used to analyse the data. This is clearly
the case as shown in Fig. 7 which shows the results of such
analyses over the last 60 years. The fundamental problem
is that non-Newtonian effects of size ΔGN/GN≈α/4 are
clearly evident, and effects of this size are expected from
(1). To correctly analyse data from these experiments the
full theory in (1) must be used, and this would involve (i)
computing the velocity field for each configuration of the
test masses, and then (ii) computing the forces by using
(3) to compute the acceleration field. These computations
are far from simple, especially when the complicated matter
geometries of recent experiments need to be used. Essentially
the flow of space results in a non-Newtonian effective “dark
matter” density in (5). This results in deviations from New-
tonian gravity which are of order α/4. The prediction is that
when laboratory Cavendish-type experiments are correctly
analysed the data will permit the determination of both GN

and α, and the large uncertainties in the determination of GN

will no longer occur. Until then the value of GN will continue
to be the least accurately known of all the fundamental
constants. Despite this emerging insight CODATA∗ in 2005
[20] reduced the apparent uncertainties in GN by a factor of
10, and so ignoring the manifest presence of a systematic
effect. The occurrence of the fine structure constant α, in

∗CODATA is the Task Group on Fundamental Constants of the
Committee on Data for Science and Technology, established in 1969.

Fig. 7: Results of precision measurements of GN published in
the last sixty years in which the Newtonian theory was used to
analyse the data. These results show the presence of a systematic
effect, not in the Newtonian theory, of fractional size up to
ΔGN/GN≈α/4, which corresponded with the 1998 error bars
on GN (outer dashed lines), with the full line being the current
CODATA value of GN= 6.6742(10)×10−11 m2s−2kg−1. In 2005
CODATA [20] reduced the error bars by a factor of 10 (inner dashed
lines) on the basis of some recent experiments, and so neglecting
the presence of the systematic effect.

giving the magnitude of the spatial self-interaction effect in
(1), is a fundamental development in our understanding of 3-
space and the phenomenon of gravity. Indeed the implication
is that α arises here as a manifestation of quantum processes
inherent in 3-space.

8 Some history

Here we have simply applied the new two-parameter theory
of 3-space, and hence of gravity, to the existing data from
borehole experiments. However the history of these experi-
ments shows that, of course, the nature of the gravitational
anomaly had not been understood, and so the implications
for fundamental physics that are now evident could not have
been made. The first indications that some non-Newtonian
effect was being observed arose from Yellin [14] and Hinze
et al. [15]. It was Stacey et al. in 1981 [17, 16, 18] who
undertook systematic studies at the Mt. Isa mine in Queens-
land, Australia. In the end a mine site is very unsuited for
such a gravitational anomaly experiment as by their very
nature mines have non-uniform poorly-known density and
usually, as well, irregular surface topography. In the end it
was acknowledged that the Mt. Isa mine data was unreliable.
Nevertheless those reports motivated the Greenland, Nevada
and Ocean experiments, as well as above-ground tower expe-
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riments [19], all with the assumption that the non-Newtonian
effects were being caused by a modification to Newton’s
inverse square law by an additional short-range force —
which also involved the notion of a possible “5th-force”
[21]. However these interpretations were not supported by
the data, and eventually the whole phenomenon of these
gravitational borehole anomalies was forgotten.

9 Conclusions

We have extended the results from an earlier analysis [5, 6]
of the Greenland Ice Shelf borehole g anomaly data by
correcting the density of ice from the assumed value to
the actual value. This brought the extracted value of α
from approximately 1/139 to approximately 1/137, and so
into even closer agreement with the quantum theory value.
As well the analysis was extended to the Nevada borehole
anomaly data, again giving α≈ 1/137. This is significant
as the rock density is more than twice the ice density. As
well we have included the previous results [7] from analysis
of the blackhole masses in globular clusters and elliptical
“spherical” galaxies, which gave α≈ 1/134, but with larger
uncertainty. So the conclusion that α is actually the fine
structure constant from quantum theory is now extremely
strong. These results, together with the successful expla-
nation for the so-called spiral galaxy “dark-matter” effect
afforded by the new theory of gravity, implies that the New-
tonian theory of gravity [1] is fundamentally flawed, even
at the non-relativistic level, and that the disagreement with
experiment and observation can be of fractional order α, or
in the case of spiral galaxies and blackholes, extremely large.
This failure implies that General Relativity, which reduces to
the Newtonian theory in the non-relativistic limit, must also
be considered as flawed and disproven.
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The stellar equations of state treat the Sun much like an ideal gas, wherein the
photosphere is viewed as a sparse gaseous plasma. The temperatures inferred in the
solar interior give some credence to these models, especially since it is counterintuitive
that an object with internal temperatures in excess of 1 MK could be existing in
the liquid state. Nonetheless, extreme temperatures, by themselves, are insufficient
evidence for the states of matter. The presence of magnetic fields and gravity also
impact the expected phase. In the end, it is the physical expression of a state that
is required in establishing the proper phase of an object. The photosphere does not
lend itself easily to treatment as a gaseous plasma. The physical evidence can be
more simply reconciled with a solar body and a photosphere in the condensed state.
A discussion of each physical feature follows: (1) the thermal spectrum, (2) limb
darkening, (3) solar collapse, (4) the solar density, (5) seismic activity, (6) mass
displacement, (7) the chromosphere and critical opalescence, (8) shape, (9) surface
activity, (10) photospheric/coronal flows, (11) photospheric imaging, (12) the solar
dynamo, and (13) the presence of Sun spots. The explanation of these findings by the
gaseous models often requires an improbable combination of events, such as found in
the stellar opacity problem. In sharp contrast, each can be explained with simplicity
by the condensed state. This work is an invitation to reconsider the phase of the Sun.

Introduction

The stellar phase has important consequences, not only for
modeling the Sun, but indeed, for the proper treatment of
nearly every aspect of astrophysics. Recently, the accepted
temperature of the photosphere has been questioned [1].
This hinges on the proper understanding of both blackbody
radiation [2] and the liquid state [3]. In modern theory,
stars can be essentially infinitely compressed without ever
becoming liquid. Outside the Earth’s oceans, the liquid state
appears all but non-existent in the universe. By invoking the
gaseous equations of state [i. e. 4] without the possibility
of condensation to the liquid and solid state, the accepted
models continue to ignore laboratory findings relative to
the existence of these transformations. These issues are not
simple. However, sufficient evidence exists to bring into
question the gaseous models of the Sun.

The physical evidence

1. The thermal spectrum:

It is hard to imagine that, after more than 100 years, our
understanding of blackbody radiation could be questioned.
If this is the case, it is because of shortcomings in the
work of Gustav Kirchhoff [5, 6] which have previously been
overlooked [7]. The arguments hinged on whether or not
blackbody radiation is in fact universal as initially advanced
by Kirchhoff [5, 6], echoed by Planck [2] and theoretically
confirmed by Einstein [8]. In order to dissect the problem,

Kirchhoff and Planck are treated together, along with the
experimental proof [7]. Einstein’s work [8] can then be
examined from a conceptual viewpoint [9] without bringing
into question any of Einstein’s mathematics. Thus, arguments
against the universality of blackbody radiation have already
been made both on an experimental basis [7] and on a
theoretical one [9]. In reality, the entire foundation for the
liquid model of the Sun rests on the soundness of these
arguments [7, 9]. The belief is that claims of universality
are not only overstated, they are incorrect [9]. As such, it
is improper to assign any astrophysical temperature based
on the existence of a thermal spectrum in the absence of
a known isothermal (not adiabatic) and perfectly absorbing
enclosure [1, 7, 9].

The Sun possesses a thermal signature as reported early
on by Langley [10, 11]. The fact that this spectrum is con-
tinuous in nature leads to difficulties for the gaseous models
[1]. This is because gases are known to emit radiation only
in discrete bands [12]. Consequently, in order to produce the
thermal spectrum of the Sun, theoretical astrophysics must
currently invoke the summation of numerous spectroscopic
processes. Furthermore, this must occur in a slightly shifted
manner within each internal layer of the Sun. Many distinct
physical processes (bound-bound, bound-free, and free-free)
are used to arrive at a single spectrum [i. e. 4]. This con-
stitutes the stellar opacity problem: the summation of many
distinct spectroscopic processes to yield a single spectro-
scopic signature.

In reality, each spectroscopic signature, including the
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thermal spectrum, must arise from a single spectroscopic
process [1]. Just as an NMR spectrum arises from an NMR
process, so must a thermal spectrum arise from a thermal
process. Whatever process takes place with graphite on Earth
must be taking place on the surface of the Sun. That the
gaseous models require many spectroscopic processes along
with gradually and systematically changing stellar opacities
[i. e. 4] is perhaps their greatest obstacle. Gases simply cannot
generate thermal spectra in the absence of a rigid body
(condensed matter) enclosure. They are restricted to emission
in bands.

In contrast, condensed matter can easily generate con-
tinuous spectra [13, 14, 15] as a manifestation of its inherent
lattice structure. Thus, relative to the existence of a continu-
ous solar spectrum, a condensed matter model of the Sun has
distinct advantages.

2. Limb darkening:

The Sun is also characterized by limb darkening. The
solar spectrum becomes less bright when viewing the Sun
from the center to the limb. Since a change in the thermal
spectrum is involved, the gaseous models must once again
invoke the stellar opacity problem. Limb darkening is ex-
plained by inferring the sampling of varying optical depths.
The Sun must be able to slowly and gradually change its
thermal spectrum from one temperature to another based on
depth using a perfect combination of bound-bound, bound-
free and free-free processes at every location inside the Sun.
Gaseous theory therefore places a tremendous constraint on
nature relative to limb darkening. As stated above, it is
not reasonable to expect that a single spectrum is actually
resultant from the infinite sum of many distinct and unrelated
spectroscopic processes. If a thermal spectrum is produced
by the Sun, it must invoke the same mechanism present in
the piece of graphite on Earth. That the gaseous models rely
on varying optical depths in order to explain limb darkening
might appear elegant, but lacks both clarity and support in
experimental physics.

In sharp contrast, angle dependence in thermal emission
is extremely well documented for condensed matter [14,
15]. Changes in optical depth are not required. Rather, a
subtle change in the angle of observation is sufficient. This
is precisely what is observed when we monitor the Sun.
For instance, even the oceans of the Earth are known to
have angle dependent emission intensities at microwave fre-
quencies [16]. Thus, in the condensed matter scenario, limb
darkening is an expression of angle of observation without
having to make any arguments based on optical depth.

3. Solar collapse:

One of the key requirements of the gaseous models is
the need to prevent solar collapse as a result of gravitational
forces. Currently, it is advocated that solar collapse is pre-
vented by electron gas pressure in the solar interior and, for

larger stars, by radiation pressure. However, the existence
of gas pressure relies on the presence of a rigid surface
[i. e. 4]. The atmosphere of the Earth does not collapse
due to the relatively rigid oceanic and continental surfaces.
Within the gaseous models of the stars however, there is
no mechanism to introduce the rigid surface required to
maintain gas pressure. Theoretical arguments are made [i. e.
4] without experimental foundation. The same holds for
internal radiation pressure. There is no experimental basis on
Earth for radiation pressure internal to a single object [13,
14, 15]. It is well-established that for the gaseous models
of the Sun, complete solar collapse would take place in a
matter of seconds should electron gas pressure and internal
radiation pressure cease [i. e. 4]. In sharp contrast, relative
incompressibility is a characteristic of the liquid state. A
liquid Sun is by definition essentially incompressible, and
experimental evidence for such behavior in liquids is abun-
dant. Stellar collapse is excluded by the very nature of the
phase invoked.

4. Solar density:

The Sun has an average density of 1.4 g/cm3. The gaseous
models distribute this density with radial dependence with the
core of the Sun typically approaching a density of 150 g/cm3

and the photosphere 10−7 g/cm3. If the Sun were truly a
gaseous plasma, it would have been much more convenient if
the average density did not so well approximate the density of
the condensed state (> 1 g/cm3). The gaseous models would
be in a much stronger position if the average solar density,
for instance, was 10−4 g/cm3. Such a density would clearly
not lend itself to the condensed state. In contrast, the known
density of the Sun is ideal for a condensed model whose
primary constituents are hydrogen and helium. Moreover, for
the condensed models [1], the radial dependence of density
is not critical to the solution and a uniform distribution of
mass may be totally acceptable.

The density of the Sun very closely approaches that
of all the Jovian planets. Nonetheless, a great disparity in
mass exists between the Sun and these planets. As such, it
is probably best not to enter into schemes which involve
great changes in internal solar densities. The liquid model
maintains simplicity in this area and such a conclusion is
viewed as important.

5. Seismology:

The Sun is a laboratory of seismology [17]. Yet, on
Earth, seismology is a science of the condensed state. It
is interesting to highlight how the gaseous models of the
Sun fail to properly fit seismological data. In the work by
Bahcall et. al. [18] for instance, experimental and theoretical
siesmological findings are compared as a function of Solar
radius. Precise fits are obtained for most of the solar sphere.
In fact, it is surprising how the interior of the Sun can be
so accurately fitted, given that all the data is being acquired
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from the solar surface. At the same time, this work is unable
to fit the data in the exterior 5% of the Sun [18]. Yet,
this is precisely the point from which all the data is being
collected. The reason that this region cannot be fitted is that
the gaseous models are claiming that the photosphere has
a density on the order of 10−7 g/cm3. This is lower than
practical vacuums on Earth. Thus, the gaseous models are
trying to conduct seismology in a vacuum by insisting on
a photospheric density unable to sustain seismic activity.
For the condensed models of the Sun, this complication is
eliminated.

6. Mass displacement:

On July 9, 1996, the SOHO satellite obtained Doppler
images of the solar surface in association with the eruption
of a flare [19, 20]. These images reveal the clear propagation
of transverse waves on the solar surface. The authors of the
scientific paper refer to the mass displacement exactly like
the action resulting from a pebble thrown in a pond. This
is extremely difficult to explain for the gaseous models, yet
trivial for the condensed model. The Doppler images show
the presence of transverse waves. This is something unique to
the condensed state. Gases propagate energy longitudinally.
It can be theoretically argued perhaps that gases can sustain
transverse waves. These however would be on the order of
a few atomic radii at best. In sharp contrast, the waves seen
on the Sun extend over thousands of kilometers. Once again,
the condensed state provides a greatly superior alternative to
the study of transverse waves on the solar surface.

7. The chromosphere and critical opalescence:

Critical opalescence occurs when a material is placed at
the critical point, that combination of temperature, pressure,
magnetic field and gravity wherein the gas/liquid interface
disappears. At the critical point, a transparent liquid becomes
cloudy due to light scattering, hence the term critical opale-
scence. The gas is regaining order, as it becomes ready to
enter the condensed phase. It would appear that the Sun,
through the chromosphere, is revealing to us behavior at the
solar critical point. Under this scenario, the chromosphere is
best viewed as the transition phase between the condensed
photosphere and the gaseous corona.

In order to shed light on this problem, consider that in
the lower region of the corona, the gaseous material exists
at a temperature just beyond the critical temperature. The
temperature is sufficiently elevated, that it is impossible for
condensation to occur, given the gravity present. However, as
one moves towards the Sun, the critical temperature increases
as a result of increased gravity. Consequently, a point will
eventually be reached where the temperature of the region
of interest is in fact below the critical temperature. Con-
densation can begin to occur. As the surface of the Sun is
increasingly approached, the critical temperature increases
further. This is a manifestation of increased gravity and

magnetic forces. By the time the photosphere is reached, the
region of interest is now well below the critical temperature
and the liquid state becomes stable. The surface at this point
is visualized.

Therefore, in the liquid model, the chromosphere repre-
sents that region where matter projected into the corona is
now in the process of re-condensing in order to enter the
liquid state of the photosphere. Such an elegant explanation
of the chromosphere is lacking for the gaseous models.
Indeed, for these models, the understanding of the chromo-
sphere requires much more than elementary chemical prin-
ciples.

8. Shape:

The Sun is not a perfect sphere. It is oblate. Solar oblate-
ness [21] is a direct manifestation of solar rotation and can
best be understood by examining the rotation of liquid masses
[22]. The oblateness of the solar disk has recently come under
re-evaluation. While exact measurements have differed in the
extent of solar oblateness, it appears that the most reliable
studies currently place solar oblateness at 8.77×10−6 [21]. In
order to understand solar oblateness, astrophysics is currently
invoking a relative constant solar density as a function of
radial position [21]. This is in keeping with our understanding
of liquid body rotations [22], but is in direct opposition to
the densities calculated using the gaseous equations of state
[i. e. 4]. Interestingly, a relatively constant density is precisely
what is invoked in the condensed matter model of the Sun
[1]. The question becomes even more important when one
considers stars like Achanar whose oblateness approaches
1.5 [23]. Such an observation would be difficult to rationalize
were the Sun truly gaseous.

9. Surface activity:

The Sun has extensive surface activity and appears to be
boiling. Indeed, several undergraduate texts actually refer to
the Sun as a boiling gas. In addition to the boiling action, the
Sun is characterized by numerous solar eruptions. Both of
these phenomena (boiling and solar eruptions) are extremely
difficult to rationalized for the gaseous models. Gases do not
boil. They are the result of such action. It is an established
fact that liquids boil giving rise to gases. There is no evidence
on Earth that superheating a gas can give rise to a region of
different density capable of erupting from the gaseous mass.
These are extremely complex issues for the gaseous models
since actions resembling both boiling and superheating must
be generated without having recourse to the liquid state.

In contrast, the presence of superheated liquids within
the solar interior could easily explain the production of solar
eruptions. The existence of boiling action is well documented
for the liquid. Nothing further need be added. Phenomena
easily explained in the liquid model, become exceedingly
difficult for the gaseous equations of state.
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10. Photospheric/coronal flow:

It has been well established that the Sun displays pro-
nounced flows at the surface. Matter can be seen rising from,
and descending into, the solar interior. However, matter is
also traversing the solar surface in a manner perpendicular to
established flows in the corona. The photosphere is character-
ized not simply by a change in opacity as the gaseous models
theorize, but by drastically altered directions of material flow
relative to the corona. In the liquid model, the interface
delineated by flow directions can be explained based on the
existence of a phase transition between the photosphere and
the corona. In fact, the orthogonality of mass displacement
at the solar surface relative to the corona is reminiscent of
the orthogonality observed on Earth between the currents in
the oceans and the upward and downwards drafts sometimes
observed in the overlying air. It is not trivial for the gaseous
models to account for the orthogonality of flow between the
photosphere and the corona. By contrast, this is a natural
extension of current knowledge relative to liquid/gaseous
interfaces for the liquid model.

11. Photospheric imaging:

The solar surface has recently been imaged in high re-
solution using the Swedish Solar Telescope [24, 25]. These
images reveal a clear solar surface in 3D with valleys,
canyons, and walls. Relative to these findings, the authors
insist that a true surface is not being seen. Such statements
are prompted by belief in the gaseous models of the Sun.
The gaseous models cannot provide an adequate means for
generating a real surface. Solar opacity arguments are ad-
vanced to caution the reader against interpretation that a
real surface is being imaged. Nonetheless, a real surface is
required by the liquid model. It appears that a real surface is
being seen. Only our theoretical arguments seem to support
our disbelief that a surface is present.

12. Dynamo action:

The Sun is characterized by strong magnetic fields. These
magnetic fields can undergo complex winding and protru-
sions. On Earth however, strong magnetic fields are always
produced from condensed matter. The study of dynamos
relies on the use of molten sodium [26], not gaseous sodium.
It is much more realistic to generate powerful magnetic
fields in condensed matter than in sparse gaseous plasmas.
Consequently, the liquid model and its condensed phase lends
itself much more readily to the requirements that the Sun
possesses strong magnetic fields.

13. Sun spots:

The presence of Sun spots have long been noted on the
solar sphere. Sun spots are often associated with strong mag-
netic activity. The gaseous models explain the existence of
Sun spots with difficulty. The problem lies in the requirement

that different types of order (disorder) can coexist in stellar
gases, based on the presence of a magnetic field. While there
is ample room here for theoretical arguments justifying the
existence of Sun spots in a gaseous model, the situation is
less complex in the liquid model. Thus, if one considers
that the bulk of the solar photosphere exists with hydrogen
and helium adhering to a certain lattice structure, all that is
required is a concentration of magnetic fields within a region
to produce a change in the lattice. The surface of the Sun is
changed from a hypothetical “Type I lattice” to a “Type II
lattice”. The requirement that a strong magnetic field alters
the structure of condensed matter in an ordered lattice from
one form to another, is much less than would be required to
alter the structure of a gaseous plasma (something which has
no inherent lattice).

Conclusion

The evidence in favor of a condensed matter model of the Sun
is overwhelming. For every avenue explored, the condensed
model holds clear advantages in simplicity of understanding.
In fact, it remains surprising that the gaseous models have
been able to survive for so long. This is partially due to the
elegance with which the theoretical framework is established.
Moreover, the gaseous equations of state have such profound
implications for astrophysics.

Consequently, it is recognized that the acceptance of any
condensed matter model will require such dramatic changes
in astrophysics that such adoption cannot be swift. In the
meantime, it is important to set out the physical evidence for
a liquid model both in manuscript [1] and abstract form [27–
30]. Eventually, astrophysics may well be forced to abandon
the gaseous models and their equations of state. It is likely
that this will occur when the field more fully appreciates
the lack of universality in blackbody radiation [7, 9, 31]. At
this time, gases will no longer be hypothesized as suitable
candidates for the emission of thermal radiation. The need
for condensed matter will be self-evident.
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Through the formulation of his law of thermal emission, Kirchhoff conferred upon
blackbody radiation the quality of universality [G. Kirchhoff, Annalen der Physik,
1860, v. 109, 275]. Consequently, modern physics holds that such radiation is
independent of the nature and shape of the emitting object. Recently, Kirchhoff’s
experimental work and theoretical conclusions have been reconsidered [P. M. L. Robi-
taille. IEEE Transactions on Plasma Science, 2003, v. 31(6), 1263]. In this work,
Einstein’s derivation of the Planckian relation is reexamined. It is demonstrated that
claims of universality in blackbody radiation are invalid.

From the onset, blackbody radiation was unique in possessing
the virtue of universality [1, 2]. The nature of the emitting
object was irrelevant to emission. Planck [3], as a student
of Kirchhoff, adopted and promoted this concept [4, 5].
Nonetheless, he warned that objects sustaining convection
currents should not be treated as blackbodies [5].

As previously discussed in detail [6], when Kirchhoff
formulated his law of thermal emission [1, 2], he utilized
two extremes: the perfect absorber and the perfect reflector.
He had initially observed that all materials in his laboratory
displayed distinct emission spectra. Generally, these were
not blackbody in appearance and were not simply related to
temperature changes. Graphite, however, was an anomaly,
both for the smoothness of its spectrum and for its ability
to simply disclose its temperature. Eventually, graphite’s
behavior became the basis of the laws of Stefan [7], Wien
[8] and Planck [3].

For completeness, the experimental basis for universality
is recalled [1, 2, 5, 6]. Kirchhoff first set forth to manufacture
a box from graphite plates. This enclosure was a near perfect
absorber of light (ε=1, κ=1). The box had a small hole
through which radiation escaped. Kirchhoff placed various
objects in this device. The box would act as a transformer
of light [6]. From the graphitic light emitted, Kirchhoff was
able to gather the temperature of the enclosed object once
thermal equilibrium had been achieved. A powerful device
had been constructed to ascertain the temperature of any
object. However, this scenario was strictly dependent on the
use of graphite.

Kirchhoff then sought to extend his findings [1, 2, 5].
He constructed a second box from metal, but this time the
enclosure had perfectly reflecting walls (ε=0, κ=0). Under
this second scenario, Kirchhoff was never able to reproduce
the results he had obtained with the graphite box. No matter
how long he waited, the emitted spectrum was always domi-
nated by the object enclosed in the metallic box. The second
condition was unable to produce the desired spectrum.

As a result, Kirchhoff resorted to inserting a small piece
of graphite into the perfectly reflecting enclosure [5]. Once
the graphite particle was added, the spectrum changed to that
of the classic blackbody. Kirchhoff believed he had achieved
universality. Both he, and later, Planck, viewed the piece of
graphite as a “catalyst” which acted only to increase the speed
at which equilibrium was achieved [5]. If only time was
being compressed, it would be mathematically appropriate to
remove the graphite particle and to assume that the perfect
reflector was indeed a valid condition for the generation of
blackbody radiation.

However, given the nature of graphite, it is clear that
the graphite particle was in fact acting as a perfect absorber.
Universality was based on the validity of the experiment
with the perfect reflector. Yet, in retrospect, and given a
modern day understanding of catalysis and of the speed
of light, the position that the graphite particle acted as a
catalyst is untenable. In fact, by adding a perfect absorber
to his perfectly reflecting box, it was as if Kirchhoff lined
the entire box with graphite. He had unknowingly returned
to the first case. Consequently, universality remains without
any experimental basis.

Nonetheless, physics has long since dismissed the impor-
tance of Kirchhoff’s work [9]. The basis for universality no
longer rests on the experimental proof [i. e. 9], but rather on
Einstein’s theoretical formulation of the Planckian relation
[10, 11]. It has been held [i. e. 9] that with Einstein’s deriva-
tion, universality was established beyond doubt based strictly
on a theoretical platform. Consequently, there appears to no
longer be any use for the experimental proof formulated by
Kirchhoff [1, 2, 5]. Physics has argued [9] that Einstein’s
derivation of the Planckian equations had moved the com-
munity beyond the limited confines of Kirchhoff’s enclosure.
Einstein’s derivation, at least on the surface, appeared totally
independent of the nature of the emitting compound. Black-
body radiation was finally free of the constraints of enclosure.

In his derivation of the Planckian relation, Einstein has
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recourse to his well-known coefficients [10, 11]. Thermal
equilibrium and the quantized nature of light (E= ~ν) are
also used. All that is required appears to be (1) transitions
within two states, (2) absorption, (3) spontaneous emission,
and (4) stimulated emission. However, Einstein also requires
that gaseous atoms act as perfect absorbers and emitters or
radiation. In practice, of course, isolated atoms can never
act in this manner. In all laboratories, isolated groups of
atoms act to absorb and emit radiation in narrow bands and
this only if they possess a dipole moment. This is well-
established in the study of gaseous emissions [12]. As such,
Einstein’s requirement for a perfectly absorbing atom, knows
no physical analogue on earth. In fact, the only perfectly
absorbing materials known, exist in the condensed state.
Nonetheless, for the sake of theoretical discussion, Einstein’s
perfectly absorbing atoms could be permitted.

In his derivation, Einstein also invokes the requirement
of thermal equilibrium with a Wien radiation field [8], which
of course, required enclosure [1, 2]. However, such a field
is uniquely the product of the solid state. To be even more
specific, a Wien’s radiation field is currently produced with
blackbodies typically made either from graphite itself or
from objects lined with soot. In fact, it is interesting that
graphite (or soot) maintain a prominent role in the creation
of blackbodies currently used at the National Bureau of
Standards [13–17].

Consequently, through his inclusion of a Wien’s radiation
field [8], Einstein has recourse to a physical phenomenon
which is known to be created exclusively by a solid. Further-
more, a Wien’s field, directly involves Kirchhoff’s enclosure.
As a result, claims of universality can no longer be supported
on the basis of Einstein’s derivation of the Planckian relation.
A solid is required. Therefore, blackbody radiation remains
exclusively a property of the solid state. The application of
the laws of Planck [3], Stefan [7] and Wien [8] to non-solids
is without both experimental and theoretical justification.
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Many theoretical papers refer to the need to create exotic materials with average
negative energies for the formation of space propulsion anomalies such as “wormholes”
and “warp drives”. However, little hope is given for the existence of such material
to resolve its creation for such use. From the standpoint that non-minimally coupled
scalar fields to gravity appear to be the current direction mathematically. It is proposed
that exotic material is really scalar field interactions. Within this paper the Ginzburg-
Landau (GL) scalar fields associated with superconductor junctions is investigated as
a source for negative vacuum energy fluctuations, which could be used to study the
interactions among energy fluctuations, cosmological scalar (i. e., Higgs) fields, and
gravity.

1 Introduction

Theoretically, exotic material can be used to establish worm-
holes by gravitationally pushing the walls apart [1] and
for the formation of a warp bubble [2] by providing the
negative energy necessary to warp spacetime. Exotic material
in combination with gravitation might also produce a net
acceleration force for highly advanced propellant-less space
propulsion engine cycles.

Negative energy is encountered in models of elementary
particles. For example, Jackson [3] invokes Poincare stress,
to suppress the TeV/c2 contribution of electromagnetic field
energy to the MeV/c2 mass of an electron. Also, the Reissner-
Nordstrom metric [4], devised 50 years before the develop-
ment of scalar fields, predicts effects which are negligible
more than a few femtometers [10−15 m] from a charged par-
ticle.

Exotic material has the requirement of a “negative ave-
rage energy density”, which violates several energy condi-
tions and breaks Lorentz symmetries. Pospelov and Romalis
[5] tell us that the breaking of Lorentz symmetry enables
the CPT symmetry, which combines charge conjugation (C),
parity (P), and time-reversal (T) symmetries, to be violated.
In conventional field theories, the Lorentz and CPT sym-
metries are automatically preserved. But in quantum gravity,
certain restrictive conditions such as locality may no longer
hold, and symmetries may be broken. They also suggest that
quintessence, a very low-energy 5 keV/cm3 scalar field ψ
with wavelength comparable to the size of the observable
universe, is a candidate for dark energy. For in addition
to its effect on the expansion of the universe, quintessence
might also manifest itself through its possible interactions
with matter and radiation [6, 7]. This scalar interaction could
lead to a modification of a mass as a function of coordinates
and violates the equivalence principle: The mass feels an

extra force in the direction of ∇φ (φ is the phase of the
scalar field ψ).

The question is then “Where do we look for exotic
material on the scale of laboratory apparatus?” From the
standpoint that non-minimally coupled scalar fields to gravity
appear to be the current direction mathematically [8]. It
is proposed that exotic material is really scalar field inter-
actions.

Within this paper the Ginzburg-Landau (GL) scalar fields
associated with superconductor junctions is investigated as a
source for negative vacuum energy fluctuations, which could
be used to study the interactions among energy fluctuations,
cosmological scalar (i. e., Higgs) fields, and gravity. Such
an analogy is not much a stretch as it is not hard to show
that the Higgs model is simply a relativistic generalization
of the GL theory of superconductivity, and the classical field
in the Higgs model is analog of cooper-pair Bose condensate
[9]. Here, the mechanisms for scalar field interactions or the
production of exotic material from the superconductor are
discussed and an analogy to energy radiated in gravitational
waves is presented.

2 Background

Theoretical work [1] has shown that vacuum fluctuations near
a black hole’s horizon are exotic due to curvature distortion
of space-time. Vacuum fluctuations come about from the
notion that when one tries to remove all electric and magnetic
fields from some region of space to create a perfect vacuum,
there always remain an excess of random, unpredictable
electromagnetic oscillations, which under normal conditions
averages to zero. However, curvature distortion of space-
time as would occur near black holes causes vacuum energy
fluctuations to become negative and therefore are “exotic”.
In earlier wormhole theories [10, 11], exotic material was
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generally thought to only occur in quantum systems [1]. It
seems that the situation has changed drastically; for it has
now been shown that even classical systems, such as those
built from scalar fields non-minimally coupled to gravity;
violate all energy conditions [8]. Gradually, these energy
conditions are losing their status, which theoretically could
lead even to a workable “warp drive” [12]. Further, recent
mathematical models have shown that the amount of energy
needed for producing wormholes (and possibly warp drives)
is much less than originally thought [13], which may open
the door to laboratory scale experiments.

Given that the answer to exotic material for practical pro-
pulsion applications is somewhere in between vacuum fluc-
tuation in curved space-time and scalar fields non-minimally
coupled to gravity, Ginzburg-Landau (GL) scalar fields asso-
ciated with superconductor junctions could present them-
selves as a medium for studying the interactions among
energy fluctuations, cosmological scalar fields, and gravity.
As in superconductors, the GL scalar field is known [14] to
extend small distances beyond the boundaries of a supercon-
ducting material. That is, in describing the operation of a
Josephson junction array, two or more superconductors can
be entangled over gaps of several micrometers, which is large
compared to atomic distances.

The introduction of scalar fields into cosmology has been
problematic. For example, the Higgs scalar field [15] of
particle physics must have properties much different from the
scalar field hypothesized to cause the universe to increase its
expansion rate 5G years ago. However, the study of particle
physics in conjunction with inflationary cosmology presents a
new understanding of present day physics through the notion
of symmetry breaking [9]. This suggests that the GL scalar
field could possibly bridge the gap between the subatomic
energy and distance scale of particle physics and the galactic
scale of scalar fields in cosmology?

3 Landau-Ginzburg field in the superconductor

The Landau-Ginzburg (GL) field ψ is described as a scalar
function

ψ =
√
n ejθ, (1)

where
√
n infers the degree of electron interactions in the

superconductor and θ is the phase factor of these interactions.
Electrons in a room temperature superconductor material

or normal conductor with no applied external fields are either
confined to an atom or move about the composite molecules
with random phases;

∑
φ ≈ 0 (disorder state). However,

they are generally thought to be confined to the vicinity
of background ions and are positionally fixed. When the
superconductor material is cooled to its critical temperature at
which time a phase transition occurs, the electrons suddenly
agree on a common phase;

∑
φ > 0 (ordered state). Again

they are generally thought to be confined to the vicinity of

background ions and are localized as opposed to gathering
in some region creating a large space charge potential.

In a type I superconductor and as the bulk superconductor
material cools down (or warms up), various size domains
(depending on the cool-down, or warm up, profile) of super-
conductive material can form surrounded by normal conduct-
ive material. When two or more domains are in close pro-
ximity, a superconductor-normal conductor-superconductor
Josephson junction is formed. In a typical bulk type I super-
conductor, composed of small randomly arranged crystals
or grains, proximity effects would cause the electrons of a
single grain to go superconductive (or normal) as a group.

In the type II YBCO superconductor this is also true
with the exception that weakly coupled Josephson junctions
[16] can also form between individual molecules across
the copper oxide planes and across grain boundaries typic-
ally composed of an oxide layer. These are referred to as
superconductor-insulator-superconductor junctions. The in-
sulation planes degrade the time for proximity effects to
cause the electrons of a single grain to go superconductive (or
normal) as a group. Therefore in the type II superconductor,
a superconductor domain can be as small as one molecule
of superconductor material or composed of a multitude of
molecules (i. e., grains).

In both the type I & II superconductor at temperatures
below ∼ 44 K, coherence encompasses all domains, in effect
producing one single domain of phase φ.

When multiple domains exist, gradients between domains
of differing phase φ are accompanied by currents that tunnel
between the domains as the spaces between the domains form
Josephson junctions [14]. The possible current patterns are
restricted by the requirement that the GL scalar function ψ
must be single-valued and infers a current flow of density ~J
given by

~∇ argψ = ~∇φ =
m

2~e|ψ|2
~J ; (2)

neglecting contributions from external magnetic fields.

3.1 The Landau-Ginzburg free energy potential

The Landau-Ginzburg free energy potential V (ψ) refers to
the energy density in the superconductor, and anywhere the
scalar field is non-zero. It can even extend into a region μm
outside the superconductor. The potential contribution to the
free energy (neglecting contributions from external magnetic
fields) is given by the energy density function:

V (ψ) = α |ψ|2+
1

2
β |ψ|4, (3)

where equation (3) can be viewed as a series expansion in
powers of |ψ|2.

Two cases arise as depending whether α is positive or
negative. If α is positive, the minimum free energy occurs at
|ψ|2 = 0, corresponding to the normal state. On the other
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hand, if α < 0, the minimum occurs when

|ψ|2 = |ψ∞|2 =
1

2

√
n1n2 ≈

n3D
2

(4)

for identical domain materials (which is assumed hereon)
where the notation ψ∞ is conventionally used because ψ
approaches this value infinitely deep in the interior of the
superconductor [17], where it is screened from any surface
fields or currents. If the two domains are similar in crystalline
structure, the two domains can be viewed as a single bulk
superconductor and the Landau-Ginzburg free energy poten-
tial case for α < 0 applies. For α < 0

V (ψ∞) =
−α2

2β
=
1

2
α |ψ∞|

2, (5)

which gives

α =
2

|ψ∞|2
V (ψ∞); β =

2

|ψ∞|4
V (ψ∞) . (6)

4 High power flow during phase transition

Given a uniform superconductor, the average energy EJ in
the junction between domains is defined by

EJ 6 Δ|ψ|
2 Vg ≈

1

2
Δn3D Vg . (7)

For the Type II YBCO superconductor n3D ≈ 1.69×1028

m3 and Δ= 0.014 eV [17, 18]. Given that grain size dia-
meters in a typical sinter YBCO superconductor are on
the order of 1 micron, then for an average domain volume
Vg ≈ 10−18 m3, the energy in the junction EJ ≈ 102 GeV. If
the junction energy dissipates on the superconductor relax-
ation time τsc, the powers flow EJ/τsc≈ 1024 eV/s for the
YBCO relaxation time τsc≈ 1016 s.

Such high energy changes during a normal state transition
seems a bit extreme, especially considering that not much
(if any) is mentioned of this phenomena in the literature.
The main reason is that most of the energy should not be
seen external to the superconductor since the initial energy
transfer from the state change is an internal process. However
radiation is known to accompany processes involving
charged particles, such as β decay.

Jackson [3] tells us that the radiation accompanying β
decay is a Bremsstrahlung spectrum: It sometimes bears the
name “inner bremsstrahlung” to distinguish it from brems-
strahlung emitted by the same beta particle in passing through
matter. It appears that the spectrum extends to infinity, there-
by violating conservation of energy. Qualitative agreement
with conservation of energy can obtain by appealing to the
uncertainty principle. That is, the acceleration time τ must be
of the order of τ = ~/E, thereby satisfying the conservation
of energy requirement at least qualitatively.

In the superconductor, the uncertainty principle (at least

qualitatively) allows for the violation of energy conservation
through rapid state change processes, which can produce
vortices in the superconductor when proper phase alignment
exists among domains [19]. In such a case, high energy
radiation, such as Bremsstrahlung accompanying the rapid
magnetic field formation cannot be ruled out as theories
of superconductivity are not sufficiently understood. This
is especially true with the type II superconductor, which
exhibits flux pinning throughout the body of the supercon-
ductor and allows for flux motion during phase transition.

Further, energy levels of EJ ≈ 102 GeV in the domain
junctions could produce tunneling electrons with critical tem-
perature for a phase transition in the Glashow-Weinberg-
Salam theory of weak and electromagnetic interactions [20].
Such high energy phase transitions could then lead to effects
similar to cosmology inflation, an anti-gravity force thought
responsible for the acceleration of the universe [21].

5 Mechanisms for exotic material in the superconductor

In order to produce exotic material or negative vacuum en-
ergy fluctuations from superconductors in terms of curva-
ture distortion of spacetime, asymmetric energy fluctuations
must be produced. Since the Landau-Ginzburg free energy
density is fixed by the number superconductor electrons, the
average time rate of change or phase transition time of the
superconductor electrons must be asymmetric. That is the
power flow eV/s in the phase transition to the superconductor
state must be higher than the power in the phase transition to
the normal state or vise versa. This process of creating a time
varying GL scalar field might then result in a gradient in the
surrounding global vacuum scalar field (Higgs, quintessence,
or etc.) in the direction of ∇φ; being measurable as a gravi-
tation disturbance.

Asymmetric phase transitions would require electrons
with group velocities that are higher than their normal relax-
ation times, which are already relativity short. The combina-
tion of two phenomena associated with superconductors
could achieve this requirement. They are:

(1) The dissipation of the Landau-Ginzburg free energy
potential during a rapid superconductor quench refer-
red to as spontaneous symmetry breaking phase trans-
ition [22], which implies state changes on very short
time scales;

(2) The Hartman effect [23], which implies that the effect-
ive group velocity of the electrons across a supercon-
ductor junction can become arbitrarily large.

Both spontaneous symmetry breaking and the Hartman
effect illustrates Hawking’s [24] point about the elusive defi-
nition of time in a quantum mechanical process. That is,
uncertainty in the theory allow time intervals to be chosen to
illustrate how measurable effects might be produced outside
the superconductor without contradicting experiments with
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conventional solid state physics detectors. One such time
interval of notice is that which occurs during a spontaneous
symmetry breaking phase transitions.

5.1 Spontaneous symmetry breaking phase transition

Phase transitions between the high and low temperature
phases of a superconductor involve spontaneous symmetry
breaking between order (superconductor electron pair) and
disorder (electron) states when the transition occurs over
shorter time periods than depicted by the normal relaxation
times. Kibble [25] explains that symmetry-breaking phase
transitions are ubiquitous in condensed matter systems and
in quantum field theories. There is also good reason to
believe that they feature in the very early history of the
Universe. At which time many such transitions topological
defects of one kind or another are formed. Because of their
inherent stability, they can have important effects on the
subsequent behavior of the system. Experimental evidence
validates this by the presence of a magnetic field [26, 27, 19,
28] during spontaneous symmetry breaking phase transition
experiments.

In general, each superconductor domain must be taken to
follow normal phase transition symmetry, which follows that
the energy within these domains is conserved as anomalous
energy effects have not been observed during rapid super-
conductor quenching of low temperature superconductive
systems, which have been around for decades. However, it
is conceivable that, a small fraction of the energy could be
expended in disturbing nearby vacuum fields, without being
noticed by crystal-switching apparatus. Since experimentally,
the formation of vortices does occur during spontaneous
symmetry breaking phase transitions of coupled domains in
the Type II superconductor, Lorentz symmetry is violated.
This allows for energy conservation violation, whereby, the
assumption can be made that the energy fluctuations in the
junction between superconductor domains interacts with the
vacuum field on a time scale that approaches that of the
Planck scale.

Evidence of this comes from Pospelov and Romalis [5],
who point out that Lorentz violation could possibly be due to
unknown dynamics at the Planck scale. Further, when dealing
with interactions described by massless vector particles
(gluons) within a relativistic local quantum field theory,
Binder [42] indicates that Planck units are assigned to the
background fluctuation level and provide for a common base.
The gluon field plays the same role for quarks as Jackson’s
Poincare stress plays for electrons. Therefore, the choice for
the energy fluctuation time during a spontaneous symmetry
breaking phase transition of electron pairs is taken to be the
Planck time Tpl .

However, the Planck time is too fast to be observed,
which implies that human units must be artificially imposed
when measuring superconductor electron fluctuations (or any

other Planck time phenomena). To explain this, it is noted
that just before electron phase transition and superconductor
pair bonding, each electron had an energy deficit ≈ 1 eV.
From the uncertainty principle, the electron can maintain
this deficit before pairing for a time t according to

t =
~
E
, (8)

which for the paired electron E≈ 2 eV giving t≈ 3.3×10−16

sec. Then by noting

Ep Tpl = E t = ~ (9)

a limitation on the electron power flow exist at E = Ep (the
Planck energy) and t = Tpl. This limitation gives the human
artificial units for Planck time events according to

t =
Ep
E
Tpl . (10)

For example, during an electron pair transition where
t ≈ 3.3×10−16 s, a power flow E/Tpl = Ep/t ≈ 1043 eV/s
per superconductor electron pair is produced, which is much
less than the limit defined by Ep/Tpl ≈ 1071 eV/s.

That is, even though the event could have occurred on
the Planck time Tpl, it took a time t to observe/measure the
energy released. According to the uncertainty principle, the
observed/measured value of the energy is then

E =

(
Tpl
t

)

Ep . (11)

Equation (11) then tells us that energy events that occur
on the Planck time are reduced by the ratio of the Planck
time to the observed/measured time.

The question is then, “Can this uncertainly in the energy
be captured in such a way as to be useable on the human
scale?” Evidence for a yes answer arises in superluminal
electron velocities in nature, which have been associated with
cosmological events, lasers and electrostatic acceleration [29,
30, 31]. In these events however, the total energy in the
system is interpreted from the average group velocity, where-
by energy is conserved.

5.2 The Hartman effect

In the superconductor another superluminal electron phe-
nomena exists, the Hartman effect [23, 32, 33], which is
associated with the junction tunnelling process. The Hartman
effect indicates that for sufficiently large barrier widths, the
effective group velocity of the electrons across a super-
conductor junction can become arbitrarily large, inferring
a violation of energy conservation.

Muga [34] tells us that defining “tunnelling times” has
produced controversial discussion. Some of the definitions
proposed lead to tunnelling conditions with very short times,

G. A. Robertson. Exotic Material as Interactions Between Scalar Fields 27



Volume 2 PROGRESS IN PHYSICS April, 2006

which can even become negative in some cases. This may
seem to contradict simple concepts of causality. The classical
causality principle states that the particle cannot exit a region
before entering it. Thus the traversal time must be positive.
However, when trying to extend this principle to the quantum
case, one encounters the difficulty that the traversal time
concept does not have a straightforward and unique transla-
tion in quantum theory. In fact for some of the definitions
proposed, in particular for the so called “extrapolated phase
time” [35], the naпve extension of the classical causality
principle does not apply for an arbitrary potential, even
though it does work in the absence of bound states.

Generally, the Hartman effect occurs when the time of
passage of the transmitted wave packet in a tunnelling col-
lision of a quantum particle with an opaque square barrier
or junction becomes essentially independent of the barrier
width [23, 36] and the velocity may exceed arbitrarily large
numbers. This “fast tunnelling” has been frequently inter-
preted as, or related to, a “superluminal effect”, see e. g.
[37, 38, 39, 40, 41].

The Hartman effect illustrates Hawking’s (1988) discus-
sion about ambiguities in defining time in relation to quantum
mechanics and cannot be ruled out during spontaneous sym-
metry breaking phase transition. Therefore, large power flows
across the junctions between the domains or junctions are
allowed.

6 Energy radiated in gravitational waves

Arbitrarily large electron group velocities (the Hartman
effect) induced by spontaneous symmetry breaking phase
transitions could conceivably result in a space-like (grav-
itational) disturbance in nearby vacuum scalar fields with
possible momentum and energy transfer about these disturb-
ances for space propulsion applications. Although, a theory
that connects the GL scalar field to gravity has yet to be
presented, here the general formulation for calculating grav-
itational radiation from quadrupolar motion [43] is used
to illustrate the possible energy radiated in a gravitational
wave from the instantaneous power flow through a type II
superconductor.

The power radiated Lrad in gravitational waves is rough-
ly approximated from the ratio of the square of the internal
power flow ΔE/Δt by

Lrad =

(
G

c5

)(
ΔE

Δt

)2
. (12)

The time parameter Δt in equation (11) is ill-defined,
since General Relativity cannot incorporate the uncertainties
of quantum mechanics. For as previously pointed out, even
times as short as the Planck time can be used without violat-
ing experimental observations.

Here, the time parameter is determined by noting that at
the instant of the release of the GL free energy there is a

freeze out time:

t̂ =
√
Tpl τsc (13)

between the transition from the adiabatic (Planck time fluc-
tuations Tpl) and impulse (relaxation time τsc) regimes [26].
This implies an inherent limitation on the power flow though
the superconductor, which from equation (10) implies that

ΔE

Δt
=

E

Tpl
→

Ep

η t̂
(14)

where Δt = η t̂ and where η combines geometric (i. e., size,
shape, number of domains, & etc.), I-V junction character-
istics [44, 45], and any other influence on the propagation of
the electrons through the superconductor.

Given that the observed/measured propagation speed of
the GL free energy (i. e., electron motion) through the super-
conductor is limited to the speed of light c, then

η →
Th

c t̂
(15)

Combining equation (12) with equations (14 &15) the in-
stantaneous power radiated in gravitational waves is given by

Lrad →

(
G

c5

)(
Ep

η t̂

)2
≈

(
G

c5

)(
Ep c

Th

)2
(16)

and the radiated energy in gravitational waves:

Erad → Lrad t̂ (17)

from the freeze-out motion within the superconductor and
noting that the gravitational waves is not effected by the
superconductor properties (i. e., η).

Assuming a superconductor of thickness Th≈ 0.0254 m,
gives the maximum instantaneous power radiated in grav-
itational waves Lrad≈ 1042 eV/s and radiated gravitational
waves energy Erad≈ 1013 eV or ≈ 10−4 J; measurable on
the laboratory scale.

7 Conclusions

The Ginzburg-Landau scalar field associated with the type II
superconductor was discussed as a source of exotic material
to produce gravitational forces for highly advanced propul-
sion related systems. Arbitrarily large electron group velo-
cities (the Hartman effect) induced by spontaneous symmetry
breaking phase transitions were discussed as the mechanisms
for setting up a time-varying GL scalar field, which could
conceivably result in gravitational disturbances in nearby
vacuum scalar fields applicable to space propulsion. The
short time scale behavior discussed provides a possible sign-
ature for an experimentalist to verify that new physics is
occurring. Such experiments could provide insight into the
laws of scalar fields, which need to be formulated for space
propulsion engine cycles.
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Nomenclature

V (ψ) = energy density (eV/m3)
n = electron probability density (electrons/m3)
φ = phase of the scalar field
J = current through a superconductor junction (A/m2)
n3D = 3-D electron density (m3)
2Δ = BCS gap energy (eV)
Vg = average domains volume (m3)
Tpl = Planck Time =

√
~G/c5 ≈ 5×10−44 (s)

~ = Plank’s Constant ≈ 1.06×10−34 (J s)
G = gravitation constant = 6.673×10−11 (N m2/kg2)
c = speed of light = 2.9979×108 (m/s)
Ep = Planck Power ~/Tpl ≈ 1028 (eV)
Th = superconductor thickness (m)
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Exact Theory of a Gravitational Wave Detector. New Experiments Proposed

Dmitri Rabounski and Larissa Borissova
E-mail: rabounski@yahoo.com; lborissova@yahoo.com

We deduce exact solutions to the deviation equation in the cases of both free and
spring-connected particles. The solutions show that gravitational waves may displace
particles in a two-particle system only if they are in motion with respect to each
other or the local space (there is no effect if they are at rest). We therefore propose a
new experimental statement for the detection of gravitational waves: use a suspended
solid-body detector self-vibrating so that there are relative oscillations of its butt-ends.
Or, in another way: use a free-mass detector fitted with suspended, vibrating mirrors.
Such systems may have a relative displacement of the butt-ends and a time shift in the
butt-ends, produced by a falling gravitational wave.

The authors dedicate this paper to the memory of Joseph Weber,
who pioneered the detection of gravitational waves.

1 Introduction

As Borissova recently showed [1] by the Synge equation for
deviating geodesic lines and the Synge-Weber equation for
deviating non-geodesics, Weber’s experimental statement on
gravitational waves [2] is inadequate. His conclusions were
not based upon an exact solution to the equations, but on
an approximate analysis of what could be expected. Weber
expected that a plane weak wave of the space metric (gravi-
tational wave) may displace two particles at rest with respect
to one another. The Weber equations and their solutions
formulated in terms of the physically observable quantities
show instead that gravitational waves cannot displace resting
particles; some effect may be produced only if the particles
are in motion.

Here we deduce exact solutions to both the Synge equa-
tion and the Synge-Weber equation (the exact theory to free-
mass and solid-body detectors). The exact solutions show
that we may alter the construction of both solid-body and
free-mass detectors so that they may register oscillations pro-
duced by gravitational waves. Weber most probably detected
them as claimed in 1968 [3, 4, 5], as his room-temperature
solid-body pigs may have their own relative oscillations of
the butt-ends, whereas the oscillations are inadvertently sup-
pressed as noise in the detectors developed by his all follow-
ers, who have had no positive result in over 35-years.

2 Main equations of the theory

We consider two cases of a simple system consisting of two
particles, either free or connected by a spring. A falling grav-
itational wave as a wave of the space metric deforming the
space should produce some effect in such a system. Therefore
we call such a system a gravitational wave detector.

We will determine the effect produced by a gravitational

wave in both kinds of the two-particle systems.
If the particles are connected by a non-gravitational force

Φα, they move along neighbouring non-geodesic world-lines,
according to the non-geodesic equations of motion∗

dUα

ds
+ ΓαμνU

μUν =
Φα

m0c2
, (1)

while relative oscillations of the world-lines (particles) are
described by the so-called Synge-Weber equation† [2]

D2ηα

ds2
+Rα∙βγδ U

βUδηγ =
1

m0c2
DΦα

dv
dv . (2)

If two neighbouring particles are free (Φα=0), they
move along neighbouring geodesic lines, according to the
geodesic equations of motion

dUα

ds
+ ΓαμνU

μUν = 0 , (3)

while relative oscillations of the geodesics (particles) are
given by the so-called Synge equations [6]

D2ηα

ds2
+Rα∙βγδ U

βUδηγ = 0 . (4)

A solution to the deviation equations (4) or (2) gives the
deviation ηα=(η0, η1, η2, η3) between the particles in the
acting gravitational field. Because the field is unspecified in
the equations (it is hidden in the formula for the metric ds),
the equations allow the deviation to be described in both
regular and wave fields of gravitation. Thus to determine

∗Here Uα= dxα

ds
is the four-dimensional velocity vector of the particle,

tangential to its world-line. It is a unit world-vector: UαUα=1. The
space-time interval ds along the world-line is used as a parameter for
differentiation, m0 is the rest-mass of the particle, Γαμν are Christoffel’s
symbols of the 2nd kind.

†Here D
ds

is the absolute (covariant) differentiation operator; Rα∙βγδ
is the Riemann-Christoffel curvature tensor; ηα= ∂xα

∂v
dv is the relative

deviation vector of the particles; v is a parameter having the same numerical
value along a neighbouring world-line, while dv is the difference between
its values in the world-lines.
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how a gravitational wave causes two test-particles to deviate
from one another, we should use the metric ds for this wave
field and obtain exact solutions to the deviation equation.

Currently, two main kinds of gravitational wave detectors
are presumed:

1. Weber’s solid-body detector — a freely suspended
bulky cylindrical pig, approximated by two masses
connected by a spring (i. e. non-gravitational force).
Oscillations of the butt-ends of the pig in the field
of a falling gravitational wave are formulated by the
Synge-Weber equation of deviating non-geodesics;

2. A free-mass detector, consisting of two freely suspend-
ed mirrors, distantly separated. Each mirror is fitted
with a laser range-finder for producing measurements
of the distance between them. Oscillations of the mir-
rors under a falling gravitational wave formulated by
the Synge equation of deviating geodesics.

Both detectors have a common theory — the Synge-Weber
equation, in comparison to the Synge equation, has just the
non-zero right side with a force Φα connecting the particles.
We may solve them using the same method. Before doing that
however, we analyse Weber’s approach to the main equations
and his simplifications.

3 Weber’s approach and criticism thereof

Weber proceeded from the proposition that a falling gravita-
tional wave should deform a solid-body pig, represented by a
system of two particles connected by a spring. He proposed
the relative displacement of the particles ηα consisting of
a “basic” displacement rα (covariantly constant) and an
infinitely small relative displacement ζα in the butt-ends of
the cylinder caused by a falling gravitational wave

ηα = rα + ζα, ζα � rα,
Drα

ds
= 0 . (5)

Thus the non-geodesic deviation equation is

D2ζα

ds2
+Rα∙βγδ U

βUδ (rγ + ζ γ) =
Φα

m0c2
, (6)

which he transformed to∗

D2ζα

ds2
+

dασ
m0c2

Dζσ

ds
+

kασ
m0c2

ζσ = −Rα∙βγδ (r
γ + ζ γ) . (7)

This equation is like the equation of forced oscillations,
where the curvature tensor is a forcing factor. Weber then
finally transformed the equation to

d2ζα

dt2
+
dασ
m0

dζσ

dt
+
kασ
m0

ζσ = −c2Rα∙0σ0 r
σ, (8)

which can only be obtained under his assumptions:
∗Weber takes Φα as the sum of the returning (elastic) force kασ ζ

σ and
the force dασ

Dζσ

ds
setting up the damping factor (tensors kασ and dασ describe

the peculiarities of the spring).

1. The length r of the pig to be covariantly constant
r=
√
gμνrμrν , which is a “background” for the infini-

tesimal displacement of the butt-ends ζα� rα caused
by a falling gravitational wave. Note that r isn’t the
length η of the pig in the “equilibrium state”. Weber
postulated rα to be covariantly constant, so r is the
“unchanged length”. In such a case Weber has actually
two detectors at the same time: (1) a pig having the co-
variantly constant length r, which remains unchanged
in the field of a falling gravitational wave, (2) a pig
having the length ζ , which, being made from the same
material and connected to the first pig, changes its
length under the same gravitational wave. In actual
experiments a solid-body pig has a monolithic body
which reacts as a whole to external influences. In other
words, by introducing the splitting term ηα= rα+ ζα

into the equation of the deviating non-geodesics (2),
Weber postulated that a falling gravitational wave is
an external entity that forces the particles into resonant
oscillations;

2. Because the cylindrical pig is freely suspended, it is in
free fall;

3. Christoffel’s symbols are all zero, so covariant deriv-
atives became regular derivatives. (Of course, we can
choose a specific reference frame where Γαμν =0 at
each given point. Such a reference frame is known as
locally geodesic. However, since the curvature tensor
is different from zero, Γαμν cannot be reduced to zero in
a finite area [7]. Therefore, if we connect one particle to
a locally geodesic reference frame, in the neighbouring
particle Γαμν 6=0);

4. The butt-ends of the pig are at rest with respect to the
observer (U i=0) all the time before a gravitational
wave passes. This was assumed because the pig was
regularly cooled down to a temperature close to 0 K
in order to suppress internal molecular motions. With
U i=0, there can only be resonant oscillations of the
butt-ends. Parametric oscillations cannot appear there.
Therefore Weber and all his followers have expected
registration of a signal if a falling gravitational wave
produces resonant oscillations in the detector.

Because the same assumptions were applied to the geo-
desic deviation equation, all that has been said is applicable
to a free-mass detector.

Weber didn’t solve his final equation (8). He limited him-
self by usingRα∙0σ0 r

σas a forcing factor in his calculations of
expected oscillations in solid-body detectors. Exact solution
of Weber’s final equation with all his assumptions was ob-
tained by Borissova in the 1970’s [8]. The assumptions
actually mean that the solution of the Weber equation (8),
with his requirement for rα and its length r=

√
gμνrμrν ,

must be covariantly constant: Drα

ds
=0. Borissova showed

that in the case of a gravitational wave linearly polarized
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in the x2 direction, and propagating along x1, the equation
Drα

ds
=0 gives r2= r2(0)

[
1−A sin ωc

(
ct+ x1

)]
(the detector

oriented along x2). From this result, she obtained the Weber
equation (8) in the form∗

d2ζ2

dt2
+ 2λ

dζ2

dt
+Ω20 ζ

2 = −Aω2r2(0) sin
ω

c

(
ct+ x1

)
, (9)

i. e. an equation of forced oscillations, where the forcing
factor is the relative displacement of the particles caused by
the gravitational wave. She then obtained the exact solution:
the relative displacement η2=ηy of the butt-ends is

η2= r2(0)

[
1−A sin

ω

c

(
ct+x1

)]
+Me−λt sin(Ωt+α)−

−
Aω2r2(0)
(Ω20−ω2)

2 cos
(
ωt+ δ +

ω

c
x1
)
,

(10)

where Ω=
√
Ω20−ω2, δ= arctan

2λω
ω2−Ω20

, while M and α

are constants. In this solution the relative oscillations consist
of the “basic” harmonic oscillations and relaxing oscillations
(first two terms), and the resonant oscillations (third term).
As soon as the source’s frequency ω coincides with the basic
frequency of the detector Ω0=ω, resonance occurs: in such
a case even weak oscillations may be registered.

Thus, by his equation (6), Weber actually postulated that
gravitational waves force rest-particles to undergo relative
resonant oscillations. It was amazing that the exact solution
showed that! Moreover, his assumptions led to a specific
construction of the detectors, where parametric oscillations
are obviated. As we show further by the exact solution of
the deviation equations, gravitational waves may produce
oscillations in only moving particles, in both solid-body and
free-mass detectors.

4 Correct solution: a resting detector (Weber’s case)

Our solution of the deviation equations depends on a specific
formula for the space metric whereby we calculate the
Riemann-Christoffel tensor. Because the sources of gravi-
tational waves (double stars, pulsars, etc.) are far away from
us, we expect received gravitational waves to be weak and
plane. Therefore we consider the well-known metric of weak
plane gravitational waves

ds2 = c2dt2 − (dx1)2 − (1 + a)(dx2)2+

+ 2bdx2dx3 − (1− a)(dx3)2,
(11)

where a and b are functions of ct+x1 (if propagation is
along x1), while a and b are infinitesimal so that squares and
products of their derivatives vanish. The wave field described

∗Here 2λ= b
m0

and Ω2(0)=
k
m0

are derived from the formula for the

non-gravitational force Φ2=−kζ2−bζ̇2, acting along x2 in this case. The
elastic coefficient of the “spring” is k, the friction coefficient is b.

by this metric has a purely deformational origin, because it is
derived from the non-stationarity of the spatial components
gik of the fundamental metric tensor gαβ . This metric is
preferred because it satisfies Einstein’s equations in vacuum
Rαβ=0 (Rαβ is Ricci’s tensor).

Because we seek solutions applicable to real experiments,
we solve the deviation equations in the terms of physically
observable quantities†.

The non-geodesic equations of motion (1) have two phys-
ically observable projections [11]

dm

dτ
−
m

c2
Fiv

i +
m

c2
Dikv

ivk =
σ

c
,

d

dτ
(mvi)−mF i+2m

(
Di
k+A

∙i
k∙

)
+mΔiknv

kvn=f i,

(12)

wherem is the relativistic mass of the particle; vi= dxi

dτ
is its

three-dimensional observable velocity, the square of which
is v2=hikvivk; hik=−gik+

g0ig0k
g00

is the observable metric

tensor; dτ =
√
g00dt+

g0i
c
√
g00
dxi is the observable time in-

terval, which is different to the coordinate time interval
dt= 1

c dx
0; Fi= 1√

g00

(
∂w
∂xi
− ∂vi

∂t

)
is the observable gravita-

tional inertial force, where w is the gravitational potential,
while

√
g00=1− w

c2
; vi=−

cg0i√
g00

is the linear velocity of

the space rotation; Aik= 1
2

(
∂vk
∂xi
− ∂vi
∂xk

)
+ 1

2c2
(Fivk−Fkvi)

is the tensor of observable angular velocities of the space
rotation; Dik= 1

2
√
g00

∂hik
∂t

the tensor of observable rates of

the space deformations; Δikn=h
imΔkn,m are the spatially

observable Christoffel symbols, built like Christoffel’s usual
symbols Γαμν= g

ασΓμν,σ using hik instead of gαβ ; σ= Φ0√
g00

is the observable projection of the non-gravitational force Φα

onto the observer’s time line, while f i=Φi is its observable
projection onto his spatial section.

If a particle rests with respect to an observer (vi=0), its
observable equations of motion (12) take the form

dm0

dτ
=
σ

c
= 0 , m0F

i = −f i. (13)

Clearly, if a two-particle system is in free fall (F i=0)
and also rests with respect to an observer (as happens with
a solid-body detector in Weber’s experimental statement), a
non-gravitational force connecting the particles has no effect
on their motion: two resting particles connected by a spring
have the same behaviour as free ones.

Therefore, to find what effect is produced by a gravita-
tional wave on a resting solid-body detector or a free-mass
detector, we should solve the same Synge equations of the
deviating geodesics.

If, as Weber assumed, the observer’s reference frame is
“synchronous” (F i=0,Aik=0, dt= dτ ), the metric of weak

†Physically observable (chronometrically invariant) are the projections
of a four-dimensional quantity onto the time line and the spatial section of
an observer [9]. See a brief account of that in [10], for instance.
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plane gravitational waves (11) has just Dik= 1
2
√
g00

∂hik
∂t
6=0.

Let the wave propagate along x1. Then D22=−D33= 1
2 ȧ

and D23= 1
2 ḃ, where the dot means differentiation by t. The

rest of the components of Dik are zero. In such a case the
time observable projection of the Synge equation (4) van-
ishes, while its spatial observable projection is

d2ηi

dt2
+ 2Di

k

dηk

dt
= 0 , (14)

which is, in component notation,

d2η1

dt2
= 0 ,

d2η2

dt2
+
da

dt

dη2

dt
+
db

dt

dη3

dt
= 0 ,

d2η3

dt2
−
da

dt

dη3

dt
+
db

dt

dη2

dt
= 0 .

(15)

The first of these (the deviating acceleration along the
wave propagation direction x1) shows that transverse waves
don’t produce an effect in the direction of propagation.

We look for exact solutions to the remaining two equa-
tions of (15) in the case where a gravitational wave is linearly
polarized in the x2 direction (b=0). First integrals of the eq-
uations are dη2

dt
=C1 e

−a and dη3

dt
=C2 e

+a. Expanding e−a

and e+a into series (high order terms vanish there), we obtain

dη2

dt
= C1 (1− a) ,

dη3

dt
= C2 (1 + a) . (16)

Let the gravitational wave be simple harmonic ω=const
with a constant amplitude A= const: a=A sin ω

c (ct+x
1).

We then obtain exact solutions to the equations — the non-
zero relative displacements produced in the two-particle sys-
tem by the gravitational wave falling along x1:

η2 = η̇2(0)

[
t+

A

ω
cos

ω

c
(ct+ x1)

]
+ η2(0) −

A

ω
η̇2(0) ,

η3 = η̇3(0)

[
t−

A

ω
cos

ω

c
(ct+ x1)

]
+ η3(0) −

A

ω
η̇3(0) .

(17)

These are the exact solutions of the Synge equation in a
particular case, realised today in all solid-body and free-mass
detectors. Looking at the solutions, we conclude:

Transverse gravitational waves of a deformational sort
may produce an effect in a two-particle system, resting
as a whole with respect to the observer, only if the
particles initially oscillate with respect to each other.
If the particles are at rest in the initial moment of time,
a falling gravitational wave cannot produce relative
displacement of the particles.

Therefore the correct theory of a gravitational wave de-
tector we have built states:

Solid-body and free-mass detectors of current con-
struction cannot register gravitational waves in prin-

ciple; in cooling a solid-body detector and initially
placing two distant mirrors at rest in a free-mass
detector, inherent free oscillations are suppressed,
thereby preventing registration of gravitational waves
by the detectors.

In order to make the detectors sensitive to gravitational
waves, we propose the following changes to their current
construction:

For a free-mass detector: Introduce relative oscillations of the
mirrors along their mutual line of sight. Such a modified
system may have a reaction to a falling gravitational wave
as an add-on to the relative velocity of the mirrors on the
background of their basic relative oscillations.

For a solid-body detector: Don’t cool the cylindrical pig, or bet-
ter, apply relative oscillations of the butt-ends. Then the pig
may have a reaction to a falling gravitational wave: an add-
on to the noise of the self-deforming oscillations regularly
detected as a piezoelectric effect∗.

By the foregoing modifications to the exact theory of a
gravitational wave detector, a solid-body detector, and espe-
cially a free-mass detector, may register gravitational waves.

Our theoretical result shows that to detect gravitational
waves, the best method would be a detector consisting of two
moving “particles”. From the purely theoretical perspective,
this is a general case of the deviation equations, where both
particles move with respect to the observer at the initial
moment of time. We obtain therefore, exact solutions for
the general case and, as a result, consider detectors built on
moving “particles” — a suspended, self-vibrating solid-body
pig or suspended, vibrating mirrors in a free-mass detector.

5 Correct solution: a moving detector (general case)

If Weber had solved the deviation equation in conjunction
with the equations of motion, he would have come to the
same conclusion as us: gravitational waves of the deformat-
ional sort may produce an effect in a two-particle system only
if the particles are in motion. Therefore we are going to solve
the deviation equation in conjunction with the equations of
motion in the general case where both particles move initially

∗Because of this, it is most probable that Weber really detected gravita-
tional waves in his experiments of 1968–1970 [3, 4, 5] where he used room-
temperature detectors “. . . spaced about 2 km. A number of coincident events
have been observed, with extremely small probability that they are statistical.
It is clear that on rare occasions these instruments respond to a common
external excitation which may be gravitational radiation” [3]. “Coincidences
have been observed on gravitational-radiation detectors over a base line of
about 1000 km at Argonne National Laboratory and at the University of
Maryland. The probability that all of these coincidences were accidental is
incredibly small” [4]. “Other experiments involve observations to rule out
the possibility that the detectors are being excited electromagnetically. These
results are evidence supporting an earlier claim that gravitational radiation
is being observed” [5].

We both highly appreciate the work of Joseph Weber (1919–2000).
Surely, if he was still alive he would be enthusiastic about our current results,
and with us, immediately undertake new experiments for the detection of
gravitational waves.
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with respect to the observer (U i 6=0). (We mean that both
particles move at the same velocity.)

We do this with the Synge-Weber equation of the deviat-
ing non-geodesics, because the Synge equation of the deviat-
ing geodesics is actually the same when the right side is zero.

We write the Synge-Weber equation (2) in the expanded
form (with similar terms reduced)

d2ηα

ds2
+2Γαμν

dημ

ds
Uν+

∂Γαβδ
∂xγ

UβUδηγ=
1

m0c2
∂Φα

∂xγ
ηγ , (18)

where ds may be expressed through the observable time in-
terval dτ =

√
g00dt+

g0i
c
√
g00
dxi as ds= cdτ

√
1−v2/c2.

According to Zelmanov [9], any vector Qα has two ob-
servable projections Q0√

g00
and Qi, where the time projection

may be calculated as Q0√
g00
=
√
g00Q

0− 1
c viQ

i. We denote

σ= Φ0√
g00

and f i=Φi for the connecting force Φα, while

ϕ= η0√
g00

and ηi for the deviation ηα.
We consider the Synge-Weber equation (18) in a non-

relativistic case, because the velocity of the particles is ob-
viously small. In such a case, in the metric of weak plane
gravitational waves (11), we have∗

dτ = dt , η0 = η0 = ϕ , Φ0 = Φ0 = σ ,

Γ0kn =
1

c
Dkn , Γi0k =

1

c
Di
k , Γikn = Δ

i
kn ,

(19)

while all other Christoffel symbols are zero. We obtain the
time and spatial observable projections of the Synge-Weber
equation (18), which are

d2ϕ

dt2
+
2

c
Dkn

dηk

dt
vn+

(
ϕ
∂Dkn

∂t
+c

∂Dkn

∂xm
ηm
)
vkvn

c2
=

=
1

m0

(
ϕ

c

∂σ

∂t
+

∂σ

∂xm
ηm
)
,

d2ηi

dt2
+
2

c
Di
k

(
dϕ

dt
vk + c

dηk

dt

)
+ 2Δi

kn
dηk

dt
vn+

+2

(
ϕ

c

∂Di
k

∂t
+
∂Di

k

∂xm
ηm
)
vk+

(
ϕ

c

∂Δi
kn

∂t
+
∂Δi

kn

∂xm
ηm
)
vkvn=

=
1

m0

(
ϕ

c

∂f i

∂t
+
∂f i

∂xm
ηm
)
.

(20)

We solve the deviation equations (20) in the field of a
weak plane gravitational wave falling along x1 and linearly
polarized in the x2 direction (b=0). In such a field we have

D22 = −D33 =
1

2
ȧ ,

d

dx1
=
1

c

d

dt
,

Δ122 = −Δ
1
33 = −

1

2c
ȧ , Δ212 = −Δ

3
13 =

1

2c
ȧ ,

(21)

so that the deviation equations (20) in component form are

∗By the metric of weak plane gravitational waves (11), there is no
difference between upper and lower indices.

d2ϕ

dt2
+
ȧ

c

(
dη2

dt
v2−

dη3

dt
v3
)
+

+
ä

2c2

(
ϕ+η1

)(
(v2)2−(v3)2

)
=
1

m0

(
1

c

∂σ

∂t
+
∂σ

∂xm
ηm
)
,

d2η1

dt2
−
ȧ

c

(
dη2

dt
v2−

dη3

dt
v3
)
−

−
ä

2c2

(
ϕ+η1

)(
(v2)2−(v3)2

)
=
1

m0

(
1

c

∂f1

∂t
+
∂f1

∂xm
ηm
)
,

d2η2

dt2
+
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2 + ȧ

dη2

dt

(
1+

v1

c

)
+

+
ä

c

(
ϕ+ η1

)
(
1+

v1

c

)
v2 =

1

m0

(
1

c

∂f2

∂t
+
∂f2

∂xm
ηm
)
,

d2η3

dt2
−
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v3 − ȧ

dη3

dt

(
1+

v1

c

)
−

−
ä

c

(
ϕ+ η1

)
(
1+

v1

c

)
v3 =

1

m0

(
1

c

∂f3

∂t
+
∂f3

∂xm
ηm
)
.

(22)

This is a system of 2nd order differential equations with
respect to ϕ, η1, η2, η3, where the variable coefficients of
the functions are the quantities ȧ, ä, v1, v2, v3.

We may find a from the given metric of the gravitational
wave field, while vi are the solutions to the non-geodesic
equations of motion (12). By the given non-relativistic case
in a field of weak plane linearly polarized gravitational wave,
the equations of motion take the form

ȧ

2c

(
(v2)2 − (v3)2

)
=

σ

m0
,

dv1

dt
−
ȧ

2c

(
(v2)2 − (v3)2

)
=
f1

m0
,

dv2

dt
+ ȧv2

(

1 +
v1

c

)

=
f2

m0
,

dv3

dt
− ȧv3

(

1 +
v1

c

)

=
f3

m0
.

(23)

5.1 Solution for a free-mass detector

We first find the solution for a simple case, where two
particles don’t interact with each other (Φα=0) — the right
side is zero in the equations. This is a case of a free-mass
detector. We find the quantities vi from the equations of
motion (23), which, since Φα=0, become geodesic

(v2)2 − (v3)2 = 0 ,
dv1

dt
= 0 ,

dv2

dt
+ ȧv2 = 0 ,

dv3

dt
+ ȧv3 = 0 .

(24)

From this we see that a transverse gravitational wave
doesn’t produce an effect in the longitudinal direction: v1=
=v1(0)= const. Therefore, henceforth, v1(0)=0.
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The remaining equations of (24) may be integrated with-
out problems. We obtain: v2=v2(0)e

−a, v3=v3(0)e
+a. As-

suming the wave simple harmonic, ω= const, with a constant
amplitude, A= const, i. e. a=A sin ω

c (ct+x
1), and expand-

ing the exponent into series, we obtain

v2 = v2(0)

[
1− A sin

ω

c
(ct+x1)

]
,

v3 = v3(0)

[
1 + A sin

ω

c
(ct+x1)

]
,

(25)

i. e. a gravitational wave has an effect only in directions
orthogonal to its propagation. Clearly, a gravitational wave
doesn’t affect particles at rest with respect to the local space
where the wave propagates.

Substituting the solutions (25) into the equations of the
deviating non-geodesics (22) and setting the right side to
zero as for geodesics, we obtain

d2ϕ

dt2
+
ȧ

c

(
dη2

dt
v2(0) −

dη3

dt
v3(0)

)
=0 ,

d2η1

dt2
−
ȧ

c

(
dη2

dt
v2(0) −

dη3

dt
v3(0)

)
=0 ,

d2η2

dt2
+ ȧ

dη2

dt
+
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2(0)+

ä

c

(
ϕ+η1

)
v2(0)=0 ,

d2η3

dt2
− ȧ

dη3

dt
−
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2(0)−

ä

c

(
ϕ+η1

)
v2(0)=0 .

(26)

Summing the first two equations and integrating the sum,
we obtain ϕ+η1=B1 t+B2, where B1,2 are integration
constants. Substituting these into the other two, we obtain

d2η2

dt2
+ ȧ

dη2

dt
+
ȧ

c
B1v

2
(0) +

ä

c

(
B1t+B2

)
v2(0) = 0 ,

d2η3

dt2
− ȧ

dη2

dt
−
ȧ

c
B1v

3
(0) −

ä

c

(
B1t+B2

)
v3(0) = 0 .

(27)

The equations differ solely in the sign of a, and can
therefore be solved in the same way. We introduce a new
variable y= dη2

dt
. Then we have a linear uniform equation of

the 1st order with respect to y

ẏ + ȧy = −
ȧ

c
B1v

2
(0) −

ä

c

(
B1t+B2

)
v2(0) , (28)

which has the solution

y = e−F
(

y0 +

∫ t

0

g (t) eF dt

)

, F (t) =

∫ t

0

f (t) dt , (29)

where F (t)= ȧ, g(t)=− ȧ
cB1v

2
(0)−(B1t+B2)v

2
(0). Expand-

ing the exponent into series in the solution, and then integrat-
ing, we obtain

y = η̇2 = η̇2(0)

[
1− A sin

ω

c
(ct+x1)

]
−

−
Aω

c
v2(0)
(
B1t+B2

)
cos

ω

c
(ct+x1) +

Aω

c
B2v

2
(0) .

(30)

Integrating this equation, and applying the same method
for η3, we arrive at the final solutions: the relative displace-
ments η2 and η3 in a free-mass detector are

η2= η2(0)+

(
η̇2(0)+

AωB2v
2
(0)

c

)
t+

A

ω

(
η̇2(0)−

v2(0)
c
B1

)
×

×

[
cos

ω

c
(ct+x1)−1

]
−
Av2(0)
c

(
B1t+B2

)
sin
ω

c
(ct+x1) ,

(31)

η3= η3(0)+

(
η̇3(0)−

AωB2v
3
(0)

c

)
t−

A

ω

(
η̇3(0)−

v3(0)
c
B1

)
×

×

[
cos

ω

c
(ct+x1)−1

]
+
Av3(0)
c

(
B1t+B2

)
sin
ω

c
(ct+x1) .

(32)

With η̇2 and η̇3, we integrate the first two equations of
(26). We obtain thereby the relative displacement η1 in a
free-mass detector and the time shift ϕ at its ends, thus

η1= η̇1(0)t−
A

ωc

(
v2(0)η̇

2
(0)−v

3
(0)η̇

3
(0)

)[
1−cos

ω

c
(ct+x1)

]
+η1(0), (33)

ϕ= ϕ̇(0)t+
A

ωc

(
v2(0)η̇

2
(0)−v

3
(0)η̇

3
(0)

)[
1−cos

ω

c
(ct+x1)

]
+η1(0). (34)

Finally, we substitute ϕ and η1 into ϕ+ η1=B1 t+B2
to fix the integration constants B1= ϕ̇(0)+ η̇

1
(0) and B2=

=ϕ(0)+ η
1
(0).

Thus we have obtained the solutions to the Synge equa-
tion of deviating geodesics. We see that relative displace-
ments of two free particles in the directions x2 and x3, trans-
verse to that of gravitational wave propagation consist of:

1. Displacements, increasing linearly with time;

2. Harmonic oscillations at the frequency ω of a falling
gravitational wave;

3. Oscillations, the amplitude of which increases linearly
with time (last term in the solutions).

The first two of the displacements are permitted in the
transverse direction x2 or x3, only if the particles initially
move in this direction with respect to the local space (v2 6=0
or v3 6=0) or with respect to each other (η̇2 6=0 or η̇3 6=0). For
instance, if they are at rest with respect to x2, an x1-directed
gravitational wave doesn’t displace them in this direction.

The third of the displacements is permitted only if the
particles initially move with respect to each other in the
longitudinal direction (η̇1 6=0).

We see from the solution for η1 that gravitational waves
may displace the particles even in the same direction of
the wave propagation, if the particles initially move in this
direction with respect to each other.

The solution ϕ is the time shift in the clocks located at
both particles, caused by a falling gravitational wave∗. From
(34), this effect is permitted if the particles move both with

∗We assume ϕ(0)=0: time count starts from zero. We assume as well
ϕ̇(0)=0: time flows uniformly in the absence of a wave gravitational field.
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respect to the local space and each other in at least one of
the transverse directions x2 and x3.

In view of these results, we propose a new experimental
statement for the detection of gravitational waves, based on
a free-mass detector.

New experiment for a free-mass detector: A free-mass detector,
where two mirrors are suspended and vibrating so that they
have free oscillations with respect to each other or along par-
allel (vertical or horizontal) lines. With the mirrors oscillating
along parallel lines, such a system moves with respect to the
local space (vi(0) 6=0), while with the mirrors oscillating with
respect to each other the system has non-stationary relative
displacements of the butt-ends (ηi(0) 6=0, η̇

i
(0) 6=0). Accord-

ing to the exact theory of a free-mass detector given above,
a falling gravitational wave produces a relative displacement
of the mirrors, that may be registered with a laser range-
finder (or similar system). Moreover, as the theory predicts,
a time shift is produced in the mirrors, that may be registered
by synchronized clocks located with each of the mirrors: their
asynchronization implies a gravitational wave detection.

5.2 Solution for a solid-body detector

We assume an elastic force connecting two particles in a
solid-body detector to be Φα=−kασ x

σ , where kασ is the
elastic coefficient. We assume the force Φα to be independent
of time, i. e. k0σ =0. In such a case the equations of motion
of the particles (23) take the form

(v2)2 − (v3)2 = 0 ,

dv1

dt
−
ȧ

2c

(
(v2)2 − (v3)2

)
= −

k1σ
m0

xσ,

dv2

dt
+ ȧv2

(

1 +
v1

c

)

= −
k2σ
m0

xσ,

dv3

dt
− ȧv3

(

1 +
v1

c

)

= −
k3σ
m0

xσ.

(35)

Thus a transverse gravitational wave doesn’t produce
an effect in the longitudinal direction x1: v1=v1(0)= const.
Therefore, henceforth, v1=0 and k1σ =0. In such a case the
equations of motion take the form

dv2

dt
+ ȧv2 = −

k2σ
m0

xσ,
dv3

dt
− ȧv3 = −

k3σ
m0

xσ. (36)

The equations differ solely by the sign of ȧ. Therefore
we solve only the first of them. The second equation may be
solved following the same method.

Let k2σ = k
3
σ = k= const, i. e. the solid-body pig is elastic

in only two directions transverse to the direction x1 of the
gravitational wave propagation. With that, the equation of
motion in the x2 direction is

d2x2

dt2
+

k

m0
x2 = − Aω cos

ω

c
(ct+x1)

dx2

dt
. (37)

Denoting x2≡x, k
m0
=Ω2, Aω=−μ, we reduce this

equation to the form

ẍ+Ω2x = μ cos
ω

c
(ct+x1) ẋ , (38)

where μ is the so-called “small parameter”. This is a “quasi-
harmonic” equation: with μ=0, such an equation is a har-
monic oscillation equation; while if μ 6=0 the right side plays
the rôle of an forcing factor — we obtain a forced oscillation
equation.

We solve this equation using the small parameter method
of Poincaré, known also as the perturbation method: we con-
sider the right side as a perturbation of a harmonic oscillation
described by the left side. The Poincaré method is related to
exact solution methods, because a solution produced with the
method is a power series expanded by the small parameter μ
(see Lefschetz, Chapter XII, §2 [12]).

Before we solve (38) we introduce a new variable t′=Ωt
in order to make it dimensionless as in [12], and μ′= μ

Ω

ẍ+ x = μ′ cos
ω

Ωc
(ct′+Ωx1) ẋ , (39)

where we differentiate by t′. A general solution of this equa-
tion, representable as the equivalent system

ẋ = y , ẏ = −x+ μ′ cos
ω

Ωc
(ct′+Ωx1) y (40)

with the initial data x(0) and y(0) at t′=0, is determined by
the series pair (Lefschetz)

x = P0 (x(0), y(0), t
′) + μ′P1 (x(0), y(0), t

′) + . . .

y = Ṗ0 (x(0), y(0), t
′) + μ′ Ṗ1 (x(0), y(0), t

′) + . . .

}

. (41)

We substitute these into (40) and, equating coefficients
in the same orders of μ′, obtain the recurrent system

P̈0 + P0 = 0

P̈1 + P1 = Ṗ0 cos
ω

Ωc
(ct′+Ωx1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .






(42)

with the initial data P0(0)=ξ, Ṗ0(0)=ϑ, P1(0)= Ṗ1(0)=0
(n>0) at t′=0. Because the amplitude A (we have it in the
variable μ′=−ω

ΩA) is small, this problem takes only the first
two equations into account. The first of them is a harmonic
oscillation equation, with the solution

P0 = ξ cos t′ + ϑ sin t′, (43)

while the second equation, with this solution, is

P̈1 + P1 = (−ξ sin t
′ + ϑ cos t′) cos

ω

Ωc
(ct′ +Ωx1) . (44)

This is a linear uniform equation. We solve it following
Kamke (Part III, Chapter II, §2.5 in [13]). The solution is∗

∗Here we go back to the initial variables.
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P1=
ϑΩ2

2

{
cos
[
(Ω−ω)t− ω

c
x1
]

Ω2−(Ω−ω)2
+
cos
[
(Ω+ω)t+ ω

c
x1
]

Ω2−(Ω+ω)2

}

−

−
iξΩ2

2

{
sin
[
(Ω−ω)t− ω

c
x1
]

Ω2−(Ω−ω)2
+
sin
[
(Ω+ω)t+ ω

c
x1
]

Ω2−(Ω+ω)2

}

,

(45)

where the brackets contain the real and imaginary parts of
the formula ei(Ω−ω)t−

ω
c x

1

+ ei(Ω+ω)t+
ω
c x

1

. Going back to
x2=x, we obtain the final solution in the reals

x2= ξ cosΩt+ ϑ sinΩt−

−
AωΩϑ

2

{
cos
[
(Ω−ω)t−ω

c x
1
]

Ω2−(Ω−ω)2
+
cos
[
(Ω+ω)t+ω

c x
1
]

Ω2−(Ω+ω)2

}

,
(46)

while the solution for x3 will differ solely in the sign of the
amplitude A.

With this result we solve the equations of the deviat-
ing non-geodesics (22). Because a solid-body detector has
a freedom for motion less than a free-mass detector, we
assume v1=0, v2=v3, Φ1=0, Φ2=− k

m0
η2, Φ3=− k

m0
η3.

Note that v2=v3 means that the initial conditions ξ and ϑ
are the same in both the directions x2 and x3. Therefore we
obtain

d2ϕ

dt2
= 0 ,

d2η1

dt2
= 0 , (47)

i. e. a gravitational wave doesn’t change both the vertical
size of the pig and the time shift ϕ at its butt-ends: we may
put ϕ=0 and η1=0. With all these, the deviation equation
along x2 takes the form∗

d2η2

dt2
+

k

m0
η2 = −Aω cos

ω

c
(ct+x1)

dη2

dt
, (48)

having the same form as equation (37). So the solution η2 is
like (46), but with the difference that the initial constants ξ
and ϑ depend on η2(0), η

3
(0) and η̇2(0), η̇

3
(0). It is

η2= ξ cosΩt+ ϑ sinΩt−

−
AωΩϑ

2

{
cos
[
(Ω−ω)t−ω

c x
1
]

Ω2−(Ω−ω)2
+
cos
[
(Ω+ω)t+ω

c x
1
]

Ω2−(Ω+ω)2

}

.
(49)

Thus two spring-connected particles in the field of a
gravitational wave may experience the following effects:

1. Free relative oscillations at a frequency Ω;

2. Forced relative oscillations, caused by the gravitational
wave of frequency ω; they occur in the directions
transverse to the wave propagation;

3. Resonant oscillations, which occur as soon as the grav-
itational wave’s frequency becomes double the fre-
quency of the particle’s free oscillation (ω=2Ω); in
such a case even weak oscillations caused by the grav-
itational wave may be detected;

∗We write and solve only the equation for η2, because it differs to that
for η3 solely by the sign of the amplitude A. See (22).

The second and third effects are permitted only if the
particles have an initial relative oscillation. If there is no
initial oscillation, gravitational waves cannot produce an
effect in such a system. Owing to this result, we propose a
new experimental statement for the detection of gravitational
waves by a solid-body detector.

New experiment for a solid-body detector: Use a solid-body cy-
lindrical pig, horizontally suspended and self-vibrating so
that there are relative oscillations of its butt-ends (η2(0) 6=0,
η̇2(0) 6=0). Such an oscillation may be induced by alternating
electromagnetic current or something like this. Or, alternat-
ively, use a similarly suspended, vibrating pig so that it
has an oscillation in the horizontal plane. Such a system
has a non-zero velocity with respect to the observer’s local
space (v2(0) 6=0, v

3
(0) 6=0). Both systems, according to the

exact theory of a solid-body detector, may have a reaction to
gravitational waves (up to resonance) that may be measured
as a piezo-effect in the pig.
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This is a survey of the fine structure stochastic distributions in measurements obtained
by me over 50 years. It is shown: (1) The forms of the histograms obtained at each
geographic point (at each given moment of time) are similar with high probability, even
if we register phenomena of completely different nature — from biochemical reactions
to the noise in a gravitational antenna, or α-decay. (2) The forms of the histograms
change with time. The iterations of the same form have the periods of the stellar day
(1.436 min), the solar day (1.440 min), the calendar year (365 solar days), and the
sidereal year (365 solar days plus 6 hours and 9 min). (3) At the same instants of the
local time, at different geographic points, the forms of the histograms are the same, with
high probability. (4) The forms of the histograms depend on the locations of the Moon
and the Sun with respect to the horizon. (5) All the facts are proof of the dependance
of the form of the histograms on the location of the measured objects with respect to
stars, the Sun, and the Moon. (6) At the instants of New Moon and the maxima of solar
eclipses there are specific forms of the histograms. (7) It is probable that the observed
correlations are not connected to flow power changes (the changes of the gravity
force) — we did not find the appropriate periods in changes in histogram form. (8) A
sharp anisotropy of space was discovered, registered by α-decay detectors armed with
collimators. Observations at 54◦ North (the collimator was pointed at the Pole Star)
showed no day-long periods, as was also the case for observations at 82◦ North, near
the Pole. Histograms obtained by observations with an Easterly-directed collimator
were determined every 718 minutes (half stellar day) and with observations using a
Westerly-directed collimator. (9) Collimators rotating counter-clockwise, in parallel
with the celestial equator, gave the probability of changes in histograms as the number
of the collimator rotations. (10) Collimators rotating clockwise once a day, show no
day-long periods, and similarly, collimators pointed at the Pole Star, and measurements
taken near the North Pole. All the above lead us to the conclusion (proposition) that the
fine structure of the histograms should be a result of the interference of gravitational
waves derived from orbital motions of space masses (the planets and stars).

Introduction

Earlier we showed that the fine structure of the spectrum of
amplitude variations in the results of measurements of pro-
cesses of different nature (in other words, the fine structure of
the dispersion of results or the pattern of the corresponding
histograms) is subject to “macroscopic fluctuations”, chang-
ing regularly with time. These changes indicate that the
“dispersion of results” that remains after all artifacts are
excluded inevitably accompanies any measurements and ref-
lects very basic features of our world. In our research, we
have come to the conclusion that this dispersion of results is
the effect of space-time fluctuations, which, in their turn,
are caused by the movement of the measured object in
an anisotropic gravitational field. Among other things, this
conclusion means that the examination of the detailed pattern

of distributions obtained from the results of measurement of
the dynamics of processes of different nature uncovers laws
which cannot be revealed using traditional methods for the
analysis of time series.

These assertions are based on the results of long-term
experimental investigations conducted for many decades.
The major part of these results, begun in 1958, is published
in Russian. The goal of this paper is to give a brief review
of those results and provide corresponding references.

The most general conclusion of our research is that there
is evidence that the fine structure of stochastic distributions
is not accidental. In other words, noncasual is the pattern of
histograms plotted from a rather small number of the results
of measurement of the dynamics of processes of different
nature, from biochemical reactions and noise in gravitational
antennae, to α-decay [1–24].
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1 The “effect of near zone”

The first element of evidence of the histogram pattern chang-
ing regularly in time is the “effect of near zone”. This effect
means that similar histograms are significantly more likely
to appear in the nearby (neighbouring) intervals of the time
series of the results of measurements. The similarity of the
pattern of histograms plotted from independent intervals of
a time series implies the presence of an external (towards
the process studied) factor, which determines the pattern of
the histogram. The independence of the “near zone” effect
of the nature of the process indicates that this factor has a
quite general nature.

2 Measurements of processes of different nature

The second element of evidence comes from the similarity
of the pattern of histograms plotted from the results of simul-
taneous independent measurements of processes of different
nature at the same geographical point. In view of the funda-
mental difference in the nature of those processes and
methods of their measurement, such a similarity also means
that the factor, determining the histogram pattern, has a quite
general nature. The similarity of histograms when under
study are the processes, in which the ranges of transduced
energy differ by dozens of orders (40 orders if the matter
concerns the noise in a gravitational antenna, and the phen-
omenon of α-decay), implies that this factor has no relation
to energy.

3 Regular changes in the histogram patterns

The third element of evidence for noncasuality of the histo-
gram patterns is their regular changing with time. The regu-
larities are revealed in the existence of the following periods
in the change of the probability of similar histograms to
appear.

3.1. Near-daily periods; these are well-resolvable “sidereal”
(1436 min) and “solar” (1440 min) daily periods. These
periods imply dependence of the histogram pattern on the rot-
ation of the Earth around its axis. The pattern is determined
by two independent factors: the position relative to the starry
sky and that relative to the Sun.

3.2. Approximately 27-day periods. These periods can be
considered as an indication of the dependence of the histo-
gram pattern on the position relative to the nearby celestial
bodies: the Sun, the Moon and, probably, the planets.

3.3. Yearly periods; these are well-resolvable “calendar” (365
solar days) and “sidereal” (365 solar days plus 6 h and 9 min)
yearly periods.

All these periods imply the dependence of the obtained
histogram pattern on two factors of rotation — (1) rotation
of the Earth around its axis, and (2) movement of the Earth
along its circumsolar orbit.

4 The observed local-time synchronism

The dependence of the histogram pattern on the Earth rotation
around its axis is clearly revealed in the phenomenon of
synchronization at the local time, when similar histograms
are very likely to appear at different geographical points
(from Arctic to Antarctic, in the Western and Eastern hemi-
spheres) at the same local time. It is astonishing that the
local-time synchronism with the precision of 1 min is ob-
served independently of the regional latitude at the most
extreme distances — as extreme as possible on the Earth
(about 15,000 km).

5 The synchronism observed at different latitudes

The dependence of the histogram pattern on the Earth rotation
around its axis is also revealed in the disappearance of the
near-daily periods close to the North Pole. Such measure-
ments were conducted at the latitude of 82◦ North in 2000.
The analysis of histograms from the 15-min and 60-min
segments showed no near-daily periods, but these periods
remain in the sets of histograms plotted from the 1-min
segments. Also remaining was the local-time synchronism
in the appearance of similar histograms.

Following these results, it would be very interesting to
conduct measurements as close as possible to the North Pole.
That was unfeasible, and so we performed measurements
with collimators, which channel α-particles emitted in a
certain direction from a sample of 239Pu. The results of those
experiments made us change our views fundamentally.

6 The collimator directed at the Pole Star

Measurements were taken with the collimator directed at the
Pole Star. In the analysis of histograms plotted from the
results of counting α-particles that were travelling North (in
the direction of the Pole Star), the near-daily periods were not
observed, nor was the near-zone effect. The measurements
were made in Pushchino (54◦ latitude North), but the effect
is as would be expected at 90◦ North, i. e. at the North Pole.
This means that the histogram pattern depends on the spatial
direction of the process measured. Such a dependence, in
its turn, implies a sharp anisotropy of space. Additionally, it
becomes clear that the matter does not concern any “effect”
or “influence” on the object under examination. The case
in point is changes, fluctuations of the space-time emerging
from the rotation of the Earth around its axis and the move-
ment of the planet along its circumsolar orbit [9, 13, 14, 15,
19, 20, 21].

7 The East and West-directed collimators

This effect was confirmed in experiments with two collimat-
ors, directed East and West correspondingly. In those exper-
iments, two important effects were discovered.
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7.1. The histograms registered in the experiments with the
East-directed collimator (“east histograms”) are similar to
those “west histograms” that are delayed by 718 min, i. e. by
half of the sidereal day.

7.2. No similar histograms were observed in the simultaneous
measurements with the “east” and “west” collimators. With-
out collimators, it is highly probable for similar histograms to
appear at the same place and time. This space-time synchron-
ism disappears when α-particles streaming in the opposing
directions are counted.

These results are in agreement with the concept that the
histogram pattern depends on the vector of the α-particle
emission relative to a certain point at the coelosphere [20].

8 The experiments with the rotating collimators

These investigations were naturally followed by experiments
with rotating collimators [22, 24].

8.1. With the collimator rotating counter-clockwise (i. e.,
together with the Earth), the coelosphere was scanned with
a period equal to the number of the collimator rotations per
day plus one rotation made by the Earth itself. We examined
the dependence of the probability of similar histograms to
appear on the number of collimator rotations per day. Just as
expected, the probability turned out to jump with periods
equal to 1440 min divided by the number of collimator
rotations per day plus 1. We evaluated data at 1, 2, 3, 4,
5, 6, 7, 11 and 23 collimator rotations per day and found
periods equal to 12, 8, 6 etc. hours. The analysis of highly
resolved data (with a resolution of 1 min) revealed that each
of these periods had two extrema: “sidereal” and “solar”.
These results indicate that the histogram pattern is indeed
determined by how the direction of the α-particle emission
relates to the “picture of the heaven” [24].

8.2. When the collimator made 1 clockwise rotation per day,
the rotation of the Earth was compensated for (α-particles
always undergo emission in the direction of the same region
of the coelosphere) and, correspondingly, the daily periods
dissappeared. This result was completely analogous to the
results of measurements near the North Pole and measure-
ments with the immobile collimator directed towards the Pole
Star [20].

8.3. With the collimator placed in the ecliptic plane, directed
at the Sun and making 1 clockwise rotation per day, α-
particles are constantly emitted in the direction of the Sun. As
was expected, the near-daily periods, both solar and sidereal,
disappeared under such conditions.

9 The 718-min period

The pattern of histograms is determined by a complex set
of cosmo-physical factors. It follows from the existence of
the near-27-day periods, that amongst these factors may be

the relative positions and states of the Sun, the Moon and
the Earth. We repeatedly observed similar histograms during
the risings and settings of the Sun and the Moon. A very
large volume of work has been carried out. Yet we have not
found a histogram pattern which would be characteristic for
those instants. A review and analysis of the corresponding
results will be given in a special paper. Here, I shall note one
quite paradoxical result: on the days of equinox one can see
a clear period in the appearance of similar histograms, which
is equal to 718 min (i. e. half of the sidereal day). There is
no such period on the days of solstice. This phenomenon
indicates that the histogram pattern depends on the ecliptic
position of the Sun. If that is indeed so, we can expect that
on the equator the period of 718 min will be observed year-
round.

10 The observations during eclipses

All the results presented above were obtained by the evalu-
ation of tens of thousands of histogram pairs in every exper-
iment, so these results have a stochastic character. A com-
pletely different approach is used in the search for character-
istic histogram patterns in the periods of the New Moon and
solar eclipses. In these cases, we go right to the analysis of the
histogram patterns at a certain predetermined moment. Doing
so, we have discovered an amazing phenomenon. At the
moment of the New Moon, a certain characteristic histogram
appears practically simultaneously at different longitudes and
latitudes — all over the Earth. This characteristic histogram
corresponds to a time segment of 0.5–1.0 min [21]. When
the solar eclipse reaches maximum (as a rule, this moment
does not coincide with the time of the New Moon), a specific
histogram also appears; however, it has a different pattern.
Such specific patterns emerge not only in the moments of
the New Moon or solar eclipses. But the probability of their
appearance at these very moments at different places and on
different dates (months, years) being accidental is extremely
low. These specific patterns do not relate to tidal effects. Nor
do they depend on position on the Earth’s surface, where the
Moon’s shadow falls during the eclipse or the New Moon.

11 The possible nature of “macroscopic fluctuations”

I have presented above a brief review of the main phenomena
that are united by the notion of “macroscopic fluctuations”.
A number of works suggested different hypotheses on the
nature of those phenomena [3, 9, 10, 13–15, 19, 27–31],
concerning some general categories such as discreteness and
continuity, symmetry, the nature of numbers, stochasticity. In
this section of the paper I draw attention to the question of
how some of the discovered phenomena can be considered
in relation to these general categories.

11.1. The non-energetic nature of the phenomena. Fluctua-
tions of space-time [14, 19].
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It is clear that we deal with non-energetic phenomena.
As mentioned above, the ranges of energies in biochemical
reactions, noise in gravitational antennae, and α-decay, differ
by many orders. At the same time, the corresponding histo-
gram patterns are similar with a high probability at the same
local time at different geographical points. The only thing
common to such different processes is the space-time in
which they occur. Therefore, the characteristics of space-
time change every successive moment.

It is important to note that the “macroscopic fluctuations”
do not result from the effect of any factors on the object under
examination. They just reflect the state of the space-time.

The changes in space-time can follow the alterations of
the gravitational field. These alterations are determined by
the movement of the examined object in a heterogeneous
gravitational field. The heterogeneity results from the exist-
ence of “mass thicknesses”, i. e. heavenly bodies. The move-
ment includes the daily rotation of the Earth, its translocation
along its circumsolar orbit and, probably, the drift of the
solar system in the galaxy. All these forms of movement
seem to be reflected in the corresponding periods of variation
of histogram patterns. How the fluctuations of space-time
transform into the pattern of histograms is unclear.

11.2. Fractality [14, 19].
We suppose that the histogram pattern varies due to the

change of the cosmo-physical conditions in the process of
the Earth movement around its axis and along its circumsolar
orbit. Then we might expect that the shorter are the intervals
for which histograms are plotted, the more similar would
be the histogram patterns. This corresponds to the concept
of “lifetime” of a certain idea of form. This concept is an
obvious consequence of the “effect of near zone”, when the
probability of histogram patterns to be similar is higher for
the histograms from the neighbouring intervals.

However, we failed to find such a short interval for which
the histogram pattern “would not have time to change”. The
maximum probability for histograms to be similar only in the
first, the nearest interval, does not change upon variation of
this interval from several hours to milliseconds. This phen-
omenon corresponds to the notion of “fractality”; however,
the physical meaning of this fractality needs to be clarified.

Following the dependence of the histogram pattern on
direction obtained in the experiments with collimators, we
deal with a spatial heterogeneity on the scale of the order of
10−13 cm: the dependence of the histogram pattern should
be determined before the emission of α-particles from the
nucleus. Therefore, to “stop the instant”, stop the histogram
changing, we should have worked with correspondingly small
time intervals. Perhaps this will be possible someday soon.

11.3. The mirror symmetry, chirality of histograms [7].
Quite often (up to 30% of cases), the patterns of the

successive histograms are reflection symmetric. There are
right and left forms, and they may be very complex. This

phenomenon possibly means that chirality is an inherent
feature of space-time.

11.4. “Stochasticity along abscissa and regularity along ord-
inate”.

Our main result — evidence of non-stochasticity of the
fine structure of sampling distributions, i. e. the fine structure
of the spectrum of amplitude fluctuations in processes of any
nature, i. e. the fine structure of the corresponding histograms
— implies the existence of a particular class of macroscopic
stochastic processes.

Among such processes is radioactive decay. This is an
“a priori stochastic” (i. e. stochastic according to the accepted
criteria) process. However, the pattern of histograms (i. e. the
fine structure of the amplitudes of fluctuations of the decay
rate) changes regularly with time.

The point is that in the majority of cases, stochasticity is
treated as an irregular succession of events — succession in
time, just one after another. This is “stochasticity along the
axis of abscisses”.

For macroscopic processes, the distributions of the ampli-
tudes of fluctuations of measured quantities are considered
to correspond to smooth distributions of Gauss-Poisson type.
The available fitting criteria are integral, they are based
on averaging, smoothing of those fluctuations. Such fitting
criteria cannot “sense” the fine structure of distributions.
According to these criteria, the processes we study, such
as radioactive decay, correspond well to traditional views.

However, known for more then a hundred years is a no-
ticeable exception — atomic spectra. While the transitions of
electrons from one level to another are “a priori stochastic”,
the energies of the levels are sharply discrete. The “stochastic
along the abscissa” process of transition is “regular along the
ordinate”.

The result of our work is the discovery of analogous mac-
roscopic processes. In the process of fluctuating, the measur-
ed quantities take values, some of which are observed more
often than the others; there are “forbidden” and “allowed”
values of the measured quantities. This is what we see in the
fine structure of histograms, with all its “peaks and troughs”.
The “macroscopic quantization” differs from the quantization
in the microworld. Here only the “idea of histogram form”
remains invariant, whereas the concrete values, correspond-
ing to extrema, can change. This is the main difference
between the spectra of amplitude fluctuations of macroscopic
processes and the atomic spectra.

11.5. The fine structure of histograms. The presence of “peaks
and troughs” in histogram patterns is a consequence of two
causes: arithmetic (algorithmic) and physical [7, 14, 19].

11.5.1. The arithmetic or algorithmic cause of discreteness
[7, 14, 19] lies in a very unequal number of factors (divisors)
corresponding to the natural sequence. If the measured value
is a result of operations based on the algorithms of division,
multiplication, exponentiation, then discreteness will be
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unavoidable. Correspondingly, the histogram patterns will
be determined by these algorithms. This can be seen, for
example, in the computer simulation of the process of radio-
active decay (Poisson statistics). The pattern of some histo-
grams obtained in such a simulation is indistinguishable
from the pattern of histograms plotted for the radioactive
decay data. However, the sequence of “computer” histogram
patterns, in contrast to that of “physical” ones, does not
depend on time and can be reproduced over and over again by
launching the simulation program with the same parameters.
This sequence is determined by the nature of numbers and
the algorithms used. In our work we experienced an unusual
incident, when the sequence of histogram patterns created by
a random number generator was similar, with high probab-
ility, to the sequence obtained from the radioactive decay
data. If studied systematically, this case might give a clue to
the nature of those “physical algorithms” that determine the
time changes of the patterns of physical histograms [19].

11.5.2. The physical cause of discreteness is the interference
of wave fluxes [19].

The fine structure of histograms, the presence of narrow
extrema, cannot have a probabilistic nature. According to
Poisson statistics, with which radioactive decay roughly ac-
cords, the width of such extrema should be of order N1/2.

Therefore, if neighbouring extrema in the histogram pat-
tern have similar values of N, they should overlap, but they
do not. Such narrow extrema can arise only as a result of
interference. Hence, the fine structure of histograms plotted
from the results of measurements of any nature would be a
result of an interference of some waves. As follows from all
the material presented above, the issue concerns processes
caused by the movement of the Earth (and objects on its
surface) relative to the “mass thicknesses”. So it would be
logical to define the waves whose interference is reflected in
the histogram patterns as “gravitational”.

The results of experiments with collimators, producing
narrow beams of α-particles, lead us to conclude for a sharp
anisotropy of our world. The corresponding wave fluxes
should be very narrow.

Collimators are not necessary to reveal this anisotropy.
We observe highly resolved daily and yearly periods in the
changing of the probability of a certain histogram pattern to
appear repeatedly (the resolution is 1 min). The histogram
patterns specific for the New Moon and solar eclipses can
appear at different geographical points synchronously, with
an accuracy of 0.5 min. The local-time synchronism at dif-
ferent geographical points (almost 15,000 km apart) is also
determined by a sharp extremum on the curve of distribution
over intervals with a resolution of 1 min. In the experiments
with the rotation of collimators, the “sidereal” and “solar”
periods are also observed with one-minute resolution.

Taken together, all these facts can mean that we deal with
narrowly directed wave fluxes, “beams”. The narrowness of

these putative fluxes or beams is smaller than the aperture
of collimators. Collimators with the diameter of 0.9 mm and
length of 10 mm isolate in the coelosphere a window of about
5◦, corresponding to approximately 20 min of the Earth’s
daily rotation rate. This fact, noted by Kharakoz, could be
explained if we admit that the “beams” are more narrow than
the aperture of our collimators.

Even with the fact that the matter concerns the changes of
the histogram pattern and the movement of the Earth relative
to the sphere of fixed stars, the Moon and the Sun, it is not
necessary to consider anisotropy as being only due to the
heterogeneous distribution of masses (presence of celestial
bodies) in space. It is possible that this anisotropy is caused
by a preferential direction, which, for example, is due to
the drift of the solar system towards the constellation of
Hercules. The existence of such a direction is an old problem
of physics. In this connection, of great value for us are the
results of the interference experiments of Dayton Miller [43],
the experiments and conception of Alais [42], de Witte’s
measurements [47] and Cahill’s conception [44, 46]. It is
necessary to mention that several years ago, Lyapidevsky
[29] and Dmitrievsky [30] considered the preferential direct-
ion in space as the cause of the effects we observed.

In this case, we can say that for many years, we have
studied phenomena indicating the existence of gravitational
waves. Then the problem of detection of gravitational waves
can be approached differently: instead of using bulky and ex-
pensive devices, such as Weber’s antennae, one could register
the changes of the fine structure of histograms plotted from
the results of measurements of certain chosen processes.

The fine structure of the histogram pattern we registered
while solar eclipses manifests a resonance in an interference
picture, built by a bulky space masses. Most probable this is
a gravitational wave pattern. The histogram patterns specific
for solar eclipses recall to Crother’s analysis of Kepler’s laws
in General Relativity, wherein he showed that space-time is
locally anisotropic for a rotating spherical body [49]. In this
situation, we suppose that of principal importance are works
by Borissova [50] and Rabounski [51] on the theory and
methods of detection of gravitational waves and the concept
of “global scaling” advanced by Hartmut Muller [52].
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By recurring to Geometric Probability methods it is shown that the coupling constants,
αEM , αW , αC , associated with the electromagnetic, weak and strong (color) force
are given by the ratios of measures of the sphere S2 and the Shilov boundaries
Q3=S

2×RP 1, squashed S5, respectively, with respect to the Wyler measure
ΩWyler[Q4] of the Shilov boundary Q4=S3×RP 1 of the poly-disc D4 (8 real dim-
ensions). The latter measure ΩWyler[Q4] is linked to the geometric coupling strength
αG associated to the gravitational force. In the conclusion we discuss briefly other
approaches to the determination of the physical constants, in particular, a program
based on the Mersenne primes p-adic hierarchy. The most important conclusion of
this work is the role played by higher dimensions in the determination of the coupling
constants from pure geometry and topology alone and which does not require to invoke
the anthropic principle.

1 Geometric probability

Geometric Probability [1] is the study of the probabilities in-
volved in geometric problems — the distributions of length,
area, volume, etc. for geometric objects under stated condi-
tions. One of the most famous problem is the Buffon’s Needle
Problem of finding the probability that a needle of length l
will land on a line, given a floor with equally spaced parallel
lines a distance d apart. The problem was posed by the French
naturalist Buffon in 1733. For l < d the probability is

P =
1

2π

∫ 2π

0

dθ
l |cos θ|
d

=
4 l

2πd

∫ π
2

0

cos θ=
2l
πd
=

2ld
πd2

. (1.1)

Hence, the Geometric Probability is essentially the ratio
of the areas of a rectangle of length 2d, and width l and
the area of a circle of radius d. For l > d, the solution is
slightly more complicated [1]. The Buffon needle problem
provides with a numerical experiment that determines the
value of π empirically. Geometric Probability is a vast field
with profound connections to Stochastic Geometry.

Feynman long ago speculated that the fine structure con-
stant may be related to π. This is the case as Wyler found
long ago [2]. We will take the fine structure constant based
on Feynman’s physical interpretation of the electron’s charge
as the probability amplitude that an electron emits/absorbs a
photon. The clue to evaluate this probability within the con-
text of Geometric Probability theory is provided by the el-
ectron self-energy diagram. Using Feynman’s rules, the self-
energyΣ(p) as a function of the electron’s incoming/outgoing
energy-momentum pμ is given by the integral involving the
photon and electron propagator along the internal lines

−iΣ(p)=(−ie)2
∫

d4k

(2π)4
γμ

i

γρ(pρ−kρ)−m
−igμν
k2

γν . (1.2)

The integral is taken with respect to the values of the pho-
ton’s energy-momentum kμ. By inspection one can see that

the electron self-energy is proportional to the fine structure
constant αEM ∼ e2, the square of the probability amplitude
(in natural units of ~= c= 1) and physically represents the
electron’s emission of a virtual photon (off-shell, k2 6=0) of
energy-momentum kρ at a given moment, followed by an
absorption of this virtual photon at a later moment.

Based on this physical picture of the electron self-energy
graph, we will evaluate the Geometric Probability that an
electron emits a photon at t=−∞ (infinite past) and re-
absorbs it at a much later time t=+∞ (infinite future). The
off-shell (virtual) photon associated with the electron self-
energy diagram asymptotically behaves on-shell at the very
moment of emission (t=−∞) and absorption (t=+∞).
However, the photon can remain off-shell in the intermediate
region between the moments of emission and absorption by
the electron. The fact that Geometric Probability is a classical
theory does not mean that one cannot derive the fine structure
constant (which involves the Planck constant) because the
electron self-energy diagram is itself a quantum (one-loop)
Feynman process; i. e. one can recur to Geometric Probability
to assign proper geometrical measures to Feynman diagrams,
not unlike the Twistor-diagrammatic version of the Feynman
rules of QFT.

The topology of the boundaries (at conformal infinity) of
the past and future light-cones are spheres S2 (the celestial
sphere). This explains why the (Shilov) boundaries are es-
sential mathematical features to understand the geometric
derivation of all the coupling constants. In order to describe
the physics at infinity we will recur to Penrose’s ideas [12]
of conformal compactifications of Minkowski spacetime by
attaching the light-cones at conformal infinity. Not unlike the
one-point compactification of the complex plane by adding
the points at infinity leading to the Gauss-Riemann sphere.

∗This paper is based on a talk given at the Second Intern. p-adic Con-
ference in Mathematics and Physics (Belgrade, Serbia, September, 2005).
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The conformal group leaves the light-cone fixed and it does
not alter the causal properties of spacetime despite the rescal-
ings of the metric. The topology of the conformal compact-
ification of real Minkowski spacetime M̄4=S

3×S1/Z2=
=S3×RP 1 is precisely the same as the topology of the
Shilov boundary Q4 of the 4 complex-dimensional poly-
disc D4. The action of the discrete group Z2 amounts to an
antipodal identification of the future null infinity I+ with
the past null infinity I−; and the antipodal identification of
the past timelike infinity i− with the future timelike infi-
nity, i+, where the electron emits, and absorbs the photon,
respectively.

Shilov boundaries of homogeneous (symmetric spaces)
complex domains, G/K [9]–[11] are not the same as the ord-
inary topological boundaries (except in some special cases).
The reason being that the action of the isotropy group K of
the origin is not necesarily transitive on the ordinary topo-
logical boundary. Shilov boundaries are the minimal subspa-
ces of the ordinary topological boundaries which implement
the Maldacena-’T Hooft-Susskind holographic principle [15]
in the sense that the holomorphic data in the interior (bulk)
of the domain is fully determined by the holomorphic data
on the Shilov boundary. The latter has the property that the
maximum modulus of any holomorphic function defined on
a domain is attained at the Shilov boundary.

For example, the poly-disc D4 of 4 complex dimensions
is an 8 real-dim Hyperboloid of constant negative scalar
curvature that can be identified with the conformal relativistic
curved phase space associated with the electron (a particle)
moving in a 4D Anti de Sitter space AdS4. The poly-disc is
a Hermitian symmetric homogeneous coset space associated
with the 4D conformal group SO(4, 2) sinceD4=SO(4, 2)
/SO(4)×SO(2). Its Shilov boundary Shilov (D4)=Q4 has
precisely the same topology as the 4D conformally compacti-
fied real Minkowski spacetime Q4= M̄4=S

3×S1/Z2=
=S3×RP 1. For more details about Shilov boundaries, the
conformal group, future tubes and holography we refer to the
article by Gibbons [14] and [9], [18].

The role of the conformal group in gravity in these ex-
pressions (besides the holographic bulk/boundary AdS/CFT
duality correspondence [15]) stems from the MacDowell
Mansouri-Chamseddine-West formulation of gravity based
on the conformal group SO(3, 2)which has the same number
of 10 generators as the 4D Poincaré group. The 4D vielbein
eaμ which gauges the spacetime translations is identified with
the SO(3, 2) generator A[a5]μ , up to a crucial scale factor R,
given by the size of the Anti de Sitter space (de Sitter space)
throat. It is known that the Poincaré group is the Wigner-
Inonu group contraction of the de Sitter Group SO(4,1) after
taking the throat size R=∞. The spin-connection ωabμ that
gauges the Lorentz transformations is identified with the
SO(3, 2) generator A[ab]μ . In this fashion, the eaμ, ω

ab
μ are en-

coded into the A[mn]μ SO(3, 2) gauge fields, where m, n run
over the group indices 1, 2, 3, 4, 5. A word of caution, gravity

is a gauge theory of the full diffeomorphisms group which
is infinite-dimensional and which includes the translations.
Therefore, strictly speaking gravity is not a gauge theory
of the Poincaré group. The Ogiovetsky theorem shows that
the diffeomorphisms algebra in 4D can be generated by an
infinity of nested commutators involving the GL(4, R) and
the 4D Conformal Group SO(4, 2) generators.

In [19] we have shown why the MacDowell-Mansouri-
Chamseddine-West formulation of gravity, with a cosmolog-
ical constant and a topological Gauss-Bonnet invariant term,
can be obtained from an action inspired from a BF-Chern-
Simons-Higgs theory based on the conformal SO(3, 2)
group. The AdS4 space is a natural vacuum of the theory.
The vacuum energy density was derived to be precisely the
geometric-mean between the UV Planck scale and the IR
throat size of de Sitter (Anti de Sitter) space. Setting the
throat size to coincide with the future horizon scale (of an
accelerated de Sitter Universe) given by the Hubble scale
(today) RH , the geometric mean relationship yields the ob-
served value of the vacuum energy density ρ∼ (LPRH)−2=
=(LP )

−4(L2P /R
2
H)∼ 10−120M4

Planck. Nottale [24] gave a
different argument to explain the small value of ρ based on
Scale Relativistic arguments. It was also shown in [19] why
the Euclideanized AdS2n spaces are SO(2n−1, 2) instantons
solutions of a non-linear sigma model obeying a double self
duality condition.

A typical objection to the possibility of being able to
derive the values of the coupling constants, from pure thought
alone, is that there are an infinite number of possible analyt-
ical expressions that accurately reproduce the values of the
couplings within the experimental error bounds. However,
this is not our case because once the gauge groups U(1),
SU(2), SU(3) are known there are unique expressions
stemming from Geometric Probability which furnish the
values of the couplings. Another objection is that it is a mean-
ingless task to try to derive these couplings because these
are not constants per se but vary with respect to the energy
scale. The running of the coupling constants is an artifact
of the perturbative Renormalization Group program. We will
see that the values of the couplings derived from Geometric
Probability are precisely those values that correspond to the
natural physical scales associated with the EM, Weak and
Strong forces.

Another objection is that physical measurements of ir-
rational numbers are impossible because there are always
experimental limitations which rule out the possibility of act-
ually measuring the infinite number of digits of an irrational
number. This experimental constraint does not exclude the
possibility of deriving exact expressions based on π as we
shall see. We should not worry also about obtaining numeric-
al values within the error bars in the table of the coupling
constants since these numbers are based on the values of
other physical constants; i. e. they are based on the particular
consensus chosen for all of the other physical constants.
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In our conventions, αEM = e
2/4π= 1/137.036 . . . in the

natural units of ~= c= 1, and the quantities αweak, αcolor are
the Geometric Probabilities g̃2w, g̃

2
c , after absorbing the fac-

tors of 4π of the conventional αW =(g
2
w/4π), αC =(g

2
c/4π)

definitions used in the Renormalization Group (RG) program.

2 The fine structure constant

In order to define the Geometric Probability associated with
this process of the electron’s emission of a photon at i−

(t=−∞), followed by an absorption at i+ (t=+∞), we
must take into account the important fact that the photon is
on-shell k2=0 asymptotically (at t=±∞), but it can move
off-shell k2 6=0 in the intermediate region which is repre-
sented by the interior of the 4D conformally compactified
real Minkowski spacetime which agrees with the Shilov
boundary of D4 (the four-complex-dimensional poly-disc)
Q4= M̄4=S

3×S1/Z2=S3×RP 1. The Q4 has four-real-
dimensions which is half the real-dimensions of D4 (2×4=8).

The measure associated with the celestial spheres S2 (as-
sociated with the future/past light-cones) at timelike infinity
i+, i−, respectively, is V (S2)= 4πr2= 4π (r= 1). Thus, the
net measure corresponding to the two celestial spheres S2 at
timelike infinity i± requires an overall factor of 2 giving
2V (S2)= 8π (r= 1). The factor of 8π= 2×4π can also be
interpreted in terms of the two-helicity degrees of freedom,
corresponding to a spin 1 massless photon, assigned to the
area of the celestial sphere. The Geometric Probability is
defined by the ratio of the (dimensionless volumes) measures
associated with the celestial spheres S2 at i+, i− timelike
infinity, where the photon moves on-shell, relative to the
Wyler measure ΩWyler[Q4] associated with the full interior
region of the conformally compactified 4D Minkwoski space
Q4= M̄4=S

3×S1/Z2=S3×RP 1, where the massive el-
ectron is confined to move, as it propagates from i− to i+,
(and off-shell photons can also live in):

αEM=
2V (S2)
ΩWyler[Q4]

=
8π

ΩWyler[Q4]
=

1

137.03608 . . .
(2.1a)

after inserting the Wyler measure

ΩWyler[Q4]=
V (S4)V (Q5)

[V (D5)]
1
4

=
8π2

3
8π3

3

(
π5

24×5!

)− 1
4

. (2.1b)

The Wyler measure ΩWyler[Q4] [2] is not the standard
measure (dimensionless volume) V (Q4)= 2π3 calculated by
Hua [10] but requires some elaborate procedure.

It was realized by Smith [5] that the presence of the
Wyler measure in the expression for αEM given by eq.-
(2.1) was consistent with Wheeler ideas that the observed
values of the coupling constants of the Electromagnetic,
Weak and Strong Force can be obtained if the geometric
force strengths (measures related to volumes of complex
homogenous domains associated with the U(1), SU(2),

SU(3) groups, respectively ) are all divided by the geometric
force strength of gravity αG (related to the SO(3, 2)MMCW
Gauge Theory of Gravity ) and which is not the same as the
4D Newton’s gravitational constant GN ∼m−2

Planck. Hence,
upon dividing these geometric force strengths by the geo-
metric force strength of gravity αG one is dividing by the
Wyler measure factor because (see below) αG≡ΩWyler[Q4].

Furthermore, the expression for ΩWyler[Q4] is also con-
sistent with the Kaluza-Klein compactification procedure of
obtaining Maxwell’s EM in 4D from pure gravity in 5D
since Wyler’s expression involves a 5D domain D5 from
the very start; i. e. in order to evaluate the Wyler measure
ΩWyler [Q4] one requires to embed D4 into D5 because
the Shilov boundary space Q4=S3×RP 1 is not adequate
enough to implement the action of the SO(5) group, the
compact version of the Anti de Sitter Group SO(3, 2) that
is required in the MacDowell-Mansouri-Chamseddine-West
(MMCW) SO(3, 2) gauge formulation of gravity. However,
the Shilov boundary of D5 given by Q5=S4×RP 1 is ad-
equate enough to implement the action of SO(5) via isometr-
ies (rotations) on the internal symmetry space S4=SO(5)/
SO(4). This justifies the embedding procedure of D4 → D5

The 5 complex-dimensional poly-disc D5=SO(5, 2)/
SO(5)×SO(2) is the 10 real-dim Hyperboloid H10 corres-
ponding to the relativistic curved phase space of a particle
moving in 5D Anti de Sitter Space AdS5. The Shilov bound-
ary Q5 of D5 has 5 real dimensions (half of the 10-real-
dim of D5). One cannot fail to notice that the hyperboloid
H10 can be embedded in the 11-dim pseudo-Euclidean R9,2

space, with two-time like directions. This is where 11-dim
lurks into our construction.

Having displayed Wyler’s expression of the fine structure
constant αEM in terms of the ratio of dimensionless measures,
we shall present a Fiber Bundle (a sphere bundle fibration
over a complex homogeneous domain) derivation of the
Wyler expression based on the bundle S4→E→D5, and
explain below why the propagation (via the determinant of
the Feynman propagator) of the electron through the interior
of the domain D5 is what accounts for the “obscure” factor
V (D5)

1/4 in Wyler’s formula for αEM .
We begin by explaining why Wyler’s measure ΩWyler[Q4]

in eq.-(2.1) corresponds to the measure of a S4 bundle fibered
over the base curved-space D5=SO(5, 2)/SO(5)×SO(2)
and weighted by a factor of V (D5)−1/4. This S4→E→D5
bundle is linked to the MMCW SO(3, 2) Gauge Theory
formulation of gravity and explains the essential role of the
gravitational interaction of the electron in Wyler’s formula
[5] corroborating Wheeler’s ideas that one must normalize
the geometric force strengths with respect to gravity in order
to obtain the coupling constants. The subgroup H =SO(5)
of the isotropy group (at the origin) K =SO(5)×SO(2)
acts naturally on the Fibers F =S4=SO(5)/SO(4), the
internal symmetric space, via isometries (rotations). Locally,
and only locally, the Fiber bundle E is the product D5×S4.
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The restriction of the Fiber bundle E to the Shilov boundary
Q5 is written as E|Q5 and locally is the product of Q5×S4,
but this is not true globally unless the fiber bundle admits a
global section (the bundle is trivial). So, the volume V (E|Q5)
does not necessary always factorize as V (Q5)×V (S4). Set-
ting aside this subtlety, we shall pursue a more physical route,
suggested by Wyler in unpublished work [3]∗, to explain the
origin of the “obscure normalization” factor V (D5)

1/4 in
Wyler’s measure ΩWyler[Q4] = (V (S

4)×V (Q5)/V (D5)1/4),
which suggests that the volumes may not factorize.

The relevant physical feature of this measure factor
V (D5)

1/4 is that it encodes the spinorial degrees of freedom
of the electron, like the factor of 8π encodes the two-helicity
states of the massless photon. The Feynman propagator of a
massive scalar particle (inverse of the Klein-Gordon operator)
(DμD

μ−m2)−1 corresponds to the kernel in the Feynman
path integral that in turn is associated with the Bergman
kernel Kn(z, z

′) of the complex homogenous domain Dn,
proportional to the Bergman constant kn≡ 1/V (Dn), i. e.

(DμD
μ−m2)−1(xμ)=

1

(2πμ)D

∫
dDp

e−ipμx
μ

p2−m2+ iε
↔

↔ Kn(z, z̄
′) =

1
V (Dn)

(1−zz̄′)−2n,

(2.2)

where we have introduced a momentum scale μ to match
units in the Feynman propagator expression, and the Berg-
man Kernel Kn(z, z̄

′) of Dn whose dimensionless entries
are z=(z1, z2, . . . , zn), z′=(z′1, z

′
2, . . . , z

′
n) is given as

Kn(z, z̄
′) =

1
V (Dn)

(1− zz̄′)−2n (2.3a)

V (Dn) is the dimensionless Euclidean volume found by
Hua V (Dn)= (πn/2

n−1n!) and satisfies the reproducing and
normalization properties

f(z)=

∫

Dn

f(ξ)Kn(z, ξ)d
nξdnξ̄ ,

∫

Dn

Kn(z, z̄)d
nzdnz̄=1. (2.3b)

The key result that can be inferred from the Feynman
propagator (kernel) ↔ Bergman kernel Kn correspondence,
when μ= 1, is the (2π)−D↔ (V (Dn))

−1 correspondence;
i. e. the fundamental hyper-cell in momentum space (2π)D

(when μ=1) corresponds to the dimensionless volume V (Dn)
of the domain, whereD= 2n real dimensions. The regulariz-
ed vacuum-to-vacuum amplitude of a free real scalar field is
given in terms of the zeta function ζ(s)=

∑
i λ

−s
i associated

with the eigenvalues of the Klein-Gordon operator by

Z =<0|0>=
√
det(DμDμ−m2)−1∼ exp

[
1
2
dζ

ds
(s=0)

]
. (2.4)

In case of a complex scalar field we have to double the
number of degrees of freedom, the amplitude then factorizes
into a product and becomes Z =det(DμDμ−m2)−1.

Since the Dirac operator D= γμDμ+ m is the “square-

∗I thank Frank (Tony) Smith for this information and many discussions.

root” of the Klein-Gordon operatorD†D=DμDμ−m2+R
(R is the scalar curvature of spacetime that is zero in Min-
kowski space) we have the numerical correspondence
√
det(D)−1 =

√
det
(
DμDμ −m2

)−1/2
=

=

√√
det
(
DμDμ−m2

)−1
↔ k1/4n =

(
1

V (Dn)

)1/4
,

(2.5)

because detD†= detD, and

detD = etr lnD = etr ln(DμD
μ−m2)1/2 =

= e
1
2 tr ln(DμD

μ−m2) =
√
det(DμDμ −m2) .

(2.6)

The vacuum-to-vacuum amplitude of a complex Dirac
field Ψ (a fermion, the electron) is Z = det(γμDμ+m)=
= detD∼ exp[−(dζ/ds)(s=0)]. Notice the det(D) behav-
ior of the fermion versus the det(DμDμ−m2)−1 behavior
of a complex scalar field due to the Grassmanian nature of
the Gaussian path integral of the fermions. The vacuum-to-
vacuum amplitude of a Majorana (real) spinor (half of the
number of degrees of freedom of a complex Dirac spinor) is
Z =

√
det(γμDμ+m). Because the complex Dirac spinor

encodes both the dynamics of the electron and its anti-
particle, the positron (the negative energy solutions), the
vacuum-to-vacuum amplitude corresponding to the electron
(positive energy solutions, propagating forward in time) must
be then Z =

√
det(γμDμ+m).

Therefore, to sum up, the origin of the “obscure” factor
V (D5)

1/4 in Wyler’s formula is the normalization condition
of V (S4)×V (Q5) by a factor of V (D5)1/4 stemming from
the correspondence V (D5)1/4↔Z =

√
det(γμDμ+m) and

which originates from the vacuum-to-vacuum amplitude of
the fermion (electron) as it propagates forward in time in the
domainD5. These last relations emerge from the correspond-
ence between the Feynman fermion (electron) propagator
in Minkowski spacetime and the Bergman Kernel of the
complex homogenous domain after performing the Wyler
map between an unbounded domain (the interior of the future
lightcone of spacetime) to a bounded one. In general, the
Bergman Kernel gives rise to a Kahler potential F (z, z̄)=
= logK(z, z̄) in terms of which the Bergman metric on Dn
is given by

gij̄ =
∂2F

∂zi∂z̄i
. (2.7)

We must emphasize that this Geometric probability ex-
planation is very different from the interpretations provided in
[2, 5, 6, 7] and properly accounts for all the numerical factors.
Concluding, the Geometric Probability that an electron emits
a photon at t=−∞ and absorbs it at t=+∞, is given by
the ratio of the dimensionless measures (volumes):

αEM =
2V (S2)
ΩWyler[Q4]

= 8π
1

V (S4)

1
V (Q5)

[V (D5)]
1
4 =

=
9

8π4

(
π5

24×5!

)1/4
=

1
137.03608 . . .

(2.8)
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in very good agreement with the experimental value. This is
easily verified after one inserts the values of the Euclidean-
ized regularized volumes found by Hua [10]

V (D5) =
π5

24×5!
, V (Q5) =

8π3

3
, V (S4) =

8π2

3
. (2.19)

In general

V (Dn) =
πn

2n−1n!
, V (Sn−1) =

2πn/2

Γ(n/2)
, (2.10)

V (Qn)=V (S
n−1×RP 1)=V (Sn−1)×V (RP 1) =

=
2πn/2

Γ(n/2)
× π =

2π(n+2)/2

Γ(n/2)
.
(2.11)

Objections were raised to Wyler’s original expression
by Robertson [4]. One of them was that the hyperboloids
(discs) are not compact and whose volumes diverge because
the Lobachevsky metric diverges on the boundaries of the
poly-discs. Gilmore explained [4] why one requires to use
the Euclideanized regularized volumes because Wyler had
shown that it is possible to map an unbounded physical
domain (the interior of the future light cone) onto the interior
of a homogenous bounded domain without losing the causal
structure and on which there exist also a complex structure.
A study of Shilov boundaries, holography and the future tube
can be found in [14].

Furthermore, in order to resolve the scaling problems
of Wyler’s expression raised by Robertson, Gilmore showed
why it is essential to use dimensionless volumes by setting
the throat sizes of the Anti de Sitter hyperboloids to r= 1,
because this is the only choice for r where all elements in the
bounded domains are also coset representatives, and there-
fore, amount to honest group operations. Hence the scaling
objections against Wyler raised by Robertson were satisfact-
ory solved by Gilmore [4]. Thus, all the volumes in this sec-
tion and forth, are based on setting the scaling factor r= 1.

The question as to why the value of αEM obtained in
Wyler’s formula is precisely the value of αEM observed
at the scale of the Bohr radius aB , has not been solved,
to our knowledge. The Bohr radius is associated with the
ground (most stable) state of the Hydrogen atom [5]. The
spectrum generating group of the Hydrogen atom is well
known to be the conformal group SO(4, 2) due to the fact
that there are two conserved vectors, the angular momentum
and the Runge-Lentz vector. After quantization, one has two
commuting SU(2) copies SO(4)=SU(2)×SU(2). Thus,
it makes physical sense why the Bohr-scale should appear
in this construction. Bars [16] has studied the many physical
applications and relationships of many seemingly distinct
models of particles, strings, branes and twistors, based on the
(super) conformal groups in diverse dimensions. In particular,
the relevance of two-time physics in the formulation ofM , F ,
S theory has been advanced by Bars for some time. The Bohr
radius corresponds to an energy of 137.036×2×13.6 eV∼

∼ 3.72×103eV. It is well known that the Rydberg scale, the
Bohr radius, the Compton wavelength of electron, and the
classical electron radius are all related to each other by a
successive scaling in products of αEM .

To finalize this section and based on the MMCW SO(3, 2)
Gauge Theory formulation of gravity, with a Gauss-Bonnet
topological term plus a cosmological constant, the (dimen-
sionless) Wyler measure was defined as the geometric coupl-
ing strength of gravity [5]:

ΩWyler[Q4] =
V (S4)V (Q5)

[V (D5)]
1
4

≡ αG . (2.12)

The relationship between αG and the Newtonian grav-
itational G constant is based on the value of the coupling
(1/16πG) appearing in the Einstein-Hilbert Lagrangian
(R/16πG), and goes as follows:

(16πG)(m2
Planck) = αEMαG = 8π ⇒

⇒ G =
1

16π
8π

m2
Planck

=
1

2m2
Planck

⇒

⇒ Gm2
proton =

1
2

(
mproton

mPlanck

)2
∼ 5.9×10−39

(2.13)

and in natural units ~=c=1 yields the physical force strength
of gravity at the Planck Energy scale 1.22×1019 GeV. The
Planck mass is obtained by equating the Schwarzschild radius
2GmPlanck to the Compton wavelength 1/mPlanck associated
with the mass; where mPlanck

√
2= 1.22×1019 GeV and the

proton mass is 0.938 GeV. Some authors define the Planck
mass by absorbing the factor of

√
2 inside the definition of

mPlanck= 1.22×1019 GeV.

3 The weak and strong couplings

We turn now to the derivation of the other coupling constants.
The Fiber Bundle picture of the previous section is essential
in our construction. The Weak and the Strong geometric
coupling constant strength, defined as the probability for a
particle to emit and later absorb a SU(2), SU(3) gauge
boson, can both be obtained by using the main formula de-
rived from Geometric Probability (as ratios of dimensionless
measures/volumes) after one identifies the suitable homogen-
eous domains and their Shilov boundaries to work with.

Since massless gauge bosons live on the lightcone, a
null boundary in Minkowski spacetime, upon performing the
Wyler map, the gauge bosons are confined to live on the
Shilov boundary. Because the SU(2) bosons W±, Z0 and
the eight SU(3) gluons have internal degrees of freedom
(they carry weak and color charges) one must also include the
measure associated with the their respective internal spaces;
namely, the measures relevant to Geometric Probability cal-
culations are the measures corresponding to the appropriate
sphere bundles fibrations defined over the complex bounded
homogenous domains Sm→E→Dn.
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Furthermore, the Geometric Probability interpretation for
αweak, αstrong agrees with Wheeler’s ideas [5] that one must
normalize these geometric force strengths with respect to the
geometric force strength of gravity αG=ΩWyler[Q4] found in
the last section. Hence, after these explanations, we will show
below why the weak and strong couplings are given, respect-
ively, by the ratio of the measures (dimensionless volumes):

αweak =
Ω[Q3]

ΩWyler[Q4]
=
Ω[Q3]

αG

=
Ω[Q3]

(8π/αEM)
, (3.1)

αcolor =
Ω[squashedS5]

ΩWyler[Q4]
=
Ω[sq.S5]

αG

=
Ω[sq.S5]

(8π/αEM)
. (3.2)

As always, one must insert the values of the regularized
(Euclideanized) dimensionless volumes provided by Hua
[10] (set the scale r= 1). We must also clarify and emphasize
that we define the quantities αweak, αcolor as the probabilities
g̃2W , g̃2C , by absorbing the factors of 4π in the conventional
αW =(g

2
W/4π), αC =(g

2
C/4π) definitions (based on the Re-

normalization Group (RG) program) into our definitions of
probability g̃2W , g̃2C .

Let us evaluate the αweak. The internal symmetry space
is CP 1=SU(2)/U(1) ( a sphere S2∼CP 1) where the
isospin group SU(2) acts via isometries on CP 1. The Shilov
boundary ofD2 isQ2=S1×RP 1 but is not adequate enough
to accommodate the action of the isospin group SU(2).
One requires to have the Shilov boundary of D3 given
byQ3=S2×S1/Z2=S2×RP 1 that can accommodate the
action of the SU(2) group on S2. A Fiber Bundle over D3=
=SO(3, 2)/SO(3)×SO(2) whose H =SO(3)∼SU(2)
subgroup of the isotropy group (at the origin) K =SO(3)×
×SO(2) acts on S2 by simple rotations. Thus, the relevant
measure is related to the fiber bundle E restricted to Q3 and
is written as V (E|Q3).

One must notice that due to the fact that the SU(2) group
is a double-cover of SO(3), as one goes from the SO(3)
action on S2 to the SU(2) action on S2 , one must take into
account an extra factor of 2 giving then

V (CP 1) = V
(
SU(2)/U(1)

)
=

= 2V
(
SO(3)/U(1)

)
= 2V (S2) = 8π .

(3.3)

In order to obtain the weak coupling constant due to
the exchange of W±Z0 bosons in the four-point tree-level
processes involving four leptons, like the electron, muon, tau,
and their corresponding neutrinos (leptons are fundamental
particles that are lighter than mesons and baryons) which are
confined to move in the interior of the domain D3, and can
emit (absorb) SU(2) gauge bosons,W±Z0, in the respective
s, t, u channels, one must take into account a factor of the
square root of the determinant of the fermionic propagator,√
detD−1=

√
det (γμDμ +m)−1, for each pair of leptons,

as we did in the previous section when an electron emitted
and absorbed a photon. Since there are two pairs of leptons in
these four-point tree-level processes involving four leptons,

one requires two factors of
√
det (γμDμ +m)−1, giving

a net factor of det (γμDμ +m)−1 and which corresponds

now to a net normalization factor of k1/2n =(1/V (D3))1/2,
after implementing the Feynman kernel ↔ Bergman kenel
correspondence. Therefore, after taking into account the
result of eq.-(3.3), the measure of the S2→E→D3 bundle,
restricted to the Shilov boundary Q3, and weighted by the
net normalization factor (1/V (D3))1/2, is

Ω(Q3) = 2V (S2)
V (Q3)

V (D3)1/2
. (3.4)

Therefore, the Geometric probability expression is given
by the ratio of measures (dimensionless volumes):

αweak=
Ω[Q3]

ΩWyler[Q4]
=
Ω[Q3]

αG

=
2V (S2)V (Q3)
V (D3)1/2

αEM

8π
=

= (8π)(4π2)

(
π3

24

)− 1
2 αEM

8π
= 0.2536 . . .

(3.5)

that corresponds to the weak coupling constant (g2/4π based
on the RG convention) at an energy of the order of

E =M = 146 GeV ∼
√
M2
W+

+M2
W−

+M2
Z (3.6)

after the expressions inserted (setting the scale r= 1)

V (S2) = 4π , V (Q3) = 4π2, V (D3) =
π3

24
(3.7)

into the formula (3-5). The relationship to the Fermi coupling
goes as follows (with the energy scale E=M = 146 GeV):

GF ≡
αW

M2
⇒ GF m

2
proton =

(
αW

M2

)

m2
proton =

= 0.2536×

(
mproton

146 GeV

)2
∼ 1.04×10−5

(3.8)

in very good agreement with experimental observations.
Once more, it is unknown why the value of αweak obtained
from Geometric Probability corresponds to the energy scale
related to the W+, W−, Z0 boson mass, after spontaneous
symmetry breaking.

Finally, we shall derive the value of αcolor from eq.-
(3.2) after one defines what is the suitable fiber bundle.
The calculation is based on the book by L. K. Hua [10,
p. 40, 93]. The symmetric space with the SU(3) color force
as a local group is SU(4)/SU(3)×U(1) which corresponds
to a bounded symmmetric domain of type I(1,3) and has a
Shilov boundary that Hua calls the “characteristic manifold”
CI(1,3). The volume V

(
CI(m,n)

)
is:

V (CI) =
(2π)mn−m(m−1)/2

(n−m)! (n−m+ 1)! . . . (n− 1)!
(3.9)

so that for m= 1 and n= 3 the relevant volume is then
V (CI)= (2π)3/2! = 4π3. We must remark at this point that
CI( 1, 3) is not the standard round S5 but is the squashed
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five-dimensional S̃5.∗

The domain of which CI(1,3) is the Shilov boundary is
denoted by Hua as RI(1,3) and whose volume is

V (RI) =
1! 2! . . . (m− 1)! 1! 2! . . . (n− 1)!πmn

1! 2! . . . (m+ n− 1)!
(3.10)

so that for m=1 and n=3 it gives V (RI)=1!2!π3/1!2!3! =
=π3/6 and it also agrees with the volume of the standard
six-ball.

The internal symmetry space (fibers) is as follows CP 2=
=SU(3)/U(2) whose isometry group is the color SU(3)
group. The base space is the 6D domainB6=SU(4)/U(3)=
=SU(4)/SU(3)×U(1) whose subgroup SU(3) of the iso-
tropy group (at the origin) K =SU(3)×U(1) acts on the
internal symmetry space CP 2 via isometries. In this special
case, the Shilov and ordinary topological boundary of B6
both coincide with the squashedS5 [5].

Since Gilmore, in response to Robertson’s objections to
Wyler’s formula [2], has shown that one must set the scale
r= 1 of the hyperboloids Hn (and Sn) and use dimensionles
volumes, if we were to equate the volumes V (CP 2)=
=V (S4, r= 1) [5], this would be tantamount of choosing
another scale [25] R (the unit of geodesic distance in CP 2)
that is different from the unit of geodesic distance in S4 when
the radius r= 1, as required by Gilmore. Hence, a bundle
map E→E′ from the bundle CP 2→E→B6 to the bundle
S4→E′→B6, would be required that would allow us to
replace the V (CP 2) for V (S4, r= 1). Unless one decides to
calibrate the unit of geodesic distance in CP 2 by choosing
V (CP 2)=V (S4).

Using again the same results described after eq.-(2.2),
since a quark can emit and absorb later on a SU(3) gluon (in
a one-loop process), and is confined to move in the interior
of the domain B6, there is one factor only of the square
root of the determinant of the Dirac propagator

√
detD−1=

=
√√

det (DμDμ−m2)−1 and which is associated with

a normalization factor of k1/4n =(1/V (B6))1/4. Therefore,
the measure of the bundle S4→E′→B6 restricted to the
squashedS5 (Shilov boundary of B6), and weighted by the
normalization factor (1/V (B6))1/4, is then

Ω[squashedS5] =
V (S4) V (squashedS5)

V (B6)1/4
(3.11)

and the ratio of measures

αS=
Ω[sq.S5]

ΩWyler[Q4]
=
Ω[sq.S5]

αG

=
V (S4)V (sq.S5)

V (B6)1/4
αEM

8π
=

=

(
8π2

3

)

(4π3)

(
π3

6

)−1/4
αEM

8π
= 0.6286 . . .

(3.12)

matches, remarkably, the strong coupling value α= g2/4π
at an energy E related precisely to the pion masses [5]

∗Frank (Tony) Smith, private communication.

E = 241 MeV ∼
√
m2
π+ +m

2
π− +m

2
π0 . (3.13)

The one-loop Renormalization Group flow of the coupl-
ing is given by [28]:

αs(E
2)=αs(E

2
0)

[
1+

(
11− 2

3
Nf (E

2)
)

4π
αs(E

2
0)ln

(
E2

E20

)]−1
(3.14)

where Nf (E2) is the number of quark flavors whose mass
M2<E2. For the specific numerical details of the evaluation
(in energy-intervals given by the diverse quark masses) of
the Renormalization Group flow equation (3-14) that yields
αS(E= 241 MeV)∼ 0.6286 we refer to [5]. Once more, it is
unknown why the value of αcolor obtained from Geometric
Probability corresponds to the energy scale E= 241 MeV
related to the masses of the pions. The pions are the known
lightest quark-antiquark pairs that feel the strong interaction.

Rigorously speaking, one should include higher-loop cor-
rections to eq.-(3.14) as Weinberg showed [28] to determine
the values of the strong coupling at energy scales E= 241
MeV. This issue and the subtleties behind the calibration of
scales (volumes) by imposing the condition V (CP 2)=V (S4)
need to be investigated. For example, one could calibrate
lengths in terms of the units of geodesic distance in CP 2

(based on Gilmore’s choice of r= 1) giving V (CP 2)=
=V (S5; r= 1)/V (S1; r= 1)=π2/2! [25], and it leads now
to the value of αS = 0.1178625 which is very close to the
value of αS at the energy scale of the Z-boson mass (91.2
GeV) and given by αS = 0.118 [28].

4 Mersenne primes p-adic hierarchy. Other approaches

To conclude, we briefly mention other approaches to the de-
termination of the physical parameters. A hierarchy of coupl-
ing constants, including the cosmological constant, based on
Seifert-spheres fibrations was undertaken by [26]. The ratios
of particle masses, like the proton to electron mass ratio
mp/me∼ 6π5 has also been calculated using the volumes of
homogeneous bounded domains [5, 6]. A charge-mass-spin
relationship was investigated in [27]. It is not known whether
this procedure should work for Grand Unified Theories
(GUT) based on the groups like SU(5), SO(10), E6, E7,
E8, meaning whether or not one could obtain, for example,
the SU(5) coupling constant consistent with the Grand Uni-
fication Models based on the SU(5) group and with the
Renormalization Group program at the GUT scale.

Beck [8] has obtained all of the Standard Model para-
meters by studying the numerical minima (and zeros) of
certain potentials associated with the Kaneko coupled two-
dim lattices (two-dim non-linear sigma-like models which
resemble Feynman’s chess-board lattice models) based on
Stochastic Quantization methods. The results by Smith [5]
(also based on Feynman’s chess board models and hyper-
diamond lattices) are analytical rather than being numerical
[8] and it is not clear if there is any relationship between
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these latter two approaches. Noyes has proposed an iterated
numerical hierarchy based on Mersenne primes Mp= 2p− 1
for certain values of p= primes [20], and obtained a quite
large number of satisfactory values for the physical para-
meters. An interesting coincidence is related to the iterated
Mersenne prime sequence

M2 = 22 − 1 = 3 , M3 = 23 − 1 = 7 ,

M7 = 27 − 1 = 127 , 3+ 7+ 127 = 137 ,

M127 = 2127 − 1 ∼ 1.69×1038 ∼

(
MPlanck

mproton

)2
.

(4.1)

Pitkanen has also developed methods to calculate phys-
ical masses recurring to a p-adic hierarchy of scales based
on Mersenne primes [21].

An important connection between anomaly cancellation
in string theory and perfect even numbers was found in
[23]. These are numbers which can be written in terms
of sums of its divisors, including unity, like 6= 1+ 2+ 3,
and are of the form P (p)= 1

2 2p(2p− 1) if, and only if,
2p− 1 is a Mersenne prime. Not all values of p= prime
yields primes. The number 211− 1 is not a Mersenne prime,
for example. The number of generators of the anomaly free
groups SO(32), E8×E8 of the 10-dim superstring is 496
which is an even perfect number. Another important group
related to the unique tadpole-free bosonic string theory is
the SO(213)=SO(8192) group related to the bosonic string
compactified on the E8×SO(16) lattice. The number of
generators of SO(8192) is an even perfect number since
213− 1 is a Mersenne prime. For an introduction to p-adic
numbers in Physics and String theory see [22].

A lot more work needs to be done to be able to answer
the question: is all this just a mere numerical coincidence or
is it design? However, the results of the previous sections
indicate that it is very unlikely that these results were just
a mere numerical coincidence (senseless numerology) and
that indeed the values of the physical constants could be
actually calculated from pure thought, rather than invoking
the anthropic principle; i. e. namely, based on the interplay
of harmonic analysis, geometry, topology, higher dimensions
and, ultimately, number theory. The fact that the coupling
constants involved the ratio of measures (volumes) may cast
some light on the role of the world-sheet areas of strings,
and world volumes of p-branes, as they propagate in target
spacetime backgrounds of diverse dimensions.
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A Brief History of Black Holes
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Neither the layman nor the specialist, in general, have any knowledge of the historical
circumstances underlying the genesis of the idea of the Black Hole. Essentially,
almost all and sundry simply take for granted the unsubstantiated allegations of
some ostentatious minority of the relativists. Unfortunately, that minority has been
rather careless with the truth and is quite averse to having its claims corrected,
notwithstanding the documentary evidence on the historical record. Furthermore, not a
few of that vainglorious and disingenuous coterie, particularly amongst those of some
notoriety, attempt to dismiss the testimony of the literature with contempt, and even
deliberate falsehoods, claiming that history is of no importance. The historical record
clearly demonstrates that the Black Hole has been conjured up by combination of
confusion, superstition and ineptitude, and is sustained by widespread suppression
of facts, both physical and theoretical. The following essay provides a brief but
accurate account of events, verifiable by reference to the original papers, by which the
scandalous manipulation of both scientific and public opinion is revealed.

It has frequently been alleged by theoretical physicists (e. g.
[1, 2]) that Newton’s theory of gravitation either predicts
or adumbrates the black hole. This claim stems from a
suggestion originally made by John Michell in 1784 that
if a body is sufficiently massive, “all light emitted from such
a body would be made to return to it by its own power of
gravity”. The great French scientist, P. S. de Laplace, made
a similar conjecture in the eighteenth century and undertook
a mathematical analysis of the matter.

However, contrary to popular and frequent expert opin-
ion, the Michell-Laplace dark body, as it is actually called,
is not a black hole at all. The reason why is quite simple.

For a gravitating body we identify an escape velocity.
This is a velocity that must be achieved by an object to
enable it to leave the surface of the host body and travel out
to infinity, where it comes to rest. Therefore, it will not fall
back towards the host. It is said to have escaped the host.
At velocities lower than the escape velocity, the object will
leave the surface of the host, travel out to a finite distance
where it momentarily comes to rest, then fall back to the
host. Consequently, a suitably located observer will see the
travelling object twice, once on its journey outward and once
on its return trajectory. If the initial velocity is greater than
or equal to the escape velocity, an observer located outside
the host, anywhere on the trajectory of the travelling object,
will see the object just once, as it passes by on its outward
unidirectional journey. It escapes the host. Now, if the escape
velocity is the speed of light, this means that light can leave
the host and travel out to infinity and come to rest there. It
escapes the host. Therefore, all observers located anywhere
on the trajectory will see the light once, as it passes by
on its outward journey. However, if the escape velocity is

greater than the speed of light, then light will travel out to
a finite distance, momentarily come to rest, and fall back to
the host, in which case a suitably located observer will see
the light twice, once as it passes by going out and once upon
its return. Furthermore, an observer located at a sufficiently
large and finite distance from the host will not see the light,
because it does not reach him. To such an observer the host
is dark: a Michell-Laplace dark body. But this does not mean
that the light cannot leave the surface of the host. It can, as
testified by the closer observer. Now, in the case of the black
hole, it is claimed by the relativists that no object and no
light can even leave the event horizon (the “surface”) of the
black hole. Therefore, an observer, no matter how close to
the event horizon, will see nothing. Contrast this with the
escape velocity for the Michell-Laplace dark body where, if
the escape velocity is the speed of light, all observers located
on the trajectory will see the light as it passes out to infinity
where it comes to rest, or when the escape velocity is greater
than the speed of light, so that a suitably close observer will
see the light twice, once when it goes out and once when
it returns. This is completely opposite to the claims for the
black hole. Thus, there is no such thing as an escape velocity
for a black hole, and so the Michell-Laplace dark body is
not a black hole. Those who claim the Michell-Laplace dark
body a black hole have not properly understood the meaning
of escape velocity and have consequently been misleading
as to the nature of the alleged event horizon of a black hole.
It should also be noted that nowhere in the argument for the
Michell-Laplace dark body is there gravitational collapse to
a point-mass, as is required for the black hole.

The next stage in the genesis of the black hole came with
Einstein’s General Theory of Relativity. Einstein himself
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never derived the black hole from his theory and never
admitted the theoretical possibility of such an object, always
maintaining instead that the proposed physical basis for its
existence was incorrect. However, he was never able to
demonstrate this mathematically because he did not under-
stand the basic geometry of his gravitational field. Other
theoreticians obtained the black hole from Einstein’s equa-
tions by way of arguments that Einstein always objected to.
But Einstein was over-ruled by his less cautious colleagues,
who also failed to understand the geometry of Einstein’s
gravitational field.

The solution to Einstein’s field equations, from which the
black hole has been extracted, is called the “Schwarzschild”
solution, after the German astronomer Karl Schwarzschild,
who, it is claimed by the experts, first obtained the solution
and first predicted black holes, event horizons, and Schwarz-
schild radii, amongst other things. These credits are so com-
monplace that it comes as a surprise to learn that the famous
“Schwarzschild” solution is not the one actually obtained by
Karl Schwarzschild, even though all the supposed experts
and all the textbooks say so. Furthermore, Schwarzschild
did not breathe a word about black holes, because his true
solution does not allow them.

Shortly after Einstein published the penultimate version
of his theory of gravitation in November 1915, Karl Schwarz-
schild [3] obtained an exact solution for what is called the
static vacuum field of the point-mass. At that time Schwarz-
schild was at the Russian Front, where he was serving in the
German army, and suffering from a rare skin disease con-
tracted there. On the 13th January 1916, he communicated
his solution to Einstein, who was astonished by it. Einstein
arranged for the rapid publication of Schwarzschild’s paper.
Schwarzschild communicated a second paper to Einstein
on the 24th February 1916 in which he obtained an exact
solution for a sphere of homogeneous and incompressible
fluid. Unfortunately, Schwarzschild succumbed to the skin
disease, and died about May 1916, at the age of 42.

Working independently, Johannes Droste [4] obtained
an exact solution for the vacuum field of the point-mass.
He communicated his solution to the great Dutch scientist
H. A. Lorentz, who presented the solution to the Dutch Royal
Academy in Amsterdam at a meeting on the 27th May
1916. Droste’s paper was not published until 1917. By then
Droste had learnt of Schwarzschild’s solution and therefore
included in his paper a footnote in acknowledgement. Droste
anticipated the mathematical procedure that would later lead
to the black hole, and correctly pointed out that such a
procedure is not permissible, because it would lead to a
non-static solution to a static problem. Contra-hype!

Next came the famous “Schwarzschild” solution, actually
obtained by the great German mathematician David Hilbert
[5], in December 1916, a full year after Schwarzschild ob-
tained his solution. It bears a little resemblance to Schwarz-
schild’s solution. Hilbert’s solution has the same form as

Droste’s solution, but differs in the range of values allowed
for the incorrectly assumed radius variable describing how
far an object is located from the gravitating mass. It is this
incorrect range on the incorrectly assumed radius variable by
Hilbert that enabled the black hole to be obtained. The vari-
able on the Hilbert metric, called a radius by the relativists,
is in fact not a radius at all, being instead a real-valued
parameter by which the true radii in the spacetime manifold
of the gravitational field are rightly calculated. None of the
relativists have understood this, including Einstein himself.
Consequently, the relativists have never solved the problem
of the gravitational field. It is amazing that such a simple
error could produce such a gigantic mistake in its wake,
but that is precisely what the black hole is — a mistake for
enormous proportions. Of course, the black hole violates the
static nature of the problem, as pointed out by Droste, but the
black hole theoreticians have ignored this important detail.

The celebrated German mathematician, Hermann Weyl
[6], obtained an exact solution for the static vacuum field of
the point-mass in 1917, by a very elegant method. He derived
the same solution that Droste had obtained.

Immediately after Hilbert’s solution was published there
was discussion amongst the physicists as to the possibility
of gravitational collapse into the nether world of the nascent
black hole. During the Easter of 1922, the matter was con-
sidered at length at a meeting at the Collège de France, with
Einstein in attendance.

In 1923 Marcel Brillouin [7] obtained an exact solution
by a valid transformation of Schwarzschild’s original so-
lution. He demonstrated quite rigorously, in relation to his
particular solution, that the mathematical process, which later
spawned the black hole, actually violates the geometry as-
sociated with the equation describing the static gravitational
field for the point-mass. He also demonstrated rigorously
that the procedure leads to a non-static solution to a static
problem, just as Droste had pointed out in 1916, contradicting
the very statement of the initial problem to be solved —
what is the gravitational field associated with a spherically
symmetric gravitating body, where the field is unchanging in
time (static) and the spacetime outside the body is free of
matter (i. e. vacuum), other than for the presence of a test
particle of negligible mass?

In mathematical terms, those solutions obtained by
Schwarzschild, Droste and Weyl, and Brillouin, are mutually
consistent, in that they can be obtained from one another
by an admissible transformation of coordinates. However,
Hilbert’s solution is inconsistent with their solutions because
it cannot be obtained from them or be converted to one
of them by an admissible transformation of coordinates.
This fact alone is enough to raise considerable suspicions
about the validity of Hilbert’s solution. Nonetheless, the
relativists have not recognised this problem either, and have
carelessly adopted Hilbert’s solution, which they invariably
call “Schwarzschild’s” solution, which of course, it is cer-
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tainly not.
In the years following, a number of investigators argued,

in one way or another, that the “Schwarzschild” solution,
as Hilbert’s solution became known and Schwarzschild’s
real solution neglected and forgotten, leads to the bizarre
object now called the black hole. A significant subsequent
development in the idea came in 1949, when a detailed but
erroneous mathematical study of the question by the Irish
mathematical physicist J. L. Synge [8], was read before the
Royal Irish Academy on the 25th April 1949, and published
on the 20th March 1950. The study by Synge was quite ex-
haustive but being based upon false premises its conclusions
are generally false too. Nonetheless, this paper was hailed
as a significant breakthrough in the understanding of the
structure of the spacetime of the gravitational field.

It was in 1960 that the mathematical description of the
black hole finally congealed, in the work of M. D. Kruskal
[9] in the USA, and independently of G. Szekeres [10] in
Australia. They allegedly found a way of mathematically
extending the “Schwarzschild” solution into the region of
the nascent black hole. The mathematical expression, which
is supposed to permit this, is called the Kruskal-Szekeres
extension. This formulation has become the cornerstone of
modern relativists and is the fundamental argument upon
which they rely for the theoretical justification of the black
hole, which was actually christened during the 1960’s by the
American theoretical physicist, J. A. Wheeler, who coined
the term.

Since about 1970 there has been an explosion in the
number of people publishing technical research papers, text-
books and popular science books and articles on various
aspects of General Relativity. A large proportion of this
includes elements of the theory of black holes. Quite a
few are dedicated exclusively to the black hole. Not only
is there now a simple black hole with a singularity, but also
naked singularities, black holes without hair, supermassive
black holes at the centres of galaxies, black hole quasars,
black hole binary systems, colliding black holes, black hole
x-ray sources, charged black holes, rotating black holes,
charged and rotating black holes, primordial black holes,
mini black holes, evaporating black holes, wormholes, and
other variants, and even white holes! Black holes are now
“seen” everywhere by the astronomers, even though no one
has ever found an event horizon anywhere. Consequently,
public opinion has been persuaded that the black hole is a
fact of Nature and that anyone who questions the contention
must be a crackpot. It has become a rather lucrative business,
this black hole. Quite a few have made fame and fortune
peddling the shady story.

Yet it must not be forgotten that all the arguments for the
black hole are theoretical, based solely upon the erroneous
Hilbert solution and the meaningless Kruskal-Szekeres ex-
tension on it. One is therefore lead to wonder what it is that
astronomers actually “see” when they claim that they have

found yet another black hole here or there.
Besides the purely mathematical errors that mitigate the

black hole, there are also considerable physical arguments
against it, in addition to the fact that no event horizon has
ever been detected.

What does a material point mean? What meaning can
there possibly be in the notion of a material object without
any spatial extension? The term material point (or point-
mass) is an oxymoron. Yet the black hole singularity is
supposed to have mass and no extension. Moreover, there is
not a single shred of experimental evidence to even remotely
suggest that Nature makes material points. Even the electron
has spatial extent, according to experiment, and to quantum
theory. A “point” is an abstraction, not a physical object. In
other words, a point is a purely mathematical object. Points
and physical objects are mutually exclusive by definition. No
one has ever observed a point, and no one ever will because
it is unobservable, not being physical. Therefore, Nature
does not make material points. Consequently, the theoretical
singularity of the black hole cannot be a point-mass.

It takes an infinite amount of observer time for an object,
or light, to reach the event horizon, irrespective of how
far that observer is located from the horizon. Similarly,
light leaving the surface of a body undergoing gravitational
collapse, at the instant that it passes its event horizon, takes
an infinite amount of observer time to reach an observer,
however far that observer is from the event horizon. There-
fore, the black hole is undetectable to the observer since he
must wait an infinite amount of time to confirm the existence
of an event horizon. Such an object has no physical meaning
for the observer. Furthermore, according to the very same
theoreticians, the Universe started with a Big Bang, and
that theory gives an alleged age of 14 billion years for
the Universe. This is hardly enough time for the black hole
to form from the perspective of an external observer. Con-
sequently, if black holes exist they must have been created
at the instant of the Bang. They must be primordial black
holes. But that is inconsistent with the Bang itself, because
matter at that “time”, according to the Big Bang theoreticians,
could not form lumps. Even so, they cannot be detected by
an external observer owing to the infinite time needed for
confirmation of the event horizon. This now raises serious
suspicions as to the validity of the Big Bang, which is just an-
other outlandish theory, essentially based upon Friedmann’s
expanding Universe solution, not an established physical
reality as the astronomers would have us believe, despite
the now commonplace alleged observations they adduce to
support it.

At first sight it appears that the idea of a binary system
consisting of two black holes, or a hole and a star, and
the claim that black holes can collide, are physical issues.
However, this is not quite right, notwithstanding that the
theoreticians take them as well-defined physical problems.
Here are the reasons why these ideas are faulty. First, the
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black hole is allegedly predicted by General Relativity. What
the theoreticians routinely fail to state clearly is that the black
hole comes from a solution to Einstein’s field equations when
treating of the problem of the motion of a test particle of
negligible mass in the vicinity of a single gravitating body.
The gravitational field of the test particle is considered too
small to affect the overall field and is therefore neglected.
Therefore, Hilbert’s solution is a solution for one gravitating
body interacting with a test particle. It is not a solution for
the interaction of two or more comparable masses. Indeed,
there is no known solution to Einstein’s field equations for
more than one gravitating body. In fact, it is not even known
if Einstein’s field equations actually admit of solutions for
multi-body configurations. Therefore, there can be no mean-
ingful theoretical discussion of black hole binaries or collid-
ing black holes, unless it can be shown that Einstein’s field
equations contain, hidden within them, solutions for such
configurations of matter. Without at least an existence the-
orem for multi-body configurations, all talk of black hole
binaries and black hole collisions is twaddle (see also [11]).
The theoreticians have never provided an existence theorem.

It has been recently proved that the black hole and the
expanding Universe are not predicted by General Relativity
at all [12, 13], in any circumstances. Since the Michell-
Laplace dark body is not a black hole either, there is no
theoretical basis for it whatsoever.
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This article discusses Neutrosophic Logic interpretation of the Schrödinger’s cat
paradox. We argue that this paradox involves some degree of indeterminacy (unknown)
which Neutrosophic Logic could take into consideration, whereas other methods
including Fuzzy Logic could not. For a balanced discussion, other interpretations
have also been discussed.

1 Schrödinger equation

As already known, Schrödinger equation is the most used
equation to describe non-relativistic quantum systems. Its re-
lativistic version was developed by Klein-Gordon and Dirac,
but Schrödinger equation has wide applicability in particular
because it resembles classical wave dynamics. For intro-
duction to non-relativistic quantum mechanics, see [1].

Schrödinger equation begins with definition of total en-
ergy E = ~p 2/2m. Then, by using a substitution

E = i~
∂

∂t
, P =

~
i
∇, (1)

one gets [2] [

i~
∂

∂t
+ ~

∇̄2

2m
− U (x)

]

ψ = 0 (2)

or
i∂

∂t
ψ = Hψ . (3)

While this equation seems quite clear to represent quan-
tum dynamics, the physical meaning of the wavefunction
itself is not so clear. Soon thereafter Born came up with hy-
pothesis that the square of the wavefunction has the meaning
of chance to find the electron in the region defined by dx
(Copenhagen School). While so far his idea was quickly
adopted as “standard interpretation”, his original “guiding
field” interpretation has been dropped after criticism by Hei-
senberg over its physical meaning [3]. Nonetheless, a de-
finition of “Copenhagen interpretation” is that it gives the
wavefunction a role in the actions of something else, namely
of certain macroscopic objects, called “measurement appa-
ratus”, therefore it could be related to phenomenological
formalism [3].

Nonetheless, we should also note here that there are other
approaches different from Born hypothesis, including:

• The square of the wavefunction represents a measure
of the density of matter in region defined by dx (De-
terminism school [3, 4, 5]). Schrödinger apparently
preferred this argument, albeit his attempt to demon-
strate this idea has proven to be unfruitful;

• The square of wavefunction of Schrödinger equation as
the vorticity distribution (including topological vorti-
city defects) in the fluid [6];

• The wavefunction in Schrödinger equation represents
tendency to make structures;

• The wavemechanics can also be described in terms
of topological Aharonov effect, which then it could
be related to the notion of topological quantization
[7, 8]. Aharonov himself apparently argues in favour
of “realistic” meaning of Schrödinger wave equation,
whose interpretation perhaps could also be related to
Kron’s work [9].

So forth we will discuss solution of this paradox.

2 Solution to Schrödinger’s cat paradox

2.1 Standard interpretation

It is known that Quantum Mechanics could be regarded more
as a “mathematical theory” rather than a physical theory [1,
p. 2]. It is wave mechanics allowing a corpuscular duality.
Already here one could find problematic difficulties: i. e.
while the quantity of wavefunction itself could be computed,
the physical meaning of wavefunction itself remains inde-
finable [1]. Furthermore, this notion of wavefunction corres-
ponds to another fundamental indefinable in Euclidean geo-
metry: the point [1, p. 2]. It is always a baffling question for
decades, whether the electron could be regarded as wave,
a point, or we should introduce a non-zero finite entity [4].
Attempts have been made to describe wave equation in such
non-zero entity but the question of the physical meaning of
wavefunction itself remains mystery.

The standard Copenhagen interpretation advertised by
Bohr and colleagues (see DeBroglie, Einstein, Schrödinger
who advocated “realistic” interpretation) asserts that it is
practically impossible to know what really happens in quan-
tum scale. The quantum measurement itself only represents
reading in measurement apparatus, and therefore it is difficult
to separate the object to be measured and the measurement
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apparatus itself. Bohr’s phenomenological viewpoint perhaps
could be regarded as pragmatic approach, starting with the
request not to attribute a deep meaning to the wave function
but immediately go over to statistical likelihood [10]. Con-
sequently, how the process of “wave collapse” could happen
remains mystery.

Heisenberg himself once emphasized this viewpoint
when asked directly the question: Is there a fundamental
level of reality? He replied as follows:

“This is just the point: I do not know what the words
fundamental reality mean. They are taken from our
daily life situation where they have a good meaning,
but when we use such terms we are usually extrapol-
ating from our daily lives into an area very remote
from it, where we cannot expect the words to have
a meaning. This is perhaps one of the fundamental
difficulties of philosophy: that our thinking hangs in
the language. Anyway, we are forced to use the words
so far as we can; we try to extend their use to the
utmost, and then we get into situations in which they
have no meaning” [11].

A modern version of this interpretation suggests that at
the time of measurement, the wave collapses instantaneously
into certain localized object corresponding to the action of
measurement. In other words, the measurement processes
define how the wave should define itself. At this point, the
wave ceases to become coherent, and the process is known as
“decoherence”. Decoherence may be thought of as a way of
making real for an observer in the large scale world only one
possible history of the universe which has a likelihood that
it will occur. Each possible history must in addition obey the
laws of logic of this large-scale world. The existence of the
phenomenon of decoherence is now supported by laboratory
experiments [12]. It is worthnoting here, that there are also
other versions of decoherence hypothesis, for instance by
Tegmark [13] and Vitiello [14].

In the meantime, the “standard” Copenhagen interpreta-
tion emphasizes the role of observer where the “decoherence
viewpoint” may not. The problem becomes more adverse
because the axioms of standard statistical theory themselves
are not fixed forever [15, 16]. And here is perhaps the
source of numerous debates concerning the interpretation
and philosophical questions implied by Quantum Mechanics.
From this viewpoint, Neutrosophic Logic offers a new view-
point to problems where indeterminacy exists. We will dis-
cuss this subsequently. For a sense of balance, we also
discuss a number of alternative interpretations. Nonetheless
this article will not discuss all existing interpretations of the
quantum wavefunction in the literature.

2.2 Schrödinger’s cat paradox

To make the viewpoint on this paradox a bit clearer, let us
reformulate the paradox in its original form.

According to Uncertainty Principle, any measurement
of a system must disturb the system under investigation,
with a resulting lack of precision in the measurement. Soon
after reading Einstein-Podolsky-Rosen’s paper discussing in-
completeness of Quantum Mechanics, Schrödinger in 1935
came up with a series of papers in which he used the “cat
paradox” to give an illustration of the problem of viewing
these particles in a “thought experiment” [15, 17]:

“One can even set up quite ridiculous cases. A cat
is penned up in a steel chamber, along with the follow-
ing diabolical device (which must be secured against
direct interference by the cat): in a Geiger counter
there is a bit of radioactive substance, so small,
that perhaps in the course of one hour one of the
atoms decays, but also, with equal probability, per-
haps none; if it happens, the counter tube discharges
and through a relay releases a hammer which shatters
a small flask of hydrocyanic acid. If one has left
this entire system to itself for an hour, one would
say that the cat still lives if meanwhile no atom has
decayed. The first atomic decay would have poison-
ed it. The wave-function of the entire system would
express this by having in it the living and the dead
cat (pardon the expression) mixed or smeared into
equal parts.”

In principle, Schrödinger’s thought experiment asks
whether the cat is dead or alive after an hour. The most
logical solution would be to wait an hour, open the box, and
see if the cat is still alive. However once you open the box
to determine the state of the cat you have viewed and hence
disturbed the system and introduced a level of uncertainty
into the results. The answer, in quantum mechanical terms,
is that before you open the box the cat is in a state of being
half-dead and half-alive.

Of course, at this point one could ask whether it is
possible to find out the state of the cat without having to
disturb its wavefunction via action of “observation”.

If the meaning of word “observation” here is defined
by to open the box and see the cat, and then it seems that
we could argue whether it is possible to propose another
equally possible experiment where we introduce a pair of
twin cats, instead of only one. A cat is put in the box while
another cat is located in a separate distance, let say 1 meter
from the box. If the state of the cat inside the box altered
because of poison reaction, it is likely that we could also
observe its effect to its twin, perhaps something like “sixth
sense” test (perhaps via monitoring frequency of the twin
cat’s brain).

This plausible experiment could be viewed as an alter-
native “thought experiment” of well-known Bell-Aspect-type
experiment. One could also consider an entangled pair of
photons instead of twin cats to conduct this “modified” cat
paradox. Of course, for this case then one would get a bit
complicated problem because now he/she should consider
two probable state: the decaying atom and the photon pair.
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We could also say that using this alternative configurat-
ion, we know exact information about the Cat outside, while
indeterminate information about the Cat inside. However,
because both Cats are entangled (twin) we are sure of all
the properties of the Cat inside “knows” the state of the Cat
outside the box, via a kind of “spooky action at distance”
reason (in Einstein’s own word)∗.

Therefore, for experimental purpose, perhaps it would be
useful to simplify the problem by using “modified” Aspect-
type experiment [16]. Here it is proposed to consider a de-
caying atom of Cesium which emits two correlated photons,
whose polarization is then measured by Alice (A) on the
left and by Bob (B) on the right (see Fig. 1). To include
the probable state as in the original cat paradox, we will
use a switch instead of Alice A. If a photon comes to this
switch, then it will turn on a coffee-maker machine, therefore
the observer will get a cup of coffee†. Another switch and
coffee-maker set also replace Bob position (see Fig. 2). Then
we encapsulate the whole system of decaying atom, switch,
and coffee-maker at A, while keeping the system at B side
open. Now we can be sure, that by the time the decaying atom
of Cesium emits photon to B side and triggers the switch at
this side which then turns on the coffee-maker, it is “likely”
that we could also observe the same cup of coffee at A side,
even if we do not open the box.

We use term “likely” here because now we encounter a
“quasi-deterministic” state where there is also small chance
that the photon is shifted different from −0.0116, which is
indeed what the Aspect, Dalibard and Roger experiment de-
monstrated in 1982 using a system of two correlated photons
[16]. At this “shifted” phase, it could be that the switch will
not turn on the coffee-maker at all, so when an observer
opens the box at A side he will not get a cup of coffee.

If this hypothetical experiment could be verified in real
world, then it would result in some wonderful implications,
like prediction of ensembles of multi-particles system, — or
a colony of cats.

Another version of this cat paradox is known as GHZ pa-
radox: “The Greenberger-Horne-Zeilinger paradox exhibits
some of the most surprising aspects of multiparticle entangle-
ment” [18]. But we limit our discussion here on the original
cat paradox.

2.3 Hidden-variable hypothesis

It would be incomplete to discuss quantum paradoxes, in
particular Schrödinger’s cat paradox, without mentioning
hidden-variable hypothesis. There are various versions of
this argument, but it could be summarised as an assertion

∗The authors are grateful to Dmitri Rabounski for his valuable com-
ments discussing a case of entangled twin Cats.

†The “coffee-maker” analogue came to mind after a quote: “A math-
ematician is a device for turning coffee into theorems” — Alfréd Rényi, a
Hungarian mathematician, 1921–1970. (As quoted by Christopher J. Mark.)

that there is “something else” which should be included in
the Quantum Mechanical equations in order to explain thor-
oughly all quantum phenomena. Sometimes this assertion can
be formulated in question form [19]: Can Quantum Mech-
anics be considered complete? Interestingly, however, the
meaning of “complete” itself remains quite abstract (fuzzy).

Figure 1: Aspect-type experiment

Figure 2: Aspect-type experiment in box

An interpretation of this cat paradox suggests that the
problem arises because we mix up the macroscopic systems
(observer’s wavefunction and apparatus’ wavefunction) from
microscopic system to be observed. In order to clarify this,
it is proposed that “. . . the measurement apparatus should
be described by a classical model in our approach, and the
physical system eventually by a quantum model” [20].

2.4 Hydrodynamic viewpoint and diffusion interpre-
tation

In attempt to clarify the meaning of wave collapse and deco-
herence phenomenon, one could consider the process from
(dissipative) hydrodynamic viewpoint [21]. Historically, the
hydrodynamic/diffusion viewpoint of Quantum Mechanics
has been considered by some physicists since the early years
of wave mechanics. Already in 1933, Fuerth showed that
Schrödinger equation could be written as a diffusion equation
with an imaginary diffusion coefficient [1]

Dqm =
i~
2m

. (4)

But the notion of imaginary diffusion is quite difficult
to comprehend. Alternatively, one could consider a classical
Markov process of diffusion type to consider wave mechan-
ics equation. Consider a continuity equation

∂ρ

∂t
= −∇ (ρv) , (5)

where v= v0=D∇ lnρ (see [1]), which is a Fokker-Planck
equation. Then the expectation value for the energy of par-
ticle can be written as [1]
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<E> =

∫ (
mv2

2
+
D2m

2
D ln ρ2 + eV

)

ρd3x . (6)

Alternatively, it could be shown that there is exact mapp-
ing between Schrödinger equation and viscous dissipative
Navier-Stokes equations [6], where the square of the wave-
function of Schrödinger equation as the vorticity distribution
(including topological vorticity defects) in the fluid [6]. This
Navier-Stokes interpretation differs appreciably from more
standard Euler-Madelung fluid interpretation of Schrödinger
equation [1], because in Euler method the fluid is described
only in its inviscid limit.

2.5 How neutrosophy could offer solution to Schrödin-
ger’s paradox

In this regard, Neutrosophic Logic as recently discussed by
one of these authors [22, 23, 24] could offer an interesting
application in the context of Schrödinger’s cat paradox. It
could explain how the “mixed” state could be. It could
be shown, that Neutrosophic probability is useful to those
events, which involve some degree of indeterminacy (un-
known) and more criteria of evaluation — as quantum phys-
ics. This kind of probability is necessary because it provides
a better representation than classical probability to uncertain
events [25]. This new viewpoint for quantum phenomena
is required because it is known that Quantum Mechanics is
governed by uncertainty, but the meaning of “uncertainty”
itself remains uncertain [16].

For example the Schrödinger’s Cat Theory says that the
quantum state of a photon can basically be in more than one
place in the same time which, translated to the neutrosophic
set, means that an element (quantum state) belongs and does
not belong to a set (a place) in the same time; or an element
(quantum state) belongs to two different sets (two different
places) in the same time. It is a problem of “alternative worlds
theory well represented by the neutrosophic set theory.

In Schrödinger’s equation on the behavior of electromag-
netic waves and “matter waves” in quantum theory, the wave
function ψ, which describes the superposition of possible
states, may be simulated by a neutrosophic function, i. e.
a function whose values are not unique for each argument
from the domain of definition (the vertical line test fails,
intersecting the graph in more points).

Now let’s return to our cat paradox [25]. Let’s consider a
Neutrosophic set of a collection of possible locations (posi-
tions) of particle x. And let A and B be two neutrosophic
sets. One can say, by language abuse, that any particle x
neutrosophically belongs to any set, due to the percentages of
truth/indeterminacy/falsity involved, which varies between
−0 and 1+. For example: x (0.5, 0.2, 0.3) belongs to A
(which means, with a probability of 50% particle x is in a
position of A, with a probability of 30% x is not in A, and
the rest is undecidable); or y (0, 0, 1) belongs to A (which

normally means y is not for sure in A); or z (0, 1, 0) belongs
to A (which means one does know absolutely nothing about
z’s affiliation with A). More general, x { (0.2–0.3), (0.40–
0.45)∪ [0.50–0.51], (0.2, 0.24, 0.28) } belongs to the set A,
which mean:

• Owning a likelihood in between 20–30% particle x is
in a position of A (one cannot find an exact approxim-
ate because of various sources used);

• Owning a probability of 20% or 24% or 28% x is not
in A;

• The indeterminacy related to the appurtenance of x to
A is in between 40–45% or between 50–51% (limits
included);

• The subsets representing the appurtenance, indeterm-
inacy, and falsity may overlap, and n_sup= 30%+
+ 51%+ 28%> 100% in this case.

To summarize our proposition [25], given the Schrödin-
ger’s cat paradox is defined as a state where the cat can be
dead, or can be alive, or it is undecided (i. e. we don’t know if
it is dead or alive), then herein the Neutrosophic Logic, based
on three components, truth component, falsehood compo-
nent, indeterminacy component (T, I, F), works very well. In
Schrödinger’s cat problem the Neutrosophic Logic offers the
possibility of considering the cat neither dead nor alive, but
undecided, while the fuzzy logic does not do this. Normally
indeterminacy (I) is split into uncertainty (U) and paradox
(conflicting) (P).

We could expect that someday this proposition based on
Neusotrophic Logic could be transformed into a useful guide
for experimental verification of quantum paradox [15, 10].

Above results will be expanded into details in our book
Multi-Valued Logic, Neutrosophy, and Schrödinger Equation
that is in print.
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In the present article, we argue that it is possible to generalize Schrödinger equation
to describe quantization of celestial systems. While this hypothesis has been described
by some authors, including Nottale, here we argue that such a macroquantization was
formed by topological superfluid vortice. We also provide derivation of Schrödinger
equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid
dynamics interpretation.

1 Introduction

In the present article, we argue that it is possible to generalize
Schrödinger equation to describe quantization of celestial
systems, based on logarithmic nature of Schrödinger equa-
tion, and also its exact mapping to Navier-Stokes equa-
tions [1].

While this notion of macro-quantization is not widely ac-
cepted yet, as we will see the logarithmic nature of Schrödin-
ger equation could be viewed as a support of its applicability
to larger systems. After all, the use of Schrödinger equation
has proved itself to help in finding new objects known as
extrasolar planets [2, 3]. And we could be sure that new
extrasolar planets are to be found in the near future. As an
alternative, we will also discuss an outline for how to derive
Schrödinger equation from simplification of Ginzburg-
Landau equation. It is known that Ginzburg-Landau equation
exhibits fractal character, which implies that quantization
could happen at any scale, supporting topological interpret-
ation of quantized vortices [4].

First, let us rewrite Schrödinger equation in its common
form [5] [

i
∂

∂t
+
∇̄2

2m
− U (x)

]

ψ = 0 (1)

or

i
∂ψ

∂t
= Hψ . (2)

Now, it is worth noting here that Englman and Yahalom
[5] argues that this equation exhibits logarithmic character

lnψ(x, t) = ln
(
|ψ(x, t)|

)
+ i arg

(
ψ(x, t)

)
. (3)

Schrödinger already knew this expression in 1926, which
then he used it to propose his equation called “eigentliche
Wellengleichung” [5]. Therefore equation (1) can be re-
written as follows

2m
∂
(
ln|ψ|

)

∂t
+2∇̄ ln |ψ|∇̄arg

[
ψ
]
+∇̄∇̄arg

[
ψ
]
=0 . (4)

Interestingly, Nottale’s scale-relativistic method [2, 3]
was also based on generalization of Schrödinger equation
to describe quantization of celestial systems. It is known
that Nottale-Schumacher’s method [6] could predict new
exoplanets in good agreement with observed data. Nottale’s
scale-relativistic method is essentially based on the use of
first-order scale-differentiation method defined as follows [2]

∂V

∂(lnδt)
= β (V ) = a+ b V + . . . . (5)

Now it seems clear that the natural-logarithmic derivat-
ion, which is essential in Nottale’s scale-relativity approach,
also has been described properly in Schrödinger’s original
equation [5]. In other words, its logarithmic form ensures
applicability of Schrödinger equation to describe macro-
quantization of celestial systems. [7, 8]

2 Quantization of celestial systems and topological
quantized vortices

In order to emphasize this assertion of the possibility to de-
scribe quantization of celestial systems, let us quote Fischer’s
description [4] of relativistic momentum from superfluid
dynamics. Fischer [4] argues that the circulation is in the
relativistic dense superfluid, defined as the integral of the
momentum

γs =

∮
pμ dx

μ = 2πNv ~ , (6)

and is quantized into multiples of Planck’s quantum of action.
This equation is the covariant Bohr-Sommerfeld quantization
of γs. And then Fischer [4] concludes that the Maxwell
equations of ordinary electromagnetism can be written in
the form of conservation equations of relativistic perfect fluid
hydrodynamics [9]. Furthermore, the topological character of
equation (6) corresponds to the notion of topological elect-
ronic liquid, where compressible electronic liquid represents
superfluidity [25]. For the plausible linkage between super-
fluid dynamics and cosmological phenomena, see [16–24].
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It is worth noting here, because vortices could be defined
as elementary objects in the form of stable topological exci-
tations [4], then equation (6) could be interpreted as Bohr-
Sommerfeld-type quantization from topological quantized
vortices. Fischer [4] also remarks that equation (6) is quite
interesting for the study of superfluid rotation in the context
of gravitation. Interestingly, application of Bohr-Sommerfeld
quantization for celestial systems is known in literature [7, 8],
which here in the context of Fischer’s arguments it has
special meaning, i. e. it suggests that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale [4]. In our opinion, this result supports known
experiments suggesting neat correspondence between con-
densed matter physics and various cosmology phen-
omena [16–24].

To make the conclusion that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale a bit conceivable, let us consider the problem
of quantization of celestial orbits in solar system.

In order to obtain planetary orbit prediction from this
hypothesis we could begin with the Bohr-Sommerfeld’s con-
jecture of quantization of angular momentum. This con-
jecture may originate from the fact that according to BCS
theory, superconductivity can exhibit macroquantum phen-
omena [26, 27]. In principle, this hypothesis starts with
observation that in quantum fluid systems like superfluidity
[28]; it is known that such vortexes are subject to quantization
condition of integer multiples of 2π, or

∮
vsdl= 2πn~/m.

As we know, for the wavefunction to be well defined and
unique, the momenta must satisfy Bohr-Sommerfeld’s quant-
ization condition [28]

∮

Γ

p dx = 2πn~ (6a)

for any closed classical orbit Γ. For the free particle of unit
mass on the unit sphere the left-hand side is [28]

∫ T

0

v2dτ = ω2T = 2πω , (7)

where T = 2π/ω is the period of the orbit. Hence the quantiz-
ation rule amounts to quantization of the rotation frequency
(the angular momentum): ω=n~. Then we can write the
force balance relation of Newton’s equation of motion [28]

GMm

r2
=
mv2

r
. (8)

Using Bohr-Sommerfeld’s hypothesis of quantization of
angular momentum, a new constant g was introduced [28]

mvr =
ng

2π
. (9)

Just like in the elementary Bohr theory (before Schrödin-
ger), this pair of equations yields a known simple solution

for the orbit radius for any quantum number of the form [28]

r =
n2g2

4π2GMm2
, (10)

which can be rewritten in the known form of gravitational
Bohr-type radius [2, 7, 8]

r =
n2GM

v20
, (11)

where r, n, G, M , v0 represents orbit radii, quantum number
(n= 1, 2, 3, . . . ), Newton gravitation constant, and mass of
the nucleus of orbit, and specific velocity, respectively. In
this equation (11), we denote [28]

v0 =
2π

g
GMm. (12)

The value of m is an adjustable parameter (similar to g)
[7, 8]. In accordance with Nottale, we assert that the specific
velocity v0 is 144 km/sec for planetary systems. By noting
that m is meant to be mass of celestial body in question, then
we could find g parameter (see also [28] and references cited
therein).

Using this equation (11), we could predict quantization of
celestial orbits in the solar system, where for Jovian planets
we use least-square method and use M in terms of reduced
mass μ= (M1+M2)

M1M2
. From this viewpoint the result is shown

in Table 1 below [28].
For comparison purpose, we also include some recent

observation by Brown-Trujillo team from Caltech [29–32].
It is known that Brown et al. have reported not less than four
new planetoids in the outer side of Pluto orbit, including
2003EL61 (at 52 AU), 2005FY9 (at 52 AU), 2003VB12 (at
76 AU, dubbed as Sedna). And recently Brown-Trujillo team
reported a new planetoid finding, called 2003UB31 (97 AU).
This is not to include their previous finding, Quaoar (42 AU),
which has orbit distance more or less near Pluto (39.5 AU),
therefore this object is excluded from our discussion. It is
interesting to remark here that all of those new “planetoids”
are within 8% bound from our prediction of celestial quant-
ization based on the above Bohr-Sommerfeld quantization
hypothesis (Table 1). While this prediction is not so precise
compared to the observed data, one could argue that the
8% bound limit also corresponds to the remaining planets,
including inner planets. Therefore this 8% uncertainty could
be attributed to macroquantum uncertainty and other local
factors.

While our previous prediction only limits new planet
finding until n= 9 of Jovian planets (outer solar system),
it seems that there are sufficient reasons to suppose that
more planetoids in the Oort Cloud will be found in the near
future. Therefore it is recommended to extend further the
same quantization method to larger n values. For prediction
purpose, we include in Table 1 new expected orbits based
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Object No. Titius Nottale CSV Observ. Δ, %

1 0.4 0.43

2 1.7 1.71

Mercury 3 4 3.9 3.85 3.87 0.52

Venus 4 7 6.8 6.84 7.32 6.50

Earth 5 10 10.7 10.70 10.00 −6.95

Mars 6 16 15.4 15.4 15.24 −1.05

Hungarias 7 21.0 20.96 20.99 0.14

Asteroid 8 27.4 27.38 27.0 1.40

Camilla 9 34.7 34.6 31.5 −10.00

Jupiter 2 52 45.52 52.03 12.51

Saturn 3 100 102.4 95.39 −7.38

Uranus 4 196 182.1 191.9 5.11

Neptune 5 284.5 301 5.48

Pluto 6 388 409.7 395 −3.72

2003EL61 7 557.7 520 −7.24

Sedna 8 722 728.4 760 4.16

2003UB31 9 921.8 970 4.96

Unobserv. 10 1138.1

Unobserv. 11 1377.1

Table 1: Comparison of prediction and observed orbit distance of
planets in Solar system (in 0.1AU unit) [28].

on the same quantization procedure we outlined before. For
Jovian planets corresponding to quantum number n= 10 and
n= 11, our method suggests that it is likely to find new
orbits around 113.81 AU and 137.71 AU, respectively. It is
recommended therefore, to find new planetoids around these
predicted orbits.

As an interesting alternative method supporting this pro-
position of quantization from superfluid-quantized vortices
(6), it is worth noting here that Kiehn has argued in favor of
re-interpreting the square of the wavefunction of Schrödinger
equation as the vorticity distribution (including topological
vorticity defects) in the fluid [1]. From this viewpoint, Kiehn
suggests that there is exact mapping from Schrödinger equa-
tion to Navier-Stokes equation, using the notion of quantum
vorticity [1]. Interestingly, de Andrade and Sivaram [33] also
suggest that there exists formal analogy between Schrödinger
equation and the Navier-Stokes viscous dissipation equation:

∂V

∂t
= ν∇2V , (13)

where ν is the kinematic viscosity. Their argument was based
on propagation torsion model for quantized vortices [23].
While Kiehn’s argument was intended for ordinary fluid,
nonetheless the neat linkage between Navier-Stokes equation
and superfluid turbulence is known in literature [34, 24].

At this point, it seems worth noting that some criticism
arises concerning the use of quantization method for de-
scribing the motion of celestial systems. These criticism
proponents usually argue that quantization method (wave
mechanics) is oversimplifying the problem, and therefore
cannot explain other phenomena, for instance planetary mig-
ration etc. While we recognize that there are phenomena
which do not correspond to quantum mechanical process, at
least we can argue further as follows:

1. Using quantization method like Nottale-Schumacher
did, one can expect to predict new exoplanets (extra-
solar planets) with remarkable result [2, 3];

2. The “conventional” theories explaining planetary mig-
ration normally use fluid theory involving diffusion
process;

3. Alternatively, it has been shown by Gibson et al. [35]
that these migration phenomena could be described via
Navier-Stokes approach;

4. As we have shown above, Kiehn’s argument was based
on exact-mapping between Schrödinger equation and
Navier-Stokes equations [1];

5. Based on Kiehn’s vorticity interpretation one these
authors published prediction of some new planets in
2004 [28]; which seems to be in good agreement with
Brown-Trujillo’s finding (March 2004, July 2005) of
planetoids in the Kuiper belt;

6. To conclude: while our method as described herein
may be interpreted as an oversimplification of the real
planetary migration process which took place some-
time in the past, at least it could provide us with useful
tool for prediction;

7. Now we also provide new prediction of other planet-
oids which are likely to be observed in the near future
(around 113.8 AU and 137.7 AU). It is recommended
to use this prediction as guide to finding new objects
(in the inner Oort Cloud);

8. There are of course other theories which have been
developed to explain planetoids and exoplanets [36].
Therefore quantization method could be seen as merely
a “plausible” theory between others.

All in all, what we would like to emphasize here is
that the quantization method does not have to be the true
description of reality with regards to celestial phenomena.
As always this method could explain some phenomena, while
perhaps lacks explanation for other phenomena. But at least
it can be used to predict something quantitatively, i. e. mea-
surable (exoplanets, and new planetoids in the outer solar
system etc.).

In the meantime, it seems also interesting here to consider
a plausible generalization of Schrödinger equation in partic-
ular in the context of viscous dissipation method [1]. First,
we could write Schrödinger equation for a charged particle
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interacting with an external electromagnetic field [1] in the
form of Ulrych’s unified wave equation [14]
[
(−i~∇− qA)μ(−i~∇− qA)μψ

]
=

=

[

−i2m
∂

∂t
+ 2mU(x)

]

ψ .
(14)

In the presence of electromagnetic potential, one could
include another term into the LHS of equation (14)
[
(−i~∇− qA)μ(−i~∇− qA)μ + eA0

]
ψ =

= 2m

[

−i
∂

∂t
+ U(x)

]

ψ .
(15)

This equation has the physical meaning of Schrödinger
equation for a charged particle interacting with an external el-
ectromagnetic field, which takes into consideration Aharonov
effect [37]. Topological phase shift becomes its immediate
implication, as already considered by Kiehn [1].

As described above, one could also derived equation
(11) from scale-relativistic Schrödinger equation [2, 3]. It
should be noted here, however, that Nottale’s method [2,
3] differs appreciably from the viscous dissipative Navier-
Stokes approach of Kiehn [1], because Nottale only considers
his equation in the Euler-Newton limit [3]. Nonetheless,
it shall be noted here that in his recent papers (2004 and
up), Nottale has managed to show that his scale relativistic
approach has linkage with Navier-Stokes equations.

3 Schrödinger equation derived from Ginzburg-
Landau equation

Alternatively, in the context of the aforementioned superfluid
dynamics interpretation [4], one could also derive Schrödin-
ger equation from simplification of Ginzburg-Landau equa-
tion. This method will be discussed subsequently. It is known
that Ginzburg-Landau equation can be used to explain vari-
ous aspects of superfluid dynamics [16, 17]. For alternative
approach to describe superfluid dynamics from Schrödinger-
type equation, see [38, 39].

According to Gross, Pitaevskii, Ginzburg, wavefunction
of N bosons of a reduced mass m∗ can be described as [40]

−

(
~2

2m∗

)

∇2ψ + κ |ψ|2ψ = i~
∂ψ

∂t
. (16)

For some conditions, it is possible to replace the potential
energy term in equation (16) with Hulthen potential. This
substitution yields

−

(
~2

2m∗

)

∇2ψ + VHulthenψ = i~
∂ψ

∂t
, (17)

where

VHulthen = −Ze
2 δ e−δr

1− e−δr
. (18)

This equation (18) has a pair of exact solutions. It could
be shown that for small values of δ, the Hulthen potential (18)
approximates the effective Coulomb potential, in particular
for large radius

V eff

Coulomb = −
e2

r
+
`(`+ 1) ~2

2mr2
. (19)

By inserting (19), equation (17) could be rewritten as

−

(
~2

2m∗

)

∇2ψ+

[

−
e2

r
+
`(`+1)~2

2mr2

]

ψ = i~
∂ψ

∂t
. (20)

For large radii, second term in the square bracket of LHS
of equation (20) reduces to zero [41],

`(`+ 1)~2

2mr2
→ 0 , (21)

so we can write equation (20) as
[

−

(
~2

2m∗

)

∇2 + U(x)

]

ψ = i~
∂ψ

∂t
, (22)

where Coulomb potential can be written as

U(x) = −
e2

r
. (22a)

This equation (22) is nothing but Schrödinger equation
(1), except for the mass term now we get mass of Cooper
pairs. In other words, we conclude that it is possible to re-
derive Schrödinger equation from simplification of (Gross-
Pitaevskii) Ginzburg-Landau equation for superfluid dyn-
amics [40], in the limit of small screening parameter, δ.
Calculation shows that introducing this Hulthen effect (18)
into equation (17) will yield essentially similar result to (1),
in particular for small screening parameter. Therefore, we
conclude that for most celestial quantization problems the
result of TDGL-Hulthen (20) is essentially the same with the
result derived from equation (1). Now, to derive gravitational
Bohr-type radius equation (11) from Schrödinger equation,
one could use Nottale’s scale-relativistic method [2, 3].

4 Concluding remarks

What we would emphasize here is that this derivation of
Schrödinger equation from (Gross-Pitaevskii) Ginzburg-
Landau equation is in good agreement with our previous con-
jecture that equation (6) implies macroquantization corres-
ponding to superfluid-quantized vortices. This conclusion is
the main result of this paper. Furthermore, because Ginzburg-
Landau equation represents superfluid dynamics at low-
temperature [40], the fact that we can derive quantization
of celestial systems from this equation seems to support
the idea of Bose-Einstein condensate cosmology [42, 43].
Nonetheless, this hypothesis of Bose-Einstein condensate
cosmology deserves discussion in another paper.

Above results are part of our book Multi-Valued Logic,
Neutrosophy, and Schrödinger Equation that is in print.
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A great deal of misunderstandings and mathematical errors are involved in the currently
accepted theory of the gravitational field generated by an isotropic spherical mass. The
purpose of the present paper is to provide a short account of the rigorous mathematical
theory and exhibit a new formulation of the problem. The solution of the corresponding
equations of gravitation points out several new and unusual features of the stationary
gravitational field which are related to the non-Euclidean structure of the space.
Moreover it precludes the black hole from being a mathematical and physical notion.

1 Introduction

If the structure of the spacetime is actually non-Euclidean as
is postulated by general relativity, then several non-Euclidean
features will manifest themselves in the neighbourhoods of
the sources of the gravitational field. So, a spherical distrib-
ution of matter will appear as a non-Euclidean ball and the
concentric with it spheres will possess the structure of non-
Euclidean spheres. Specifically, if this distribution of matter
is isotropic, such a sphere will be characterised completely
by its radius, say ρ, and its curvature radius which is a
function of ρ, say g (ρ), defining the area 4π(g (ρ))2 of the
sphere as well as the length of circumference 2πg (ρ) of
the corresponding great circles. It is then expected that the
function g (ρ) will play a significant part in the conception
of the metric tensor related to the gravitational field of the
spherical mass. Of course, in formulating the problem, we
must distinguish clearly the radius ρ, which is introduced as
a given length, from the curvature radius g (ρ), the determin-
ation of which depends on the equations of gravitation.
However the classical approach to the problem suppresses
this distinction and assumes that the radius af the sphere is the
unknown function g (ρ). This glaring mistake underlies the
pseudo-theorem of Birkhoff as well as the classical solutions,
which have distorted the theory of the gravitational field.

Another glaring mistake of the classical approach to the
problem is related to the topological space which underlies
the definition of the metric tensor. The spatial aspect of the
problem suggests to identify the centre of the spherical mass
with the origin of the vector space R3 which is moreover
considered with the product topology of three real lines. Re-
garding the time t , several assumptions suggest to consider
it (or rather ct) as a variable describing the real line R. It fol-
lows that the topological space pertaining to the considered
situation is the space R×R3 equipped with the product top-
ology of four real lines. This simple and clear algebraic and
topological situation has been altered from the beginnings of
general relativity by the introduction of the so-called polar
coordinates of R3 which destroy the topological structure of
R3 and replace it by the manifold with boundary

[
0,+∞

[
×S2.

The use of polar coordinates is allowed in the theory of
integration, because the open set ] 0,+∞ [×] 0, 2π [×] 0, π [ ,
described by the point (r, φ, θ), is transformed diffeomorph-
ically onto the open set

R3 −
{
(x1, x2, x3) ∈ R

3; x1 > 0, x2 = 0
}

and moreover the half-plane
{
(x1, x2, x3) ∈ R

3; x1 > 0, x2 = 0
}

is of zero measure in R3. But in general relativity this half-
plane cannot be omitted. Then by choosing two systems of
geographic coordinates covering all of S2, we define a C∞

mapping of
[
0,+∞

[
×S2 onto R3 transgressing the fund-

amental principle according to which only diffeomorphisms
are allowed. In fact, this mapping is not even one-to-one:
All of {0} × S2 is transformed into the origin of R3. This
situation gives rise to inconsistent assertions. So, although the
origin of R3 disappears in polar coordinates, the meaningless
term “the origin r=0” is commonly used. Of course, the
value r=0 does not define a point but the boundary {0}×S2

which is an abstract two-dimensional sphere without physical
meaning. In accordance with the idea that the value r=0
defines the origin, the relativists introduce transformations
of the form r =h (r), r> 0, in order to “change the origin”.
This extravagant idea goes back to Droste, who claims that
by setting r= r+2μ, μ= km

c2
, we define a “new radial co-

ordinate r ” such that the sphere r=2μ reduces to the “new
origin r=0”. Rosen [2] claims also that the transformation
r= r+2μ allows to consider a mass point placed at the ori-
gin r=0 ! The same extravagant ideas are introduced in the
definition of the so-called harmonic coordinates by Lanczos
(1922) who begins by the introduction of the transformation
r= r+μ in order to define the “new radial coordinate r”.

The introduction of the manifold with boundary[
0,+∞

[
×S2 instead of R3, hence also the introduction

of R ×
[
0,+∞

[
×S2 instead of R×R3, gives also rise to

misunderstandings and mistakes regarding the space metrics
and the spacetime metrics as well.

Given a C∞ Riemannian metric on R3 , its transform in
polar coordinates is a C∞ quadratic form on

[
0,+∞

[
×S2,
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positive definite on ] 0,+∞
[
×S2 and null on {0} ×S2.

(This is, in particular, true for the so-called metric of R3

in polar coordinates, namely ds2= dr2+ r2dω2 with dω2=
= sin2 θdφ2+ dθ2 in the domain of validity of (φ, θ).) But
the converse is not true. A C∞ form on

[
0,+∞

[
×S2

satisfying the above conditions is associated in general with
a form on R3 presenting discontinuities at the origin of R3.
So the C∞ form 2dr2+ r2dω2, conceived on

[
0,+∞

[
×S2,

results from a uniquely defined form on R3, namely

dx2 +
(xdx)

2

‖x‖2
,

(here dx2=dx21+dx
2
2+dx

2
3, xdx=x1dx1+x2dx2+x3dx3)

which is discontinuous at x=(0, 0, 0).
Now, given a C∞ spacetime metric on R×R3, its trans-

form in polar coordinates is a C∞ form degenerating on the
boundary R×{0}×S2. But the converse is not true. A C∞

spacetime form on R×
[
0,+∞

[
×S2 degenerating on the

boundary R× {0} × S2 results in general from a spacetime
form on R×R3 presenting discontinuities. For instance, the
so-called Bondi metric

ds2 = e2Adt2 + 2eA+Bdtdr − r2dω2

whereA=A(t, r),B=B(t, r), conceals singularities, because
it results from a uniquely defined form on R×R3, namely

ds2 = e2Adt2 + 2eA+B
(xdx)

‖x‖
dt− dx2 +

(xdx)
2

‖x‖

which is discontinuous at x=(0, 0, 0). It follows that the
current practice of formulating problems with respect to
R×

[
0,+∞

[
×S2, instead of R×R3, gives rise to mislead-

ing conclusions. The problems must be always conceived
with respect to R× R3.

2 SΘ(4)-invariant and Θ(4)-invariant tensor fields on
R× R3.

The metric tensor is conceived naturally as a tensor field
invariant by the action of the rotation group SO(3). However,
although SO(3) acts naturally on R3, it does not the same
on R×R3, and this is why we are led to introduce the group
SΘ(4) consisting of the matrices

(
1 OH
OV A

)

with OH =(0, 0, 0), OV =
(
0
0
0

)
and A∈SO (3). We intro-

duce also the group Θ(4) consisting of the matrices of the
same form for which A∈O(3). Obviously SΘ(4) is a sub-
group of Θ(4).

With these notations, the metric tensor related to the iso-
tropic distribution of matter is conceived as a SΘ(4)-invariant
tensor field on R×R3. SΘ(4)-invariant tensor fields appear
in several problems of relativity, so that it is convenient

to study them in detail. Their rigorous theory appears in a
previous paper [7] together with the theory of the pure SΘ(4)-
invariant tensor fields which are not used in the present paper.

It is easily seen that a function h(x0, x1, x2, x3) is SΘ(4)-
invariant (or Θ(4)-invariant) if and only if it is of the form
f(x0 , ‖x‖). Of course we confine ourselves to the case where
f(x0 , ‖x‖) is C∞ with respect to the coordinates x0, x1,
x2, x3 on R×R3.

Proposition 2.1 f(x0 , ‖x‖) is C∞ on R× R3 if and only
if the function f(x0 , u) with (x0 , u) ∈ R× [0,+∞ [ is C∞

on R × [0,+∞ [ and such that its derivatives of odd order
with respect to u at u = 0 vanish.

The functions satisfying these conditions constitute an
algebra which will be denoted by Γ0. As a corollary, we see
that f(x0 , ‖x‖) belongs to Γ0 if and only if the function
h(x0 , u) defined by setting

h(x0 , u) = h(x0 ,−u) = f(x0 , u) , u > 0

is C∞ on R×R. It follows in particular that, if the function
f(x0 , ‖x‖) belongs to Γ0 and is strictly positive, then the
functions 1

f(x0 ,‖x‖)
and

√
f(x0 ,‖x‖) belong also to Γ0. Now,

if T (x0 , x), x=(x1, x2, x3), is an SΘ(4)-invariant (or Θ(4)-
invariant) tensor field on R × R3, then, for every function
f ∈Γ0, the tensor field f(x0 , ‖x‖) T (x0 , x) is also SΘ(4)-
invariant (or Θ(4)-invariant). Consequently the set of SΘ(4)-
invariant (or Θ(4)-invariant) tensor fields constitutes a Γ0-
module. In particular, we are interesting in the sub-module
consisting of the covariant tensor fields of degree 2. The
proof of the following proposition is given in the paper [7].

Proposition 2.2 Let T (x0 , x) be an SΘ(4)-invariant C∞

covariant symmetric tensor field of degree 2 on R × R3.
Then there exist four functions q00 ∈Γ0 , q01 ∈Γ0 , q11 ∈Γ0 ,
q22 ∈Γ0 such that

T (x0 , x) = q00 (x0 , ‖x‖) (dx0 ⊗ dx0)+

+ q01 (x0 , ‖x‖)
(
dx0 ⊗ F (x) + F (x)⊗ dx0

)
+

+ q11 (x0 , ‖x‖)E(x) + q22 (x0 , ‖x‖)
(
F (x)⊗ F (x)

)
,

whereE(x)=
∑3

1 (dxi⊗dxi) and F (x)=
∑3

1 xidxi . More-
over T (x0 , x) is Θ(4)-invariant.

So, the components gαβ of T (x0 , x) are defined by
means of the four functions q00, q01, q11, q22 as follows

g00 = q00 , g0i = gi0 = xi q01 ,

gii = q11 + x
2
i q22 , gij = xixj q22 ,

where i, j=1, 2, 3; i 6= j. Suppose now that the tensor field
T (x0 , x) is a metric tensor, namely a symmetric tensor field
of signature (+1,−1,−1,−1). Then we write it usually as a
quadratic form

ds2 = q00dx
2
0 + 2q01 (xdx) dx0 + q11dx

2 + q22 (xdx)
2
.
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Since x0= t is the time coordinate, we have q00=
= q00 (x0 , ‖x‖) > 0 for all (x0 , x) ∈ R×R3, so the function
f = f(x0 , ‖x‖)=

√
q00 (x0 , ‖x‖) is strictly positive and C∞

on R × R3. Consequently the function f1=
q01
f

is also C∞

on R × R3, namely a function belonging to Γ0, and we can
write the metric into the form

ds2 =
(
fdt+ f1 (xdx)

)2
+ q11dx

2 +
(
q22 − f

2
1

)
(xdx)

2

which makes explicit the corresponding spatial (positive de-
finite) metric −q11dx2−

(
q22−f21

)
(xdx)

2 with −q11> 0
and−q11−

(
q22− f21

)
‖x‖2> 0 on R×R3. So we can intro-

duce the strictly positive C∞ functions

`1 = `1 (t, ‖x‖) =
√
−q11 (t, ‖x‖)

and
` = ` (t, ‖x‖) =

√
`21 − ‖x‖2

(
q22 − f21

)

which possess a clear geometrical meaning:

`1 serves to define the curvature radius g (t, ρ)=
= g (t, ‖x‖)= ‖x‖`1(t, ‖x‖) = ρ `1(t, ρ), (ρ = ‖x‖),
of the non-Euclidean spheres centered at the origin of
R3, whereas ` defines the element of length on the
spatial radial geodesics.

Consequently it is very convenient to put the metric into
a form exhibiting explicitly `1 and `. This is obtained by
remarking that the C∞ function q22− f21 can be written as

`21 − `
2

ρ2
.

Of course the last expression is C∞ everywhere on
account of the condition `1(t, 0)= `(t, 0) and the fact that
`1 ∈Γ0, `∈Γ0. It follows that

ds2 =
(
fdt+ f1 (xdx)

)2
− `21dx

2 −
`2 − `21
ρ2

(xdx)
2
(2.1)

or
ds2 = f2dt2 + 2ff1 (xdx) dt− `

2
1dx

2+

+

(
`21 − `

2

ρ2
+ f21

)

(xdx)
2 (2.2)

with the components

g00 = f2, g0i = gi0 = xiff1 ,

gii = −`
2
1 + x

2
i

(
`21 − `

2

ρ2
+ f21

)

,

gij = xixj

(
`21 − `

2

ρ2
+ f21

)

, i, j = 1, 2, 3; i 6= j .

There are two significant functions which do not appear
in (2. 1) and are not C∞ on R×R3:

1. First the already considered curvature radius g (t, ρ)=
= ρ`1(t, ρ) of the non-Euclidean spheres centered at
the origin;

2. Secondly the function h(t, ρ)= ρf1(t, ρ) which ap-
pears in the equations defining the radial motions of

photons outside the matter, namely the equations

(fdt + f1ρ dρ)
2 = `2dρ2 or fdt + ρf1dρ =±`dρ

which imply necessarily |h|6 ` in order that both the
ingoing and outgoing motions be possible [4]. In any
case the condition |h|6 ` must also be valid inside
the matter in order that the nature of the variable t
as time coordinate be preserved. Moreover h vanishes
for ρ=0.

Of course g and h are C∞ with respect to (t, ρ) ∈
R×[0,+∞ [, but since ρ=‖x‖ is not differentiable at the ori-
gin, they are not differentiable on the subspace R×{(0, 0, 0)}
of R × R3. However, on account of their geometrical and
physical significance, we introduce them in the computations
remembering that, for any global solution on R × R3, the
functions `1 =

g
ρ and f1 =

h
ρ appearing in (2.1) must be

elements of the algebra Γ0.

3 The Ricci tensor and the equations of gravitation

In order to obtain the equations of gravitation related to (2.1),
we have first to introduce the Christoffel symbols and then
compute the components of the Ricci tensor. At first sight
the computations seem to be extremely complicated, but the
Θ(4)-invariance of the metric allows to obtain a great deal of
simplification in accordance with the following proposition,
the proof of which is given in the paper [8].

Proposition 3.1 (a) The Christoffel symbols of the first kind
as well as those of the second kind related to (2.2) are the
components of a Θ(4)-invariant tensor field; (b) The curva-
ture tensor, the Ricci tensor, and the scalar curvature relat-
ed to (2.2) are Θ(4)-invariant; (c) If an energy-momentum
tensor satisfies the equations of gravitation related to (2.2),
it is Θ(4)-invariant.

Corollary 3.1. The Christoffel symbols of the second kind
related to (2.2) depend on ten C∞ functions Bα=Bα(t, ρ),
(α=0, 1, 2, . . . , 9), as follows:

Γ000 = B0 , Γ00i = Γ
0
i0 = B1xi , Γi00 = B2xi ,

Γ0ii = B3 +B4x
2
i , Γ0ij = Γ

0
ji = B4xixj ,

Γii0 = Γ
i
0i = B5 +B6x

2
i , Γij0 = Γ

i
0j = B6xixj ,

Γiii = B7x
3
i + (B8 + 2B9)xi ,

Γijj = B7xix
2
i +B8xi , Γ

j
ij = Γ

j
ji = B7xix

2
j +B9xi ,

Γijk = B7xixjxk , i, j, k = 1, 2, 3; j 6= k 6= i .

Regarding the Ricci tensor Rαβ , since it is symmetric
and Θ(4)-invariant, its components are defined, according to
proposition 2.2, by four functions Q00=Q00(t, ρ), Q01=
=Q01(t, ρ), Q11=Q11(t, ρ), Q22=Q22(t, ρ) as follows:

R00=Q00 , R0i=Ri0=Q01xi , Rii=Q11+x
2
iQ22 ,

Rij =xixjQ22 , i, j=1, 2, 3; i 6= j .
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In the same way, an energy-momentum tensor Wαβ satis-
fying the equations of gravitation related to (2.2) is defined
by four functions of (t, ρ), say E00, E01, E11, E22:

W00 = E00 , W0i = xiE01 , Wii = E11 + x
2
iE22 ,

Wij = xixjE22 , i, j = 1, 2, 3; i 6= j .

Moreover, since the scalar curvature R=Q is Θ(4)-
invariant, it is a function of (t, ρ): R=Q=Q(t, ρ).

It follows that the equations of gravitation (with cosmo-
logical constant −3λ)

Rαβ −

(
Q

2
+ 3λ

)

gαβ +
8πk

c4
Wαβ = 0

can be written from the outset as a system of four equations
depending uniquely on (t, ρ):

Q00 −

(
Q

2
+ 3λ

)

f2 +
8πk

c4
E00 = 0 ,

Q01 −

(
Q

2
+ 3λ

)

ff1 +
8πk

c4
E01 = 0 ,

Q11 +

(
Q

2
+ 3λ

)

`21 +
8πk

c4
E11 = 0 ,

Q22 −

(
Q

2
+ 3λ

)(
`21 − `

2

ρ2
+ f21

)

+
8πk

c4
E22 = 0 .

Note that it is often convenient to replace the last equation
by the equation

Q11+ρ
2Q22−

(
Q

2
+3λ

)
(
ρ2f21−`

2
)
+
8πk

c4
(
E11+ρ

2E22
)
=0.

In order to apply these equations to special situations, it
is necessary to give the explicit expressions of Q00, Q01,
Q11, Q22 by means of the functions Bα, (α = 0, 1, 2, ..., 9),
appearing in the Christoffel symbols. We recall the results of
computation

Q00 =
∂

∂t

(
3B5 + ρ

2B6
)
− ρ

∂B2
∂ρ

−

−B2
(
3 + 4ρ2B9 − ρ

2B1 + ρ
2B8 + ρ

2B7
)
−

− 3B0B5 + 3B
2
5 + ρ

2B6
(
−B0 + 2B5 + ρ

2B6
)
,

Q01 =
∂

∂t

(
ρ2B7 +B8 + 4B9

)
−
1

ρ

∂B5
∂ρ

− ρ
∂B6
∂ρ

+

+B2
(
B3+ρ

2B4
)
− 2B6

(
2+ρ2B9

)
−B1

(
3B5+ρ

2B6
)
,

Q11 = −
∂B3
∂t

− ρ
∂B8
∂ρ

−
(
B0 +B5 + ρ

2B6
)
B3+

+
(
1− ρ2B8

)(
B1 + ρ

2B7 +B8 + 2B9
)
− 3B8 ,

Q22 = −
∂B4
∂t

+
1

ρ

∂

∂ρ
(B1 +B8 + 2B9) +B

2
1 +B

2
8 −

− 2B29 − 2B1B9 + 2B3B6 +
(
−B0 −B5 + ρ

2B6
)
B4+

+
(
−3 + ρ2 (−B1 +B8 − 2B9)

)
B7 .

4 Stationary vacuum solutions

The radial motion of the isotropic spherical distribution of
matter generates a non-stationary (dynamical) gravitational
field extending beyond the boundary in the exterior space.
This field is defined by non-stationaryΘ(4)-invariant vacuum
solutions of the equations of gravitation and exhibits essential
and unusual features related to the propagation of gravitation.
Several problems related to it are not yet clarified. But, in
any case, in order to establish and understand the dynamical
solutions, a previous knowledge of the stationary solutions
is necessary. This is why, in the sequel we confine ourselves
to the simple problems related to the stationary vacuum
solutions. So we suppose that we have a stationary metric

ds2 =
(
fdt+f1 (xdx)

)2
− `21dx

2−
`2 − `21
ρ2

(xdx)
2
, (4.1)

where f=f(ρ), f1=f1(ρ), `1=`1(ρ), `=`(ρ).
Of course, we have also to take into account the signif-

icant functions

h = h(ρ) = ρf1(ρ) , g = g(ρ) = ρ`1(ρ) ,

which are not differentiable at the origin (0, 0, 0). Every half-
line issuing from the origin, x1=α1ρ , x2=α2ρ , x3=α3ρ
(where 06 ρ<+∞ and α21+α

2
2+α

2
3=1) is a geodesic of

the spatial metric `21dx
2+

`2−`21
ρ2

(xdx)
2 so that the geodesic

distance δ of the origin from the point x=(x1, x2, x3) is
defined by the integral

δ =

∫ ρ

0

`(u)du, ρ = ‖x‖.

As already noticed, the function `(ρ), where 06 ρ<+∞,
is strictly positive, but it cannot be arbitrarily given. Suppose,
for instance, that

`(ρ) =
ε

ρ2
, ε = const > 0

on [1,+∞ [ . Then the geodesic distance δ=
∫ 1
0
`(u)du+

+
∫ ρ
1

ε
u2
du=

∫ 1
0
`(u)du+ ε− ε

ρ tends to the finite value
∫ 1
0
`(u)du+ ε as ρ→∞, which cannot be physically ac-

cepted. Consequently the positive function `(ρ) is allowable
only if the integral

∫ ρ
0
`(u)du tends to +∞ as ρ→+∞.

This being said, it is easy to see that the functions Bα =
Bα(ρ), (α=0, 1, . . . , 9), occurring in the Christoffel sym-
bols resulting from the stationary metric (4.1) are defined by
the following formulae:

B0 = −
hf ′

`2
, B1 =

f ′

ρf
−
h2f ′

ρf`2
,

B2 =
ff ′

ρ `2
, B3 =

hgg′

ρ2f`2
,

B4 =
hf ′

ρ2f2
−

h3f ′

ρ2f2`2
+

h′

ρ2f
−

h`′

ρ2f`
−

hgg′

ρ4f`2
,
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B5 = 0 , B6 =
hf ′

ρ2`2
,

B7 =
h2f ′

ρ3f`2
+

`′

ρ3`
+

gg′

ρ5`2
−
2g′

ρ3g
+
1

ρ4
,

B8 =
1

ρ2
−

gg′

ρ3`2
, B9 = −

1

ρ2
+
g′

ρg
.

Then inserting these expressions in the formulae brought
out at the end of the previous section, we find the functions

Q00 = f

(

−
f ′′

`2
+
f ′`′

`3
−
2f ′g′

`2g

)

, g = ρ`1 ,

Q01 =
h

ρf
Q00 , h = ρf1 ,

Q11 =
1

ρ2

(

−1 +
g′2

`2
+
gg′′

`2
−
`′gg′

`3
+
f ′gg′

f`2

)

,

Q11 + ρ
2Q22 =

f ′′

f
+
2g′′

g
−
f ′`′

f`
−
2`′g′

`g
+
h2

f2
Q00 ,

which are everywhere valid, namely outside as well as inside
the matter, Specifically, by using them, we can establish the
gravitational equations outside the matter with electromag-
netic field and cosmological constant. However, in the pre-
sent short account, our purpose is to put forward the most
significant elementary facts, and this is why we confine our-
selves to the pure gravitational field outside the matter with-
out cosmological constant. Then Q=R=0, λ=0, so that
Q00=0, Q01=0, Q11=0, Q11+ρ2Q22=0. Since Q00=0
impliesQ01=0, we have finally the following three equations

−f ′′ +
f ′`′

`
−
2f ′g′

g
= 0 , (4.2)

−1 +
g′2

`2
+
gg′′

`2
−
`′gg′

`3
+
f ′gg′

f`2
= 0 , (4.3)

f ′′ +
2fg′′

g
−
f ′`′

`
−
2f`′g′

`g
= 0 , (4.4)

By adding (4.2) to (4.4) we obtain

f ′g′

f
= g′′ −

`′g′

`
(4.5)

and inserting this expression of f ′g′

f
into (4.3), we find the

equation
−1 +

g′2

`2
+
2gg′′

`2
−
2`′gg′

`3
= 0

which implies d
dρ

(
−g+ gg′2

`2

)
=0 so that

−g +
gg′2

`2
= −2A = const. (4.6)

On the other hand (4.5) can be written as (f`)′g′=(f`) g′′

whence d
dρ

(
g′

f`

)
=0 and

f` = cg′, (where c = const) . (4.7)

The equations (4.6) and (4.7) define the general stationary
solution outside the matter. The function h does not appear
in them, but it is not empty of physical meaning as is usually

believed. It occurs in the problem as a function satisfying
the condition |h| 6 `. The different allowable choices of h
correspond to different significations of the time coordinate.

Proposition 4.1. If A=0, the solution defined by (4.6) and
(4.7) is a pseudo-Euclidean metric (or, better, a family of
pseudo-Euclidean metrics).
Proof. On account of A=0, (4.6) implies g′= ` and next
(4.7) gives f=c. Referring to (4.1) and setting

∫ ρ
0
vf(v)dv=

=α (ρ), we have

dα(ρ) = ρf1(ρ)dρ = f1(ρ)xdx

and
f(ρ)dt+ f1(ρ)xdx = d

(
ct+ α (ρ)

)
,

which suggests the transformation τ = t+ α(ρ)
c . On the other

hand, since `= g′= (ρ`1)′= ρ`′1+ `1, we have

`21dx
2+
`2−`21
ρ2

(xdx)2=`21dx
2+2`1`

′
1
(xdx)2

‖x‖
+ `′

2
1 (xdx)

2 =

=

(
`1dx1 + x1`

′
1
xdx

ρ

)2
+

(
`1dx2 + x2`

′
1
xdx

ρ

)2
+

+

(
`1dx3+x3`

′
1
xdx

ρ

)2
=
(
d (`1x1)

)2
+
(
d (`1x2)

)2
+
(
d (`1x3)

)2

so that by setting y1= `1x1, y2= `1x2, y3= `1x3, we ob-
tain the metric in the standard pseudo-Euclidean form ds2=
= c2dτ 2− (dy21 + dy

2
2 + dy

2
3). In the sequel we give up this

trivial case and assume A 6= 0.

5 Punctual sources of the gravitational field do not exist

(4.6) is a first order differential equation with respect to the
unknown function g = g(ρ), so that its general solution
depends on an arbitrary constant. But (4.6) contains already
the constant A and moreover the function ` = `(ρ) which
is not given. Consequently the general solution of (4.6)
contains two constants. Moreover, it seems that it depends
on the function `(ρ), namely that to every allowable function
`(ρ) there corresponds a solution of (4.6) depending on two
constants. However, we can prove that the function `(ρ) is
not actually involved in the general solution of (4.6).

Since the geodesic distance δ=
∫ ρ
0
`(u)du=β (ρ) is a

strictly increasing function of ρ tending to +∞ as ρ→+∞,
the inverse function ρ = γ (δ) is also a strictly increasing
function of δ tending to +∞ as δ→+∞. Consequently g (ρ)
can be considered as a function of δ:

G(δ) = g
(
γ (δ)

)
.

It follows that the determination of G(δ) as a function of
the geodesic distance δ, which possesses an intrinsic meaning
with respect to the stationary metric, allows its definition
with respect to any other radial coordinate depending diffeo-
morphically on δ.
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Now, since δ = β
(
γ(δ)

)
, we have 1= dβ

dρ
dρ
dδ
= `(ρ)γ ′(δ)

and G′=G′(δ)= g′(ρ)γ ′(δ)= g′(ρ)

`(ρ)
, so that the equation

(4.6) takes the form −G+GG′2=−2A or

GG′2 = G− 2A (5.1)

which does not contain the function `.
Regarding (4.7), it is obviously replaced by the equation

F = cG′

with F =F (δ)= f
(
γ(δ)

)
. The functions F andG are related

to a stationary metric which results from the stationary metric
(4.1) by the introduction of the new space coordinates:

yi =
δ

ρ
xi =

β(ρ)

ρ
xi , (5.2)

where i=1, 2, 3; ‖y‖=δ; ‖x‖=ρ. This transformation is
C∞ everywhere, even at the origin, because the function
B(ρ)= β(ρ)

ρ (where B(0)= `(0)) belongs to the algebra Γ0.

In fact, since β′(ρ)= `(ρ), we have β(ρ)= ρ
∫ 1
0
β′(ρu)du=

= ρ
∫ 1
0
`(ρu)du and

B(ρ) =

∫ 1

0

`(ρu)du ,

consequently B(2m+1)(ρ) =
∫ 1
0
`(2m+1)(ρu)u2m+1du and

since `∈Γ0 implies `(2m+1)(0) = 0, we obtain

B(2m+1) (0) = 0 , (m = 0, 1, 2, 3, . . . )

and, from proposition 2.1, it follows that B ∈ Γ0.
The inverse of (5.2) is defined by the equations

xi = Δ(δ)yi , i = 1, 2, 3 , (5.3)

where Δ(δ) = ρ
β(ρ)

= γ(δ)

δ
. Since γ (δ) = δ

∫ 1
0
γ ′ (δu)du =

= δ
∫ 1
0

du
`(γ(δu))

, it can be shown by induction that the function

Δ(δ) = γ(δ)

δ
=
∫ 1
0

du
`(γ(δu))

is an element of the algebra Γ0,
so that (5.3) is universally valid. A simple computation gives

xdx =
3∑

1

xidxi =
γγ ′

δ
(ydy) ,

dx2 =

3∑

1

dx2i =

(
γ ′2

δ2
−
γ2

δ4

)

(ydy)
2
+
γ2

δ2
dy2

so that, by setting F (δ)=f
(
γ(δ)

)
, F1(δ)=f1

(
γ(δ)

)γ(δ)γ ′(δ)
δ

,

L1(δ)= `1
(
γ(δ)

)γ(δ)
δ

, L(δ)= `
(
γ(δ)

)
γ ′(δ)= 1, we obtain

the transformed metric

ds2 =
(
Fdt+ F1(ydy)

)2
−

(

L21dy
2+
1−L21
δ2

(ydy)
2

)

(5.4)

which is related to the geodesic distance δ = ‖y‖ and the
functions F andG. Instead of h(ρ), we have now the function

H = H(δ) = δF1(δ), and moreover the invariant curvature
radius of the spheres δ = const. is given by the function

G = G(δ) = δL1(δ) .

Before solving the equation (5.1), we can anticipate that
the values of the solution G(δ) do not cover the whole
half-line [0,+∞ [ or, possibly, the whole open half-line
] 0,+∞ [ , because by taking a sequence of positive values
δn→ 0, we have G(δn)→ 0 and then the equation (5.1)
implies A=0 contrary to our assumption A 6=0. (This con-
clusion follows also from (4.6), because g(0)= 0 implies
A=0.) So, we are led to anticipate that the values of the
solution G(δ) cover a half-line [α,+∞ [ with α> 0. This
important property, which implies that the source of the field
cannot be reduced to a point, will be verified by the explicit
expression of the solution.

Now, since G(δ) > α> 0 and G− 2A > 0 according to
(5.1), the function G(δ) is obtained by the equation

dG

dδ
=

√

1−
2A

G

and since
√
1− 2A

G > 0, G(δ) is a strictly increasing funct-

ion of δ. Moreover G(δ) can not remain bounded because
dG
dδ
→ 1 as G→ +∞.
Technically, we have first to obtain the inverse function

δ = P (G) by integrating the equation

dδ

dG
=

1
√
1− 2A

G

which implies also that δ = P (G) is a strictly increasing and
not bounded function of G. Now, we introduce an auxiliary
fixed positive length ξ which will not appear in the final
result, but it is needed in order to carry out correctly the
computations. In fact, since G, A, G−2A represent also
lengths, the ratios G

ξ
, G−2A

ξ
are dimensionless, so that we

can introduce the logarithm

ln

(√
G
ξ
+

√
G− 2A

ξ

)

and since d
dG

(√
G (G−2A) + 2A ln

(√
G
ξ
+
√

G−2A
ξ

))
=

= 1√
1− 2A

G

the preceding equation gives δ=P (G),

δ = B+
√
G(G− 2A)+2A ln

(√
G
ξ
+

√
G− 2A

ξ

)

(5.5)

where B= const. It follows that

δ

G(δ)
=
P (G)

G
=
B

G
+

√

1−
2A

G
+
2A

G
ln

(√
G
ξ
+

√
G−2A
ξ

)

and since we have 2A
G
ln
(√

G
ξ
+
√

G−2A
ξ

)
= 2A

G
ln
√

G
ξ
+

+ 2A
G
ln
(
1 +

√
1− 2A

G

)
→ 0 as G→+∞ we have
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δ

G(δ)
= 1 + ε(δ),

G(δ)

δ
=

1

1 + ε(δ)

with ε(δ)→ 0 as δ→+∞. This property allows to determine
the constant A by using the so-called Newtonian approxim-
ation of the metric (5.4) for the great values of the distance δ.
Classically this approximation is referred to the static metric,
namely to the case where F1=0. We have already seen that
|δF1(δ)|6 1, but this condition does not imply that δF1(δ)
possesses a limit as δ→+∞. So we accept the condition
F1(δ)= 0 for the derivation of the Newtonian approximation,
without forgetting that we have to do with a specific choice
of F1 used for convenience in the case of a special problem.

This being said, the Newtonian approximation is obtain-
ed by setting ε(δ)= 0 and F1=0 . Then since F = cG′=

= c
√
1− 2A

G
= c
√
1− 2A

δ
− 2Aε (δ)

δ
, 1−L21=1−

(
1

1+ε (δ)

)
2
,

and ‖y‖
δ
=1, we get the form

ds2 = c2
(

1−
2A

δ

)

dt2 − dy2

which, by means of a known argument, leads to identify c2A
δ

with km
δ

, whence A = km
c2
= μ.

Since G− 2A> 0, we have G(δ)> 2μ, so that, as anti-
cipated, G(δ) possesses the strictly positive greatest lower
bound 2μ, which, as we see, is independent of the second
constant B appearing in the solution (5.5). It follows that
the strictly increasing function G(δ) appears as an implicit
function defined by the equation

δ = B +
√
G (G− 2μ) + 2μ ln

(√
G
ξ
+

√
G− 2μ
ξ

)

.

The greatest lower bound 2μ is obtained for δ=B+

+ 2μ ln
√

2μ
ξ and this is why it is convenient to introduce, in-

stead ofB, the constant δ0=B+2μ ln
√

2μ
ξ

, which allows to

write δ= δ0+
√
G (G− 2μ)+2μ ln

(√
G
2μ+

√
G
2μ−1

)
or

δ = δ0 +

∫ G

2μ

du
√
1− 2μ

u

, G = G(δ) > 2μ

which does not contain the auxiliary length ξ. The solution
is completed by the determination of the function

F = cG′ = c

√

1−
2μ

G (δ)
.

As far as H(δ)= δF1(δ) is concerned, we repeat that it
is introduced simply as a C∞ function vanishing for δ=0
and satisfying the condition |H(δ)|6 1.

What about the new constant δ0 ? From the mathematical
point of view, negative values of δ0 are not excluded. So, we
distinguish the following cases (see Figure):

(a) δ0< 0. Then the values of G(δ) for δ06 δ < 0 are
meaningless physically, because G(δ) is conceived on
[0,+∞ [ . But the value δ=0 is also excluded because

∫ G(0)

2μ

du
√
1− 2μ

u

=−δ0> 0

implies G(0)> 2μ contrary to the geometrical cond-
ition G(0)= 0. Consequently there exists a constant
δ1> 0 (the radius of the considered distribution of
matter) such that only the restriction of G(δ) to
[δ1,+∞ [ is taken into account.

(b) δ0=0. Then
∫ G(0)

2μ

du
√
1− 2μ

u

= 0

so that G(0)= 2μ contrary to the geometrical cond-
ition G(0)= 0. Consequently the solution is valid, as
previously, on a half-line [δ1,+∞ [ with δ1> 0.

(c) δ0> 0. Then G(δ0)= 2μ, F (δ0)= 0, so that the metric
degenerates for δ= δ0. A degenerate metric does not
possess physical meaning. Consequently, there exists
a constant δ1>δ0 (the radius of the sphere bounding
the matter) such that the solution is physically valid
only on the half-line [δ1,+∞ [ .

Whatever the case may be, the vacuum solution is not de-
fined for δ < δ1. In other words, the ball ‖y‖6 δ1 is occupied
by matter, so that the source of the field cannot be reduced to
a point. The constant δ0 is related to a boundary condition,
namely the value of the curvature radius of the sphere bound-
ing the matter. In fact, if δ1 is the radius of this sphere, and the
value G(δ1) is known, then the value δ0 is easily obtained:

δ0 = δ1 −
√
G(δ1) (G(δ1)− 2μ) −

− 2μ ln

(√
G(δ1)
2μ

+

√
G(δ1)
2μ

− 1

)

.
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However, it is difficult, even impossible, to obtain G(δ1)
by direct measurements. So the value δ0 is to be found
indirectly by taking into account the phenomena induced
by δ0. This problem will be treated in another paper.

The most impressive characteristic of the solution is per-
haps the non-Euclidean structure of the space and specifically
the strong non-Euclidean properties in the neighbourhood
of the origin. If the theory is applicable to the elementary
particles, then strong deviations from the Euclidean geometry
are to be expected in the world of microphysics. Together
with the new geometrical ideas, the solution brings about an
improvement of the law of gravitation in accordance with
Poincaré’s prediction: “Il est difficile de ne pas supposer
que la loi véritable contient des termes complémentaires qui
deviendraient sensibles aux petites distances” [1]. In fact, the
Newton potential

−
km

δ
is an approximation of the more accurate expression

−
km

G(δ)

which depends on the curvature radius G(δ). There is a sign-
ificant discrepancy between the two formulae. Although, as
shown earlier, the ratio G(δ)

δ
converges to 1, the difference

δ −G(δ) = P (G)−G = δ0 +

+ 2μ ln

(√
G
2μ
+

√
G
2μ
− 1

)

−
2μ

1 +
√
1− 2μ

G

tends to +∞ as δ→+∞. Moreover G(δ) depends not only
on the radius δ, but also on the constant δ0. Of course, the dis-
tinction between Newton’s theory and Einstein’s theory does
not reduce to the distinction between δ and G(δ). Einstein’s
theory provides a new entity, namely a spacetime metric.

A last question regards the “boundary conditions at in-
finity”. Classically it is required that the metric admit as
limit form the standard pseudo-Euclidean metric as δ→+∞.
Since, as already remarked, δF1(δ) does not possess a limit
as δ→+∞, this requirement presupposes that F1=0, name-
ly that we are dealing with a static metric. Then the metric
can be written as

ds2 = c2
(

1−
2μ

G(δ)

)

dt2−

−

((
G(δ)

δ

)2
dy2 +

1

δ2

(

1−

(
G(δ)

δ

)2)

(ydy)
2

)

and since G(δ)→+∞, G(δ)
δ
→ 1, ‖y‖

δ
=1, we find, in fact,

“at infinity” the standard pseudo-Euclidean form

ds2 = c2dt2 − dy2.

Note that, if we introduce the so-called polar coordinates,
this conclusion fails. In fact, then we have the form

ds2 = c2
(

1−
2μ

G(δ)

)

dt2−
(
dδ2+

(
G(δ)

)2(
sin2 θdφ2+dθ2

))

which does not possess a limit form as δ→+∞.

6 Black holes do not exist

The pseudo-theory of black holes appeared as a consequence
of misunderstandings and mathematical errors brought out
in detail in the papers [3, 5, 6]. We emphasize that the
so-called “horizon” does not represent an observable value
of the curvature radius G(δ). According to the established
rigorous solution, 2μ is the greatest lower bound of the
vacuum solution G(δ) and is defined for a certain value
δ0 of the new constant. If δ06 0 there exists no real sphere
with the curvature radius 2μ, and the physically valid part
of the solution is defined for δ> δ1, where δ1 is a strictly
positive value such that G(δ1)> 2μ. On the other hand,
if δ0> 0, the degeneracy of the metric for δ= δ0 implies
that the corresponding sphere lies inside the matter, so that
the vacuum solution is valid for δ> δ1 where δ1>δ0 and
G(δ1)> 2μ. Whatever the case may be, the notion of black
hole is inconceivable.
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Gravitational Perturbations as a Possible Cause for Instability
in the Measurements of Positron Annihilation

Boris P. Vikin∗

The Faculty of Physics, Voronezh State University, Voronezh, Russia

The annihilation of positrons is measured in a wide range of studies in the field of
physical chemistry [1, 2]. One of the problems in these studies is the instability of the
results of measurements [3–5]. As shown in our research, instability may result from
the change of nonregistering gravitational effects related to alteration of the tidal forces
upon the change of moon phases and the seasonal changes of the distance between the
Earth and the Sun.

1 Materials and methods

A sample of 22Na (5 mCu) was used as a source of positrons.
The yield of positronium (I2) and the parameters of its
annihilation at the passage through organic liquids were mea-
sured by two techniques: either angular (parapositronium)
or temporal (orthopositronium) correlations of annihilation
quanta were registered. The yield of positronium was mea-
sured with a setup of “fast-slow coincidences”. The setup
was assembled according to a typical scheme, had the time
resolution of 0.5 ns and was connected to a multichannel
amplitude recorder [1, 2].

2 Results

In the experiments, I2-parameter and spectra of triplet posi-
tronium were measured in the toluol samples purified from
oxygen by the method of vacuum freezing-out and the sam-
ples under oxygen (0.6 atm). The measurements were con-
ducted daily over a period of 3 months (November, 1981 —
February, 1982).

Fig. 1 shows that in the oxygen-depleted samples, regular
fluctuations in the positronium yield are observed, which
correlate with the changes of the moon phase. The yield is
maximal in the times close to the new moon and minimal in
the times close to the full moon.

In the presence of oxygen, Fig. 2, no reliable effects were
revealed. It can be explained by a specific influence of
oxygen on the processes of formation and annihilation of
positronium [1, 2]. However, these experiments indicate sta-
bility of the setup itself.

In addition to periodical fluctuations, one can see a trend
in the series of measurements: the mean level of I2 grows
from November to February. This trend may be due to
the seasonal change of the distance between the Earth and
the Sun.

In more large scale the seasonal changes of positronium
yield apparent from Fig. 3, which presents average results

∗Submitted via Simon E. Shnoll. All correspondence addressed to the
author should be directed to Simon E. Shnoll (e-mail: shnoll@iteb.ru).
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Fig. 1: Yield of positronium correlate with the changes of the Moon
phases.
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Fig. 2: Yield of positronium in the presence of oxygen.
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Fig. 3: Seasonal changes of positronium yield in 1980–1981.
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Fig. 4: Distribution of measuring results of positronium yield at the
case of the experimental setup relocating up (triangles) and down
(circles), with the height difference 1.5 m.

of large number of experiments provided in 1980–1981. It’s
possible to see that minimal yield is observable for summer
solstice (June — July) and maximal yield for winter solstice
(December — February).

The reliability of the conclusion that the yield of posi-
tronium depends on the tidal changes in gravity force was
checked in the experiments of 1984–1985, in which the setup
used for measuring I2 was relocating up-and-down, with the
height difference of 1.5 m. The measurements (1500 in total)
were alternated (up/down) every 20 min. Finally, an Iup2 /I

down
2

ratio was calculated. Fig. 4 shows a smoothed distribution
of the results obtained. The mean of this ratio is 1.00447
for all the measurements. The root-mean-square error equals
to ± 0.00064. Thus, lifting the setup 1.5 m higher results in
a reliable increase in the positronium yield (the difference
amounts to 7σ).
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Conventional theory, as based on Maxwell’s equations and associated quantum electro-
dynamical concepts in the vacuum, includes the condition of zero electric field diver-
gence. In applications to models of the individual photon and to dense light beams such
a theory exhibits several discrepancies from experimental evidence. These include the
absence of angular momentum (spin), and the lack of spatially limited geometry in the
directions transverse to that of the propagation. The present revised theory includes
on the other hand a nonzero electric field divergence, and this changes the field
equations substantially. It results in an extended quantum electrodynamical approach,
leading to nonzero spin and spatially limited geometry for photon models and light
beams. The photon models thereby behave as an entirety, having both particle and
wave properties and possessing wave-packet solutions which are reconcilable with
the photoelectric effect, and with the dot-shaped marks and interference patterns on a
screen by individual photons in a two-slit experiment.

1 Introduction

Conventional electromagnetic theory based on Maxwell’s
equations and quantum mechanics has been very successful
in its applications to numerous problems in physics, and
has sometimes manifested itself in an exceptionally good
agreement with experiments. Nevertheless there exist areas
within which these joint theories do not provide fully ade-
quate descriptions of physical reality. As stated by Feyn-
man [1], there are difficulties associated with the ideas of
Maxwell’s theory which are not solved by and not directly as-
sociated with quantum mechanics. Thus the classical theory
of electromagnetism is in its conventional form an unsatis-
factory theory of its own.

Maxwell’s equations have served as a guiding line and
basis for conventional quantum electrodynamics (QED) in
which there is a vacuum state with a vanishing electric field
divergence [2]. The quantized equations become equivalent
to the classical field equations in which all field quantities
are replaced by their expectations values [3]. According to
Schiff [2] and Heitler [3], the Poynting vector further forms
the basis for the quantized field momentum. Consequently,
QED will also become subject to the shortcomings of a
conventional field theory.

When applying such a theory to photon physics, it will
lead to irrelevant results in a number of important cases.
This occurs with the experimentally confirmed existence of
angular momentum of individual photons and of light beams
with a spatially limited cross-section, with the behaviour of
individual photons as needle radiation in the photoelectric
effect and in two-slit experiments, and with the particle-wave
duality of the photon.

As a consequence of the revealed limitations, modified
theories leading beyond Maxwell’s equations have been ela-
borated by several authors. Among these there is an approach

described in this paper [4–9]. It is based on a vacuum state
that can give rise to local space charges and currents in
addition to the displacement current. This changes the field
equations in a substantial way, thus resulting in an extended
quantum electrodynamical (“EQED”) approach.

In the applications to photon physics the nonzero electric
field divergence may appear as small, but it still comes out to
have an essential effect on the end result. In other applications
of the present theory, such as on an electron model [6, 7] not
being treated here, the electric field divergence terms appear
as large contributions already in the basic field equations.

2 Basis of present theory

The vacuum is not merely an empty space. There is a nonzero
level of its ground state, the zero-point-energy, which derives
from the quantum states of the harmonic oscillator [2]. An
experimentally verified example of the related electromag-
netic vacuum fluctuations is the Casimir effect [10]. Electron-
positron pair formation due to an energetic photon also in-
dicates that local positive and negative electric charges can
be created out of an electrically neutral vacuum state. The
basic physical concept of the present theory is therefore the
appearance of a local charge density in such a state. In its
turn, this becomes associated with a nonzero electric field
divergence. The inclusion of the latter can as well be taken
as a starting point of a corresponding field theory.

2.1 Lorentz invariant field equations

In presence of electric space charges and related current
densities, a general form of the Proca-type equation

�Aμ ≡

(
1

c2
∂2

∂t2
−∇2

)

Aμ = μ0Jμ , μ = 1, 2, 3, 4 (1)

can be taken as a four-dimensional starting point of the pre-
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sent field equations, given in SI units. Here Aμ= (A, iφ/c) ,
where A and φ are the magnetic vector potential and the
electrostatic potential in three-space, and

Jμ = (j, icρ̄) (2)

is the four-current density. The right-hand member of equa-
tion (1) and the form (2) are now given a new interpretation,
where ρ̄ is the nonzero electric charge density in the vacuum,
and j stands for an associated three-space current density.
Maxwell’s equations are recovered when the current den-
sity (2) disappears, and equation (1) reduces to the d’Alem-
bert equation. The present charge and current densities should
not become less conceivable than the conventional concepts
of a nonzero curl of the magnetic field and an associated
displacement current. All these concepts can be regarded as
intrinsic properties of the electromagnetic field.

Physical experience further supports that also the present
revised and extended field equations should remain Lorentz
invariant. This implies that the current (2) has to transform
as a four-vector, and its square then becomes invariant to a
transform from one inertial frame K to another such frame
K′. Thus

j2 − c2ρ̄2 = j′2 − c2ρ̄ ′2 = const . (3)

In addition, the current density j should exist only when
there is also a charge density ρ̄, and this implies that the
constant in equation (3) vanishes. Since j and ρ̄ must behave
as space and time parts of Jμ, the disappearance of this
constant merely becomes analogous to the choice of origin
for the space and time coordinates. Consequently the final
form of he current density (2) becomes

j = ρ̄ (C, ic) C2 = c2. (4)

It is obvious that ρ̄ as well as the velocity vector C vary
from one inertial frame to another and do not become Lorentz
invariant, whereas this is the case of Jμ.

It can be shown [6, 7] that there is a connection between
the current density (4) and the electron theory by Dirac.
A different form of the current density in equation (1) has
further been introduced by de Broglie and Vigier [11] and
applied by Evans and Vigier [12]. It explicitly includes a
small nonzero photon rest mass.

The three-dimensional representation of the extended eq-
uations in the vacuum now becomes

curl B/μ0 = ε0 (div E)C+ ε0∂E/∂t (5)

curl E = −∂B/∂t (6)

div E = ρ̄/ε0 (7)

for the electric and magnetic fields E and B. Here the first
term of the right-hand member of equation (5) and equa-
tion (7) are the new parts introduced. Thus, there is a change

from a homogeneous to an inhomogeneous system of equat-
ions, a new degree of freedom is introduced by the nonzero
electric field divergence, and the latter produces an asym-
metry in the appearance of the electric and magnetic fields.

The presence in equations (5) and (7) of the dielectric
constant ε0 and the magnetic permeability μ0 of the convent-
ional vacuum may require further explanation. In the present
approach the vacuum is considered not to include electrically
polarized or magnetized atoms or molecules. In this respect
equation (7) is the same as in the theory of plasmas which
contain freely moving charged particles in a background of
empty vacuum space.

A nonzero magnetic field divergence is not adopted in this
theory, because this is so far a possible but not experimentally
supported supposition which is here left as an open question.

Using vector identities, the basic equations (5)–(7) yield
the local momentum equation

div2S = ρ̄ (E+C×B) +
∂

∂t
g (8)

and the local energy equation

−div S = ρ̄ E ∙C+
∂

∂t
wf . (9)

Here 1
c2
S is the electromagnetic stress tensor,

g = ε0E×B =
1

c2
S (10)

can be interpreted as an electromagnetic momentum density
with S denoting the Poynting vector, and

wf =
1

2
ε0
(
E2 + c2B2

)
(11)

representing the electromagnetic field energy density. The
angular momentum density becomes

s = r× S/c2 (12)

where r is the radius vector from the origin.
Combination of equations (5) and (6) results in an ext-

ended wave equation for the electric field
(
∂2

∂t2
− c2∇2

)

E+

(

c2∇+C
∂

∂t

)

(div E) = 0 . (13)

A divergence operation on equation (5) results in
(
∂

∂t
+C ∙ ∇

)

(div E) = 0 , (14)

provided that div C = 0.

2.2 Quantization of the revised theory

In the conventional QED formalism Maxwell’s equations
with a vanishing electric field divergence have been used as a
basis, also including the Poynting vector in the representation
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of the quantized field momentum [2, 3]. The quantized equa-
tions then become equivalent to the classical ones in which
the field quantities are replaced by their expectation values.

A similar situation also has to apply to the present revised
equations. The resulting solutions are expected not to be
too far from the truth, by representing the most probable
trajectories. A rigorous extended quantum electrodynamical
(EQED) formulation would imply that the field equations are
quantized already from the outset. However, to simplify the
analysis, we will instead solve the extended equations as they
stand, and impose relevant quantum conditions afterward.
For the considered photon models these conditions are given
by the energy hν related to the frequency ν, and by the
angular momentum h/2π of the individual photon with the
property of a boson particle.

3 Axisymmetric model of the individual photon

When elaborating a model of the individual photon as a
propagating boson, a wave or wave-packet with preserved
and limited geometrical shape and undamped motion in a
defined direction of space has to be taken as a starting point.
This leads to cylindrical geometry and waves. A cylindrical
frame (r, ϕ, z) becomes appropriate, with its z-axis in the
direction of propagation. We further introduce a velocity
vector of helical geometry

C = c (0, cosα, sinα) (15)

where the angle α is constant and 0< cosα� 1 for reasons
to be clarified later. As will be shown, the component Cz
is related to the wave propagation in the axial direction,
and the component Cϕ to the angular momentum and an
associated small nonzero rest mass. Here we choose the
positive values of sinα and cosα, but have in general both
signs representing the two directions of propagation and the
two spin directions.

The wave equation (13) now leads to
(

D1−
1

r2
+
1

r2
∂2

∂ϕ2

)

Er−
2

r2
∂

∂ϕ
Eϕ =

∂

∂r
(div E) (16)

(

D1 −
1

r2
+
1

r2
∂2

∂ϕ2

)

Eϕ −
2

r2
∂

∂ϕ
Er =

=

[
1

r

∂

∂ϕ
+
1

c
(cosα)

∂

∂t

]

(div E)

(17)

(

D1+
1

r2
∂2

∂ϕ2

)

Ez =

[
∂

∂z
+
1

c
(sinα)

∂

∂t

]

(div E) (18)

where

D1 =
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
−
1

c2
∂2

∂t2
. (19)

Equation (14) further becomes
(
∂

∂t
+ c cosα

1

r

∂

∂ϕ
+ c sinα

∂

∂z

)

(div E) = 0 . (20)

In this section restriction is made to purely axisymmetric
normal modes for which ∂/∂ϕ=0, and where every quantity
Q has the form Q= Q̂ (r) exp

[
i (−ωt+ kz)

]
with a given

angular frequency ω and wave number k.

3.1 Shortcomings of a conventional model

Turning first to a model based on Maxwell’s equations, the
system (16)–(18) with a vanishing electric field divergence
results in the electric field components

Êr = k1r r + k2r/r

Êϕ = k1ϕ r + k2ϕ/r

Êz = k1z ln r + k2z

(21)

and similar expressions for the magnetic field. The solutions
for Er and Eϕ were first deduced by Thomson [13] who
called attention to their divergent character, thus becoming
unsuitable for a limited model.

However, an even more serious shortcoming arises from
the requirement that the divergences of the fields have to
vanish. Thus the second order equations (16)–(18) and their
solutions (21) have to be checked with respect to the first
order equations of an identically vanishing field divergence.
This implies that

2kr1 + ik (k1zln r + k2z) ≡ 0 (22)

for all k and r. Consequently Ez and k1r have to vanish, only
Eϕ and k2r remain nonzero, and similar results apply to the
magnetic field. This implies that the wave becomes purely
transverse, that the Poynting vector (10) has a component in
the direction of propagation only, and that there is no spin in
the axial direction.

3.2 Axisymmetric models in revised theory

For an axisymmetric normal mode, equation (20) of the
revised theory yields the dispersion relation

ω/k = c sinα = v , k2 − ω2/c2 = k2 cos2 α (23)

where v stands for the phase velocity which becomes equal
to the group velocity ∂ω/∂k. The parameter cosα must be
small here, such as not to get in conflict with experiments of
the Michelson-Morley type. For cosα6 10−4 the difference
between v and c would thus become less than a change in
the eight decimal of c. Equations (16), (17) and (23) further
combine to

−k2 cos2 αEr = ik
∂Ez
∂r

(24)
(
∂2

∂r2
+
1

r

∂

∂r
−
1

r2
− k2 cos2 α

)

Eϕ =

= − (tg α)

(
∂2

∂r2
+
1

r

∂

∂r
− k2 cos2 α

)

Ez .

(25)
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A generating function

G0 ∙G = Ez + (cotα)Eϕ , G = R(ρ) ei(−ωt+kz) (26)

can now be found which has the amplitude G0, a normalized
dimensionless part G, the normalized coordinate ρ = r/r0,
and the characteristic radius r0 of the configuration repre-
sented by the radial function R. The function (26) generates
the solutions

Er = −iG0
(
θ cos2 α

)−1 ∂

∂ρ

[(
1− ρ2D

)
G
]

(27)

Eϕ = G0 (tgα) ρ
2DG (28)

Ez = G0
(
1− ρ2D

)
G (29)

where

D = Dρ − θ
2 cos2 α , Dρ =

∂2

∂ρ2
+
1

ρ

∂

∂ρ
(30)

and θ = kr0. The solutions (27)–(29) are reconfirmed by
insertion into equations (16)–(18). The magnetic field com-
ponents are derived from the induction law (6). The helical-
like structure of the obtained solution, with its axial field
components, is similar but not identical to that deduced by
Evans and Vigier [12].

From the normal modes a wave packet solution is now
formed which has finite extensions, and a narrow line width
as required by experimental observation. We are free to
rewrite the amplitude factor (26) as G0= g0 cos

2 α. The
wave packet has the amplitude

Ak =

(
k

k20

)

e−z
2
0(k−k0)

2

(31)

in the interval dk being centered around the main wave num-
ber k0. Here 2z0 represents the axial length of the packet.
With z = z̄ − vt and the notation

Ē0=E0(z̄)=

(
g0
k0r0

)( √
π

k0z0

)

exp

[

−

(
z̄

2z0

)2
+ ik0 z̄

]

(32)

the spectral averages of the field components are

Ēr = −iE0
[
R5 + (θ

′
0)
2R1

]
(33)

Ēϕ = E0θ0(sinα)(cosα)
[
R3 − (θ

′
0)
2R1

]
(34)

Ēz = E0θ0(cos
2 α)

[
R4 + (θ

′
0)
2R1

]
(35)

where θ0 = k0r0, θ′0 = θ0 cosα and

R1 = ρ2R, R3 = ρ2DρR, R4 =
(
1− ρ2Dρ

)
R, (36)

R5 =
d

dρ

[(
1− ρ2Dρ

)
R
]
, R7 =

(
d

dρ
+
1

ρ

)
(
ρ2R

)
. (37)

The packet components
(
Ēϕ, Ēz, B̄r

)
are in phase with

the generating function (26). The components
(
Ēr, B̄ϕ, B̄z

)

are ninety degrees out of phase with it. We now choose the
real part of the function (26), i. e. G = R(ρ) cos kz̄, which
is symmetric with respect to the axial center z̄ = 0 of the
moving wave packet. Then the real part of the form (32)
is adopted, from which

(
Ēϕ, Ēz, B̄r

)
become symmetric

and
(
Ēr, B̄ϕ, B̄z

)
antisymmetric. Under these conditions the

integrated electric charge and magnetic moment vanish.
The electromagnetic field energy density (11) defines an

equivalent total mass

m =
1

c2

∫
wf dV ∼=

2πε0
c2

∫ +∞

−∞
rE2r drdz̄ (38)

to lowest order. Integration and quantization yields

m = a0Wm
∼=
hν0
c2

, Wm =

∫
ρR25 dρ , (39)

where

a0 = ε0 π
5/2
√
2 z0

(
g0/ck

2
0z0
)2
≡ 2a∗0 g

2
0 (40)

and ν0 = c/λ0. Here the slightly reduced phase and group
velocity (23) can be associated with a very small nonzero
photon rest mass m0 = m cosα.

Turning finally to the momentum balance, all integrated
volume forces in equation (8) vanish on account of the
symmetry properties, and expression (12) gives

s =

∫
sz dV = −2πε0

∫ +∞

−∞

∫
r2ĒrB̄z drdz̄ . (41)

It reduces to the quantum condition

s=a0r0c(cosα)Ws=
h

2π
, Ws=−

∫
ρ2R5R7 dρ . (42)

So far the radial function R has not been specified. We
first consider the case where it is finite at the axis ρ = 0 and
tends to zero at large ρ, as in the form

R(ρ) = ργe−ρ (43)

where γ > 0. In principle, the factor in front of the exponent-
ial would have to be replaced by a power series of ρ, but since
we will proceed to the limit of large γ, only one dominating
term becomes sufficient. The exponential factor in (43) is
further included to secure the convergence of any moment
with R. The function (43) has a sharply defined maximum at
the radius r̂ = γr0. Combination of relations (39) and (42)
finally results in an effective photon diameter

2r̂ =
λ0

π cosα
(44)

being independent of γ and the exponential factor in equa-
tion (43).

We next consider the alternative of a radial function R
which diverges at the axis, i. e.

R(ρ) = ρ−γe−ρ. (45)

B. Lehnert. Photon Physics of Revised Electromagnetics 81



Volume 2 PROGRESS IN PHYSICS April, 2006

Here r̂ = r0 can be taken as an effective radius. To obtain
finite integrated values of the total mass m and spin s, small
lower limits ρm and ρs are now introduced in the integrals
of Wm and Ws. We further introduce

r0 = cr ∙ ε , g0 = cg ∙ ε
β (46)

such as to make the characteristic radius r0 and the factor
g0 shrink to small but nonzero values as the lower limits ρm
and ρs approach zero. In equations (46), ε is an independent
smallness parameter, 0<ε� 1, and cr, cg and β stand for
positive constants. Equations (40), (39) and (44) combine to

m = a∗0 γ
5c2g
(
ε2β/ρ2γm

) ∼= h/λ0 c , (47)

s = a∗0 γ
5c2gcrc(cosα)

(
ε2β+1/ρ2γ−1m

)
= h/2π . (48)

To obtain finite m and s it is then necessary that

ρm = εβ/γ , ρs = ε(2β+1)(2γ−1). (49)

We are here free to choose β= γ�1 by which ρs∼=ρm=
= ε. This leads to a similar set of geometrical configurations
which have a shape being independent of ρm, ρs and ε in the
range of small ε. From equations (47) and (48) the effective
photon diameter finally becomes

2r̂ =
ελ0

π cosα
(50)

which is independent of γ, β and the exponential factor.

3.3 Summary on the photon model

• Conventional theory results in a model of the individ-
ual photon which has no spin, and is not reconcilable
with a limited geometrical shape.

• The present axisymmetric wave packet model is radi-
ally polarized, does not consist of purely transverse
elementary waves as in conventional theory, has a non-
zero spin and an associated very small rest mass, and
a helical-like field structure.

• The spatial dimensions of the present model are limit-
ed. The solutions are reconcilable with the concepts of
needle radiation proposed by Einstein. This provides
an explanation of the photoelectric effect in which a
photon knocks out an electron from an atom, and of
the dot-shaped marks on a screen in two-slit experi-
ments on individual photons as reported by Tsuchiya
et al. [14]. As an example with cosα= 10−4 and
λ0= 3×10−7m, equation (44) yields a diameter 2r̂=
= 10−3m, and equation (50) results in 2r̂6 10−7m
when ε6 cosα for needle-like radiation.

• The present individual photon model is relevant in
respect to particle-wave dualism. A subdivision into a
particle and an associated pilot wave is not necessary,
because the rest mass merely constitutes an integrating

part of the total field energy. The wave packet behaves
as an entirety, having particle and wave properties at
the same time. There is a particle like behaviour such
as by needle radiation and a nonzero rest mass, and a
wave-like behaviour in terms of interference between
cylindrical waves. The rest mass may make possible
“photon oscillations” between different modes [8],
such as those of the results (44) and (50).

4 Screw-shaped light

In a review by Battersby [15] new results have been reported
on twisted light in which the energy travels along a cork-
screw-shaped path. These discoveries are expected to become
important in communication and microbiology.

In this section, equations (16)–(18) will be applied to
screw-shaped waves with the factor

exp
[
i(−ωt+ m̄ϕ+ kz)

]
= exp (iθm) (51)

and m̄ as a positive or negative integer. Since the analysis is
similar to that of Section 3.2, we shall leave out its details.

4.1 Shortcomings of the conventional analysis

With Maxwell’s equations the system (16)–(18) reduces to
[

Dρ −

(
1 + m̄2

)

ρ2

]

(Er, iEϕ)−
2m̄2

ρ2
(iEϕ , Er) = 0 , (52)

[

Dρ −
m̄2

ρ2

]

Ez = 0 . (53)

For nonzero values of m̄, equations (52) combine to

Êr = c1r ρ
1±m̄ + c2r ρ

−(1±m̄) = ± iÊϕ (54)

when 1± m̄ 6= 0 and

Êr = c1r0 + c2r0 ln ρ = ± iÊϕ (55)

when 1± m̄ = 0. Further equation (53) gives

Êz = c1z ρ
m̄ + c2z ρ

−m̄. (56)

As in Section 3.1 these results become divergent.
An even more serious shortcoming is again due to an

identically vanishing electric and magnetic field divergence.
This makes the axial components Ez and Bz disappear, thus
resulting in a vanishing spin.

4.2 Twisted modes in revised theory

For nonzero values of m̄, the second term in equation (20)
introduces complications. This problem is approached by
limiting the analysis to sufficient small cosα, and the dis-
persion relation to be approximated by relations (23). From
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equation (18) can be seen that Ez is of the order of cos2 α
as compared to Er and Eϕ when m̄ 6= 0. Equation (16) then
takes the approximate form

Er∼=−
( r
m̄

)[

1−k2
(
cos2α

)( r
m̄

)2]( ∂

∂r
+
1

r

)

(iEϕ) . (57)

When inserting this relation into equation (17), the latter
is identically satisfied up to the order cos2 α. The component
iEϕ can be used as a generating function

iEϕ = G0G G = R(ρ) eiθm . (58)

The analysis proceeds in forming a wave packet of
narrow line width, as given in detail elsewhere [9]. The
radial forms (43) and (45) lead to effective diameters for
which a factor |m̄|3/2 has to be added in the denominators
of expressions (44) and (50). These diameters also apply to
radially polarized dense light beams, because the mass and
angular momentum are both proportional to the same number
of photons.

5 Boundary conditions and spin of light beams

A light beam of low photon density can merely be regarded as
a stream of non-interacting photons. At high photon densities
a unidirectional beam of limited cross-section becomes more
complex. The observed angular momentum of such a linearly
or elliptically polarized beam has been proposed to be due
to transverse spatial derivatives at its boundary [3, 16]. The
angular momentum which would have existed for the in-
dividual photons in the beam core have been imagined to
be substituted by the momentum generated in the boundary
region. However, the detailed explanation is so far not clear.

In this section a dense light beam is considered where the
individual photons in the beam core overlap each other, such
as to form a plane classical electromagnetic (EM) wave as
conceived in earlier considerations [7, 8]. Outside the beam
there is a vacuum region. The main purpose is to analyze
the boundary conditions and the angular momentum of this
system.

5.1 Definitions of beam conditions

A beam is considered having an arbitrary cross-section of
large size as compared to its characteristic wave lengths. The
analysis of a general case with elliptically polarized modes of
various wave lengths can be subdivided into a study on each
of the included elementary and linearly polarized modes of a
specific wave length. A further simplification is provided by
the narrow boundary region where the boundary conditions
can be applied separately to every small local segment. The
analysis is then limited to one linearly polarized core wave.
In its turn, this wave can be subdivided into two waves of
the same frequency, but having electric field vectors which
are perpendicular and parallel to the local segment.

The following analysis starts with an investigation in
terms of Maxwell’s equations. It then proceeds by the revised
theory, first on a flat-shaped configuration with main electric
field vectors being either perpendicular or parallel to the
boundary. Finally a simplified study is undertaken on a beam
of circular cross-section.

5.2 Shortcomings of the conventional analysis

We consider a beam which propagates in the z-direction of
a frame (x, y, z) and where every field quantity Q has the
form Q̂(x, y) exp

[
i (−ωt+ kz)

]
. The conventional limit of

the field equation (13) then reduces to

[

k20 −

(
∂2

∂x2
+

∂2

∂y2

)]

(E,B) = 0 (59)

where k20 = k2−
(
ω
c

)2
can have any value. A separable form

X(x) ∙ Y (y) of each component then leads to

k20 = k20x+k
2
0y , X ′′/X = k20x , Y ′′/Y = k20y , (60)

where k20x and k20y can have any sign and value. The solution
for the electric field becomes

Ēν =
[
aν1 exp(k0xx) + aν2 exp(−k0xx)

]
∙

∙
[
bν1 exp(k0yy) + bν2 exp(−k0yy)

] (61)

with ν=x, y, z and an analogous form for the magnetic
field. The divergences have to vanish identically. With the
solution (61), this leads to a purely transverse wave with zero
spin as shown by equation (12). Further one should either
have Ex=Ey =0 and Bx=By =0, or k0x= k0y = k0=0
and ω2= k2c2. There are no transverse derivatives in an
exact solution.

The alternative has also be taken into account where k0
is zero already from the beginning. Then

Ēν = (cν1x+ cν2) (dν1y + dν2) . (62)

With these solutions inserted into the condition of vanish-
ing field divergence

Ēx = c0x+c1y+c2 , Ēy = c3x−c0y+c4 , Ēz = 0 . (63)

All the obtained solutions thus have a vanishing spin,
and are not reconcilable with a beam of spatially limited
cross-section.

5.3 Revised equations of flat-shaped geometry

We now proceed to a revised analysis of flat-shaped beam
geometry. With z still in the direction of propagation and
x along the normal of the boundaries of a slab-like beam,
all field quantities become independent of y. The velocity
vector is given by a form similar to (15), having a small
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component Cy along the boundary and a large component
Cz in the direction of propagation.

Now equation (14) yields the same dispersion relation
as (23), and the three component equations reduce to

Ex = −
i

k cos2α

∂Ez
∂x

, (64)

(

k2 cos2α−
∂2

∂x2

)(

Ey +
sinα

cosα
Ez

)

= 0 . (65)

ConsequentlyEz can be considered as a generating funct-
ion of Ex and Ey . One solution of equation (65) is found
where Ey has the same spatial profile as Ez and

Ey = −
sinα

cosα
Ez . (66)

5.4 Two special cases of flat-shaped geometry

A flat-shaped (slab-like) beam is now considered which has
a core region −a<x<a and two narrow boundary regions,
−(a + b)<x<−a and a<x<a+ b, with thickness d=
= b− a. With the frame chosen in Section 5.3, we first
consider the case where Ex is the main electric component.
Within the core a homogeneous linearly polarized EM wave
is assumed to exist, having the constant components E0x and
B0y . In the boundary region an axial field component Ez is
chosen which increases linearly with x, from zero at x = a,
and in such a way that Ex of equation (64) becomes matched
to E0x at x= a. In the same region the field Ez further
passes a maximum, and then drops to zero at the vacuum
interface x = a+ b. The resulting field Ex is reversed in the
boundary layer, having a maximum strength of the order of
E0x. With E0x=O(1) in respect to the smallness parameter
cosα, equations (64) and (66) show that Ez =O(cos2 α) and
Ey =O(cosα). Here By is of zero order and matches B0y at
the edge of the core. The components of the Poynting vector
are Sx=0 and

Sy ∼= c (cosα)ε0E
2
x , Sz ∼= c (sinα)ε0E

2
x . (67)

Thus there is a primary flow of momentum Sz in the
direction of propagation, and a secondary flow Sy along the
boundary, but no flow across it. The field energy density
finally becomes wf ∼= ε0E

2
x.

Turning to the second case where Ey is the main electric
component and is parallel to the boundary, there is an EM
core wave with the components E0y and B0x. In a small
range of x near x= a the axial field Ez is assumed to be
constant, and Ex=0. Relation (66) then makes it possible to
matchEy toE0y at x= a. Moreover, the field Ez is chosen to
decrease towards zero when approaching the outer boundary
x = a+ b. According to equation (64) the field Ex increases
from zero at x= a to a maximum, and then drops towards
zero when approaching the outer boundary at x = a + b.
Combination of equations (64) and (66) yields

|Ex/Ey| = λ/2πLcy cosα (68)

where λ = 2π/k and Lcy stands for the characteristic length
of the derivative of Ey . As an example with λ/Lcy = 10−4

and cosα = 10−4, equation (68) gives a ratio of about 0.16.
The Poynting vector components become Sx = 0 and

Sy = c (cosα)ε0E
2
y

[
1 + sin2α (Ex/Ey)

2
]
/ sin2α , (69)

Sz = c ε0E
2
y

[
1 + sin2α (Ex/Ey)

2
]
/ sin2α . (70)

The energy density is wf ∼= ε0E
2
y as long as E2x � E2y .

5.5 Simplified analysis on the spin of a beam

A simplified analysis is performed on a beam of circular
cross-section. The frame is redefined for a linearly polarized
EM core wave E0 = (E0, 0, 0) and B0 = (0, B0, 0). With
the angle θ between the y-direction and the radial direction,
the electric components are

E0⊥ = E0 sin θ , E0‖ = E0 cos θ (71)

in the perpendicular and parallel directions of the boundary.
The solutions of Section 5.4 are now matched to these core
components at the inner surface of the boundary layer. The
energy density is wf = ε0E

2 where E2 = E20 at the edge of
the beam core.

With the numerical example of Section 5.4 as a reference
where E2x�E2y , the Poynting vector components in the
transverse direction now add up to

St = c(cosα) ε0E
2 . (72)

The energy density of the beam core can be written as

εE20 = nphc/λ (73)

where np is the number of equivalent photons per unit
volume. With the spin h/2π of each photon, the core contains
a total angular momentum per unit length

sc = r20nph/2 = ε0E
2
0λr

2
0/2c (74)

with r0 standing for the core radius. From equations (12)
and (72) the angular momentum generated per axial length
in the boundary layer becomes on the other hand

sb = 2π(cosα) εE
2
0 fE r

2
0 d/c (75)

where d is the thickness of the boundary layer and fE < 1 is
a profile factor of E2 across the layer. Thus

sb
sc
=
4π (cosα)fE d

λ
. (76)

Here sb= sc when the equivalent angular momentum of
the core is compensated by that generated in the boundary
layer. As an example, for λ= 3×10−7m, fE = 0.2 and d=
= 10−3m this becomes possible when cosα= 10−4.
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5.6 Summary of the analysis on a dense light beam

• Conventional theory leads to a vanishing spin, and is
not reconcilable with a beam of limited extensions in
its transverse directions. A limited cross-section can
only appear in an approximate solution when the char-
acteristic lengths of the transverse derivatives are much
larger than the included wavelengths.

• The present revised theory leads to a Poynting vector
with a primary component in the direction of propagat-
ion, and a secondary component in the transverse di-
rections which generates a spin.

• The angular momentum represented by the spin of the
photons in the beam core is substituted by a real spin
generated in the boundary layer.

• Even large transverse spatial derivatives and a corres-
ponding limited beam cross-section can exist accord-
ing to the revised theory.

6 Conclusions

Conventional theory which is based on Maxwell’s equations
and the associated quantum electrodynamical concepts in
the vacuum state includes the condition of zero electric field
divergence. When being applied to the physics of the individ-
ual photon and of dense light beams, such a theory exhibits a
number of discrepancies from experimental evidence. These
shortcomings include the absence of spin and of spatially
limited geometry in the directions which are transverse to
that of the propagation.

The present revised theory on the vacuum state is based
on a nonzero electric field divergence which introduces an
additional degree of freedom into the field equations, thereby
changing the latter and their solutions substantially as com-
pared to the conventional ones. The resulting extended quan-
tum electrodynamics (EQED) makes it possible for both
individual photons and for dense light beams to possess a
nonzero spin, and to have a spatially limited geometry in
the transverse directions. Moreover the individual photon
models behave as an entirety in having both particle and
wave properties. There are wave-packet solutions with the
character of needle radiation which become reconcilable with
the photoelectric effect, and with the dot-shaped marks and
interference patterns due to individual photons in two-slit
experiments.
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We explore Yang’s Noncommutative space-time algebra (involving two length scales)
within the context of QM defined in Noncommutative spacetimes and the holographic
area-coordinates algebra in Clifford spaces. Casimir invariant wave equations
corresponding to Noncommutative coordinates and momenta in d-dimensions can be
recast in terms of ordinary QM wave equations in d+2-dimensions. It is conjectured
that QM over Noncommutative spacetimes (Noncommutative QM) may be described
by ordinary QM in higher dimensions. Novel Moyal-Yang-Fedosov-Kontsevich star
products deformations of the Noncommutative Poisson Brackets are employed to
construct star product deformations of scalar field theories. Finally, generalizations
of the Dirac-Konstant and Klein-Gordon-like equations relevant to the physics of
D-branes and Matrix Models are presented.

1 Introduction

Yang’s noncommutative space time algebra [1] is a generali-
zation of the Snyder algebra [2] (where now both coordinates
and momenta are not commuting) that has received more
attention recently, see for example [3] and references therein.
In particular, Noncommutative p-brane actions, for even p+1
= 2n-dimensional world-volumes, were written explicitly
[15] in terms of the novel Moyal-Yang (Fedosov-Kontsevich)
star product deformations [11, 12] of the Noncommutative
Nambu Poisson Brackets (NCNPB) that are associated with
the noncommuting world-volume coordinates qA, pA forA =
= 1, 2, 3, . . . n. The latter noncommuting coordinates obey
the noncommutative Yang algebra with an ultraviolet LP
(Planck) scale and infrared (R) scale cutoff. It was shown
why the novel p-brane actions in the “classical” limit ~eff =
= ~LP /R→ 0 still acquire nontrivial noncommutative cor-
rections that differ from ordinary p-brane actions. Super p-
branes actions in the light-cone gauge are also amenable to
Moyal-Yang star product deformations as well due to the fact
that p-branes moving in flat spacetime backgrounds, in the
light-cone gauge, can be recast as gauge theories of volume-
preserving diffeomorphisms. The most general construction
of noncommutative super p-branes actions based on non
(anti) commuting superspaces and quantum group methods
remains an open problem.

The purpose of this work is to explore further the conse-
quences of Yang’s Noncommutative spacetime algebra within
the context of QM in Noncommutative spacetimes and the
holographic area-coordinates algebra in Clifford spaces [14].
In section 2 we study the interplay among Yang’s Noncom-
mutative spacetime algebra and the former area-coordinates
algebra in Clifford spaces. In section 3 we show how Casimir
invariant wave equations corresponding to Noncommutative
coordinates and momenta in D-dimensions, can be recast in

terms of ordinary QM wave equations in D+2-dimensions.
In particular, we shall present explicit solutions of the D’Ala-
mbertian operator in the bulk of AdS spaces and explain its
correspondence with the Casimir invariant wave equations
associated with the Yang’s Noncommutative spacetime al-
gebra at the projective boundary of the conformally compact-
ified AdS spacetime. We conjecture that QM over Noncom-
mutative spacetimes (Noncommutative QM) may be describ-
ed by ordinary QM in higher dimensions.

In section 4 we recur to the novel Moyal-Yang (Fedosov-
Kontsevich) star products [11, 12] deformations of the Non-
commutative Poisson Brackets to construct Moyal-Yang star
product deformations of scalar field theories. The role of
star products in the construction of p-branes actions from
the large N limit of SU(N) Yang-Mills can be found in [6]
and in the Self-Dual Gravity/SU(∞) Self Dual Yang-Mills
relation in [7, 8, 9, 10]. Finally, in the conclusion 5, we
present the generalizations of the Dirac-Konstant equations
(and their “square” Klein-Gordon type equations) that are
relevant to the incorporation of fermions and the physics of
D-branes and Matrix Models.

2 Noncommutative Yang’s spacetime algebra in terms
of area-coordinates in Clifford spaces

The main result of this section is that there is a subalgebra of
the C-space operator-valued coordinates [13] which is iso-
morphic to the Noncommutative Yang’s spacetime algebra
[1, 3]. This, in conjunction to the discrete spectrum of angular
momentum, leads to the discrete area quantization in multi-
ples of Planck areas. Namely, the 4D Yang’s Noncommutat-
ive space-time algebra [3] (written in terms of 8D phase-
space coordinates) is isomorphic to the 15-dimensional sub-
algebra of the C-space operator-valued coordinates associat-
ed with the holographic areas of C-space. This connection
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between Yang’s algebra and the 6D Clifford algebra is pos-
sible because the 8D phase-space coordinates xμ, pμ (assoc-
iated to a 4D spacetime) have a one-to-one correspondence
to the X̂μ5; X̂μ6 holographic area-coordinates of the C-space
(corresponding to the 6D Clifford algebra). Furhermore,
Tanaka [3] has shown that the Yang’s algebra [1] (with
15 generators) is related to the 4D conformal algebra (15
generators) which in turn is isomorphic to a subalgebra of
the 4D Clifford algebra because it is known that the 15
generators of the 4D conformal algebra SO(4, 2) can be
explicitly realized in terms of the 4D Clifford algebra as
shown in [13].

The correspondence between the holographic area coord-
inates XAB↔λ2ΣAB and the angular momentum variables
when A,B= 1, 2, 3, . . . 6 yields an isomorphism between the
holographic area coordinates algebra in Clifford spaces [14]
and the noncommutative Yang’s spacetime algebra in D= 4.
The scale λ is the ultraviolet lower Planck scale. We begin
by writing the exchange algebra between the position and
momentum coordinates encapsulated by the commutator

[
X̂μ6, X̂56

]
= −iλ2η66X̂μ5 ↔

[
λ2R

~
p̂μ, λ2Σ56

]

= −iλ2η66λx̂μ
(2.1)

from which we can deduce that

[
p̂μ, Σ56

]
= −iη66

~
λR

x̂μ, (2.2)

hence, after using the definition N =(λ/R)Σ56, where R
is the infrared upper scale, one has the exchange algebra
commutator of pμ and N of the Yang’s spacetime algebra
given by

[p̂μ,N ] = −iη66
~
R2

x̂μ. (2.3)

From the commutator
[
X̂μ5, X̂56

]
= −

[
X̂μ5, X̂65

]
= iη55λ2X̂μ6 ↔

[
λx̂μ, λ2Σ56

]
= iη55λ2λ2

R

~
p̂μ

(2.4)

we can deduce that

[
x̂μ,Σ56

]
= iη55

λR

~
p̂μ (2.5)

and after using the definition N =(λ/R)Σ56 one has the
exchange algebra commutator of xμ and N of the Yang’s
spacetime algebra

[x̂μ,N ] = iη55
λ2

~
p̂μ. (2.6)

The other relevant holographic area-coordinates commu-
tators in C-space are
[
X̂μ5, X̂ν5

]
=−iη55λ2X̂μν ↔ [x̂μ, x̂ν ]=−iη55λ2Σμν (2.7)

that yield the noncommuting coordinates algebra after having
used the representation of the C-space operator holographic

area-coordinates

iX̂μν ↔ iλ2
1

~
Mμν = iλ2Σμν , iX̂56 ↔ iλ2Σ56, (2.8)

where we appropriately introduced the Planck scale λ as one
should to match units. From the correspondence

p̂μ =
~
R
Σμ6 ↔

~
R

1

λ2
X̂μ6 (2.9)

one can obtain nonvanishing momentum commutator
[
X̂μ6, X̂ν6

]
=−iη66λ2X̂μν↔ [p̂μ, p̂ν ]=−iη66

~2

R2
Σμν. (2.10)

The signatures for AdS5 space are η55=+1; η66=−1
and for the Euclideanized AdS5 space are η55=+1 and
η66=+1. Yang’s space-time algebra corresponds to the latter
case. Finally, the modified Heisenberg algebra can be read
from the following C-space commutators

[
X̂μ5, X̂ν6

]
= iημνλ2X̂56 ↔

[x̂μ, p̂μ] = i~ημν
λ

R
Σ56 = i~ημνN .

(2.11)

Eqs-(2.1–2.11) are the defining relations of Yang’s Non-
commutative 4D spacetime algebra [1] involving the 8D
phase-space variables. These commutators obey the Jacobi
identities. There are other commutation relations like [Mμν ,
xρ], . . . that we did not write down. These are just the well
known rotations (boosts) of the coordinates and momenta.

When λ→ 0 and R→∞ one recovers the ordinary com-
mutative spacetime algebra. The Snyder algebra [2] is reco-
vered by setting R→∞ while leaving λ intact. To recover
the ordinary Weyl-Heisenberg algebra is more subtle. Tanaka
[3] has shown the the spectrum of the operatorN=(λ/R)Σ56

is discrete given by n(λ/R). This is not suprising since
the angular momentum generator M56 associated with the
Euclideanized AdS5 space is a rotation in the now compact
x5 − x6 directions. This is not the case in AdS5 space since
η66=−1 and this timelike direction is no longer compact.
Rotations involving timelike directions are equivalent to non-
compact boosts with a continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra
from Yang’s Noncommutative spacetime algebra, and the
standard uncertainty relations ΔxΔp > ~ with the ordinary
~ term, rather than the n~ term, one needs to take the limit
n → ∞ limit in such a way that the net combination of
n λR → 1. This can be attained when one takes the double
scaling limit of the quantities as follows

λ→ 0 , R→∞ , λR→ L2,

lim
n→∞

n
λ

R
= n

λ2

λR
=
nλ2

L2
→ 1.

(2.12)

From eq-(2.12) one learns then that

nλ2 = λR = L2. (2.13)

The spectrum n corresponds to the quantization of the
angular momentum operator in the x5−x6 direction (after
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embedding the 5D hyperboloid of throat size R onto 6D).
Tanaka [3] has shown why there is a discrete spectra for the
spatial coordinates and spatial momenta in Yang’s spacetime
algebra that yields a minimum length λ (ultraviolet cutoff
in energy) and a minimum momentum p= ~/R (maximal
length R, infrared cutoff). The energy and temporal coord-
inates had a continous spectrum.

The physical interpretation of the double-scaling limit
of eq-(2.12) is that the the area L2=λR becomes now
quantized in units of the Planck area λ2 as L2=nλ2. Thus
the quantization of the area (via the double scaling limit)
L2=λR=nλ2 is a result of the discrete angular momentum
spectrum in the x5−x6 directions of the Yang’s Noncommu-
tative spacetime algebra when it is realized by (angular mo-
mentum) differential operators acting on the Euclideanized
AdS5 space (two branches of a 5D hyperboloid embedded
in 6D). A general interplay between quantum of areas and
quantum of angular momentum, for arbitrary values of spin,
in terms of the square root of the CasimirA ∼ λ2

√
j (j + 1),

has been obtained a while ago in Loop Quantum Gravity by
using spin-networks techniques and highly technical area-
operator regularization procedures [4].

The advantage of this work is that we have arrived at
similar (not identical) area-quantization conclusions in terms
of minimal Planck areas and a discrete angular momentum
spectrum n via the double scaling limit based on Clifford
algebraic methods (C-space holographic area-coordinates).
This is not surprising since the norm-squared of the holo-
graphic Area operator has a correspondence with the quad-
ratic Casimir ΣABΣAB of the conformal algebra SO(4, 2)
(SO(5, 1) in the Euclideanized AdS5 case). This quadratic
Casimir must not be confused with the SU(2) Casimir J2

with eigenvalues j (j+ 1). Hence, the correspondence given
by eqs-(2.3–2.8) gives A2 ↔ λ4ΣABΣ

AB .
In [5] we have shown whyAdS4 gravity with a topologic-

al term; i. e. an Einstein-Hilbert action with a cosmological
constant plus Gauss-Bonnet terms can be obtained from the
vacuum state of a BF-Chern-Simons-Higgs theory without
introducing by hand the zero torsion condition imposed in the
McDowell-Mansouri-Chamsedine-West construction. One of
the most salient features of [5] was that a geometric mean
relationship was found among the cosmological constant Λc,
the Planck area λ2 and theAdS4 throat size squaredR2 given
by (Λc)−1 = (λ)2(R2). Upon setting the throat size to be of
the order of the Hubble scale RH and λ = LP (Planck scale),
one recovers the observed value of the cosmological constant
L−2P R−2H =L−4P (LP /RH)

2∼ 10−120M4
P . A similar geo-

metric mean relation is also obeyed by the condition λR=
=L2(=nλ2) in the double scaling limit of Yang’s algebra
which suggests to identify the cosmological constant as Λc=
=L−4. This geometric mean condition remains to be invest-
igated further. In particular, we presented the preliminary
steps how to construct a Noncommutative Gravity via the
Vasiliev-Moyal star products deformations of the SO(4, 2)

algebra used in the study of higher conformal massless spin
theories in AdS spaces by taking the inverse-throat size 1/R
as a deformation parameter of the SO(4, 2) algebra. A Moyal
deformation of ordinary Gravity via SU(∞) gauge theories
was advanced in [7].

3 Noncommutative QM in Yang’s spacetime from
ordinary QM in higher dimensions

In order to write wave equations in non-commuting space-
times we start with a Hamiltonian written in dimensionless
variables involving the terms of the relativistic oscillator
(let us say oscillations of the center of mass) and the rigid
rotor/top terms (rotations about the center of mass)

H =

(
pμ
~/R

)2
+

(
xμ
LP

)2
+
(
Σμν

)2
(3.1)

with the fundamental difference that the coordinates xμ and
momenta pμ obey the non-commutative Yang’s space time
algebra. For this reason one cannot naively replace pμ any
longer by the differential operator −i~∂/∂xμ nor write the
Σμν generators as 1

~
(xμ∂xν−x

ν∂xμ). The correct coordinate
realization of Yang’s noncommutative spacetime algebra re-
quires, for example, embedding the 4-dim space into 6-dim
and expressing the coordinates and momenta operators as
follows

pμ
(~/R)

↔ Σμ6 = i
1

~

(
Xμ∂X6 −X

6∂Xμ

)
,

xμ
LP

↔ Σμ5 = i
1

~

(
Xμ∂X5 −X

5∂Xμ

)
,

Σμν ↔ i
1

~

(
Xμ∂Xν −X

ν∂Xμ

)
,

N = Σ56 ↔ i
1

~

(
X5∂X6 −X

6∂X5

)
.

(3.2)

This allows to express H in terms of the standard angular
momentum operators in 6-dim. The XA=Xμ, X5, X6 co-
ordinates (μ= 1, 2, 3, 4) and PA=Pμ, P 5, P 6 momentum
variables obey the standard commutation relations of ordi-
nary QM in 6-dim, namely —

[
XA, XB

]
=0,

[
PA, PB

]
=0,[

XA, PB
]
= i~ηAB , so that the momentum admits the stand-

ard realization as PA=−i~∂/∂XA.
Therefore, concluding, the Hamiltonian H in eq-(3.1)

associated with the non-commuting coordinates xμ and mo-
menta pμ in d− 1-dimensions can be written in terms of the
standard angular momentum operators in (d−1)+2 = d+1-
dim as H = C2 − N 2, where C2 agrees precisely with the
quadratic Casimir operator of the SO(d−1, 2) algebra in the
spin s = 0 case,

C2=ΣABΣ
AB=(XA∂B−XB∂A)(X

A∂B−XB∂A) . (3.4)

One remarkable feature is that C2 also agrees with the
d’Alambertian operator for the Anti de Sitter Space AdSd of
unit radius (throat size) (DμDμ)AdSd as shown by [18].
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The proof requires to show that the d’Alambertian oper-
ator for the d+1-dim embedding space (expressed in terms of
the XA coordinates) is related to the d’Alambertian operator
in AdSd space of unit radius expressed in terms of the
z1, z2, . . . , zd bulk intrinsic coordinates as

(DμD
μ)Rd+1 = −

∂2

∂ρ2
−
d

ρ

∂

∂ρ
+
1

ρ2
(DμD

μ)AdS ⇒

C2=ρ
2(DμD

μ)Rd+1+

[
(d−1)+ρ

∂

∂ρ

]
ρ
∂

∂ρ
=(DμD

μ)AdSd .

(3.5)

This result is just the hyperbolic-space generalization
of the standard decomposition of the Laplace operator in
spherical coordinates in terms of the radial derivatives plus a
term containing the square of the orbital angular momentum
operator L2/r2. In the case of nontrivial spin, the Casimir
C2 = ΣABΣ

AB+SABS
AB has additional terms stemming

from the spin operator.
The quantity Φ(z1, z2, . . . , zd)|boundary restricted to the

d− 1-dim projective boundary of the conformally compact-
ified AdSd space (of unit throat size, whose topology is
Sd−2×S1) is the sought-after solution to the Casimir invar-
iant wave equation associated with the non-commutative xμ

coordinates and momenta pμ of the Yang’s algebra (μ=
= 1, 2, . . . , d−1). Pertaining to the boundary of the conform-
ally compactified AdSd space, there are two radii R1, R2
associated with Sd−2 and S1, respectively, and which must
not be confused with the two scales R, LP appearing in eq-
(3.1). One can choose the units such that the present value
of the Hubble scale (taking the Hubble scale as the infrared
cutoff) is R= 1. In these units the Planck scale LP will be
of the order of LP ∼ 10−60. In essence, there has been a
trade-off of two scales LP , R with the two radii R1, R2.

Once can parametrize the coordinates of AdSd=AdSp+2
by writing there, according to [17], X0=R cosh(ρ) cos(τ ),
Xp+1=R cosh(ρ) sin(τ ), Xi=R sinh(ρ)Ωi.

The metric of AdSd=AdSp+2 space in these coordinates
is ds2=R2

[
−(cosh2 ρ)dτ 2+ dρ2+(sinh2 ρ)dΩ2

]
, where

06 ρ and 06 τ < 2π are the global coordinates. The topo-
logy of this hyperboloid is S1×R p+1. To study the causal
structure of AdS it is convenient to unwrap the circle S1

(closed-timelike coordinate τ ) to obtain the universal cov-
ering of the hyperboloid without closed-timelike curves and
take −∞6 τ 6+∞. Upon introducing the new coordinate
06 θ < π

2 related to ρ by tan(θ)= sinh(ρ), the metric is

ds2 =
R2

cos2 θ

[
−dτ 2 + dθ2 + (sinh2 ρ)dΩ2

]
. (3.6)

It is a conformally-rescaled version of the metric of
the Einstein static universe. Namely, AdSd=AdSp+2 can
be conformally mapped into one-half of the Einstein static
universe, since the coordinate θ takes values 06θ< π

2 rather
than 06θ<π. The boundary of the conformally compactified
AdSp+2 space has the topology of Sp × S1 (identical to
the conformal compactification of the p + 1-dim Minkow-
ski space). Therefore, the equator at θ= π

2 is a boundary of

the space with the topology of Sp. Ωp is the solid angle
coordinates corresponding to Sp and τ is the coordinate
which parametrizes S1. For a detailed discussion of AdS
spaces and the AdS/CFT duality see [17].

The d’Alambertian in AdSd space (of radius R, later we
shall set R = 1) is

DμD
μ =

1
√
g
∂μ(
√
ggμν∂ν) =

=
cos2 θ

R2

[
−∂2τ+

1

(R tan θ)p
∂θ
(
(R tan θ)p∂θ

)
]
+

L2

R2 tan2 θ

(3.7)

where L2 is the Laplacian operator in the p-dim sphere Sp

whose eigenvalues are l (l+ p− 1).
The scalar field can be decomposed as follows

Φ=eωRτYl(Ωp)G(θ); the wave equation (DμDμ−m2)Φ=0

leads to the equation
[
cos2 θ

(
ω2+ ∂2θ +

p
tan θ cos2 θ

∂θ
)
+

+ l(l+p−1)
tan2 θ

−m2R2
]
G(θ) = 0, whose solution is

G(θ) = (sin θ)l (cos θ)λ± 2F1(a, b, c; sin θ) . (3.8)

The hypergeometric function is defined as

2F1(a, b, c, z) =
∑ (a)k(b)k

(c)kk!
zn, (3.9)

where |z|<1, (λ)0=1, (λ)k=
Γ(λ+k)
Γ(λ) =λ(λ+1)(λ+2) . . .

(λ+ k−1), k=1, 2, . . . , while a = 1
2 (l+λ±−ωR), b=

= 1
2 (l+λ±+ωR), c= l+ 1

2 (p+ 1)> 0, λ±=
1
2 (p+ 1)±

± 1
2

√
(p+ 1)2+ 4(mR)2.

The analytical continuation of the hypergeometric func-
tion for |z| > 1 is

2F1(a, b, c, z) =

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt
(3.10)

with Real(c)> 0 and Real(b)> 0. The boundary value
when θ= π

2 gives

lim
z→1−

F (a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (3.11)

Let us study the behaviour of the solution G(θ) in the
massless case: m=0, λ−=0, λ+= p+1.

Solutions with λ+=p+1 yield a trivial value of G(θ)=0
at the boundary θ = π

2 since cos (π2 )
p+1=0. Solutions with

λ−=0 lead to cos (θ)λ−=cos (θ)0= 1 prior to taking the
limit θ= π

2 . The expression cos (π2 )
λ− =00 is ill defined.

Upon using l’Hospital rule it yields 0. Thus, the limit θ= π
2

must be taken afterwards the limit λ−=0:

lim
θ→ π

2

[
cos(θ)λ−

]
= lim

θ→ π
2

[
cos(θ)0

]
= lim

θ→ π
2

[1] = 1. (3.12)
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In this fashion the value of G(θ) is well defined and
nonzero at the boundary when λ−=0 and leads to the value
of the wavefunction at the boundary of the conformally
compactified AdSd (for d = p+ 2 with radius R)

Φbound=e
iωτ Yl(Ωp)

Γ
(
l+ p+1

2

)
Γ
(
p+1
2

)

Γ
(
ωR+ l+p+1

2

)
Γ
(
−ωR+ l+p+1

2

) . (3.13a)

upon setting the radius of AdSd space to unity it gives

Φbound=e
iωτ Yl(Ωp)

Γ
(
l+ p+1

2

)
Γ
(
p+1
2

)

Γ
(
ω+ l+p+1

2

)
Γ
(
−ω+ l+p+1

2

) . (3.13b)

Hence, Φbound in eq-(3.13b) is the solution to the Casi-
mir invariant wave equation in the massless m=0 case

C2Φ =

[( pμ
~/R

)2
+
( xμ
LP

)2
+
(
Σμν

)2
+ N 2

]

Φ = 0 (3.14)

and (when R=1)
[( pμ
~/R

)2
+
( xμ
LP

)2
+
(
Σμν

)2
]

Φ=
[
C2−N

2
]
Φ=−ω2Φ (3.15)

sinceN = Σ56 is the rotation generator along the S1 compo-
nent of AdS space. It acts as ∂/∂τ only on the eiωRτ piece of
Φ. Concluding: Φ(z1, z2, . . . , zd)|boundary, restricted to the
d− 1-dim projective boundary of the conformally compact-
ified AdSd space (of unit radius and topology Sd−2×S1)
given by eq-(3.12), is the sought-after solution to the wave
equations (3.13, 3.14) associated with the non-commutative
xμ coordinates and momenta pμ of the Yang’s algebra and
where the indices μ range over the dimensions of the bound-
ary μ= 1, 2, . . . , d − 1. This suggests that QM over Yang’s
Noncommutative Spacetimes could be well defined in terms
of ordinary QM in higher dimensions! This idea deserves
further investigations. For example, it was argued by [16]
that the quantized Nonabelian gauge theory in d dimensions
can be obtained as the infrared limit of the corresponding
classical gauge theory in d+ 1-dim.

4 Star products and noncommutative QM

The ordinary Moyal star-product of two functions in phase
space f(x, p), g(x, p) is

(f ∗ g)(x, p) =
∑

s

~s

s!

s∑

t=0

(−1)tC(s, t)×

×
(
∂s−tx ∂tpf(x, p)

)(
∂tx∂

s−t
p g(x, p)

)
(4.1)

where C(s, t) is the binomial coefficient s!/t!(s− t)!. In the
~ → 0 limit the star product f ∗ g reduces to the ordinary
pointwise product fg of functions. The Moyal product of
two functions of the 2n-dim phase space coordinates (qi, pi)
with i = 1, 2 . . . n is

(f ∗ g)(x, p) =
n∑

i

∑

s

~s

s!

s∑

t=0

(−1)tC(s, t)×

×
(
∂s−txi ∂tpif(x, p)

)(
∂txi∂

s−t
pi g(x, p)

)
.

(4.2)

The noncommutative, associative Moyal bracket is

{f, g}MB =
1
i~

(
f ∗ g − g ∗ f

)
. (4.3)

The task now is to construct novel Moyal-Yang star
products based on the noncommutative spacetime Yang’s
algebra. A novel star product deformations of (super) p-brane
actions based on the noncommutative spacetime Yang’s al-
gebra where the deformation parameter is ~eff = ~LP /R, for
nonzero values of ~, was obtained in [15] The modified
(noncommutative) Poisson bracket is now given by

{F (qm, pm),G (qm, pm)}Ω =

= (∂qmF){q
m, qn}(∂qnG) + (∂pmF){p

m, pn}(∂pnG)+

+ (∂qmF){q
m, pn}(∂pnG) + (∂pmF){p

m, qn}(∂qnG) ,

(4.4)

where the entries {qm, qn} 6=0, {pm, pn} 6=0, and also
{pm, qn}=−{qn, pm} can be read from the commutators de-
scribed in section 2 by simply defining the deformation pa-
rameter ~eff ≡ ~(LP /R). One can generalize Yang’s original
4-dim algebra to noncommutative 2n-dim world-volumes
and/or spacetimes by working with the 2n+ 2-dim angular-
momentum algebra SO(d, 2)=SO(p+1, 2)=SO(2n, 2).

The Noncommutative Poisson brackets Ω(qm, qn)=
= {qm, qn}NCPB, Ω(pm, pn)= {pm, pn}NCPB, Ω(qm, pn)=
=−Ω(pn, qm)= {qm, pn}NCPB

Ω(qm, qn) = lim
~eff→0

1

i~eff

[
qm, qn

]
= −

L2

~
Σmn, (4.5a)

Ω(pm, pn) = lim
~eff→0

1

i~eff

[
pm, pn

]
= −

~
L2
Σmn, (4.5b)

Ω(qm, pn) = lim
~eff→0

1

i~eff

[
qm, pn

]
= −ηmn, (4.5c)

defined by above expressions, where Σmn is the “classical”
~eff = (~LP /R) → 0 limit (R→∞, LP → 0, RLP = L2,
~ 6=0) of the quantity Σmn= 1

~
(XmPn−XnPm), after em-

bedding the d−1-dimensional spacetime (boundary of AdSd)
into an ordinary (d−1)+2-dimensional one. In the R→∞,
. . . limit, the AdSd space (the hyperboloid) degenerates into
a flat Minkowski spacetime and the coordinates qm, pn, in
that infrared limit, coincide with the coordinates Xm, Pn.
Concluding, in the “classical” limit (R→∞, . . . , flat limit)
one has

Σmn ≡
1
~

(
XmPn−XnPm

)
→

1
~

(
qmpn− qnpm

)
(4.5d)

and then one recovers in that limit the ordinary definition of
the angular momentum in terms of commuting coordinates
q’s and commuting momenta p’s.
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Denoting the coordinates (qm, pm) by Zm and when
the Poisson structure Ωmn is given in terms of constant
numerical coefficients, the Moyal star product is defined in
terms of the deformation parameter ~eff = ~LP /R as

(F ∗ G)(z) ≡

≡ exp
[
(i~eff)Ω

mn∂(z1)m ∂(z2)n

]
F(z1)G(z2)|z1=z2=z

(4.6)

where the derivatives ∂(z1)m act only on the F(z1) term and

∂
(z2)
n act only on the G(z2) term. In our case the generalized

Poisson structure Ωmn is given in terms of variable coeffi-
cients, it is a function of the coordinates, then ∂Ωmn 6=0,
since the Yang’s algebra is basically an angular momentum
algebra, therefore the suitable Moyal-Yang star product given
by Kontsevich [11] will contain the appropriate corrections
∂Ωmn to the ordinary Moyal star product.

Denoting by ∂m=∂/∂zm=(∂/∂qm; ∂/∂pm) the Moyal-
Yang-Kontsevich star product, let us say, of the Hamiltonian
H(q, p) with the density distribution in phase space ρ (q, p)
(not necessarily positive definite), H(q, p) ∗ ρ (q, p) is

Hρ+ i~effΩ
mn(∂mH∂nρ)+

+
(i~eff)2

2
Ωm1n1Ωm2n2(∂2m1m2

H)(∂2n1n2 ρ)+

+
(i~eff)2

3

[
Ωm1n1(∂n1Ω

m2n2)×

× (∂m1∂n2H∂n2 ρ− ∂m2H∂m1∂n2 ρ)
]
+O(~3eff) ,

(4.7)

where the explicit components of Ωmn are given by eqs-
(4.5a–4.5d). The Kontsevich star product is associative up to
second order [11] (f ∗ g) ∗ h = f ∗ (g ∗ h) + O(~3eff).

The most general expression of the Kontsevich star pro-
duct in Poisson manifold is quite elaborate and shall not
be given here. Star products in curved phase spaces have
been constructed by Fedosov [12]. Despite these technical
subtlelties it did not affect the final expressions for the
“classical” Noncommutative p-brane actions as shown in
[15] when one takes the ~eff→ 0 “classical” limit. In that
limit there are still nontrivial noncommutative corrections to
the ordinary p-brane actions.

In the Weyl-Wigner-Gronewold-Moyal quantization
scheme in phase spaces one writes

H(x, p) ∗ ρ (x, p) = ρ (x, p) ∗H(x, p) = Eρ (x, p) , (4.8)

where the Wigner density function in phase space associated
with the Hilbert space state |Ψ> is

ρ (x, p, ~) =
1

2π

∫
dy Ψ∗

(
x−
~y
2

)
Ψ
(
x+
~y
2

)
e
ipy
~ (4.9)

plus their higher dimensional generalizations. It remains to be
studied if this Weyl-Wigner-Gronewold-Moyal quantization
scheme is appropriate to study QM over Noncommutative
Yang’s spacetimes when we use the above Moyal-Yang-
Kontsevich star products. A recent study of the Yang’s Non-

commutative algebra and discrete Hilbert (Buniy-Hsu-Zee)
spaces was undertaken by Tanaka [3].

Let us write down the Moyal-Yang-Konstevich star de-
formations of the field theory Lagrangian corresponding to
the scalar field Φ=Φ(XAB) which depends on the holo-
graphic-area coordinates XAB [13]. The reason one should
not try to construct the star product of Φ(xm) ∗ Φ(xn)
based on the Moyal-Yang-Kontsevich product, is because the
latter star product given by eq-(4.7) will introduce explicit
momentum terms in the r.h.s of Φ(xm) ∗ Φ(xm), stemming
from the expression Σmn=xmpn−xnpm of eq-(4.5d), and
thus it invalidates writing φ=φ(x) in the first place. If the
Σmn were numerical constants, like Θmn, then one could
write the Φ(xm) ∗ Φ(xm) in a straightforward fashion as it
is done in the literature.

The reason behind choosing Φ=Φ(XAB) is more clear
after one invokes the area-coordinates and angular momen-
tum correspondence discussed in detail in section 2. It allows
to properly define the star products. A typical Lagrangian is

L=−Φ∗∂2XABΦ
(
XAB

)
+
m2

2
Φ
(
XAB

)
∗Φ
(
XAB

)
+

+
gn

n
Φ(XAB

)
∗ Φ
(
XAB

)
∗ ∙ ∙ ∙ ∗n Φ

(
XAB

) (4.10)

and leads to the equations of motion

−
(
∂/∂XAB

)(
∂/∂XAB

)
Φ
(
XAB

)
+m2Φ

(
XAB

)
+

+ gn Φ
(
XAB

)
∗ Φ
(
XAB

)
∗ ∙ ∙ ∙ ∗n−1 Φ

(
XAB

)
= 0

(4.11)

when the multi-symplectic ΩABCD form is coordinate-
independent, the star product is

(Φ ∗ Φ)(ZAB) ≡ exp
[(
iλΩABCD∂XAB∂Y AB

)]
×

×Φ(XAB)Φ
(
Y AB

)∣∣
X=Y=Z

=

= exp
[(
ΣABCD∂XAB∂Y AB

)]
Φ
(
XAB

)
Φ
(
Y AB

)∣∣
X=Y=Z

(4.12)

where ΣABCD is derived from the structure constants of
the holographic area-coordinate algebra in C-spaces [14] as:[
XAB , XCD

]
= ΣABCD ≡ iL2P

(
ηADXBC− ηACXBD+

+ ηBCXAD− ηBDXAC
)
. There are nontrivial derivative

terms acting on ΣABCD in the definition of the star product
(Φ ∗Φ)(ZMN ) as we have seen in the definition of the Kon-
tsevich star productH(x, p) ∗ ρ (x, p) in eq-(4.7). The expan-
sion parameter in the star product is the Planck scale squared
λ = L2P . The star product has the same functional form as (4-
7) with the only difference that now we are taking derivatives
w.r.t the area-coordinatesXAB instead of derivatives w.r.t the
variables x, p, hence to order O(L4P ), the star product is

Φ ∗ Φ = Φ2 +ΣABCD(∂ABΦ ∂CDΦ)+

+
1
2
ΣA1B1C1D1ΣA2B2C2D2(∂2A1B1A2B2Φ)(∂

2
C1D1C2D2

Φ)+

+
1
3

[
ΣA1B1C1D1(∂C1D1 Σ

A2B2C2D2)×

× (∂A1B1 ∂A2B2 Φ ∂C2D2Φ−B1 ↔ B2)
]
.

(4.13)
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Notice that the powers of iL2P are encoded in the defini-
tion of ΣABCD. The star product is noncommutative but is
also nonassociative at the order O(L6P ) and beyond. The
Jacobi identities would be anomalous at that order and be-
yond. The derivatives acting on ΣABCD are

(∂C1D1Σ
A2B2C2D2) =

= iL2P
(
ηA2D2 δB2C2C1D1

− ηA2C2 δB2D2

C1D1

)
+

+ iL2P
(
ηB2C2 δA2D2

C1D1
− ηB2D2 δA2C2C1D1

)
.

(4.14)

where δABCD = δACδ
B
D − δADδ

B
C and the higher derivatives like

∂2A1B1C1D1
ΣA2B2C2D2 will be zero.

5 On the generalized Dirac-Konstant equation in Clif-
ford spaces

To conclude this work we will discuss the wave equations
relevant to fermions. The “square” of the Dirac-Konstant
equation (γ[μν]Σμν)Ψ=λΨ yields

(γ[μν]γ[ρτ ]ΣμνΣρτ )Ψ = λ2Ψ ⇒
[
γ[μνρτ ] + (ημργ[ντ ] − ημτγ[νρ] + . . . )+

+ (ημρηντ1− ημτηνρ1)
]
ΣμνΣρτΨ = λ2Ψ

(5.2)

where we omitted numerical factors. The generalized Dirac
equation in Clifford spaces is given by [13]

−i

(
∂

∂σ
+ γμ

∂

∂xμ
+ γ[μν]

∂

∂xμν
+ . . .

+ γ[μ1μ2...μd]
∂

∂xμ1μ2...μd

)

Ψ = λΨ ,

(5.3)

where σ, xμ, xμν , . . . are the generalized coordinates assoc-
iated with the Clifford polyvector in C-space

X=σ1+γμxμ+γ
μ1μ2xμ1μ2+ . . . γ

μ1μ2...μdxμ1μ2...μd (5.4)

after the length scale expansion parameter is set to unity. The
generalized Dirac-Konstant equations in Clifford-spaces are
obtained after introducing the generalized angular momen-
tum operators [14]

Σ[[μ1μ2...μn][ν1ν2...νn]] = X [[μ1μ2...μn]P [ν1ν2...νn]] =

= X [μ1μ2...μn]
i∂

∂X[ν1ν2...νn]
−X [ν1ν2...νn]

i∂

∂X[μ1μ2...μn]

(5.5)

by writing
∑

n

γ[[μ1μ2...μn]γ[ν1ν2...νn]]Σ[[μ1μ2...μn][ν1ν2...νn]]Ψ=λΨ(5.6)

and where we sum over all polyvector-valued indices (anti-
symmetric tensors of arbitrary rank). Upon squaring eq-(5.4),
one obtains the Clifford space extensions of the D0-brane
field equations found in [3] which are of the form

[

XAB ∂

∂XCD
−XCD ∂

∂XAB

]

×

×

[

XAB
∂

∂XCD
−XCD

∂

∂XAB

]

Ψ = 0 ,

(5.6)

where A,B = 1, 2, . . . , 6. It is warranted to study all these
equations in future work and their relation to the physics of
D-branes and Matrix Models [3]. Yang’s Noncommutative
algebra should be extended to superspaces, meaning non-
anti-commuting Grassmanian coordinates and noncommut-
ing bosonic coordinates.
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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The Dutch Translation∗

Declaratie van Academische Vrijheid
(Wetenschappelijke Mensenrechten)

Artikel 1: Preambule

Meer dan welke tijd dan ook in de geschiedenis van de
mensheid weerspiegelt het begin van de 21e eeuw de diep-
gaande betekenis van de rol van wetenschap en technologie
in menselijke aangelegenheden.

Het krachtige doordringende karakter van de moderne
wetenschap en technologie heeft de algemene opvatting doen
ontstaan dat verdere hoofdontdekkingen in principe alleen
gemaakt kunnen worden door grote onderzoeksgroepen die
gesubsidieerd worden door de overheid of het bedrijfsleven
en die de beschikking hebben over uitzonderlijk dure instru-
mentatie en geassisteerd worden door hordes ondersteunend
personeel.

Deze algemene opvatting is echter van mythische aard en
is in tegenspraak met hoe wetenschappelijke ontdekkingen
werkelijk gedaan worden. Grote en kostbare technologische
projecten, hoe complex ook, zijn slechts het resultaat van het
toepassen van diepe wetenschappelijke inzichten van kleine
groepen toegewijde onderzoekers of alleen werkende weten-
schappers die vaak in een isolement werken. Een weten-
schapper die alleen werkt is nu en in de toekomst, net als
in het verleden, in staat om een ontdekking te doen die een
substantiële invloed heeft op het lot van de mensheid en die
het aangezicht van de hele planeet waar we zo onbetekenend
op verblijven verandert.

Fundamentele ontdekkingen worden over het algemeen
gedaan door individuen op ondergeschikte posities binnen
overheidsinstellingen, onderzoeks- en opleidingsinstituten of
commerciële ondernemingen. Onderzoekers worden maar al
te vaak beperkt en onderdrukt door instituten en bedrijfsdi-
recteuren die met een andere agenda werken en vanuit per-
soonlijke belangen of in het belang van het instituut of het
bedrijf of door grootheidswaanzin wetenschappelijke ont-
dekkingen en onderzoek proberen te controleren en/of toe
te passen.

De annalen van de wetenschap zijn bezaaid met weten-
schappelijke ontdekkingen die onderdrukt en bespot werden
door de gevestigde orde, maar die in latere jaren bekend-
heid kregen en in het gelijk gesteld werden door de onver-
biddelijke opmars van praktische noodzakelijkheid en intel-
lectuele verlichting. Daarnaast zijn de wetenschappelijke an-

∗Original text published in English: Progress in Physics, 2006, v. 1,
57–60. Online — http://www.geocities.com/ptep online/.

Originele Engelse versie door Dmitri Rabounski, hoofdredacteur van
het tijdschrift Progress in Physics. E-mail: rabounski@yahoo.com.

Vertaald door Eit Gaastra. E-mail: eitgaastra@freeler.nl.

nalen bevlekt en besmeurd door plagiaat en opzettelijk valse
voorstellingen, daden begaan door mensen zonder scrupules,
mensen die gemotiveerd werden door jaloezie en hebzucht.
En zo is het nog steeds.

Het doel van deze declaratie is het ondersteunen en be-
vorderen van het grondbeginsel dat stelt dat wetenschap-
pelijk onderzoek vrij moet zijn van verborgen en openlijk
onderdrukkende invloeden van bureaucratische, politieke,
religieuze en commerciële aard en dat wetenschappelijke
creatie niet minder een mensenrecht is dan andere soortge-
lijke rechten en wanhopige ondernemingen zoals die voor-
gesteld zijn in internationale verdragen en het internationale
recht.

Wetenschappers die deze declaratie ondersteunen be-
horen zich eraan houden als teken van solidariteit en be-
trokkenheid met de internationale wetenschapsgemeenschap
en als waarborg voor de rechten van alle wereldburgers om
naar vermogen individuele vaardigheden en aanleg te ge-
bruiken voor ongeremde wetenschappelijke creatie, dit ter
bevordering van de wetenschap en, naar hun uiterste ver-
mogen als betamelijke burgers in een onbetamelijke wereld,
voor de vooruitgang van de mensheid. Wetenschap en tech-
nologie zijn veel te lang dienaren van onderdrukking ge-
weest.

Artikel 2: Wie is een wetenschapper

Een wetenschapper is ieder persoon die aan wetenschap doet.
Ieder persoon die met een wetenschapper samenwerkt in het
ontwikkelen, produceren en voorstellen van ideeën en data
tijdens onderzoek of toepassing is ook een wetenschapper.

Artikel 3: Waar wordt er wetenschap geproduceerd

Wetenschappelijk onderzoek kan overal worden uitgevoerd,
bijvoorbeeld op een werkplek, tijdens een formele educatie-
cursus, tijdens een gesponsord academisch programma, in
groepen, of als individu die thuis onafhankelijk onderzoek
doet.

Artikel 4: Vrijheid van keuze van onderzoeksthema

Veel wetenschappers die werken voor een hogere onder-
zoeksgraad of in andere onderzoeksprogramma’s op acade-
mische instituten zoals universiteiten of hogescholen worden
verhinderd om te werken aan een onderzoeksonderwerp naar
eigen keuze door begeleidende academici en/of administra-
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tieve ambtenaren, niet vanwege het ontbreken van onder-
steunende faciliteiten maar omdat de academische hiërarchie
en/of andere ambtenaren doodeenvoudig de onderzoeksrich-
ting niet goedkeuren als het voorgestelde onderzoek de po-
tentie heeft om voor onrust te zorgen ten aanzien van heer-
sende dogma’s en favoriete theorieën, of als het voorgestelde
onderzoek de subsidies van andere projecten in gevaar kan
brengen. Het gezag van de orthodoxe meerderheid meent
zeer vaak een onderzoeksproject te moeten torpederen zodat
gezag en budgetten onaangetast blijven. Deze alledaagse
praktijken zijn weloverwogen belemmeringen om vrije
wetenschappelijke gedachten tegen te houden, ze zijn ex-
treem onwetenschappelijk en crimineel. Ze mogen niet ge-
tolereerd worden.

Een wetenschapper die werkt voor een academisch in-
stituut, autoriteit of instelling behoort volkomen vrij te zijn
ten aanzien van de keuze van het onderzoeksonderwerp en
mag enkel beperkt worden door de materiële ondersteuning
en intellectuele vaardigheden die geboden worden door het
opleidingsinstituut, de instelling of de autoriteit. Als de
wetenschapper een onderzoek uitvoert als lid van een sa-
menwerkende groep behoren de onderzoeksdirecteuren en
teamleiders zich te beperken tot een adviserende en consul-
terende rol met betrekking tot de keuze van een relevant
onderzoeksthema door een wetenschapper in de groep.

Artikel 5: Vrijheid van keuze van onderzoeksmethoden

Het gebeurt vaak dat er op een wetenschapper druk wordt
uitgeoefend door administratief personeel of begeleidende
academici met betrekking tot een onderzoeksprogramma dat
in een academische omgeving wordt uitgevoerd. Deze druk
wordt uitgeoefend om een wetenschapper er toe te dwin-
gen om andere onderzoeksmethoden te gebruiken dan de
wetenschapper heeft gekozen, dit vanwege geen andere re-
den dan persoonlijke voorkeur, vooroordeel, institutioneel
beleid, redactionele voorschriften of verenigde autoriteit.
Deze praktijk, die zeer wijdverbreid is, is een weloverwogen
ontkenning van de vrijheid van gedachten en kan niet toege-
staan worden.

Een non-commerciële of academische wetenschapper
heeft het recht om een onderzoeksthema te ontwikkelen op
elke redelijke manier en met alle redelijke middelen die hij
als het meest effectief beschouwt. De uiteindelijke beslissing
ten aanzien van hoe het onderzoek uitgevoerd zal worden
behoort te worden gemaakt door de wetenschapper zelf.

Als een non-commerciële of academische wetenschap-
per werkt als lid van een samenwerkend non-commercieel of
academisch team van wetenschappers behoren de projectlei-
ders en onderzoeksdirecteuren enkel adviserende en consul-
terende rechten te hebben en behoren zij niet op een andere
manier de onderzoeksmethoden of het onderzoeksthema van
de wetenschapper in de groep te beı̈nvloeden, matigen of
beperken.

Artikel 6: Vrijheid van samenwerking en deelname in
een onderzoek

Er is een aanzienlijke hoeveelheid institutionele rivaliteit
in de alledaagse praktijk van de moderne wetenschap die
samengaat met gevallen van persoonlijke jaloezie en het
ten koste van alles zorgen voor het behoud van reputaties,
ongeacht het wetenschappelijke wezen. Dit heeft er vaak toe
geleid dat wetenschappers belet werden de hulp in te roepen
van competente collega’s van rivaliserende instituten of an-
deren zonder enige binding met een academisch instituut.
Ook deze praktijken zijn weloverwogen belemmeringen van
wetenschappelijke vooruitgang.

Als een non-commerciële wetenschapper assistentie van
een ander persoon nodig heeft en deze andere persoon stemt
daarin toe dan heeft de wetenschapper de vrijheid om die
persoon uit te nodigen om enige of alle mogelijke assistentie
te verlenen mits de assistentie binnen het aan het onderzoek
verbonden budget valt. Als de assistentie onafhankelijk is
van budgetoverwegingen heeft de wetenschapper de vrijheid
om de assisterende persoon naar eigen goeddunken in di-
enst te nemen, vrij van enige bemoeienis door welk ander
persoon dan ook.

Artikel 7: Vrijheid van meningsverschil in wetenschap-
pelijke discussies

Door heimelijke jaloezie en oude gevestigde belangen ver-
afschuwt de moderne wetenschap openlijke discussie en
verbant zij moedwillig wetenschappers die twijfelen aan de
orthodoxe standpunten. Zeer vaak worden uitzonderlijk be-
kwame wetenschappers die op de tekortkomingen in de
gangbare theorieën of interpretatie van data wijzen gela-
beld als zonderlingen, zodat hun denkbeelden probleemloos
genegeerd kunnen worden. Ze worden publiekelijk en privé
bespot en het wordt hen systematisch belet om conferenties,
seminaries en colloquia te bezoeken, zodat hun ideeën geen
publiek kunnen vinden. Opzettelijke vervalsing van data
en het verkeerd voorstellen van theorieën zijn nu veel ge-
bruikte werktuigen van onscrupuleuzen in het onderdrukken
van feiten, zowel technisch als historisch. Er hebben zich
internationale commissies van wetenschappelijke onverlaten
gevormd en deze commissies treden als gastheer op tijdens
door henzelf in het leven geroepen internationale conferen-
ties waar alleen hun volgelingen toegestaan wordt om lezin-
gen te presenteren, ongeacht de kwaliteit van de inhoud.
Deze commissies halen enorme sommen geld uit de pu-
blieke portemonnee om hun gesponsorde projecten te sub-
sidiëren door hun toevlucht te nemen tot misleiding en leu-
gens. Iedere op wetenschappelijke gronden berustende te-
genwerping ten aanzien van hun voorstellen wordt op hun
instigatie volledig doodgezwegen, zodat geld naar hun pro-
jecten kan blijven stromen en hun goedbetaalde banen ge-
garandeerd blijven. Opponerende wetenschappers zijn in
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hun opdracht ontslagen; anderen is het belet om zekerheid-
biedende academische aanstellingen te krijgen door een
netwerk van corrupte medeplichtigen. In andere situaties
zijn sommigen verdreven van een kandidatuur voor pro-
gramma’s voor een hogere graad, zoals promotie naar een
doctortitel, omdat ze ideeën hebben geuit die de gang-
bare theorie zouden kunnen ondermijnen, hoe oud die or-
thodoxe theorie ook was. Het fundamentele feit dat geen
wetenschappelijke theorie definitief noch onschendbaar is en
daarom open staat voor discussie en her-evaluatie wordt door
hen grondig genegeerd. Ook negeren ze het feit dat een
fenomeen meerdere aannemelijke verklaringen kan hebben
en brengen ze iedere verklaring die niet in overeenstemming
is met de orthodoxe opinie kwaadaardig in diskrediet. Zon-
der aarzelen nemen ze hun toevlucht tot het gebruik van on-
wetenschappelijke argumenten om hun vooringenomen
mening te rechtvaardigen.

Alle wetenschappers behoren vrij te zijn om over hun
onderzoek en het onderzoek van anderen te discussiëren
zonder angst om publiekelijk of privé zonder wezenlijke
argumenten belachelijk gemaakt te worden of te worden
beschuldigd, gekleineerd, betwist of anderszins in diskrediet
gebracht te worden door ongefundeerde aantijgingen. Geen
wetenschapper mag in een positie gebracht worden waar
levensonderhoud of reputatie in gevaar zijn als gevolg van
het uiten van een wetenschappelijke mening. Vrijheid van
wetenschappelijke expressie behoort een uiterst hoog goed
te zijn. Het gebruik van macht in het weerleggen van een
wetenschappelijk argument is niet wetenschappelijk en be-
hoort niet gebruikt te worden om te muilkorven, onder-
drukken, intimideren, verbannen of anderszins een weten-
schapper te dwingen of uit te sluiten. Opzettelijke onder-
drukking van wetenschappelijke feiten of argumenten, zowel
actief door daad als passief door weglaten, en opzettelijke
vervalsing van data om een argument te ondersteunen of om
een opponerende opvatting in diskrediet te brengen is weten-
schappelijke fraude en dient beschouwd te worden als een
wetenschappelijke misdaad. Grondbeginselen ten aanzien
van bewijsmateriaal behoren iedere wetenschappelijke dis-
cussie te begeleiden, of het bewijsmateriaal nu experi-
menteel, theoretisch of een combinatie van die twee is.

Artikel 8: Vrijheid van publicatie van wetenschappelijke
resultaten

Een betreurenswaardige censuur is nu de standaardpraktijk
geworden bij redacties van de belangrijke wetenschapstijd-
schriften en elektronische archieven en hun bendes zoge-
naamde deskundige referees. De referees worden voor het
grootste deel beschermd door anonimiteit zodat de auteur
niet hun zogenaamde deskundigheid kan verifiëren. Stukken
worden momenteel routinematig geweigerd als de auteur de
dominante theorie en gangbare orthodoxie verwerpt of weer-
legt. Veel stukken worden nu automatisch geweigerd omdat

bij de referenties een wetenschapper staat die in ongenade
is gevallen bij de redacteuren, referees of andere deskundige
censoren, zonder dat men zich ook maar enigszins over de
inhoud van het stuk bekommert. Er bestaat een zwarte lijst
van wetenschappers die een afwijkende mening hebben en
deze lijst gaat over en weer tussen participerende redac-
ties. Dit alles draagt bij aan grove vooringenomenheid en
een misdadige onderdrukking van vrije gedachten en dient
veroordeeld te worden door de internationale wetenschaps-
gemeenschap.

Alle wetenschappers behoren het recht te hebben om hun
wetenschappelijke onderzoeksresultaten geheel of gedeel-
telijk te presenteren op relevante wetenschapconferenties en
hetzelfde te publiceren in gedrukte wetenschapstijdschriften,
elektronische archieven en welke andere media dan ook. Van
geen enkele wetenschapper behoren stukken of verslagen
die ter publicatie aangeboden worden aan wetenschapstijd-
schriften, elektronische archieven of andere media gewei-
gerd te worden alleen maar omdat het werk de gangbare
meerderheidsmening ter discussie stelt, in conflict is met de
opvattingen van de redactie, de bases ondermijnt van an-
dere in gang gezette of geplande onderzoeksprojecten van
andere wetenschappers, of botst met een politiek dogma, re-
ligieus geloof of persoonlijke mening van een ander, en geen
enkele wetenschapper behoort op een zwarte lijst te staan of
anderszins gecensureerd te worden noch verhinderd te wor-
den om tot publicatie te komen door welk ander persoon dan
ook. Geen wetenschapper behoort door de belofte van een
geschenk of andere vergoeding ter omkoping de publicatie
van het werk van een andere wetenschapper te blokkeren,
modificeren of anderszins met de publicatie van het werk te
interfereren.

Artikel 9: Het co-auteurschap van wetenschappelijke
artikelen

Het is een slecht verborgen gehouden geheim binnen weten-
schappelijke kringen dat veel co-auteurs van onderzoeksar-
tikelen eigenlijk weinig of niks van doen hebben met het
onderzoek waarover gerapporteerd wordt. Veel supervisors
van afstuderende studenten bijvoorbeeld zijn er niet afke-
rig van om hun namen op artikelen te zetten van perso-
nen die slechts nominaal onder hun supervisie werken. In
veel van die gevallen heeft degene die het artikel schrijft
een superieur begrip ten aanzien van de materie vergeleken
met de supervisor. In andere situaties, ook nu weer met
als doel algemene bekendheid, reputatie, geld, prestige en
dergelijke, worden niet-participerende personen aan het ar-
tikel toegevoegd als co-auteur. De werkelijke auteurs van
dergelijke artikelen kunnen hiertegen enkel protesteren in
het besef dat ze het risico lopen om later hiervoor gestraft te
worden of, naar gelang de omstandigheden, zelfs uitgesloten
te worden van de kandidatuur voor een hogere onderzoeks-
graad of van de onderzoeksgroep. Velen zijn feitelijk ver-
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bannen onder dergelijke omstandigheden. Deze ontstellende
praktijken kunnen niet getolereerd worden. Alleen de perso-
nen verantwoordelijk voor het onderzoek behoren als auteur
geaccrediteerd te worden.

Geen wetenschapper behoort een ander persoon uit te
nodigen om toegevoegd te worden en geen wetenschapper
behoort het toe te staan dat zijn of haar naam toegevoegd
wordt als co-auteur van een wetenschappelijk artikel als hij
of zij niet significant heeft bijgedragen aan het onderzoek
waarover gerapporteerd wordt in het artikel. Geen weten-
schapper behoort het toe te staan dat hij of zij door een
vertegenwoordiger van een academisch instituut, corporatie,
overheidsinstelling of enig ander persoon als co-auteur toe-
gevoegd wordt aan een artikel dat een onderzoek betreft
waar hij of zij niet significant aan heeft bijgedragen, en
geen wetenschapper behoort het toe te staan dat zijn of haar
naam gebruikt wordt als co-auteur met als tegenprestatie
welk geschenk of andere vergoeding ter omkoping dan ook.
Geen persoon behoort een wetenschapper op wat voor
manier dan ook ertoe te bewegen of proberen ertoe te bewe-
gen om het toe te staan dat de naam van de wetenschapper
toegevoegd wordt als co-auteur van een wetenschappelijk ar-
tikel dat een inhoud heeft waar hij of zij niet significant aan
heeft bijgedragen.

Artikel 10: Onafhankelijkheid van affiliatie

Veel wetenschappers zijn nu in dienst met een korte termijn
contract. Met de beëindiging van het dienstverband komt er
ook een einde aan de academische affiliatie. Redacties voe-
ren vaak het beleid dat personen zonder een academische
of commerciële affiliatie niet gepubliceerd worden. Zon-
der affiliatie kan een wetenschapper van veel middelen niet
gebruik maken en de mogelijkheden om lezingen te geven
en artikelen te presenteren op conferenties worden er door
beperkt. Dit is een verdorven praktijk die gestopt moet wor-
den. Wetenschap herkent geen affiliatie.

Geen wetenschapper behoort belet te worden om artike-
len te presenteren op conferenties, colloquia te geven op
seminaries, te publiceren in welke media dan ook, toegang
te krijgen tot academische bibliotheken of wetenschappelij-
ke publicaties, wetenschappelijke bijeenkomsten bij te wo-
nen of lezingen te geven, vanwege het niet geaffilieerd zijn
met een academisch instituut, wetenschappelijk instituut,
overheids- of bedrijfslaboratorium, of welke andere orga-
nisatie dan ook.

Artikel 11: Vrije toegang tot wetenschappelijke infor-
matie

De meeste gespecialiseerde boeken over wetenschappelijke
aangelegenheden en veel wetenschappelijke tijdschriften
leveren weinig tot geen winst op zodat commerciële uit-
gevers niet bereid zijn ze te publiceren zonder een geld-

bijdrage van academische instituten, overheidsinstellingen,
filantropische stichtingen en dergelijke. Onder zulke om-
standigheden zouden commerciële uitgevers vrije toegang
tot elektronische versies van de publicaties toe moeten staan
en ernaar moeten streven de kosten van het gedrukte materi-
aal tot een minimum te beperken.

Alle wetenschappers behoren ernaar te streven dat hun
onderzoeksartikelen gratis beschikbaar zijn voor de interna-
tionale wetenschapsgemeenschap of, als dat niet mogelijk
is, beschikbaar zijn voor zo weinig mogelijk kosten. Alle
wetenschappers zouden actief maatregelen moeten nemen
om hun technische boeken verkrijgbaar te maken voor zo
weinig mogelijk kosten, zodat de wetenschappelijke infor-
matie beschikbaar kan zijn voor een bredere internationale
wetenschapsgemeenschap.

Artikel 12: Ethische verantwoordelijkheid van weten-
schappers

De geschiedenis toont ons dat wetenschappelijke ontdekkin-
gen gebruikt worden voor zowel goed als kwaad en dat ze
sommigen ten goede komen en anderen vernietigen. Omdat
de vooruitgang van wetenschap en technologie niet kan stop-
pen zullen er bepaalde middelen moeten komen om kwaad-
aardige toepassingen te voorkomen. Enkel een democratisch
gekozen regering die vrij is van religieuze, raciale en an-
dere vooroordelen kan de beschaafde wereld waarborgen.
Enkel democratisch gekozen regeringen, tribunalen en com-
missies kunnen het recht van vrije wetenschappelijke cre-
atie waarborgen. Momenteel zijn er verscheidene ondemo-
cratische staten en totalitaire regimes die actief onderzoek
uitvoeren op het gebied van nucleaire fysica, chemie, virolo-
gie, genetische manipulatie, etc. om nucleaire, chemische en
biologische wapens te produceren. Geen wetenschapper be-
hoort vrijwillig samen te werken met ondemocratische staten
of totalitaire regimes. Iedere wetenschapper die gedwongen
wordt om te werken aan het ontwikkelen van wapens voor
zulke staten behoort wegen en middelen te vinden om de
vooruitgang van de onderzoeksprogramma’s te vertragen en
de wetenschappelijke output te beperken, zodat beschaving
en democratie ten slotte kunnen zegevieren.

Alle wetenschappers dragen een morele verantwoorde-
lijkheid voor hun wetenschappelijke creaties en ontdekkin-
gen. Geen wetenschapper behoort zich vrijwillig bezig te
houden met het ontwerpen of vervaardigen van wapens van
welke soort dan ook voor ondemocratische staten of to-
talitaire regimes, of toestaan dat zijn of haar wetenschap-
pelijke vaardigheden of kennis gebruikt wordt voor de ont-
wikkeling van wat dan ook dat de mensheid kan beschadi-
gen. Een wetenschapper behoort te leven met het dictum dat
iedere ondemocratische regering en iedere schending van de
mensenrechten misdadig is.

28 maart 2006

6 Declaratie van Academische Vrijheid: Wetenschappelijke Mensenrechten
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On Isotropic Coordinates and Einstein’s Gravitational Field

Stephen J. Crothers

Queensland, Australia
E-mail: thenarmis@yahoo.com

It is proved herein that the metric in the so-called “isotropic coordinates” for Einstein’s
gravitational field is a particular case of an infinite class of equivalent metrics.
Furthermore, the usual interpretation of the coordinates is erroneous, because in the
usual form given in the literature, the alleged coordinate length

√
dx2 + dy2 + dz2 is

not a coordinate length. This arises from the fact that the geometrical relations between
the components of the metric tensor are invariant and therefore bear the same relations
in the isotropic system as those of the metric in standard Schwarzschild coordinates.

1 Introduction

Petrov [1] developed an algebraic classification of Einstein’s
field equations. Einstein’s field equations can be written as,

Rαβ −
1

2
Rgαβ =κTαβ − λgαβ ,

where κ is a constant, and λ the so-called cosmological
constant. If Tαβ ∝ gαβ , the associated space is called an
Einstein space. Thus, Einstein spaces include those described
by partially degenerate metrics of this form. Consequently,
such metrics become non-Einstein only when

g= det ‖gαβ‖=0 .

A simple source is a spherically symmetric mass (a mass
island), without charge or angular momentum. A simple
source giving rise to a static gravitational field in vacuum,
where space is isotropic and homogeneous, constitutes a
Schwarzschild space. The associated field equations external
to the simple source are

Rαβ −
1

2
Rgαβ =0 ,

or, more simply,
Rαβ =0 .

Thus, a Schwarzschild space is an Einstein space. There
are four types of Einstein spaces. The Schwarzschild space
is a type 1 Einstein space. It gives rise to a spherically
symmetric gravitational field.

The simple source interacts with a “test” particle, which
has no charge, no angular momentum, and effectively no
mass, or so little mass that its own gravitational field can be
neglected entirely. A similar concept is utilised in electro-
dynamics in the notion of a “test” charge.

The only solutions known for Einstein’s field equations
involve a single gravitating source interacting with a test
particle. There are no known solutions for two or more

interacting comparable masses. In fact, it is not even known
if Einstein’s field equations admit of solutions for multi-
body configurations, as no existence theorem has even been
adduced. It follows that there is no theoretical sense to
concepts such as black hole binaries, or colliding or merging
black holes, notwithstanding the all too common practice
of assuming them well-posed theoretical problems allegedly
substantiated by observations.

The metric for Einstein’s gravitational field in the usual
isotropic coordinates is, in relativistic units (c=G=1),

ds2=

(
1− m

2r

)2

(
1 + m

2r

)2 dt
2−

−
(
1 +

m

2r

)4 [
dr2 + r2

(
dθ2 + sin2θ dϕ2

)]
=

(1a)

=

(
1− m

2r

)2

(
1 + m

2r

)2 dt
2 −

(
1 +

m

2r

)4(
dx2 + dy2 + dz2

)
, (1b)

having set r=
√
x2 + y2 + z2. This metric describes

a Schwarzschild space.
By virtue of the factor (dx2 + dy2 + dz2) it is usual that

0 6 r < ∞ is taken. However, this standard range on r is
due entirely to assumption, based upon the misconception
that because 0 6 r <∞ is defined on the usual Minkowski
metric, this must also hold for (1a) and (1b). Nothing could
be further from the truth, as I shall now prove.

2 Proof

Consider the standard Minkowski metric,

ds2= dt2 − dx2 − dy2 − dz2 ≡

≡ dt2 − dr2 − r2(dθ2 + sin2 θdϕ2) , (2)

06 r <∞ .

The spatial components of this metric describe a sphere of
radius r> 0, centred at r=0. The quantity r is an Efcleeth-
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ean∗ distance since Minkowski space is pseudo-Efcleethean.
Now (2) is easily generalised [2] to

ds2= dt2− dr2− (r− r0)
2(dθ2+sin2θ dϕ2) = (3a)

= dt2−
(r − r0)

2

|r − r0|2
dr2−|r− r0|

2(dθ2+sin2θ dϕ2) , (3b)

= dt2 − d|r − r0|
2 − |r − r0|

2(dθ2 + sin2θ dϕ2) , (3c)

0 6 |r − r0| <∞ .

The spatial components of equations (3) describe a sphere
of radius Rc(r)= |r− r0|, centred at a point located any-
where on the 2-sphere r0 . Only if r0 =0 does (3) describe a
sphere centred at the origin of the coordinate system. With
respect to the underlying coordinate system of (3), Rc(r) is
the radial distance between the 2-spheres r= r0 and r 6= r0 .

The usual practice is to supposedly generalise (2) as

ds2=A(r)dt2 −B(r)
(
dr2 + r2dθ2 + r2 sin2θ dϕ2

)
(4)

to finally obtain (1a) in the standard way, with the assumption
that 06 r <∞ on (2) must hold also on (4), and hence
on equations (1). However, this assumption has never been
proved by the theoreticians. The assumption is demonstrably
false. Furthermore, this procedure does not produce a gene-
ralised solution in terms of the parameter r, but instead a
particular solution.

Since (3) is a generalisation of (2), I use it to generalise
(4) to

ds2= eνdt2 − eμ
(
dh2 + h2dθ2 + h2 sin2θ dϕ2

)
(5)

h=h(r)=h(|r−r0|), ν = ν (h(r)), μ=μ(h(r)) .

Note that (5) can be written in the mixed form

ds2= eνdt2−eμ
[(
dh

dr

)2
dr2+h2dθ2+h2 sin2θdϕ2

]

, (6)

from which the particular form (4) usually used is recovered
if h(|r−r0|)= r. However, no particular form for h(|r−r0|)
should be pre-empted. Doing so, in the routine fashion of
the majority of the relativists, produces only a particular
solution in terms of the Minkowski r, with all the erroneous
assumptions associated therewith.

Now (5) must satisfy the energy-momentum tensor equa-
tions for the simple, static, vacuum field:

0= e−μ
(
μ′2

4
+
μ′ν ′

2
+
μ′ + ν ′

h

)

0= e−μ
(
μ′′

2
+
ν ′′

2
+
ν ′2

r
+
μ′ + ν ′

2h

)

0= e−μ
(

μ′′ +
μ′2

4
+
2μ′

h

)

,

∗Due to Efcleethees, incorrectly Euclid, so the geometry is rightly
Efcleethean.

where the prime indicates d/dh. This gives, in the usual way,

ds2=

(
1− m

2h

)2

(
1 + m

2h

)2 dt
2−

−
(
1 +

m

2h

)4 [
dh2 + h2

(
dθ2 + sin2θ dϕ2

)]
,

(7)

from which the admissible form for h(|r−r0|) and the value
of the constant r0 must be rigorously ascertained from the
intrinsic geometrical properties of the metric itself.

Now the intrinsic geometry of the metric (2) is the same
on all the metrics given herein in terms of the spherical
coordinates of Minkowski space, namely, the radius of cur-
vature Rc in the space described by the metric is always
the square root of the coefficient of the angular terms of the
metric and the proper radius Rp is always the integral of
the square root of the component containing the differential
element of the radius of curvature. Thus, on (2),

Rc(r)≡ r, Rp(r)≡
∫ r

0

dr= r≡Rc(r) ,

and on (3),
Rc(r)≡ |r − r0| ,

Rp(r)≡
∫ |r−r0 |

0

dr = |r − r0| ≡Rc(r) ,

whereby it is clear that Rc(r) and Rp(r) are identical, owing
to the fact that the spatial coordinates of (2) and (3) are
Efcleethean.

Now consider the general metric of the form

ds2=A(r)dt2 −B(r)dr2 − C(r)(dθ2 + sin2θ dϕ2) (8)

A,B,C > 0.

In this case,

Rc(r) =
√
C(r), Rp(r) =

∫ √
B(r) dr .

I remark that although (8) is mathematically valid, it
is misleading. In the cases of (2) and (3), the respective
metrics are given in terms of the radius of curvature and its
differential element. This is not the case in (8) where the first
and second components are in terms of the parameter r of
the radius of curvature, not the radius of curvature itself. I
therefore write (8) in terms of only the radius of curvature
on (8), thus

ds2=A∗
(√
C(r)

)
dt2 −B∗

(√
C(r)

)
d
√
C(r)

2
−

−C(r)(dθ2 + sin2θ dϕ2) ,
(9a)

A∗, B∗, C > 0 .
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Note that (9a) can be written as,

ds2=A∗
(√
C(r)

)
dt2−B∗

(√
C(r)

)
(
d
√
C(r)

dr

)2
dr2−

−C(r)
(
dθ2 + sin2θ dϕ2

)
,

(9b)

A∗, B∗, C > 0 ,

and by setting

B∗
(√
C(r)

)
(
d
√
C(r)

dr

)2
=B (r) ,

equation (8) is recovered, proving that (8) and equations (9)
are mathematically equivalent, and amplifying the fact that
(8) is a mixed-term metric. Note also that if C(r) is set
equal to r2, the alleged general form used by most relativists
is obtained. However, the form of C(r) should not be pre-
empted, for by doing so only a particular parametric solution
is obtained, and with the form chosen by most relativists, the
properties of r in Minkowski space are assumed (incorrectly)
to carry over into the metric for the gravitational field.

It is also clear from (8) and equations (9) that |r − r0|
is the Efcleethean distance between the centre of mass of
the field source and a test particle, in Minkowski space, and
which is mapped into Rc(r) and Rp(r) of the gravitational
field by means of functions determined by the structure of
the gravitational metric itself, namely the functions given by

Rc(r) =
√
C(r) ,

Rp(r)=

∫ √
B∗
(√
C(r)

)
d
√
C(r)=

∫ √
B (r) dr .

In the case of the usual metric the fact that |r − r0| is
the Efcleethean distance between the field source and a test
particle in Minkowski space is suppressed by the choice
of the particular function

√
C(r)= r2, so that it is not

immediately apparent that when r goes down to α=2m
on that metric, the parametric distance between field source
and test particle has gone down to zero. Generally, as the
parametric distance goes down to zero, the proper radius in
the gravitational field goes down to zero, irrespective of the
location of the field source in parameter space. Thus, the
field source is always located at Rp = 0 as far as the metric
for the gravitational field is concerned.

It has been proved elsewhere [3, 4] that in the case of the
simple “point-mass” (a fictitious object), metrics of the form
(8) or (9) are characterised by the following scalar invariants,

Rp(r0)≡ 0 , Rc(r0)≡ 2m, g00(r0)≡ 0 , (10)

so that the actual value of r0 is completely irrelevant.
Now (7) can be written as

ds2=

(
1− m

2h

)2

(
1 + m

2h

)2 dt
2 −

−
(
1 +

m

2h

)4
dh2−h2

(
1 +

m

2h

)4(
dθ2 + sin2θ dϕ2

)
, (11)

h=h(r)=h(|r − r0|) .

Since the geometrical relations between the components of
the metric tensor are invariant it follows that on (11),

Rc(r)=h(r)

(

1 +
m

2h(r)

)2
, (12a)

Rp(r)=

∫ (

1 +
m

2h(r)

)2
dh(r) =

= h(r) +m lnh(r)−
m2

2

1

h(r)
+K ,

where K = constant,

Rp(r)=h(r) +m ln
h(r)

K1

−
m2

2

1

h(r)
+K2 (12b)

where K1 and K2 are constants.
It is required that Rp(r0) ≡ 0, so

0=h(r0) +m ln
h(r0)

K1

−
m2

2

1

h(r0)
+K2 ,

which is satisfied only if

h(r0)=K1 =K2 =
m

2
. (13)

Therefore,

Rp(r)=h(r) +m ln

(
2h(r)

m

)

−
m2

2

1

h(r)
+
m

2
. (14)

According to (12a), and using (13),

Rc
(
r0
)
=
m

2

(

1 +
m

2m2

)2
=2m,

satisfying (10) as required.
Now from (11),

g00(r) =

(
1− m

2h(r)

)2

(
1 + m

2h(r)

)2 ,

and using (13),

g00(r0) =

(
1− 2m

2m

)2

(
1 + 2m

2m

)2 = 0 ,

satisfying (10) as required.
It remains now to ascertain the general admissible form

of h(r)=h(|r − r0|).
By (6),

dh

dr
6=0 ∀ r 6= r0 .
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It is also required that (11) become Minkowski in the
infinitely far field, so

lim
|r−r0 |→∞

h2(r)
(
1 + m

2h(r)

)4

|r − r0|2
→ 1 ,

must be satisfied.
When there is no matter present (m=0), h(r) must

reduce the metric to Minkowski space.
Finally, h(r) must be able to be arbitrarily reduced to r

by a suitable choice of arbitrary constants so that the usual
metric (1a) in isotropic coordinates can be recovered at will.

The only form for h(r) that satisfies all the require-
ments is

h(r)=

[

|r − r0|
n +

(m
2

)n]
1
n

,

n ∈ <+, r0 ∈ < , r 6= r0 ,

(15)

where n and r0 are entirely arbitrary constants. The condition
r 6= r0 is necessary since the “point-mass” is not a physical
object.

Setting n=1, r0 =
m
2 , and r > r0 in (15) gives the usual

metric (1a) in isotropic coordinates. Note that in this case
r0 =

m
2 is the location of the fictitious “point-mass” in para-

meter space (i. e. in Minkowski space) and thus as the dis-
tance between the test particle and the source, located at
r0 =

m
2 , goes to zero in parameter space, the proper radius

in the gravitational field goes to zero, the radius of curvature
goes to 2m, and g00 goes to zero. Thus, the usual claim that
the term dr2 + r2(dθ2 + sin2θ dϕ2) (or dx2 + dy2 + dz2)
describes a coordinate length is false. Note that in choosing
this case, the resulting metric suppresses the true nature of the
relationship between the r-parameter and the gravitational
field because, as clearly seen by (15), r0 =

m
2 drops out.

Note also that (15) generalises the mapping so that distances
on the real line are mapped into the gravitational field.

Consequently, there is no black hole predicted by the
usual metrics (1) in isotropic coordinates. The black hole
concept has no validity in General Relativity (and none in
Newton’s theory either since the Michell-Laplace dark body
is not a black hole [5, 6]).

The singularity at Rp(r0)≡ 0 is insurmountable because

lim
|r−r0 |→0

2πRc(r)

Rp(r)
→∞ ,

according to the admissible forms of Rp(r),Rc(r), and h(r).
Note also that only in the infinitely far field are Rc(r)

and Rp(r) identical; where the field becomes Efcleethean
(i. e. Minkowski),

lim
|r−r0 |→∞

2πRc(r)

Rp(r)
→ 2π .

It has been proved elsewhere [3, 2] that there are no
curvature singularities in Einstein’s gravitational field. In
particular the Riemann tensor scalar curvature invariant (the
Kretschmann scalar) f =RαβσρRαβσρ is finite everywhere,
and and in the case of the fictitious point-mass takes the
invariant value

f(r0)≡
12

(2m)4
,

completely independent of the value of r0 .
Since the intrinsic geometry of the metric is invariant,

(11) with (15) must also satisfy this invariant condition. A
tedious calculation gives the Kretschmann scalar for (11) at

f(r)=
48m2

h6
(
1 + m

2h

)12 ,

which by (15) is

f(r)=
48m2

[
|r − r0|n +

(
m
2

)n]
6
n

(

1 +
m

2[|r−r0 |n+(m2 )
n
]
1
n

)12 .

Then

f(r0)≡
12

(2m)4
,

completely independent of the value of r0 , as required by
the very structure of the metric.

The structure of the metric is also responsible for the
Ricci flatness of Einstein’s static, vacuum gravitational field
(satisfying Rαβ =0). Consequently, all the metrics herein are
Ricci flat (i. e. R=0). Indeed, all the given metrics can be
transformed into

ds2=

(

1−
2m

Rc

)

dt2 −

(

1−
2m

Rc

)−1
dR2c −

−R2c(dθ
2 + sin2θ dϕ2) ,

Rc= Rc(r)=
√
C(r) , 2m < Rc(r) <∞ ,

(16)

which is Ricci flat for any analytic function Rc(r), which is
easily verified by using the variables

x0= t , x1=Rc(r) , x2= θ , x3=ϕ ,

in the calculation of the Ricci curvature from (16), using,

R= gμν
{

∂2

∂xμ∂xν

(
ln
√
|g|
)
−

−
1
√
|g|

∂

∂xρ

(√
|g| Γρμν

)
+ ΓρμσΓ

σ
ρν

}

.

Setting

χ

2π
= Rc(r) = h(r)

(

1 +
m

2h(r)

)2
,
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transforms the metric (7) into,

ds2=

(

1−
2πα

χ

)

dt2 −

(

1−
2πα

χ

)−1
dχ2

4π2
−

−
χ2

4π2
(dθ2 + sin2 θdϕ2) ,

2πα < χ <∞ , α=2m,

(17)

which is the metric for Einstein’s gravitational field in terms
of the only theoretically measurable distance in the field –
the circumference χ of a great circle [2]. This is a truly
coordinate independent expression. There is no need of the
r-parameter at all.

Furthermore, equation (17) is clear as to what quantities
are radii in the gravitational field, viz.

Rc(χ)=
χ

2π
,

Rp(χ)=

∫ χ

2πα

√
χ
2π(

χ
2π − α

)
dχ

2π
=

=

√
χ

2π

( χ
2π
− α

)
+ α ln

∣
∣
∣
∣
∣
∣

√
χ
2π +

√
χ
2π − α

√
α

∣
∣
∣
∣
∣
∣
.

3 Epilogue

The foregoing is based, as has all my work to date, upon the
usual manifold with boundary, [0 ,+∞[×S2. By using the
very premises of most relativists, including their [0,+∞[×S2,
I have demonstrated herein that black holes (see also
[4, 7]), and elsewhere as a logical consequence [8], that
big bangs are not consistent with General Relativity. Indeed,
cosmological solutions for isotropic, homogeneous, type 1
Einstein spaces do not exist. Consequently, there is currently
no valid relativistic cosmology at all. The Standard Cosmo-
logical Model, the Big Bang, is false.

Stavroulakis [9] has argued that
[
0,+∞

[
×S2 is inadmis-

sible because it destroys the topological structure of R3.
He has maintained that the correct topological space for
Einstein’s gravitational field should be R × R3. He has
also shown that black holes are not predicted by General
Relativity in R× R3.

However, the issue of whether or not
[
0,+∞

[
×S2 is

admissible is not relevant to the arguments herein, given
the objectives of the analysis.

Although χ is measurable in principle, it is apparently
beyond measurement in practice. This severely limits the
utility of Einstein’s theory.

The historical analysis of Einstein’s gravitational
field proceeded in ignorance of the fact that only the circum-
ference χ of a great circle is significant. It has also failed

to realise that there are two different immeasurable radii
defined in Einstein’s gravitational field, as an inescapable
consequence of the intrinsic geometry on the metric, and that
these radii are identical only in the infinitely far field where
space becomes Efcleethean (i. e. Minkowski). Rejection sum-
marily of the oddity of two distinct immeasurable radii is
tantamount to complete rejection of General Relativity; an
issue I have not been concerned with.

Minkowski’s metric in terms of χ is,

ds2= dt2 −
dχ2

4π2
−

χ2

4π2
(dθ2 + sin2θ dϕ2) ,

06χ <∞ .

It is generalised to

ds2=A
( χ
2π

)
dt2 −B

( χ
2π

)−1 dχ2

4π2
−

−
χ2

4π2
(dθ2 + sin2θ dϕ2) ,

(18)

χ0 < χ <∞ , A,B > 0 ,

which leads, in the usual way, to the line-element of (17),
from which χ0 and the radii associated with the gravitational
field are determined via the intrinsic and invariant geometry
of the metric.

Setting Rc(r)=
√
C(r) in (16) gives,

ds2=

(

1−
α

√
C(r)

)

dt2−

(

1−
α

√
C(r)

)−1
d
√
C(r)

2
−

−C(r)(dθ2 + sin2 θdϕ2) ,

(19)

where [2]

C(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

, (20)

n∈<+, r0 ∈< , α=2m, r 6= r0 ,

and where n and r0 are entirely arbitrary constants. Note that
if n=1, r0 =α, r > r0 , the usual line-element is obtained,
but the usual claim that r can go down to zero is clearly
false, since when r=α, the parametric distance between field
source and test particle is zero, which is reflected in the fact
that the proper radius on (19) is then zero, Rc=α=2m, and
g00 =0, as required. The functions (20) are called Schwarz-
schild forms [4, 7], and they produce an infinite number of
equivalent Schwarzschild metrics.

The term
√
dx2+dy2+dz2 of the standard metric in “iso-

tropic coordinates” is not a coordinate length as commonly
claimed. This erroneous idea stems from the fact that the
usual choice of C(r)= r2 in the metric (19) suppresses
the true nature of the mapping of parametric distances into
the true radii of the gravitational field. This arises from the
additional fact that the location of the field source at r0 = α
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in parameter space drops out of the functional form C(r)
as given by (20), in this particular case. The subsequent
usual transformation to the usual metric (1a) carries with
it the erroneous assumptions about r, inherited from the
misconceptions about r in (19) with the reduction of C(r) to
r2, which, in the usual conception, violates (20), and hence
the entire structure of the metric for the gravitational field.
Obtaining (1a) from first principles using the expression (5)
with h(r)= r2 and the components of the energy-momentum
tensor, already presupposes the form of h(r) and generates
the suppression of the true nature of r in similar fashion.

The black hole, as proved herein and elsewhere [4, 7],
and the Big Bang, are due to a serious neglect of the intrinsic
geometry of the gravitational metric, a failure heretofore to
understand the structure of type 1 Einstein spaces, with the
introduction instead, of extraneous and erroneous hypotheses
by which the intrinsic geometry is violated.

Since Nature does not make point-masses, the point-mass
referred to Einstein’s gravitational field must be regarded as
merely the mathematical artifice of a centre-of-mass of the
source of the field. The fact that the gravitational metric for
the point-mass disintegrates at the point-mass is a theoretical
indication that the point-mass is not physical, so that the
metric is undefined when r= r0 in parameter space, which
is at Rp(r0)≡ 0 on the metric for the gravitational field. The
usual concept of gravitational collapse itself collapses.

To fully describe the gravitational field there must there-
fore be two metrics, one for the interior of an extended
gravitating body and one for the exterior of that field source,
with a transition between the two at the surface of the body.
This has been achieved in the idealised case of a sphere of
incompressible and homogeneous fluid in vacuum [10, 11].
No singularities then arise, and gravitational collapse to a
“point-mass” is impossible.
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We apply the S-denying procedure to signature conditions in a four-dimensional
pseudo-Riemannian space — i. e. we change one (or even all) of the conditions to
be partially true and partially false. We obtain five kinds of expanded space-time for
General Relativity. Kind I permits the space-time to be in collapse. Kind II permits
the space-time to change its own signature. Kind III has peculiarities, linked to the
third signature condition. Kind IV permits regions where the metric fully degenerates:
there may be non-quantum teleportation, and a home for virtual photons. Kind V is
common for kinds I, II, III, and IV.

1 Einstein’s basic space-time

Euclidean geometry is set up by Euclid’s axioms: (1) given
two points there is an interval that joins them; (2) an interval
can be prolonged indefinitely; (3) a circle can be constructed
when its centre, and a point on it, are given; (4) all right
angles are equal; (5) if a straight line falling on two straight
lines makes the interior angles on one side less than two
right angles, the two straight lines, if produced indefinitely,
meet on that side. Non-Euclidean geometries are derived
from making assumptions which deny some of the Euclidean
axioms. Three main kinds of non-Euclidean geometry are
conceivable — Lobachevsky-Bolyai-Gauss geometry, Rie-
mann geometry, and Smarandache geometry.

In Lobachevsky-Bolyai-Gauss (hyperbolic) geometry the
fifth axiom is denied in the sense that there are infinitely
many lines passing through a given point and parallel to
a given line. In Riemann (elliptic) geometry∗, the axiom is
satisfied formally, because there is no line passing through
a given point and parallel to a given line. But if we state
the axiom in a broader form, such as “through a point not
on a given line there is only one line parallel to the given
line”, the axiom is also denied in Riemann geometry. Besides
that, the second axiom is also denied in Riemann geometry,
because herein the straight lines are closed: an infinitely long
straight line is possible but then all other straight lines are of
the same infinite length.

In Smarandache geometry one (or even all) of the axioms
is false in at least two different ways, or is false and also
true [1, 2]. This axiom is said to be Smarandachely denied
(S-denied). Such geometries have mixed properties of
Euclidean, Lobachevsky-Bolyai-Gauss, and Riemann geo-
metry. Manifolds that support such geometries were intro-
duced by Iseri [3].

Riemannian geometry is the generalization of Riemann
geometry, so that in a space of Riemannian geometry:

(1) The differentiable field of a 2nd rank non-degenerate

∗Elleipein — “to fall short”; hyperballein — “to throw beyond” (Greek).

symmetric tensor gαβ is given so that the distance ds
between any two infinitesimally close points is given
by the quadratic form

ds2 =
∑

06α,β6n

gαβ(x) dx
αdxβ = gαβ dx

αdxβ ,

known as the Riemann metric†. The tensor gαβ is called
the fundamental metric tensor, and its components
define the geometrical structure of the space;

(2) The space curvature may take different numerical val-
ues at different points in the space.

Actually, a Riemann geometry space is the space of the
Riemannian geometry family, where the curvature is constant
and has positive numerical value.

In the particular case where gαβ takes the diagonal form

gαβ =







1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1





 ,

the Riemannian space becomes Euclidean.
Pseudo-Riemannian spaces consist of specific kinds of

Riemannian spaces, where gαβ (and the Riemannian metric
ds2) has sign-alternating form so that its diagonal compo-
nents bear numerical values of opposite sign.

Einstein’s basic space-time of General Relativity is a
four-dimensional pseudo-Riemannian space having the sign-
alternating signature (+−−−) or (−+++), which reserves one
dimension for time x0= ct whilst the remaining three are
reserved for three-dimensional space, so that the space
metric is‡

ds2= gαβ dx
αdxβ = g00 c

2dt2+2g0i cdtdx
i+ gik dx

idxk.

†Here is a space of n dimensions.
‡Landau and Lifshitz in The Classical Theory of Fields [4] use the

signature (−+++), where the three-dimensional part of the four-dimensional
impulse vector is real. We, following Eddington [5], use the signature
(+−−−), because in this case the three-dimensional observable impulse,
being the projection of the four-dimensional impulse vector on an observer’s
spatial section, is real. Here α, β=0, 1, 2, 3, while i, k=1, 2, 3.

D. Rabounski, F. Smarandache, L. Borissova. S-Denying of the Signature Conditions Expands General Relativity’s Space 13



Volume 3 PROGRESS IN PHYSICS July, 2006

In general the four-dimensional pseudo-Riemannian spa-
ce is curved, inhomogeneous, gravitating, rotating, and de-
forming (any or all of the properties may be anisotropic). In
the particular case where the fundamental metric tensor gαβ
takes the strictly diagonal form

gαβ =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





 ,

the space becomes four-dimensional pseudo-Euclidean

ds2 = gαβ dx
αdxβ = c2dt2 − dx2 − dy2 − dz2,

which is known as Minkowski’s space (he had introduced it
first). It is the basic space-time of Special Relativity.

2 S-denying the signature conditions

In a four-dimensional pseudo-Riemannian space of signature
(+−−−) or (−+++), the basic space-time of General Rela-
tivity, there are four signature conditions which define this
space as pseudo-Riemannian.

Question: What happens if we S-deny one (or even all) of
the four signature conditions in the basic space-time of
General Relativity? What happens if we postulate that
one (or all) of the signature conditions is to be denied
in two ways, or, alternatively, to be true and false?

Answer: If we S-deny one or all of the four signature con-
ditions in the basic space-time, we obtain a new ex-
panded basic space-time for General Relativity. There
are five main kinds of such expanded spaces, due to
four possible signature conditions there.

Here we are going to consider each of the five kinds of
expanded spaces.

Starting from a purely mathematical viewpoint, the signa-
ture conditions are derived from sign-alternation in the diag-
onal terms g00, g11, g22, g33 in the matrix gαβ . From a
physical perspective, see §84 in [4], the signature conditions
are derived from the requirement that the three-dimensional
observable interval

dσ2 = hik dx
idxk =

(

−gik +
g0ig0k
g00

)

dxidxk

must be positive. Hence the three-dimensional observable
metric tensor hik=−gik+

g0ig0k
g00

, being a 3×3 matrix de-
fined in an observer’s reference frame accompanying its ref-
erences, must satisfy three obvious conditions

det ‖h11‖ = h11 > 0 ,

det

∥
∥
∥
∥
h11 h12
h21 h22

∥
∥
∥
∥ = h11 h22 − h

2
12 > 0 ,

h = det ‖hik‖ = det

∥
∥
∥
∥
∥
∥

h11 h12 h13
h21 h22 h23
h31 h32 h33

∥
∥
∥
∥
∥
∥
> 0 .

From here we obtain the signature conditions in the fund-
amental metric tensor’s matrix gαβ . In a space of signature
(+−−−), the signature conditions are

det ‖g00‖ = g00 > 0 , (I)

det

∥
∥
∥
∥
g00 g01
g10 g11

∥
∥
∥
∥ = g00 g11 − g

2
01 < 0 , (II)

det

∥
∥
∥
∥
∥
∥

g00 g01 g02
g10 g11 g12
g20 g21 g22

∥
∥
∥
∥
∥
∥
> 0 , (III)

g = det ‖gαβ‖ = det

∥
∥
∥
∥
∥
∥
∥
∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥
∥
∥
∥
∥
∥
∥
∥

< 0 . (IV)

An expanded space-time of kind I: In such a space-
time the first signature condition g00> 0 is S-denied, while
the other signature conditions remain unchanged. Given the
expanded space-time of kind I, the first signature condition
is S-denied in the following form

det ‖g00‖ = g00 > 0 ,

which includes two particular cases, g00> 0 and g00=0, so
g00> 0 is partially true and partially false.

Gravitational potential is w= c2(1−
√
g00) [6, 7], so the

S-denied first signature condition g00> 0 means that in such
a space-time w6 c2, i. e. two different states occur

w < c2 , w = c2.

The first one corresponds to the regular space-time, where
g00> 0. The second corresponds to a special space-time state,
where the first signature condition is simply denied g00=0.
This is the well-known condition of gravitational collapse.

Landau and Lifshitz wrote, “nonfulfilling of the condition
g00> 0 would only mean that the corresponding system of
reference cannot be accomplished with real bodies” [4].

Conclusion on the kind I: An expanded space-time of
kind I (g00> 0) is the generalization of the basic space-time
of General Relativity (g00> 0), including regions where this
space-time is in a state of collapse, (g00 = 0).

An expanded space-time of kind II: In such a space-time
the second signature condition g00 g11− g

2
01< 0 is S-denied,

the other signature conditions remain unchanged. Thus, given
the expanded space-time of kind II, the second signature
condition is S-denied in the following form

det

∥
∥
∥
∥
g00 g01
g10 g11

∥
∥
∥
∥ = g00 g11 − g

2
01 6 0 ,
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which includes two different cases

g00 g11 − g
2
01 < 0 , g00 g11 − g

2
01 = 0 ,

whence the second signature condition g00 g11− g
2
01< 0 is

partially true and partially false.
The component g00 is defined by the gravitational po-

tential w= c2(1−
√
g00). The component g0i is defined by

the space rotation linear velocity (see [6, 7] for details)

vi = −c
g0i
√
g00

, vi = −cg0i
√
g00 , vi = hik v

k.

Then we obtain the S-denied second signature condition
g00 g11− g

2
016 0 (meaning the first signature condition is not

denied g00> 0) as follows

g11 −
1

c2
v21 6 0 ,

having two particular cases

g11 −
1

c2
v21 < 0 , g11 −

1

c2
v21 = 0 .

To better see the physical sense, take a case where g11 is
close to −1.∗ Then, denoting v1= v, we obtain

v2 > −c2, v2 = −c2.

The first condition v2 > −c2 is true in the regular basic
space-time. Because the velocities v and c take positive
numerical values, this condition uses the well-known fact
that positive numbers are greater than negative ones.

The second condition v2 = −c2 has no place in the basic
space-time; it is true as a particular case of the common
condition v2>−c2 in the expanded spaces of kind II. This
condition means that as soon as the linear velocity of the
space rotation reaches light velocity, the space signature
changes from (+−−−) to (−+++). That is, given an expanded
space-time of kind II, the transit from a non-isotropic sub-
light region into an isotropic light-like region implies change
of signs in the space signature.

Conclusion on the kind II: An expanded space-time of
kind II (v2>−c2) is the generalization of the basic space-
time of General Relativity (v2>−c2) which permits the
peculiarity that the space-time changes signs in its own
signature as soon as we, reaching the light velocity of the
space rotation, encounter a light-like isotropic region.

An expanded space-time of kind III: In this space-time
the third signature condition is S-denied, the other signa-
ture conditions remain unchanged. So, given the expanded
space-time of kind III, the third signature condition is

det

∥
∥
∥
∥
∥
∥

g00 g01 g02
g10 g11 g12
g20 g21 g22

∥
∥
∥
∥
∥
∥
> 0 ,

∗Because we use the signature (+−−−).

which, taking the other form of the third signature condition
into account, can be transformed into the formula

det

∥
∥
∥
∥
h11 h12
h21 h22

∥
∥
∥
∥ = h11 h22 − h

2
12 > 0 ,

that includes two different cases

h11 h22 − h
2
12 > 0 , h11 h22 − h

2
12 = 0 ,

so that the third initial signature condition h11 h22−h
2
12> 0

is partially true and partially false. This condition is not clear.
Future research is required.

An expanded space-time of kind IV: In this space-time
the fourth signature condition g=det ‖gαβ‖< 0 is S-denied,
the other signature conditions remain unchanged. So, given
the expanded space-time of kind IV, the fourth signature
condition is

g = det ‖gαβ‖ = det

∥
∥
∥
∥
∥
∥
∥
∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥
∥
∥
∥
∥
∥
∥
∥

6 0 ,

that includes two different cases

g = det ‖gαβ‖ < 0 , g = det ‖gαβ‖ = 0 ,

so that the fourth signature condition g < 0 is partially true
and partially false: g < 0 is true in the basic space-time, g=0
could be true in only he expanded spaces of kind IV.

Because the determinants of the fundamental metric ten-
sor gαβ and the observable metric tensor hik are connected as
follows

√
−g=

√
h
√
g00 [6, 7], degeneration of the fund-

amental metric tensor (g=0) implies that the observable
metric tensor is also degenerate (h=0). In such fully de-
generate areas the space-time interval ds2, the observable
spatial interval dσ2=hik dxidxk and the observable time
interval dτ become zero†

ds2 = c2dτ 2 − dσ2 = 0 , c2dτ 2 = dσ2 = 0 .

Taking formulae for dτ and dσ into account, and also
the fact that in the accompanying reference frame we have
h00=h0i=0, we write dτ 2=0 and dσ2=0 as

dτ =

[

1−
1

c2
(
w+ viu

i
)
]

dt = 0 , dt 6= 0 ,

dσ2 = hikdx
idxk = 0 ,

where the three-dimensional coordinate velocity ui= dxi/dt
is different to the observable velocity vi= dxi/dτ .

†Note, ds2=0 is true not only at c2dτ2= dσ2=0, but also
when c2dτ2= dσ2 6=0 (in the isotropic region, where light propagates).
The properly observed time interval is determined as dτ =

√
g00 dt+

+ g0i
c
√
g00

dxi, where the coordinate time interval is dt 6=0 [4, 5, 6, 7].
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With hik=−gik+ 1
c2
vivk, we obtain aforementioned

physical conditions of degeneration in the final form

w+ viu
i = c2, giku

iuk = c2
(
1−

w

c2

)2
.

As recently shown [8, 9], the degenerate conditions
permit non-quantum teleportation and also virtual photons in
General Relativity. Therefore we expect that, employing an
expanded space of kind IV, one may join General Relativity
and Quantum Electrodynamics.

Conclusion on the kind IV: An expanded space-time of
kind IV (g6 0) is the generalization of the basic space-time
of General Relativity (g < 0) including regions where this
space-time is in a fully degenerate state (g=0). From the
viewpoint of a regular observer, in a fully degenerate area
time intervals between any events are zero, and spatial inter-
vals are zero. Thus, such a region is observable as a point.

An expanded space-time of kind V: In this space-time all
four signature conditions are S-denied, therefore given the
expanded space-time of kind V the signature conditions are

det ‖g00‖ = g00 > 0 ,

det

∥
∥
∥
∥
g00 g01
g10 g11

∥
∥
∥
∥ = g00 g11 − g

2
01 6 0 ,

det

∥
∥
∥
∥
∥
∥

g00 g01 g02
g10 g11 g12
g20 g21 g22

∥
∥
∥
∥
∥
∥
> 0 ,

g = det ‖gαβ‖ = det

∥
∥
∥
∥
∥
∥
∥
∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥
∥
∥
∥
∥
∥
∥
∥

6 0 ,

so all four signature conditions are partially true and partially
false. It is obvious that an expanded space of kind V contains
expanded spaces of kind I, II, III, and IV as particular cases,
it being a common space for all of them.

Negative S-denying expanded spaces: We could also S-
deny the signatures with the possibility that say g00> 0 for
kind I, but this means that the gravitational potential would
be imaginary, or, even take into account the “negative” cases
for kind II, III, etc. But most of them are senseless from the
geometrical viewpoint. Hence we have only included five
main kinds in our discussion.

3 Classification of the expanded spaces for General
Relativity

In closing this paper we repeat, in brief, the main results.
There are currently three main kinds of non-Euclidean

geometry conceivable — Lobachevsky-Bolyai-Gauss geo-
metry, Riemann geometry, and Smarandache geometries.

A four-dimensional pseudo-Riemannian space, a space of
the Riemannian geometry family, is the basic space-time of
General Relativity. We employed S-denying of the signature
conditions in the basic four-dimensional pseudo-Riemannian
space, when a signature condition is partially true and part-
ially false. S-denying each of the signature conditions (or
even all the conditions at once) gave an expanded space for
General Relativity, which, being an instance of the family of
Smarandache spaces, include the pseudo-Riemannian space
as a particular case. There are four signature conditions. So,
we obtained five kinds of the expanded spaces for General
Relativity:
Kind I Permits the space-time to be in collapse;
Kind II Permits the space-time to change its own signature
as reaching the light speed of the space rotation in a light-like
isotropic region;
Kind III Has some specific peculiarities (not clear yet),
linked to the third signature condition;
Kind IV Permits full degeneration of the metric, when all
degenerate regions become points. Such fully degenerate re-
gions provide trajectories for non-quantum teleportation, and
are also a home space for virtual photons.
Kind V Provides an expanded space, which has common
properties of all spaces of kinds I, II, III, and IV, and includes
the spaces as particular cases.

The foregoing results are represented in detail in the book
[10], which is currently in print.

4 Extending this classification: mixed kinds of the ex-
panded spaces

We can S-deny one axiom only, or two axioms, or three
axioms, or even four axioms simultaneously. Hence we may
have: C14 +C

2
4 +C

3
4 +C

4
4 =2

4− 1=15 kinds of expanded
spaces for General Relativity, where Cin denotes combina-
tions of n elements taken in groups of i elements, 06 i6n.
And considering the fact that each axiom can be S-denied in
three different ways, we obtain 15 ×3=45 kinds of expanded
spaces for General Relativity. Which expanded space would
be most interesting?

We collect all such “mixed” spaces into a table. Specific
properties of the mixed spaces follow below.

1.1.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00=0, we have the usual space-time permitting collapse.

1.1.2: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
h11=0 we have h212< 0 that is permitted for imaginary
values of h12: we obtain a complex Riemannian space.

1.1.3: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
h11h22−h212=0, the spatially observable metric dσ2 per-
mits purely spatial isotropic lines.

1.1.4: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
h=0, we have the spatially observed metric dσ2 completely
degenerate. An example — zero-space [9], obtained as a com-
pletely degenerate Riemannian space. Because h=− g

g00
, the
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Positive S-denying spaces, N > 0 Negative S-denying spaces, N 6 0 S-denying spaces, where N > 0 ∪N < 0

Kind Signature conditions Kind Signature conditions Kind Signature conditions

One of the signature conditions is S-denied

1.1.1 I> 0, II> 0, III> 0, IV> 0 1.2.1 I6 0, II> 0, III> 0, IV> 0 1.3.1 I≷ 0, II> 0, III> 0, IV> 0

1.1.2 I> 0, II> 0, III> 0, IV> 0 1.2.2 I> 0, II6 0, III> 0, IV> 0 1.3.2 I> 0, II≷ 0, III> 0, IV> 0

1.1.3 I> 0, II> 0, III> 0, IV> 0 1.2.3 I> 0, II> 0, III6 0, IV> 0 1.3.3 I> 0, II> 0, III≷ 0, IV> 0

1.1.4 I> 0, II> 0, III> 0, IV> 0 1.2.4 I> 0, II> 0, III> 0, IV6 0 1.3.4 I> 0, II> 0, III> 0, IV≷ 0

Two of the signature conditions are S-denied

2.1.1 I> 0, II> 0, III> 0, IV> 0 2.2.1 I6 0, II6 0, III> 0, IV> 0 2.3.1 I≷ 0, II≷ 0, III> 0, IV> 0

2.1.2 I> 0, II> 0, III> 0, IV> 0 2.2.2 I6 0, II> 0, III6 0, IV> 0 2.3.2 I≷ 0, II> 0, III≷ 0, IV> 0

2.1.3 I> 0, II> 0, III> 0, IV> 0 2.2.3 I6 0, II> 0, III> 0, IV6 0 2.3.3 I≷ 0, II> 0, III> 0, IV≷ 0

2.1.4 I> 0, II> 0, III> 0, IV> 0 2.2.4 I> 0, II6 0, III> 0, IV6 0 2.3.4 I> 0, II≷ 0, III> 0, IV≷ 0

2.1.5 I> 0, II> 0, III> 0, IV> 0 2.2.5 I> 0, II6 0, III6 0, IV> 0 2.3.5 I> 0, II≷ 0, III≷ 0, IV> 0

2.1.6 I> 0, II> 0, III> 0, IV> 0 2.2.6 I> 0, II> 0, III6 0, IV6 0 2.3.6 I> 0, II> 0, III≷ 0, IV≷ 0

Three of the signature conditions are S-denied

3.1.1 I> 0, II> 0, III> 0, IV> 0 3.2.1 I> 0, II6 0, III6 0, IV6 0 3.3.1 I> 0, II≷ 0, III≷ 0, IV≷ 0

3.1.2 I> 0, II> 0, III> 0, IV> 0 3.2.2 I6 0, II> 0, III6 0, IV6 0 3.3.2 I≷ 0, II> 0, III≷ 0, IV≷ 0

3.1.3 I> 0, II> 0, III> 0, IV> 0 3.2.3 I6 0, II6 0, III> 0, IV6 0 3.3.3 I≷ 0, II≷ 0, III> 0, IV≷ 0

3.1.4 I> 0, II> 0, III> 0, IV> 0 3.2.4 I6 0, II6 0, III6 0, IV> 0 3.3.4 I≷ 0, II≷ 0, III≷ 0, IV> 0

All the signature conditions are S-denied

4.1.1 I> 0, II> 0, III> 0, IV> 0 4.2.1 I6 0, II6 0, III6 0, IV6 0 4.3.1 I≷ 0, II≷ 0, III≷ 0, IV≷ 0

Table 1: The expanded spaces for General Relativity (all 45 mixed kinds of S-denying). The signature conditions
are denoted by Roman numerals

metric ds2 is also degenerate.
1.2.1: g006 0, h11> 0, h11h22−h212> 0, h> 0. At

g00=0, we have kind 1.1.1. At g00< 0 physically observable

time becomes imaginary dτ = g0i dxi

c
√
g00

.
1.2.2: g00> 0, h116 0, h11h22−h212> 0, h> 0. At

h11=0, we have kind 1.1.2. At h11< 0, distances along
the axis x1 (i. e. the values

√
h11dx

1) becomes imaginary,
contradicting the initial conditions in General Relativity.

1.2.3: g00> 0, h11> 0, h11h22−h2126 0, h> 0. This is
a common space built on a particular case of kind 1.1.3 where
h11h22−h212=0 and a subspace where h11h22−h212< 0.
In the latter subspace the spatially observable metric dσ2

becomes sign-alternating so that the space-time metric has
the signature (+−+−) (this case is outside the initial statement
of General Relativity).

1.2.4: g00> 0, h11> 0, h11h22−h212> 0, h6 0. This
space is built on a particular case of kind 1.1.2 where h=0
and a subspace where h< 0. At h< 0 we have the spatial
metric dσ2 sign-alternating so that the space-time metric has
the signature (+−−+) (this case is outside the initial statement
of General Relativity).

1.3.1: g00 ≷ 0, h11> 0, h11h22−h212> 0, h> 0. Here
we have the usual space-time area (g00> 0) with the signat-
ure (+−−−), and a sign-definite space-time (g00< 0) where
the signature is (−−−−). There are no intersections of the

areas in the common space-time; they exist severally.
1.3.2: g00> 0, h11 ≷ 0, h11h22−h212> 0, h> 0. Here

we have a common space built on two separated areas where
(+−−−) (usual space-time) and a subspace where (++−−).
The areas have no intersections.

1.3.3: g00> 0, h11> 0, h11h22−h212 ≷ 0, h> 0. This is
a common space built on the usual space-time and a particular
space-time of kind 1.2.3, where the signature is (+−+−). The
areas have no intersections.

1.3.4: g00> 0, h11> 0, h11h22−h212> 0, h≷ 0. This is
a common space built on the usual space-time and a particular
space-time of kind 1.2.4, where the signature is (+−−+). The
areas have no intersections.

2.1.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
is a complex Riemannian space with a complex metric dσ2,
permitting collapse.

2.1.2: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits collapse, and purely spatial isotropic directions.

2.1.3: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits complete degeneracy and collapse. At g00=0
and h=0, we have a collapsed zero-space.

2.1.4: g00> 0, h11> 0, h11h22−h212> 0, h> 0. Here
we have a complex Riemannian space permitting complete
degeneracy.

2.1.5: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
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h11=0, we have h212=0: a partial degeneration of the spat-
ially observable metric dσ2.

2.1.6: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits the spatially observable metric dσ2 to comple-
tely degenerate: h=0.

2.2.1: g006 0, h116 0, h11h22−h212> 0, h> 0. At
g00=0 and h11=0, we have a particular space-time of kind
2.1.1. At g00< 0, h11< 0 we have a space with the signature
(−−−−) where time is like a spatial coordinate (this case is
outside the initial statement of General Relativity).

2.2.2: g006 0, h11> 0, h11h22−h2126 0, h> 0. At
g00=0 and h11h22−h212=0, we have a particular space-
time of kind 2.1.2. At g00< 0 and h11h22−h212< 0, we
have a space with the signature (−+−+) (it is outside the
initial statement of General Relativity).

2.2.3: g006 0, h11> 0, h11h22−h212> 0, h6 0. At
g00=0 and h=0, we have a particular space-time of kind
2.1.3. At g00< 0 and h11h22−h212< 0, we have a space-time
with the signature (−−−+) (it is outside the initial statement
of General Relativity).

2.2.4: g00> 0, h116 0, h11h22−h2126 0, h> 0. At
h11=0 and h11h22−h212=0, we have a particular space-
time of kind 2.1.5. At h11< 0 and h11h22−h212< 0, we
have a space-time with the signature (++−+) (outside the
initial statement of General Relativity).

2.2.5: g00> 0, h116 0, h11h22−h212> 0, h6 0. At
h11=0 and h=0, we have a particular space-time of kind
2.1.4. At h11< 0 and h< 0, a space-time with the signature
(+−−+) (outside the initial statement of General Relativity).

2.2.6: g00> 0, h11> 0, h11h22−h2126 0, h6 0. At
h11h22−h212=0 and h=0, we have a particular space-
time of kind 2.1.6. At h11h22−h212< 0 and h< 0, we have
a space-time with the signature (+−++) (outside the initial
statement of General Relativity).

2.3.1: g00 ≷ 0, h11 ≷ 0, h11h22−h212> 0, h> 0. This
is a space built on two areas. At g00> 0 and h11> 0, we
have the usual space-time. At g00< 0 and h11< 0, we have
a particular space-time of kind 2.2.1. The areas have no
intersections: the common space is actually built on non-
intersecting areas.

2.3.2: g00 ≷ 0, h11> 0, h11h22−h212 ≷ 0, h> 0. This
space is built on two areas. At g00>0 and h11h22−h212>0, we
have the usual space-time. At g00< 0 and h11h22−h212< 0,
we have a particular space-time of kind 2.2.2. The areas,
building a common space, have no intersections.

2.3.3: g00 ≷ 0, h11> 0, h11h22−h212> 0, h≷ 0. This
space is built on two areas. At g00> 0 and h11> 0, we have
the usual space-time. At g00< 0 and h11< 0, a particular
space-time of kind 2.2.3. The areas, building a common
space, have no intersections.

2.3.4: g00> 0, h11 ≷ 0, h11h22−h212> 0, h≷ 0. This
space is built on two areas. At h11> 0 and h> 0, we have the
usual space-time. At h11< 0 and h< 0, a particular space-
time of kind 2.2.4. The areas, building a common space, have

no intersections.
2.3.5: g00> 0, h11 ≷ 0, h11h22−h212 ≷ 0, h> 0. This

space is built on two areas. At h11>0 and h11h22−h212>0, we
have the usual space-time. At h11< 0 and h11h22−h212< 0,
a particular space-time of kind 2.2.5. The areas, building a
common space, have no intersections.

2.3.6: g00> 0, h11> 0, h11h22−h212 ≷ 0, h≷ 0. This
space is built on two areas. At h11h22−h212> 0 and h> 0,
we have the usual space-time. At h11h22−h212< 0 and h< 0,
a particular space-time of kind 2.2.6. The areas, building a
common space, have no intersections.

3.1.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. This
space permits complete degeneracy. At h11> 0, h11h22−
−h212> 0, h> 0, we have the usual space-time. At h11=0,
h11h22−h212=0, h=0, we have a particular case of a zero-
space.

3.1.2: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11h22−h212> 0, h> 0, we have the usual space-
time. At g00=0, h11h22−h212=0, h=0, we have a partic-
ular case of a collapsed zero-space.

3.1.3: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11>0, h>0, we have the usual space-time. At
g00=0, h11=0, h=0, we have a collapsed zero-space,
derived from a complex Riemannian space.

3.1.4: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11> 0, h11h22−h212> 0, we have the usual space-
time. At g00=0, h11=0, h11h22−h212=0, we have the
usual space-time in a collapsed state, while there are permit-
ted purely spatial isotropic directions

√
h11dx

1.
3.2.1: g00> 0, h116 0, h11h22−h2126 0, h6 0. At

h11=0, h11h22−h212=0 and h=0, we have a particular
space-time of kind 3.1.1. At h11< 0, h11h22−h212< 0 and
h< 0, we have a space-time with the signature (++++)

(outside the initial statement of General Relativity).
3.2.2: g006 0, h11> 0, h11h22−h2126 0, h6 0. At

g00=0, h11h22−h212=0 and h=0, we have a particular
space-time of kind 3.1.2. At h11< 0, h11h22−h212< 0 and
h< 0, we have a space-time with the signature (−−++)

(outside the initial statement of General Relativity).
3.2.3: g006 0, h116 0, h11h22−h212> 0, h6 0. At

g00=0, h11=0 and h=0, we have a particular space-time
of kind 3.1.3. At h11< 0, h11h22−h212< 0 and h< 0, we
have a space-time with the signature (−+−+) (outside the
initial statement of General Relativity).

3.2.4: g006 0, h116 0, h11h22−h2126 0, h> 0. At
g00=0, h11=0 and h11h22−h212=0, we have a particular
space-time of kind 3.1.4. At g00< 0, h11< 0 and h11h22−
−h212< 0, we have a space-time with the signature (−++−)

(outside the initial statement of General Relativity).
3.3.1: g00> 0, h11 ≷ 0, h11h22−h212 ≷ 0, h≷ 0. This is

a space built on two areas. At h11> 0, h11h22−h212> 0
and h11> 0, we have the usual space-time. At h11< 0,
h11h22−h212< 0 and h11< 0, we have a particular space-
time of kind 3.2.1. The areas have no intersections: the
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common space is actually built on non-intersecting areas.
3.3.2: g00 ≷ 0, h11> 0, h11h22−h212 ≷ 0, h≷ 0. This

space is built on two areas. At g00> 0, h11h22−h212> 0 and
h> 0, we have the usual space-time. At g00< 0, h11h22−
−h212< 0 and h< 0, we have a particular space-time of
kind 3.2.2. The areas, building a common space, have no
intersections.

3.3.3: g00 ≷ 0, h11 ≷ 0, h11h22−h212> 0, h≷ 0. This
space is built on two areas. At g00> 0, h11> 0 and h> 0,
we have the usual space-time. At g00< 0, h11< 0 and h< 0,
we have a particular space-time of kind 3.2.3. The areas,
building a common space, have no intersections.

3.3.4: g00 ≷ 0, h11 ≷ 0, h11h22−h212 ≷ 0, h> 0. This
space is built on two areas. At g00> 0, h11> 0 and h11h22−
−h212> 0, we have the usual space-time. At g00< 0, h11< 0
and h11h22−h212< 0, a particular space-time of kind 3.2.4.
The areas, building a common space, have no intersections.

4.4.1: g00> 0, h11> 0, h11h22−h212> 0, h> 0. At
g00> 0, h11> 0, h11h22−h212> 0 and h> 0, we have the
usual space-time. At g00=0, h11=0, h11h22−h212=0 and
h=0, we have a particular case of collapsed zero-space.

4.4.2: g006 0, h116 0, h11h22−h2126 0, h6 0. At
g00=0, h11=0, h11h22−h212=0 and h=0, we have a
particular case of space-time of kind 4.4.1. At g00<0, h11<0,
h11h22−h212< 0 and h< 0, we have a space-time with the
signature (−−−−) (outside the initial statement of General
Relativity). The areas have no intersections.

4.4.3: g00 ≷ 0, h11 ≷ 0, h11h22−h212 ≷ 0, h≷ 0. At
g00> 0, h11> 0, h11h22−h212> 0 and h> 0, we have the
usual space-time. At g00< 0, h11< 0, h11h22−h212< 0 and
h< 0, we have a space-time with the signature (−−−−)

(outside the initial statement of General Relativity). The areas
have no intersections.
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Nonlocal Effects of Chemical Substances on the Brain
Produced through Quantum Entanglement

Huping Hu and Maoxin Wu
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E-mail: hupinghu@quantumbrain.org

Photons are intrinsically quantum objects and natural long-distance carriers of
information. Since brain functions involve information and many experiments have
shown that quantum entanglement is physically real, we have contemplated from the
perspective of our recent hypothesis on the possibility of entangling the quantum
entities inside the brain with those in an external chemical substance and carried out
experiments toward that end. Here we report that applying magnetic pulses to the brain
when an anesthetic or pain medication was placed in between caused the brain to feel
the effect of the said substance for several hours after the treatment as if the test subject
had actually inhaled the same. The said effect is consistently reproducible. We further
found that drinking water exposed to magnetic pulses, laser light or microwave when a
chemical substance was placed in between also causes consistently reproducible brain
effects in various degrees. Further, through additional experiments we have verified
that the said brain effect is the consequence of quantum entanglement between quantum
entities inside the brain and those of the chemical substance under study, induced by
the photons of the magnetic pulses or applied lights. We suggest that the said quantum
entities inside the brain are nuclear and/or electron spins and discuss the profound
implications of these results.

1 Introduction

Quantum entanglement is ubiquitous in the microscopic
world and manifests itself macroscopically under some circ-
umstances [1, 3, 4]. Further, quantum spins of electrons and
photons have now been successfully entangled in various
ways for the purposes of quantum computation, memory and
communication [5, 6]. In the field of neuroscience, we have
recently suggested that nuclear and/or electronic spins inside
the brain may play important roles in certain aspects of brain
functions such as perception [2]. Arguably, we could test our
hypothesis by first attempting to entangle these spins with
those of a chemical substance such as a general anaesthetic
and then observing the resulting brain effects such an attempt
may produce, if any. Indeed, instead of armchair debate on
how the suggested experiments might not work, we just
went ahead and carried out the experiments over a period
of more than a year. Here, we report our results. We point
out from the outset that although it is commonly believed
that quantum entanglement alone cannot be used to transmit
classical information, the function of the brain may not be
totally based on classical information [2].

2 Methods, test subjects and materials

Figure 1A (see end sheet) illustrates a typical setup for the
first set of experiments. It includes a magnetic coil with an
estimated 20 W output placed at one inch above the right
side of a test subject’s forehead, a small flat glass-container

inserted between the magnetic coil and the forehead, and an
audio system with adjustable power output and frequency
spectrum controls connected to the magnetic coil. When
music is played on the audio system, the said magnetic
coil produces magnetic pulses with frequencies in the range
of 5 Hz to 10 kHz. Experiments were conducted with said
container being filled with different general anaesthetics,
medications, or nothing/water as control, and the test subject
being exposed to the magnetic pulses for 10 min and not
being told the content in the container or details of the
experiments.

The indicators used to measure the brain effect of the
treatment were the first-person experiences of any unusual
sensations such as numbness, drowsiness and/or euphoria
which the subject felt after the treatment and the relative
degrees of these unusual sensations on a scale of 10 with
0= nothing, 1=weak, 2= light moderate, 3=moderate, 4=
light strong, 5= strong, 6= heavily strong, 7= very strong,
8= intensely strong, 9= extremely strong and 10= intoler-
able. The durations of the unusual sensations and other symp-
toms after the treatment, such as nausea or headache, were
also recorded.

Figure 1B illustrates a typical setup for the second set of
experiments. It includes the magnetic coil connected to the
audio system, a large flat glass-container filled with 200 ml
fresh tap water and the small flat glass-container inserted
between the magnetic coil and larger glass-container. Figure
1C illustrates a typical setup for the second set of experiments
when a red laser with a 50 mW output and wavelengths of
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635 nm–675 nm was used. All Experiments were conducted
in the dark with the small flat glass-container being filled with
different general anaesthetics, medications, or nothing/water
as control, the large glass-container being filled with 200 ml
of fresh tap water and exposed to the magnetic pulses or
laser light for 30 min and the test subject consuming the
treated tap water but not being told the content in the small
container or details of the experiments. The indicators used
for measuring the brain effects were the same as those used in
the first set of experiments. Experiments were also carried out
respectively with a 1200 W microwave oven and a flashlight
powered by two size-D batteries. When the microwave oven
was used, a glass tube containing 20 ml of fresh tap water
was submerged into a larger glass tube containing 50 ml of
general anaesthetic and exposed to microwave radiation for
5 sec. The said procedure was repeated numerous times, to
collect a total of 200 ml of treated tap water for consumption.
When the flashlight was used, the magnetic coil shown in
Figure 1B was replaced with the flashlight.

To verify that the brain effects experienced by the test
subjects were the consequences of quantum entanglement
between quantum entities inside the brain and those in the
chemical substances under study, the following additional
experiments were carried out. Figure 1D shows a typical
setup of the entanglement verification experiments. The setup
is the reverse of the setup shown in Figure 1C. In addition,
the small flat glass-container with a chemical substance or
nothing/water as control was positioned with an angle to
the incoming laser light to prevent reflected laser light from
re-entering the large glass-container.

In the first set of entanglement verification experiments,
the laser light from the red laser first passed through the
large glass-container with 200 ml of fresh tap water and then
through the small flat glass-container filled with a chemical
substance or nothing/water as control located about 300 cm
away. After 30 min of exposure to the laser light, a test
subject consumed the exposed tap water without being told
the content in the small container or details of the experiments
and reported the brain effects felt for the next several hours.

In the second set of entanglement verification experi-
ments, 400 ml of fresh tap water in a glass-container was
first exposed to the radiation of the magnetic coil for 30 min
or that of the 1500W microwave oven for 2 min. Then the
test subject immediately consumed one-half of the water so
exposed. After 30 min from the time of consumption the
other half was exposed to magnetic pulses or laser light for
30 minutes using the setup shown in Figure 1B and Figure 1D
respectively. The test subject reported, without being told the
content in the small container or details of the experiments,
the brain effects felt for the whole period from the time of
consumption to several hours after the exposure had stopped.
In the third set of entanglement verification experiments, one-
half of 400 ml Poland Spring water with a shelve time of at
least three months was immediately consumed by the test

subject. After 30 min from the time of consumption the other
half was exposed to the magnetic pulses or laser light for
30 min using the setup shown in Figure 1B and Figure 1D
respectively. Test subject reported, without being told the
content in the small container or details of the experiments,
the brain effects felt for the whole period from the time of
consumption to several hours after the exposure had stopped.

Fig. 1: Schematic view of typical experimental setups
used in our study

In the fourth set of entanglement verification experi-
ments, the test subject would take one-half of the 400 ml
fresh tap water exposed to microwave for 2 min or magnetic
pulses for 30 min to his/her workplace located more than 50
miles away (in one case to Beijing located more than 6,500
miles away) and consumed the same at the workplace at a
specified time. After 30 min from the time of consumption,
the other half was exposed to magnetic pulses or laser light
for 30 min at the original location using the setup shown
in Figure 1B and Figure 1D respectively. The test subject
reported the brain effects felt without being told the content
in the small container or details of the experiments for the
whole period from the time of consumption to several hours
after the exposure had stopped.

With respect to the test subjects, Subject A and C are
respectively the first author and co-author of this paper and
Subject B and C are respectively the father and mother of
the first author. All four test subjects voluntarily consented
to the proposed experiments. To ensure safety, all initial ex-
periments were conducted on Subject A by himself. Further,
all general anaesthetics used in the study were properly
obtained for research purposes and all medications were
either leftover items originally prescribed to Subject C’s late
mother or items available over the counter. To achieve proper
control, repeating experiments on Subject A were carried out
by either Subject B or C in blind settings, that is, he was
not told whether or what general anaesthetic or medication
were applied before the end of the experiments. Further, all
experiments on Subject B, C and D were also carried out in
blind settings, that is, these test subjects were not told about
the details of the experiments on them or whether or what
general anaesthetic or medication were applied.
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1st Set: Magn. Coil 2nd Set: Magn. Coil Red laser Flashlight Microwave

Test ] Effect Test ] Effect Test ] Effect Test ] Effect Test ] Effect

Anaesthetics

Subject A 13 yes 16 yes 22 yes 8 yes 3 yes

Subject B 2 yes 2 yes 3 yes 0 n/a 1 yes

Subject C 2 yes 6 yes 6 yes 0 n/a 1 yes

Subject D 2 yes 1 yes 5 yes 0 n/a 0 n/a

Medications

Subject A 17 yes 14 yes 16 yes 1 yes 3 yes

Subject B 1 yes 1 yes 3 yes 0 n/a 2 yes

Subject C 3 yes 1 yes 4 yes 0 n/a 1 yes

Subject D 0 n/a 0 n/a 3 yes 0 n/a 1 yes

Control

Subject A 12 no 5 no 11 no

Subject B 3 no 0 n/a 1 no

Subject C 1 no 2 no 4 no

Subject D 0 n/a 0 n/a 1 no

Table 1: Summary of results obtained from the first two sets of experiments

3 Results

Table 1 summarizes the results obtained from the first two
sets of experiments described above and Table 2 details the
summary into each general anaesthetic studied plus morphine
in the case of medications. In the control studies for the first
set of experiments, all test subjects did not feel anything
unusual from the exposure to magnetic pulses except vague
or weak local sensation near the site of exposure. In contrast,
all general anaesthetics studied produced clear and complete-
ly reproducible brain effects in various degrees and durations
as if the test subjects had actually inhaled the same. These
brain effects were first localized near the site of treatment
and then spread over the whole brain and faded away within
several hours. But residual brain effects (hangover) lingered
on for more than 12 hours in most cases. Among the general
anaesthetics studied, chloroform and deuterated chloroform
(chloroform D) produced the most pronounced and potent
brain effects in strength and duration followed by isoflorance
and diethyl ether. Tribromoethanol dissolved in water (1:50
by weight) and ethanol also produced noticeable effects but
they are not summarized in the table.

As also shown in Table 1, while the test subjects did not
feel anything unusual from consuming the tap water treated
in the control experiments with magnetic pulses or laser
light, all the general anaesthetics studied produced clear and
completely reproducible brain effects in various degrees and
durations respectively similar to the observations in the first
set of experiments. These effects were over the whole brain,
intensified within the first half hour after the test subjects
consumed the treated water and then faded away within
the next few hours. But residual brain effects lingered on

for more than 12 hours as in the first set of experiments.
Among the general anaesthetics studied, again chloroform
and deuterated chloroform produced the most pronounced
and potent effect in strength and duration followed by iso-
florance and diethyl ether as illustrated in Figure 2. Tribromo-
ethanol dissolved in water (1:50 by weight) and ethanol also
produced noticeable effects but they are not summarized in
the table.

Fig. 2: Illustration of relative strengths of brain effects
of several anesthetics and morphine

In addition, available results with flashlight and micro-
wave as photon sources are also summarized in Table 1 re-
spectively. In both cases general anaesthetics studied produc-
ed clear and reproducible brain effects. But the brain effects
produced with microwave exposure were much stronger than
those by flashlight.

Table 1 also summarizes results obtained with several
medications including morphine, fentanyl, oxycodone, nico-
tine and caffeine in first and second sets of experiments. We
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found that they all produced clear and completely reproduc-
ible brain effects such as euphoria or hastened alertness in
various degrees and durations respectively. For example, in
the case of morphine in the first set of experiments the
brain effect was first localized near the site of treatment
and then spread over the whole brain and faded away within
several hours. In the case of morphine in the second set of
experiments the brain effect was over the whole brain, first
intensified within the first half hour after the test subjects
consumed the treated water and then faded away within the
next a few hours as illustrated in Figure 3.

Fig. 3: Illustration of dynamics of brain effects pro-
duced by two types of water exposed to morphine

Comparative experiments were also done on Subject A
and C with chloroform and diethyl ether by asking them to
inhale the vapours of chloroform and diethyl respectively
for 5 sec and compare the brain effect felt with those in the
two sets of experiments described above. The brain effects
induced in these comparative experiments were qualitatively
similar to those produced in various experiments described
above when chloroform and diethyl ether were respectively
used for the exposure to photons of various sources.

Furthermore, through additional experiments we also
made the following preliminary observations. First, the brain
effects in the first set of experiments could not be induced
by a permanent magnet in the place of the magnetic coil.
Nor could these effects be produced by a third magnetic
coil placed directly above the head of the test subject and
connected to a second magnetic coil through an amplifier
with the second magnetic coil receiving magnetic pulses from
a first magnetic coil after the said magnetic pulses first passed
through the anaesthetic sample. That is, the brain effects
could not be transmitted through an electric wire. Second, in
the second set of experiments the water exposed to magnetic
pulses, laser light, microwave and flashlight when a chemical
substance was present tasted about the same as that before
the exposure. Third, heating tap water exposed to magnetic
pulses or laser light in the presence of a chemical substance
diminished the brain effect of the said substance. Fourth,

when distilled water was used instead of fresh tap water the
observed brain effects were markedly reduced as illustrated
in Figure 6 in the case of morphine.

Table 3 summarizes the results obtained with the entang-
lement verification experiments carried out so far with chlor-
oform, deuterated chloroform, diethyl ether and morphine.
With all four sets of experiments, clear and consistently re-
producible brain effects were experienced by the test subjects
above and beyond what were noticeable in the control por-
tions of the experiments under blind settings. More specific-
ally, in the first set of entanglement verification experiments,
the brain effects experienced by the test subjects were the
same as those in which the setup shown in Figure 1C was
used. In the second, third and fourth sets of these experi-
ments, all test subjects did not feel anything unusual in the
first half hour after consuming the first half of the water either
exposed to microwave/magnetic pulses or just sit on the shelf
for more than 3 months. But within minutes after the second
half of the same water was exposed to the laser light or
magnetic pulses in the presence of general anaesthetics, the
test subjects would experience clear and completely repro-
ducible brain effect of various intensities as if they have
actually inhaled the general anaesthetic used in the exposure
of the second half of the water. The said brain effects were
over the whole brain, first intensified within minutes after
the exposure began and persisted for the duration of the said
exposure and for the next several hours after the exposure
had stopped. Further, all other conditions being the same,
magnetic coil produced more intense brain effects than the
red laser. Furthermore, all other conditions being the same,
the water exposed to microwave or magnetic pulses before
consumption produced more intense brain effects than water
just sitting on the shelve for more than 3 months before
consumption.

4 Discussion

With respect to the second, third and fourth sets of entangle-
ment verification experiments, the only possible explanation
for the brain effects experienced by the test subjects are
that they were the consequences of quantum entanglement
because the water consumed by the test subjects was never
directly exposed to the magnetic pulses or the laser lights in
the presence of the chemical substances. There are other
indications that quantum entanglement was the cause of
the brain effects experienced by the test subjects. First, the
brain effect inducing means could not be transmitted through
an electrical wire as already reported above. Second, the
said inducing means did not depend on the wavelengths of
the photons generated. Thus, mere interactions among the
photons, a chemical substance and water will induce brain
effects after a test subject consumes the water so interacted.

While designing and conducting the herein described
experiments, the first author became aware of the claims
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1st Set: Magn. Coil 2nd Set: Magn. Coil Red laser Flashlight Microwave

Test ] Effect Test ] Effect Test ] Effect Test ] Effect Test ] Effect

Chloroform

Subject A 2 yes 2 yes 5 yes 2 yes 3 yes

Subject B 0 n/a 0 n/a 1 yes 0 n/a 1 yes

Subject C 1 yes 2 yes 3 yes 0 n/a 1 yes

Subject D 1 yes 0 n/a 2 yes 0 n/a 0 n/a

Chloroform D

Subject A 3 yes 2 yes 2 yes 1 yes

Subject B 1 yes 0 n/a 1 yes 0 n/a

Subject C 0 n/a 0 n/a 1 yes 0 n/a

Subject D 0 n/a 0 n/s 0 n/a 0 n/a

Isoflurance

Subject A 3 yes 6 yes 5 yes 4 yes

Subject B 0 n/a 1 yes 0 n/a 0 0

Subject C 0 n/a 1 yes 1 n/a 0 0

Subject D 1 yes 1 yes 1 n/a 0 0

Diethyl Ether

Subject A 5 yes 6 yes 10 yes 1 yes

Subject B 1 yes 1 yes 1 yes 0 n/a

Subject C 1 yes 3 yes 1 yes 0 n/a

Subject D 0 n/a 0 n/a 2 yes 0 n/a

Morphine

Subject A 5 yes 7 yes 5 yes

Subject B 0 n/a 1 yes 2 yes

Subject C 0 n/a 1 yes 2 yes

Subject D 0 n/a 0 n/a 2 yes

Other Medications

Subject A 7 yes 4 yes

Subject B 1 yes 0 n/a

Subject C 3 yes 0 n/a

Subject D 0 n/a 0 n/a

Table 2: Breakdown of the summary in Table 1 into each general anesthetic studied plus morphine in the case
of medications

First Set Second Set Third Set Fourth Set

Test ] Effect Test ] Effect Test ] Effect Test ] Effect

Subject A 8 yes 8 yes 3 yes 3 yes

Subject B 2 yes 3 yes 2 yes 1 yes

Subject C 3 yes 2 yes 1 yes 1 yes

Control

Subject A 2 no 8 no 3 no 3 no

Subject B 0 n/a 3 no 2 no 1 no

Subject C 1 no 2 no 1 no 1 no

Table 3: Summary of the results obtained with the entanglement verification ex-
periments carried out so far with chloroform, deuterated chloroform, diethyl ether
and morphine

24 H. Hu, M. Wu. Nonlocal Effects of Chemical Substances on the Brain Produced through Quantum Entanglement



July, 2006 PROGRESS IN PHYSICS Volume 3

related to the so called “water memory” [7]. However, since
these claims were said to be non-reproducible, we do not
wish to discuss them further here except to say that we
currently do not subscribe to any of the existing views on the
subject and readers are encouraged to read our recent online
paper on quantum entanglement [8].

We would like to point out that although the indicators
used to measure the brain effects were qualitative and sub-
jective, they reflect the first-person experiences of the qual-
ities, intensities and durations of these effects by the test
subjects since their brains were directly used as experimental
probes. Further, these effects are completely reproducible
under blind experimental settings so that possible placebo
effects were excluded. However, as with many other im-
portant new results, replications by others are the key to
independently confirm our results reported here. Our experi-
ments may appear simple and even “primitive” but the results
and implications are profound.

We first chose general anaesthetics in our experiments
because they are among the most powerful brain-influencing
substances. Our expectation was that, if nuclear and/or elec-
tronic spins inside the brain are involved in brain functions
such as perception as recently hypothesized by us, the brain
may be able to sense the effect of an external anaesthetic
sample through quantum entanglement between these spins
inside the brain and those of the said anaesthetic sample
induced by the photons of the magnetic pulses by first inter-
acting with the nuclear and/or electronic spins inside the
said anaesthetic sample, thus carrying quantum information
about the anaesthetic molecules, and then interacting with
the nuclear and/or electronic spins inside the brain.

We suggest here that the said quantum entities inside
the brains are likely nuclear and/or electronic spins for the
reasons discussed below. Neural membranes and proteins
contain vast numbers of nuclear spins such as 1H, 13C, 31P
and 15N. These nuclear spins and unpaired electronic spins
are the natural targets of interaction with the photons of the
magnetic pulses or other sources. These spins form complex
intra- and inter-molecular networks through various intra-
molecular J- and dipolar couplings and both short- and long-
range intermolecular dipolar couplings. Further, nuclear spins
have relatively long relaxation times after excitations [9].
Thus, when a nematic liquid crystal is irradiated with multi-
frequency pulse magnetic fields, its 1H spins can form long-
lived intra-molecular quantum coherence with entanglement
for information storage [10]. Long-lived (0.05 ms) entangle-
ment of two macroscopic electron spin ensembles at room
temperature has also been achieved [3]. Furthermore, spin
is a fundamental quantum process with intrinsic connection
to the structure of space-time [11] and was shown to be
responsible for the quantum effects in both Hestenes and
Bohmian quantum mechanics [12, 13]. Thus, we have re-
cently suggested that these spins could be involved in brain
functions at a more fundamental level [2].

5 Conclusions

In light of the results from the entanglement verification
experiments, we conclude that the brain effects experienced
by the test subjects were the consequences of quantum en-
tanglement between quantum entities inside the brains and
those of the chemical substances under study induced by
the entangling photons of the magnetic pulses or applied
lights. More specifically, the results obtained in the first
set of experiments can be interpreted as the consequence
of quantum entanglement between the quantum entities in
the brain and those in the chemical substances induced by
the photons of the magnetic pulses. Similarly, the results ob-
tained from the second sets of experiments can be explained
as quantum entanglement between the quantum entities in
the chemical substance and those in the water induced by
the photons of the magnetic pulses, laser light, microwave or
flashlight and the subsequent physical transport of the water
entangled with the said chemical substance to the brain after
consumption by the test subject which, in turn, produced
the observed brain effects through the entanglement of the
quantum entities inside the brain with those in the consumed
water.

Several important conclusions and implications can be
drawn from our findings. First, biologically and chemically
meaningful information can be communicated via quantum
entanglement from one place to another by photons and
possibly other quantum objects such as electrons, atoms
and even molecules. Second, both classical and quantum
information can be transmitted between locations of arbitrary
distances through quantum entanglement alone. Third, in-
stantaneous signalling is physically real which implies that
Einstein’s theory of relativity is in real (not just superficial)
conflict with quantum theory. Fourth, brain processes such
as perception and other biological processes likely involve
quantum information and nuclear and/or electronic spins
may play important roles in these processes. Further, our
findings provide important new insights into the essence and
implications of the mysterious quantum entanglement and
clues for solving the long-standing measurement problem in
quantum theory including the roles of the observer and/or
consciousness. Very importantly, our findings also provide a
unified scientific framework for explaining many paranormal
and/or anomalous effects such as telepathy, telekinesis and
homeopathy, if they do indeed exist, thus transforming these
paranormal and anomalous effects into the domains of con-
ventional sciences.

Finally, with respect to applications, our findings enable
various quantum entanglement technologies be developed.
Some of these technologies can be used to deliver the thera-
peutic effects of many drugs to various biological systems
such as human bodies without physically administrating the
same to the said systems. This will dramatically reduce waste
and increase productivity because the same drugs can be

H. Hu, M. Wu. Nonlocal Effects of Chemical Substances on the Brain Produced through Quantum Entanglement 25



Volume 3 PROGRESS IN PHYSICS July, 2006

repeatedly used to deliver their therapeutic effects to the
mass on site or from remote locations of arbitrary distances.
Further, many substances of nutritional and recreational
values can be repeatedly administrated to desired biological
systems such as human bodies through the said technologies
either on site or from remote locations. Other such technolog-
ies can be used for instantaneous communications between
remote locations of arbitrary distances in various ways. Po-
tentially, these technologies can also be used to entangle two
or more human minds for legitimate and beneficial purposes.
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In a review, W. A. Rodrigues, Jr., wrote that we confused vector and affine spaces, and
that we misunderstood the concept of curvature. We reply to those comments, and
point out, that in our paper there was an explicit expression for the curvature of a
connection. Therefore we were quite aware — contrary to what asserted the reviewer
— that the curvature of a manifold has nothing to do with a choice of a frame field
which, of course, even in a flat manifold can be position dependent.

In 2005 we published a paper entitled The Extended Relativity
Theory in Clifford Spaces [1] which was reviewed by W.A.
Rodrigues, Jr. [2]. A good review, even if critical, is always
welcome, provided that the criticism is correct and relevant.
Unfortunately the reviewer produced some statements which
need a reply. He wrote:

“Two kinds of Clifford spaces are introduced in their
paper, flat and curved. According to their presentation,
which is far from rigorous by any mathematical stand-
ard, we learn that flat Clifford space is a vector space,
indeed the vector space of a Clifford algebra of real
vector space RD equipped with a metric of signature
P +Q=D. As such the authors state that the coordi-
nates of Clifford space are noncommutative Clifford-
valued quantities. It is quite obvious for a mathem-
atician that the authors confuse a vector space with
an affine space. This is clear when we learn their
definition of a curved Clifford space, which is a 16-
dimensional manifold where the tangent vectors are
position dependent and at any point are generators of
a Clifford algebra CP,Q. The authors, as is the case
of many physicists, seem not to be aware that the
curvature of a manifold has to do with the curvature of
a connection that we may define on such a manifold,
and has nothing to do with the fact that we may choose
even in flat manifold a section of the frame bundle
consisting of vectors that depend on the coordinates
of the manifold points in a given chart of the maximal
atlas of the manifold.”

When introducing flat C-space we just said that the
Clifford-valued polyvector denotes the position of a point
in a manifold, called Clifford space, or C-space. It is a com-
mon practice to consider coordinates, e. g., four coordinates
xμ, μ=0, 1, 2, 3, of a point P of a flat spacetime as com-
ponents of a radius vector from a chosen point P0 (“the
origin”) to P . If we did not provide at this point a several
pages course on vector and affine spaces, this by no means

implies that we were not aware of a distinction of the two
kinds of spaces. That position in flat spacetime is described
by radius vector is so common that we do not need to provide
any further explanation in this respect. Our paper is about
physics and not mathematics. We just use the well established
mathematics. Of course a spacetime manifold (including a
flat one) is not the same space as a vector space, but, choosing
an “origin” in spacetime, to every point there corresponds a
vector, so that there is a one-to-one correspondence between
the two spaces. This informal description is true, regardless
of the fact that there exist corresponding rigorous, formal,
mathematical descriptions (to be found in many textbooks
on physics and mathematics).

The correspondence between points and vectors does no
longer hold in a curved space, at least not according to the
standard wisdom practiced in the textbooks on differential
geometry. However, there exists an alternative approach
adopted by Hestenes and Sobcyk in their book [3], according
to which even the points of a curved space are described by
vectors. Moreover, there is yet another possibility, described
in refs. [4, 5], which employs vector fields aμ(x)γμ in a
curved space M, where γμ, μ=0, 1, 2, . . . , n− 1, are the
coordinate basis vector fields. At every point P the vectors
γμ|P span a tangent space TPM which is a vector space.

A particular case can be such that in a given coordinate
system∗ we have aμ(x) = xμ. Then at every point P ∈ M,
the object x(P) = xμ(P)γμ(P) is a tangent vector. So we
have one-to-one correspondence between the points P of M
and the tangent vectors x(P) = xμ(P)γμ(P), shortly xμγμ.
The set of objects x(P) for all point P in a regionR ⊂Mwe
call the coordinate vector field [4]. So although the manifold
is curved, every point in it can be described by a tangent

∗“Coordinate system” or simply “coordinates” is an abbreviation for
“the coordinates of the manifold points in a given chart of the maximal atlas
of the manifold”.
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vector at that point, the components of the tangent vector
being equal to the coordinates of that point.∗ Those tangent
vectors xμ(P)γμ(P) are now “house numbers” assigned to
a point P . We warn the reader not to confuse the tangent
vector x(P) at a point P with the vector pointing from P0 (a
coordinate origin) to a point P , a concept which is ill defined
in a curved manifold.

Analogous holds for Clifford space C. It is a manifold
whose points E can be physically interpreted as extended
“events”. One possible way to describe those points is by
means of a polyvector field A(X)=AM (X)γM (X)=
=XMγM , where γM |E , M =1, 2, . . . , 2n, are tangent poly-
vectors that at every point E ∈ C span a Clifford algebra. At
a given point E ∈ C it may hold [6, 5]

γM = γμ1 ∧ γμ2 ∧ . . . ∧ γμr , r = 0, 1, 2, . . . , n (1)

i. e., γM are defined as wedge product of vectors γμ , μ=0,
1, 2, . . . , n−1. The latter property cannot hold in a general
curved Clifford space [6, 5]. In refs. [7, 1] we considered a
particular subclass of curvedC-spaces, for which it does hold.

If we choose a particular point E0 ∈C, to which we assign
coordinates XM (E0)= 0, then we have a correspondence
between points E ∈ C and Clifford numbers XM (E) γM (E).
In this sense one has to understand the sentence of ref. [1]:

“An element of C-space is a Clifford number, called
also polyvector or Clifford aggregate which we now
write in the formX = sγ+xμγμ+x

μνγμ∧γν+. . . ”

Therefore, a more correct formulation would be, e. g.,

“An element of C-space is an extended event E ,
to which one can assign a Clifford number, called
polyvector, XM (E)γM (E) ≡ XMγM .”

together with an explanation in the sense as given above.
So a rigorous formulation is, not that an element of C-space
is a Clifford number, but that to a point of C-space there
corresponds a Clifford number, and that this holds for all
points within a domain Ω ⊂C corresponding to a given chart
of the maximal atlas of C.

On the one hand we have a 2n-dimensional manifold
C ≡{E} of points (extended events) E , and on the other
hand the 2n-dimensional space {X(E)} of Clifford numbers
X(E)=XM (E) γ (E) for E ∈Ω⊂C. The latter space
{X(E)}, of course, is not a Clifford algebra. It is a subspace
of 2× 2n-dimensional tangent bundle TC of the manifold C.
At every point E ∈ C there is a also another subspace of TC,
namely the 2n-dimensional tangent space TEC, which is a

∗If we change coordinate system, then aμ(x)γμ=xμγμ=
= a′μ(x′)γ′μ(x

′), with a′μ= aν(x)(∂x′μ/∂xν)=xν(∂x′μ/∂xν). In
another coordinate system S′ one can then take another vector field,
such that bμ(x′)=x′μ. Let us stress that bμ(x′)=x′μ is a different
field from a′μ(x′), therefore the reader should not think that we say
x′μ=xν(∂x′μ/∂xν) which is, of course, wrong. What we say is
a′μ(x′)= (∂x′μ/∂xν)aν(x), where, in particular, aν(x)=xν .

Clifford algebra Cn. Since there is a one-to-one correspond-
ence between the spaces {X(E)} and {E}, the space {X(E)}
can be used for description of the space {E}.

It is true that physicists are often sloppy with mathemat-
ical formulations and usage of language, but it is also true that
mathematicians often read physics papers superficially and
see misconceptions, “errors”, erroneous mathematical state-
ments, etc., instead of trying to figure out the true content
behind an informal (and therefore necessarily imprecise) de-
scription, whose emphasis is on physics and not mathematics.

A culmination is when the reviewer writes

“The authors, as is the case of many physicists, seem
not to be aware that curvature. . . has nothing to do
with the fact that we may choose even in flat manifold
a section of the frame bundle consisting of vectors that
depend on coordinates of the manifold points. . . ”

That curvature has nothing to do with coordinate trans-
formations† is clear to everybody who has ever studied the
basis of general relativity. Everyone who has a good faith that
the author(s) of a paper have a minimal level of competence
would interpret a text such as [1]

“In flat C-space the basis polyvectors γM are con-
stant. In a curved C-space this is no longer true. Each
γM is a function of C-space coordinates XM . . . ”

according to

“In flat C-space one can always find coordinates‡ in
which γM are constant. In a curved C-space this is
no longer true. Each γM depends on position in C-
space.” Or equivalently, “Each γM is a function of
the C-space coordinates”.

However, even our formulation as it stands in ref. [1]
makes sense within the context in which we first consider
flat space in which we choose a constant frame field, i. e.,
constant basis polyvectors. We denote the latter polyvectors
as γM . If we then deform§ the flat space into a curved one,
then the same (poly)vector fields γM in general can no longer
be independent of position. In this sense the formulation as
it stands in our paper is quite correct.

We then define a connection on our manifold C, and the
corresponding curvature (see eqs. (77), (78) of ref. [1]). That

†For instance, in flat spacetime one can introduce a curvilinear
coordinate system of coordinates, like the use of polar coordinates in
the plane and spherical coordinates in R3. However, the introduction of
a curvilinear coordinate system does not convert the original flat space into
a curved one. And vice versa, one can introduce a non-Euclidean metric
(non-flat metric) on a two-dim flat surface, for example, like the hyperbolic
Lobachevsky metric of constant negative scalar curvature.

‡We renounce to use here the lengthy formulation provided by the
reviewer. Usage of the term “coordinates” is sufficient, and it actually means
“coordinates of the manifold point in a given chart of the maximal atlas of
the manifold”.

§This is easy to imagine, if we consider a flat surface embedded in
a higher dimensional space, and then deform the surface. In general, we
may deform the surface so that is is curved not only extrinsically, but also
intrinsically.
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the reviewer reproaches us of being ignorant of the fact that
the curvature of a manifold has to do with the curvature of
a connection is therefore completely out of place, to say at
least.

Finally, let us mention that in the review of another paper
[8] the same reviewer ascribed to one of us (M.P) an incorrect
mathematical statement. But I was quite aware of the well
known fact that Clifford algebras associated with vector
spaces of different signatures (p, q), with p+ q=n, are not
all isomorphic (in the sense as stated, e. g., in the book by
Porteous [9]). What I discussed in that paper was something
different. This should be clear from my description, therefore
I did not explicitly warn the reader about the difference
(although I was aware of the danger that at superficial reading
some people might believe me of committing an error).
However, in subsequent ref. [1] we did warn the reader about
the possibility of such a confusion.
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On the Regge-Wheeler Tortoise and the Kruskal-Szekeres Coordinates

Stephen J. Crothers

Queensland, Australia
E-mail: thenarmis@yahoo.com

The Regge-Wheeler tortoise “coordinate” and the the Kruskal-Szekeres “extension”
are built upon a latent set of invalid assumptions. Consequently, they have led to
fallacious conclusions about Einstein’s gravitational field. The persistent unjustified
claims made for the aforesaid alleged coordinates are not sustained by mathematical
rigour. They must therefore be discarded.

1 Introduction

The Regge-Wheeler tortoise coordinate was not conjured up
from thin air. On the contrary, is was obtained a posteriori
from the Droste/Weyl/(Hilbert) [1, 2, 3] (the DW/H) metric
for the static vacuum field; or, more accurately, from Hilbert’s
corruption of the spacetime metric obtained by Johannes
Droste.

The first presentation and misguided use of the Regge-
Wheeler coordinate was made by A. S. Eddington [4] in
1924. Finkelstein [5], years later, in 1958, presented much
the same; since then virtually canonised in the so-called
“Eddington-Finkelstein” coordinates. Kruskal [6], and Sze-
keres [7], in 1960, compounded the errors with additional
errors, all built upon the very same fallacious assumptions,
by adding even more fallacious assumptions. The result has
been a rather incompetent use of mathematics to produce
nonsense on an extraordinary scale.

Orthodox relativists are now so imbued with the miscon-
ceptions that they are, for the most part, no longer capable
of rational thought on the subject. Although the erroneous
assumptions of the orthodox have been previously demon-
strated to be false [8–18] they have consistently and conven-
iently ignored the proofs.

I amplify the erroneous assumptions of the orthodox
relativists in terms of the Regge-Wheeler tortoise, and con-
sequently in the Kruskal-Szekeres phantasmagoria.

2 The orthodox confusion and delusion

Consider the DW/H line-element

ds2=
(
1−

α

r

)
dt2 −

(
1−

α

r

)−1
dr2−

− r2
(
dθ2 + sin2θ dϕ2

)
,

(1)

where α=2m. Droste showed that α<r<∞ is the correct
domain of definition on (1), as did Weyl some time later.
Hilbert however, claimed 0<r<∞. Modern orthodox rela-
tivists claim two intervals, 0<r<α, α<r<∞, and call the
latter the “exterior” Schwarzschild solution and the former

a “black hole”, notwithstanding that (1) with 0<r<∞ was
never proposed by K. Schwarzschild [19]. Astonishingly, the
vast majority of orthodox relativists, it seems, have never
even heard of Schwarzschild’s true solution.

I have proved elsewhere [11, 12, 13] that the orthodox,
when considering (1), have made three invalid assumptions,
to wit

(a) r is a proper radius;

(b) r can go down to zero;

(c) A singularity must occur where the Riemann tensor
scalar curvature invariant (the Kretschmann scalar),
f =RαβρσR

αβρσ , is unbounded.

None of these assumptions have ever been proved true
with the required mathematical rigour by any orthodox rela-
tivist. Notwithstanding, they blindly proceed on the assum-
ption that they are all true. The fact remains however, that
they are all demonstrably false.

Consider assumption (a). By what rigorous argument
have the orthodox identified r as a radial quantity on (1)?
Moreover, by what rigorous mathematical means have they
ever indicated what they mean by a radial quantity on (1)?
Even a cursory reading of the literature testifies to the fact
that the orthodox relativists have never offered any mathem-
atical rigour to justify assumption (a). Mathematical rigour
actually proves that this assumption is false.

Consider assumption (b). By what rigorous means has it
ever been proved that r can go down to zero on (1)? The
sad fact is that the orthodox have never offered a rigorous
argument. All they have ever done is inspect (1) and claim
that there are singularities at r=α and at r=0, and thereafter
concocted means to make one of them (r=0) a “physical”
singularity, and the other a “coordinate” singularity, and
vaguely refer to the latter as a “pathology” of coordinates,
whatever that means. The allegation of singularities at r=α
and at r=0 also involves the unproven assumption (a).
Evidently the orthodox consider that assumptions (a) and (b)
are self-evident, and so they don’t even think about them.
However, assumptions (a) and (b) are not self-evident and if
they are to be justifiably used, they must first be proved. No

30 S. J. Crothers. On the Regge-Wheeler Tortoise and the Kruskal-Szekeres Coordinates



July, 2006 PROGRESS IN PHYSICS Volume 3

orthodox relativist has ever bothered to attempt the necessary
proofs. Indeed, none it would seem have ever seen the need
for proofs, owing to their “self-evident” assumptions.

Assumption (c) is an even more curious one. Indeed, it
is actually a bit of legerdemain. Having just assumed (a)
and (b), the orthodox needed some means to identify their
“physical” singularity. They went looking for it at a suitable
unbounded curvature scalar, found it in the Kretschmann
scalar, after a series of misguided transformations of “coord-
inates” leading to the Kruskal-Szekeres “extension”, and
thereafter have claimed singularity of the Kretschmann type
in the static vacuum field.

Furthermore, using these unproved assumptions, the
orthodox relativists have claimed a process of “gravitational
collapse” to a “point-mass”. And with this they have devel-
oped what they have called grandiosely and misguidedly,
“singularity theorems”, by which it is alleged that “physical”
singularities and “trapped surfaces” are a necessary conse-
quence of gravitational collapse, and even cosmologically,
called Friedmann singularities.

The orthodox relativists must first prove their assum-
ptions by rigorous mathematics. Unless they do this, their
analyses are unsubstantiated and cannot be admitted.

Since the orthodox assumptions have in fact already been
rigorously proved entirely false, the theory that the orthodox
have built upon them is also false.

3 The Regge-Wheeler tortoise; the Kruskal-Szekeres
phantasmagoria

Since the Regge-Wheeler tortoise does not come from thin
air, from where does it come?

First consider the general static line-element

ds2=A
(√

C(r)
)
dt2 −B

(√
C(r)

)
d
√
C(r)

2
−

−C(r)
(
dθ2 + sin2θ dϕ2

)
,

A,B,C > 0 .

(2)

It has the solution

ds2=

(

1−
α

√
C(r)

)

dt2−

(

1−
α

√
C(r)

)−1
d
√
C(r)

2
−

−C(r)
(
dθ2 + sin2θ dϕ2

)
,

(3)

and setting Rc(r)=
√
C(r) for convenience, this becomes

ds2=

(

1−
α

Rc(r)

)

dt2−

(

1−
α

Rc(r)

)−1
dR2c(r)−

−R2c(r)
(
dθ2 + sin2 θdϕ2

)
,

(4)

for some analytic function Rc(r). Clearly, if Rc(r) is set
equal to r, then (1) is obtained.

Reduce (4) to two dimensions, thus

ds2=

(

1−
α

Rc(r)

)

dt2 −

(

1−
α

Rc(r)

)−1
dR2c(r) . (5)

The null geodesics are given by

ds2=0=

(

1−
α

Rc(r)

)

dt2 −

(

1−
α

Rc(r)

)−1
dR2c(r) .

Consequently
(

dt

dRc(r)

)2
=

(
Rc(r)

Rc(r)− α

)2
,

and therefore,

t= ±

[

Rc(r) + α ln

∣
∣
∣
∣
Rc(r)

α
− 1

∣
∣
∣
∣

]

+ const.

Now

R∗(r)=Rc(r) + α ln

∣
∣
∣
∣
Rc(r)

α
− 1

∣
∣
∣
∣ (6)

is the so-called Regge-Wheeler tortoise coordinate. If
Rc(r)= r, then

r∗= r + α ln
∣
∣
∣
r

α
− 1
∣
∣
∣ , (7)

which is the standard expression used by the orthodox. They
never use the general expression (6) because they only ever
consider the particular case Rc(r)= r, owing to the fact that
they do not know that their equations relate to a particular
case. Furthermore, with their unproven and invalid assum-
ptions (a) and (b), many orthodox relativists claim

0=0 + α ln

∣
∣
∣
∣
0

α
− 1

∣
∣
∣
∣ (8)

so that r∗0 = r0 =0. But as explained above, assuming r0 =0
in (1) has no rigorous basis, so (8) is rather misguided.

Let us now consider (2). I identify therein the radius of
curvature Rc(r) as the square root of the coefficient of the
angular terms, and the proper radius Rp(r) as the integral
of the square root of the component of the metric tensor
containing the squared differential element of the radius of
curvature. Thus, on (2),

Rc(r)=
√
C(r) ,

Rp(r)=

∫ √
B(
√
C(r)) d

√
C(r) + const.

(9)

In relation to (4) it follows that,

Rc(r) is the radius of curvature,

Rp(r)=

∫ √
Rc(r)

(Rc(r)− α)
dRc(r) +K ,

(10)
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where K is a constant to be rigorously determined by a
boundary condition. Note that according to (10) there is no
a priori reason for Rp(r) and Rc(r) to be identical in Ein-
stein’s gravitational field.

Now consider the usual Minkowski metric,

ds2= dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (11)

0 6 r <∞ ,

where

Rc(r)= r , Rp(r)=

∫ r

0

dr= r≡Rc(r) . (12)

In this case Rp(r) is identical to Rc(r). The identity is
due to the fact that the spatial components of Minkowski
space are Efcleethean∗. But (4), and hence (10), are non-
Efcleethean, and so there is no reason for Rp(r) and Rc(r)
to be identical therein.

The geometry of a spherically symmetric line-element
is an intrinsic and invariant property, by which radii are
rigorously determined. The radius of curvature is always
the square root of the coefficient of the angular terms and
the proper radius is always the integral of the square root
of the component containing the square of the differential
element of the radius of curvature. Note that in general
Rc(r) and Rp(r) are analytic functions of r, so that r is
merely a parameter, and not a radial quantity in (2) and (4).
So Rc(r) and Rp(r) map the parameter r into radii (i. e.
distances) in the gravitational field. Note further that r is
actually defined in Minkowski space. Thus, a distance in
Minkowski space is mapped into corresponding distances
in Einstein’s gravitational field by the mappings Rc(r) and
Rp(r).

It has been proved [11, 12] that the admissible form
for Rc(r) is,

Rc(r)=
(∣
∣r − r0

∣
∣n + αn

) 1
n

, (13)

n ∈ <+, r0 ∈ <, α = 2m, r 6= r0 ,

where n and r0 are entirely arbitrary constants, and that

Rp(r)=
√
Rc(r) (Rc(r)− α)+

+α ln

∣
∣
∣
∣
∣

√
Rc(r) +

√
Rc(r)− α√
α

∣
∣
∣
∣
∣
.

If n=1, r0=α, r>r0 are chosen, then by (13), Rc(r)=r
and equation (1) is recovered; but by (13), α<r<∞ is then
the range on the r-parameter. Note that in this case

Rc(α)=α , Rp(α)= 0 ,

∗Owing to the geometry due to Efcleethees, for those ignorant of Greek;
usually and incorrectly Euclid.

and that in general,

Rc(r0)=α , Rp(r0)= 0 ,

α < Rc(r) <∞ ,

since the value of r0 is immaterial. I remark in passing that
if n=3, r0 =0, r > 0 are chosen, Schwarzschild’s original
solution results.

Returning now to the Regge-Wheeler tortoise, it is evi-
dent that

−∞ < R∗(r) <∞ ,

and thatR∗(r)= 0 whenR(r)≈ 1.278465α. Now according
to (13), α<Rc(r)<∞, so the Regge-Wheeler tortoise can
be written generally as,

R∗(r)=Rc(r) + α ln

(
Rc(r)

α
− 1

)

, (14)

which is, in the particular case invariably used by the ortho-
dox relativists,

r∗= r + α ln

(
r

α
− 1

)

,

and so, by (13) and (14), the orthodox claim that

0=0 + α ln

∣
∣
∣
∣
0

α
− 1

∣
∣
∣
∣ ,

is nonsense. It is due to the invalid assumptions (a) and (b)
which the orthodox relativists have erroneously taken for
granted. Of course, the tortoise, r∗, cannot be interpreted
as a radius of curvature, since in doing so would violate
the intrinsic geometry of the metric. This is clearly evident
from (13), which specifies the permissible form of a radius
of curvature on a metric of the form (4).

So what is the motivation to the Regge-Wheeler tortoise
and the subsequent Kruskal-Szekeres extension? Very simply
this, to rid (1) of the singularity at r=α and make r=0
a “physical” singularity, satisfying the ad hoc assumption
(c), under the mistaken belief that† r=α is not a physical
singularity (but it is a true singularity, however, not a Kretsch-
mann curvature-type). This misguided notion is compounded
by a failure to realise that there are two radii in Einstein’s
gravitational field and that they are never identical, except in
the infinitely far field where spacetime becomes Minkowski,
and that what they treat as a proper radius in the gravitational
field is in fact the radius of curvature in their particular
metric, which cannot go down to zero. Only the proper radius
can approach zero, although it cannot take the value of zero,
i. e. r 6= r0 in (13), since Rp(r0)≡ 0 marks the location of
the centre of mass of the source of the field, which is not a
physical object.

†Indeed, that
(
Rc(r0)≡α

)
≡
(
Rp(r0)≡ 0

)
.
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The mechanical procedure to the Kruskal-Szekeres ex-
tension is well-known, so I will not reproduce it here, suffice
to say that it proposes the following null coordinates u and v,

u= t−R∗(r) ,

v= t+R∗(r) ,

which is always given by the orthodox relativists in the
particular case

u= t− r∗ ,

v= t+ r∗ .

Along the way to the Kruskal-Szekeres extension, the
sole purpose of which is to misguidedly drive the radius
of curvature r in (1) down to zero, owing to their invalid
assumptions (a), (b) and (c), the orthodox obtain

ds2= −
αe−

r
α

r
e
(v−u)
2α du dv ,

which in general terms is

ds2= −
αe−

Rc(r)
α

Rc(r)
e
(v−u)
2α du dv ,

and erroneously claim that the metric components of (1) have
been factored into a piece, e−r/α

r , which is non-singular as
r→α, times a piece with u and v dependence [20]. The
claim is of course completely spurious, since it is based
upon the false assumptions (a), (b), and (c). The orthodox
relativists have not, contrary to their claims, developed a
coordinate patch to cover a part of an otherwise incompletely
covered manifold. What they have actually done, quite un-
wittingly, is invent a completely separate manifold, which
they glue onto the manifold of the true Schwarzschild field,
and confound this new and separate manifold as a part of
the original manifold, and by means of the Kruskal-Szekeres
extension, leap between manifolds in the mistaken belief
that they are moving between coordinate patches on one
manifold. The whole procedure is ludicrous; and patently
false. Loinger [21] has also noted that the alleged “interior”
of the Hilbert solution is a different manifold.

The fact that the Hilbert solution is not diffeomorphic
to Schwarzschild’s solution was proved by Abrams [9], who
showed that the Droste/Weyl metric is diffeomorphic to
Schwarzschild’s original solution. This is manifest in (13),
and can be easily demonstrated alternatively by a simple
transformation, as follows. In the Hilbert metric, denote the
radius of curvature by r∗, and equate this to Schwarzschild’s
radius of curvature thus,

r∗=
(
r3 + α3

) 1
3 . (15)

Since 0<r<∞ in Schwarzschild’s original solution, it
follows from this that

α < r∗ <∞ ,

which is precisely what Droste obtained; later confirmed
by Weyl. There is no “interior” associated with the DW/H
metric, and no “trapped surface”. The transformation (15)
simply shifts the location of the centre of mass of the source
in parameter space from r0 =0 to r0 =α, as given explicitly
in (13).

4 Recapitulation and general comments

The standard school of relativists has never attempted to
rigorously prove its assumptions about the variable r appear-
ing in the line-element (1). It has never provided any rigorous
argument as to what constitutes a radial quantity in Einstein’s
gravitational field. It has invented a curvature condition, in
the behaviour of the Kretschmann scalar, as an ad hoc basis
for singularity in Einstein’s gravitational field.

The Regge-Wheeler tortoise has been thoroughly mis-
interpreted by the standard school of relativists. The Kruskal-
Szekeres extension is a misguided procedure, and does not
lead to a coordinate patch, but in fact, to a completely
separate manifold having nothing to do with a Schwazschild
space. The motivation to the Eddington-Finkelstein coordina-
tes and the Kruskal-Szekeres extension is due to the erron-
eous assumptions that the variable r in (1) is a proper radius
and can therefore go down to zero.

The standard school has failed to see that there are two
radii in Einstein’s gravitational field, which are determined
by the intrinsic geometry of the metric. Thus, it has failed
to understand the geometrical structure of type 1 Einstein
spaces. Consequently, the orthodox relativists have incorrect-
ly treated the variable r in (1) as a proper radius, failing
to see that it is in fact the radius of curvature in (1), and
that the proper radius must in fact be calculated by the
geometrical relations intrinsic to the metric. They have failed
to realise that the quantity r is in general nothing more than a
parameter, defined in Minkowski space, which is mapped into
the radii of the gravitational field, thereby making Minkowski
space a parameter space from which Efcleethean distance
is mapped into the corresponding true radii of Einstein’s
pseudo-Riemannian gravitational field.

The so-called “singularity theorems” are not theorems at
all, as they are based upon false concepts. The “point-mass”
is actually nothing more than the location of the centre of
mass of the source of the gravitational field, and has no
physical significance. Moreover, the alleged theorems are
based upon the invalid construction of “trapped surfaces”,
essentially derived from the false assumptions (a), (b) and (c).
The Friedmann singularities simply do not exist at all, either
physically or mathematically, as it has been rigorously proved
that cosmological solutions for isotropic type 1 Einstein
spaces do not even exist [14], so that the Standard Cosmo-
logical model is completely invalid.

My own experience has been that most orthodox rela-
tivists just ignore the facts, resort to aggressive abuse when
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confronted with them, and merrily continue with their de-
monstrably false assumptions. But here is a revelation: abuse
and ignorance are not scientific methods. Evidently, scientific
method is no longer required in science.

I have in the past, invited certain very substantial (and
some not so substantial) elements of the orthodox relativists,
literally under a torrent of vicious abuse, both gutter and
eloquent, depending upon the person, (to which I have on
occasion responded in kind after enduring far too much), to
prove their assumptions (a), (b), and (c). Not one of them
took up the invitation. I have also invited them to prove me
wrong by simply providing a rigorous demonstration that
the radius of curvature is not always the square root of the
coefficient of the angular terms of the metric, and that the
proper radius is not always the integral of the square root
of the component containing the square of the differential
element of the radius of curvature. Not one of them has
taken up that invitation either. To refute my analysis is very
simple in principle — rigorously prove the foregoing.

Alas, the orthodox are evidently unwilling to do so, being
content instead to foist their errors upon all and sundry in
the guise of profundity, to salve their need of vainglory, and
ignore or abuse those who ask legitimate questions as to
their analyses. And quite a few persons who have pointed
out serious errors in the standard theory, have been refused
any and all opportunity to publish papers on these matters in
those journals and electronic archives which constitute the
stamping grounds of the orthodox.

I give the foregoing in illustration of how modern science
is now being deliberately censored and falsified. This cannot
be allowed to continue, and those responsible must be ex-
posed and penalised. It is my view that what the modern
orthodox relativists have done amounts to scientific fraud.
The current situation is so appalling that to remain silent
would itself be criminal.
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In this article, we shall describe some of the most interesting topics in the subject
of Complexity Science for a general audience. Anyone with a solid foundation in
high school mathematics (with some calculus) and an elementary understanding of
computer programming will be able to follow this article. First, we shall explain the
significance of the P versus NP problem and solve it. Next, we shall describe two
other famous mathematics problems, the Collatz 3n+ 1 Conjecture and the Riemann
Hypothesis, and show how both Chaitin’s incompleteness theorem and Wolfram’s
notion of “computational irreducibility” are important for understanding why no one
has, as of yet, solved these two problems.

1 Challenge

Imagine that you have a collection of one billion lottery
tickets scattered throughout your basement in no particular
order. An official from the lottery announces the number
of the winning lottery ticket. For a possible prize of one
billion dollars, is it a good idea to search your basement
until you find the winning ticket or until you come to the
conclusion that you do not possess the winning ticket? Most
people would think not — even if the winning lottery ticket
were in your basement, performing such a search could take
109/(60× 60× 24× 365.25) years, over thirty work-years,
assuming that it takes you at least one second to examine
each lottery ticket. Now imagine that you have a collection
of only one thousand lottery tickets in your basement. Is
it a good idea to search your basement until you find the
winning ticket or until you come to the conclusion that you
do not possess the winning ticket? Most people would think
so, since doing such would take at most a few hours.

From these scenarios, let us postulate a general rule
that the maximum time that it may take for one person to
search N unsorted objects for one specific object is directly
proportional to N . This is clearly the case for physical
objects, but what about abstract objects? For instance, let
us suppose that a dating service is trying to help n single
women and n single men to get married. Each woman gives
the dating service a list of characteristics that she would
like to see in her potential husband, for instance, handsome,
caring, athletic, domesticated, etc. And each man gives the
dating service a list of characteristics that he would like to
see in his potential wife, for instance, beautiful, obedient,
good cook, thrifty, etc. The dating service is faced with the
task of arranging dates for each of its clients so as to satisfy
everyone’s preferences.

Now there are n! (which is shorthand for n× (n− 1)×
(n − 2) × ∙ ∙ ∙ × 2 × 1) possible ways for the dating service
to arrange dates for each of its clients, but only a fraction of
such arrangements would satisfy all of its clients. If n = 100,
it would take too long for the dating service’s computer

to evaluate all 100! possible arrangements until it finds an
arrangement that would satisfy all of its clients. (100! is too
large a number of possibilities for any modern computer to
handle.) Is there an efficient way for the dating service’s
computer to find dates with compatible potential spouses for
each of the dating service’s clients so that everyone is happy,
assuming that it is possible to do such? Yes, and here is how:

Matchmaker algorithm — Initialize the set M = ∅. Search
for a list of compatible relationships between men and
women that alternates between a compatible relationship
{x1, x2} not contained in set M , followed by a compatible
relationship {x2, x3} contained in set M , followed by a
compatible relationship {x3, x4} not contained in set M ,
followed by a compatible relationship {x4, x5} contained in
set M , and so on, ending with a compatible relationship
{xm−1, xm} not contained in set M , where both x1 and xm
are not members of any compatible relationships contained
in set M . Once such a list is found, for each compatible
relationship {xi, xi+1} in the list, add {xi, xi+1} to M if
{xi, xi+1} is not contained in M or remove {xi, xi+1}
from M if {xi, xi+1} is contained in M . (Note that this
procedure must increase the size of set M by one.) Repeat
this procedure until no such list exists.

Such an algorithm is guaranteed to efficiently find an
arrangement M that will satisfy all of the dating service’s
clients whenever such an arrangement exists [30]. So we
see that with regard to abstract objects, it is not necessarily
the case that the maximum time that it may take for one to
search N unsorted objects for a specific object is directly
proportional to N ; in the dating service example, there are
n! possible arrangements between men and women, yet it is
not necessary for a computer to examine all n! arrangements
in order to find a satisfactory arrangement. One might think
that the problem of finding a satisfactory dating arrangement
is easy for a modern computer to solve because the list of
pairs of men and women who are compatible is relatively
small (of size at most n2, which is much smaller than
the number of possible arrangements n!) and because it is
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easy to verify whether any particular arrangement will make
everyone happy. But this reasoning is invalid, as we shall
demonstrate.

2 The SUBSET-SUM problem

Consider the following problem: You are given a set A=
= {a1, . . . , an} of n integers and another integer b which we
shall call the target integer. You want to know if there exists
a subset of A for which the sum of its elements is equal to b.
(We shall consider the sum of the elements of the empty set to
be zero.) This problem is called the SUBSET-SUM problem
[10]. Now, there are 2n subsets of A, so one could naı̈vely
solve this problem by exhaustively comparing the sum of the
elements of each subset of A to b until one finds a subset-
sum equal to b, but such a procedure would be infeasible
for even the fastest computers in the world to implement
when n = 100. Is there an algorithm which can considerably
reduce the amount of work for solving the SUBSET-SUM
problem? Yes, there is an algorithm discovered by Horowitz
and Sahni in 1974 [21], which we shall call the Meet-in-the-
Middle algorithm, that takes on the order of 2n/2 steps to
solve the SUBSET-SUM problem instead of the 2n steps of
the naı̈ve exhaustive comparison algorithm:

Meet-in-the-Middle algorithm — First, partition the set A
into two subsets, A+= {a1, . . . , adn2 e} and A−= {adn2 e+1,
. . . , an}. Let us define S+ and S− as the sets of subset-
sums of A+ and A−, respectively. Sort sets S+ and b−S−

in ascending order. Compare the first elements in both of
the lists. If they match, then stop and output that there is a
solution. If not, then compare the greater element with the
next element in the other list. Continue this process until
there is a match, in which case there is a solution, or until
one of the lists runs out of elements, in which case there is
no solution.

This algorithm takes on the order of 2n/2 steps, since it
takes on the order of 2n/2 steps to sort sets S+ and b−S−

(assuming that the computer can sort in linear-time) and on
the order of 2n/2 steps to compare elements from the sorted
lists S+ and b − S−. Are there any faster algorithms for
solving SUBSET-SUM? 2n/2 is still a very large number
when n=100, even though this strategy is a vast improve-
ment over the naı̈ve strategy. It turns out that no algorithm
with a better worst-case running-time has ever been found
since the Horowitz and Sahni paper [40]. And the reason for
this is because it is impossible for such an algorithm to exist.
Here is an explanation why:

Explanation: To understand why there is no algorithm with a
faster worst-case running-time than the Meet-in-the-Middle
algorithm, let us travel back in time seventy-five years, long
before the internet. If one were to ask someone back then
what a computer is, one would have gotten the answer, “a
person who computes (usually a woman)” instead of the

present day definition, “a machine that computes” [18]. Let
us imagine that we knew two computers back then named
Mabel and Mildred (two popular names for women in the
1930’s [34]). Mabel is very efficient at sorting lists of integers
into ascending order; for instance she can sort a set of ten
integers in 15 seconds, whereas it takes Mildred 20 seconds
to perform the same task. However, Mildred is very efficient
at comparing two integers a and b to determine whether a< b
or a= b or a> b; she can compare ten pairs of integers in 15
seconds, whereas it takes Mabel 20 seconds to perform the
same task.

Let’s say we were to give both Mabel and Mildred the
task of determining whether there exists a subset of some four
element set, A= {a1, a2, a3, a4}, for which the sum of its
elements adds up to b. Since Mildred is good at comparing
but not so good at sorting, Mildred chooses to solve this
problem by comparing b to all of the sixteen subset-sums
of A. Since Mabel is good at sorting but not so good at
comparing, Mabel decides to solve this problem by using the
Meet-in-the-Middle algorithm. In fact, of all algorithms that
Mabel could have chosen to solve this problem, the Meet-
in-the-Middle algorithm is the most efficient for her to use
on sets A with only four integers. And of all algorithms that
Mildred could have chosen to solve this problem, comparing
b to all of the sixteen subset-sums of A is the most efficient
algorithm for her to use on sets A with only four integers.

Now we are going to use the principle of mathematical
induction to prove that the best algorithm for Mabel to use
for solving the SUBSET-SUM problem for large n is the
Meet-in-the-Middle algorithm: We already know that this is
true when n = 4. Let us assume that this is true for n, i. e.,
that of all possible algorithms for Mabel to use for solving the
SUBSET-SUM problem on sets with n integers, the Meet-in-
the-Middle algorithm has the best worst-case running-time.
Then we shall prove that this is also true for n+ 1:

Let S be the set of all subset-sums of the set A=
= {a1, a2, . . . , an}. Notice that the SUBSET-SUM problem
on the set A∪{a′} of n+1 integers and target b is equivalent
to the problem of determining whether (1) b∈S or (2) b′ ∈S
(where b′= b− a′). (The symbol ∈means “is a member of”.)
Also notice that these two subproblems, (1) and (2), are
independent from one another in the sense that the values of
b and b′ are unrelated to each other and are also unrelated
to set S; therefore, in order to determine whether b∈S or
b′ ∈S, it is necessary to solve both subproblems (assuming
that the first subproblem solved has no solution). So it is
clear that if Mabel could solve both subproblems in the
fastest time possible and also whenever possible make use
of information obtained from solving subproblem (1) to save
time solving subproblem (2) and whenever possible make
use of information obtained from solving subproblem (2) to
save time solving subproblem (1), then Mabel would be able
to solve the problem of determining whether (1) b ∈ S or (2)
b′ ∈ S in the fastest time possible [15].
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We shall now explain why the Meet-in-the-Middle algo-
rithm has this characteristic for sets of size n+ 1: It is clear
that by the induction hypothesis, the Meet-in-the-Middle
algorithm solves each subproblem in the fastest time possible,
since it works by applying the Meet-in-the-Middle algorithm
to each subproblem, without loss of generality sorting and
comparing elements in lists S+ and b−S− and also sorting
and comparing elements in lists S+ and b′−S− as the
algorithm sorts and compares elements in lists S+ and
b− [S− ∪ (S−+ a′)]. There are two situations in which it is
possible for the Meet-in-the-Middle algorithm to make use
of information obtained from solving subproblem (1) to save
time solving subproblem (2) or to make use of information
obtained from solving subproblem (2) to save time solving
subproblem (1). And the Meet-in-the-Middle algorithm takes
advantage of both of these opportunities:

• Whenever the Meet-in-the-Middle algorithm compares
two elements from lists S+ and b−S− and the element
in list S+ turns out to be less than the element in
list b−S−, the algorithm makes use of information
obtained from solving subproblem (1) (the fact that
the element in list S+ is less than the element in
list b−S−) to save time, when n is odd, solving
subproblem (2) (the algorithm does not consider the
element in list S+ again).

• Whenever the Meet-in-the-Middle algorithm compares
two elements from lists S+ and b′−S− and the ele-
ment in list S+ turns out to be less than the element in
list b′−S−, the algorithm makes use of information
obtained from solving subproblem (2) (the fact that
the element in list S+ is less than the element in
list b′−S−) to save time, when n is odd, solving
subproblem (1) (the algorithm does not consider the
element in list S+ again).

Therefore, we can conclude that the Meet-in-the-Middle al-
gorithm whenever possible makes use of information obtain-
ed from solving subproblem (1) to save time solving sub-
problem (2) and whenever possible makes use of information
obtained from solving subproblem (2) to save time solving
subproblem (1). So we have completed our induction step to
prove true for n+ 1, assuming true for n.

Therefore, the best algorithm for Mabel to use for solving
the SUBSET-SUM problem for large n is the Meet-in-the-
Middle algorithm. But is the Meet-in-the-Middle algorithm
the best algorithm for Mildred to use for solving the SUBSET-
SUM problem for large n? Since the Meet-in-the-Middle
algorithm is not the fastest algorithm for Mildred to use
for small n, is it not possible that the Meet-in-the-Middle
algorithm is also not the fastest algorithm for Mildred to use
for large n? It turns out that for large n, there is no algorithm
for Mildred to use for solving the SUBSET-SUM problem
with a faster worst-case running-time than the Meet-in-the-
Middle algorithm. Why?

Notice that the Meet-in-the-Middle algorithm takes on the
order of 2n/2 steps regardless of whether Mabel or Mildred
applies it. And notice that the algorithm of naı̈vely comparing
the target b to all of the 2n subset-sums of set A takes on the
order of 2n steps regardless of whether Mabel or Mildred
applies it. So for large n, regardless of who the computer
is, the Meet-in-the-Middle algorithm is faster than the naı̈ve
exhaustive comparison algorithm — from this example, we
can understand the general principle that the asymptotic
running-time of an algorithm does not differ by more than a
polynomial factor when run on different types of computers
[40, 41]. Therefore, since no algorithm is faster than the
Meet-in-the-Middle algorithm for solving SUBSET-SUM for
large n when applied by Mabel, we can conclude that no
algorithm is faster than the Meet-in-the-Middle algorithm
for solving SUBSET-SUM for large n when applied by
Mildred. And furthermore, using this same reasoning, we
can conclude that no algorithm is faster than the Meet-in-
the-Middle algorithm for solving SUBSET-SUM for large n
when run on a modern computing machine. �

So it doesn’t matter whether the computer is Mabel,
Mildred, or any modern computing machine; the fastest algo-
rithm which solves the SUBSET-SUM problem for large n is
the Meet-in-the-Middle algorithm. Because once a solution
to the SUBSET-SUM problem is found, it is easy to verify
(in polynomial-time) that it is indeed a solution, we say that
the SUBSET-SUM problem is in class NP [5]. And because
there is no algorithm which solves SUBSET-SUM that runs
in polynomial-time (since the Meet-in-the-Middle algorithm
runs in exponential-time and is the fastest algorithm for
solving SUBSET-SUM, as we have shown above), we say
that the SUBSET-SUM problem is not in class P [5]. Then
since the SUBSET-SUM problem is in class NP but not
in class P , we can conclude that P 6=NP , thus solving the
P versus NP problem [15]. The solution to the P versus
NP problem demonstrates that it is possible to hide abstract
objects (in this case, a subset of set A) without an abundance
of resources — it is, in general, more difficult to find a subset
of a set of only one hundred integers for which the sum of
its elements equals a target integer than to find the winning
lottery-ticket in a pile of one billion unsorted lottery tickets,
even though the lottery-ticket problem requires much more
resources (one billion lottery tickets) than the SUBSET-SUM
problem requires (a list of one hundred integers).

3 Does P 6=NP really matter?

Even though P 6=NP , might there still be algorithms which
efficiently solve problems that are in NP but not P in the
average-case scenario? (Since the P 6=NP result deals only
with the worst-case scenario, there is nothing to forbid this
from happening.) The answer is yes; for many problems
which are in NP but not P , there exist algorithms which
efficiently solve them in the average-case scenario [28, 39],
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so the statement that P 6=NP is not as ominous as it sounds.
In fact, there is a very clever algorithm which solves almost
all instances of the SUBSET-SUM problem in polynomial-
time [11, 26, 28]. (The algorithm works by converting the
SUBSET-SUM problem into the problem of finding the
shortest non-zero vector of a lattice, given its basis.) But
even though for many problems which are in NP but not
P , there exist algorithms which efficiently solve them in the
average-case scenario, in the opinion of most complexity-
theorists, it is probably false that for all problems which are
in NP but not P , there exist algorithms which efficiently
solve them in the average-case scenario [3].

Even though P 6=NP , might it still be possible that
there exist polynomial-time randomized algorithms which
correctly solve problems in NP but not in P with a high
probability regardless of the problem instance? (The word
“randomized” in this context means that the algorithm bases
some of its decisions upon random variables. The advantage
of these types of algorithms is that whenever they fail to
output a solution, there is still a good chance that they will
succeed if they are run again.) The answer is probably no, as
there is a widely believed conjecture that P =BPP , where
BPP is the class of decision problems for which there are
polynomial-time randomized algorithms that correctly solve
them at least two-thirds of the time regardless of the problem
instance [22].

4 Are quantum computers the answer?

A quantum computer is any computing device which makes
direct use of distinctively quantum mechanical phenomena,
such as superposition and entanglement, to perform operat-
ions on data. As of today, the field of practical quantum
computing is still in its infancy; however, much is known
about the theoretical properties of a quantum computer. For
instance, quantum computers have been shown to efficiently
solve certain types of problems, like factoring integers [35],
which are believed to be difficult to solve on a classical
computer, e. g., a human-computer like Mabel or Mildred or
a machine-computer like an IBM PC or an Apple Macintosh.

Is it possible that one day quantum computers will be
built and will solve problems like the SUBSET-SUM prob-
lem efficiently in polynomial-time? The answer is that it is
generally suspected by complexity theorists to be impossible
for a quantum computer to solve the SUBSET-SUM problem
(and all other problems which share a characteristic with the
SUBSET-SUM problem in that they belong to a subclass
of NP problems known as NP-complete problems [5]) in
polynomial-time. A curious fact is that if one were to solve
the SUBSET-SUM problem on a quantum computer by brute
force, the algorithm would have a running-time on the order
of 2n/2 steps, which (by coincidence?) is the same asymptotic
running-time of the fastest algorithm which solves SUBSET-
SUM on a classical computer, the Meet-in-the-Middle algo-

rithm [1, 4, 19].
In any case, no one has ever built a practical quantum

computer and some scientists are even of the opinion that
building such a computer is impossible; the acclaimed com-
plexity theorist, Leonid Levin, wrote: “QC of the sort that
factors long numbers seems firmly rooted in science fiction. It
is a pity that popular accounts do not distinguish it from much
more believable ideas, like Quantum Cryptography, Quantum
Communications, and the sort of Quantum Computing that
deals primarily with locality restrictions, such as fast search
of long arrays. It is worth noting that the reasons why
QC must fail are by no means clear; they merit thorough
investigation. The answer may bring much greater benefits
to the understanding of basic physical concepts than any
factoring device could ever promise. The present attitude is
analogous to, say, Maxwell selling the Daemon of his famous
thought experiment as a path to cheaper electricity from heat.
If he did, much of insights of today’s thermodynamics might
be lost or delayed” [25].

5 Unprovable conjectures

In the early twentieth century, the famous mathematician,
David Hilbert, proposed the idea that all mathematical facts
can be derived from only a handful of self-evident axioms.
In the 1930’s, Kurt Gödel proved that such a scenario is
impossible by showing that for any proposed finite axiom
system for arithmetic, there must always exist true statements
that are unprovable within the system, if one is to assume
that the axiom system has no inconsistencies. Alan Turing
extended this result to show that it is impossible to design
a computer program which can determine whether any other
computer program will eventually halt. In the latter half of the
20th century, Gregory Chaitin defined a real number between
zero and one, which he calls Ω, to be the probability that a
computer program halts. And Chaitin proved that:

Theorem 1: For any mathematics problem, the bits of Ω,
whenΩ is expressed in binary, completely determine whether
that problem is solvable or not.

Theorem 2: The bits of Ω are random and only a finite num-
ber of them are even possible to know.

From these two theorems, it follows that the very structure
of mathematics itself is random and mostly unknowable! [8]

Even though Hilbert’s dream to be able derive every
mathematical fact from only a handful of self-evident axioms
was destroyed by Gödel in the 1930’s, this idea has still
had an enormous impact on current mathematics research
[43]. In fact, even though mathematicians as of today accept
the incompleteness theorems proven by Gödel, Turing, and
Chaitin as true, in general these same mathematicians also
believe that these incompleteness theorems ultimately have
no impact on traditional mathematics research, and they have
thus adopted Hilbert’s paradigm of deriving mathematical
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facts from only a handful of self-evident axioms as a practical
way of researching mathematics. Gregory Chaitin has been
warning these mathematicians for decades now that these
incompleteness theorems are actually very relevant to ad-
vanced mathematics research, but the overwhelming majority
of mathematicians have not taken his warnings seriously [7].
We shall directly confirm Chaitin’s assertion that incomplete-
ness is indeed very relevant to advanced mathematics re-
search by giving very strong evidence that two famous math-
ematics problems, determining whether the Collatz 3n+1
Conjecture is true and determining whether the Riemann
Hypothesis is true, are impossible to solve:

The Collatz 3n+1 Conjecture — Here’s a fun experiment
that you, the reader, can try: Pick any positive integer, n. If
n is even, then compute n/2 or if n is odd, then compute
(3n + 1)/2. Then let n equal the result of this computation
and perform the whole procedure again until n=1. For
instance, if you had chosen n=11, you would have obtain-
ed the sequence (3×11+1)/2=17, (3× 17+1)/2=26,
26/2=13, 20, 10, 5, 8, 4, 2, 1.

The Collatz 3n + 1 Conjecture states that such an algo-
rithm will always eventually reach n=1 and halt [23]. Com-
puters have verified this conjecture to be true for all positive
integers less than 224× 250≈ 2.52× 1017 [33]. Why does
this happen? One can give an informal argument as to why
this may happen [12] as follows: Let us assume that at each
step, the probability that n is even is one-half and the pro-
bability that n is odd is one-half. Then at each iteration, nwill
decrease by a multiplicative factor of about

(
3
2

)1/2( 1
2

)1/2
=

=
(
3
4

)1/2
on average, which is less than one; therefore, n will

eventually converge to one with probability one. But such an
argument is not a rigorous mathematical proof, since the
probability assumptions that the argument is based upon are
not well-defined and even if they were well-defined, it would
still be possible (although extremely unlikely, with probabi-
lity zero) that the algorithm will never halt for some input.

Is there a rigorous mathematical proof of the Collatz
3n+1 Conjecture? As of today, no one has found a rigorous
proof that the conjecture is true and no one has found a
rigorous proof that the conjecture is false. In fact, Paul Erdös,
who was one of the greatest mathematicians of the twentieth
century, commented about the Collatz 3n + 1 Conjecture:
“Mathematics is not yet ready for such problems” [23]. We
can informally demonstrate that there is no way to deducti-
vely prove that the conjecture is true, as follows:

Explanation: First, notice that in order to be certain that
the algorithm will halt for a given input n, it is necessary
to know whether the value of n at the beginning of each
iteration of the algorithm is even or odd. (For a rigorous
proof of this, see The Collatz Conjecture is Unprovable
[16].) For instance, if the algorithm starts with input n = 11,
then in order to know that the algorithm halts at one, it is
necessary to know that 11 is odd, (3× 11+1)/2=17 is

odd, (3× 17+1)/2=26 is even, 26/2=13 is odd, 20 is
even, 10 is even, 5 is odd, 8 is even, 4 is even, and 2 is
even. We can express this information (odd, odd, even, odd,
even, even, odd, even, even, even) as a vector of zeroes
and ones, (1, 1, 0, 1, 0, 0, 1, 0, 0, 0). Let us call this vector the
parity vector of n. (If n never converges to one, then its
parity vector must be infinite-dimensional.) If one does not
know the parity vector of the input, then it is impossible to
know what the algorithm does at each iteration and therefore
impossible to be certain that the algorithm will converge to
one. So any proof that the algorithm applied to n halts must
specify the parity vector of n. Next, let us give a definition
of a random vector:

Definition — We shall say that a vector x ∈ {0, 1}m is
random if x cannot be specified in less than m bits in a
computer text-file [6].

Example 1 — The vector of one million concatenations of the
vector (0, 1) is not random, since we can specify it in less
than two million bits in a computer text-file. (We just did.)

Example 2 — The vector of outcomes of one million coin-
tosses has a good chance of fitting our definition of “random”,
since much of the time the most compact way of specifying
such a vector is to simply make a list of the results of each
coin-toss, in which one million bits are necessary.

Now let us suppose that it were possible to prove the
Collatz 3n + 1 Conjecture and let B be the number of bits
in a hypothetical computer text-file containing such a proof.
And let (x0, x1, x2, . . . , xB) be a random vector, as defined
above. (It is not difficult to prove that at least half of all
vectors with B+1 zeroes and ones are random [6].) There is
a mathematical theorem [23] which says that there must exist
a number n with the first B+1 bits of its parity vector equal
to (x0, x1, x2, . . . , xB); therefore, any proof of the Collatz
3n + 1 Conjecture must specify vector (x0, x1, x2, . . . , xB)
(as we discussed above), since such a proof must show
that the Collatz algorithm halts when given input n. But
since vector (x0, x1, x2, . . . , xB) is random, B + 1 bits are
required to specify vector (x0, x1, x2, . . . , xB), contradicting
our assumption that B is the number of bits in a computer
text-file containing a proof of the Collatz 3n+1 Conjecture;
therefore, a formal proof of the Collatz 3n+1 Conjecture
cannot exist [16]. �

The Riemann Hypothesis — There is also another famous
unresolved conjecture, the Riemann Hypothesis, which has a
characteristic similar to that of the Collatz 3n+1 Conjecture,
in that it too can never be proven true. In the opinion of
many mathematicians, the Riemann Hypothesis is the most
important unsolved problem in mathematics [13]. The reason
why it is so important is because a resolution of the Riemann
Hypothesis would shed much light on the distribution of
prime numbers: It is well known that the number of prime
numbers less than n is approximately

∫ n
2

dx
log x . If the Riemann

Hypothesis is true, then for large n, the error in this approxi-
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mation must be bounded by cn1/2 logn for some constant
c> 0 [38], which is also a bound for a random walk, i. e., the
sum of n independent random variables, Xk, for k=1, 2,
. . . , n in which the probability that Xk=−c is one-half and
the probability that Xk= c is one-half.

The Riemann-Zeta function ζ (s) is a complex function

which is defined to be ζ (s)= s
s−1 − s

∫∞
1

x−bxc
xs+1 dx when the

real part of the complex number s is positive. The Riemann
Hypothesis states that if ρ=σ+ ti is a complex root of ζ
and 0<σ< 1, then σ=1/2. It is well known that there
are infinitely many roots of ζ that have 0<σ< 1. And just
like the Collatz 3n+1 Conjecture, the Riemann Hypothesis
has been verified by high-speed computers — for all |t|<T
where T ≈ 2.0× 1020 [29]. But it is still unknown whether
there exists a |t|>T such that ζ (σ+ ti)= 0, where σ 6=1/2.
And just like the Collatz 3n+1 Conjecture, one can give a
heuristic probabilistic argument that the Riemann Hypothesis
is true [17], as follows:

It is well known that the Riemann Hypothesis follows
from the assertion that for large n, M(n)=Σnk=1μ(k)
is bounded by cn1/2 logn for some constant c> 0, where
μ is the Möbius Inversion function defined on N in which
μ(k)=−1 if k is the product of an odd number of distinct
primes, μ(k)= 1 if k is the product of an even number of
distinct primes, and μ(k)= 0 otherwise. If we were to assume
thatM(n) is distributed as a random walk, which is certainly
plausible since there is no apparent reason why it should
not be distributed as a random walk, then by probability
theory, M(n) is bounded for large n by cn1/2 logn for
some constant c> 0, with probability one; therefore, it is
very likely that the Riemann Hypothesis is true. We shall
now explain why the Riemann Hypothesis is unprovable,
just like the Collatz 3n+1 Conjecture:

Explanation: The Riemann Hypothesis is equivalent to the
assertion that for each T > 0, the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number
of roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T}. It
is well known that there exists a continuous real function
Z(t) (called the Riemann-Siegel function) such that |Z(t)|=
= |ζ (1/2+ ti)|, so the real roots t of ζ (1/2+ ti) are the
same as the real roots t of Z(t). (The formula for Z(t) is
ζ (1/2+ ti)eiϑ(t), where ϑ(t)= arg

[
Γ( 14 +

1
2 it)

]
− 1

2 t lnπ.)
Then because the formula for the real roots t of ζ (1/2+ ti)
cannot be reduced to a formula that is simpler than the
equation, ζ (1/2+ ti)= 0, the only way to determine the
number of real roots t of ζ (1/2+ ti) in which 0<t<T is
to count the changes in sign of the real function Z(t), where
0<t<T [31].

So in order to prove that the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number of
roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T}, which
can be computed via a theorem known as the Argument
Principle without counting the changes in sign of Z(t),

where 0<t<T [27, 31, 32], it is necessary to count the
changes in sign of Z(t), where 0<t<T . (Otherwise, it
would be possible to determine the number of real roots t of
ζ (1/2+ ti), where 0<t<T , without counting the changes
in sign of Z(t) by computing the number of roots of ζ (s) in
{s=σ+ ti : 0<σ< 1, 0<t<T} via the Argument Prin-
ciple.) As T becomes arbitrarily large, the time that it takes
to count the changes in sign of Z(t), where 0<t<T , ap-
proaches infinity for the following reasons: (1) There are
infinitely many changes in sign of Z(t). (2) The time that
it takes to evaluate the sign of Z(t) approaches infinity as
t → ∞ [31]. Hence, an infinite amount of time is required
to prove that for each T > 0, the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number of
roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T} (which
is equivalent to proving the Riemann Hypothesis), so the
Riemann Hypothesis is unprovable. �

Chaitin’s incompleteness theorem implies that mathemat-
ics is filled with facts which are both true and unprovable,
since it states that the bits of Ω completely determine whether
any given mathematics problem is solvable and only a finite
number of bits of Ω are even knowable [8]. And we have
shown that there is a very good chance that both the Collatz
3n+1 Conjecture and the Riemann Hypothesis are examples
of such facts. Of course, we can never formally prove that
either one of these conjectures is both true and unprovable,
for obvious reasons. The best we can do is prove that they are
unprovable and provide computational evidence and heuristic
probabilistic reasoning to explain why these two conjectures
are most likely true, as we have done. And of course, it is
conceivable that one could find a counter-example to the Col-
latz 3n+ 1 Conjecture by finding a number n for which the
Collatz algorithm gets stuck in a nontrivial cycle or a counter-
example to the Riemann Hypothesis by finding a complex
root, ρ=σ+ ti, of ζ for which 0<σ< 1 and σ 6=1/2. But
so far, no one has presented any such counter-examples.

The theorems that the Collatz 3n+1 Conjecture and the
Riemann Hypothesis are unprovable illustrate a point which
Chaitin has been making for years, that mathematics is not so
much different from empirical sciences like physics [8, 14].
For instance, scientists universally accept the law of gravity
to be true based on experimental evidence, but such a law
is by no means absolutely certain — even though the law
of gravity has been observed to hold in the past, it is not
inconceivable that the law of gravity may cease to hold in
the future. So too, in mathematics there are conjectures like
the Collatz 3n + 1 Conjecture and the Riemann Hypothesis
which are strongly supported by experimental evidence but
can never be proven true with absolute certainty.

6 Computational irreducibility

Up until the last decade of the twentieth century, the most
famous unsolved problem in all of mathematics was to prove
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the following conjecture:

Fermat’s Last Theorem (FLT) — When n > 2, the equation
xn + yn = zn has no nontrivial integer solutions.

After reading the explanations in the previous section, a
skeptic asked the author what the difference is between
the previous argument that the Collatz 3n+1 Conjecture is
unprovable and the following argument that Fermat’s Last
Theorem is unprovable (which cannot possibly be valid,
since Fermat’s Last Theorem was proven by Wiles and Taylor
in the last decade of the twentieth century [37]):

Invalid Proof that FLT is unprovable: Suppose that we have
a computer program which computes xn+ yn− zn for each
x, y, z ∈ Z and n> 2 until it finds a nontrivial (x, y, z, n)
such that xn+ yn− zn=0 and then halts. Obviously,
Fermat’s Last Theorem is equivalent to the assertion that
such a computer program can never halt. In order to be
certain that such a computer program will never halt, it is
necessary to compute xn+ yn− zn for each x, y, z ∈Z and
n> 2 to determine that xn+ yn− zn 6=0 for each nontrivial
(x, y, z, n). Since this would take an infinite amount of time,
Fermat’s Last Theorem is unprovable. �

This proof is invalid, because the assertion that “it is ne-
cessary to compute xn+ yn− zn for each x, y, z ∈Z and
n> 2 to determine that xn+ yn− zn 6=0 for each nontrivial
(x, y, z, n)” is false. In order to determine that an equation is
false, it is not necessary to compute both sides of the equation
— for instance, it is possible to know that the equation
6x+9y=74 has no integer solutions without evaluating
6x+9y for every x, y ∈Z, since one can see that if there
were any integer solutions, the left-hand-side of the equation
would be divisible by three but the right-hand-side would
not be divisible by three.

Question — So why can’t we apply this same reasoning to
show that the proof that the Collatz 3n + 1 Conjecture is
unprovable is invalid? Just as it is not necessary to compute
xn+ yn− zn in order to determine that xn+ yn− zn 6=0,
is it not possible that one can determine that the Collatz
algorithm will converge to one without knowing what the
algorithm does at each iteration?

Answer — Because what the Collatz algorithm does at each
iteration is what determines whether or not the Collatz se-
quence converges to one [16], it is necessary to know what
the Collatz algorithm does at each iteration in order to de-
termine that the Collatz sequence converges to one. Because
the exact values of xn+ yn− zn are not relevant to knowing
that xn+ yn− zn 6=0 for each nontrivial (x, y, z, n), it is
not necessary to compute each xn+ yn− zn in order to de-
termine that xn+yn−zn 6=0 for each nontrivial (x, y, z, n).

Exercise — You are given a deck of n cards labeled 1, 2, 3,
. . . , n. You shuffle the deck. Then you perform the following
“reverse-card-shuffling” procedure: Look at the top card lab-
eled k. If k=1, then stop. Otherwise, reverse the order of

the first k cards in the deck. Then look at the top card again
and repeat the same procedure. For example, if n=7 and
the deck were in order 5732416 (where 5 is the top card),
then you would obtain 4237516→ 7324516→ 6154237→
→3245167→4235167→5324167→1423567. Now, we pre-
sent two problems:

• Prove that such a procedure will always halt for any n
and any shuffling of the n cards.
• Find a closed formula for the maximum number of

iterations that it may take for such a procedure to
halt given the number of cards in the deck, or prove
that no such formula exists. (The maximum number
of iterations for n=1, 2, 3, . . . , 16 are 0, 1, 2, 4, 7, 10,
16, 22, 30, 38, 51, 65, 80, 101, 113, 139 [36].)

It is easy to use the principle of mathematical induction to
solve the first problem. As for the second problem, it turns out
that there is no closed formula; in other words, in order to find
the maximum number of iterations that it may take for such a
procedure to halt given the number of cards n in the deck, it
is necessary to perform the reverse-card-shuffling procedure
on every possible permutation of 1, 2, 3, . . . , n. This property
of the Reverse-Card-Shuffling Problem in which there is no
way to determine the outcome of the reverse-card-shuffling
procedure without actually performing the procedure itself
is called computational irreducibility [42]. Notice that the
notion of computational irreducibility also applies to the
Collatz 3n+1 Conjecture and the Riemann Hypothesis in that
an infinite number of irreducible computations are necessary
to prove these two conjectures.

Stephen Wolfram, who coined the phrase “computational
irreducibility”, argues in his famous book, A New Kind of Sci-
ence [42], that our universe is computationally irreducible,
i.e., the universe is so complex that there is no general method
for determining the outcome of a natural event without either
observing the event itself or simulating the event on a com-
puter. The dream of science is to be able to make accurate
predictions about our natural world; in a computationally
irreducible universe, such a dream is only possible for very
simple phenomena or for events which can be accurately
simulated on a computer.

7 Open problems in mathematics

In the present year of 2006, the most famous unsolved
number theory problem is to prove the following:

Goldbach’s Conjecture — Every even number greater than
two is the sum of two prime numbers.

Just like the Collatz 3n + 1 Conjecture and the Riemann
Hypothesis, there are heuristic probabilistic arguments which
support Goldbach’s Conjecture, and Goldbach’s Conjecture
has been verified by computers for a large number of even
numbers [20]. The closest anyone has come to proving Gold-
bach’s Conjecture is a proof of the following:
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Chen’s Theorem — Every sufficiently large even integer is
either the sum of two prime numbers or the sum of a prime
number and the product of two prime numbers [9].

Although the author cannot prove it, he believes the following:
Conjecture 1 — Goldbach’s Conjecture is unprovable.
Another famous conjecture which is usually mentioned along
with Goldbach’s Conjecture in mathematics literature is the
following:
The Twin Primes Conjecture — There are infinitely many
prime numbers p for which p+ 2 is also prime [20].
Just as with Goldbach’s Conjecture, the author cannot prove
it, but he believes the following:
Conjecture 2 — The Twin Primes Conjecture is undecidable,
i. e., it is impossible to know whether the Twin Primes
Conjecture is true or false.

8 Conclusion

The P 6=NP problem, the Collatz 3n+1 Conjecture, and the
Riemann Hypothesis demonstrate to us that as finite human
beings, we are all severely limited in our ability to solve
abstract problems and to understand our universe. The author
hopes that this observation will help us all to better appreciate
the fact that there are still so many things which G-d allows
us to understand.
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A revised Lorentz invariant electromagnetic theory leading beyond Maxwell’s
equations, and to a form of extended quantum electrodynamics, has been elaborated
on the basis of a nonzero electric charge density and a nonzero electric field
divergence in the vacuum state. Among the applications of this theory, there are steady
electromagnetic states having no counterpart in conventional theory and resulting in
models of electrically charged and neutral leptons, such as the electron and the neutrino.
The analysis of the electron model debouches into a point-charge-like geometry with
a very small characteristic radius but having finite self-energy. This provides an
alternative to the conventional renormalization procedure. In contrast to conventional
theory, an integrated radial force balance can further be established in which the
electron is prevented from “exploding” under the action of its net self-charge. Through
a combination of variational analysis and an investigation of the radial force balance,
a value of the electronic charge has been deduced which deviates by only one percent
from that obtained in experiments. This deviation requires further investigation. A
model of the neutrino finally reproduces some of the basic features, such as a small but
nonzero rest mass, an angular momentum but no magnetic moment, and long mean
free paths in solid matter.

1 Introduction

Maxwell’s equations in a vacuum state with a vanishing
electric field divergence have served as a basis for quantum
electrodynamics (QED) in its conventional form [1]. This
theory has been very successful in many applications, but as
stated by Feynman [2], there still exist areas within which it
does not provide fully adequate descriptions of physical real-
ity. When applying conventional theory to attempted models
of the electron, there thus appear a number of incomprehens-
ible and unwieldy problems. These include the existence of a
steady particle state, the unexplained point-charge-like geo-
metry, the question of infinite self-energy and the associated
physical concept of renormalization with extra added counter
terms [3], the lack of radial force balance of the electron
under the action of its self-charge [4], and its unexplained
quantized charge. Also the models of an electrically neutral
state of the neutrino include a number of questions, such as
those of a nonzero but small rest mass, a nonzero angular mo-
mentum and a vanishing magnetic moment, and excessively
long mean free paths for interaction with solid matter.

The limitations of conventional theory have caused a
number of authors to elaborate modified electromagnetic ap-
proaches aiming beyond Maxwell’s equations. Among these
there is a theory [5–12] to be described in this paper. It is
based on a vacuum state that can give rise to local space
charges and an associated nonzero electric field divergence,
leading to a current in addition to the displacement current.
The field equations are then changed in a substantial manner,

to result in a form of extended quantum electrodynamics
(“EQED”).

In applications of the present theory to photon phys-
ics, the nonzero electric field divergence appears as a small
quantity, but it still comes out to have an essential effect
on the end results [11, 12]. For the steady particle states
to be treated here, the field equations contain electric field
divergence terms which appear as large contributions already
at the outset.

2 Basic field equations

The basic physical concept of the present theory is the ap-
pearance of a local electric charge density in the vacuum state
in which there are quantum mechanical electromagnetic fluc-
tuations. This charge density is associated with a nonzero
electric field divergence. When imposing the condition of
Lorentz invariance on the system, there arises a local “space-
charge current density” in addition to the displacement cur-
rent. The detailed deductions are described in earlier reports
by the author [5–12]. The revised field equations in the
vacuum are given by

curlB/μ0 = ε0(divE)C+ ε0∂E/∂t , (1)

curlE = −∂B/∂t , (2)

B = curlA , divB = 0 , (3)

E = −∇φ− ∂A/∂t , divE = ρ̄/ε0 (4)

for the electric and magnetic fields E and B, the electric
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charge density ρ̄, the magnetic vector potentialA, the electro-
static potential φ, and the velocity vector C, where C2= c2.
In analogy with the direction to be specified for the current
density in conventional theory, the unit vector C/c depends
on the geometry of the particular configuration to be studied.

Using well-known vector identities, equations (1) and (2)
can be recast into the local momentum equation

div 2S = ρ̄ (E+C×B) + ε0
∂

∂t
g (5)

and the local energy equation

−divS = ρ̄E ∙C+
1

2
ε0
∂

∂t
wf . (6)

Here 2S is the electromagnetic stress tensor,

g = ε0E×B =
1

c2
S (7)

can be interpreted as an electromagnetic momentum density
with S denoting the Poynting vector, and

wf =
1

2

(
ε0E

2 +B2/μ0
)

(8)

representing the electromagnetic field energy density. An
electromagnetic source energy density

ws =
1

2
ρ̄ (φ+C ∙A) (9)

can also be deduced and related to the density (8) as shown
earlier [12].

As distinguished from Maxwell’s equations, the present
theory includes steady electromagnetic states in which all
explicit time derivatives vanish in equations (1)–(6). The
volume integrals of wf and ws then become equal for certain
configurations which are limited in space.

3 Steady axisymmetric states

Among the steady axisymmetric states the analysis is here
restricted to particle-shaped ones where the configuration is
bounded both in the axial and radial directions. There are also
string-shaped states being uniform in the axial directions, as
described elsewhere [7, 12].

3.1 General features of particle-shaped states

In particle-shaped geometry a frame (r, θ, ϕ) of spherical
coordinates is introduced, where all relevant quantities are
independent of the angle ϕ. The analysis is further limited
to a current density j=(0, 0, Cρ̄) and a vector potential
A=(0, 0, A). Here C =± c represents the two possible spin
directions. The basic equations (1)–(4) then take the form

(r0ρ)
2 ρ̄

ε0
= Dφ =

[
D + (sin θ)−2

]
(CA) , (10)

where the dimensionless radial variable ρ= r/r0 has been
introduced with r0 as a characteristic radial dimension, and
where the operator D=Dρ +Dθ is defined by

Dρ = −
∂

∂ρ

(

ρ2
∂

∂ρ

)

, Dθ = −
∂2

∂θ2
−
cos θ

sin θ

∂

∂θ
. (11)

The general solution of equations (10) is obtained in
terms of a generating function

F (r, θ) = CA− φ = G0 ∙G(ρ, θ) , (12)

where G0 stands for a characteristic amplitude and G for a
normalized dimensionless part. The solutions become

CA = −(sin2θ)DF , (13)

φ = −
[
1 + (sin2θ)D

]
F , (14)

ρ̄ = −

(
ε0
r20 ρ

2

)

D
[
1 + (sin2θ)D

]
F . (15)

The extra degree of freedom introduced by the nonzero
electric field divergence and the inhomogeneity of equations
(10) are underlying this general result.

Using expressions (13)–(15), (9), and the functions

f (ρ, θ) = −(sin θ)D
[
1 + (sin2θ)D

]
G , (16)

g (ρ, θ) = −
[
1 + 2(sin2θ)D

]
G (17)

integrated field quantities can be obtained which represent a
net electric charge q0, magnetic moment M0, mass m0, and
angular momentum s0. The magnetic moment is obtained
from the local contributions of the current density, and the
mass and angular momentum from those of ws/c2 and the
energy relation by Einstein. The current density behaves as a
common convection current. The mass flow originates from
the velocity vector, having the same direction for positive
and negative charge elements. Thus the integrated quantities
become

q0 = 2πε0 r0G0Jq , Iq = f , (18)

M0 = πε0Cr
2
0G0JM , IM = ρ (sin θ)f , (19)

m0 = π(ε0/c
2)r0G

2
0Jm , Im = fg , (20)

s0 = π(ε0C/c
2)r20G

2
0Js , Is = ρ (sin θ)fg (21)

with the normalized integrals

Jk =

∫ ∞

ρk

∫ π

0

Ik dρdθ , k = q,M,m, s . (22)

Here ρk are small radii of circles centered around the
origin ρ=0 when G is divergent there, and ρk=0 when G
is convergent at ρ=0.

At this point a further step is taken by restricting the
analysis to a separable generating function

G(ρ, θ) = R(ρ) ∙ T (θ) . (23)
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The integrands of the normalized forms then become

Iq = τ0R+ τ1(DρR) + τ2Dρ(DρR) , (24)

IM = ρ (sin θ)Iq , (25)

Im = τ0τ3R
2+(τ0τ4+τ1τ3)R(DρR)+τ1τ4(DρR)

2+

+ τ2τ3RDρ(DρR) + τ2τ4(DρR) [Dρ(DρR)] , (26)

Is = ρ (sin θ)Im , (27)

where

τ0 = −(sin θ)(DθT )− (sin θ)Dθ
[
(sin2θ)(DθT )

]
, (28)

τ1 = −(sin θ)T−(sin θ)Dθ
[
(sin2θ)T

]
−sin3θ (DθT ) , (29)

τ2 = −(sin
3 θ)T , (30)

τ3 = −T − 2(sin
2θ)(DθT ) , (31)

τ4 = −2(sin
2θ)T . (32)

The restriction (23) of separability becomes useful here
for configurations having sources ρ̄ and j that are mainly
localized to a region near the origin, such as for a particle of
limited extent. The analysis further concerns a radial function
R which can become convergent or divergent at the origin,
and a finite polar function T with finite derivatives which
can be symmetric or antisymmetric in respect to the “equa-
torial plane” (midplane) defined by θ=π/2. Repeated partial
integration of expressions (22) for Jq and JM leads to the
following results as described in detail elsewhere [7, 8, 12]:

• The integrated charge q0 and magnetic moment M0

vanish in all cases where R is convergent at the origin
and T has top-bottom symmetry as well as antisym-
metry in respect to the equatorial plane. These cases
lead to models of electrically neutral particles, such as
the neutrino;

• The charge q0 and magnetic moment M0 are both
nonzero provided that R is divergent at the origin and
T has top-bottom symmetry. This case leads to models
of charged particles, such as the electron. As will be
seen from the analysis to follow, the divergence of
R can still becomes reconcilable with finite values of
q0, M0, m0, and s0 provided that the characteristic
radius r0 is made to shrink to the very small values
of a point-charge-like state, as also being supported by
experimental observations.

3.2 Quantum conditions of steady states

In this analysis a simplified road is chosen by imposing relev-
ant quantum conditions afterwards on the obtained general
solutions of the field equations. This is expected to be a
rather good approximation to a rigorous approach where
the extended field equations are quantized from the outset.
The quantized equations namely become equivalent to the

original ones in which the field quantities are replaced by
their expectation values according to Heitler [13].

The angular momentum (spin) condition to be imposed
on a model of the electron in the capacity of a fermion
particle, as well as of the neutrino, is combined with equation
(21) to result in

s0 = π
(
ε0C/c

2
)
r20G

2
0Js = ±h/4π . (33)

In particular, for a charged particle such as the electron,
muon, tauon or their antiparticles, equations (18) and (33)
combine to

q∗ ≡ |q0/e| =
√
f0J2q /2Js , f0 = 2ε0ch/e

2. (34)

Here q∗ is a dimensionless charge which is normalized
with respect to the experimentally determined elementary
charge “e”, and f0∼=137.036 is the inverted value of the
fine-structure constant.

According to Dirac, Schwinger, and Feynman [14] the
quantum condition of the magnetic moment of a charged
particle such as the electron becomes

M0m0/q0 s0 = 1 + δM , δM = 1/2πf0 , (35)

which shows excellent agreement with experiments. Here
the unity term of the right hand member is due to Dirac who
obtained the correct Landé factor, and δM is a small quantum
mechanical correction due to Schwinger and Feynman. Con-
ditions (33) and (35) can also be made plausible by element-
ary physical arguments based on the present picture of a
particle-shaped state of “self-confined” radiation [7, 12].

In a charged particle-shaped state the electric current
distribution generates a total magnetic flux Γtot. Here we
consider the electron to be a system having both quantized
angular momentum s0 and a quantized charge q0. The mag-
netic flux should then be quantized as well, and be given by
the specific values of the two quantized concepts s0 and q0.
This leads to the relation

Γtot = |s0/q0| . (36)

4 A model of the electron

The analysis in this section will show that finite and nonzero
integrated field quantities can be obtained in terms of the
shrinking characteristic radius of a point-charge-like state.
This does not imply that r0 has to become strictly equal to
zero, which would end up into the unphysical situation of a
structureless point.

4.1 The integrated field quantities

The generating function to be considered has the parts

R= ρ−γe−ρ, γ > 0 , (37)

T = 1+
n∑

ν=1

{
a2ν−1 sin[(2ν−1)θ] + a2ν cos(2νθ)

}
. (38)
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The radial part (37) appears at first glance to be somewhat
special. Generally one could have introduced a negative
power series of ρ. However, for a limited number of terms,
that with the largest negative power will in any case dominate
at the origin. Due to the analysis which follows the same
series has further to contain one term only, with a locked
special value of γ. Moreover, the exponential factor in the
form (37) secures the convergence of any moment with R,
but will not appear in the end result.

The radial form (37) is now inserted into the integrands
(24)–(27). Then the integrals (22) take a form Jk= JkρJkθ.
Here Jkρ is a part resulting from the integration with respect
to ρ, and which is dominated by terms of the strongest
negative power. The part Jkθ further results from the integra-
tion with respect to θ. In the integrals Jkρ divergences appear
when the lower limits ρk approach zero. To outbalance this,
we introduce a shrinking characteristic radius

r0 = c0 ε , c0 > 0 , 0 < ε� 1 , (39)

where ε is a dimensionless smallness parameter. The integr-
ated field quantities (18)–(21) then become

q0 = 2πε0c0G0 [Jqθ/(γ − 1)] (ε/ρ
γ−1
q ) , (40)

M0m0 = π2(ε20C/c
2)c30G

3
0 ∙

∙ [JMθJmθ/(γ−2)(2γ−1)] (ε
3/ρ

γ−2
M ρ2γ−1m ) , (41)

s0 = π(ε0C/c
2)c20G

2
0 [Jsθ/2(γ − 1)] (ε/ρ

γ−1
s )2. (42)

The reason for introducing the compound quantityM0m0

in expression (41) is that this quantity appears as a single
entity in all finally obtained relations of the present analysis.
The configuration with its integrated quantities is now re-
quired to scale in such a way that the geometry is preserved
by becoming independent of ρk and ε. Such a uniform scaling
implies that

ρq = ρM = ρm = ρs = ε (43)

and that the parameter γ has to approach the value 2 from
above, as specified by

γ (γ − 1) = 2 + δ̃ , 0 6 δ̃ � 1 , γ ≈ 2 + δ̃/3 . (44)

As a result of this

Jkθ =

∫ π

0

Ikθ dθ , (45)

where

Iqθ = −2τ1 + 4τ2 , (46)

IMθ/δ̃ = (sin θ)(−τ1 + 4τ2) , (47)

Imθ = τ0τ3 − 2(τ0τ4 + τ1τ3) +

+ 4(τ1τ4 + τ2τ3)− 8τ2τ4 , (48)

Isθ = (sin θ)Imθ . (49)

Then
q0 = 2πε0 c0G0Aq , (50)

M0m0 = π2(ε20C/c
2)c30G

3
0AMAm , (51)

s0 = (1/2)π(ε0C/c
2)c20G

2
0As (52)

with Aq ≡ Jqθ, AM ≡ JMθ/δ̃, Am≡ Jmθ, and As≡ Jsθ.
The uniform scaling due to relations (39) and (43) in

the range of small ε requires the characteristic radius r0 to
be very small, but does not specify its absolute value. One
possibility of estimating this radius is by a crude modification
of the field equations by an effect of General Relativity
originating from the circulatory spin motion [7, 12]. This
yields an upper limit of r0 of about 10−19 meters for which
this modification can be neglected.

As expressed by equations (39) and (43), the present
results also have an impact on the question of Lorentz invar-
iance of the electron radius. In the limit ε→ 0 the deductions
will thus in a formal way satisfy such an invariance, in terms
of a vanishing radius. At the same time the range of small
ε becomes applicable to the physically relevant case of a
very small but nonzero radius of a configuration having an
internal structure.

4.2 The magnetic flux

According to equation (13) the magnetic flux function be-
comes

Γ = 2πr (sin θ)A = −2πr0 (G0/c)ρ(sin
3θ)DG . (53)

Making use of equations (37) and (39), it takes the form

Γ= 2π(c0G0/C) sin
3θ
{[
γ(γ−1)+2(γ−1)ρ+ρ2

]
T−

− Dθ T}
(
ε/ργ−1

)
e−ρ . (54)

To obtain a nonzero and finite magnetic flux function at
the spherical surface ρ= ε when γ approaches the value 2
from above, one has then to choose a corresponding dimen-
sionless lower radius limit ρΓ= ε, in analogy with the cond-
ition (43).

In the further analysis a normalized flux function

Ψ ≡ Γ(ρ=ε,θ)/2π(c0G0/C) = sin
3θ (DθT−2T ) (55)

is introduced at ρ= ε. A detailed study [8, 9, 12] of this
function shows that there is a main magnetic flux

Ψ0 = Ψ(π/2) ≡ AΓ , (56)

which intersects the equatorial plane, and that the total flux
of equation (36) also includes that of two separate magnetic
“islands” situated above and below the equatorial plane. As
a consequence, the derivative dΨ/dθ has two zero points at
θ1 and θ2>θ1 in the range 0 6 θ 6 π/2. These define the
particular fluxes Ψ1 in the range 0<θ 6 θ1 and Ψ2 in the
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range θ2<θ<π/2. The total normalized magnetic flux thus
becomes

Ψtot = fΓfΨ0 , fΓf = [2(Ψ1 +Ψ2)−Ψ0] /Ψ0 , (57)

where fΓf > 1 is the obtained flux factor including the ad-
ditional contributions from the magnetic islands.

4.3 Quantum conditions

For the angular momentum and its associated charge relation
(34) the quantum condition becomes

q∗ =
√
f0A2q/As (58)

according to equations (50) and (52). The magnetic moment
condition (35) further reduces to

AMAm/AqAs = 1 + δM . (59)

Combination of equations (36), (50), (52), and (56)
finally yields

8πfΓqAΓAq = As , (60)

where fΓq is the flux factor being required by the quantum
condition. For a self-consistent solution the two flux factors
of equations (57) and (60) have to become equal to a common
factor fΓ= fΓf = fΓq .

4.4 Variational analysis of the integrated charge

Since the elementary electronic charge appears to represent
the smallest quantum of free charge, the question may be
raised whether there is a more profound reason for such a
charge to exist, possibly in terms of variational analysis. In
a first attempt efforts have therefore been made to search for
an extremum of the normalized charge (58), under the two
subsidiary quantum conditions (59) and (60) and including
Lagrange multipliers. The available variables are then the
amplitudes (a1, a2, a3, . . . ) of the polar function (38). How-
ever, such a conventional procedure is found to be upset by
difficulties. It namely applies when there are well-defined
and localized points of extremum, but not when such single
points are replaced by a flat plateau in parameter space.

The plateau behaviour is in fact what occurs here, and an
alternative analysis is then applied in terms of an increasing
number of amplitudes that are “swept” (scanned) across their
entire range of variation [9, 12]. One illustration of this is
presented in Fig. 1 for the first four amplitudes, and with
a flux factor fΓ=1.82. The figure shows the behaviour of
the normalized charge q∗ when scanning the ranges of the
remaining amplitudes a3 and a4. There is a steep barrier in
the upper part of Fig. 1, from which q∗ drops down to a flat
plateau being quite close to the level q∗=1 which represents
the experimental value:

• A detailed analysis of the four-amplitude case clearly
demonstrates the asymptotic flat plateau behaviour at

Fig. 1: The normalized electron charge q∗≡ |q0/e| as a function of
the two amplitudes a3 and a4 in the four amplitude case.

large amplitudes a3 and a4. The self-consistent mini-
mum values of q∗ obtained along the perimeter of the
plateau have been found to vary from q∗=0.969 for
fΓ=1.81 to q∗=1.03 for fΓ=1.69. Consequently,
the plateau is found to be slightly “warped”, being
partly below and partly above the level q∗=1;

• For an increasing number of amplitudes beyond four
there is a similar plateau behaviour, with only a slight
increase in the level. This is not in conflict with the
principle of the variational analysis. Any function q∗

can thus have minima in the hyperspace of amplitudes
at points where some of these amplitudes vanishes;

• The preserved plateau behaviour at an increasing num-
ber of amplitudes can be understood from the fact
that the ratio A2q/As in equation (58) becomes a slow
function of the higher “multipole” terms of the expan-
sion (38);

• With these plateau solutions the normalized charge q∗

is still left with some additional degrees of freedom.
These are eliminated by the analysis of the force bal-
ance in the following subsection. There it will be
shown that the lowest value of q∗ obtained from the
variational analysis solely does not become reconcil-
able with the radial force balance.

4.5 The radial force balance

The fundamental description of a charged particle in conven-
tional theory is deficient also in respect to its radial force
balance. Thus, an equilibrium cannot be maintained by the
classical electrostatic force ρ̄E in equation (5) only, but
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is then assumed to require forces of a nonelectromagnetic
character to be present as described by Jackson [4]. In other
words, the electron would otherwise “explode” under the
action of its self-charge.

Turning to the present revised theory, however, there is
an additional magnetic term ρ̄C×B in equation (5) which
under certain conditions provides the radial force balance of
an equilibrium. With the already obtained results based on
equations (10)–(15), the integrated radial force of the right-
hand member in equation (5) becomes

Fr = −2πε0G
2
0

∫∫ [
DG+D

(
s2DG

)]
∙

∙

[
∂G

∂ρ
−
1

ρ
s2DG

]

ρ2s dρdθ , (61)

where s≡ sin θ. For the point-charge-like model of Sections
4.1–4.4 this force is represented by the form

Fr = I+ − I− , (62)

where I+ and I− are the positive and negative contributions
to Fr. The results are as follows [10]:

• The ratio I+/I− in the plateau region of the four-
amplitude case decreases from 1.27 at q∗=0.98 to
0.37 at q∗=1.01, thereby passing a sharply defined
equilibrium point I+/I−=1 at q∗∼=0.988. The re-
maining degrees of freedom of this case have then
been used up;

• With more than four amplitudes slightly higher values
of q∗ have been obtained in a corresponding plateau
region. Even when there exists a force balance at
higher values of q∗ than that of the four-amplitude
solution, the latter still corresponds to the lowest q∗

for an integrated radial force balance;

• The obtained small deviation of q∗∼=0.988 from the
experimental value q∗=1 is a remaining problem. One
possible explanation could be provided by a small
quantum mechanical correction of the magnetic flux
condition (60), in analogy with the correction δM of the
magnetic moment condition (59). Another possibility
to be further examined is simply due to some uncer-
tainty in the numerical calculations of a rather complex
system of relations, being subject to iterations in sever-
al consecutive steps;

• The present analysis of the integrated (total) forc-
es, performed instead of a treatment of their local
parts, is in full analogy with the earlier deductions
of the integrated charge, magnetic moment, mass, and
angular momentum.

With the obtained radial force balance, we finally return
to the radial constant c0 of equation (39). As shown earlier
[7], the mass and magnetic moment become m0=Km/c0

and M0=KMc0 where Km and KM include the normalized
integrals Am, AM , and As. Introducing the relation hν=
=m0c

2 by Planck and Einstein and the related Compton
wavelength λC = c/ν=h/m0c combination with m0=
=Km/c0 then yields 6πc0/λC =Am/As . In the radial force
balance Am/As=1.07. Choosing the three-fold circumfer-
ence based on the radius c0 to be equal to the Compton
wavelength then results in masses of the electron, muon,
and tauon which deviate by only seven percent from the
experimental values. This three-fold circumference requires
further investigation.

5 A model of the neutrino

The electrically neutral steady states described in Section
3.1 will now be used as a basis for models of the neutrino.
Since the analysis is restricted to a steady particle-shaped
configuration, it includes the concept of a nonzero rest mass.
This is supported by the observed neutrino oscillations. The
present neutrino models are described in detail elsewhere
[7, 12, 15], and will only be outlined in this section.

5.1 A convergent generating function

A separable generating function is now adopted, having a
convergent radial part R and a polar part T of top-bottom
symmetry, as given by

R = ργe−ρ , T = sinα θ , (63)

where γ�α� 1. At increasing values of ρ the part R first
reaches a maximum at ρ= ρ̂= r̂/r0= γ, after which it drops
steeply to zero at large ρ. Therefore r̂= γr0 can be taken as
an effective radius of the configuration. Inserting the forms
(63) into equations (24)–(32) and the integrated expressions
(20)–(22) for the total mass and angular momentum, we
obtain the ratio

Jm/Js = 15/38 γ . (64)

Combination of equations (20), (21), (64), and the quan-
tum condition (33) then yields the mass-radius relation

m0 r̂ = m0γ r0 = 15h/152πc ∼= 7×10
−44 [kg×m] . (65)

For a case with top-bottom antisymmetry of T there is
little difference as compared to the result obtained here.

5.2 A divergent generating function

We now turn to a generating function having a divergent
radial part of the same form (37) as that for the electron
model, and with a polar part of top-bottom antisymmetry.
When ρ= r/r0 increases from ρ=0, the radial part de-
creases from a high level, down to R=1/e at ρ=1, and
further to very small values. Thus r̂= r0 can here be taken
as an effective radius of the configuration.
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The analysis of the radial integrals is analogous to that
of the electron model. To obtain nonzero and finite values of
mass m0 and angular momentum s0, a shrinking effective
radius r̂ and a shrinking amplitude factor G0 are introduced
through the relations

r̂ = r0 = cr ∙ ε , G0 = cG ∙ ε
β , (66)

where cr, cG, and β are positive constants and 0<ε� 1.
Expressions (20) and (21) then take the forms

m0=π(ε0/c
2)crc

2
G(2γ−1)

−1Jmθ
[
ε1+2β/ρ2γ−1m

]
, (67)

s0=π(ε0C/c
2)c2rc

2
G[2 (γ−1)]

−1
Jsθ

[
ε2(1+β)/ρ2(γ−1)s

]
, (68)

where the lower limits ρm and ρs of the integrals (22) have
been introduced. For nonzero and finite values of m0 and s0
it is then required that

ρm = ε(1+2β)/(2γ−1) , ρs = ε(1+β)/(γ−1) . (69)

With the quantum condition (33) relations (66)–(69)
further combine to

m0 r̂ =
h

2πc

γ − 1
2γ − 1

(Jmθ/Jsθ) ε . (70)

The ratio Jmθ/Jsθ is here expected to become a slow
function of the profile shapes of T (θ) and Imθ, as obtained
for a number of test functions for Imθ. An additional spec-
ific example with γ=3 and β=3/2 yields ρm= ε4/5 and
ρs= ε

5/4 making ρm and ρs almost linear functions of ε.
In a first crude approximation relation (70) can therefore be
written as

m0r̂ ∼= 2×10
−43 ε [kg×m] . (71)

5.3 Neutrino penetration into solid matter

The mass m0 has to be reconcilable with observed data.
The upper bounds of the neutrino mass are about 4.7 eV
for the electron-neutrino, 170 keV for the muon-neutrino,
and 18 MeV for the tauon-neutrino. Neutrinos can travel
as easily through the Earth as a bullet through a bank of
fog. They pass through solid matter consisting of nucleons,
each having a radius rN ∼=6×10−15 meters. Concerning the
present neutrino models, there are the following options:

• With the result (65) the ratio r̂/rN becomes about 106,
40, and 0.4 for the electron-neutrino, muon-neutrino,
and the tauon-neutrino. The interaction with the
electron-neutrino is then expected to take place be-
tween the short-range nucleon field as a whole and
a very small part of the neutrino field. The latter
field could then “heal” itself in terms of a restoring
tunneling effect. Then the electron-neutrino would re-
present the “fog” and the nucleon the “bullet”. The
mean free paths of the muon- and tauon-neutrinos
would on the other hand become short for this option;

• With the result (71) the corresponding values of r̂/rN
become about 4×106 ε, 100 ε, and ε, respectively. Here
sufficiently small values of ε would make the neutrino
play the role of the “bullet” and the nucleon that of
the “fog”.

6 Conclusions

The present steady electromagnetic equilibria, and their ap-
plications to leptons, have no counterparts in conventional
theory. The electron model, and that of the muon, tauon
and corresponding antiparticles, embrace new aspects and
explanations of a number of so far unsolved problems:

• To possess a nonzero electric net charge, the character-
istic radius of the particle-shaped states has to shrink to
that of a point-charge-like geometry. This agrees with
experimental observation;

• Despite the success of the conventional renormaliza-
tion procedure, physically more satisfactory ways are
needed in respect to the infinite self-energy problem
of a point-charge, and to the extra added counter terms
by which a finite result is obtained from the difference
of two “infinities”. Such a situation is avoided through
the present theory where the “infinity” (divergence) of
the generating function is outbalanced by the “zero”
of a shrinking characteristic radius;

• In the present approach the Lorentz invariance of the
electron radius is formally satisfied at the limit r0→ 0.
At the same time the theory includes a parameter range
of small but nonzero radii being reconcilable with an
internal structure;

• In contrast to conventional theory, an integrated radial
force balance can be provided by the present space-
charge current density which prevents the electron
from “exploding” under the action of its electric self-
charge. Possibly a corresponding situation may arise
for the bound quarks in the interior of baryons. Here
the strong force provides an equilibrium for their mutu-
al interactions, but this does not fully explain how the
individual quarks are kept in equilibrium in respect to
their self-charges;

• The variational analysis results in a parameter range
of the normalized charge q∗ which is close to the
experimental value q∗=1. Within this range the re-
maining degrees of freedom in the analysis become
exhausted when imposing the additional condition of
an integrated radial force balance. This results in
q∗∼=0.99 which deviates by only one percent from
the experimental value. The reason for the deviation is
not clear at the present stage, but it should on the
other hand be small enough to be regarded as an
experimental support of the theory. It can also be taken
as an indirect confirmation of a correctly applied value
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of the Landé factor, because a change of the latter by a
factor of two would result in entirely different results.
Provided that the value q∗=1 can be obtained after
relevant correction, the elementary charge would no
longer remain as an independent constant of nature,
but is then derived from the velocity of light, Planck’s
constant, and the permittivity of the vacuum.

The steady states having a vanishing net charge also form
possible models for a least some of the basic properties of
the neutrino:

• A small but nonzero rest mass is in conformity with
the analysis;

• The steady state includes an angular momentum, but
no magnetic moment;

• Long mean free paths are predicted in solid matter, but
their detailed comparison with observed data is so far
an open question.
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As shown, any four-dimensional proper vector has two observable projections onto
time line, attributed to our world and the mirror world (for a mass-bearing particle, the
projections posses are attributed to positive and negative mass-charges). As predicted,
there should be a class of neutrally mass-charged particles that inhabit neither our
world nor the mirror world. Inside the space-time area (membrane) the space rotates
at the light speed, and all particles move at as well the light speed. So, the predicted
particles of the neutrally mass-charged class should seem as light-like vortices.

1 Problem statement

As known, neutrosophy is a new branch of philosophy which
extends the current dialectics by the inclusion of neutralities.
According to neutrosophy [1, 2, 3], any two opposite entities
<A> and <Anti-A> exist together with a whole class of
neutralities <Neut-A>.

Neutrosophy was created by Florentin Smarandache and
then applied to mathematics, statistics, logic, linguistic, and
other branches of science. As for geometry, the neutrosophic
method expanded the Euclidean set of axioms by denying one
or more of them in at least two distinct ways, or, alternatively,
by accepting one or more axioms true and false in the same
space. As a result, it was developed a class of Smarandache
geometries [4], that includes Euclidean, Riemann, and Loba-
chevski-Gauss-Bolyai geometries as partial cases.

In nuclear physics the neutrosophic method theoretically
predicted “unmatter”, built on particles and anti-particles,
that was recently observed in CERN and Brookhaven experi-
ments (see [5, 6] and References there). In General Relativity,
the method permits the introduction of entangled states of
particles, teleportation of particles, and also virtual particles
[7], altogether known before in solely quantum physics.
Aside for these, the method permits to expand the basic
space-time of General Relativity (the four-dimensional
pseudo-Riemannian space) by a family of spaces where one
or more space signature conditions is permitted to be both
true and false [8].

In this research we consider another problem: mass-
charges of particles. Rest-mass is a primordial property of
particles. Its numerical value remains unchanged. On the
contrary, relativistic mass has “charges” dependent from re-
lative velocity of particles. Relativistic mass displays itself in
only particles having interaction. Therefore theory considers
relativistic mass as mass-charge.

Experimental physics knows two kinds of regular partic-
les. Regular mass-bearing particles possessing non-zero rest-
masses and relativistic masses (masses-in-motion). Massless

light-like particles (photons) possess zero rest-masses, while
their relativistic masses are non-zeroes. Particles of other
classes (as virtual photons, for instance) can be considered
as changed states of mass-bearing or massless particles.

Therefore, following neutrosophy, we do claim:
Aside for observed positively mass-charged (i. e. mass-

bearing) particles and neutrally mass-charged (light-like) par-
ticles, there should be a third class of “negatively” mass-
charged particles unknown in today’s experimental physics.

We aim to establish such a class of particles by the
methods of General Relativity.

2 Two entangled states of a mass-charge

As known, each particle located in General Relativity’s space-
time is characterized by its own four-dimensional impulse
vector. For instance, for a mass-bearing particle the proper
impulse vector Pα is

Pα = m0
dxα

ds
, PαP

α = 1 , α = 0, 1, 2, 3 , (1)

where m0 is the rest-mass of this particle. Any vector or
tensor quantity can be projected onto an observer’s time line
and spatial section. Namely the projections are physically
observable quantities for the observer [9]. As recently shown
[10, 11], the four-dimensional impulse vector (1) has two
projections onto the time line∗

P0
√
g00

= ±m, where m =
m0√

1− v2/c2
, (2)

and solely the projection onto the spatial section

P i =
m

c
vi =

1

c
pi, where vi=

dxi

dτ
, i=1, 2, 3 , (3)

where pi is the three-dimensional observable impulse. There-
fore, we conclude:

∗Where dτ =
√
g00dt +

g0i
c
√
g00

dxi is the properly observed time

interval [9, 12].
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Any mass-bearing particle, having two time projec-
tions, exists in two observable states, entangled to
each other: the positively mass-charged state is ob-
served in our world, while the negatively mass-
charged state is observed in the mirror world.

The mirror world is almost the same that ours with the
following differences:

1. The particles bear negative mass-charges and energies;

2. “Left” and “right” have meanings opposite to ours;

3. Time flows oppositely to that in our world.

From the viewpoint of an observer located in the mirror
world, our world will seem the same that his world for us.

Because both states are attributed to the same particle,
and entangled, both our world and the mirror world are two
entangled states of the same world-object.

To understand why the states remain entangled and can-
not be joined into one, we consider the third difference
between them — the time flow.

Terms “direct” and “opposite” time flows have a solid
mathematical ground in General Relativity. They are con-
nected to the sign of the derivative of the coordinate time
interval by the proper time interval . The derivative arrives
from the purely geometrical law that the square of a unit four-
dimensional vector remains unchanged in a four-dimensional
space. For instance, the four-dimensional velocity vector

UαUα = gαβ U
αUβ = 1 , Uα =

dxα

ds
. (4)

Proceeding from by-component notation of this formula,
and using w= c2(1−

√
g00) and vi=−c

g0i√
g00

, we arrive to
a square equation

(
dt

dτ

)2
−

2viv
i

c2
(
1− w

c2

)
dt

dτ
+

+
1

(
1− w

c2

)2

(
1

c4
vivkv

ivk − 1

)

= 0 ,

(5)

which solves with two roots
(
dt

dτ

)

1,2

=
1

1− w
c2

(
1

c2
viv

i ± 1

)

. (6)

Observer’s proper time lows anyhow directly dτ > 0,
because this is a relative effect connected to the his viewpoint
at clocks. Coordinate time t flows independently from his
views. Accordingly, the direct flow of time is characterized
by the time function dt/dτ > 0, while the opposite flow of
time is dt/dτ < 0.

If dt/dτ =0 happens, the time flow stops. This is a
boundary state between two entangled states of a mass-
charged particle, one of which is located in our world (the
positively directed time flow dt/dτ > 0), while another — in

the mirror world (where the time flow is negatively directed
dt/dτ < 0).

From purely geometric standpoints, the state dt/dτ =0
describes a space-time area, which, having special properties,
is the boundary space-time membrane between our world and
the mirror world (or the mirror membrane, in other word).
Substituting dt/dτ =0 into the main formula of the space-
time interval ds2= gαβ dxαdxβ

ds2 = c2dt2 + 2g0icdtdx
i + gik dx

idxk, (7)

we obtain the metric of the space within the area

ds2 = gik dx
idxk. (8)

So, the mirror membrane between our world and the
mirror world has a purely spatial metric which is also stat-
ionary.

As Kotton showed [13], any three-dimensional Riemann-
ian space permits a holonomic orthogonal reference frame,
in respect to which the three-dimensional metric can be
reduced to the sum of Pythagorean squares. Because our
initially four-dimensional metric ds2 is sign-alternating with
the signature (+−−−), the three-dimensional metric of the
mirror membrane between our world and the mirror world is
negatively defined and has the form

ds2 = −H2
1 (dx

1)2 −H2
2 (dx

2)2 −H2
3 (dx

3)2, (9)

where Hi (x1, x2, x3) are Lamé coefficients (see for Lamé
coefficients and the tetrad formalism in [14]). Determination
of this metric is connected to the proper time of observer,
because we mean therein.

Substituting dt=0 into the time function (6), we obtain
the physical conditions inside the area (mirror membrane)

vidx
i = ±c2dτ . (10)

Owning the definition of the observer’s proper time

dτ =
√
g00 dt+

g0idxi√
g00

=

(

1−
w

c2

)

dt−
1

c2
vidx

i, (11)

and using dxi= vidτ therein, we obtain: the observer’s
proper state dτ > 0 can be satisfied commonly with the state
dt=0 inside the membrane only if there is∗

viv
i = −c2 (12)

thus we conclude:

The space inside the mirror membrane between our
world and the mirror world seems as the rotating at
the light speed, while all particles located there move
at as well the light speed. So, particles that inhabit the
space inside the membrane seem as light-like vortices.

∗Here is a vector product of two vectors vi and vi, dependent on the
cosine between them (which can be both positive and negative). Therefore
the modules may not be necessarily imaginary quantities.
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Class of mass-charge Particles Energies Class of motion Area

Positive mass-charges, m > 0 mass-bearing particles E > 0 move at sub-light speeds our world

massless (light-like) particles E > 0 move at the light speed our world

Neutral mass-charges, m = 0 light-like vortices E = 0
move at the light speed
within the area, rotating
at the light speed

the membrane

massless (light-like) particles E < 0 move at the light speed the mirror world

Negative mass-charges, m < 0 mass-bearing particles E < 0 move at sub-light speeds the mirror world

This membrane area is the “barrier”, which prohibits
the annihilation between positively mass-charged particles
and negatively mass-charged particles — the barrier between
our world and the mirror world. In order to find its mirror
twin, a particle should be put in an area rotating at the light
speed, and accelerated to the light speed as well. Then the
particle penetrates into the space inside the membrane, where
annihilates with its mirror twin.

As a matter of fact, no mass-bearing particle moved at
the light speed: this is the priority of massless (light-like)
particles only. Therefore:

Particles that inhabit the space inside the membrane
seem as light-like vortices.

Their relativistic masses are zeroes m=0 as those of
massless light-like particles moving at the light speed. How-
ever, in contrast to light-like particles whose energies are
non-zeroes, the particles inside the membrane possess zero
energiesE=0 because the space metric inside the membrane
(8) has no time term.

The connexion between our world and the mirror world
can be reached by matter only filled in the light-like vortical
state.

3 Two entangled states of a light-like matter

As known, each massless (light-like) particle located in Gen-
eral Relativity’s space-time is characterized by its own four-
dimensional wave vector

Kα =
ω

c

dxα

dσ
, KαK

α = 0 , (13)

where ω is the proper frequency of this particle linked to
its energy E= ~ω, and dσ=

(
−gik+

g0ig0k
g00

)
dxidxk is the

measured spatial interval. (Because massless particles move
along isotropic trajectories, the trajectories of light, one has
ds2=0, however the measured spatial interval and the proper
interval time are not zeroes.)

As recently shown [10, 11], the four-dimensional wave
vector has as well two projections onto the time line

K0
√
g00

= ±ω , (14)

and solely the projection onto the spatial section

Ki =
ω

c
ci =

1

c
pi, where ci=

dxi

dτ
, (15)

while ci is the three-dimensional observable vector of the
light velocity (its square is the world-invariant c2, while
the vector’s components ci can possess different values).
Therefore, we conclude:

Any massless (light-like) particle, having two time
projections, exists in two observable states, entangled
to each other: the positively energy-charged state is
observed in our world, while the negatively energy-
charged state is observed in the mirror world.

Because along massless particles’ trajectories ds2=0,
the mirror membrane between the positively energy-charged
massless states and their entangled mirror twins is charact-
erized by the metric

ds2 = gik dx
idxk = 0 , (16)

or, expressed with Lamé coefficients Hi (x1, x2, x3),

ds2 = −H2
1 (dx

1)2 −H2
2 (dx

2)2 −H2
3 (dx

3)2 = 0 . (17)

As seen, this is a particular case, just considered, the
membrane between the positively mass-charged and nega-
tively mass-charge states.

4 Neutrosophic picture of General Relativity’s world

As a result we arrive to the whole picture of the world
provided by the purely mathematical methods of General
Relativity, as shown in Table.

It should be noted that matter inside the membrane is
not the same as the so-called zero-particles that inhabit fully
degenerated space-time areas (see [15] and [8]), despite the
fact they posses zero relativistic masses and energies too.
Fully degenerate areas are characterized by the state w+
+ viu

i= c2 as well as particles that inhabit them∗. At first,
inside the membrane the space is regular, non-degenerate.
Second. Even in the absence of gravitational fields, the zero-
space state becomes viui= c2 that cannot be trivially reduced
to viui=−c2 as inside the membrane.

∗Here ui= dxi/dt is so-called the coordinate velocity.
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Particles inside the membrane between our world and
the mirror world are filled into a special state of light-like
vortices, unknown before.

This is one more illustration to that, between the opposite
states of positively mass-charge and negatively mass-charge,
there are many neutral states characterized by “neutral” mass-
charge. Probably, further studying light-like vortices, we’d
find more classes of neutrally mass-charged states (even,
probably, an infinite number of classes).
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The emitter and receiver Doppler effects are re-examined from the point of view of
boundary condition on a moving boundary. Formulas are derived for the frequencies of
the waves excited on receiver’s and emitter’s surfaces by the waves traveling thorough
the medium. It is shown that if the emitting source and the reflection mirror are moving
with the same speed in the same direction relative to a medium at rest, there is no
observable Doppler effect. Hence, the nil effect of Michelson and Morley experiment
(MME) is the only possible outcome and cannot be construed as an indication about the
existence or nonexistence of an absolute continuum. The theory of a new experiment
that can give conclusive information is outlined and the possible experimental set-up
is sketched.

5 Introduction

Since the groundlaying work of Fizeau, interferometry has
been one of the most often used methods to investigate
the properties of light. The idea of interferometry was also
applied to detecting the presence of an absolute medium in
the Michelson and Morley experiment (MME) [1]. The ex-
pected effect was of second order O(v2/c2) with respect to
the ratio between the Earth speed v and speed of light c and it
is generally accepted now that Michelson-Morley experiment
yielded a nil result, in the sense that the fringes that were
observed corresponded to a much smaller (assumed to be
negligible) speed than actual Earth’s speed. Around the end
of Nineteen Century, the nil result of MME prompted Fitz-
Gerald and Lorentz to surmise that the lengths are contracted
in the direction of motion by the Lorentz factor

√
1− v2/c2

that cancels exactly the expected effect. Since then the Lo-
rentz contraction has been many times verified and can be
considered now as an established fact. The Lorentz contrac-
tion does not need MME anymore in order to survive as
the main vehicle of the modern physics of processes at high
speeds.

On another note, the nil effect of MME was eventually
interpreted as an indication that there exists no absolute
(resting) medium where the light propagates. The problem
with this conclusion is that nobody actually proposed a theo-
ry for MME in which a continuous medium was considered
with the correct boundary conditions. Rather, the emission
theory of light was used whose predictions contradicted the
experimental evidence. In the present paper we show that if a
medium at rest is assumed and if this medium is not entrained
by the moving bodies, the exact effect from MME is nil, i. e.,
the expected second-order effect was an artifact from the fact
that the emission theory of light (essentially corpuscular in
its nature) was applied to model the propagation of light in

a continuous medium.
The best way to judge about the existence of the absolute

medium is to stage first-order experiments (one way experi-
ments). Along these lines are organized many experimental
works, most notably [2, 3] where the sought effect was the
anisotropy of speed of light. In our opinion, it is not quite
clear how one can discriminate between an anisotropic speed
of light on one hand and a first-order Doppler effect, on the
other. Yet, we believe that the solution of the conundrum
about the existence or nonexistence of an absolute continuum
will be solved by a first-order experiment. To this end we
also propose an interference experiment that should be able
to measure the first-order effect. The most important thing is
that first-order effect has actually been observed (see [2, 3],
among others). This being said, one should be aware that the
“second-order” re-interpretations of the slightly nontrivial
results of [4] are also a valid avenue of research in the
quest for detecting the absolute medium (or as the modern
euphemism goes “the preferred frame”). In this connection,
an important contribution seems to be [5]. Another source of
higher-order effects can also be the local dependence of speed
of light on the strength of the gravitational field. This kind of
dependence is very important in any experiment conducted
on Earth and in order to figure out the more subtle effects,
one should use a theory in which the fundamental tensor
of space affects the propagation of light. In the framework
of the present approach it will result into a wave equation
for the light which has non-constant coefficients, the latter
depending on the curvature tensor. It goes beyond the scope
of the present short note to delve into this more complicated
case.

The aim of the present paper is to be understood in a very
limited fashion: we show that the main effect of MME must
be zero when it is considered in a purely Euclidean space
without gravitational effects on the propagation of light. We
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pose correctly the problem of propagation and reflection of
waves in a resting medium when both the source and the
mirror are moving with respect to the medium. We show that
the strict result from the interference is nil which invalidates
most of the conclusions drawn from the perceived nil effect
of MME.

6 Conditions on moving boundaries

Here we follow [6] (see also [7] for application to MME)
where emitter’s Doppler effect was explained with bound-
ary conditions (b. c.) on a moving boundary. Consider the
(1+1)D linear wave equation

φtt = c2φxx , (1)

whose solution is the harmonic wave.

φ (x, t) = eik̂x±iω̂t, where k̂ =
ω̂

c
, (2)

where c is the characteristic speed and “±” signs refer to the
left- and right-going waves, respectively.

Consider now a boundary (a point in 1D) moving with
velocity u, at which a wave with temporal frequency ω is
created. This means that the wave propagating inside the
medium satisfies the following boundary condition

φ (ut, t) = ei(ω1t−k1x) = eiω1(t−x/c) =

= eiω1t(1−u/c) = eiωt,
(3)

where it is tacitly assumed that the right going wave is of
interest. The above b. c. gives that

ω1

(
1−

u

c

)
= ω, → ω1 =

ω

1− u/c
. (4)

The last formula is the well known emitter’s Doppler
effect which shows how the frequency of the propagating
wave is related to the frequency of the moving emitter

If the receiver is at rest, it will measure a frequency
ω1. The situation is completely different if the receiver is
also moving, say with velocity v in the positive x-direction
(to the right). Then due to the b. c. φ (vt, t)= eiω1t−i

ω1
c vt=

= eiω2t, the traveling wave of frequency ω1 and wave number
k1=

ω1
c will generate an oscillation of frequency ω2 at the

moving boundary point x= vt:

ω2 = ω1

(
1−

v

c

)
= ω

1− v/c
1− u/c

, (5)

i. e., the measuring instruments in the moving frame of the
receiver will detect a standing wave of frequency ω2. We
observe here that if the receiver is moving exactly with
the speed of the emitter, then the frequency measured in
receiver’s frame will be exactly equal to emitter’s frequency.
In other words, a receiver that is moving with the same speed
as the emitter does not observe a Doppler effect and cannot
discover the motion.

This conclusion appears in an implicit form in the stand-
ard texts, e. g. [8, 9, p.164], where it is claimed that a Doppler
effect is observed only for relative motion of the emitter and
the receiver. Unfortunately, this correct observation did not
lead to posing the question about the relevance of MME de-
spite of the conspicuous lack of relative motion between the
emitter and the receiver (mirror) in MME. The explanation
in [8] was that “[F]or electromagnetic waves there evidently
exists no preferred frame”. We believe that the rigorous
statement is that absolute rest (the “preferred frame”) cannot
be detected from measurements of Doppler effect between
a source and a receiver which are moving together with
identical speed through the absolute continuum.

After a consensus has been reached between the present
work and the literature that the luminiferous continuum can-
not be detected from an experiment in which a single source
and a receiver are moving together as a non-deformable sys-
tem, then the interesting question which remains is whether
the absolute continuum can be detected when the emitter
and the mirror are in relative motion, i. e. when they move
with different speeds relative to the resting frame. To this
end, consider now the situation when the receiver is a mirror
which sends back a left going wave eiω3t+ik3x generated by
the oscillations with frequency ω2 at the point x= vt namely,
eiω3t+ik3vt = eiω2t. Then

ω3 (1+v/c) = ω2, ⇒ ω3 = ω
1−v/c

(1+v/c)(1−u/c)
. (6)

Now, the wave of frequency ω3 is traveling through the
continuum to the left. The frequency, ω4, of the wave excited
on the moving surface of the emitter by this traveling wave
has to satisfy the moving b. c. eiω̂4 = ei(ω̂3t+ω3

u
c t). Then

ω4 = ω3

(
1+

u

c

)
, ⇒ ω4 = ω

(1−v/c)(1+u/c)
(1+v/c)(1−u/c)

. (7)

The above result is illustrated in Fig. 1.

exp(iωt) exp(iω 1
1−u/c)

exp(iω 1
1−(u−v)/c)

exp(iω 1−v/c
(1+v/c)(1−u/c))

exp(iω (1+u/c)(1−v/c)(1+v/c)(1−u/c))

u v

Fig. 1: Moving emitter and receiver

The case of waves propagating transversely to the emitter
and receiver gives a trivial result in 1D, in the sense that the
frequency and wave number of the propagating wave are not
affected by the motion of the source or the receiver. The
most general treatment for point source in 3D is given by
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the eikonal equation [6, p.225] for the inhomogeneous wave
equation that is obtained in a frame moving with prescribed
speed in certain direction.

An interesting limiting case is presented when u, v � c.
Then the product uv/c2 can be neglected in comparison
with (u− v)/c (provided that u− v ' O(u)) and the above
formula reduces to

ω4 =
1 + (u− v)/c
1− (u− v)/c

,

which is the formula from [8, 9] for zero angle between
the relative speed and the line of the emitter and observer.
The discrepancies of order (uv/c2) can be the cause of
the so-called Pioneer anomaly [10]. It will be interesting
to reexamine the raw data from Pioneer 10 eliminating the
formula for relativistic Doppler effect and using in its place
Eq. 7. Then what appears as an anomaly, can actually give
the information about the absolute velocities of Earth and of
the space ship. It is not necessary, of course, to go as far as
Pioneer 10 and 11 went. The experiment can be done with
an interferometer whose arms are the distances between two
different satellites moving with different orbital speeds in the
vicinity of Earth.

7 Michelson-Morley experiment (MME)

It was argued that because of the motion of the experimental
equipment (the interferometer), the time taken by light to
travel in the direction of motion will be different from the
time needed to return, and these times together will differ
from the time to travel in lateral direction. The argument
that led to the prediction that the effect is of second order
(see, [11, p.149], [1]) was typically corpuscular in its nature.
The emission theory of light assumed that the “particles” of
light were supposed to move in a resting continuum with
velocity c. However when these particles were emitted by
a moving surface in the direction of motion, they acquired
speed c+v, whereas the particles emitted against the motion
would move with speed c− v. The emission theory claimed
that the total time for a ray to complete the full path in
longitudinal direction is

t1 =
l

c+ v
+

l

c− v
=

2l

c(1− v2/c2)
, (8)

where l is the length of the longitudinal and transverse arms
of the interferometer. The arguments about the nature of
reflections in the transverse arm of the interferometer are
similarly based on the emission theory. In the transverse
direction the length of the path traveled by one light corpuscle
is calculated using the Pythagorean theorem and the total
time needed for the light particle to complete the return trip
to the lateral mirror is given by (see [1])

t2 =
2l

c

√

1 +
v2

c2
. (9)

Then the difference in the times needed to traverse the
longitudinal and the transverse arms is

t1 − t2 ≈
2l

c

[

1 + 2
v2

c2
− 1−

v2

c2
+O

(
v4

c4

)]

≈ l
v2

c2
. (10)

Under the standard analogies of corpuscular approach, at
this point the arguments usually go back to the wave theory
of light assuming that the change in travel time of light
particles somehow materializes as change of the emitted or
received frequency.

Although the scientific community gradually elevated
MME to the status of one of the experimenta crucis for the
theory of relativity, the above argument was never critically
revisited after the postulate of the constancy of speed of light
was accepted. The only work known to the present author is
[12] where the emission theory and wave theory of Doppler
effect are compared and shown to coincide within the first
order in v/c but no conclusions about the actual applicability
of the above corpuscular-based formula are made.

The problem with applying a corpuscular approach to
a wave phenomenon in a medium is that a propagation
speed c+ v is impossible since all propagation speeds are
limited by the characteristic speed of the medium. Yet, the
above derivations were repeated in [11, 13] and now feature
prominently in many of the most authoritative modern text-
books, such as [9, 14]. So we are faced with a very peculiar
situation: The formula used to explain the results of one of the
most important for relativity theory experiments contradict
the second postulate of the same theory.

The fallacy of the argumentation is as follows:

(i) The existence of a continuous medium in which the
light propagates is stipulated (luminiferous continuum);

(ii) An irrelevant to continuum description theoretical for-
mula is derived using the corpuscular concept of light
(emission theory of light);

(iii) An experiment is designed for which it is believed that
it can allow the measurement of the variable involved
in the irrelevant theoretical formula;

(iv) Measurements obtained from the experiment do not
show the expected effect;

(v) Conclusion is drawn that the contradiction is due to
the fact that the original assumption of the presence of
a continuum at rest is wrong;

(vi) The concept of existing of a material luminiferous
continuum (i) is abandoned altogether.

This kind of fallacy is called ignoratio elenchi (“pure
and simple irrelevance”) and consists in using an argument
that is supposed to prove one proposition but succeeds only
in proving a different one. Clearly, there can be at least two
causes for the nil result of the experiment. Before assuming
that (i) is wrong, one has to examine (ii) from the point
of view of the wave theory of light under the condition of
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constancy of speed of light. The only way to pass judgment
on the presence or absence of an absolute continuum is to
derive a formula for the interference effect that is based on
the assumption that the space between the different parts of
the equipment is filled with a continuous medium in which
the propagation speed of linear waves is a given constant. In
doing so, the reflection from the mirror has to be treated as
an excitation of a wave on moving material surface. Then
the frequency of the excited wave (which then travels back
as the reflected wave) is subject to the motion of the mirror
itself. In this short note we make an attempt to correctly pose
the problem (using the adequate mathematical approach to
solving the wave equation with b. c. on moving boundaries)
and to show the consequences of this for the interpretation
of interferometry experiments involving moving mirrors that
are moving translatory with respect to the supposed absolute
continuum. Only after the proper theoretical formula based
on the idea that the continuum is at rest and that the equip-
ment is moving relative to it, is derived and only after the
predictions of this relevant formula are found to contradict
the experimental evidence, one rule out the existence of
an absolute continuum at rest in which the light waves are
propagating as shear waves in a material medium.

It has been shown above that if the source of light and the
mirror are moving together with the same velocity relative
to the resting medium, then the Doppler effect is strictly
equal to zero. This means that no Doppler effect can be
detected from an experiment in which the emitter and the
mirror are moving together through a quiescent continuum.
This means that a nil effect from the celebrated experiment of
Michelson and Morley should be interpreted as an evidence
about the existence of a material continuum at rest and
that this absolute continuum is not entrained by the moving
bodies. The flawed arguments of the emission theory of light
introduced an error of O(v2/c2) in the formulas which was,
in fact, the perceived effect in MME. At the same time,
the correct solution (see the previous section) shows that
the effect must be strictly nil provided that an absolute
continuum fills the space between the different parts of the
interferometer and that this continuum is not entrained.

8 A possible experimental set-up

If MME is irrelevant to detecting the absolute medium,
then the question arises of is it possible at all to detect
the latter by means of an interferometry experiment whose
parts are moving together with the Earth. The answer (as
already suggested in [7]) is in the positive if one can use two
independent sources of light of virtually identical frequencies
and avoid reflections. This means that one has to aim the
beams against each other as shown in Fig. 2.

Assume now that two waves of identical frequencies are
excited at two different points that are moving together in the
same direction with the same velocity relative to the resting

medium. The interference between the right-going wave from
the left source and the left-going wave from the right source
is given by

eiω(t−x/c)/(1−u/c) + eiω(t+x/c)/(1+u/c) =

=
[
cos (ω1t− k1x) + cos (ω2t+ k2x)

]
+

+ i
[
sin (ω1t− k1x) + sin (ω2t+ k2x)

]
=

= 2 cos (ω̃t+ k̂x) exp
[
i(ω̂t+ k̃x)

]
,

(11)

where

ω̃ =
ω1+ω2
2

= ω

(

1−
u2

c2

)

, ω̂ =
ω2−ω1
2

= −
u

c
ω̃,

are the carrier and beat frequencies, and k̃ = ω̃/c, k̂ = ω̂/c.
The wave excited at certain point, say x = 0, is

2 cos (ω̃t) exp (iω̂t) . (12)

In Fig. 2 we show a possible experimental set-up which
makes use of two independent sources of coherent light. Note
that using two lasers, does not make our experiment similar
to the set-up used in [15] because the latter involves mirrors
and as it has been shown above, using mirrors dispels any
possible effect.

Maser/Laser I Photodetector/Screen Maser/Laser II

Fig. 2: Experimental set-up involving two lasers/masers

One of the ways to find the beat frequency is to use a
photodetector in a point of the region of interference of the
two waves. Note that the carrier frequency of the visible
light is very high and cannot be detected in principle. The
problem is that and even the beat frequency, Eq. 12, can be
too high for the resolution of the available photodetectors.
Apart from the fact that mirrors were used in [16], the
high beat frequency could be another reason why it was
not detected in those experiments. In fact they were after
the beat frequency connected with the second-order effects
and found practically no beat which is exactly what is to be
expected in the light of the theory above presented. This is
additional confirmation of the theory proposed here because
we claim that no effect (neither first- nor second-order not
higher-order) can exist if reflections are involved.

The other way to conduct the experiment is to measure
the beat wave number k̂ by taking a snapshot of the wave at
certain moment of time. Then the spatial distribution of the
wave amplitude is

2 cos (k̂x) exp (ik̃x) , (13)

which will produce an interference pattern in the resting
continuum that can be observed on a screen (as shown
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alternatively in Fig. 2). Note that in this case the screen
is “parallel” or “tangent” to the vibrating part of the absolute
continuum, and what is observed, are the dark and light strips
corresponding the the different values of the amplitude of the
beat wave. Clearly, the effect will be best observed if the two
lasers beams have identical polarization.

The requirements for the frequency stabilization of the
sources of light stem from the magnitudes of the beat fre-
quency. It is accepted nowadays that the speed of the so-
called Local Standard of Rest (LSR) to which solar system
belongs, is of order of v≈ 300 km/s relative to the center
of the local cluster of galaxies [17]. The speed of LSR is
an upper estimate of the speed with respect to the absolute
medium. This maximum can be reached only if the center of
cluster of galaxies is at rest relative to the medium. Thus, the
upper limit for the dimensionless parameter ε= v/c is 10−3,
which places very stringent requirements on the resolution
in case that a photodetector is involved. For red-light lasers,
the beat frequency is of order of 600GHz which is well
beyond the sensitivity of the available photodetectors. This
means that one should opt for terahertz masers when the beat
frequency ωb will be smaller than 1–3GHz.

In the alternative implementation of the experimental set-
up a detecting screen is used to get the spatial distribution of
the interference pattern. In such a case, one can use standard
visible-light lasers. For instance, the red light has wavelength
approximately in the range of 600m−9, then the beat wave
length is expected to be ε−1≈1000 times longer. This means
0.6mm which is technically feasible to observe on a screen.
Conversely, using terahertz masers in this case could make
the wave length of the beat wave of order of 20–50 cm.

Now, in order to have reliable results from the proposed
interferometry experiment, one needs frequency stabilization
a couple of orders of magnitude better than the sought effect.
To be on the safe side, we mention that the lowest value for ε
is 10−4 which corresponds to the orbital speed of Earth. Then
the best stabilization of the frequency needed is 10−7. This is
well within the stabilization limits for the currently available
low-power lasers. For example, Coherent, Inc. offers the
series 899-21 that are Actively Stabilized, Scanning Single-
Frequency Ring Lasers with stabilization 10−9.

9 Conclusion

The theory of Michelson-Morley interference experiment
is revisited from the point of view of the wave theory of
light. The fallacy of using the accepted formula based on
the emission theory of light is shown and new formulas are
derived based on the correct posing of the boundary con-
ditions at moving boundaries for a hyperbolic equation. It
is shown that when the source of light and the reflector are
moving with the same speed through a non-entrained absol-
ute continuum, the reflected wave as received back at the
emitter’s place shows no Doppler shift, and hence no fringes

can be expected. The situation is different if the emitter and
the reflector are in relative motion with respect to each other.
The meaning of the results of the present work is that the
only correct conclusion from a nil effect from interferometry
experiment involving reflection is not that absolute medium
does not exist, but that an absolute continuum exist which
is not entrained by the motion of the measuring instrument
(the system of emitters and mirrors). Naturally, the nil effect
of Michelson-Morley experiment should not be used as the
sole verification of the absolute medium and to this end a
new experimental set-up is proposed.
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The Roland De Witte 1991 Experiment (to the Memory of Roland De Witte)

Reginald T. Cahill
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In 1991 Roland De Witte carried out an experiment in Brussels in which variations in
the one-way speed of RF waves through a coaxial cable were recorded over 178 days.
The data from this experiment shows that De Witte had detected absolute motion of
the earth through space, as had six earlier experiments, beginning with the Michelson-
Morley experiment of 1887. His results are in excellent agreement with the extensive
data from the Miller 1925/26 detection of absolute motion using a gas-mode Michelson
interferometer atop Mt. Wilson, California. The De Witte data reveals turbulence in
the flow which amounted to the detection of gravitational waves. Similar effects were
also seen by Miller, and by Torr and Kolen in their coaxial cable experiment. Here we
bring together what is known about the De Witte experiment.

Preface of the Editor-in-Chief

Today, on the 15th anniversary of De Witte’s experiment, I would
like to comment on an erroneous discussion of the “supposed dis-
parity” between the De Witte results and Einstein’s Principle of Re-
lativity, and the whole General Theory of Relativity, due to the
measured anisotropy of the velocity of light. The same should be
said about the Torr-Kolen experiment (1981, Utah State Univ., USA)
and the current experiment by Cahill (Flinders Univ., Australia).

The discussion was initiated by people having a poor knowledge
of General Relativity, having learnt it from “general purpose” books,
and bereft of native abilities to learn even the basics of tensor calcu-
lus and Riemannian geometry — mainly so-called “anti-relativists”
and mere anti-semites, to whom Einstein’s genius and discoveries
give no rest.

Roland De Witte was excellent experimentalist, not a master in
theory. He was misled about the “disparity” by the anti-relativists,
that resulted his deep depression and death.

It is well known that in a four-dimensional pseudo-Riemannian
space (the basic space-time of General Relativity), the velocity of
light c is said to be general covariantly invariant; its value is inde-
pendent of the reference frame we use. However a real observer is
located in his three-dimensional spatial section x0= const (inhomo-
geneous, curved, and deforming), pierced by time lines xi= const
(also inhomogeneous and curved). The space can bear a gravitation-
al potential w=c2(1−

√
g00), and be non-holonomic — the time

lines are non-othogonal to the spatial section, that is displayed as the
space three-dimensional rotation at the linear velocity vi=−c

g0i√
g00

.
These factors lead to the fact that the physically observable time
interval is dτ =

√
g00 dt− 1

c2
vidx

i, which is different to the coord-
inate time interval dt. Anyone can find all this in The Classical
Theory of Fields by Landau and Lifshitz 1, the bible of General
Relativity, and other literature.

The complete theory of physically observable quantities was
developed in the 1940’s by Abraham Zelmanov, by which the
observable quantities are determined by the projections of four-
dimensional quantities onto an observer’s real time line and spatial
section. (See 2,3,4,5 and References therein.) From this we see that
the physically observable velocity of light is a three-dimensional
vector ci= dxi

dτ
dependent on the gravitational potential and the

space non-holonomity (rotation) through the physically observable
time interval dτ . In particular, ci can be distributed anisotropically
in the spatial section, if it completely rotates. At the same time the
complete general covariantly invariant c remains unchanged.

Therefore the anisotropy of the observed value of the velocity
of light does not contradict Einstein’s Principle of Relativity. On
the contrary, such an experimental result can be viewed as a new
verification of Einstein’s theory.

Moreover, as already shown by Zelmanov2 in the 1940’s, Gen-
eral Relativity’s space permits absolute reference frames connect-
ed to the anisotropy of the fields of the spatial non-holonomity
or deformation, i. e. connected to globally polarized fields which
are likely a global background giro. Therefore, absolute reference
frames connected to the spatial anisotropy of the velocity of light
or the Cosmic Microwave Background can also be viewed as
additional verifications of General Relativity.

Roland De Witte didn’t published his experimental results. All
we possess subsequent to his death is his public letter of 1998
and letters to his colleagues wherein he described his experimental
set up in detail. I therefore asked Prof. Cahill to prepare a brief
description of the De Witte experiment so that any interested person
may thereby have a means of referring to De Witte’s results as
published. Reginald T. Cahill is an expert in such experimental
techniques and currently prepares a new experiment, similar to that
by De Witte (but with a precision in measurement a thousand times
greater using current technologies). Therefore his description of the
De Witte experiment is accurate.

Dmitri Rabounski
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1 Introduction

R. De Witte

Ever since the 1887 Michelson-Morley ex-
periment [1] to detect absolute motion, that
is motion relative to space, by means of the
anisotropy of the speed of light, physicists
in the main have believed that such absolute
motion was unobservable, and even meaning-
less. This was so after Einstein proposed as

one of his postulates for his Special Theory of Relativity
that the speed of light is invariant quantity. However the
Michelson-Morley experiment did observe small fringe shifts
of the form indicative of an anisotropy of the light speed∗. The
whole issue has been one of great confusion over the last 100
years or so. This confusion arose from deep misunderstand-
ings of the theoretical structure of Special Relativity, but
also because ongoing detections of the anisotropy of the
speed of light were treated with contempt, rather than being
rationally discussed. The intrinsic problem all along has been
that the observed anisotropy of the speed of light also affects
the very apparatus being used to measure the anisotropy.
In particular the Lorentz-Fitzgerald length contraction effect
must be included in the analysis of the interferometer when
the calibration constant for the device is calculated. The cal-
ibration constant determines what value of the speed of light
anisotropy is to be determined from an observed fringe shift
as the apparatus is rotated. Only in 2002 was it discovered
that the calibration constant is very much smaller than had
been assumed [2, 3], and that the observed fringe shifts cor-
responded to a speed in excess of 0.1% of the speed of light.
That discovery showed that the presence of a gas in the light
path is essential if the interferometer is to act as a detector
of absolute motion, and that a vacuum operated interfero-
meter is totally incapable of detecting absolute motion. That
physics has suppressed this effect for over 100 years is a
major indictment of physics. There have been in all seven de-
tections of such anisotropy, with five being Michelson inter-
ferometer experiments [1, 4, 5, 6, 7], and two being one-way
RF coaxial cable propagation time experiments, see [9, 10]
for extensive discussion and analysis of the experimental
data. The most thorough interferometer experiment was by
Miller in 1925/26. He accumulated sufficient data that in con-
junction with the new calibration understanding, the velocity
of motion of the solar system could be determined† as
(α=5.2hr, δ=−67◦), with a speed of 420± 30 km/s. This
local (in the galactic sense) absolute motion is different from
the Cosmic Microwave Background (CMB) anisotropy de-
termined motion, in the direction (α=11.20hr, δ=−7.22◦)
with speed 369 km/s; this is motion relative to the source of
the CMB, namely relative to the distant universe.

∗The older terminology was that of detecting motion relative to an
ether that was embedded in a geometrical space. However the more modern
understanding does away with both the ether and a geometrical space, and
uses a structured dynamical 3-space, as in [9, 10].

†There is a possibility that the direction is opposite to this direction.

The first one-way coaxial cable speed-of-propagation ex-
periment was performed at the Utah State University in
1981 by Torr and Kolen [8]. This involved two rubidium
vapor clocks placed approximately 500 m apart with a 5 MHz
sinewave RF signal propagating between the clocks via a
buried nitrogen filled coaxial cable maintained at a constant
pressure of ∼ 2 psi. Unfortunately the cable was orientated in
an East-West direction which is not a favourable orientation
for observing absolute motion in the Miller direction. There
is no reference to Miller’s result in the Torr and Kolen
paper, otherwise they would presumably not have used this
orientation. Nevertheless there is a small projection of the
absolute motion velocity onto the East-West cable and Torr
and Kolen did observe an effect in that, while the round
speed time remained constant within 0.0001% c, variations
in the one-way travel time were observed. The maximum
effect occurred, typically, at the times predicted using the
Miller velocity [9, 10]. So the results of this experiment are
also in remarkable agreement with the Miller direction, and
the speed of 420 km/s. As well Torr and Kolen reported fluc-
tuations in both the magnitude, from 1–3 ns, and the time of
maximum variations in travel time.

However during 1991 Roland De Witte performed the
most extensive RF travel time experiment, accumulating
data over 178 days. His data is in complete agreement with
the 1925/26 Miller experiment. These two experiments will
eventually be recognised as two of the most significant ex-
periments in physics, for independently and using different
experimental techniques they detected the same velocity of
absolute motion. But also they detected turbulence in the flow
of space past the earth; non other than gravitational waves.
Both Miller and De Witte have been repeatably attacked for
their discoveries. Of course the experiments indicated the
anisotropy of the speed of light, but that is not in conflict
with the confirmed correctness of various relativistic effects.
While Miller was able to publish his results [4], and indeed
the original data sheets were recently discovered at Case
Western Reserve University, Cleveland, Ohio, De Witte was
never permitted to publish his data in a physics journal. The
only source of his data was from a e-mail posted in 1998, and
a web page that he had established. This paper is offered as
a resource so that De Witte’s extraordinary discoveries may
be given the attention and study that they demand, and that
others may be motivated to repeat the experiment, for that is
the hallmark of science‡.

2 The De Witte experiment

In a 1991 research project within Belgacom, the Belgium tel-
communications company, another (serendipitous) detection
of absolute motion was performed. The study was undertaken
by Roland De Witte. This organisation had two sets of atomic

‡The author has been developing and testing new techniques for doing
one-way RF travel time experiments.
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clocks in two buildings in Brussels separated by 1.5 km
and the research project was an investigation of the task
of synchronising these two clusters of atomic clocks. To
that end 5 MHz radio frequency (RF) signals were sent in
both directions through two buried coaxial cables linking
the two clusters. The atomic clocks were caesium beam
atomic clocks, and there were three in each cluster: A1, A2
and A3 in one cluster, and B1, B2, and B3 at the other
cluster. In that way the stability of the clocks could be
established and monitored. One cluster was in a building
on Rue du Marais and the second cluster was due south in a
building on Rue de la Paille. Digital phase comparators were
used to measure changes in times between clocks within the
same cluster and also in the propagation times of the RF
signals. Time differences between clocks within the same
cluster showed a linear phase drift caused by the clocks not
having exactly the same frequency, together with short term
and long term noise. However the long term drift was very
linear and reproducible, and that drift could be allowed for in
analysing time differences in the propagation times between
the clusters.

The atomic clocks (OSA 312) and the digital phase
comparators (OS5560) were manufactured by Oscilloquartz,
Neuchâtel, Switzerland. The phase comparators produce a
change of 1 V for a phase variation of 200 ns between the
two input signals. At both locations the comparison between
local clocks, A1–A2 and A1–A3, and between B1–B2, B1–
B3, yielded linear phase variations in agreement with the fact
that the clocks have not exactly the same frequencies due
to the limited reproducible accuracy together with a short
term and long term phase noise (A. O. Mc Coubrey, Proc. of
the IEEE, Vol. 55, No. 6, June, 1967, 805–814). Even if the
long term frequency instability were 2×10−13 this is able to
produce a phase shift of 17 ns a day, but this instability was
not often observed and the ouputs of the phase comparators
have shown that the local instability was typically only a few
nanoseconds a day (5 ns) between two local clocks.

But between distant clocks A1 toward B1 and B1 toward
A1, in addition to the same linear phase variations (but with
identical positive and negative slopes, because if one is fast,
the other is slow), there is also an additional clear sinusoidal-
like phase undulation (≈ 24 h period) of the order of 28 ns
peak to peak.

The possible instability of the coaxial lines cannot be
responsible for the phase effects observed because these
signals are in phase opposition and also because the lines are
identical (same place, length, temperature, etc. . .) causing the
cancellation of any such instabilities. As well the experiment
was performed over 178 days, making it possible to measure
with accuracy (± 25 s) the period of the phase signal to be
the sidereal day (23 h 56 min), thus permitting to conclude
that absolute motion had been detected, even with apparent
turbulence.

According to the manufacturer of the clocks, the typical

humidity sensitivity is df/f =10−14 % humidity, so the effect
observed between two distant clocks (24 ns in 12 h) needs, for
example, a differential step of variation of humidity of 55%,
two times a day, over 178 days. So the humidity variations
cannot be responsible for the persistent periodic phase shift
observed. As for pressure effects, the manufacturer confirmed
that no measurable frequency change during pressure varia-
tions around 760 mm Hg had been observed. When temp-
erature effects are considered, the typical sensitivity around
room temperature is df/f =0.25×10−13 ◦C and implies, for
example, a differential step of room temperature variation
of 24◦C, two times a day, over 178 days to produce the
observed time variations. Moreover the room temperature
was maintained at nearly a constant around 20◦C by the
thermostats of the buildings. So the possible temperature
variations of the clocks could not be responsible for the
periodic phase shift observed between distant clocks. As well
the heat capacity of the housings of the clocks would even
further smooth out possible temperature variations. Finally,
the typical magnetic sensitivity of df/f =1.4×10−13 Gauss
needs, for example, differential steps of field induction of
4 Gauss variation, two times a day, over 178 days. But the
terrestrial magnetic induction in Belgium is only in the order
of 0.2 Gauss and thus its variations are much less (except
during a possible magnetic storm). As for possible parasitic
variable DC currents in the vicinity of the clocks, a 4 Gauss
change needs a variation of 2000 amperes in a conductor at
1 m, and thus can be excluded as a possible effect. So temp-
erature, pressure, humidity and magnetic induction effects on
the frequencies of the clocks were thus completely negligible
in the experiment.

Changes in propagation times were observed over 178
days from June 3 1991 7 h 19 m GMT to 27 Nov 19 h 47 m
GMT and recorded. A sample of the data, plotted against si-
dereal time for just three days, is shown in Fig. 1. De Witte re-
cognised that the data was evidence of absolute motion but he
was unaware of the Miller experiment and did not realise that
the Right Ascension for minimum/maximum propagation
time agreed almost exactly with Miller’s direction (α=5.2hr,
δ=−67◦). In fact De Witte expected that the direction of
absolute motion should have been in the CMB direction, but
that would have given the data a totally different sidereal
time signature, namely the times for maximum/minimum
would have been shifted by 6 hrs. The declination of the
velocity observed in this De Witte experiment cannot be
determined from the data as only three days of data are
available. However assuming exactly the same declination
as Miller the speed observed by De Witte appears to be also
in excellent agreement with the Miller speed, which in turn
is in agreement with that from the Michelson-Morley and
other experiments.

Being 1st-order in v/c the Belgacom experiment is easily
analysed to sufficient accuracy by ignoring relativistic ef-
fects, which are 2nd-order in v/c. Let the projection of the
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Fig. 1: Variations in twice the one-way travel time, in ns, for an
RF signal to travel 1.5 km through a buried coaxial cable between
Rue du Marais and Rue de la Paille, Brussels, by subtracting the
Paille Street phase shift data from the Marais Street phase shift
data. An offset has been used such that the average is zero. The
cable has a North-South orientation, and the data is ± difference of
the travel times for NS and SN propagation. The sidereal time for
maximum effect of ∼5 hr (or ∼17 hr) (indicated by vertical lines)
agrees with the direction found by Miller [4]. Plot shows data over
3 sidereal days and is plotted against sidereal time. The main effect
is caused by the rotation of the earth. The superimposed fluctuations
are evidence of turbulence i.e gravitational waves. Removing the
earth induced rotation effect we obtain the first experimental data
of the turbulent structure of space, and is shown in Fig. 2. De Witte
performed this experiment over 178 days, and demonstrated that the
effect tracked sidereal time and not solar time, as shown in Fig. 3.

absolute velocity vector v onto the direction of the coaxial
cable be vP . Then the phase comparators reveal the difference
between the propagation times in NS and SN directions.
Consider a simple analysis to establish the magnitude of the
observed speed.

Δt =
L

c
n − vP

−
L

c
n + vP

=

= 2
L

c/n
n
vP
c
+O

(
v2P
c2

)

≈ 2t0n
vP
c
.

Here L=1.5 km is the length of the coaxial cable, n=1.5
is the assumed refractive index of the insulator within the co-
axial cable, so that the speed of the RF signals is approxim-
ately c/n=200, 000 km/s, and so t0=nL/c=7.5×10−6 sec
is the one-way RF travel time when vP =0. Then, for ex-
ample, a value of vP =400 km/s would give Δt=30 ns. De
Witte reported a speed of 500 km/s. Because Brussels has a
latitude of 51◦ N then for the Miller direction the projection
effect is such that vP almost varies from zero to a maximum
value of |v|. The De Witte data in Fig. 1 shows Δt plotted
with a false zero, but shows a variation of some 28 ns. So the
De Witte data is in excellent agreement with the Miller’s data.

The actual days of the data in Fig. 1 are not revealed by
De Witte so a detailed analysis of the data is not possible.
If all of De Witte’s 178 days of data were available then a
detailed analysis would be possible.

Fig. 2: Shows the speed fluctuations, essentially “gravitational
waves” observed by De Witte in 1991 from the measurement of
variations in the RF coaxial-cable travel times. This data is obtained
from that in Fig. 1 after removal of the dominant effect caused by
the rotation of the earth. Ideally the velocity fluctuations are three-
dimensional, but the De Witte experiment had only one arm. This
plot is suggestive of a fractal structure to the velocity field. This is
confirmed by the power law analysis shown in Fig. 4. From [11].

De Witte does however reveal the sidereal time of the
cross-over time, that is a “zero” time in Fig. 1, for all 178
days of data. This is plotted in Fig. 3 and demonstrates that
the time variations are correlated with sidereal time and not
local solar time. A least squares best fit of a linear relation to
that data gives that the cross-over time is retarded, on aver-
age, by 3.92 minutes per solar day. This is to be compared
with the fact that a sidereal day is 3.93 minutes shorter
than a solar day. So the effect is certainly galactic and not
associated with any daily thermal effects, which in any case
would be very small as the cable is buried. Miller had also
compared his data against sidereal time and established the
same property, namely that, up to small diurnal effects iden-
tifiable with the earth’s orbital motion, the dominant features
in the data tracked sidereal time and not solar time, [4].

The De Witte data is also capable of resolving the ques-
tion of the absolute direction of motion found by Miller. Is
the direction (α=5.2hr, δ=−67◦) or the opposite direction?
Being a 2nd-order Michelson interferometer experiment
Miller had to rely on the earth’s orbital effects in order to
resolve this ambiguity, but his analysis of course did not
take account of the gravitational in-flow effect [9, 10]. The
De Witte experiment could easily resolve this ambiguity by
simply noting the sign ofΔt. Unfortunately it is unclear as to
how the sign in Fig. 1 is actually defined, and De Witte does
not report a direction expecting, as he did, that the direction
should have been the same as the CMB direction.

The dominant effect in Fig. 1 is caused by the rotation of
the earth, namely that the orientation of the coaxial cable with
respect to the direction of the flow past the earth changes as
the earth rotates. This effect may be approximately unfolded
from the data, see [9, 10], leaving the gravitational waves
shown in Fig. 2. This is the first evidence that the velocity
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Fig. 3: Plot of the negative of the drift of the cross-over time
between minimum and maximum travel-time variation each day (at
∼ 10h± 1h ST) versus local solar time for some 178 days, from
June 3 1991 7 h 19 m GMT to 27 Nov 19 h 47 m GMT. The straight
line plot is the least squares fit to the experimental data, giving an
average slope of 3.92 minutes/day. The time difference between a
sidereal day and a solar day is 3.93 minutes/day. This demonstrates
that the effect is related to sidereal time and not local solar time.

Fig. 4: Shows that the speed
fluctuations in Fig. 2 are scale
free, as the probability distri-
bution from binning the speeds
has the form p(v)∝ |v|−2.6.
This plot shows log[p(v)] vs
|v|. From [11].

field describing the flow of space has a complex structure,
and is indeed fractal. The fractal structure, i.e. that there is an
intrinsic lack of scale to these speed fluctuations, is demon-
strated by binning the absolute speeds |v| and counting the
number of speeds p(|v|) within each bin. Plotting log[p(|v|)]
vs |v|, as shown in Fig. 4 we see that p(v) ∝ |v|−2.6. The
Miller data also shows evidence of turbulence of the same
magnitude. So far the data from three experiments, namely
Miller, Torr and Kolen, and De Witte, show turbulence in
the flow of space past the earth. This is what can be called
gravitational waves [9, 10].

3 Biography of De Witte

These short notes were extracted from De Witte’s webpage.
Roland De Witte was born September 29, 1953 in the

small village of Halanzy in the south of Belgium. He became
the apprentice to an electrician and learned electrical wiring
of houses. At the age of fourteen he decided to take private
correspondence courses in electronics from the EURELEC

company, and obtained a diploma at the age of sixteen. He
decided to stop work as an apprentice and go to school.
Without a state diploma it was impossible for him to be
admitted into an ordinary school with teenagers of his age.
After working for a scrap company where he used dynamite,
he was finally admitted into a secondary school with the
assistance of the director, but with the condition that he pass
some tests from the board of the state examiners, called the
Central Jury, for the first three years. After having sat the
exams he became a legitimate schoolboy. But when he was
in the last but one year in secondary school he decided to
prepare for the entrance exam in physics at the University
of Liège, and became a university student in physics one
year before his friends. During secondary school years he
was interested in all the scientific activities and became a
schoolboy president of the Scientific Youths of the school
in Virton. Simple physics experiments were performed: Mil-
likan, photoelectric effect, spectroscopy, etc. . . and a small
electronics laboratory was started. He also took part in differ-
ent scientific short talks contests, and became a prizewinner
for a talk about “special relativity”, and received a prize from
the Belgian Shell Company which had organised the contest.
De Witte even visited the house where Einstein lived for a
few months in Belgium when he left Germany. The house
is the “Villa Savoyarde” at “Coq-Sur-Mer” Belgium, and is
just 200 m from the North Sea. During secondary school
De Witte had hobbies such as astronomy and pirate radio
transmission on 27 Mhz with a hand-made transmitter, with
his best long distance communication being with Denmark.

De Witte says that he is not able to study by “heart”, and
during secondary school, even with his bad memory which
caused problems in history and english, he nevertheless al-
ways achieved the maximum of points in physics, chemistry
and mathematics and was the top of his class. At University
he obtained the diploma from the two year degree in physics
but was not able to continue due to the “impossibility to study
by heart several thousands of pages of erroneous calcula-
tions” like the others did to obtain the graduate diploma. Thus
even though considered to be intelligent by several teachers,
he decided to leave the University and became the manager
of a retail electronic components shop. He did this job for
ten years while also performing his physics experiments and
studying theoretical physics. He was interested in micro-
waves and became an IEEE member and reader of the pub-
lications of the Microwave Theory & Techniques and Inst-
rumentation & Measurement Societies. During that period he
built an electron spin resonance spectrometer for the pleasure
of studying the electron and free radicals. By chance he
was invited by Dr. Yves Lion of the Physics Institute of the
University of Liège to help them for a few weeks in their re-
searches on the photoionisation mechanism of the tryptophan
amino-acid with the powerful EPR spectrometer. He was also
interested in TV satellite reception and Meteosat images. He
built several microwave microstrip circuits such as an 18 dB
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low noise amplifier using GaAs-Fets for 11.34 GHz. He also
developed some apparatus using microprocessors for a digital
storage system for Meteosat’s images.

In 1990 he became a civil servant in the Metrology
Department of the Transmission Laboratories of Belgacom
(Belgium Telephone Company). His job was to test the
synchronization of rubidium frequency standards on a distant
master ceasium beam clock. It is there that he took the time to
compare the phase of distant ceasium clocks and discovered
the periodic phase shift signal with a sidereal day period. De
Witte retired from the Department, reporting that he had been
dismissed, and worked on theoretical physics and philosophy
of science, while performing various cheap experiments to
test his electron theory and also develop a new working pro-
cess for a beamless ceasium clock.

De Witte acknowledged assistance from J. Tamborijn, the
Engineer Cerfontaine, and particularly Engineer and Execut-
ive Director B. Daspremont, all from the Metrology, Fiber
Optics and Transmission Laboratory of Belgacom in Brus-
sels, for the use of the six caesium atomic clocks, the com-
parators, the recorder and the underground lines, and also
Paul Pàquet, Director of the Royal Observatory of Belgium,
for explanations and documentation provided about the real-
isation of UTC in Belgium.

4 De Witte’s letter

Roland De Witte was not able to have his experimental re-
sults published in a physics journal. His only known pub-
lications are that of an e-mail posted to the newsgroup
sci.physics.research. The e-mail is reproduced here:

* Subject: Ether-wind detected!
* From: “DE WITTE Roland” <roland.dewitte@ping.be>
* Date: 07 Dec 1998 00:00:00 GMT
* Approved: baez@math.ucr.edu
* Newsgroups: sci.physics.research
* Organization: EUnet Belgium, Leuven, Belgium

I have performed an interesting experiment with cesium
beam frequency standards.
A 5 Mhz signal from one clock (A) is sent to another clock
(B) 1.5 km apart in Brussels by the use of an underground
coaxial cable of the Belgium Telephone Company. There,
the 5Mhz signal from clock A is compared to the one of
clock B, by the use of a digital phase comparator (like those
used in PLL).
Incredibly, the output of the phase comparator shows a clear
and important sinus-like undulation which permits to con-
clude of the existence of a periodic variation (24 h period)
of the speed of light in the coaxial cable around 500 km/s.
In performing the experiment during 178 days, with six
caesium beam clocks, the period of the phase signal has
been accurately measured and is 23 h 56 m ±25 s. and thus
is the sidereal day.
This result, like the one of D. G. Torr and P. Kolen (Natl. Bur.

Stand. (U.S.), Spec. Publ. 617, 1984) is well understood with
a new space-time theory based on a new electron theory.
It is also the case for the nearly negative result of the exper-
iment of Krisher et al., with a fiber optics instead of a coaxial
cable (Physical Review D, Vol. 42, Number 2, 1990, pp. 731–
734).
All the details of the experiment is on my web-site under con-
struction: www.ping.be/electron/belgacom.htm together with
already a few arguments against Einstein’s special theory of
relativity.

DE WITTE Roland
www.ping.be/electron

[Moderator’s note: needless to say, there are many potential
causes of daily variations that need to be studied in interpret-
ing an experiment of this sort. — jb]

5 Conclusions

The De Witte experiment was truly remarkable considering
that initially it was serendipitous. DeWiite’s data like that of
Miller is extremely valuable and needs to be made available
for detailed analysis. Regrettably Roland De Witte has died,
and the bulk of the data was apparently lost when he left
Belgacom.
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Polyally diglycol carbonate “CR-39” is widely used as etched track type particle de-
tector. Doppler broadening positron annihilation (DBPAT) provides direct information
about core and valance electrons in (CR-39) due to radiation effects. It provides a
non-destructive and non-interfering probe having a detecting efficiency. This paper
reports the effect of irradiation α-particle intensity emitted from 241Am (5.486 MeV)
source on the line shape S- and W-parameters for CR-39 samples. Modification of
the CR-39 samples due to irradiation were studied using X-ray diffraction (XRD) and
scanning electron microscopy (SEM) techniques.

1 Introduction

Polyallyl diglycol carbonate (C12H18O7,ρ= 1310kg/m3) is
a thermoset polymer [1]. Polyallyl diglycol carbonate, CR-
39, has been used in heavy ion research such as composition
of cosmic rays, heavy ion nuclear reactions, radiation dose
due to heavy ions, exploration of extra heavy elements etc. Its
availability in excellent quality from different manufactures
is also an advantage for further applications [1].

Swift heavy ions (SHI) produce permanent damage in
polymeric materials as latent tracks along their path due to
dissociation of valence bonds, cross linking and formation
of free radicals [2, 3].

Positron Annihilation Technique (PAT) has been employ-
ed for the investigating Polymorphism in several organic
materials [4] and it has emerged as a unique and potent probe
for characterizing the properties of polymers [5]. In PAT, the
positron is used as a nuclear probe which is repelled by the
ion cores and preferentially localized in the atomic size free-
volume holes [6] of the polymeric material. The motion of the
electron-positron pair causes a Doppler shift on the energy
of the annihilation radiation. As a consequence, the line-
shape gives the distribution of the longitudinal momentum
component of the annihilating pair. Positron Annihilation
Doppler Broadening Spectroscopy (PADBS) is a well estab-
lished tool to characterize defects [7]. The 0.511 MeV peak
is Doppler broadened by the longitudinal momentum of
the annihilating pairs. Since the positrons are thermalized,
the Doppler broadening measurements provide information
about the momentum distributions of electrons at the anni-
hilation site.

Essentially all prior Doppler broadening measurements
[8, 9] have been performed using either slow positron beams
or wide-energy-spectrum positron beams from radioactive
sources. Two parameters S (for shape), and W (for wings)

[10] are usually used to characterize the annihilation peak.
The S-parameter is more sensitive to the annihilation with
low momentum valence and unbound electrons. The S-para-
meter defined by Mackenzie et al. [11] as the ratio of the
integration over the central part of the annihilation line to
the total integration. Diffraction peaks are analyzed through
common fitting procedures, which result in parameters like
the center of gravity and the width of the distribution. The
W-parameter is more sensitive to the annihilation with high
momentum core electrons and is defined as the ratio of counts
in the wing regions of the peak to the total counts in the peak.

Fig. 1 shows Doppler broadening line-shape from which
the S- and W-parameters are calculated using the following
equations:

S =

∫ xc+g1

xc−g1
y(x)dx

area
,

W =

∫ xc−g2

xc−g3
y(x)dx+

∫ xc−g3

xc−g2
y(x)dx

area
,

where area =
∫ gmax
gmin y(x)dx, and xc is the center of the peak.

In this regard, the main goal of the positron annihilation
technique experiments is to point out the CR-39 line-shape
parameters resulting from the effect of α-particle energies.

2 Experimental technique

Track detectors “CR-39” were normally irradiated in air
by different α-particle energies with different fluxes from
1476.42 particles/cm2 at 1.13 MeV to 48130.25 particles/cm2

at 4.95 MeV from 0.1μCi 241Am source. Collimators of
different thickness were used to change the α-particle energy.
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Fig. 1: Definition of the S- and W-parameters [12] (note, that the
limits g1, g2, g3 are arbitrary to a certain degree, but have to be
the same for all annihilation lines analyzed).

After irradiations, the samples were etched in 6.25 M NaOH
solution at 70◦C for 6 hr.

The simplest way to guide the positrons into the samples
is to use a sandwich configuration as shown in Fig. 2. 22Na
is the radioactive isotope used in our experiment.

Fig. 2: Sandwich configuration
of the positron source respect to
a pair of specimen.

The positron source of 1mCi free carrier 22NaCl was
evaporated from an aqueous solution of sodium chloride and
deposited on a thin Kapton foil of 7.5μm in thickness. The
22Na decays by positron emission and electron capture (E. C.)
to the first excited state (at 1.274 MeV) of 22Na. This excited
state de-excites to the ground state by the emission of a
1.274 MeV gamma ray with half life T1/2 of 3×10−12 sec.
The positron emission is almost simultaneous with the emis-
sion of the 1.274 MeV gamma ray while the positron anni-
hilation is accompanied by two 0.511 MeV gamma rays. The
measurements of the time interval between the emission of
1.274 MeV and 0.511 MeV gamma rays can yield the lifetime
τ of positrons. The source has to be very thin so that only
small fractions of the positron annihilate in the source.

The system which has been used to determine the Doppler
broadening S-and W-parameters consists of an Ortec HPGe
detector with an energy resolution of 1.95 keV for 1.33 MeV
line of 60Co, an Ortec 5 kV bais supply 659, Ortec amplifier
575 and trump 8 k MCA. Fig. 3 shows a schematic diagram
of the experimental setup. Doppler broadening is caused by
the distribution of the velocity of the annihilating electrons
in the directions of gamma ray emission. The signal coming
from the detector enters the input of the preamplifier and
the output from the preamplifier is fed to the amplifier. The

Fig. 3: Block diagram of HPGe-detector and electronics for Doppler
broadening line-shape measurements.

input signal is a negative signal. The output signal from the
amplifier is fed to a computerized MCA. All sample spectra
are acquired for 30 min.

3 Results and discussion

3.1 Positron annihilation measurements

Fig. 4 shows the Doppler broadening line shape parameters
measured for unirradiated and irradiated CR-39 samples at
α-particle energies of 2.86 and 4.86 MeV. The measured line-
shape profiles reveal similar line-shape counts for samples
(unirradiated and irradiated with α-particle energy, i. e.
4.86 MeV). A minimum line-shape counts are obtained at
2.86 MeV. The other observation is that the Full Width at
Half Maximum (FWHM) for 2.86 MeV irradiated sample
is more broadening than others. From such behavior it is
clear that either something happened during irradiation with
2.86 MeV and it recovers again at higher energies or some
kind of transition occurs at 2.86 MeV of α-particle energy.

The Doppler broadening line-shape S- and W-parameters
are calculated using SP ver. 1.0 program [13] which designed
to automatically analyze of the positron annihilation line in
a fully automated fashion.

The S- and W-parameters calculated using the previous
program were correlated as a function of α-particle energy
with different fluxes deposit into CR-39 detector, the results
are illustrated in Fig. 5. The S-parameters has values around
46% while values of about 15% are obtained for W-parame-
ters. An abrupt change definitely observed at irradiation en-
ergy 2.86 MeV of α-particles for both S- and W-parameters.
At this energy a drastically decrease in the S-parameter com-
parable with a drastically increase in the W-parameter. Values
of about 35% and 28% were observed for the S- and W-para-
meters respectively at 2.86 MeV of α-particle energy.
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Fig. 4: The line shape spectra of the unirradiated sample and
irradiated with α-particle energies of 2.86 and 4.84 MeV.

Fig. 5: The behavior of the S- and W-parameters as a function of
α-particle energies.

A high concentration of defects, or an increase in the
mean size of defects, leads to a larger contribution of annihi-
lation photons from low momentum electrons because posi-
trons are trapped at defects [14]. This is reflected in Dopp-
ler broadening measurements by an increase in S-parameter
and a decrease in W-parameter. The behavior of S- and
W-parameters reveal an abrupt change at the position of
the transition. The behavior of the line-shape S- and W-
parameters can be related to the different phases. Like many
others molecular materials, the use of PAT also proven a
very valuable in the study of phase transition in polymers.
The same results have been obtained by Schiltz et al. [15].
Walker’s et al. [4] measurements have indicated the conver-
sion of one polymorphism to another. Srivastana et al. [16]
have investigated polymorphic transitions in DL-norlevcine
and hexamethyl benzene.

The transitions in the crystalline phase are related to
the lattice transformation from monoclinic to hexagonal and
setting in of torsional oscillations in the polymer chain.

Fig. 6: X-ray diffraction pattern of “CR-39” Polyallyl diglycol
carbonate.

3.2 X-ray diffraction pattern (XRD) and Scanning Elec-
tron Microscopy (SEM)

The X-ray diffraction analysis was used to obtain information
about the transformation as a result of change in α-irradiation
intensity. The XRD intensity measurements as a function of
diffraction angle (2θ) for unirradiated sample and samples
irradiated at different α-particle energies are shown in Fig. 6.

From the X-ray charts it is observed that, an increase
in the intensity is obtained at higher α-irradiation intensity
4.84 and 4.95 MeV. At these energies, the XRD chart reveals
a new peak that start to appear at 2.86 MeV α-particle energy.
The one prominent X-ray peak is located at 2θ = 21.5◦ and it
grows up with increasing α-particle energy. The appearance
of this peak might be related to phase transition.

A number of papers on the study of polymer show that
the amorphous state is altered by structural relaxation and
crystallization processes. Positron annihilation behavior in
the amorphous state has been described both in terms of topo-
logical short range ordering (TSRO) and chemical short-
range ordering (CSRO) at the basis of the structural relaxa-
tion mechanisms [11, 15, 17–19]. During crystallization the
positron behavior is determined by the phase diagram of the
amorphous and crystallized system. On our X-ray diffraction
patterns might be the first sign of the crystallization onset
appears at 2.86 MeV. This sign is increased at higher α-
particle energies as shown in the Fig. 6.

The SEM images taken for unirradiated and irradiated
CR-39 samples at 4.84 MeV with magnification of 500 are
shown in Fig. 7a and b. Tracks are obtained as a result of
exposure of α-particle energy. A different magnified (15000)
image for one track is shown at Fig. 7c. Cumbrera et al. [19]
showed that rings of the structure (metastable structure) were
already present in the scanning electron micrographs.

4 Conclusion

Doppler broadening positron annihilation (DBPAT) provides
direct information about core and valance electrons in CR-
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(a) Unirradiated (M= 500) (b) 4.84 MeV (M= 500)

(c) 4.84 MeV (M= 15000)

Fig. 7: SEM for unirradiated
sample and irradiated sample at
4.84 MeV α-particle energies
for different magnifications

39 due to radiation effects. The behavior of the S- and W-
parameters supports the idea that positrons are trapped by
defects and inhomogeneities inherently present in the as-
received CR-39 polycarbonate. The annihilation character-
istics of positrons are very sensitive to phase transitions. The
phase transition in the CR-39 polycarbonate remain complex.
XRD pattern and SEM technique of polymers studied in the
present work clearly show crystalline and amorphous regions
in the samples.
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Budai L. and Kiss Á Z. Nucl. Instr. and Meth. in Phys. Res. B,
2005, v. 231, 384–388.

2. Myler U., Xu X. L., Coleman M. R. and Simpson P. J. Ion
implant-induced change in polimide films monitored by vari-
able energy positron annihilation spectroscopy. J. Polym. Sci.
B. Polym. Phys., 1998, v. 36, 2413–2421.

3. Kumar R., Rajguru S., Das D. and Prasad R. Radiation
Measurements, 2003, v. 36, issues 1–6, 151–154.

4. Walker W. W. and Kline D. C. J. Chem. Phys., 1974, v. 60,
4990.

5. Jean Y. C. In: A. Dupasquier and A. P. Mills Jr., eds., Positron
Spectroscopy of Solids, IOS Publ., Amsterdam, 1995, 563–569.

6. Schrador D. M., Jean Y. C. (Eds). Positron and positronium
chemistry, studies in physical and theoretical. Elsevier,
Amsterdam, 1988, v. 57.

7. Dupasquier A., Mills A. P. (Eds.) Positron Spectroscopy of
Solids. 1995.

8. Escobar Galindo R., Van Veen A., Alba Garcia A., Schut H.,
De Hosson J. Th. In: Proc. of the Twelfth Conf. on Positron
Annihilation, 2000, 499.

9. Hori F., Oshima R. In: Proc. of the Twelfth Conf. on Positron
Annihilation, 2000, 204.

10. Urban-Klaehen J. M., Quarles C. A. J. Appl. Phys., 1989, v. 86,
355.

11. Mackenzie I. K., Eady J. A. and Gingerich R. R. Phys. Lett.
33A, 1970, 279.

12. Priesmeyer H. G., Bokuchava G. Applied Radiation and Isoto-
pes, 2005, v. 63, 751–755.

13. http://www.ifj.edu.pl/∼mdryzek.

14. Osipowicz A., Harting M., Hempel M., Britton D. T., Bauer-
Kugelmann W., Triftshauser W. Appl. Surf. Sci., 1999, v. 149,
198.

15. Schiltz A., Liolios A., Dalas M. In: Proc. of the 7th Int. Conf.
on Positron Annihilation, New Delhi, 1985.

16. Srivastana P. K., Singh K. P. and Jain P. C. Solid state comun.,
1986, v. 58, 147.

17. Tsumbu M., Segers D., Dorikend M. and Dorikens-Vanpraet
L. Rev. Phys. Appl., 1985, v. 20, 831–836.

18. Mbungu T., Segers D. In: Proc. of the 6th Int. Conf. on Positron
Annihilation, Texas, Arlington, 1982.

19. Cumbrera F. L., Millan M., Conde A., J. Mater. Sci., 1982,
v. 17, 861.

M. A. Abdel-Rahman, M. Abdel-Rahman, M. Abo-Elsoud et al. Effect of Alpha-Particle Energies on CR-39 Line-Shape Parameters 69



Volume 3 PROGRESS IN PHYSICS July, 2006

Planck Particles and Quantum Gravity

Stephen J. Crothers∗ and Jeremy Dunning-Davies†

∗Queensland, Australia; †Department of Physics, University of Hull, England
E-mail: thenarmis@yahoo.com; j.dunning-davies@hull.ac.uk

The alleged existence of so-called Planck particles is examined. The various methods
for deriving the properties of these “particles” are examined and it is shown that their
existence as genuine physical particles is based on a number of conceptual flaws which
serve to render the concept invalid.

1 Introduction

The idea of the so-called Planck particle seems to have been
around for quite some time now but has appeared in a number
of totally different contexts. It seems to have been used
initially as a means of making equations and expressions
dimensionless by making use of suitable combinations of the
universal constants c, the speed of light, G, Newton’s uni-
versal constant of gravitation, and finally Planck’s constant.
As far as the third and final constant is concerned, it has
appeared variously as the original h and in the reduced form
~. The combinations considered were those which ended up
with the dimensions of mass or length or time and so, the
idea of a “Planck particle” emerged.

Hence, initially the notion seems to have occurred via
expressions deduced from dimensional considerations; no
mention of an actual “particle” would have been included
at this point presumably. Later, however, other arguments
were introduced which lead to the same expressions. These
included examining the equivalence of the Compton wave-
length and Schwarzschild radius of a particle or drawing
on results from Special Relativity and Quantum Mechanics.
Finally, because the expressions incorporate the Planck con-
stant, which is normally associated with quantum phenom-
ena, and both the speed of light and the universal constant
of gravitation, which are often associated with relativistic
and gravitational phenomena, these “particles” seem to have
been elevated to a position of importance and even physical
reality which is difficult to justify.

Here the various methods of determining the expressions
for the various physical quantities, such as mass and length,
of these so-called Planck “particles” will be examined, before
some conclusions about the actual “particles” themselves —
including their physical existence — will be discussed.

2 The “Planck” quantities

(a) Dimensional analysis

Using the fundamental ideas of dimensional analysis allows
the derivation of the Planck mass, Planck length, and all

the other Planck quantities to be accomplished very easily.
Taking c,G and h as the three basic quantities, the expression
for the Planck mass is found easily by putting
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Similar manipulations give

Planck length≡

√
hG

c3
and Planck time≡

√
hG

c5
.

It is easy to see how expressions such as these could
prove useful in making equations dimensionless and so more
suitable for numerical work. However, the derivation of these
expressions is seen to have been accomplished by a purely
mathematical exercise; absolutely no physical argument has
been involved!

(b) Compton wavelength and Schwarzschild radius

Another derivation involves the consideration of a body who-
se Compton wavelength equals its Schwarzschild or gravi-
tational radius [1]. Immediately, this equivalence leads to

h

mc
=
2Gm

c2
,

from which it follows that

m=

√
hc

2G
.

Corresponding expressions for the Planck length and
Planck time follow easily and it is seen that the ratio of
Planck mass to Planck length equals c2/2G, which would
make such a body, if it truly existed, a Michell-Laplace dark
body or a Schwarzschild black hole.
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However, the expressions derived by this route are seen
to involve an extra figure two. This apparent little problem is
overcome by using ~ instead of h in the dimensional analysis
approach and by putting the Compton wavelength equal to
π multiplied by the Schwarzschild or gravitational radius
in the approach. Since the equivalence is purely arbitrary,
introducing an extra arbitrary factor of π is not really a
problem.

(c) The quantum/relativity approach

This approach makes use of the Heisenberg uncertainty prin-
ciple [2]. The starting point is provided by the introduction
of a Planck time, tp, for which quantum fluctuations are felt
to exist on the scale of the Planck length which is defined
to be equal to `p= ctp. If a Planck density is denoted by
ρp, a Planck mass may then be mp

∼= ρp `3p. Then, using
Heisenberg’s uncertainty principle in the form

ΔEΔt ∼= mp c
2tp

∼= ρp
(
ctp
)3
c2tp

∼=
c5t4p
Gt2p

∼= ~ ,

leads to
tp
∼=

√
~G
c5

∼= 5.4×10−44 sec .

Here the reduced Planck constant, ~, has been used as is
more usual. The expressions for both the Planck mass and
Planck length follow easily and their numerical values are

mp
∼= 2.2×10−8 kg and `p

∼= 1.6×10−35 m

respectively, where the value of the reduced Planck constant
has been used.

These are the three basic properties associated with these
so-called Planck “particles”. It is quite common to note also
that the corresponding Planck energy and Planck temperature
are then given by

Ep =mpc
2 ∼=

√
~c5

G
∼= 1.2×1019 GeV

and

Tp =
Ep
k
∼=

√
~c5

Gk2
∼= 1.4×1032 K .

3 Planck particles as black holes

The arbitrary equality of the Compton wavelength to the
alleged “Schwarzschild radius” has resulted in the claim that
the so-called Planck particles are black holes. This conclusion
is inadmissible for a number of reasons.

The expression

R=
2Gm

c2
, (1)

describes the Michell-Laplace dark body, a theoretical astro-

nomical object having an escape velocity equal to that of
light. This expression can be generalised to

R6
2Gm

c2
, (2)

to include escape velocities greater than that of light.
The radius R described by (1) and (2) is Euclidean, and

therefore measurable in principle. The Compton wavelength
is also measurable in principle because it too is Euclidean.
However, (1) is routinely claimed to be the “Schwarzschild
radius”, the radius of the event horizon of the alleged black
hole. (1) is also claimed to show that the escape velocity
associated with a black hole is the velocity of light. Actually
this is false. An alleged black hole has no escape velocity
since it is claimed also that neither material object nor light
may leave the event horizon. On the other hand, an escape
velocity does not mean that a material object having an initial
velocity less than the escape velocity cannot leave the surface
of a gravitating body. A material object possessing an initial
velocity less than the escape velocity may leave the surface
of the host object, travel radially outward to a finite distance
where it comes to rest momentarily before falling radially
backwards to the host. If the escape velocity is the velocity of
light, then light itself may leave the surface and travel radially
outward to infinity and, therefore, escape. Hence, equation
(1) does not specify an escape velocity for the alleged black
hole. In truth, black holes have no escape velocity associated
with them [3, 4].

Furthermore, in the case of the Michell-Laplace dark
body, equation (1) specifies a Euclidean radius, whereas, in
the case of the alleged black hole, the Schwarzschild radius
is non-Euclidean. Moreover, in principle, R is a measurable
length in the Euclidean space of Newton’s theory, but in
General Relativity R is not measurable in principle. Hence
equating the Euclidean Compton wavelength to R given by
(1) is conceptually flawed. In addition, in Einstein’s gravita-
tional field there are two radii — the proper radius and the
radius of curvature. These are the same only in the infinitely
far field where space-time is asymptotically Minkowski, (that
is, pseudo-Euclidean) where the radii coalesce to become
identical because, in Euclidean space, the radius of curvature
and the proper radius are identical. Therefore, when the
Compton wavelength is equated to (1) in the context of
the black hole, which non-Euclidean Einstein radius does
R specify?

It has been shown [5, 6] that when (1) is interpreted
in terms of Einstein’s gravitational field, the Schwarzschild
radius R is actually the invariant radius of curvature of the
fictitious point-mass, which corresponds to an associated
invariant proper radius of zero. In ignorance of the fact
that Einstein’s gravitational field yields two different radii,
physicists erroneously interpret R in equation (1) as a proper
radius in Einstein’s gravitational field and, therefore, allow
it to go to zero, which is false! In their conception of R as
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a proper radius they also treat R as a measurable quantity
in Einstein’s gravitational field, as it is in Euclidean space,
which is also false!

Hence, even if the equality of the Compton wavelength to
the gravitational radius of curvature of a point-mass could be
admitted, the alleged Planck particles would necessarily be
point-masses, which are not only fictitious but also contradict
the very meaning of the Compton wavelength and, indeed,
the foundations of Quantum Mechanics. However, there can
be no meaning to the equality of a measurable Euclidean
length to an immeasurable non-Euclidean length to begin
with. Not only that, there can be no meaning to the equality
of a Euclidean length which is both the proper radius and the
radius of curvature in Euclidean space and a non-Euclidean
radius of curvature, which is not the same as the correspond-
ing non-Euclidean proper radius. Consequently, claims that
Planck particles are black holes are false, even if black holes
actually exist. It might well be noted at this juncture that
General Relativity, contrary to widespread claims, doesn’t
even predict the existence of black holes [5, 6].

Planck particles are presumed to be able to interact with
one another. However, the black hole is allegedly derived
from a solution to Einstein’s gravitational field for a “point-
mass”. Therefore, the black hole is the result of a solution
involving a single gravitating body interacting with a “test
particle”. It is not the result of a solution involving the
gravitational coupling of two comparable masses. Since there
are no known solutions to Einstein’s field equations for multi-
body configurations and since it is not even known if Ein-
stein’s field equations admit multi-body configurations [3],
all conceptions of black hole interactions are meaningless.
Consequently, Schwarzschild radius Planck particle interac-
tions are also meaningless.

The claim that Planck particles were prolific during the
early Universe but are now extremely rare is also erroneous.
This follows since it has been proved that cosmological
solutions to Einstein’s field equations for isotropic type 1
Einstein spaces, from which the expanding Universe and the
Big Bang have allegedly been derived, do not even exist.[7].

4 Comments and conclusions

Above, three ways of deducing expressions for the so-called
Planck quantities have been outlined. In many ways, the first
method indicates a good idea of the physical standing for
the so-called Planck “particles”. This first method is purely
a mathematical manipulation of three man-made constants.
At the end of the day, all numbers originate in a man-
made model and so these three numbers, although assigned
a seemingly exalted status as universal constants, are still
members of that group of man-made objects. As mentioned
already, the first method contains no physics and makes
absolutely no pretensions to contain any. The second and
third derivations, on the other hand, do seem to contain

some physics as a basis for what follows. However, closer
examination casts real doubt on this initial feeling. What
physical basis is there in asserting the equivalence of the
Compton wavelength and the Schwarzschild or gravitational
radius of a particle? If one believes modern ideas, this merely
asserts that the said particle is a “Schwarzschild black hole”,
and does so from the outset. The second of these two is simp-
ly a mathematical manipulation of symbols using Heisen-
berg’s uncertainty principle as a starting point. The manipula-
tions, as such, are reasonable enough, but is it valid to then
make physical assertions about “particles” whose very exist-
ence depends only on these mathematical manipulations?

The alleged link between Quantum mechanics and Gen-
eral Relativity via the interpretation of the Compton wave-
length as a Schwarzschild radius is clearly seen to be false.
All that remains is an interpretation of Planck particles via
equation (1) as it relates to the Michell-Laplace dark body
radius. In this case, one may say only that the escape velocity
associated with a Planck particle is the velocity of light
in the flat three-dimensional Euclidean space of Newton.
Of course, the Planck particles are thereby robbed of their
more mysterious relativistic qualities and their primordial
profusion. Black hole creation in the collision of a high
energy photon with a particle and concomitant digestion
of the photon is fallacious. Likewise there is no possibility
of micro black holes being formed by fermion collision in
particle accelerators.

There can be little doubt that Planck “particles” origin-
ated purely out of mathematical manipulations and there
seems no reason to suppose that they exist or ever have
existed as genuine physical particles. It is for that reason
that it is worrying to see these objects being assigned an
actual physical role in models of the early universe. Most
books on this subject seem to regard Planck “particles” as
genuine particles — mini black holes — which existed in
large numbers during the very early stages of the formation
of the universe but are now thought to be extremely rare,
if not actually extinct. The grounds for this belief seem
very shaky and it is claimed, for example, that the decay
of a single Planck “particle” could lead to the production of
5×1018 baryons [1]. It is also claimed that theory as presently
available doesn’t allow examination back beyond a time of
approximately 10−43 seconds, the Planck “time” because,
beyond that time, a theory of quantum gravity would be
necessary. Hence, this time is effectively regarded as an
actual barrier between the quantum and non-quantum world.
Why? The relevance of this question lies in the fact that it is
a purely arbitrary figure. The fact that it and the other Planck
quantities depend on the reduced Planck constant, which
is regarded as being a quantity associated with quantum
mechanics, and the speed of light and the universal constant
of gravitation, which are associated with relativistic and
gravitational phenomena, is something which comes out of
human choice not something which occurs naturally. It is
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interesting that quantities which have the dimensions of
mass, length and time may be constructed from these three
constants which appear so frequently in so many areas of
theoretical science but that is all it is — interesting! It is not,
at least as far as current scientific knowledge is concerned,
any more significant than that. Playing around with numbers
and combinations of numbers can be very fascinating but, if
attempts are made to assign physical reality to the outcomes
of such mathematical diversions, scientific chaos could, and
probably will, ensue!
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We introduce a phenomenological formalism in which the space structure is treated
in terms of attachment space and detachment space. Attachment space attaches to
an object, while detachment space detaches from the object. The combination of
these spaces results in three quantum space phases: binary partition space, miscible
space and binary lattice space. Binary lattice space consists of repetitive units of
alternative attachment space and detachment space. In miscible space, attachment space
is miscible to detachment space, and there is no separation between attachment space
and detachment spaces. In binary partition space, detachment space and attachment
space are in two separate continuous regions. The transition from wavefunction to the
collapse of wavefuction under interference becomes the quantum space phase transition
from binary lattice space to miscible space. At extremely conditions, the gauge boson
force field undergoes a quantum space phase transition to a “hedge boson force field”,
consisting of a “vacuum” core surrounded by a hedge boson shell, like a bubble with
boundary.

1 The origin of the space structure

The conventional explanation of the hidden extra space dim-
ensions is the compactization of the extra space dimensions.
For example, six space dimensions become hidden by the
compactization, so space-time appears to be four dimension-
al. Papers [1, 2] propose the other explanation of the reduc-
tion of > 4D space-time into 4D space-time by slicing > 4D
space-time into infinitely many 4D slices surrounding the 4D
core particle. Such slicing of > 4D space-time is like slicing
3-space D object into 2-space D object in the way stated
by Michel Bounias as follows: “You cannot put a pot into a
sheet without changing the shape of the 2-D sheet into a 3-D
dimensional packet. Only a 2-D slice of the pot could be a
part of sheet”.

This paper proposes that the space structure for such
reduction of > 4D space-time can also be derived from
the cosmic digital code [3, 4], which one can consider as
“the law of all laws”. The cosmic digital code consists of
mutually exclusive attachment space and detachment space.
Attachment space attaches to an object, while detachment
space detaches from the object. The cosmic digital code
is analogous to two-value digital code for computer with
two mutually exclusive values: 1 and 0, representing on and
off. In terms of the cosmic digital code, attachment space
and detachment space are represented as 1 and 0, respect-
ively. The object with > 4D space-time attaches to > 4D
attachment space, which can be represented by

(i 13+k)m as > 4D attachment space with m
repetitive units of time (i) and 3 + k space dimension.

The slicing of > 4D attachment space is through 4D
detachment space, represented by

(i 03)n as detachment space with n repetitive units of
time (i) and three space dimension.

The slicing of > 4D attachment space by 4D detachment
space is the space-time dimension number reduction equation
as follows

(i 13+k)m︸ ︷︷ ︸
4D attachment space

slicing
−→

(i 13)m︸ ︷︷ ︸
4D core attachment space

+
k∑

k=1

((i 03) (i 13))n,k

︸ ︷︷ ︸
k types 4D slices

(1)

The two products of the slicing are the 4D-core attach-
ment space and 4D slices represented by n repetitive units of
alternative 4D attachment space and 4D detachment space.
They are k types of 4D slices, representing the total number
of space dimensions greater than three-dimensional space.
For example, the slicing of 10D attachment space produces
4D core attachment space and six types of 4D slices. The va-
lue of n approaches to infinity for infinitely many 4D slices.

The core attachment space surrounded by infinitely many
4D slices corresponds to the core particle surrounded by in-
finitely many small 4D particles. Gauge force fields are made
of such small 4D particles surrounding the core particle. The
space with repetitive units (of alternative attachment space
and detachment space) is binary lattice space.
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The combination of attachment space (1) and detachment
space (0) results in three quantum space phases: miscible
space, binary partition space, or binary lattice space for four-
dimensional space-time.

(14)n attachment space + (04)n detachment space
combination
−→ three quantum space phases:

(14 04)n binary lattice space, miscible space, or
(14)n (04)n binary partition space.

(2)

Binary lattice space consists of repetitive units of alter-
native attachment space and detachment space. In miscible
space, attachment space is miscible to detachment space, and
there is no separation of attachment space and detachment
space. In binary partition space, detachment space and attach-
ment space are in two separate continuous regions.

2 The quantum space phase transition for particles

Binary lattice space, (1404)n, consists of repetitive units of
alternative attachment space and detachment space. Thus,
binary lattice space consists of multiple quantized units of
attachment space separated from one another by detachment
space. Binary lattice space is the space for wavefunction,
which thus appears as not an abstract entity but a real one
filled with a substance, that is in line with works [5, 6]. In
wavefunction

|ψ〉 =
n∑

i=1

ci| φ i〉 (3)

each individual basis element |φ i〉 attaches to attachment spa-
ce, and separates from the adjacent basis element by detach-
ment space. Detachment space detaches from object. Binary
lattice space with n units of four-dimensional, (1404)n, con-
tains n units of basis elements.

Detachment space contains no object that carries inform-
ation. Without information, detachment space is outside of
the realm of causality. Without causality, distance (space) and
time do not matter to detachment space, resulting in non-loc-
alizable and non-countable space-time. The requirement for
the system (binary lattice space) containing non-localizable
and non-countable detachment space is the absence of net
information by any change in the space-time of detachment
space. All changes have to be coordinated to result in zero
net information. This coordinated non-localized binary lattice
space corresponds to nilpotent space. All changes in energy,
momentum, mass, time, space have to result in zero as
defined by the generalized nilpotent Dirac equation [7, 8]

(
∓k∂/∂t± i∇+ jm

)(
± ikE ± ip+ jm

)
×

× exp
(
i(−Et+ pr)

)
= 0 ,

(4)

where E, p, m, t and r are respectively energy, momentum,
mass, time, space and the symbols ±1, ± i, ± i, ± j, ± k, ± i,

± j,± k are used to represent the respective units required by
the scalar, pseudoscalar, quaternion and multivariate vector
groups. The changes involve the sequential iterative path
from nothing (nilpotent) through conjugation, complexifica-
tion, and dimensionalization. The non-local property of bin-
ary lattice space for wavefunction provides the violation of
Bell inequalities [9] in quantum mechanics in terms of faster-
than-light influence and indefinite property before measure-
ment. The non-locality in Bell inequalities does not result in
net new information.

In binary lattice space, for every attachment space, there
is its corresponding adjacent detachment space. Thus, a basis
element attached to attachment space can never be at rest
with complete localization even at the absolute zero degree.
The adjacent detachment space forces the basis element to
delocalize.

In binary lattice space, for every detachment space, there
is its corresponding adjacent attachment space. Thus, no part
of the object can be irreversibly separated from binary lattice
space, and no part of a different object can be incorporated in
binary lattice space. Binary lattice space represents coherence
as wavefunction. Binary lattice space is for coherent system.

Any destruction of the coherence by the addition of a
different object to the object causes the collapse of binary
lattice space into miscible space. The collapse is a quantum
space phase transition from binary lattice space to miscible
space.

(
(04) (14)

)
n

︸ ︷︷ ︸
binary lattice space

quantum space phase transition
−→ miscible space.

(5)

In miscible space, attachment space is miscible to detach-
ment space, and there is no separation of attachment space
and detachment space. In miscible space, attachment space
contributes zero speed, while detachment space contributes
the speed of light. A massless particle is on detachment space
continuously, and detaches from its own space continuously.
For a moving massive particle, the massive part with rest
massm0 belongs to attachment space and the other part of the
particle mass, which appears due to the motion, induces an
additional energy, namely the kinetic energy K, that changes
properties of attachment space and leads to the propagation
speed v lesser than the speed of light c.

To maintain the speed of light constant for a moving
particle, the time (t) in a moving particle has to be dilated,
and the length (L) has to be contracted relative to the rest
frame

t =
t0√

1− v2/c2
= t0γ ,

L = L0/γ ,

E = K +m0c
2 = γm0c

2,

(6)
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where γ=1/
√
1−v2/c2 is the Lorentz factor for time dila-

tion and length contraction, E is the total energy and K is
the kinetic energy.

The information in such miscible space is contributed by
the combination of both attachment space and detachment
space, so detachment space with information can no longer
be non-localize. Any value in miscible space is definite.
All observations in terms of measurements bring about the
collapse of wavefunction, resulting in miscible space that
leads to eigenvalue as definite quantized value. Such collapse
corresponds to the appearance of eigenvalue E by a measu-
rement operator H on a wavefunction ψ, i. e.

Hψ = Eψ . (7)

Another way for the quantum space phase transition from
binary lattice space to miscible space is gravity. Penrose
[10] pointed out that the gravity of a small object is not
strong enough to pull different states into one location. On
the other hand, the gravity of large object pulls different
quantum states into one location to become binary partition
space. Therefore, a small object without outside interference
is always in binary lattice space, while a large object is never
in binary latticespace.

3 The quantum space phase transitions for force fields

At zero temperature or extremely high pressure, binary lattice
space for a gauge force field undergoes a quantum space
phase transition to become binary partition space. In binary
partition space, detachment space and attachment space are
in two separate continuous regions as follows

(14)m +

k∑

k=1

(
(04) (14)

)
n,k

︸ ︷︷ ︸
particle gauge boson field in binary lattice space

−→

(14)m︸ ︷︷ ︸
hedge particle

+

k∑

k=1

(04)n,k (14)n,k

︸ ︷︷ ︸
hedge boson field in binary
partition space

(8)

The force field in binary lattice space is a gauge boson
force field, the force field in binary partition space is denoted
as a hedge boson force field. The detachment space in hedge
boson field is a “vacuum” core, while hedge bosons attached
to attachment space form the hedge boson shell. Gauge boson
force field has no boundary, while the attachment space in
the binary partition space acts as the boundary for hedge
boson force field. Hedge boson field is like a bubble with
core vacuum surrounded by membrane where hedge bosons
locate.

Hedge boson force is incompatible to gauge boson force
field. The incompatibility of hedge boson force field and
gauge boson force field manifests in the Meissner effect,
where superconductor repels external magnetism. The energy
(stiffness) of hedge boson force field can be determined by
the penetration of boson force field into hedge boson force
field as expressed by the London equation for the Meissner
effect

∇2H = −λ−2H , (9)

where H is an external boson field and λ is the depth of
the penetration of magnetism into hedge boson shell. Eq. (9)
indicates that the external boson field decays exponentially
as it penetrate into hedge boson force field.

The Meissner effect is the base for superconductivity. It
is also the base for gravastar, an alternative to black hole [11–
13]. Gravastar is a spherical void as Bose-Einstein condens-
ate surrounded by an extremely durable form of matter. This
paper proposes gravastar based on hedge boson field.

Before the gravitational collapse of large or supermassive
star, the fusion process in the core of the star to create the
outward pressure counters the inward gravitational pull of the
star’s great mass. When the core contains heavy elements,
mostly iron, the fusion stops. Instantly, the gravitational
collapse starts. The great pressure of the gravity collapses
atoms into neutrons. Further pressure collapses neutrons to
quark matter and heavy quark matter.

Eventually, the high gravitational pressure transforms the
gauge gluon force field into the hedge gluon force field,
consisting of a vacuum core surrounded by a hedge gluon
shell, like a bubble. The exclusion of gravity by the hedge
gluon force field as in the Meissner effect prevents the
gravitational collapse into singularity. To keep the hedge
gluon force field from collapsing, the vacuum core in the
hedge gluon force field acquires a non-zero vacuum energy
whose density (ρ) is equal to negative pressure (P ). The
space for the vacuum core becomes de Sitter space. The
vacuum energy of the vacuum core comes from the gravitons
in the exterior region surrounding the hedge gluon force field
as in the Chapline’s dark energy star. The external region
surrounding the hedge gluon force field becomes the vacuum
exterior region. Thus, the core of gravastar can be divided
into three regions: the vacuum core, the hedge gluon shell,
and the vacuum exterior region

vacuum core region: ρ = −P
hedge gluon shell region: ρ = + P
vacuum exterior region: ρ = P = 0

(10)

Quarks without the strong force field are transformed
into the decayed products as electron-positron and neutrino-
antineutrino denoted as the “lepton composite”

quarks quark decay
−→ e− + e+ +

_
ν + ν

the lepton composite
(11)
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The result is that the core of the collapsed star consists of
the lepton composite surrounded by the hedge gluon field.
This lepton composite-hedge gluon force field core consti-
tutes the core for gravastar. The star consisting of the lepton
composite-hedge gluon field core (LHC) and the matter shell
is “gravastar”. The matter shell consists of different layers
of matters: heavy quark matter layer, quark matter layer,
neutron layer, and heavy element layer one after the other:

LHC (lepton composite
— hedge gluon force field core):

lepton composite region: ρ = + P
vacuum core region: ρ = −P
hedge gluon shell region: ρ = + P
vacuum exterior region: ρ = P = 0

MATTER SHELL

(heavy quark layer
quark layer
neutron layer
heavy element layer): ρ = + P

(12)

4 Summary

Thus our formal phenomenological approach allows us to
conclude that the quantum space phase transition is the quan-
tum phase transition for space. The approach that is devel-
oped derives the space structure from attachment space and
detachment space. Attachment space attaches to an object,
while detachment space detaches from the object. The com-
bination of attachment space and detachment space results in
three quantum space phases: binary partition space, miscible
space, or binary lattice space. Binary lattice space consists of
repetitive units of alternative attachment space and detach-
ment space. In miscible space, attachment space is miscible
to detachment space, and there is no separation of attachment
space and detachment space. In binary partition space, de-
tachment space and attachment space are in two separate
continuous regions. For a particle, the transition from wave-
function to the collapse of wavefuction under interference is
the quantum space phase transition from binary lattice space
to miscible space.

At zero temperature or extremely high pressure, gauge
boson force field undergoes a quantum space phase transition
to “hedge boson force field”, consisting of a vacuum core sur-
rounded by a hedge boson shell, like a bubble with boundary.
In terms of the quantum space phase, gauge boson force field
is in binary lattice space, while hedge boson force field is in
binary partition space. The hedge boson force fields include
superconductivity and gravastar.
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A renewed analysis of the H. E. Ives and G. R. Stilwell’s experiment on moving hydro-
gen canal rays (J. Opt. Soc. Am., 1938, v. 28, 215) concludes that the spectral emission
of a moving atom exhibits always a redshift which informs not the direction of the
atom’s motion. The conclusion is also evident from a simple energy relation: atomic
spectral radiation is emitted as an orbiting electron consumes a portion of its internal
energy on transiting to a lower-energy state which however has in a moving atom an
additional energy gain; this results in a redshift in the emission frequency. Based on
auxiliary experimental information and a scheme for de Broglie particle formation,
we give a vigorous elucidation of the mechanism for deceleration radiation of atomic
electron; the corresponding prediction of the redshift is in complete agreement with
the Ives and Stilwell’s experimental formula.

1 Introduction

Charged de Broglie particles such as the electron and the
proton can be decelerated by emitting electromagnetic radia-
tion. This occurs in all different kinds of processes, including
atomic spectral emission produced in laboratory [1, 2] or
from celestial processes[3], and charged particle synchrotron
radiation [4, 5]. The electromagnetic radiation emission from
sources of this type is in common converted from a portion
of the internal energy or the mass of a de Broglie particle in-
volved, which often involves a final state in motion, hence
moving source. The associated source-motion effect has ex-
cept for admitting a relativistic effect connected to high
source velocity thus far been taken as no different from the
ordinary Doppler effect that consists in a red- or blue-shift de-
pending on the source is moving away or toward the observer.
The ordinary Doppler effects are directly observable with
moving sources of a “conventional type”, like an external-
field-driven oscillating electron, an automobile horn, and
others, that are externally driven into oscillation which does
not add directly to the mass of the source. In this paper we
first (Sec. 2) examine the property, prominently an invariable
redshift, of moving atom radiation as informed by the hydro-
gen canal ray experiment [1] of Ives and Stilwell performed
at the Bell Labs in 1938 for a thorougher investigation of the
associated anomalous Doppler effect then known. Combining
with auxiliary experimental information and a scheme for de
Broglie particle formation[6], we then elucidate (Secs. 3–
5) the mechanism for spectral emission of moving atom, or
in essence the underlying (relative) deceleration radiation of
moving de Broglie electron, and predict Ives and Stilwell’s
experimental formula for redshift.

2 Indication by Ives-Stilwell’s experiment on fast mov-
ing hydrogen atoms

In their experiment on fast moving hydrogen canal ray spec-
tral emission[1], Ives and Stilwell let positively charged hyd-

rogen ions H+i of mass MHi and charge qi (i=2, 3) be
accelerated into a canal ray of high velocity, v, across accura-
tely controlled electric potential V correlated with v through
the work-energy relation qV = 1

2MHiv
2; or

v/c = A
√
V (1)

with c the speed of light, and A=
√

2qi
c2MHi

. For V ∼ 6700–

20755 volts, v ∼ 106 m/s as from (1). By neutralization and
dissociation the ions are at exit converted to excited atoms
that are unstable and will transit to ground state by emitting
Balmer spectral lines. The wavelength, λr, of the emitted
Hβ line is then measured using diffraction grating (Fig. 1a)
as a function of V . For a finite v, the spectral line produces
a first-diffraction peak at P (v), at distance y(v) = PO from
the center O; for a hydrogen at rest, v = 0, the line has a
wavelength λr0 =4861 angst. and produces a first peak at P0,
y0 = P0O. These have the geometric relations: λr =

λr0
y0
y,

and
Δλr = λr − λ

′
r0 = (λr0/y0)(y − y0) (2)

Δλr being the mean displacement of the Doppler lines at
a given v. The measured spectrogram, Fig. 1b, informs y−
− y0=B′

√
V with B′ a constant; this combining with (2) is:

Δλr/λr0 = (λr − λ
′
r0)/λr0 = B

√
V (3)

where B = B′λr0/y0.
If assuming

Δλr
λr0

= +
v

c
, (4)

then this and (3) give v
c =B

√
V . But vc and

√
V must satisfy

(1); thus B ≡ A; that is (3) writes:

Δλr/λr0 = A
√
V . (3 ′)

In [1], the two variables Δλr
λr0

and
√
V are separately

78 J. X. Zheng-Johansson. Spectral Emission of Moving Atom Exhibits always a Redshift



July, 2006 PROGRESS IN PHYSICS Volume 3

S

y

II:
 B

lu
es

hi
ft

υ2

0

P

III
: R

ed
sh

ift

L

I: 
R

ed
sh

ift

y λ r (b)(a)

θ0

θ
b

λ r

λr0

0 
vo

lts

13
70

2 
vo

lts

20
75

5 
vo

lts

y

Exptl.
resolution

P0

y0

O

Fig. 1: (a) Schematic single-slit diffraction grating. (b) Experim-
ental spectrogram, peak coordinates y (∝ λr) at several voltages
V (∝ v2), 7859, . . . , 20755 volts, after original Fig. of Ref. [1].
Spectral lines at finite V values all fall in the redshift regions I and
III beyond the V = 0 (v2 = 0)-lines illustrated in this plot.

measured and thus given an experimental relation, shown in
Fig. 10, of [1, p. 222], which agrees completely with (3′);
accordingly (4) is directly confirmed. Furthermore there is a
shift of center of gravity of λ′r0 from λr0 : Δ

′λr =λr0 −λ
′
r0=

= 1
2 (
v
c )
2; or λ′r0 =λr0

(
1− 1

2 (
v
c )
2
)
'λr0

√
1−(v/c)2. With

this and (4) in the first equation of (3) or similarly of (2),
one gets:

λr =
√
1− (v/c)2 λr0 + (v/c)λr0 ; (5)

(5) gives λr −λr0 >
v
c −

1
2 (
v
c )
2> 0; or, λr is always elongat-

ed for |v|> 0. Furthermore, (4)–(5) are obtained in [1] for
both the cases where source and observer move toward and
away from each other: The source velocity v is in the fixed
+x-direction; waves emitted parallel with v (Fig. 2) strike
on the diffraction grating D (observer 1) directly (Fig. 2b),
and waves antiparallel with v (Fig. 2c) strike on mirror M
(observer 2) first and are then reflected to D. That is, (5) is
regardless of the direction of the vector c. Therefore from
Ives and Stilwell’s experiment we conclude:

The wavelength of spectral line emitted from an atom
in motion is always longer, or red-shifted, than from
one at rest, irrespective if the atom is moving away
or toward the observer; the faster the atom moves, the
longer wavelength its spectral line is shifted to.

This apparently contrasts with the conventional Doppler ef-
fect where wavelengths will be λr =λr0(1− v/c) and λr =
=λr0(1 + v/c) and show a blue or red shift according to if
the source is moving toward or away from the observer.

3 Emission frequency of a moving atom

If a H atom is at rest in the vacuum, its electron, of charge −e
in circular motion at velocity un+1 about the atomic nucleus
in an excited n+1th orbit, has from quantum-mechanical sol-
ution (and also solution based on the unification scheme [6])

an eigen energy εu.n+1=−~2/
[
2me0(n+1)

2a2B0
]
, where

n=1, 2, . . . and me0 = γ0Me, γ0=1/
[
1− (un+1/c)2

]−1/2

with un being high (∼ 106 m/s), Me the electron rest mass,
and aB0 Bohr’s radius (should already contain 1/γ0, see
below). If now the electron transits to an unoccupied nth
orbit, the atom lowers its energy to εu.n and emits an electro-
magnetic wave of frequency

νr0 =
εu.n+1(0)− εu.n(0)

h
=

~2(2n+ 1)
h2me(n+ 1)2n2a2B

; (6)

accordingly λr0 = c/νr0 and kr0 =2π/λr0 =2πνr0/c.
If now the atom is moving at a velocity v in+x-direction,

(v/c)2� 0, then in the motion direction, its orbital radius is
Lorentz contracted to aB = aB0/γ, and its mass augmented
according to Einstein to me= γme0 = γγ0Me (see also the
classical-mechanics solutions [6]), where γ=1/

√
1−(v/c)2.

With aB and me for aB0 and me0 in (6), we have νr =

= εu.n+1(v)−εu.n(v)
h = γνr0 ; including in this an additional

term δνr which we will justify below to result because of an
energy gain of the moving source, the spectral frequency for
the n+ 1 → n transition for the moving atom then writes

νr = γ (νr0 + δνr) . (7)

4 Atomic spectral emission scheme

We now inspect how an electron transits, from an initial
n+1th to final nth orbit in an atom moving in general, here
at velocity v in +x-direction. To the initial-state electron,
with a velocity un+1 if v = 0, the finite v of the traveling
atom will at each point on the orbit project a component
v cos θ onto un+1(θ), with θ in (0, 2π); the average is ūn+1=
=
∫ 2π
θ=0
[un+1+v cos θ]dθ = un+1. That is, ūn+1 and any its

derivative dynamic quantities of the stationary-state orbiting
electron are not affected by v except through the second
order factor γ(v). The situation however differs during the
n+1→ n transition which distinct features may be induced
as follows:

(i) The transition ought realistically be a mechanical
process in which, in each sampling, the electron comes off
orbit n + 1 at a single definite location, e. g. A in Fig. 2a.
That where A is located on the orbit in any sampling, is a
statistic event.

(ii) The spectral radiation is a single monochromatic
electromagnetic wave emitted in forward direction of the
orbiting electron at the point (A) it comes off orbit n + 1,
as based on observations for decelerating electron radiation
in a storage ring in synchrotron experiments [4], which is
no different from an orbiting atomic electron except for its
macroscopic orbital size.

(iii) It follows from (i)–(ii) combined with momentum
conservation condition that the transition electron coming off
at A, will migrate across shortest-distance AB, perpendicular
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Fig. 2: An atomic electron comes off orbit n+1 statistically e. g. at
A in (a), emitting in brief time δt a single electromagnetic wave of
energy hνr in forward (un+1) direction, and then migrates (transits)
along AB, ⊥ un+1, to orbit n for an atom of v = 0, and across
AB′ in time tAB′ for finite v in +x-direction; BB′ = vtAB′ . In
(a): ∠c, v = θ; (b): c‖v; (c): −c‖v. The insets in (a)-(c) illustrate
the radiation from an apparent source.

to un+1, to orbit n, at B if the atom is at rest, or at B′ if
the atom is moving at velocity v in x-direction, given after
vector addition.

(iv) A stationary-state orbiting electron on orbit n∗ (=
n+1 or n), ψkdn∗ , is [6] a (single) beat or de Broglie phase
wave convoluted from the opposite-traveling component total
waves {ϕjkn} generated by an oscillatory massless (vaculeon)
charge−e, of wavevectors k†n∗ and k‡n∗ , which being Doppler
shifted for the source moving at velocity ujn+1. An n+1→ n
transition emits the difference between the two single waves,
ψkdn+1 and ψkdn — the emitted radiation is naturally also a
single wave. And,

(v) The component total waves making up the electron
beat wave at A is generated by the source in a brief time δt
when at A, a wave frequency ∼V =511 keV/h' 1020 s−1;
so the the time for detaching the entire radiation wave trains
from the source is estimated δt∼1/V=8×10−21 s. In con-
trast, the orbiting period of the electron is τd.n+1=1/νd.n+1=
=(n1)

21.5×10−16 s. So in time δt� τd.n+1, the electron is
essentially not moved along orbit n+1 as well as path AB
or AB′; hence un∗ (' un+1) (thus c) and v are at fixed
angle θ. Specifically if the electron comes off at A1 and A2
as in Fig. 2b and c, respectively, we have the approaching

and receding source and observer

c ‖ v and − c ‖ v . (8)

The wave and dynamic variables for the nonstationary
transition process would not be a simple difference between
solutions of the stationary states. However, we can try to
represent the process effectively using an apparent source
such that:

(v.1) the total wave detached from the apparent source gives
the same observed radiation as due to the actual source;
and

(v.2) the apparent source in transition has the same motion
as the (actual source of the) transition electron, that
is, translating at the velocity v (cf. item iv) in +x-
direction here.

5 A theoretical formula for the redshift

In fulfilling (v.1), the apparent source ought to be an oscillat-
ory charge (q) executing in stationary state circular motion at
velocity ua on orbit n+1 (insets in Fig. 2). Let first the orbit
n+1 be at rest, v=0, and so must be the apparent source as
by (v.2). The apparent source generates two identical mono-
chromatic electromagnetic waves traveling oppositely along
orbit n + 1, of wavevectors k†a0= k

‡

a0= ka0, which super-
pose into a single electromagnetic wave ψka0 . On transition,
the source emits the entire ψka0 in the direction parallel with
ua(θ), by simply detaching it; thus ka0 ≡ kr0 =2π/λr0 .

Let now orbit n + 1 be in motion at velocity v in +x-
direction, and so must be the apparent source. Let the source
comes off orbit n + 1 at point A1 (Fig. 2b). In a brief time
δt before this, the apparent source was essentially at A1 and
generating two waves ϕ†

k
†
a

parallel and antiparallel with ua,

thus v; their wavelengths were owing to the source motion of
v Doppler shifted, to λ†a=λr0(1−

v
c ), λ

‡
a=λr0(1+

v
c ), and

wavevectors k†a =
2π

λ
†
a

, k‡a =
2π

λ
‡
a

with the Doppler shifts

k†a−kr0 =
(v/c)kr0
1− v/c

(a); kr0−k
‡
a =

(v/c)kr0
1 + v/c

(b). (9)

The two waves superpose to ψka =ϕ
†

k
†
a

+ϕ‡

k
‡
a

, being ac-

cording to [6] now a single beat, or de Broglie phase wave
of the moving apparent source. On transition the source
detaches the entire single beat wave ψka , which is no longer
“regulated” by the source and will relax into a pure electro-
magnetic wave ψkr , but in conserving momentum, retains
in the single direction parallel with ua thus v. Similarly, if
the source exits at A2 (Fig. 2c), a single electromagnetic
wave will be emitted parallel with ua(A2), or, −v ∙ψka has
a de Broglie wavevector given[6] by the geometric mean of
(9a) and (b):

ka.d =
√
(k†a − kr0)(kr0 − k

‡
a) =

(
v
c

)
kr0√

1− (v/c)2

or ka.d = γ
(v
c

)
kr0 . (10)
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We below aim to express the ka.d-effected radiation var-
iables kr, νr and λr, which being directly observable. Mo-
mentum conservation requires |~ka.d|= |~δkr|; ka.d is as-
sociated with an energy gain of the apparent source, εa.v =

= (~ka.d)
2

2me
, owing to its motion, and thus an energy deficit in

the emitted radiation wave ψkr ,

δεr(= ~δkrc) = −εa.v ,

for either c ‖ v or − c ‖ v ,
(11)

and accordingly momentum and frequency deficits in the
emission

δkr = −ka.d = −(v/c)kr0 , (12)

δνr = δkrc = −(v/c)kr0c = −(v/c)νr0 . (13)

With (13) in (7), we have

νr = γ
(
1−

v

c

)
νr0 ' γ νr0 −

(v
c

)
νr0 (14)

where γ in front of δνr is higher order thus dropped. With
(14) we can further compute for the emitted wave:

kr =
2πνr
c

= γ
(
1−

v

c

)
kr0 ' γkr0 −

(v
c

)
kr0 , (15)

λr =
c

νr
=

c

νr0(1/γ − v/c)
'
λr0
γ
+
(v
c

)
λr0 . (16)

The theoretical prediction (16) for λr above is seen to
agree exactly with Ives and Stilwell’s experimental formula,
(5). Notice especially that the prediction gives δνr < 0 and
δλr > 0 for both c ‖ v and −c ‖ v as follows from (11); that
is, they represent always a redshift in the emission spectral
line, regardless if the wave is emitted parallel or antiparallel
with v.

6 Discussion

From the forgoing analysis of the direct experimental spectral
data of Ives and Stilwell on hydrogen canal rays, and with
the elucidation of the underlying mechanism, we conclude
without ambiguity that, the spectral emission of a moving
hydrogen atom exhibits always a redshift compared to that
from an atom at rest; the faster the atom moves, the redder-
shift it shows. This is not an ordinary Doppler effect associat-
ed with a conventional moving source, but rather is an energy
deficiency resulting from the de Broglie electron kinetic
energy gain in transition to a moving frame, a common
feature elucidated in [7] to be exhibited by the deceleration
radiation of all de Broglie particles. This redshift does not
inform the direction of motion of the source (the atom).

It is on the other hand possible for an atomic spectral
emission to exhibit blue shift for other reasons, for example,
when the observer is moving toward the source as based on
Galilean transformation. The author thanks P.-I. Johansson
for his support of the research and the Studsvik Library for
helping acquiring needed literature.
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In the present paper an attempt is made to develop a fractional integral and differen-
tial, deterministic and projective method based on the assumption of the essential
discontinuity observed in real systems (note that more than 99% of the volume occupied
by an atom in real space has no matter). The differential treatment assumes continuous
behaviour (in the form of averaging over the recent past of the system) to predict the
future time evolution, such that the real history of the system is “forgotten”. So it
is easy to understand how problems such as unpredictability (chaos) arise for many
dynamical systems, as well as the great difficulty to connecting Quantum Mechanics
(a probabilistic differential theory) with General Relativity (a deterministic differential
theory). I focus here on showing how the present theory can throw light on crucial
astrophysical problems like dark matter and dark energy.

1 Introduction

In 1999 I published [1] the preliminaries of a new theory: the
General Interactivity. It was a sketched presentation of the
mathematical basis of the theory, i. e. the fractional integral
treatment of time evolution. In the present paper we extend
the ideas of General Interactivity to the fractional derivatives,
and so we can explain the outer flatness of rotation curves,
last measures of SN Ia at high redshifts, the fluctuations in
the CMB radiation and the classical cosmology theory.

In 1933 Zwicky [2] found that the Coma cluster of
galaxies ought to contain more matter than is inferred from
optical observations: many of the thousands of galaxies in
the cluster move at speeds faster than the escape velocity
expected from the amount of visible matter and from the
Newton theory of gravitation. In the 1970’s, many authors
discovered that the speed of stars and clouds of hydrogen
atoms rotating in a galactic disk is nearly constant all the
way out to the edge of the galaxy [3, 4]. Using Newton’s
law of gravitation, this implied that the amount of matter at
increasing radius is not falling away, against the observed
star-light suggests. Over past two decades, the measured
deflection of light from a distant star by a massive object
like a galaxy (gravitational lens) points to a mass-to-light
ratio for the lensing galaxies of about 150, and yet if galaxies
contained only observed stars the expected value would be
between 5 and 10 [5]. From the observed cosmic micro-
wave background (CMB, the relic radiation of the Big Bang
that fills the Universe) fluctuations, we need that 23% of
the Universe is dark matter, and 73% is dark energy
[6, 7, 8, 9, 10]. Recent observations of SN Ia brightness show
that the expansion of the Universe has been speeding up.
This unexpected acceleration is also ascribed to an amount
of dark energy that is very similar than 73% of the Uni-
verse [11].

In Section 2 we show a review of the theory, in Section 3

we apply the theory to account for the observed dark matter
and dark energy, and in Section 4 we develop the conclusions.

2 The model

I start from two hypothesis: (1) the irreversibility in time
of natural systems and (2) the interactivity among all the
systems in the Universe. These hypotheses imply an intricate,
unsettled and discontinuous (and hence non-differentiable)
space-time. The differential treatment projects a variable
X(t), whose value is known at a time t, to a successive
time, t+Δt, through the assumption of a knowledge of
their time derivative, X ′(t), as follows: X(t+Δt)=X(t)+
+X ′(t)Δt. In many cases, to a good approximation, there
is proportionality between X(t) and X ′(t) so that X ′(t) ∝
X(t+Δt). Here I extend this projection, but with two crucial
modifications: (a) I project a complete distribution of real
values (a set of measured values ordered in time) instead
of individual values at one time, and (b) I generalize the
derivative to the Liouville fractional derivative (to take into
account the possibility of the discontinuous space-time of
the system under study). This then gives the fundamental
equation of the new dynamics:

d
β
FRAC

dt
X(tpast) ∝ X(tfuture) . (1)

X(tpast) being a table of values of the variable X until
the present time, X(tfuture) the same number of values of
X but from the present time to the future (a projection), and
β a value between 0 and 1 that includes the key information
about the history of the system.

But for more physical sense, one must take the inverse
of equation (1), i. e.

X(tpast) ∝
1

Γ(β)

∫ T

tpast

X(tfuture)

(tpast − tfuture)1−β
dtfuture (2)
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which is the fractional integration (or the Riemann-Liouville
integral) of X(tfuture), T being a time-period characteristic
of each system. The first hypothesis, irreversibility, suggests
the necessity of projecting the values of X(t), weighted
by a function of time that must be similar to the function
characteristic of critical points, such as observed in the well
known irreversible phase transitions in Thermodynamics; for
example, the form (TE − TEC)−0.64 for the time correlation
length of an infinite set of spins with a temperature TE near
the critical temperature TEC [12]. Compare this with the term
(tpast − tfuture)

β−1 in equation (2). I call this weighting
“generalized inertia”; it is characteristic of each system in
the sense of incorporating into the β exponent the history of
all the interactions suffered by the system, including those
interactions avoided by the differential approximation (high
order terms in Taylor expansions) due to its small values.

To use the fundamental equation (1) with maximum effi-
ciency, I invert equation (2) because this is an Abel integral
transform, and there is a technique developed by Simmoneau
et al. [13] to optimize the inversion of Abel transforms. This
technique consists in making a spectral expansion using a
special kind of polynomials whose coefficients are obtained
by means of numerical integration, thus avoiding the basic
problem of amplification of the errors, a problem inherent
in numerical differentiation; in the technique of Simmoneau
et al., measurement errors are incorporated into the coeffi-
cients of the spectral expansion and then propagate with time
without being amplified.

In the present context one can see the time as a critical
variable, each “present” being an origin of time coordinates,
with two time dimensions: the past and the future. We should
note that in Quantum Mechanics two independent wave func-
tions are needed (the real part and the imaginary part of the
total wave function) to describe the state of a system at each
moment in time.

One can view General Interactivity as a third approxima-
tion to reality: the first was the conception of continuous and
flat space-time by Newton, the second was that of continuous
and curved space-time by Einstein. Here I see a discontinuous
space-time whose degree of intricacy measures the essential
cause of changing. As in Newtonian Dynamics, where the
forces are the causes of changing, and in General Relativity,
where modifications of the metric of space-time are the
cause of changes in the motion of all massive systems, in
General Interactivity the exponent β gives us a measure
of the intricacy of the space-time “seen” by each system
through a given variable X. But how can we see Gravity
from the new point of view of General Interactivity? From
(differential) Potential Theory we know that the modulus of
the gravity force per unit mass is the following function of
mass distribution, ρ(x), in space:

FG(x) = G

∫
ρ(x′)

|x′ − x|2
d3x′ (3)

and, comparing with the three-dimensional fractional integra-
tion of ρ(x) we have:

Rβ
[
ρ(x)

]
= πβ−

π
2
Γ
(
3−β
2

)

Γ
(
β
2

)
∫

ρ(x′)

|x− x′|3−β
d3x′; (4)

FG(x) can be identified with the 1-integral of ρ(x) in three-
dimensional space (β=1) except for a constant. So in the
present context the gravity force can be interpreted as a one-
dimensional projection of the three-dimensional continuous
distribution of matter. It is not, then, a complete integral (this
would be β=3) and so the sum (integral) for obtaining the
gravity is more intricate than the mass distribution (contin-
uous by definition), i. e. the real discontinuity of mass distrib-
utions is transferred to the fractional integral instead of
working with a discontinuous ρ(x). Gravity, like the electro-
static force, whose expression is very similar to FG(x),
is seen as an inertial reaction of space-time, which would
tend to its initial (less intricate,i. e. simpler) state, towards a
structure in which the masses were all held together without
relative motions; both forces are seen as reactions against the
action of progressive intricacy in the general expansion of
the Universe following the Big Bang.

We take the total mass-energy of the Universe as the
observable magnitude X(t) to evolve in time using Eq. (2).
The constancy of this variable gives 1 = 1

β2
(T 2 − t2past)

β

(where I take squared variables for simplicity in the use of
Simmoneau et al.’s inversion technique). The greater past-
time variable, tpast, less β indicating that the space-time is
more intricate with time; this is the reason for integrating
more fractionally (less β). So the parameter β can also be
considered as a measure of the entropy of the Universe.

Another key to understand General Interactivity comes
from the classical Gaussian and Planckian distribution func-
tions, to which real systems in equilibrium tend. The equi-
librium distribution function for systems of particles, for col-
lisional and for collisionless systems (in the non-degenerate
limit [14]) is Gaussian; classical Brownian motion is an ex-
ample [15]; the equilibrium distribution function for systems
of waves is a Planckian, and a key example is blackbody
radiation. If both distribution functions evolve in time, then,
using the inversion of equation (2), we have the same final
result: the Planckian distribution. This tells us that whatever
the initial distribution at the beginning of the Big Bang (per-
haps both the Planckian characteristic of interacting waves
and the Gaussian characteristic of interacting particles co-
existed), their time evolution leads to a Planckian distribu-
tion, thereby connecting with the actual observed spectrum
of the Cosmic Microwave Background, which appears to be
almost perfectly Planckian.

But, why is the Planckian more stable than the Gaussian
with the passing of time? The answer I propose is that suc-
cessive critical transitions (at each time), due to the complex-
ity caused by interactions at large distances, tend to amplify
the Gaussian distribution to all range of energies, making it
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flatter. This breaks the thermal homogeneity because of the
very different time evolution of many regions, due to the
delay in the transmission of information from any one zone
to others that are far away (note that the speed of the light
is a constant). This amplification goes preferentially to high
energies because there is no limit, in contrast with lower
energies, for which the limit is the vacuum energy.

In this context, then, the Universe is seen as an expansion
of objects that emitting information (electromagnetic waves)
in all directions, and one can differentiate between two basic
kinds of interactions: (a) at small distances (the distance
travelled by light during a time that is characteristic of
each system) forming coupled systems showing macroscopic
(ensemble) characteristics, such as temperature or density,
well differentiated from those of their surroundings; and
(b) at large distances, interfering one system from another in a
complex manner due to the permanent change in the relative
distances due to the constancy of the speed of light, the
huge number of interactions and the internal variation of the
sources themselves. Note that this distinction between small
and large distances can be extended relative to each physical
system. For instance, a cloud of water vapour (as in the
Earth’s atmosphere) constitutes a system of water molecules
interacting over short distances, while the interaction between
one cloud and another is considered to take place over a large
distance. Inside a galaxy, the stars in a cluster are considered
to interact over short distances, while the interactions between
that cluster and the remaining stars and gas clouds in the
galaxy are considered as interactions over large distances.

In General Relativity there are no point objects; instead,
all the objects in Nature are considered as systems of other
objects, even subatomic particles appearing to be composed
of others yet smaller.

I now focus on one of the most puzzling interpretations of
Quantum Mechanics: the wave-particle duality. In Quantum
Mechanics the objects under study show a double behaviour
depending on what type of experiment one makes. An elect-
ron behaves as a particle in collisions with other electrons,
but the same electron passing through two gaps (enough
small and enough near each other) behaves as a wave in
that the outcoming electrons form an interference pattern.
In General Interactivity each “particle” is considered as a
system, and we know that the equilibrium distribution of
random particles is Gaussian, and that after the time evolution
given by Eq. (2) the distribution transforms into a Planckian
(the interaction with the other systems “drives” the random
set of particles) which is the distribution to which a set of
interacting waves in a cavity naturally tend. Furthermore,
the Planckian can be decomposed into a set of Gaussians,
so that the double nature of matter/energy is ensured. The
fact that a Planckian can be the result of the addition of
Gaussians of different centres and amplitudes is interpreted
as the Planckian representing an ensemble of random motions
in turn represented by Gaussians, which find a series of walls

to which resulting in certain reflexion and certain absorption.
As already demonstrated [15], both processes, reflexion and
absorption by a barrier, are equivalent to the addition and the
subtraction, respectively, of two Gaussians: the main Gaus-
sian and that which emerge as a consequence of the barrier
(by displacing its centre to the other side of the barrier). A
Gaussian, then, converts into a set of several other Gaussians
at progressively smaller amplitudes as a consequence of the
existence of barriers, and the envelope is a Planckian. There
is a partial reflection at each barrier in the direction of higher
energies, while the reflection is total to the lower energies and
the absorption of unreflected part must be added to the left
of the barrier. This argument can be applied to explain the
Planckian distribution observed in the Cosmic Microwave
Background Radiation: the energy barriers can be thought of
as the consequence of the existence of wrinkles in space-time,
caused by the finiteness of the Universe (closed box) and the
uncoupled expansion of the content with respect to the box,
or by breaking of the expansion because of the collision of
the outer parts with another medium, or by the succession of
several bangs at the beginning, instead of only one bang.

3 Dark Matter and Dark Energy

Another example of application of this theory is the generali-
zation of one of the most important theorems in Field Theory,
Gauss’s theorem, leading to a possible solution (as a kind of
Modified Newtonian Dynamics theory) of the well known
problem of the “lost mass” of the Universe and its associated
problem of “dark matter” [16]. Assuming the well known
observation of the infinitesimal volume occupied by matter
relative to holes in Nature (the nucleus of an atom occupy less
than 1% of the atom’s volume, and gas clouds in the inter-
stellar medium have densities of 1 atom per cubic centimeter
or less), one must consider the possibility of relaxing the con-
tinuum hypothesis. The Gauss’s theorem can be expressed,
simplified and for the gravitational field, as

∫

S

gNdS = −4πGM , (5)

where gN is the intensity of the gravity field over a closed
surface, S, which contains the mass, M , which is the origin
of the field, on the assumption of continuity, and G is the uni-
versal gravity constant. So, integrating Eq. (5) on the assump-
tion of gN ' constant over S, we get gN =−4πGM/S, with
S =

∫
S
dS. If we take as the starting point the differential

form of Gauss theorem, and then we take in Eq. (5) the frac-
tional, instead of the full, integral and also assume g' const,
we have

g(r) =
−4πGM

πβ−1Γ( 2−β2 )
Γ( β2 )

∫
S

dX
|S−X|2−β

. (6)

Because β is less than 2, g is greater than gN , and this
result could explain the observational fact of gN being very
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Fig. 1: Rotation curve (kms−1) for NGC3198. Crosses are observ-
ational data points taken from van Albada et al. [17]. Full line is the
prediction of the present theory, and dashed line is the prediction
by the Newton law of gravitation.

small in explaining, for instance, many galactic rotation
curves far from the central regions. For, assuming spherical
simetry one has:

g(r) = gN
4πr2

πβ−1Γ( 2−β2 )
Γ( β2 )

∫ 2π
0

2πr2 sin θdθ
r2−β

. (7)

And taking β=1 one has g(r)= gNr, which introduced
in the classical centrifugal equilibrium identity V 2

r = g leads
to the amazingly V =(GM)1/2' constant as is observed for
flat rotation curves that needs dark matter (see Fig. 1).

More complicated treatment can be made: in the integral
treatment one can consider the basic constituents of matter
(the atoms) and the infinitesimal size of the volume occupied
by the atomic mass (the nucleus) with respect to the size
of the atom, and then one finds the necessity of take into
account that ubiquitous nature of the big holes existing inside
the matter (the atoms and molecules inside the very low
density galactic gas clouds amplify the hole effect respect
to the whole cloud and then amplify the influence in the
macroscopic gravitational (massive) behaviour). So one can
consider the hypothesis of continuity as a first approximation,
and one can re-examine the Gauss’ theorem

∫

S

gdS = −4πG
∫

V

ρdV , (8)

where g is the gravitational field over the surface S, S is
any closed surface containing the massive object which is
the source of the field, G is the gravitational constant, ρ

is the density, and V is the volume contained within the
surface S. And one can generalize Eq. (5) in the sense of take
both integrals as fractional integrals (α and β respectively)
which leads to normal integrals for some especial case. If
one assumes, for simplicity, spherical symmetry for the gas
mass distribution in the galaxy, one has:

ρ = ρ0 e
−(r−r0)

r′ (9)

and assuming g' constant over the now non-necessary conti-
nue surface (the fractional integration takes this into account)
one has:

g = −
16π2Gρ0C2(β)

f(α)r2C1(α)
r2−α

∫
r2rβ−3e−

r−r0
r′ dr , (10)

where f(α) is some function of α,

C2(β) = πβ−3/2
Γ
(
3−β
2

)

Γ
(
β
2

) , (11)

C1(α) = πα−1
Γ
(
2−α
2

)

Γ
(
α
2

) , (12)

while

gN = −
4πGρ0
r2

∫
r2e−

r−r0
r′ dr . (13)

So, in the especial case when β = 3 and α = 2 we have
g = gN . Then, expanding rβ−3' 1+(β−3) log r+ . . . as
β→ 3 and r2−α' 1−(α−2) log r+ . . . as α→ 2, and in-
cluding the expansions into Eq. (13) one has

g '
8πC2(β)

f(α)C1(α)

(
1− (α− 2) log r

)
×

×

(

gN −
4πGρ0
r2

∫
(β − 3)(log r)r2e−

r−r0
r′ dr

)

.

(14)

And integrating by parts and taking very large values for
r, we have

g ' gN
8πC2(β)

f(α)C1(α)

(
1 + (α− 2)(3− β) log 2r

)
. (15)

And for typical values of observed flat rotation curves
(5kpc 6 r 6 20kpc) we have that g∝ gNr represents a good
approximation. So, for certain values of α and β (α less than
2 and β greater than 3) one has that outer rotation curves can
be flat as observed.

But the most puzzling problem up-to-date in cosmology
is the necessity of adding “ad hoc” a dark energy or negative
pressure (the so called by Einstein cosmological constant)
to the main equation of General Relativity to account for
the last measures on supernovae Ia and the fluctuations in
the cosmic microwave background radiation which implies
a flat accelerating expanding universe. The field equation
of General Relativity was formulated by Einstein as the
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generalization of the classic Poisson equation which relates
the second derivative of the potential φ associated to the
gravitational field with the assumed continuous mass distrib-
ution represented by the volume density ρ:

Δ2φ+ 4πGρ = 0 . (16)

For comparison, the similar equation in General Rela-
tivity, which relates the mass and energy distribution with
the differential changes in the geometry of the continuum
space-time, is (see e. g. Einstein [18]):

(

Rμν −
1

2
gμνR

)

+ κTμν = 0 . (17)

But for the last equation be coherent with the last inde-
pendent measures of SN Ia and fluctuations of CMB radia-
tion, we need to add a term gμνΛ to the left side of equation
which represents near 73% of all the other terms. This prob-
lem is avoided naturally if we consider a discontinuous
space-time, and then we re-formulate the equations by using
the fractional derivative instead the full derivative. In that
case, the second derivative is less than the full derivative,
and then the cosmological constant is not needed at all to
equilibrate the equations. In fact the μ-fractional derivative
of the function rλ is given by [19]:

Dμrλ =
Γ(λ+ 1)

Γ(λ− μ+ 1)
rλ−μ (18)

for λ greater than −1, μ greater than 0. But as λ→−1,
rλ→∝φ being φ the gravitational potential. And as one can
see, taken a fixed value of λ, as μ increase, the μ-derivative
decrease. Or to be more precise, if we assume that the con-
stant to be added to the left side of Eq. (17) represents the
73% of all the matter and energy in the Universe, one has:

lim
λ→−1

Γ(λ− μ+ 1)R−λ−2

Γ(λ− 2 + 1)R−λ−μ
' 1.73 , (19)

where R is a characteristic scale-length of the Universe.
And the relation (19) works for values of μ greater but
very near 2, being 2 the value corresponding to the usual
second derivative. So we conclude that taking a value, for
the derivatives in the field equations, slightly greater than
the usual 2, we are able of include the cosmological constant
inside the new fractional derivative of the classical field
equations.

4 Conclusions

The new theory of the General Interactivity can be applied
to many fields of natural science and constitutes a new step
forward in the approximation to the real behaviour of Nature.
It assumes the necessity of explicitly taking into account
the real history of a system and projecting to the future.

However, it also takes into account the non-uniformity of the
distribution of holes in the Nature and is therefore a theory
of discontinuity. The new theory can account for naturally
the needed amounts of dark matter and dark energy as a light
modification of classical field equations.
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Creep experiments were conducted on Cu-8.5 at.% Al alloy in the intermediate tem-
perature range from 673 to 873 K, corresponding to 0.46–0.72 Tm where Tm is
the absolute melting temperature. The present analysis reveals the presence of two
distinct deformation regions (climb and viscous glide) in the plot of log ε̇ vs. log σ.
The implications of these results on the transition from power-law to exponential
creep regime are examined. The results indicated that the rate controlling mechanism
for creep is the obstacle-controlled dislocation glide. A phenomenological model
is proposed which assumes that cell boundaries with sub-grains act as sources and
obstacles to gliding dislocations.

1 Introduction

The importance of accurate experimental data on the creep
properties of polycrystalline metals and alloys is well known.

Creep resistance is an important attribute of high tempe-
rature alloys and mechanisms that control! creep in alloys
must be well understood for design of alloys that resist
creep. These mechanisms can be classified into different
types depending on the values of the activation energy for
creep and temperatures. Several of these mechanism were
reviewed by Raj and Langdon [1].

The creep resistance of Cu was shown to increase as
the Al content is increased although the creep increment
was small above 8.5 at.% Al. The creep response of Cu-
Al binary solid solutions has been described in one of two
ways: (i) those alloys in which dislocation climb is the rate-
controlling step during deformation and (ii) where dislocation
glide becomes rate controlling due to solute drag on moving
dislocations [2]. More detailed knowledge of dislocation pro-
cesses in cell walls and for sub-boundaries in creep that could
lead to a greater understanding of the creep mechanisms has
been emphasized [3]. From out point of view, the two models
which represent an important step in this direction are as
follows: (a) the model of soft (i.e. sub-grain interior) and hard
(i. e. sub-boundaries) regions introduced by Nix-Ilschner [4],
and developed with considerable detail by Rodriguez et al.
[5]; (b) the bowing-out model of sub-boundaries due to
Argon and Takeuchi [6]. From an experimental point of
view, Aldrete [7] measured local stresses in the sub-grain
structure formed during steady state creep in Cu-16 at.% Al
solid solution alloy. Their results show that the internal stress
σi [3] mainly originates in cell wall regions.

The objective of this paper is to study the phenomenolo-
gical model for creep behaviour in Cu-8.5 at.% Al alloy,
and examine the mechanism controlling the creep regime at
intermediate temperature region.

2 Experimental procedure

The Cu-8.5 at.% Al alloy was prepared from melting high
purity copper and aluminum (99.99%) by aspiration through
a quartz crucible of induction melted alloy under a helium
atmosphere [8]. The cooling rate of the alloy is between
4×102 and 103 Ks−1. The ingot was swaged in wire form
of diameter 1mm and ≈ 50mm gauge length. The wire spe-
cimens were pre-annealed at 873K for 1h to check what
happens to the distribution of Al, and to remove the effects of
machining with producing a stable uniform grain size [9], in a
quartz ampoule after evacuating to at least 5.3×104 Pa. After
this treatment the samples were considered to be precipitated
[10]. Fairly reproducible and equiaxed grains were obtained
from the heat treatment, and the average linear intercept
grain size obtained from a statistical sample size of grains
was ∼=10μm.

Creep tests were conducted at the intermediate temperatu-
re range from 673 to 873K, corresponding to 0.46–0.72Tm,
with an accuracy of ±1K under constant stress condition
in a home-made creep machine with a Andrade-Chalmers
lever arm. All tests were conducted under a flowing argon
atmosphere maintained at a slightly positive pressure.

Some temperature change tests were conducted in order
to determine the activation energy for creep Qc.

3 Results and discussion

All creep curves showed a normal primary stage and a
reasonably well-established steady-state region. The duration
of the tertiary stage was short and abrupt, although the
contribution of the tertiary strain to the total strain was often
quite large. Typical creep curves are shown in Fig. 1 for a
temperature 773K and different stress levels.

Usually creep tests are carried out on annealed samples;
then we can assume that, during the first minutes of the test,
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Fig. 1: Representative creep curves at different stress levels and at
T = 823K.

Fig. 2: Stress dependence of minimal creep rate at different tem-
peratures. The creep rates show a change in slopes from n = 3 to
n = 2.8 at the transition stresses.

the annihilation events are negligible as compared with the
creation of dislocations. Therefore, considering that all the
dislocations are mobile, the change ρm in is due to the crea-
tion of new dislocations. Also, according to Montemayor-
Aldrete et al. [7] the creation rate ρ̇+m of dislocations is
given as

ρ̇+m =
ασ ε̇

ū
, (1)

where ū is the mean value for the self-energy of dislocations
per unit length, α is the average geometrical factor relating
the tensile deformation to the shear deformation for samples,
and ε̇ is the deformation rate.

Since the strain in the secondary region was often quite
small, especially at the lower temperatures, it was necessary
to assume that the minimum creep rate was representative of
secondary behaviour. Fig. 2 shows the variation of the mini-
mum creep rate ε̇ with applied stress plotted logarithmically.
As indicated, the stress exponent, n, (n= ∂ ln ε̇/∂ lnσa)T,t
decreases from ∼=3.2±0.2 at the lowest temperature of
673K to ∼=2.8±0.2 at temperature above ∼=773K. These
values of stress exponent are typical for a rate controlling
process due to a transition from viscous glide mechanism
to climb of dislocation along the shear planes [2]. However,
Fig. 2 assumes implicitly that the power-law relationship
is valid and this may not be true to for all of the datum

Fig. 3: The dependence of the volume fraction fc of subgrains near
grain boundaries on applied stress at T = 773K.

points. This observation suggested that there is a connection
between creep behaviour and the internal microstructure of
the primary sub-grains. It is found that the primary sub-grains
become elongated in the transition region between power-
law and exponential creep, and they often contain fewer
secondary sub-boundaries, larger numbers of coarse-walled
cells and a higher dislocation density in comparison to their
equiaxed neighbors [1]. Similar microstructures consisting of
cells and equiaxed and elongated sub-grains have also been
observed in Al [9], Cu [11], Fe [12].

From a phenomenological point of view, the qualitative
features of the our model consider that in the early primary
transient stage of deformation the only difference between vi-
scous glide and power-law creep is due to the dependence of
the glide velocity on the effective stress σe. Here σe=σ−σi,
with σ the applied stress and σi the internal stress. At the
higher stress level in the power law creep regime, the ap-
parent creep mechanism is determined by the relative vol-
ume fraction of climb-and viscous-glide-controlled regions
as presented in Fig. 3. If the above arguments are reasonable,
then it is suggested that the creep rate in a grain of a
polycrystalline aggregate can be represented by summation
of the viscous glide and climb rates as follows [13]:

ε̇app = (1− fc) ε̇g + fc ε̇c , (2)

where ε̇app is the apparent creep rate, and ε̇g and ε̇c are the
rates of the viscous glide and climb processes respectively.
The volume fraction of sub-grains near the boundary is fc.
The volume fraction of the region controlled by the viscous
glide process is 1− fc. If grain boundaries migrate only, the
value of fc becomes zero.

Fig. 4 shows a schematic representation of the deforma-
tion behaviour in the vicinity of grain boundaries and devel-
opment of sub-grains in n≈ 3 stress region. It shows a large
equiaxed primary sub-grain which is formed during power-
law creep and subdivided by cells; for simplicity, secondary
sub-boundaries are not shown (see Fig. 4a). Under steady-
state conditions, a dislocation generated at a cell boundary
under the action of a shear stress, τ , can glide across to the
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Fig. 4: A phenomenological model for creep showing (a) cells
and dislocations within a sub-grain and (b) emission of extended
dislocations from a cell wall; b1 and b2 are the Burgers vectors of
the partial dislocations.

opposite boundary fairly easily (Fig. 4b), where its motion
is obstructed or it is annihilated. This process is similar to
mechanisms suggested for cyclic deformation [14] but unlike
the earlier two phase creep models [2], the present me-
chanism is consistent with recent experimental observations
[15] since it assumes that the cell rather than the sub-grain
boundaries govern steady-state behaviour. This difference is
important because, in order to accommodate strain inhomo-
geneity in the material, a cell boundary is more likely than a
sub-boundary to breakup due to its smaller misorientation
angle (about 0.1◦), and thus it is more likely to release
new dislocations into the sub-grain interior. In this way,
the cell boundaries act as the major sources and sinks for
dislocations during creep. The transition from power-law to
exponential creep can be envisaged [4, 7] to occur when
these microstructural changes are sufficiently large that they
influence the nature and magnitudes of the internal stresses
acting within the primary sub-grains, thereby resulting in an
increase in their aspect ratio. The internal stresses within
elongated sub-grains are expected to be higher than that
within equiaxed sub-grain, and this difference can lead to
sub-boundary migration if the sub-boundaries are mobile.
This is consistent with experimental observations on many
materials [16].

Fig. 5 shows a comparison of the experimental activation
energies Qc for the alloy with those predicted by the Nix-
Ilschner model [4] for obstacle-controlled glide Qg vs. norm-
alized stress σ/G. It suggest that obstacle controlled disloca-
tion glide is the dominant mechanism in Cu-8.5 at.% Al alloy

Fig. 5: A comparing between the experimental activation energies,
Qc, for Al-8.5 at.% Cu alloy, and the prediction by the Nix-Ilschner
model [4] for obstacle-controlled glide, Qg at T = 773K.

Fig. 6: The normalized activation energies, Qc, dependence of the
T/Tm for the increasing strain rates.

at intermediate temperature region when σ/G > 5×10−5,
corresponding to the exponential creep regime [17].

Although the Nix-Ilschner model [4] is in excellent agree-
ment with the experimental data, it is conceptually limited
because since it assumes that the deformation processes
occurring within the sub-grain interior (i. e. the soft regions)
are coupled with recovery mechanisms taking place at the
sub-boundaries (i. e. the hard regions). While this assumption
predicts that the power-law and the exponential creep mech-
anisms will act independently, it dose not satisfy the strain
compatibility conditions which must maintained between the
hard and soft regions to ensure that the slowest deforming
phase determines the overall creep rate in both deformation
regimes. Support this phenomenological model is also found
in Cottrell-Stokes type experiments [18].

Additionally, Fig. 6 reveals that the normalized activation
energies, Qg/RTm, extrapolate smoothly to the values ob-
tained at lower homologous temperatures where obstacle-
controlled glide was established as the dominant deformation
process.

4 Conclusion

1. A detailed analysis of creep data on Cu-8.5 at.% Al
alloy, obtained at intermediate temperatures between
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0.46–0.72Tm, showed that the obstacle-controlled
glide is the rate-controlling mechanism in the transition
from power-law to exponential creep regime.

2. A phenomenological model for creep is proposed
which is based on the premise that cell boundaries in
the sub-grain interior act as sources and obstacles for
dislocations.

3. The soft and hard regions model for the internal stress
σi for a power-law creep curve can only be explained
by considering the contribution to σi arising from the
cell wall dislocations, as well as from dislocations that
do not belong to the cell walls.
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Doppler broadening positron annihilation technique (DBPAT) provides direct inform-
ation about the change of core and valance electrons in Polyallyl diglycol carbonate
(CR-39). CR-39 is widely used as etched track type particle detector. This work aims
to study the variation of line-shape parameters (S- and W-parameters) with different
α-particle doses of 241Am (5.486 MeV) on CR-39 samples at different energies. The
relation between both line-shape parameters was also reported. The behavior of the
line-shape S- and W-parameters can be related to the different phases.

1 Introduction

Positron Annihilation Technique (PAT) has been used to
probe a variety of material properties as well as carry out
research in solid state physics. Recently this technique has
become established as a useful tool in material science and
is successfully applied for investigation of defect structures
present in metal alloys. PAT has been employed for the
investigating Polymorphism in several organic materials [1]
and it has emerged as a unique and potent probe for character-
izing the properties of polymers [2].

Positron Annihilation Doppler Broadening Spectroscopy
(PADBS) is a well established tool to characterize defects [3].
The 511 keV peak is Doppler broadened by the longitudinal
momentum of the annihilating pairs. Since the positrons are
thermalized, the Doppler broadening measurements provide
information about the momentum distributions of electrons
at the annihilation site.

Two parameters S (for shape), and W (for wings) [4]
are usually used to characterize the annihilation peak. The
S-parameter is more sensitive to the annihilation with low
momentum valence and unbound electrons. The S-parameter
defined by Mackenzie et al. [5] as the ratio of the integration
over the central part of the annihilation line to the total
integration. The W-parameter is more sensitive to the anni-
hilation with high momentum core electrons and is defined
as the ratio of counts in the wing regions of the peak to the
total counts in the peak.

CR-39 is a polymer of Polyallyl diglycol carbonate
(PADC) has been used in heavy ion research such as compo-
sition of cosmic rays, heavy ion nuclear reactions, radiation
dose due to heavy ions and exploration of extra heavy ele-
ments. Some applications include studies of exhalation rates
of radon from soil and building materials [6, 7] and neutron
radiology [8]. When a charged particle passes through a
polyallyl diglycol carbonate, C12H18O7 (CR-39) a damage

zone are created, this zone is called latent track. The latent
track of the particle after chemical etching is called “etch pit”
[9]. The etch pit may be seen under an optical microscope.
Positron trapping in vacancies (the size of the etch pit in the
CR-39 sample) results in an increase (decrease) in S (W)
since annihilation with low momentum valence electrons is
increased at vacancies.

2 Experimental technique

Various holder collimators with different heights are used
to normally irradiate the INTERCAST CR-39 in air by α-
particles [10]. Track detectors “CR-39” were normally irrad-
iated in air by different α-particle energies from 0.1μCi
241Am source.

The heights of the holders are 12.47, 17.55, 21.58, 24.93,
28.7, 31.55 and 34.6 mm they would reduce the energy of
5.486 MeV α-particles from 241Am to 4.34, 3.75, 3.3, 2.86,
2.3, 1.78 and 1.13 MeV, respectively. The irradiations were
verified at 0.5, 2, 3, 4.5 min. After exposures, the detectors
were etched chemically in 6.25 M NaOH solution at 70◦C for
6 h. The simplest way to guide the positrons into the samples
is to use a sandwich configuration. 22Na is the radioactive
isotope used in our experiment.

The positron source of 1 mCi free carrier 22NaCl was
evaporated from an aqueous solution of sodium chloride
and deposited on a thin Kapton foil of 7.5μm in thickness.
The 22Na decays by positron emission and electron capture
(E. C.) to the first excited state (at 1.274 MeV) of 22Na. This
excited state de-excites to the ground state by the emis-
sion of a 1.274 MeV gamma ray with half life T1/2 of
3×10−12 sec. The positron emission is almost simultaneous
with the emission of the 1.274 MeV gamma ray while the po-
sitron annihilation is accompanied by two 0.511 MeV gamma
rays. The measurements of the time interval between the
emission of 1.274 MeV and 0.511 MeV gamma rays can
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Fig. 1: Block diagram of HPGe-detector and electronics for Doppler
broadening line shape measurements.

Fig. 2: The variation of S-parameter as a function of irradiation
energy for 0.5, 1, 2 and 3 min. irradiation time.

yield the lifetime τ of positrons. The source has to be very
thin so that only small fractions of the positron annihilate
in the source.

The system which has been used in the present work
to determine the Doppler broadening S- and W-parameters
consists of an Ortec HPGe detector with an energy resolution
of 1.95 keV for 1.33 MeV line of 60Co, an Ortec 5 kV bais
supply 659, Ortec amplifier 575 and trump 8 k MCA. Figure
1, shows a schematic diagram of the experimental setup.
Doppler broadening is caused by the distribution of the
velocity of the annihilating electrons in the directions of
gamma ray emission. The signal coming from the detector
enters the input of the preamplifier and the output from the
preamplifier is fed to the amplifier. The input signal is a
negative signal. The output signal from the amplifier is fed
to a computerized MCA. All samples spectrum are collected
for 30 min.

3 Results and discussion

The Doppler broadening line-shape parameters were mea-
sured for irradiated CR-39 samples of different α-particle

Fig. 3: The variation of W-parameter as a function of irradiation
energy for 0.5, 1, 2 and 3 min irradiation time.

Fig. 4: The variation of S and W parameters as a function of
irradiation time for CR-39 samples.

energies at different doses (0.5, 1, 2 and 3 min). The data
of S-and W-parameters at 1 min were calculated by Abdel-
Rahman et. al. [11]. The Doppler broadening line-shape S-
and W-parameters are calculated using SP ver. 1.0 program
[12] which designed to automatically analyze of the positron
annihilation line in a fully automated fashion but the manual
control is also available. The most important is to determine
the channel with the maximum which is associated with the
energy 511 keV. The maximum is necessary because it is a
base for definition of the regions for calculations of S- and
W-parameters.

The results of S- and W-parameters as a function of
α-particle energy at different irradiation doses into CR-39
polymer are shown in Figures 2 and 3. From these figures one
notice a linear behavior of S- and W-parameters obtained at
minimum irradiation time of 0.5 min. The effect of such small
irradiation time is very weak to make any variation in line-
shape parameters. The values of S- and W-parameters are
47% and 15% respectively at 0.5 min. At longer time (1 min)
the S-parameter has values around 46% while values of about
15% are obtained for W-parameter. An abrupt change at
1 min definitely observed at irradiation energy of 2.86 MeV
of α-particles for both S- and W-parameters. At this energy
a drastically decrease in the S-parameter with deviation of
about ΔS= 11% comparable with a drastically increase in
the W-parameter with deviation of about ΔW= 13% [11].
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Fig. 5: The correlation between the W-parameter and S-parameter
at irradiation time of 1 min.

Fig. 6: The correlation between the W-parameter and S-parameter
at irradiation time of 3 min.

The S-parameter decreases while W-parameter increases with
increasing of irradiation time. Values of about 35% and 25%
for S-parameter are obtained at 2 and 3 min respectively for
lower energies. The deviation of both S- and W-parameters
at 2.86 MeV become very small at longer time as measured
at 2 and 3 min. The deviations of 4S and 4W reach values
less than 0.1% at 3 min (notice different scale on Figures 2
and 3). The behavior of S- and W-parameters reveal an abrupt
change at the position of the transition (1 min at 2.86 MeV).
The behavior of the line-shape S- and W-parameters can be
related to the different phases. Like many others molecular
materials, the use of PAT also proven a very valuable in the
study of phase transition in polymers.

To recognize more clear the effect of both irradiation time
and energy, we take 3 values of energies from presented
figures and draw them as a function of irradiation time.
Figure 4 (a, b, and c) represent the S- and W-parameters as a
function irradiation time for samples irradiated at energies of
1.78, 2.86 and 3.75 MeV respectively. It is much more clear
from these figures a slightly change of S- and W-parameters
are obtained only at 1 min at irradiation energies of 1.78 and
3.75 MeV. Much more pronounced change in both S- and
W-parameters are obtained at the same irradiation time at
energy of 2.86 MeV.

The values of W-parameter as a function of S-parameter
at 1 and 3 min are plotted in Figs. 5 and 6. It is obvious from

these Figures that W-parameter increases as S-parameter
decreases for all irradiation times. In addition there are a good
correlation with r2= 0.998 and 0.8928 between S-parameter
and W-parameter for 1 and 3 min respectively.

4 Conclusion

The variation of line-shape parameters (S- and W-parameters)
at different α-particle doses of 241Am on CR-39 samples for
different energies have been studied. The behavior of line-
shape parameters at different α-particle doses reveals a pro-
nounced decrease and increase in both S- and W-parameters
respectively. A linear behavior of S- and W-parameters are
obtained at minimum irradiation time of 0.5 min. An abrupt
change of both line-shape parameters, obtained at 2.86 MeV
and irradiation dose of 1 min. The W-parameter increases as
S-parameter decreases for all irradiation times.
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New Effect of General Relativity: Thomson Dispersion of Light in Stars
as a Machine Producing Stellar Energy

Dmitri Rabounski
E-mail: rabounski@yahoo.com

Given a non-holonomic space, time lines are non-orthogonal to the spatial section
therein, which manifests as the three-dimensional space rotation. It is shown herein
that a global non-holonomity of the background space is an experimentally verifiable
fact revealing itself by two fundamental fields: a field of linear drift at 348 km/sec, and
a field of rotation at 2,188 km/sec. Any local rotation or oscillation perturbs the back-
ground non-holonomity. In such a case the equations of motion show additional energy
flow and force, produced by the non-holonomic background, in order to compensate
the perturbation in it. Given the radiant transportation of energy in stars, an additional
factor is expected in relation to Thomson dispersion of light in free electrons, and pro-
vides the same energy radiated in the wide range of physical conditions from dwarfs
to super-giants. It works like a machine where the production of stellar energy is regu-
lated by radiation from the surface. This result, from General Relativity, accounts for
stellar energy by processes different to thermonuclear reactions, and coincides with
data of observational astrophysics. The theory leads to practical applications of new
energy sources working much more effectively and safely than nuclear energy.

1 Introduction. The mathematical basis

We aim to study the effects produced on a particle, if the
space is non-holonomic. We then apply the result to the par-
ticles of the gaseous constitution of stars.

To do this we shall study the equations of motion. To
obtain a result applicable to real experiment, we express
the equations in terms of physically observable quantities.
Mathematical methods for calculating observable quantities
in General Relativity were invented by A. Zelmanov, in the
1940’s [1, 2, 3]. We now present a brief account thereof.

A regular observer perceives four-dimensional space as
the three-dimensional spatial section x0= const, pierced at
each point by time lines xi= const.∗ Therefore, physical
quantities perceived by an observer are actually projections
of four-dimensional quantities onto his own time line and
spatial section. The spatial section is determined by a three-
dimensional coordinate net spanning a real reference body.
Time lines are determined by clocks at those points where
the clocks are located. If time lines are everywhere orthog-
onal to the spatial section, the space is known as holonomic.
If not, there is a field of the space non-holonomity — the non-
orthogonality of time lines to the spatial section, manifest as
a three-dimensional rotation of the reference body’s space.
Such a space is said to be non-holonomic.

By mathematical means, four-dimensional quantities can
be projected onto an observer’s time line and spatial section
by the projecting operators: bα= dxα

ds
, the observer’s four-

dimensional velocity vector tangential to his world-line, and
hαβ =−gαβ+ bαbβ . For a real observer at rest with respect

∗Greek suffixes are the space-time indices 0, 1, 2, 3, Latin ones are the
spatial indices 1, 2, 3. So the space-time interval is ds2= gαβ dxαdxβ .

to his reference body (bi=0), the projections of a vector
Qα are bαQα=

Q0√
g00

and hiαQ
α=Qi, while for a tensor of

the 2nd rank Qαβ we have the projections bαbβQαβ =
Q00

g00
,

hiαbβQαβ=
Qi
0√
g00

, hiαh
k
βQ

αβ=Qik. Such projections are in-
variant with respect to the transformation of time in the spa-
tial section: they are chronometrically invariant quantities.

In the observer’s spatial section the chr.inv.-tensor

hik = −gik + bibk = −gik +
g0i g0k
g00

, (1)

possesses all the properties of the fundamental metric tensor
gαβ . Furthermore, the spatial projection of it is hαi h

β
kgαβ =

=−hik. Therefore hik is the observable metric tensor.
The chr.inv.-differential operators

∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi
=

∂

∂xi
−
g0i
g00

∂

∂x0
, (2)

are different to the usual differential operators, and are non-
commutative:

∗∂2

∂xi∂t
−

∗∂2

∂t ∂xi
= 1
c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
=

= 2
c2
Aik

∗∂
∂t

. The non-commutativity determines the chr.inv.-
vector for the gravitational inertial force Fi and the chr.inv.-
tensor of angular velocities of the space rotation Aik

Fi =
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00 = 1−

w

c2
, (3)

Aik =
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(
Fivk−Fkvi

)
, (4)

where w is the gravitational potential, and vi=− c
g0i√
g00

is
the linear velocity of the space rotation†. Other observable

†Its contravariant component is vi=−cg0i
√
g00, so v2=hikvivk.
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properties of the reference space are presented with the chr.
inv.-tensor of the rates of the space deformations

Dik =
1

2
√
g00

∂hik
∂t

=
1

2

∗∂hik
∂t

(5)

and the chr.inv.-Christoffel symbols

Δijk=h
imΔjk,m=

1

2
him

( ∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)

(6)

built just like Christoffel’s usual symbols Γαμν = g
ασΓμν,σ

using hik instead of gαβ .
Within infinitesimal vicinities of any point in a Riemann-

ian space the fundamental metric tensor can be represented
as the scalar product gαβ =~e(α)~e(β) of the basis vectors,
tangential to curves and non-orthogonal to each coordinate
line of the space. Hence gαβ = e(α)e(β)cos(x

α;xβ). There-
fore the linear velocity of the space rotation

vi = −c
g0i
√
g00

= −ce(i) cos (x
0;xi) (7)

shows how much the time line inclines to the spatial section,
and is the actual value of the space non-holonomity.

The observable time interval dτ and spatial displace-
ments are the projections of the world-displacement dxα:

dτ =
1

c
bαdx

α =
√
g00dt−

1

c2
vkdx

k, (8)

while the observable spatial displacements coincide with the
coordinate ones hiαdx

α= dxi. The observable spatial interv-
al is dσ2=hik dxidxk, while ds2= c2dτ 2− dσ2.

Using these techniques, we can calculate the physically
observable projections of any world-quantity, then express
them through the observable properties of the space.

2 A global non-holonomity of the background space —
an experimentally verifiable fact

Can such a case exist, where, given a non-holonomic space,
the linear velocity of its rotation is vi 6=0, while the angular
velocity is Aik=0? Yes, it is possible. If vi has the same
numerical value vi= v̄i= const at each point of a space, we
have Aik=0 everywhere therein. In such a case, by formula
(7), there is a stationary homogeneous background field of
the space non-holonomity: all time lines, piercing the spatial
section, have the same inclination cos (x0;xi) =− v̄i

ce(i)
to

the spatial section at each its points.
Is such a background truly present in our real space? If

yes, what is the “primordial” value v̄i= const? These quest-
ions can be answered using research of the 1960’s, carried
out by Roberto di Bartini [4, 5].

In his research di Bartini used topological methods. He
considered “a predicative unbounded and hence unique spe-
cimen A. [. . .] A coincidence group of points, drawing el-
ements of the set of images of the object A, is a finite

symmetric system, which can be considered as a topological
spread mapped into the spherical space Rn” [5].

Given the spread Rn, di Bartini studied “sequences of
stochastic transitions between different dimension spreads as
stochastic vector quantities, i. e. as fields. Then, given a dis-
tribution function for frequencies of the stochastic transitions
dependent on n, we can find the most probable number of
the dimension of the ensemble” [5]. He found extrema of
the distribution function at n=±6, “hence the most prob-
able and most improbable extremal distributions of primary
images of the object A are presented in the 6-dimensional
closed configuration: the existence of the total specimen A
we are considering is 6-dimensional. [. . .] a spherical layer
of Rn, homogeneously and everywhere densely filled by
doublets of the elementary formations A, is equivalent to
a vortical torus, concentric with the spherical layer. The
mirror image of the layer is another concentric homogeneous
double layer, which, in turn, is equivalent to a vortical torus
coaxial with the first one. Such formations were studied by
Lewis and Larmore for the (3+1)-dimensional case” [5].

For the (3+1)-dimensional image, di Bartini calculated
the ratio between the torus diameter D and the radius of the
circulation r which satisfies the condition of stationary vor-
tical motion (the current lines coincide with the trajectory of
the vortex core). He obtained E= D

r = 274.074 996, i. e.

R

r
= 137.037 498. (9)

Applying this bizarre result to General Relativity, we see
that if our real space satisfies the most probable topological
shape, we should observe two fundamental drift-fields:

1. A field of the constant rotating velocity 2,187.671 km/sec
— a field of the background space non-holonomity.

This comes with the fact that the frequency distribution
Φn of the stochastic transitions between different dimen-
sions “is isomorphic to the function of the surface’s value
S(n+1) of a unit radius hypersphere located in an (n+1)-
dimensional space (this value is equal to the volume of an n-
dimensional hypertorus). This isomorphism is adequate for
the ergodic concept, according to which the spatial and time
spreads are equivalent aspects of a manifold” [5].

In such a case the radius of the circulation r (the spatial
spread’s function) is expressed through a velocity v just like
the torus’ radius R (the time spread’s function) is express-
ed through the velocity of light c= 2.997 930×1010 cm/sec.
Thus, we obtain the analytical value of the velocity v̄i :

v̄ =
2c

E
=
cr

R
= 2.187 671×108 cm/sec, (10)

Because the vortical motion is stationary, the linear vel-
ocity v̄i of the circulation r is constant everywhere within it.
In other words, v̄i= 2,187.671 km/sec is the linear velocity of
the space rotation characterizing a stationary homogeneous
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field of the background space non-holonomity: there in the
space all time lines have the same inclination to the spatial
section at each of its points

cos (x0;xi)=−
v̄

c
=−

1

137.037498
=−0.0072972728. (11)

The background non-holonomity should produce an ef-
fect in vi-dependent phenomena. Hence the non-holonomic
background should be an experimentally verifiable fact.

In such an experiment we should take into account the
fact that all vi-dependent physical factors should initially
contain the background space rotation v̄i=2,187.671km/sec.
Therefore, the background cannot itself be isolated; it can be
shown only by the changes of the quantities expected to be
affected by local perturbations of the background.

2. A field of constant linear velocity 348.1787 km/sec
— a field of the background drift-velocity.

This comes from the fact that the background becomes
polarized while “the shift of the field vector at π

2 in its par-
allel transfer along closed arcs of radii R and r in the affine
coherence space Rn” [5]. Hence, we find that the unpolar-
ized component of the field v̄i= 2,187.671 km/sec is a field
of a constant dipole-fit velocity

v̄ =
v̄

2π
= 3.481787×107 cm/sec . (12)

In other words, it should be a global-drift field of the
constant dipole-fit linear velocity v̄ = 348.1787 km/sec, repre-
sented in the circulation r (three-dimensional spread).

Our analytically obtained value 348.1787 km/sec is in
close agreement with the linear drift-velocity 365±18km/sec
extracted from the recently discovered anisotropy of the Cos-
mic Microwave Background.

The Cosmic Microwave Background Radiation was dis-
covered in 1965 by Penzias and Wilson at Bell Telephone
Lab. In 1977, Smoot, Gorenstein, and Muller working with
a twin antenna Dicke radiometer at Lawrence Berkeley Lab,
discovered an anisotropy in the Background as the dipole-
fit linear velocity 390±60 km/sec [9]. Launched by NASA,
in 1989, the Cosmic Background Explorer (COBE) satellite
produced observations from which the dipole-fit velocity
was extracted more precisely at 365±18 km/sec. The Wil-
kinson Microwave Anisotropy Probe (WMAP) satellite by
NASA, launched in 2001, verified the COBE data [10].

As already shown by Zelmanov, in the 1940’s [1], Gen-
eral Relativity permits absolute reference frames connected
to the anisotropy of the fields of the space non-holonomity
or deformation — the globally polarized fields similar to a
global gyro. Therefore the drift-fields analytically obtained
above provide a theoretical basis for an absolute reference
frame in General Relativity, connected to the anisotropy of
the Cosmic Microwave Background.

In the next Section we study the effects we expect on a
test-particle due to the background space non-holonomity.

3 A test-particle in a non-holonomic space. Effects pro-
duced by the background space non-holonomity

Free particles move along the shortest (geodesic) lines. The
equations of free motion are derived from the fact that any
tangential vector remains parallel to itself when transferred
along a geodesic, so the general covariant derivative of the
vector is zero along the line. A particle’s four-dimensional
impulse vector is Pα=m0

dxα

ds
, so the general covariant eq-

uations of free motion are

dPα

ds
+ Γαμν P

μ dx
ν

ds
= 0; (13)

their observable chr.inv.-projections, by Zelmanov [1], are

dE

dτ
−mFiv

i +mDikv
ivk = 0 ,

dpi

dτ
−mF i + 2m

(
Di
k+A

∙i
k∙

)
vk +mΔinkv

nvk = 0 ,

(14)

where vi= dxi

dτ
and pi=mvi are the observable velocity and

impulse of the particle, m and E=mc2 are its relativistic
mass and energy. Each term in the equations is an observable
chr.inv.-quantity∗. The scalar equation is the chr.inv.-energy
law. The vector equations are the three-dimensional chr.inv.-
equations of motion, setting up the 2nd Newtonian law.

In non-free motion, a particle deviates from a geodesic
line, so the right sides of the equations of motion become
non-zero, expressing a deviating force.

We will now fit the chr.inv.-equations of motion accord-
ing to the most probable topological configuration of the spa-
ce, as propounded by di Bartini. In such a case we can repre-
sent dxi as dxi= vidt while the time interval is dx0= cdt.
Such a representation coincides with the ergodic concept,
where the spatial and time spreads are equivalent elements
of a manifold; so the transformation dxi= vidt should be
understood to be “ergodic”.

Applying the “ergodic transformation”, after some al-
gebra we find that in such a space the metric ds2 takes the
form†

ds2 = g00 c
2dt2

{(

1 +
v2

c2
√
g00

)2
−

v2

c2g00

}

, (15)

while the physically observable time interval is

dτ =

(
√
g00 −

v2

c2

)

dt =

{

1−
1

c2
(
w+ v2

)
}

dt , (16)

where v2= vivi=hik vivk. Looking at the resultant metric
from the geometric viewpoint, we note an obvious feature:

In such a metric space the flow of time is equivalent
to a turn of the spatial section.

∗Given a chr.inv.-quantity, we can raise/lower its indices by the chr.inv.-
metric tensor hik: hik=−gik+

1
c2
vivk, hik=−gik, and hik=δ

i
k.

†Because vi=−c
g0i√
g00

, vi=−cg0i
√
g00, hik=−gik+

1
c2
vivk.
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In the (3+1)-dimensional vortical torus, the ratio be-
tween its diameter D and the radius of the circulation r is the
fundamental constant E= D

r = 274.074 996 [4, 5]. Hence
the circulation velocity v̄= 2c

E = 2,187.671 km/sec (the lin-
ear velocity of the background space rotation) is covariantly
constant. On the other hand, locally in the spatial section,
the components of the vector vi=−c

g0i√
g00

can be different
from 2,187.671 km/sec due to the locally non-holonomic per-
turbations in the background∗. In other words, the field vi is
built on two factors: (1) the background remaining constant
and uniform v̄i= 2,187.671 km/sec at any point or direction in
the space, and (2) a local perturbation ṽi in the background
produced by rotating bodies located nearby.

As a result, within an area in which the non-holonomic
background v̄i is perturbed by a local rotation ṽi,

dxi = vidt = (v̄i + ṽi) dt . (17)

That is, with the same displacement dxi the turn dt can
be different depending on how much the non-holonomic
background is perturbed by a local rotation.

The non-holonomic background remaining constant does
not produce an effect in the differentiated quantities. An
effect is expected to be due only from the expansion of the
differential operator ∂

∂t
where we represent dt, according to

the metric (15), as a turn of the spatial section. As such,
dt should be expressed through the ergodic transformation
dxi= vidt=(v̄i+ ṽi)dt. Expanding ∂

∂t
in such a way, after

algebra, we obtain the corrected formulae for the main phys-
ically observable chr.inv.-characteristics of the space that
take the background space non-holonomity into account†

Fi =
1

√
g00

{
∂w

∂xi
−

(

1+ δmn
ṽn

v̄m

)
∂ṽi
∂t̄

}

, (18)

Aik =
1

2

(
∂ṽk
∂xi

−
∂ṽi
∂xk

)

+
1

2c2
(
Fi ṽk−Fk ṽi

)
, (19)

Dik =
1

2
√
g00

(

1+ δmn
ṽn

v̄m

)
∂hik
∂t̄

, (20)

Δijk =
1

2
him

(
∂hjm
∂xk

+
∂hkm
∂xj

−
∂hjk
∂xm

)

+

+
1

c2
him

(

1+ δmn
ṽn

v̄m

)
(
vkDjm+ vjDkm+ vmDjk

)
,

(21)

where the differential operator ∂
∂t̄

is determined in the unper-
turbed background v̄i, while the additional multiplier sets up
a correction for a local perturbation ṽi in it.

∗Note that Minkowski space of Special Relativity is free of gravita-
tional fields (g00=1) and rotations (g0i=0). So all the effects we are
considering are attributed only to General Relativity’s space.

†Here δmn =

(
1 0 0
0 1 0
0 0 1

)
is the unit three-dimensional tensor, the spatial

part of the four-dimensional Kronecker unit tensor δαβ used for replacing
the indices. So δmn replaces the indices in three-dimensional tensors.

If there is no non-holonomic background, but only loc-
ally non-holonomic fields due to rotating small bodies, the
above formulae revert to their original shape through v̄i=0
in the transformation dxi= vidt=

(
v̄i+ ṽi

)
dt. The above

transformation is impossible in a holonomic space since
therein the spatial coordinates aren’t functions of the time
coordinate; xi 6=f (x0). So the foregoing is true only if the
space is non-holonomic, and the spatial and time spreads are
equivalent elements of the manifold.

From the formulae obtained, we conclude that:

The main physically observable chr.inv.-properties of
the reference space, such as the gravitational inertial
force Fi, the angular velocity of the space rotation
Aik, the rate of the space deformation Dik, and the
space non-uniformity (set up by the chr.inv.-Christof-
fel symbols Δi

jk) are dependent on the ratio between
the value of the local non-holonomity ṽi (due to near-
by rotating bodies) and the background space non-
holonomity v̄i= 2,187.671 km/sec.

What effect does this have on the motion of a particle?
Let’s recall the chr.inv.-equations of motion (14). While a
particle is moved along dxi by an external force (or several
forces), the acceleration gained by the particle is determined
by the fact that its spatial impulse vector pi, being transferred
along dxi, undergoes a space-time turn dt expressed by the
ergodic transformation (17).

The entire motion of a particle is expressed by the term
with d

dτ
in the scalar and chr.inv.-vector equations of motion

(14). The remaining terms in the scalar equation express
the work spent on the motion by external forces, while the
remaining terms in the vector equation account for the forces
themselves. Therefore, for the entire motion of a particle, we
have no need of expanding ∂

∂t
by the ergodic transformation,

for each force acting thereon. We simply need to apply the
expansion to the chr.inv.-derivative with respect to the ob-
servable time d

dτ
in the equations of motion (14).

By definition (8), dτ =
√
g00dt− 1

c2
vkdx

k, so we have
dt= 1√

g00

(
1+ 1

c2
vkv

k
)
dτ . The differential is d = ∂

∂xα
dxα,

so d = 1√
g00

(
1+ 1

c2
vkv

k
)
∂
∂t
dτ+ ∂

∂xk
dxk and, finally

d

dτ
=

1
√
g00

(

1 +
1

c2
vkv

k

)
∂

∂t
+ vk

∂

∂xk
. (22)

Expanding this formula with the ergodic transformation
dxi= vidt=(v̄i+ ṽi)dt, we obtain it in the form

d

dτ
=

(

1+ δmn
ṽn

v̄m

)
d

dτ̄
+ δmn

ṽn

v̄m
vk

∂

∂xk
+

+
1

c2
√
g00

(

1+ δmn
ṽn

v̄m

)

ṽkv
k ∂

∂t̄

(23)

where the non-holonomic background v̄i= 2,187.671 km/sec
is taken into account. Here ∂

∂τ̄
and ∂

∂t̄
are also determined

in the unperturbed background v̄i.
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In particular, if a moving particle is slow with respect to
light and the differentiated quantity is distributed uniformly
in the spatial section, we have 1

c2 ṽkv
k=0 and ∂

∂xk
=0 in

the above formula, so we obtain

d

dτ
'

1
√
g00

∂

∂t
=

1
√
g00

(
v̄k+ ṽk

) ∂

∂xk
=

=

(

1+ δmn
ṽn

v̄m

)
d

dτ̄
.

(24)

In such a case, by the chr.inv.-equations of motion (14),

the total force moving the particle Ф i= dpi

dτ
and the total

energy flow W = dE
dτ

expended on the motion are

W =
dE

dτ
=

(

1+ δmn
ṽn

v̄m

)

W(0)=W(0)+ δ
m
n

ṽn

v̄m
W(0) (25)

Ф i=
dpi

dτ
=

(

1+ δmn
ṽn

v̄m

)

Ф i
(0)=Ф i

(0)+ δ
m
n

ṽn

v̄m
Ф i
(0) (26)

where Ф i
(0) and W(0) are the acting force and energy flow in

the unperturbed non-holonomic background (before a local
rotation ṽi was started). The additional force δmn

ṽn

v̄m Ф i
(0) and

energy flow δmn
ṽn

v̄m W(0) are produced by the stationary ho-
mogeneous field of the background space non-holonomity v̄i
in order to compensate for a perturbation in it caused by a
local rotation ṽi. As a result we conclude that:

The presence of a background space non-holonomity
manifests in a particle as an addition to its accelera-
tion, gained from an external force (or forces) moving
it. This additional force appears only if the non-holo-
nomic background is perturbed by a local rotation in
the area where the particle moves. (Being unperturb-
ed, the non-holonomic background does not produce
any forces.) The force appears independently of the
origin of the forces moving the particle, and is pro-
portional to the ratio between the linear velocity of
the local rotation ṽi and that of the background space
rotation v̄i= 2,187.671 km/sec.

Such an additional force should appear on any particle
accelerated near a rotating body. On the other hand, because
the space background rotates rapidly, at 2,187.671 km/sec,
such a force is expected only near rapid rotations, compar-
able with 2,187.671 km/sec.

For instance, consider a high speed gyro as used in avia-
tion navigation technology: 250 g rotor of 1.65" diameter,
rotating at 24,000 rpm. With current technology, the latter is
almost the ultimate speed for such a mechanically rotating
system. In such a case the non-holonomic background near
the gyro is perturbed as ṽ= 5.3×103 cm/sec, i. e. 53 m/sec∗. So
near the gyro, by our formula (26), we expect to have an
additional factor of 2.4×10−5 of any force accelerating a

∗Mechanical gyros used in aviation and submarine navigation systems
have rotations at speeds in the range 6,000 –30,000 rpm. The upper speed
is limited by problems derived from friction in such a mechanical system.

particle near the gyro. In other words, the expected effect is
very small near such mechanically rotating systems.

The terrestrial globe rotates at 465 m/sec at its equator,
so the non-holonomic space background is perturbed there
by Earth’s rotation by the factor 2.2×10−4. Hence, given a
specific experiment performed at the equator, an additional
force produced by the non-holonomic background in order
to compensate the perturbation in it should be 2.2×10−4 of
the force acting in the experiment. This effect decreases with
latitude owing to concomitant reduction of the linear velocity
of the Earth’s rotation, and completely vanishes at the poles.

However, the additional force can be much larger if the
non-holonomic background is perturbed by particles rotated
or oscillated by electromagnetic fields. In such a case a local
rotation velocity can even reach that of the background, i. e.
2,187.671 km/sec, in which case the main force accelerating
the particle is doubled. In the next Section we consider a par-
ticular example of such a doubled force, expected in relation
to Thomson dispersion of light in free electrons within stars.

In forthcoming research we show how such an additional
force can be detected in experiment, and applied to the de-
velopment on a device whose motion is based on principles,
completely different from those employed in aviation and
space technology today. Such a device should revolutionize
aviation and space travel.

It is interesting to note that a similar conclusion on the
time flow as a turn and additional forces produced by it
were drawn by the famous astronomer and experimental
physicist, N. A. Kozyrev, within the framework of his “non-
symmetrical mechanics” [8]. Kozyrev proceeded from his
research on the insufficiency of Classical Mechanics and
thermodynamics in order to explain some effects in rotating
bodies and also the specific physical conditions in stars. He
didn’t construct an exact theory, limiting himself to phen-
omenological conclusions and general speculations. On the
other hand, his phenomenologically deduced formula for a
force additional to Classical Mechanics is almost the same as
our purely theoretical result δmn

ṽn

v̄m Ф i
(0) obtained by means

of General Relativity in the non-holonomic four-dimensional
space of General Relativity, in the low velocity approxima-
tion. Therefore this coincidence can be viewed as an auxi-
liary verification of our theory.

We see that there is no need to change the basic physics
as Kozyrev did. Naturally, all the results we have obtained
are derived from the background non-holonomity of the four-
dimensional space of General Relativity. Classical Mechan-
ics uses a three-dimensional flat Euclidean space that does
not contain the time spread and, hence, the non-holonomic
property. Classical Mechanics is therefore insufficient for ex-
plaining the effects of the background space non-holonomity
predicted herein by means of General Relativity. So the ad-
ditional force and energy flow are new effects predicted
within the framework of Einstein’s theory.
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4 Thomson dispersion of light in stars as a machine
producing stellar energy due to the background space
non-holonomity

Here we apply the foregoing results to the particles of the
gaseous constitution of stars.

The physical conditions in stars result from the compari-
son of well-known correlations of observational astrophysics
and two main equations of equilibrium in stars (mechanic-
al and thermal equilibrium). Such a comparison is made in
the extensive research started in the 1940’s by Kozyrev. The
final version was printed in 2005 [6].

In brief, a star is a gaseous ball in a stable state, because
mechanical and thermal equilibrium therein are expressed
by two equations: (1) the mechanical equilibrium equation
— gravity pushing each cm3 of the gas to the centre of a
star is balanced by the gaseous pressure from within; (2) the
thermal equilibrium equation — the energy flow produced
within one cm3 of the gas equals the energy loss by radiation.
The comparison of the equilibrium equations with the mass–
luminosity relation and the period — average density of Ce-
pheids, a well verified correlation of observational astro-
physics, resulted in the stellar energy diagram wherein the
isoergs show the productivity of stellar energy sources per
second [6]. The diagram is reproduced below. The energy
output of thermonuclear reactions gives a surface, whose
intersection with the diagram is the dashed arc. Because stars
have a completely different distribution in the diagram, it is
concluded that thermonuclear synthesis can be the source of
stellar energy in only a minority of stars, located along the
dashed arc. Naturally, stars in the diagram are distributed
along a straight line that runs from the right upper region
to the left lower region, with a ball-like concentration at the
centre of the diagram. The equation of the main direction is

B

ne
= const = 1.4×10−11 erg , (27)

and is the relation between the radiant energy density B and
the concentration of free electrons in stars. In other words,
this is the energy produced per free electron in stars, and
it is constant throughout the widest range of the physical
conditions in stars: from dwarfs to super-giants. This is the
actual physical condition under which the mechanism that
generates stellar energy works, even in the low-temperature
stars such as red super-giants like the infrared satellite of
ε Aurigae, wherein the temperature is about 200,000◦ and
the pressure about one atmosphere. In other words, the rela-
tion characterizes the source of stellar energy. According to
the stellar energy relation (27), constant in any kind of star,
Kozyrev concluded that “the energy productivity in stars is
determined by the energy drainage (radiation) only. [. . .] In
contrast to reaction, such a mechanism should be called a
machine. [. . .] In other words, stars are machines which
generate radiant energy. The heat drainage is the power regu-

Fig. 1: Diagram of stellar energy: the productivity of stellar energy
sources. The abscissa is the logarithm of the density of matter, the
ordinate is the logarithm of the radiant energy density (both are
taken at the centre of stars in multiples of the corresponding values
at the centre of the Sun). Reproduced from [6].

lation mechanism in the machines” [6].
I note that the stellar energy relation (27) — the result of

comparing the two main equilibrium equations and observat-
ional data — is pure phenomenology, independent of our
theoretical views on the origin of stellar energy.

Let’s consider the stellar energy relation (27) by means
of our theory developed in Section 3 herein. By this relation
we have B

ne
= const= 1.4×10−11erg: the energy produced

per electron is constant in any kind of star, under any tem-
perature or pressure therein. So the mechanism producing
stellar energy works by a process related to electrons in
stars. There is just one process of such a kind — Thomson
dispersion of light in free electrons in the radiant transporta-
tion of energy from the centre to the surface.

We therefore consider the Thomson process. When a
light wave having the average density of energy q encounters
a free electron, the flow of the wave energy σcq is stopped
in the electron’s “square” σ= 6.65×10−25 cm2 (the square
of Thomson dispersion). As a result the electron gains an
acceleration σq, directed orthogonally to the wave front. In
other words, the electron is propelled by a force produced
by the wave energy flow stopped in its square, and in the
direction of the wave propagation.

We will determine the force by means of electrodynamics
in the terms of physically observable chr.inv.-quantities∗. The

∗The basics of electrodynamics such as the theory of an electromag-
netic field and a charged particle moving in it, expressed in terms of chro-
nometric invariants, was developed in the 1990’s [11, Chapter 3].
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chr. inv.-energy density q and chr.inv.-impulse density J i are

the chr.inv.-projections q= T00
g00

and J i= cT i0√
g00

of the energy-

momentum tensor Tαβ of an electromagnetic field

q =
1

8π

(
EiE

i +HikH
ik
)
, J i =

c

4π
EkH

ik, (28)

where Ei= F ∙i0∙√
g00

and Hik=F ik are the chr.inv.-projections
of the electromagnetic field tensor Fαβ — the physically ob-
servable electric and magnetic strengths of the field [11]. We
consider radiation within stars to be isotropic. In an isotropic
electromagnetic field EiEi=HikHik [11], so

q =
1

4π
EiE

i, J2 = hik J
iJk = q2c2, . (29)

Hence, the wave impulse flow along the x1 direction the
wave travels is

J1 =
qc
√
h11

, (30)

while the flow of the wave energy stopped in an electron’s
surface σ, i. e. the force pushing the electron in the x1 direc-
tion, orthogonal to the wave front, is

Ф 1 =
σq
√
h11

=
σq

√
1 + 1

c2
v1v1

. (31)

On the other hand, according to our theory, developed
in Section 3, the total force Ф 1 acting on an electron and
the energy flow W expended on it via the Thomson process
should be

W =
dE

dτ
= W(0) + δ

m
n

ṽn

v̄m
W(0) , (32)

Ф 1 =
dp1

dτ
= Ф 1

(0) + δ
m
n

ṽn

v̄m
Ф 1
(0) , (33)

depending on a local perturbation ṽi in the background space
non-holonomity v̄i= 2,187.671 km/sec.

What is the real value of the local perturbation ṽi in
Thomson dispersion of light in stars? We calculate the value
of ṽi, proceeding from the self-evident geometrical truth that
the origin of a non-holonomity of a space is any motion
along a closed path in it, such as rotations or oscillations.

When a light wave falls upon an electron, the electron
oscillates in the plane of the wave because of the oscillations
of the electric field strength Ei in the plane. The spatial eq-
uation of motion of such an electron is the equation of forced
oscillations. For oscillations in the x2 direction, in a homo-
geneous non-deformed space, the equation of motion is

ẍ2 + ω20x
2 =

e

me
E2
0 cosωt , (34)

where ω is the frequency of the wave and ω0 is the proper
frequency of the electron. This equation has the solution

x2 =
eE2

0 cosωt

me(ω
2
0 − ω2)

'
eE2

0 cosωt

meω2
(35)

so the components of the linear velocity ṽi of the local space
rotation, approximated by the oscillation, are

ṽ2 =
eE2

0

meω
, ṽ1 = 0 , ṽ3 = 0 . (36)

The electric field strength E in a light wave, according to
(29), is E=

√
4πq =

√
4πB where B is the radiant energy

density. Therefore the value of ṽ2 is

ṽ =
e
√
4π

me

√
B

ω
=
e
√
4πα

me

T 2

ω
, (37)

where α= 7.59×10−15 erg/cm3
×degree4 is Stefan’s constant, T

is temperature. Therefore the total energy flow W =W(0)+

+ ṽ2

v̄2
W(0)=W(0)+

ṽ
v̄

W(0) and force Ф 1=Ф 1
(0)+

ṽ2

v̄2
Ф 1
(0)

acting on an electron orthogonally to the wave plane in the
Thomson process should be

W = W(0) +
e
√
4π

me v̄

√
B

ω
W(0) , (38)

Ф 1 = Ф 1
(0) +

e
√
4π

me v̄

√
B

ω
Ф 1
(0) , (39)

where v̄= 2,187.671km/sec. So the additional energy flow
ΔW = ṽ

v̄
W(0) and force ΔФ 1= ṽ

v̄
Ф 1
(0) are twice the initial

acting factors W and Ф if the multiplier

ṽ

v̄
=
e
√
4π

me v̄

√
B

ω
(40)

becomes close to unity (ṽ becomes close to v̄). In such a
case the background non-holonomic field produces the same
energy and forces as those acting in the system, so the energy
flow and forces acting in the process are doubled.

Given the frequency ν= ω
2π ≈ 5×1014 Hz, close to the

spectral class of the Sun∗, we deduce by formula (37) that
there in the Sun ṽ reaches the linear velocity of the back-
ground space rotation v̄' 2.2×108 cm/sec, if the radiant en-
ergy density is B= 1.4×1011 erg/cm3, which is close to the
average value of B in the Sun. From phenomenological
data [6], in the central region of the Sun B'1013 erg/cm3 so
ṽ' 2×109 cm/sec there, i. e. ten times larger than the average
in the Sun. In the surface layer where T ' 6×103, we obtain
the much smaller value ṽ' 2×103 cm/sec.

This calculation verifies the phenomenological conclus-
ion [6] that the sources of energy aren’t located exclusively
in the central region of a star (as would be the case for
thermonuclear reactions), but are distributed throughout the
whole volume of a star, with some concentration at the centre.
With the above mechanism generating energy by the back-
ground space non-holonomity field, the sources of stellar
energy should be working in even the surface layer of the

∗A light wave doesn’t change its proper frequency in the Thomson
process, so the frequency remains the same while light travels from the
inner region of a star to the surface where it determines the spectral class
(visible colour) of the star.
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Sun, but with much less power.
Because the productivity of such an energy generator is

determined by the multiplier ṽv̄ =
e
√
4π

me v̄

√
B
ω (40), in the addi-

tional energy flow ΔW= ṽ
v̄
W(0) and the forceΔФ 1= ṽ

v̄
Ф 1
(0).

So the energy output ε of the mechanism is determined
mainly by the radiant energy density B in stars, i.e. the
drainage of energy by radiation∗. Therefore, given the above
mechanism of energy production by the background space
non-holonomity, stars are machines producing radiation, the
power of which (the energy output) is regulated by their
luminosity.

By the stellar energy relation (27) determined from ob-
servations, the radiant energy density per electron is constant
B
ne
= 1.4×10−11erg in any kind of star. Even such different

stars as white dwarfs, having the highest temperatures and
pressures (the right upper region in the stellar energy dia-
gram), and low-temperature and pressure infrared super-
giants (the left lower region therein) satisfy the stellar energy
relation. We therefore conclude that:

Stellar energy is generated in Thomson dispersion of
light while light travels from the inner region of a
star to the surface. When a light wave is dispersed by
a free electron, the electron oscillates in the electric
field of the wave. The oscillation causes a local per-
turbation of the non-holonomic background space of
the Universe, so the background non-holonomic field
produces an additional energy flow and force in the
Thomson process in order to compensate for the local
perturbation in itself. Given the physical conditions in
stars, the additional energy and forces are the same as
those radiated throughout the wide range of physical
conditions in stars — from dwarfs to super-giants.
Such energy sources work in the whole volume of
a star, even in the surface layer, but with some con-
centration at the centre. Moreover, the power of the
mechanism is regulated by the energy drainage (the
radiation from the surface). This is a self-regulat-
ing machine, actuated by the background space non-
holonomity, and is independent of thermonuclear re-
actions.

This theoretical result, from General Relativity, verifies
the conclusion drawn by Kozyrev from his analysis of well-
known phenomenological correlations of observational ast-
rophysics [6]. But having no exact theory of stellar energy
sources, Kozyrev had no possibility of calculating similar
effects under the physical conditions different than those in
stars whose temperatures and pressures are hardly reprodu-
cible in a laboratory.

With the theory of the phenomenon established, we can
simulate similar effects in a laboratory for low temperature
and pressure conditions (with less energy output). We can
as well discover, in a laboratory, similar additional energy

∗The frequency ω determining the spectral class of a star undergoes a
much smaller change, within 1 order, along the whole range of stars.

flow and force in processes much more simply realizable
than Thomson dispersion of light. So the theoretical results
of Sections 3 and 4 can be used as a basis for forthcoming
developments of new energy sources.

As is well known, current employment of nuclear energy
produces ecological problems because of radioactive waste.
Besides that, events of recent years testify that such energy
sources are dangerous if atomic power stations are destroyed
by natural or human-made causes: the nuclear fuel, even
without atomic explosion, produces many heavy particles
and other deadly radiations.

We therefore conclude that new energy sources similar
to stellar energy sources described herein, being governed by
the energy output, and producing no hard radiation, can work
in a laboratory conditions much more effectively and safely
than nuclear energy, and replace atomic power stations in the
near future.
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Quantum noise effects in an array of quantum dots coupled to superconducting leads
are studied. The effect of broadband fluctuations on the inelastic rate in such tunable
system has been taken into account. The quantum shot noise spectrum is expressed
in terms of the time dependent fluctuations of the current around its average value.
Numerical calculation has been performed over a wide range of frequencies of the
induced photons. Our results show an asymmetry between absorption and emission
processes. This research is very important for optoelectronic nanodevices.

1 Introduction

Semiconductor nanostructures based on two dimensional el-
ectron gas (2 DEG) could form the basis of future nanode-
vices for sensing, information processing and quantum com-
putation. Coherent electron transport through mesoscopic
system in the presence of a time-varying potential has been
a subject of increasing interest in the past recent years [1].
Applying the microwave field with frequency, ω, to an el-
ectron with energy, E, the electron wavefunction possesses
sideband components with energies E + nh̄ω (n = 0,±1,
±2, . . . ). The coherence of sideband components characte-
rizes transport properties of electrons such as photon-assisted
tunneling (PAT) [2–6]. Shot noise measurements provide
a powerful tool to study electron transport in mesoscopic
systems [7]. Shot noise can be enhanced in devices with su-
perconducting leads by virtue of the Andreev-reflection pro-
cess taking place at the interface between a semiconductor
and superconductor [8–10]. A remarkable feature of the cur-
rent noise in the presence of timedependent potentials is
its dependence on the phase of the transmission amplitudes
[11]. Moreover, for high driving frequencies, the driving can
be treated within a self-consistent perturbation theory [12].
In the present paper, a shot noise spectrum of a mesoscopic
device is derived and analyzed over a wide range of frequen-
cies of the induced microwave field.

2 Model of calculations

The present studied mesoscopic device is formed of an array
of semiconductor quantum dots coupled weakly to two su-
perconducting leads via tunnel barriers. Electrical shot noise
is the time-dependent fluctuation of the current around its
average value, due to the discreteness of the charge carriers.
The nonsymmetrized shot noise spectrum is given by [13]:

P (ω) = 2

∞∫

−∞

dt ei ωt
〈
ΔÎ(t)ΔÎ(0)

〉
, (1)

where ΔÎ (t) is the time-dependent fluctuations of the cur-
rent around its average value [14]. The average current oper-
ator is given by [15]:

〈
Î(t)

〉
=
e

h

∑

α, β

∞∫

0

dε

∞∫

0

dε′Iα,β(ε, ε
′)×

× â+α (ε) âβ(ε
′) ei(ε−ε

′) t/h̄,

(2)

where â+α (ε) and âα (ε) are the creation and annihilation op-
erators of the scattering states ψα(ε) respectively. Iαβ(ε, ε′)
is the matrix element of the current operator between states
ψα(ε) and ψβ(ε

′). The indices α and β (Eq. 2) denote
mode number (m) as well as whether it concerns electron
α=(m, e) or hole α=(m,h) propagation, due to Andreev
reflection processes at semiconductor-superconductor inter-
face [16]. The scattering states ψα(ε) and ψβ(ε′) are deter-
mined by solving the Bogoliubov-deGennes equation (BdG)
[17, 18] and are given by:

Ψαj(x, ε)=

[

Aj exp(ikj x)
(
1

0

)
+Bj exp(−ikj x)

(
0

1

)]

×

×
∞∑

n=0

Jn

(
eV0
h̄ω

)

exp
[
−i (ε+ nh̄ω) t/h̄

] (3)

where ω is the frequency of the induced microwave field,
Jn is the n-th order Bessel function of first kind and V0
is the amplitude of the ac-voltage. Eq. (3) represents the
eigenfunction inside the quantum dot in the j-th region and
the corresponding eigenfunction inside the superconducting
leads is given by:

Ψα(x, ε)=

[

C exp(ik′x)
(
u

υ

)
+D exp(−ik′x)

(
υ

u

)]

×

×
∞∑

n=−∞

Jn

(
eV0
h̄ω

)

exp
[
−i (ε+ nh̄ω) t/h̄

]
.

(4)

The wave vectors kj and k′ are the wave vectors inside
j-th quantum dot and inside the superconducting leads and
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they are given by:

kj =

(
2m∗(Veff ± ε+ nh̄ω)

)0.5

h̄
(5)

and

k′ =

(
2m∗(EF − Vb ±

√
(ε+ nh̄ω)2 −Δ2

)0.5

h̄
(6)

where Veff is expressed as:

Veff = Vb +
UcN

2

2
+ EF + eηVg (7)

in which Vb is the Schottky barrier height, Uc is the charging
energy of the quantum dot, EF is the Fermi-energy, Δ is
the energy gap of superconductor, Vg is the gate voltage and
η is the lever arm. The eigenfunctions u and υ (Eq. 4) of
the corresponding electron/hole due to Andreev reflection
process at the semiconductor-superconductor interface are
given by:

u =

√√
√
√1

2

(

1 +

(
(ε+ nh̄ω)2 −Δ2

)
0.5

ε+ nh̄ω

)

(8)

and

υ =

√√
√
√1

2

(

1−

(
(ε+ nh̄ω)2 −Δ2

)
2

ε+ nh̄ω

)

. (9)

Now, in order to evaluate the shot noise spectrum, this
can be achieved by substituting the current operator Eq. 2
into Eq. 1 and determining the expectation value [19] and
after simple algebraic steps, we get a formula for the shot
noise spectrum P (ω) [20] as:

P (ω) =
2eP0
h

∑

α,β

∞∫

0

dε |Γ(ε)| fαFD(ε)×

×
[
1− fβFD(ε+ nh̄ω)

]
,

(10)

where P0 is the Poissonian shot noise spectrum and
fβFD (ε+n∇ω) are the Fermi distribution functions.

The tunneling rate, γ (ε) through the barrier must be
modified due to the influence of the induced microwave field
as [21]:

γ̃(ε) =
∞∑

n=−∞

J2n

(
e V0
h̄ω

)

γ (ε+ nh̄ω) . (11)

The tunneling rate, γ (ε) is related to the tunneling pro-
bability, Γ(ε) [21] as:

γ (ε) =
2π

h̄

EF+2Δh̄ω∫

EF

dεΓ(ε)ρ(ε)fFD(ε)×

×
(
1− fFD(ε−ΔF )

)
(12)

in which ΔF is the difference in final and initial free energy

after and before the influence of microwave field. The tun-
neling probability, Γ(ε), Eq. 10 has been determined by the
authors [22, 23] using the transfer matrix method and it is
expressed as:

Γ(ε+ nh̄ω) =
1

(
1 + C21C

2
2

) (13)

where C1 and C2 are expressed as:

C1 =
Veff sinh(kb)

2
√
L1

(14)

and

C2 = 2 cosh(kb) cos(k
′a)− C3 . (15)

We have used the following notations:

L1 = (ε+ nh̄ω) (Veff − ε− nh̄ω) ,

C3 =

(
L2√
L1

)

sin(k′a) exp(2kb) ,

L2 = 2(ε+ nh̄ω)− Veff .

(16)

The parameters a and b represent the quantum dot size
and the width of the barrier.

Now substituting Eq. 13 into Eq. 10 an expression for
the frequency dependent shot noise spectrum and it depends
on the geometrical dimension of the device under study.

3 Results and discussion

The shot noise spectrum, P (ω), Eq. 10 has been computed
over a wide range of frequencies of the induced microwave
field and at different temperatures. We considered a double
quantum dots which they are a fully controllable two-level
system. These quantum dots are AlGaAs-GaAs heterostruc-
ture and the leads are Nb superconductor. The calculations
were performed for the cases: absorption of quanta from
the environment (Fig. 1) and emission case (Fig. 2). The
Schottky barrier height, Vb, was calculated by using a Monte-
Carlo technique [24] and found to be equal to 0.47 eV. This
value is in good agreement with those found by the authors
[25]. As shown in Fig. 1 and Fig. 2, the normalized shot
noise spectrum exhibits resonances at certain frequencies for
both absorption and emission processes. The present results
show that the Coulomb oscillations are modified by fre-
quency of the induced microwave field over a wide range.
Also, the Andreev reflection processes at the semiconductor-
superconductor interface plays very important role for the
appearance of these resonances. Our results show that the
interplay between electronic transport and excitation by mic-
rowave is a particular interest. As high frequency perturb-
ations are expected to yield a new nonequilibrium situation
resulted from additional phase variations in energy states
[26, 27, 28].
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Fig. 1: The dependence of the normalized shot noise spectrum
(P/Ppoisson) on the normalized strength of the driving field (ab-
sorption case).

Fig. 2: The dependence of the normalized shot noise spectrum
(P/Ppoisson) on the normalized strength of the driving field (emis-
sion case).

4 Conclusions

In present paper, an expression for the shot noise spectrum
has been deduced. The present studied mesoscopic device is
modeled as double quantum dots coupled weakly to super-
conducting leads. The tunneling through the device is in-
duced by microwave field of wide range of frequencies. The
effect of both Andreev reflection processes and the Coulomb
blockade had been taken into consideration. The resonances
show the interplay between the forementioned effects and
the photon induced microwave field. Our results show a
concordant with those in the literature.
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It is shown that Einstein’s proof for E = mc2 is actually incomplete and therefore
is not yet valid. A crucial step is his implicit assumption of treating the light as a
bundle of massless particles. However, the energy-stress tensor of massless particles
is incompatible with an electromagnetic energy-stress tensor. Thus, it is necessary to
show that the total energy of a light ray includes also non-electromagnetic energy.
It turns out, the existence of intrinsic difference between the photonic and the
electromagnetic energy tensors is independent of the coupling of gravity. Nevertheless,
their difference is the energy-stress tensor of the gravitational wave component that
is accompanying the electromagnetic wave component. Concurrently, it is concluded
that Einstein’s formula E = mc2 necessarily implies that the photons include non-
electromagnetic energy and that the Einstein equation of 1915 must be rectified.

1 Introduction

In physics, the most famous formula is probably E = mc2

[1]. However, it is also this formula that many(1) do not
understand properly [2, 3]. Einstein has made clear that this
formula must be understood in terms of energy conservation
[4]. In other words, there is energy related to a mass, but
there may not be an equivalent mass for any type of energy
[2]. As shown by the Riessner-Nordstrom metric [5, 6], the
gravity generated by mass and that by the electromagnetic
energy are different because an electromagnetic energy stress
tensor is traceless. Thus, the relationship between mass and
energy would be far more complicated than as commonly
believed.

In Einstein’s 1905 derivation,(2) he believed [7] that the
corresponding was between mass and any type of energy
although he dealt with only the light, which may include
more than just electromagnetic energy. Moreover, although
his desired generality has not been attained, his belief was
very strong. On this, Stachel [7] wrote,

“Einstein returned to the relation between inertial
mass and energy in 1906 and in 1907 giving more
general arguments for their complete equivalence, but
he did not achieve the complete generality to which
he inspired. In his 1909 Salzburg talk, Einstein
strongly emphasized that inertial mass is a property
of all form of energy, and therefore electromagnetic
radiation must have mass. This conclusion strength-
ened Einstein’s belief in the hypothesis that light
quanta manifest particle-like properties.”

Apparently, the publications of the papers of Reissner [6]
and Nordstrom [5] have changed the view of Einstein as
shown in his 1946 article [4].

Perhaps, a root of misunderstanding E = mc2 is related
to the fact that the derivation of this formula [8] has not been
fully understood. In Einstein’s derivation, a crucial step is his

implicit assumption of treating light as a bundle of massless
particles. However, because gravity has been ignored in Ein-
stein’s derivation, it was not clear that an electromagnetic
energy-stress tensor is compatible with the energy-stress ten-
sor of massless particles.

Such an issue is valid since the divergence of an electro-
magnetic energy-stress tensor ∇c T (E)cb (where ∇c is a co-
variant derivative) generates only the Lorentz force, whereas
the divergence of a massive energy-stress tensor ∇c T (m)cb

would generate the geodesic equation [9].
Thus, the energy-stress of photons T (L)ab would be

T (L)ab = T (E)ab + T (N)ab (1)

or
T (N)ab = T (L)ab − T (E)ab

where T (E)ab and T (N)ab are respectively the electromag-
netic energy-stress tensor and a non-electromagnetic energy-
stress tensor. Besides, being intrinsically traceless, T (E)cb
would not be compatible with Einstein’s formula 4E=
=4mc2. Based on the fact that the electromagnetic energy is
dominating experimentally, it is natural to assume as shown
later that T (N)ab is in fact the gravitational energy-stress
tensor T (g)ab .

2 A field equation for the accompanying gravitational
wave

Physics requires also that the energy-stress tensor for pho-
tons T (L)ab is: (1) traceless, (2) T (L)ab≈T (E)ab and[
T (L)tt−T (E)tt

]
> 0 on the average, and (3) related to

a gravitational wave, i. e. satisfying

Rab−
1

2
gabR=KT (g)ab=−K

[
T (E)ab−T (L)ab

]
, (2)

where Rab is the Ricci tensor, and R= gmnRmn. Eq. (2) dif-
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fers from Einstein equation with an additional term T (L)ab
having a coupling of different sign. However, Eq. (2) is
similar to the modified Einstein equation,

Gab = Rab −
1

2
gabR = −K

[
T (m)ab − T (g)ab

]
, (3)

which is necessitated by the Hulse-Taylor experiment [10,
11]. T (g)ab is non-zero since a gravitational wave carries
energy. From Eq. (2), we have ∇c T (L)cb=0 since there
∇c T (E)cb = 0 and ∇cGcb ≡ 0.

Related to Eq. (2), a crucial question is whether the Ein-
stein equation with only the electromagnetic wave energy-
stress tensor as the source is valid. It has been found that
such an equation cannot produce a physically valid solution
[12]. Historically, it is due to that the Einstein equation does
have a physical plane-wave solution that the need of a pho-
tonic energy-stress tensor is recognized (see also Sect. 3).
One may object that the general form of gravitational energy-
stress tensor is not yet known although its approximation for
the weak gravity with the massive source is known to be
equivalent to Einstein’s pseudo-tensor for the gravitational
energy-stress [10]. However, for this case, the related gravi-
tational energy-stress tensor is defined by formula (1).

Now the remaining question is whether (2) would pro-
duce a gravitational wave. However, we should address first
whether an electromagnetic wave has an accompanying gra-
vitational wave. The answer is affirmative because the elect-
romagnetic energy is propagating with the allowed maxi-
mum speed in Special Relativity.(3) Thus, the gravity due to
the light energy should be distinct from that generated by
massive matter [13] .

Since a field emitted from an energy density unit means
a non-zero velocity relative to that unit, it is instructive to
study the velocity addition. According to Special Relativity,
the addition of velocities is as follows:

ux =

√
1− v2/c2

1 + u′zv/c
2
u′x , uy =

√
1− v2/c2

1 + u′zv/c
2
u′y ,

and uz =
u′z + v

1 + u′zv/c
2
,

(4)

where velocity ~v is in the z-direction, (u′x, u
′
y , u

′
z) is a

velocity w. r. t. a system moving with velocity v, c is the
light speed, ux= dx/dt, uy = dy/dt, and uz = dz/dt. When
v= c, independent of (u′x, u

′
y , u

′
z) one has

ux = 0 , uy = 0 , and uz = c . (5)

Thus, neither the direction nor the magnitude of the vel-
ocity ~v (=~c) have been changed.

This implies that nothing can be emitted from a light ray,
and therefore no field can be generated outside the light ray.
To be more specific, from a light ray, no gravitational field
can be generated outside the ray although, accompanying the

light ray, a gravitational field gab( 6= ηab the flat metric) is
allowed within the ray.

According to the principle of causality [13], this accom-
panying gravity gab should be a gravitational wave since an
electromagnetic wave is the physical cause. This would put
General Relativity into a severe test for theoretical consist-
ency. But, this examination would also have the benefit of
knowing whether Einstein’s implicit assumption in his proof
for E = mc2 is valid.

Let us consider the energy-stress tensor T (L)ab for pho-
tons. If a geodesic equation must be produced, for a mono-
chromatic wave with frequency ω, the form of a photonic
energy tensor should be similar to that of massive matter.
Observationally, there is very little interaction, if any, among
photons of the same ray. Theoretically, since photons travel
in the velocity of light, there should not be any interaction
(other than collision) among them. Therefore, the photons
can be treated as a bundle of massless particles just as Ein-
stein [8] did.

Thus, the photonic energy tensor of a wave of frequency
ω should be dust-like and traceless as follows:

T ab(L) = ρP aP b, (6)

where ρ is a scalar and is a function of u (= ct− z). In the
units c=h=1, P t=ω. The geodesic equation, P c∇cP b=0,
is implied by ∇c T (L)cb=0 and also ∇c (ρP c)= 0. Since
∇c (ρP c)=

[
ρgbcg′bc + ρ

′
]
(P t − P z)= 0, formula (6) does

produces a geodesic equation if Eq. (2) is satisfied.

3 The reduced Einstein equation for an electromagnetic
plane wave

Let us consider a ray of uniform electromagnetic waves (i. e.
a laser beam) propagating in the z-direction. Within the ray,
one can assume that the wave amplitude is independent of x
and y. Thus, the electromagnetic potentials are plane-waves,
and in the unit that light speed c = 1,

Ak(x, y, z, t) = Ak(t− z) , where k = x, y, z, t. (7)

Due to the principle of causality, the metric gab is func-
tions of u (= t− z), i. e.,

gab(x, y, z, t) = gab(u) , where a, b = x, y, z, t. (8)

Since, for this case, the coordinates for Special Relativity
are also valid for General Relativity [14–16], such a con-
sideration is valid. Let P k be the momentum of a photon. If
a photon is massless, one obtains the conditions,

P z = P t, P x = P y = 0 , and Pmgmk = Pk = 0 , (9)

for k = x, y, and v (= t+ z). Eq. (9a) is equivalent to

gxt + gxz = 0 , gyt + gyz = 0 ,

and gtt + 2gtz + gzz = 0 ,
(10)

C. Y. Lo. Completing Einstein’s Proof of E = mc2 15



Volume 4 PROGRESS IN PHYSICS October, 2006

or
gxt − gxz = 0 , gyt − gyz = 0 ,

and gtt − 2gzt + gzz = 0 .
(11)

The transverse of an electromagnetic wave implies

PmAm = 0 ,

or equivalently Az + At = 0 .
(12)

Eqs. (7) to (9) imply that not only the geodesic equation,
the Lorentz gauge, but also Maxwell’s equation are satisfied.
Moreover, the Lorentz gauge becomes equivalent to a covar-
iant expression.

For an electromagnetic wave being the source, Einstein
[17] believed the field equation is Gab=−KT (E)ab, where
T (E)ab=− gmn FmaFnb+ 1

4 gabF
mnFmn, while Fab=

= ∂aAb− ∂bAa is the field tensor. Since the trace of the
energy-stress tensor is zero, R = 0. It follows that

Rtt = −Rtz = Rzz , (13)

because FmnFmn = 0 due to Eq. (9). The other components
are zero [12]. Then,

Rtt ≡ −
∂Γmtt
∂xm

+
Γmmt
∂t

− ΓmmnΓ
n
tt + Γ

m
ntΓ

n
mt =

= −KT (E)tt = KgmnFmtFnt .

(14)

After some lengthy algebra [12], Eq. (14) is simplified
to a differential equation of u as follows:

G ′′ − g′xxg
′
yy + (g

′
xy)

2 −G′(g′/2g) = 2GRtt =

= 2K
(
F 2xtgyy + F

2
ytgxx − 2FxtFytgxy

)
,

(15)

where
G ≡ gxxgyy − g

2
xy, and g = |gab| ,

the determinant of the metric. The metric elements are con-
nected by the following relation:

−g = Gg2t , where gt = gtt + gtz . (16)

Note that Eqs. (35.31) and (35.44) in reference [18] and
Eq. (2.8) in reference [19] are special cases of Eq. (15). But,
their solutions are unbounded [17]. However, compatibility
with Einstein’s notion of weak gravity is required by the
light bending calculation and is implied by the equivalence
principle [20].

Equations (9)–(16) allow At, gxt, gyt, and gzt to be set to
zero. In any case, these assigned values have little effect in
subsequent calculations. For the remaining metric elements
(gxx, gxy , gyy , and gtt), however, Eq. (15) is sufficient to
show that there is no physical solution. In other words,
in contrast to Einstein’s belief [17], the difficulty of this
equation is not limited to mathematics.

4 Verification of the rectified Einstein equation

Now, consider an electromagnetic plane-wave of circular
polarization, propagating to the z-direction

Ax =
1
√
2
A0 cosωu , and Ay =

1
√
2
A0 sinωu , (17)

where A0 is a constant. The rotational invariants with respect
to the z-axis are constants. These invariants are: Gtt, Rtt,
T (E)tt, G, (gxx+ gyy), gtz , gtt, g, and etc. It follows that
[12–13]

gxx = −1− C +Bα cos(ω1u+ α) ,

gyy = −1− C −Bα cos(ω1u+ α) ,

gxy = ±Bα sin(ω1u+ α) ,

(18)

where C and Bα are small constants, and ω1=2ω. Thus,
metric (18) is a circularly polarized wave with the same
direction of polarization as the electromagnetic wave (17).
On the other hand, one also has

Gtt = 2ω
2B2α/G > 0 , and

T (E)tt =
1

2G
ω2A20(1 + C −Bα cosα) > 0 ,

(19)

where G=(1+C)2−B2α> 0. Thus, it is not possible to
satisfy Einstein’s equation because T (E)tt and Gtt have
the same sign. Therefore, it is necessary to have a photonic
energy-stress tensor.

If the photons are massless particles, the photonic energy-
stress tensor (6) has a density function [12],

ρ (u) = −Am g
mnAn > 0 (20)

which is a scalar function of u (= t−z). Since light intensity
is proportional to the square of the wave amplitude, which
is Lorentz gauge invariant, ρ (u) can be considered as the
density function of photons. Then

Tab = −T (g)ab = T (E)ab − T (L)ab =

= T (E)ab + Amg
mnAnPaPb .

(21)

Note that since ρ (u) is a positive non-zero scalar consist-
ing of Ak and/or fields such that, on the average, T (L)ab
is approximately T (E)ab and Eq. (2) would have physical
solutions, ρ = −AmgmnAn is the only choice.

As expected, tensor T (L)ab enables a valid solution for
wave (17). According to Eq. (2) and formula (21),

Ttt = −
1

G
ω2A20Bα cosα < 0 , (22)

since Bα=(K/2)A20 cosα. Thus, T (g)tt=−Ttt is of order
K. It will be shown that cosα = 1.
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To confirm the general validity of (2) further, consider a
wave linearly polarized in the x-direction,

Ax = A0 cosω(t− z) . (23)

Then,

T (E)tt = −
gyy
2G

ω2A20
[
1− cos 2ω(t− z)

]
and

Ttt =
gyy
2G

ω2A20 cos 2ω(t− z) .
(24)

Note that independent of the coupling K, Ttt is non-zero.
Since the gravitational component is not an independent
wave, T (g)tt(= −Ttt) is allowed to be negative or positive
[13]. Eq.(19) implies (gxx + gyy)

′ to be of first order [13],
and thus its polarization has to be different.

It turns out that the solution is a linearly polarized grav-
itational wave and that, as expected, the time-average of
T (g)tt is positive of order K [13]. From the viewpoint of
physics, for an x-directional polarization, gravitational com-
ponents related to the y-direction, remains the same. In other
words,

gxy = 0 and gyy = −1 . (25)

It follows [10, 11] that G = −gxx and the general solut-
ion for wave (18) is:

−gxx = 1 + C1 − (K/2)A
2
0 cos

[
2ω(t− z)

]
,

and gtt = −gzz =
√
g/gxx ,

(26)

where C1 is a constant and g is the determinant of the
metric. The frequency ratio is the same as that of a circular
polarization. However, there is no phase difference as α in
(18). According to the principle of causality, α has a value,
and to be consistent with (26) α = 0.

However, if T (L)ab were absent, one would have,

−gxx = 1 + C1 − (K/4)A
2
0

(
2ω2(t− z)2+

+ cos
[
2ω(t− z)

])
+ C2(t− z) ,

(27)

where C1 and C2 are constants. But solution (27) is invalid
in physics since (t − z)2 grows very large as time goes by.
This would “represent” the effects if Special Relativity were
invalid, and the wave energy were equivalent to mass. This
illustrates that Einstein’s notion of weak gravity, which is the
theoretical basis for his calculation on the bending of light,
may not be compatible with the Einstein equation with an
inadequate source term.

5 Conclusions and discussions

A photonic energy-stress tensor has been obtained to satisfy
the demanding physical requirements. The energy and mo-
mentum of a photon are proportional to its frequency

although, as a classical theory, their relation-ship with the
Planck constant h is not yet clear. Just as expected from
Special Relativity, indeed, the gravity of an electromagnetic
wave is an accompanying gravitational wave propagating
with the same speed.(4) Concurrently, for this case, the need
of modifying the Einstein equation is accomplished. Then,
clearly the gravity due to the light is negligible in calculating
the light bending [8].

In this derivation, it is crucial that the spatial coordinates
are proven the same in Special and General Relativity [14–
16] because the space coordinates must have the Euclidean-
like structure.(5) For this case, even the time coordinate is
the same, and the plane wave satisfied the Maxwell equation
in terms of both Special and General Relativity [16], Thus,
Special Relativity and General Relativity are consistent with
each other. Einstein’s proof is clearly incomplete since the
energy-stress tensor of photons is different from that of el-
ectromagnetism.

A particle such as the photon has no inertial mass since
it is subjected to only absorption and emission, but not acce-
leration and deceleration. Based on Special Relativity, it has
been shown that the electromagnetic energy is distinct from
the energy of a rest mass.(6) Interestingly, it is precisely
because of this non-equivalence of mass and energy that
photonic energy-stress tensor (6) is valid, and the formula
E = mc2 can be proven.

One might argue that experiment shows the notion of
massless photons is valid, and thus believed the equivalence
of mass and electromagnetic energy. However, while the
addition of two massless particles may end up with a rest
mass, the energy-stress tensor of electromagnetism cannot
represent a rest mass since such a tensor is traceless. Thus,
the formula(7) 4E = 4mc2 necessarily implies that T (L)ab
must include non-electromagnetic energy. Note that[
T (L)tt − T (E)tt

]
being non-zero, is independent of the

gravitational coupling constant K. This makes it clear that
the photonic energy tensor is intrinsically different from the
electromagnetic energy tensor.

Although the formula E = mc2 has been verified in nu-
merous situations [1, 18], its direct physical meaning related
to gravity was not understood;(8) and thus this formula is
often misinterpreted, in conflict with General Relativity [2,
9], as any type of energy being equivalent to a mass [3].
A related natural question is how to measure the gravitation-
al component of a light ray. However, in view of the difficul-
ties encountered in measuring pure gravitational waves, the
quantitative measurement of such a gravitational component
is probably very difficult with our present level of technolo-
gy although its qualitative existence is proven by the formula
E = mc2.

Both quantum theory and relativity are based on the
phenomena of light. The gravity of photons finally shows
that there is a link between them. It is gravity that makes the
notion of photons compatible with electromagnetic waves.
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Clearly, gravity is no longer just a macroscopic phenomena,
but also a microscopic phenomena of crucial importance to
the formula E=mc2. In Einstein’s proof, it has not been
shown whether his implicit assumption is compatible with
electromagnetism. This crucial problem is resolved with the
gravity of an electromagnetic wave. Einstein probably would
smile heartily since his formula confirms the link that relates
gravity to quantum theory.
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Endnotes

(1) They include, but not limited to, Fock [21], Hawking [22],
Misner, Thorne, & Wheeler [18], Tolman [23], and Will [3].

(2) In 1907 Plank [24] criticized the Einstein argument, and
presented his own argument to show that the transfer of
heat is associated with a similarly related transfer of inertial
mass [7].

(3) In this paper, the convention of the metric signature for Spe-
cial Relativity is (1,−1,−1,−1).

(4) Some arguments, which were presented differently in the
literature [13], are included in this paper for the convenience
of the readers. For instance, now the value of α in (18) is
obtained.

(5) Einstein called this structure as “in the sense of Euclidean
geometry” [8], but failed to understand its physical meaning
in terms of measurements [15, 25]. Weinberg [26] has
showed, however, that in a curved space the coordinates can
be straight.

(6) However, there are theorists such as Tolman [23], who in-
correctly saw no difference in terms of gravity between mass
and the energy in a light ray.

(7) Einstein’s formula 4E=4mc2 is proven for radiating en-
ergy. Thus, it is applicable to the atomic bomb.

(8) Bodanis [1] gives a good account of how the formula E=
=mc2 is applied. However, like many others, he also mis-
interpreted the formula as general equivalence between any
type of energy and mass.
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A Source of Energy for Any Kind of Star

Dmitri Rabounski
E-mail: rabounski@yahoo.com

We discuss a recently predicted mechanism whereby energy is produced by the back-
ground space non-holonomic field (the global space rotation) in Thomson dispersion
of light in free electrons. We compare the mechanism to the relations of observational
astrophysics — the mass-luminosity relation and the stellar energy relation. We show
that by such a mechanism generating energy in a star, the luminosity of a star L is
proportional to its volume, with a progression associated with increasing radius. The
obtained relation L∼R3.4 explains why there are no stars of a size close to that of the
bulky planets. This also explains the extremely high thermal flow from within Jupiter,
which most probably has the same energy sources as those within a star, but with a
power much less than that required to radiate like a star. The theory, being applied to
a laboratory condition, suggests new energy sources, working much more effectively
and safely than nuclear energy.

1 The mechanism that generates energy in stars

By way of introduction, a brief account of my theory of the
mechanism producing energy in stars [1] built within the
framework of General Relativity, is presented. Then, in the
next section, we analyse consequences of the theory in com-
parison with the correlations of observational astrophysics.

Given a non-holonomic space∗, time lines piercing the
spatial section (our proper three-dimensional space) are not
orthogonal to the spatial section therein, which manifests
as the three-dimensional space rotation. If all time lines
have the same inclination to the spatial section at each of
its points, there is a field of the background space non-
holonomity. Such a non-holonomic background field, if per-
turbed by a local rotation, can produce a force and energy
flow in order to compensate for the perturbation in itself.
Such a force and energy flow were deduced on the basis
of the equations of motion in a non-holonomic space: they
manifest as additions to the total force Ф i

(0) driving a par-
ticle and the total power W(0) spent on the motion

W =
dE

dτ
= W(0) + δ

m
n

ṽn

v̄m
W(0) , (1)

Ф i =
dpi

dτ
= Ф i

(0) + δ
m
n

ṽn

v̄m
Ф i
(0) , (2)

where v̄i is the constant linear velocity of the background
space rotation, while v̄i is the linear velocity of a local rota-
tion perturbing the background. As obtained within the fra-
mework of General Relativity [1], the value of v̄i is the fun-
damental constant v̄= 2.187 671×108 cm/sec connected to the
value v̄ = v̄

2π = 3.481787×107 cm/sec of a dipole-fit velocity
v̄i characterizing the anisotropy of the rotating background
(which is similar to a global gyro). The analytical value v̄ is

∗A four-dimensional pseudo-Riemannian space, which is the basic
space-time of General Relativity.

in close agreement with the dipole-fit velocity 365±18km/sec
extracted from the recently discovered anisotropy of the Cos-
mic Microwave Background Radiation.

Such an additional factor should appear in Thomson dis-
persion of light in free electrons in stars. When a light wave
of average energy density B encounters a free electron, the
flow of the wave energy cσB is stopped in the electron’s
square σ= 6.65×10−25 cm2 (the Thomson square of disper-
sion). As a result the electron gains an acceleration σB,
directed orthogonally to the wave front. With this process the
electron oscillates in the plane of the wave at the frequency ω
of the wave’s electric strength Ei oscillating in the plane. Let
the wave travel in the x1-direction, so E2=E, E1=E3=0.
The oscillation equation gives the linear velocity ṽi of the
local space rotation, caused by the oscillating electron,

ṽ2 =
eE

meω
, ṽ1 = 0 , ṽ3 = 0 . (3)

Because the density of energy in an isotropic electro-
magnetic field is B= 1

4πEiE
i, the additional force and the

power produced in the Thomson process by the global non-
holonomic background should be

ΔW =
ṽ2

v̄2
W(0) =

e
√
4π

me v̄

√
B

ω
W(0) , (4)

ΔФ 1 =
ṽ2

v̄2
Ф 1
(0) =

e
√
4π

me v̄

√
B

ω
Ф 1
(0) , (5)

so the output of energy ε produced by the non-holonomic
background in the process (within one cm3 per second) is

ε =
ṽ

v̄
cneσB =

cσe
√
4π

me v̄

neB
3/2

ω
. (6)

In other words, our equation (6) is the formula for stellar
energy. The factor cσe

√
4π

me v̄
is constant, while the second fac-
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Fig. 1: Diagram of stellar energy: the productivity of stellar energy
sources. The abscissa is the logarithm of the density of matter, the
ordinate is the logarithm of the radiant energy density (both are
taken at the centre of stars in multiples of the corresponding values
at the centre of the Sun). Reproduced from [2]. Stars in the diagram
are distributed along a straight line that runs from the right upper
region to the left lower region, with a ball-like concentration at
the centre of the diagram. The equation of the main direction is
B
ne
= 1.4×10−11 erg (ne is the concentration of free electrons).

tor depends mainly on the radiant energy density B in a star∗.
Given the frequency ν= ω

2π ≈ 5×1014 Hz (by the spectr-
al class of the Sun), ṽ reaches the background space rotation
v̄' 2.2×108 cm/sec (so the additional energy flow fully com-
pensates for the radiation) at B= 1.4×1011 erg/cm3, which is
close to the average value of B in the Sun. The theoretical
result coincides with the phenomenological data [2] by which
energy is generated throughout the whole volume of a star
with some concentration at the centre (in contrast to thermo-
nuclear reactions working exclusively in the central region).

Besides the main direction B
ne
= const, along which stars

are distributed in the stellar energy diagram, Fig. 1 testifies
that the power of a mechanism that generates energy in stars
is regulated by the density of radiant energy, i. e. by the
energy loss by radiation. So the real mechanism producing
stellar energy works similar to a self-regulated machine and
is independent of the inner resources reserved in stars.

Our formula for stellar energy (6) satisfies this condition,
because the energy output is regulated by the radiant energy
density B. So a mechanism that works by formula (6) at
an oscillation velocity ṽ close to v̄' 2.2×108 cm/sec behaves
as an universal self-regulating generator of energy: the out-

∗And, to a much smaller extent, on ω, which has changes within 1
order of magnitude along the whole range of the spectral classes of stars.

Fig. 2: The mass-luminosity relation. Here points are visual binar-
ies, circles are spectral-binaries and eclipse variable stars, crosses
are stars in Giades, squares are white dwarfs, the crossed circle is
the satellite of ε Aurigae. Reproduced from [2].

put of energy ε the non-holonomic background produces in
order to compensate for a perturbation ṽ in itself is regulated
by the density of radiant energy B in the system, while the
perturbation in the background ṽ= e

√
4π

me v̄

√
B
ω is caused by

the oscillation of free electrons, also regulated by the radiant
energy density B. If the average oscillation velocity of elec-
trons ṽ in a star becomes larger than that of the background
v̄' 2.2×108 cm/sec, temperature increases, and so the star ex-
pands until a new state of thermal equilibrium is reached,
with a larger luminosity that compensates for the increased
generation of energy within. If the average oscillation vel-
ocity of electrons becomes less than v̄' 2.2×108 cm/sec, the
star contracts until a new thermal equilibrium with lower
luminosity is attained.

If there were no other active factors slowly discharging
the inner resources of a star (e. g. nuclear transformations of
a different kind, etc), such a mechanism could generate stel-
lar energy eternally, keeping stars in a stable radiating state.

2 Comparing the theory of stellar energy to observa-
tional data. The “volume-luminosity” correlation

We now analyse the implications of our formula (6) for
stellar energy in comparison to the phenomenological data of
observational astrophysics: the stellar energy relation (Fig. 1)
and the mass-luminosity relation (Fig. 2).

We consider characteristics of a star in multiples of the
corresponding values of the parameters for the Sun. We
therefore operate with dimensionless characteristics: mass
M̄ = M

M�
, radius R̄= R

R�
, luminosity L̄= L

L�
, productivity

of energy ε̄= ε
ε�

, etc. Using this notation, our formula (6)
for stellar energy takes the form

ε̄ =
n̄eB̄

3/2

ω̄
' n̄eB̄

3/2, (7)
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or, considering the hydrogen constitution of most stars, so
that ne=

ρ
mp

(i. e. n̄e= ρ̄ ),

ε̄ =
ρ̄ B̄3/2

ω̄
' ρ̄ B̄3/2. (8)

By the stellar energy relation B
ne
= const from the stellar

energy diagram (see Fig. 1), we have B̄= n̄e= ρ̄ throughout
the whole range of stars. We can therefore write the stellar
energy formula (8) in the final form

ε̄ = ρ̄ B̄3/2 = B̄5/2. (9)

By the data of observational astrophysics, stars obey
the principles of an ideal gas, except for the white dwarfs
wherein the gas is in a state on the boundary of degeneration.
We therefore obtain by the equation for an ideal gas p= <Tρ

μ
(where < is Clapeyron’s constant, μ is the molecular weight),
p̄= T̄ ρ̄

μ̄ , or, with a similar molecular composition throughout

the whole range of stars, p̄= T̄ ρ̄. The gaseous pressure p is
determined by the state of mechanical equilibrium in a star,
according to which the pressure from within is equal to the
pressure of a column of the star’s contents, so we obtain
p̄= M̄

R̄2
ρ̄ R̄= M̄

R̄2
M̄
R̄3
R̄= M̄2

R̄4
. Therefore the density of radi-

ant energy in a star is B̄= T̄ 4= M̄4

R̄4
. So the stellar energy

formula takes the final form,

ε̄ = B̄5/2 =
M̄10

R̄10
. (10)

We analyze this result, taking the mass-luminosity rela-
tion into account. According to well verified data of observ-
ational astrophysics, stars satisfy the mass-luminosity rela-
tion L̄= M̄ 10/3' M̄3.3 (see Fig. 2). The relation L̄= M̄3

can be deduced from theory. Here is how. Thermal equi-
librium in a star is characterized by the equation [2]

ε = −
c

κρ

dB

dr
, (11)

which means that the flow of energy generated in a star
is balanced by the flow of radiant energy therein (κ is the
coefficient of absorption). In other words, this formula is the
condition of energy drainage in a star — the condition of
radiation. From this formula we have, for stars of approxi-
mately the same chemical composition,

ε̄=
B̄

ρ̄R̄
=
M̄3

R̄2
, (12)

and hence, because the luminosity of a star is L̄= ε̄R̄2, we
obtain the mass-luminosity relation L̄= M̄3.

As a matter of fact, ε determined by the energy drainage
condition in a star should coincide with ε determined by the
mechanism producing stellar energy — an energy production
condition. In our theory of stellar energy, such an energy
production condition is represented by the stellar energy for-

Fig. 3: Diagram of “mass–radius” devised by N. A. Kozyrev, the
famous astronomer and experimental physicist, in the late 1970’s.
The arcs are isoergs of stellar matter. (Courtesy of V. V. Nassonov,
Kozyrev’s assistant, who had frequent meetings with the author in
1984–1985.)

mula ε̄= n̄eB̄
3/2= ρ̄ B̄3/2= B̄5/2.

We therefore substitute the observed mass-luminosity re-
lation L̄ = M̄ 10/3 and the theoretical relation L̄ = M̄3 into
our formula for stellar energy reduced to the absolute mass
and radius of a star ε̄= B̄5/2= M̄10

R̄10
(10). Because L̄= ε̄R̄2,

our formula for stellar energy, in common with the observed
mass-luminosity relation L̄= M̄ 10/3, gives

L̄ = R̄4, (13)

while with the theoretical relation L̄= M̄3 our formula gives
a slightly smaller exponent,

L̄ = R̄3.4. (14)

In other words, for both the observed and theoretical mass-
luminosity relation, our formula for stellar energy says that,

On the basis of stellar energy being generated by the
background space non-holonomity field, in Thomson
dispersion of light in free electrons, the luminosity
L of a star is proportional to its volume V = 4

3
πR3,

with a small progression with an increase of radius.
We will refer to the newly discovered correlation as
the volume-luminosity relation.

The predicted volume-luminosity relation L̄= R̄4–R̄3.4

is derived from the condition of energy production by the
non-holonomic space background in Thomson dispersion of
light in stars (our theory of stellar energy). If such a correla-
tion (the condition of energy production) is true, the correla-
tion, in common with the energy drainage condition (the
mass-luminosity relation L̄= M̄ 3–M̄ 10/3), should produce
another correlation; mass-radius M̄ = R̄1.1–R̄1.2. Fig. 3
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shows a diagram devised by Kozyrev in the 1970’s on the
basis of observational data, along with many other diagrams
within the framework of his extensive phenomenological
research into stellar energy and the internal constitution of
stars. As seen from the diagram, stars are distributed along
the average direction M̄ ∼ R̄, which perfectly verifies the
expected correlation M̄ = R̄1.1–R̄1.2 predicted on the basis
of our formula for stellar energy. Hence the relation M̄ ∼ R̄
verifies as well the whole theory of the stellar energy mech-
anism we have built here and in [1].

The deduced volume-luminosity relation clearly depends
upon the chemical composition of stars. Naturally, because
the gravitational pressure in a star p̄= M̄

R̄2
ρ̄ R̄= M̄2

R̄4
is bal-

anced by the gaseous pressure calculated by the equation for
an ideal gas p̄= T̄ ρ̄

μ̄ , we have B̄= T̄ 4= μ̄4 M̄
4

R̄4
. On the other

hand, Kozyrev has found, from the stellar energy diagram
(Fig. 1), that “The main direction wonderfully traces an
angle of exactly 45◦. Hence, all stars are concentrated along
the line, determined by the equation B∼ρμ4 ” [2]. We there-
fore substitute n̄e= ρ̄ = B̄

μ̄4
and B̄= μ̄4 M̄

4

R̄4
into our initial

formula for stellar energy ε̄= n̄eB̄
3/2 (7). As a result we

obtain the formula for stellar energy in the form, where the
molecular weight of the stellar contents is taken into account,

ε̄ = μ̄6
M̄10

R̄10
, (15)

from which, because L̄= ε̄R̄2, we obtain, with the observed
mass-luminosity relation L̄= M̄ 10/3,

L̄ =
1

μ̄3
R̄4, (16)

while with the theoretical relation L̄= M̄3 our updated for-
mula (8) gives

L̄ =
1

μ̄2.6
R̄3.4. (17)

As is clearly seen, our deduced relation — the proportion-
ality of the luminosity of a star to its volume L∼V ∼R3 — is
inversely proportional to ∼3 orders of the molecular weight
of the gas consisting a star. The greater the molecular weight
of the gaseous contents of a star, the smaller its luminosity
for the same volume. For instance, for a star consisting,
instead of Hydrogen, of Helium or other heavy elements,
the luminosity of such a star should be many times less than
a completely hydrogen star of the same size.

3 The same stellar energy formula applied to brown
dwarfs and the bulky planets

So the mass-luminosity relation L̄= M̄3 is derived from the
energy drainage condition ε̄= B̄

ρ̄R̄
= M̄3

R̄2
. The necessary coin-

cidence with the energy production condition, the stellar en-
ergy formula ε̄= n̄eB̄

3/2= ρ̄ B̄3/2= B̄5/2, gives a new re-
lation between the observable characteristics of stars — the

Table 1: Brown dwarfs

L̄= M̄
10/3

L̄= M̄3 L̄= R̄4 L̄= R̄3.4

L̄= 10−4 M̄ = 0.06 M̄ = 0.05 R̄= 0.1 R̄= 0.07

L̄= 10−5 M̄ = 0.03 M̄ = 0.02 R̄= 0.06 R̄= 0.03

volume-luminosity relation: L̄= R̄3.4 for the theoretical re-
lation L̄= M̄3, or L̄= R̄4 for the observed L̄= M̄10/3.

In this section we shall look at how our stellar energy
formula can be applied to space objects of extremely small
luminosity — recently discovered brown dwarfs, and also the
bulky planets (Jupiter, Saturn, Uranus, and Neptune) whose
radiated energy exceeds that received from the Sun (so they
have their own internal sources of energy).

Brown dwarfs

These have masses M̄ 6 0.08, luminosity L̄= 10−4–10−5,
and temperature at the surface T ≈ 700 K, which determines
their observed brown colour.

Proceeding from the luminosity L̄ of brown dwarfs, we
calculate: (1) their masses M̄ by the mass-luminosity rela-
tion (the energy drainage condition), and also (2) their radii
R̄ by the volume-luminosity relation (the energy production
condition) that characterizes the generation of stellar energy
by the background space non-holonomity in Thomson dis-
persion of light. The results are given in Table 1.

By the observed mass-luminosity relation L̄= M̄10/3, we
obtained the masses in the range M̄ = 0.03–0.06 that satisfies
the masses M̄ 6 0.08 required for stars of such class. Brown
dwarfs therefore satisfy the condition of energy drainage.

The radii of brown dwarfs R̄= 0.06–0.1 we calculated by
the condition of energy production — the volume-luminosity
relation L̄=R̄4 — are within the range of the bulky planets
(from R̄= 0.034 for Uranus to R̄= 0.10 for Jupiter). Hence,
from our calculations we conclude that:

Brown dwarfs are stars of a size similar to Jupiter
or Saturn. Their energy source is the same as that
in stars of other kinds — the background space non-
holonomity that generates energy in Thomson disper-
sion of light in free electrons. However, in contrast
to the bulky planets, the radii of brown dwarfs satisfy
the volume-luminosity relation, so the physical condi-
tions therein are such that the stellar energy mechan-
ism produces enough energy to compensate for the
radiation from the surface.

The bulky planets

By direct measurements made by NASA’s space missions
(Pioneer, Voyager, Galileo, Cassini), the bulky planets have
∼75–90% hydrogen content (see http://www.nasa.gov for
the details). So, because of the huge pressure in the central
region, enough to ionize hydrogen, we propose the same
energy source as that in any star. We can therefore calculate
a table similar to that herein for brown dwarfs.
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Table 2: The bulky planets

R̄ M̄ Teff Tac Beff Bac L̄p L̄= M̄ x L̄= R̄y L̄= R̄4

JUPITER: 0.10 9.5×10−4 125 K 105 K 1.3×104 0.69×104 1.0×10−9 x= 3.0 y= 9.0 R= 4,000 km

SATURN: 0.086 2.9×10−4 95 K 74 K 4.6×103 1.7×103 3.4×10−10 x= 2.7 y= 8.9 R= 3,000 km

URANUS: 0.034 4.4×10−5 57 K 55 K 6.0×102 5.2×102 1.5×10−12 x= 2.7 y= 7.8 R= 770 km

NEPTUNE: 0.036 5.2×10−5 59 K 38 K 6.9×102 1.2×102 1.2×10−11 x= 2.5 y= 7.4 R= 1,300 km

In Table 2 we use the effective temperature Teff and the
temperature Tac acquired from the Sun, determined from the
direct measurements made by the NASA satellites. The proper
luminosity of each planet Lp=4πR2Bp is calculated through
the density of the proper radiant energy Bp=Beff −Bac=
=σ

(
T 4eff −T

4
ac

)
, where σ= 5.67×10−5 erg/cm2

×sec×deg.
As seen from Table 2, the bulky planets have the lumino-

sity L̄= M̄ 2.5–M̄ 3.0. Many stars have a greater deviation
from the average mass-luminosity relation L̄= M̄ 10/3 (see
Fig. 2), than the planets. We therefore conclude that,

The bulky planets satisfy the mass-luminosity rela-
tion, which is the condition of energy drainage, so
they radiate energy similar to stars.

Another result is provided by the volume-luminosity re-
lation L̄∼ R̄y , which characterizes the condition of energy
production. The bulky planets have L̄= R̄7.4–R̄9.0, while
the coincidence of the energy drainage with the energy pro-
duction in stars requires L̄= R̄3.4–R̄4.0. The last column in
Table 2 gives the values of the radii which should result if the
energy loss is completely balanced by the energy produced
within. So the bulky planets would be like stars. As seen, in
such a case the bulky planets would be a bit smaller than the
Earth: Jupiter and Saturn would have a size similar to Mars,
Neptune would be similar to the Moon, while Uranus would
be half the Moon. The obtained result implies that:

The real radii of the bulky planets are so large that the
energy produced within the planets is substantially
less than that radiated from the surface: the planets
are cooling down, in contrast to stars whose tempera-
ture is stable on the average.

So there is no crucial difference between stars and the
bulky planets built on the gaseous contents. Looking at the
evolution of the bulky planets, we see that as soon as the gra-
vitational pressure compresses the planets down to radii sa-
tisfying the volume-luminosity relation L̄= R̄3.4–R̄4.0, the
energy output within the planets becomes balanced by the ra-
diation from the surface, so the planets become stars. In such
a case the density of the planets would become enormous.

Such high densities are conceivable, along the whole
range of known stars, only within white dwarfs, which are
mostly satellites of the most bulky stars. Compare Sirius’
satellite (R̄= 0.025) and Procyon’s satellite (R̄= 0.013),
typical white dwarfs, which have a density ρ ≈ 104. We
there therefore conclude that:

Table 3: The bulky planets, if becoming stars

Radius, R̄ Radius, km Average density

JUPITER: 0.0057 4,000 km 7.1×103 g/cm3

SATURN: 0.0043 3,000 km 5.0×103 g/cm3

URANUS: 0.0011 770 km 4.6×104 g/cm3

NEPTUNE: 0.0019 1,300 km 1.1×104 g/cm3

White dwarfs were formerly bulky planets like Jupiter
and the great jovian planets, which, containing mostly
hydrogen, were compressed by gravitational pressure
to such a state that the energy produced within is the
same as that radiated from the surface.

So Jupiter and the jovian planets are stars in an
early stage of their evolution. As soon as the gravita-
tional pressure compresses each of them to the ap-
propriate radius, they become white dwarfs — star-
satellites of the Sun, so that the solar system becomes
a multiple-star system.

4 A perspective for the new energy source

Accordingly, our theory that stellar energy is generated by
the background space in Thomson dispersion of light in free
electrons is readily verified. All that we need to reproduce
the mechanism is ionized hydrogen: even if the temperature
is much lower than in stars, we should obtain some energy
output if the theory is correct. The ionization energy of a
hydrogen atom is 13.6 eV; suitable equipment is accessible in
even a junior college laboratory. Moreover, proceeding from
the above theory, we can predict additional forces and energy
output produced by the non-holonomic space background in
phenomena other than Thomson dispersion of light. So the
stellar energy theory herein, applied to laboratory conditions,
predicts new energy sources working much more effectively
and safely than nuclear energy.
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The new mathematics, referred to as iso-mathematics and geno-mathematics, intro-
duced by Santilli to help explain a number of outstanding problems in quantum
chemistry as well as in other areas of science such as astrophysics, has been applied
successfully in a number of physical situations. This new formalism has, for the first
time, provided an irreversible description of thermodynamics via an irreversible differ-
ential calculus together with the related mathematics. However, the associated thermo-
dynamics has not been considered so far. That defect is remedied here.

1 Introduction

For many years now, science has harboured the belief that
the theories of relativity and quantum mechanics offered the
means to solve all outstanding theoretical problems. One
person who has felt for many years that these theories are
not complete is Ruggero Santilli. He has devoted his life
to searching for extensions to these undoubtedly extremely
successful theories. He was driven to this by the realisation
that, despite a multitude of successes, a number of basic
issues remained unresolved by orthodox quantum chemistry.
Although a mountain of publications preceded it, the culmi-
nation of this work was presented in a monograph, Found-
ations of Hadronic Chemistry [1], which was produced in
an attempt to provide possible explanations for a number of
problems which had persisted for many years in the general
area of quantum chemistry. In this book, he suggests a ge-
neralisation, or covering, of quantum chemistry, under the
name “hadronic chemistry”, which appears to resolve many
of the outstanding problems. The suggested solution origin-
ates with the assumption that valence forces are nonlinear (in
the wavefunction), non-local, and of non-potential type due
to the deep overlapping of the wavepackets of valence elec-
trons in singlet coupling. In turn, this “valence force” may
not be represented quantitatively via conventional quantum
chemistry since the latter is linear, local and potential. The
covering of quantum chemistry for the invariant representa-
tion of the indicated new valence forces is based on a new
mathematics called “iso-mathematics”, which is itself based
on real-valued (hermitian), nowhere singular yet arbitrary
integro-differential units. Being, by fundamental assumption,
incapable of representation via a Hamiltonian, these new
valence forces are represented with the generalised integro-
differential units. In turn, the representation of the new val-
ence forces with a unit ensures the invariance of the theory,
since the unit is known to be the basic invariant. The provi-
sion of simple means, utilising non-unitary transforms, for
the construction of hadronic chemistry ensures that it differs

from conventional theories.
In addition, an invariant formulation of irreversibility

was presented also. The starting point for this was the histor-
ical legacy of Lagrange and Hamilton of representing irre-
versibility with the external terms in their celebrated equa-
tions — terms which are frequently ignored in modern ex-
positions of the subject. For reasons of consistency, Santilli
reformulates identically the original analytic equations in a
form admitting a Lie-admissible structure in the sense of the
American mathematician A. A. Albert. The formulation is
extended from the classical to all branches. In this way, irre-
versibility emerges as originating from the most elementary
levels of nature. Therefore, a possible resolution of the prob-
lem of reducing a macroscopic irreversible classical system
to a finite collection of elementary particles, all in reversible
conditions, is offered. This suggested formulation of irrever-
sibility is based on an additional new form of mathematics
known as “geno-mathematics”. This is characterised by two
real-valued, non-singular, non-symmetric, generalised units,
interconnected by hermitian conjugates, one of which is as-
sumed to characterise motion forward in time and the other,
motion backward in time. The differences between the basic
units for the two directions of time guarantee irreversibility
for all possible reversible Hamiltonians. Since all potential
interactions are reversible, these non-symmetric, generalised
units represent the interactions responsible for irreversibility
— namely, Lagrange’s and Hamilton’s external terms. This
second set of methods is intended for an invariant repre-
sentation of open irreversible processes, such as chemical
reactions, and is part of the so-called genotopic branch of
hadronic mechanics and chemistry.

However, the above generalisations were found not to
resolve problems relating to anti-matter. To resolve these
problems, it was found necessary to introduce yet more new
mathematics. These further forms of mathematics are anti-
isomorphic to the proposed iso- and geno-mathematics, have
their own channel of quantisation, and the operator images
are indeed antiparticles, defined as charge conjugates of con-
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ventional particles on a Hilbert space. As far as the applic-
ability of well-known thermodynamics’ results is concerned,
it is only the thermodynamics of anti-matter via Santilli’s
isodualities which has been considered [2]. It remains to
consider the position of the powerful thermodynamic results
in iso-mathematics and geno-mathematics.

2 Iso-thermodynamics

The basic rules for iso-mathematics are laid out clearly in
Santilli’s book [1] but what must be noted at the outset is the
importance of realising that in such typical thermodynamic
expressions as TdS, multiplication of T by dS is indicated.
Hence,

TdS=T × dS → T̂ ×̂d̂Ŝ → T × Î × K̂ × d̂Ŝ → T × d̂Ŝ ,

where
I → Î =

1

K̂
> 0 .

Then

T × dS → T × d̂Ŝ=T × Î × d
(
S × Î

)
= Î × TdS .

Hence, it follows immediately that,

dQ= dU + pdV → d̂Q̂= d̂Û + p̂× d̂V̂ → Î × dQ =

= Î × (dU + pdV )⇒ dQ= dU + pdV

and

dQ=TdS → d̂Q̂= T̂ ×̂d̂Ŝ → Î × dQ= Î × TdS ⇒

⇒ dQ=TdS .

This means that, within the iso-mathematical framework,
the equations representing the first and second laws of ther-
modynamics hold in their familiar forms. A moment’s con-
sideration indicates that other familiar thermodynamic rela-
tions will also retain the familiar forms; for example, the
Euler relation

TS=U + pV − μN ,

the Gibbs-Duhem relation

SdT − V dp+Ndμ=0 ,

and the expressions for the well-known thermodynamic po-
tentials

enthalpy: H = U + pV ,

Helmholtz Free Energy: F = U − TS,

Gibbs Free Energy: G = U + pV − TS.

3 Geno-thermodynamics

As far as the extension to include geno-mathematics is con-
cerned, the basic rules of manipulation are again laid out in
Santilli’s book [1]. Application of these leads, for the com-

bined first and second laws of thermodynamics, to

TdS= dU + pdV → T> > d>S>= d>U> + p> > d>V >

which becomes

(TI>) I>−1
[
I>−1d (SI>)

]
=TdS= I>−1d (UI>)+

+ (pI>) I>−1
[
I>−1d (V I>)

]
= dU + pdV .

However, here the genounit has been assumed constant.
If the genounit depends on local variables

dS → d>S>= I>−1d (SI>) = dS + SI>−1dI> ,

and similarly for dQ and dW . Hence, in these circumstances
the equation representing the second law takes the form

T> > d>S>= d>U> + p> > d>V > →

→ TdS + TSI>−1dI> =

= dU + UI>−1dI> + pdV + pV I>−1dI> ⇒

⇒ TdS= dU + pdV ,

since TS=U + pV .
Hence, even if the genounit does depend on local vari-

ables, the form of the equation representing a combination
of the first and second laws of thermodynamics retains its
familiar form. It may be noted that this is true of all the fun-
damental equations of thermodynamics when the extension
into geno-mathematics is considered, just as was the case for
iso-mathematics.

4 Conclusions

The end result of this discussion is simply to conclude that the
familiar results of thermodynamics remain valid in their fa-
miliar forms in both iso-mathematics and geno-mathematics.
These results all follow easily but are, nevertheless, impor-
tant in that it confirms that the various results of thermo-
dynamics may be used with confidence in conjunction with
both iso-mathematics and geno-mathematics. It is worth re-
membering, however, that Santilli’s new formalism achieves
an irreversible description of thermodynamics through an
irreversible differential calculus together with the related
mathematics. Although it is shown here that the familiar
thermodynamic results remain applicable in their familiar
forms, it should be noted that the overall new formalism
may be used to describe departures from the conventional
laws which appear in several areas of science. This overall
subject is relatively new and so the full extent of this claim
is simply not known at present. Hence, it is important to
embrace this new material with a truly open mind.

Further, it might be noted that, while a large number of
Santilli’s applications refer to what are essentially small sys-
tems and thermodynamics is a macroscopic theory, exactly
how thermodynamics will apply in these cases is not yet
completely clear. However, if a lead is taken from the work
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of Hill [3], it is readily seen that the familiar equations as
modified for application to these small systems remain valid
in both iso-mathematics and geno-mathematics.

Finally, it is worth realising that, for all its background as
a collection of “facts of experience”, thermodynamics in its
well-known form continues to be applicable in all situations
which arise for consideration. It is certainly a topic which
can lay claim to be at the very heart of physics.
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In this paper we present four possible extensions of Bell’s Theorem: Bayesian and
Fuzzy Bayesian intrepretation, Information Fusion interpretation, Geometric interpre-
tation, and the viewpoint of photon fluid as medium for quantum interaction.

1 Introduction

It is generally accepted that Bell’s theorem [1] is quite exact
to describe the linear hidden-variable interpretation of quan-
tum measurement, and hence “quantum reality”. Therefore
null result of this proposition implies that no hidden-variable
theory could provide good explanation of “quantum reality”.

Nonetheless, after further thought we can find that Bell’s
theorem is nothing more than another kind of abstraction
of quantum observation based on a set of assumptions and
propositions [7]. Therefore, one should be careful before
making further generalization on the null result from exper-
iments which are “supposed” to verify Bell’s theorem. For
example, the most blatant assumption of Bell’s theorem is
that it takes into consideration only the classical statistical
problem of chance of outcome A or outcome B, as result of
adoption of Von Neumann’s definition of “quantum logic”.
Another critic will be discussed here, i. e. that Bell’s theorem
is only a reformulation of statistical definition of correlation;
therefore it is merely tautological [5].

Therefore in the present paper we will discuss a few
plausible extension of Bell’s theorem:

(a) Bayesian and Fuzzy Bayesian interpretation.
(b) Information Fusion interpretation. In particular, we

propose a modified version of Bell’s theorem, which
takes into consideration this multivalued outcome, in
particular using the information fusion Dezert-
Smarandache Theory (DSmT) [2, 3, 4]. We suppose
that in quantum reality the outcome of P (A ∪B) and
also P (A ∩ B) shall also be taken into consideration.
This is where DSmT and Unification of Fusion Theor-
ies (UFT) could be found useful [2, 17].

(c) Geometric interpretation, using a known theorem con-
necting geometry and imaginary plane. In turn, this
leads us to 8-dimensional extended-Minkowski metric.

(d) As an alternative to this geometric interpretation, we
submit the viewpoint of photon fluid as medium for

∗Note: The notion “hronir wave” introduced here was inspired from
Borges’ Tlon, Uqbar, Orbis Tertius.

quantum interaction. This proposition leads us to
Gross-Piteavskii equation which is commonly used to
describe bose condensation phenomena. In turn we
provide a route where Maxwell equations and Schrödi-
nger equation could be deduced from Gross-Pitaevskii
equation by using known algebra involving bi-quater-
nion number. In our opinion, this new proposition pro-
vides us a physical mechanism of quantum interaction,
beyond conventional “quantum algebra” which hides
causal explanation.

By discussing these various approaches, we use an ex-
panded logic beyond “yes” or “no” type logic [3]. In other
words, there could be new possibilities to describe quantum
interaction: “both can be wrong”, or “both can be right”, as
described in Table 1 below.

In Belnap’s four-valued logic there are, besides Truth (T)
and Falsehood (F), also Uncertainty (U) and Contradiction
(C) but they are inter-related [30]. Belnap’s logic is a parti-
cular case of Neutrosophic Logic (which considers three
components: Truth, Falsehood, and Indeterminacy (I)) when
indeterminacy is split into Uncertainty and Contradiction. In
our article we have: Yes (Y), No (N), and Indeterminacy
(I, which means: neither Yes nor No), but Indeterminacy is
split into “both can be wrong” and “both can be right”.

It could be expected that a combined interpretation re-
presents multiple-facets of quantum reality. And hopefully it
could bring better understanding on the physical mechanism
beneath quantum measurement, beyond simple algebraic no-
tions. Further experiments are of course recommended in
order to verify or refute this proposition.

2 Bell’s theorem. Bayesian and fuzzy Bayesian inter-
pretation

Despite widespread belief of its ability to describe hidden-
variables of quantum reality [1], it shall be noted that Bell’s
theorem starts with a set of assumptions inherent in its for-
mulation. It is assumed that each pair of particles possesses
a particular value of λ, and we define quantity p (λ) so that
probability of a pair being produced between λ and λ+ dλ

F. Smarandache, V. Christianto. A Note on Fusion Interpretation of Bell’s Theorem and Quantum Measurement 27



Volume 4 PROGRESS IN PHYSICS October, 2006

Alternative Bell’s theorem Implications Special relativity

QM is nonlocal Invalid Causality breaks down; Observer
determines the outcome

Is not always applicable

QM is local with hidden
variable

Valid Causality preserved; The moon
is there even without observer

No interaction can exceed the speed of
light

Both can be right Valid, but there is a way to
explain QM without violat-
ing Special Relativity

QM, special relativity and Max-
well electromagnetic theory can
be unified. New worldview shall
be used

Can be expanded using 8-dimensional
Minkowski metric with imaginary
plane

Both can be wrong Invalid, and so Special Rel-
ativity is. We need a new
theory

New nonlocal QM theory is re-
quired, involving quantum po-
tential

Is not always applicable

Table 1: Going beyond classical logic view of QM

is p (λ)dλ. It is also assumed that this is normalized so that:
∫
p (λ) dλ = 1 . (1)

Further analysis shows that the integral that measures the
correlation between two spin components that are at an angle
of (δ − φ) with each other, is therefore equal to C ′′(δ − φ).
We can therefore write:

|C ′′(φ)− C ′′(δ)| − C ′′(δ − φ) 6 1 (2)

which is known as Bell’s theorem, and it was supposed to
represent any local hidden-variable theorem. But it shall be
noted that actually this theorem cannot be tested completely
because it assumes that all particle pairs have been detected.
In other words, we find that a hidden assumption behind
Bell’s theorem is that it uses classical probability assertion
[12], which may or may be not applicable to describe Quan-
tum Measurement.

It is wothnoting here that the standard interpretation of
Bell’s theorem includes the use of Bayesian posterior proba-
bility [13]:

P (α |x) =
p (α) p (x |α)

∑
β p (β) p (x |β)

. (3)

As we know Bayesian method is based on classical two-
valued logic. In the meantime, it is known that the restriction
of classical propositional calculus to a two-valued logic has
created some interesting paradoxes. For example, the Barber
of Seville has a rule that all and only those men who do not
shave themselves are shaved by the barber. It turns out that
the only way for this paradox to work is if the statement is
both true and false simultaneously [14]. This brings us to
fuzzy Bayesian approach [14] as an extension of (3):

P (si|M) =
p (M |si) p (si)

p (M)
, (4)

where [14, p. 339]:

p (M |si) =
r∑

k=1

p (xk |si)μM (xk) . (5)

Nonetheless, it should also be noted here that there is
shortcoming of this Bayesian approach. As Kracklauer points
out, Bell’s theorem is nothing but a reformulation of statist-
ical definition of correlation [5]:

Corr (A,B) =
〈|AB|〉 − 〈A〉〈B〉
√
〈A2〉〈B2〉

. (6)

When 〈A〉 or 〈B〉 equals to zero and 〈A2〉〈B2〉=1 then
equation (6) reduces to Bell’s theorem. Therefore as such it
could be considered as merely tautological [5].

3 Information fusion interpretation of Bell’s theorem.
DSmT modification

In the context of physical theory of information [8], Barrett
has noted that “there ought to be a set theoretic language
which applies directly to all quantum interactions”. This is
because the idea of a bit is itself straight out of classical
set theory, the definitive and unambiguous assignment of
an element of the set {0, 1}, and so the assignment of an
information content of the photon itself is fraught with the
same difficulties [8]. Similarly, the problem becomes more
adverse because the fundamental basis of conventional stat-
istal theories is the same classical set {0, 1}.

Not only that, there is also criticism over the use of
Bayesian approach, i. e.: [13]

(a) In real world, neither class probabilities nor class den-
sities are precisely known;

(b) This implies that one should adopt a parametric model
for the class probabilities and class densities, and then
use empirical data.

(c) Therefore, in the context where multiple sensors can
be used, information fusion approach could be a better
alternative to Bayes approach.

In other words, we should find an extension to standard
proposition in statistical theory [8, p. 388]:
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P (AB |C) = P (A |BC)P (B |C) (7)

= P (B |AC)P (A |C) (8)

P (A |B) + P (Ā |B) = 1 . (9)

Such an extension is already known in the area of infor-
mation fusion [2], known as Dempster-Shafer theory:

m(A) +m(B) +m(A ∪B) = 1 . (10)

Interestingly, Chapline [13] noted that neither Bayesian
theory nor Dempster-Shafer could offer insight on how to
minimize overall energy usage in the network. In the mean-
time, Dezert-Smarandache (DSmT) [2] introduced further
improvement of Dempster-Shafer theory by taking into con-
sideration chance to observe intersection between A and B:

m(A) +m(B) +m(A ∪B) +m(A ∩B) = 1 . (11)

Therefore, introducing this extension from equation (11)
into equation (2), one finds a modified version of Bell’s the-
orem in the form:

|C ′′(φ)− C ′′(δ)| −

−C ′′(δ − φ) + C ′′(δ ∪ φ) + C ′′(δ ∩ φ) 6 1 ,
(12)

which could be called as modified Bell’s theorem according
to Dezert-Smarandache (DSmT) theory [2]. Its direct impli-
cations suggest that it could be useful to include more sen-
sors in order to capture various possibilities beyond simple
{0, 1} result, which is typical in Bell’s theorem.

Further generalization of DSmT theory (11) is known as
Unification of Fusion Theories [15, 16, 17]:

m(A) +m(B) +m(A ∪B) +m(A ∩B)+

+m(Ā) +m(B̄) +m(Ā ∪ B̄) +m(Ā ∩ B̄) = 1 ,
(13)

where Ā is the complement of A and B̄ is the complement
of B (if we consider the set theory).

(But if we consider the logical theory then Ā is the
negation of A and B̄ is the negation of B. The set theory and
logical theory in this example are equivalent, hence doesn’t
matter which one we use from them.) In equation (13) above
we have a complement/negation for A. We might define the
Ā as the entangle of particle A. Hence we could expect
to further extend Bell’s inequality considering UFT; non-
etheless we leave this further generalization for the reader.

Of course, new experimental design is recommended in
order to verify and to find various implications of this new
proposition.

4 An alternative geometric interpretation of Bell-type
measurement. Gross-Pitaevskii equation and the
“hronir wave”

Apart from the aforementioned Bayesian interpretation of
Bell’s theorem, we can consider the problem from purely
geometric viewpoint. As we know, there is linkage between

geometry and algebra with imaginary plane [18]:

x+ iy = ρeiφ. (14)

Therefore one could expect to come up with geometrical
explanation of quantum interaction, provided we could gen-
eralize the metric using imaginary plane:

X + iX ′ = ρeiφ . (15)

Interestingly, Amoroso and Rauscher [19] have proposed
exactly the same idea, i. e. generalizing Minkowski metric to
become 8-dimensional metric which can be represented as:

Zμ = Xμ
re + iX

μ
im = ρeiφ . (16)

A characteristic result of this 8-dimensional metric is that
“space separation” vanishes, and quantum-type interaction
could happen in no time.

Another viewpoint could be introduced in this regard,
i. e. that the wave nature of photon arises from “photon fluid”
medium, which serves to enable photon-photon interaction.
It has been argued that this photon-fluid medium could be
described using Gross-Pitaevskii equation [20]. In turns, we
could expect to “derive” Schrödinger wave equation from
the Gross-Pitaevskii equation.

It will be shown, that we could derive Schrödinger wave
equation from Gross-Pitaevskii equation. Interestingly,
a new term similar to equation (14) arises here, which then
we propose to call it “hronir wave”. Therefore one could
expect that this “hronir wave” plays the role of “invisible
light” as postulated by Maxwell long-time ago.

Consider the well-known Gross-Pitaevskii equation in
the context of superfluidity or superconductivity [21]:

i h̄
∂Ψ

∂t
= −

h̄2

2m
ΔΨ+

(
V (x)− γ |Ψ|p−1

)
Ψ, (17)

where p < 2N/(N−2) if N> 3. In physical problems, the
equation for p=3 is known as Gross-Pitaevskii equation.
This equation (17) has standing wave solution quite similar
to Schrödinger equation, in the form:

Ψ(x, t) = e−iEt/h̄ ∙ u(x) . (18)

Substituting equation (18) into equation (17) yields:

−
h̄2

2m
Δu+

(
V (x)− E

)
u = |u|p−1 u , (19)

which is nothing but time-independent linear form of Schrö-
dinger equation, except for term |u|p−1 [21]. In case the
right-hand side of this equation is negligible, equation (19)
reduces to standard Schrödinger equation. Using Maclaurin
series expansion, we get for (18):

Ψ(x, t)=

(

1−
iEt

h̄
+

(
iEt
h̄

)2

2!
+

(
− iEt

h̄

)3

3!
+ . . .

)

∙u(x) . (20)

Therefore we can say that standing wave solution of
Gross-Pitaevskii equation (18) is similar to standing wave
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solution of Schrödinger equation (u), except for nonlinear
term which comes from Maclaurin series expansion (20).
By neglecting third and other higher order terms of equation
(20), one gets an approximation:

Ψ(x, t) =
[
1− iEt/h̄

]
∙ u(x) . (21)

Note that this equation (21) is very near to hyperbolic
form z=x+ iy [18]. Therefore one could conclude that
standing wave solution of Gross-Pitaevskii equation is mere-
ly an extension from ordinary solution of Schrödinger equa-
tion into Cauchy (imaginary) plane. In other words, there
shall be “hronir wave” part of Schrödinger equation in order
to describe Gross-Pitaevskii equation. We will use this result
in the subsequent section, but first we consider how to derive
bi-quaternion from Schrödinger equation.

It is known that solutions of Riccati equation are loga-
rithmic derivatives of solutions of Schrödinger equation, and
vice versa [22]:

u′′ + vu = 0 . (22)

Bi-quaternion of differentiable function of x=(x1,x2,x3)
is defined as [22]:

Dq = −div(q) + grad(q0) + rot(q) . (23)

By using alternative representation of Schrödinger equa-
tion [22]: [

−Δ+ u
]
f = 0 , (24)

where f is twice differentiable, and introducing quaternion
equation:

Dq + q2 = −u . (25)

Then we could find q, where q is purely vectorial diffe-
rentiable bi-quaternion valued function [22].

We note that solutions of (24) are related to (25) as fol-
lows [22]:

• For any nonvanishing solution f of (24), its logarithm-
ic derivative:

q =
Df

f
, (26)

is a solution of equation (25), and vice versa [22].

Furthermore, we also note that for an arbitrary scalar
twice differentiable function f , the following equality is per-
mitted [22]:

[
−Δ+ u

]
f =

[
D +Mh

][
D −Mh

]
f , (27)

provided h is solution of equation (25).
Therefore we can summarize that given a particular solu-

tion of Schrödinger equation (24), the general solution redu-
ces to the first order equation [22, p. 9]:

[
D +Mh

]
F = 0 , (28)

where

h =
D
√
ε

ε
. (29)

Interestingly, equation (28) is equivalent to Maxwell eq-
uations. [22] Now we can generalize our result from the
preceding section, in the form of the following conjecture:

Conjecture 1 Given a particular solution of Schrödinger
equation (24), then the approximate solution of Gross-
Pitaevskii equation (17) reduces to the first order equation:

[
1− iEt/h̄

][
D +Mh

]
F = 0 . (30)

Therefore we can conclude here that there is neat linkage
between Schrödinger equation, Maxwell equation, Riccati
equation via biquaternion expression [22, 23, 24]. And ap-
proximate solution of Gross-Pitaevskii equation is similar to
solution of Schrödinger equation, except that it exhibits a
new term called here “the hronir wave” (30).

Our proposition is that considering equation (30) has im-
aginary plane wave, therefore it could be expected to pro-
vided “physical mechanism” of quantum interaction, in the
same sense of equation (14). Further experiments are of
course recommended in order to verify or refute this

5 Some astrophysical implications of Gross-Pitaevskii
description

Interestingly, Moffat [25, p. 9] has also used Gross-Pitaevskii
in his “phion condensate fluid” to describe CMB spectrum.
Therefore we could expect that this equation will also yield
interesting results in cosmological scale.

Furthermore, it is well-known that Gross-Pitaevskii equa-
tion could exhibit topologically non-trivial vortex solutions
[26, 27], which can be expressed as quantized vortices:

∮
p • dr = Nv 2πh̄ . (31)

Therefore an implication of Gross-Pitaevskii equation
[25] is that topologically quantized vortex could exhibit in
astrophysical scale. In this context we submit the viewpoint
that this proposition indeed has been observed in the form
of Tifft’s quantization [28, 29]. The following description
supports this assertion of topological quantized vortices in
astrophysical scale.

We start with standard definition of Hubble law [28]:

z =
δλ

λ
=
Hr

c
(32)

or

r =
c

H
z . (33)

Now we suppose that the major parts of redshift data
could be explained via Doppler shift effect, therefore [28]:

z =
δλ

λ
=
v

c
. (34)

In order to interpret Tifft’s observation of quantized red-
shift corresponding to quantized velocity 36.6 km/sec and
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72.2 km/sec, then we could write from equation (34):

δv

c
= δz = δ

(
δλ

λ

)

. (35)

Or from equation (33) we get:

δr =
c

H
δz . (36)

In other words, we submit the viewpoint that Tifft’s ob-
servation of quantized redshift implies a quantized distance
between galaxies [28], which could be expressed in the form:

rn = r0 + n (δr) . (35a)

It is proposed here that this equation of quantized distan-
ce (5) is resulted from topological quantized vortices (31),
and agrees with Gross-Pitaevskii (quantum phion condensa-
te) description of CMB spectrum [25]. Nonetheless, further
observation is recommended in order to verify the above
proposition.

Concluding remarks

In the present paper we review a few extension of Bell’s
theorem which could take into consideration chance to ob-
serve outcome beyond classical statistical theory, in parti-
cular using the information fusion theory. A new geometrical
interpretation of quantum interaction has been considered,
using Gross-Pitaevskii equation. Interestingly, Moffat [25]
also considered this equation in the context of cosmology.

It is recommended to conduct further experiments in
order to verify and also to explore various implications of
this new proposition, including perhaps for the quantum com-
putation theory [8, 13].
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The electromagnetic component waves, comprising together with their generating
oscillatory massless charge a material particle, will be Doppler shifted when the charge
hence particle is in motion, with a velocity v, as a mere mechanical consequence of
the source motion. We illustrate here that two such component waves generated in
opposite directions and propagating at speed c between walls in a one-dimensional
box, superpose into a traveling beat wave of wavelength Λd = v

c
Λ and phase velocity

c2/v + v which resembles directly L. de Broglie’s hypothetic phase wave. This phase
wave in terms of transmitting the particle mass at the speed v and angular frequency
Ωd=2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de
Broglie wave. The standing-wave function of the de Broglie (phase) wave and its
variables for particle dynamics in small geometries are equivalent to the eigen-state
solutions to Schrödinger equation of an identical system.

1 Introduction

As it stood at the turn of the 20th century, M. Planck’s
quantum theory suggested that energy (ε) is associated with
a certain periodic process of frequency (ν), ε=hν; and A.
Einstein’s mass-energy relation suggested the total energy of
a particle (ε) is connected to its mass (m), ε=mc2. Planck
and Einstein together implied that mass was associated with
a periodic process mc2=hν, and accordingly a larger ν with
a moving mass. Incited by such a connection but also a clash
with this from Einstein’s relativity theory which suggested
a moving mass is associated with a slowing-down clock
and thus a smaller ν, L. de Broglie put forward in 1923
[1] a hypothesis that a matter particle (moving at velocity
v) consists of an internal periodic process describable as a
packet of phase waves of frequencies dispersed about ν,
having a phase velocity W = ν

k = c
2/v, with c the speed

of light, and a group velocity of the phase-wave packet
equal to v. Despite the hypothetic phase wave appeared
supernatural and is today not held a standard physics notion,
the de Broglie wave has proven in modern physics to depict
accurately the matter particles, and the de Broglie relations
proven their fundamental relations.

So inevitably the puzzles with the de Broglie wave per-
sist, involving the hypothetic phase waves or not, and are
unanswered prior to our recent unification work [2]: What is
waving with a de Broglie wave and more generally Schrö-
dinger’s wave function? If de Broglie’s phase wave is indeed
a reality, what is then transmitted at a speed (W ) being c

v
times the speed of light c? How is the de Broglie (phase)
wave related to the particle’s charge, which if accelerated
generates according to Maxwell’s theory electromagnetic
(EM) waves of speed c, and how is it in turn related to the
EM waves, which are commonplace emitted or absorbed by

a particle which changes its internal state? In [2] we showed
that a physical model able to yield all of the essential prop-
erties of a de Broglie particle, in terms of solutions in a
unified framework of the three basic mechanics, is provided
by a single harmonic oscillating, massless charge +e or
−e (termed a vaculeon) and the resulting electromagnetic
waves. The solutions for a basic material particle generally
in motion, with the charge quantity (accompanied with a
spin) and energy of the charge as the sole inputs, predict ac-
curately the inertial mass, total wave function, total energy
equal to the mass times c2, total momentum, kinetic energy
and linear momentum of the particle, and that the particle
is a de Broglie wave, it obeys Newton’s laws of motion, de
Broglie relations, Schrödinger equation in small geometries,
Newton’s law of gravitation, and Galilean-Lorentz-Einstein
transformation at high velocities. In this paper we give a self-
contained illustration of the process by which the electro-
magnetic component waves of such a particle in motion
superpose into a de Broglie (phase) wave.

2 Particle; component waves; dynamic variables

A free massless vaculeon charge (q) endowed with a kinetic
energy Eq at its creation, being not dissipatable except in
a pair annihilation, will tend to move about in the vacuum,
and yet at larger displacement restored, fully if Eq below a
threshold, toward equilibrium by the potential field of the
surrounding dielectric vacuum being here polarized under
the charge’s own field [2]. As a result the charge oscillates
in the vacuum, at a frequency Ωq; once in addition uni-
directionally driven, it will also be traveling at a velocity
v here in a one-dimensional box of length L along X-axis
firstly in +X-direction. Let axis X ′ be attached to the mov-
ing charge, X ′=X − vT ; let v be low so that (v/c)2→ 0,
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with c the velocity of light; accordingly T ′=T . The charge
will according to Maxwell’s theory generate electromagnetic
waves to both +X and −X-directions, being by the standard
solution a plane wave, given in dimensionless displacements
(of the medium or fields in it):

ϕ†(X ′, T ) = C1 sin
[
K†X ′ −Ω†T + α0

]
, (a)

ϕ‡(X ′, T ) = − C1 sin
[
K‡X ′ +Ω‡T − α0

]
, (b) (1)

where
[
K†

K‡

]
= lim(v/c)2→0

[
k†

k‡

]
=K ±Kd ,

[
k†

k‡

]
= K
1∓v/c

being wavevectors Doppler-shifted due to the source motion
from their zero-v value, K; Λ=2π/K, and Ω=cK; Ω=Ωq
for the classical electromagnetic radiation. On defining kd=
=
√
(k†−K)(K−k‡)=

(
v
c

)
k , with k= γK, γ= 1√

1−(v/c)2
,

we have at classic-velocity limit:

Kd = lim
(v/c)2→0

kd =
(v
c

)
K; (2)

[
Ω†

Ω‡

]
=
[
K†c
K‡c

]
=Ω±Kd c, and α0 is the initial phase. As-

suming Eq is large and radiated in J (� 1) wave periods if
without re-fuel, the wavetrain of ϕj of a length Lϕ= JL
will wind about the box L in J� 1 loops.

The electromagnetic wave ϕj of an angular frequency
ωj = kjc, j= † or ‡, has according to M. Planck a wave
energy εj = h̄ωj , with 2πh̄ the Planck constant. The waves
are here the components of a particle; the geometric mean of
their wave energies,

√
ε†ε‡= h̄

√
ω†ω‡= γh̄Ω gives thereby

the total energy of the particle. εv = γh̄Ω− h̄Ω= 1
2 h̄Ωd

[
1+

+ 3
4 (
v
c )
2+ . . .

]
gives further the particle’s kinetic energy and

in a similar fashion its linear momentum pv (see [2]), and

Ev = lim(v/c)2→0 εv =
1
2 h̄
(
v
c

)2
Ω , (3)

Pv = lim(v/c)2→0 pv =
√
2m0Ev = h̄

(
v
c

)
K . (4)

The above continues to indeed imply as L. de Broglie
noted that a moving mass has a larger γΩ/2π (= ν), and
thus a clash with the time-dilation of Einstein’smoving clock.
This conflict however vanishes when the underlying physics
becomes clear-cut [2, 2006c].

3 Propagating total wave of particle

A tagged wave front of say ϕ†(X ′, T ) generated by the
vaculeon charge, of v > 0, to its right at location X ′ at time
T , will after a round-trip of distance 2L in time δT =2L/c
return from left and propagate again to the right to X ′ at time
T ∗=T+δT . Here it gains a total extra phase α′=K2L+2π

due to 2L (with (K†+K‡)
2 =K) and the twice reflections at

the massive walls, and becomes

ϕ†
r(X

′, T ∗) = C1 sin
[
K†X ′ −Ω†T + α0 + α

′
]
. (1a)′

ϕ†
r meets ϕ†(X ′, T ∗) just generated to the right, an ident-

ical wave except for an α′, and superposes with it to a

X

Y ϕ ;     ϕ † ‡

c
T'=0 v X

Y ψ;     Ψ
W

~~

v

T'=Γ
8

T'=2Γ
8

T'=3Γ
8

L=Λ
d-L/2 L/2

T'=4Γ
8

(a)

L=Λ
d-L/2 L/2

(b)

Fig. 1: (a) The time development of electromagnetic waves with
wave speed c and wavelength Λ, ϕ† generated to the right of (1a)′

and ϕ‡ to the left of (1b) by a charge (	) traveling at velocity v
in +X direction in a one-dimensional box of side L. (b) ϕ† and
ϕ‡ superpose to a beat, or de Broglie phase wave ψ̃ of (5) tra-
veling at phase velocity W ' c2

v
, of wavelength Λd. For the plot:

Λ = 0.067Λd, and α0 = −π
2
; T ′ = T − Γ

4
; v = ( Λ

Λd
)c� c.

maximum if assuming K2L=N2π, N =0, 1, . . . , returning
the same ϕ† (assuming normalized). Meanwhile, ϕ†

r(X
′, T ∗)

meets ϕ‡(X ′
1, T

∗) just generated to the left (Fig. 1a) and
superposes with it as ψ̃=ϕ†

r + ϕ
‡. Using the trigonometric

identity (TI), denoting ψ̃ (X ′, T )= ψ̃ (X ′, T ∗), this is
ψ̃ (X ′, T )= 2C1 cos(KX

′−KdcT ) sin(KdX
′−ΩT +α0).

With X ′=X − vT , we have on the X-axis:

ψ̃ (X,T ) = Φ̃ (X,T ) Ψ̃ (X,T ) , (5)

Φ̃ (X,T ) = 2C1 cos(KX − 2Kd cT ) , (6)

Ψ̃ (X,T ) = sin
[
KdX − (Ω +Ωd)T + α0

]
, (7)

where Kv=Kd c, and

Ωd=Kd v=
(v
c

)2
Ω . (8)

ψ̃ expressed by (5) is a traveling beat wave, as plotted
versus X in Fig. 1b for consecutive time points during Γ/2,
or Fig. 2a during Γd/2. ψ̃ is due to all the component
waves of the particle while its charge is moving in one direc-
tion, and thus represents the (propagating) total wave of the
particle, to be identified as a de Broglie phase wave below.

ψ̃ has one product component Φ̃ oscillating rapidly on
the X-axis with the wavelength Λ=2π/K, and propagat-
ing at the speed of light c at which the total wave energy is
transported. The other, Ψ̃ , envelops about Φ̃, modulating it
into a slow varying beat ψ̃ which has a wavevector, wave-
length and angular frequency given by:

Kb=Kd , Λb=
2π

Kb
=
2π

Kd
=Λd , Ωb=Ω+Ωd ; (9)

where Λd=
( c
v

)
Λ . (10)
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As follows (9), the beat ψ̃ travels at the phase velocity

W =
Ωb
Kb

=
Ω

Kd
+ v =

( c
v

)
c+ v . (11)

4 De Broglie wave

Transmitted along with its beat wave, of a wavelength Λd,
with Kd=2π/Λd, is the mass of the particle at the velocity
v. The beat wave conjoined with its transportation of the
particle’s mass represents thereby a periodic process of the
particle, of a wavelength and wavevector equal to Λd andKd

of the beat wave. Kd and v define for the particle dynamics
an angular frequency, Kd v=Ωd, as expressed by (8). Com-
bining (10) and (4), and (8) and (3) respectively yield just
the de Broglie relations:

Pv = h̄Kd ; (12) Ev =
1

2
h̄Ωd . (13)

Accordingly Kd, Λd, and Ωd represent the de Broglie
wave-vector, wavelength and angular frequency. The beat
wave ψ̃ of a phase velocity W resembles thereby the de
Broglie phase wave and it in the context of transmitting the
particle mass represents the de Broglie wave of the particle.

5 Virtual source. Reflected total particle wave

At an earlier time T1=T −ΔT , at a distance L advancing
its present location X , with ΔT =L/v, the actual charge
was traveling to the left, let axis X ′′(=X + vT ) be fixed
to it. This past-time charge, said being virtual, generated
at location X ′′ at time T1 similarly one component wave
ϕ†vir(X ′′, T ∗1 ) to the right, which after traversing 2L returned
from left to X ′′ at time T ∗1 =T1+ δT as ϕ†vir

r (X
′′, T ∗1 )=

=C1 sin(K
†
−vX

′′−Ω†
−vT

∗
1+α0+α

′), where K†
−v =K−Kd,

K‡
−v =K +Kd, and Ωj−v =K

j
−v c are the Doppler shifted

wavevectors and angular frequencies; α′=(2N+1)π as
earlier. Here at X ′′ and T ∗1 , ϕ†vir

r meets the wave the virtual
charge just generated to the left, ϕ‡vir(X ′′, T ∗1 )=−C1×
× sin(K‡

−vX
′′ + Ω†

−vT
∗
1 − α0), and superpose with it to

ψ̃vir(X,T ∗1 ) = ϕ†vir
r + ϕ‡vir = 2C1 cos(KX

′′ + Kd cT1)×
× sin

[
−KdX

′′−2ΩT1 − α0
]
.

With J� 1 and being nondamping, ψ̃vir will be looping
continuously, up to the present time T . Its present form
ψ̃vir(X ′′, T ) is then as if just produced by the virtual charge
at time T but at a location of a distance L advancing the
actual charge; it accordingly has a phase advance β=

=
(K†−K†

−v)

2 L=KdL relative to ψ̃ (the phase advance in
time yields no never feature). Including this β, using TI and
with some algebra, ψ̃vir(X ′′, T ) writes on axis X as

ψ̃vir(X,T ) = Φ̃vir(X,T ) Ψ̃ vir(X,T ) , (14)

Φ̃vir(X,T ) = 2C1 cos
[
(KX + 2Kd cT

]
, (15)

Ψ̃ vir(X,T ) = − sin
[
KdX + (Ω +Ωd)T + α0 + β

]
. (16)

X
W

ψ(X,T)~
~virψ (X,T)

Y

vT'=0
X

Y ψ(X,T);
Ψ(X,T)

v

T'=
Γd
16

T'=
2Γd
16

T'=3Γd
16

-L/2 L/2
L=Λ

d

T'=4Γd
16

(a)
-L/2 L/2

L=Λ
d

(b)

Fig. 2: (a) The beat waves ψ̃ traveling at a phase velocity W to
the right as in Fig. 1b and ψ̃vir at −W to the left, of a wavelength
Λd, due to the right- and left- traveling actual and virtual sources
respectively. (b) ψ̃ and ψ̃vir superpose to a standing beat or de
Broglie phase wave ψ of wavelength Λd, angular frequency ∼ Ω.
Along with the ψ process, the particle’s center of mass (	) is
transported at the velocity v, of a period 2π

Ωd
= Λd/v.

ψ̃vir of the virtual or reflected charge is seen to be simi-
larly a traveling beat or de Broglie phase wave to the left of
a phase velocity −W and wave parameters Kb, Λb and Ωb
as of (9).

6 Standing total wave and de Broglie wave

Now if KdL(= β) = nπ, i. e.

Kdn =
nπ

L
, n = 1, 2, . . . , (17)

and accordingly Λdn = 2L
n , then ψ̃vir and ψ̃ superposed onto

themselves from different loops are each a maximum. Also
at (X,T ), ψ̃vir and ψ̃ meet and superpose, as ψ= ψ̃+ ψ̃vir=
= Φ̃ Ψ̃ + Φ̃virΨ̃ vir. On the scale of Λd, or Kd, the time varia-
tions in Φ̃ and Φ̃vir are higher-order ones; thus for K�Kd,
we have to a good approximation Φ̃ (X,T ) ' Φ̃vir(X,T ) '
' 2C1 cos(KX)=F (X) and ψ (X,T )=F (X)

[
Ψ̃+ Ψ̃ vir

]
=

=C4 cos(KX) sin
[
(Ω+Ωd)T

]
cos(KdX+α0); C4=4C1.

As a mechanical requirement at the massive walls,

ψ (0, T ) = ψ (L, T ) = 0 . (18)

Condition (18) requires α0 = −π
2 ; ψ is thus now

ψ (X,T ) = Φ (X,T ) ΨX(X) ; (19)

ΨX(X) = sin (KdX) , (20)

Φ (X,T ) = C4 cos(KX) sin
[
(Ω +Ωd)T

]
. (21)
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ψ of (18) is a standing beat or standing de Broglie phase
wave; it includes all of the component waves due to both the
actual and virtual charges and hence represents the (standing)
total wave of the particle.

7 Eigen-state wave function and variables

Equation (13) showed the particle’s kinetic energy is trans-
mitted at the angular frequency 1

2Ωd, half the value Ωd for
transporting the particle mass, and is a source motion effect
of order ( vc )

2. This is distinct from, actually exclusive of,
the source motion effect, of order v, responsible for the
earlier beat wave formation. We here include the order ( vc )

2

effect only simply as a multiplication factor to ψ, and thus
have ψ′=ψ (X,T ) e−i

1
2 h̄ΩdT which describes the particle’s

kinetic energy transmission. Furthermore, in typical applica-
tions K�Kd, Ω�Ωd; thus on the scale of (Kd, Ωd), we
can to a good approximation ignore the rapid oscillation in
Φ of (21), and have

Φ(X,T ) ' C4 ≡ constant (21)′

and ψ(X,T )=CΨX(X). The time-dependent wave function,

in energy terms, is thus Ψ (X,T )=ψ′(X,T )=ψe−i
Ωd
2 T =

= CΨX(X)e
−i

Ωd
2 T , or

Ψ (X,T ) = C sin(KdX) e
−i 12ΩdT , (22)

where C= 1∫ L
0
ψ2dX

=

√
2/L

C4
is a normalization constant. With

(17) for Kdn in (12)–(13), for a fixed L we have the permit-
ted dynamic variables

Pvn =
nh̄π

L
, (23) Evn =

n2h̄2π2

2ML2
, (24)

where n=1, 2, . . . These dynamic variables are seen to be
quantized, pronouncingly for L not much greater than Λd,
as the direct result of the standing wave solutions. As shown
for the three lowest energy levels in Fig. 3a, the permitted
Ψ (X), ≡ Ψ(X,T0) with T0 a fixed time point, describing
the envelopes (dotted lines) of ψ (X) ≡ ψ (X,T0) which
rapid oscillations have no physical consequence to the par-
ticle dynamics, are in complete agreement with the corre-
sponding solution of Schrödinger equation for an identical
system, ΨS(X), indicated by the same dotted lines.

The total wave of a particle, hence its total energy, mass,
size, all extend in (real) space throughout the wave path. A
portion of the particle, hence the probability of finding the
particle, at a given position X in real space is proportional
to the wave energy stored in the infinitesimal volume at
X , E(X)=B

(
ψ (X)

)2
, with B a conversion constant [2],

ψ (X) as shown in Fig. 3b.
With (23) in ΔPv =Pv.n+1−Pv.n we haveΔPv 2L=h,

which reproduces Heisenberg’s uncertainty relation. It fol-
lows from the solution that the uncertainty in finding a par-
ticle in real space results from the particle is an extensive

0

1n=1

Ψ (X)ψ(X); Ψ(X)S

(a)

0

1
ψ2(X);

SΨ2(X)
Ψ2(X)(b)

0

1n=2
0

1

-1

0

1

L=Λ
d1

/2

X

n=3

-1

0

1

L=Λ
d1

/2

X

Fig. 3: (a) The total wave of particle ψ(X) of (19) with rapid
oscillation, and the de Broglie wave Ψ(X) as the envelop, for three
lowest energy levels n=1, 2, 3; Ψ coincides with Schrödinger
eigen-state functions ΨS . (b) The corresponding probabilities.

wave over L, and in momentum space from the standing
wave solution where waves interfering destructively are can-
celled and inaccessible to an external observer.

8 Concluding remarks

We have seen that the total wave superposed from the elect-
romagnetic component waves generated by a traveling oscil-
latory vaculeon charge, which together make up our particle,
has actually the requisite properties of a de Broglie wave. It
exhibits in spatial coordinate the periodicity of the de Broglie
wave, by the wavelength Λd, facilitated by a beat or de
Broglie phase wave traveling at a phase velocity ∼ c2/v, with
the beat in the total wave resulting naturally from the source-
motion resultant Doppler differentiation of the electromag-
netic component waves. Λd conjoined with the particle’s
center-of-mass motion leads to a periodicity of the de Broglie
wave on time axis, the angular frequency Ωd. The Λd and Ωd
obey the de Broglie relations. The particle’s standing wave
solutions in confined space agree completely with solutions
for Schrödinger equation for an identical system.
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The Classical Theory of Fields Revision Project (CTFRP):

Collected Papers Treating of Corrections to the Book
“The Classical Theory of Fields” by L. Landau and E. Lifshitz

CALL FOR PAPERS

The “Course in Theoretical Physics” by L.Landau and E.Lif-
shitz has for decades served as a set of outstanding textbooks
for students and reference for researchers. Many continue to
learn their basic physics from this lucid and extensive expo-
sition of physical theory and relevant mathematical methods.

The second volume of this series of texts, “The Classical
Theory of Fields”, is a mainstay source for physicists learn-
ing or conducting research in General Relativity∗. However,
it has been realised over the years that “The Classical Theory
of Fields” contains a number of serious theoretical errors.
The errors are in general not peculiar to this book alone, but
are fundamental misconceptions that appear routinely in all
textbooks on General Relativity, without exception.

Save for the errors alluded to above, “The Classical The-
ory of Fields” remains an authoritative and skilful exposition
of Einstein’s theory of gravitation. To enhance its already
great standing in the scientific literature, the Editorial Board
of Progress in Physics proposes a series of papers dealing
with corrections of the now obsolete, although rather stand-
ard, erroneous arguments contained in “The Classical Theory
of Fields”. Any person interested in contributing to this pro-
ject is invited to submit, for the consideration of the Editorial
Board, a paper correcting one or more errors in the book. All
papers will undergo review just as any research paper, and
be published in Progress in Physics if accepted.

It is envisaged that accepted papers will also be collected
together as a supplementary pamphlet to “The Classical The-
ory of Fields”, which will be made available free as a down-
load from the Progress in Physics website. Each author’s
contribution will bear the author’s name, just like any re-
search paper. All authors must agree to free dissemination in
this fashion as a condition of contribution.

Should the pamphlet, at any future time, be considered

∗The first edition of “The Classical Theory of Fields” was completed
in 1939, and originally published in Russian. Four revised editions of
the book were later published in English in 1951, 1962, 1971, and 1975.
(After Landau was severely injured in a car crash in 1962, Lifshitz alone
expanded upon subsequent editions.) As a result the volume of the fourth
edition doubled the volume of the first edition. Lifshitz, until his death
in 1985, introduced numerous corrections, which are also included in the
reprints. “The Classical Theory of Fields” was translated from the Russian,
in all its editions, by Prof. Morton Hamermesh (University of Minnesota).
Reprints of “The Classical Theory of Fields” are produced by Butterworth-
Heinemann (Elsevier) almost annually.

by the Publisher’s of the “Course in Theoretical Physics”, or
any other publisher besides Progress in Physics, as a pub-
lished supplement packaged with the “Course in Theoretical
Physics”, all authors will be notified and can thereafter ne-
gotiate, if they wish, issues of royalties with the publisher
directly. Progress in Physics will still reserve the right to
provide the supplementary pamphlet free, from its website,
irrespective of any other publication of the supplementary
pamphlet by the publishers of the “Course in Theoretical
Physics” or any other publisher. No author shall hold Prog-
ress in Physics, its Editorial Board or its Servants and Agents
liable for any royalties under any circumstances, and all con-
tributors will be required to sign a contract with Progress in
Physics to that effect, so that there will be no dispute as
to terms and conditions. The Editorial Board of Progress in
Physics shall reserve all rights as to inclusion or rejection of
contributions.

Those interested in making a contribution should express
that interest in an email to the Editors of Progress in Physics
who manage this project.

Dmitri Rabounski, Editor-in-Chief
Stephen J. Crothers, Associate Editor

(the CTFRP organisers )

36 The Classical Theory of Fields Revision Project (CTFRP)



October, 2006 PROGRESS IN PHYSICS Volume 4

Plausible Explanation of Quantization of Intrinsic Redshift from Hall Effect
and Weyl Quantization

Florentin Smarandache∗ and Vic Christianto†

∗Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA
E-mail: smarand@unm.edu

†Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org
E-mail: admin@sciprint.org

Using phion condensate model as described by Moffat [1], we consider a plausible
explanation of (Tifft) intrinsic redshift quantization as described by Bell [6] as result
of Hall effect in rotating frame. We also discuss another alternative to explain redshift
quantization from the viewpoint of Weyl quantization, which could yield Bohr-
Sommerfeld quantization.

1 Introduction

In a recent paper by Moffat [1] it is shown that quantum
phion condensate model with Gross-Pitaevskii equation
yields an approximate fit to data corresponding to CMB
spectrum, and it also yields a modified Newtonian accelera-
tion law which is in good agreement with galaxy rotation
curve data. It seems therefore interesting to extend further
this hypothesis to explain quantization of redshift, as shown
by Tifft et al. [2, 6, 7]. We also argue in other paper that
this redshift quantization could be explained as signature
of topological quantized vortices, which also agrees with
Gross-Pitaevskiian description [3, 5].

Nonetheless, there is remaining question in this quantiz-
ed vortices interpretation, i. e. how to provide explanation
of “intrinsic redshift” argument by Bell [6]. In the present
paper, we argue that it sounds reasonable to interpret the
intrinsic redshift data from the viewpoint of rotating Hall
effect, i. e. rotational motion of clusters of galaxies exhibit
quantum Hall effect which can be observed in the form
of “intrinsic redshift”. While this hypothesis is very new,
it could be expected that we can draw some prediction,
including possibility to observe small “blue-shift” effect ge-
nerated by antivortex part of the Hall effect [5a].

Another possibility is to explain redshift quantization
from the viewpoint of Weyl-Moyal quantization theory [25].
It is shown that Schrödinger equation can be derived from
Weyl approach [8], therefore quantization in this sense comes
from “graph”-type quantization. In large scale phenomena
like galaxy redshift quantization one could then ask whether
there is possibility of “super-graph” quantization.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

2 Interpreting quantized redshift from Hall effect.
Cosmic String

In a recent paper, Moffat [1, p. 9] has used Gross-Pitaevskii
in conjunction with his phion condensate fluid model to

describe CMB spectrum data. Therefore we could expect
that this equation will also yield interesting results in gala-
xies scale. See also [1b, 1c, 13] for other implications of
low-energy phion fluid model.

Interestingly, it could be shown, that we could derive
(approximately) Schrödinger wave equation from Gross-
Pitaevskii equation. We consider the well-known Gross-
Pitaevskii equation in the context of superfluidity or super-
conductivity [14]:

ih̄
∂Ψ

∂t
= −

h̄2

2m
ΔΨ+

(
V (x)− γ |Ψ|p−1

)
Ψ, (1)

where p < 2N/(N − 2) if N > 3. In physical problems, the
equation for p = 3 is known as Gross-Pitaevskii equation.
This equation (1) has standing wave solution quite similar to
solution of Schrödinger equation, in the form:

Ψ(x, t) = e−iEt/h̄ ∙ u(x) (2)

Substituting equation (2) into equation (1) yields:

−
h̄2

2m
Δu+

(
V (x)− E

)
u = |u|p−1 u , (3)

which is nothing but a time-independent linear form of
Schrödinger equation, except for term |u|p−1 [14]. If the
right-hand side of this equation is negligible, equation (3)
reduces to standard Schrödinger equation.

Now it is worth noting here that from Nottale et al. we
can derive a gravitational equivalent of Bohr radius from ge-
neralized Schrödinger equation [4]. Therefore we could also
expect a slight deviation of this gravitational Bohr radius in
we consider Gross-Pitaevskii equation instead of generalized
Schrödinger equation.

According to Moffat, the phion condensate model im-
plies a modification of Newtonian acceleration law to be-
come [1, p. 11]:

a(r) = −
G∞M

r2
+K

exp (−μφr)
r2

(1 + μφr) , (4)
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where

G∞ = G

[

1 +

√
M0

M

]

. (5)

Therefore we can conclude that the use of phion con-
densate model implies a modification of Newton gravitation-
al constant, G, to become (5). Plugging in this new equation
(5) into a Nottale’s gravitational Bohr radius equation [4]
yields:

rn ≈ n2
GM

v20

[

1 +

√
M0

M

]

≈ χ ∙ n2
GM

v20
, (6)

where n is integer (1,2,3 . . . ) and:

χ =

[

1 +

√
M0

M

]

. (7)

Therefore we conclude that — provided the higher order
Yukawa term of equation (4) could be neglected — one has
a modified gravitational Bohr-radius in the form of (6). It
can be shown (elsewhere) that using similar argument one
could expect to explain a puzzling phenomenon of receding
Moon at a constant rate of ±1.5′′ per year. And from this
observed fact one could get an estimate of this χ factor. It
is more interesting to note here, that a number of coral reef
data also seems to support the same idea of modification
factor in equation (5), but discussion of this subject deserves
another paper.

A somewhat similar idea has been put forward by Mas-
reliez [18] using the metric:

ds2 = eαβ
[
dx2 + dy2 + dz2 − (icdt)2

]
. (8)

Another alternative of this metric has been proposed by
Socoloff and Starobinski [19] using multi-connected hyper-
surface metric:

ds2 = dx2 + e−2x (dy2 + dz2) (9)

with boundaries: e−x = Λ.
Therefore one can conclude that the use of phion con-

densate model has led us to a form of expanding metric,
which has been discussed by a few authors.

Furthermore, it is well-known that Gross-Pitaevskii eq-
uation could exhibit topologically non-trivial vortex solu-
tions [4, 5], which also corresponds to quantized vortices:

∮
p ∙ dr = Nv 2πh̄ . (10)

Therefore an implication of Gross-Pitaevskii equation
[1] is that topologically quantized vortex could exhibit in
astrophysical scale. In this context we submit the viewpoint
that this proposition indeed has been observed in the form
of Tifft’s redshift quantization [2, 6]:

δr =
c

H
δz . (11)

In other words, we submit the viewpoint that Tifft’s ob-
servation of quantized redshift implies a quantized distance
between galaxies [2, 5], which could be expressed in the
form:

rn = r0 + n(δr) , (12)

where n is integer (1,2,3, . . . ) similar to quantum number.
Because it can be shown using standard definition of Hubble
law that redshift quantization implies quantized distance
between galaxies in the same cluster, then one could say
that this equation of quantized distance (11) is a result of
topological quantized vortices (9) in astrophysical scale [5];
and it agrees with Gross-Pitaevskii (quantum phion condens-
ate) description of CMB spectrum [1]. It is perhaps more
interesting if we note here, that from (11) then we also get
an equivalent expression of (12):

c

H
zn =

c

H
z0 + n

( c
H
δz
)

(13)

or
zn = z0 + n(δz) (14)

or

zn = z0

[

1 + n

(
δz

z0

)]

. (15)

Nonetheless, there is a problem here, i. e. how to explain
intrinsic redshift related to Tifft quantization as observed in
Fundamental Plane clusters and also from various quasars
data [6, 6a]:

ziQ = zf
[
N − 0.1MN

]
(16)

where zf=0.62 is assumed to be a fundamental redshift con-
stant, and N (=1, 2, 3 . . . ), and M is function of N [6a].
Meanwhile, it is interesting to note here similarity between
equation (15) and (16). Here, the number M seems to play
a rôle similar to second quantum number in quantum
physics [7].

Now we will put forward an argument that intrinsic red-
shift quantization (16) could come from rotating quantum
Hall effect [5a].

It is argued by Fischer [5a] that “Hall quantization is
of necessity derivable from a topological quantum number
related to this (quantum) coherence”. He used total particle
momentum [5a]:

p = mv +mΩ× r + qA . (17)

The uniqueness condition of the collective phase repre-
sented in (9) then leads, if we take a path in the bulk of el-
ectron liquid, for which the integral of mv can be neglected,
to the quantization of the sum of a Sagnac flux, and the
magnetic flux [5a]:

Φ = q

∮
A ∙ dr +m

∮
Ω× r ∙ dr =

=

∫∫
B ∙ dS = Nv 2πh̄ .

(18)
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This flux quantization rule corresponds to the fact that a
vortex is fundamentally characterised by the winding number
N alone [5a]. In this regard the vortex could take the form of
cosmic string [22]. Now it is clear from (15) that quantized
vortices could be formed by different source of flux.

After a few more reasonable assumptions one could
obtain a generalised Faraday law, which in rotating frame
will give in a non-dissipative Hall state the quantization of
Hall conductivity [5a].

Therefore one could observe that it is quite natural to
interpret the quantized distance between galaxies (11) as an
implication of quantum Hall effect in rotating frame (15).
While this proposition requires further observation, one
could think of it in particular using known analogy between
condensed matter physics and cosmology phenomena [10,
22]. If this proposition corresponds to the facts, then one
could think that redshift quantization is an imprint of gene-
ralized quantization in various scales from microphysics to
macrophysics, just as Tifft once put it [2]:

“The redshift has imprinted on it a pattern that appears
to have its origin in microscopic quantum physics, yet
it carries this imprint across cosmological boundaries”.

In the present paper, Tifft’s remark represents natural im-
plication of topological quantization, which could be formed
at any scale [5]. We will explore further this proposition in
the subsequent section, using Weyl quantization.

Furthermore, while this hypothesis is new, it could be ex-
pected that we can draw some new prediction, for instance,
like possibility to observe small “blue-shift” effect generated
by the Hall effect from antivortex-galaxies [23]. Of course,
in order to observe such a “blue-shift” one shall first exclude
other anomalous effects of redshift phenomena [6]. (For in-
stance: one could argue that perhaps Pioneer spacecraft ano-
maly’s blue-shifting of Doppler frequency may originate
from the same effect as described herein.)

One could expect that further observation in particular
in the area of low-energy neutrino will shed some light on
this issue [20]. In this regard, one could view that the Sun
is merely a remnant of a neutron star in the past, therefore
it could be expected that it also emits neutrino similar to
neutron star [21].

3 An alternative interpretation of astrophysical quanti-
zation from Weyl quantization. Graph and quanti-
zation

An alternative way to interpret the above proposition con-
cerning topological quantum number and topological quan-
tization [5a], is by using Weyl quantization.

In this regards, Castro [8, p. 5] has shown recently that
one could derive Schrödinger equation from Weyl geometry
using continuity equation:

∂ρ

∂t
+

1
√
g
∂i
(√
gρvi

)
(19)

and Weyl metric:

RWeyl = (d− 1)(d− 2)
(
AkA

k
)
− 2(d− 1) ∂kAk . (20)

Therefore one could expect to explain astrophysical
quantization using Weyl method in lieu of using generalised
Schrödinger equation as Nottale did [4]. To our knowledge
this possibility has never been explored before elsewhere.

For instance, it can be shown that one can obtain Bohr-
Sommerfeld type quantization rule from Weyl approach [24,
p. 12], which for kinetic plus potential energy will take the
form:

2πNh̄ =

∞∑

j=0

h̄jSj(E) , (21)

which can be solved by expressing E=
∑
h̄kEk as power

series in h̄ [24]. Now equation (10) could be rewritten as
follows:

∮
p ∙ dr = Nv 2πh̄ =

∞∑

j=0

h̄jSj (E) . (22)

Or if we consider quantum Hall effect, then equation (18)
can be used instead of equation (10), which yields:

Φ = q

∮
A ∙ dr +m

∮
Ω× r ∙ dr =

=

∫∫
B ∙ dS =

∞∑

j=0

h̄jSj (E) .
(23)

The above method is known as “graph kinematic” [25]
or Weyl-Moyal’s quantization [26]. We could also expect to
find Hall effect quantization from this deformation quantiza-
tion method.

Consider a harmonic oscillator, which equation can be
expressed in the form of deformation quantization instead of
Schrödinger equation [26]:
((
x+

ih̄

2
∂p

)2
+
(
p−

ih̄

2
∂x

)2
− 2E

)

f (x, p) = 0 . (24)

This equation could be separated to become two simple
PDEs. For imaginary part one gets [26]:

(x∂p − p∂x) f = 0 . (25)

Now, considering Hall effect, one can introduce our defi-
nition of total particle momentum (17), therefore equation
(25) may be written:

(
x∂p − (mv +mΩ× r + qA) ∂x

)
f = 0 . (26)

Our proposition here is that in the context of deformation
quantization it is possible to find quantization solution of
harmonic oscillator without Schrödinger equation. And
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because it corresponds to graph kinematic [25], generalized
Bohr-Sommerfeld quantization rule for quantized vortices
(22) in astrophysical scale could be viewed as signature of
“super-graph”quantization.

This proposition, however, deserves further theoretical
considerations. Further experiments are also recommended
in order to verify and explore further this proposition.

Concluding remarks

In a recent paper, Moffat [1] has used Gross-Pitaevskii in his
“phion condensate fluid” to describe CMB spectrum data.
We extend this proposition to explain Tifft redshift quanti-
zation from the viewpoint of topological quantized vortices.
In effect we consider that the intrinsic redshift quantization
could be interpreted as result of Hall effect in rotating frame.

Another alternative to explain redshift quantization is
to consider quantized vortices from the viewpoint of Weyl
quantization (which could yield Bohr-Sommerfeld quanti-
zation).

It is recommended to conduct further observation in
order to verify and also to explore various implications of
our propositions as described herein.
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Recent theoretical works have concentrated on calculating the Casimir effect in curved
spacetime. In this paper we outline the forward problem of metrical variation due
to the Casimir effect for spherical geometries. We consider a scalar quantum field
inside a hollow superconducting sphere. Metric equations are developed describing
the evolution of the scalar curvature after the sphere transitions to the normal state.

1 Introduction

The classical Casimir effect [1, 2] may be viewed as vacuum
reduction by mode truncation where the presence of conduct-
ing boundaries, or capacitor plates, excludes vacuum modes
with wavelengths longer than the separation between the
conductors. The exclusion of longer wavelengths results in
a lower vacuum pressure between the plates than in external
regions. The resulting pressure difference, or Casimir force,
may act to push the conductors together, effectively collaps-
ing the reduced vacuum phase. This tiny force has been
measured experimentally [3, 4] in agreement with the pre-
dictions of quantum electrodynamics. Boyer gives the first
detailed treatment of the vacuum modes inside a conducting
sphere [5] with more a recent account by Milton [6]. The
Casimir effect for spherical conducting shells in external
electromagnetic fields has been investigated [7, 8]. Applica-
tions of the Casimir effect to the bag model have been
studied for massive scalar [9] and Dirac [10] fields confined
to the interior of the shell. An example of the Casimir effect
in curved spacetime has been considered for spherical geom-
etries [11] in de Sitter space [12] and in the background
of static domain wall [13]. In this paper we investigate the
metrical variations resulting from vacuum pressure differ-
ences established by a spherical superconducting boundary.
We first consider the static case when the sphere is supercon-
ducting and then the dynamical case as the sphere passes to
the normal state.

2 The static case

Our idealized massless, thin sphere of radius R0 has zero
conductivity in the normal state. In the superconducting state,
the vacuum inside the hollow is reduced so that there exists
a pressure difference Δp inside and outside the sphere. In
general, all quantum fields will contribute to the vacuum
energy. When the sphere of volume V transitions to the
superconducting state, a latent heat of vacuum phase transi-

tion ΔpV is exchanged. The distribution of vacuum pres-
sure, energy density and space-time geometry are described
by the semi-classical Einstein field equations taking c=1,

Rμν −
1

2
Rgμν = 8πG 〈Tμν〉 , (1)

where Rμν and R are the Ricci tensor and scalar curvature,
respectively. 〈Tμν〉 is the vacuum expectation of the stress
energy tensor. Regulation procedures for calculating the re-
normalized stress energy tensor are given in [14] for various
geometries. The most general line element with spherical
symmetry is

ds2 = B (r, t) dt2 − A (r, t) dr2 − C (r, t) drdt−

−r2dθ2 − r2 sin2θ dφ2,
(2)

where A, B, and C are arbitrary functions of time and the
radial coordinate. (2) can be written under normal coordinate
transformation [15],

ds2 = B̃ (r, t) dt2−Ã (r, t) dr2−r2dθ2−r2 sin2θ dφ2. (3)

The metric tensor then becomes, dropping tildes,

gμν = Diag
(
B (r, t) ,−A (r, t) ,−r2,−r2 sin2θ

)
. (4)

For a diagonal stress energy tensor, the solutions to equa-
tion (3) relating A and B are

−
1

r2
+

1

r2A
−

A′

rA2
= 8πG

1

B
〈T00〉 , (5)

1

r2
−

1

r2A
−

B′

rAB
= 8πG

1

A
〈T11〉 , (6)

A′

2rA2
−

B′

2rAB
+
A′B′

4A2B
−

B′2

4AB2
−

−
B′′

2AB
= 8πG

1

r2
〈T22〉 ,

(7)

with a fourth equation identical to (7). The prime denotes ∂r.
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Note that all time derivatives cancel from the field equations
when the metric is in standard form and the stress energy
tensor is diagonal. When the sphere is in the superconducting
state, the scalar curvature R = gμνRμν is given by

R =
2

r2
−

2

r2A
+
2A′

rA2
−
2B′

rAB
+

+
A′B′

2A2B
+

B′2

2AB2
−
B′′

AB
.

(8)

In calculating the Casimir force, one properly calculates
differences in vacuum pressure established by the conducting
boundaries [2]. In the present case, it is only meaningful
to consider changes in scalar curvature due to variations in
vacuum pressure.

3 The dynamical case

If the sphere passes from the superconducting to the normal
state, the pressure should equalize as the vacuum relaxes.
The diagonal form of the stress energy tensor results in the
cancellation of all time derivatives in the field equations.
External electromagnetic fields will contribute off-diagonal
terms, however we wish to consider how the pressure equal-
izes in absence of external fields. The key is that the required
time dependence is provided by the zero point field fluctua-
tions. As the simplest example, we consider the massless
scalar quantum field with stress energy tensor [14]

Tμν = φ,μφ,ν −
1

2
gμν g

αβ φ,αφ,β . (9)

The non-zero components of Tμν are

T00 =
1

2
φ̇2 +

B

2A
φ′2, (10)

T11 =
1

2
φ′2 +

A

2B
φ̇2, (11)

T22 = r2
(
1

2B
φ̇2 +

1

2A
φ′2
)

, (12)

T33 = r2 sin2θ

(
1

2B
φ̇2 +

1

2A
φ′2
)

, (13)

T01 = φ̇φ′, (14)

where T01=T10. The semi-classical field equations become

−
1

r2
+

1

r2A
−

A′

rA2
= 8πG

1

B
〈T00〉 , (15)

1

r2
−

1

r2A
−

B′

rAB
= 8πG

1

A
〈T11〉 , (16)

−
Ȧ2

4A2B
−

ȦḂ

4AB2
+

Ä

2AB
+

A′

2r2A
−

B′

2rAB
+

+
A′B′

4A2B
+

B′2

4AB2
−

B′′

2AB
= 8πG

1

r2
〈T22〉 ,

(17)

−
Ȧ

rA
= 8πG 〈T01〉 . (18)

Equations (15) and (16) are identical to (5) and (6). Two
additional equations are identical to (17) and (18). Express-
ions for A and B may be obtained from equation (18) and
(15) or (16), respectively. The scalar curvature is given by

R =
2

r2
−

2

r2A
−

Ȧ2

2A2B
−
ȦḂ

AB
+

+
Ä

AB
+
2A′

rA2
−
2B′

rAB
+
A′B′

2A2B
+

B′2

2AB2
−
B′′

AB
.

(19)

Combining equation (19) with (15–17) and (10–12) re-
veals

R = 16πG

〈
φ̇2

2B
−
φ′2

2A

〉

. (20)

When evaluating changes in scalar curvature, the ex-
pression for R in absence of the sphere should be subtracted
from that obtained for a given quantum field.

4 Conclusion

When a hollow sphere transitions between the normal and
superconducting state a latent heat of vacuum phase transi-
tion is exchanged. In the dynamical case, zero-point field
fluctuations result in off-diagonal components of the stress
energy tensor that give rise to time dependent field equations.
The analysis presented here may be extended to include
massive fields with coupling or spin (0, 1

2 and 1) as well
as other superconducting geometries.
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The new dynamical theory of space is further confirmed by showing that the effective
“black hole” masses MBH in 19 spherical star systems, from globular clusters to
galaxies, with masses M , satisfy the prediction that MBH =

α
2
M , where α is the

fine structure constant. As well the necessary and unique generalisations of the
Schrödinger and Dirac equations permit the first derivation of gravity from a deeper
theory, showing that gravity is a quantum effect of quantum matter interacting with
the dynamical space. As well the necessary generalisation of Maxwell’s equations
displays the observed light bending effects. Finally it is shown from the generalised
Dirac equation where the spacetime mathematical formalism, and the accompanying
geodesic prescription for matter trajectories, comes from. The new theory of space is
non-local and we see many parallels between this and quantum theory, in addition to
the fine structure constant manifesting in both, so supporting the argument that space is
a quantum foam system, as implied by the deeper information-theoretic theory known
as Process Physics. The spatial dynamics also provides an explanation for the “dark
matter” effect and as well the non-locality of the dynamics provides a mechanism
for generating the uniformity of the universe, so explaining the cosmological horizon
problem.

1 Introduction

Physics has had two distinct approaches to space. Newton
asserted that space existed, but was non-dynamical and un-
observable. Einstein, in contrast, asserted that space was
merely an illusion, a perspective effect in that it is four-
dimensional spacetime which is real and dynamical, and that
the foliation into space and a geometrical model of time was
observer dependent; there was no observer independent spa-
ce. Hence also according to Einstein space was necessarily
unobservable. However both approaches have been challeng-
ed by the recent discovery that space had been detected again
and again over more than 100 years [1–11], and that the
dynamics of space is now established∗. The key discovery [2]
in 2002 was that the speed of light is anisotropic — that it is c
only with respect to space itself, and that the solar system has
a large speed of some 400 km/s relative to that space, which
causes the observed anisotropy. This discovery changes all of
physics†. The problem had been that from the very beginning
the various gas-mode Michelson interferometer experiments
to detect this anisotropy had been incorrectly calibrated‡,
and that the small fringe shifts actually seen corresponded
to this high speed. As well it has been incorrectly assumed
that the success of the Special Relativity formalism requires

∗At least in the limit of zero vorticity.
†Special Relativity does not require that the speed of light be isotropic,

as is usually incorrectly assumed.
‡Special relativity effects and the presence of gas in the light paths

both play critical roles in determining the calibration. In vacuum mode the
interferometer is completely insensitive to absolute motion effects, i. e. to
the anisotropy of light.

that the speed of light be isotropic, that an actual 3-space
be unobservable. Now that space is known to exist it must
presumably also have a dynamics, and this dynamics has
been discovered and tested by explaining various phenomena
such as (i) gravity, (ii) the “dark matter” effect, (iii) the bore
hole g anomalies, (iv) novel black holes, (v) light bending
and gravitational lensing in general, and so on. Because spa-
ce has been overlooked in physics as a dynamical aspect
of reality all of the fundamental equations of physics, such
as Maxwell’s equations, the Schrödinger equation, the Dirac
equation and so on, all lacked the notion that the phenomena
described by these equations were excitations, of various
kinds, of the dynamical space itself. The generalisation of
the Schrödinger equation [12] then gave the first derivation
and explanation for gravity: it is a quantum effect in which
the wave functions are refracted by the inhomogeneities and
time variations of the structured space. However the most
striking discovery is that the internal dynamics of space is
determined by the fine structure constant [13–16]. In this
paper we report further observational evidence for this dis-
covery by using a more extensive collection of “black hole”
masses in spherical galaxies and globular clusters§. As well
we give a more insightful explanation for the dynamics of
space. We also show how this quantum-theoretic explanation
for gravity leads to a derivation of the spacetime construct
where, we emphasise, this is purely a mathematical construct
and not an aspect of reality. This is important as it explains
why the spacetime dynamics appeared to be successful, at

§The generic term “black hole” is used here to refer to the presence of
a compact closed event horizon enclosing a spatial in-flow singularity.
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least in those cases where the “dark matter” effect was not
apparent. However in general the metric tensor of this indu-
ced spacetime does not satisfy the General Relativity (GR)
equations.

2 Dynamics of space

At a deeper level an information-theoretic approach to mo-
delling reality (Process Physics [1]) leads to an emergent
structured “space” which is 3-dimensional and dynamic, but
where the 3-dimensionality is only approximate, in that if
we ignore non-trivial topological aspects of space, then it
may be embedded in a 3-dimensional geometrical manifold.
Here the space is a real existent discrete but fractal network
of relationships or connectivities, but the embedding space
is purely a mathematical way of characterising the 3-dimen-
sionality of the network. This is illustrated in Fig. 1. This
is not an ether model; that notion involved a duality in that
both the ether and the space in which it was embedded were
both real. Now the key point is that how we embed the
network in the embedding space is very arbitrary: we could
equally well rotate the embedding or use an embedding that
has the network translating. These general requirements then
dictate the minimal dynamics for the actual network, at a
phenomenological level. To see this we assume at a coarse
grained level that the dynamical patterns within the network
may be described by a velocity field v (r, t), where r is
the location of a small region in the network according to
some arbitrary embedding. For simplicity we assume here
that the global topology of the network is not significant for
the local dynamics, and so we embed in an E3, although a
generalisation to an embedding in S3 is straightforward. The
minimal dynamics then follows from the above by writing
down the lowest order zero-rank tensors, with dimension
1/t2, that are invariant under translation and rotation, giving∗

∇ ∙

(
∂v

∂t
+ (v ∙ ∇)v

)

+

+
α

8
(trD)2 +

β

8
tr (D2) = −4πGρ ,

(1)

where ρ is the effective matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

In Process Physics quantum matter are topological de-
fects in the network, but here it is sufficient to give a simple
description in terms of an effective density, but which can
also model the “dark energy” effect and electromagnetic
energy effects, which will be discussed elsewhere. We see

∗Note that then, on dimensional grounds, the spatial dynamics cannot
involve the speed of light c, except on the RHS where relativistic effects
come into play if the speed of matter relative to the local space becomes
large, see [1]. This has significant implications for the nature and speed of
so-called “gravitational” waves.

Fig. 1: This is an iconic
graphical representation of
how a dynamical network has
its inherent approximate 3-
dimensionality displayed by
an embedding in a mathem-
atical space such as an E3 or
an S3. This space is not real;
it is purely a mathematical
artifact. Nevertheless this em-
beddability helps determine
the minimal dynamics for the
network, as in (1). At a deeper
level the network is a quan-

tum foam system [1]. The dynamical space is not an ether model,
as the embedding space does not exist.

that there are only four possible terms, and so we need at
most three possible constants to describe the dynamics of
space: G, α and β. G will turn out to be Newton’s gravi-
tational constant, and describes the rate of non-conservative
flow of space into matter. To determine the values of α and
β we must, at this stage, turn to experimental data.

However most experimental data involving the dynamics
of space is observed by detecting the so-called gravitational
acceleration of matter, although increasingly light bending is
giving new information. Now the acceleration a of the dyn-
amical patterns in space is given by the Euler or convective
expression

a(r, t) ≡ lim
Δt→0

v (r+v (r, t)Δt, t+Δt)−v (r, t)
Δt

=

=
∂v

∂t
+ (v ∙ ∇)v

(3)

and this appears in one of the terms in (1). As shown in
[12] and discussed later herein the acceleration g of quantum
matter is identical to this acceleration, apart from vorticity
and relativistic effects, and so the gravitational acceleration
of matter is also given by (3).

Outside of a spherically symmetric distribution of matter,
of total mass M , we find that one solution of (1) is the
velocity in-flow field given by †

v (r) = − r̂

√
2GM(1 + α

2 + . . . )

r
(4)

but only when β = −α, for only then is the acceleration of
matter, from (3), induced by this in-flow of the form

g(r) = − r̂
GM(1 + α

2 + . . . )

r2
(5)

which is Newton’s Inverse Square Law of 1687, but with
an effective mass that is different from the actual mass M .

†To see that the flow is inward requires the modelling of the matter by
essentially point-like particles.
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So Newton’s law requires β=−α in (1) although at present
a deeper explanation has not been found. But we also see
modifications coming from the α-dependent terms.

A major recent discovery [13–16] has been that exper-
imental data from the bore hole g anomaly has revealed
that α is the fine structure constant, to within experimental
errors: α= e2/h̄c≈ 1/137.04. This anomaly is that g does
not decrease as rapidly as predicted by Newtonian gravity or
GR as we descend down a bore hole. The dynamics in (1)
and (3) gives the anomaly to be

Δg = 2παGρd (6)

where d is the depth and ρ is the density, being that of glacial
ice in the case of the Greenland Ice Shelf experiments, or
that of rock in the Nevada test site experiment. Clearly (6)
permits the value of α to be determined from the data, giving
α= 1/(137.9± 5) from the Greenland Ice Shelf data and,
independently, α=1/(136.8± 3) from the Nevada test site
data [16].

In general because (1) is a scalar equation it is only
applicable for vorticity-free flows ∇ × v=0, for then we
can write v=∇u, and then (1) can always be solved to
determine the time evolution of u(r, t) given an initial form
at some time t0.∗

The α-dependent term in (1) (with now β=−α) and the
matter acceleration effect, now also given by (3), permits (1)
to be written in the form

∇ ∙ g = −4πGρ− 4πGρDM , (7)

where

ρDM (r, t) ≡
α

32πG

(
(trD)2 − tr(D2)

)
, (8)

where ρDM is an effective matter density that would be
required to mimic the α-dependent spatial self-interaction
dynamics. Then (7) is the differential form for Newton’s
law of gravity but with an additional non-matter effective
matter density. It has been shown [13–16] that this effect
explains the so-called “dark matter” effect in spiral galaxies.
As shown elsewhere it also explains, when used with the
generalised Maxwell’s equations, the gravitational lensing
of light by this “dark matter” effect.

An intriguing aspect to the spatial dynamics is that it is
non-local. Historically this was first noticed by Newton who
called it action-at-a-distance. To see this we can write (1) as
an integro-differential equation

∂v

∂t
= −∇

(
v2

2

)

+

+ G

∫
d3 r′

ρDM (r
′, t) + ρ (r′, t)

|r− r′|3
(r− r′) .

(9)

This shows a high degree of non-locality and non-linearity,

∗Eqn.(1) also has Hubble expanding space solutions.

and in particular that the behaviour of both ρDM and ρ
manifest at a distance irrespective of the dynamics of the
intervening space. This non-local behaviour is analogous to
that in quantum systems. The non-local dynamics associated
with the α dynamics has been tested in various situations, as
discussed herein, and so its validity is well established. This
implies that the minimal spatial dynamics in (1) involves
non-local connectivities.

We term the dynamics of space in (1) as a “flowing
space”. This term can cause confusion because in normal
language a “flow” implies movement of something relative
to a background space; but here there is no existent back-
ground space, only the non-existent mathematical embedding
space. So here the “flow” refers to internal relative motion,
that one parcel of space has a motion relative to a nearby
parcel of space. Hence the absolute velocities in (1) have no
observable meaning; that despite appearances it is only the
relative velocities that have any dynamical significance. Of
course it is this requirement that determined the form of (1),
and as implemented via the embedding space technique.

However there is an additional role for the embedding
space, namely as a coordinate system used by a set of coop-
erating observers. But again while this is useful for their
discourse it is not real; it is not part of reality.

3 Black holes

Eqn. (1) has “black hole” solutions. The generic term “black
hole” is used because they have a compact closed event hor-
izon where the in-flow speed relative to the horizon equals
the speed of light, but in other respects they differ from the
putative black holes of General Relativity† — in particular
their gravitational acceleration is not inverse square law. The
evidence is that it is these new “black holes” from (1) that
have been detected. There are two categories: (i) an in-flow
singularity induced by the flow into a matter system, such
as, herein, a spherical galaxy or globular cluster. These black
holes are termed minimal black holes, as their effective mass
is minimal, (ii) primordial naked black holes which then
attract matter. These result in spiral galaxies, and the ef-
fective mass of the black hole is larger than required merely
by the matter induced in-flow. These are therefore termed
non-minimal black holes. These explain the rapid formation
of structure in the early universe, as the gravitational accele-
ration is approximately 1/r rather than 1/r2. This is the
feature that also explains the so-called “dark matter” effect
in spiral galaxies. Here we consider only the minimal black
holes.

Consider the case where we have a spherically symmetric
matter distribution at rest, on average with respect to distant
space, and that the in-flow is time-independent and radially
symmetric. Then (1) is best analysed via (9), which can now

†It is probably the case that GR has no such solutions — they do not
obey the boundary conditions at the singularity, see Crothers [17].
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Galaxy Type MBH (+,−) M Ref

M87 E0 3.4 (1.0, 1.0)×109 6.2±1.7×1011 1
NGC4649 E1 2.0 (0.4, 0.6)×109 8.4±2.2×1011 2

M84 E1 1.0 (2.0, 0.6)×109 5.0±1.4×1011 3
M32 E2 2.5 (0.5, 0.5)×106 9.6±2.6×108 4

NGC4697 E4 1.7 (0.2, 0.1)×108 2.0±0.5×1011 2
IC1459 E3 1.5 (1.0, 1.0)×109 6.6±1.8×1011 5

NGC3608 E2 1.9 (1.0, 0.6)×108 9.9±2.7×1010 2
NGC4291 E2 3.1 (0.8, 2.3)×108 9.5±2.5×1010 2
NGC3377 E5 1.0 (0.9, 0.1)×108 7.8±2.1×1010 2
NGC4473 E5 1.1 (0.4, 0.8)×108 6.9±1.9×1010 2
Cygnus A E 2.9 (0.7, 0.7)×109 1.6±1.1×1012 6
NGC4261 E2 5.2 (1.0, 1.1)×108 4.5±1.2×1011 7
NGC4564 E3 5.6 (0.3, 0.8)×107 5.4±1.5×1010 2
NGC4742 E4 1.4 (0.4, 0.5)×107 1.1±0.3×1010 8
NGC3379 E1 1.0 (0.6, 0.5)×108 8.5±2.3×1010 9
NGC5845 E3 2.4 (0.4, 1.4)×108 1.9±0.5×1010 2
NGC6251 E2 6.1 (2.0, 2.1)×108 6.7±1.8×1011 10

Globular
cluster MBH(+,−) M Ref

M15 1.7 (2.7, 1.7)×103 4.9 ×105 10
G1 1.8 (1.4, 0.8)×104 1.35±0.5×107 11

Table 1. Black Hole masses and host masses for various spherical
galaxies and globular clusters. References: (1) Macchetto et al.
1997; (2) Gebhardt et al. 2003; (3) average of Bower et al.
1998; Maciejewski & Binney 2001; (4) Verolme et al. 2002; (5)
average of Verdoes Klein et al. 2000 and Cappellari et al. 2002;
(6) Tadhunter et al. 2003; (7) Ferrarese et al. 1996; (8) Tremaine
et al. 2002; (9) Gebhardt et al. 2000; (10) Ferrarese & Ford 1999;
(11) Gerssen et al. 2002; (12) Gebhardt et al. 2002. Least squares
best fit of this data to Log[MBH ] = Log[α

2
] + xLog[M ] gives

α = 1/137.4 and x = 0.974. Data and best fit are shown in Fig. 2.
Table adapted from Table 1 of [18].

be written in the form

|v (r)|2 = 2G
∫
d3r′

ρDM (r
′) + ρ (r′)

|r− r′|
(10)

in which the angle integrations may be done to yield

v (r)2 =
8πG

r

∫ r

0

s2
[
ρDM (s) + ρ (s)

]
ds+

+8πG

∫ ∞

r

s
[
ρDM (s) + ρ (s)

]
ds ,

(11)

where with v′= dv (r)/dr,∗

ρDM (r) =
α

8πG

(
v2

2r2
+
vv′

r

)

. (12)

To obtain the induced in-flow singularity to O(α) we
substitute the non-α term in (11) into (12) giving the effect-
ive matter density that mimics the spatial self-interaction of

∗Previous papers had a typo error in this expression. Thanks to Andree
Blotz for noting that.

the in-flow,

ρDM (r) =
α

2r2

∫ ∞

r

sρ (s) ds+O(α2) . (13)

We see that the effective “dark matter” effect is concen-
trated near the centre, and we find that the total effective
“dark matter” mass is

MDM ≡ 4π
∫ ∞

0

r2ρDM (r) dr =

=
4πα

2

∫ ∞

0

r2ρ(r) dr +O(α2) =
α

2
M +O(α2) .

(14)

This result applies to any spherically symmetric matter
distribution, and is the origin of the α terms in (4) and (5).
It is thus responsible for the bore hole anomaly expression
in (6). This means that the bore hole anomaly is indicative
of an in-flow singularity at the centre of the Earth. This
contributes some 0.4% of the effective mass of the Earth,
as defined by Newtonian gravity. However in star systems
this minimal black hole effect is more apparent, and we
label MDM as MBH . Table 1 shows the effective “black
hole” masses attributed to various spherically symmetric star
systems based upon observations and analysis of the motion
of gases and stars in these systems. The prediction of the
dynamics of space is that these masses should obey (14). The
data from Table 1 is plotted in Fig. 2, and we see the high
precision to which (14) is indeed satisfied, and over some 6
orders of magnitude, giving from this data that α ≈ 1/137.4.

The application of the spatial dynamics to spiral galaxies
is discussed in [13–16] where it is shown that a complete
non-matter explanation of the spiral galaxy rotation speed
anomaly is given: there is no such stuff as “dark matter” — it
is an α determined spatial self-interaction effect. Essentially
even in the non-relativistic regime the Newtonian theory of
gravity, with its “universal” Inverse Square Law, is deeply
flawed.

4 Spacetime

The curved spacetime explanation for gravity is widely
known. Here an explanation for its putative success is given,
for there is a natural definition of a spacetime that arises
from (1), but that it is purely a mathematical construction
with no ontological status — it is a mere mathematical artifact.

First consider the generalised Schrödinger [12]

ih̄
∂ψ (r, t)

∂t
= H(t)ψ(r, t), (15)

where the free-fall hamiltonian is

H(t) = −ih̄

(

v ∙ ∇+
1

2
∇∙v

)

−
h̄2

2m
∇2 (16)

As discussed in [12] this is uniquely defined by the re-
quirement that the wave function be attached to the dynam-
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Fig. 2: Log-Log plot of black hole masses MBH and host galaxy
or globular cluster masses M (in solar units) from Table 1. Straight
line is least squares best fit to Log[MBH ] =Log[α

2
] +xLog[M ],

giving α= 1/137.4 and x= 0.974. The borehole g-anomaly
gives α= 1/(137.9±5) from the Greenland Ice Shelf data and
α= 1/(136.8±3) from the Nevada test site data [16].

ical space, and not to the embedding space, which is a mere
mathematical artifact. We can compute the acceleration of a
localised wave packet according to

g ≡
d 2

dt2
(
ψ(t), rψ(t)

)
=

=
∂v

∂t
+ (v ∙ ∇)v + (∇× v)× vR

(17)

where vR=v0−v is the velocity of the wave packet rela-
tive to the local space, as v0 is the velocity relative to
the embedding space. Apart from the vorticity term which
causes rotation of the wave packet∗ we see, as promised, that
this matter acceleration is equal to that of the space itself,
as in (3). This is the first derivation of the phenomenon of
gravity from a deeper theory: gravity is a quantum effect
— namely the refraction of quantum waves by the internal
differential motion of the substructure patterns to space it-
self. Note that the equivalence principle has now been ex-
plained, as this “gravitational” acceleration is independent of
the mass m of the quantum system.

An analogous generalisation of the Dirac equation is also
necessary giving the coupling of the spinor to the actual
dynamical space, and again not to the embedding space as
has been the case up until now,

ih̄
∂ψ

∂t
=−ih̄

(

c~α ∙∇+v ∙∇+
1

2
∇∙v

)

ψ+βmc2ψ (18)

where ~α and β are the usual Dirac matrices. Repeating the
analysis in (17) for the space-induced acceleration we obtain†

g=
∂v

∂t
+(v∙∇)v+(∇×v)×vR−

vR

1− v
2
R

c2

1

2

d

dt

(
v2R
c2

)

(19)

∗This is the Lense-Thirring effect, and such vorticity is being detected
by the Gravity Probe B satellite gyroscope experiment [33].

†Some details are incomplete in this analysis.

which generalises (17) by having a term which limits the
speed of the wave packet relative to space to be < c. This
equation specifies the trajectory of a spinor wave packet in
the dynamical space.

We shall now show how this leads to both the spacetime
mathematical construct and that the geodesic for matter
worldlines in that spacetime is equivalent to trajectories from
(19). First we note that (19) may be obtained by extremising
the time-dilated elapsed time

τ
[
r0
]
=

∫
dt

(

1−
v2R
c2

)1/2
(20)

with respect to the particle trajectory r0 (t) [1]. This happens
because of the Fermat least-time effect for waves: only along
the minimal time trajectory do the quantum waves remain in
phase under small variations of the path. This again emphas-
ises that gravity is a quantum effect. We now introduce a
spacetime mathematical construct according to the metric

ds2 = dt2 −

(
dr− v (r, t) dt

)2

c2
= gμνdx

μdxν . (21)

Then according to this metric the elapsed time in (20) is

τ =

∫
dt

√

gμν
dxμ

dt

dxν

dt
, (22)

and the minimisation of (22) leads to the geodesics of the
spacetime, which are thus equivalent to the trajectories from
(20), namely (19). Hence by coupling the Dirac spinor dyn-
amics to the space dynamics we derive the geodesic formal-
ism of General Relativity as a quantum effect, but without
reference to the Hilbert-Einstein equations for the induced
metric. Indeed in general the metric of this induced space-
time will not satisfy these equations as the dynamical space
involves the α-dependent dynamics, and α is missing from
GR. So why did GR appear to succeed in a number of
key tests where the Schwarzschild metric was used? The
answer is provided by identifying the induced spacetime
metric corresponding to the in-flow in (4) outside of a spher-
ical matter system, such as the Earth. Then (21) becomes

ds2 = dt2 −
1

c2

(

dr +

√
2GM(1+α

2+ . . . )

r
dt

)2
−

−
1

c2
r2
(
dθ2 + sin2θ dφ2

)
.

(23)

Making the change of variables‡ t→ t′ and r→ r′ = r
with

t′ = t−
2

c

√
2GM(1+α

2+ . . . ) r

c2
+

+
4GM(1+α

2+ . . . )

c3
tanh−1

√
2GM(1+α

2+ . . . )

c2r

(24)

‡No unique choice of variables is required. This choice simply leads to
a well-known form for the metric.
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this becomes (and now dropping the prime notation)

ds2 =

(

1−
2GM(1+α

2+ . . . )

c2r

)

dt2−

−
1

c2
r2
(
dθ2+sin2θ dφ2

)
−

dr2

c2
(

1−
2GM(1+α

2+ . . . )

c2r

)
(25)

which is one form of the the Schwarzschild metric but with
the α-dynamics induced effective mass shift. Of course this
is only valid outside of the spherical matter distribution, as
that is the proviso also on (4). As well the above particular
change of coordinates also introduces spurious singularities
at the event horizon∗, but other choices do not do this. Hence
in the case of the Schwarzschild metric the dynamics missing
from both the Newtonian theory of gravity and General Rela-
tivity is merely hidden in a mass redefinition, and so didn’t
affect the various standard tests of GR, or even of Newtonian
gravity. Note that as well we see that the Schwarzschild
metric is none other than Newtonian gravity in disguise,
except for the mass shift. While we have now explained
why the GR formalism appeared to work, it is also clear that
this formalism hides the manifest dynamics of the dynamical
space, and which has also been directly detected in gas-mode
interferometer and coaxial-cable experiments.

One of the putative key tests of the GR formalism was
the gravitational bending of light. This also immediately
follows from the new space dynamics once we also general-
ise the Maxwell equations so that the electric and magnetic
fields are excitations of the dynamical space. The dynamics
of the electric and magnetic fields must then have the form,
in ‘empty’ space,

∇×E = −μ

(
∂H

∂t
+ v ∙ ∇H

)

∇×H = ε

(
∂E

∂t
+ v ∙ ∇E

)

∇ ∙H = 0, ∇ ∙E = 0

(26)

which was first suggested by Hertz in 1890 [34]. As discuss-
ed elsewhere the speed of EM radiation is now c=1/

√
μ ε

with respect to the space, and in general not with respect
to the observer if the observer is moving through space, as
experiment has indicated again and again. In particular the
in-flow in (4) causes a refraction effect of light passing close
to the Sun, with the angle of deflection given by

δ = 2
v2

c2
=
4GM(1 + α

2 + . . . )

c2d
(27)

where v is the in-flow speed at the surface of the Sun,
and d is the impact parameter, essentially the radius of the

∗The event horizon of (25) is at a different radius from the actual event
horizon of the black hole solutions that arise from (1).

Sun. Hence the observed deflection of 8.4×10−6 radians is
actually a measure of the in-flow speed at the Sun’s surface,
and that gives v= 615 km/s. At the Earth distance the Sun
induced spatial in-flow speed is 42 km/s, and this has been
extracted from the 1925/26 gas-mode interferometer Miller
data [1, 3]. These radial in-flows are to be vectorially summ-
ed to the galactic flow of some 400 km/s, but since that flow
is much more uniform it does not affect the light bending by
the Sun in-flow component†. Hence the deflection of light by
the Sun is a way of directly measuring the in-flow speed at
the Sun’s surface, and has nothing to do with “real” curved
spacetime. These generalised Maxwell equations also predict
gravitational lensing produced by the large in-flows associat-
ed with new “black holes” in galaxies. So again this effect
permits the direct observation of the these black hole effects
with their non-inverse square law accelerations.

5 Conclusions

We have shown how minimal assumptions about the internal
dynamics of space, namely how embeddability in a mathem-
atical space such as an E3 or an S3, expressing its inherent
3-dimensionality, leads to various predictions ranging from
the anisotropy of the speed of light, as expressed in the
required generalisation of Maxwell’ s equations, and which
has been repeatedly observed since the Michelson-Morley
experiment [5] of 1887, to the derivation of the phenomenon
of gravity that follows after we generalise the Schrödinger
and Dirac equations. This shows that the gravitational acce-
leration of matter is a quantum effect: it follows from the re-
fraction of quantum waves in the inhomogeneities and time-
dependencies of the flowing dynamical space. In particular
the analysis shows that the acceleration of quantum matter
is identical to the convective acceleration of the structured
space itself. This is a non-trivial result. As well in the case
of the Dirac equation we derive the spacetime formalism as
well as the geodesic description of matter trajectories, but in
doing so reveal that the spacetime is merely a mathematical
construct. We note that the relativistic features of the Dirac
equation are consistent with the absolute motion of the wave
function in the dynamical 3-space. This emphasis yet again
that Special Relativity does not require the isotropy of the
speed of light, as is often incorrectly assumed.

Here we have further extended the observational evi-
dence that it is the fine structure constant that determines
the strength of the spatial self-interaction in this new physics
by including data from black hole masses in 19 spherical
star systems. Elsewhere we have already shown that the
new space dynamics explains also the spiral galaxy rotation
velocity anomaly; that it is not caused by a new form of
matter, that the notion of “dark matter” is just a failure of

†The vector superposition effect for spatial flows is only approximate,
and is discussed in more detail in [35]. The solar system has a galactic
velocity of some 420±30 km/s in the direction RA=5.2 hr, Dec=−67◦.
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Newtonian gravity and GR. We have also shown that the
space dynamics is non-local, a feature that Newton called
action-at-a-distance. This is now extended to include the
effects of the spatial self-interaction. The numerous confir-
mations of that dynamics, summarised herein, demonstrate
the validity of this non-local physics. Of course since New-
ton we have become more familiar with non-local effects
in the quantum theory. The new space dynamics shows that
non-local effects are more general than just subtle effects
in the quantum theory, for in the space dynamics this non-
local dynamics is responsible for the supermassive black
holes in galaxies. This non-local dynamics is responsible for
two other effects: (i) that the dynamics of space within an
event horizon, say enclosing a black hole in-flow singularity
affects the space outside of the horizon, even though EM
radiation and matter cannot propagate out through the event
horizon, as there the in-flow speed exceeds the speed of
light. So in this new physics we have the escape of informat-
ion from within the event horizon, and (ii) that the universe
overall is more highly connected than previously thought.
This may explain why the universe is more uniform than
expected on the basis of interactions limited by the speed of
light, i. e. we probably have a solution to the cosmological
horizon problem.

Elsewhere [1] we have argued that the dynamical space
has the form of a quantum foam and so non-local quantum
effects are to be expected. So it might be argued that the suc-
cessful prediction of the masses of these black hole masses,
and their dependence on the fine structure constant, is indi-
cative of a grand unification of space and the quantum the-
ory. This unification is not coming from the quantisation of
gravity, but rather from a deeper modelling of reality as an
information-theoretic system with emergent quantum-space
and quantum matter.

This work is supported by an Australian Research Coun-
cil Discovery Grant.
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Preferred Spatial Directions in the Universe: a General Relativity Approach

Larissa Borissova
E-mail: lborissova@yahoo.com

Herein is constructed, using General Relativity, the space metric along the Earth’s
trajectory in the Galaxy, where the Earth traces outs a complicated spiral in its orbital
motion around the Sun and its concomitant motion with the solar system around
the centre of the Galaxy. It is deduced herein that this space is inhomogeneous and
anisotropic. The observable properties of the space, characterizing its gravitation,
rotation, deformation, and curvature, are obtained. The theory predicts that the
observable velocity of light is anisotropic, due to the anisotropy and inhomogeneity
of space caused by the presence of gravitation and the space rotation, despite the
world-invariance of the velocity of light remaining unchanged. It is calculated that
two pairs of synchronised clocks should record a different speed of light for light
beams travelling towards the Sun and orthogonal to this direction, of about 4×10−4 c
(i. e. 120 km/sec, 0.04% of the measured velocity of light c). This effect should have
oscillations with a 12-hour period (due to the daily rotation of the Earth) and 6 month
period (due to the motion of the Earth around the Sun). The best equipment for
detecting the effect is that being used by R. T. Cahill (Flinders University, Australia)
in his current experiments measuring the velocity of light in an RF coaxial-cable
equipped with a pair of high precision synchronized Rb atomic clocks.

The geniality of geometry, its applicability to our real
world, can be verified by observation or experiment,
not logical deduction.

N. A. Kozyrev

1 Introduction

We construct herein, by General Relativity, a mathematical
model for a space body moving around another body (the
centre of attraction), both moving in an observer’s reference
space. The Earth rotates around the Sun, and orbits in com-
mon with it around the centre of the Galaxy; the Sun rotates
around the centre of the Galaxy and orbits in common with
the Galaxy around the centre of the Local Group of galaxies;
etc. As a result there are preferred directions determined by
orbital motions, so the real Universe is anisotropic (inequiv-
alence of directions). Because there are billions of centres of
gravitational attraction, the Universe is also inhomogeneous
(inequivalence of points). Hence, for the real Universe, we
cannot ignore the anisotropy of space and gravitation.

On the other hand, most cosmologists use the concept
of a homogeneous isotropic Universe wherein all points and
directions are equivalent. Such a model can be built only
by an observer who, observing matter in the Universe from
afar, doesn’t see such details as stars and galaxies. Such con-
ceptions lead to a vicious circle — most cosmologists are sure
that our Universe is a homogeneous isotropic ball expanding
from an initial point-like state (singularity); they ignore the
anisotropy of space and gravitation in such models.

Relativistic models of a homogeneous isotropic universe
(which include the Friedmann solutions) are only a few partial
solutions to Einstein’s equations. Besides, as shown during

the last decade, many popular cosmological metrics (includ-
ing the Friedmann solutions) are inadmissible, because the
difference between the radial coordinate and the proper ra-
dius isn’t taken into account there (see [1, 2] and References
therein).

And so forth, we shall show that the homogeneous iso-
tropic metric spaces contain no rotation and gravitation, and
that they can only undergo deformation: no stars, galaxies
or other space bodies exist in such a universe∗. Why do the
scientists use such solutions? The answer is clearly evident:
such solutions are simple, and thereby easier to study.

We shall consider another problem statement, the case
of an inhomogeneous anisotropic universe as first set up in
1944 by A. Zelmanov [4, 5]. Such a consideration is applic-
able to any local part of the Universe. We show in this paper
that along such a preferred direction, caused by the orbit-
al motion of a space body, an anisotropy of the observable
velocity of light can be deduced, despite the world-invariance
of the velocity of light remaining unchanged†. Using this
result as a basis, we will show in a subsequent paper (now
in preparation) that not only is the anisotropy of the velocity
of light expected along a satellite’s trajectory, but even its
motion is permitted only in a non-empty space filled by a
distribution of matter and a λ-field (both derived from the
right side of Einstein’s equations). This conclusion leads to

∗This situation is similar to the standard solution of the gravitational
wave problem, which considers them as space deformation waves in a space
free of rotation and gravitation [3].

†The observable velocity of light is different to the world-invariant
velocity of light if considered by means of the mathematical apparatus
of physically observed quantities in General Relativity — so-called
chronometric invariants [4, 5].
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the possibility of a new source of energy working in a rotat-
ing (non-holonomic) space, and has a direct link to the con-
clusion that stars produce energy due to the background spa-
ce non-holonomity (as recently derived by means of General
Relativity in [6, 7]).

2 Observed characteristics of space in the Earth’s mo-
tion in the Galaxy

How do the Earth and the planets move in space? The Earth
rotates around its own axis at 465 m/sec at the equator, with
an approximately 24-hour period, and moves at 30 km/sec
around the Sun with a 365.25-day period (astronomical year).
The Sun, in common with the planets, moves at 250 km/sec
around the centre of the Galaxy with an ∼ 200 million year
period. And so the Earth’s orbit traces a cylinder, the axis
of which is the galactic trajectory of the Sun. As a result,
the local space of the Earth draws a very stretched spiral,
spanned over the “galactic” cylinder of the Earth’s orbit.
Each planet traces a similar spiral in the Galaxy.

We aim to build a metric for the space along the Earth’s
transit in the Galaxy. We do this in two steps. First, the
metric along the Earth’s transit in the gravitational field of
the Sun. Second, using the Lorentz transformation to change
to the reference frame moving (with respect to the first
frame) along the axis coinciding with the direction in which
the Earth moves in the Galaxy.

We use a reference frame which rotates and moves for-
wards in a weak gravitational field. We therefore use cylindr-
ical coordinates. Then the metric along the Earth’s transit in
the gravitational field of the Sun has the form∗

ds2 =

(

1−
2GM

c2r
−
ω2r2

c2

)

c2dt2 −
2ωr2

c
cdtdϕ−

−

(

1 +
2GM

c2r

)

dr2 − r2dϕ2 − dz2,

(1)

where ω is the angular velocity of the Earth’s rotation around
the Sun: ω = vorb

r = 2×10−7 sec−1.
We now change to a reference frame that rotates in a

weak gravitational field and moves uniformly with a velocity
v (associated with the motion of the Sun in the Galaxy) along
the z-axis. We apply the Lorentz transformations

z̃ =
z + vt
√
1− v2

c2

, t̃ =
t+ vz

c2√
1− v

c2

, (2)

where z̃ and t̃ are corresponding coordinates in the new ref-

∗See any textbook on relativity. Note that the gravitational field is
included in the components of the fundamental metric tensor gαβ as GM

c2r
.

The mass of the Sun is M�= 2×1033 g, the mass of the Earth is M⊕=
= 6×1027 g; the distance between the Sun and the Earth is 15×1011 cm, the

Earth’s radius is 6.37×108 cm. We obtain
GM�
c2r

= 10−8,
GM⊕
c2r

= 10−10.
So, in this consideration we mean the daily rotation of the Earth and its
gravitational field neglected (quasi-Newtonian approximation).

erence frame. We differentiate z̃ and t̃, then substitute the
resulting dz̃2, dt̃2 and dt̃ into (2). For v= 250 km/sec we
have v2/c2= 7×10−7, hence 1√

1−v2/c2
≈ 1+v2/2c2. We ig-

nore terms in powers higher than 1
c2

. As a result we obtain
the metric along the Earth’s trajectory in the Galaxy (dropp-
ing the tilde from the formulae)

ds2 =

(

1−
2GM

c2r
−
ω2r2

c2

)

c2dt2−
2ωr2

c
cdtdϕ−

−

(

1+
2GM

c2r

)

dr2−r2dϕ2−
2ωvr2

c2
dϕdz−dz2.

(3)

This metric differs from (1), because of a spatial term
2ωr2v/c2 depending upon the linear velocity v.

In order to obtain really observable effects expected in
the metric (3), we use the mathematical method of physical
observed quantities [4, 5], which considers a fixed spatial
section connected to a real reference frame of an observer.
For such an observer the fundamental metrical tensor† has
the three-dimensional invariant form

hik = −gik +
1

c2
vivk , i, k = 1, 2, 3, (4)

dependent upon the linear velocity of the space rotation vi=
=− cg0i√

g00
. In (3) the metric tensor has the components

h11 = 1 +
2GM

c2r
, h22 = r2

(

1 +
ω2r2

c2

)

,

h23 =
ωr2v

c2
, h33 = 1 ,

(5)

while its contravariant components are

h11 = 1−
2GM

c2r
, h22 =

1− ω2r2

c2

r2
,

h23 = −
ωv

c2
, h33 = 1 .

(6)

According to the theory [4, 5], any reference space has
principal observable (chronometrically invariant) character-
istics: the chr.inv.-vector of gravitational inertial force

Fi =
1

1− w
c2

(
∂w

∂xi
−
∂vi
∂t

)

; (7)

the chr.inv.-tensor of the angular velocity of the space rota-
tion

Aik =
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk − Fkvi) ; (8)

and the chr.inv.-tensor of the rates of the space deformation

Dik =
1

2

∗∂hik
∂t

, (9)

†The spatial indices 1, 2, 3 are denoted by Roman letters, while the
space-time indices 0, 1, 2, 3 are denoted by Greek letters.
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where w= c2
(
1−
√
g00
)
, while

∗∂
∂t
= 1√

g00
∂
∂t

is the so-called
chronometrically invariant time derivative.

Calculating these for the metric space (3), we obtain

F 1 =

(

ω2r −
GM

r2

)(

1 +
ω2r2

c2

)

; (10)

A12 =
ω

r

(

1−
2GM

c2r
+
ω2r2

2c2

)

, A31 =
ω2vr

c2
. (11)

All components of Dik equal zero. Hence the reference
body gravitates, rotates, and moves forward at a constant
velocity. Appropriate characteristics of the metrics (1) and
(3) coincide, aside for A31: A31=0 in (3).

The observable time interval dτ contains vi [4, 5]:

dτ =
(
1−

w

c2

)
dt−

1

c2
vidx

i. (12)

Within an area wherein Aik=0 (holonomic space) the
time coordinate x0= ct can be transformed so that all vi=0.
In other words, the time interval between two events at
different points does not depend on the path of integration:
time is integrable, so a global synchronization of clocks is
possible. In such a space the spatial section x0= const is
everywhere orthogonal to time lines xi= const. If Aik 6=0
(non-holonomic space), it is impossible for all vi to be zero:
the spatial section is not orthogonal to the time lines, and the
time interval between two events at different points depends
on the path of integration (time is non-integrable).

Zelmanov also introduced the chr.inv.-pseudovector of
the angular velocity of the space rotation [4]

Ωi =
1

2
εijkA

jk, (13)

where εijk=
eijk√
h

is the three-dimensional discriminant ten-
sor, eijk is the completely antisymmetric three-dimensional
tensor, h=det‖hik‖. Hence, Ω1=A23, Ω2=A31, Ω3=A12.

In our statement we have two bodies, both rotating and
gravitating. The first body is at rest with respect to the ob-
server, whilst the second body moves with a linear velocity.
As seen from (11), for the rest body only Ω3 6=0. For the
moving body we also obtain Ω2 6=0 and Ω3 6=0.∗ In other
words, any linear motion of an observer with respect to his
reference body provides an additional degree of freedom to
rotations of his reference space.

Besides the aforementioned observable “physical” char-
acteristics Fi, Aik, and Dik, every reference space also has
an observable geometric characteristic [4]: the chr.inv.-tensor
of the three-dimensional space curvature

Clkij = Hlkij −
1

c2
(
2AkiDjl + AijDkl+

+AjkDil + AklDij + AliDkj
)
,

(14)

∗This is because any linear motion leads to an additional term in the
observable metric tensor hik: see formulae (5) and (6).

which possesses all the properties of the Riemann-Christoffel
curvature tensor Rαβγδ in the spatial section. Here Hlkij =
=hjmH

∙∙∙m
lki∙ , where H ∙∙∙m

lki∙ is the chr.inv-tensor similar to
Schouten’s tensor [8]:

H
∙∙∙j
lki∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km −Δ

m
klΔ

j
im . (15)

If all Aik or Dik are zero in a space, Ciklj =Hiklj .
Zelmanov also introduced Hik=h

mnHimkn, H =hikHik,
Cik=h

mnCimkn and C =hikCik.
The chr.inv.-Christoffel symbols of the first and second

kinds, by Zelmanov, are

Δkij =h
kmΔij ,m =

1

2

( ∗∂him
∂xj

+
∗∂hjm
∂xi

−
∗∂hij
∂xm

)

, (16)

where
∗∂
∂xi
= ∂

∂xi
− 1

c2

∗∂
∂t

is the so-called chr.inv.-spatial de-
rivative.

Calculating the components of Δkij for the metric (3), we
obtain

Δ122 = −r

(

1−
2GM

c2r
+
2ω2r2

c2

)

,

Δ111 =
GM

c2r2
, Δ123 = −

ωvr

c2
,

Δ212 =
1

r

(

1 +
ω2r2

c2

)

, Δ213 =
ωv

c2r
,

(17)

while non-zero components of Ciklj , Cik and C are

C1212 = −
GM

c2r
+
3ω2r2

c2
,

C11 = −
GM

c2r3
+
3ω2

c2
, C22 = −

GM

c2r
+
3ω2r2

c2
,

C = 2

(

−
GM

c2r3
+
3ω2

c2

)

.

(18)

We have thus calculated by the theory of observable
quantities, that:

The observable space along the Earth’s trajectory in
the Galaxy is non-holonomic, inhomogeneous, and
curved due to the space rotation and/or Newtonian
attraction. This should be true for any other planet
(or its satellite) as well, or any other body considered
within the framework this analysis.

3 Deviation of light in the field of the Galactic rotation

We study how a light ray behaves in a reference body space
described by the metric (3). Light moves along isotropic
geodesic lines. Such geodesics are trajectories of the parallel
transfer of the four-dimensional isotropic wave vector

Kα =
Ω

c

dxα

dσ
, gαβ K

αKβ = 0 , (19)
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where Ω is the proper frequency of the radiation, dσ=
=hik dx

idxk is the three-dimensional observable interval∗.
The equations of geodesic lines in chr.inv.-form are [4, 5]

dΩ

dτ
−
Ω

c2
Fi c

i +
Ω

c2
Dikc

ick = 0 ,

d(Ωci)

dτ
+2ω(Di

k+A
∙i
k∙)c

k−ΩF i+ΩΔiknc
kcn = 0 ,

(20)

where ci= dxi

dτ is the observable chr.inv.-velocity of light (its
square is invariant cici=hikcick= c2).

Substituting the chr.inv.-characteristics of the reference
space (3) into equations (20), we obtain

1

Ω

dΩ

dτ
−
1

c2

(

ω2r −
GM

r2

)
dr

dτ
= 0 ,

(21)
d

dτ

(

Ω
dr

dτ

)

− 2Ωωr

(

1−
2GM

c2r
+
3ω2r2

2c2

)
dϕ

dτ
−

−Ω

(

ω2r−
GM

r2

)(

1+
ω2r2

c2

)

−
2Ωωvr

c2
dϕ

dτ

dz

dτ
−

−Ωr

(

1−
2GM

c2r
+
2ω2r2

c2

)(
dϕ

dτ

)2
= 0 ,

(22)

d

dτ

(

Ω
dϕ

dτ

)

+
2Ωω

r

(

1 +
GM

2c2r
+
ω2r2

2c2

)
dr

dτ
+

+
2ω

r

(

1 +
ω2r2

c2

)
dr

dτ

dϕ

dτ
+
2Ωωv

c2r

dr

dτ

dz

dτ
= 0 ,

(23)

d

dτ

(

Ω
dz

dτ

)

−
2Ωω2vr

c2
dr

dτ
= 0 . (24)

Integrating (21) we obtain the observable proper frequen-
cy of the light beam at the moment of observation

Ω=
Ω0√

1− 2GM
c2r −

ω2r2

c2

≈ Ω0

(

1+
GM

c2r
+
ω2r2

2c2

)

, (25)

where Ω0 is its “initial” proper frequency (in the absence of
external affects). We integrate (22)–(24) with the use of (25).

Rewrite (24) as

d

dτ

(

Ω
dz

dτ

)

=
Ωω2v

c2
d

dτ

(
r2
)
, (26)

integration of which gives

Ω
dz

dτ
=
Ωω2vr2

c2
+Q , Q = const, (27)

where ż0=
(
dz
dτ

)
0

is the initial value of dz
dτ , while the integ-

ration constant is Q=Ω0
(
ż0−

ω2vr20
c2

)
.

∗So the space-time interval ds2= gαβ dxαdxβ in chr.inv.-form is
ds2= c2dτ2− dσ2=0. Therefore, because ds2=0 along isotropic tra-
jectories by definition, there dσ= cdτ .

Substituting (27) into (23) and (24) and using Ω from
(25), we obtain the system of equations with respect to r
and ϕ,

d

dτ

(

Ω
dϕ

dτ

)

+
2Ωω

r

(

1 +
GM

2c2r
+
ω2r2

2c2

)
dr

dτ
+

+
2ω

r

(

1 +
ω2r2

c2

)
dr

dτ

dϕ

dτ
+
2Ω0ωvż0
c2r

dr

dτ
= 0 ,

d

dτ

(

Ω
dr

dτ

)

− 2Ωωr

(

1−
2GM

c2r
+
3ω2r2

2c2

)
dϕ

dτ
−

−Ω

(

ω2r−
GM

r2

)(

1+
ω2r2

c2

)

−
2Ω0ωvż0r

c2
dϕ

dτ
−

−Ωr

(

1−
2GM

c2r
+
2ω2r2

c2

)(
dϕ

dτ

)2
= 0 .






(28)

We are looking for an approximate solution to this sys-
tem. The last term has the dimensionless factor vż0

c2
. For a

light beam, ż0 (the initial value of the light velocity along
the z-axis) is c. Hence vż0

c2
= v

c . At 250 km/sec, attributed to
the Earth moving in the Galaxy, v

c = 8.3×10−4. The terms
GM
c2r

and ω2r2

c2
, related to the orbital motion of the Earth,

are in order of 10−8. We therefore drop these terms from
consideration, so equations (28) become

d

dτ

(

Ω
dr

dτ

)

− 2Ωωr
dϕ

dτ
− Ω

(

ω2r −
GM�

r2

)

−

−Ωr

(
dϕ

dτ

)2
−
2Ω0ωvż0r

c2
dϕ

dτ
,

(29)

d

dτ

(

Ω
dϕ

dτ

)

+
2Ωω

r

dr

dτ
+
2ω

r

dr

dτ

dϕ

dτ
+
2Ω0ωvż0
c2r

dr

dτ
=0. (30)

We rewrite (30) as

ϕ̈+ 2(ϕ̇+ ω̃)
ṙ

r
= 0 , (31)

where ω̃=ω
(
1+ vż0

c2

)
, ϕ̇= dϕ

dτ
, ϕ̈= d2ϕ

dτ2
. This is an equation

with separable variables, so its first integral is

ϕ̇ =
B

r2
− ω̃, B = const = (ϕ̇0 + ω̃)r

2
0 , (32)

where ϕ̇0 and r0 are the initial values of ϕ̇ and r.
We rewrite (29) as

r̈ − 2ω̃rϕ̇+
GM

r2
− ω2r − rϕ̇2 = 0 , (33)

where ṙ= dr
dτ

, r̈= d2r
dτ2

. In our consideration, GM
r2
−ω2r is

zero, so the motion of the Earth around the Sun satisfies the
weightlessness condition [9, 10]† — a balance between the

†Each planet, in its orbital motion, should satisfy the weightlessness
condition w= viui, where w is the potential of the field attracting the
planet to a body around which this planet is orbiting, vi is the linear velocity
of the body’s space rotation in this orbit, and ui= dxi/dt is the coordinate
velocity of the planet in its orbit. The orbital velocity is the same as the
space rotation velocity. Hence the weightiness condition can be written as
GM/r= v2= viv

i [9, 10].
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acting forces of gravity GM
r2

and inertia ω2r. Taking this into
account, and substituting (32) into (33), we obtain

r̈ + ω̃2r −
B2

r3
= 0 . (34)

We replace the variables as ṙ= p. So r̈= p dpdr and the
equation (36) takes the form

p
dp

dr
=
B2

r3
− ω̃2r2, (35)

which can be easily integrated:

p2 =

(
dr

dτ

)2
= −

B2

r2
− ω̃2r2 +K , K = const, (36)

where the integration constant is K = ṙ20 + (ϕ̇0 + ω̃)
2
r20 +

+ ω̃2r20 , so we obtain

dr

dτ
= ±

√

K − ω̃2r2 −
B2

r2
. (37)

Looking for τ as a function of r, we integrate (37) taking
the positive time flow into account (positive values of τ ). We
obtain

τ =

∫ r

r0

rdr
√
−ω̃2r4 +Kr2 −B2

. (38)

Introducing a new variable u = r2 we rewrite (38) as

τ =
1

2

∫ u

u0

du
√
−ω̃2u2 +Ku−B2

, (39)

which integrates to

τ = −
1

2ω̃

[

arcsin

(
−2ω̃2r2 +K
√
K2 − 4ω̃2B2

)

−

− arcsin

(
−2ω̃2r20√
K2 − 4ω̃2B2

)] (40)

where

K2 − 4ω̃2B2 ≡ Q2 =

=
(
ṙ20 + r

2
0 ϕ̇

2
0

)[
ṙ20 + 4ω̃ (ω̃ + ϕ̇0) r

2
0 + ϕ̇

2
0r
2
0

]
,

(41)

so we obtain r2 and r

r2 =
Q

2ω̃2
sin 2ω̃τ+r20 , r =

√
Q

2ω̃2
sin 2ω̃τ + r20 , (42)

where r0 is the initial displacement in the r-direction.
Substituting (42) into (32) we obtain ϕ,

ϕ =

∫ τ

0

(
B

r2
− ω̃

)

dτ = − ω̃τ +
ω̃B

√
Q2 − 4ω4r40

×

× ln

∣
∣
∣
∣
∣

(
Q+

√
Q2 − 4ω̃4r40

)
tan ω̃τ + 2ω̃2r20(

Q−
√
Q2 − 4ω̃4r40

)
tan ω̃τ + 2ω̃2r20

∣
∣
∣
∣
∣
+ ϕ0 ,

(43)

where ϕ0 is the initial displacement in the ϕ-direction.
Substituting Ω from (25) into (27), and eliminating the

terms containing GM
c2r

and ω2r2

c2
, we obtain the observable

velocity of the light beam in the z-direction

ż =
ω2vr2

c2
+ ż0 −

ω2vr20
c2

, (44)

the integration of which gives its observable displacement

z = ż0τ +
ω2Qv

4 ω̃3c2
(1− cos 2ω̃τ ) + z0 , (45)

which, taking into account that ω̃=ω
(
1+ vż0

c2

)
, is

z = ż0τ +
vQ

4 ω̃c2
(1− cos 2 ω̃τ )

(

1−
vż0
c2

)2
+ z0 . (46)

We have obtained solutions for ṙ, ϕ̇, ż and r, ϕ, z. We
see the galactic velocity of the Earth in only ż and z.

Let’s find corrections to the displacement of the light ż
and its displacement z caused by the motion of the Earth in
the rotating and gravitating space of the Galaxy.

As follows from formula (41), Q doesn’t include the
initial velocity and displacement of the light beam in the
z-direction. Besides, Q=0 if ṙ0=0 and r0=0. In a real
situation ṙ0 6=0, because the light beam is emitted from the
Earth so r0 is the distance between the Sun and the Earth.
Hence, in our consideration, Q 6=0 always. If ϕ̇0=0, the
light beam is directed strictly towards the Sun.

We calculate the correction to the light velocity in the
r-direction Δż0 (we mean ϕ̇0=0, ż0=0). Eliminating the
term 1− vż0

c2
we obtain

Δż =
Qv

2c2
sin 2ω̃τ , Q = ṙ0

√
ṙ20 + 4ω̃

2r20 . (47)

We see that the correction Δż0 is a periodical function,
the frequency of which is twice the angular velocity of the
Earth’s rotation around the Sun; 2 ω̃=4×10−7sec−1. Because
the initial value of the light velocity is ṙ0= c, and also
4 ω̃2r20� c2, we obtain the amplitude of the harmonic os-
cillation

Qv

2c2
=

ṙ20
2c2

√

1 +
4 ω̃2r20
c2

≈
v

2
, (48)

then the correction to the light velocity in the r-direction
Δż0 is,

Δż =
v

2
sin 2ω̃τ = 4×10−4 ( sin 2ω̃τ ) c . (49)

From this resulting “key formula” we have obtained we
conclude that:

The component of the observable vector of the light
velocity directed towards the Sun (the r-direction)
gains an addition (correction) in the z-direction, be-
cause the Earth moves in common with the Sun in the
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Galaxy. The obtained correction manifests as a har-
monic oscillation added to the world-invariant of the
light velocity c. The expected amplitude of the oscil-
lation is 4×10−4c, i. e. 120 km/sec; the period T= 1

2ω̃

is half the astronomical year. So the theory predicts
an anisotropy of the observable velocity of light due
to the inhomogeneity and anisotropy of space, caused
by its rotation and the presence of gravitation.

In our statement the anisotropy of the velocity of light
manifests in the z-direction. We therefore, in this statement,
call the z-direction the preferred direction.

We can verify the anisotropy of the velocity of light by
experiment. By the theory of observable quantities [4, 5], the
invariant c is the length

c =
√
hik cick =

√
hik dxidxk

dτ
=
dσ

dτ
(50)

of the chr.inv.-vector ci= dxi

dτ of the observable light velocity.
Let a light beam be directed towards the Sun, i. e. in the
r-direction. According to our theory, the Earth’s motion in
the Galaxy deviates the beam away from the r-axis so that
we should observe an additional z-component to the light
velocity invariant. Let’s set up two pairs of detectors (synch-
ronised clocks) along the r-direction and z-direction in order
to measure time intervals during which the light beams travel
in these directions. Because the distances Δσ between the
clocks are fixed, and c is constant, the measured time in
the z-direction is expected to have a dilation with respect to
that measured in the r-direction: by formula (49) the light
velocity measured in both directions is expected to be differ
by ∼120 km/sec at the maximum of the effect.

The most suitable equipment for such an experiment is
that used by R. T. Cahill (Flinders University, Australia) in
his current experiments on the measurement of the velocity
of light in an RF coaxial-cable equipped with a pair of high
precision synchronized Rb atomic clocks [11]. This effect
probably had a good chance of being detected in similar ex-
periments by D. G. Torr and P. Colen (Utah State University,
USA) in the 1980’s [12] and, especially, by Roland De Witte
(Belgacom Laboratory of Standards, Belgium) in the 1990’s
[13]. However even De Witte’s equipment had a measure-
ment precision a thousand times lower than that currently
used by Cahill.

Because the Earth rotates around its own axis we should
observe a weak daily variation of this effect. In order to
register the complete variation of this value, we should mea-
sure it at least during half the astronomical year (one period
of its variation).

4 Inhomogeneity and anisotropy of space along the
Earth’s transit in the Galaxy

We just applied the metric (3) to the Earth’s motion in the
Galaxy. Following this approach, we can also employ this

metric to other preferred directions in the Universe, con-
nected to the motion of another space body, for instance —
the motion of our Galaxy in the Local Group of galaxies.

Astronomical observations show that the Sun moves in
common with our Galaxy in the Local Group of galaxies
at the velocity 700 km/sec.∗ The metric (3) can take into ac-
count this aspect of the Earth’s motion as well. In such a case
we should expect two weak maximums in the time dilation
measured in the above described experimental system during
the 24-hour period, when the z-direction coincides with the
direction of the apex of the Sun. The amplitude of the varia-
tion of the observable light velocity should be 2.8 times the
variation caused by the Earth’s motion in the Galaxy.

Swedish astronomers in the 1950’s discovered that the
Local Group of galaxies is a part of an compact “cloud”
called the Supercluster of galaxies, consisting of galaxies,
small groups of galaxies, and two clouds of galaxies. The
Supercluster has a diameter of ∼98 million light years, while
our Galaxy is located at 62 million light years from the
centre. The Supercluster rotates with a period of ∼100 bil-
lion years in the central area and ∼200 billion years at the
periphery. As supposed by the Swedes, our Galaxy, located
at ∼2/3 of the Supercluster’s radius, from its centre, rotates
around the centre at a velocity of ∼700 km/sec. (See Chapter
VII, §6 in [14] for the details.)

In any case, in any large scale our metric (3) gives the
same result, because any of the spaces is non-holonomic
(rotates) around its own centre of gravity. All the spaces
are included, one into the other, and cause bizarre spirals in
their motions. The greater the number of the space structures
taken onto account by our metric (3), the more complicated
is the spiral traced out by the Earth observer in the space
— the spiral is plaited into other space spirals (the fractal
structure of the Universe [15]).

This analysis of our theoretical results, obtained by Ge-
neral Relativity, and the well-known data of observational
astronomy leads us to the obvious conclusion:

The main factors forming the observable structure
of the space of the Universe are gravitational fields
of bulky bodies and their rotations, not the space
deformations as previously thought.

Many scientists consider homogeneous isotropic models
as models of the real Universe. A homogeneous isotropic
space-time is described by Friedmann’s metric

ds2 = c2dt2 −R2
dx2 + dy2 + dz2

[
1 + k

4 (x
2 + y2 + z2)

]2 , (51)

where R=R(t); k=0,±1. For such a space, the main ob-
servable characteristics are F i=0, Aik=0, Dik 6=0. In other
words, such a space can undergo deformation (expansion,

∗The direction of this motion is pointed out in the sky as the apex of
the Sun. Interestingly, the Sun has a slow drift of 20 km/sec in the same
direction as the apex, but within the Galaxy with respect to its plane.
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compression, or oscillation), but it is free of rotation and
contains no gravitating bodies (fields). So the metric (51)
is the necessary and sufficient condition for homogeneity
and isotropy. This is a model constructed by an imaginary
observer who is located so far away from matter in the real
Universe that he sees no such details as stars and galaxies.

In contrast to them, we consider a cosmological model
constructed by an Earth observer, who is carried away by all
motions of our planet. Zelmanov, the pioneer of inhomoge-
neous anisotropic relativistic models, pointed out the math-
ematical conditions of a space’s homogeneity and isotropy,
expressed with the terms of physically observable character-
istics of the space [4]. The conditions of isotropy are

Fi = 0 , Aik = 0 , Πik = 0 , Σik = 0 , (52)

where Πik=Dik− 1
3Dhik and Σik=Cik− 1

3 Chik are the
factors of anisotropy of the space deformation and the three-
dimensional (observable) curvature. In a space of the metric
(3) we have Dik=0, hence there Πik=0. However Fi and
Aik are not zero in such a space (see formulae 10 and 11).
Besides these there are the non-zero quantities,

Σ11 = −
1

3

GM

c2r3
+
ω2

c2
;

Σ22 = −
1

3

GM

c2r2
+
ω2r

c2
;

Σ33 =
2

3

GM

c2r3
−
2ω2

c2
.

(53)

We see that a space of the metric (3) is anisotropic due
to its rotation and gravitation.

The conditions of homogeneity, by Zelmanov [4], are

∇jFi = 0 , ∇jAik = 0 , ∇jDik = 0 , ∇jCik = 0 . (54)

Calculating the conditions for the metric (3), we obtain

∇1C11 =
3GM

c2r4
, ∇1C22 =

3GM

c2r2
,

∇1F1 = ω2
(

1 +
3ω2r2

c2

)

+
2GM

r3

(

1 +
3GM

c2r

)

,

∇1A12 = −ω

(
2

r2
+
ω2

c2
+
3GM

c2r3

)

.

(55)

This means, a space of the metric (3) is inhomogeneous
due to its rotation and gravitation.

The results we have obtained manifest thus:

The real space of our Universe, where space bodies
move, is inhomogeneous and anisotropic. Moreover,
the space inhomogeneity and anisotropy determine
the bizarre structure of the Universe which we ob-
serve: the preferred directions along which the space
bodies move, and the hierarchial distribution of the
motions.

5 Conclusions

By means of General Relativity we have shown that the
space metric (3) along the Earth’s trajectory in the Galaxy,
where the Earth follows a complicated spiral traced out by
its orbital motion around the Sun and its concomitant motion
with the whole solar system around the centre of the Galaxy.
We have shown that this metric space is: (a) globally non-
holonomic due to its rotation and the presence of gravitation,
as manifested by the non-holonomic chr.inv.-tensor Aik (11)
calculated in the metric space∗; (b) inhomogeneous, because
the chr.inv.-Christoffel symbols Δkij indicating inhomogene-
ity of space, being calculated in the metric space as shown by
(17), contain gravitation and space rotation; (c) curved due
to gravitation and space rotation, represented in the formulae
for the three-dimensional chr.inv.-curvature Ciklj calculated
in the metric space as shown by (18).

Consequently, in real space there exist “preferred” spatial
directions along which space bodies undergo their orbital
motions.

We have deduced that the observable velocity of light
should be anisotropic in space due to the anisotropy and in-
homogeneity of space, caused by the aforementioned factors
of gravitation and space rotation, despite the world-invariance
of the velocity of light. It has been calculated that two pairs
of synchronised clocks should record different values for the
speed of light in light beams directed towards the Sun and
orthogonal to this direction, at about 4×10−4 c (0.04% of
the measured velocity of light c, i. e. ∼120 km/sec). This
effects should undergo oscillations with a 12-hour period
(due to the daily rotation of the Earth) and with a 6-month
period (due to the motion of the Earth around the Sun).
Equipment most suitable for detecting the effect is that used
by R. T. Cahill (Flinders University, Australia) in his current
experiment on the measurement of the velocity of light in
a one-way RF coaxial-cable equipped with a pair of high
precision synchronized Rb atomic clocks.

The predicted anisotropy of the observable velocity of
light has been deduced as a direct consequence of the geom-
etrical structure of four-dimensional space-time. Therefore,
if the predicted anisotropy is detected by experiment, it will
be one more fact in support of Einstein’s General Theory of
Relativity.

The anisotropy of the observable velocity of light as a
consequence of General Relativity was first pointed out by
D. Rabounski in the editorial preface to [13], his papers
[6, 7], and many private communications with the author,
which commenced in Autumn, 2005. He has stated that the
anisotropy results from the non-holonomity (rotation) of the

∗Gravitation is represented by the mass of the Sun M , while the space
rotation is represented by two factors: the angular velocity ω of the solar
space rotation in the Earth’s orbit (equal to the angular velocity of the
Earth’s rotation around the Sun), and also the linear velocity v of the
rotation of the Sun in common with the whole solar system around the
centre in the Galaxy.
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local space of a real observer and/or the non-holonomity of
the background space of the whole Universe. Moreover, the
non-holonomic field of the space background can produce
energy, if perturbed by a local rotation or oscillation (as this
was theoretically found for stars [6, 7]).

Detailed calculations provided in the present paper show
not only that the non-holonomity (rotation) of space is the
source of the anisotropy of the observable velocity of light,
but also gravitational fields.

This paper will be followed by a series of papers wherein
we study the interaction between the fields of the space non-
holonomity, and also consider these fields as new sources of
energy. This means that we consider open systems. Naturally,
given the case of an inhomogeneous anisotropic universe,
it is impossible to study it as a closed system since such
systems don’t physically exist owing to the presence of space
non-holonomity and gravitation∗. In a subsequent paper we
will consider the non-holonomic fields in a space of the
metric (3) with the use of Einstein’s equations. It is well
known that the equations can be applied to a wide variety
distributions of matter, even inside atomic nuclei. We can
therefore, with the use of the Einstein equations, study the
non-holonomic fields and their interactions in any scaled
part of the Universe — from atomic nuclei to clusters of
galaxies — the problem statement remains the same in all
the considerations.
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along Orbital Trajectories, and Energy Produced from It

Larissa Borissova
E-mail: lborissova@yahoo.com

Using General Relativity we study the rotating space of an orbiting body (of the
Earth in the Galaxy, for example). In such a space Einstein’s equations predict that:
(1) the space cannot be empty; (2) it abhors a vacuum (i. e. a pure λ-field), and so it
must also possess a substantive distribution (e. g. gas, dust, radiations, etc.). In order
for Maxwell’s equations to satisfy Einstein’s equations, it is shown that: (1) a free
electromagnetic field along the trajectory of an orbiting body must be present, by
means of purely magnetic “standing” waves; (2) electromagnetic fields don’t satisfy
the Einstein equations in a region of orbiting space bodies if there is no distribution of
another substance (e. g. dust, gas or something else). The braking energy of a medium
pervading space equals the energy of the space non-holonomic field. The energy
transforms into heat and radiations within stars by a stellar energy mechanism due
to the background space non-holonomity, so a star takes energy for luminosity from
the space during the orbit. Employing this mechanism in an Earth-bound laboratory,
we can obtain a new source of energy due to the fact that the Earth orbits in the
non-holonomic fields of the space.

1 If a body undergoes orbital motion in a space, the
space cannot be empty

This paper extends a study begun in Preferred Spatial Dir-
ections in the Universe: a General Relativity Approach [1].
We considered a space-time described by the metric∗

ds2 =

(

1−
2GM

c2r
−
ω2r2

c2

)

c2dt2−
2ωr2

c
cdtdϕ−

−

(

1+
2GM

c2r

)

dr2−r2dϕ2−
2ωvr2

c2
dϕdz−dz2,

(1)

where G = 6.67×10−8 cm3

g×sec2 is Newton’s gravitational con-
stant, M is the value of an attracting mass around which
a test-body orbits, ω is the cyclic frequency of the orbital
motion, v is the linear velocity at which the body, in common
with the gravitating mass, moves with respect to the observer
and his references.

In fact, this metric describes (in quasi-Newtonian appro-
ximation) the space along the path of a body which orbits
another body and moves in common with it with respect to
the observer’s reference frame (which determine his physical
reference space), for instance, the motion of the Earth in
the Galaxy. So this metric is applicable to bodies orbiting
anywhere in the Universe.

Here we study, using Einstein’s equations, a space de-
scribed by the metric (1). This approach gives a possibility of
answering this question: does some matter (substance and/or
fields) exist along the trajectory of an orbiting body, and
what is that matter (if present there)?

∗The metric is given in the cylindrical spatial coordinates r, ϕ, z. See
[1] for the reason.

The general covariant Einstein equations are†

Rαβ −
1

2
gαβR = −κTαβ − λ gαβ , (2)

where Rαβ is Ricci’s tensor, gαβ is the fundamental metric
tensor, R is the scalar (Riemannian) curvature, κ = 8πG

c2
=

= 1.86×10−27 cm
g is Einstein’s gravitational constant, Tαβ is

the energy-momentum tensor of a distributed matter, λ is the
so-called cosmological term that describes non-Newtonian
forces of attraction or repulsion‡. A space-time is empty if
Rαβ =0. In this case, R=0, Tαβ =0, λ=0, i. e. no sub-
stance and no λ-fields. A space-time is pervaded by vacuum
if Tαβ =0 but λ 6=0 and hence Rαβ 6=0.

The Einstein equations can be applied to a wide variety
of distributions matter, even inside atomic nuclei. We can
therefore, with the use of the Einstein equations, study the
distribution of matter in any scaled part of the Universe —
from atomic nuclei to clusters of galaxies.

We use the Einstein equations in chronometrically invar-
iant form, i. e. expressed in the terms of physical observed
values (chronometric invariants, by A. Zelmanov [3, 4]). In
such a form, the general covariant equations (2) are repre-
sented by the three sorts of their observable (chronometric-
ally invariant) projections: the projection onto an observer’s

†The space-time (four-dimensional) indices are α, β = 0, 1, 2, 3.
‡Depending upon the sign of λ: λ> 0 stands for repulsion, while

λ< 0 stands for attraction. The cosmological term is also known as the λ-
term. The forces described by λ (known as λ-forces) grow in proportional
to distance and therefore reveal themselves in full at a “cosmological”
distance comparable to the size of the Universe. Because the non-Newtonian
gravitational fields (λ-fields) have never been observed, for our Universe in
general the numerical value of λ is expected to be λ< 10−56 cm−2. Read
Chapter 5 in [2] for the details.
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time line, the mixed (space-time) projection, and the projec-
tion onto the observer’s spatial section [3, 4]

∗∂D

∂t
+DjlD

lj + AjlA
lj + ∗∇jF

j −
1

c2
FjF

j =

= −
κ

2

(
ρc2 + U

)
+ λ̃c2 ;

(3)

∗∇j
(
hijD −Dij − Aij

)
+
2

c2
FjA

ij = κJ i ; (4)

∗∂Dik
∂t

− (Dij + Aij)
(
D
j
k + A

∙j
k∙

)
+DDik −

−DijD
j
k + 3AijA

∙j
k∙ +

1

2
(∗∇iFk +

∗∇kFi)−

−
1

c2
FiFk − c

2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
+ λ̃c2hik ,

(5)

where ρ=T00
g00

is the observable density of matter, J i= c T i0√
g00

is

the vector of the observable density of impulse, U ik=c2T ik

is the tensor of the observable density of the impulse flow
(the stress tensor), U=hikU ik. We include λ̃ in the equa-
tions because the metric (1) is applicable at any scale, not
only the cosmological large scale∗.

By the theory of physical observable quantities [3, 4], the
quantities Dik, Fi, Aik and Cik are the observable charact-
eristics of the observer’s reference space: the chr.inv.-tensor
of the rates of the space deformation†

Dik =
1

2

∗∂hik
∂t

, (6)

the chr.inv.-vector of the observable gravitational inertial
force

Fi =
c2

c2 − w

(
∂w

∂xi
−
∂vi
∂t

)

, (7)

the chr.inv.-tensor of the angular velocity of the observable
rotation of the space (the space non-holonomity tensor)

Aik =
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk − Fkvi) , (8)

where hik=−gik+
g0i g0k
g00

=−gik+ 1
c2
vivk is the observ-

able spatial chr.inv.-metric tensor, vi=−
c g0i√
g00

is the linear
velocity of the rotation of the observer’s space reference,
w= c2(1−

√
g00) is the gravitational potential. The quantity

Cik=h
mn Cimkn is built on the tensor of the observable

three-dimensional chr.inv.-curvature of the space

Cimkn = Himkn −
1

c2
(2AmiDnk + AinDmk+

+ AnmDik + AmkDin + AkiDmn) ,
(9)

∗As probable λ̃∼ 1
R2

, where R is the spatial radius of a given region,
so the larger the size of a considered region, the smaller is λ. See [2].

†The spatial (three-dimensional) indices are i, k = 1, 2, 3.

which possesses all the properties of the Riemann-Christoffel
curvature tensor Rαβγδ in the observer’s spatial section, and
constructed with the use Hlkij =hjmH ∙∙∙m

lki ∙ , where H ∙∙∙m
lki ∙ is

the chr.inv-tensor similar to Schouten’s tensor [5]

H ∙∙∙m
lki ∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km −Δ

m
klΔ

j
lm , (10)

while Δkij are the observable chr.inv.-Christoffel symbols

Δkij =h
kmΔij ,m =

1

2

( ∗∂him
∂xj

+
∗∂hjm
∂xi

−
∗∂hij
∂xm

)

. (11)

In the formulae
∗∂
∂xi
= ∂

∂xi
− 1

c2

∗∂
∂t

and
∗∂
∂t
= 1√

g00

∗∂
∂t

are
the chr.inv.-spatial derivative and the chr.inv.-time derivative
respectively, while ∗∇i is the spatial chr.inv.-covariant deriv-
ative, for instance, the chr.inv.-divergence of a chr.inv.-vector

is ∗∇i qi=
∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
=

∗∂qi

∂xi
+ qiΔ

j
ji. See [3, 4] or [2]

for the details.
We have obtained [1] for the metric (1) the non-zero

components of the observable chr.inv.-metric tensor

h11 = 1 +
2GM

c2r
, h22 = r2

(

1 +
ω2r2

c2

)

,

h23 =
ωr2v

c2
, h33 = 1 ,

h11 = 1−
2GM

c2r
, h22 =

1− ω2r2

c2

r2
,

h23 = −
ωv

c2
, h33 = 1 ,

(12)

nonzero components of F i and Aik

F 1 =

(

ω2r −
GM

r2

)(

1 +
ω2r2

c2

)

,

A12 =
ω

r

(

1−
2GM

c2r
+
ω2r2

2c2

)

, A31 =
ω2vr

c2
,

(13)

and non-zero components of Cik

C11 = −
GM

c2r3
+
3ω2

c2
, C22 = −

GM

c2r
+
3ω2r2

c2
. (14)

Let’s substitute the components of Fi, Aik, Cik and the
chr.inv.-derivatives into the chr.inv.-Einstein equations (3),
(4), and (5). We obtain

ω2+
GM

r3
+
2ω4r2

c2
−
3ω2GM

c2r
=−

κ

2

(
ρc2+U

)
+λ̃c2 ; (15)

κJ1 = 0; κJ2 =
5ωGM

c2r3
; κJ3 = −

2ω2v

c2
; (16)

3GM

r3
+
6ω4r2

c2
−
ω2GM

c2r
+
6G2M2

c2r4
=

=

[
κ

2

(
ρc2 − U

)
+ λ̃c2

](

1 +
2GM

c2r

)

+ κU11 ;
(17)
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9ω4r4

c2
−
9ω2GM

c2r
+
2G2M2

c2r2
=

=

[
κ

2

(
ρc2 − U

)
+ λ̃c2

]

r2
(

1 +
ω2r2

c2

)

+ κU22 ;
(18)

ω3vr2

c2
−
ωvGM

c2r
=

[
κ

2

(
ρc2−U

)
+ λ̃c2

]
ωvr2

c2
+κU23 ; (19)

κ

2

(
ρc2 − U

)
+ λ̃c2 + κU33 = 0 . (20)

Equations (15–20) are written for an arbitrary energy-
momentum tensor Tαβ . As is well known, the left side of the
Einstein equations must have a positive sign. We therefore
conclude, from the first (scalar) chr.inv.-Einstein equation
(15), that the cosmological term λ̃ must be λ̃> 0. (If λ̃ > 0,
the non-Newtonian λ-force is the force of repulsion). So, in
order to have the metric (1) satisfy the Einstein equations,
we can have only the repulsive non-Newtonian forces in the
given region described by the metric (1).

We express the right side of the general covariant Ein-
stein equations (2) as the algebraic sum of two tensors

κ T̃αβ = κTαβ −
λ̃

κ
gαβ , (21)

where the first tensor describes a substance, while the second
describes vacuum (λ-fields). We assume that the given space
is permeated by only λ-fields, i. e. Tαβ =0. In such a case
the observable components of the energy-momentum tensor
of vacuum are

ρ̃ = −
λ̃

κ
, J̃ i = 0 , Ũ ik =

λ̃c2

κ
. (22)

We see that the observable density of vacuum ρ̃=const
is ρ̃ < 0, if λ̃ > 0 and J̃ i=0. So the λ̃-vacuum is a medium
with a negative constant density, and also no flows of mass
(energy) therein.

We obtain from the the second (vector) chr.inv.-Einstein
equation (16): J1=0, J2 6=0, J3 6=0 (J3< 0), so J i 6=0 in
general. Because J i=0 in vacuum, we conclude that:

Any region of space described by the metric specific-
ally along the trajectory of any orbiting body in the
Universe cannot be pervaded solely by vacuum, but
must also be permeated by another distributed sub-
stance.

Orbital motion is the main kind of motion in the
Universe. We therefore conclude that the space of
the Universe must be non-empty; necessarily filled
by a substance (e. g. gas, dust, radiations, etc.). Being
a direct deduction from the Einstein equations, this
is one more fundamental fact predicted by Einstein’s
General Theory of Relativity.

Naturally, as astronomical observations in recent decades
testify, such substances as gas, dust and radiations are found
in any part of that region of the Universe that is access-
ible by modern astronomical techniques. We therefore aim

to describe the medium pervading space, by means of the
algebraical sum of two energy-momentum tensors

Tαβ = T (g)

αβ + T
(em)

αβ , (23)

where T (em)

αβ is set up for electromagnetic radiations as in [6],
while T (g)

αβ describes an ideal liquid or gas

T (g)

αβ =
(
ρ(g) −

p

c2

)
bαbβ −

p

c2
gαβ , (24)

where ρ(g) is the observable density of the medium, p is the
pressure within it, while bα= dxα

ds is the four-dimensional ve-
locity of the flow of the medium with respect to the reference
space (reference body). Gas is a medium in which particles
move chaotically with respect to each other, and also with
respect to an observer’s reference space. So a reference space
doesn’t accompany to flow of mass (energy) in the gas.

The observable components of T (g)

αβ are

T00
g00

=
ρ(g) −

p
c2

1−
∗u2

c2

−
p

c2
, J i =

ρ(g) −
p
c2

1−
∗u2

c2

∗ui,

U ik =

(
ρ(g) −

p
c2

)
∗ui∗uk

1−
∗u2

c2

+ phik,

(25)

while the trace of the stress-tensor U ik is

U =

(
ρ(g) −

p
c2

)
∗u2

1−
∗u2

c2

+ 3p , (26)

where ∗ui= dxi

dτ is the three-dimensional observable velocity
of the flow of the medium ( ∗u2= ∗ui

∗ui=hik
∗ui ∗uk ).

A reference frame (space) where the flow stream of a
mass is qi= c2J i 6=0, doesn’t accompany the medium. As
seen from (16) and (25), given the case we are considering,
∗u1=0, while ∗u2 6=0 and ∗u3 6=0. Hence:

If a body orbits at a radius r in the z-direction, a sub-
stantive medium that necessarily pervades the space
has motions in the ϕ and z-directions (in the cylindr-
ical spatial coordinates r, ϕ, z).

2 Maxwell’s equations in a rotating space: a body can
orbit only if there is a non-zero interplanetary or in-
terstellar magnetic field along the trajectory

What structure is attributed to an electromagnetic field if the
field fills the local space of an orbiting body? As is well
known, the energy-momentum tensor of an electromagnetic
field has the form [6]

T (em)

αβ =
1

4πc2

(

−FασF
σ∙
∙β +

1

4
FστF

στgαβ

)

, (27)

where Fαβ = 1
2

(∂Aβ
∂xα

− ∂Aα
∂xβ

)
is Maxwell’s electromagnetic

field tensor, while Aα is the four-dimensional electromag-
netic field potential given the observable chr.inv.-projections
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ϕ= A0√
g00

and qi=Ai (the scalar and vector three-dimensional
chr.inv-potentials). The observable chr.inv.-components of
T (em)

αβ obtained in [2] are

ρ(em) =
E2 +H∗2

8πc2
, J i(em) =

1

4πc
εikmEkH∗m ,

U ik(em) = ρ(em)h
ik −

1

4π

(
EiEk +H∗iH∗k

)
,

U(em) = ρ(em) ,

(28)

where Ei and the H∗i are the observable chr.inv.-electric and
magnetic field strengths, which are the chr.inv.-projections of
the electromagnetic field tensor Fαβ (read Chapter 3 in [2]
for the details):

Ei =
∗∂ϕ

∂xi
+
1

c

∗∂qi

∂t
−
ϕ

c2
F i, (29)

H∗i=
1

2
εimnHmn=

1

2
εimn

(∗∂qm
∂xn

−
∗∂qn
∂xm

−
2ϕ

c
Amn

)

. (30)

We consider electromagnetic fields that fill the space as
electromagnetic waves — free fields without the sources that
induced them. By the theory of fields, in such an electro-
magnetic field the electric charge density and the current
density vector are zero. In such a case Maxwell’s equations
have the chr.inv.-form [2]:

∗∇iE
i −

2

c
ΩmH

∗m = 0

εikm ∗∇̃k
(
H∗m

√
h
)
−
1

c

∗∂

∂t

(
Ei
√
h
)
= 0





I (31)

∗∇iH
∗i +

2

c
ΩmE

∗m = 0

εikm ∗∇̃k
(
Em

√
h
)
+
1

c

∗∂

∂t

(
H∗i

√
h
)
= 0





II (32)

whereHi= 1
2 εimnH

mn, and ∗∇̃k= ∗∇k− 1
c2
Fk denotes the

chr.inv.-physical divergence.
Because of the ambiguity of the four-dimensional potent-

ial Aα, we can choose for ϕ=0 [6]. A space wherein the

metric (1) is stationary, gives
∗∂qi

∂t
=0. Because the com-

ponents of gαβ depend solely on x1= r of the spatial co-
ordinates r, ϕ, z, the components of the energy-momentum
tensor depend only on r. In such a case we obtain, from
formulae (29) and (30), Ei=0, H∗1=H∗1=0, H∗2= 1√

h

∂q3
∂r

andH∗3=− 1√
h

∂q2
∂r

, so the aforementioned chr.inv.-Maxwell
equations take the form

ΩmH
∗m = 0 ,

εikm ∗∇̃k
(
H∗m

√
h
)
= 0 ,

∗∇iH∗i = 0 .

(33)

We substitute into the first of these equations the values
Ω1=0, Ω2= ω2rv

c2
and Ω3= ω

r

(
1− 2GM

c2r
+ ω2r2

2c2

)
we have

calculated for the metric (1). As a result we obtain a correla-
tion between two components of the electromagnetic field
vector chr.inv.-potential qi, that is

q′2 =
ωvr2

c2
q′3 , (34)

where the prime denotes the differentiation with respect to r.
With the use of (30) we obtain H∗2 and H∗3

H∗2 = r

(

1−
GM

c2r
+
ω2r2

2c2

)

q′3 , H∗3 = 0 , (35)

so the second equation of (33) takes the form

rq′′3

(

1−
GM

c2r
+
ω2r2

2c2

)

+ q′3

(

2−
GM

c2r
+
2ω2r2

c2

)

=0 , (36)

while the third equation of (33) is satisfied identically.
Equation (36) has separable variables, and so can be

rewritten as follows

dy

y
= −

dr

r

(

1 +
3ω2r2

2c2

)

, (37)

where y= q′3. Integrating it, we obtain

y = q′3 =
K

r
e−

3ω2r2

4c2 ≈
K

r

(

1−
3ω2r2

4c2

)

, (38)

where K is a constant of integration. Assuming r= r0 and
y0= q3(0) at the initial moment of time, we determine the

constant: K = y0 r0
(
1+

3ω2r20
4c2

)
. Integrating (38), we have

q3 = K

(

ln r −
3ω2r2

8c2

)

+ L , L = const. (39)

Determining the integration constant L from the initial
conditions, we obtain the final expression for q3:

q3 = K

[

ln
r

r0
−
3ω2

8c2
(
r2 − r20

)
]

+ q3(0) , (40)

where q3(0) is the initial value of q3. Substituting (40) into
(34) we obtain the equation

q′2 =
ωvKr

c2
, (41)

which is easily integrated to

q2 =
ωvK

2c2
(
r2 − r20

)
. (42)

Finally, we calculate the non-zero components of the
magnetic strength chr.inv.-vector H∗i. Substituting the ob-
tained formulae for q′3 (38) and q′2 (41) into the definition of
H∗i (30), we obtain

H∗2=
1
√
h
H31= q

′
3(0)

(

1−
GM

c2r
−
ω2r2

2c2
+
3ω2r20
4c2

)

,

H∗3 =
1
√
h
H12 = −

ωvr0
c2

q′3(0) .

(43)
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This is the solution for H∗i, the magnetic strength chr.
inv.-vector, obtained from the chr.inv.-Maxwell equations in
the rotating space of an orbiting body. The solution we have
obtained shows that:

A free electromagnetic field along the trajectory of
an orbiting body (ω 6=0, v 6=0) cannot be zero, and
is represented by purely magnetic “standing” waves
(all components of the electric strength are Ei=0).

This fundamental conclusion is easily obtained from the
solution (43).

The linear velocity v of the orbiting body (the body
moves in the x3=z-direction) produces effects in only the
q2-component of the three-dimensional observable vector
potential (i. e. along the ϕ-direction).

The solution (43) exists only if the initial value of the
derivative with respect to r of the z-component of the three-
dimensional observable vector potential is q′3(0) 6=0.

The z-component H∗3 6=0 if the reference body (in com-
mon with the observer) moves in the x3= z-direction at a
linear velocity v and, at the same time, rotates orthogonally
to it in the x2=ϕ-direction at an angular velocity ω. The
component H∗3 is positive, if v is negative. So H∗3 is
directed opposite to the motion of the observer (and his
reference planet, the Earth for instance). The numerical value
of H∗3 is ∼8×10−8 of H∗2. If the reference planet has its
orbit “stopped” in the z-direction (a purely theoretical case),
only H∗2 6=0 is left because it depends on GM

c2r
and ω2r2

2c2
.

The stationary solution (43) of the chr.inv.-Maxwell eq-
uations describes standing magnetic waves in the ϕ- and
z-directions. In such a case, as follows from the condition
Ei=0, the Pointing vector (the density of the impulse of the
electromagnetic field) is J i(em)=0 (see formula 28). On the
other hand the Einstein equations (15–20) we have obtained
for the rotating space of an orbiting body (the same space
as that used for the Maxwell equation) have the density of
the impulse of matter J i 6=0 (see formula 16 in the Einstein
equations), which should be applicable to any distribution of
matter, including electromagnetic fields. This implies that:

In the rotating space of an orbiting body, electro-
magnetic fields don’t satisfy the Einstein equations
if there is no distribution of another substance (dust,
gas or something else) in addition to the fields.

As follows from (25) we have obtained in the metric con-
sidered, J i 6=0 for an ideal liquid or gas. So, if an electro-
magnetic field is added by a gaseous medium (for instance),
they can together satisfy the Einstein equations in the rotat-
ing space of an orbiting body. We therefore conclude that:

Interplanetary/interstellar space where space bodies
are orbiting, must be necessarily pervaded by elect-
romagnetic fields with a concomitant distribution of
substantial matter, such as a gaseous medium, for
instance.

We have actually shown that space bodies cannot un-
dergo orbital motion in empty space, i. e. if electromagnetic

fields and other substantive media (e. g. dust, gas, etc.) are
not present. What a bizarre result!

It should be noted that we have obtained this startling
conclusion using no preliminary proposition or hypothesis.
This conclusion follows directly from the requirement for
Maxwell’s equations and Einstein’s equations to be both
satisfied in the rotating space of an orbiting body. So this is
the actual condition for orbital motion, according to General
Relativity.

3 Preferred spatial directions as a result of the interac-
tion of the space non-holonomity fields

In this section we have to consider three problems arising
from the specific space structure we have obtained for orbital
motion.

First problem. Refer to the chr.inv.-Einstein equations
(15–20) we have obtained in the rotating space of an orbiting
body. The most significant terms in the left side of the scalar
equation (15) are the first two. They both have a positive
sign. Hence the right side of equation (15) must also be
positive, i. e. the right side must satisfy the condition,

λ̃c2 >
κ

2

(
ρc2 + U

)
. (44)

Let’s apply this condition to a particular case of the orbit-
ing body spaces: the space within the corridor along which
the Earth orbits in the Galaxy. As a matter fact, this space
is governed by the metric (1). In this space we have, ω2=
= 4×10−14 sec−2, M =M�= 2×1033 g, r= 15×1012 cm.
We obtain, ω2+ GM

r3 ' 8×10−14 sec−2. Therefore

λ̃c2 > 8×10−14 cm−2, λ̃ > 10−34 cm−2. (45)

As a result λ̃ > 10−34 cm−2 numerically equals ω2

2c2
—

the quantity which was proven in [7] to be the square of
the dynamical “magnetic” strength of the field of the space
non-holonomity. We therefore conclude that the λ̃-field is
connected to the non-holonomity field of the Earth’s space.

We note that the Earth’s space is non-holonomic due to
the effect of a number of factors such as the daily rotation
of the Earth, its yearly rotation around the Sun, its common
rotation with the solar system around the centre of the Gal-
axy, etc. Each factor produces a field of non-holonomity, the
algebraical sum of which gives the complete field of non-
holonomity of the Earth.

Given the problem statement we are considering, the
obtained numerical value λ̃ > 10−34 cm−2 characterizing the
non-Newtonian force of repulsion is attributed to the non-
holonomity field of the Earth’s space which is caused by the
Earth’s rotation around the Sun. If other problem statements
are considered, we can calculate the numerical values of λ̃
characterizing the other factors of the Earth’s space non-
holonomity. The non-Newtonian forces of repulsion obtained
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therein are expected to be directed according to the acting
factors (in different directions), so the numerical value of
each λ̃ has its own meaning, whilst their sum builds the
common non-Newtonian repulsing force acting in the Earth’s
space.

Second problem. As follows from the scalar Einstein
equation (16), the density of the impulse of the distributed
matter in the x3= z-direction

J3 = −
2ω2v

κc2
(46)

has a negative numerical value. So the flow of the distributed
medium that fills the space is directed opposite to the orbital
motion. In other words, according to the theory, the orbiting
body should meet a counter-flow by the medium: a “relativ-
istic braking” should be expected in orbital motions. Because
the orbiting bodies, e. g. the stars, the planets and the satel-
lites, show no such orbital braking, we propose a mech-
anism that refurbishes the braking energy of the medium
into another sort of energy — heat or radiations, for instance.

This conclusion finds verification in recent theoretical
research which, by means of General Relativity, indicates
that stars produce energy due to the background space non-
holonomity [8, 9]. It is shown in papers [8, 9], that General
Relativity, in common with topology, predicts that the most
probable configuration of the background space of the Uni-
verse is globally non-holonomic. The global anisotropic ef-
fect is expected to manifest as the anisotropy of the Cosmic
Microwave Background Radiation and the anisotropy of the
observable velocity of light. Moreover, if the global non-
holonomic background is perturbed by a local rotation or os-
cillation (local non-holonomic fields), the background field
produces energy in order to compensate for the perturbation
in it. Such an energy producing mechanism is expected to be
operating in stars, in the process of transfer of radiant energy
from the central region to the surface, which has verification
in the data of observational astrophysics [9].

From the standpoint of our theory herein, the aforemen-
tioned mechanism producing stellar energy [8, 9] is due to
a number of factors that build the background space non-
holonomity field in stars, not only the globally non-holo-
nomic field of the Universe. By our theory, the substantive
distribution is also connected to the space non-holonomity
so that the braking energy of the medium is related to the
space non-holonomity field. So a star, being in orbit in the
Galaxy and the group of galaxies, meets the non-holonomity
fields produced by the rotations of the Galactic space, the
Local Group of galaxies, etc. Then the braking energy of
the medium that fills the spaces (the same as for the energy
of the space non-holonomic field) transforms into heat and
radiations within the star by the stellar energy mechanism as
shown in [8, 9]. In other words, a star “absorbs” the energy
of the non-holonomity fields of the spaces wherein it is
orbiting, then transforms the energy into heat and radiations.

Employing this mechanism in an Earth-bound laboratory,
we can obtain a new source of energy due to the fact that
the Earth orbits in the non-holonomic fields of the space.

Third problem. A relative variation of the observable vel-
ocity of light in the z-direction we have obtained in [1] is

Δż

c
= 2×10−4 sin 2 ω̃τ , (47)

where ω̃=ω
(
1+ v

c

)
, whilst given an Earth-bound labora-

tory the space rotation thereof is the sum of the Earth’s
rotations around the Sun and around the centre of the Galaxy.
We see therefore, that we have a relative variation Δż

c 6=0 of
the observable velocity of light only if both ω 6=0 and v 6=0.
Hence the predicted anisotropy of the observable velocity of
light depends on the interaction of two fields of non-holo-
nomity that are represented in the laboratory space (within
the framework of the considered problem statement).

The same is true for the flow of matter distributed
throughout the space (46): J3 6=0 only if both ω 6=0 and
v 6=0. Thus the energy produced in a star due to the back-
ground space non-holonomity should be dependent not only
on the absolute value of the non-holonomity (as the sum of
all acting non-holonomic fields), but also on the interaction
between the non-holonomic fields.
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Many Worlds interpretation of Quantum Mechanics can be related to a General Con-
servation Principle in the framework of the so called Open Quantum Relativity.
Specifically, conservation laws in phase space of physical systems (e. g. minisuper-
space) give rise to natural selection rules by which it is possible to discriminate among
physical and unphysical solutions which, in the specific case of Quantum Cosmology,
can be interpreted as physical and unphysical universes. We work out several examples
by which the role of conservation laws is prominent in achieving the solutions and
their interpretation.

1 Introduction

The issue to achieve a unified field theory cannot overcome
to take into account the role and meaning of conservation
laws and dynamical symmetries which have always had a
fundamental role in physics. From a mathematical view-
point, their existence allows to “reduce” the dynamics and
then to obtain first integrals of motion, which often allow the
exact solution of the problem of motion. Noether theorem is
a prominent result in this sense, since it establishes a deep
link between conservation laws and symmetries. Moreover,
conservation laws can play a deep role in the definition of
physical theories and, in particular, to define space-times
which are of physical interest. The underlying philosophy is
the fact that the violation of conservation laws (and then the
symmetry breaking) could be nothing else but an artificial
tool introduced in contemporary physics in order to solve
phenomenologically some puzzles and problems, while ef-
fective conservation laws are never violated [1]. The absolu-
te validity of conservation laws, instead, allows the solution
of a wide variety of phenomena ranging from entanglement
of physical systems [2], to the rotation curves of spiral gal-
axies [4]. Such results do not come from some a priori
request of the theory, but is derived from the existence of
a General Conservation Law (in higher dimensional space-
time) where no violation is allowed [5]. This approach natur-
ally leads to a dynamical unification scheme (the so called
Open Quantum Relativity [1]) which can be, as a minimal
extension, formulated in 5D [6]. In this context, it is worth
stressing the deep relations among symmetries and first in-
tegrals of motion, conservation laws with the number and
dimensionality of configuration spaces. In fact, phenomena,
which in standard physics appear as due to symmetry break-
ings can be encompassed in a multi-space formulation as
previously shown by Smarandache [7, 8]. On the other hand,
the need of a multi-space formulation of the theory gives rise

to a direct application of the “Many Worlds” Interpretation
of Quantum Mechanics [9, 10], in the sense that multi-
spaces are nothing else but many worlds in the framework
of Quantum Cosmology [11]. This is the argument of this
paper: we want to show that configuration spaces derived
from the request of integrability of the dynamical systems
(and then from the presence of conservation laws) are phys-
ical universes, (i. e. observable universes) where cosmolo-
gical parameters can be observed. On the other hand, if
conservation laws are not present, in universes which come
out in a Many Worlds interpretation are “unphysical” that
is, it is not possible to label them by a set of observable
cosmological parameters (technically they are “instanton-
solutions”). In Sect. 2, we develop mathematical considera-
tions on conservation laws showing how the presence of
symmetries allows the integration of the dynamical systems,
which means that the phase-space (and general solution)
can be “split” in a multi-space of “integrated” components.
Sect. 3 is devoted to the discussion of Many Worlds interpre-
tation of Quantum Cosmology and, in particular, to the fact
that multi-spaces related to the phase-space of conservation
laws can be interpreted as “minisuperspaces” thanks to the
Hartle criterion. Many Worlds-solutions from conservation
laws are obtained in Sect. 4 by integrating the Wheeler-
DeWitt (WDW) equation of Quantum Cosmology. Conclu-
sions are drawn in Sect. 5.

2 Conservation laws and multi-spaces

Before considering multi-spaces and how they can be inter-
preted as the Many Worlds of Quantum Cosmology, let us
discuss the reduction problem of dynamics connected sym-
metries and conservation laws. Our issue is to show that
the total phase-space of a given dynamical system can be
split in many subspaces, each of them related to a specific
conserved quantity. As a general remark, it is possible to
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show that if the Lie derivative of a given geometric quantity
(e. g. vector, tensor, differential form) is zero, such a quantity
is conserved. This property is covariant and specifies the
number of dimensions and the nature of configuration space
(and then of the phase-space) where the given dynamical
system is defined. Furthermore, the existence of conserved
quantities always implies a reduction of dynamics which
means that the order of equations of motion is reduced thanks
to the existence of first integrals. Before considering specific
systems, let us remind some properties of the Lie derivative
and how conservation laws are related to it. Let LX be the
Lie derivative

(LX ω) ξ =
d

dt
ω (gt∗ ξ) , (1)

where ω is a differential form of Rn defined on the vector
field ξ, gt∗ is the differential of the phase flux {gt} given
by the vector field X on a differential manifold M. The
discussion can be specified by considering a Lagrangian L
which is a function defined on the tangent space of config-
urations TQ≡{qi, q̇i}, that is L : TQ→<. In this case, the
vector field X is

X = αi(q)
∂

∂qi
+ α̇i(q)

∂

∂q̇i
, (2)

where the dot denotes the derivative with respect to t, and
we have

LXL = XL = αi (q)
∂L

∂qi
+ α̇i (q)

∂L

∂q̇i
. (3)

It is important to note that t is simply a parameter which
specifies the evolution of the system. The condition

LXL = 0 (4)

implies that the phase flux is conserved along X: this means
that a constant of motion exists for L and a conservation law
is associated to the vector X . In fact, by taking into account
the Euler-Lagrange equations, it is easy to show that

d

dt

(

αi
∂L

∂q̇i

)

= LXL . (5)

If (4) holds, the relation Σ0=α
i ∂L

∂q̇i
identifies a cons-

tant of motion. Alternatively, using a generalized differential

for the Lagrangian L, the Cartan one–form, θL ≡
∂L

∂q̇i
dqi

and defining the inner derivative iXθL=〈θL, X〉, we get

iXθL = Σ0 (6)

if, again, condition (4) holds. This representation identifies
cyclic variables. Using a point transformation on vector field
(2), it is possible to get

X̃ = (iXdQ
k)

∂

∂Qk
+

[
d

dt
(iXdQ

k)

]
∂

∂Q̇k
. (7)

From now on, Lagrangians and vector fields transformed
by the non–degenerate transformation

Qi = Qi(q) , Q̇i(q) =
∂Qi

∂q j
q̇ j (8)

will be denoted by a tilde. If X is a symmetry for the
Lagrangian L, also X̃ is a symmetry for the Lagrangian L̃
giving rise to a conserved quantity, thus it is always possible
to choose a coordinate transformation so that

iXdQ
1 = 1 , iXdQ

i = 0 , i 6= 1 , (9)

and then

X̃ =
∂

∂Q1
,

∂L̃

∂Q1
= 0 . (10)

It is evident that Q1 is a cyclic coordinate because dyn-
amics can be reduced. Specifically, the “reduction” is con-
nected to the existence of the second of (10). However, the
change of coordinates is not unique and an opportune choice
of coordinates is always important. Furthermore, it is pos-
sible that more symmetries are existent. In this case more
cyclic variables must exist. In general, a reduction procedure
by cyclic coordinates can be achieved in three steps: (i) we
choose a symmetry and obtain new coordinates as above
and after this first reduction, we get a new Lagrangian L̃
with a cyclic coordinate; (ii) we search for new symmetries
in this new space and iterate the reduction technique until
it is possible; (iii) the process stops if we select a pure
kinetic Lagrangian where all coordinates are cyclic. In such
a case, the dynamical system is completely integrable and
integration can be achieved along every coordinate of con-
figuration space (or every generalized coordinate-conjugate
momentum couple of phase space). In this case, the total
phase-space is split in subspaces, each one labelled by a
conserved quantity. Technically, every symmetry selects a
constant conjugate momentum since, by the Euler–Lagrange
equations we get

∂L̃

∂Qi
= 0⇐⇒

∂L̃

∂Q̇i
= Σi , (11)

and the existence of a constant conjugate momentum means
that a cyclic variable (a symmetry) exists.

However, The Lagrangian L=L(qi, q̇ j) has to be non-
degenerate, which means that the Hessian determinant has
to be non-zero.

From the Lagrangian formalism, we can pass to the Ha-
miltonian one through the Legendre transformation

H = πj q̇
j − L(q j , q̇ j) , πj =

∂L

∂q̇ j
, (12)

defining, respectively, the Hamiltonian function and the con-
jugate momenta. In the Hamiltonian formalism, the conserv-
ation laws are obtained when

[
Σj ,H

]
=0, 16 j6m This

is the relation for conserved momenta and, in order to obtain
a symmetry, the Hamilton function has to satisfy the relation
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LΓH = 0 , where the vector Γ is defined by

Γ = q̇ i
∂

∂qi
+ q̈ i

∂

∂q̇i
. (13)

Let us now go to the specific formalism of Quantum
Mechanics which we will use for the following Quantum
Cosmology considerations. By the Dirac canonical quanti-
zation procedure, we have

πj −→ π̂j = −i∂j , H −→ Ĥ (q j ,−i∂q j ) . (14)

If |Ψ〉 is a state of the system (i. e. its wave function),
dynamics is given by the Schrödinger eigenvalue equation

Ĥ |Ψ〉 = E |Ψ〉 , (15)

where, obviously, the whole wave-function is given by
|φ(t, x)〉 = eiEt/h̄ |Ψ〉. If a symmetry exists, the reduction
procedure outlined above can be applied and then, from (11)
and (12), we get

π1 ≡
∂L

∂Q̇1
= iX1θL = Σ1 ,

π2 ≡
∂L

∂Q̇2
= iX2θL = Σ2 , (16)

. . . . . . . . . ,

depending on the number of symmetry vectors. After Dirac
quantization, we get

−i∂1|Ψ〉 = Σ1|Ψ〉, −i∂2|Ψ〉 = Σ2|Ψ〉, . . . (17)

which are nothing else but translations along the Qj axis
singled out by the corresponding symmetry. Eqs. (17) can
be immediately integrated and, being Σj real constants, we
obtain oscillatory behaviors for |Ψ〉 in the directions of sym-
metries, i. e.

|Ψ〉 =
m∑

j=1

eiΣjQ
j

|χ(Ql)〉 , m < l 6 n , (18)

where m is the number of symmetries, l are the directions
where symmetries do not exist and n is the number of dim-
ensions of configuration space. Vice-versa, dynamics given
by (15) can be reduced by (17) if, and only if, it is possible to
define constant conjugate momenta as in (16), i.e. oscillatory
behaviors of a subset of solutions |Ψ〉 exist as a consequen-
ce of the fact that symmetries are present in the dynamics.
The m symmetries give first integrals of motion. In one
and two–dimensional configuration spaces, the existence of
a symmetry allows the complete solution of the problem.
Therefore, if m=n, the problem is completely solvable and
a symmetry exists for every variable of configuration space.
The reduction procedure of dynamics, connected to the exist-
ence of symmetries, allows to select a subset of the general
solution of equations of motion, where oscillatory behaviors

of the wave functions are found. In other words, symmetries
select exact solutions and reduce dynamics. In these cases,
the general solution of a dynamical system can be split in a
combination of functions each of them depending on a given
variable. As a corollary, a Lagrangian (or a Hamiltonian)
where only kinetic terms are present gives always rise to
a full integrable dynamics. The total phase-space M of the
system, thanks to conservation laws, can be split in the ten-
sor product of phase-spaces (multi-spaces) assigned by con-
served momenta, i. e. {qi, πi}→{Qi,Σi} , and then M=
=Πni=1{Qi,

⊗
Σi}. As we will see, this feature is relevant

in minisuperspace Quantum Cosmology.

3 The “many-worlds” interpretation of Quantum
Mechanics and the role of conservation laws

The above considerations acquire a fundamental role in
Minisuperspace Quantum Cosmology since, as we will see,
Conservation Laws give rise to an approach by which it is
possible to “select” physical universes. Quantum Cosmology
is one of the results of the efforts of last thirty years directed
to the quantization of gravity [12]. The aim has been to
obtain a scheme in which gravity is treated on the same
ground of the other interaction of Nature. Such an approach
(not a coherent theory yet) is the canonical quantization
of gravity. In order to test the theoretical results, Planck’s
scales, which cannot be reached by the current physics, have
to be considered, so the cosmology is the most reasonable
area for the application of the observable predictions of
quantum gravity. More properly, Quantum Cosmology is the
quantization of dynamical systems which are “universes”. In
this context, supposed the Universe as a whole (the ensemble
of all the possible universes), it has a quantum mechanical
nature and that an observable universe is only a limit concept
valid in particular regions of a manifold (superspace) com-
posed by all the possible space-like 3-geometries and local
configurations of the matter fields. The task of Quantum
Cosmology is to relate all the measurable quantities of the
observable universe∗ to the assigned boundary conditions for
a wave function in the superspace. This wave function has
to be connected to the probability to obtain typical universes
(even if, in the standard approach, it is not a proper probabili-
ty amplitude since a Hilbert space does not exist in the cano-
nical formulation of quantum gravity) [11]. Quantum Cos-
mology has to solve, in principle, the problem of the initial
conditions of the standard cosmology: i.e. it should explain
the observed universe, specifying the physical meaning of
the boundary conditions of the superspace wave function.
In other words, the main issue of quantum cosmology is
to search for boundary conditions in agreement with the

∗An operative definition of “observable universe” could be a universe
where cosmological parameters as the Hubble one H0, the deceleration
parameter q0, the density parameters ΩM , ΩΛ, Ωk and the age t0 can be
inferred by observations [3].
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astronomical observations and these conditions have to be
contained in the wave function of the universe |Ψ〉. The
dynamical behavior of |Ψ〉 in the superspace is described by
the Wheeler-DeWitt (WDW) equation [12] that is a second
order functional differential equation hard to handle, because
it has infinite degrees of freedom. Usually attention has
been concentrated on finite dimensional models in which the
metrics and the matter fields are restricted to particular forms
(minisuperspace models), like homogeneous and isotropic
spacetimes. With these choices, the WDW equation becomes
a second order partial differential equation which, possibly,
can be exactly integrated. However, by definition, there is no
rest outside of the Universe in cosmology, so that boundary
conditions must be considered as a fundamental law of phys-
ics [11]. Moreover, not only the conceptual difficulties, but
also the mathematical ones, make Quantum Cosmology hard
to handle. For example, the superspace of geometrodynamics
[13] has infinite degrees of freedom so that it is technically
impossible to integrate the full infinite dimensional WDW
equation. Besides, a Hilbert space of states describing the
universe is not available [12]. Finally, it is not well establish-
ed how to interpret the solutions of WDW equation in the
framework of probability theory. Despite these still unsolved
shortcomings, several positive results have been obtained
and Quantum Cosmology has become a sort of paradigm
in theoretical physics researches. For example the infinite-
dimensional superspace can be restricted to opportune finite-
dimensional configuration spaces called minisuperspaces. In
this case, the above mathematical difficulties can be avoided
and the WDW equation can be integrated. The so called
no boundary condition by Harte and Hawking [14] and the
tunneling from nothing by Vilenkin [15] give reasonable
laws for initial conditions from which our observable uni-
verse could be started. The Hartle criterion [11] is an inter-
pretative scheme for the solutions of the WDW equation.
Hartle proposed to look for peaks of the wave function of
the universe: if it is strongly peaked, we have correlations
among the geometrical and matter degrees of freedom; if
it is not peaked, correlations are lost. In the first case, the
emergence of classical relativistic trajectories (i.e. universes)
is expected. The analogy to the quantum mechanics is
immediate. If we have a potential barrier and a wave func-
tion, solution of the Schrödinger equation, we have an os-
cillatory regime upon and outside the barrier while we
have a decreasing exponential behavior under the barrier.
The situation is analogous in Quantum Cosmology: now
potential barrier has to be replaced by the superpotential
U(hij , ϕ), where hij are the components of the three–metric
of geometrodynamics and ϕ is a generic scalar field describ-
ing the matter content. More precisely, the wave function of
the universe can be written as

Ψ
[
hij(x), φ(x)

]
∼eim

2
PS , (19)

where mp is the Planck mass and

S≡S0+m
−2
P S1+O(m

−4
P ) (20)

is the action which can be expanded. We have to note that
there is no normalization factor due to the lack of a proba-
bilistic interpretative full scheme. Inserting S into the WDW
equation and equating similar power terms of mp, one ob-
tains the Hamilton-Jacobi equation for S0. Similarly, one
gets equations for S1, S2 . . . , which can be solved consi-
dering results of previous orders giving rise to the higher
order perturbation theory. We need only S0 to recover the
semi-classical limit of Quantum Cosmology [10]. If S0 is a
real number, we get oscillating WKB modes and the Hartle
criterion is recovered since |Ψ〉 is peaked on a phase-space
region defined by

πij = m2
P

δS0
δhij

, πϕ = m2
P

δS0
δϕ

, (21)

where πij and πϕ are classical momenta conjugates to hij

and ϕ. It is worth stressing, at this point, that such a momenta
are nothing else but Conservation Laws. The semi-classical
region of superspace, where Ψ has an oscillating structure, is
the Lorentz one otherwise it is Euclidean∗. In the latter case,
we have S= iI and

Ψ∼ e−m
2
P I , (22)

where I is the action for the Euclidean solutions of classical
field equations (istantons). This scheme, at least at a semi-
classical level, solves the problem of initial conditions. Given
an action S0, Eqs. (21) imply n free parameters (one for each
dimension of the configuration space Q ≡ {hij , ϕ}) and then
n first integrals of motion exactly as in the scheme proposed
in the previous section. However the general solution of the
field equations involves 2n − 1 parameters (one for each
Hamilton equation of motion except the energy constraint).
Consequently, the wave function is peaked on a subset of the
general solution. In this sense, the boundary conditions on
the wave function imply initial conditions for the classical
solutions. In other words, the issue is searching for some
general method by which selecting such constants of motion
related to the emergence of classical trajectories without
arbitrarily choosing regions of the phase-space where mo-
menta are conserved. In this sense, there is a deep connection
between the conservation laws and the structure of the wave
function of the universe. Using the results of the previous
section (see Eq. 18), the oscillatory regime, and then the
correlation among the variables in the framework of the
Hartle criterion, is guaranteed only if conservation laws are
present into dynamics. In this context, if conservation laws
are absolutely valid, the above reduction procedure gives
rise to subsets of the infinite dimensional general solution of

∗It is important to note that we are using both symbols |Ψ〉 and Ψ
depending on the interpretation which we want to give to the wave function.
In the first case, the wave function is considered a “quantum-state”, in the
second one, it has a semi-classical interpretation.
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the WDW equation where oscillating behaviors are recover-
ed. Viceversa, the Hartle criterion is always connected to the
presence of a conservation law and then to the emergence of
classical trajectories which are observable universes where
cosmological observations are possible. Then the above re-
sult can be given in the following way:

In minisuperspace quantum cosmology, the existence
of conservation laws yields a reduction procedure of
dynamics which allows to find out oscillatory behav-
iors for the general solution of WDW equation. Vice-
versa, if a subset of the solution of WDW equation has
an oscillatory behavior, conserved momenta have to
exist and conservation laws are present. If a conserv-
ation law exists for every configuration variable, the
dynamical system is completely integrable and the ge-
neral solution of WDW equation is a superposition
of oscillatory behaviors. In other words, conservation
laws allow and select observable universes.

On the other hand, if conservation laws are not valid the
WDW multi-space solution give rise to non-observable uni-
verses (instanton solutions).

4 Many worlds from conservation laws

In order to give concrete examples of the above results,
we can show how, given a generic theory of gravity, it is
possible to work out minisuperspace cosmological models
where observable universes (classical trajectories) are ob-
tained thanks to the existence of conserved quantities. We
shall take into account the most general action in which
gravity is nonminimally coupled to a scalar field:

A=

∫

M

d4x
√
−g

[

F (ϕ)R+
1

2
gμνϕ;μϕ;ν−V (ϕ)+Lm

]

(23)

where the form and the role of V (ϕ) are still general and Lm
represents the standard fluid matter content of the theory.
This effective action comes out in the framework of the
Open Quantum Relativity [1, 6] a dynamical theory in which,
asking for a General Conservation Principle [5], the unifica-
tion of different interactions is achieved and several short-
comings of modern physics are overcome (see [1] and ref-
erences therein). The state equation of fluid matter is p=
=(γ−1)ρ and 16 γ6 2 where p and ρ are, respectively,
the ordinary pressure and density. Now we have all the ingre-
dients to develop a scalar-tensor gravity quantum cosmology.
Using the transformations:

ϕ = e−ϕ, F (ϕ) =
1

8
e−2ϕ, V (ϕ) = U(ϕ)e−2ϕ, (24)

the action (23) can be recast in the form

A =

∫
d4x

√
−g
{
exp
[
−2ϕ

][
R+ 4gμνϕ;μϕ; ν +

−U(ϕ)
]
+ Lm

}
,

(25)

always using Planck units 8πG= c=1. Let us now take
into account a Friedman, Robertson, Walker (FRW) metric
ds2= dt2− a2(t)dΩ23, where dΩ23 is the 3–dimensional
element of the spacelike manifold. With this assumption,
the configuration space is Q≡{a, ϕ} and the tangent space
is TQ≡{a, ȧ, ϕ, ϕ̇}. This is our minisuperspace. Clearly
p= p(a) and ρ= ρ(a). Substituting the FRW metric and
integrating by parts, the Lagrangian (25) becomes point-
like, that is:

L =
1

8
a3e−2ϕ

[

6

(
ȧ

a

)2
− 12 ϕ̇

(
ȧ

a

)

− 6
k

a2
+

+4 ϕ̇2 − 8U(ϕ)

]

+ a3Lm .

(26)

At this point, it is worth noting that the scale–factor
duality symmetry arises if the transformation of the scale
factor of a homogeneous and isotropic space-time metric,
a(t)→ a−1(−t), leaves the model invariant, taking into ac-
count also the form of the potential U .

Provided the transformations

ψ = ϕ−
3

2
ln a , Z = ln a , (27)

the Lagrangian (26) becomes:

L = e−2ψ
[
4ψ̇2−3Ż2−6ke−2Z−8W

]
+De3(1−γ)Z (28)

where the potential W (ψ,Z), thanks to the transformations
(27), is depending on both the variables of the minisuper-
space. In the new variables, the duality invariance has be-
come a parity invariance since Z and −Z are both solutions
of dynamics. The emergence of this feature is related to
the presence of nonminimal coupling; it allows the fact that
several solutions can be extended for t→−∞ without sin-
gularities [3]. Another important consideration is connected
to the role of perfect fluid matter. It introduces two further
parameters which are D (related to the bulk of matter) and
γ (related to the type of matter which can be e.g. radiation
γ = 4/3 or dust γ = 1). We shall see below that they directly
determine the form of cosmological solutions. Two general
forms of potential W preserving the duality symmetry

W (Z,ψ) =
D

4
e−3γZe2ψ , W (Z,ψ) = Λ , (29)

where Λ=const. These are all the ingredient we need in
order to construct our minisuperspace quantum cosmology.
Let us start with a simple but extremely didactic example of
the above effective action (25) which is

A =

∫
d4x

√
−g e−2ϕ

[
R+ 4(∂ϕ)2 − Λ

]
, (30)

where D= k=0 and W =Λ. This example is useful to
show, as we shall see below, the way in which the full theory
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works. The Lagrangian (28) becomes

L = −3e−2ψŻ2 + 4ψ̇2e−2ψ − 2Λe−2ψ, (31)

that is cyclic in Z. Due to the considerations in previous
section, we have to derive a conserved quantity, relatively to
the variable Z, and then an oscillatory behavior for the wave
function of the universe Ψ. The Legendre transformation for
the conjugate momenta gives

πZ =
∂L

∂Ż
= −6Że−2ψ, πψ =

∂L

∂ψ̇
= 8ψ̇e−2ψ, (32)

and the Hamitonian isH=πZŻ +πψψ̇−L. From Dirac ca-
nonical quantization rules, it is possible to write πZ→−i∂Z
and πψ→−i∂ψ , and then the WDW equation is

[
1

12
∂2Z −

1

16
∂2ψ + 2Λe

−4ψ

]

Ψ(Z,ψ) = 0 , (33)

where a simple factor ordering choice is done [11]. This
is a second order partial differential equation which can
be solved by separation of variables Ψ(Z,ψ)=A(Z)B(ψ)
from which Eq. (33) can be split into two ordinary differen-
tial equations

d2B(ψ)

dψ2
−
(
32Λe−4ψ + 16E

)
B(ψ) = 0 , (34)

d2A(z)

dz2
= 12EA(z) , (35)

where E is a arbitrary constant. For E> 0, the general solu-
tion of the WDW equation is

Ψ(Z,ψ) ∝ exp

(

±

√
3

2
Z

)

×

×

[

c0 ∓
1

8
√
2Λ
exp

(
±4
√
2Λ e−2ψ

)]

×

× exp
[
ψ ∓ 2

√
2Λ e−2ψ

]
.

(36)

For E< 0, Eq. (35) is a harmonic oscillator whose solu-
tions are A(Z)∝± sin(mZ) (we have put |E|=m2). In
this case the momentum πZ =m is a constant of motion.
Eq. (34) is solvable in terms of modified Bessel functions
and the general solution of Eq. (33) is

Ψ(Z,ψ) ∝ ± sin(mZ)K im
2Λ

(√
2Λ e−2ψ

)
; (37)

with an evident oscillatory behavior. Finally, in the case
E=0, the solution is

Ψ(Z,ψ) ∝ ZK0

(√
2Λ e−2ψ

)
, (38)

where K0 is the modified Bessel function of zero order. The
absence of a positive defined scalar product in the super-
space prevents the existence of a Hilbert space for the states

of the WDW equation; i. e. we cannot apply the full probabi-
lity interpretation to the squared modulus of the wave func-
tion of the universe. This is the reason why we have to
omit the normalization constants in front of the solutions
(36), (37), (38). Various suggestions have been given in
literature to interpret Ψ [11], although starting from different
points of view, all these different interpretations arrive to the
conclusion that, at least in the semiclassical limit, a notion
of measure can be introduced considering |Ψ|2. As we said
above, the strong peaks of |Ψ|2 (oscillatory behaviors) in-
dicate classical correlations among the dynamical variables,
whereas weak variations of |Ψ|2 mean the absence of corre-
lations [11]. In fact the presence of strong amplitude peaks
of the wave function seems to be the common indicator of
where the classical (in principle observable) universes enucl-
eates in its configuration space. The classical limit of quan-
tum cosmology can be recovered in the oscillation regime
with great phase values of Ψ: in this region the wave func-
tion is strongly peaked on first integrals of motion related to
conservation laws. In the case presented here, the solutions
(36), (37), (38) give information on the nature and the prop-
erties of classical cosmological behavior: for the vacuum
state, E = 0, we have

Ψ ∼ ln a
√
π eψ exp

(
−
√
2Λ e−2ψ

)
→ 0 , (39)

for ψ → −∞ and
Ψ ∼ 2ψ ln a , (40)

for ψ→+∞. So |Ψ|2 is exponentially small for ψ6 0, while

it increases for great ψ. This fact tells us that is most pro-
bable a realization of a classical universe for great field
configurations (for example see the prescriptions for chaotic
inflation where the scalar field has to start with a mass of
a few Planck masses [16]). Another feature which emerges
from (36) and (37) is the following: as Z = ln a, Ψ can
be considered a superposition of states Ψ(a) with states
Ψ(a−1), that is the wave function of the universe (and also
the WDW equation) contains the scale factor duality.
Furthermore, using the first integrals of motion ( i.e the ca-
nonical momenta related to conservation laws), we get the
classical solutions

a(t) = a0

[
cosλτ + sinλτ

cosλτ − sinλτ

]±
√
3/3

, (41)

ϕ(t) =
1

4
ln

[
λ2

k cos2 2λτ

]

±

±

√
3

2
ln

∣
∣
∣
∣
cosλτ + sinλτ

cosλτ − sinλτ

∣
∣
∣
∣+ ϕ0 ,

(42)

and

a(t) = a0 exp

{

∓
1
√
6
arctan

[
1− 2e4λτ

2e2λτ
√
1− e4λτ

]}

, (43)
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Λ k D γ Solution

6= 0 0 6= 0 1 CT

0 0 6= 0 1 CT

0 ±1 6= 0 4/3 I

6= 0 0 0 ∀γ CT

0 k > 0 6k ∀γ CT and I

Table 1: Main features of the solutions of WDW equation, Clas-
sical Trajectories (CT) and Instantons (I), for different values of
parameter Λ, k, D, γ.

ϕ(t) =
1

4
ln

[
2λ2e4λτ

k (1− e4λτ )

]

∓

∓
1
√
6
arctan

[
1− 2e4λτ

2e2λτ
√
1− e4λτ

]

+ ϕ0 ,

(44)

where τ =±t, k is an integration constant and λ2=Λ/2.
In (41), (42), we have Λ> 0, in (43), (44) Λ< 0. These
“universes” are “observable” since, starting from these solu-
tions, it is easy to construct all the cosmological parameters
H0, q0, ΩΛ, ΩM and t0. It is worth stressing that such
solutions are found only if conservation laws exists. It is
remarkable that the scalar factor duality emerges also for the
wave function of the universe in a quantum cosmology con-
text: that is the solutions for a have their dual counterpart
a−1 in the quantum state described by Ψ. This fact, in the
philosophy of quantum cosmology, allows to fix a law for
the initial conditions (e. g. Vilenkin tunneling from nothing
or Hartle-Hawking no-boundary conditions [11]) in which
the duality is a property of the configuration space where
our classical universe enucleates. This fact gives rise to cos-
mological solutions which can be consistently defined for
t→±∞.

The approach can be directly extended to the Lagrangian
(28), from which, by a Legendre transformation and a canon-
ical quantization, we get the WDW equation
[
1

2
∂2Z −

1

8
∂2ψ + 3ke

−2Z−4ψ +

+4We−4ψ −De3(1−γ)Z−2ψ
]

Ψ(Z,ψ) = 0 ,

(45)

whose solutions can be classified by the potential parameter
Λ, the spatial curvature k, the bulk of matter D, and the
adiabatic index γ. In the following Table, we give the main
features of WDW solutions.

5 Discussion and conclusions

In this paper, we have shown that the reduction procedure
of dynamics, related to conservation laws, can give rise to a

splitting of the phase-space of a physical system, by which
it is possible to achieve the complete solution of dynamics.
This result can be applied to Quantum Cosmology, leading
to the result that physical many worlds can be related to in-
tegrable multi-spaces of the above splitting. From a mathem-
atical viewpoint, the above statement deserves some further
discussion. As a first remark the general solution (18) can
be interpreted as a superposition of particular solutions (the
components in different directions) which result more solved
(i.e. separated in every direction of configuration space) if
more symmetries exist. Starting from such a consideration,
as a consequence, we can establish a sort of degree of solv-
ability, among the components of a given physical system,
connected to the number of symmetries: (i) a system is com-
pletely solvable and separable if a symmetry exists for every
direction of configuration space (in this case, the system
is fully integrable and the relations among its parts can
be exactly obtained); (ii) a system is partially solved and
separated if a symmetry exists for some directions of confi-
guration space (in this case, it is not always possible to get
a general solution); (iii) a system is not separated at all and
no symmetry exists, i. e. a necessary and sufficient condition
to get the general solution does not exist. In other words, we
could also obtain the general solution in the last case, but
not by a straightforward process of separation of variables
induced by the reduction procedure.

A further remark deserves the fact that the eigen-functions
of a given operator (in our case the Hamiltonian Ĥ) define
a Hilbert space. The above result works also in this case,
so that we can define, for a quantum system whose eigen-
functions are given by a set of commuting Hermitian opera-
tors, a Hilbert Space of General Conservation Laws (see also
[5]). The number of dimensions of such a space is given by
the components of superposition (18) while the number of
symmetries is given by the oscillatory components. Vice-
versa, the oscillatory components are always related to the
number of symmetries in the corresponding Hilbert space.
These results can be applied to minisuperspace quantum
cosmology. The role of symmetries and conservation laws
is prominent to interpret the information contained in the
wave function of the universe which is solution of the WDW
equation; in fact, the conserved momenta, related to some (or
all) of the physical variables defining the minisuperspace,
select oscillatory behaviors (i.e. strong peaks) in Ψ, which
means “correlation” among the physical variables and then
classical trajectories whose interpretation is that of “observ-
able universes”. In this sense, the so called Hartle criterion
of quantum cosmology becomes a sufficient and necessary
condition to select classical universes among all those which
are possible. Working out this approach, we obtain the wave
function of the universe Ψ depending on a set of physical
parameter which are D, the initial bulk of matter, k, the
spatial curvature constant, γ, the adiabatic index of perfect
fluid matter, Λ, the parameter of the interaction potential.
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The approach allows to recover several classes of interesting
cosmological behaviors as De Sitter-like-singularity free so-
lutions, power-law solutions, and pole-like solutions [3].

However, some points have to be considered in the in-
terpretation of the approach. The Hartle criterion works in
the context of an Everett-type interpretation of Quantum
Cosmology [9, 17] which assumes the idea that the universe
branches into a large number of copies of itself whenever
a measurement is made. This point of view is the so called
Many Worlds interpretation of Quantum Cosmology. Such
an interpretation is an approach which gives a formulation
of quantum mechanics designed to deal with correlations
internal to individual, isolated systems. The Hartle criterion
gives an operative interpretation of such correlations. In par-
ticular, if the wave function is strongly peaked in some
region of configuration space, the correlations which char-
acterize such a region can be, in principle, observed. On the
other hand, if the wave function is smooth in some region,
the correlations which characterize that region are precluded
to the observations (that is, the cosmological parameters as
H0 or ΩΛ cannot be neither calculated nor observed).

If the wave function is neither peaked nor smooth, no
predictions are possible from observations. In conclusion,
the analogy with standard quantum mechanics is straight-
forward. By considering the case in which the individual
system consists of a large number of identical subsystems,
one can derive, from the above interpretation, the usual pro-
babilistic interpretation of Quantum Mechanics for the sub-
systems [11, 10]. If a conservation law (or more than one)
is present for a given minisuperspace model, then strongly
peaked (oscillatory) subsets of the wave function of the uni-
verse are found. Viceversa, oscillatory parts of the wave
function can be always connected to conserved momenta
and then to symmetries.
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Data from a new experiment measuring the anisotropy of the one-way speed of
EM waves in a coaxial cable, gives the speed of light as 300,000±400±20km/s in
a measured direction RA=5.5±2 hrs, Dec=70±10◦S, is shown to be in excellent
agreement with the results from seven previous anisotropy experiments, particularly
those of Miller (1925/26), and even those of Michelson and Morley (1887). The Miller
gas-mode interferometer results, and those from the RF coaxial cable experiments
of Torr and Kolen (1983), De Witte (1991) and the new experiment all reveal the
presence of gravitational waves, as indicated by the last ± variations above, but
of a kind different from those supposedly predicted by General Relativity. Miller
repeated the Michelson-Morley 1887 gas-mode interferometer experiment and again
detected the anisotropy of the speed of light, primarily in the years 1925/1926
atop Mt.Wilson, California. The understanding of the operation of the Michelson
interferometer in gas-mode was only achieved in 2002 and involved a calibration
for the interferometer that necessarily involved Special Relativity effects and the
refractive index of the gas in the light paths. The results demonstrate the reality of
the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A
common misunderstanding is that the anisotropy of the speed of light is necessarily in
conflict with Special Relativity and Lorentz symmetry — this is explained. All eight
experiments and theory show that we have both anisotropy of the speed of light and
relativistic effects, and that a dynamical 3-space exists — that absolute motion through
that space has been repeatedly observed since 1887. These developments completely
change fundamental physics and our understanding of reality. “Modern” vacuum-mode
Michelson interferometers, particularly the long baseline terrestrial versions, are, by
design flaw, incapable of detecting the anisotropy effect and the gravitational waves.
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1 Introduction

Of fundamental importance to physics is whether the speed
of light is the same in all directions, as measured say in a
laboratory attached to the Earth. This is what is meant by
light speed anisotropy in the title of this paper. The prevail-
ing belief system in physics has it that the speed of light is
isotropic, that there is no preferred frame of reference, that
absolute motion has never been observed, and that 3-space
does not, and indeed cannot exist. This is the essence of Ein-
stein’s 1905 postulate that the speed of light is independent
of the choice of observer. This postulate has determined the
course of physics over the last 100 years.

Despite the enormous significance of this postulate there
has never been a direct experimental test, that is, in which the
one-way travel time of light in vacuum over a set distance
has been measured, and repeated for different directions. So
how could a science as fundamental and important as physics
permit such a key idea to go untested? And what are the
consequences for fundamental physics if indeed, as reported
herein and elsewhere, that the speed of light is anisotropic,
that a dynamical 3-space does exist? This would imply that
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if reality is essentially space and matter, with time tracking
process and change, then physics has completely missed the
existence of that space. If this is the case then this would
have to be the biggest blunder ever in the history of science,
more so because some physicists have independently detect-
ed that anisotropy. While herein we both summarise seven
previous detections of the anisotropy and report a new exper-
iment, the implications for fundamental physics have already
been substantially worked out. It leads to a new modelling
and comprehension of reality known as Process Physics [1].

The failure of mainstream physics to understand that the
speed of light is anisotropic, that a dynamical 3-space exists,
is caused by an ongoing failure to comprehend the operation
of the Michelson interferometer, and also by theoretical
physicists not understanding that the undisputed successes
of special relativity effects, and even Lorentz symmetry, do
not imply that the speed of light must be isotropic — this is
a mere abuse of logic, as explained later.

The Michelson interferometer is actually a complex in-
strument. The problem is that the anisotropy of the speed of
light affects its actual dimensions and hence its operation:
there are actual length contractions of its physical arms.
Because the anisotropy of the speed of light is so funda-
mental it is actually very subtle to design an effective experi-
ment because the sought for effect also affects the instrument
in more than one way. This subtlety has been overlooked
for some 100 years, until in 2002 the original data was
reanalysed using a relativistic theory for the calibration of
the interferometer [2].

The new understanding of the operation of the Michelson
interferometer is that it can only detect the light speed an-
isotropy when there is gas in the light paths, as there was
in the early experiments. Modern versions have removed
the gas and made the instrument totally unable to detect the
light speed anisotropy. Even in gas mode the interferometer
is a very insensitive device, being 2nd order in v/c and
further suppressed in sensitivity by the gas refractive index
dependency.

More direct than the Michelson interferometer, but still
not a direct measurement, is to measure the one-speed of
radio frequency (RF) electromagnetic waves in a coaxial
cable, for this permits electronic timing methods. This ap-
proach is 1st order in v/c, and independent of the refractive
index suppression effect. Nevertheless because it is one-way
clocks are required at both ends, as in the Torr and Kolen,
and De Witte experiments, and the required length of the
coaxial cable was determined, until now, by the stability of
atomic clocks over long durations.

The new one-way RF coaxial experiment reported herein
utilises a new timing technique that avoids the need for two
atomic clocks, by using a very special property of optical fib-
res, namely that the light speed in optical fibres is isotropic,
and is used for transmitting timing information, while in the
coaxial cables the RF speed is anisotropic, and is used as the

sensor. There is as yet no explanation for this optical fibre
effect, but it radically changes the technology for anisotropy
experiments, as well and at the same time that of gravitation-
al wave detectors. In the near future all-optical gravitational
wave detectors are possible in desk-top instruments. These
gravitational waves have very different properties from those
supposedly predicted from General Relativity, although that
appears to be caused by errors in that derivation.

As for gravitational waves, it has been realised now
that they were seen in the Miller, Torr and Kolen, and De
Witte experiments, as they are again observed in the new
experiment. Most amazing is that these wave effects also
appear to be present in the Michelson-Morley fringe shift
data from 1887, as the fringe shifts varied from day to day.
So Michelson and Morley should have reported that they
had discovered absolute motion, a preferred frame, and also
wave effects of that frame, that the speed of light has an
anisotropy that fluctuated over and above that caused by the
rotation of the Earth.

The first and very successful attempt to look for a pre-
ferred frame was by Michelson and Morley in 1887. They
did in fact detect the expected anisotropy at the level of
±8 km/s [3], but only according to Michelson’s Newtonian
calibration theory. However this result has essentially been
ignored ever since as they expected to detect an effect of at
least ±30 km/s, which is the orbital speed of the Earth about
the Sun. As Miller recognised the basic problem with the
Michelson interferometer is that the calibration of the inst-
rument was then clearly not correctly understood, and most
likely wrong [4]. Basically Michelson had used Newtonian
physics to calibrate his instrument, and of course we now
know that that is completely inappropriate as relativistic
effects play a critical role as the interferometer is a 2nd order
device (∼v2/c2 where v is the speed of the device relative
to a physical dynamical 3-space∗), and so various effects
at that order must be taken into account in determining the
calibration of the instrument, that is, what light speed aniso-
tropy corresponds to the observed fringe shifts. It was only in
2002 that the calibration of the Michelson interferometer was
finally determined by taking account of relativistic effects
[2]. One aspect of that was the discovery that only a Michel-
son interferometer in gas-mode could detect the light aniso-
tropy, as discussed below. As well the interferometer when
used in air is nearly a factor of 2000 less sensitive than that
according to the inappropriate Newtonian theory. This meant
that the Michelson and Morley anisotropy speed variation
was now around 330km/s on average, and as high as 400km/s
on some days. Miller was aware of this calibration problem,
and resorted to a brilliant indirect method, namely to observe
the fringe shifts over a period of a year, and to use the effect
of the Earth’s orbital speed upon the fringe shifts to arrive at

∗In Michelson’s era the idea was that v was the speed of light relative
to an ether, which itself filled space. This dualism has proven to be wrong.
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a calibration. The Earth’s orbital motion was clearly evident
in Miller’s data, and using this effect he obtained a light
speed anisotropy effect of some 200 km/s in a particular di-
rection. However even this method made assumptions which
are now known to be invalid, and correcting his earth-effect
calibration method we find that it agrees with the new rela-
tivistic and gas effects calibration, and both methods now
give a speed of near 400 km/s. This also then agrees with
the Michelson-Morley results. Major discoveries like that
of Miller must be reproduced by different experiments and
by different techniques. Most significantly there are in total
seven other experiments that confirm this Miller result, with
four being gas-mode Michelson interferometers using either
air, helium or a He/Ne mixture in the light path, and three
experiments that measure variations in the one-way speed of
EM waves travelling through a coaxial cable as the orienta-
tion of the cable is changed, with the latest being a high pre-
cision technique reported herein and in [5, 6]. This method
is 1st order in v/c, so it does not require relativistic effects
to be taken into account, as discussed later.

As the Michelson interferometer requires a gas to be
present in the light path in order to detect the anisotropy
it follows that vacuum interferometers, such as those in [7],
are simply inappropriate for the task, and it is surprising
that some attempts to detect the anisotropy in the speed
of light still use vacuum-mode Michelson interferometers,
some years after the 2002 discovery of the need for a gas in
the light path [2].

Despite the extensive data collected and analysed by
Miller after his fastidious testing and refinements to control
temperature effects and the like, and most importantly his
demonstration that the effects tracked sidereal time and not
solar time, the world of physics has, since publication of the
results by MIller in 1933, simply ignored this discovery. The
most plausible explanation for this situation is the ongoing
misunderstanding by many physicists, but certainly not all,
that any anisotropy in the speed of light must necessarily by
incompatible with Special Relativity (SR), with SR certainly
well confirmed experimentally. This is misunderstanding is
clarified. In fact Miller’s data can now be used to confirm
an important aspect of SR. Even so, ignoring the results of a
major experiment simply because they challenge a prevailing
belief system is not science — ignoring the Miller experiment
has stalled physics for some 70 years.

It is clear that the Miller experiment was highly success-
ful and highly significant, and we now know this because the
same results have been obtained by later experiments which
used different experimental techniques. The most significant
part of Miller’s rigorous experiment was that he showed
that the effect tracked sidereal time and not solar time —
this is the acid test which shows that the direction of the
anisotropy velocity vector is relative to the stars and not
to the position of the Sun. This difference is only some 4
minutes per day, but over a year amounts to a huge 24 hours

effect, and Miller saw that effect and extensively discussed
it in his paper. Similarly De Witte in his extensive 1991
coaxial cable experiment [9] also took data for 178 days to
again establish the sidereal time effect: over 178 days this
effect amounts to a shift in the phase of the signal through
some 12 hours! The sidereal effect has also been established
in the new coaxial cable experiment by the author from data
spanning some 200 days.

The interpretation that has emerged from the Miller and
related discoveries is that space exists, that it is an observ-
able and dynamical system, and that the Special Relativity
effects are caused by the absolute motion of quantum systems
through that space [1, 25]. This is essentially the Lorentz in-
terpretation of Special Relativity, and then the spacetime is
merely a mathematical construct. The new understanding has
lead to an explanation of why Lorentz symmetry manifests
despite there being a preferred frame, that is, a local frame in
which only therein is the speed of light isotropic. A minimal
theory for the dynamics of this space has been developed [1,
25] which has resulted in an explanation of numerous phe-
nomena, such as gravity as a quantum effect [25, 8], the so-
called “dark matter” effect, the black hole systematics, gravi-
tational light bending, gravitational lensing, and so [21–25].

The Miller data also revealed another major discovery
that Miller himself may not have understood, namely that
the anisotropy vector actually fluctuates form hour to hour
and day to day even when we remove the manifest effect of
the Earth’s rotation, for Miller may have interpreted this as
being caused by imperfections in his experiment. This means
that the flow of space past the Earth displays turbulence or a
wave effect: basically the Miller data has revealed what we
now call gravitational waves, although these are different to
the waves supposedly predicted by General Relativity. These
wave effects were also present in the Torr and Kolen [10]
first coaxial cable experiment at Utah University in 1981,
and were again manifest in the De Witte data from 1991.
Analysis of the De Witte data has shown that these waves
have a fractal structure [9]. The Flinders University Grav-
itational Waves Detector (also a coaxial cable experiment)
was constructed to investigate these waves effects. This sees
the wave effects detected by Miller, Torr and Kolen, and by
De Witte. The plan of this paper is to first outline the modern
understanding of how a gas-mode Michelson interferometer
actually operates, and the nature, accuracy and significance
of the Miller experiment. We also report the other seven
experiments that confirm the Miller discoveries, particularly
data from the new high-precision gravity wave detector that
detects not only a light speed anisotropy but also the wave
effects.

2 Special Relativity and the speed of light anisotropy

It is often assumed that the anisotropy of the speed of light
is inconsistent with Special Relativity, that only one or the
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other can be valid, that they are mutually incompatible. This
misunderstanding is very prevalent in the literature of phys-
ics, although this conceptual error has been explained [1].
The error is based upon a misunderstanding of how the
logic of theoretical physics works, namely the important
difference between an if statement, and an if and only if
statement. To see how this confusion has arisen we need to
recall the history of Special Relativity (SR). In 1905 Einstein
deduced the SR formalism by assuming, in part, that the
speed of light is invariant for all relatively moving observers,
although most importantly one must ask just how that speed
is defined or is to be measured. The SR formalism then
predicted numerous effects, which have been extensively
confirmed by experiments over the last 100 years. However
this Einstein derivation was an if statement, and not an if
and only if statement. For an if statement, that if A then B,
does not imply the truth of A if B is found to be true; only
an if and only if statement has that property, and Einstein
did not construct such an argument. What this means is that
the validity of the various SR effects does not imply that
the speed of light must be isotropic. This is actually implicit
in the SR formalism itself, for it permits one to use any
particular foliation of the 4-dimensional spacetime into a 3-
space and a 1-space (for time). Most importantly it does not
forbid that one particular foliation be actual. So to analyse
the data from gas-mode interferometer experiments we must
use the SR effects, and the fringe shifts reveal the preferred
frame, an actual 3-space, by revealing the anisotropic speed
of light, as Maxwell and Michelson had originally believed.

For “modern” resonant-cavity Michelson interferometer
experiments we predict no rotation-induced fringe shifts,
unless operated in gas-mode. Unfortunately in analysing the
data from the vacuum-mode experiments the consequent null
effect is misinterpreted, as in [7], to imply the absence of
a preferred direction, of absolute motion. But it is absolute
motion which causes the dynamical effects of length contrac-
tions, time dilations and other relativistic effects, in accord
with Lorentzian interpretation of relativistic effects.

The detection of absolute motion is not incompatible
with Lorentz symmetry; the contrary belief was postulated
by Einstein, and has persisted for over 100 years, since 1905.
So far the experimental evidence is that absolute motion and
Lorentz symmetry are real and valid phenomena; absolute
motion is motion presumably relative to some substructure to
space, whereas Lorentz symmetry parameterises dynamical
effects caused by the motion of systems through that sub-
structure. To check Lorentz symmetry we can use vacuum-
mode resonant-cavity interferometers, but using gas within
the resonant-cavities would enable these devices to detect
absolute motion with great precision. As well there are novel
wave phenomena that could also be studied, as discussed
herein and in [19, 20].

Motion through the structured space, it is argued, induces
actual dynamical time dilations and length contractions in

agreement with the Lorentz interpretation of special relati-
vistic effects. Then observers in uniform motion “through”
the space will, on measurement of the speed of light using
the special but misleading Einstein measurement protocol,
obtain always the same numerical value c. To see this expli-
citly consider how various observers P, P ′, . . . moving with
different speeds through space, measure the speed of light.
They each acquire a standard rod and an accompanying stan-
dardised clock. That means that these standard rods would
agree if they were brought together, and at rest with respect
to space they would all have length Δl0, and similarly for the
clocks. Observer P and accompanying rod are both moving
at speed vR relative to space, with the rod longitudinal to
that motion. P then measures the time ΔtR, with the clock
at end A of the rod, for a light pulse to travel from end A
to the other end B and back again to A. The light travels
at speed c relative to space. Let the time taken for the light
pulse to travel from A→B be tAB and from B→A be
tBA, as measured by a clock at rest with respect to space∗.
The length of the rod moving at speed vR is contracted to

ΔlR = Δl0

√

1−
v2R
c2
. (1)

In moving from A to B the light must travel an extra
distance because the end B travels a distance vRtAB in this
time, thus the total distance that must be traversed is

ctAB = ΔlR + vR tAB , (2)

similarly on returning from B to A the light must travel the
distance

ctBA = ΔlR − vR tBA . (3)

Hence the total travel time Δt0 is

Δt0 = tAB + tBA =
ΔlR
c− vR

+
ΔlR
c+ vR

= (4)

=
2Δl0

c

√

1−
v2R
c2

. (5)

Because of the time dilation effect for the moving clock

ΔtR = Δt0

√

1−
v2R
c2
. (6)

Then for the moving observer the speed of light is de-
fined as the distance the observer believes the light travelled
(2Δl0) divided by the travel time according to the accompa-
nying clock (ΔtR), namely 2Δl0/ΔtR = 2ΔlR/Δt0, from
above, which is thus the same speed as seen by an observer
at rest in the space, namely c. So the speed vR of the ob-
server through space is not revealed by this procedure, and
the observer is erroneously led to the conclusion that the
speed of light is always c. This follows from two or more

∗Not all clocks will behave in this same “ideal” manner.
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observers in manifest relative motion all obtaining the same
speed c by this procedure. Despite this failure this special
effect is actually the basis of the spacetime Einstein measu-
rement protocol. That this protocol is blind to the absolute
motion has led to enormous confusion within physics.

To be explicit the Einstein measurement protocol actual-
ly inadvertently uses this special effect by using the radar
method for assigning historical spacetime coordinates to an
event: the observer records the time of emission and recep-
tion of radar pulses (tr >te) travelling through space, and
then retrospectively assigns the time and distance of a distant
event B according to (ignoring directional information for
simplicity)

TB =
1

2

(
tr + te

)
, DB =

c

2

(
tr − te

)
, (7)

where each observer is now using the same numerical value
of c. The event B is then plotted as a point in an individual
geometrical construct by each observer, known as a space-
time record, with coordinates (DB , TB). This is no different
to an historian recording events according to some agreed
protocol. Unlike historians, who don’t confuse history books
with reality, physicists do so. We now show that because
of this protocol and the absolute motion dynamical effects,
observers will discover on comparing their historical records
of the same events that the expression

τ 2AB = T 2AB −
1

c2
D2
AB , (8)

is an invariant, where TAB = TA−TB andDAB = DA−DB
are the differences in times and distances assigned to events
A and B using the Einstein measurement protocol (7), so
long as both are sufficiently small compared with the scale
of inhomogeneities in the velocity field.

To confirm the invariant nature of the construct in (8) one
must pay careful attention to observational times as distinct
from protocol times and distances, and this must be done
separately for each observer. This can be tedious. We now
demonstrate this for the situation illustrated in Fig. 1.

By definition the speed of P ′ according to P is v′0=
=DB/TB and so v′R= v

′
0, where TB and DB are the proto-

col time and distance for event B for observer P according
to (7). Then using (8) P would find that

(
τPAB

)2
=T 2B −

− 1
c2
D2
B since both TA=0 andDA=0, and whence

(
τPAB

)2
=

=
(
1− v′2R

c2

)
T 2B = (t

′
B)

2 where the last equality follows from
the time dilation effect on the P ′ clock, since t′B is the time
of event B according to that clock. Then TB is also the time
that P ′ would compute for event B when correcting for the
time-dilation effect, as the speed v′R of P ′ through space is
observable by P ′. Then TB is the “common time” for event
B assigned by both observers. For P ′ we obtain directly, also
from (7) and (8), that

(
τP

′

AB

)2
= (T ′B)

2− 1
c2
(D′

B)
2 = (t′B)

2,
as D′

B = 0 and T ′B = t′B . Whence for this situation
(
τPAB

)2
=
(
τP

′

AB

)2
, (9)

A

P (v0 = 0)

B (t′B)

DDB

T

P ′(v′0)

te

TB

tr

γ

γ

Fig. 1: Here T −D is the spacetime construct (from the Einstein
measurement protocol) of a special observer P at rest wrt space, so
that v0=0. Observer P ′ is moving with speed v′0 as determined by
observer P , and therefore with speed v′R = v′0 wrt space. Two light
pulses are shown, each travelling at speed c wrt both P and space.
Event A is when the observers pass, and is also used to define zero
time for each for convenience.

and so the construction (8) is an invariant.
While so far we have only established the invariance of

the construct (8) when one of the observers is at rest in space,
it follows that for two observers P ′ and P ′′ both in absolute
motion it follows that they also agree on the invariance of
(8). This is easily seen by using the intermediate step of a
stationary observer P :

(
τP

′

AB

)2
=
(
τPAB

)2
=
(
τP

′′

AB

)2
. (10)

Hence the protocol and Lorentzian absolute motion ef-
fects result in the construction in (8) being indeed an invar-
iant in general. This is a remarkable and subtle result. For
Einstein this invariance was a fundamental assumption, but
here it is a derived result, but one which is nevertheless
deeply misleading. Explicitly indicating small quantities by
Δ prefixes, and on comparing records retrospectively, an
ensemble of nearby observers agree on the invariant

Δτ 2 = ΔT 2 −
1

c2
ΔD2, (11)

for any two nearby events. This implies that their individual
patches of spacetime records may be mapped one into the
other merely by a change of coordinates, and that collecti-
vely the spacetime patches of all may be represented by one
pseudo-Riemannian manifold, where the choice of coordina-
tes for this manifold is arbitrary, and we finally arrive at the
invariant

Δτ 2 = gμν(x)Δx
μΔxν , (12)

with xμ = {D1, D2, D3, T}. Eqn. (12) is invariant under the
Lorentz transformations

x′μ = Lμν x
ν , (13)
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Fig. 2: Schematic diagrams of the Michelson Interferometer, with beamsplitter/mirror at A and mirrors at B and C on arms from A, with
the arms of equal length L when at rest. D is a screen or detector. In (a) the interferometer is at rest in space. In (b) the interferometer is
moving with speed v relative to space in the direction indicated. Interference fringes are observed at the detector D. If the interferometer
is rotated in the plane through 90o, the roles of arms AC and AB are interchanged, and during the rotation shifts of the fringes are seen
in the case of absolute motion, but only if the apparatus operates in a gas. By counting fringe changes the speed v may be determined.

where, for example for relative motion in the x direction,
Lμν is specified by

x′ =
x− vt

√
1− v2/c2

,

y′ = y ,

z′ = z ,

t′ =
t− vx/c2
√
1− v2/c2

.

(14)

So absolute motion and special relativity effects, and
even Lorentz symmetry, are all compatible: a possible pre-
ferred frame is hidden by the Einstein measurement protocol.

So the experimental question is then whether or not a
supposed preferred frame actually exists or not — can it be
detected experimentally? The answer is that there are now
eight such consistent experiments. In Sect. 4.7 we generalise
the Dirac equation to take account of the coupling of the
spinor to an actual dynamical space. This reveals again that
relativistic effects are consistent with a preferred frame — an
actual space. Furthermore this leads to the first derivation
of gravity from a deeper theory — gravity turns out to be a
quantum matter wave effect.

3 Light speed anisotropy experiments

We now consider the various experiments from over more
than 100 years that have detected the anisotropy of the speed
of light, and so the existence of an actual dynamical space,
an observable preferred frame. As well the experiments, it
is now understood, showed that this frame is dynamical, it
exhibits time-dependent effects, and that these are “gravita-
tional waves”.

3.1 Michelson gas-mode interferometer

Let us first consider the new understanding of how the Mich-
elson interferometer works. This brilliant but very subtle

device was conceived by Michelson as a means to detect the
anisotropy of the speed of light, as was expected towards the
end of the 19th century. Michelson used Newtonian physics
to develop the theory and hence the calibration for his device.
However we now understand that this device detects 2nd
order effects in v/c to determine v, and so we must use rela-
tivistic effects. However the application and analysis of data
from various Michelson interferometer experiments using
a relativistic theory only occurred in 2002, some 97 years
after the development of Special Relativity by Einstein, and
some 115 years after the famous 1887 experiment. As a
consequence of the necessity of using relativistic effects it
was discovered in 2002 that the gas in the light paths plays a
critical role, and that we finally understand how to calibrate
the device, and we also discovered, some 76 years after the
1925/26 Miller experiment, what determines the calibration
constant that Miller had determined using the Earth’s rotation
speed about the Sun to set the calibration. This, as we discuss
later, has enabled us to now appreciate that gas-mode Mich-
elson interferometer experiments have confirmed the reality
of the Fitzgerald-Lorentz length contraction effect: in the
usual interpretation of Special Relativity this effect, and
others, is usually regarded as an observer dependent effect,
an illusion induced by the spacetime. But the experiments
are to the contrary showing that the length contraction effect
is an actual observer-independent dynamical effect, as Fitz-
gerald [27] and Lorentz had proposed [28].

The Michelson interferometer compares the change in
the difference between travel times, when the device is rotat-
ed, for two coherent beams of light that travel in orthogonal
directions between mirrors; the changing time difference
being indicated by the shift of the interference fringes during
the rotation. This effect is caused by the absolute motion
of the device through 3-space with speed v, and that the
speed of light is relative to that 3-space, and not relative to
the apparatus/observer. However to detect the speed of the
apparatus through that 3-space gas must be present in the
light paths for purely technical reasons. The post relativistic-
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effects theory for this device is remarkably simple. The rela-
tivistic Fitzgerald-Lorentz contraction effect causes the arm
AB parallel to the absolute velocity to be physically con-
tracted to length

L|| = L

√

1−
v2

c2
. (15)

The time tAB to travel AB is set by V tAB = L||+vtAB ,
while for BA by V tBA = L||−vtBA, where V = c/n is the
speed of light, with n the refractive index of the gas present
(we ignore here the Fresnel drag effect for simplicity, an
effect caused by the gas also being in absolute motion, see
[1]). For the total ABA travel time we then obtain

tABA = tAB + tBA =
2LV

V 2 − v2

√

1−
v2

c2
. (16)

For travel in the AC direction we have, from the Pyth-
agoras theorem for the right-angled triangle in Fig. 1 that
(V tAC)

2 = L2+(vtAC)
2 and that tCA = tAC . Then for the

total ACA travel time

tACA = tAC + tCA =
2L

√
V 2 − v2

. (17)

Then the difference in travel time is

Δt =
(n2 − 1)L

c

v2

c2
+ O

(
v4

c4

)

. (18)

after expanding in powers of v/c. This clearly shows that
the interferometer can only operate as a detector of absolute
motion when not in vacuum (n=1), namely when the light
passes through a gas, as in the early experiments (in transpa-
rent solids a more complex phenomenon occurs). A more
general analysis [1], including Fresnel drag, gives

Δt = k2
Lv2P
c3

cos
(
2(θ − ψ)

)
, (19)

where k2≈n(n2− 1), while neglect of the relativistic Fitz-
gerald-Lorentz contraction effect gives k2≈n3≈ 1 for
gases, which is essentially the Newtonian theory that Mich-
elson used.

However the above analysis does not correspond to how
the interferometer is actually operated. That analysis does
not actually predict fringe shifts for the field of view would
be uniformly illuminated, and the observed effect would be a
changing level of luminosity rather than fringe shifts. As Mi-
ller knew the mirrors must be made slightly non-orthogonal,
with the degree of non-orthogonality determining how many
fringe shifts were visible in the field of view. Miller exper-
imented with this effect to determine a comfortable number
of fringes: not too few and not too many. Hicks [29] deve-
loped a theory for this effect — however it is not necessary
to be aware of this analysis in using the interferometer: the
non-orthogonality reduces the symmetry of the device, and

Fig. 3: Miller’s interferometer with an effective arm length of
L= 32 m achieved by multiple reflections. Used by Miller on
Mt.Wilson to perform the 1925-1926 observations of absolute
motion. The steel arms weighed 1200 kilograms and floated in
a tank of 275 kilograms of Mercury. From Case Western Reserve
University Archives.

instead of having period of 180◦ the symmetry now has a
period of 360◦, so that to (19) we must add the extra term in

Δt = k2
Lv2P
c3

cos
(
2(θ − ψ)

)
+ a cos (θ − β) . (20)

Miller took this effect into account when analysing his
data. The effect is apparent in Fig. 5, and even more so in
the Michelson-Morley data in Fig. 4.

The interferometers are operated with the arms horizon-
tal, as shown by Miller’s interferometer in Fig. 3. Then
in (20) θ is the azimuth of one arm relative to the local
meridian, while ψ is the azimuth of the absolute motion
velocity projected onto the plane of the interferometer, with
projected component vP . Here the Fitzgerald-Lorentz con-
traction is a real dynamical effect of absolute motion, unlike
the Einstein spacetime view that it is merely a spacetime
perspective artifact, and whose magnitude depends on the
choice of observer. The instrument is operated by rotating at
a rate of one rotation over several minutes, and observing
the shift in the fringe pattern through a telescope during
the rotation. Then fringe shifts from six (Michelson and
Morley) or twenty (Miller) successive rotations are averaged
to improve the signal to noise ratio, and the average sidereal
time noted, giving the Michelson-Morley data in Fig. 4. or
the Miller data like that in Fig. 5. The form in (20) is then
fitted to such data by varying the parameters vP , ψ, a and
β, The data from rotations is sufficiently clear, as in Fig. 5,
that Miller could easily determine these parameters from a
graphical plot.

However Michelson and Morley implicitly assumed the
Newtonian value k=1, while Miller used an indirect method
to estimate the value of k, as he understood that the New-
tonian theory was invalid, but had no other theory for the
interferometer. Of course the Einstein postulates, as distinct
from Special Relativity, have that absolute motion has no
meaning, and so effectively demands that k=0. Using k=1
gives only a nominal value for vP , being some 8–9 km/s for
the Michelson and Morley experiment, and some 10 km/s
from Miller; the difference arising from the different latitu-
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Fig. 4: Example of Michelson-Morley fringe shifts from average
of 6 rotations measured every 22.5◦, in fractions of a wavelength
Δλ/λ, vs arm azimuth θ(deg), from Cleveland, Ohio, July 11, 1887
12:00 hrs local time or 7:00 hrs local sidereal time. This shows the
quality of the fringe shift data that Michelson and Morley obtained.
The curve is the best fit using the form in (20) which includes the
Hick’s cos(θ−β) component that is required when the mirrors are
not orthognal, and gives ψ= 140◦, or 40◦ measured from South,
compared to the Miller ψ for August at 7:00 hrs local sidereal time
in Fig. 6, and a projected speed of vP = 400 km/s. The Hick’s
effect is much larger in this data than in the Miller data in Fig. 5.

des of Cleveland and Mt. Wilson, and from Michelson and
Morley taking data at limited times. So already Miller knew
that his observations were consistent with those of Michel-
son and Morley, and so the important need for reproducibi-
lity was being confirmed.

3.2 Michelson-Morley experiment

The Michelson and Morley air-mode interferometer fringe
shift data was based upon a total of only 36 rotations in
July 1887, revealing the nominal speed of some 8–9 km/s
when analysed using the prevailing but incorrect Newtonian
theory which has k=1 in (20), and this value was known
to Michelson and Morley. Including the Fitzgerald-Lorentz
dynamical contraction effect as well as the effect of the
gas present as in (20) we find that nair = 1.00029 gives
k2= 0.00058 for air, which explains why the observed fringe
shifts were so small. The example in Fig. 4 reveals a speed
of 400 km/s with an azimuth of 40◦ measured from south
at 7:00 hrs local sidereal time. The data is clearly very
consistent with the expected form in (20). They rejected their
own data on the sole but spurious ground that the value of
8 km/s was smaller than the speed of the Earth about the
Sun of 30km/s. What their result really showed was that
(i) absolute motion had been detected because fringe shifts
of the correct form, as in (20), had been detected, and (ii)
that the theory giving k2=1 was wrong, that Newtonian
physics had failed. Michelson and Morley in 1887 should
have announced that the speed of light did depend of the
direction of travel, that the speed was relative to an actual
physical 3-space. However contrary to their own data they

0 50 100 150 200 250 300 350
arm azimuth

- 0.075

- 0.05

- 0.025

0

0.025

0.05

0.075

0.1

Fig. 5: Typical Miller rotation-induced fringe shifts from average
of 20 rotations, measured every 22.5◦, in fractions of a wavelength
Δλ/λ, vs arm azimuth θ(deg), measured clockwise from North,
from Cleveland Sept. 29, 1929 16:24 UT; 11:29 hrs average local
sidereal time. The curve is the best fit using the form in (20) which
includes the Hick’s cos(θ−β) component that is required when the
mirrors are not orthognal, and gives ψ = 158◦, or 22◦ measured
from South, and a projected speed of vP = 351 km/s. This process
was repeated some 8,000 times over days throughout 1925/1926
giving, in part, the data in Fig. 6 and Fig. 18.

concluded that absolute motion had not been detected. This
bungle has had enormous implications for fundamental theo-
ries of space and time over the last 100 years, and the re-
sulting confusion is only now being finally corrected, albeit
with fierce and spurious objections.

3.3 Miller interferometer

It was Miller [4] who saw the flaw in the 1887 paper and
realised that the theory for the Michelson interferometer
must be wrong. To avoid using that theory Miller introduced
the scaling factor k, even though he had no theory for its
value. He then used the effect of the changing vector addition
of the Earth’s orbital velocity and the absolute galactic veloc-
ity of the solar system to determine the numerical value of k,
because the orbital motion modulated the data, as shown in
Fig. 6. By making some 8,000 rotations of the interferometer
at Mt. Wilson in 1925/26 Miller determined the first estimate
for k and for the absolute linear velocity of the solar system.
Fig. 5 shows typical data from averaging the fringe shifts
from 20 rotations of the Miller interferometer, performed
over a short period of time, and clearly shows the expected
form in (20) (only a linear drift caused by temperature effects
on the arm lengths has been removed — an effect also remov-
ed by Michelson and Morley and also by Miller). In Fig. 5
the fringe shifts during rotation are given as fractions of a
wavelength, Δλ/λ=Δt/T , where Δt is given by (20) and
T is the period of the light. Such rotation-induced fringe
shifts clearly show that the speed of light is different in dif-
ferent directions. The claim that Michelson interferometers,
operating in gas-mode, do not produce fringe shifts under
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Fig. 6: Miller azimuths ψ, measured from south and plotted
against sidereal time in hours, showing both data and best fit
of theory giving vcosmic= 433 km/s in the direction (RA= 5.2hr,
Dec=−67◦), and using n= 1.000226 appropriate for the altitude
of Mt. Wilson. The azimuth data gives a clearer signal than the
speed data in Fig. 18. The data shows that the time when the
azimuth ψ is zero tracks sidereal time, with the zero times being
approximately 5 hrs and 17 hrs. However these times correspond to
very different local times, for from April to August, for example,
there is a shift of 8 hrs in the local time for these crossings. This
is an enormous effect. Again this is the acid test for light speed
anisotropy experiments when allowing the rotation of the Earth to
change the orientation of the apparatus. The zero crossing times are
when the velocity vector for absolute motion when projected onto
the plane of the interferometer lines up with the local meridian.
As well we see variations throughout these composite days with
the crossing times changing by as much as ±3 hrs, The same
effect, and perhaps even larger, is seen in the Flinders data in
Fig. 15. The above plots also show a distinctive signature, namely
the change from month to month. This is caused by the vector
addition of the Earth’s orbital velocity of 30 km/s, the Sun’s spatial
in-flow velocity of 42 km/s at the Earth’s distance and the cosmic
velocity changing over a year. This is the effect that Miller used to
calibrate his interferometer. However he did not know of the Sun
in-flow component. Only after taking account of that effect does
this calibration method agree with the results from the calibration
method using Special Relativity, as in (20).

rotation is clearly incorrect. But it is that claim that lead to
the continuing belief, within physics, that absolute motion
had never been detected, and that the speed of light is invar-
iant. The value of ψ from such rotations together lead to
plots like those in Fig. 6, which show ψ from the 1925/1926
Miller [4] interferometer data for four different months of
the year, from which the RA= 5.2 hr is readily apparent.
While the orbital motion of the Earth about the Sun slightly
affects the RA in each month, and Miller used this effect
do determine the value of k, the new theory of gravity
required a reanalysis of the data [1, 19], revealing that the
solar system has a large observed galactic velocity of some
420±30 km/s in the direction (RA= 5.2 hr, Dec=−67◦).
This is different from the speed of 369 km/s in the direction
(RA= 11.20 hr, Dec=−7.22◦) extracted from the Cosmic

Microwave Background (CMB) anisotropy, and which de-
scribes a motion relative to the distant universe, but not
relative to the local 3-space. The Miller velocity is explained
by galactic gravitational in-flows [1].

3.4 Other gas-mode Michelson interferometer experi-
ments

Two old interferometer experiments, by Illingworth [11] and
Joos [12], used helium, enabling the refractive index effect to
be recently confirmed, because for helium, with n=
= 1.000036, we find that k2= 0.00007. Until the refractive
index effect was taken into account the data from the helium-
mode experiments appeared to be inconsistent with the data
from the air-mode experiments; now they are seen to be
consistent [1]. Ironically helium was introduced in place
of air to reduce any possible unwanted effects of a gas,
but we now understand the essential role of the gas. The
data from an interferometer experiment by Jaseja et al. [13],
using two orthogonal masers with a He-Ne gas mixture, also
indicates that they detected absolute motion, but were not
aware of that as they used the incorrect Newtonian theory
and so considered the fringe shifts to be too small to be
real, reminiscent of the same mistake by Michelson and
Morley. The Michelson interferometer is a 2nd order device,
as the effect of absolute motion is proportional to (v/c)2,
as in (20), but 1st order devices are also possible and the
coaxial cable experiments described next are in this class.
The experimental results and the implications for physics
have been extensively reported in [1, 14, 15, 16, 17, 18].

3.5 Coaxial cable speed of EM waves anisotropy experi-
ments

Rather than use light travel time experiments to demonstrate
the anisotropy of the speed of light another technique is to
measure the one-way speed of radio waves through a coaxial
electrical cable. While this not a direct “ideal” technique, as
then the complexity of the propagation physics comes into
play, it provides not only an independent confirmation of the
light anisotropy effect, but also one which takes advantage
of modern electronic timing technology.

3.6 Torr-Kolen coaxial cable anisotropy experiment

The first one-way coaxial cable speed-of-propagation exper-
iment was performed at the Utah University in 1981 by
Torr and Kolen. This involved two rubidium clocks placed
approximately 500 m apart with a 5 MHz radio frequency
(RF) signal propagating between the clocks via a buried
nitrogen-filled coaxial cable maintained at a constant pres-
sure of 2 psi. Torr and Kolen found that, while the round
speed time remained constant within 0.0001% c, as expected
from Sect. 2, variations in the one-way travel time were
observed. The maximum effect occurred, typically, at the
times predicted using the Miller galactic velocity, although
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Fig. 7: Data from one day of the Torr-Kolen coaxial cable
anisotropy experiment. Smooth curves show variations in travel
times when the declination is varied by ± 10◦ about the direction
(RA= 5.2hr,Dec=−67◦), for a cosmic speed of 433 km/s. Most
importantly the dominant feature is consistent with the predicted
local sidereal time.

Torr and Kolen appear to have been unaware of the Miller
experiment. As well Torr and Kolen reported fluctuations in
both the magnitude, from 1–3 ns, and the time of maximum
variations in travel time. These effects are interpreted as
arising from the turbulence in the flow of space past the
Earth. One day of their data is shown in Fig. 7.

3.7 De Witte coaxial cable anisotropy experiment

During 1991 Roland De Witte performed a most extensive
RF coaxial cable travel-time anisotropy experiment, accumu-
lating data over 178 days. His data is in complete agreement
with the Michelson-Morley 1887 and Miller 1925/26 inter-
ferometer experiments. The Miller and De Witte experiments
will eventually be recognised as two of the most significant
experiments in physics, for independently and using different
experimental techniques they detected essentially the same
velocity of absolute motion. But also they detected turbu-
lence in the flow of space past the Earth — none other than
gravitational waves. The De Witte experiment was within
Belgacom, the Belgium telecommunications company. This
organisation had two sets of atomic clocks in two buildings
in Brussels separated by 1.5 km and the research project
was an investigation of the task of synchronising these two
clusters of atomic clocks. To that end 5MHz RF signals were
sent in both directions through two buried coaxial cables
linking the two clusters. The atomic clocks were caesium
beam atomic clocks, and there were three in each cluster:
A1, A2 and A3 in one cluster, and B1, B2, and B3 at the
other cluster. In that way the stability of the clocks could
be established and monitored. One cluster was in a building
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Fig. 8: Variations in twice the one-way travel time, in ns, for an
RF signal to travel 1.5 km through a coaxial cable between Rue du
Marais and Rue de la Paille, Brussels. An offset has been used such
that the average is zero. The cable has a North-South orientation,
and the data is ± difference of the travel times for NS and SN
propagation. The sidereal time for maximum effect of ∼ 5 hr and
∼ 17 hr (indicated by vertical lines) agrees with the direction found
by Miller. Plot shows data over 3 sidereal days and is plotted
against sidereal time. The fluctuations are evidence of turbulence
of gravitational waves.

on Rue du Marais and the second cluster was due south in a
building on Rue de la Paille. Digital phase comparators were
used to measure changes in times between clocks within the
same cluster and also in the one-way propagation times of
the RF signals. At both locations the comparison between
local clocks, A1-A2 and A1-A3, and between B1-B2, B1-
B3, yielded linear phase variations in agreement with the
fact that the clocks have not exactly the same frequencies
together with a short term and long term phase noise. But
between distant clocks A1 toward B1 and B1 toward A1, in
addition to the same linear phase variations, there is also an
additional clear sinusoidal-like phase undulation with an ap-
proximate 24 hr period of the order of 28 ns peak to peak, as
shown in Fig. 8. The possible instability of the coaxial lines
cannot be responsible for the observed phase effects because
these signals are in phase opposition and also because the
lines are identical (same place, length, temperature, etc. . . )
causing the cancellation of any such instabilities. As well the
experiment was performed over 178 days, making it possible
to measure with an accuracy of 25 s the period of the phase
signal to be the sidereal day (23 hr 56 min).

Changes in propagation times were observed over 178
days from June 3 to November 27, 1991. A sample of the
data, plotted against sidereal time for just three days, is
shown in Fig. 8. De Witte recognised that the data was evi-
dence of absolute motion but he was unaware of the Miller
experiment and did not realise that the Right Ascensions for
minimum/maximum propagation time agreed almost exactly
with that predicted using the Miller’s direction (RA= 5.2 hr,
Dec=−67◦). In fact De Witte expected that the direction of
absolute motion should have been in the CMB direction, but
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Fig. 9: Upper: Plot from the De Witte data of the negative of the
drift of the cross-over time between minimum and maximum travel-
time variation each day (at ∼ 10hr±1hr ST) versus local solar time
for some 180 days. The straight line plot is the least-squares fit to
the experimental data, giving an average slope of 3.92 minutes/day.
The time difference between a sidereal day and a solar day is 3.93
minutes/day. This demonstrates that the effect is related to sidereal
time and not local solar time. Lower: Analogous sidereal effect
seen in the Flinders experiment. Due to on-going developments
the data is not available for all days, but sufficient data is present
to indicate a time shift of 3.97 minutes/day. This data also shows
greater fluctuations than indicated by the De Witte data, presumably
because De Witte used more extensive data averaging.

that would have given the data a totally different sidereal
time signature, namely the times for maximum/minimum
would have been shifted by 6 hrs. The declination of the
velocity observed in this De Witte experiment cannot be de-
termined from the data as only three days of data are avai-
lable. The De Witte data is analysed in Sect. 4.7 and assum-
ing a declination of 60◦ S a speed of 430 km/s is obtained,
in good agreement with the Miller speed and Michelson-
Morley speed. So a different and non-relativistic technique
is confirming the results of these older experiments. This is
dramatic.

De Witte did however report the sidereal time of the
cross-over time, that is in Fig. 8 for all 178 days of data. That
showed, as in Fig. 9, that the time variations are correlated
with sidereal time and not local solar time. A least-squares
best fit of a linear relation to that data gives that the cross-
over time is retarded, on average, by 3.92 minutes per solar
day. This is to be compared with the fact that a sidereal day

Fig. 10: Shows the speed fluctuations, essentially “gravitational
waves” observed by De Witte in 1991 from the measurement of
variations in the RF coaxial-cable travel times. This data is obtained
from that in Fig. 8 after removal of the dominant effect caused by
the rotation of the Earth. Ideally the velocity fluctuations are three-
dimensional, but the De Witte experiment had only one arm. This
plot is suggestive of a fractal structure to the velocity field. This is
confirmed by the power law analysis in [8, 9].

is 3.93 minutes shorter than a solar day. So the effect is
certainly galactic and not associated with any daily thermal
effects, which in any case would be very small as the cable
is buried. Miller had also compared his data against sidereal
time and established the same property, namely that the
diurnal effects actually tracked sidereal time and not solar
time, and that orbital effects were also apparent, with both
effects apparent in Fig. 6.

The dominant effect in Fig. 8 is caused by the rotation
of the Earth, namely that the orientation of the coaxial cable
with respect to the average direction of the flow past the
Earth changes as the Earth rotates. This effect may be ap-
proximately unfolded from the data leaving the gravitational
waves shown in Fig. 10. This is the first evidence that the
velocity field describing the flow of space has a complex
structure, and is indeed fractal. The fractal structure, i. e. that
there is an intrinsic lack of scale to these speed fluctuations,
is demonstrated by binning the absolute speeds and counting
the number of speeds within each bin, as discussed in [8, 9].
The Miller data also shows evidence of turbulence of the
same magnitude. So far the data from three experiments,
namely Miller, Torr and Kolen, and De Witte, show turbu-
lence in the flow of space past the Earth. This is what can
be called gravitational waves. This can be understood by
noting that fluctuations in the velocity field induce ripples in
the mathematical construct known as spacetime, as in (32).
Such ripples in spacetime are known as gravitational waves.

4 Flinders University gravitational wave detector

In February 2006 first measurements from a gravitational
wave detector at Flinders University, Adelaide, were taken.
This detector uses a novel timing scheme that overcomes the
limitations associated with the two previous coaxial cable
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Fig. 11: Schematic layout of the Flinders University Gravitational Wave Detector. Double lines denote coaxial cables, and single lines
denote optical fibres. The detector is shown in Fig. 12 and is orientated NS along the local meridian, as indicated by direction D in
Fig. 16. Two 10 MHz RF signals come from the Rubidium atomic clock (Rb). The Electrical to Optical converters (EO) use the RF
signals to modulate 1.3μm infrared signals that propagate through the single-mode optical fibres. The Optical to Electrical converters
(OE) demodulate that signal and give the two RF signals that finally reach the Digital Storage Oscilloscope (DSO), which measures their
phase difference. Pairs of E/O and O/E are grouped into one box. Overall this apparatus measures the difference in EM travel time from
A to B compared to C to D. All other travel times cancel in principle, though in practice small differences in cable or fibre lengths need
to be electronically detected by the looping procedure. The key effects are that the propagation speeds through the coaxial cables and
optical fibres respond differently to their absolute motion through space. The special optical fibre propagation effect is discussed in the
text. Sections AB and CD each have length 5.0 m. The fibres and coaxial cable are specially manufactured to have negligible variation
in travel speed with variation in temperature. The zero-speed calibration point can be measured by looping the arm back onto itself, as
shown in Fig. 13, because then the 1st order in v/c effect cancels, and only 2nd order effects remain, and these are much smaller than
the noise levels in the system. This detector is equivalent to a one-way speed measurement through a single coaxial cable of length 10 m,
with an atomic clock at each end to measure changes in travel times. However for 10 m coaxial cable that would be impractical because
of clock drifts. With this set-up the travel times vary by some 25 ps over one day, as shown in Figs.14 and 17. The detector was originally
located in the author’s office, as shown in Fig. 12, but was later located in an underground laboratory where temperature variations were
very slow. The travel time variations over 7 days are shown in Fig. 15.

experiments. The intention in such experiments is simply to
measure the one-way travel time of RF waves propagating
through the coaxial cable. To that end one would apparently
require two very accurate clocks at each end, and associated
RF generation and detection electronics.

However the major limitation is that even the best atomic
clocks are not sufficiently accurate over even a day to make
such measurements to the required accuracy, unless the cables
are of order of a kilometre or so in length, and then tempe-
rature control becomes a major problem. The issue is that
the time variations are of the order of 25 ps per 10 meters of
cable. To measure that requires time measurements accurate
to, say, 1 ps. But atomic clocks have accuracies over one
day of around 100 ps, implying that lengths of around 1
kilometre would be required, in order for the effect to well
exceed timing errors. Even then the atomic clocks must be
brought together every day to resynchronise them, or use
De Witte’s method of multiple atomic clocks. However at
Flinders University a major breakthrough for this problem
was made when it was discovered that unlike coaxial cables,
the movement of optical fibres through space does not affect
the propagation speed of light through them. This is a very
strange effect and at present there is no explanation for it.

4.1 Optical fibre effect

This effect was discovered by Lawrance, Drury and the
author, using optical fibres in a Michelson interferometer
arrangement, where the effective path length in each arm was

4 metres of fibre. So rather than having light pass through a
gas, and being reflected by mirrors, here the light propagates
through fibres and, where the mirrors would normally be
located, a 180 degree bend in the fibres is formed. The
light emerging from the two fibres is directed to a common
region on a screen, and the expected fringe shifts were seen.
However, and most dramatically, when the whole apparatus
was rotated no shift in the fringe shifts was seen, unlike
the situation with light passing through a gas as above. This
result implied that the travel time in each arm of the fibre
was unaffected by the orientation of that arm to the direction
of the spatial flow. While no explanation has been developed
for this effect, other than the general observation that the
propagation speed in optical fibres depends on refractive
index profiles and transverse and longitudinal Lorentz con-
traction effects, as in solids these are coupled by the elastic
properties of the solid. Nevertheless this property offered a
technological leap forward in the construction of a compact
coaxial cable gravitational wave detector. This is because
timing information can be sent though the fibres in a way
that is not affected by the orientation of the fibres, while the
coaxial cables do respond to the anisotropy of the speed of
EM radiation in vacuum. Again why they respond in this
way is not understood. All we have is that fibres and coaxial
cables respond differently. So this offers the opportunity to
have a coaxial cable one-way speed measurement set up,
but using only one clock, as shown in Fig. 11. Here we
have one clock at one end of the coaxial cable, and the
arrival time of the RF signal at the other end is used to
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Fig. 12: The Flinders University Gravitational Wave
Detector located in the author’s office, showing the Rb
atomic clock and Digital Storage Oscilloscope (DSO)
at the Northern end of the NS 5 m cable run. In the
foreground is one Fibre Optic Transceiver. The coax-
ial cables are black, while the optical fibres are tied
together in a white plastic sleeve, except just prior
to connecting with the transceiver. The second photo-
graph shows the other transceiver at the Southern end.
Most of the data reported herein was taken when the
detector was relocated to an isolated underground lab-
oratory with the transceivers resting on a concrete
floor for temperature stabilisation.

modulate a light signal that returns to the starting end via
an optical fibre. The return travel time is constant, being
independent of the orientation of the detector arm, because
of this peculiar property of the fibres. In practice one uses
two such arrangements, with the RF directions opposing one
another. This has two significant advantages, (i) that the
effective coaxial cable length of 10 meters is achieved over
a distance of just 5 meters, so the device is more easily ac-
commodated in a temperature controlled room, and (ii) tem-
perature variations in that room have a smaller effect than
expected because it is only temperature differences between
the cables that have any net effect. Indeed with specially con-
structed phase compensated fibre and coaxial cable, having
very low speed-sensitivity to temperature variations, the most
temperature sensitive components are the optical fibre trans-
ceivers (E/O and O/E in Fig. 11).

4.2 Experimental components

Rubidium Atomic Clock: Stanford Research System FS725
Rubidium Frequency Standard. Multiple 10MHz RF outputs.
Different outputs were used for the two arms of the detector.

Digital Storage Oscilloscope: LeCroy WaveRunner
WR6051A 500 MHz 2-channel Digital Storage Oscilloscope
(DSO). Jitter Noise Floor 2 ps rms. Clock Accuracy 65 pm.
DSO averaging set at 5000, and generating time readings at
440/minute. Further averaged in DSO over 60 seconds, giv-
ing stored data stream at one data point/minute. The data was
further running-averaged over a 60 minute interval. Con-
necting the Rb clock directly to the DSO via its two channels
showed a long-term accuracy of ±1 ps rms with this setup.

Fibre Optic Transceivers: Fiber-Span AC231-EB-1-3 RF/
Fiber Optic Transceiver (O/E and E/O). Is a linear extended
band (5–2000 MHz) low noise RF fibre optic transceiver for
single mode 1.3μm fibre optic wireless systems, with inde-
pendent receiver and transmitter. RF interface is a 50Ω con-
nector and the optical connector is a low reflection FC/APC
connector. Temperature dependence of phase delay is not

Fig. 13: The Flinders University Gravitational Wave Detector
showing the cables formed into a loop. This configuration enables
the calibration of the detector. The data from such a looping is
shown in Fig. 14, but when the detector was relocated to an isolated
underground laboratory.

measured yet. The experiment is operated in a uniform tem-
perature room, so that phase delays between the two trans-
ceivers cancel to some extent.

Coaxial Cable: Andrews FSJ1-50A Phase Stabilised 50Ω
Coaxial Cable. Travel time temperature dependence is
0.026 ps/m/◦C. The speed of RF waves in this cable is c/n=
= 0.84 c, arising from the dielectric having refractive index
n= 1.19. As well temperature effects cancel because the
two coaxial cables are tied together, and so only temperature
differences between adjacent regions of the cables can have
any effect. If such temperature differences are <1◦C, then
temperature generated timing errors from this source should
be <0.3 ps for the 10 m.

Optical Fibre: Sumitomo Electric Industries Ind. Ltd Japan
Phase Stabilised Optical Fibre (PSOF) — single mode. Uses
Liquid Crystal Polymer (LCP) coated single mode optical
fibre, with this coating designed to make the travel time tem-
perature dependence <0.002 ps/m/◦C very small compared
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Fig. 14: The detector arm was formed into a loop at approximately
10:00hrs local time. With the system still operating time averaging
causes the trace to interpolate during this procedure, as shown.
This looping effect is equivalent to having v=0, which defines
the value of Δτ . In plotting the times here the zero time is set
so that then Δτ =0. Now the detector is calibrated, and the times
in this figure are absolute times. The times are the N to S travel
time subtracted from the shorter S to N travel time, and hence are
negative numbers. This demonstrates that the flow of space past
the Earth is essentially from south to north, as shown in Fig. 16.
When the arms are straight, as before 10:00hrs we see that on
average the two travel times differ by some 55 ps. This looping
effect is a critical test for the detector. It clearly shows the effect of
absolute motion upon the RF travel times. As well we see Earth
rotation, wave and converter noise effects before 10:00hrs, and
converter noise and some small signal after 10:00hrs, caused by
an imperfect circle. From this data (24) and (25) give δ= 72◦ S
and v= 418 km/s.

to normal fibres (0.07 ps/m/◦C). As well temperature effects
cancel because the two optical fibres are tied together, and so
only temperature differences between adjacent regions of the
fibres can have any effect. If such temperature differences
are <1◦C, then temperature generated timing errors from
this source should be <0.02 ps for the 10 m. Now only Furu-
kawa Electric Ind. Ltd Japan manufacturers PSOF.

Photographs of the Flinders detector are shown in Fig.12.
Because of the new timing technology the detector is now
small enough to permit the looping of the detector arm as
shown in Fig. 13. This enables a key test to be performed
as in the loop configuration the signal should disappear, as
then the device acts as though it were located at rest in space,
because the actual effects of the absolute motion cancel. The
striking results from this test are shown in Fig. 14. As well
this key test also provides a means of calibrating the detector.

Fig. 15: RF travel time variations in picoseconds (ps) for RF waves
to travel through, effectively, 10 meters of coaxial cable orientated
in a NS direction. The data is plotted against local Adelaide time for
the days August 18–25, 2006. The zero of the travel time variations
is arbitrary. The data shows fluctuations identified as earth rotation
effect and gravitational waves. These fluctuations exceed those
from timing errors in the detector.

4.3 All-optical detector

The unique optical fibre effect permits an even more com-
pact gravitational wave detector. This would be an all-optical
system 1st order in v/c device, with light passing through
vacuum, or just air, as well as optical fibres. The travel time
through the fibres is, as above, unaffected by orientation of
the device, while the propagation time through the vacuum
is affected by orientation, as the device is moving through
the local space.

In this system the relative time differences can be mea-
sured using optical interference of the light from the vacuum
and fibre components. Then it is easy to see that the vacuum
path length needs only be some 5 cm. This makes the con-
struction of a three orthogonal arm even simpler. It would be
a cheap bench-top box. In which case many of these devices
could be put into operation around the Earth, and in space, to
observe the new spatial-flow physics, with special emphasis
on correlation studies. These can be used to observe the
spatial extent of the fluctuations. As well space-probe based
systems could observe special effects in the flow pattern
associated with the Earth-Moon system; these effects are
caused by the α-dependent dynamics in (26).

4.4 Results from the Flinders detector

Results from the detector are shown in Fig. 15. There the
time variations in picoseconds are plotted against local Ade-
laide time. The times have an arbitrary zero offset. However
most significantly we see ∼24 hr variations in the travel
time, as also seen by De Witte. We also see variations in the
times and magnitudes from day to day and within each day.
These are the wave effects although as well a component
of these is probably also coming from temperature change

86 R. T. Cahill. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected



October, 2006 PROGRESS IN PHYSICS Volume 4

Fig. 16: Profile of Earth, showing NS axis, at Adelaide local
sidereal time of RA ≈ 5 hrs (on RHS) and at RA ≈ 17 hrs (on
LHS). Adelaide has latitude λ= 38◦ S. Z is the local zenith, and
the detector arm has horizontal local NS direction D. The flow of
space past the Earth has average velocity v. The average direction,
−v, of motion of the Earth through local 3-space has RA ≈ 5 hrs
and Declination δ≈ 70◦S. The angle of inclination of the detector
arm D to the direction −v is φ= π

2
− δ+λ and θ= δ+λ− π

2

at these two RA, respectively. As the Earth rotates the inclination
angle changes from a minimum of θ to a maximum of φ, which
causes the dominant “dip” effect in, say, Fig. 17. The gravitational
wave effect is the change of direction and magnitude of the flow
velocity v, which causes the fluctuations in, say, Fig. 17. The lati-
tude of Mt. Wilson is 34◦ N, and so its latitude almost mirrors that
of Adelaide. This is relevant to the comparison in Fig. 18.

effects in the optical fibre transceivers. In time the inst-
rument will be improved and optimised. But we are certainly
seeing the evidence of absolute motion, namely the detection
of the velocity field, as well as fluctuations in that velocity.
To understand the daily variations we show in Fig. 16 the
orientation of the detector arm relative to the Earth rotation
axis and the Miller flow direction, at two key local sidereal
times. So we now have a very inexpensive gravitational
wave detector sufficiently small that even a coaxial-cable
three-arm detector could easily be located within a building.
Three orthogonal arms permit a complete measurement of
the spatial flow velocity. Operating such a device over a year
or so will permit the extraction of the Sun in-flow component
and the Earth in-flow component, as well as a detailed study
of the wave effects.

4.5 Right ascension

The sidereal effect has been well established, as shown in
Fig. 9 for both the De Witte and Flinders data. Fig. 6 clearly
shows that effect also for the Miller data. None of the other
anisotropy experiments took data for a sufficiently long

Fig. 17: The superimposed plots show the sidereal time effect.
The plot (blue) with the minimum at approximately 17 hrs local
Adelaide time is from June 9, 2006, while the plot (red) with the
minimum at approximately 8 hrs local time is from August 23,
2006. We see that the minimum has moved forward in time by
approximately 9 hrs. The expected shift for this 65 day difference,
assuming no wave effects, is 4.3 hrs, but the wave effects shift
the RA by some ±2 hrs on each day as also shown in Fig. 9.
This sidereal time shift is a critical test for the confirmation of
the detector. Miller also detected variations of that magnitude as
shown in Fig. 6. The August 23 data is also shown in Fig. 18, but
there plotted against local sidereal time for comparison with the De
Witte and Miller data.

enough time to demonstrate this effect, although their results
are consistent with the Right Ascension and Declination
found by the Miller, De Witte and Flinders experiments.
From some 25 days of data in August 2006, the local Adel-
aide time for the largest travel-time difference is approxima-
tely 10±2 hrs. This corresponds to a local sidereal time of
17.5±2 hrs. According to the Miller convention we give the
direction of the velocity vector of the Earth’s motion through
the space, which then has Right Ascension 5.5±2 hrs. This
agrees remarkably well with the Miller and De Witte Right
Ascension determinations, as discussed above. A one hour
change in RA corresponds to a 15◦ change in direction at the
equator. However because the declination, to be determin-
ed next, is as large as some 70◦, the actual RA variation
of ±2 hrs, corresponds to an angle variation of some ±10◦

at that declination. On occasions there was no discernible
unique maximum travel time difference; this happens when
the declination is fluctuating near 90◦, for then the RA be-
comes ill-defined.

4.6 Declination and speed

Because the prototype detector has only one arm, rather than
the ideal case of three orthogonal arms, to determine the de-
clination and speed we assume here that the flow is uniform
and time-independent, and use the changing difference in
travel times between the two main coaxial cables. Consider
Fig. 11 showing the detector schematic layout and Fig. 16

R. T. Cahill. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected 87



Volume 4 PROGRESS IN PHYSICS October, 2006

0 5 10 15 20

100

200

300

400

500

600

Fig. 18: Top: De Witte data, with sign reversed, from the first
sidereal day in Fig. 8. This data gives a speed of approximately
430km/s. The data appears to have been averaged over more
than 1hr, but still shows wave effects. Middle: Absolute projected
speeds vP in the Miller experiment plotted against sidereal time in
hours for a composite day collected over a number of days in Sep-
tember 1925. Speed data like this comes from the fits as in Fig. 5
using the Special Relativity calibration in (20). Maximum projected
speed is 417 km/s, as given in [3, 20, 9]. The data shows consider-
able fluctuations. The dashed curve shows the non-fluctuating
variation expected over one day as the Earth rotates, causing the
projection onto the plane of the interferometer of the velocity of
the average direction of the space flow to change. If the data was
plotted against solar time the form is shifted by many hours. Note
that the min/max occur at approximately 5 hrs and 17 hrs, as also
seen by De Witte and the new experiment herein. The correspond-
ing variation of the azimuthal phase ψ from Fig. 5 is shown in
Fig. 6. Bottom: Data from the new experiment for one sidereal
day on approximately August 23. We see similar variation with
sidereal time, and also similar wave structure. This data has been
averaged over a running 1hr time interval to more closely match
the time resolution of the Miller experiment. These fluctuations are
believed to be real wave phenomena, predicted by the new theory
of space [1]. The new experiment gives a speed of 418 km/s. We
see remarkable agreement between all three experiments.

showing the various angles. The travel time in one of the
circuits is given by

t1 = τ1 +
L1

vc − v cos (Φ)
(21)

and that in the other arm by

t2 = τ1 +
L1

vc + v cos (Φ)
(22)

where Φ is the angle between the detector direction and the
flow velocity v, vc is the speed of radio frequency (RF) elec-
tromagnetic waves in the fibre when v=0, namely vc= c/n
where n is the refractive index of the dielectric in the coaxial
cable, and v is the change in that speed caused by the absolu-
te motion of the coaxial cables through space, when the cable
is parallel to v. The factor of cos (Φ) is just the projection
of v onto the cable direction. The difference in signs in (21)
and (22) arises from the RF waves travelling in opposite
directions in the two main coaxial cables. The distance L1
is the arm length of the coaxial cable from A to B, and L2
is that from C to D. The constant times τ1 and τ2 are travel
times arising from the optical fibres, the converters, and the
coaxial cable lengths not included in L1 and L2, particularly
the optical fibre travel times. which is the key to the new
detector. The effect of the two shorter coaxial cable sections
in each arm are included in τ1 and τ2 because the absolute
motion effects from these arms is additive, as the RF travels
in opposite directions through them, and so only contributes
at 2nd order.

Now the experiment involves first the measurement of
the difference Δt = t1 − t2, giving

Δt = τ1 − τ2 +
L1

vc−v cos (Φ)
−

L2
vc+v cos (Φ)

≈

≈ Δτ + (L1 + L2) cos (Φ)
v

v2c
+ . . .

(23)

on expanding to lowest order in v/vc, and where Δτ ≡

≡ τ1− τ2+
L1−L2
vc . Eqn. (23) is the key to the operation

of the detector. We see that the effective arm length is L=
=L1+L2= 10 m. Over time the velocity vector v changes,
caused by the wave effects and also by the Earth’s orbital
velocity about the Sun changing direction, and as well the
Earth rotates on its axis. Both of these effects cause v and
the angle Φ to change. However over a period of a day and
ignoring wave effects we can assume that v is unchanging.
Then we can determine a declination δ and the speed v by (i)
measuring the maximum and minimum values of Δt over a
day, which occur approximately 12 hours apart, and (ii) de-
termine Δτ , which is the time difference when v=0, and
this is easily measured by putting the detector arm into a
circular loop, as shown in Fig. 13, so that absolute motion
effects cancel, at least to 1st order in v/vc. Now from Fig. 16
we see that the maximum travel time differenceΔtmaxoccurs
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when Φ= θ=λ+ δ− π
2 in (23), and the minimum Δtmin

when Φ=φ=λ−δ+ π
2 , 12 hours later. Then the declination

δ may be determined by numerically solving the transcenden-
tal equation which follows from these two times from (23)

cos (λ+ δ − π
2 )

cos (λ− δ + π
2 )
=
Δtmax −Δτ
Δtmin −Δτ

. (24)

Subsequently the speed v is obtained from

v =
(Δtmax −Δtmin) v2c

L
(
cos (λ+ δ − π

2 )− cos (λ− δ +
π
2 )
) . (25)

In Fig. 14 we show the travel time variations for Sep-
tember 19, 2006. The detector arm was formed into a loop at
approximately 10:00 hrs local time, with the system still op-
erating: time averaging causes the trace to interpolate during
this procedure, as shown. This looping effect is equivalent
to having v=0, which defines the value of Δτ . In plotting
the times in Fig. 14 the zero time is set so that then Δτ =0.
When the arms are straight, as before 10:00 hrs we see that
on average the travel times are some 55 ps different: this
is because the RF wave travelling S to N is now faster
than the RF wave travelling from N to S. The times are
negative because the longer S to N time is subtracted from
the shorter N to S travel time in the DSO. As well we see
the daily variation as the Earth rotates, showing in particular
the maximum effect at approximately 8:00 hrs local time
(approximately 15hrs sidereal time) as shown for the three
experiments in Fig. 18, as well as wave and converter noise.
The trace after 10:00 hrs should be flat — but the variations
seen are coming from noise effects in the converters as
well as some small signal arising from the loop not being
formed into a perfect circle. Taking Δtmax=−63 ps and
Δtmin=−40 ps from Fig. 14, (24) and (25) give δ= 72◦ S
and v= 418 km/s. This is in extraordinary agreement with
the Miller results for September 1925.

We can also analyse the De Witte data. We have L=
= 3.0 km, vc= 200,000 km/s, from Fig. 8 Δtmax−Δtmin≈
≈ 25 ns, and the latitude of Brussels is λ= 51◦ N. There is
not sufficient De Witte data to determine the declination of
v on the days when the data was taken. Miller found that
the declination varied from approximately 60◦ S to 80◦ S,
depending on the month. The dates for the De Witte data
in Fig. 8 are not known but, for example, a declination of
δ= 60◦ gives v= 430 km/s.

4.7 Gravity and gravitational waves

We have seen that as well as the effect of the Earth rotation
relative to the stars, as previously shown by the data from
Michelson-Morley, Illingworth, Joos, Jaseja el al., Torr and
Kolen, Miller, and De Witte and the data from the new
experiment herein, there is also from the experimental data
of Michelson-Morley, Miller, Torr and Kolen, De Witte and
from the new experiment, evidence of turbulence in this

flow of space past the Earth. This all points to the flow
velocity field v (r, t) having a time dependence over an
above that caused simply because observations are taken
from the rotating Earth. As we shall now show this turbu-
lence is what is conventionally called “gravitational waves”,
as already noted [1, 19, 20]. To do this we briefly review the
new dynamical theory of 3-space, following [25], although
it has been extensively discussed in the related literature. In
the limit of zero vorticity for v (r, t) its dynamics is deter-
mined by

∇ ∙

(
∂v

∂t
+ (v ∙ ∇)v

)

+

+
α

8

(
(trD)2 − tr(D2)

)
= −4πGρ ,

(26)

where ρ is the effective matter/energy density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (27)

Most significantly data from the bore hole g anomaly
and from the systematics of galactic supermassive black hole
shows that α≈ 1/137 is the fine structure constant known
from quantum theory [21–24]. Now the Dirac equation uniq-
uely couples to this dynamical 3-space, according to [25]

ih̄
∂ψ

∂t
=−ih̄

(

c~α ∙∇+v ∙∇+
1

2
∇∙v

)

ψ+βmc2ψ (28)

where ~α and β are the usual Dirac matrices. We can compute
the acceleration of a localised spinor wave packet accord-
ing to

g ≡
d2

dt2
(
ψ(t), rψ(t)

)
(29)

With vR=v0−v the velocity of the wave packet relative
to the local space, as v0 is the velocity relative to the em-
bedding space∗, and we obtain

g=
∂v

∂t
+(v∙∇)v+(∇×v)×vR−

vR

1− v
2
R

c2

1

2

d

dt

(
v2R
c2

)

(30)

which gives the acceleration of quantum matter caused by
the inhomogeneities and time-dependencies of v (r, t). It has
a term which limits the speed of the wave packet relative
to space to be < c. Hence we see that the phenomenon
of gravity, including the Equivalence Principle, has been
derived from a deeper theory. Apart from the vorticity† and
relativistic terms in (30) the quantum matter acceleration is
the same as that of the structured 3-space [25, 8].

We can now show how this leads to both the spacetime
mathematical construct and that the geodesic for matter
worldlines in that spacetime is equivalent to trajectories from
(30). First we note that (30) may be obtained by extremising
the time-dilated elapsed time

τ [r0] =

∫
dt

(

1−
v2R
c2

)1/2
(31)

∗See [25] for a detailed explanation of the embedding space concept.
†The vorticity term explains the Lense-Thirring effect [30].
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with respect to the particle trajectory r0(t) [1]. This happens
because of the Fermat least-time effect for waves: only along
the minimal time trajectory do the quantum waves remain in
phase under small variations of the path. This again emphasi-
ses that gravity is a quantum wave effect. We now introduce
a spacetime mathematical construct according to the metric

ds2 = dt2 −

(
dr− v (r, t) dt

)2

c2
= gμνdx

μdxν . (32)

Then according to this metric the elapsed time in (31) is

τ =

∫
dt

√

gμν
dxμ

dt

dxν

dt
, (33)

and the minimisation of (33) leads to the geodesics of the
spacetime, which are thus equivalent to the trajectories from
(31), namely (30). Hence by coupling the Dirac spinor dyn-
amics to the space dynamics we derive the geodesic formal-
ism of General Relativity as a quantum effect, but without
reference to the Hilbert-Einstein equations for the induced
metric. Indeed in general the metric of this induced spacetime
will not satisfy these equations as the dynamical space invol-
ves the α-dependent dynamics, and α is missing from GR∗.

Hence so far we have reviewed the new theory of gravity
as it emerges within the new physics†. In explaining gravity
we discover that the Newtonian theory is actually flawed:
this happened because the motion of planets in the solar
system is too special to have permitted Newtonian to model
all aspects of the phenomenon of gravity, including that the
fundamental dynamical variable is a velocity field and not
an acceleration field.

We now discuss the phenomenon of the so-called “gravi-
tational waves”. It may be shown that the metric in (32) sat-
isfies the Hilbert-Einstein GR equations, in “empty” space,
but only when α→ 0:

Gμν ≡ Rμν −
1

2
Rgμν = 0 , (34)

where Gμν is the Einstein tensor, Rμν =Rαμαν and R=
= gμνRμν and gμν is the matrix inverse of gμν , and the
curvature tensor is

Rρμσν = Γ
ρ
μν,σ − Γ

ρ
μσ,ν + Γ

ρ
ασΓ

α
μν − Γ

ρ
ανΓ

α
μσ, (35)

where Γαμσ is the affine connection

Γαμσ =
1

2
gαν
(
∂gνμ
∂xσ

+
∂gνσ
∂xμ

−
∂gμσ
∂xν

)

. (36)

Hence the GR formalism fails on two grounds: (i) it does
not include the spatial self-interaction dynamics which has

∗Why the Schwarzschild metric, nevertheless, works is explained
in [25].

†Elsewhere it has been shown that this theory of gravity explains the
bore hole anomaly, supermassive black hole systematics, the “dark matter”
spiral galaxy rotation anomaly effect, as well as the putative successes of
GR, including light bending and gravitational lensing.

coupling constant α, and (ii) it very effectively obscures the
dynamics, for the GR formalism has spuriously introduced
the speed of light when it is completely absent from (26),
except on the RHS when the matter has speed near that of c
relative to the space‡. Now when wave effects are supposedly
extracted from (34), by perturbatively expanding about a
background metric, the standard derivation supposedly leads
to waves with speed c. This derivation must be manifestly
incorrect, as the underlying equation (26), even in the limit
α → 0, does not even contain c. In fact an analysis of (26)
shows that the perturbative wave effects are fluctuations of
v (r, t), and travel at approximately that speed, which in
the case of the data reported here is some 400 km/s in the
case of earth based detections, i. e. 0.1% of c. These waves
also generate gravitational effects, but only because of the
α-dependent dynamical effects: when α→ 0 we still have
wave effects in the velocity field, but that they produce no
gravitational acceleration effects upon quantum matter. Of
course even in the case of α→ 0 the velocity field wave
effects are detectable by their effects upon EM radiation, as
shown by various gas-mode Michelson interferometer and
coaxial cable experiments. Amazingly there is evidence that
Michelson-Morley actually detected such gravitational waves
as well as the absolute motion effect in 1887, because fluc-
tuations from day to day of their data shows effects similar to
those reported by Miller, Torr and Kolen, De Witte, and the
new experiment herein. Of course if the Michelson interfe-
rometer is operated in vacuum mode it is totally insensitive
to absolute motion effects and to the accompanying wave
effects, as is the case. This implies that experiments such
as the long baseline terrestrial Michelson interferometers are
seriously technically flawed as gravitational wave detectors.
However as well as the various successful experimental tech-
niques discussed herein for detecting absolute motion and
gravitational wave effects a novel technique is that these
effects will manifest in the gyroscope precessions observed
by the Gravity Probe B satellite experiment [30, 31].

Eqn. (26) determines the dynamical time evolution of the
velocity field. However that aspect is more apparent if we
write that equation in the integro-differential form

∂v

∂t
= −∇

(
v2

2

)

+

+ G

∫
d3 r′

ρDM (r
′, t) + ρ (r′, t)

|r− r′|3
(r− r′)

(37)

in which ρDM is velocity dependent,

ρDM (r, t) ≡
α

32πG

(
(trD)2 − tr(D2)

)
, (38)

and is the effective “dark matter” density. This shows se-
veral key aspects: (i) there is a local cause for the time de-

‡See [1] for a possible generalisation to include vorticity effects and
matter related relativistic effects.
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pendence from the ∇ term, and (ii) a non-local action-at-a-
distance effect from the ρDM and ρ terms. This is caused by
space being essentially a quantum system, so this is better
understood as a quantum non-local effect. However (37)
raises the question of where the observed wave effects come
from? Are they local effects or are they manifestations of
distant phenomena? In the latter case we have a new astron-
omical window on the universe.

5 Conclusions

We now have eight experiments that independently and con-
sistently demonstrated (i) the anisotropy of the speed of
light, and where the anisotropy is quite large, namely 300,000
±420 km/s, depending on the direction of measurement rela-
tive to the Milky Way, (ii) that the direction, given by the
Right Ascension and Declination, is now known, being es-
tablished by the Miller, De Witte and Flinders experiments∗.
The reality of the cosmological meaning of the speed was
confirmed by detecting the sidereal time shift over 6 months
and more, (iii) that the relativistic Fitzgerald-Lorentz length
contraction is a real effect, for otherwise the results from the
gas-mode interferometers would have not agreed with those
from the coaxial cable experiments, (iv) that Newtonian
physics gives the wrong calibration for the Michelson inter-
ferometer, which of course is not surprising, (v) that the
observed anisotropy means that these eight experiments have
detected the existence of a 3-space, (vi) that the motion
of that 3-space past the Earth displays wave effects at the
level of ±30km/s, as confirmed by three experiments, and
possibly present even in the Michelson-Morley data.

The Miller experiment was one of the most significant
experiments of the 20th century. It meant that a substructure
to reality deeper than spacetime had been revealed, that
spacetime was merely a mathematical construct and not an
aspect of reality. It meant that the Einstein postulate regard-
ing the invariance of the speed of light was incorrect — in
disagreement with experiment, and had been so from the
beginning. This meant that the Special Relativity effects
required a different explanation, and indeed Lorentz had
supplied that some 100 years ago: in this it is the absolute
motion of systems through the dynamical 3-space that causes
SR effects, and which is diametrically opposite to the Ein-
stein formalism. This has required the generalisation of the
Maxwell equations, as first proposed by Hertz in 1888 [26]),
the Schrödinger and Dirac equations [25, 8]. This in turn has
lead to a derivation of the phenomenon of gravity, namely
that it is caused by the refraction of quantum waves by
the inhomogeneities and time dependence of the flowing
patterns within space. That same data has also revealed the
in-flow component of space past the Earth towards the Sun

∗Intriguingly this direction is, on average, perpendicular to the plane
of the ecliptic. This may be a dynamical consequence of the new theory of
space.

[1], and which also is revealed by the light bending effect
observed by light passing close to the Sun’s surface [25].
This theory of gravity has in turn lead to an explanation
of the so-called “dark matter” effect in spiral galaxies [22],
and to the systematics of black hole masses in spherical
star systems [25], and to the explanation of the bore hole g
anomaly [21, 22, 23]. These effects have permitted the deve-
lopment of the minimal dynamics of the 3-space, leading to
the discovery that the parameter that determines the strength
of the spatial self-interaction is none other than the fine
structure constant, so hinting at a grand unification of space
and the quantum theory, along the lines proposed in [1], as
an information theoretic theory of reality.

These developments demonstrate the enormous signifi-
cance of the Miller experiment, and the extraordinary degree
to which Miller went in testing and refining his interfero-
meter. The author is proud to be extending the Miller dis-
coveries by studying in detail the wave effects that are so
apparent in his extensive data set. His work demonstrates
the enormous importance of doing novel experiments and
doing them well, despite the prevailing prejudices. It was
a tragedy and an injustice that Miller was not recognised
for his contributions to physics in his own lifetime; but not
everyone is as careful and fastidious with detail as he was.
He was ignored by the physics community simply because
in his era it was believed, as it is now, that absolute motion
was incompatible with special relativistic effects, and so it
was accepted, without any evidence, that his experiments
were wrong. His experiences showed yet again that few in
physics actually accept that it is an evidence based science,
as Galileo long ago discovered also to his great cost. For
more than 70 years this experiment has been ignored, until
recently, but even now discussion of this and related experi-
ments attracts hostile reaction from the physics community.

The developments reported herein have enormous sig-
nificance for fundamental physics — essentially the whole
paradigm of 20th century physics collapses. In particular
spacetime is now seen to be no more than a mathematical
construct, that no such union of space and time was ever
mandated by experiment. The putative successes of Special
Relativity can be accommodated by the reality of a dynamic-
al 3-space, with time a distinctly different phenomenon. But
motion of quantum and even classical electromagnetic fields
through that dynamical space explain the SR effects. Lorentz
symmetry remains valid, but must be understood as applying
only when the space and time coordinates are those arrived
at by the Einstein measurement protocol, and which amounts
to not making corrections for the effects of absolute motion
upon rods and clocks on those measurements. Nevertheless
such coordinates may be used so long as we understand that
they lead to a confusion of various related effects. To correct
the Einstein measurement protocol readings one needs only
to have each observer use an absolute motion meter, such
as the new compact all-optical devices, as well as a rod and
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clock. The fundamental discovery is that for some 100 years
physics has failed to realise that a dynamical 3-space exists
— it is observable. This contradicts two previous assumptions
about space: Newton asserted that it existed, was unchang-
ing, but not observable, whereas Einstein asserted that 3-
space did not exist, could not exist, and so clearly must be
unobservable. The minimal dynamics for this 3-space is now
known, and it immediately explains such effects as the “dark
matter” spiral galaxy rotation anomaly, novel black holes
with non-inverse square law gravitational accelerations,
which would appear to offer an explanation for the precoc-
ious formation of spiral galaxies, the bore hole anomaly
and the systematics of supermassive black holes, and so
on. Dramatically various pieces of data show that the self-
interaction constant for space is the fine structure constant.
However unlike SR, GR turns out to be flawed but only be-
cause it assumed the correctness of Newtonian gravity. The
self-interaction effects for space make that theory invalid
even in the non-relativistic regime — the famous universal
inverse square law of Newtonian gravity is of limited valid-
ity. Uniquely linking the quantum theory of matter with the
dynamical space shows that gravity is a quantum matter
wave effect, so we can’t understand gravity without the quan-
tum theory. As well the dynamics of space is intrinsically
non-local, which implies a connectivity of reality that far
exceeds any previous notions.
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